
2. Iresentan tn

The Tibratu
 of tlep

Zhiumersity of Tarmato
by

$$
\begin{aligned}
& \text { I. V. "i }-5 \text {, E: : , } \\
& \text { 5. Tndian Treil, } \\
& \text { Trent, Crterio. }
\end{aligned}
$$

Digitized by the Internet Archive in 2009 with funding from
 Ontario Council of University Libraries

THE

ENCYCLOPEDIA BRITANNICA

A
DICTIONARY
OF
Arts, Sciences, and General Literature

THE R. S. PEALE REPRINT

WITH NEW MAPS AND OligidNAL AIIERICAN ALTICLES BY FMINENT WRITERE

WITH aymerican revisions ant additions
By W. II. Del'UY', D.D., L.L.. .,
Bringing Each Voliaf Cp to Date.

VOLUME XII

CHICAGO
R. S. PEALE COMPANY
189..

ENCYCLOPEDIA BRITANNICA.

H I R-HIR

HIRING, in luw, muy be defined as a contraci by which one man graits the use of a thing to another in returo for a certan price. It corresponde to the locatio-condisctio of Roman law. That cootrect was either a letting of a thing (lacatio-conductio rei) or of labonr (locatio (perapum). The distinguishing feature of the contract was §he price. Thus the contracts of mutuum, commodatum, depositum, and mandatum, which are all gratuitous contracts, become, if a price is fixed, cases of locatio-conductio. Iu modern English law the term can ecarcely be eaid to be used in a strictly technical sense. The contracts which the Koman law grouped together under the head of locatio-conductio-such as those of landlord and tenant, master end bervant, \&c.-are not in English law treated as cases of hiring but as independent varieties of contract. Neither in law books nor in ordinary discourse could a tenant farmer bs said to hirs bis land Hiring would generally be applied to contracts in which the services of a man or the use of a thing are engaged for a short time.

HIRSCHAU, or Hirsat, a village within the amt of Calw and the circle of Schwarzwald, Würtemberg, on the Negold, is a etation on the Pforzheim-Horb Railway, and has paper and other factories. Population 800 . It owes its origin and ita historical interest to the now ruinous Benedictins monastery in the naighbourhood, the Mopastorium Ilirsaugienss, at one period one of the most famous in Europe. It was founded in 830 or 832 by Count Erlafried of Calw, at the instigation of his son, Bishop Notting of Vercelli, who euriched it with, among other treasures, the body of St Aurelins. Its first occupants (838) wore a colony of fiftoon monks from Fulde, disciples of Hrabanus Maneus and Walafridus Strabus, beaced by the abbot Liudobert. During about a century and a balf, under the fostering care of the counts of Calw, it enjojed great prosperity, and became an important acat of learning; but towards the end of the. 10 th century the ravages of the pestilenco combined with the rapacity of its patrons, and the sclfishness and immorality of its inmates, to bring it to the lowest ebb. After it had boen desolate and in suins for upsards of sixty years it was rebuilt in 1059 , and under Abbot William "der Seligo" (1069-1091) more than regained its former splcudour. By his Constitutioncs Kirsaugicnscs, a sort of new religious order, Ordo IIirsau-
giensis, was formed, of which the rule was afterwards adopted by many monastic establishments throughout Germany, such as those of Blaubeuren, Erfurt, snd Sclafihausen. The friend and correapondent of Pope Gregory VII., and of Anselm of Canterbury, he took active pait in the politico-ecclesiastical controversies of bis time; while a treatise from his pen, De Musica et Tonis, as well as the Philosophicarum et astronomicarum institutionum libri /II., bears witness to his intercst in science and philosophy. About the end of the 12 th century the material and moral welfare of Hirschau was again very perceptibly on the decline; and it never afterwards again rose into importance. In consequence of the Reformation it was secularized in 1558 ; in 1692 it was laid in ruing by the Freach. The Chronicon IIirsaugiense, or, as in the later edition it is called, Annales Hirsaraienses of Trithemius (Basel, 1559 ; St Gall, 1690), is, although containing much that is merely legendary, an important bource nf information, not only on the affairs of this monastery, but also on the carly bistory of Germany. The Codex Hirsaugiensis was printed at Stuttgart in 1844. Seo Christmann, Geschichte des Klosters Mirschar (1782); Steck, Das K"lostcr Hirschau (1844); Wolff, "Joh Trithemius u. die älteste Geschichte des Klosters Ilirschau," in the Württembergisches Jahrbuch for 1863; and Helmsdürfer, Forschungen zur Geschichte des Abts Wilhelm von Hirsclunu (Göttingen, 1874).

HiRSCHBERG, the canef town of a carcio in Prussian Silesia, government district of Liegnitz, is beaotifully eituated at the confluence of the Bober and Zacken, and on the Silesian mountain roilw sy, 30 miles S.W. of Laubsn by rail. It is the ecat of a circle court and of a chamber of commerce. A graat portion of ita old walls still remains, and to tho south of the town there are pleasant promenades. It possesses an Evangelical church, one of the eix stipulated for in the agrecment between Charlea of Sweden and the emperor Joseph I. iu 1707 ; -four Catholic churches, one ca which dates from the 1 th ceniury ; a synagogue, on Evan gelical gymnasium, a school of the middle grade, a femol school of the higher grade, an orphazago, and an asyluni The town is the principal cmporium of commerce in the Silcsian monntains, and its industrice include the cardiag and spianing of wool, and the maoufacturc of linen :as
cotton fabrics, Brabant luce, veils, artificial llowers, paper, Portland cement, porcelain, sealing-was, blacking, chemicals, machines, fire-engines, clompagne, and cider. There is also a lively trade in corn and agricultural produce. The lown is celebrated for its romantic surroundings, including the Cavalierberg, from which there is a splendid view, the Hausberg, the Helicon, cromned by a small Doric temple, the Kreuzberg, with walks commanding beautiful views, and the Sattler ravine, over which there is a railway viaduct. The population in 1875 was $12,954$.

Hirschberg was in existence in the 11th century, and obtained inwn rights in 1305 from Boleslaus III. of Poland. It withstood a sicge by the Hussites in 1427, and an attack of the imperial troops in 1640 . The Coundation of ats prosperity was laid in the luth entury by the introduction of the manuracture of linen and veils.
hirtilus, Aulus, one of Cresar's chief supporters and most intimate friends. He was with Lim as legatus in Gaul. After the civil war broke out in 49 b.c., he seems to have been generally stationed in Reme to protect Cexsar's interests there. He was a personal friend of Ciecro, and used his influeace with Cresar in behalf of the orator's brother and nephew. He was nominated along with Pansa by Cessar for the consulsbip of 43 B.C.; and after the dictator's̀ assassination in March 44, this honour made him for a short time one of the leading acters in that troubled t:me. The consuls supported the senatorial party against Antony, and Ied their armies into Umbria, where Antony was hlockading Dec. Brutus in Mutina. On March 27 th a double bettle was fonght : in the first Antony had the upper hand, and Pansa was mortally wounded; and in the second Hirtius completely defeated the enemy, but was Limself killed in the subsequent assault on the enemy's camp. Hirtius was perliaps an author: the eighth book of Cexsar's commentaries on the Gallic war, which was ourtainly not written by Chesar himself, is communly attributed to him ; and the accounts of the Alexandrian, tifrican, and Spanish wars are perlaps also due to bis pen.
hispaniola. See Hayti.
HISSAR, a British district belonging to the division of the same name, ${ }^{\text {, }}$ in the lieutenant-governorship of the Punjab, India, lying between $25^{\circ} 36^{\prime}$ and $29^{\circ} 49^{\prime}$ N. lat., and between $75^{\circ} 16^{\prime}$ aod $76^{\circ} 22^{\prime}$ E. long. It is hounded on the N. and N.W. by the Patiala state and a small portion of the British district of Sirsa, on the E. and S. by the territory of Jhind and the British district of Rebtak, and on the W. by the descrts of Bikaner. Area, 3539 square miles; pepulation (1868), 484,681.
Hissir furnis the western border district of the great Bikaner desert, and cunsists for the most part of sandy Whins cotted with slirub and brusbwood, and broken by midulations towarda the sonth, which rise into hills of ruck like islands ont of a sea of sand. The Ghaggar is its only river, whose supply is uncertaiu, depending much on the fall of raiu in the lower Himalayas; its overflow in times of heavy rain is cauglt near Fatchábid and Murakhera by Jhits, which dry up in the hot reason. A canal, known as the Western Jumna Canal, crosses the district from east to west, irrigating 54 villages. The soil is in places hard and clayey, and difficult to till; but when sufficiently irrigated it is linghly prodnetive. Old mosques and other buildings exist in trorts of the district.
Kice is the etaple crop of the district. In favourable reasuna, cuttun ie extensively grown in lands irrigated by the W'satren Jumna Caoul. In 1872-73, 1,431,541 acres wero urder tillage, out of an nssessed area of $2,265,428$ acrea. Hissir I Iroduces a breed of milk-white oxen, 17 or 18 hande in height, which aro in great roquest for the
${ }^{1}$ The divivion of Hismar is under a comminsioner, and comprisea the
 formlatimi (3865), 1.233.135
carriages of oatives. The district has always been subjee: to faminc. The first calamity. of this kind of which we have authentic record was the famine of 1783 ; since then there have been several more or less serious failures of the crops.

The principal exporrs are oil-seeds, gram, grains, copper and brass utensils, bides, and a little cotton; the imports -salt, sugar, fine rice, cottou goods of English make, spices, and iron. The exports are double the imports in value. The rural manufactures comprise coarse cotion cloth, ressels made of prepared skins, and copper and brass vessels. The ammal out-turn of rough saltpetre is esti mated at 450 mumels. The trade of the district centres in BLawain, where nine lines of traffic converge. 'l'he main road, about 50 feet wide, unmetalled, traverses the district, passing through Hánsi and Hissár towns; fuurteen other roads supply communication. The census of 1868 returnerl the pupulation at 484,681 (males, 266,847; females, 217,834). The Hindus numbered 373,937 ; Mahometans, 102,928; Sikbs, 1812 ; and "others," 6004. There are three municipalitics, viz., Bhawani, 32,254; Hissir, 14,133; and Hansi, 13,563. The district pulice numbered 396 men in 1872-73, and the municipal police 174. In the same year there were 50 schools, with 1729 scholars. The climate of Hissir is very dry; hot westerly winds blow from the middle of March till July. The average rainfall for the six years $1867-68$ to $1872-73$ was 14.57 inches. The priucipal diseases are fevers and smallpux. Cholera occasionally breaks out. Skin diseases also are common. Government dispensaries are situated at Bhaẁani and Hansi.

Prior to the Mahometan conquest, the semi-descrt tract of which Hissir district now forms part was the retreat of Chanhin KiajputsTowards the end of the 18th century, the Shattis of Bhati:ina gained ascendency ufter bloody struggles. To complete the ruin brought on by these conllicts, nature lent her ail in the grent famine of 1753. Hissir passed nouninally to the Bruthsh in iso3. but they could not enforce order till 1810. Early in the mutiny of 1857 Hissir was wholly lost for a tine to British rule, and nll Eurnpeans were either murdered or compelled to tly. The Blatris rose under their hereditary chiefs, and the majority of the Malometan propulation followed their example. Before Delhi had been recovered, the relels were utterly routed.

HissAr, municipal town and administrative head. quarters of the above district, $29^{\circ} 9^{\prime} 51^{\prime \prime}$ N. lat., $75^{\circ} 45^{\circ}$ $55^{\prime \prime}$ E. lung. ; population (1868), 14,133 (Findus 9211 , Mahometans 4805, Sikhs 34, Christians 83). The town is situated on the Western Jumma Canal, 102 miles W. of Delli. It was founded in 1354 by the emperor Firoz Shíh, who constructed the çanal to supply it with ater; but this fell into decay during the last century, owing to the constant ioreads of marauders. Hissír was almost completely depopulated during the famine of 1783, but was afterwards occupicd by the adventurer George Thomas, who built a fort and collected inbabitants. It contuins a cattle farm, both for commissariat purposes and for improf. ing the breed of the province; attached is an estate of 43,287 acres for pasturage. There is an import trade in grain, ghr, sugar, oil, cotton, tobacco, and English piece goods. The municipal revenue in $1875-76$ was $\mathfrak{E} 1229$.

IIISSAR, a stalo in Central Asia, lying between the meridiana of $66^{\circ} 30^{\circ}$ and $70^{\circ} \mathrm{E}$. and tho parallels of 39° 15° and 37° N., and dependent on the nmir of Bokbara. It forms that part of the basin of the Oxus which lics on the north side of the river, opposite tho Afghan province of Balkb. The western prolongation of the T'ian Shan, which divides the basin of the Zarafshan from that of the upper Oxus, after rising in one peak to a height of 12,300 fcot, bifurcates in $67^{\circ} 45^{\circ}$ E. long. Its two arms include between them the province of Shabr-i-Sabz, with the towns of Shabr Sibz, Kitab, Yakobagh, and Karchi. Tbe main chain and the sou'hern arm of its bifurcation, sumetimes
saned Koli-i-tan, form the N. and N.W. boundaries of Hissar. On the W, it is wholly bounded by the desert; the Oxns hmits it on the S. and S.E.; and the states of Karategin and Darwaz complete the boundary ou the E. Until 1875 it was one of the least known tracts of Central Asia, but in that year a Russian expedition from Tashkend traversed and surveyed a great portion of it, and since then successive expeditions have explored various other portions, so that it is now very fairly known. Hissar is traversed from north to south by four important tributaries of the Oxus, viz., the Surkhab or Vakhsh, Kafirnihau, Surkhan, and Shirabad-Daria, which descend from the snowy mountains to the north and form a series of fertile valleys, disposed in a fan-shape, within which lie ambosomed the principal towns of Hissar. The two chicf roads by whech Hissar is approached from Bokhara and Russian Turkestan lie throngh Karchi and Slahr-i-sabz respectively. Both these routes unite at Ak-roba, on the crest of the range between Khuzar and Baisun. There is alse a difficult ronte, running through fine forests from Yakobagh across the mountains to Sarijui. A little way down the nther side of the mountain chain between Khuzar and Derbend is sitmated the famous defilo formerly salled Kohluga (Mong. "Barrier") and the Iron Gate, but now styled Buzghol-khana or Goat's House. This pass is described by the Russians, who visited it and were vividly impressed with its solemnity, as a huge but narrow shasm in a transverse range, whose frowning rocks overhang and threaten to choko the tortuous and gloomy corridor (in places but 5 paces wide) affording the only exit from the valley. In ancient times it was a vantage point of much importance, and commanded the chief ronte between Turkestan and India. \& Hwen-Tsang, who passed through it in the 7 th century on his way southward, states that there were then two folding doors or gates, eased with iron and hung with bells, placed across the pass. Clavijo, the Spanish ambassador to the court of Timur, heard of this when he passed through the defile 800 years after, but the gates had then disappcared. Derbend, the first inhabited place met with, is a poor village in the valley of the Shirabad-Daria, along which runs the road to the Oxus and to Afghanistan. Shirabad town itself is a place slaiming great antiquity. It has a citadel and three rows of walls, and with its surrounding villages presents the uspect of a flonrishing oasis. There are four ferries over the Oxus in the Shirabad chiefship or district, viz., Chush-ka-guzar (boar's ferry), Patta-kissar, Shur-ab, and Karakamir.

Baisun, a picturesque Uzhek town considered to be very healthy, lies on the road from Derbend to Hissar town. Emerging from the somewhat complex mountain mass which fills up this part of Hissar, the valley of the Surkhan is reached. This large river is formed by several affuents from the suowy range to the north, one of which, the Tupalan, formerly gave its name to the whole stream. The valley in its upper psit is between 40 and 45 miles wide; the banks of the river are fiat and reed-grown, and are frequented by wild bogs and a fcw tigers. The Surkhan valley is highly cultivated, especially in its upper portion, where the villsges are cromded. It supplies Bokham with corn and sheep, but its chicf products are rico and flax. When Hisssr was independent the valley of the Surkban was always its political centre, the town of Hissar boing aimply an outlying fortress. Passing by four fortified towns, Dohinau, Sarijui, Regar, and Karatagh, all in the basin of the Surkhen, Hissar ($=$ fort) claims notice. Its position at the entrance of the Pavi-dul-dal defile commanded the entrance into the fertile valleys of the Surkhan and Kafirniban, just as Kubadian at the southern end of the latter stream defended them from the.south. The
famous bridge of Pul-i-sanghin (stone bridge, Tash-kcpri in Turkish) lies on the road from Hissar and Kafirnihan to Baljuan and Kulab. It spans the Surkhab, which is here bemmed in between lofty and precipitous cliffs barely 30 paces apart. The bridge itself abuts on projecting rocks, and is ten paces wide. The next place of importance is Kulab, in the valley of the Kichi Surkbab, so called from the lakes or inundations near which it stands. The district is part of that once famous as Khotl. The town (which, strictly speaking, is the capital of Kulab district as distinct from Hissar) contains about 500 houses and a poor citadel, and from it there are roads to Badakbshan and Kurgautepe and Kinbadian. These two lie in the valleys of the Vaksh (or Surkhab) and Kanirnilen respectively. Kulab produces wheat in great profusion, and gold is brought thither from the surrounding districts. Kubadian is a large, silk-prodncing town, and is surrounded with rice-fields. Formerly the two last-named valleys wero densely peopled, and a scries of settlements extended southward from Debinau, from which town an arik or canal provided the city of Termez with water. Termez, or Termedh, was an ancient and important city on the Oxns. After being destroyed by Jenghiz Khan and lying for some time in ruius, it rose again into note in the following century, and when visited by Ibn Batuta, and later by Clavijo, it had grown again into a place of some importance. It ia now a mass of ruine.

The population of the districts of Hissar and Kulab consists principally of Uzbeks and Tajiks, the former predominating, and, as in the valleys of the Sir and Zarafshin, gradmally pushing the aboriginal Tajiks into the hills. East of Dushanba the Tajiks are the dominant race. On the banks of the Oxus there are some tribes of Baigush Turkmans who work at the ferries, drive shece, and accompany caravans. Lyuli (gipsies); Jews, Hindus, and Afghans are also to be found in Hissar. But the Uzveks are the most numerous, and their influeace is so great that at Bokhara Hissar is known as Uzbekistan. The climate of the valleys of Hissar and Kulab is pleasant, as they are shut in by mountains to the north and open towards the Oxus to the sonth. Baisun (3410 feet) is the most elevated town. Hissar and Kulab produce in abundance all the cereals aud garden plants indigenous tn Ceatral Asia. Cotton is grown in considerable quantities in the district of Shirabad, whene it is exported by way of Khuzar to Karshi. The difficulties of transport would prevent its heing brought in any quatity from other places. Dehinau, Hissar, and Dushamba export corn and flax to Boklara. From the vicioity of Khuzar is exported rock salt, and sheep are brought to Bohhara and Karshi from all parts of Hissar district, as well as from Baljuan, Yurehi, and Afghanistan. A species of juniper, called archa, is used for timber. Salt is found at Basb-kurd, in the mountaing ol Hazret-Imam, aud at other places. There are numerous brine spriogs in various quarters, indicating generally an inexhaustible supply of rock-salt. Aurifereus sand has been diseovered io the Vaksh, end the inhabitants wash tha sands after the floods in spring. Merchandize is conveyed by means of camels, mules, and horsea from Hissar to Karshi and Bokhara. Not a single waggon is to ba fonnd in the district, and the wonden arlic is not even known there. Politically, Hissar now consisty of neven sub-districts, governed by begs, Shirabad, Baisun, Dehinau, Yurchi, Hissar, Kurgan-tepe, and Kubadian; and Kulab of two, Baljuan and Kulab. The fact of the chief ronte between the Russian and British possessions in Asia lying through Hissar has served of late years to bring it into prominence, and will always invest it with a certain importance.
History.-Our knowledge of the history of Hissar is most frag. mentary. In early written history this country was part of the Persian empire of the Achamenide, and prolably afterwards of the Greeco-Bactrian kinglom, and then subject to the Eastern swarms who broke this up. In the time of the Snssanion kings of Persia it was under tha Haiathalah, the Ephtholites or White Hung of the Greeks, subdued by the Turks in the early part of the 7 th centary, these soon to. be displaced by the Mahometan power. Termedh, Kubadian, end Chagaman are naioed as places of importance by the Arab geographers of the 10th century ; the last name was also applied territorially to a great part of the Hissar province, bot is now obsolete: The conutry was suecessively aubjeet to the Mongol Chagatai dynasty and to Timur and his auccessors ; it afterwarda became a cluster of Uzbek states of obscure history. Hiesar was aonexed by the amir of Bokhara in 1860-70, soon efter the Russian occupation of Samarcand.

HISTOLOGY

I Animal Histology.

ANIMAL HISTOLOGY (from iatós, a web or tissue, and λ óyos, discourse) is the study of the minute structure of the tissues of animals. By a tissue is meant any part of an organism which has undergone special changes in structure in adaptation to the performance of special functions. These special changes are expressed by the general term "differentiation." In the lowest animal organisms, the whole of whose bodies are coniposed of the undifferentiated living substance termed "protoplasm," we find all its functions shared by every part of the organism. An amceba, for example, it is well known, is capable of finding, seizing, devouring, digesting, and assimilating food, has a special provision for collecting fluid and pumping it out of its body, respires by its whole surface, moves about appareotly where it will, exhibits a sensibility to tactile impressions, and reacts in all probability to smell if not to sound sand light,-in short, is capable of performing, although with the lowest possible amouut of activity, almost every function which animals vastly higher in the scale of organization exhibit. But even in the amœba we cannot say certainly that there is no differeatiation of its protoplasm. For a condensed portion-the nucleus-is set aside to initiate the reproductive function, and it is by means of the exterasl and firmor layer (ectoplasm) that its movements are effected and its relations with the external world maintained, while the internal more fluid protoplasm (ensloplasm) is cuncerned vith the digestion of the food. Still there are simple organisins whose protoplasm is probably sboolutely undiferentiated. On the other hand, there are other organisms which aro also regarded as composed of simple protoplasm, and are constinuted by a siagle cell, which nevertheless show s marked progress in the differentiation of portions of their substance opart altogether from the presunce of a nucleus. Such differentiation in unicellular organisms geaerally takes the form of the production of a shell or "test," as in the Foraminifera and in Noctiluca, which sabserves purely passive functions of sustentation or deifonce. It is not certain in such cascs whether the struetare thus produced is foraied by tho direct conversion of the protoplasm or by an exudation on the surface witich subsequently hardens. But portions of the protuplasm anay be eet aside for the performance of active functions. Wo see this in its production in the form of locomotory organs, either temporary (psendopodia) or permancnt (cilia). But in neither of these can any actual change in tho minute structure of the protoplasm be observed. A difficreatiation docs, however, occar in oue remarkable instance-the fagollum, namely, of the Noctilucibe (fig 1), which exhibits as definito en transverse striation as does the croas-strisiad or voluntary muscular tissuc of the higher animals, in which structural peculiarity it is impossible not to imfer a relation to its contractile functions; and sinilarly, in tho Vorticellide, thero is a differentiation of the protoplasm of the rapidly contractile stalk.
-Whereas in the more highly organized unicellular animels portions of the single cell aro thus set aside for the performance of special functions, and modified in structuro accordingly, in multicellular animals, on the other hand, we find whole celly and sets of cells set apart and differentiated. It is to such modifications in sets of cells in multicellular organisms, rather than in portions of the protoplasm of a uniccelular organism, that "listological differentiation" is rommonly restricted; and cack such set of cells, destincd for tho performance of a special function, and nuolifed accurdingly in structure, is denominated a "tissuc."

The animal tissues may be classed under the four heads of Epithelium, Connective Tissue, Mfuscular Tissue, and Nervous Tissue. ${ }^{1}$ Of these four classes of tissue the epithelium is the most primitive and least altered. In the development of the Metazoa the numerons embryonic cells which result from the dirision of the siagle cell-the ovam -tend in cearly every case to arrange themsel res as a single layer surrounding a central cavity (unilaminar condition of the blastoderm), (fig. 2, A). ${ }^{2}$ Presently a part of the wall of the hollow sphere becoules invaginated, so that, instead of a vesicle enclosed by but a single layer of cells, a cup (Gastrula, Haeckel), is produced (fig. 2, B), the wall of which is formed by two layers derived from the original single layer, and separated from one another by a narrs interval (which is all that remains of the original cavity at the vesicle) except at the orifice of the cup, where they are continuons (bilaminar condition of the blastoderm). At this part some cells become separated from one or both of

Fig. 1.

Fio. 1.-Flagellnm of Noetiluen mitiaris thighly magalfed). s. tranoversels atriated substance: b. base of attachment to body of asimal.
Fio. 2.-Sectlons through the unjluminar (A), bilaminar (B), and trilaminar (C) condltions of the typical blastoderm, Eel., ectodem: Enf, entoderm; Mes., mesoderm; e, primitive connective tissac.
these twc primary layers, and, extending in and occupying the cleft-like space which separates them, become a third layer of cells, which differs from those of the other two in not being arranged into a continuous membrane, and not, therefore, forming an epithelium (trileminar condition of the blestoderm), (ig. 2, C). Now, of these three layers, the outer one, or ectoderm, and the inner one, or entoderm, give rise to all the epithelial tissues of the body. The nervous tissues are also derived from the ectoderm; whereas the connective and muscular tissues originate in the mesoderm or middle layer. In most of tho Ccelenteruta, howevor, the mesoderm is not developed at one part only of the embryo ss in the bigher Metazoa. In the lydroid polyps oud Medure it never becomes complotely distinct from the ectoderm and entoderm, although a jolly-like sustentacular substance may bi formod in a greater or less extent betweca the two primary layers, and cells may pass into it from one or them, so that a kind of mesoderm is thus producel. In the Meluse, also, the muscular function is periorned by

[^0]cells which either still bave their place in the general layer of the ectuderm or are but inperifectly separated from it; and herc, again, the conmencing sepraration dues not occur at one part only, but over extensive tracts of tho surface. Nevertheless these cells are modified in structure precisely in the same way as thuse which in higher animals are derived from the mesodern. The norvous functions are also performed by cells and fibres, which, although they show thuse modifications of structure which in the higher animals are characteristic of nervous tissuc, yet remain strictly confined to the ectoderin, and do not, as in the higher animals, penetrate into the mesdderin.

The Epitheliel 7 'issues. - Although, as we have seen (sce 1 4, note 2), the layers of eclls which are first formed are layers of epitheliun, and, therefore, the epithelial tissues are the first to be produced, uevertheless we lind that they undergo less modilication in structure than any of the other three classes of tissuc. As before said, they invariably consist merely of cells cemented together by an imperceptible anmont of intercellular substance, ${ }^{1}$ and the cells themselves only show minor degrecs of moditication is shape and structure, at least as couprared with the other tissucs constituten mainly of cells, mamely, the muscular aud nervulus.

Moclifioutions in Shape of E:pithetial Cells.-The c.ells of :his tissue may be cither elongated and set like palisares - ver the surface whied they cover, in which case they are termed "columnir" (hy. 3), or they may he flattened out wer the surface, and they then appear as thin "scales"; and every variation in shape is met with between these two extrenes. In any case where they form a single layer, since the cells are set closely together, the mutual apposition of neighbouring cells produces a thattening of the opposed sides, so that, when the epithelium is looked at from the surface, the cells have a polygonal outline, and collectively present the appearance of a mosaic pavement (fig. 4). In

Fig 3-Liotumiar epilhelium cells Fig. 4. - hosale uppearabee of eplatheliten Fio. 5-Stiatitied ryutheliuan.
certain cascs, especially where there is liability to abcasion of the surfaco which they cover, the epithelial cells are dis. posed in tivo, thiree, or more supcrimposed layers (fig. 5), and then the cells of the different layers may vary much in size, slape, and consistence. Such on epithelium is termed "stratified."

It frequently happens that the layer of epithelium which covers a surface is prolonged ioto depressions, which may be quite simple or may bo ramified either slightly or in the most comples manner. The epitheliul cells which line such diepressions may resemble those of the surface upon which the depression opens, or they niay become more on less modified in size, shape, and other particulars, and constitute themselves into a distinct varicty of epithelial tissue. Since dejressions like those just mentioned are generally for the purpose of forming sume special secretion, and are termed glands, and since this secretion is claborated by the agency of the epitholial cells which line the gland, any such special

[^1]varicty of epithelium is termed a "glandular or "secreting epithelium.

Modifications in Structure.-The modifications in structure which the cells of epithelial tissue undergo are comparatively slight. One of the most common is the conversion of the external layer of the protoplasm of the cell into a firm membrane, gencrally of a horny naturc, but this membrane is seldom sharply marked off from the substance of the cell, as is tho case withithe cellulose membraue of the verctable cell. It becomes formed, moreover, to a very different extent in diflerent cells, according to the function which the particular epithelium has to perform; where, for example, the epithelium is alnost purely a protective covering, as in the stratificd scaly cpithclia, a considerable part, or even the whole thickncss of many of the epithelial cells, is thus transformed ; but where, on the other hand, the cells bave to play an active part in yiclding a secretion to moisten the surface, or in protruding a portion of their protophasm in the form of vibratile cilia to produce currents over the surface, or to move the organism through the water, we fiod little, if any, of such conversion of the superficial cell-substance. What little there may be is confined to the attached surfaces of the ccl!, or if there is any such coyering on the free surface, it is penctrated by pores which allow of a communication between tho proteplasm of the cell and the external medium.

Another common modification of structure which epithelial cells exhibit is the existence of vibratile cilia at the free surface (fig. 6). This, again, is cspecially frequent with cells of a columnar shape, bat it may occur in any. The cilia appear to be protrusions of the more active csternal protoplasm of the cell, which are in most cases incapable of being again withdrawn, and are iu all probability modified in minute structure, although they are always so small that such modification, if it exists, escapes detection ever with the employment of the lighest powers of the microscope. At their base, however, the cilia are certainly continuous with the unaltered protoplasm of the cell. This may be

Fig. 6.

Fig. 7.

Fig. 8.

rig. 9.

Fto $\mathbf{G}-\mathrm{A}$ ciliated epitholium celt.
Fio. 7 -A siriated cuithellum cell
Fig 8.-A ciltated cell with ont latace cilum.
Eto \boldsymbol{y}-Sunse-epilislium cell of Auchu.
seen even where the cilia me small aud spring in o bunch from the free surface of the cell, but much better in those kinds of ciliated epithclium in which but a single large cilium is connected to each columanar ecll (fg. 8).

Many epithelial cells, especially those of secreting glands, show a differentiation of their prothplasm in the form of fine strixe or rods which pass from the attached border of the cell towards the free and (fig 7). Cells thus modifical are found in the ducts of the salivary glamls; in the alveoli of the pancreas, and in the convoluted tubules of the kidney in Vertebrata.

One of the must remarkable modifications when epntuelium cells exhibit is fund in the organs of special sense. This is the presence of a fine filamentous process or procesees springing from the free sufface of the efithelium cells, and resembling in their appearance line cilia, but not spmantaeously vibratile (firg 9). Mureuver, the cells in oneation,
which are generally of an elongated coinuarar form, commonly branch out at their detached end into fine processes which appear to become connected with nerve-fibres. Cells of this character occur even so low is the Metazoa as the Medusce, in connexion with the aerve-epithelium to be afterwards mentioned. And, indeed, in many cases where ceils of this character eater into the constitution of the sense organs, it is probably most consistent with their true nature to regard them as detached portioes of nervous tissue, which also io every case is originally of an epithelial nature.

Modifications in the Cell Contents.-Another chief modification which the cells of an epithelial tissue may undergo cousists in the accumulation within the cells of rarious chemical substances, which may be either taken in bodily as such, or may be formed in the cell from other substances which are supplied to it by the blood. The aubstances that are thus accumulated and formed within the cella of an epithelium are of very various nature, as, for example, the constituents of special aecretions (fig. 10), mucin, pigment, fatty globules, uric acid, \&c., \&c.

Fig. 10. - Epitheriun cells of renal organ of molluse containing crjstals of uric acid. These several substances are toler(BolL) ably constaat in an epitbelium of tha same kind-thus, mucin is a very frequent constituent of columnar epithelium, and ia glands which have the same function in different animals, the same substances are found in the epithelium cells of the glaed.

Exudation from Epithelium Cells. Formation of Cuticular Seructures.-In many invertebrates the epithelium which covers the surface of the body, and sometimes also that which lines a part of the alimeatary canal, forms an exudation which is generally soft at first, but may afterwards harden into a borny censistency, or may be renfered still harder and at the same time more brittle by impregnation with earthy salts. Any such structure is termed a cuticular formation It may be composed of a single thin layer, or a aumber of layers may be superimposed, so that a "shell" of considerable thickness is thus formed. The chitinous or calcareeus covering which forms the exoskeleton in many molluscs, arthiopods, annclids, and Hydrozoa is of this eature. On the other hand, the firm skelctons of aponges, Actinozoa, and Echinodermata are formed by deposition in the connective tissue.

The Connective Tissues.-The connective tissues are characterized by the great development of intercellular gubstance in comparian with the cells; indeed in those animals io which connective tissue may first of all be said to appear, there is an entire absence of cellular clements properly belonging to the tissue. This is the case ia many of the Colenterata, in which the ceonective tissue is repre. sented merely by a layer, more or less thick, of hyaline substance, which undoubtedly periorms a sustentacular function, in addition to connecting together the epithelial layers of the cctoderm and entoderm.

The intercollular or ground substance almost invariably takes a prominent part in the formation of cennective tissuc. It is of a semi-fluid nature, and often contains in addition to albumen a certain amoment of mucin. In most cases the colls of the connctive tissue separate themsolves from the primary layers before the formation of this ground substance; inderd the mosoderm is at first chiclly formed of thege cells. The stages of development aro as follows. Tho mesodermic cells, which aro at first in apposition, become soparated from one another ly the accumulation ol intercellolar subatince, but at the same time maintain a comacsion with one another throughout the tissue by
their branching cell-processes (see fig. 2, C, c). Presently, in the production of ordinary connective tissue, fibres of two kinds make their appearance in the intercellular substance, ad to all appearance independent of the cella. Those of the one kind (fig. 11, A) are highly elastic and refracting, not easily affected by reagents, stain deeply with magenta, run singly, always branch, and become united with neighbouring fibres so as to form a network throughout the tissue; those of the other kind (fig. II, B) are excessively fine and indistinct, never run singly

Fig. 11. but always in bundles, and geacrally with a wavy course, are rendily affected by reagents, and, in vertebrates, yield gelatin on boiling. Ia the various kinds of connective tissue the relative proportion of these two kiads of fibres to one another and to the cellular elemeuts of the tissue varies. Thus in the so-called elastic tissue of the Vertebrata the elastic fibres greatly preponderate; in tendinous tissue, on the other band, they are scarcely to be found, and the ground is almost wholly occupied by the white fibres. It may happen that the intercellular substance is so complotely occupied by the fibres as to be entirely obscured, but ita presence may be always recognized in censequence of the property which it possesses of reducing silver from its salta when exposed to the light. In certain cases the intercellular substance becomes bardened by the dejosit within it either of a substance termed chondrin, which confers upon it the well-known toughness and elasticity of cartilage, or by a deposit of earthy salts imparting to it the firminess of bone. These several changes in the intercellular substance are accompanied by special modifications in the form and relations of the cells (by whose agency they are in all probability effected). In comparatively rare cases the intercellular substance which is found occupying the meshes of the network fermed by the branched cells of the developing connective tissue may disappear eotirels, and the meshes may be occupied either by blood or by the lymph or plasma of the blood (spleen and lymphatic glands of vertebrates).

It frequently happens that the connective tissue presents the consistence of jelly, and this is gencrally ascribed to the characters of the intercellular substance. It may, how. ever, be due in many cases to the entanglement of fluid in the mesbes of the fibres, and not to a gelatinization of the ground substance. This is shown by the fact that the fluid may be drained from out the meshes by means of filter paper. And the possibility of the formation of a jelly in this manner is evidenced in the coagulation of byph, where the apparently solid gelatinous clot is a tangled meshwork of fine flaments enclosing fluid.

The connective tissucs of invertebrates are, on the whole, similar to those of the vertebrate; at the same time it must he almitted that there are not uaimportant differences in chmical constitution, such as the absenco of a substance yielding gelatin, and tho absence for the most part of mucin, both of which are characteristic constituenta of vertcbrate connective tissuc. On the other haod the anatomical characters of the elements, heth cella and fibres, are in most cases sufliciently well marked to bo recognizable.

In the sponges the bulk of the animal is mado up of a jelly which, when examined under the microscope, is found
to censist of large brauched cells (fig. 12) connected together by their processes inte a network. Tbe meshes of this are occupied by clear intercellular substance within which the caleareons or borny matter which forms the okeleton is deposited.

Fia. 12.-Connecilve tissue of sponge. (F. E. Schuize.)
When the development of the sponge is traced it is found that the first part of the tissuc to be seen is the clear intermediate substance, and the skeletal spicules begin to arpear in this before the cellular elements. These waeder subsequently into it from one of the primary layers. There can be no doubt that this jelly-like tiesue of the sponge represents a primitive fora of connective tissue, slthough, so far as has at present been ascertained, no fibres are dereloped in it.

In the Colenterata, as in the sponges, the connective tissue makes its first appearance in the form of a clear intermediate substance, which may be so small in amount is to be almost imperceptible, or so large in amount as to form the main bulk of the organism. In the former case, as in the developing sponge, there is an entire absence of poth fibres and cells, whereas in the latter case buth kinds of elements are found. The fibres are the more constant, and are of the elastic kind (fig. 13); they bave for the most part a direction aeross the thickness of the tissue stretching from ento. derm to ectoderm, brancbing and uniting with their neighbours to form the characteristic network which, enclosing watery fluid in its meshes, produces the jelly-like coeeistence of the tissue. Fibres of the white variety are nlso found as lew down in the Metazoa as the Colentcrata. In some of the acraspedote Medusce they occur in the form of bundles of indistinct wavy fibres situated near the surface of the jelly, and in the Actinice similar fibres are found forming menbranes which bear a atrong resemblance to some of the forms of membranous connective tissue of the Vertebrata (fig. 14). As before

Fic. 14-Fibres and cells of connective tlasuo of an Aetinia. (hülliker.
mentioned, in the lower forms of Celenterata cells are entirely absent from their jelly-like connective tissuc, but in the higher forms scattered cells (fig. 13) of indeterminate shape and pesition, but generally in the neighbourhood of the entederm, begin to make their appearance. Some of these cells are amoboid, but others become fixed, and arranged in a network which pervades the jelly.

We see then that the cells, the intercellular substance, the white fibres, and the clastic fibres of the vertebrate connective tissue are represented in these low forms of the Ireluzoa in a perfectly recognizablo maner. It is not
surprising, therefore, to find in all the higaer classes of the Invertebrata that similar elements characterize the connective tissue, although there are undoubtedly certain modifications and exceptions. The most notoworthy modifications occur in the chemical constitution of the ground substance and of the fibres. Thus, as before mentioned, there is for the most part an absence of the gelatin-yielding substance of the vertebrate connective tissuu. On the other band, the interce!!ular substance may becomo infiltrated with chemica! principles unknown ia vertebrate histology, os in the tunic of the Tunicata, where cellulose is found. ${ }^{1}$ There are modifications also in the appearance of the connective tissue fibres which are oftea accompanied by modifications in the chemical constitution. For example, in the Arthro. poda the tissule often undergoes extensive chitinization, and the fibres in it present a straight, stiff appearance, very unlike the soft, wary look which is exhibited by the fibrous tissue of the Vertebrata.

Although the ramified cell may be looked upon as on the wbole the most characteristic form of cell met with in connective tissue, and although this is the first modification in shape which the rounded embryonic cells of the developing vertebrate commective tissue take on, nevertbeless it gives place in many parts both in invertebrates as well as vertebrates to other forms. One of the commonest of these is the flat cell, and we almost invariably find cells of this deseription lying on or in concective tissue membranes, and lining cavities which may have become formed in the connective tissue. In tbe latter case the tiat cells may be and most commonly are spread over the whole inncr surface of the cavity which they line, and assume the appearance of a pavement epithelium. Such cells, which are termed epithelioid (or by some endothelial), are found linieg the body cavity and the vaseular canals and heart (where these exist) of all invertebrates just as they do the similar cavities and canals in vertebrates, and they are derived like the rest of the cells of the connective tiesue from the mesoderm, and therefore only indirectly from the primary blastodermic layers. But in the bolothurians, and some other animals, the cells in question are derived directly from the entoderm.

In the Mollusca (fig 15) a peculiar type of connective tissue cell makes its appearance in addition to the rouederl, the ramified, and the flatteaed forms. This tales the

Fio. 15, Connectire tissic of slog. r, ramifere cell: f, fiactened cell; r. vistuas cell. Tho fbres fo the ground substance ure also lndicuted.
shape of a large clear, vesicular, double-contoured ceil-boci? (v) with a relatively small nucleus. Cells of this charactir are in some cases only to he found scattered here ant thero in the tissucs, but in others they are closely co.lected masses, and by their aggregation confor al almost cartilaginous consistency upon the tissue. This is

[^2]not due, berever, to the accumulation of chondrin-the chemical principle of the cartilage of vertebrates-in intercellular substance. But a true cartilage is met with in some of the higher molluses (Cephatopoda), in which there is a considerable amount of intercellular substance, and the ouly difference, as compared with ordinary cartilago of most vertebrates, is that the cells are much ramified (as in some fishes).

Bune, oc osseous conncetive tissue, as the word is understood in vertebrate histology, is not met with anywhero amongst the Invertebrata, and this is less to be wondered at since it does not nake its appearance even in some of the lowest of. the Vertebrata. Eut bard structures of various kinds serve to supply tho place of bone as a sustentarular tissue, and these may be developed either within the connective tissuc, so as to form an interial hard skeleton, or on the exterior of the body, so as to form an esternal steleton or shell. When external the shell is an epithelial structure, or at least is produced hy the formative activity of the epithelium which covers the surface of the body. An internal hard skeleton way either coesist with an exterual, or the one may be found to the exclusion of the other.

In the celenterates the internal skeleton when found is generally deposited in the jelly like intercellular substance in the form of separate spicules, which subsequently are cemented together by a further deposit of calcarcons matter into a continuous skeleton. In the sjonges the calcarcous spicules often project from the jelly into the external medium, but it is probable that they are covered by an extensinn of the superficial flattened cells which they seem to pierce; the separate calcareous spicnles are in some cases united by cal. careous matter, in others by horay substance, or the spicules may be altogether absent and the borny framework constituto the whole sleeleton. There is no evidence to show that these calcarcous and hurny deposits aro formed by the direct agency of the cells of the jelly-like tissuo. On the conthary, the fact that the spicules make their appearance in the

Fro 16 -Section of the shelt of Ethingr, partly decalclfied ly acin (Leydig) The connccilve tissus bundles are seen on the lef: some are cut transvelsely by the calcaleous globules (r) Above and below is seen a layer of epllhelum (e, t). jelly-like substance which accumulates between the two primary layers before there is any trace of cells to be seen in it is a fact pointing in the opposite direction.

In the cehinids amongst Fchinotermata the shell is formed by a dense deposit of caleareous substance ($\mathrm{C}, \mathrm{g}, 16$) in the fibrous connctive tisaue of the integument, but is net of the nature of bone, of has been sometimes supposed. In other e binolerms the deposition is more scanty, and in some (IIolothuria) it many merely take the form of isclited spicules, which often prescut curious shapes.

The Muscular Tissues of Animats-In the Vertelirata threo kinds of muscular tissue are met with-the phain or involuntary, tho cross striped or coluntary, and the cardiac or heart muscle. Undoubtedly the last named is to he regaried as a transitional form lectween the other two, for it conbines some of the charanters of each. This is esperially well seen in the gower vertebrates, in which the muscular filres. of the heart (fig, 17) Fre is: consist of long, tapering, uninuclear cells, in Muspunar form reacmbling the pain contractile fibre-cells, Fwis whent but differing from these and resembling the multinucleated volmury muscular fibres in exhibiting distinct transerse striatinnt. Although these three kindonf maswher tissuc thas
diller frem oue another in this respect, they agree in one im. portant claracter. Whether transversely striated or not, they all exbibit a distinct longitudinal striation of their substance, which is probably indicatory of a polarity which the proteplasm of the cell has assumed at the same time with the faculty of becoming rapidly shortened in the direction of its length and coincidently with the loss of the power of contracting in other directions. Morenver, this longitudinal striation is generally associated with the property of double refraction, which is exhibited to a marked degree by all kinds of muscular tissue.

The voluntary muscular fibres are those in which the protophasm of the original cell has undergene most dif. ferentiation. If we trace their development we find that they originate from mesodermic cells which become elongated in one direction, the nucleus underroing a carresponding change in shape, and soon becoming multiplied; we nest find the csternal layer of the protoplasm becoming altered and converted into mascular substance, which exhibits from the first hoth a longitudinal and a transverse striation. The change in question gradually extends inwards, so as to involve more and more of the protoplasm. : Up to this time we can distinguish (fig. 18) in the muscular fibre a medullary part composed of unaltered protoplasm, with nuelei, and a corlical part composed of differentiated muscle-substance. Subscfurently the nuclei leave their central situation, and either become seattered through the muscular substance or come to lic entirely at the surface. There is always a little of tho manmak unaltered proteplasm to be found with each nucleus.

In the plain muscular fibres, and in the cardiac musculay. fibres, the nuclens does not multiply, and it maintains its central situation. The diferentiation of the cell - rootoplasm into musclo-substance legins at the periphery and extends towards the centre in the cells which constitute the beart. muscle as in the voluntary musele, and it is probable that the same is the case in the phain nuscular cells.
The muscular fibres of the Invertebrata very closely rescuble thuse of vertebrates. In most cases the differentiation of the muscular sulstance is not so complete as in the voluntary muscles of vertebrates and espectially of mam mals, but there is a striking exception in the Arthropoda. and especially in insects, whore in conformity with the greater muscular activity they possess we finul farbet ter marked structural features.- On this accuint the muselcs of insects havo been espre. cally carefully studied with a view to the eluridation of the structure of muscle generally.

With a sulficiently high power a voluntary tauscular fibre of an insect (fig. 19) is seen to le composel of an exteroalat ructureless mem-brane,--thesarcolemma, -a central strand of nueleated protoplasin, and a semifluid sulstance-the proper muxcular subatance - luing between thess and finm. ing almost the whole of the fibre. This proper musenar substano is composed of a clear donilily refracting material, in which are embedded a number of minute rohl slaped pirticles, which are so arranged side hy side and end to
end as to cause the muscular substance to present both a transversely and a longitudinally striated appearance. Sometimes (as in the fibre shown in the figure) the substance of each muscle rod is partly collected into a swelling or knob at either end, and these knobs so act singly and collectively upon the light which passes through the muscular substance as to cause a brighter appearance in their neighbourhood. In this way bright bands scem to cross the unseular substance alternating with the dimner intermediate purtions, and the appearance of transverse striation is much intensified. This is still more the case when the muscle contracts, for the contraction is accompanied by au accumulation of the substance of the rods towards their ends, aud an apparent blending of these into a dark transverse band or rather a series of dark transverse bands, which, refeet. ing from their surfaces the light which is passing through the muscle, cause the whole of the substance between them to appear much brighter, than they are themselves. There are other musscular fibres in the insect which present an cntirely different appearance. . In these (fig. 20) the fibres, which are very fine, are wholly made up of alternating bands of dark and light substance.
 They are far less like the voluntary muscular fibres of manmals than are the others, and there are no rod.like structures to be scen in them.

We find muscular tissue, like the other tissucs, appearing already in the lowest of the Mctuzoa. In spunges the orifices of the water canals are in many cases capable of being closed partially or wholly when the organism is irritated. The rescarches of F. E. Schulze have shown that these oritices are encirçled by long fusiform cellsa which appear to be modifications of some of the ordinary ramificd cells of the jelly-like tissue. The substance of these cells seems to be undifferentiated, and it cannot be conclusively affirmed that they are of muscular nature, but at least they seem to subserve the function of muscular tissue: But in the very next divisiou-the IIydromeduso-the muscular cells are already so much differentiated as to exhibit both longitudinal and transverse striation. Thus many of the cells which form the muscular layer of the sub-umbrella of the Medusee are long fusifurm cells (fis 21, A) with an elousated nucleus in the centre, and gradually tapering ends, and their substance is striated, as just remarkel, both transverscly and longitudinally. Sometimes there is a considerable amount of unaltered protuphasm in the middle of the fibre aromed the nucleus ($\mathrm{f}=21,13$), and this nucleated protoplasm may then project between the cpithelial cells

Fig. :1.-Muscular cells of Jaly-fish. (Ilember.)
on the ectoderm. In evcry casc the muscular fibres are in close contiguity with the attached cnds of the ectodermal epithclium, aud are with justice reckoned as a part of the ectoderm. In the higher colenterates the muscular tissue tends to lose its connexiou with the ectoderm aud to becuiae emberded in the jelly-like mesulerm, Lut the comexion is not wholly lost in any. In /Iydire, on the other lamd, the muscular tissue is represented only by simple longitudinal Gbres, which are either direct prulongations of the tapicring ands of some of the cetoderm cells (Kleinenberg) or are ambedded in the cnlarged attached end of the eclls
(Kölliker, Noivtnèr). - 11 other myertebrates the muscular tissuc is nearly always in the form of long cylindrical on flatteved, tajucring or miform, uminucleated, longitudinallystriated fibres, which may possess a membrane, and it central straud of undifferentiated protoplasm (fig. 22, B). In sume cases a transverse striation may. be detected (fig. 22, A), but more commonly the muscular fibies, especially in ecbinoderns, worms, and molluses, ex- a bibit a peculiar double oblique striation (fig. 23), so that an apparance of intercrussin: lines is thereby produced. The oblignely striated fibres seem to take the place, in many of these comparatively slurgish animals, of the more active, transversely striated tissucs. With the exception of the appearance mentioned, they resemble the plain musenhar fibres in structure, but they aro capable of wore energetic s:ontraction than the latter

The Nertous Tisstes of Aneimuts.--The nervous tissuc of vertebrates is compused firstly of cells-the nerve-cells or gangtion-cells,-and secondly of tuervefibres. Most. of the nerve-libres pussess a sheath formed of nucleated cells wrappect around the fibre, Fic. zo-Nusce and in this sheath a peculiar white fatty luscs. so-called medullary substance is accumulated in some fibues, so that they are distinguishod from the others as the white or medullated fibres. There is reason to belicue that every nerve-fibre is connected with at least ohe nerve-coll, and conversely, that evecy nervecell is comected directly or indirectly witl? one or more ucrvefibres. Ncre-cells are generally comparatively large solid-lockiag corpuscles, with a relativoly large nucleus and nucleolus, and every developted norvecell has cither one or two or a greater. number of processes, which may or may. not be ramified. It is certain that froin Fic. घis.-race of many nerve-cells one process of the cell minubupeystro passes into and becomes a nerve-fibre. ${ }^{1}$ mich musculur. Nerve-cells are always traversed by ex- Schwaibe.) quisitely fine fibrils,-nerre-fibrils,-and these pass out from the cell into its processes. Apart from auy sheath which it may possess, a nerve-fibre is composed of one or: more nerve-fibrils, which are cmLudded in a soft interfibriliar sub-" stance. 'lhe nervous tissue of ver. tebrates is developed from that part of the ectoderm which occupies the middle of the dorsal surface of the embryo. In the bird and mansnal the epithelial colls in this situation become cut off from the general ectoderm by the formation of a groove which subsc-

Fig. 24. - Nerve-cpinthelinna cello-S. of Mectesu; B, Touti cintial canal of bymal curd of valebrate. quently closes over and forms a canal-the neural camal. The inuermost ectoderm cells (fig. 2f, B) which fimm the wall of this canal acquire cilia at the end which is turned towards the cavity, while the wther cud of each cell is prolonged into branching processes which collectively furm a network amongst the deeper lying cells of the wall. the latter multiply considerably, and morcover gronps of them grow out from the sides of the neural canal as the roots of the nerves. The nerve-fines themselves secm to he formed cither by the onts:uwh of malivided processes from these cells of the neural camal, or by the junction of one elongited

[^3]cell with others. At any rate the fibres are to be looked upon as outgrowths or prolongations of derve-cells. But some of the outgrowths of the nerve-cells, instead of passing into nerve-fibres, become ramified, and eventually break up into fine twigs, each of which is occupied by a nerve fibril, and these form by their interlacemeat a network which joins that of the braoched processes of the ciliated ept thelium.

With the exception of the formation of the medullary substance in the sheath, the nervous tissuc of the invertebrate Metazoa agrees precisely, so far as the minute structure is concerned, with that of vertebrates. The lowest forms in which nervous structures have been found are the Medusio. In these the tissue exbibits itself under two modifications. The first of these is a so-called nerve epithelium (fg. 24, A), consisting of a portion of the ciliated ectoderm, the cells of which are prolonged at their attached ends into fine ramified fibres which interlace with one another and form a network of nerve-fibrils underneath the epithelium. This form seems to currespord with the ciliated epitheliam of the vertebrate neural canal. The second modification occurs in certain cells of the ectoderm, which lave become sunken singly here and there below the general evithelium of the surface, and between it and the muscular layer of the subumbrella. These cells become enlarged, and their nucleus takes on the characteristic appearance of the nucleus of a nerve-cell. Then generally from opposite cnds of the cell (fig. 25) two processee grow out into long fibres,

Fig 25. Nerve cell and Abse of a Jelly-flsh (Aurelia).
which exhibit all the features of the nerve-fibres of higher s.nimals, and may even possess a nucleated sheath. These fibres, which may be brancbed or unbranched, seem to be applied to the substance of the muscular fibres, and in all probability serve to convey impulses to the muscle. There can be no doubt of the correspondeace of these cells and fibres with the nerve-cells and nerve-fibre prolongations of the Vertebrata. In other invertebrates the nervous tissue is not only more localized than in the Colonterata, but the original ectodermal epithelium cells from which it is derived become much more extensively developed into well-characterized nerve-cells and nerve fibres, and tend moreover to be completely separated from the rest of the ectoderm and emberdded in the mesoderm. But they are never originally developed in common with connective-tissue cells, as are the colls which form the muscular tisene.
(E. A. S.)

II. Vegetable Histology.

By Vegetable Histologry is meant the study by means of the microscope of the teature, web, or tissue of which plants are composed. It may be considered as symonymous with the minute anatomy of plants, and embraces the study of all those points of structure and development requiring the use of the microseope for their elucidation. Histology is, therefore, a modern science of observation and experiment, and it dates its arigin from the time when magnifying glasses were first applied to the serutiny of the organs of plants. All advances in histology have been preceded by some important improvement cither in the construction of lenses and micreseopes, or by the invention of some new method of rescarch and application of new reagntits. In order to prosecute the study of vegetuble histolory, it is necessary to muderstame thorourghly the constriction amt use of the miceosionde, to be able to sonuipulato well and de aterously cmploy the various cuttins suni other instruments required, and, lastly, to br zate ic dem
the pumercus reagents now so important in assisting, to unravel the more difficult tissues.

Nature of the Vegetable Cell.-If a small portion of the Nature us contents of the fertilized embryo-sac of the Phaseolus multi- the cell fiorus (scarlet-rumner, or French bean) be examined in a drop of water on a slide, it is seen to consist of protoplasm with a number of small free cells, iu different stages of develoument, floating in it. These cells cousist of little rounded masses of protoplasm with a single conteur line; they have the protoplasm more or less granular; aud each contains a rouuded solid body, the nucleus, usually with a small spot, the nucleolus. Other cells in the preparation have a distinct wall with a double contour line, these being older and more fully developed. In examining the celle it is usually best not to employ pure water, but to use instead a solution of sugar or gum (1 par to 50 or 106 of water). Strasburger recommends, for examining the contents of the embryo-sac in pbanerogams, a 3 per cent. solution of sugar, to which is added on the slide one drop of a 1 per cent, solution of osmic acid. Absolute alcohol may also be used for fixing the protop!asm in a uearly unaltered state. A longitudinal section of the growing end of the root of Fritillaria imperialis will exhibit the different stages of development of tissue cells. Near the apex the cells are more or less hexagonal in shape, and have a marked wall with a more or less distinct doublo contour. Inside the cell-wall, and in close contact with it, is the protoplasm, a deusely granuler soft icolastic mass, consisting of a mixture of albuminoids, and having in the centre a round and relatively very large solid nucleus, with one or two nucleoli. In both Phaseolus and Pritillaria, as the cell enlarges, clear spaces, called vacuoles, but filled with cell-sap, tbit is, water with substances in solation, appear in the protoplasm of the cell. In some algie contracille vacūoles are met with. The ordinary vecuoles rupidly increase in number and anlarge, separating the protoplasm into two parts-one in close contact with the wall of the cell, the other forming strings of varying size and thickness separating the vacuoles. Presently the vacuoles all coalesce and form a contral cell-sap cavity, the protoplasin: forming a completely closed sac inside the cell-will. The nucleus remains imbedded in the protoplasm, and is pushed to one side, appearing as if in contact with tho wall. The. vacuoled condition of the protoplasm may be considered ${ }^{\circ}$ as representing the cell at its state of greatest activity: tho central cell-sap cavity is usually seen in tissue-cells, as in Fritillaria, and may be taken to indicate a condition of diminished activity. Further changes take place in tissue cells. The protoplasm with its nucleus may disuppear and the cell-sap remain, or even the cell-sap itnelf moy disappear sooner or later, and the dry cell-walls, as those of cork, in left. The conditiona here described in Fritillaria may be: taken as typical of all young tissue cella

The protoplasm is tho essential part of the cell, and by il all the other parts ave formed, as well ns all the substunces, such as chloropbyll and starch, that are contained in cells. When the cell contains protoplasm it can grow, multipls, and claborate new chemical coupounds; when the protophasm disappears it ceases to perfurm any of these functions, anel passively acts as a protection to deeper cells, or permits certain jhysical processes to take place, as the tramport of water throngh the walls. The enbstance of the protoplasm secms to consist of a noixture of various albuminoids, and probably of other nitrogenous compounds. It is a more or less yramular, soft, inclastic substance, never a true fluid, but varying in consistedec in accordence with the quantity of wnier it contains.
The chomical reactions of protoplacm are those of allumen. It Chemic:a contrects when substances are applieal to it which remove some of reaction z° ie water, as glyerrin and alowhol. It contracts when heat is aphind, a tempratuan of hetwer sot and $60^{\circ} \mathrm{C}$. rompletely

water. Where the protoplasm cuntains littice water aud is very dense, as in some seeds, a ligher temperature produces little or no change. A violet colour is given to the protoplasm of young cells by the application first of a conccotrated solution of copper sulphate, next washing the preparation carcfully to remove all free traces of tho copper solution and then applying a solution of caustic potash. Iodine gives a brown colour, sugar solution and sulphuric acid a red'; and dilute caustic potash dissolves protoplasm or renders it perfectly transpareat. Carmine and other celeuring matters do not colour living protoplasu, lut iopart a brilliant stain to it when dead.

Protoplasm is usually separable into two parts, an inner portiou, endoplasm, more or less granular, and an outer more dense leyer, the ectoplasu or primerdial utricle, which is quite free from gratules. A similar layer surrounds the protoplasm of the nucleus.

The living protoplasm exlibits movements either when inside a cell-wall or when the protoplasm is free and in the condition of a wall-less or primordial cell. The constant changes in protoplasen must be always accompanied by movements, but these are usually too small to be visible, and it is only in a few cascs that the amplitude of the novenments renders them visible. The movements are of four kiads, and are distinguished as rotation, circulation, amoboid, and ciliary.

The first is the movement of rotation, as in Frallisnaria and Anacharis, where the whole protoplasmic sae rotates in the interior of the cell. The second is circulation, where pertions only of the protoplasm move as indicated by the circulation of the granules hither aod thither in the mass, as in the cells of the hairs of 'radescantia and the stinging hairs of the nettle. In the third or amerboil movement whole masses of protoplasm not caclesed it walls change their form and position like the amceba or white blood corpuscle. These movenents have been noticed in the amoboid aod plasmodium stage of the Myxomycetes or gelatinons fungi. Lastly, a movement of small masses of protoplasm destitute of walls, amd having parts of the ectoplasm prelonged to form one, two, or more vibratile cilia is not unfrequent in the zeesperes, swarmspores, and spermatozoids of cryptogamic plants. All these movements are dependent on and suuch influenced by varyiog external couditions, as fight, heat, presence or absence of oxygeu, \&c.

The cell-wall is a thin, elastic, transparent and colourless membrane, destitute of visible openings (e:scept in some colls of Sphagnum and in bordered pits), but easily permeated by water and gas. It consists of the carbohydrate cellulose $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)$, isomcric with starch, and in young cells it is present iu an almost pure state. During the growth of the ceil the protoplasm furnishes material for the increase of the wall in size and thickness, and usually during growth of the wall various chemical aud physical changes occur in it.
The increase in the size of the cell is rarely quite regular or general, except in free cells as pollen grains and spores; nsually tho growth is more or less limited to definite parts of the wall, and the increase in size is accompanicd by marked change in form. Inter: ealar growth at a ring-like zone on the cell-wall is seen in the genus Odoyonium, while growth at the apex of the cell is not uncempon in many unicellular alga and in hairs, as well as iu the peculiar cells (the hyphr) of fungi.

Growth at several poists on the surface of a cell! gives rise to the stellate forms seen in the pitlo of Juncus, and a similar lut more liunited growth is the cause of the "tyloses," or ccllular filling -uln of yessols scen in many stems, vine, \&c. The growth of the cell-wall in thickness may le general or local. Usually it is local, and is either intermal (ccotripetal) or external (centrifugal). Local thick. ening gives rise to the proluction of feculiar matkings thrending on the different optical effects produced ly the thickened and unthickened parts. litted makings are very rommon, rounded or variously shaped pertions of the wall being lift unthickencel, while the form of the pits, and their special arrangenent, cither irregulanly scattered or spirally placed, give a characteristic appearance to the walls of the cclis. l'its are often elongated, and when very sam elongatel, unl extending the whole width of the cell, form scalariform narkings, as seen in ferns. When fints are wery narrow, cylindrical, deep, and lranching, they furm canals. Bordered pits, in which the pit is surroundel by a border, oceur in the pines. In other cells the thickening assomes the appearame of rings, spirals, or reticulations, which sornctimes become detache from the wails. In sone instances, as in the wool of the lime and yere, two kinds of narking occur ia one cell. Peculiar modifications of intrrand thick.
aning are seen in the root-hairs of Jefchertia, irs the cells with cys.
tolithes in the leaf of the india rubber, and in the gith of Ricinus, sc. External thickening is seen on the surface (cuticle of the epidermis) of the plant or on free cells, as polleu graius, spores, Ac., and produces peculiar and characteristic markiugs in various plants. By the alternation of more and less watery layers the cell-wall hecomes marked by concentric lines or stria, as if the wall was luilt up of layers or strata formed one inside the other, which, however, is not the case. A longitudinal striation assuming a ring-like or spiral direction is also met with on the valls of many wood and bast cells, and is, like the stratification just mentioned, due to elternations of onore and less watery layers in the cell-wall. The ianer layer ia the interiar of the cell and nest the;contents is always a dense layer rich in cellulose and with little water, a fact at once negativing the incrustation theory. Stratification can be readily seen io transverse sections of the bast fibres in the leaf of Hoya, or the hast of the stems of many Asclepiadacea; and the longitudinal striation may be seec io the same tibres when dried, or in the dry wood cells of many conifers, as in Pinzus sylvestris.

The walls of young cells consist almost exclusively of React ${ }^{+\ldots}$. pure cellulose, which is coloured blue by Schultz's solution ${ }^{1}$ of celluor by iodine and sulphuric acid, and is dissolved by strong sulphuric acid and by ammoniacal solution of cupric oxide. Iodine solution alonc gires no reaction, or more generally a brown tint; rarely the wall gives a blue reaction, as in the asci of some lichens or in the cells of tae cotyledons of Tamarindus indica. The cell-walls of most fungi do nut give a blue reaction with iodine and sulphuric acid, forming the modification generally known as fungus cellulose. During growth clanges occur in the nature of the wall, different strata often having different chemical and physical properties. The three most important changes in the cell- Chan wall are (1) the suberous or corky change, the cell-wall in cor whelly or partially becoming cuticularized or converted into wall cork; (2) the ligueous or woody change, the walls being converted into wood; and (3) the gelatinous change, as scen in many algæ, where the cell-wall swells up enormously by the imbibition of water, and assumes a clear gelatioous appearanco. These changes may occur separately, the whole wall being more or less cumpletely changed; or a part remains composed of cellulose; or, in other cases, two or more of these ehnages may coexist in the same cell-wall.
The following reagents are useful in distinguishieg the different changes. Schultz's solution gives a blue with starch and cellulose, and a yellow-brown with wood and cork. If the cork-cells are previously boiled in caustic potash, and the wood cells touched with nitric acid, the blue reaction may he got with sulpluric acid and iodine. Sulphuric acid dissolves weod eells, but does not louch cork ce!ls. Ammoniacal solution of cupric oxide does not dissolve cork, causes wood to awell up and to become blue, and deeply colours mucilagisons walls. Boiling caustic potash ultimately dissolves cork. Cold canstic potash at first causes it to swell up and become yelluw, and when slowly heated the colvor decerns and the texture becones granular. ${ }^{3}$ Chlorate of potash and mithe acid (Schul'z's maceratiog tluid) ultimately dissolvis cork, like caustic potash, but docs not affect wood. When cork-cells are slowly warmed in this mixture the walls of the cowk-cells become pery distinct, the other rells being wety transparent, and, if washed and treated with alcohol and then with ether, they become jerfectly transpurent. Chronic arid renders cork distiact hy rendering other tissues tran. spurent. Pichromate of potash dissolves cork. The followiog reactions are given by Zachatias for cell-walls whicha are colourcd hrown by Schultz's solution in the rhizome of Acorus Catamus. ${ }^{3}$. Sulphate of anilige and hydrochlorate of aniline, even whan the cells are pre. viously treasad with hydrochloric acil, give no reaction, but colour the walls of yessels of a golden yellow. An aqurous solution of aniline blue gives no traction, white atal aholic solution of aniline red coloms the walls of vessels and vil-glands. The red colour is
${ }^{1}$ Shultis's Solution. -1 onnce of fused chtorite of zinc is dissolved in $\frac{1}{3}$ flum ounce of water; then add iwdine 3 grainc, amb iodule of putassium e graius, dissolved together in the smallest passible quantity of water. Or dissolve granulated zinc in lywechloric acil, and evaperate in contact with metallic zine until a thick syrup is furmed. Addiodide of pertasemm to saturation, then a lithe ioduc, and is necesenty dhate with water.
${ }^{2}$ Pur this and other rea.tions see Humei, leber den hork und reer Korkte fime be uberheupt, 1. 16.
3 "Veber tiocret. Behulter mit yerkokten Mcmbrancs," Bob. Raturs 1879, 1. 619.

Wes: sais Then than slices of the inzome are placed for a few days in $t^{\text {Be }}$ solution, and then elried and observel under water. The addition oi caustic yutash causes tho colour to disappear, but it reappears on whhing away the potash. The walls of vessels becone coloured blueriolet by aldition of hydrocblorate of phenole, and also when use is made of alcoholie solution of cherry-wood and concentrated lydrochloric acid (llohncl's xylophilin reaction).

Aineral metters in cellตา!!s.

Molecuirstruc t ite of cell-wall

Mineral matters are oftcu depositerl in cell-walls. Calcium carbouate occurs rarely, calcium oxalate frequently, and silica is the commonest of all. Calcium carbonate forms the cystolithes of Ficus and of the Acanthacece, crystals or masses of crystals imbedded in the cell-wall but projecting iato the cavity although surrounded by the substance of the wall. In corallines and many algæ, as also in the Charas, carbonate of lime is abundant in the cell-walls. Calcium oxalate crystals occur in the cell-walls of many plants, in other cases forming small granules. The crystals of calcium carbonate are soluble in acetic acid, while those If ovalate are not, although soluble in dilute nitric. and rydrochloric acids. Silica is abundant in the Diatomacece nd also in the cells of many of the higher plants (Equiothm, grasses, beech, \&ic.).
Praducts of desorganization or degradation of the cell wall ercur in the form of gum, frum-resins, or resins, examples If which may be seen in the cherry, gum-arabic, gumragacanth, myrrh, \&c. Gum-arabic consists of arabin, nom-tragacanth of bassorin, and cherry-gum is a mixture f the two. These substances, when formed, aro apparently si no furth use to the plant, and are produced by the destruction or desorganization of the cell-walls, as portions of the cell-wall can be distinctly traced when gum-tragacanth is examined microscopically.

Cell-walls, as those of the wood of Conifers, bast-cells, and cells of ivory nut, ānd starch granules, are found when examined by polarized light to be doubly refracting. Ey an claborate series of researches Nägeli concluded that theso structures were ruade up of crystalline doubly refracting particles or micellæ, each consisting of numerous atoms and impermeable by water, although each of the micelle is surrounded by a thinner or thicker layer of water. The water may sncrease or diminish within certain limits without destroying the structure; or under certain conditions as by the application of certain reagents (strong acids and ilkalies, ammoniacal solution of cupric oxide), the texture can be destroyed by the swelling up of the part. The water betweon the micellix may be removed by drying, when the micelle themselves come into contact, as the presence of air would destroy the transparency of the membranc. This peculiar molecular composition of the well e.t once cxplains the striation and stratification observed in it, and also eaables us to understand growth and nutrition by tho intussusception of new particles in the vater space between the micelle. ${ }^{1}$

Certain substances aro formed ly the protoplasm and sepurate from it in the form of granules or crystal-like borlies. The most important of these substances are chlerophyll and starch, the less important are aleurone grains and crystalloids.
$\therefore 0$.
liyyl.

Charoblyll or laf-green is the green colouring matter of plants, am in mit with most frequently in tho leares and young stems. The onlonting nater is always united with the protoplasm, usually to duminto mamd masses, the elilorophyll gramules or corpuscles, rendily distiaguishable from the general proteplasmic mass of the nell in which they are imbedded. Chlorophyll gramules never oecur arparetof frotn the protoplasm of the cell. In a few instances tho Whole of then potophasmic mass, with the exception of the cetoplasm, is uniformly condured grecti as in P'eurncocous and other low algee; whith in onher plats the protoplastuic base for the colouring mater is star-like (\%umrma), in plates or lamello (Chusterizem and Mesocerpucs), of spiral, na in whiroyyra. The chlorophyll grains of the vast majurity of fiants are roundell corpuseles of varying size with

a slighitly denser extermal layer, and frequently containing vacueles or small stareh gramules. I'lu:y grow in size and divide, the grain elongating and being cut into two by the formation of a gradially deepening circular groove. These changes may he seen in the prothallus of a fern or the leaf of a moss. The granules are produced by the ageregation of protoplasmic particles, so as to form a sharplyalctined spherien mass. At first these are colourless or of a yellow tinge, and become green by the formation of the colouring matter, the chlorophyll, when exposed to the light, as it is only in a few rare cases, as in the cotyledons of pines and in ferns, that the celouring inatter is formed independently of light.
The colouring matter can be removed hy means of aleohol, cther, benzole, chloroform, and other solvents, the protoplasmic mas remaining behind unchaoged in size and appearance, except in g^{\prime} far that it is now colourless. The solution thus obtained is of dark green colour by transmitted light, and blood-red by reflecter light. Its spectrum shows seven absorption bands, the strongest beiog betreen the lines b and c of the solar spectram. Many modifications of eblorophyll exist in plants, and it also undergoe: changes in colour during the ripening of fruits or in the corollas of certain flowers. The chief medifications are-etiolin, in blanched parts of plants; anthoxanthin, in yellow granules of many dowers; xanthophylt, yellow granules in leaves in autumn ; the green colouring matter of red sen-weeds; phycoerythrin, the red colouring matter of red sen-weeds; the phycochrome of nestoc, \&e.; and the brown colour of diatons and fucoids.

Starch occurs in granules of varying size and form, and during Starel the growth of the granule it is always in relation to the protoplasm of the cell. The granules are oval, lenticular, polyheriral, or benc. shaped, as may be seen io the potato, wheat, and maizc, and in tho milk-sap of certain exotic Euphorivias respectively. Each grain usually exhibits a central or lateral spot, the hilum, and a scrics of concentric strix, caused like the striation and stratification of the cell-wall by the alternation of more and less watery layers. Sometimes the starch granule has two or more hila, the compound grains, which often separate inte their several parts.
Starelr has the same chemical composition as cellulose, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, and differs from cellulose in being coloured blue directly by a dilute solution of iodine. Schacbt's solution contains 1 grain of iodine and 3 grains of iodide of potassium dissolved in 1 ounce of distilled water; but an aqueeus solution of iodine answers quite well. Two substances are generally recognized in the starch grair
il) granulose, coleured blue by iodine and forming by far the greater part of the granule, and (2) starch cellulose, not coloured blue and only forming a sort of skeleton to the grain. Starch is one of the most widely distributed substances in plants, being absent from comparatively few excent the fungi.

Oil globules occur not unfrequently in the proteplasm of plants. and in a few instances they occur in chlorophyll granules. Oil is easily distiaguished by its reactions with cther, and by its optical 1ropertics.
Oceasionally portions of the protopiasm assume a crystal-like np-Crystalpearance, resenbling enbes, octohedra, tetrahelia, \&c. These por- loids, tions are koown as crystalloils or protein crystals. They give the globoids ordinary reactions of protoplastu, and differ from crystals in their and power of swelling up and changing their angles in certain solutions, aleurens as in caustic potashi. Crystalloids occur friquently in the cells of graius. the tuber of the potato, in fatty seeds, in red alge, in petals of many flowers (Viola tricolor), and. in some fruits. Usually the crystalloids accur in fatty seeds; as in the castor oil and brazi nut, in the interior of rounded graing of albuminoids, the nlcurol, or protein grains, along with littlo roundel bolies ealled globoins consisting of a combination of magnesia and lime with phosphore, acid. In other instances aleurone grains without crystalleids are met with, as in Cynoglossum. The aleurone graing are usuall, solublo in water, and are, therofore, best examined mierose θ pically in strong glycerin, in iodino dissolved in glyeerin, or in a selution of corrosive sublimate in alcohol. Alcurone grains form when the gced is nearly ripe, the crystalloids and globoids npyeariug earlier.
The cell-sap consists of water with difforent substances in Cell-saz. solation, the substances varying in different cells, and also changing in the same cell fron time to time during growth. It saturates tho whole wall and protoplasm, and collects in tho racueles and cell-sap cavity.

The most important snbstances in the cell-sap are inulin, sugar, tannin, and colouring matters, while the calcium oxalate usually crystalizes ent, and forms visible crystals in the cell, or in the wall as alrealy described. Inalin can be separated, in the form or sharocrystals, hy the action of alcohol or glycerin, from the tissue: of many of the Composito, dahlis, smmoner, \&c. By keeping the tissne long in absolute alcohol tho crystals grow to a largo size, nul occupy more than one cell. Sugar in solution in tho coll-sap may he gripe or cane sugar, and can be renderel visible by tho coprer test, or by the action of glyecrin. (ilyectin forms drop-like spheres with susar and inalin; these aro very highly refractiag and easily
vegetable.]
distinguished in the cell. When these splaces ore of syrup they tuickly disappear, no trace remaining in a fow minutes, while, as limus (Bot. Zcitung, 1877, p. 329) has shown, if the substance be inulin the formation of spliaroerystals rapidly oecurs. Wesperidin. may lie obtaineal from the umripe frot of oranze, sce., in the form of splinerocrystals when treated with alcohol.

Taunin is prosent in the cells of many plants, ond may he seen, when water is aldlied to the section, th the batk of the oak or bisch in the form of fue granules which soon dissolve. A bluish black or grecnisly volonr or precipitate is produced by the aetion of salt of iron, and a dark red-hrown with bichromate of potash. Colonring matitr (anthocyan) gives red and blate colous to tlowis and a ridi colour to stems and leaves, and is dissolved in the cell-sap. lastly, calcinm oxalate, whieh is formed in plants by the metastasis of nutrient matters during growth, is got rid of in anaty parts of plants, or rendered harmless in others, by erystallizing out, either as farge erystals, prisnatic or octohedial, or io masses of small crystals, or in the form of long needle-like erystals or raphides belonging to the trimetric system. The two forms differ ouly in the puantity of water of crystallization preseat : the raphides have two equivaleats, the prisins six of water.
Cylogeresis.-The enlargement of organs of plants is not only accompanied by an increase in the size of the individual cells, but new cells are also formed in the part, these new sells, which are at first small, soon enlarging to their full timenslons. Usually the formation of a new cell takes lace by the division of the protoplasm of a pre existing eell, the mother-eell, into two portions of equal or unequal size, the daughter-ceils. These daughter-cells in turn enlarge, and may each become the mother-cells of new daughter-cells. In this way by cell-division the vegetative sells of plants are increased in number. The process of reproduction in plants is invariably associated with the formation of a new cell or cells, and in general the process is very different from that of division, there being often a diminution in the number of cells, instead of an increase.

Four tyies of Cytogenesis may be distinguished:-(1) Rejuven. escence; (2) Conjutgation; (3) Free-cell formation; nnd (4) Division. In rejuvenescence, the whole protoplasno of the mother-cell undergoes contraction and rounding; mater is climinated, and an entire rearrangement of the molecules of the protoplasm may be noticed by changes in the contents. As a result of these changes one new daughter-cell is formed from the entire protoplasm of the mothercell. Rejuvenescence is observed in the formation of the swarm. spores, non-scxual reproductive organs, of sone alge, such as Eilogonium and Vaucheria, as also in the formation of siogle apermatozoids. The egrg-cell of many alge and fungi, as well ns of the vascular cryptogams, is formed by rejuvenescence, the only difference heing that here the daughter-cell remains inside the wall of the mother-cell until fertilization, when it forms a wall and begins to divide.

Conjugation consists in the union of two, rarcly more, masses of protoplasin, nearly or quite similar in size and appearauce, to form A single new daughter-cell, which then becomes surminded by a wall ond forms a aygospore. The union of the two masses is always accompanied by rounding and contraction of tlie masses and a complete molecular rearrangemont of the protoplasm. Conjugation is seen in the group of the Coujugate among the algo, anid also in the Zygomycetes aod Myxomycctes among the fungi. In all cascs conjuration is a reproductive process. 'lhe conjugation in the Dfyxomyectes is very peculiar, the numerous small masses of protoplasm (the myxoammbe) fusing into a naked mass of protoflasm (tho plasmodiom)
Frec-cell Free.cell formation consists of tho formation of several (rarely forma- one) cells from and in the protoplasin of the mother-cell, the whole finy. of the protoplasm not going to form danghter-eclls. Fuec-edl formation may be tyjuically observel in the formation of the ascospores of the Ascomycacs. The nucleus of the large mother-ecll or aseus disappears, and two new oues form, which again and ngain divide, thus forming eight, each mucleus forming the centre of a ner mass of protoplasm, which at length becomes surromnded by a wall. luother cases many new masses of protoplasm form after the disapparance of the nutleua of the mother-cell; and these w.w masses ilevelop: Wall nud a nueleus, or very rarely no mucleus forms. The embosperin in the enibryo-sac of Phascolus and other phanergams is formed hy free-cell formation, the cells after attaining a certnin size fusing together and forming a tissue. the individual cella of which slivide. In some fungi, Peronaspora, Cystopus, se., nuly one danchiter-cell is formal in the protoplasm of the mother-ecll.
Division. The last variety is cell-livision, the whola of the protoplastin of thomotherecell going to form two, inrely more, danghter-rells. The process may be observal in the cells of spiramyra, in the trlls ef
the roots or stems of piants. Sipirogyra and Troulscautia may le observel in a hanging drop of nuif, -water in the sase of spirat!en a dilute sngar solution (l jur vent.) in the oller. In Sjuireayio a ring-like groove forms romul the protoplasm in the echatre of the erll, gradually deepeniug ontil tho muclens avides, and the two portions of protoplasm become separate. As the separation of the protoplasmi gacs no, the wall forms a ring-like projection of cellutose, which chalually exteuds inwards until only a small contral hole is left: this soon fills up, and the mother-cell is separated into the tro dimeghter cells.
Cell-llivision ean be seen iu the hairs of the young stamen of Truteseantir virgiaica. A small nnopened bud about one-fifth of an inch loon is recommended by Strashurger. ${ }^{1}$ The entine stamens nre removed, and one, with the small hairs attached, is to be placed in the 1 per cent. sugar solution in a hanging drop. The coves glass on the under side of which the hairs are arranged most le very thin, to permit of observation with an immersion object-glass magufying ahout 600 diameters. The cell-division in the last thres cells of the hair can be readily observed, as well as the peenliar be haviour of the auclens, its solntion, and the formation of the haricllike body "Kerntonne." These and other cbanges, which hat bect fully described by Strnsburger (Ueber Zcllbildung and Zelltheilung in Spirogyra and other cells from specimeas hardened and fixel in. absolute alcoliol, can be seen in the living cell of Tradescantia.

In the pollen of monocotyledons and the tissue cells of many dicotyledons, as in the pith and epidermis, the division of the cell liflers slightly from that seen in Spirogyra. The nueleus of the mother-ccll divides into two sister nuelei, and the protoflasm separates into two portions, the wall forming at once ns a plate strotching right across the mother-cell and cutting it into two daughter-cells. The process of division can rarely be obselved in living cells; hence it is necessary to make use of specimens kill-d during the process of division by immersion in nbsolute alcohol, ur in a 1 per cent. solution of osmic acid.
Special modifications of the process of cell-division may be observed in yenst. (Saccharonyyces), in the formation of styloconidia as in Penicillium, and of the basidiospores of the basulionnycetes, as also in Eitogonium, in the sporangia of Saprolcgnia, and in the spores of the higher cryptogams. In ycast a poition of the cell-wall enlarges in a sac-like manner, and into it io portion of the protoplasm of tha mother-cell passes, thus forming two daughter-cells of very differen. sizes: when the smaller cell is full-grown a wall scparates the tro, nnl they become detached. In Penicillium, and in the formation of basidiospores, a very similar process is scen. In QEdogoniuna division of the cells is preceded by the formation of the curious cap-liko structures at the apex of tbe cell due to local intercalar grontt, of the wall. ${ }^{2}$ In Saprolegnia the protoplasm of the mother-cell dirites into a large number of daughter-cells, which are liberated as ciliated swarm-spores, and afterwards form a cell-wall. Lastly, in the spores of the higher eryptogams the division of the mother-cell into four daughter-cells is observod.

Union of Cells to form Tissues.-Cells are usually united Tisues together to form an aggregate governed by some common trae and law of growth. Such an aggregate of cells is called a tissue. Tissues are formed in different ways, and in accordance with their mode of formation are distinguished as true and false. A true tissuc is formed by cell-division. In the young growing part of the plant the young active cells are all capable of dividing, a transverse wall cutting the mothercell into two daughter-ce!ls, the process being repeated for some tine. In this way the tissnes of the higber plant are formed, cither originally from a single cell (apical cell the spex of the fart, or from several cells (initial cells) situatel at the growing point. In some of the lower plante false tissues are fornied, rarely in some of the bigher oins. The first mode of formation of a false tissue is notical in some of the algx, as in Pediustrum and in Mydrodirlyon, as well as in the formation of the endospern in the cmbryo sac of many plants, as in Plenscolus, Gnetum, de. Hert the cells are at first separate and distinet, but these loose cells become aggregated together, often, as in Jediastruan and $/$ yybrinictyon, to form a beautiful and regular figure. In such instances the wall separating two cavitics is a double structure formed by the union of two distinct walls. In the endospern: of the lugher piants, when the false

[^4]tissue is formed, the cells divide in the ordinary way, and at length give rise to a true tissue, as different modes of cytorenesis nay occur in the same plant, either in diferent parts or at different times. The second mode of formation of a false tissue is seen in the fungi and lichens, in the peculiar byphie tissue se characterstic of these plants. The colls form long narrow rows or filaments, which branch and interlace, producing a network of interlacing fibres, but without the walls becoming fused firmly together as in Peliastrum. In some cases the byphre cells swell up and come into such close contact by mutual pressure that they form a tissus so like ordinary cell-tissue that it has been deneminated pseudo-parenchyma. This varlety of tissue occurs commonly in the higher fangi, as in the mushroom.

Mude of यmon c! cei's.

Cells are unted in various ways, the modes of union beng often very characteristre of eertain of the lower groups of plants, although the same modes of union repeat themselves in the higher plants. The following are the ehief varyeties. (1) Cell-rows have the cells united By their ends to form a long filament, formed by the repeated division of the cells. Examples of cell-rows are seen in Snimayra, Conferea, EEtogonizm, the hyphe of fungi, the monili. firm linirs in Tradescontia, and in many others; not unfrequently these cells branch in various ways. Celt-fusions or vessels are cellrows occurring in the higher phants, but having the transverse walls separating the original cells either partially or completely absorbed. They occur in the fibro-vascular bundles of plants, both in the wood and in the bast. Laticiferous vessels are examples of branching and anastomosing cell-rows. (2) Cell-surfaces have the cells united to forn a single layer, and are thus in contact by the ends and sides, having an utper and under (rarcly only one) free surface. Examples are afforded by some of the sea-weeds, ns Ulua, and by the leaves of liverworts. Ln the higher plants eell-sinffaces oceur not unfrequently, as in the epidermis, a layer of distinct cells, free on one surfaee, but in contact with bther eells below. Many flat, seale-like hairs are also cell-surfaees, as well as the thin plates of cells separating the remarkable air spaees in the petioles of Nuphar and Musa. (3) Cellbundles are bands or bundles of similar cells either occurring separately or running through the other tissues of plants, and when doing so easily recagnized in a transverse section of the part, as the bast-bundles in the stem of flax. Other examples oeeur among the red sea-weeds, and in the bundles of sclerenchyma in the stems of ferns. (4) Cell.groups are small masses of similir eells, either forming the families or eolonies (cenobia) of many thallophytes, as Chroococcus, Glaocapsa, Pendorina, \&e., or ferming the eurious groups of sclerenchyma produeing the gritty partieles in the pulp of the pear or the hard masses in cork. (5) Cell-masses are formed when the cells are united in all directions of space, the whole not having necessarily, any definite external shape. Examples are numerous, turt we may eite the tissues of large fungi, the ground tissue of the higher plants, and the palp and hard endocargs of flesby fruits. (6) Lastly, separate eells occur, either distinguished from tho eells in the neighbourhool by their peentiar form and development (idioblasts!, or the orgimally united eel!s separate themselves, as-in $p^{\text {wotlen-grains and spo os, and form eremoblasts. }}$

By theform and connexions of the cells argregations of cells may be described as parencliymatous tissue and prosenchymatous tissuc, both these ferms occurring very coumonly in plants, and usnally shertly designated by botanists parenchyma and prosenchyma. Parenchymatous cells are usually thin-walled, and have a corresjondingly large cavity; their length is generally not very much greater than their breadth, the furm frequently being rounded or polyhedral ; the walls are broad and flat, the cells, if clongated, not having pointed and overlapping ends. At the places where neighbouring cell-walls meet triangular or quadrangalar intercellular spaces are formed, by splitting of the wall during rapid growth. Sometimes these spaces are very minute, in other cases they are largely developed, and if iarcgular growth of the wall occurs a very loose ferm of parcuchynia may be produced, as in the pith of Jencus. In nther caves tolerably large interecliular spaces occar, as ill the sponery parenchyma of the mesophyll of leaves. In prosenchyma the individual cells are greatly clongated and tibrelike, the walls are very thick, and the cavity small or even uearly ohnterated; the ends of the cells are elongated, binted, milowshapping those ahove and below; and lastly, 10 intercellular spaces are developed. Wood-filues and
bast-fibres are examples of prosenchyma; the young cells of stem or root, and the tissues of pith, leaves, flowers, and many fruits, of parenchyma.

By the power possessed by the cells in a tissue of divid- Meristenn ing and forming new cells such a tissue is distinguished and peras meristem or the formative tissue of plants, all the other dissuc. tissues being permanent tissues, or incapable of turther enlargement by the formation of new cells. Meristem is observed forming the whole of the tissue of the young embryo plant, as also the whole tissue at the apex of a stem and root. All the other tissues of the plant are formed by the gradual differentiation of the originally similar cells of the meristem. Generally meristem tissue differentiates iute special layers, each capable of forming cells which wiil. ultimately form some definite portion of permanent tissue, not necessarily of the same value, however, in different groups of plants. The meristem of the embryo and of young stems and roots is distinguished as primary meristem, because occasionally a zene of cells forms in the permanent tissue having the characters of meristem, and secondary meristem, which either originates from the permanent tissue or is partly connected with the primary meristem. The cork-cumbium or phellogen in the cortical tissues of dicotyledons is a layer of secendary meristem, while the cambium layer between the rood and bast portion of the bundle is partly (the fascicular cambium) derived from the primary meristem (the procambium) of the fibro-vascular bundle.

Walls of Tissue-Cells. -The cell-wall separating the con- Wrils an tiguous cavities of two young cells appears as a simple tissuohomegencous plate or lamella of pure cellulose, giving the celt,
usual reaction with Schultz's solution and iodine and sulphuric acid. As the tissue grows older and the wallthickens, it apparently separates into distinct layers having different chemical and physical properties, so that iu some cases it appears as if each cavity had its uwn slecial wall separated from the neighbouring wall by a thin or thick layer of material, to which the older botanists gave the name of intercellular substance. The thickening layers usually. exhibit a well-marked stratification, the strata often differing in chemical composition, as in pine-wood, in the bast of laburnum, or in the epidermis of Viscam, Ephedru, Aeriam Oleander, de. The application of Schultz's solution usually brings out the differences very well. In a few instances the middle lamella becomes gelatinous, and swells up encrmonsly in water. Examples are afforded by the stems of meny alge, and by the endosperm of Ceratonia, where the socalled intercellular substance separates the cell-cavities widely one from the other. The middle lamella or intercellular sabstance and the thickening layers in the stratified cell-wall vary much in composition, but geverally it is found that the incrasting layers are soluble in sulphuric acid, while the middle lamella is dissolved by nitrie acid and chlorate of potash. These two substances, just meaticned under the name of Schultz's maceration process, are constantly employed to separate cells from their comacrions, as the markings in the thickening layers are not njured by the solution of the middle lamella ia the chlorate of potash and ritric acid.

Classificaton of Tiscues. - In classifying vegetable tissues it is necessary first to distinguish the different kinds of tissuedepending on the characters of the individualelements composing it, and, secondly, to consider the various grouping of these kiuds or species into systems more or less homogenceus and obeying certain common laws of growth. It is neeessary to distinguish the kinds of tissuc, because different kinds may occur in the same system, and it is further necessary to distiuguish the systems, because the same form of cell may be repeated in different syaiems or in diflerent parts of tho same system and yot be of very different morphological and limysiological value. In classi-
fying the duferent kinds of tissue we shall follow De Bary (Verglecichende Anutome der Fegctationsoryane der Phenerogamer und Farac), aud in the systems we shall ariopt the threcfold divisious of Sachs (Lehrbuch (er Botaidil), how generally usce.
I. Kinds of Tissue.
(A.) Meristem Yissue.

1. Primary. 2. Secondary.
3.) Permanent Tissue.
2. Coll Tissuc. a. Epidermis. 4. Cork.
c. Parenclyma proper.
3. Scicrenchyma

3 Glaud Cells.
4. Tracheal Tíssue.

5 Sieve Tubcs.
6. Laticiferous Tubes.
7. Intercellular Spaces,
"I. Systems of Tissues.
(A.) Enidermal or Lemitary System.
(B.) Fibro-vascular System.
(C.) Ground System.

Primary (A.) Meristem Tissue.-Primary meristem can be observed urcisten. in the embryo in its young stages, and at the apex of the stem and root. In the embrye at an early stage, as described by Hanstein (Botanisehe Abhandlungen, i..), the meristem becomes separable into three zoues, differing in the appearauce and arrangement of the cells and in the mode of dividing. These zones were called by Hanstein (1) dermatogen, or prinary epidermis; (2) the plerome or central series of more elongated cells with marked longitudinal division of the cells; and (3) a serics between the plerome and derma. togen, dividing more or less irregularly or transversely, the periblen. These three zones remain distinctly marked at the apex of the stem, and in IIippuris the three can be easily seen, while as the stem elongates new cells continually form, tha initial cells or cell, as there may be one or more for each zone. Usually the dermatogen layer is the most constant in angiospermous plants, the separation into periblem and plerome being sometimes a little obscure. In the root a fourth zene of meristem has to be distinguished, called by Janczewski the calyptrogen layer, from which the calyptra, pileorbiza, or root-cap is formed. Various medifications of the arrangement of the different layers in the meristem of roots have been described. Very rarely, as in Hydrocharis and iu Pistia, four distinct layers are formed
the stem shows a series of cclls, the initial group from which the peribien and dermategen (or the cxtcrmal hayer representing it) arise. Further dowin tho initial cells of the plerome are developed from the side of the periblem. In the root of lycopods the arrangenient of the laycrs is exactly the same as in Hydrochuris and Pistif. In the Liyndutce and the remaining Pleridoplyyte there is a single cell at the aper of roat and stem which divides into two. The one daughter-cell furms the new apical cell, the other is the segment coll. The segment cell divides still further, and forms a meristens from which at a later stage zoncs correspending mere or less accurately to dermatogen, periblem, and plerome are produced. In the roets a segment is cut off in front of the apical cell, which is the first cell of the calyptex, and from whicb, by repeated divisions, that structure arises.
Secondary meristem is intimately comected with the Secona secondary circumferential grewth of stems and roots in ary gymnespernis and dicotyledons. One of the zones of meristcin secondary meristem arising from permanent cells is the cork-cambium or phellogen layer, which is described under the epidermal system of tissucs. The other example of sccondary meristem is the cambium layer separating the wood and bast in the stems and roots of gymnosperms and dicotyledons.

When the fibro-vascular buedles first appear, either in Procan. the periblem or plerome, the cells become distingnislable by bium. their form and arrangen cnt, and as the cells are still in the condition of meristers, the term procambicm has been given to the whole. The cells of the procambium are gradually converted into permanent tissue, gencrally changing their appearance comp 3 tcly, although in some cases the change is but slight, the cells being cambiform and hardly differentiated into the two pirts of the fibro-vascular bundle, the wood and bast, to be described under the Gbro-wascular tissucs. In some plants all the procambium is converted inte permaneart tissue, while in others a small zone between the wood and bast remains in the condition of meristem. If the bundles are separate, sccondary meristen forms in the ground tissue between the bundles, bridging over the space betwecn the bundies, but uniting se as to form the Canblam cambium-ring, which consists of fascicular cambium in ring the bundle, derived from the procambium, and interfascicular cambium, a sccondary meristem formed in the ground tissuc. It is by the growth of this cambium ring that the seconclary circumferential growṭh, so marked in our ordinary forest trees, takes phaco.
(B.) Permanent Tissue.-It will be sufficient to give only Pera general sketch of the seven kinds of tissne described by manent Do Bary, and to fefer for full details to his Verglcichende tissua, Anatomie above mentioned.

1. Cell-tissue is permanent tissue, the cells of a hich are Dittle if C 11 at all allered in form and nppearauce from lueir meristem stage. In tissua some cases the cells are short, in others clougated. Tho wall may bo thin, and enclose tho protoplasmund othercontents, the chlowphyll, starch, sugar, inulin, \&c. In others tho wall is thick nod clanged in composition. A3 varieties of cell-tissue be liary includes (1) epidermis and its appendages, equivalent to the cpidernal system of Sachs, nnd to be considered lelow; (2) cork, parenchymatous cells chemicnily altered, nue forming usinaly a part of the secondnry elidermal system; and (3) parenchyma projer, nll the cetl!-tissue inside tho epidernis and cork cells, a division almost but not quite cyuivalent to tho groumd tisstec of Sachs.
2. Silcrevchyma.-De liary includes under the name of seleren. Solere:chyma all the liand thickencd cells of planta, whether long or short, chyma - wieh have become greatly thickencl, and whose cavity is nearly if not quita obliterated, - ihe cell-contents alsa, as a conserpuence, having entirely disappearel, or left only slight traces. In this state these cells act in eonvrying water through their walle, mad also serve to givo rigidity to the plant, forming the mechanical systern of Scharendener. Two forms aro distinguished: (1) the short selecenchymatous cellis, and (2) long scle renchymatous libres. Of tho formes, cxamples are met with in the flcsh of the pear, in the root-tubers of pahlia, in the rhizome of Deniaria, the pith of Heya carnosa, and
many others. Such cells are rare in monocotyledons, and tlye typical form (like the cells in the pear) does not oecur in cryptogams. A variety of the short cells is described under the name of stegmata. The long sclerenchymatous fibres are pointed, with overlapping ends, and occur commonly in dicotyledons. They are either simple or branched. The best examples are the bast fibres of the fibro-vascular buadles, and the libriform fibres of the secondary wood. The wall of the sclerenchym fibre eften exhibits peculiar aplit-like pitted markiags (Pleris aquilina). Not unfrequently the sclerenchym fibres have numerous amall crystals of calcic oxalate imbedded in the wall, a very beautiful example of which is afforded by Welarischia mirabilis. Sometimes the cavity in the interior of the fibre is divided by transverse partitions forming chambered fibres, as seen ia the bast of the vine, Platanus, Tamarix, \&c.
3. Gland Cells.-Guru, resin, ethereal oils, balsam, and gum.resins are usually met with in peculiar elongated cells, which develop from special meristem-celis. Sometimes they are isolated, in other cases they occur in rows; they are coasidered by De Bary as aspecial kind of tissae, the cells heing at once distingaished from the others in the ocighbourhood by their contents. In may ways these gland-cells exhibit intermediate transition forms to laticiterous tubes on the one hand, and to intercellular spaces containing special secretions on the other. De Bary distioguishes four varieties. (a.) Cells with the avity nearly filled with raplides or with single crystals or groups of u.ystals, e.g., Aloe, Scilla, and many monocotyledons, as also many dicotyledons. Groups of crystais occur in petiole of aroids, pith of Ricinus, and others, large crystals in leaves of Cutrus, and in the bast of Accr, Robinia, Ulmus, Berberis, \&c. (b.) Cella with the cavity filled with mucilaginous and gummy substances, root of Symphyturm, Orchis tubers, and in the parenchyma of Malvacea, Tiivacea, Ulmacea, \&c. (c.) Cells coatainiag resin or gum-resio. Two modifications occur, the cells beiag either short or long, and frequently, as Zacharias (Bot. Zeit., 1879, p. 167) has poioted out, the walls are corky. Short cells occur in Acorth, Canella, Zingiberacea, \&c., while long ones oceur with milk-like juice, the laticiferous cells of eome authors. As examples De Bary gives Allium, aroids, Musacer, Convolvilacea, Sipotaceie, Sambucus, Acer, and doubtfully Sarguinaria, Glaucium, \&c. (d.) Cells coataining tannia, occurring in rhizoc:rps, ferns, moaocotyledons, and dicotyledons.
4. Trachal Tissue. - Under this head De Bary distinguishes all those cells which become moro or less lignified, and in whicb the thickening of the wall assumes the form of spirals, rings, reticulations, or pits, and which as soon as these markings are formed either lose their contents completely and beeome filled with air, or contain clear watery fluil. Usually these form long cell-fusions, the tessels of plants, or else they form elongated or shorter cells not united inte vessel. The former are the vessels, the latter the tracheides. The markings in the two forms correspond, and there are iatermediate varieties. The markings are spiral, annular, reticu"ated, pitted, and trabeculate (juniper and lycopod), with the varie.ies of bordered pits and scalariform markings. Short tracheides form the velamen or outer modification of the epidermis of the acrial orchid roots, eloo the outer tissue of the stem of Sphagnum. In Noluthbrium speciosum the tracheides are 12 centimetres long. Dany of the strictures usually called vessels are tracheides. Large vessels ficquently exbibit tyloses or ceila filling up the cavity of the vessel. They have been observed in mayy inonocotyledons and dicotyledons, both in stoms and reots, and in herbaceous as well as in woody plants.
5. Sicre-tubes. - 'l'hese rescmble vessels in being elongated cylindricalorprismaticcells joined in logg rows, theindividual cellsalways remaining distinctly marked. The transverse wall separating the Itwocavities becomes perforated at the unthickened parts, forming the sieve-plate perforated by the sieve-pores. The contente of the sieve. tubes are colourless and transparent, and the wall is coated with a thin layer of protoplesia-liko substance, aot unfrequently with smald
urch granules. Sieve-tubes form a special part of the bast of plants, anl are met with in pteridophytes, gymuosperms, and angiosperms, exhbiting oceasionally in different groups slight structural duffr-

MOR

tuarios
tubes.
ctactas.
6. Laticificoms Tubes are tubes containing the peculiar milky sap or latex oecurring in surcial groujs of plants. These rum through the phat nasally for very long distances, wal when a pertion is ingurel the milk-sap flows out at the of eman. The wallm are always suit, of fure cellabose, and readily guing the chara terista reaction wath ioulino and sulphure nexd. The tubes contan for proplasm and Duclens ; but armatity of a rarely watery, usually milky jutce, ocersionally, however, orauge of yellow, amb sumatames comtaning

 net-like anamonoses of the segnentol formo, and usinily have the brawhen termmateng if blimd "xtremitios.
7. Intercelluher szaces fore the cavions between the elements of fulf.erown tissues, the cells in the meristem stand lecsin in unith-
terrupted continuity. oome of the intercellular spaces are produced Cavitiex by the splitting of the cell-wall between three or more cells, otleers in are formed by the destruction of the walls of a cell or group of cells tissuev. duriag the formation, by desorganization, of some secretion. Iastly, large cavities appear in plants as the result of mechanical rupturing and tearing of the ianer tissues during rapid growth of the part. De Bary distingnishes all these by separate names, viz., schizo. genous when formed by splitting of the common wall between cells, lysigenous when formed by the destruction of certann cells and cellgroups, end rhexigenous when produced by necehaaical disruption. From the nature of the contents, the intercellular spaces caa lie divided into two groups, the one containing substances or mixtures similar to those contained in glaud-cells, the other containiog air, of rarely water. Of tho intercellular glands, spaces, or canals the following varieties may be distinguished:-(a.) mucilage or gum canals, of which exaaples may be seen in Marattiacea, Lycopodiacte, Cycadacex, Canna, Opuntia, and some Araliacea; (b.) resin, etherea' oil, or gum-resin canals, either in long canals, as in Coniferce, Alismaccue, eroids, Compositee (Tubuliflone), Umbelliferce, Araliaccue, \&c., or short spaces as in Kutacea, Hyperteum, Oxalis, Myrlacur, Lysimachia, \&c. Of the intercellular air or water spaces there :a several modifications. First there are the minute spaces between the walls of parenchymatous cells, the interstitial air spaces : ani when the spaces are larger and accompanied with irrerular growth of the wall, lacunæ are produced, as in the root of Sayittari-1 sagittifolia, or in the pith of Juncus or petioles of Musta, \&e. Large schizogenous air-spaces with smooth walls are met with in Isoetes, Potamogeton, Hippuris, Trapa, Nymphacucece, enel many others. Lysigenous spaces having the remaias of the destroyed cells more or less marked on the walls are seen in Equisctum, Cyperaceo Graminece, Typha, Iris; while the large hollow stems of Umbellifera, Compositce, grasses, and the leaves of Allium. \&c., are rhexigenous Occasionally fat cell-surfaces or diaphragms interrupt the continuity of long air-spaces, and not unfrequently internal hairs or pecular hair-like idioblasts are formed, projectiog into the intereellular suaced as in Nuphar and Monstera. It is only in the neighbuurlood of water stomata that the spaces contain water for a short time.

Systems of Tissues.-Sachs describes three systeus of tissues, complex aggregations consisting of different kincls of tissue, but all so combined as to form readily recognizable parts of the root, stem, or leaf of a piant. Externally there is the epidermal or limitary system equivalent to De Bary's first division, excludiug his parenchyma. This system is taken to include the epidermis of plants, with its cutiele, stomata, and hairs, and also to include the secondary modifications produced by the development of cork and bark. In the interior of most parts of the higher plants, and following in the direction of the long axis of growth, separate or united strings or bundles are scen running and usually branching or anastomosing. Generally these bundles are barder than the surrounding tissues and readily seprarable from them. Consisting as they do of many kinds of tissue of vessels, cells, and selerenchyma, these structures are bnown as fibre-vascular buulles. Lastly, there exists a quantity of parenchyma or a mixłure of parenchyma with ather forms, packing up all the space between the fibroraweular bundles on the one hand and the epidermal systenn on the other. This forms the gronnd tissue. and ucludes the parenchyma proper of Do lary.

1. The Enidermal or Limitary Systent.

The epidernal system takes ats name from the chief member of Epithe gronp, manely, the epidermis or outer skim of the plamt. It is dermal the supertional layer, and is varomsly develoned in the higher and tissura lower plants. In the lower ferms, nigar, fund, fichens, the external cells are usually smaller than those below, or the walls are thicker and colourel ; while an many mosses and liverworts a true scparablo emidermes 1 only slightly indinatial. In others, as in Marchantia, capsules of most masses, and in syphaymom, a sjewially diflerentinted epudermis alpears, resembling that in the higher plants. Tho naturo of the epudermis varies in acturdane with the conditions to which it asemosed, as to sir aud hight, or in water, or in the soil, and in darkness. The mature of the limitary tissue also varies with the stare of mow th insuch pats as are of perennial duation.
Usmally the equdermis is a single layer of cells producing stomnta and hairy. In many plants the ephleminis is stemgthened by th:o formation of a eorky nuter layer, the cuticle, which devolops war ; or io other cases a new formation takes phace lowow the cuidermis, usually in the sromal tissne, and ly the formation of layers of cork a secondity "pilemoal or limitary tissuc is produced. Other parta of the ground tissue assist in formiug the outer covering of phats, and
may be considered physiolngically to helnor to the epiblermal system. These will be
ground tissuo.

ground tissuc.

s. - The cells of the single layer formian the epidermis ary in shape, but usually the form is determined by the shape of the part on which tbey are developed, being elungated un long leaves, broad with straight or wary margins on liraad lesves. Usually the cells of the cuidermis, althourh parenchymatous, haveno intereelhular bpates, except in Osmundia and Toker, und a few other mare mstames. The only openings are those in the stomata, schizurpmoms mitereellular baces, between the special cells (guaril celis) of the stoma. In many filants, as monocotyledons and needle-leaved combers, the efulemal cells coritain oo clolorophyll ; hut in ferns and iu many decolyledons, as has been shown by Stechr (Bot. Zett., 187:1, p. 581), chlormphyll is present. Not uofrepuently anthocyan fils the epudemal cells, and completely obscures the grecan colvur of the elalempliyll hearisig cells below. The outer wall vi the epitermal cell is untilly groatly thickened and corky, formung the cutiole, which genrally forms a contimous shect separable by the action of caustic putant frum the rest of the wall below, ln applying Schultics sohition to a thin section of au epialermal cell, the outer layers becone bruwn, while the inmer give the reaction of cellulose. The mater layers are soluble in boiling canstic potash and in nitric acte and chlorate of potash, but iosulable in sulphoric acul and in anamoniacal solnton of copris: oxite. Abay wi the cells have a makell dejusit of mmeral matter, mure particnlaly silica (Eyuisetmen), in therrwalls, Scu Nageli and Schwendener, Dies Mikroskop (2ll ell.). [. 459.

Wax is frequently producel: either it is on the surface of the uticle forming a variously constructed coating, or minute particles we nmbedded in its texture. The chief modilications are described liv De Bary (Vergleichende Anatumse, P .86): -(1) a layer or crust, wilier thin, humogeneous, atil tion-parent, or thick anilstriated, the tormer seen in Senpervivum, the lat ter in the waxpalin (Klupstockia); (2) a coating of rod-like particles placed perpendicularly to the surface, eitherclosely placed orsomer hat loose andirregular (Saccluaruin, Miusn, and Scitaminea) ; (3) a layer of granular particles, cluse or widely separated, and nat placed one over the other (Allium, Actr, Vilis), \&c.; and (4) irregular granules pled up one oser the other Io several layers, as in Eucalyplas, Rucinus, Abies pectinata, \&c.

Stomata (1)e Bay y: Vergleich. Anah., p. 36 sq) are the opemirge in the epilermis which permit the entrance and escaje of gaser. They are formed by two semilunar cells, the guad cells, with twe pore or intercellular space between them, the pore opening unto a large air-space in the tissue below, and in communication, by ineang of the small intercellular spaces of the parenelyma, with inest oi the tissues of the plant. The stomata are funnd on those parts abore ground exposed to air aod light, heoce chiclly on the leaves and tender green stems of plauts. On leaves they are most abundant on the under side, and are generally absent from the upper surlace. In mavy leaves, however, especially of monveotyledons, they ate equally distributed on hoth, siles, and in water-plants with poatiug leaves they are abundant on the nipurs side bit absent fion the lower. They ramly occur on shbmerged wiater phats aml wever on routs. As a rule the stematia are irrerularly scattered, but in some plants. as in Equastima. they occur in tolerably regnlar longitudinal rurs unt the stem. Usually tha stomata consist of only two cells, the ghard edts, or of two paits of ghard cells (Equisefrom) one over the othir. or thrie ate many, as in the peculiar stomata of Ifarchantia. In somue flonte two or inure inditional cells, the accessory cells, are frimal. These occessory cells differ from those of the epalerimis on the oue hanil, and fion the guart cells un the other. 'The pusition of the stomit vartes. It is sometines at the end of the fons fpulamal enlls, as in the hyacinth, or at the side, in a few cases fiee iu the conter ol the ehilermal cells (Arcmia, se.). The guaril cells may le oll a level with the epidermis; rarely they propet slightly ; but fremently they are acpressed below the sulace. The guard ceils wfen contain chlormhyll and stimh, the outer wall is often thek. anel, and ocessionally even wax forms on their sutface: but as a gemeral rule mon wax fors, and thes, when a thick coat of wat is beveloperl. farrow caualy throngh it indicate the position of the stomata.

Development of Stomata - ln lung cpinlermal cells (lyyacinth) a I"ntion is cut off ot we end hy cellofivision, and forms the motheraell of the stoma. It then divilesinto two langhter-cells, wach forming one of the prard cells. flue limellit between the two splits. rither foum withont inwarda or within ontwarila, and forms a -hizogenous intelcellalar space. Whan the epidermal cells are not clongatel (CEnotherr, Sitene, se.), n promon of the epincimal cell is'cut ulf at one part by ithent wall. 'lhis it tho mother-cell of the stoma, and either forms the dangiterecells innmediately, or miy divide by segments cut off at one side and then at the ozher side, rither one, two, or more times beforo tho eentral rell divites to form the danghter-cells which form the guald-cells of the stoma. The ther cells ent ofl on each side are the acecssory calls. In other casis tho aceussary cells have a ditferiont exigim. bewe cut off fium the owighbouring epilermal cells alter the guath-cells are formed. In. stances of the tomer may be seèn in Crasssdacece, Crucifera, and Pipilionaccix; of thuleltur in Juncucece, C'yperacea, and Craminece.

In furmizath some other forns a celd is formed insile the epidermal crll, embng a cylintrical picce out of it. I'hus divides eud forms the prmilecells of the stuma.
Tue kimds of stemataexist in many plants. The one kind, alreaty Wiater filly descrabed, ure the andestumata, to dintingingh them from the vomint second kind, the water-stomata. The latter occur minaly flants on

 of the leaf, which appeats un the sanface the the fom of domp, under

 the efolitrmis assme in the consthetion of lape massive latis or erarogences as they are salled by Sacha. Hars vary very mand in

 epdermal celk, havag then tavity mither continueus wath that of the eldermal iell, or cht of by a wall. Long cylmatical unathalar hatrs vectar ita cottos, and on mont roots reot-hars, wath than at sometimes with peculiarly and arregulatly thekened malls (Fiohs ericolur). The cells may divide and form a monihform hair, as in Tradessantia, or much more complex branched (L'ronscum thousus) or clab-shapred aud platalar hars may be porluced. Flat, dry scalex, cither unitellular or multicellalar, are secn in Deatsite, Elungmes, aul to many ferns. Papmla are mentomed by De Bary ns occurring un Rochea, Begoaia, Pijer. Ampelopases, nith others. The villi or collcteres nceur on bud scales onll buds, white spiny hairs or warts ocour frequently as tho prickles of the rose amil bramble, shal in Dipsacus, Smilar, se. The walls of hairs aro wften thin, and composed of nearly pure cellulose, or thickened :inl stratilied in various ways, with an outer cuticular lajer. Tha thichcung is either gemesal or local, nod may assume the fom of porsa in spritl strition thars on stammo of Bulline almdes), or mity form peculiar warte or nodules. Stlicious hatrs (Denfaia) r. h.urs contaning lime, sometimes occur. In some cases the hain a (nette) are supported on celtular elevotions of the pfidermis. These may hic distinguished as the accessory cellg of the hait Glaminlar hairs are of fiement occurtence, the end cell or cell secreting some ethereal oil or resin; the secretion collects lele the cutic!e, and wher it remaias there, causiog the alosorfinm. tho scereling cells, or the chticle ruptures. The villi or culle:en are peruliar many-celled eflamlular lairs on young leaves, stipules. or bisd-scales (hirbcs, Fivila, finhyonum, -Eisculus), and secrutins: a gratn or resin. Frequently the secretion of these culleteres is sut plemented by the formation of a resin from below the cutiele of thas epiclermis, forming the edatinous secretion covering buds, terman blastombla (horse clerstont). In some plants, as I'omithe, thas blastocolla is formed by the: epidermal cells alone, in uthers buth by the colluteres ant epidelmis.

Beneath the epulernis the eclls are often peenlianly monifided to Serons form the hypolerma and collenchyma; but as these belones to the ary gronnd sy:tem of tissucs they are described below. The secomary epmerm epilemal tussues, or the covening that replaces the epidermis on the tixane. petenmal parts, tonsists largely of cork, either in the form of a thin l'witent hayer or in repeated layers leveloping depper and terper in the tissues and of the strin or 1 ont and lomming the massive baik or rhytilotme. Cork riyti. cells arise usually from the contical ecils, i.c., those if the gromul dome, tinsue plated a short distance below the epitermis (fopulus. Samburtus). In other cases the cork forms still detper, among the green chlorophyll beming cella of the curtex, as in Pubus loonas Ribes, sc. Rarely the enderells arise from the chilermis itself (Salis). In all Erses conk is formed by the dibision of the cells of The cortex or equilemis by a tangential wall, selarating the mothercell into 1 wo danghter-cells. 'l'be outer cell luecumes ronky, rapidly losing its contenis and becoming filled with air; whilo the fonct one retains its potoplasm and forms new curk-cells by division. The formation of cork coos mut wecessarily begin at all parts of the rircamferenco simulfancously, but soener or later a tomplete layer of cork is formed. Whea the layer has herome a few cedls thick, it is known as the peralerm; white the active cells from which is aises are distingushed as the cork cambinm or phellogen. lusido the cork cambum new cella are often formel, u hich cuntain chlorophyll, nmil are known as the pheloilerma (Fagws, Salix), such colles heingalso fommel lig division uf the cork cambium. After the formation of the periberm, ns is easily seen in the stem of the block curtant, the whrle of the eptidermis and of the ground tissue immediately behow heromes withoresl, ame is thrown olf. In the formation if bath, the layens of conk form repeatedly in the cortical tissue of the stem, and exan in the hast portion of the fiburvaseular buntilas. The layers of cells hatwen ile plates uf conk, theing cat nif fions a
sapply of nourishment, soon wither; and thus occasionally the dead parts scale off, as in the Platanus, cherry, \&c. The bark or rbytidone is thus a very complex structure, consisting of the secondary epidernal tissues cither formed in the primary cortex elone or deep in the other tissues, and nopularly it includes all the tiasues outside the cambium layer, that is, the hast part of the fibro-vascular bundles and secondary epidermal tissues. Lenticels are special atructures connected with the epidermal tissues, and are common on dicotyledons (Samburus, Populus, Juglans, \&e.), ad on some monocotyledons, being formed on stems, branches, !etioles, and roots. Below a atoma or group of stomata a ferw cella enlarge and divide, and form Lumerous colourless thin walled cells, which arise from the bent layer of lenticel cambium below: Tbe epidermis becomes ruptared and the cells appear on tho surface, forming a brownish wart-like marking. These lenticels are probably to be considered functionally as secondary stomata, as the cells have large intercellular spaces and readily permit the passage of air into the interior. Lenticels have the marked peculiarity of being sometimes elosed in sutumn by the formation of cork cella, but open again in spring.

2. The Fibrovascular System.

Fibro- Strincolike bundles, the fibro-vascular bundles, are common in Fascular vascular cryptogams, gymnosperms, and angiusperms, and aro un illes, farailiar in the leaves of planta as the veios. They run in the gronnd tisãu either senarately or united, as in many dicotyledons, and in most roots, \&c., to form a central or hollow cylindrical vascular mass. When the bundles arc separate they often branch and anastomose as in leaves, or they may only anastomose at the nodes of stems. The bundles are easily separable by maceration, except in water plauts, and a few others, in which the bundles are very goft ; or they may be examined in transverse and longitudioal sections of the part, more particularly in the latter case when the tissues bave been rendered transparent by boiling in dilate eaustic potash, or by being previously boiled in strong nitric acid. (Sce Siageli and Schwendener, Das Mikroskop, p. 682.)
(7)od
(xiam) the wormps of cella and bast either closed or open. In the former the procambinm cells, the , from which the permament issue of the unndle orioinates entirely passes over ioto permanent tissue; while in the latter the cambium remains between the xylem and phlacm, and is capable of forming new cells for an indefinite neriod. Closed bundles thus rapidly assume a permanent form, while open bundles go on growing. Fibro-vascular bundles are divided hy De Bary into four groups by the mode of arrangement of the xylem and phloem. The first and commonest form is the "collateral" bundle, where the xylem and phloem are placed side by sida with or without canhinm between them, the xylen being always towarils the pith or the central part of the stem, the phloem external. In Cucurbita, Solanum, and others the bundles are "bicollateral," there being an additional phloem portion inside the xylen. "Concentrie" bundles oecur in many vascular cryptogams, the central $x y l e m$ being eompletely sur. rounded by the phloem. The last form is the "radial," where the bundles of phloem and xylem are arranged alternately in the central fibro-vaseular axis, as in most roots. Irregular bundles also oceur, and numacrous intermediate forma connect the different types.

In each of the portions of the bundle different kiads of tissue occur; Btructare hut there is a marked similarity in the construction of the phloem of zylem. and xylear, at least in acparate bundes and before circumferential growth takes place. In the wool, distinguished by the lignified hard brittlo walls of the cells, there are four elements usually present:(1) the wood vessels or cell fusions filled with air, having the transverse walls more or less completely absorbed, and having thickened walls marked with rings, spirals, retienlations, or pits of diflerent kinils; the ents of the cells sometimes arc more or less pointed abal overlapping, with pitted markings, haviag, however, a free eommunication from cell to cell through the absorbed thin part of the pits; (2) tracheides, or vessel-like wool prosenchymatous eells, having walls marked like the vessela, nod with the cavity contniniug air, but never showing any absurptien of the enn walls and fusion into vessels; (3) wool prosenchyma or libriform fibres, elongated, pointed, and overluphing cells, exactly resembling bast fibres, often with greatly thickened walls, these walls never haviar spiral or nanular markings, but only amall simplo or oceasionally execed. iagly miante horlered pits ; they are very comiona in the wood of dicatyledons, and may either he simple or have fine transverse partitions forming chambers in the long cell ; (4) woorl parenchyna, wond ctlls with thin walls, and simple pits; these in winter eno. tain starch, and other reserve materials, aloner wath the cells of the metrillary rays, ant at other thmes raay montain tamin, chlorophyll. ur crystals of culcimo ownlate. In the hast or phatom portion of the bundlo there are thrie elements only, as there aro un celly "quivalent to the tracheides. These are-(t) the sieve tulers or bastvessels, cellefasiona lake the wood vessels, hint having the trangvera: fortion forming the remarkabo sieve phata purforatid by the
 can the sinve ralls: the walle ure soft and deluate, ginige a calluloso
renction, and the cavity contains abundaut protoplasmic contents with excessively midute starch granules; (2) bast prosenchyma or bast vessels, elongated prosenchymatous cells, with pointed and overlapling ends, the walls so thick as almost to obliterate the cavity; the walls are soft and flexible, of ten marked with tine pits; like the librifom fibres of the wood, they have occasionally the cavity chambered with thin transverse walls, and not unfrequently they bradch ; (3) bast parenehyma, repeating the wood parenchyrma; but occasionally the cella are long and narrow, exactly like those of only slightly modified procambium, which they really are; in this state they are often called cambiform cells. The sieve-tubes and bast parenchyma nr cambiform cells form tbe soft bast. These different elements of the wood and bast are not always present, and the secondary wood and bast developed from cambiun are aften rery different from the prinary portions developed from procambium. Thus in Cucurbita there are no tast fibres, while in most coniferous woods the tracheides alone are present in the xylem. At the eads of the fibro-vascular bnodles in the leaves the different dernents gradually disappear until one or two spiral vessels and a few cambiform cells alone remain. In most roots the fibro-vaseular bundles form a central mass with the pbloem and sylem in separate groups and arranged alternately; the xylem masses generally project into the centre, and the oldest vessels are nearest the centre. The whole mass, which is either a singla bundle or a group of bundles, is usually surrounded externally by a peculiar layer, the pericambiam, in contact with the endodermis or sheath, the inner layer of the ground tissue, which in roots forms the massive cortical portion.

3. Ground System of Tissucs.

The ground tissue comprises all that remains after tne tormation Ground of the epidermal and fibro-vaseular systems, and is usually composed tissue. of parenchymatouscells, not in any way distiaguishable except by their position from pareachymatous cells in the other systems. In wther cases the ground tissue contains proseuchyma, or the cells in certain regions are more or less thickened. When the part contains closed fibro-rascular bundles, as in monocotyledouous stems and in leaves, the ground tissue forms the chief bulk of the part ; but in other cases, as, foriastance, in the stems of conifers and dicotyledons, with cireamferential growth, the ground tissue is very fechly developed. In such stems the gronnd tissue forms the pith and cortex, with the primary modullary rays joining the two. In roots with a central Gbro-vascular mass, the cortex is the only part of the ground tussue represented. The ground tissue immediately bolow the epidermis may be simply parenchymatous, or it may exhibit certain modifica. tions. Either the cells form collenchyma, as in many stems and Collenpetioles, a tissue consisting of mere elongated cells without intrr-chyma. cellular spaces, and having special masses of thickening matter developed on the walls where neighbouring cells meet. These masses readily swell up in water, and probably act as a sort of erectile tissue. In other cases a greater or less derclopment of bypoderma is observed Hypoin leaves and stems, the cells being clongated and greatly thickened derma and sclerenclymatous, lesembling in most points tha bast-fibies of the fibro-vascular bundles. In some plants, as in lerus, sepmate, often dark-coloured, bundles of selerenchyma occur in the gronad tissue. These different elements form part of what has been distingnished as the "mechanical" system of tissucs, hardened cells giving rigidity to the different parts of the plant, and althongh sucli cells oceur in very different parts of plants, as iu fibro-vascular bundes and ut the ground tissue, still they have a marked external resemblance, and are closoly related physiologically. Thick, short, sclerenchymatous cells occur in the ground tissue, as in the julp of the pear; in other cases the parencliyma is unthickened, und contains either colourless contents or develops chlorophyll. The part of the ground tisstle pext the fibro-vascular bundles fonns the sheath or endudermis, Endoa lnyer of cells often thickened or cuticularized, and surrounding dermis. either single bundles or the whole vascular mass or series of fibrovascular buades. In some eryptognms the endotermis is strength. enei by numerous selerenchymatous eells surrounding it either partially or completely. The ground tisame of tree Lihaccer, and even in some abnormala dicotyledens, farms a layer of secondary meristem cells capahle of developing both new ground tissue nad n"w fibro-vascular bundlea; and it is in thas way that the serondary circumferential growth in the stems aod roots of Dracarua, and 1 ub bably of the fossil vascular eryptogams, took place. The secondary eircumferential growth of gymoosperas and dicotyledons is the result of the activity of the cambinn ring formed by the fascicular cambium and the interfascicular cambinm in the groumd tissue, as alreaily deseribed. The changes producel by seondary eremmferential growthare very numerous, and are fully descrubed by De Bary (Vergleichende Anatomie, chaps siv, and xv.).

Hibliopraphy.-The chief works to be comsulted on the sabject of regetaile histolegy are-Hesle, on the Jicroscope: Capperter. the the Micruscope: We Jury berpletchemile Anatomue (lfofmelstors Mandouch der phystolegisehrn

MISTORY, in the most correct use of the word, meana the prose narrative of past events, as probably true as the fallibility of human testimony will allow. This definition takes no account of chronicles in verse which were not uncommon in the Middle Ages. With this exception the defiuition is fairly exact, both in what it comprehends and what it excludes. Obviously prose narrative is not history when it deals with hititious events, as in the case of the novel; and verse narrative, even when it deals with true events (as in the account of the battle of Salamis in the Persa of Eschylus, or Guillaume le Breton's metrical chrouiclo of the reign of Puilip Augustus), is either more or less than bistors, and ia any case a sub-species by itself.

In practice, the line between bistory and mythus is often not easy to draw ; but the theoretical distinction is plain. Iistory reposes, however remotely, on contemporary witness to the fact related. Written records are not absolutely indispensable, as tradition may supply their place and represent authentic contemporary testimony. But tradition is very insccure and apt to be equally inventive and oblivious. It is in the balf light of tradition that mythus is born of the creative fancy of inan, and the difficulty of separating fact from fection in this border-land of mingled fable and reality very often amounts to impossibility.

But even authentic facts aloue are not sufficient to constitute bistory. Many facts and dates are recorded with reference to China, Egypt, and Assyria in olden times, which in all probability are true; but these facts and dates are not euough to give those countries a bistory. The bare fact that a certain king reigned in a certain year, and conquered or was defeated in battle with a neighbour, is perhaps chronologically valuable, but it is not history. History only attains its full stature when it not only records but describes in considerable fulness social events und evolution, when it marks change and growth, the movement of society from one phase to another.

The feld of bistory is in consequence very limited, both in time and space, in proportion to the length of human esistence and the area of the eartb's surface occupied by man. Primitive and savage man has no history, because the struggle for existence consumes all his energies, and be has neither tinus nor faculty to think of himself as a social being, much less to make record of social events. But even when partially civilized, mankind is often incapable, not ouly of writing bistory, but of furnishing the materials of it. Under a system of caste, or conservative theocracy, or oppressive tradition, as in Iudia, Egypt, and China respectively, the social evolution is so slow that it hardly seems to move at all. The grandson lives among conditions hardly differing from those of the grandfather. In such a atate of things the very subject-matter of history is wanting. Nothing attracts less notice than immobility, and large populations beve oftcu lived under conditions which for whole geuerations did not seem to rary. The vast and vacant annals of the East show that the arts of peace and war dray attain considerable development without bistory or its materials beiug produced in consequence.

If these views be correct we cav only allow a period of about 4000 years as the limit of genuine history in point of time. The beginning wonld be with the historicol books of the Old Testament. Before the Jewish records fail us the Greek have begun. The Romans follow in immediate succession, and the bistoncal thread bas never been broken since, though thicker and stronger in some epochs than in others. As regards area, history long dwelt exclusively on the shores of that inland sea which, if not the birthplace of the human race, have at least been the chief training ground of its early youtb and vigorous manhood. Civilization subsequently spread from the Mediterranean to remote
islands and continents unknown to the ancients, and histors has followed it. No doubt in time both will be coextensive with the globe; but that time has not yet come. It is still useful to remember that the materials of bistory now rapidly accumulatiug in the far West, the far Soutb, and even the far East, owe their origin to that antiguity of which we are the heirs, to the civilization which took its rise in those ever memorable centres named Rome, Athens, and Jerusalem.

Early history is never critical and painstaking in the investigation of facts. Neither the historian nor his readers or bearers bave reached a stage of culture in which accuracy is bighly valued. Early bistory is esseutially artistic, its object is much more to charm the faucy and warm the emotions than to instruct the understanding. A good story, pathetic or humorous, is appreciated for its own sake independently of its truth. Striking pictures, dramatic situations, often told in dialngue, scencs in which virtue and vice are depicted on a colossal scalethese are the chief objects of the early bistorical writer, who mingles fact and fiction with the same naiveté as his brethren, the writers of the early epos and drama. Indeed, their subjecta are often the same,-the beroes whose prowess saved or achieved the national existence, the odious foreign foe who was teaten back; in eitber case claracters appealing strongly to the imagination and the feelings, which would resent cold criticism, but glady welcome eloquence and passion. History written under these circunstances has nuch of the character of the prose poem,carmen solutum, as Quintilian called it. The artistic or imaginative element predominates in it rather to excess. Such is history as written by Herodotus and Froissart. The growth of accurate knowledge in other departments, the increased practice of affairs, the substitntion of the political for the heroic and chivalrous sentiment, lead to a more sober and scrutinizing style of history without sacrifice of artistic form. Such is history as written by Thucydides and Tacitus.

Even a most basty surver of so past a subject as the historical literature of the world will be belped by its division.

History is of two kinds,--the old or artistic type of history, and the new or sociological type. The artistic type, inveoted by the Greeks, remained the ideal of history till compratively recent times. Its aim was perfection of literary form, weight and dignity of language, depth of moral and sagacity of political reflexion. It was labitually careless and indifferent ns regards research. But its chief distinction from the new history was a negative one; it had no conception of society as an organism, no suspicion of the depth and variety of the social forces which underlis and originate the visible events which it describes, often with admirable power. The new bistory is to a great extent characterized by opposite qualities. Its preoccupation about literary form is secondary, moral reficsion it rather avoids, but it is laborious beyond precedent in research, and above all it is pregoant with the nution that society is a great aggregate of forces moving according to laws special to it, ned similar to those producing evolution and growth analogous to what we see in other forms of life. The remainder of this article conld not perbaps be better employed than by a aloort examination of these two types of history, including gome reference to the causes which brought about a transition from one to the other.

The Greeks were the inventors, and remain the unsurpassed nasters, of the artistic form of bistory. That extraordinary insigbt into the true conditions of barmony, proportion, and grace which guided them in other departments of literature and art did not forsake them in this. $A B$ in
the drama a rew tentative and experimental essaya soon led to the master works of Esclyylus, Sophocles, and Aristophsnes, so a few precursors were sufficient to direct Herodotus to the main outlines of historical composition. By one of those mysterious accidents, not to be accounted for, which produce genius, Herodotus was closely followed by the gratest mind that ever applied itself to history. Thucydides remains the unsurpassed ideal of artistic bistory. As the famous statue of Polycletus, called the Doryphorus, represented the proportions of the human body in such complete beauty "that it was regarded by the ancientartists as a canon of the rules on this point," so the history of the Peloponnesian War may serve, as its author seemed to know it would, as a model which all nay copy but none may equal. Art, differing from science, allows of something like final perfection. Scientific work, bowever admirable, is alwaye speedily superseded. Great artistic works remain perfect in their kiad, and such was the work of Thucydides. History never deviated from the lines laid down'by the Grecks till the adveat of the medern school towards the end of the last and tlfe begioning of this century. Detween Thucydides and Gibbon there is no chango of the ideal plan on wich history should be written, though of courso there is every degree of anccess and failure in striving after its realization.

A bistory of history is a desideratum in literature. The merit of such a work, if properly done, would consist, not only in the criticism of particular authors, but in a compariaon of their epochs and social surroundings, and a pointing out how these iofluenced the character sod quality of their historical writing. It is, for iustance, worthy of notice that history is far more sensitive and dependent on public freedom than either poetry, science, philosophy, or jurisprudence. All these have flourished under governments more or less despotic, but bistory never. Tacitus secms to have felt this in the depth of his heart when he said that he was able to write as he did because of the "rara temporum felicitas ubi sentire qua velis et que sentias dicerelicet." Again, certain epochs are favourable to great bistorisns, as periods of war are favourable to great soldiers. Rating the genius of the Greek historians as high as we please, and it is difficult to rate it too high, it is still manifest that they enjoyed exceptional advantages. The political condition of the Greek world in the thi and 5th centuries b.c. was beyond measure stimulating to men of genuine bistorical power. That extraordinary rollection of emall states, full of the most active poltical life, full of wars, alliances, and brusque revolutions, was a sceno of interest, of which no subseguent historim bas cuer scen the like. In this respoct the Greck histmians had a priviloge similar to that enjoyed by the Coreck semptors. As the gymnasia displayed the fincst type of manly beauty and strength ever seen, so the fervent encrey and activity of the Greek states prescuter in mparalleled varicty and fulness the features of political life most capmble of interesting an historical mind. And it is perhaps hardly too much to say that what the palastra was to l'hictias, that the D'eloponnesian War was to Thurgdides.

Contmaing this vein of reflexion, we might remank that it is a noteworthy fact that in history alows the liomans cano nearest to hicir Gircek models. Copyists an erery. thing eben, and inforior copyista, in livitury they equalled if they dal rut exeel their masters. It is a moot print with mang whether 'lacitus should not le placed above Thucydiles. In any caso that stecp inferiority which marked homan imitation of (Greck models in every other departhanat was excepted in the case of history. Why was this ser? Obvinusly bocause the Jiomans possessed a robest natioual hifo in many reapects more lofes and inspir-
ing even than that of the Greeks. Ine ge. Lus uf inavidual men was kindled by the propitious milieu. And a dis. astrous milieu, injurious to all productions of the mind, is peculiarly fatal to history. The decay of historical writing in the later period of the declining Homan empire is a sufficient proof. Nothing so debased as the Augustan History can be found in anyother province of Latin litera. ture, and when a man of real power like Ammianus Marcellinus appears, if we compare him with Claudisn in another department, we pereeive that the muse of history is more austere than her sisters. The Middle Ages would offer the bistorian of history ample scope for connceting the quality of historical writing with the social surroundings of the authors. The great monastic houses, such as Malmesbury, St Albans, Eu, and many more, would be showa to bavo been such schools of bistory as they were, for very efficient reasons. The appearauce of the modern Herodotus, Froissart, would seem meant expressly to sbow the union of opportunity and genius nceded to produce grest historical work. It was no accident which gavo us the immortal cbroniclos, The first instalment of the IIundred 'ears' War between France and Eagland, the grand but abortive outhurst of Parisian democracy under Étitionne Marcel, the energetic action of the first serious StatesGeneral of France-these were subjects to arrest a real historical eyc, such as Froissart had, in spite of his many shortcomings. The draonatic struggle between feudalism and monarchy in. 1 le 15 th century found a competent if somewhat rustic Tacitus in Comines, more friendly but on the whole not less severe to bis bourgeois Tiberias, Louis XI. In the stirring times of tho 16 th century historians abound-Italians, Frenchmen, Dutchmen-too numerous to mention and too distinguished to be passed over with perfunctory notice bere. But how much would an historian of history have to say of Fra Psolo, Davila, De Thou, Grotins, to name only the chief? And then occurs a really surprising phenomenon. History disappears from the continent of Europe for a century and a half. Between the 'Thirty Years' War and the Seven Years' War the Continent produced no bistorians whom the world cares to remember, for Mizeray is remembered, though hardly read, on account of his quaint and occasionally graphic style. l'et this was the great age of Louis XIV., the classic age of fronch literature and philusophy, and the commencenent of Freneh science. - But history withered under the blight of the Catholic and monarchical reaction. Wistory was inded being written in France, the most witty, profound, and gra, hic since the days of Tacitus; but it was history which the author kept for himself and a remote posterity; not fur a hundred years was the world to be permittell to gate with wonder and admaration on the inconparable memons of St Simon. But Lebellinus and Revolutionary England gives us Clarendon and Burnett-cause nad effect as usual. A review of the 1 Sth contury and its performanes in history would conclude this interesting retrospect. But it is time to return from this digression to our more inmediate subject.

The ohl type of history, one might say, was a species of portrait painting which had often every morit execpt that of close likeness to the original. Whetber it is quite just to say this will be presently considered. But it cannot le denied that the whe writers generally thought more of the brilliancy of their colours and tho effectiveness of their bictures than of their exact truth. "My siege is finished," said Vertot, whonotfered new documents which stultified lis marmative. Tho old masters of history resembled, it is to be feared (if so honourablo a comparison can be considend derogatory), the oll masters of painting. Both thought little of what we call "local colour," of close conformity to tho ecene or olject delineated, jrovided they produced
striking compositions with grand outline and rich tints which were attractive and beautifal for their own sake. When to this conception of their art we add their general apnthy in research, the measure of their sins appears to be filled up in the eyes of a generation like ours, which has brought historical evidence under conditions nearly 73 stringent as those which rogulate the depositions of a court of justice. Still it may occur to some persons that there is another side to this matter, and that the great men of oid are not wholly witbout defence. They were indolent in research no doubt, or rather they did not attach the value that we do to it (if they had, they were not meri to have spared their pains), but they were large, sympathetic, and humane. They wrote for a public conposed of men of the world and not of specialists. Their manner is somewhat of -hand, but theg are neither prigs nor pedants. After all, the most important facts of history, as Augoste Comte has weightily renarked, are the best known and the least dependent on minate rectification for their true appreciation. History bas an ethical and psychological side as well as a documentary side supported by elaborate citation of elapter and verse for every statement. Chapter and verse, importaut as they are, are sometimes a little oppressive and overbearing. The most eshaustive knowledge of authoritics will not give a dull man insight into character, or enable him to realize and paint a great historic scene, or teach him to use with skill the mass of eradition under which he staggers. It may be said gencrally, esceptions of conise excepted, that the oid historians were strong where their successors are weak, and the converse. Aiming clietty at portraiture, they succeeded in it, as was only natural. Amid a crowd of errors on smaller matters, they often catch the true expressinn of a physiogromy, and hit off the salient points of a character with an insight and success which subsequent incquiry is often unable to modify. Bacon's portrait of Henry VIL....remains substantially correct, thongh be wrote his book in four months, remote from the means of knowledge accessible even in his day, which did not represent a tithe of the knowledge accessible now. Even down to the practice of introdacing fictitious specches into their histories, the old writers are not without defence. Nothing more than these speeches las moved the contempt and indignation of modern critics. Macnulay says the practice was absurd, and that if an English writer were to attempt it now he would be laughed to scorn. lot men of the calibre of Macchiavelli, Grotius, and Bacon resorted to it. - It is more a question of form and less of substance than at first glance appears. It amoments to thisHow are we to render our impression of a pastepucia? We may give it in broad statement, in carefully reasoned argument, supported by apt quotation and appropriate footnotes. I'his is the modern plan, and, to speak frankly, unquestionnbly the best. Rut it is well to listen without impatience to what can be said for the old plan by the other side. Mr Spedding, relerring to the specehes which Bacon introduced. into his history of theury VIL, says:-"My own opinion is that the reader is less liable to be deceived by history written on this principle than upon the modern plan, though the modern be aplarently the more scrupulous. The records of the past are not complete enough to cuable the most diligent historian to give a connocted narrative in which there shall not be many parts resting on guesses or inferences or unauthenticated rumours. He may guess for himself, or he may report other people's gaesses; but gaesses there must be. The advautage of the old practice is that the invention appears in the undisguised form of invention; whereas the modern practice, by scrupulously eschewing everything like avowed and doliberate invention, leares it to be supposed that what remains is all fact, whereas in most cases of the kiad the writer is but report-
ing his own or another man's conjecture, just as much as if he bad sat down deliberately to compose a soliloquy or a specch in the first person" (Spedding's Bacon, vot vi. p. 76). Every one must be glad to see, even plausible reasons suggested for not regarding the funeral oration of Pericles or the speech of Galgacus as "absurdities." Per haps the truest view of this introduction of speeches into their listories by the ancients and their modern imitatora is that it was their mode of offering generalizations. They adopted the concrete and dramatic form when we should use the abstract and imprersonal, and perhaps, as Mr Spedding remarks, this practice was not necessarily exposed to more error than ours.

We have now to advert to the causes which led to the transformation of history from the old to the new type.

The inferior quality of history in the 17 th century and the first balf of the litu is the noore remarkable from tho contrast presented by the brillinacy of contemporary literature in other departments. The age of Luais XIV. in France, as already remarked, and the age of Anne in England produced no histories of superior merit. Bossuet's famous disfourse on universal listory is no exception, being mach more an elvquent sermon than a history in the true sense of the word. Writtea by inferior men from a low point of viers; or no point of view at all, history at last eank to such a degree in the public esteem as to be spoken of in a tone of contempt. Dr Johnson openly despised it, and D'Alembert did nearly the same. And yot the time produced great antiquaries-Hadox and Rymer in England, D'Achery and Mabillon in France, Maratori in Italy, Leibuitz in Germany. But bistory had no stamina or muscle. It was also from our poiat of view blind and utterly stupid : it could not see the plainest facts, and it perverted the facts it did see. Not. only the ioferior men whose names are barely remembered and whose works are entirely forgotten, the Daniels, the Vellys, the Creviera, the Hooks, the Eckards, bat men of such magnitude as Hume and Robertson, Gibboa and Voltaire, oftea show such an unintelligence as to the past that this unintelligence itself becomes an interesting historical phenomenon, casting no slur on the great writers who displayed it, bat deserving consideration for its own sake.

When 1 Sth century writers are arraigned for their defective apyreciation of the Middle Ages (the great stumblingbiock) and remote periods generally, their critics forget tho historical fositions of the men they criticize. To write listory in the 18th century was something very different from what it lad been before, and this in several ways. First of all, the mere lencthening of the historic retrospect had enormously increased the fiell of historical survey. A writer of the 18th century looked back on nearly as much as we do ; ho had behind him the recent modern period, the long Midule Λ ge, the bartarian epoch, those of Grecee and Rome. And it was honourable to the men of the 18 th century that they did not slirink from the task of writing on this immense expanse of histury, imperfectly as they were prepared for it. It scems to be sometimes forgotten that most of the historical writing of the ancients, and a good part of that of the moderns up, to the 18 th century, hall been the writing of contemporary history, or history of a quite recent past. This is true of Herodotus (when ho is unt merely a traveller telling travellers' stories), of Thucydides, of Polybias, of Sallust, of Tacitus, of Guicciardini, of Fra I'aolo, of Dasila, of Grotius, of Clarendon. Contenporaneous history may lring ont some of the highest qualities of an historian-pery picacity, weightiness of judgmeut aml language, skill in narrative, and so forth. lint one quality it does not need and cannot display, insight into a remute age differing in culture politics, and religion from those aniid which the histeià: lives. İct it was
precisely the bistory of remots ages which the writers of the 18 th century boldly undertook to treat. That they often failed is not aurprising. It would have been a miracla if they had succeeded..

We are now so imbued with the notions of growth and development in all forms that we find no difficulty in applying them to society as well as other phenomena. But these notions were all lont eatirely wanting in the 18 th century; indeed, they did not fully emerge till the 19th had run a good portion of its course. It was difficult for all true sions of the 18th century to conceive of men or of societies different from the men and the societies they saw arouod them. Or if they were forced to admit that men could exist nuder cooditions widely differing from those in which they themselves lived, thay unhesitatingly prononaced them barbarians, unpolishad, hardly worthy of atteation. They consequeatly speak of past ages habitually in a tone of supercilions contempt which is to us highly amusing. Men who differed in every other opinion agreed in this. "The Athenians of the age of Demosthenes were a people of brutes, a barbarous people," aaid Dr Sohuson; and Voltaire was quite of his way of thinking on this point (Dict. Philosophique, art. "Anciens et Modernes"). With such viewa or rather feelings it was impossible to understand the past; they did not eren wish to do so. They mostly regarded their own age as the only one worthy of respect and edmiration, the ouly one in which "polite manners" had existed. The past to them was mainly a record of crime, ignorance, folly, and fenaticism (notice the way in which the sober Robertson apaaks of the crnsades) ; and they did not aven wish to aee it as it really was. It is ob. vioas that auch men could not write history as we understand it. The moral prejudices of the age shut out a true riew of past times. Indeed they preferred a distorted view, if it represented better their notions of the seemly and the noble. They had alwaya a tendency to dress up the past in the garb of the present. The Freach writers surpassed the English in this foiblo. For them the only ideal of a king is Louis XIV., and all kings must be made to resemble him more or less, though of course they were not so great. This disposition reaches its acme of absurdity in Scipion Dupleix, historiographer of France, who died in 1661. Describing the baptism of Clovis, he represents the barbarian Frank as approaching St Remi, "with lofty port and grave demeanour, richly dressed, scented, and powdered, with loag wig carefully curled and perfumed according to the custom of the ancient French kings." More serious is the profound misapprehension of every great character and great period which differed from the current pattern. The uaworthy interpretation of all political and religious phenomens with which the writers were unfamiliar, by sagacious references to state and pricstcraft, is also apt at times to appar to us wilfully perverse, and eved disingenuous. We may be sure it was nothing of the kind, and only resulted from the inadequate degree of culture then attained.

But the bistorians in question were hindered not only by prejudive which they could not avoid from understanding thic past; they were also hindered by a wont of kuvwledge which it was iropassible for them to have. To say nothing of the larger canceptions of society which we havo only recently acquired, they were unfurnished with thoso preparatory means of accurately ohserving the past which were soon to the descoverem The science of economics, as we shall presontly see, was about to throw a brond and vivid light on many hitherto obacure problens of history. But the writers in qu"stion did not yet enjoy the benetit of it, and surcly the fanlt was none of theirs. When we see a man of the genius and crudition of Montesquicu (Grandeur at Deredence des Romains, c. 17) gravely ascribing the decline
of old Rume to the fact that all the gold and silver after the division of the empire were carried to Constantiauple, wo realize the value of true conceptions relative to the wealth of nations. But in Montesquien's time the precious metals were regarded as the sole or chief sonrces of wealth, and he applied without hesitation to history a principle which he saw statesmen apply without hesitation to politics. Again, Gibbon, writing on the same subject, the decline and fall of Rome, cousiders the real cause to have been the reluctance of the coldiers to wear defensive armour. It seems hardly credible, but here are bis worda:-"They (the soldiers) complained of the weight of their armour, which they seldom wore; and they successively obtained permission to lay aside both their cuirasses and their helmets. The heavy weapons of their ancestora dropped from their feeble hands, and their pusillanimous indolence may be considered the immediate cause of the downfall of the empire" (chap. 27). Montesquien and Gibbon were men of an historical genius second to none. Yet they conld descead to such trivialities, and the reason was that the true sources of national realth asd military strength hadnot been laid open in their day. It would be easy to multiply examples of a similar kind, taken from the ablest writers, in which the most superficial explanation of widereaching events is hastily caught at, as if ous were to explain an earthquake by a scratching of the earth'a surface. In fact the old writers might be likened to surreyors as contrasted with geologiste. They have little or no conception of the forces at work moder the aurface they see.

But a change was near-a change in feeling and a change in knowledge. That singular modulation of key in the moral life of Europe, oftea called, for want of a better term, the Romantic movement, which arrested and surprised the attention of the latter half of the 18 th century, was felt in relation to history as well as to philosophy, politics, and religion. Whether represeoted by the ferce rebelliun of Roussean in France, or a milder literary reform in Eagland and Germany, it essentially consisted in a weariness of and disenchantment with the present and the recent past, in a vague feeling after ideas and emotions outside the conventional circle in which men had been contented to live for several generations. Tho tastes and the tempers of men changed with a strange rapidity. The 18 th century philosophy, as it is called, lately so high and apparently secure, was cast out with contunely. The recent idols-Locke, Hume, Voltaire, Diderot-rrere smitten down, and others needless to name were put in their place. The whole movement is now seen to have been retrograde, and finally abortive, though temporarily successful. But it hard its raison d'être and even its uses, as all social phenomena have. Among its uses was the service it rendered to history. As it was a first principle with the liomantics to burn what their predecessurs had worshipped and the conserse, the past which had becn recently an object of co:.. tempt was put iu the place of honour. Especially then Middle Age, so unjustly despised, scemed to rise out or \therefore d grave as a lovely vision full of koights and chivary troubadour song, and Gothic architecture, the latter jus. t . beginuing to be appreciated. Wheremen had only recent', seen barbarism, superstivion, and ignorance, they and tha.e sons saw an enchanter land of beauty, picty, nad grace. Then came Sir Walter Scott, who turned a current already flowing fast into a licadlong torrent. The Midille Ago was studied eagerly, syoprathetically, perhaps a littlo too mach so ; zenl never is according to knowlelge. But the bringing of the Midalle Age into the circle of scrigas histurie stwly had an influenc, beyond its immediate object. When men had trought themselves to study and understand 11th century popes and emperors, monasticism, foudalism, scholasticism, they became bold and capable of further
adventures in historical enterprise. After the hervic ages of Cbristendom, the heroie agres of Greece were opened to explorers. And soon all exelusiveness disappeared. 'l'he whole past history of man was felt to be worthy of man's study,-a wide field into whicb many, labourers entered. So much for the change in feeling.

No less a change had taken place in the condition of knowledge. Speeulation bad for a long time been feeling its way to a closer contact with the problems suggested by the growing wealth and industry of the mudera world. Adam Smith in bis memorable work resumed, co-ordinated, and enlarged the labours of his numerous predecessors, and placed the study of economies on a new and positive basis. But the suggestive stimulus of his researehes spread beyond tho limits of the science with which he was immediately concerned. Tho indirect serviees rendered by political ceunomy to history have not perhaps been adequately recognized. The elucilation of the sources of wealth in the preseat became a means of explaining the prosperity and lecay of states in the past, which soon led to valuable results, the more striking as they were unexpected. Hitherto wealth had been thought a source rather of degeneracy than of improvement. The great rlanger was always understoud to be "luxury." Poverty was the parent of virtue. Primitive times were virtuous because they were poor. Pagan, philosophers and Christian saints had agreed in condemning riches as the source of all evil, and denying the rich man a higb place in their ideal republic or the city of God. Pulitical economy cleared up the confusion of thought here implied. The wealth of states bas nothing to do with the excessive opulence of a small class. Never has the mass of the people in any country or in any age suffered from an overabundanee of wealth. The excessive wealth of the few generally means the poverty of the many. In short, the evil lies in the great inequality of the distribution of wealth. These common-places of economics would have been paraduxes in the early part of the ISth century, and the historians of that age show a profound ignorance of their bearing, as was only natural: So, when they bare to explain the decay of a state they seek to show that it had lost its gold and silver, or that luxury had made fearful inroads, or that martial valour bad somehow strangely dectined. The notion that poverty in the mass of the people was very often the chiel and sometimes the only cause did not oceur to them. When therefore Adam Smith devoted the third book of the Wealeh of Nations to "t the different Progress of Opulence in different Nations," it eeemed as if a lamp had suddenly been lit in a dark place. That book was in truth a lofty historieal review of the facts of the past, guided by the prineiples of economic science. The question which has slready come before us, and which excreised so much, as well it might, the thinkers of that age, the deeline of Rome, was approached in a much more promising manner when one element of it, the decay of agriculture in Italy, was spoken of thus:-"Tillage io that part of ancient Italy which lay in the neighbourhood of Rome must have been very much diseouraged by the distributions of eorn which were frequently made to the people, cither gratuitously or at a very low price. This corn was brought from the conquered provinces, of which several, instead of taxes, were obliged to furnish a tenth part of their produce at a stated price. The low price at which this corn was distributed to the people must necessarily lisve sunk the price of what could be brought to the Roman market from Latium or the ancient territory of Iome, and must have discouraged its cultivation in that country." This was cateling a glimpse of a vera causa of the effect to be explained, and the vein of thought thus opened proved to be richer the further it was explored.

Both the moral and tho intellectual tendeacies at work
to produce a new temper with regara to mistory received an incalculable impetus from the French Revolution. Tbat eataelysun revealed the deeper forees of society which had lain silent and casuspected under the deceitful calm of the ancien régime in its latter days. It was very certainly a revelation, though light eame from the flames of Tophet, in Mr Carlyle's phrase. Men saw the deptb of the abyss over which they had lived in quiet ignorance, and their notions on man, society, and history underwent a great change. Passions undreamed of were let loose, and the passions of the present threw light on those of the past. History was read with new eyes. "Whenever," says a man who livel through the tempest and profited as much as any one by it,-"Whenever," says Niebuhr, "an bistorian is reviving past times, his interest in them and sympathy with them will be the deeper the greater the events he bas witnessed with a bleeding or rejoicing heart" (Preface to Hist. of Rome). Few generations bave seen events which alternately made men's hearts bleed and rejoice more passionately than Niebubr's own, and none bave ever stimulated history so much. With the peace of 1815 historical studics aequired an activity and scope they never bad before. All history, it ras perceived, needed rewriting from new points of view, with more knowledge, deeper insight, keener sympatly. The French led the van of the new movement with their usual brilliancy and mastery of literary form. But it was their position as the nearest witnesses and the greatest sufferers and gainers by the Revolution which did moat to open their eyes. A truly illustrious band of schula:s and writers under the Restoration, the Monarehy of July, raised bistory into a position of honour it had never enjoyed before. Michaud, the two Thierrys, Sismondi, Guizot, Do Barante, Micbelet, and many more rendered services to history which must not be forgotten because on many points their labours have been superseded. It is indeed a capital proof of the merit of their labours that they furnished the means and the incentive to their supersession, a proof that their studies vere vital and progressive. The Germans, with their solid erudition, were not slow in fullowing the French. Between the two, tho Middle Ages, Creek and Roman antiquity, and the bistory of the Christian Church were studied with a minuteness and breadth never known before. History had entered on its modera phase.

This is nut the place to dwell in detail on the achievements of the modern sehool of historians. Tbo whole field of history bas been explored afresh with such superior insight, knowledge, and just conception of the task in hand that all historical writings anterior in date to the end of the 18 th century are entirely superseded, with the singleexeeption perhaps of Gilbon, who alone, as Mr Freeman says, has not been set asido by subsequent researel.. Ancient bistory, chiefly in consequence of the extrandinary zeal and diligence of the Germans in what they call the science of antiquity (Alterthumswissenseliaft), has becone a reality, vivid in interest, and fruitful in knowledge, instead of the nebulons unreality it had been befure. The rejection of the fabulous elements in tho historics of Greece and Fomo was the first step, but a long one, which it required many years and much effort to make. The next was to obtain a firm grasp of the idea that tho Greeks and Romans wero living men, and not statues like the Elgin Marbles, and to look at their polities, institutions, and religions with tho diseriminating eye of common seuse, and a real wish to seo them as they were. The true nature of Athenian demoeracy, of the Spartan oligarehy, of the commons and patriciuns of Rome, of the party strugrtes which eaused and justified the transition from the repullie to the empire, las been put in a clear light, which cat hardly be appreciated by those who are not aware of the dark ness which it replaced. Points of
riew and lines of inquiry cencerniag the religion, gevernmeat, iastitutions, taxation, and law of the ancient states have been opened up, of which the possibility in the old days was not suspected. The sociological kuowledge of the present has illumioed the past, an interesting example of which is afforded by the rapprochement between the Eaglish dominiun in India aod the Roman provincial administration.

The history of the Middle Age show's even greater results, and greater innovation, to which allusion has beeti already made. The great difficulty was the papacy. Between the Catholics, who regarded it as of divine institution, and the Protestants, who regarled it as a manifestation of Antichrist, and the sceptics, who despised both and regarded it as mere superstition, this great centre around which the life of the Middle Ages revolved had been unknown or misknown to a degree of absurdity. Gradually, as the 19th century arose wiser and sadder out of the claas of the French Revolution, the immense part played by the ehurch was at first dimly suspected, and at last with inereasing elearness perceived. This must on every account be regarded as the greatest achievement of the modera school ; it implied the unlearning of so many old errors, the acquiring of so many new troths, above all, the repression of so many deeply-rooter prejudices. It restored the continuity of history, in which the Middle Ages had hitherto appeared as an unexplained gap, 一an unwelceme wedge of barbarism thrust between the aecient and morlern civilizatiens.

After the Middle Ages, the period which bas been most illumirted by the new lamp of history is that of the early church and the whole subject of religions dogma and institutions. In spite of the fierce controversies which have raged over this region, a large residunm of undisputed fact has been rescued from ignorance and prejudice, and charch history is no longer a legend, but one of the most interesting chapters in the annals of the human mind.

As regards modern history, we are oppressed and nearly overwhemed with the mass of new materials and new dis. coveries which have been launcherl upon us. The diligent publication of state papers and documents, which all civilized states have baken in hand, has exceeded in the last half century all that had been done before in that direction. The result is that there aro few periods of modern history which are not far letter known to us than they were te the contemporaries who lived in them. But bistory in this fiold cannut beast of such laurels as sle has won in the field of antiquity and the Middle Ages. There has been no great reversal of old points of view, no great triamph of historical perspicacity piorciag through triditional error down to latent trath. Modern listory has woul its vietories more by weight of metal than by the skill of its commanders, not that the gencrals have lacked skill, but they lave hat less occasion to display it.

The history of institutions has received much attention in racent tirnes, and promises to be one of the must fruitful peins of inquiry yet opened, and this in reference both to primitive institutions, which are rather prehistorical than historical, and the constitutions of states which have reached alult politica! life. The old Λ rjan temure of hand and villa e communities, and ancient law, whether in old Rome or mondern Dengal, have been the subjectsof claborate investigation, anbodical in waris which mark a new departure in knowledee. The institational history of political states is at tho present moment perhaps the subject which attrachs the mast lively altention of scholars. It is not contined to the constitational history of Enghand, though England, as the mother of parlimments, has a fair claim to priority of interest. Pat the sulject is narrowed and dearaded by contemplating th from the point of view of modern politice, and chictly it refetence to the popular frecdom or national
wellbcing produced. The carnest bisterical inquirer is as impartial as the pathologist who studies disease equally with bealth. The institutions of despotism have their ruison dêtre and normal evolution as well as these of free gnvernments, and the scientifie historian will neglect the one as little as the other. In any case the history of the institutions of Europe from the times of the Frankish empire to the end of the French monarehy offers the widest ficld for courageous historical research. It has absorbed and transcended all those inquiries which used to be included nuder the somewhat jejune title of the history of civilization. Institutions in the secular order, and religions in the spiritnal order, are now seen to be the most massive and permauent factors in buman life, capablo indeed of evolution and change, but little susceptible to the immediate action of man's intelligence and will, and yielding only to the new modifications brought about by time and the gradnal transformation of ideas and meral conceptions, the resnlt of inereased koowldgre.

It is hardly necessary to add that a broad distinction must be made between history and what has been called the philosophy of bistory, a term now replaced by the far better one "suciology," invented by A. Comte. Sociology has the purely scientifie aim of investigating the eature and constitution of societies, to discover the laws which regulate their growth and decay, to do in short for them what biology has already done for the animal and vegetable kingdonns. History, while it can never again dispensé with the assistance of sociology, remains oceupied with the description of the social organism (at a given perind) in its ensemble, and the term "descriptive sociolagy" has been suggested as an improvement on the old one, history. We may question whether the innovation will be accepted or is needed. The buman interest attaching to the story of man's past fortmes will alwags provoke the means of its own satisfiction, and there is little donbt that bistory, the name and the thing, as the highcst form of prese literature, will continue to instruct and console mankind to tho remotest generations.
(J. с. мо.) t

1IIT, the ancient $I s$ (see Eupirrates, vol. vii. p. 670), a town of Asiatic Turkey, rilayet of Baghdad, is situated on the west bunk of the Suphrates, 70 miles W.N.W. of Baghdad. Its strects are narres and frequently stcep, rising one above another along the side of a bill, and the houses, which are flat-ruofed, and one or two stories in height, are built chictly of clay. It contains a graceful minaret and some riclily decorated tomb-towers. The prosperity of the town depends upon its fountain of bitumon, which las flowed from time immemorial, and, accerding to Itcrodotus, supplicd that material for the building of babylon. The inhabitants make use of the bitumen for lime burning, and also for covering boats. From water which bubbles up in the centre of the spring. salt is mannfacturel. The population is about 3000 .

IlITCIICOCK, Efwand (1793-1864), an American geologist, was horn of poor prarents at Decrfeld, Massachusetts, May 24, 1793. II owed his edueation chiefly to his own exertions, and was preparing himself to coter Harvard College when he was compelled to interrutt his studies from ia weakness in his eyesight. In ISI5 he became principal of the academy of his native town; but le resigned this office in 1818 in order to study for tho ministry. Having been ordzined in 1821 pastor of tho Comregational ehurily of Conway, Massachusetts, he employed his lowrs of leisure in making a seientifie survey of tho western countics of the State. In 1825 he resigned his charge in order to beonmo professor of ehemistry and nitural history in the new! y-fonuled Amberst College, an institution which owed its carly success, if not its coatinued. - istence, to his energetic efforts, beth in rescuine it from
financial diffeulties, and in inereasing its literary and seientific effeiency. More especiaily did he render to it invaluable service during the period when he was president, from 1845 to 185 . In 1830 he was appointed state geologist of Massachusetts, and in 1836 to the same office in conuexion with the first district of the State of New York. On resigning the presidentship of Amherst College, he was induced to retain his professorship. In 1830 he received the degree of LL.D. from Harvard, and in 1846 that of D.D. from Mildlebury College. Besides his constant labours in geology, zoology, and botany, Hitehcoc: took an oetive interest in agriculture, and in 1850 he was sent by the Massachusetts legishature to examine into the methods of the agricultural schools of Europe. In geology his mest important achievement was the examination and exposition of the fossil footprints of tho Connecticut valley. The collection which he accumulated in connesion with his investigations is contained in the Hitebeock Ichnological Museum of Amherst College, and a deseription of it was published in 1858 in his report to the Massachusetts Jegislature on the ichoology of New England. As a writer on geological science, Hitcheock was mainly eoneerned in determining the connexion between it and religion, and employing its results to explain and support what he regarded as the truths of revelation. He died at Amherst, February 27, 1864.
The following are his principal works:-Gcology of the Connecticut Valley, 1823; Cataloguc of Plants within twenty miles of Amherst, 1829; Dysycpsia Forestalled and hesisted, 1830; Fieports on the Geology of Merssachusetts, 1832, 1835, 1838, nad 1841; A Wreath for the Tomb, 1839; Fossel Footstrp.s in the United Statcs, 1848; Outlines of Geology, 1855; Illustrutions of Surface Gcology, 1856 ; Ichnology of New Englunt, 1858; Religious Lectures on the Peculiar Phenomena of the Four Seusons, 1850 ; History of a Zoological Tcm. perance Convention in Central Africa, 1850; The Heliyiun of Gcology pand its Connectal Scienccs, 1851; Religious Truths illustrotal from Science, 1857; Reminiscences of Amherst College, 1863; and various papers in the Biblical Licpository, the Bibliotheca Sacra, the American Journal of Scicuce, and other periodicals.

IIITCHIN, a market-town of Hertfordshire, England, is situated on the small river $\mathrm{Hiz}, 34$ miles from London, on the Great Nurthern Railway. It is for the most part neatly built of brick, and the streets are generally spacious. The prineipal buildings are the parish chured in the later style of linglish architceture, with a fine porch, an Adoration of the Alagi by Rubens, a small crypt said to have been used by Cromwell as a prison for the Royalists, and many interesting monuments; Hitehin Priory, the residence of the Radeliffe family; various chapels, schools, and banks; the infirmary, the workhouse, the town-hall, and the corn exchange. Malting and straw-plaiting are extensively carried on. There are also brewerics and manufactories of agricultural implements. The population of the local board distriet in 1871 was 7630 , and of the parish 8850.
Hitchin oecurs in Domesday Book under the name of Hiz, a modification of the Saxon Hicee or Hitche, which appears more pro. minently in the present form of the name. Ditring the Saxon heptarchy it formed part of the royal demesne of the king of Mercia. It was bestowed by Elward the Confessor upon IIarold, and after the lattle of llastings it was retained by Wilham the Compueror. Hy William Rufns it was grantef to Bermard de Baliol, and on the accession of John Baliol to the throne of Scotlasm it reverted to the crown of England, after which it was bestowed by Edward 111. on his fifth son, Edmund de Langley.

HITTITES, o warlike aml powerful nation, whose centre lay in the far nurth of Syria, between the Orontes and the Euphrates, but wherse outposts about 1200 b.c. extended as far to the viest as tho Ferean sea. In tho Egyptian inseriptions they are called the Khita or Kheta; in the Assyrian, the Khatti ; in the Hebrew Seripures, the Khittim. Some confusion has been caused in the treatment of the history of the llittites ly the uncritical ase of the Old 'festament. It is true that the Khittim or Ilittites are repeatedy mentioned among the tribes which mo
habited Canaan before the Israchites (Gen. xv. 20 ; Ex. iii. 8, 17 , xiii. 5 , xsiii. 23, 28, xxsiii. 2, xxxiv. 11; Num. xiii. 29 ; Jeut, vii. I, xx. 17 , Josh. iii. 10, ix. I, xi. 3, sii. 8, xxiv. 11; Judg. iii. 5 ; I Kings ix. 20 ; 2 Chr. viii. 7 ; Ezra ix. 1; Neh. ix. 8), but the lists of these pre-Israelitish pepulations cannot be taken as strictiy historieal documents. Not to dwell on the cases of the Perizates (properly speaking, an alpellative and vot an ethnie name), and the Kenites and other Arab races, sometiones ineluded, but evidently by an anachronism (see vol. iv. p. 763), it is obvious that narratives written. or (as all will agree) elited, so long after the events referred to cannot be taken as of egual authority with Egyptian and Assyriau iuscriptions. How meagre the tradition respecting the Hittites was in the time of the great Elohistie narrator is shewn by the pieture of Hittite life in Gen. xxiii. As Ewald remarks, "Abrabum's allies in war are Amorites; but when he desires to obtain a possession peaceably he turns to the Iittites." Yet the undoubtedly authentic inscriptions of Egypt and Assyria reveal the Hittites in far different guise, as pre-cuinently a warlike, couquering race. Not less unfavourable to the aceuracy of the Old Testament references to the Hittites is the evidence deducible from proper names. As we shall see presently, the Ilittite names preserved in Egyptian and Assyrian records are on the whole strikingly un-Semitic. The three Ilitite names given in the Old Testament (Ephron, Gen. xxiii. 8, 10; Ahimelech, I Sam. xxvi. 6 ; Uriab, 2 Sam. xi. 3, xxiii. 39) are, however, of undeniably Semitic origin. Is it unnalural to infer that these tiree names are no less fictitious than the Semitie names ascribed in the Old Testament to the non-Semitie Plalistines? It is not surprising that at least two eminent Egyptologists (Chabas, Ebers) should alsolutely deny the identity of the khita and the klittim. This, however, seems to be going too far. The Old Testament writers elearly meant by the latter name the same people as the Egsptian inseriptions by the former, but in ther time the menory of the Khita liad grown so dim that they could include it among othershadowy uames of conquered Canaanitish peoples. Nu impartial scholar, indeed, will deny that a branch of the Kitata may once have existed in Palestine. Unfortunately there is no historical evidence that it did so. In fact, the most trustworthy nutices in the Old Testament itself point to the Hiltites as a mation beyond the borders of the land of Isracl. In 2 Kimgs vil. 6 wo find "the kings of the Hittites" mentioned side by side with "the kings of the Egyptians;" in 1 kings $x .24$ the sime phrase oceurs parallel with "the kings of Aram" , und in 2 Sam. sxiv. 6 we sloould probably read, "and they came to Gilead, and to the land of the Hittites mato liadesh." The prostion of Heth in the table of nations (Gien. x. 15) maty also be regarded as a vestige of an accurate geographical tradition.

If then we continue to employ the familiar mame Hittites instead of the Egyptian Khita and the Asoyrman Khatt, let it be understood that by this term we do not mhate one of the Canamitish peoples conquered by the Israches, but an extra-Palestinian race capable of loulding its own even abainst Egypt and Assyra. Its centre lay, as wo have seen already, and as is admuted on all hauds, between the Euphrates and the Orontes. This was in fact the reginn which-one fears to say fur how many centerieswas resignated in the Assyman inscriptions mat hheth or Khatti-land. Under the manc of Khatti we already meet wilh the Hittites in the astronomeal work in seventy tablets drawn up by Simgina, king of Agane, in the lfith century bec. It aplears from this vencrable document that hostilities were cometatly arising between Balowlona on the oue hand and the Hatite country on the other

Biblical Archenlogy, iii. 240). Among the Assyrian kings it is Tiglath Pileser I. who makes the tirst mention of the Khatti; in his time they are already the lords paramount of the region between the Euphrates and Lebanon. Sargon, the most enterprising of the Assyrian monarchs, was impatient of such an obstacle to his victorious arms. By the conquest of Carchemish and Kummuch, Khatti-land lost its two great bulwarks on the east, and was open henceforth to the Assyrian hosts. The last reference to the Khatti is in the time of Esar-haddon, who speaks of "twenty-two kings of the land nf Khatti, which is by the sea and in the midst of the sea" But it has been shown by Schrader that from the time of Sennacherib onwards the name Khatti was transferred to the western maritime lands in general, viz., Canazn and Philistia, including Edom, Mab, and Ammon (Keilinschriften und Geschichtsjorschung, pp. 234-5).
Turning now to the hieroglyphic monoments, we find the Khita playing a still murs important part in the history of Egypt,-first of all, under Thothunes 1II. One of his generals has left us an account of his persunal experiences in the campaign against the Khita (Brugsch, IIistory of Egypt, i. 354), and in the Statistical Tablet of Karnak we have a record of the tribute brought from "the great land of the [Khita]" (ibid., p. 334, comp. Records of the Fast, ii. 25). At this period, however, the Kilita were but one among a number of peoples; in the wars of Seti I. and (especially) Ramses If., they occupy the first rank among the adversaries of Egypt. The account of the battle of Kadesh (the island city on the Orontes), given by the Theban poet Pentaur, presents a vivid picture of the military prowess of this rising power (comp. Bragsch's translation with that of Lushington in Records of the Past, ii. 65-78). Ramses was indeed victorinns, but he owed his life and consequently his victory to his persomal bravery, and, as Pentaur represe:!'s it, to his childlike faith in his god. On an outer wall of the temple of Karnak the treaty of peace between Egypt and Khita land may still be read (comp. Brugsch's translation with that of Goodmiu in Records of the Past, iv. 25-32), and the same fruitful source of primitive history bas furnished inscriptions of Ramses, with the names of conqucred towns of the Klita, corresponding with those already recorded by Thothmes III. Thns the long feud between Ergpt and Khita was closed, and the harpy result was celebrated by the marringe of the Pharanh to a daughter of the king of his chivalrous antagonists. The name of the Khitir almost disappears hencefurth from Egyptian history. M. Lenormant indeed (Ancient IFistory of the Eust, i. 268) ntions them as assailing Ramses III., but Dr Pirch (Eyypt, p. 139) and Brugsch Bey more accurately describe the war referred to as one between Ramses nud the conquerors of the Khita, viz, the confcderated "Carian-Colchian natious" (sec Brussch Bey, Ilistory of Eympt, ii. 147).

We have spoken of the Hittites we know them frum the roonuments, as a people of Syria. But the extramormunental history of the 1 littites, which is unly begimning to be divined from seattered indications, shows that their power was not limited to the arca between the Eophrates and the Orontes. Not only had they their confederates or vassals in their near or more distant meighthonrhod, but they also (as it secmas) despatehed confurering hosts intn the far-off regions of Asia Mimor. Even the Esyptian records have been thumght t o indicate this fact. St that great battle of Kadesth on the Orontes to which we have already referred, there were present, besides the prinees of Khita, the kings of Arathu, Khlilibu, Naharain, Qazanadana, Malunna, D'dasa, L.-ka, the Darliani or Dandmi, the Masn, Kerkesh or Kelike h, Kairkamasha (so Lushington; Brugsch, somewhat arbitrarily perhais, Quirgimoshi), Aherith, Anangas, Mushanath,-a mighty loost "gathered"
(as the poei Pantaur tells us) "from the margin of the sea wo the land of Khita." The late M. de Rouge, a corypheus in Fgyptology, actually supposed that this list included the Dirdani of Asia Minor, the Mysians, Ilion, aud perhaps the Lycians ; Brugsch Bey, however, who is now a greater autherity, is satistied to identify the Dardani with those of Kurdistan (comp. Herod., i. 189), the Leka with the Ligyes (comp. Herod., vii. 72), and the Masu with the people of Mount Masius. But putting M. de Rouge's opinion aside, it secms to be evident frem other sources that the influence of the Khita extended even into Asia Minor. Frof. E. Curtius has already pointed out "that one of the paths by which the art and civilization of Babylunia and Assyria made its way to Greece was alung the great high road which runs across Asia Minor," and Frofessor Tiele has been struck by the presence in the religions of Asia Miner of an unexplained element which with all reserve he conjectures may be Hittite. Professor Sayce has added an important contribution to the question by showing that the Hittite capital Carchemish (rightly identified by Mr Gearge Smith with the modern Jerablûs) was the source from which that modified type of Assyrian art was derived, which specially characterizes the early monuments of Asia Ninor. "The sculpture accompanied by inscriptions in Hittite (or Humathite) characters which Mr Davis discovered at Ibreez in Lycionia (Transactions of Soc. of Bibl. Archeology, iv. 2) proves that the Hittites had penetrated through the eastern barrier of Asia Minor formed by the Taurus range; and the two or three characters that still remain in the rock-cut inscription engraved in his Lị̈e in Asiatic Turliey (p. 222), and found near Bulgar Maden, make it clear that Hittite power had once extended at least as far as the central plateau of Asia Minnr." Evidence has now been supplied of the extension of Hittite power to the very shores of the Egeen in the occurrence of Hittite hieroglyphics (the same which occur at Jerablits or Carchemish) on the pseudoSesostris (a fellow to which has, however, been pointed out) at Ninfi, the ancient Nymphreum, on the road from Smyrna to Sardes (Letter of l'refessor Sayce, in Academy, Aug. I6, 1879). In a subsequeut letter, Professor Sayce remarks that there were two ronds open to the Hittites, and both, to judge by the scattered monuments already found, appear to have been travellod by their armies. The one was that taken by Crosus on his march against Cyrus; its course was through Pcssinus, Ancyra, and Pterium. The other was that traversed by Xenophon and the Ten Thousand ; this road passed through the Cilician Gates by Iconium. Both roads met in Sardes.

Wias this enterprising race a nucmber of the Semitic family ? Let us consider-
(1.) The evidence supplied by the pirtorial representations on the ancient monuments. -"If it is allowable to fomn a judgment on the origin of this cultivated and powerfu! people from its outward bearing and afycarance, it seems to us, under the guidance of the monuments, to be at least very doubtful whether we shoth reckon this chivatrous ruce among the Camanites" (who, see art. Canannites, were probably in the main'semitic). "Beardless, armed in a ditlerent manner, fighting threomen on each chariot of war [the Egyptian eliariots only carry two], armanged in their order of battle areording to a well considered plan previously lad down, the Khita present a striking contrast to their Canganite allies." Suel is the verdiet of Brugsch and of all who have seen the wonderful wall-sculptures in the great tomple of Abusimbel. No modern artist is more careful to represent distinetive racial features than this pimitive seulpor. Even at such a distance from this national centre as $\mathcal{N i n f f}$ (sce above), Protessor Sayce maintans that no one who has once seen a Hittito liguro enn mistako the resemblance. The peaked tiara aud tho thred up shoes are the peculiar marks of the llittite, and of the Hittite alone.
(2.) The ceidence from lanouagc. - Our knowledge of tho Ilittito latunge is confined to the proper names mentioned in the Egyptian and isyrian inseripeions-thoso which oceur in the llebrew libla heimen as we have seren, of insumficint authority. Opinions differ as to the chameter of the manes derived from haroflyphic sources. M. de linnore was strongly comvinced of their semitic origit, but bis tx-
planations are for the most part adreaturous, and Brugsch Bey's verliet seems philologically much more sound, " that these names do not xar a Semitic, or at any rate not a pure Semitic stamp." The names oi persons are the following, as represented by M. de Nouge:-Khetaar, Maursar. Kauisar, 'Tanceribu, Aktasib, Net'era, Tot'as, Jiabasuna:a, Tarakaunasa, Mait'arima, Kamaiut'a, Tantur, Sapalel, Samafica, Paiusa, Aknma, Tuher, Kirabsar. To these may be added the following from the list of ations of Thothmes $111 .:-$ Pirkheta, $A i_{1}$ Amau, Thuka, Thel-manna, Legaba, Tunipa, Ni, Ar, Zizal, Zakai, Arzakana (Brugsch, History of Egypt, ii. 5). No less un-Semitic for fie most pert are the names of Hittite persons and places whieh oceur An the Assyrian monument. The following is a list of the kings of Khatti-land given by Shalmaneser 11. on the monolith inscription : "Sangar of Carclemish, Kundaspi of Kummuch, Arami, son of Gusi, Lalli of Lallid, Chayad, son ol Gabar, Girparud of Patin, Girparnd of Gangum " (lines 82, 83), to which should be odded "Sispalulmi of l'atin" (lines 42, 43), which so strongly reminds one of the name of the king of Khita, Sapatili, mentioned in the treaty between Ramses II. and the Khita The un-Semitic charscter of this group of oames is the more remarkable, because (as Professor Sayce remarks) Assyrian, heing itsclf a Semitic ladguage, could not help represcoting foreign Semitic names in a form recog nizable as Semitic. How obviously Semitic, for instance, are the names of the kings of Hàmath and Damascus, handed down to us in the Assyrian inscriptions! True, one of the abore names of Hittite place, Carchemish ("lortress of Chemosh "), has a Semitic air, and the same may be said of Kadesh; the scene of the victory of Ramses 11. But (1) it is not quite certain that Carchemish is Semitic (the Assytians generally reproduce it ander the form Gargamis, though sometimes Kargamis), and (2) even if it is Semitic, this may arise from the tonns having heed occupied by Semites prior to the Hittites. As for Kadesh (in the Egyptian inscriptions, Ketesh), though under the jurisdiction of the Khita, it was reckoned as a Canaanitish or more strictly an Amoritish town (Birch, Eqypt, p. 116), while Orontes (in Egyptian, Arunata) has not even a Scraltic appearance. It is true, again, that several of tho Hittite proper names are compounded with sar-e.g., Khita-sar (the king who warred against Ramses II.), and that sar is eridently the Assyrian for "king" (also Hebrew for "prince"). But sar is also found in Egyptiad inscriptions; it is in fact of Accalian (non-Semitic) origin, and was therefore borrowed by the Assyrians, before the Hittites and the Egyptians adopted it from then. The form of names like Kheta-sar (sce list above) favours tho view that the Hittite language was agglitinative, avd consequently non-Semitic.

But this and all other aspects of llittite cultere will appear in a new light when tho explorations bave made further progress. At present we can only say that the probability is that tho Hittites are not Semitic ; in faet, they display an originality of genius which is not strikingly characteristic of pure Semitic races. The hypothesis which regards them as the early civilizers of Asia Minor seems confirmed by the position of Carchemish, ao favourable to the radiation of civilizing infuences. The importance of the llittite capital in a commercial respect is known to all. The manch or mioa of Carchemish is constantly medtioned on the cunciform tablets; probahly it was of lighter weight than the silver mina in nse in Phomicia (seo Mr Barelay V. Head's letter in Acaulcmy, Nov. 22, 1879). Of the religious life of the Hittites we are hardiy in a position to speak. We know indeed that, like the Hyksos, they worshippel Sutekh (who was localized, like Baal, as the patron of particular cities on the treaty of Ramses !1.), and, like the Canaanites, Astarata or Ashtoreth. The worship of Astarata will account for the name Hierapolis given afterwards, as it seems, to Careher:lsh, as well as to other Syrian cities (Jerahhits being a corruption of Hierapolis). But heyond this all is dark. Did the Hittites borrow In religious matters from the Assyrians? Had they legends relative to the origin of tbe world, and in what relation do these atand to tho Ulelrew narratives? Passing to philology in the narrower sense of the word, we mait longingly for a confirmation of Professor Sayce's riew that tho llittites were tho outhors of the Hamathite iieroglyphics. No Semitic nation ever invented a syllabic system of writing ; the Hittites are in all prohability non.Semitic, and from their enterprising character are precisely the people likely to have invented such characters. Professor Sayee has followed up this conjecture hy another of no less ingrortance, viz., that the cnigmatical Cypriote ayllabary is really derived from tho hicroglyithics of llamath. If this be proved (and the propounder of it clains to have tho evidence ready), and if the llittites be really the inventors of the Ilamathite hieragiyphics, this wonderful nation stens into a position hardly" surpassed by that of any of the nations of the distant East.
Anthorities-Documente in Brugesh's Mitetriy of Eyght, enmpned with the

 Sayce to Araderay. Ane, 16 and Nov. 1. 1si9. On the nite nf Carchemitht. we

hlittorff, Jaceues Ignace (1793-1867), French architect, was born at Cologne, August 20, 1793. After serving an apprenticeship to a mason in his native town, he went in 1810 to Paris, and studied for some years at the Academy of the Fine Arts, where he was a favourite pupil of the Government arehitect Belanger, who in 1814 appointed him bis prineipal inspector. Succeeding Bélanger as Government architeet in 1818, he desigued many important public and private buildings in Paris and also in the south of France. After making architectural tours in Germany, England, Italy, and Sicily, he published the resilt of his observations in the latter country in the work Architcture antique de la slicile (3 vols. 1826-30; new edition, 186667), and also in Architecture moderne de la Sicile (1826-35). One of his important diseoveries was that colour had been made use of in sncient Greek architecture, a subject which he especially discussed in Architecture polychrome chez les Grecs (1830), and in.Restitution du temple d'Enepédocle à Sélinunte (1851); and in accordanco with the doctrines enunciated in these, works he was in the hebit of making colour an important feature in most of his architectural designs. His principal building is the church of St Vincent de Paul in the basilica style. He also designed many of the embellishments of the Place de la Concorde, the Champs-Elysées-where be constructed tho Circus of the Empress, which has been the model of many similar buildings in various parts of Europe-the lois de Boulogne, and wher places. In 1833 he was elceted a member of the Academy of Fine Arts. He died at Iaris, March 25, 1867.

HITZIG, Ferdinand (1807-1875), esegete and Biblica] critic, was born at Hauingen, Daden, where kis father was an evangelical pastor, on June 23,1807 , recelved his early edncation at the pädagogium of Lörrach and at the lyceum of Carlarube, and entered the unirersity of Heidelverg as a student of theology in the autumn of 1S24. There he remained for a year, attending the leclures in exegesis and church history of Paulus the famous "rationalist"; bnt in 1825 he removed to Halle wbere Gesenins first decided him to devole himself to Old Testament subjects. His nest step was to Göttingen in 1828, where ho had Ewald for his master, and where in 1829 he graduated, the subject of his thesis heing De Cadyti Crbe Merodotia. Teturning to Feidelberg shortly afterwards, he "qualified " as "privatdocent" in theology the same year, and in 1831 published his Begriff der Kritik am Alten Testmente praktisch erörtert, a trcatise in which the critical princinles of the grammatico-historical sehool were stated with great fulness, clearness, and cogeney ; also Des. Prorheter Sonas Orakel über Moab, an exposition of the 15 th and 16 th chapters of the book of Ssaiah attributed by him, as by many subsequent crities, to the prophet Jonah mentioned in 2 Kings xir. 25 . His next literary performance was a commentary on Isuiah (Uebersetzang u. Auslequng des Propheten Jesajas), the publication of which in 1833 was soon followed by a call to an ordinary professorship of theology in the university of Zurieh. There he laboured for a period of twenty eight years, durims which, besides commen. taries on The Psalms (1835-36; 211 ed., 1863-65), Tho Minor Prophets (1838; 3d ed., 1863), Jeremiah (1841; 2d ed., 1866), Fekiel (1817), Daniel (1850), Eeclesinstes (1847), Canticles (1855), and Proverbs (1858), he published a monograph, Ueber Johannes Markus u. seine Sehrifton (1843), in which he maintained the chronological priority of the second gospel, and sought to prove that the Apromlypse was written ly the some anthor, and rarious treatises of archeologinal interest, of which the most important are Die Eryindung desilphebets (1840), Crgeschichte u. Sfytholngie der Philistuer (18.45), and Die Grabschrift des Eschmunesar (1855). In 1861 he was called to succeed

Umbreit in the clanir of theology at Heidelberg; there he wrote his Geschichte des Volkes Isrutel (1869-70), in two parts, estending respectively to the end of the Persian domination and to the falt of Masada, 72 A.D., as well as Zur Fritik Paulinischer Briefe (1870), Die Inschrift des Mescha (1870), Sprache u. Sprachen Assyriens (1871), besides revising Hirzel's commentary on Job (1874). He was also a frequent contributor to the Sonatsschrift des woissenschaftlichen I'ereins in Zürich, the Zeitschrijt der Deutschen Morgentiandischen Gesellschaft, the Theologische Studien u. Kritiken, Zeller's Theologische Jahrbücher, and Hilgenfeld's Zeitsshrift für wissenschaftliche Theoloyie. Hitzig died at Heidelberg on January 22, 1875. As a Hebrew philolugist be holds very high rank; and as a constructive critic be is remarkable for the acuteness and aagacity shown in his combinations. His theories, howerer, are often carried out with a rigour and rigour quite unwarranted by the amount of evidence upon which they rest; and his deficiency as a commentator in ideality and religions sympathy sometimes almast approaches the ludicrous. His lecturas on Biblical theology (Forlesungen über biblische Theologie u. Messianische Weissigungen) have been recently published (1880), along with a portrait and biographical sketch by Kinencker. Sea also Kampbausen's article in Herzog and Plitt's Realencyklopüdie, vol. vi.
HOACTZIN, or Hoatzin, a bird of tropical South America, thought by Buffon to be that indicated by Heroandez or Fernandez under these dames, the O_{p} isthocomus hoasin or O. cristatus of modern oroithologists-a very curious and remarkable form, which has long exercised the ingenuity of classifiers. Placed by Buffon among bis "Hoccos" (Curassows), and then by P. L. S. Mifller and Gmelin io the Linnaau genus Phasianus, some of its many peculiarities were recognized by Illiger in 1811 as sufficient to establish it as a distinct genus, Opisthocomus; but various positions were assigoed to it by subsequent sfste-

Hoactain.
matic authors, whose views, not being lased on any information respecting its internal structure, do not here reguire particular attention. L'Herminicr was the first to give any aconunt of its amatonay (Comptis Remelus, 1837, v. p. A33), ond from lis tinne our knowlelje of it has been successively incroased ly dmannes Moller (Ber. Aked. IZ̈ssensch. Berlin, 1814, 1 170). Deville (Fare et May. de Zootomie,

 1868, μ. 304), Mr lerrin (Trmus. Zonl. Society, ix. p. 35.3), and Garrod (I'roc. Zool. Sioriely, 1879, 1. 109). Atwer
a minute description of the skcleton of Opisthocomus, with the especial object of determining its aftinities, Frof. Husley declared that it "resembles the ordinary Gallina. ceous birds and Pigeons more than it does any others, and that when it diverges from them it is either suz generis or approaches the Musophagide." He accordingly regarded it as the type and sole member of a group, named by him Heteromorphe, which sprang from the great Carinate stem later than the Tinamomorphe, Turnicumorphe, or Charidriomorpha, but before the Peristeromorpha, Pteroclo. morpha, or Alectoromorpha. This conclusion is substantially the same as that at which Garrod subsequently arrived after closely examiniag and dissecting specimens preserved in spirit ; but the latter has gone further and endeavoure to trace more particularly the descent of this peculiar form and sume others, remarking that the ancestor of Opisthocomus must have left the parent stem very slortly before the true Gallinue first appeared, and at about the same time as the independent pedigree of the Cuculida and Musophagitue commenced-these two groups being, be believed, very closcly related, and Opisthocomus serving to fill the gap between them.

It would be impossible here to state at length the facts on which these views are grounded, and equally impossible to give more than a very few details of the anatony of this singular form. The first thing that strikes the spectator of its skeleton is the extraordinary structure of the sternal apparatus, whicb is wholly unlike that of any other bird known. The keel is only developed on the posterior part of the sternum-the fore part being, as it were, cut away, while the short furcula at its symphysis meets the manubrium, with which it is firmly consolidated by means of a prolonged and struight hypocleidium, and anterierly ossifics with the coracoids. This unique arrange. ment scems to bo correlated with the eoormously capacious crop, which rests upon the furcula and fore part of the sternum, and is also received in a cavity formed on the surface of each of the great pectoral muscles. Furthermore this crop is estremely muscular, so as more to resemble a gizzard, and consists of two portions divided by a partial cuustriction, after a fashion of which no other example is known among birds.

Tho Iloactzin appears to be about the size of a small Plicasant, but is really a much smaller bird. The beak is strong, curiously denticulated along the margin of the maxilla near the base, and is beset by diverging bristles. The eyes, placed in the middle of a patch of bare skin, are furnished witb bristly lashes, resembling those of Hornbills and some few other birds. The head bears a long pendent crest of loose yellowish feathers. The body is olive-coloured, varied with white above, and beneath is of a dull bay. The wings are sloort nod rounded. The tail is long, and tipred with yellow. The legs are long, the fect stout, the tarsi reticulated, and the tocs scutclifted; tho claws long and slightly curved. Accorlung to all wha have ouserved the habits of this bird, it lives in bands on the lower trees and bushes bordering the streams and lagoons, feeling on leares anl varions wild fruits, especially, says Mr lhates (Naturatist on the River Amazons, i. 1. 120), in those of a specics of Psudium, and it is also credited with eating those of an nrum (Caladium whorescens), which gruws plentifully in its haunts. "Its voice is a harsh, grating hiss," contiuncs the same traveller, and "it makey the noise when alarmed, nll the iudividuals sibilating as they fly heavily away from tree to tree, when disturbed by passing eanoes." It exhales a vory strung olour-wherefore it is known in British Guliana as the "Stink-lird" enapared ly Mr bates to "musk combinch with wot hides." and by Deville to that of a cow-house. The species is said to be polygimous; the nest is built on trees, of sticks

Iaced above one another, and solter materials atop. herein the hen lays her eygs to the number of three or our, of a dull jellowish-white, somewhat profusely marked with reddish blotches and spots, so as to resemble those of some of the Ralliula (Proc. Zoul. Society, 1867, pl. xv. fig. 7. p. 164). In the valley of tho Amazon it is called the "Cigano" or Gipsy, and in no part of the country where it oecurs does it seem to bo regarded with much farour. Only one species of the genus is known to live existed, for Mr Wallace's statement (Geofr. Distrib, Animets, i. p. 164) that remains of a second liave been found in Erazilian coves seers to have originated in a mistako (A. N.)

HOADLY, Benjamin ($1066-1761$), the origimator of the Bangorian controversy, was the second son of the Rev. Samuel Hordly, and was barn at Westerham, Kent, November 14,1676 . After receiving his early education under the direction of his father, he entered Catherine Hall, Cambridge, where he graduated M.A. and was for two years tutor, after which he held for ten years the lectureship of St Mildred in the Poultry, and along with it for the last eight years the rectory of St Peter-le-l'oer, London. His first appearace as a controversialist was against Mr Calamy in reference to conformity, and immediately ofter this he eogaged in a more important dispute with Bishop Atterbury against the Anglican doctrine of nourcsistance. ILis principal treatises on this subject were the Mcasures of Submission to the Civil Mayistrate and The Origin and Institution of Civil Government discussed ; nnd his part in the discussion was so much appreciated by the Commons that in 1709 they presented an address to the queen praying ber to "bestow some dignity in the church on IIr Hoadly for his eminent services both to church and state." The queen returned a favourable answer, bnt the dignity was not conferred. In 1710 he was presented by a private patron to the rectory of Streatham in Surrey.. In 1715 he was appointed chaplain to the king, and the same year he obtrined the bishopric of Bangor. In 1716 he published n. Preservative against the Principles and Practices of Nonjurors in Church and State, and in the following year preacbed before the king his famous sermon on the Kingdom of Christ, which was immediately published by royal command. These works were attacks on the divine authority of kings and of the clergy, but ns the sermon dealt mare specifically and distinctly with the power of the charch, its publication caused an ecclesiastical ferment which in certain aspects bins no parallel in religious listory. It was at once resolved to proceed against him in conrocation, but this was prevented by the king proroguing the assembly, a step which had consequences of vital bearing on the Listory of the ehurch, since from that period the great 'Auglican council ceased to transant business of a more than formal nature. The restrained sentiments of the council in regard to Hoadly found expression in a war of pamphlets known as the Bangorian coutroversy, which, partly from a want of clearness in the statements of Hoadly, duo periaps both to his intellectual defects and to a cautious regard to ulterior consequences, partly from the disingenuousaess of his opponents and the confusion resulting from exasperated feelings, developed into an intricate and bewildering maze of side discussions in which the main issues of the dispute were concealed almost beyond the possibility of discovery. But however vague and uncertain might be the meaning of Hoadly in regard to several of the important bearings of the questions around which he aroused discussion, he was explicit in denying the power of the church over the conseience, and its right to determino the condition of mea in relation to tho favour of Ged. To such an extent was the mind of the religious world exercised on the matters in dispete that in July 1717 as inany as seventy-four pamphlets mado their appearance;
and at one period the crisis became so serious that tho busioess of London was for sene days virtually at a :atiandstill. Hoadly was translated in 1721 to the sec of 11 ereford, in 1723 to Salisbury, and in 1734 to 1 inchester. He died at lis palace at Chelsea, April 17, 1761. Though his writings possess no charm of style, and are not only devoid of originality, but characterized by great prolixity and dulness, they in their own day did important service to the cause of civil and religious liberty, and aecidentally he was the occasion of a change in the practical authority of the church which had an intluence of prime importance on its after history. He was an intimate friend of Dr Samuel Clarke, of whom he wrote a life.
The works of Hoadly were collected and published by his son in 3 vols., 17i3. To the first volume was prefixed the article "Hoauly," from the supplement to the Diographia Britannica.
hoare, Sir Puciard Coba (1758-1838), Bart., Eaglish antiquary, eldest son of Sir Kichard Hoare, the first baronet, an eminent banker, was born 9th December 175 s . Having been accustomed in his youth to apply himself to business, the diligent habits which he then acquired induced him afterwards to relieve the tedium of his life by the study of topography and antiquities. In 1783 he manied the eldest daughter of Lord Lyitelton, and on her death in 1785 he made a tour on tho Continent, visiting France, Italy, and Switzerland. He sueceeder to the baronetcy on the death of his father in 1787, and in the following year he left England on a second Continental tour. The record of lis travels was originally published by him in four volumes, and these were afterwards condensed into two, which appeared in 1810 under the title A Classical Tour through Italy and Sicily. Travelling on the Contiaent haviag been rendered insecure on account of the war vith France, be next resolved to make a tour in Wales, taking Giraldus Cambrensis (de Barri) as his guide, and in 1808 he published a translation of Giraldus, with notes, illustrations, and a life of the author, in two splendid quarto volumes. In 1807 he visited Ireland; and he also published an aç, count of this excursion. His most important contribution to antiquarian science was, however, his history of his untive county, Wiltshire. In 1821 he completed in two volumes folio the History of Ancient Wiltshive, after which he commenced the Mistory of Modern Wiltshire, and confining his attention to South Wiltshiro was able with the help of several coadjutors almost to finish the work before his death. The first part-the history of the hundred of Mere-appeared in 1822, and the last part in. 1843. Hoare died at Stourhead, May 19, 1838. For a notice of him and a list of his works, many of which were printed privately, seo the Gentleman's Mayazine for July 1838.

HOLART TOWN, sometimes wrongly ILobartown or Ilobanton, the capital of Tasmania (named by its founder, Colonel Collins, on the 19th Febrnary 1804, in honour of Lord Ilobart, then secretary of state for the colonies), is situated in the soutl of the island in $42^{\circ} 53^{\prime} 22^{\prime \prime} \mathrm{S}$. lat. and $147^{\circ} 21^{\prime} 20^{\prime \prime}$ E. long. It occupics a succession of hills along a sheitered bight on the western bank of the Derwent river, kuown as Sullivan's Cove, abont 17 miles from the ocean, and not far from the baso of Mount Wellington, an eminence whose summit, 4166 feet above the level of the sen, is covered with snow during many months of the ycar. The city proper, forming ncarly a square, and laid out in wide strects intersecting at right angloe, has an aren of 1270 acres, and contains about 5000 houses, with a population estimated on the 1st of Jauuary 1879 at 23,000. Of the public squares the most extensive is the Quecn's Domain; and the most central the lranklin Square, with the bronza statue of the eminent Arctic explorer, who. governed Tasmania from 5th January 1837 to 21st Angust 1843. Most of the public buildings (the houses of parliament, tho
town-hall, the supreme court, and the museum) are conveniently adjacent to each other in Magdialen Street. The town-hall, erected about 1872 at a cost of $£ 12,000$, contains a large reading-room and a suite of rooms for the free public library, which bas upwards of 8000 volumes. The museum comprises a scientific library and apartments for the Royal Society of Tasmania. Besides the Anglican cathedral of St David's, founded in 1873, and the Foman Catholic cathedral of St Mary's, the churches comprise a Congregational memorial church, a Wesleyan "Centenary" chapel, nod others belonging to Baptists, Independents, and Quakers. There is also a synagoguc, but the Jewish community consists of only a fer families. The charitable institutions of the town are mantained at the expense of the state. Among the remainiog buildings may be mentioned five banks, a theatre, the freemasous' hall and the oddfellows' hall. In the neighbourhood of the city is the official residence of the governor of Tasmania, an ornate castellated mansion; the grounds of this adjoin the botanic gardens, which occupy à area of 21 aeres.
Hobart Town has been under municipal government sinee 1853, and was ineorporated as a city in 1857. Tbere are nine aldermen elected by the ratepayers, and one of them is appointed mayor. The annual value of rateable property exceeds $£ 100,000$. An abundant supply of pure water is brought from the springs of Mount Wellington, and stored in a reservoir about a mile from the city, capable of holding $50,000,000$ gallons. Amorg the industrial establishments are six breweries, a candle factory, a foundry, ten hat and eap faetories, seven steam flour-milis, a pottery, twelve saw-mills, and a tin-smelting work. The commerce of the town is steadily increasing. The securely sheltered harbour is capable of aecommodating ships of the largest tonnage, and is provided with three patent slips of considerable size; not only is the port the head. quasters of the Tasmanian Steam Naviration Company, which trades with Melbourne, Sydney, and New Zealand, but a line of colonial vessols communicates regularly with London. During the year 1573 the total burthen of shipping inwards was 79,480 tons, of the shipping outwards 82,827 tons. The declared valne of the imports at the Custom House was $£ 664,432$ ($£ 255,344$ from the United Kinglom), and that of the exports $£ 720,136$ ($£ 301,477$ to the United Kingdom), $\mathrm{E}^{-} 15,304$ worth being produce of the colony. The eustoms collected during the year 1878 amounted to $£ 118,306$, buing an increase of about $£ 4000$ on the previons year. According to the returns for 1877 the prineipal exports were tin ore (value $£_{61,765}$), $\operatorname{tin}(£ 20,886)$, bark (2086 tons, $£ 13,410$), fruit (138,585 bushels, $£ 44,001$), jam ($3,742,341 \mathrm{tt}, £ 100,069$), hops ($696,048 \mathrm{tt}$, $£ 36,457$), sperm-oil (450 tons, $£ 33,410$), ralbit skins (58,781 dozen, f5072), timber, shingles, railings, \&c. ($\{351,551$), and wool (£299,514). The principal imports are sugar, tea, oil, tobaceo, live stock, machinery, spirits and wine, boots and shoes, wearing apparel, ironmongery and cutlery, glass and china-ware, books and stationery, saddlery, manure, drugs, \&e. Tho first newspaper was pultished in Hobart Town in 1810. There are now (1850) two dailies, one wrekly, and four monthlies. During the summer season the city is a favourite resort of Australian tourists attracted by the comparativo coolness of the climate. The mean temperature for 35 years was 5541° Fabr.: ciud in the same period the barometer at a temperature of 32° has registered an average of 29.82 inches.
horbema, Meyndert (c. 1638-1709), the greatest landscape painter of the. Dutch school after Ruysdael, lived at Amsterdam in the socond hall of the 17 th century. His merit has been but recently recognized, whence the obscurity in which his life remains. Nothing is more disappointing than to find that in Hobbema's, case chronology and signed pictures substantially contradist each other. According to the lutter his practice lasted from 1650 to 1689 ; secording to the former his birth occurred in 1638, his deathinas late as 1709. Tbat no attempt has yet been mado to reconcile these contradictions is strdnge. It is perfectly clear that if the masterpiece of the late Bredel collection, called A Wooded Stream, honcstly bears the date of 1650 , or The Contages under Trees of the Ford collection the date of 1652, the painter of these canvases cannot he lfobbema, whose birth took flace in 1638 , unless indecd we admit that Hobbema pinted some of his fincst works at the age of twelve or fourtcen. No doubt, as regarla dignir
tures, there is much in IIobbema's creations to excite suspicion. For a considerable period it was profitable to pass.Hobbemas as liuysdaels, and the name of the lesser master was prebably erased from several of his productions. When Hobbema's talent was recognized, the contrary process was followed, and in this way the name, and perbaps fictitious dates, reappeared by fraud. It is difficult to account for thie discrepancies of pictures and chronology by any other cause. Tet this leaves unexplained why dates as well as uames should have been forged. An experienced eye will note the differences which occur in Hobbema's signatures in such well known examples as adorn the galleries of Londen and Ratterdam, or the Grosvenor and Van der Hoop callections. The dates can only be tested by chemical means. Neanwhile, we must be content to know that, if the question of dates could be brought into accordance with records and chronology, the facts of Hobbema's life would be as follows. Meyndert Hobbema was married at the age of thirty to Eeltije Viuck of Gorcum, in the Oudekerk or old church at Amsterdam, on the 2d of November 1668. Witnesses to the marriage were the bride's brother Cornelius Vinck and Jacob Ruys ?:el. We might suppose from this that Hobbema and liuysdnel, the two great masters of landscape, were united at this time by ties of friendsbip, and accept the belief that the former was the pupil of the latter. Yet even this is denied to us, since records tell us that there were two Jacob Ruysdaels, consins and contemporaries, at Amsterdam in the middle of the 17 th century-one a framemaker, the son of Solownn, the other a painter, the son of Isaac Ruysdael. Of Hobbema's marriage there came betreen 1668 and 1673 four children. In 1704 Eeltije died, and was buried in the pauper section of the Leyden cemetery at Amsterdam. Hobbema himself survived till December 1709, receiving burial on the 14 th of that month in the pauper section of the Westerkerk cemetery at Amsterdam. Husband and. wife had lived during their lifetime in the Rozengracht, at no great distance from liembraudt, who also dwelt there in his later and imporerished days. Rembrandt, Hals, Jacob Ruysdael, and Hobbema were in one respect alike. They all died in misery, insufficiently rewarded perhaps for their toil, imprudent perhaps in the use of the means derived from their labours. Posterity has recognized that Holbbema and Ruysdael together represent the final development of landscape art in Holland. Their style is so related that we cannot suppose the first to have been unconnected with tho sceond. Still their works differ in certain ways, and their character is generally so marked that we sball find little difficulty in distinguishing them, nor indeed shall we hesitate in separating those of Hobbema from the feebler productions of his imitators and predocessors-Isace Ruysdael, Rontbouts, De Vries, Dekker, Looten, Verboom; Du Bois, Van Kessel, Van der Hagen, even Pbilip de Kioningk. In the exercise of his craft Hobbema was patient beyond all conception. It is doubtful whether any one ever so complctely mastered as he did the still life of woods and liedges, or mills and pools. Nor can we believo that he obtained this mastery otherwise than by constantly dwelling in the same neighbourhood, say in Guelders or on the Dutch. Westphalian border, where day after day he might study the branching and foliage of trees and underwood cmbowering cottages and mills, under every variety of light, in every shade of transparency, in all changes produced by the seasons. Though his landscapes are severely and moderately toned, generally in an olive key, and often attuned to a puritanical grey or russet, they aurprise us, not only by the varicty of their leafage, but by the finish of their detail as well as tha boldness of their touch. With astonishing subtlety light is shown penetrating cloud, and
alluminating, -un.otimes bunsiently, somelimes stauilly, different purtions oi the ground, shining through leaves upon other leavee, and multiplying in an endless way the tmasparency of the picture. If the chance be given him he nitrors all these things in the still pool near a cottage, the reaches of a slugerish river, or the swind of the stre:m that feeds a busy mull. The same spot will furnish him with scveral pictures. Onc mill gives him repeated opportunities of charming our eye; and this womerful artist, who is only second to linysdat because he hat not Ruysdael's versatility and did not extend his stady equally to downs and rocky cminences, or torrents and estuaries this is the man who lived penuriously, died pour, and left no trace in the artistic amals of his country! It has been said that Ifobbema did not paint bis own figures, but transferred that duty to Adrian van de Velde, Litigelbach, Barendt Gael, and Abraham Sturch. As to this much is conjecture.

The best of Iobbema's dated pictures are those of the years 1603 to 1667. Of the formet, several in the gallentes of Brussels aod st Petersburg, ant one th the Holfond collection, are celebrated. Another was shown as the ploperty of Lord llatherton at Manclester: Of 1605 fine specimens are of the Goosvenor gallery and the collection of Sir R. Wallace. Of seven pieces in the Natwomal (indery, inchutmg the Avenue at Middelharnis, which smme assiont Lu. 1689 , two are dated 1667. A sample of the lant of these years is also in the Fitzwillianm musema at cambrilge. The value of Hob, bena's pictures may be gathered fiom this that the Wraturmill bought from the Schneider colfection in 1576 for the Autwell musenm cost 100,000 tranes (\mathbf{e}^{4000}), whist a snenher landscape in the Hodhen sale at Ansterdam was knueked-down to Sir Ki. Wallate for 49,500 florms, or $£ \$ 300$. 'the Brussels enllery alsu Lought a Hoblenta in 1874 for 60,000 francs, Amongs! the masterpieces in private hands in Findand may be noticed two landstapes in lackugham palace, olle belonging to Lord Overstone, two to the Firl of Ellesmere, and one to Ah. Walter of Berrwoal. On the Conthent we register a Wool in the Bellin gallery, a Fornst latureity :in the duchess of Sagan in lyaris, and a Glade in the f.onve. Thene are other fine lioblemas in the Arenberg gallery at Beusels and the Belvedere at Vicnna.

HOBBES, Thomas ($1585-1679$), was born at Westport, adjoining (now forming part of Malmesbury, in North Wilts, on Goud Friday, the 5th of April 1555,-brought frematurely into the world thrungh his mother's fright at the ramours of the coning Spanish Aruiada. His tather w.ss vicar of Charlton and Westport, an illiterate and cholerec man, who is said to bave got into trouble later on by quarrelling with a rival at the church door, and been forced to decamp, leaving his three childrea (of whom Thomas was second) to the charitable care of an elder brother, a flourishing glover in Malmesbury. Hoobes was put to school at West jort church at the age of four, passed wis the Jalmesbury schowl at eight, and was taught again in Westport later, at a private schuol kept by a young man named Robert Latimer, fresh frou Oxford and "a good Grecian." He had begun Latin and Greek early, and under Latimer made such progress as to be able to trauslate the Medea of Euripides into Latin iambic verse before he was fourteen. About the age of difteen lie was sent to Oxford by his uncle and entered at Magdalen Mall, which lad just been put on an independent footing, after being first a grammar schoul in connexion with the great found ation of Magdalen College and then governed as a hall by une of the college fellows. White lyobbes was there as a student the first principal of Magdalen Hall, Dr John Hussee, gave way to a second, Dr Johu Wilkinson, who is noted as baving ruled strongly in the iuterest of the Calvinistic party in the university ; and this fact, with other circumstances in the Oxford life of the time, makes it not improbable that the destined foe of the Puritan lievolu. tion was thus early led to mark the aggressive Puritan spirit. For the rest, Oxford did no more to train Ifubbes's mind for his future philosophical work than the decayed scholastir regimen of the unversities in that age was able
to do for any other of the active spirits that then began in different countries to open the modern era of thought and inquiry. We have from himself a lively recurd of bas experience and pursuits as a student (l'it. curm. exp., p. Ixxiv.), ${ }^{1}$ which, though penned in extreme uld age, may be taken as suticiently trustworlhy, In this ho tells bow he was set to learn "Larhara, Culareut," but, when be had slowly taken in the doctrine of figures and moods, he put it aside and would prove things only ia hisown way; huw he then heard about budies as cousisting of matter and form, us thyowing off species of themselves for perception, and as moved hy sympathes and antipathies, with moch else of a like sort, all beyund his compreliension; and how he therefore tumed to things more congenial, took up his old books again, fed his mind on maps and charts of earth and sky, traced the sun in his path, fullowed Drake and Cavendish girdling the main, and gazed with delight upon pictured haunts of men and wouders of unknown lauds. Very characteristic in this account is the interest in mea and thiugs, and the disposition to cot through questions in the schools after a trenchaut fashion of his own. We may also beliere that he was little attracted by the scholastic learning, and only should err if we took his words as evidence of a precociơus insight iuto its weakness. The trath probably is, that, finding himself left at Oxford very much to his own devices, he took no particular interest iu studies which there was no risk in neglecting, and thought as little of rejecting as of acceptiag the traditional doctrimes. He adds that he took bis degree at the proper time; but in fuct, upou any computation and from whatever cause, he remained at Magdalen Hall five, instead of the required four, years, not being admitted as bachelor till February 5, 1608.

In the saus year, shortly after leaying tho university, Hobbes was recommended by Wilkinsoa as tutor to the son of William Cavendish, baron of Hardwick, and thus began a connexion with a great and powerful family that ended only with his life. Twice it was loosenedouce, for a short time, after twenty years, and again, for a longer period, during the Civil War--but it never wasbroben, aud during nore than fifty years, to the credit alike of him and his patrons, it was of the closest character. Whiliam Cavendish, second sun of the famous "Bess of Hardwick" by the second of her four marriages, had just by the favour of King James obtained his barony, hefore heing adranced, a few years later, to the earldom of Devoushire. His son, the heir to a name thus rising as well as to a great fortune, was hardly youuger than Hubbes, and was indeed already married, a few months before, at the instance of the king, who made up the match, to the only daughter of the Scuttish Lord Bruce of Kinloss, though by reason of the bride's age, which was only twelve years. the pair had uo establish. ment for some time to cume. In the circumstances Ilobbes was companion rather than tutor (before tecommg secretary) to young Cavendish; and, growing soou greatly attached to each other, they were sent abroad together on the grand tour in 1610 . Ilow long they ware gene upon this journey, which lay through France, Gomany, and Italy, is nut known : bot it was long chongh to give

[^5]IIobbes the opportunity or nequiring a moderate knowledge of French and Italian ; and he did not return without having received a distinet mental impulse that hard a lasting effect on his life. The real intellectual activity of that timo (still more than five and twenty years before the definite iuauguration of modern rhilosu hy by Descartes's Discourse on Method in 1637) was in the newly enlarged if not newly opened domain of physical science; and Hobbes was little prepared by his juvenile training to understand the achievements of Galico and Kepler, if be heard anything of them. But he had had a little modicum of scholastic philosophy retailed to him at Oxford ; and now, wherever he went, he could hear nothing but words of scorn poured upon all such learning. How it had come to pass that the scholastic way of thinking, onee so dominant, was thus discredited at the hands alike of revolutionary thinkers such as Brume, of scientifie workers like Galileo, and of mien of the world like Montaigne, he could not know. Accorlingly, it secms that at first he was more dismayed to find that the only knowledge to which he could pretend was laughed at by people whom he did not understand, than fleased to be furnisbed with such an excuse for his own youthicul indifficence to its value. It was not long, however, before he yielded th the stream. Ne was not yet able to strike out a new line of thought, and so (like Descartes) rise above the misconceptions ningled with the general aversion from scholasticism, amounting to a negtect of all philosophy. Iie had but sufficient force of mind to wish to be scen, like others, at work upan something else. The line he should take could hardly be doubtful; he had nothing to fall back upon exocpt his Latiu and Greck. He was no longer so fanilinr with them, but it was still opon to bim to become a scholar; nor in the age of Scaliger and Casaubon was there any lack of ambition in making elassical stady the necupation of a life. The resolution was made when lie returned home, if not earficr, and nunie in a determined sfirit ; but when after many' years' labour he had made himself a scholar, his true work was still to lie all before him.

Hobbes's period of scholarly acquirement lasted till 1628 , and hal as its inemediate outcone a translation of Thucydides. In Derbyshire or in London, with his young master, he hall atumdant leisure and ensy aceess to books, and he went earefully through the classical pocts and his. torians, readiag critically with the help of commentaters, andat the same tinn bent on acquiring (as if for future nise) a good Latin style, clear and easy to read, beenuso litting worls to thoughts. Among all the ancient writers Thucydiles attracted him mont, and he seems to lave set himsalf early to the work of trambation, wishing others to share in the 1 deasure and iustruction he derived from his favourite's pates. Bat whon he han fimished his work he kept it lying ly him for ycars, heing no longer so sure of finding apprediative reaters; and when le difesm it forth at last, in 1628, he was finn to be cuntent with "the few and hetter sort." "that he was finally iderminell to pub-

[^6]lication by the political troubles of the year 1628 may be regarded as certain, not only from his own express declatation at a later time (l^{\prime} it. cecme. exp).), but also from unmis. takable hints in the account of the life and work of his author prefixed to the translation on its appearance. 1628 was the year of the Petition of Right, extorted by the popular leaders from a reluctant king in the third parliament he had tried within three years of his accession; and, in view of Hobbes's later activity, it is very significant that just then he should come forward, at the mature age of forty, with his version of the impressive story of the Athenian denocracy as the first production of his pen. Nothing else is known of his doings before 1623 , except that through his connexion with young Cavendish, who from abuut the year 1619 became an important social and politieal figure, be had relations with literary men of note like Ben Jonson, and also with the two philosophical tirinkers who before himself rendered the English name illustrious in the 17 th centary-Eacon and Lord Herbert of Cherbury. If be never had any sympathy with Herbert's intuitionalist principles in philoseplihy, he was no less eager, as he afterwards showed, than Herbert to rationalize in matters of religions doctrine, so that he may with the same seasen be called the second of the Eaglish deists as Herbert has been called the first. With Bacon there is evidence of his having been so intimate (Aubrey's Lives, lp. 222, 602) that it is not surprising that sume writers have been betrayed into deseribing lim as the disciple and follower of the great Instzurator. The facts as recorded, however,--that he used sometimes to walk with Bacon at Gorhambury, and would jot down with exceptional intelligouce the eager thinker's sudden "notions," also that he was employed to make the Latin version of some of the Essuys,-prove nothing of the sort, when weighed against his own disregard of all Bacou's most eharacteristic principles, and the other evidence that the impulse to independent philosophical thinking came to him nut from Pacon, and not till snme time after Bacon's death in $1626 .{ }^{2}$
Sn far as we have any positive evidence, it was not before the year 1629 that Hobbes first cutered on the path of fillosophical impuiry; and meanwhile a great elange had been wrought in has outer hfe. His friend and master, after only about two years' tenure if the earldom, fell a sudden victim to the flague in Junc 1028; and the aflairs of the Devmshite family linving become greatly disordened by: lamh expenditure, the widowed comitess was left with the task of reliturg thern in the buylnod of the himal carl. Hebles weat in for a time living in the housidniln; hut his services were no longer in denam as hefore and. remaning inennsolable under his fersumal bereacmint, he sulught instraction, in 1629, in another eneagement whel thuk lun ahrmad as tutor to the son of Sir Gervase Clifton, of an wh Nitts family. This, his secome, summonamad aphars tu lawo been spent chielly in [arts, amb the one impertant fact recorded of it is that he thenfirst began to low into Suclid. Sojum and engarement came to an end together in 1631, "When he was recalled to train the young earl of Devonshire, now lhirten years oht, as he never had lad an opportunity of training the boy's father. In the course of the next

[^7]

Hohbes, in minor worlis alealing with physical questions (L. U", iv. 1 . $\$ 16 ; \mathrm{K} . \mathrm{V}^{\prime}$., vii. p J12), makis two incitemtal references to Dacon's writings, but never mentions Bacon as ho mentions Galifen, Kiphler, harvey, nut othey (De (orpore, ept. del.), among the lights of the century. The word "Imluction," whin oceurs in onis three ur four passages thromehont all his works (and theso again minor ones), is never used ty him with the faintest remanscence of the itnum
 anma lor caperimental work in physice.
seven years Hobbes toat his young pupil over rhetoric, ${ }^{1}$ logic, astronomy, and the principles of law, with other subjects. Most probably their. life for the tirst three years was in Derbyshire, till they went abroad in the middle of 1634. They remained away till the spring of 1637, and Hobbes went over much tho same ground as in his first journey, but now in a very differeut frame of mind. His head was now full of the thought of motion in nature, and whenover he could meet with the philosophical speculators or scientife workers who were thell with a new-born ardour seeking for a clue to the secret of the physical world, none so forward to consort with tiem as he. He was still in time to pay his respects to the aged Galileo, for whom ho sonceived and ever retained the warmest admiration ; and on the way homewards he spent no less than eight months in daily converse with the members of a busy scientific circle in Paris, held tugether by the genial influence of tho Pere Mersenve. Frum that time (the winter of 1636-7) Le ton, as he tells us, was numbered among philosophers.

It is not impossible to tracen little more exactly the steps by which Hobbes reached this consummation when he was just touchwighis fiftieth vear. There can bo no doubt, it seems, that his introduction to Euclid took place in 1629, nnd according to Anbrey, Tho tells tho story with a rinaint dramatic vigour (Lives, p. 604); he introduction was guite accilental. Euclid's mnnner of proo: was as a revelation to him, and it breame the model tor bis own way of thinking npon all subjocts ever after ; nor was he content till he tho could be seen at work solving questions of geometry with as much confidence as if he hal been, tike llescartes, an accomplished mathematician from his boyhooil. It is less casy to determine when he awoke to an interest in the physical dostizine of motion. Tho story told hy himself (fit., p. x.) is thist, heing struck one day in a company of learned men by the question, What Is sense? which some onc asked and nobody coull answer, lic fell to thinking often on the subject, till it suddenly occurred to him that if bodies and their internal parts were at test, or were always in the same state of motion, there conld be no distinction of niything, and consequently no sense: the cause of all things must, therefore, he presumed, be sought in diversity of movements, and starting from this principle he was driven to geometry for insight into the ground and modes of motion. Unfortumately no date or place is given ; but if it may be supposed that he must already lave known bomething of geometry to understand its bearing on the stucly of motion, the scene or at least the conclusion to whach it led should be referred to some tive after his casital introduction to Euclid it is even suggested in one or two of the biographical narmatives that the new mental advance was not made till the tume of the third journcy. Nothing is said, however, which shonld exclude another eccount, that on the third journey he begnin to stuly the doctrme of motion moro seriously, being interested in it hefore ; and as he claims more thau once (L. W., v. p. 303 ; E. W. . vii p. 468) to have explained light ond sound by a mechancal hypothesis es far back as 1630, the company-scenc (which is more thely 10 have occuracd abroad than in England) ant the sulden unspiration muy perhaps more safcly be assigaed to the time of the second journey. But it was not till tho third jonrnoy that the new interest became an overpoweriug passion, and the "philosopher" was on his way home before he had advaned so far os to conceive the scheme of a system of thought to the elaboration of which his life should licace. lorth be devoted.
Hobbes was able to carry out his plan in sone twenty years or more from the time of its concepison, but the execution was so beoken in upon by the diro political events that happened from the poar 1637, and becane so complicatel with other libours, that its stages can hardly be followel without some previons anderstanding of the relations of the prets of the shhene, the there is reason to Lelievo they were sketched out from tho beginning. Aul here is the moro need for some preliminary statement beranse ut cast one of the parts-the dotrine of Man-is fur more ellectively arought ont in other woiks than in the treatise De Ilominc, whirh profeses to contain the furmal expostion of it. Holdess's notion was that the whole bolly of phitasophical truth shoubi be the posed In three sections, dealing progressively with Ihedy, Mnn, athl State or Society. Aa anxions political observer beforo he bectuce a philosopher, he was sturemely inferustel in the probolem of colv.

[^8]Huet; but the philosopher could not be satisferl till the foundationt of scttled social life were based deep in the constiblition of luman nature; and his acw philosophical insylyt acrealerl to him the need and tho possibility of iuterjuthot the facts of luman mature by what had begun to be known of finysicat mature generally. He would therefore first work ont, in a separate weatise De Corjore, s systematic doctime of Body; showng how jhysical phenoment were unversally explicable in ternte of mothon, as motion of mechancal actom was now (through Galiten and othens) understoon! - He theny of motion beiner applied in the light of mathematical science, after quantity, the subject-mater of mathematies, han been duly considered in its jlace among the fundamental eonceptons of phlosophy, and a clear indication had been geven, at tirst starting, of the logical ground and method of all philosopheal iomury It would then single out Sin from the realm of nature and, in t treatise Dc Homze, show what specific bodily motons were m. volved in the production of the pecular phenomena of sensition and knowledge, as also of the aftections and passions thence resultage whereby man came into relation wath man. Finaliy he wulld eosi sider, in a crowning treatise DC Cuec, low nen, liong naturalld rivals of focs, were moved to enter whe the butter iclation of Society, and demonstrate how this grand and benefernt product of human wat must be regulated if men were not to fall back ante brulishness and misery. Such, in brielest summary, was the schems conceived, at a tume of new intellectual expunsion, with reference to a threatening noventent of social upheaval. We are now to set how it furcd in the execution.
Hobbes came home, in 1637, to a country scelhing with discontent. The reign of "Thurough" was collapsing, and the forees pent up stice 1629 were soon to rend the fabric of the English state to picces. In February Hampden'y case began to be treed; in July bruke out the Elinburgh riot over Laud's prajer-book; next year was formed the Solemn League and Covenant ; the year nfter the rebel Scots bad the king it their mercy in the open ficld; and finally, in the spring of 1640 , with a new prospect of war, Charles bad no resvurec left but once more, after cleven years of personal rule, to call a parlianent. Such a rush of events was but tou likely to overpower IIobbes's resolution to work up to social problems from abstract questions of body and space and motion, and there is clear eridence that he was soon distracted from the orderly execution of his philusophic plan. The Shart Parliament, as he tells uz himself at a later time (E. W., iv. p. 41.1), was not dis. solred, iu three weeks from the time of its neecting, before Le had ready "a littlo treatise in English," in which he sought to prove that the pomts of the royal prerogative which the tembers were determined to dispute before granting supplies, "were inseparably annexed to the sore. reiguty whach they did not then deny to be in the king." Now it can be proved that at this time he had written not ouly his Kraman Nutture but also his De Corpore Poli? tico, the two treatises, though published separately ten years later, laving been composed as parts of one wark; ${ }^{2}$ and there cannot be the least question that together they nake "the little treatise" just mentioned. We are therefore to understand, first, that he wrote the carliest draft of his political theury some ycars before the outbreak of the Civil War, and, secimally, that this carliest draft was not written till, in accordance witk his philosophical conception, be had established the greumals of polity in human nature. The first point is to be noted, becanse it has often been
 complexion from lis recultum against the state of amarchy befure his eyes, as he write during tho progress of the Civil War. The second point must be maintrined against his own implec!, if nut express, statenient some years later, when publishing his De Cive (L. W., ii. p. 151), that he wrote this third part of his system before he had

[^9]been aule to set duwn any finisbed representation of the funlanental doetribes which it presupposed. If his philosophical plans were disordered and the doctrine of Buly was still in the air, be bad, in the beginning of 1040 , writen out his doctrine of Dan at least, with almost as matuchelaburation as it erer receivel from him.

When, in six montins more, the Long Parliament suceeeded to the Short, and set to vork at onee by sending Laud and Straffurl to the Tower, Hobbes, who had become, or thumght he hal become, a marked man by the circulation of his treatise (of which, "though not printed, many gentleneen had emfies"), instantly took fright and hasted away to Paris. He was now for the fourth and last time abroad, and dill not see England again for eleven years. Apparently lie remanel the greater part of the time in or abnut Paris, though be can be traced to Rouen in 1646. In Paris he was welcomed back in to the old seientifie enterie ahout Mersenne, and Corthwith lad the task assigned him of eriticizing the Meditations of-Deseartes, whieh bad been sent from Holland, before publieation, to Mersenne with the author's request for eriticisin from the most different points of view. Hobbes was soon ready with the remarks that were printerd as "Third" among the six (later seven) scts of "Ohijections" appended, with "Replies" frim Deseartes, to the Maclitations, when published shortly afterwarls in 16:11 (reprinted in L. W., v. pp. 249-74). Abont the same time also Merseme sent to Deseartes, as if they came from a friend is. England, another set of objeetions which IIobbes had to offer on various points in the scientific treatises, especially the Dioptrics, appended by Descartes to his Discourse on Method in 1 gi37; to which Lescartes replied without suspecting the common authorship of the two sets. The result in both eases was to keep the two thimkers apart rather than bring them together. Hobles was more eager to bring forward bis own philosophicat and physical ideas, over which be had now been brouding for ten years, than eareful to enter into the full meaning of another's thought; and Deseartes was by nature too jealous, and had become too confident in his hard-won conelusions, to be able to bear with this kind of critieism. He was very eutt in his replies to Holbes's philosophicial objections, and after a little impatiently bruke off all correspondence on the physical questions, writing privately ta Mersenne (who had continued to act as interneviiny) that he hal grave donbts of the Englishman's good faith in drawing him into controversy (L. IV., v. Ip. 275-307).

Meanwhile 1tolbes, however eager he might be to keep limuself abreast of the reneral philnsophical movenent of the time, hat his thonghts too full of tho political theory which the rush of events in the last years had ripened within him, to be able to settle, even in Paris, to the orlerly compusition of his systematic works. Though connected in his own mind with his view of buman nature ant of nature generally, the political theory, as be always dechared, could stand hy itself. Also, whilo he may lave hopod at this time to be able to add much (though he never did add much) to the first pupular sketch of his doctrine of Man contained in the unpublished "Bittle treatise," ho misht extend, but could hardly otherwise modify, the sketeh lie han there given of his carefully articulated theury of Turly Politic. lussibly, indeed, before that sketch was writen early in 1610, he may, under pressure of the politieal excitenent, have allyanced no small way in the actual compasition of the treatise $\mathrm{De}_{\mathrm{C}} \mathrm{Ci}$ er, the third section of his projected systen, In any case, it was upen this section, before the others, that he set to work as soon as he was fixed in Pariz; and lecfore the cod of 1641 the bouk, ns we know from the date of the dedieation (Nowember 1), was finished. lle isterminsd, however. Hongh it was
forthwith frinted in the conrse of the year ICA2, not to cumment himself to formal publication, but was cuntent to circulate a limited number of copies privately; ${ }^{1}$ and when he found his work reeeived nith great applause by his friends (it was praised even by Descartes), he seems to have taken this recognition of his phatosulhical achievement as but a reasun the more for deferring pulbication till tho carligr works of the systen were coupleted. Aceorlingly, for the next three or four yens, he remnined steadily at work, and nothing appeared from him in public except a short treatise on optics (I'ructatus Opticus, L. IV., v. pp. $217-248$) ineluded in the eollection of scientifie tracts published by Merscme under the title Cuyituta I'hysicoMathemutica in 164, and a lighly conpressed statement of his psychological application of the doctrine of motion (L. W., v. Pp. 309-318), ineorporated with Mersenne's Ballistica, puldished in the same year. Thus or otherwiso he had beeome suffieiently known by 1645 to be closen, with Descartes, Roberval, and others, a referee in a once famous controversy between l'ell, an English mathematician in Amsterdani, and the Dane Longomoutanus, over that problem of the quadrature of the circle which was seen later on to bave such a fatal charm for himiself. But thoughabout this time he had got ready all or most of the materials for his fundamental work on Dody, not even now was he able to make way with its campostion. New distractions eame to tear him away from the urderly execution of the fundamental part of lis scleme, and when he returned to it after a number of years, be returned a different man.
The Civil War had broken out in the midlle of 1642, and, after a period of varying fortunes on either side, the royalist cause began to deeline from the time of the defeat of the marquis of Neweastle at Marston Moor, in the middle of 1644 . Then commenced an exodus of the hing's friends. Neweastle himself, a cousin of Hobbes's dead master and the patron to whom he dedicated the "litile treatise" of 1640, found his way to Paris, and was followed, espeeially after the decisive defeat at Naseby in June 1645, by ar ever increasing stream of fugitives, many of whom wero known to Hobles from former days. The sight of these exiles, from whom be learded all the details of the fierce work that bad been going on in England white he was quictly busy with his studies in Paris, made the political interest onee more predominant in IIolbes, and before long the revived feeling issued in the furmation of a new and inportant design. It first showed itself in the publication of the D_{e} Cive, of which the fame, but only the fame, had extended beyond the imer circle of friends and critics who had copies of the original impression. Hobbes nuw entrusted it, early in 1646. to his admirer, the Frenelman Sarbiere, ly whom it was seen through the Elizevir press at Amsterdam in 16.4,-- Laving previonsly inserted a number of notes in reply to objections, and also a striking preface, in the eourse of which he explained its relatiun to the other parts of the system not yet fortheoming, and the (political) oce:asion of its having been comprsed and being now pullished before them. ${ }^{-2}$ So hopeless, manwhile, was he growing of Leing able to return bume that, later on in the year. he was on the point of leaving l'uris to take

1'The bunk. of which ite coplics nre rate (one in D)r Williams's lihnary in lonaton), wa: phithet in quato size (Paris, 1612), with a pirtonat thle.pase (not atterwards reprodnced) of scenes and figures
 The tulle Elcmentortm IMilosoghiar Siclin Terlat, De Ciese, expresses its iclation to the umwitten sections, which also comes out in ono or two harkereferemes in the tost.
 was changerl to Elementer Philosnghice ahe Cier, the rowences in tho teat to the previone seetions being omitted. The lite of the dediration to the young easi of tesonshire was attereal fiom 1641 to 1616.
ap his abode in the south with a French friend,' when be was induced to remain as mathematical instructor to the youns prince of Wales, who had come over from Jersey about the month of July. Thus thrown nore then ever into the conpany of the exiled royalists, it was then, if not earlier, that ho cunceived his new design of bringirg all his powers of thought and expression to bear upon the production of an English book that should set furth bis wholo theory of eivil government in relation to the stupendous political erisis resulting frum the war. The De Cive, presently to be published, was written in Latin for the learned, and gave the political theory withont its fondation in human mature. The unpublished treatise of 1610 contained all or nearly all that he had to tell concerning human nature, but was written betwe the terrible events of the last years had disclosed how men might still be urged by their anti-social passions back into the abyss of anarchy. There was need of an exposition at once comprehensive, incisive, and popular. The State, it now seemed to Hobbes, migat be regirded as a great artificial man or mouster (Leriuthen), composed of men, with a life that might be tateed from its generation throngh human reason under pressure of human needs to its dissolution thronch civil strife proceeding from human passions. This, we may suppose, was the presiding conception from the first, but the design may have been variously modified in the three or four years of its esecution. Defore the end, in 1650-1, it is plain that he wrote in direct reference to the greatly changed aspect of affiirs in England. The king beine no more, and the royalist cuuse appearing to be hopelessly lost, he did not scruple, in closing the work with a general "Review and Conclusion," to raise the question of the subject's right to change allegiance when a former sovereign's power to protect was irrecoverally gone. Also he tonk advantage of the las rule of the Commonwealth to indulge much more frecly than he might have otherwise dared in rationalistic criticisin of religious doctrines; while, amid the turmoil of sects, he conld the more forcibly urge that the preservation of social order, when again firmly restored, must depend on the assumption by the civil power of the right to wield all sanctions, supernatural as well as natural, against the pretensions of any clergy, Catholic, Anglican, or Presbyterian, to the exercise of an imperium in imperio. Wic know the Leviath.. i only as it finally emerged from Ifobbes's pen. During the years of its composition he remained in or near Paris, at first in attendance on his royal fupil, with whom lie became a great favourite. The engagement must in any case have come to an end in the year 1648, when the prince removed to Holland, but it was pro. bally broken off earlier by an illness that overtonak Holbes in 1647 and disabled him for six mnnths. On recorering from this illness, which nearly prosed fatal, lie resumed his literary task, and carried it stcalily forward to coupletion by the year 1 fi50, baving also within the same timo trans. Jated into English, with characteristic forec of expression, his Latin treatise. Otherwise the only thing known (from one or two letters) of his life in those years is that from the year 1645 be had began to think of returning home; he was then sixty, and might well be weary of exile. When 1650 eame, as if to prepare the way for the reception of his magnum opus, he allowed the publication of his earliest treatise, diviled into two separato small volumes (Ifuman Wature, or the Fundamental Dilements of Policy, E. W., iv. Ir. 1-íG, and De Corpore Politico, or the Elements of Laze,

[^10]Moral and Politic, pp. 7T-298). ${ }^{3}$ In 1651^{3} be published his translation of the De Cive under the title of 1 'hitosophical Rucdinents, concerning Governnent and Society (E. IT., ii.). Meanwhlo the printing of the greater work was proceeding, aud firally it appeared about the middle of the same year, 165l, nuder the title of Leviathan, or the Mauter, Form, and Pover of a Commonveetlh, L'cclesiastical and Civil (E. W., iii.), with a guaint frontispicee in which, from behind hills overtooking a fair landseape of town and country, there towered the budy (above the waist) of a crowned giant, made up of tiny figures of human beings and bearing sword and crozier in the two hands. It appeared, aul sona its author was more lauded and decried than amy other thinker of his time; but the first effect of its publication was to sever his cumexion with the exiled royalist party, and to throw him for protection on the revolutionary Govermment. No sooner did copies of the linok reach Paris that he found himself shumed by his former associates, and though ho was himself so little conscious of disloyalty that be was forward to prescut a manuscript copy" engrossed in vellum in a marvellous fair hand" to the young king of the Scuts (who, atter the defeat at Worcester, escaped to Paris about the end of October), lie was denicd the royal presence when be snught it shortly afterwards. Straightway, then, he saw himself exposed to a double peril. The exiles bad among then desperadocs who could slay; and, besides exciting the enmity of the Anglican clergy about the king, who bitterly resented the secularist spirit of his book, he had enmpromised himself with the French authorities by his elaborate attack on the papal system. In the circumstances, no resource was left him but secret flight. Travelling with what speed he could in the depths of a severe winter and under the effects of a recent (second) illness, he managed to reach London, where, sendiug in his submission to the council of state, lee was allowed without trouble to subside into private life.
Though IIobbes came back, after his eleven years' absence, without having as yet publicly proved his title to rank with the natural philusujhiers of the age, he was suficiently conscions of what he had been able to achicre in Leviathan; and it was in no lamble mond that he now, at the age of sixty-four, turned to complete the fundamental treatise of his philosophical system. Neither were thoso whom his masterpicco soon roused to enthusiasm, or those whom it moved to indignation, likely to be indifferent to anyilhing he should now write, whether it lay near to or far from the region of practice. Taking up his abode in London on his return, and continuing to reside there for the sake of intellectual socicty, even after renewing his old ties with the earl of Devoushire, who lived in the country till the liestoration, ${ }^{5}$ he worked so steadily upor the
2 The Human Nature componds with ce. i-xiai of the dirs prat of the original treatise. The remainimg six clapters of tho part stand now as Past 1. of the De Corpore l'oliticu. Part 1l. of the 7). C. 1^{2} correspands with the original second past of the whole work.
${ }^{3}$ At the begiming of this year he wrote amt publishel in Paris a Jetter on the nature and combiboas of poctry, cheilly epte, io answer to an appeal to lis judgment mate in the freface to Sir W. Davenant's luroie poem, Gontilert (E. H., iv. 1p. 4il-58). The letter ts dated Jan. 10, 1650 (165î).

4 Thlis presentation copy, so elescribed by Clasencon (Surexy of the Levichian, $1070,1 . S$, is doubtless tha hoatifally written amblinely bound as. now to le fouma in the Eritikh Museum (fortou MSS. 1910).

SDuring all the timo ho was abroal he had conimued to receivo from his matron a yeatly pension of 480 , and they remained in stearly cortespendence. Fhe earl, having shtel with the kins in 1612, was decharel unfit to sit in the Monso of Peers, and thongh, by summission to l'arliament, he recoverel his estates when they were sequesterc? later on, he did not sit arain till leco. Anong llobhes'y froments it this tince are spectally mentionel Seflem ami Mavey, who each le
 Harvey (not Liacon) is the obly Englisliman he mentions in the dern-
 Limself, of the new datural phitosophy:
materials he had long had by him as to be priating the De Corpore in the year 1654 . Circumstauces (of whech more presently), however, kept the boek back till the following year, and meanwhile the readers of Leviathan had a diffcrent excitement. In 1654 a small treatise, Of Liberty and Necessity (E. W., iv. pp. 2コ9-278), issued from the press, claiming to be an answer to a discourse on the same subject by Bishop Bramhall of Lomlonderry, addressed by Hobbes to the marguis of Newcastle. ${ }^{1}$ It was really such, and had grown out of an oral discussiun between Hobhes and Bramhall in the marquis's presence at Paris in 1646,-Eramhall, a strong Arminian, haviog afterwards written down his views and sent them to Newcastle to be answered in this form by Hobbes, and Hobbes having duly replied, but not for publication, because be thought the subject a delicate one. Unpublished, accordingly, the piece remained; but it happened that Hobbes, in the interval between writing his own reply and recciving from the bishop in IGt7 a rejoinder which be left unanswered, allowed a French acquaintance to hare a private translation of his reply made by a young Englishman, who secretly took also a copy of the original for limeself; and now it was this unnamed purloiner whe, in 1654 , wher Hobbes had become fumous and feared, gave it to the world of his own motion, with an extravagantly laudatory epistle to the reader in its front. Upon İebbes himself the publication came as a surprise, but, after bis plain speaking in Leviathan, there was nothing in the piece that he need scruple to have made known, and he seems to have readily enough condoned the offender's act. On the other band, Bramhall, supposing Hobbes privy to the publication, might well resent the manner of it, especially as no mention was made of his rejoinder. Accordingly, in 1655 , ho printed everything that had passed between them (under the title of A Defence of the True Liberty of Human Actions from Antecedent or Extrinsic Necessity), with loud complaint against the treatment he had received, and the promise added that, in defiult of others, be himself would stand forward to expose the deadly principles of Leviatleen. About this time Hobbes had begun to be hard pressed by other foes, aad, being never more sure of himself than upon the question of the will, he appears to have welcomed the opportunity thus given him of showing his strength. By 1656 be was ready with his Questions concerning Liberty, Necessity, cud. C'hance (E. W., v.), in which he replied with astonishing force to the bishop's rejoinder point by point, besides explaining the ocçasion and circuarstances of the whole debate, and reproducing (as Bramhall had done) all tho pieces from the beginning. As perhaps the first clear exposition and defence of the psychological doctrine of determinism, ILobbes's own two pieces must ever retain a classical importance in the history of the freewill controversy; while Bramhall's are still worth study as specimens of scholastic fence. The hishop, it should be added, returned to the charge in 1658 with ponderous Castigations of Molbes's Animudversions, and also made good his previous threat in a bulky nppendix entitled The Catching of Levinthen the Greut Whate. Hobbes never took any motice of the Castigations, but ten years later replied to the charges of ntheism, de., marde in the nonpolitical part of the appendix, of which he says bo then heard for the first time (E. IH., iv. pp. 279-384. This Answer was tirst publisficd after Hobbes's death. Bramhall had died, ns archlishop of Armash, in 1663). ${ }^{2}$

[^11]We may now follow out the more tronblesomesconflict, or tathep series of conllicts, ia which Hobbes betaue entangled from the time of publishing his De Corpore ia 3655 , and which checkered all his remaining yeurs. In Leviathun he had vehemently assailed the system of the universities, as origimally founded for the suppoit of the papal against the civil anthority, and ass still workiog social mischict by ailhetcnce to the old learning. The attack was duly noted at Oxford, where under the Commonwealth a new spirit of scientific activity had begua to stir; and in 1654 Seth Ward, the Savilian Inolussor of astronomy, replying in his I Findicice Acadeniarum to sone other assaults (then very common) on the acadenic system, ictorted upon Hobbes that, so far foom the universities beng now what he had known then in his youth, he would find his geonetical pieces, when they appeared, better understood there than he should like. This was said in reference to the boasts in which Hobbes seems to bave been freely indulging of having squared the circle and axcomplished other such feats; and, when a year later the De Corpore (L. W., i.) finally appeared, it was scen how the thrust had gonc home. In the chapter (xx.) of that work where Hobbes dealt with the famons problem whose solution he fondly thought he had found, there were left some self-complacent expressions vented against Vindex (Ward) at a time when the solutions sull scemed to him good; but the solutions themselves, as printed, were sllowed to be all in differeat ways halting, as he naively confessed he bad discovered only when be had been uriven by the insults of malevolent mite to examme them more closely with the help of his friends. A strange conclusion this, and reached by a path not less strange, as was now to be disclosed by a relentless hand. Ward's colleaguc, the aore famous John Wallis, Savilian professor of geonetry, had been privy to the challenge thrown out in 1654, and it was arranged that they should critically disposo of the De Corpore betreen them. Ward was to occuny himself with the philosophical and physical sections, which ha did in leisurely fashion, bringing out his criticism in the course of next year (In Th. Hobbii Philosophiam Excrcitatio Eyistolica). Wallis was to confine himself to the mathematical chapters, and set to work at once with cbaracteristic cnergy. Obtaining an unbeund copy of the De Corpore, he saw by the mutilated appearance of the sheets that Hobbes had repeatedly altered his demonstrations before he issued them at last io their actual form, grotesque as it was, rather than delay the book longer. Obtaining also a copy of the wrork as it had been printed before Hobbes had any doubt of the validity of his solutions, Wallis was able to trank his whole course from the time of Ward's provocation-his passage from exultation to doubt, fiom doubt to confessed impotence, yet still withonit abandoning the old assumption of confident strength; and all his turnings and wiadiags were now laid bare in one of the most trenchant pieces of controversial writing ever penned. Wallis's Elencius Geometrice Hobliana, published in 1655 aoont three months after the De Corvore, contained also an elaborate criticism of Hohbes's whole attempt to relay the foundations of mathematical science in its place within the general body of reasoned knowledge-a criticism which, if it failed to allow for the merit of the conception, exposed only too effectually the utter ipadequacy of the result. Taking up mathematies when not only his mind was already formed but his thoughts weere crystallizing into a philosophical system, Hobbes had, in fact, never put himself to school and sought to work up gradually to the best knewledge of the time, but had been more anxious from the first to become himself an innovator with wbatever insufficient means. The consequenco was that, when not spending hinself in vain atternpts to solve the impossiblo problems that have always waylaid the fancy of sclf-sufficient beginaers, he took an interest only in the clements of gcometry, anu never had any notion of the full scope of mathematical science, undergeing as it then was (and not least at the hauds of Wallis) the extriorduary development which mate it lefore the end of the century the potent instrument of physical discovery which it became in the hands of Newten. He suas erea mable, in dealing with the elementary conceptions of geometry, to work out with sny consisteacy the few original thoughts ho had, and thus beramo the easy sport of Wallig. At his advanced age, however, and with the sense he had of his powers, ho was not likely to be brought to a better mind by su misulting an opponent. He did indeed, before allowing an English, transtation of the Dc Corporc ($E . W_{\text {. }}$ i.) to appear in 1656, take care to remove some of the worst mistakes exposed by Wallis, oud, while leaving out all the references to Vindex, now profess to make, in altered form, a series of raere "attempts" at quadrature; hut he was far from yielding the ground to the enemy. With the translation, ${ }^{3}$ in the spring of 1656, he had ready Six Lessons ro the

[^12]Professors of Mathematics, onic of Geometry, the other of Astronomy, is the Utaiversity of Oafond (E. W., vii. Pp. 181-3ju), ill which, after reasscrting his view of the principles of geometry in opmosition to Euclid's, he proceeded to repel Wallis's objections with no lack of dialectical skill, and with an unteserve eypual to Wallis's own. He did not scruple, in the ardour of conlliet, even to main. tain positions that he had resigned in the translation, and he was not afraid to assmme the ofleusive by a counter criticism of threc of TYallis's works then published. When he hat thuts disposed of the "Paralogisms" of his more fommidable antagonist in the first tive lessons, he ended with a lesson on "Manmers" to the two professors together, and set limiself gianely at the close to show that he ton could be alnusive. In this prathenlar pint of las task, it numst lie alloweal, he succeented very well; his cisticism of Wrallis's works. expecially the great treatue Ardhmetice /ufinitorun (1655), only showeil how little ablu lie was to enter buto the meaning of the mollern analysis. W"alhs, min ios sible, was not less realy to keep up the gime in English than he land been to burin it in latin. Swilt as before to strike, in threo months' time ho had sleftly turned his own worl against the wonkt-bn master by ndmine. isuring Duc Corrcction for M/r ILoubes, or School Discipline for not saying his Lessones right, in a piece that dillered from the Elcuchzis only in being more bitinger and unrestruinel. Haviog an easy task in defending himself against Hobbes's trivial criticism, he seized the opportunity given him ly the English translation of the Dc Corpore to track Hobles arain step by step orer the whole course, null now to confront him with has inceredible inconsistencies multiplied by every new utterance. But it was no longer a fight over mathematical questions only. Wallis having been betrayed originally by his fatal cleverness into the pettiest carping at words, Hobbes hat retorted in kind, and then it becane a liigh duty in the other to defemi his latin with great parale of learning and give fresh provocation. One of Wallis s rough sallies in this kiud suggested to Hobbes the titlo of the next rejoinder with which, in 1657, he sought to close the unsemly wrangle. Arguing in the Lessons that a mathematical point must have puantity, though this Were not reckoned, he had explainel the Greck word oríy $\mu \eta$, used for a point, to mean a visible mark made with a hot iton; whereupon he was charged liy Wallis with gross irmerance for confound.

 Absurl Gcomotry, Rural Lenguage, Scottish Church Politics, and Butharisms of John Wallis, Professor of Geometry and Doctor of Divinily (E. W., vii. pl. $35 i-400$). He now attackell more in detail but not more happily than before Wallis's great work, while hardly atteapting any further defence of his own positions; also he repelled with some force and dignity the insults that had been hexpel upon him, and fought the verhal points, but conk not leavo the field withont making political insimations against his adversary, quite irrelevant in themselves nod only noteworthy as evidence of his own resiguntion to Cromwell's rule. The thrusts were easily and nimbly parried by Wallis in a seply (Ifobbiani Pancti Dispnanctio, 1657) ocerupien mainly with the verbal questions. firitating ns it was, it dil not nuail to, shake Hobles.s determination to remain silent; and thus at last there was jeace for a titne.
Pefore the strifo flamed upagrain, Hobbes hat published, in 1658 , the ontstanding section of his philosophical system, and thes completel, after a fashion, the scheme he had phaned more than twenty years before. So fir as the treatise Dc Homine (L. IV., ji. pp. 1-332) was concerned, the conpletion was more in name than In fact. It emosisted for the most part of an elaborate thenry of vision which, thongh very creditable to Hobbes's scientific insight, was out of place, or ne least out of proportion, in a philosoplical consideration of human mature geoerally. 'l'he remainder of the trentise, dealing cursorily with some of the topics more fully treated in the Human Nokure and the Leriathrn, has all the ajpramance of having been tagged in haste to the optical chapters (connposel years before)' as a makeshift for the proper thansition required in the system from questions of Buly Nutural to questions of Boaly Politie. Ilobbes had in tnet spent hioself in his carlier constructive elforts, and at the age of seventy, having mothing to add to his doetrine of Man as it was nlrenuly in oue form or another before the workl, was content with nuything that might stand for the fulfilment of his philosopitical purpose. lint he hat still in hims more than twenty years of vigorons vitality, anl, not conscions
matical chapters, in genernl (not exact) kepping with the English ellition of 1656. The Vindex episole, referred to in tho Six Lessons, becomes intelligible only by going beyond bolesworth to the original Latin edition of 1655 .
Po They wero composed origionlly, in a sencwhat tifferent and rather more extended form, as tre second part of nn English treatise on Optics, completed by the year 1646 . Of this treatise, preserved in Harlcian MLSS, 3360, Molesworth otherwise prints the dedication to the marquis of Newcastle, and the concluling parararaplis (E. IV., vii. pp. 407-47)
to himself of any shortcoming, looked forward, now his lianas were frec, to doing battle for lis doetrines. Rather than remain quiei, on fimbing mo notice taken of lis latest prounction, he would him. sclf force on a new conllict with the encuy. Wallis having meanwhile jublished other works ant espcially a compehensive treatis: on the general mincipics of cnlculus (Melhesis U"uiversalis, 1657), he might take this occasion of exposing afresh the new-fugled methods of mathematical analysis aml remserting lis own eaflin pesitions. Accondingly, by the spriner of 1660 , he hat managen to rut his criticesm and assertions into live dialognes under the titl Examinatio ct Limendatio Nathematice Hodicmae qualis crulicatur int Libris Johanais Wallisii, with a sixth dialoghe so called, consisting almost entirely of seventy or more propesitions on the circle and cycloill: Wallis, however, would not take the liait. Hobbes then trind another tack. Next year, having solved, as lic thonght, another anoint crier, the duplication of the cube, he hal his sulution bronght out anonynously at Paris in French, so as to put Wiallis and other cutics off the soent and extort a judgment that might be withheh from a work of his. 'the artifice was succesurul, ant no sooner had Wallis publicly refuted the solutaon than Hobbes clained the credit of it, and went more wonderfully than eves ostray in its defence. He presently republished it (in modified form), with his remarks, at the en ll of a wew Lettin dialogue whick he had meanwhile writsen in defence of another yart of his philo. sophical doctrine. This was the Jivilotus Physicus, sive De Araturo Acris (L. W., iv. pp. 233-296), fulnumeded in 1601 against Boyle and other friends of Wallis who, as he fancied, under the influence of that malevolent suirit, were now in Loudon, after the Restora. tion, fomming themstlves into a society (incorporated as the Roya' Socicty in 1662) for expremmental researel, to the exclusion of hins. self personally, amd in direct contravention of the method o nhysital inyniry enjoined in the De Corgorc. ' All the laborion: manipulation recorded in Boyle's Newo Erperimants tuuching th, Spuing of tha fir (1660), which Hobbes close, without the leasi warrant, to take as the manifesto of the new "academiciaos, seened to him only to confirm the conclusions he hat reasoned out years before from speculative principles, and he warnel them tho if they were not content to begin where he had left off their work would come to nonglit. To as much of this diatribe as concerned himself Boyle quickly replicel with force and dignity, but it was from Hobles's oll enemy that retribution cane, in the seathing satiro Hobliks IIcauton-tinorumuenos (1662). Wallis, who hall deftly steered his course aniduall the political changes of the pre. vions years, manaring ever to be on the side of the ruling power, was now apparcntly stumg to fury by a wanton allusion in Ilobbes'? latest dialogne to a passage of his former life (his decipucring for the Parlinment the kings papers taken at Naseby), whereof he y al once boasted but after the Restoration could not speak or hear toe little. The revenge he took was curhing. I'rofessing to be ronsed by the attack on his friend Boyle, when le had scorned te lift a finter in defence of himself against tho earlier dinlogues, he tore them all to shaeds with an art of which no gencral description can give an idea. He got, however, upon more dangerous gronle when, passing wholly by the political insinuation against himself, he roundly charged Hobbes with having witten Leviathan in sup. port of Oliver's title, and deserted his rosal master in distress. Hobbes scems to have been fairly hewihiered! by the lush aml whir: of sarasm with which Wallis drove him anew from cery duathe. matical position he hel cver taken up, nul did not venture forth into tha dield of seientifu controversy agin for sone vears, when lie bal once followed up the physical dialogne of 1661 by seven shorter ones, with the incvitablus appendix, entitled Problemato Physict, zena cum Magmtudiuc Civerili (L. W., iv. 1P, 297-9S4), in $160^{2}{ }^{4}$ But all the more eagerly did lie take ridurtoge of Wiallis's loose calumny to strike where die felt limseli safe. His answer to the personal eharges took the form of a letter ubouthim-
${ }^{3}$ L. IF., iv. pp. 1-2:32. The propositions on the circle, forty-six in sumber (shattered by Wallis in Ibfit), were omitten by llubbes when he republished the Jialogurs in 1665 , in the collecterl edition of his Latin works from which Molesworth repriuts. In the part onitted, at P .154 of the original edition, IIobbes refors to dis firnt introluction to Euclid, in a way that confirms the story in Aubrey guoten un an earlier paragrayh.
${ }^{3}$ Remaining at Oxforl, Wallis, in fact, took no active part in the constitution of the new socicty, but he hat been, from 1645 , one of tho originators of an carlier association in London, thus continued or revivel. This carlier society had been continued also at Oxfonl after the year 1 eis, when Wallis and others of its members receivel appointments there.

4Tho ['roblemata Physica was at the same time put into English (with some changes and omission of part of tho nathematical rppes. dix), and presented to the king, to whom the work was dediented in a renawkuolo leter apologizing for Leviechon. In it Emghish form. as Seven Philosophical Problems and Tico Promsitions of Gcometry (E:. IF., vii. pp. 1-6S), the work wis first published in 1682_{2} after Fituhes's death.
sclf in the third person addressed to Wallis in 166%, under the title of Considerations upon the Repztation, Loyall, Manners, and J:Ligion of Thomas Hobles (E.W., iv. pr. 409-440). In this piece, which is of great biographical value, he told his own and Willtis's "little stories during the time of the late rebellion" with such effect that Wallis, like a wise man, attempted no further reply. T'hus ended tbe second lrout.

After a time Hobbes took heart again and hegan a third period of controversial activity, which dill not end, oa his side, till his nincticth year. Little need be added to the simple catalogue of the untiring old man's labours in this last stage of bis life. The first picce, published in 1666, De Princini is ct Ratiocinatione Gcomelrarum (L. W., iv. pr. 385-484), was designed, as the sub-title declared, to lower the pride of geometrical professors by showing that there was no less uncertainty and crror ia their works than ia those of physical or cthical writers. Wallis replied shortly in the Philosophical Transactions (August, 1666). Three ycars later he brought his three great achievements together in compendious form, Qurulratera C'irculi, Cuba'io Sphorce, Dupticatio Cubi, and as soon as they were onee more refuted by Wallis, reprinted them with an answer to the objections, in compliment to the grand-duke of Tuscany, who paid him attentioas on a visit to England ia 1669 (L.W., iv. ph. 455-522). Wallis, who had promised to leave him alone hunceforward, refuted him arain before the year was out. In 1671 he workol up his propositions over again in Rasctum Gcometricum (L.W., v. $1 \Gamma_{1}, 1-50$), as a fragrant offeriag to the geometrical rader, appending a criticism (Comsura brevis, pri. $50-88$) on the first part of Wallis's treatise De Motu, published in 1669; also he sent Three Papers to the Rnyal Society on selected points treated very brietly, and when Wallis, still not weary of confuting, shortly replied, nublished them separately with triumphant Comsiderations on Dr Wallis's Answor to them (E. W., vii. pp. 429-448). Next ycir, 1672, having now, as ha believod, established himself with the Royal. Socicty, he procecded to complete the discomfiture of Wallis by a public address to the Socicty on all the points at issue between them from the beginning, Lux Afathematica exciussa collisimithus Jolunnis Wallisii et Thoonae Hobbesii (L. W., v. pp. 89-150), the light, ns the auther R. R. (Roseti Repertor) added, being here "increased by many very brilliant mys." Wallis replied in the Transactions, and then fually held his hand. Hobhes's energy was not yet exhausted. In 1674, at the ago of eighty-six, he published lis Principia ef Problcmata aliquot Geometrica, aine clespicrata nunc breviecr cxpticata at demonstratas (L. IV., v. pp. 150-214), containing in the chapters dealing with questions of principle not a few striking observations, which ought not to be overlooked ia the stuly of his philosophy. Ilis last piece of all, Decamrron $T^{\prime \prime} / \mathrm{ysin} \operatorname{logictm}$ (E. W., vii. pf. 69-180), in 1678, was a new set of dialdones on physical questions, most of which he liul treated in a similar fashion beforo; but now, in dealing with gravitation, le was able to.fire a larting shot at Wallis ; aad ono more demonstration of the cquality of a straight line to the arc of n circle, thrown in at the end, appropriately closed the strangest warfare in which perverse thinker ever engaged. ${ }^{1}$
We mast new turn back to trace the fortunes of Hobbes and his other doiags in the last twenty years of his life. All these controversial wrilings on mathematics and physics represent but one half of his activity after the ago of seventy; though, as regards the other half, it is not possible, for a reasun that will be scon, to say as defiaitely in what order the works belonging to the period were profuecri. From tho timo of tho Restoration he acquiral a now prominence in the public eye. No sear had passed since the appearance of Lcviathan without some indignant protest agaimat the influence which its trenchant doetrinc was calculatell to produce upon minds longing alove everything for civil repose; but it was not until the ofd political orler was set up again that "Ifobbism" became a fashionable creen, which it was the duly of every lover of true morality and relicion todenomec. Friends and focs atike were impressed ly the king's behaviour to the nged philosopler. Two or three days after Chrles's arrival in Loulton, llubbes, who hat come up to town from spending the previntes winter in Derlyshire, drew in the streel the notice of his fomer pinjil, and was at once received into favour. The youncring, if he had over himisolf resentad the apparent dialoyisty of the "Conclnsion" of Leviuther, had nut retained the fecting long, and could $\mathfrak{l l}$ enough

[^13]appreciate the principles of the grecic book when the appli- ? cation of them happened, as now, to be turned in his own favour. He had, besides, from of old a relish for Hobbes's lively wit, and did not like the old man the less because his presence at court scandalized the bishops or the prim virtue of Chancellor Hyde. He even went the length of bestowing on Hobbes (but wot always paying) a yearly pension of $£ 100$, and had his portrait hung up in the royal closet. These marks of favour, naturally, did not lessen llobhes's self-esteem, and perhaps they explain, in his later writings, a certain slavishuess of feeling toward the regal authority, which is wholly absent from his rational demonstration of absolutism in the earlier works. At all events Hobbes remained very well satisfied with the rule of a king who had the sense to appreciate the author of Levialhan, and to protect him, when after a time protection in a very real sense becanue necessary. His eagerness to defend himself against Wallis's imputation of disloyalty, and bis apologetic dedication of the Problemata Physica to the kiog, are evidence of the hostility with which he was being pressed as early as 1662 ; but it was not till 1666 that he felt himself seriously in danger. [a that year the Great Fire of London, following in ominous successive on the Great Plague of the year before, roused the superstitions fears and intalerant passions of the people, and the House of Commons embodied the general feeling in a bill against atheism and profaveaess. On the 17 th October it was ordered that the committee to which the bill was referred "should be empowered to receive information touching auch books as tend to atheism, blasphemy, and profaneness, or against the essedce and attributes of God, and in particular the book published in the name of one White, ${ }^{2}$ and the book of Mr Hobbes called the Leviathan, and to report the matter with their opinion to the House." What steps were taken befc e the 31st of January following, when the bill was read a third time and passed, does uot appear; but Hobbes, then vergigg upon eighty, was greatly terrified at the prospect of beiug trcated as a heretic, and procecded to burn auch of his papors as he thought might cemprumise him. At the same time he set himself, with a very characteristic determination, to inquire into the actual state of the law of beresy. The results of his investigation were first announced in three short Dialogues added (in place of the old "Review and Conclusion," fur which the day had passed) as an Appendix to his Latin translation of Leviathan. (L. W., iii.), included with the general collection of his works published at Amsterdam in 1668 . In this appendix, as also in the posthumous trach, published in 1680, An Historical Narration concerning Heresy and the Punishment thereof (E.W., iv. pp. 355-408), be aimed at showing that, since the High Court of Commission had licon put down, there remained in England no court of heresy at all to which he was amenable, and that even when it stood nothing was to be deelared heresy but what was at variance with the Nicene Creed, as ho maintained the doctrine of Leviathan was not.

The only consequence that came of the parliamentary scare was that Ilobles could never afterwards get permis. sion to print anything on subjects rolating to luman conduct. The collected cdition of his Latin works (in tre quarto volimes) appeared at Amsterdam in 1668, bccause lic could not oltain the consur's licence for its publication at London, Oxford, or Cambridge. Other writings which he had finished, or on which he must lave been engaged aboul this time, were not made public till nfter his death -tho king apparently having ande it tho price of his protuection that no fresh provocation should be offered to the

[^14]popular sentiment. The mest important of the works composed towards 1670 , and thus bept back, is the extremely spirited dialogue to which he gave the title Behemoth: the History of the Causes of the Civil Wars of England and of the Counsels and Artifices by which they were carrind on from the year 1640 to the year $1660 .^{1}$ To the same period probably belongs the untinisbed Dialogue between a Philosopher and a Student of the Common Laws of England (E. W., vi. pp. 1-160), a trenchant criticism of the constitutional theory of English government as upheld by Coke. Anbrey takes eredit for laving tried to induce Hobbes to write upon the subject i: $106 \pm$ by presenting hinm with a cupy of Bacon's Elenents of the Lazers of Einglend, and though the attempt was then unsuccessful, lloblues later on took to sturlying the statute-book, with Cuke upon Littleton. One other posthumous production (besides the tract on Heresy before meotioned) may also be referred to this, if not, as Aubrey suggeats, an earlier time-the two thousand and odd elegiac verses into which he amused himself by throwing lis view of ecclesiastical encroachment on the civil power; the quaint verses, disposed in his now favourite dialogue-form, were first published, nine years after his death, under the title Historia Ecclesiastica (L. W., v. pp. 341-408), with a preface by Thomas Kymer.

For some time Hobbes was not even allowed to ntter a word of protest, whatever might be the occasion that his enemies took to triumph over him. In 1669 he had silently to bear the spectacle of an unworthy followerDaniel Seargil by name, a fellow of Corpus Christi at Cambridge-made to act an edifying part in a public recantation of his principles, after liaving brought them inta discredit by offensively supporting them in the public schools. A few years later, in 1674, he bad another experience of academic disfavour when Dr John Fell, the dean of christ Churel, who bore the charges of the Latin translation of Anthony Wood's History and Antiquities of the University of Offord (1670), struck out all the complimentary epithets in the account of his life, and substituted very different ones; but this time the king did suffer him to defend bimself by publishing a dignified letter ('itt. Auct., pp. xlviii.--1.), to which Fell replied by adding to the translation when it appeared a note full of the grossest insults. And, amid all his troubles, Hobbes was not without his consolations. No Englishunan of that day stood in the same repute abroad, and foreigners, noble or tearned, who came to England, never forgot to pay their respects to the old man, whose vigour and freshness of intellect 110 progress ol the years seemed able to quench.

His pastimes in the latest years were as singular as his labours. The autobiography in Latin verse, with its playful humour, occasional pathos, and sublime self-complacency, pas thrown off at the age of eighty-four. At eighty-five, in the year 1673 , he sent forth a translation of four books of the Odyssey (ix.-xii.) in rugged but not seldom happily turned English rbynues; and, when he found this loyage of Ulysses eagerly received, he bad ready by 1675 a complete transla. tion of both lliad and Odyssey (E. W., x.), prefaced by a lively dissertation "Concerning the virtues of an heroic poem," showing bis unabated interest in questions of liierary style. In that year (1675) he ceased coming to London, and thenceforth passed his time at his patron's scats in Derbyshire, always occupied to the last with some intellectual work in the early morning and in the afternoon bours, which it had long been lis liabit to devote to thiaking and to writing. With such tenacity did he cling to his pursuits (always systematically keeping up, exercise for the sabe of health) that even as late as August

[^15]1679 he was promising lis publisher "somewbat to print in English." .The end came very suon afterwards. A suppression of urine in October, in spite of which he it. sisted upon being conveyed with the family from Cliats. worth te Hardwick Hall towards the end of Noveniber, was followed by a paralytic stroke, under which be sank on the 4 th of December, in his ninety-secoud year. Ha lies buried in the neighbouring parish chureh of Haull Hucknall.

In the foregoing sketch the aim las been to give a defi nite idea of the circumstances in which Hubbes, after slowly developing in the first forty years of his life, displayed a mental activity of such extraordinary variety in his last filty years. The task of esponnding and criticizing either hif better-known or his less-known doctrines will not be attempted in this place; but a few remarks may be added as tu his positinn in the general movement of Euglish plito sophy. As already suggested, it cannot le allowed that he falls into any regular succession from Bacen; neither cam it be said that he handed on the toreh to Locke. He was the one English thinker of the first rank in the long periud of two generations separating Lucke from Racon, but, şave in the chronological sense, there is no true relation of sucees. sion among the three. It would be dillienlt even to prove any ground of atinity among them beyond a disposition to take sense as a prime fuctor in the account of subjective experience : their common interest in plysical seience was shared equally by rationalist thinkers of the Cartesian school, and was indeed begotten of the time. Backwards, Hobbes's relations are rather with Galileo and the other inquirers who, from the beginning of the 17 th century, oceupied themselves with the plysical world in the manner that has come later to be distinguished by the name of science in opposition to philosophy. But it happened that, even more than in external nature, Hobbes was mterested in the phenomena of social life, presenting themselves so impressively in an age of political revolutiun. So it came to pass that, while he was nnable, by reason of imperfect training ond too tardy development, witb all his pains, to make any contribution to physical science or to mathematics as instrumental in physical research, be attempted a task which no other adherent of the new " mechanical philosophy" conceivednothing less than such a universal construction of human knowledge as would bring Soeiety and Man (at once tha matter and maker of Society) with the same prineiples of scientific explanation as were found applicable to the world of Nature. The construction was, of course, utterly prema. ture, even supposing it were inluerently possible; but it is Hobbes's distinction, in his eentury', to lave conceived it, and he is thereby lifted from among the seientitic workers with whom he associated to the rank of thuse philosophical thinkers who bave sought to order the whole domain of humanknowledge. Such as it was, the effects of his philo. sophical endeavour may be traced on a variety of lines. Upon every subject that eane within the sweep of his system, except mathematies and physies, his thoughts have been productive of thought. When the first storm of opposition from smaller then, roused as much by his para. doxieal expressions as by lis doctrimes, had begun to die down, thinkers of real weight, beginning with Cumberland and Cudworth, were moved by lus analysis of the moral nature of man to probe anew the question of the natural springs and the rational grounds of buman action; and thus it may be said that Hubues gave the first impulse to the whole of that movement of ethical speculation that, in modern times, has heen carried on with such remarkable continuity in England. In politics, the revulsion from his particular conclusions did not prevent the more clearsighted of his opponents from recognizing the force of his supreme demonstration of the practical irresponsibility of
the sovercign porser, wherever searel, an the state; and, when in a later age the foundations of a positive theory of logislation were lairl in England, it was extreme liberals of the echool of Bentham-James Mill, Grote, Mnlesworth-that brought again intn general rotice the writings of the great publicist of the 17 th century, who, however he might, by the force of temperament, himiself prefer the rale of one, based his whole political system upon a ratiomal regard to the common weal. Finally, the psychology of Hobbes, though too undeveloped to guide the thoughts or even porhaps arrest the attention of Lacke, when essaying the scientific analysis of knomedge, came in course of time (chiefly through James Mill) to be connected with the theury of associationism developed from within the suhool of Lucke, in different ways, by Hartley and Hume; nor is it surprising that the later associationists, finding their priaciple more distinctly formulated in the earlier thinker, Bhond sometimes have been betrayed into affiliating themselves to Hobbes rather than to. Locke.

Sufficut information is given in the IVte Moldiano itictarimm \{L. W. i. Lp. lxv. $W_{\text {. }}$) concerniug the frequent early eelitions of Hobbes's seprate works, and alse conceming the worlis of thone who wrute againct him, to the ent of the lith rentury. In the 1 Sth centuty, nfter Clarke's Jimpe Lectures of $1704-5$, the opposition was Jess cxpuess. In 1750 The Moral and Potitical "orks nere collected, with life, $\mathbb{\text { co. by Dr Cinmpell, in a folio edation, }}$ incluling in orulur, Jhemane Soture, De Curpore Politico. Leviathen, Anstmr to Dramentl's Cotching of the Leviathen, Narrution concevnig Jiercsy, of Jikerly rend Jecessity, Bikemoth, Dialoguc of the (oommon Luw's, the Introrluction to tle Thuucydides, Letter to Dutw rant and tuo others, the Preface to the Somer, De Jirabiliums Jeaci (with Encelish tuanslation), Considerations on the licputation, de., of
 with sull'mmentary extrats from the Questions of 1650) were ederinterl in a smalt calition of a59 copies, with a meritorions nomon' (loned on Campteli) and dedication to Horne "Tooke, by *"nlip Mallot. Molesworth's edition (183:-15), dedicated to Growe, has been robure? to in a former note. Of translations may be juentionnd Ies Étinkens philosophiques du Citoyen (1649) and Le Corps polituqu (165O), both by Sonbiere, conjoined with Lo Praite
 tutle Les Giurves pheilusombiques at politiques de Thomas Jlobues; a tramslation of the birst section, "Computatio sive logica," of the Te Corperi, incluled by Destntt ile T'racy with his Elemens d'Jieo. logie (1Mil); a trasslation of Lečableaz into Dutch in 1678 , nud
 Z.buthan orivo die kirchlichs: umi burgerlicho Slare (11alle, 1794, a vols.) ; a trundatem of the do Cizn by L 11. v. Kirchmann-
 Fio cormmomive mampan on holdese whole philosophaical purformane bay yut bech producol. Noleswerth ham begun to make frepu tumation whting one whea his energes were diverted Into practual prelitics. 2

HOBOREN, a city and port of entry ot the United States, in ITudsun rounty, New Jursey, is situated on tho Hudson river, contiguohn to Ierses eity, which stretches immediatcly to tho south. It lis opposite New York eity, $\frac{3}{4}$ of a mile clistant, amb oceupicis a picturespue site at the foot of a slecp hill, with a considerable river frontage. The friucipal public buidings are the Stuens institute of techndogy, the beguest of the lat Commodore Sterens, whose mansion in the Cothic style of andhitecture is a motewortly feature of tho phece; St Xhays Chtholie hospital; and the Franklin lyeema assectation libaty. The mambfacturies inclule jron-foundres and : Joard pencil work; and the trude in coal is importnot. Castie luint ansl the adjoinimy "Elgsian l"ields" aftort delightint views of the river, athl, befure the recent bimbluen nefotimes, uned to be a favourte resurt of the N゙u-dorkers. The city, which was oricimally setteal by the Ioteh, whomand it atter a village on the scheldt, was incorburat:al in 185.j. I'um. lation in 1500, 20,000; in 1850, 30,493 .

HOCHE, LAKME (1568-1707), a l'rench gencral of the time of the lownhtion. was lum of poom paronts at Montrenil mar Versailles, dunce $2 \overline{5}, 1665$. At the acce of sixteen le eulisted as a private sohber with the iatenion
of proeceding to the East Indies, but was sent instead to a depot of the Gardes Françaises. Having risen to the rank of sergeant, he, at the outbreak of the Revolution, made an important stand with a mere handful of troops against it large body of insurgents; and it was he also who, at it later period, defended the entrance to the clamber of the quecu whea her ayartments were invaded by a revolutionary. moth. He distinguished bimsclf at the siege of Thionville in 179\%, and at the battle of Neerwinden, 13th March 1793. Shortly afterwards he reccived the brevet of general of brigade, and was appointed to the command of Dunkirk, for his brilliant defence of which against the duke of York he received the chief command of the army of the Moselle. The purpose which he originally proposed to himself in this campaign was to cat the commanication between the Austrians and Prussians, and, though foiled in this attempt by the superior forces of the duke of Brunswick, he suc. ceeded by a masterly manourre in effecting a junction of a rortion of his troops with the army of the Rhine, and thus causing the Austrians to evacuate Alsace. Shortly afterwards he was assigned the chicf command by the representatives of the people with the two armies, but, this promotion amakening the morbid suspicion of Robes. pierre, be was recalled and thrown into prison, and it was only the timely fall of Tobespierre that saved him from the guilutine. On being released by the convention, he was so successful in pracifying La Vendée and Brittany that he was appointed to the command of the three united armies, numbering in all 100,000 men, in order to apply similar mocasures for the disarmament of the other depart. ments. After accomplishing this task with an admirable combination of lirmness and moderation, be was appointed to the command of an army organized for the conquest of Ireland. The expedition set sail from Erest, 16th Decembes 1796, but was dispersed by a storm, scarcely one balf of the wessels eseaping shipwreck or capture. In the following year lloche was sent to the eastern frontier to act agninst Austria, and by a serics of masterly manwurres he succeeded in surrounding the aruy of General Kray, and but for a dectaration of prace would have taken him and all his troops prisoners of war. Not long after his return he was apminted to the command of the united army in Germany, but ciuht days afterwards he died suddenly at Wetzlar, 18th Supember 1797. The belief was widely spread that fe frad buen poisoned, lint the suspicion scems to inare been withont foundation. Though Hoche at his leath had not attaincel the age of thirty, he had already displayed powers, ionh as politician and is strategist, which, had he lived, would hivo rendered him a formidable rival of Napoleon, and might have effectually frustrated the latter's unscrupuslous anbition.
Soe Autes historiques stir la vie morate potitique an militaire du grintrel Hoche, Sthaslang, 17:
 Broge fienibre de general Minth, Fortis, 1800; lie at penstes du grineral Heche, Dem: Champohert, Ahtice historigue sum Lazaro

 comresponeturuce, l'ans, dsis.
globliE, Chathes (1707-1578), theologian, was born
 the cullege of Now Jersey in l'rinecton, where he graduated in 1815, and afterwards at the theolngien semimary of the l'reshyterian Church in the same phace, where he enatinned a stuitent until 1819; in 1820 he vecame assistant teacher; and in $18: 2$ he was chusen by the general assembly to to [:ufesen of Oriental anl Diblical litenatere there. Ine spent two years on the Contincont, from 18.06 to $182 s$, studying mater Dos Sacy in lanis, under Gescmins and Tholack in llalle, and mader llenestenberg, Neamer, nud Humboldt in lumin, $\ln 1810$ ho was transfereal to the chair of
didactic and excgetical theology, to which subjects that of polemic theology was added in 1852, and this office he held to the day of his death. In 1825 he established a quarterly publication entitled the Diblical Repertory, desigued to furnish translations and repriuts of the best centemporanoous foreign essays on theological and religious subjects. 'On his return from Europe in 1828 he clanged it into a vchicle for publishing original theological cssays and reviews, and added the words Princeton Review to its title. . He secured for it the position of theological organ of the old school division of the Presbyterian Church, and continued its principal editor and contributor until 186S. He contributed over 130 articles oo subjects ranging through every department of theology and ecclesiology, and all the great practical, ecelesiastical, moral, and national questions of the day. From 1833 to 1868 he wrote yearly an article reviewiug the action of each general assembly, which series has exaried a powerful influence over the current opinion and history of the church to which be bclonged. The most important of thesc have been republished ia Great Britain and in Anerica, in volumes, under the titles of IIodge's E'ssays, Princeton Theoloyical Essays, and Hordge's Church Polity. He was made doctor of divinity by Rutgers College, N.J., in 1834, moderator of the general asscubly (O.S.) in 1816 , member of the committee to revise the Book of Discipline of the Presbyterian Church in 1858, and LLL.D. by Washington College, Pa., in 1864. April 24, 1872, the fiftieth anniversary of his election to his professorship, was obserred in Princeton as his jabilee by between 400 and 500 represeutatives of his 3000 papils, when he received congratulatory addresses and letters from all the Preslyterian theological faculties of Scutland and Ireland, and from a majority of those belonging to the various Evangelieal churches of America. He continued to instract his classes uniaterruptedly up to the time of his death in Princeton, Jurc 19, 1878. The main characteristics of Hodge were strength and persistence of conviction and of purpose, logical clearaess and symmetry of thought and style, energy and effective vigour in the defence of his convictions and in assaults upon what be considered error, suriny cheerfalness of disposition, and humility, tenderoess, and gentlcness of heart and mauner. 1 Besides lis artieles in the Princeton Rcview, he published a Commentary on the Epistle to the Romans, Plila,' 1835, abidged 1836, rewritten and enlarged 1866; Constitutional IIIstory of the Presbyterian Church in the Unitcd States, 2 vols., 1840-41; The Way of Liff, 1842; Commentaries on Ephesians, 1856, 1 Corinthians, 1857 , 2 Corinthians, 1860 ; Systematic Theology, probably the best of all modern expositions of Calvinistic dogmatie, 3 vols., 2200 pp., 1871 73; What is Darwinism? 1874 ; and there havc been published sine his death Hodgc's Church Polity, 1878, and Conferencc Popers, 1879.
hodGKINSON, Eaton (1780-1861), a distinguished engineer, was the son of a farmer, and was born at Anderton near Northwich, Cheshire, 26th February 1789. Hc received his first stimulas to the study of mathematies at the grammar school of Northwich, and this interest was farther quickeaed by the instractions of Dr Dalton at Manchester, whither he had removed in 1811, and where, instcad of following his original purpose to study for the church, he was assistiag his widowed motlier to establish a basiness. For several years he carried on mechanical rescarches and experiments, but his first discovery of importance was that of a new form of iron girder, by which a gain of two-ffils in streagth was obtaiaed over that formerly in use. After this he carried on investigations of a similar character in conjunction with Sir William Fairbairn, who greatly profited by his saggestions and assistance in semo of his more important. iaventions. : In 1840 Hodgkinson communicated a paper to the Royal Socicty on Experimental Researches on the Strength of Pillars of Sast-iron and other Materials in recognition of which he in 1841 received the
royal medal, and was also elected a fellow. Ilis formulà for solid and hollow pillars soon obtained gencral adops tion in all encincering class-books. Subsequently ho way employed by Stephenson to verify the experiments of Fairbairn on wrought-iron tabes, with a view to the cond struction of the Britamia Bridge ; and for his co-operation in this work he received a silver medal at the Paris Exhibi، tion of 1855. In 1847 he was appointed professer of the mechanical principles of engiacering in University Collcge, Londou. In 1848 he was chosen president of the Manchester Philosephical Society, of which he had been a momber since 1826 , and to which, both previously and subsequently, he contributed many of the more important results of his discoveries. For several years he took an active part ia the discussions of the Institution of Civil Engiaeers, of which he was elected an honorary member in 1851. He dicd at Eaglcsfichl House, near Manchester; 18 th June 1861. The name of Hodgkinson will alwayg be associated with those of Fairbairn and Stephenson, and without his assistance it may safcly be affirmed that the most brilliant achievements of beth would have been im. possible.

HÓDMEZÖ-VASARHELY, a corporate town in the county of Csnngrid, Hangary, is sitaated on the laks Hod, and on the Alfold Railway, about 90 miles S.E. of Budapest, $46^{\circ} 27^{\prime}$ N. lat., $20^{\circ} 22^{\prime}$ E. long. The town is large and rapidly improviag, and has many public buildings. Of these the most noteworthy are the town. hall, the Roman Catholic, Greek, and Protestant (une Latheran and two Calvinist) chnrches, the Jcws' synagogue, the Protestant gymasium, and the royal law conrts. Hơdmezö-Vásárhely pessesses also many elegant privatè residences, two hospitals, two banks, and several literary institutions, and has a flourishing trade. The soil of the surrounding country is exceedingly fertile, the chicf products being wheat, inangcorn, barley, oats, millet, maize," and various descriptions of fruit, especially melons. Estensive rineyards, yielding large quantities of both white and red grapes, skirt the town, which has also a fine pablic garden. The. horned cattle and horses of Hodanez̈. Vasisthely are considered the best in the Alfold; sheep and pigs are also extensively reared. The commune is proteeted from inundations of the Theiss by an enormous dike, bat the town, nevertheless, sometimes suffics considerable damage during the spring floods. In 1870 the population was 49,153 , chiefly Magyars.

HODOGRAPI is the name given to a goometrical construction which greatly facilitates the stady of kinematical questions. It was invented by Sir William Rowan Hamilton abont 1845 , and the first account of it, written by him, is to be foand in the Proc. R. I. A. for 1846.

The hodograph may bo thus defined:-If a point be in motion in any orbit and with any velocity, aud if, at each instant, a line be drawn from a fixed point parallel and equal to the velocity of the noving point at that instant, the extremities of these

lines will lie on a curve called the hodngraph. ${ }^{2}$ Lot $\mathrm{PP}_{1} \mathrm{P}_{2}$ be the path of the moving point, and let OT, OT, , OT ${ }_{2}$. be drawn from the fixed point O parallel and equal to tlec velocitics at P, P_{1}, P_{2} respectively, then the locus of T is the hodograph of the orbit described by P (fig. 1).

From this dennition we have the following important fundamental property which belongs to all hodographs, viz., :bat at any point the tangent to the hodograph is parallel to the direction, and the velocity in the hodograph equal to the magnitude of the resultant acceleration at the corresponding point of the orbit. This will be evident if we consider that, since radii vectores of the hodograph represent velocities in the orbit, the elementary are between two consecutive radii vectorcs of the hodograph represents the velocity which must be compounded with the velocity of the moving point at the beginning of any short interval of time to get the velocity at the end of that interval, that is to say, represents the change of velocity for that interval. Hence the elementary are divided by the element of time is the rate of change of velocity of the moving-point, or in other rords, the velocity in the hodograph is the acceleration in the orbit. ${ }^{r}$

Analytically thus (Thomson and Tait, Not. Phil):-Let x, y, z be the coordinates of P in the orbit, $\xi, \eta, \dot{\xi}$ those of the contepronding point T in the hodograph, then
therefore -

$$
\begin{align*}
& \xi=\frac{d x}{d t}, \quad y=\frac{d y}{d t}, \quad \delta=\frac{d z}{d t} ; \\
& \frac{d \xi}{d^{2} x}=\frac{d \eta}{d t^{2}} \frac{d \zeta}{d l^{2} y} d^{d b^{3}} d t^{2}, \tag{1}
\end{align*}
$$

Also, if s be the are of the hodograyh,

$$
\begin{align*}
\frac{d s}{d t}=v & =\sqrt{\left(\frac{d \xi}{d l}\right)^{2}+\left(\frac{d \eta}{d t}\right)^{2}+\left(\frac{d \zeta}{d l}\right)^{2}} \\
& =\sqrt{\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+\left(\frac{d^{2} y}{d t^{2}}\right)^{2}+\left(\frac{d^{2} z}{d l^{2}}\right)^{3}} \tag{2}
\end{align*}
$$

Equation (1) shows that the tangent to the hodograph is parallel to the lue of resultant acceleration, nnil (2) that the velucity in the hodograph is equal to the acceleration.

Every orbit must clearly bave it hudograph, and, comversely, every hodograph a correspondme orbit; and, theoretically speaking, it is possible to deduce the one from the other, having given the wher circumstances of the motion. We give a few examples:-

1. For uniform motion in a straight line the helograph is casily eeen to be a poiat.
2. For uniform or variable acceleration in a straight line the hodograph is the line described by a point moving with uniform or variable velocity.
3. For uaiform circular mo. tion the hodograph is also a circle. In this case it may be uefil to show how the cenception of the horlogray h leads cosily to the ordinary expres. sion for the so-called contrifugul force.

- Let P (fig. 2) describe the circumference $\mathrm{PP}_{1} \mathrm{P}_{2}$ with unifirm velocity v, and from the centre 0 draw OT', OT, OTs $_{2}$, se., equal to each other aut parillel to the tangents at -1, P_{1}, P_{2} respectively, then
 "I Γ, Γ^{1} " is the hodograph cirele. of $\{$, which also equala the Also let a equal the acceleration the holdoreplaniformly in theity of T; then, since T descriturg orbit, wo lave

$$
\frac{v}{a}=\frac{O P}{O T}=\frac{r}{v} \cdot a=\frac{r^{3}}{r}
$$

It is evilent that the tangent at T is parallel to PO the direction of accelorstion at 1 .
4. For simple harmonic motion the hollograph is also simple harmonic motion, and similarly for elliptic harmonic motion.
For the former wo have

$$
\therefore \quad \begin{gathered}
8=a \cos (n t+c): \\
\therefore v=-3-n \sin (n t+e)-n a \cos (n t+t+b \pi) ;
\end{gathered}
$$

Which indicates simplo harmonic motion with changed nmplitudo and plase.
c. For parnbolic motion the herlograph is a ntraiglat liom

Let OF (fig. 3) be the velocity of projection. Kesolve it ...an-: cally and horizontally ; the horizontal component OH is constant, so that the hodograph most be the vertical line FHT. The velocits at any point P of the parabola is evidently represented by the lina OT drawn parallel to the tangent it P.
Analytically thus:-1f x, y be the coordinates of the moving point and ξ and η those of the hodograph, we have

$$
\begin{aligned}
& \quad \ddot{x}=0, \ddot{j}=-j(f \text { being the vertical acceleration }) ; \\
& \therefore \dot{\xi}=0, \eta=-j, \\
& \because \xi=c, n=c^{\prime}-j
\end{aligned}
$$

which iadicates a vertical straight line described with uniform velocity f.

Fig. 3.
6. For central forces the hodograph will vary with the law of acceleration towards the centre. Hamilton showed that, for the Newtonian law of the inverse square of the distance, the hodograph is always a circle, and for that reason he designated that law the law of the circular hodograph.

Assuming the centre of force as origin for the hodograph, we sek that, from definition, the tangent and radius vector at any point F of the orbit are respectively parallel to the radius vector and tan. gent at the corresponding point T of the hodograph (fig. 4). These four lines thus enclose n rarallelogram PT, whose shape is constautly changing, although its area is constant, being equal to the constan rectangle IT contained by the velocity and the perpendicular on the tangent. As usual, let $\mathrm{TY}=v p=h$. Also the angle between two consecutive tangents to the hodograph is equal to the angle hetween the corresponding radii vectores of the orbit, a ad hence, if θ be the angle between OP and some initial line, and s the are of the hodogaph. He ordimary formula for curvature giveo

$$
\frac{I}{\rho}=\frac{d \theta}{d s}-\frac{\theta}{s} i
$$

but
and $=$ reloc.. y in hodngraphancelemation in orbit $=P($ say $):$.

$$
\begin{align*}
& \frac{1}{\rho}=\frac{h r-u}{P} \\
& \rho=\frac{P, ~}{h} \tag{3}
\end{align*}
$$

a most useful expression for the radius of curvature of the hodograph to nny central orbit.

If the acceleration vary inversely as the square of the distance, $P=\frac{M}{r^{3}}$, where M is the mass at the centro acting upon unit mass in the orbit. Substituting in (3), we get

$$
\rho=\frac{M}{h}=\text { constaut. }
$$

Hence, for this law of force, nnd evilently for it only, the hodo. grath is a circle.
desuming that the lodogrnph is a circle, we can show that the orbit for this law of force must be a conie section. Lut CTB (fig. 万) be the hodograph circle, O the ongin, and 11 the centre; and let the ratio $\frac{O I I}{H T}=\epsilon_{0}$ Draw QP parallel to the tangent ut T and, there. fore, perpemicular to T(: Take OP such that the parallelogram contaimed by OP aud OT-n constant $=h$. Draw OA perpendicular to CB ; and $\operatorname{let} \mathrm{POA}=0$; then,

$$
\begin{aligned}
& \text { OP. TG }=h \text {; } \\
& \mathrm{OP}^{2} \cdot(\mathrm{TII}+11 \mathrm{G})-h \text {; but } \mathrm{TII}-\rho=\frac{\mathrm{M}}{h} \text {, and } \\
& I I G-I 10 \cos \theta=e \rho \cos \theta=\frac{M I}{h} \cos \theta \text {; } \\
& \mathrm{OP}\left(\frac{1}{h}+e \frac{M}{h} \cos \theta\right)-h: \\
& 0: \prime-r=\frac{h^{2}}{\mathrm{M}}: \frac{1}{1+\mathrm{cos} \mathrm{a}} .
\end{aligned}
$$

Henee the locus of P is a conic section whose semi-parameter is $\frac{4^{\prime}}{\pi}$. If $<1,0$ is mithin the circle and the orbit is on cllipss ; it $-1,0$ is on the circumference and the orbit is a parabola; and if $>$ l, 0 is withont the circle and the orbit is an hyperbola. Two values of thic potential, r can readily be found from the abuve :-

$$
\begin{aligned}
& V=\frac{M}{r} ; \text { but } r=\frac{\hbar}{T G} ; \\
& V=\frac{M}{h} \cdot T G=T H . T G .
\end{aligned}
$$

Aso, since $O G H$ is a right angle, $1-\mathrm{TH}$. TG= the square of the tangent from T to the circle described on HO as diameter.

A beautiful result connected with the bodograph,

Fig. 5. nud one which has attracted the attention of several of the ablest mathematicians, was communicated by Sir William Itamilton to the Rojal Irish Acadeny in Mareh 1847. It is called the theorem of hodographic isochronism, and is thus stated:-If two circular hodographs, having a common chord, which passcs through, or tends towards, a common centre of force, be cut perpendicularly by a third circle, the times of hodographically describing the intercepted arcs will be equal. A purely quaternion proof is given of this theorem $\%$ Hamilton in his Elements, and, following the bints given by that method, he has alsoindicated the following geometrical proof.
Let TMT'M', WMW'M (fig. 6), be the tro holographic circles with ceatres H and L and conmon chord MN'. Let $\mathrm{P}, \mathrm{P}^{\prime}$. on the sommon chord produced, be the centres of two eircles WTW"T and BAE'A', uear each other, which cut the hodographs orthogonally. Let O be the centre of force, OZ pelpeudicular to the taugent at T, and $T R$. $\mathrm{T}^{\mathrm{M}} \mathrm{K}^{\prime}$ perpeadicular to SX . Also let $A T$ mean the arc AT, and similarly for the other smali arcs. Draw ΓY perpendicular to PT.

Fig. 6
From sinular trangles TIIA and TPY we have

$$
\begin{aligned}
& \text { AT }=P Y \\
& \text { T'II }=\frac{1}{P} \dot{T}
\end{aligned}
$$

-bo fiom similar triangles TIIR and $\Gamma \mathrm{P}^{\prime} \mathrm{Y}^{\prime}$

$$
\begin{aligned}
& 7 \mathrm{TH}=\frac{\mathrm{P}^{\prime \prime}}{\mathrm{PY}} \therefore \frac{\Delta T}{\mathrm{TR}}=\frac{\mathrm{Pl}}{}+\mathrm{T} \\
& \lambda T=\frac{\Gamma P^{\prime} T R}{T^{\prime} T} \\
& \text { Sianiluty, } \quad A^{\prime \prime} f^{\prime}=\frac{\Gamma P^{\prime} \cdot T R}{J^{\prime} T}
\end{aligned}
$$

If a and t be the times of bodomaphically deseribing the arcs at and A ' T^{\prime} respectively.
c- $\frac{A T}{M r^{-2}}-\frac{M \cdot A T}{J l^{2} T^{-2}}=\frac{M \cdot A T}{V^{2}}$ (if Γ be the potential at T).

But $V=11 T . O Z=O P . T R$ from similar triaugles $O P Z$ and $T H R$; $\therefore t=\frac{\mathrm{M} \cdot \mathrm{AT}^{2}}{O \mathrm{P}^{2} \cdot \mathrm{TR}^{2}}=\frac{\mathrm{M} \cdot \mathrm{PP}^{\prime} \cdot \mathrm{TR}}{\mathrm{OP}^{2} \cdot \mathrm{TR}^{2} \cdot \mathrm{PT}}=\frac{\mathrm{M} \cdot \mathrm{PP}}{\mathrm{OR}^{2} \cdot \mathrm{PT} \cdot \mathrm{TR}}$
Similarly,

$$
\begin{aligned}
& \ell^{\prime}=\frac{M \cdot P P^{\prime} \cdot T R^{\prime}}{O P^{\prime}-T^{\prime} R^{2} \cdot P T}=\frac{M \cdot P P^{\prime}}{O P^{2} \cdot T T} \cdot T^{\prime} R^{\prime} \\
& t+t^{\prime}=\frac{\mathrm{M} \cdot \mathrm{PP}^{\prime}}{\mathrm{OP}^{z} \mathrm{PT}^{\prime}}\left\{\frac{1}{\mathrm{TR}} \cdot+\frac{1}{\mathrm{~T}^{\prime} \mathrm{R}^{\prime}}\right\}=\frac{2 \mathrm{M}, \mathrm{Pr}}{\bar{O} \mathrm{P}^{\prime \prime} \cdot \mathrm{P}^{2} T}\left\{\frac{\mathrm{TR}+\mathrm{TR}^{\prime} \mathrm{T}^{\prime}}{-T R \cdot \mathrm{TR}^{\prime}}\right\}
\end{aligned}
$$

Now $\frac{2 T R \cdot T R^{\prime}}{T R+T^{\prime} \mathrm{R}^{\prime}}=$ the lamencaic mean between TR and $\mathrm{T}^{\prime} \mathrm{R}^{\prime}=Q \mathrm{~L}^{\prime}$.

$$
t+t^{\prime}=\frac{2 \mathrm{M} \cdot \mathrm{PF}}{\mathrm{OL}^{2} \cdot \mathrm{~T} \cdot \mathrm{QL}}
$$

From this expression we see that the time of describing the twa small ares $T \mathrm{TA}$ and $\mathrm{T}^{\prime} \mathrm{A}^{\prime}$ ' is independent of the radins of the hodo: grajh and the distance of its centre from L. Heace it is equal to the time of describing the two arcs BW and BNW. By continuing the process of drawang orthogonals we arrive at the conclusion that the time of describing the whole are $\mathrm{NTT}^{\prime} \mathrm{A}^{\prime} \mathrm{i}$ qual to the time of describing the are BWW'B'. A very sim, analytical proof is given in Tait and Steele's Dynamics of a 1 'urlicit. Others not so siaple by Cayley and Droop are to be found in the Qiuarlerly Journal of Nathenatics. We cau only mention that the tbeorem of Lambert can be deduced from the above theorent of bodographic isochronism without using any property of conic sections.

Sir William Hamilton bas observed that we have a good instance of a hodograph in the cuive of abertation of a star, which is mecely the hodograph of the earth's annual motion. The fact that this curve is a circle in a plane parallel to the eartb's orbit, abstracted, however, from the general idea of the hodograph, was known long before the date of the hodograph. It will be found clearly stated and proved in Woodhousc's Astronomy, of date 1821, and from allusions there it appears to lave been known even carlier. As an application of the hodograph, Thomson and Tait point out that the heat and light received by a planet from the sun in any time are proportional to the corresponding are of the hodograph.
Sce Proc. Roy. Irish Acad., 1846; Hamilton's Elements of Quatcrnions ; Tait, Proc. R. S. E., 1867-8; Tuit's Quaternions; Sbomson and Tait, Nat. Phil.,
(J. BL.)

HODY, Humphrey (1659-1706), an English diviuc, was born at Odcombe in Somersetshire in 1659. In 1676 he entered Wadham College, Oxford, of which, baving proceeded M.A. in 1682, he became fellow in 1684. Previously he had published in 1680 Dissertatio contra Historiun Aristece de LXX. Interpretibus, in which he showed that the so-called letter of Aristeas, containing an account of tho production of the Septuagint, was the late forgery of a JIellenist Jew originally circulated to lend authority to that version. The disscration was generally regarded as conclusive, although Vossius published an angry and scurrilous reply to it in the appendix to his edition of Pomponius Mela. In 1689 Hody wrote the "Prolegomena" to tho chronicle of Jolin Malala, published at Oxford in 1691. The following year he becane chaplain to Stillingfleet, bishop of Worcester, and, on accomnt of his supporting the ruling party in a controversy with Dodwell regarding the nonconforming bishops, he was appointed chaplain to Archbishu!! Tillotson, an ofice which he continued to hold under Tenison. In 1698 be was appointed regius professor of Greck in the university -if Oxford, and in 1701 he was promoted to the archdeaconiy of Oxford. In 1601 he publinhed Mistory of English Councils and Conrocations, and in 1704 in four volumes De bibliourn lextis originalibus, in which he included his arigimal work on the Septuagint, and published a reply to the attack of Vossils. 1Fe died 20:h January 1706. A work, De Grexis Hllustrütus, which he left in manuscript, was $\mathrm{p}^{\text {nelishted in } 17 \text { II by Dr debb, who prefixed to it a }}$ Luthe disseriation.

HOF, originally Themetziror, a town of Bamaria, circle of Uper Franconia, is beautifully situated on the Saale, on the north-castern spurs of the Fichtelgebirge, and at the
junction of scveral railways, 30 miles N.N.E. of Baireuth. It is the seat of district, town, country, and commercial courts, a chamber of commerce, and a head tax office. It is surrounded by walls, and has one Catholic and three Protestant churches, a town-house of 1563 in the Gothic style, a gymnasium with an extensive library, a trade and commercial school, a femate school of the higher grade, a people's school, an orphanage, a richly endowed hospital founded in 1262, and an infirmary. Its industries are chiefly conncted with wool and cotton, and include woollen, cotton, and jute stimuine, jute weaving, and the manufacture of cotton and balf-woollen fabrics. It has also dyeworks, flour-mills, saw-mills, breweries, iron-works, and manufactures for maciinery, iton and tin wares, chemicals, and sugar. Ia the neighbourbood there are large marble quarries and extensive iron mincs. The population in 1875 was I8, 122.
Hof was built about 2080, on the site of an ole robler castle. Oitiginally it belongel to the empire, but afterwards it was held by the dukes of Muran, and then by the coints of Orlammude, until it was sold in 1373 to the conats of Nuremberg. The eloth mannfacture introduced into it in the 15 th century, and the manufacture of veils, begur in the 16 th century, greatly promoted its prosperity, Lut it suffered severely in the Allertine and Inusite wars, as well as in the Thirty Years' War; and in 1893 the greater part of it was destroyed by fire. In 1792 it camo into the possession of Prussia; in 180 n it fell to France; and in 1810 it was incorporated with Bawarin. See Widman, Chronik der Sude Hof, 1841 ; Ernst, Geschichte und Beschuribung des Beiriths und der Shatd Hof, 1866.

ItOFER, Avdreis (1767-1810), a Tyrolese patriot, was born October 2, 1767, at St Lconhard, in the Passeyr valley. There his father kept a tavern ealled the Sandhof, which Hofer inherited, and on that account he was popularly known as the "Sandwirth." In addition to this lie carried on a trade in wine and borses with the north of Italy, aequiring a Ligh reputation for intellimence and bonesty. On the outbreak of the war i: 1796, he commanded a company of riflemen against the French at Lake Garda, and after the peare of Lunéville he took an active part in organizing the Tyrolese milition After the treaty of Presturg (1805), by which Tyrol was transferred from Austria to Bavaria, Hoter was ehosen a menber of the seeret Tyrolese deputation which went to lizun to confer with the emperor on the condition of their comery; and when, on the anviee of Austria, the whole of Tyrol in April 1809 rose in arms, Hofer was chosen to the command of a large division of the insurgents, anl inflicted an overwhelming defeat on the Bavarians at Sterzing. Reeinforctuents sent by Napoleon defeated the Anstrians at Woergl and the Tyrdese at Fcuersinger, but Ifofer coming to the rescue of his comatry repulsed the Thwarinns with great ingy at hursbruck. Notwithstanding also that Austrianfter Napetenn's victory at Wagram agreed to evacuate Tyrol, If fer remelved to maintain the strugele, and on the 13th Aurun, at Mery Isel, routel with great stuphter a combined French and havarian foree, and completty freal his country from forcign domimion. For some time the internal affairs of 'Tyoul were administered lys an independent Government of which IDofer was the liead, but after the peace of Victum the binamims asain cuderweureit to assert their supremacy, ant after a heroie resistande llufer was compelled to flee fors afety to the monatians. A price was set apon his leand, and on areome of the treathery of one of his most manted foliowers, he was captured, Jamary 27, 1810, in a chalet in tho lasear valley. He was sent to Mantua for trial, and on the goth Febinary, by the umbers of Napulent, whe extentultwentyfour benes after lis combenation. In lex? has rumains were removel from the phare of sepulture at Mintua to Entostruck, whre they were intered in the Francissan church, and in $18: 3$ a matle statue wis rected uer his tomb. In ! ti9 the patent of molitity Uectend for him in

Austria in 1800 was conferred upon his family by the title of Von Passeyr.
Sce Leben und Thaten des chematigen Tyroler Ansurycnten. Chefs Andr. Hofer, Berlin, 1810; Auti. Hofia und dic Tyroler Insur. rection in Juhe 1809, Munich, 1 S11; Hormayr, Geschichec Ande. Hofer's Sumwirths cuef Jusseys, Leipsic, 1845; B. Weber, Das That Fesseyr und scine Beicohncr mit besondever Ruckicht auf Andrcas Hofer and des Juhr 1509, Imnsb:uck, 1851 ; Rapp, Tirol in Jahr 1809, Imushruck, 1852 ; Heigel, Andras Hofor, Munich, 1874. His history has supplied the materials for tragedies to B . Auerbach aud Immermann.
hoffmanN, August Hemmich (1798-1874), known as Hoffmann ron Fallersleben, German loet, philologist, and historian of literature, was born at Fallersleben, in Lüneburg, April 2, 1798. He ras educated at Helmstialt and Prunswick, and afterwards at the universites of Güttingen and Bonn. His original intention was to sturly theology, but he soon devoted himself entirely to literature. In 1823 he was appointed librarian to the university of Brestau, a post which he held till 1838 . He was made extriordinaty professor of the German language and literature at the unversity in 1830 , and full professor in 1833.; but he was deprived of his chair in 1842 in consequence of his Uupolitische Lieder, which gave mueh offence to the ruling classes of Prussia. He then travelled fur sume time in Germany, Switzerland, and Italy, and lived fur two or three years in Mecklenburg, of which he became a naturalized citizen. The revolation of 1848 brought him back to Prussia, where he was restored to his rights, and received as a pension the "Wartegeld," that is, the salary attached to a promised office which is not yet vacant. He married in 1849, and during the next ten years lived first in Bingerbrïck, afterraards in Neusied, and then in Weimar, where he was one of the editors of the Ilcimarische Juthrbuch. In 1860 he became librarian to the duke of Tatibor, and he retained this appointment till his death on the 20th of Jamary 1874. Fallersleben was one of the best popular poets of moflern Germany. In politics he ardently sympathized with the progressive tendencies of his time, and he was among the carliest and most elleetive of the political poets who prepared the way for the outbreak of 18.18 . As a poet, however, he aequired distinction chiefly by the ease, simplicity, and grace with which he gave expression to the passions and aspirations of orlinary life. Athough he had not been scientifically trained in musie, he composed melorlies for many of his songs, and a considerable number of them are sung by all classes in every part of Germany.

The best known of his poetien writings is las firlichete (8th cdition, berlin, 1874) ; lat there is great ment also in his Alcmenmishe Leeler (5th edition, Manmbinn, 1813), Soldetentider (Mamz, 1851), Soldatenleben (botlin, 1852), Mhendebrt (Neuwied, 1865),

 Livder thes der Schrciz, and Streablhehter ate not withont poctical valoe, hut they are mainly minestome an relation to tho practical movemonts of the are an which they ware watten. As a stadent
 fresevering amp ebltivated of German scholars, some of the chict

 Hhter, sjomben sur dousshon Literaturgoschate, and Findlimge, dmomp his editions of particular works may te matmed licinche
 Lenve in limembriss (1836) was at the time of its publication a s ibluble montribution to phibological researeh, and listorians of Cicmans litenature stidl altach impontance to his Geschichte des
 whathembichen Jititer (31 ed, 1sen), nud Die diutschent Gescll. solimithledize dis 16 und 17 Jehth. (2l ed., 1800). In 1868-70

 ron Fellersliben und Morelz Bhout an Perdmamil ftolf (Vionna, 187); Wa>ner, Mufmann rom Fellorsteden, 1S18-68 (Viemas litit); anil Gotechall, Furtruts utad studien (vol. v., Leipsit.

Hoffyeann, Ensst Theodor Wiluelm (17:6-1822), German romance writer (for whose \&name Wilthelm his own substitute, in homarge to Mozart, was Amadeus), was born at Könissberg, January 24, 176 . His parents, who lived unhappily toyether, separating a year or two after bis birth, he was brouglt up in his grandmother's house, under the care of a bachelor uncle. Ilis relations seme to have been fairly puzzled at the waywardiness, cumning, and precocity of the boy, who neglected his school lessons and hated routine, but applierl himself with passionate zest to the stuny of music and painting, extemporized marvellonsly on the harpsichord, and with his pencil caricatured friend and foe alike with terrible facility. Incited by his friend llippel, Hoffmann on leaving school turned to the hereditary profession of the law; but, as no immediate post offererl itseif, he gave lessons in music and painting, and wrote two novels, for which he could not find a pablisher. A discreditable love episorle with one of his pupils drove him at this time from Königsberg, and he went to act as assistant to another lawyer uncle at Gross-Glogan in Silesia. In 1798 he became referendary in the supreme court at Berlin, and in 1800 passcit his final examination and was appointed assessor to the court of Posen. Here lie seems to have led a dissipated life, and to have contracted the habit of excessive drinking which $\mathrm{m}^{\text {rred }}$ his whole career. He subsequently made enemics in Posen by sending a series of scandalous carieatures for distribution at a masquerade ball, and his appointment was on this account changed to a councillorship at Plozk, where, having married ere this time, he spent two yoars in retirement, sturlying in his leisure hours the theury of music, translating Italian poetry, and sketching plans for future literary work; but in 1804, again in favour at beadquarters, he was transferrerl as councillor to Warsaw. There he Sound a true friend in Hitzig, his colleague, and made the scquaintance of Werner, at whose request he set music to some parts of the Kireuz an der Ostsee. IIe soon beeane the centre of musical society in Warsaw, helped to institute a concert-house or "Ressource," found leisure not only to paint its saloons but to compose music for its orehestra, and was actunally conducting this oreliestra before enthusiastic audiences when Warsaw was taken by the French in 1806. For some time he lingered in Wirsaw; but in the spring of 1 Sg 7 , having recoverel from a fever to find himself almost penniless, lis returned to Derlin to seek somo means of liselihood. His only child died in Posen white he was in Berlin; and, though ho suceceded in obtaining the jost of musiedirector to the Bamberg theatre, the theatre soon after becams bankrupt, and Hoffmann was once more destitute. He now found oceasional employment as a composer of operatic music, and, as a last resource, attempter nuthorship; The editor uf the Allgemeine Musikalische Zoitury culisted his services, and in that paper appeared a series, afterwards published, with a preface by Jean Panl liielter, as F'cntusiestücle in Callots Manier (1814; 4th ed., l8G.1). He composed at this time, among other things, a Miscrere by order of the grand-duke of Wirzburg, ami, for the proprictors of the Eamberg theatre, music to Kotzcbue's opera Das Gespenst; and he also gave lessons in music and drawing, decorated saloons, and painted portraits to order. The misery of his condition was enlanced by his wife's illness and his own light-hented recklessness. The money which the inherited at the death of his uncee did not sulice to pay his debts; and he had been roluced to selling lis last coat for food when his friends obtained for him the post of music-director "to another theatrical company, performing alternately at Dresden and Lcipsic. Hofimann was writiug ramances in n garret in Dresden, or, bedridden by gout, was drawing caricatures of the "ferswinsehte Franzosen"
while Napolen and the allied armies were struggling round its walls In 1814 appearel lis rision cuf der: Schlachtiflde ron Dresten; and in the same yoar, on tho fall of Napoleon, he returned to Derlin, aml was reinstated in the legal proicssion. Two years later he was appointend conncillor in the supreme court, nad from that time enjoyel a good income, a dignifiod position, aml the socicty of his best friends. IIe was alrealy, in virtue of his Fantasiestiicke, regarded as one of the most notable romanco writers of his day, but most of his works were yet to come. These followed each other in quick succession. Dic Etixire des Toujels appeared in 1816; Nachsticlic in 1817; Seltsame Leiden cires Theaterdivelitors in 1818; Dio Serapionsbruder, a collection of tales, in 1819-21; Hlein Zaches, genamat Zanober, in 1819; Prinzessin Brombilla in 1821; Meister Floh in 1822; and Lcbersansichtern des haters Merr in $1821-2.2$. He also composed the opera Undine, the libretto of which was prepared by Foundo himself. It was performed with success in Lerlin; but the music was lost in the subsequent restraction of the opera-house by firc. Holfmann's prospects' in Jerlin wers ruiner by the ohl habit of intemperanee, which lad grown upou him daring the years of his poverty. We are tosd that his legal duties were scrupulously performed, and that the remniufer of his day was spent in literary work, but that, when this was over, he avoided refined socicty, and his nights became a serics of wild pothouse revels. His health soon gave way; and, after inteuse suffering froun spinal paralysis, be died at Derlin, July 21, 1822. Der Feind, his last work, remained unfinishet.

Yersatility is the chicf claracteristic of ILofmann's genius, and it is also its greatest wealness. He is andmitted to lave been an excellent jurist. If is paintiugs were clever, thougl fantastic. He was a popular compuser and a brillinnt romance-writer. But this sery versatility prerented his rising to emincoce in any one yocation; and, eveu as a romance-writer, in wlich capacity he will be longest remembered, he was deficicut in some of the highest attributes. His imagination was unboundel, his wit light and acrid, his dialogue stirring. Ilis descriptive passages, in their minute vividness, have been compared to those of Sir Walter Scott, and his romances abound in the superstitions and mythical, that demonic element which is so peculiarly German, and which in Ilotmann amennted almost to a frenzy. But, with all this, a perusal of his writiugs leaves a disagreeable impression on the mind, a feeling of dissatisfnetion and unrest. They are the production of a misdercloped mature, of a man full of feverish impulses, odidities, and wakness, not devoil of tenderness, but whose temper was unforgiving and malicious, whose prevailing mood was the sareastic, and whose only religious creed was a blind, beadlong fatalism. There is also a strong element in his writings which Carlyle in his hiograpthy of IIofiumn has calted "phyerlike," a glitter which is of tinsel, a somethiug "false, brawling, and tawdry:" His writings, like his clanacter, are a curious mixture of what is really beautiful noul rare with much that is patty and sordil. Their elcrerness is irresistible; but the dignity of the greatness is not there.
Die Elixive dor Teufels, his longest completed work, contains in a narmative form some of his own wildest and most revolting delusions; and the derisive Kater Murr, of which the third volume is wanting, is not less characteristic. Some of his smaller picces have justly been thopglit the most pleasing and yorfect of his works. Ammy theso are Der goldene Tonf, Das Friuldin vom Scudery, Doye und Dayaresse, and Meister M/artion mud seine Gcsiller. Tho delicacy and fiuish of the last, slight though it is, Lave stambed it as Hoffiname's masterviece.

A life of Hoffmann has been written by Hitzig, his eolleague first in Warsaw and afterwards in Berlin, under the title of Hoffmann's Leben und Nachlass. A selection of his writines was published in Berlin, 1827-28, and five more volumes (including Hitzig's life) were adued by his widow in 1939. A selection of his writings by Kurz appeared in 1870, and an edition of his collected works, in 12 vols., in 1871-i3. Most of his romasces are to be obtained scparately in the Unaversal-Buthothct, a cheapedition of standard anthors published at Leipsic. Die Elixire des Tcufcls has been Iranslated into English (Edin., 1824), and Callyle has given us a biography of Hoffimann, together with a translation of one of the Fantasucutuctic, "Der Goldene Topf," in his Gcrman Romance. (F. M.)

HOFFMANN, Friedrich (1660-1742), the most famous physician in a family that had been connected with medicone for 200 years before him, was born at Halle, February 19, 1660. He received his school education at the gymasium of his native town, where he acquired that taste for and skill in mathematics to which be attriluted much of his after success. At the age of eighteen he went to study raedicine at Jeaa, whence in 1680 he passed to Erfurt, in order to attend Kasper Cramer's lectures on chemistry. Next year, returning to Jena, he reccived his doctor's diploma, and, after publishing a thesis, was permitted to teach. Constant study thea began to tell on his health, and in 1682 , leaving his already numerous pupils, he proceoded to Minden in Westphalia to recrust bimself, at the request of a relative who held a high position in that town. After practising his profession at llinden for two ycars, Hoffmaan made a journey to Holland and England, where he formed the acquaintance of many illustrious chemists and physicians. 'lowards the end of 1684 he returned to Minden, and during the next three years he received many flattering appointments. In 1688 he removed to the more promising sphere of Halberstadt, with the title of physician to the principality of Halberstadt ; and on the founding of Halle university in 1693, his reputation, which had been steadily increasing, procured for him the primarius chair of medicine, while at the same time he was charged with the responsible duty of framing the statutes for the new medical faculty. He filled also the chair of natural philosophy. With tho exception of four years (1708-12), which he passed at Berlin in the capacity of royal physician, without however giving up his professnrship, Hoffmamn spent the rest of his life at lalle in instruction, practice, and study, interrupted now and again by visits to different courts of Germany, where his services procured him honours and rowards. 1 lis fane became Enropean. He was enrolled a member of many jearaed societics in different foreign countrice, while in his owa be became prisy councillor. IIc died at IIalle, on November $12,1742$.

Iloffmann's writings, the result buth of compilation and original research, bave still a considerable suggestive valuc. Jis thenries, though sometimes vaguc and even idle, contributed in some degree to introluce a revolution in medical seience; while his doctrine of atnoy and suasm in tho living soldd as the sole cause of internal disorders turned the attention of physicians more directly to the primary mowing powers of the system. He pursued with ardone the study of practical chenistry, and pharmacy nwes to hin several preparations which are still in generat ase. It was through lloffman also that many of the mineral springs of Gemany first came into repute as h"alth resurts:

Uf his numerone writing a catalogue is to ho foum in llaller's Jinhmothoch Maticters Praction. The chict is Midatma litheomatis
 It was tranclated into Frouch in 1739, mider thi fitle of Medecias

 gnplements worp added in 175 and 1700 bitions atpeatred also at Vemmen 1315 , and at Naples in 1753 and 1543.
hoffhanio, Johann Joseru (180.7-1878), an cminent Chincse ani Japanese scholar, was hom at Wiirzhurg
c. the 16 th of February 1805. After studying in the philosophical department of the Würzburg university, the young man took to the stage in 1825 ; and it was only by an accidental meeting with the German traveller, Dr Siebold, in July 1830, that his interest was diverted to Oricutal philology. From Siebold himself he acquired the rudiments of Japanese ; and in order to take advantage of the instructions of Ko-ching-chang, a Chinese teacher whom Sielold had brought home with him, he made himself acquainted with Malay, the only language except Chnese which the Chmaman could understand. Such rapid advance did Hoffmann make that in a few years be was able to supply the translations for Siebold's Nippon; and the high character of his work soon attracted the attention of older scholars. Stanislas Julien invited him to Paris; and he world probably have accepted the invitation, as a disagree -nt had broken out between him and Siebold, had not . . . Baud, the Dutch colonial miaister, appointed him Jaranese translator with a salary of 1800 florins or $£ 150$. The Dutch authorities were slow in giving him further recognition; aud he was too modest a man successfully to urge his claims. It was not till aiter he had received the offer of the professorship of Chinese in King's College, London, that the authorities made him professur at Leyden, and the king allowed bim a yearly pension. In 1875 he was decorated with the order of the Netherlands Lion, and in 1877 he was elected corresponding member of the Berlin Academy. But these honours came almost too late; for a disease of the lungs from which he liad long suffered terminated fatally on the 19 th of January 1878.

Hoffmann's chief work is his Japanese Dictionary. Though begun in 1559 it is stll unfinished, for the diffeulties against which he had to eontend were immense. Unable at first to procure the necessary type, he set himsulf to the cutting of punches; and even when the proper founts were oltained be had to act as his own compositor as far as Chinese and Japanese were eoneerned. His Japnnese grammar is a standard work; it wiss publisbed in Duteh and English in 1867, and in English and German in 1876. Of his miscellaneous productions it is enough to mention "Japan's Dezuge mit der Koraischen Halbinsel und mit Schina " in Nippon, vii. ; Yo San- n-Rok, L'art d'elever les vers à soic au Japan, par Ouckali Mourikouni, Paris, 1848 ; "Die Heilkunde in Japan" in Mithcil. d. dentseh. Gcacles:h. fïr Natur-und Iolkerk. Ost-Asicns, 1873-1874; and Japonische Siudien, 1877, dealing with Japanese poctry. The Dictionary is being eontinued by L. Serrurier.
For further details see Kern in Ávinklijke Akadcmic ren Wetenschappen; W. Vissering in Het F"aderland, 23 d Jan. 1878 ; and Leiden Studenter-almanak;, 1879.
hofmann, Johann Cheistian Konrad von (18101877), Lutheran theologian, was born December 21, 1810, at Nuremberg, whence, after passing through the usual gymnasium course, he in $18: 27$ procecded to the university of Arlangen as a student of theology and history. In 1829 he became the pupil of Schleicrmacher, Hengstenberg, Neander, and Tanke, at lierlin; in 1832 he passed his examination as a candidate in theology at Erlangen; and in the following year be received an aprointment to teach Helorew and history in the gymnasium there. In 1835 and] 838 respectively he "habilitated" in the philosophica] and in the theological faculty at Frlangen, where in 1S4I he was appointed professor extraordinarius in theology. In 1842 he acceptel a call to an ordinary theological chair at hostock, but in 1845 he returned once more to Erlangea, where he hat been nominated as successor of ITarless. Apart from his professorial and literary activities, his life was a singularly uneventful one; he was, howevor, an entlusiastic adherent of the political party of progress, and as such sat as member for Erlangen and Firth in the lasarian second chamber from 1863 to 1868 . His death uecurred un December 20, 1877.
He wrote Die siebsig Jahro des Jcremias u. die siebzig Jghmoochen des flumul. 1835: Gischichte des Alfruthrs in den Ceveninten, 1837; 'Gruuch der Wictysehichte, 1839, which becamo a text-hook in
the Prokstant gymnasia of Bavaria; Weissagung u. Erfülhung im alten u. neuen Testamente, 1841-44, 2d ed., 1857-60; Der Sehriflbeweis, 1852-56, 2d ed., 1857-60; Die Hcilige Schrift Neuen Testainents zustommenhängcnd uentersucht, 1862-75; and Theologische Ethit, 1878. He also edited, in conjunction with Ilofling and Thomasius, the Zeitschrift fior Protestantis:nus 7. Kirche from 1846 ouwards. His most importhnt works are the four last namerl. In Weissagung ac. Evfiallung he not unly earries sut the idea, originated by Herder, that the entire Ohl Testament is an organic whole is oue great connected prophecy, ponting towards Christ, but claborates the thonght that the New 'lestia. ment also is organimally prophetie of the last lhangs. In the Silhrifticueev, on the fadamental axiom that the history of redempthon as recorded in Scmpture is the history of a development he at great length sets forth the nethods according to which donnutic theology must seek for and use the Seripture proofs on which it is or ought io be based. Itis work upon the New Testament discusses the credibility of the several bouks, and seeks to ascertain the place occupied by earh in the organic whole. The Theologische Ethit unfolds the schame of Christian duty as arising out of the new relations of the believer to God through Christ. In theology as in ecclesiastical polity Iloffmann was a Latheran of a very extreme type, although the strongly marked individurlity of some of his opinions laid him open to repeated accusations of heterodoxy.

HOGARTH, Willam (1697-1764). Apart from the otory of his works, the life of the greatest English pictorial satirist, when divested of doubtful tradition, is slngularly devoid of incident. It is mainly to be found in the autobiographical . Memoranda published by Jotn Ireland in 1798, and the suecessive inecdotes of the antiquary, John" Nichols. Hogarth was born in London on the 10th day of November 1697, and baptized on the 28th in the church of St Bartholomew the Great. His father was a schoolmaster and literary hack, who had come to the metropolis to seek that fortune which had been denied to him in his uative Westmureland. His son seems to bave been early distinguished rather by a talent for drawing and an active perceptive faculty than by any close attention to the learnang which he wàs soon shrewd enough to see had not made his parent prosper. "Shows of all sorts gave me uncommon pleasure when an infant," he says, "and mimiery, sommon to all children, was remarkable in me. . . . My oxercises when at sehool were more remarkable for the ornaments which adorned them than for the exereise itself." This being the case, it is no wonder that, by his own desire, ho was apprenticod to a silver-plate engraver, Mr Ellis Gamble, at the sign of the "Golden Angel" in Cranbourne Street or Alley, Leicester Fields. For this master be sograved a shop-card which is still extant. When his apprenticeship began is not recorded; but it must have been concluded before the beginaing of $17: 0$, for in April of that year ho appears to have set up as engraver on his own aceount. His desires, however, were not limited to silver-plate engraving. "Engraving on copper was, a. twenty years of age, my utmost ambition." For this he lacked the needful skill as.a draughtsman; and his account of the means which he took to supply this want, withont soo much iaterfering with his pleasure, is thoroughly characteristic, though it can searcely be recommended as an example. "Laying it down," ho says, "first as an axion, that he who could by any means aequire and retain in bis memory perfect ideas of the subjects he meant to draw would have as clear a knowledge of the figure as a nan who can write freely hath of the twenty-four letters of the alptabet aod their infnite combinations (each of theso being composed of lines), and would consequently be au tecurate designor, . . . I therefore endeasoured to habituate nyself to the osercise of a sort of technical memory, and by repeating in my own mind the parts of which objerts were composed I could by degrees comtine and put them lown with my peacil." This account, it is possihle, has sumething of the complacency of the old age in which it was written; but there is listle doubt that his marvellous power If seizing expression owed less to patient academical study
than to his unexampled eyememory and tenacity of minor detail. But he was not entirely without technical training, as, by his own slowing, he oecasionally "took the life "tu correct his memories, and is known to have studied at Sir James 'hlornhill's then reeently opened art school.
"IIis first employment" (i.e., after he set up for himself) "seems," says Nichols, "to have been the engraving of arms and shop bills." After this he was employed in design. ing "plates for booksellers." Of these carly and mecstly insignificant works we nay pass over The Latiery, an Emblematic Print on the South Sea, and some book illustrations, to pause at Masquerades and Operas, 1794, the first plate he published on his own account. This is a clever little satire on contemporary follies, such as the masquerades of the Swiss adventurer Heidegger, the popular Italian opera singers, Rich's pantomimes at Lincoln's Inn Fields, and last, but by no means least, the exaggerated popularity of Lard Burlington's protegé, the architect paintes William Kent, who is here represented on the summit ol Burlington Gate, with Raphacl and Michelangelo for sup. porters. This worthy Hugarth had doubtless not learned tu despise less in the school of his rival Sir James Thornhill. Indeed almost the next of Ilogarth's imp,ortant prints was aimed at Kent alone, being that memorablo burlesque of the unforturate altarpiece designed by the latter for St Clemetet's Danes, and which, in deference to the ridicule of the parishioners, Bishoy, Gibson took down in 1725. Hogarth's squib, which appeared subsequently, exhibits it as a very masterpiece of confusion and bad drawing. In 1726 he prepared twelse large engravings for Butler's Huditras. These he himself valued lighly, and they are the best of his book illustrations. But he was far too individual to be the patient interpreter of other men's thoughts, and it is not in this direction that his successes are to be sought.
To 1727-28 belongs une of those rare occurrences whith have survived as contributions to his biagraphy. He was engaged-by a certain Morris, a tapestry worker, to 1 repare a design for the Flement of Earth. Morris, bowever, having heard that he was "an engraver and no painter," declined the work when completed, and Hogarth accordingly sued him for the money in the Westminster Court, where, on the 28th of May 1728, the case was decided in his (Hogarth's) favour. It may have been the asjersion thas early cast on his skill as a painter (coupled perrhaps with the unsatisfactory state of print-selling, owing to the uncontrofled circulation of piratical copies), that induced hins about this time to turn his attention to the production of "small conversation pieces" (i.e., groups in oil of fulllength portraits from 12 to 15 inches high), many of which are still preserved in different collections. "This," he says, "having novelty, sacceeded for a few years." Amony his other efforts in oil hetween 1728 and 1732 were The Waostead Assembly, The IIonse of Conmons examining Eambridge, an infamous warden of the lleet, and nunerous pictures of the chief actors in Ciay's popular Legyer's Opera.

On the 23 d of Mareh 1729 he was married at eld Padding. ton church to Jane Thornhill, the only daughter of Kent's rival above-mentioned. The match was a clandestine one, although Lady Thornhill a apears to have favoured it. We next hear of him in "lodgings at South Lambeth," where he rendered some assistance to the then well-known Junathan Tyers, who opened Yauxhall in 1732 with an entertainnent styled a ridutuo al fresco. For these gardens llogarth painted a poor rieture of IIenry VIII. and Anna Butlen, and for them ho also made same designs of tho Four Times of the Day, which he nfterwards elaborated into a finished scries. The only engravings between 1726 and 1732 which need be referred to aro the Largo Masquerade Ticket (1727), another satire on masquerades, aud the
print of Burlington Gate, 1731, evoked by Pope's Epistle to Lord Burlington, and defending Lord Chandos, who is therein satirized. This print gave great offence, and was, it is said, suppressed. To 1732 belongs that genial journey from London to Sheerness, of which the original record-still survives at the British Museum in an oblong MS. volume, entitled An Account of what seem'd most Remarkuble in the Five Days' Peregrination of the Five Following Persons, Vizt, Messieurs Tothall. Scott, Hogarth, Thoruhill and Forrest. Begun on Saturday May $27 t$ th 1732 and Finish'd On the 31st of the Same Month. Abi tu et fac similiter.-Inscription on Dulwich Colledge Porch. The journal, whicl is written by Furrest, the father of Garrick's friend 'Theodosius Forrest, gives a good idea of what a " frisk"-as Jolnson called it-was in those days, while the illustrations were by Hogarth and Samuel Scott the landscape painter. John 'lhornhill, Sir James's son, made the map. This version (in prose) was subsequently run into rhyme by one of Hogarth's friends, the Rev. Mr Gostling of Canterbury, and after the artist's death both versions were published. In the absence of other biographical detail, they are of considerable interest to the student of Hogarth.

In 1733 Hogarth moved into the "Golden Head" in Leieester Fields, which, with occasional absences at Chiswiek, he continued to occupy until his death.: By this date he must have completed the earliest of those great series of moral paintings which first gave him his position as a great and original genius. This was 1 Harlot's Progress, the paintings for which, if we may trust the dato in the last of the pietures, were finished in 1731. The engravings, by the artist bimself, were published in 1734. We have no record of the particular train of thought which prompted these story-pictures; but it may perlaps be fairly assumed that the necessity for creating some link of interest between the persenages of the little "conversation pieces" above referred to led to the further idea of connecting several groups or scenes so as to form a sequent narrative. "I wished," says. Hogarth, "to compose pictures on canvas, similar to representations on the stage." "I have endeavoured," ho says again, "to treat my subject as a dramatic writer; ay picture is my stage, and men and women my players, who by means of certain actions and gestures are to exhibit a dumb show." There was never a more eloquent dumb show than this of the Harlot's Progress. In six scenes the miserable career of a woman of the town is traced out remorselessly from its first facilo beginning to its shameful and degraded end. Nothing of the detail is softened or abated; the whole is acted out corcm populo, with the hard, uncompassionate morality of the age the painter lived in, while the introduction liere and there of one or two well-known characters liko Colonel Charteris and Justice Genson give a vivid reality to the satiro. It had an immediato success. 'To say nothing of the fuct that the talent of the paintings completely reconciled Sir James 'Thornhill to the son-in.law he had hitherto refused' to acknowledge, moro than twelve hundred names of subseribers to the engravings were entered in the artist's beok. On the appearance of plate iii. the lords of the treasury trooped to Leicestor Fields for Sir Jolnn Conson's porirait whieh it contained. Theophilus Cibber mado the story into a panto. mine, and some one else into a balland opera; and it gave rise to numerons pamphlets and poems. It was painted on fan-monuts and transferred to cups and snucers. Lastly, it was freely pirated. There could be no surer testimuny to its popularity.

The favourable reception given to 4 IIarlot's l'rogress prompted A Riake's l'rogress, which speedily followel, although it had not a like success. It was in eight ${ }^{\text {phatcs }}$ in licu of siz. The story is unequal; but there is nothing
finer than the figure of the desperate rake in the Covent Garden gaming-house, or the admirable seenes in the Fleet prison and Bedlam, where at last his headlong career comes to its tragic termination. The plates abound with allusive suggestion and covert humour; but it is impossible to attempt any detailed description of them here.
A Rake's Progress was dated June 25, 1735, and the engravings bear the words "according to Act of Parlia. ment." This was an Act (8 Geo. II. eap. 13) which Hogarth had beon instramental in obtaining from tho legislature, being stirred thereto by the shameless piracies of rival printsellers. Although loosely drawn, it served its purpose ; and the painter commemorated his success by a long inscription on the plate entitled Crowns, Mitres, dec., afterwards used as a subscription ticket to the Election series. These subscription tickets to his engravinge, let us add, are among the brightest and most vivacious of the artist's productions. 'Ihat to the Harlot's Progress was enticled Boys peeping at Nature, while the Rake's Progress was heralded by the delighful etching knowa as A Pleased Audience at a Play, or The Laughing Audience.
? We must pass more briefly over the prints which followed the two Progresses, noting frrst A Midnight Modern Conversation, an admirable drinking seene which comes between them in 1734, and the bright little plate of Southwark Fair, which, though dated 1733, was published with A Rake's Progress in 1735. Between these and Marriage \grave{a} la Mode, upon the pictures of which the painter must have been not long after at work, come the small prints of the Consultation of Plysicians, Scholars at a Lecture, and Sleeping Congregation, 1736 ; the Four Times of the Day, 1738, a series of pictures of everyday 18th century life, the earlier designs for which have been already referred to; the Strolling Aetresses dressing in ä Barn, 1738, which Walpole held to be, "or wit and imagination, without any other end, the best of all the painter's works;" and finally the admirable plates of the Distrest Poet, painfully composing a poem on "Riches" in a garret, and the Enraged Musician fulminating from his parlour window upon a discordant orchestra of knife-grinders, milk-girls, ballad-singers, and the rest upon the pavemeat outside. These are dated respectively 1736 and 1741 . To this period also (i.e., the period preceding the production of the plates of Marriage à la Mode) belong two of those history pietures to which, in emulation of the Haymans and Thorohills, the artist was continually attracted. The Pool of Bethesda and the Good Samaritan, "with figures seven feet high," were painted circa 1736, and presented by the artist to St Bartholomew's Hospital, where they remain. They were not mast 3rpieces ; and it is pleasanter to think of his cor. nexion with Captain Coram's recently established Foundling llospital (1739), which he aided with his money, his graver, and his brush, and for which lie painted that admirable partrait of the good old philanthropist which is still, aud deservedly, one of its clicef ornaments.

In A Harlot's Progress Hogarth had not straycd much beyond tho lower walks of society, aud altheugh, in A Rake's l'rogress, his hero was taken from the middle classes, he can seareely be said to have quitted thoso fields of observation which are common to every spectator. It is therefore more remarkable, looking to his education and autecedenta, that his misterpicee, Marringo a la Mode, should successfully depiet, as the advertisement has it, "a varicty of madern occurrenees in high life." Yet, as an accurato deliveation of the surroundings of upper class 18 th century society, his Marriage a la Mode has never, we beliovo, been seristisly assailed. 'The eountess's bedroom, the carl's apartment with its lavish ceronets and old masters, tho grand saloon with its marble pillars and grotesque omanents, are fully as true to naturo as tho frowsy chamber in tho "Turk's.

Head Bagnio," the quack-doctor'a museun in St Martin's Lade, or the mean opulence of the merchant's honse in the city. And what atory could be more vividly, more perapicuously, more powerfully told than this godless alliance of sacs et parchemins-this miserable tragedy of an illassorted marriage? There is no defect of invention, no auperfluity of detail, no purposeless stroke. It bas the merit of a work by a great master of fiction, with the additional advantages which result from the pictorial fashion of the narrative ; and it is matter for congratulation that it is still to be seen by all the world in the National Gallery, where it can tell its own tale better than pages of commentary.

The engravings of Marringe à la Mode were dated April 1745. Although the painter by this time found a ready market for his engravings, he does not appear to have been equally auccessful in selling his pietures. The people bought his prints; but the more opuleat and not numerous connoisseurs who purchased pictures rere whelly in the bands of the importera and manufacturers of " old nasters." In February 1745 the origioal oil paintings of the two Progresses, the Four Times of the Day, and the Strolling Actresses were still unsold. On the last day of that meath Hogarth disposed of them by an ill-devised kind of auction, the details of which may be read in Nichols's Anecdotes, for the paltry aum of $£ 427,7 \mathrm{~s}$. No better fate attended Mafriage à la Mode, which five years later became the property of Mr Lane of Hillingdon for 120 guiveas, being then in Carlo Maratti frames which had cost the artist four guineas a piece. Something of this was no doubt due to Hogarth's impracticable arrangements, but the fact abows conclusively how completely blind his contemporaries wera to his merits as a painter, and how bopelessly in bondage to the all-powerful picture-dealers. Of these latter the painter himself gave a graphic picture in a letter arddressed by him under the pseudonym of "Britophil" to the St James's Evening Post, in 1737.

But, if Hogarth was not successful with his dramas on canras, be occasionally shared with bis contemporaries in the popularity of portrait painting. For a picture, executed in 1746, of Garrick as Richard III. he was paid $£ 200$, "which was more," says he, "than any Eoglish artist ever received for a single portrait." In the same year a sketch of Simon Fraser; Lord Lovat, afterwards beheaded on Tower Hill, had an exceptional success. Our limits do not, however, enable us to refer to his remaining works in detail, and we must content ourselves with a brief enumera. tion of the most important. These are The Stage Coach or Country Inn Yard, 1747 ; the series of twelve plates eatitled Irdustry and Idleness, 1717, depicting the career of two Londou apprentices; the Gate of Calais, 1749, which had its origin in a rather upfortunate visit paid to France by the paiater after the peace of Aix-la-Chapelle; the March to Finchley, 1750 ; Beer Street, Gin Lane, and the Four Stages of Cruelty, 1751; the admirable representations of election humours in the days of Sir Robert Walpole, eutitled Four Prints of an Election, 1755-8; and the plate of Credulity, Superstition, and Fanaticism, a Medley, 1762 , adapted from an earlier unpublished design called Enthusiasm Delineated. Besides these must be chronieled three more essays in the "great atyle of history painting," viz., I'aul before Felix, Moses brought to Pharaoh's Daughter, and the Altarpiece for St Mary Redeliff at Bristol. The first tro were engraved in 1751-2, the last in 1794. A subseription ticket to the earlier pictures, entitled Paul before Felix Burlesqued, had a popularity far greater than that of the prists themselves.

In 1745 Hogarth painted that admirable portrait of himself with bis pug-dog Trump, which is now in the Netional Gallery. -In a corncr of this he had drawa on a
paletta a serpentine line with the words "The Line of Beauty and Grace." Much inquiry ensued as to "the meaning of this bieroglyphic ;" and in an unpropitious hour the painter resolved to explain his meaning in writing. The result was the well-known Analysis of Beauty, 1753, a treatise "to fix the fluctuating ideas of Taste," otherwise a desultory essay having for pretest the precept attributed to Michelangelo that a figure should be always "Pyramidall, Serpent-like, and multiplied by one two and three." The fate of the book was what might have been expected. By the painter's adberents it was praised as a finald deliverance upon æsthetics; by his enemies and profesaional rivals, its obscurities, and the minor errors which, notwithstanding the benevolent efforts of literary friends, the work had not escaped, were made the subject of endless ridicule and caricature. [t added little to its author's fame, and it is perhaps to be regretted that he ever undertook it. Mureover, there were further humiliations in store for bim. In 1759 the success of a little picture called The Lady's Last Stake, painted for Lord Charlemont, procured him a commission from Sir Richard Grosvenor to paint another picture "upon the same terms." Unhappily on this occasion he deserted his own field of genre and social satire, to select the story from Boccaccio (or rather Dryden) of Sigismonda weeping over the heart of ber murdered lover Guiscardo, being the subject of a picture by Furini in Sir Luke Sohaul's collection which had recently been sold for $£ 400$. The picture, over which he spent much time and patience, was not regarded as a success ; and Sir Richard rather meanly shuffled out of his bargain upon the plea that "the cooatantly baving it before one's ejes would be too often occasioning melancholy thoughts to arise in one's mind." Sigismonda, therefore, much to the artist's mortification, and the delight of the malicious, remained upon his hands. As, by her husbaad's desire, his midow valued it at $£ 500$, it found no purebaser uutil after her death, when the Boydells bought it for 56 guiocas. It was exhibited, with others of Hogarth's pictures, at tie Spriag Gardens exhibition of 1761 , for the catalogue of which Hogarth engraved a Head-piece and a Tail-piece which are still the delight of collectors; and finally, by the bequest of the late Mr J. II. Anderdon, it passed in 1879 to the National Gallery, where, in spite of theatrical treatment and a repulsive theuse, it still commands admiration for its colour, drawing, and expression.

In 1761 he was sixty-five years of age, and he had but three years more to live. These three years were embittered by that unhappy quarrel with Wilkes and Churchill, over which most of his biographers are conteuted to pass rapidly, Having succeeded John Thornhill in 1757 as serjeant painter (to which post he pas reappointed at the accession of Georgo III.), an evil genius prompted him in 1762 to do some "timed" thing in the ministerial interest, and be accordingly published the indifferent satire of The Times, plate i. This at once brought him into collision with his quendam friends, John Wilkes and Churchill the poet ; and the imnediate result was a violent attack upon him, both as a mao and an artist in the opposition North Briton, No. 17. The all. ged decay of his powers, the miscarrige of Sigismonda, the cobbled composition of the Analysis, were all discussed with scurrilous malignity by those who had known his domestic life and learned his meaknesses. The old artist was deeply rounded, and bis health was failing. Early in the next year, however, he replied by that squinting partrait of Wilkes which will for ever carry his features to posterity. Charchill retaliated in July by a savage Epistle to William Mogarth, to which the artist rejoined by a print of Churchill as a bear, in torn baods and ruffles, not the most successful of hia works. "The pleasure, and pecuniary advantage," writes Hogarth,
"which I derived from these tro engravings" (of Wilkes and Curehill), "together with oceasionally riding on borseback, restored me to as much health as can be expected tt my time of life." He produced but one more print, that of Finis, or The Bathos, March 1764, a strange jumble of "fag ends," intended as a tail-piece to his collected prints; and on the 20th October of the same year he died of an aneurisun at his house in Leicester Square. His wife, to whom he left his plates as a chief source of income, survived him wutil 1789. He was buried in Chiswick churehyard, where a tomb was erected to him by bis friends in 1771, with a well-known epitaph by Garrick. Not far off, on the road to Chiswick Gardens, is the now tumble-down house in which, for many years of his life, he spent the summer seasons.

From such records of him as survive, llogarth appears to have been much what from his portrait one might suppose him to have been-a blue-eyed, honest, combative, little man, thoroughly national in his prejudices and antipathies, fond of flatery, sensitive like most satirists, a good friencl, an intractable enemy, ambitious, as he somewhere says, in all things to be singular, and not always accurately estimating the extent of his powers. With the art counoisseurship of his day he was wholly at war, because, as he believed, it favoured foreign mediocrity at the expense of native talent; and in the heat of argument he would probably, as he admits; often come "to utter blasphemous exprossions against the divinity even of Raphael Urbino, Corregrio, and Michelangelo." But it was rather against the third-rate copies of third-rate artists-the "ship-loads of manufactured Dead Christs, Holy Families, and Madonnas"-that his indignation was directerl, and in speaking of bis attitude with regard to the great masters of art, it is well to remember his words to Mrs Piozzi :-"The connoisseurs and I are at war you know; and because I bate them, they think I hate Titian-and let them!"

But no doubt it was in a measure owing to this hostile attitule of his towards the all-powerful picture-brokers that his contemporaries failed to adequately recognize his merits as a mainter, and persister in regarding him as an ingenious humorist alone. Time has reversed that unjust sentence. He is now held to have been an excellent painter, pure and harmonious in his colouring, wonderfully dexterous and direct in his handling, and in his composition leaving little or nothing to be desired. As an engraver his work is more conspienous for its vigour, spirit, and intelligibility than for finish and beauty of line. He desired that it shonld tell its own tale plainly, and bear the distinct impress of his individuality, and in this he thoroughly succeeded. As a draughtsman his skill has sometimes been rebated, and his work at times undoubteuly bears marks of haste, and even carelessness. lf, however, be is judged by his best instead of his worst, his work will not be found to be wanting in this respect. Hat it is not after all as n draughtsman, an engraver, or a painter that he claims his pre-eminence among Englisly artists-it is as a wit, a humorist, a satirist upon canvas. licgarded in this light he des never heen equalled, whether for his vigour of renlism and dramatic power, his fancy and invention in the recoration of his story, or his merciless ammony and exposure of folly aml wickeduess. If we regard him-as he loved to regard himself-as "auther" rather than "artist," his phace is with the ereat masters of literature, -with the Thackerays and Fieldinge, the Cervautes and Molieres.

Adlitions to IIogarth literature hare not been numerous of late
 to the rombith Aequeine, which were afterwards remblisherd in hook form. Mtuch minute information has also bere collected in Mr 1: Cb. Stephuns's Catalogue of the Sutiricel I'riats and Drewoings ins
 bom private cu'sections are constantly to bo fomme at tho nnmual
cxhibitions of the Old Masters in the Royal Academy ; but most of the best known works have permanent homes in public galleries. Mantiage à la Afode, Sigismonda, nud his own poruait are in the National Gallery; the Rake's P'rogress and the Elention Series in the Sloane Musemn; and the Marel to Finclley and Captain Coram at the Foundling Hospital. 'Here are also notable pictures in the Fitzwilliam Mnseun at Canlurdge, and the National Portrait Gallery at South Kensington. The Lady's Last Stake, to which reference has been made, is at present (1880) in the possession of Mr Louis Huth.
(A. D.)

HOGG, Janes (1770-1835), a Scottis! poet, best known by Lis title of the "Ettrick Shepherd," was born on the banks of the Ettrick in Selkirkshire in 1770 His ancestors had been shepherds for centuries. He reccived bardly any school training, and seems to have had difficulty in getting books to read. After spending his early years under different masters, first as cow-hera and afterwards as shepherd, he was ergaged in the latter capacity by Mr Laidlaw, tenant of Blackhouse, in the parish of Yarrow, from 1790 till 1799. He was treated with great kindness, and had access to a large collection of books, which he soon exhausted, and then subscribed to a circulating library in Peebles. While attending to his flock, he spent a great deal of time in reading. His first printed piece was "The Mistakes of a Night," which appeared in the Seots Magazine for October 1794, and was succeeded by Scots Pastorals in 1801. A year or two after this publication Hogg became acquainted with Sir Walter Scott-a connexion which had a powerful influence for good on the peasant poet. He again appeared before the public in 1807 as the author of the Mountain Bard, to which Scott wrote an introductory notice. By this work, and by a Treatise on the Diseases of Sheep, Hogg realized about $£ 300$. With this money he unfortunately embarked in farming in Dumfriesshire, and in three years was utterly ruined, and had to abandon all his effects to his creditors. He returned to Ettrick, and there found only cold and estranged looks. He could not even obtain employment as a shepherd; so be set off in February 1810 to push his fortune in Edinburgh as a literary adventurer. In the same year lie published a collection of songs, which, being dedicated to the countess of Dalkeith, and recommended to ber notice by Scott, was rewarded with a present of 100 guineas. He then commenced a weekly periodical, The Spy, which he continued from September 1810 till August 1811. The appearance of the Queen's Wake in 1813 established Hogg's reputation as a poet; it was followed by Mador of the Mfoor, The Pilgrims of the Sun, and The Poctic Mirror. The duchess of Buccleuch, on her death-bed in 1814, had asked the duke to do something for the Ettrick bard; and the duke gave him a lease for life of the farm of Altrive in Yarrom, consisting of about 70 acres of moorland, on which the poet built a house and spent the last years of his life. Ho took possession of it in 1817; but his literary esertions were never relaxed. Before 1820 be had written The Brownie of Bolsbeck, and two volumes of Winter Eveniny Ta/es, besides collecting, editing, and writing part of twr volumes of Jacobile Relics, and contributing largely u Blackwood's Magazine. In 1820 ho married Miss Margaret Phillips, a lady of a good Annandalo family, nnd found himself possessed of about $£ 1000$, a good house, and n well-stueked farm. Hegg's connexion with Blaekuood's Magazine kept him continually before the public. The wit and mischicf of some of his literary friends made freo with his name, and represented him in ludicrous and grotesque aspects; but the effect of the whole was favourable to his popularity. Ife visited Loudon in 1831, and was feasted by tho nobility, literati, and public men of the metropolis. On his return a public dinner was given to him in Peebles,- Trofessor Wilson in tho chair,-and he neknowledged that ho had at last "found fame." Hin
health, Eowerer, was seriously impaired. With his pen in his liand to the last, Ilogg in 1834 publishled a volume of Lay Sermons, and in 1835 two volumes of Mohtrose Tales. lis illness nltimately assumed the form of dropsy, and after a short confinement he died November 21, 1835, baving nearly completed his sixty-fifth year. He was buried in the churehyard of his native parish Ettrick. His fame had seemed to fill the whole district, and was brightest at its close; his presenee was assuciated with all the Border sports and festivities; and as a man James Hogg was ever frank, joyous, and charitable.

His Shepherd's Calendar is the best of Hogg's prose works; but it is mannly as a great peasant poet that he lives in literature. Nothing can be mure exguisite than sume of his lyries and ninor poems-his "Skylark,", "When the Kye comes Hame," his verses on the "Comet" and "Evening Star," and his " Address to Lady Ann Seott." The Queen's Wake unites his characteristic excellences-lis command of the old romantic ballad style, his graceful fairy mythology, and his acrial flights of imagination. The story of Kilmeny stands at the head of all our fairy tales, and is inimitable for its scenes of visionary splendour, purity, and bliss, linked to the fairest objects of earthly interest and allection. In such compositions Hogg seems completely transformed; be is absorbed in the ideal and supernatural, and might have claimed over all his contemporaries the Delphic laurel for direct and immediate inspiration.
See a memoir by Professor Wilson, prefixed to an edition of Hogg's works published by Blackio \& Co. m 1850; Wilson's Noctes Ambrosiance; Gilfillan's First Gallery of Litcrary Portraits; Cunninglam's Biog. and Crit. Hist. of Lit. ; and the general index to Blach vood's Magazine. A collected cdition of Hogg's Talcs nppeared in 1838 in 6 vols., and a second in 1851 ; his collected Poems were pullished in 1850 and in 1852. For an admirable account of the social entertainments Hogg used to give in Edinburgh, sce Memoir of hovert Chambers, by Dr William Chambers, pp. 263-270.
HOHENELBE (Bohemian, Vrchlabi), the chief torn of a government district in Bohemia, is beautifully situated on both banks of the Elbe, crossed there by five lridges, on the southern spurs of the Riesengebirge, and on the north-west Auswrian railway, 16 miles north-east of Citschin. The houses with lofty gables and arcades supported by wooden columns have a pieturesque appearance; and among the principal buildings arc the decanal clurch, the castle surrounded by a fine park, the Augustine monastery, the citizen school, and the trade school. Linen and cotton are the staple manufuctures, and there are also bleaelworks, dye-works, and a paper-mill. A splendid view is ablaioed from the Heidelberg, whiel, rises to the height of 3120 feet immediately behind the town. The population in 1869 was 5316.
HOHENLOHE, a Gernan princely family, who took their name from the territory of IIohenluhe in Franconia, which, originally a countship and afterwards a prineipality, lost its independence in 1806, and is now included partly in Würtemberg and partly in Bavaria. They are first mentioned as possessing in the I2th century the castle of Holloch noar Uffenbeim. At an early period they extended their influenee into several of the Frauconian valleys, induding those of the Kocker, the Jagst, the Tauber, and the Gotlach. The first count of the name was Gottfried, who was on terms of intimacy with the emperor Henry VI., and whose sons founded the lines of Itohenlohe-Bruneck and Hobenlohe Helloeh. The former beeame extinct in the fourth generation, and the latter in 1340 divided into toe lines of Hohenlohe-Flohennhe and HohenloheStreckfeld. Of these the former became extinct in 1412, after the most of the passessions had been alienated through the marriage of the female beir; and the latter in 1551 dividict into the present lines of Mohenlohe-Neuenstein and Tobeoloho-Waldenburg, which were elevated, the former in

1764 and the latter in 1744 , to primeipalities of the empire. Hohenlohe-Neuenatein, whieh adopted l'rotestantism, becamo divided into the lines Hohenlohe-NeuensteinOchringen and Hobenlohe-Neuenstein-Langenburg, the former of which separated into the branches of LohenloheWeickersheim and Hohonlohe-Oehringen, the one becoming extinct in 1756. and the other in 1805, after which their possessions were inherited by the Hohenlohe-NeuensteinLangenburg line, which latter became divided into three branches-the Hohenlohe-Langeoburg, the HobentoheLangenburg.Oehringen, and the Hohenlohe-LangenburgKirchberg, the last becoming extinct in 1861. The line of Hohenlohe-Waldeuburg, which remained Catholic, and in which was established in 1754 the order of the Phicenix, divided itself into tro branches, the Hohenilohe-WaldeuburgBartenstein and the Hohenlohe.Waldenburg.Schillingsfürst, the former subdividing into the branches of HohenloheBartenstein and Hohenlohe-Jagstberg. Of the Hohenlohe family the following menbers are noted os having attained individual eminence.
I. Friedrici Ludwig (1746-1818), prince of HohenloheIngelfingen, a Prussian general, was born 31st January 1746. Enterng the Prussian service at an early ogo be became colonel in 1788, and in the campaigns of 1792 and 1793, where be was commander of a division, he distinguished himself in several engagoments. In 1794 he gained a brilliant victory at Kuiserslautern, and iu 1796 he was promoted lieutenant-general and appointed to the command of the arny of the Eins. In the same year be succeeded to the principality of his father. Having been appointed general of infantry in 1800, he in 1805 commanded a Prussian corps between the Saale and the Thuringion Furest. He was severely defented at Jena in 1806, and after the duke of Bruuswick was mortally wounded at Auerstädt, he succeeded to the chief command, and led to the Oder the iragments of the Prussian army which capitulated at Prenzlau on the 2 sti Oetober. On account of the blame to which this disnster exposed him, he had to retire from the army. Ho died at Slawentzitz, Silesia, 15 th February 1818.
II. Ludiag Aloysius (1765-1829), prince of Hoheulohe-Waldenburg-Bartenstein, marshal and peer of France, was born 18th August 1765. In 1784 he entered the service of the palatinate, which Le quitted in 1792 in order to take the command of a regiment raised by his father for the service of the emigrant princes of France. He greatly distinguished himself under Prince Condé in the canymigns of 1792-1793, especially at the storming of the lines of Weissenburg. Subsequently he entered the service of Helland, and, when almest surrounded by the army of General Pieliegru, conducted a masterly retreat from the island of Bommuel. From 1794 to 1799 he served as colonel in the Austrian campaigns; in 1799 he was momed major-general by the archduke Charles; and after ottaining the rank of lieutenant-generalhe wasappointed by the emperor of Austria governor of the twe Galicias. Xapolen oflered to restore to him his principality on condition that he adbered to the confederation of the lihine, but as he refused, it was united to Wiirtemberg. After Napoleou's fall in 1814 he entered the French service, and in 1815 he beld the command of a regiment raised by himsclf, with which he took part in the Spanish campaign of 1823. Io 1827 he was created marshal and peer of France. He died at Lunéville, May 30, 1829.
III. Alexanden leofold Franz Enmerich (1i941849), prince of Mobenlohe-Waldenburg-Schillingsfürst, priest nnd reputed miracle-worker, was born at Kupferzeil near Waldenburg, 17th August 1794. By bis mother, the daughter of an Hungarian nobleman, he was from infancy destined for the church; and she entrusted the care of his carly education to the ex. Jesuit liel. In 1804 he entered
the "Theresianum" at Vienna, in I 808 the academy at Bern, in 1810 the archiepiscopal seminary at Vienna, sod afterwards he studied at Tyrnau and Ellwangen. He was ordained priest in 1815, and in the following year he went to Rome, where he entered the society of the "Fathers of the Sacred Heart." Subsequently, at Munich and Bamberg, he was blamed for Jesuit and obscurantist tendencies, but obtained considerable reputation as a preacher. His first so-calted miraculous cure was effected, in conjunction with a peasant Martin Michel, on a princess of Schwarzenberg who had been for sone years paralytic. Immediately he acquired such fame as a performer of miraculous cures that multitudes from various countries flocked to partake of the beneficial influeace of his supposed superatural gifts. Ultimately, on account of the interference of the authorities with his operations, he went in 1821 to Vienua and then to Huagary, where he became canon at Grosswardein, and in 1844 titular bishop of Sardica. He died at Vöslau near Vieoua, 17th November 1840. He was the author of a aumber of ascetic and controversial writiags, which were collected and published in one edition by Branuer at Ratishon in 1851.
See Paulns, Quintessamz aus Anfang, Mitte, und Ende der Wun. dercurversuche, welche zu Würzurg und Bumberg durch Mart. Michel und den Prinzen von Hokenlohe-Schillingsfürst uniternonıuen worder sind, Leipsic, 1822.

HOBENMAUTH, the chief town of a government district in Bohemia, Austria, is situated on the Lautchna, and on the Austrian States Rallway 16 miles E. of Chrudim. It possesses a beantiful old decanal church, and bas cleth manufactures, a brewery, a tannery, a sugar work, and flour and sago mills. It depends for its prosperity largely on the agriculture of the neighbenthood. The population in 1869 was 6018.

HOHENSTEIN, a town of Saxony, circle of Zwickau, stinds on the slopes of the Erzgebirge, and on the Sason States Railway, 12 miles N.E. of Zwickau. Since 1875 Ernstchal has been iocluded within its limits. Hohenstein proper possesscs a beautiful parish church, a town-house restored ia 1876 , and a monuraent to those who fell in the Prussian war of 1870-71; and Erastthal has also a fine parish church. The priucipal industry is the spinaing and weaving of cotton, the manufacture of waxcloth, stockings, and woollen anll silk fabrics, cotton printing, and dyeing. Many of the inbabitauts are atso cmployed in the neighbouring arsenic mines. Not far from Hobenstein there is a mincral spring, conpected with which there are various kiods of baths. Hohenstein is tho birthplace of the physicist G. II. von Schubert, and of Schrëter, one of the urenturs of the pianoforte. The building of Ernstthal was occasioned in 1680 by the prosence of the plague at Hoheostein, and it reccived its name from Count Christian Enst of Schooburg, who was the principal instigator of its erection. The population of Ifohenstein in 1875 , including Ernstlhal with a population of 4118 , was 9844.

HOHENZOLLERN, an wh German princely bouse, frotu which the present dynasty of Prussia is descended, takes its ame from the old castle of Zollern, or Hohenzollern, oo the mountain of Zollern, aboat $1 \frac{1}{2}$ miles south from llechingen. There is a vague tratition connecting the bouse with the Colonna family of liome, or the Colalto family of Lombardy, and a more definite ano which mentions a Swabian count, Thassito of Burchardinger, as having buile the eastle of \%otlern about the beginning of the 9 th century. The first counts of Zollern of whom there is histuriral mention are Burchard and Wezcl, apparently brothers, who in 1061 fell in one of the party feuds during the minority of the cmucror IIenry IV Count Prederick III. of Zulte, who died in 120G, ne of the trusted councillers of the emperors Frederick I. and Ileury VI.
became count of Noremberg in Ily, through havic3 married the heiress of Conat Conrad 1I. of Nuremberg. His sons, Conrad III. and Frederick IV., succeeded to the joint possession of his titles and estates, and counded respectively the Frankish and the Swabian lines. The Frankish house steadily and uniaterruptedly increased its possessions aod its influerce; in 1303 it was raised to princely rank in the person of Frederick V.; in 1415 it obtained through Frederick VI. the electorate of Brandenburg from the cmperor Sigismund; and in 1701 its head, the elector Frederick III., became the first king of Prussia. The intluence of the Swabian line was greatly weakened by partitions, but in the begianing of the 16 th century it ruse to some eminence throigh Count Eitel Frederick II., prisy councitlor of the emperor Maximilian I., who received fron the emperor the district of Hargerloch in exchange for Rbäzüns, in the Grisons, which lad come into his family by marriage. His grandson, Charles I., received in 1529 from the emperor Charles V. the countships of Sigmariogen and Vöhringen. Eitel Frederick III. and Charles II. divided their states, the former taking Hohenzollern with the title Hohenzollern-Hechingen, the latter Sigmaringen and Vöhringen with the title HohenzollernSigmaringen. Count John George of HohenzollernHechingen, sod of Eitel Frederick III., was raised te princely rank by the emperor Ferdinand II. in 1623, and John of Hoheozollern-Sigmaringen received the same honour in 1638. In 1695 the two Swabian brauches entered conjointly into an agreement with the Brandenburg line that, in case of the extioction of the male line of either of the Swabian branches, the states should be inherited by the other branch, and that if hoth branches became extioct the states should be inherited by the Brandeaburg line. In consequence of the political troubles of 1848 , Prince Frederick William of Hohenzollern-Hechingen, and Charles Anton of Hohenzolleru-Sigmariagen resigned their principalities, which consequently fell to the crown of Prussia, by whom they were taken possession of, Marck 12, 1850. By royal decree of 20th May of the same yrar the title of bighness was conferred on the two princes, with the prerogatives of younger sons $0^{\text {t }}$ the roya. honse. The proposal to raise Prince Leopold of Hobenzollera-Signaringen to the throno of Spaio in 1870 was the immediate occasion of the war between France and Germany. In 1852 the lands of Huhenzollern were formed into an administrative division of Prussia. It is composed of a long narrow strip of land hounded on the N E. and W. by Wirtemberg and on the W. and S. by Baden, with an area of 440 square milcs, and a population in 1875 of $66,614$.
See Stillfried, Hohenzollemsche Furschungen, Berlin, 1847; Sullfried and Marcker, Afonumenta Zollerana, 1852-66; Riedel, Die Ahuherren dey preusssuchen Könzgshauscs, 1854; Ruedel, Ge. schichte des preussischen Konng:hanses bis 1440. 1861; Nachrichten uter die Stammburg Huhenzollera, 1863; Carlyle'g Frederick the Great.
holbach, Paul lleinrich Dietrich, Baron d' (1723-1789), philosophe of the Parisian school of the 18 th centnry, was born at Heidelsheim in the palatinate in 1723. Of his nmily little is known ; according to J J. Rousscau, his father was a rich prevean, who brought his son ot an carly age to Puris, where the latter spent most of his life. Much of Holbach's fame is duc to his intimate condexion with the britliant coterse of bold thinkers and polished wits whose creed, the new philosophy, is concontrated in the famous Encycloped die. Fossessed of easy means and being of hospitable disposition, he kept opes bonse for such men as 1 Ielvetius, D'Alembert, Diderot, Cundillac, T'nagot, Butfon, Grimn, llume, Garrick, Wilkes, Sternc, and for a time Rouscau, who, while cajoying the intellectual pleasure o! their hust's conversation, were not insensible to the material charms of his excellent cuisinc and constly wince

Although an atheist, or at least a materialist of the most material school, Holbach seems to Lave been endowed with a more than average share of virtue, and, whether by his courtesy, gentleness, or bencvolence, inspired a warm affection in all be met. Even his failings, of which his simple credulity was perhaps the most promiaent, wore amiable. He was one of the bust informed men of his day, and his excellent memory placed at his immediate disposal all the tearning he hal amssed. He visited Enghand on one vecasion, but the solemn stiffness of the Britisin, even whilu amusing themselves, and the peculiar relations of society, disgiated as much as they surprised him. For the Encyclopedie Ilolbach eompilen and translated a large number of articles on chemistry and mineralogy, chichy Irom German sources. lle attracted mote attcation, however, in the department of philosophy. In 1767 Christion. isme Devoile appeared, in which he attacked Christianity and religion as the sonree of all human evils. Regariling religion as a blind superstitions bumdage, maintaioed on men's minds by the self-interest of the pricsts, he tried to prove it not only umecessary hut absolutely prejudicial to buman morality. This was followed up in 1770 by a still more open attack in his most famous book, Le Système de In Nature, in which it is probable he was assisted by Dideret. Denying the existence of a deity, and refusing to admit as evidence all a priori arguments, Holbach saw in the universe nothing save matter in spontaneous movement. What men call their souls become extinct when the body dies. Ifappiness is the eml of mankind. "It would be useless and almost unjust to insist upon a man's heing virtuous if he cannot be so without being unhappy. So long as viec renders him happy, he shonld love vice." Not less direct and trenchant are his attacks on politieal government, which, interpreted by the light of after events, sound like the first distant mutterings of the tempest that shortly after his death broke over the eapital of France. The Systeme de la Nature struck horror into the minds of even the most "enlightened" of the Parisian philosophers. Charmed by the novelty of their own opinions, and dazaled by the glittering wit and argument with which they had supported them, they had never realized into what extremities they had hurried till this lurid torch revealed the hideous abyss from which they were so littlo removed. Voltaire lastily seized his pen to refute the philosophy of the Systeme, in the article "Dieu" in his Dictionnaire Philosophique, while Frederick the Great also drew up an answer to it. Though vigorous in thought and in some passages elear and cloquent, the style of the book is diffuse and deelamatory, and asserts rather than proves its statements. Its prineiples aro summed up in a more popular form in Bon Sens, ou Idées naturelles opposics aux idées sunaturelles, published at Amsterdam in 1759. In the Système Social (1773), the Politique Naturelle (1773-74), and the Morale Universelle (1776), Holbach attempts to rear a system of morality in place of the one lee had so fiereely atticked, but these later writingz had not a tithe of the popularity and influcnce of his carlier and more bernieious work. Ho published his bouks cither anonymously or unler a borrowed name, and was forced to have them printed out of France. He died in 1789. On the death of his first wife he obtained a papal dispensation to marry her sister, who survived him till 1814.
Holbach is also the author of the following and other works:Esprit du Clevgé, 1767; De l'Imposture sacerdotale, 1767; Pritres Démasques, 1768; Examen Crilique de la vie et des ouvrages de St l'aul, 1770; Histoire Critique cle Jesus Christ, 1770; and Ethocratie, 1776. For further partimulars as to his life and doctrines see Grimm's Correspondance Lilleraire, \&e., 1813; Ronsseau's Confessions: Morellet's Memoires, 1821 ; Madanc de Genlis, Les Diners due Baron Holbach, Madame d'Épinay's Memoircs; Avezac-Lavigne, Dilerol e! la Societé du Daron d'Hollach, 1875; and Morley's Diderot, 1878.

HOLBEIN, Hass, the elder, belonged to a eclebrated family of painters in practice at Augsburg and Basel from the close of the 15 th to the middle of the 16 th century. Though elosely connected with Venice by her commereial relitions, and gcographically neaver to Italy thav to Flanders, Augsburg at the time of Maximilian cultivated art after the fashion of the Flemings, and felt the influence of the schouls of Druges and Brussels, which had branches at Cologne and in many cities about the headwaters of the Ihine. It was not till after tho opening of the 16 th century, and Letween that and the era of the Reformation, that Italian example miligated to some extent the asperity of South German painting. But this is not the place to give even an outhine of this development. It must lee sullicient to note that Flemish and German art was first tempered with Italian elements at Augsburg by Hans Holbein the elder. Hans first appears at Augsburg as partner to his brother Sigmund, who survived him and died in 1540 at Berne. Sigmund is described as a painter, but his works have not come down to us. llams had tho lead of the partnerslip at Augsburg, and signed all the pistures which it produced. ln common with Iterlen, Schongauer, and other masters of Suuth Germany, he first cultivated a style akin to that of Jemling and other followers of the schools of Brussels and Bruges, but ho prubably modified the systems of those sehouls by studying the works of the masters of Cologne. As these carly impressions waned, they were replaced by others less favourable to the expansion of the master's fame; and as his custom increased between 1499 and 1506, we find him relying less upon the teaching of the sehools than upon a mere olservation and reproduction of the quaintnesses of lueal passion plays. Most of his early works indeed are taken from the Iassion, and in these he obviously marshalled his figures with the shallow stage cflect of the phays, copy ing their artifieial system of grooping, careless to some extent of propertion in the human shape, heedless of any but the coarser forms of expression, and technically satisfied with the simplest methods of execution. If in any branch of his art he can be said to have had a conscience at this period, we should say that he showed it in his portrait drawings. It is seldom that we find a painted likeness worthy of the name. I'lie drawings of which numbers are still prescrved in the galleries of Basel, Derlin, and Copeuhagen show extraordinary quickness and delicaey of hand, and a wonderiul facility for seizing character; and this happily is ono of the fcatures which Hulbein bequeathed to his son, It is between 1512 nnd 1522 that $110 l b e i n$ tempered the German quality of his style with some North Italian elements. A purer taste and more pleasing realisn mark his work, which in drapery, dress, and tone is as much more agrecable to the eye as in respect of modeiling and finish it is smoother and roore carciully rounded. Costume, architecture, ormament, and colour are applicd with sumo knowledge of the higher eanons of art. Here too advantago accrued to Hlans the younger, whose independent career ahout this time began.

The date of the elder lIolbein's birth is unknown. But his name appears in the looks of the tax-gatherers of Augsburg in 1491, superseding that of Michael Holbein, who is supposed to have been his father. J'revious to that date, and as early as 1193 , he was a painter of name, and ho exceuted in that year, it is sail, for the abbey at Weingarten, the wings of an altariece representing Joachim's Offering, the Nativity of tho Virgin, Mary's Presentation in the Temple, and the Presentation of Christ, which now hang in separate panels in the eathertral of Augsburg. In theso pieces and others of the same period, for instance in two Madonnas in the Moritz chapel and eastle of Nuremberg, re mark the clear impress of the schools of Van der Weyden
and Memling ; whilst in later works, such as the Basilica of St Paul (1504) in the gallery of Angsburg, the wane of IFlemish influence is apparent. But this altarpiece, with its quaint illustrations of St Paul's life and martyrdom is not alene of interest because its execution is characteristic of old Holbein. It is equally so because it contains portraits of the master himself, accompanied by his two sons, the painters Ambrose and Hans Holbein. Later pictures, such as the Passion serics in the Fiustenberg gullery at Donaueschingen, or the Martyrdum of St Sebastian in the Munich Pinakothek, contain similar portraits, the original drawings of which are found in old Holbein's sketch-book at Berlin, or in stray leaves like those possessed by the duke of Aumale in Paris. Not one of these fails to give us an insight into the character, or a reflicx of the features, of the members of this celebrated fiamily. Old Holbein scems to ape Leonardo, allowing his hair and beard wildly to grow, except on the upper lip. Hans the younger is a plain-looking boy. But his father points to him with his finger, and hints that though but a child he is clearly a prodigy.

After $i 516$ Hans Holbein the elder appears as a defaulter in the registers of the tax-gatherers at Augsburg; but he willingly accepts commissions abroad. At Issenheim in Alsace, where Grunnerald was cmployed in 1516, old Holbein also finds patrons, and contracts to complete an nltarpieee. But misfortune or'a bailiff pursues him, and he leaves Issenheim, sbaodoning his work and tools. According to Sandrart, he wanders to Basel and takes the freedom of its guild. His brother Sigmund and others are found suing him for debt before the courts of Augsburg. Where he lived when be executed the altarpiece, of which two wings with the date of 1522 are in the gallery of Carlsruhe, is nocertain; where be died two years later is unknown. He slınks from ken at the close of a long life, and disuppears at last heeded by none but his own son, who chans his brushes and paints from the monks of Issenheim withont much chance of obtaining them. His name is struck off the books of the Augsburg guild in 1524.

The elder Holbein was a prolifie artist, who left many pictures Lehind him. Earler than the Basilica of St Paul, already mentioned, is the Basitica of St Mary Maggiore, and a Passion io eleven pieces, in the Augsburg gallery, beth executed in 1499. Anather Passion, with the roet of Jesse aud a tree of the Dominicans, is that preserved in the Staedel, Saalhof, and chureh of St Leonard at Frankfort. It was cxecuted in 1501. The Passion of Donaueschingen was finished after 1502, in which year was completed the Passion of Kaisheim, a conglomerate of twenty-seven panels, now divided amongst the galleries of Munich, Nuremberg, Angsburg, and Schbishicim. An altarpicee of the same class, commissioned for the monastery of St Moritz at Augsburg in 1504-8, has been dispersed and lost. 1512 is the date of a Conception in the Augsburg gillery, long assigncd, in consequence of a forged inscription, to Hans Holbein tho younger. A-diptych, with a Virgin and Child, and a portrait of an old man, dated 1513, is in separats parts in the collections of Mr Posonyi and Count Lauckoronski at Vienna. The sketch-books of Berlin, Copenhagen, and Augsburg give a tively pieture of the forms and dress of Augsburg residents at the degimuing of the 16 th century. They comprise portraits of the emperor Maximilian, the future Charles V., Kunz von der Rosen the fool of Maximilian, the Fuggers, friars, merchants, and at rare intervals ladies.

HOLBEIN, IIANs, the younger (1997-1543), favourite sot of Hans IIolbein the elder, was probably born at Augsburg about the year 1497. Though Sandrart and Van Mander declare that they do not know who gave him the first lessons, ho doubtless received an artist's education from his father. About 1515 he left Augsburg with Ambrose his elder brother to seek cmployment as an illustrator of books at lhasel. His first patron is aaid to have beea Erasmus, for whom, shortly aftar his arrival, be illustrated with pen-and-ink sketches an edition of the Encomium Morir, now in the museum of Basel. But his chief occumation was that of drawing titlepnge-blocks nurt
initials for new chitions of the Bible and classics issued from the presses of Froben and other publishers. His leisure hours, it is supposed, were devoted to the production of rough painter's work, a scheolmaster's sign in the Basel collection, a table with pictures of St Nobody in the library of the university at Zurich. In contrast with these coarse productions, the portraits of Jacob Meyer and his wife in the Basel museum, oue of which purperts to have been finished in 1516, are miracles of workmanship. It has always seemed difficult indeed to ascribe such excellent creations to Holbein's nineteenth year; and it is hardly credible that he should have been asked to do things of this kind so carly, especially when it is remembered that neither he nor his brother Aubrose were then allowed to matriculate in the gaild of Basel. Not till 1517 did Ambrose, whose life otherwise remains obscure, join that corporation; Hutos, uot overburdened with practice, wandered into Switzerland, where (1517) he was employed to paint in the house of Jacob Hertenstein at Lucerne. In 1519 Holbein reappeared at Basel, where he natriculated, and, there is every reason to thiak, married. Whether, previous to this time, he took advantage of his viciaity to the Italian border to cross the Alps is uncertain Van Mander says that he never was in Itsly ; yct the large wallpaintings which be executed after 1519 at Basel, and the series of his sketches and pictures which is still extant, might lead to the belief that Van Mander was misinformed. The spirit of Holbein's compositions for the Easel towa-hall, the scencry and architecture of his numerous drawings, and the cast of form in some of his imaginative portraits, make it more likely that he should have felt the direct influence of North Italian painting than that he should have taken Italian elements from imported works or prints. The Swiss at this period wandered in thoussuds to swell the ranks of the French or imperial armies fighting on Italian asil, and the road they took may have been followed by Hans on a more peaccful mission. He shows himself at all events familiar with. Italian examples at various periods of his carcer; and if we accept as early works the Flagellation, and the Last Supper at Basel, coarse as they are, they show some acquaintance with Lombard methods of painting, whilst in other pieces, such as the series of the Passion in oil in the same collection, the modes of Hans Holbein the elder are agrecably commingled with a more modern, it may be said Italian, polish. Again, looking at the Virgin and Man of Sorrows in the Basel museum, we shall be struck by a scarching metallic style akin to that of the Ferrarese; and the Lais or the Venus and Amor of the same collection reminds us of the Leenardesques of the school of Milan. When Holbein settled down to an extensive practice at Basel in 1519, he decorated the walls of the bouse "Zum Tanz" with simulated architectural features of a florid character alter the fashion of the Veronese; and his wall paintings in the town-ball, if we can truly judge of then by copies, reveal an artist not unfamiliar with North Italian compesition, distribution, action, gesture, and expression. In lis drawiugs too, particularly in a set representing the Passion at Basel, the arrangement, and also the perspectivc, form, and decorative ornment, are in the spirit of the school of Mantegna Contemporary with these, however, and almost iucxplicably in contrast with them as regards handling, are portrait-dramings such as the likenesses of Jacob Meyer and his wife, which are finished with Gcrman delicacy, and with a power and subtloty of hand scldom rivalled in any school. Curiously enough, the eame contrast maybe observed between painted compoaitions and painted portraits. The Ronifacius Amerbach of 1519 at liasel is acknowledged, to be one of the most complete examples of smooth and transparent handling that Lolbeia ever executed. His versatility at this preriod is shown ly
n dean Clirist (1521), a corpse in profile on a cissecting table, and a set of figures in couples; the Madonna and St Pantalus, and Kaiser Henry with the empress Kunigunde (1522), originally composed for the organ loft of the Basel cathedral, now in the Basel museum. Equally remarkable, but more attractive, though injured, is the Virgin and Child between St Ursus and St Nicholas (not St Martin) giving alms tn a beggar, in the gallery of Solothurn. This remarkable picture is dated 1522 , and acems to have been ordered for an altar in the minster of St Ursus of Sulothurn by Nicholas Conrad, a captain and statesman of the 16 th centary, whase family allowed the precious heirloom to fall into decay in a chapel of the neiglibouring village of Grenchen. Numerous dmwings in the spirit of this picture, and probably of the same period in his career, might have led Holbein's contemporaries to believe that he would make his mark in the annals of Basel as a model for painters of altarpieces as well as a model for pictorial composition and portrait. The promise which tre gave st this time was immense. He was gaining a freedom in draughtsmanship that gave him facility to deal with any subject. Though a realist, he was sensible of the dignity and severity of religious painting. His colour had almost all the richness and sweetness of the Venetians. Bat he had fallen on evil times, as the next few years undoubtedly showed. Amongst the portmits which he executed in thess years are those of Froben, the publisher, known only by copies at Basel and Hampton Court, and Erasmus, rho sat in 1523, as he likewise did in 1530, in various positions, showing his face threequarters as nt Longford, Basel, Turin, Parma, the Hague, and Vienna, and in profile as in the Lourre or at Hempton Court. Besides these, Holbein made designa for glass windows and prints, including subjects of every sort, from the Virgin and Child with saints of the old time to the Dance of Denth, from goapel incidents extracted from Luther's Bible to satirical pieces illustrating the sale of indulgences and other abuses denounced by Reformers. Holbein, in this way, was csrried irresistibly with the stream of the Reformation, in which, it mast now be admitted, the old traditions of religious painting were wrecked, leaving nothing behind bnt mopictorisl elements which Cranach and his sshool vainly used for pictorial purposes.

Once only, after 1526, snd after lhe had produced the Lais and Venus and Amor, did Holbein with impartial spirit give his services snd pencil to the Roman Catliolic cause. The burgomaster Meyer, whose patronage he had already enjoyed, now asked him to represent limsalf and his wives and children in prayer before the Virgin: and Holbein produced the celebrated altarpiece now in the palace of Prince William of Hesse at Dermstadt, the shape and composition of which are known to all the world by its cony in the Dresden museum. The drawings for this masterpicce are amongst the most precinus relics in the musenm of Basel. The time now came when art began to suffer from unaroidable depression in all countries north of the Alps, Holbein, at Basel, was reduced to aceept the smallest com-missions-even for scutcheons. Then he saw that his chances were dwindling to nothing, and taking a bold resolution, armed with letters of introduction from Erasmus to More, he crossed the Channel to England, where in the one-sided branch of portrait painting he found an endless circle of clients. Eighty-seven drawings by Iolbein in Windsor Castle, containing an equal number of portraits, of persons chiefly of high quality, testify to his industry in the years which divide 1528 from 1543. They are all originals of pictures that are still extant, or sketches for pictures thst were lost or never carried out. Sir Thomas "Iore, with whom he seems to have had a very friendly rinnexion, sat to him for likenesses of various kiuds. The ..iving of his hend is at Windsor. The picture from the

Grawing belnageu, and perhaps still Leiongs, u Mr Muth in London. A pen-and-ink sketch, in which we see Mora surrounded by all the members of his fanily, is now in the gallery of Basel, and-numerous copies of a pieture from it prove how popular the lost.original must once have been. At the same period were executed the portraits of Warham (Lambeth and Louvre), Wyatt (Lourre), Sir Henry Guildford and his wife (Windsor and Mr Frewen), all fuished in 1527 , the astronomer liratzer (Lourre), Godsalve (Dresden); and Bryan Tuke (Munich) in 1523. In this year, 1528 , Holbein returned to Basel, taking to Erasmus the sketch of Mure's family. With money which he brought from London he purchascd a house at Basel wherein to lodge his wife and children, whose portraits he now painted with all the care of a husband and father (1528). He then witnessed the flight of Erasmus and the fury of the iconoclasts, who destroyed in one day almost all the religious pictures at Basel. The municipality, unwilling that he should suffer again from the depression caused by evil times, asked him to finish the frescos of the town-hall, and the sketches from these lost pictures are still befure us to show that he had not lost the spirit of his eariier days, and was still capable ss a composer. His Rehoboam receiving the Israelite Enroys, and Saul at the Head of his Array meeting Samuel, testify to Holbein's power and his will, slso proved at a later period by the Triumphs of Riches and Porerty; executed for the Steelyard in London, to prefer the fame of a painter of history to that of a painter of portmits. But the reforming times still romained unfavourable to art. With the exception of a portmit of Melanchthon (Hanover) which he now completed, Holbein found little to do at Basel. The year 1530, therefore, saw him again on the move, and he landed in England for the second time with the prospect of bettering his fortunes! Here indeed political changes had robbed him of his esrlier patrons. The circle of More and Warham was gone. But that of the merchants of the Steelyard took its place, for whom Holbein executed the long and important series of portraits that lie scattered throughout the galleries and collections of England and the Continent, snd bear dste after 1532. Then came again the chance of pmetice in more fashionsble circles. In 1533 the Triumphs of Wealth and Poverty were executed, then the portraits of Leland and Wyatt (Longford), and (1534) the pnrtrait of Thomas Cromwell. Through Cromwell Holbein probably became attached to the court, in the pay of which he appears permanently after 1537. From that time onwards he was connected with all that was highest in the society of London. Henry VIII. invited him to make a family picture of himself, his father, and family, which obtained a post of honour it Whitehall. The beautiful cartoon of a part of this fino piece at Hardwieke Hall enables us to gauge its beauty before the fire which destroyed it in the 17 th century. Then Holbein painted Janc Scymour in state (Viemua), employing some English hand perhaps to make the replicas at the Hague, Sion House, and Woburn; be finished the Soutlawell of the Uffizi (copy at the Lourre), the jeweller Morett at Dresden, and last, not least, Christine of Deumark (Arundel and Windsor castles), who gave sittings at Brussels in 1538. During the journey which this work involved Holbein took the opportunity of revisiting Bssel, where he made his appearance in silk and satin, and pro forma only accepted the office of town painter. He had been living long and continuously nway from home, not indeed obsersing duc fidelity to his wile who still resided at Basel, but fairly performing live dulles of keeping he: in comfort. His return to London in autumn eoabled him to do homage to the king in the $\because: 3 y$ familiar to artists. He presented to Henry at Christmns a portrait of Prince Edward. Again abroad in the summer of 1539, he painted
with great fidefity the princess Anne of Cleves, at Diren near Cologne, whose form we still see depicted in the great pieture of tho Louvre. That he could render the features of his sitter without fattery is plain from this oue example. Indeed, habitual flattery was contrary to his habits. His portraits up to this time all display that unconmon faeility for seizing elaraeter which his father enjoyed before him, and which he had inherited ia an expanded form. No amount of labour, no laboriousness of finish-and of both he was ever predigal-betrayed hin into loss of resemblance or expressinn. No painter was ever quicker at noting peculiarities of physiognomy, and it may be ulserred that in none of his faces, as indeed in none of the faces one sees in nature, are the two sides alike. Yet he was not a child of the 16th century, as the Venetians were, in gubstituting toueh for line. We must not look in his works for modulations of surface or subtle contrasts of colour in juxtaposition. His method was to the very last delicate, finished, and smooth, as became a painter of the old schnol.
Amongst the more important creations of Holhcin's later time we should note his Duke of Norfolk at Windsor, the hands of which are so perfectly preserved as to compensate for the shrivel that now disfigures the head. Two other portraits of 1541 (Berlin and Vienna), the Falconer at the Hague, ad John Chambers at Vienna (1542), are noble epecimens of portrait art ; most interesting and of the same year are the likenesses of Holbein bimsclf, of which several examples are extant-one particularly good at Fälna, the seat of the Stackelberg family near Riga, and another at the Uffizi in Florence. Here Holbein appears to us as a man of regular features, with hair just turning grey, but healthy in eolour and shape, and evidently well to do in the world. Yet a few montlis only separated hin then from his death-bed. He was busy painting a pieture of Henry the VIII, confirming the Privileges of the Earber Surgeons (Lincoln's Inn Fields), whea he sickened of the plague and died after making a will sbout November 1513. His loss must have been scriously felt in England. Had he lived his last years in Germany, he would not bave changed the current which decided the fate of painting is that country; he would but have shared the fate of Dïrer and others who merely prolonged the agony of art amidst the troubles of tlio Reformation.
(J. A. c.)
holberg, Ludvig Holberg, Baron (1684-1754), the greatest of Seandimavian writers, was born at Bergen, in Norway, on the 3d of December 1684. Both Holberg's parents died in his childhood, his father first, leaving a considerable property; and in his tenth year lie lost his mother also. Before the latter cent, boweyer, the family had been seriously impoverisherd by a great fire, which destroyed several valuable buildings, but notwithstanding this, tho mother left to each of her six clildren some little fortune. In 1694 the boy IIflberg was taken into the house of his unele, who sent him to the Latin seloul, and prepared him for the profession of a soldier; but soon after this he was alopted by his cousin Otto Munthe, and went to him up in the meuntains. Il is great desire for instruction, however, at last induced his family to send hisn baek to Bergen, to his unele, and there he remained, easerly studying, until the destruction of that eity by fire in 1702, when he was sent to the university of Copenhagen. Hut he sonn exhausted his resourees, and, baving nothing to livo upon, was glad ta hurry back to Norway, where he acecpted the position of tutor in the house of a rural dean at Voss. He soon rotarned to Copealagen, where in 1704 he took his degrec, and worked harl at Frencl, English, and Italian. But he had to gain his living, and accordingly bo aecepted the post of tntor eeco more, this time in the house of Br Smidt, vice bishop of Bergen. The good doctor had travelled much. and tho readiug of his itinerarics and note-books
a wakened such a longing for travel in the young Holhers, that at last, in 1706, having seraped together 60 dollars, he went on board a ship bound for Holland. He proceeded as far as Ais-la-Cbapelle, where he fell sick of a fever, and suffered so much from weakness and poverty, that he made his way to Ainsterdam, and came baek to Norway. Ashamed to be geen so soon in Bergen, he stopped at Christianssand, where he lived through the winter, supporting himself by giving lessons in Freach. In the spring he travelled, in company with a student named Bris, through London to Oxford, where he studied for two years, gaining his livelihood by giving lessons on the violin and the flute. Ite mentions, with gratitude, the valunble libraries of Oxford, and it is pleasant to record that it was while he wits there that it first oceurred to him, as he says, "how splendil and glorious a thing it would be to take a place among the authors." Through London and Elsinore he reached Copenhagen a thirà time, and began to lecture at the unisersity; his lectures were attended, but he got no nimey. He was asked in 1709 to corduct a rich young gentleman to Dresden, and on his return journey he leetured at Leipsic, Halle, and Hamburg. Once more in Copenbagen, he undertook to teach the children of Admiral Gedde. Weary with this work, he took a post at Borch Cullege is 1710 , where he wrote, but did not print, his first work, A Universal History, and was permitted to present to King Frederiek IV. two manuscript essays on Christian IV. and Frederick III. The king soon after presented him with the Roseekrantz grant of 100 dollars for four years. the holder of whiel was expeeted to travel. Holler: accordingly started in 1715, and visited, chiefly on fuet, a great portion of Europe. From Amsterdam he walked through Rotterdam to Antwerp, took a boat to Brussels, and on foot again reached Faris. Walking and skating, he proceeded in the depth of winter to Marseilles, and on by sea to Genoa. On the last-mentioned voyage he caught a fever, and nearly died in that city. On his recovery he pushed on to Civita Vecchia and Rome. When the spring bad come, being still very poor and in feelle health, he started homewards on foot by Florenee,"acenss the Apennines, through Bologna, Parma, Piacenza, Turin, wer the Alps, through Savoy and Dauphine to Lyons, and finally to Paris, where he arrived is excellent health. After spending a month in Paris, he walked on to Amsterdam, took sail to Hamburg, and so went back to Denmark in 1716 . He spent the next two years in extreme poverty, and published his Introduction to Natural and Popmelar Lenv. But at last, in 1718, his talents were recognizod by his appointment as profossor of metaphysies at the university of Culenhagen ; and in 1720 he was promoted to the luerative chair of public eloquence, which gave him a seat in the consistory. His peeuniary troubles were now at an end. Hitherto he had written only on law, history, and philology, although in a Latin controversy with the jurist Audreas Hover of Flensborg his satirical genius had fashell out. But now, and until 1728, ho created an entirely new class of humorous literature under the pseudonym of Mans Mik. kelscu. The seriswomie eppie of Feder P'ars, one of tho great chassies of the Danishl language, appeared in 1719. This poom was a brilliant satire on contemporary manuers, and enjoyed an catraordinary success. But the author had offended in it several powerfin persons who threatened his life, and if Count Danneskjold had not personally interestel the king in him, Itolberg's eareer miglit have had an untimely close. During the hext two ycars he published fivo shorter satires, all of which were wall received by the puldic. The great event of 1721 was the erection of the first Danish theatre in Grünnegade, Copenhagen ; Holberg took tho direction of this loonse, in which was played, it September 1722; a Danish translation of L 'ivarc. Uuti
this time no plays had been acted in Denmark exsept in French and German, but Howerg now determined to use his talent in the construction of Danish comedy. The first of his original pieces performed was Den politiske Kandstöber (Tbe Pewterer turned Politician) ; lie wrote other comedies with miraculous rapidity, and before 1722 was closed, there had been performed in succession, and with immense success, Den Vagelsindede (The Waverer), Jean de France, Jeppe pan Bjerget, and Gert the Westphatian. Of these five plays, four at least are masterpieces; and they were almost immediately follewed by others. Holberg tnak no rest, and before the end of 1723 the comedies of Burselstuen (The Lying-in Room), The Eleventh of July, Jakob von Thyboe, Den Bundeslöse (The Fidget), Erasmus Montanus, Don Ranudo, Ulysses of Lthaca, Wilhout Head or Tail, Wicchcraft, and Helampe inad all been written, and snme of them acted. In 1724 the most famoua conedy that Helberg produced was Menrik and Pernille. But in spite of this unprecedented blaze of dramatic genius the theatre fell into pecuniary difficulties, and had to be closed, IIolberg composing for the last night's performance a Funeral of Danish Comedy. All this excessive labour for the stage had undernined the great poet's health, and in 1725 he determiued to taka the baths at Aix-laChapelle ; but instead of going thither he wandered through Belgium to Paris, and spent the winter there. In the spring he returned to Copenhagen with recovered health and spirits, and worked quietly at his protean, literary labnurs until the great fire of 1728 . Io the peried of national poverty and depression that followed this event, a puritanical syirit came inte vogue which was little in sympathy with Holberg's dramatic or satiric genius. He therefore closed lis career as a dramatic poet by publishing in 1731 bis acted comedies, with the addition of five which he had no opportunity of putting on the stage. With characteristic versatility, he adopted the serious tono of the now age, and busied limself for the next twenty years with historical, philosophical, and statistical writings. During this period he published his Description of Denmark and Norway (1729), IIstory of Denmark, Universal Church History, Biographies of Famous Men, ALoral Reftections, Description of Bergen (1737), A History of the Jews, and other learned and laborious compilatiens. The only poom lie published at this time was the famens Nicolai h'limii Her Sulterraneum, 1741, afterwards translated into Danish by Baggesen. When Christian VI. died in 1748, the theatre was reopened and Holberg was appointed director, .but he soon resigned this arduous pest. His last published work was his Epistles, io 5 vols. In 1747 he was minde Baren af Holberg. In August 1753 he took to his bed, and he died at Copenhagen on the 28th of January 1754, in the seveatieth year of his age. He was buried at Sorö, in Zealand. He had never narried, and he bequenthed all his property, which was considerable, to Sorö College.

Holberg was not only the founder of Danish literature and the greatest of Danish authors, but be was, with the exception of Voltaire, the first writer in Europe duriag his own generation. Neither Pope nor Swift, who perhaps excelled him in particular branches of literary production, approached bim in range of genius, or io eneyelopxdie rersatility. Holberg found Denmark provided with no bnoks, and he wrote a library for her. When he arrived in the country, the Danish language was never beard in a gentcman's house. Polite Daues were wont to say that a man wrote Latin to his friends, talked French to the ladies, called his dogs in German, and only used Danish to swear at his scrvants. The single genius of Holberg revolutionized this system. He wrote poems of all kinds in a language hitherto employed only for ballads and hymns; he instituted a theatre, and composed a rich collection of comedies for it :
he filled the shelves of the citizens with works in their own tongue on history, law, poltics, science, philology, and philosoply; all aritten in a true and manly style, and representing the extreme attainment of European culture at the momerit. Perlaps mo author who ever lived has had so vast an infuence over his countrymen, an intluence that is still at work after 200 years.
The editions of Holberg's works are legion. Duing the last twenty-five years five coniplete editions of the comertics have appeatel, of which the best is that bronght out in 3 vols. by F. L. Lichtenberg, in 18\%0. Oit Peder Pumers ileere exist at leatt iwenty. three editions, besides translations in Duth, German, and Swedish. The Iter Subberranermm has been three sererall times trimstated into Danish, ten times into German, thrice into Swedish thriee iuto Duteb, thriee into Enylish, twice into Frenct, twice into Russian, and once into Hungarian. The life of Holberg was written by Welhaven in 1833. Among works on lis greilius hy foreinners ma": be mentioned an exhaustive study by liobert Prutz, 1857, ay! Holberg cousideré connne imituteur dc Muliere, by A. Legrelle, Pari:, 1864.
(E. w. G.)

HOLCROET, Thonas (1745-1809), dramatist an: miscellaneous writer, was born 10th December 1745 (old style) in Orange Court, Leieester Fields, Londen. His father, besides baving a shoemaker's shop, kept riding horses for hire; but he fell into difficulties sonle six years later, and was reduced ultimately to the necessity of hawking pedlery from village to village. The son accompanied his parents in their tramps, and besides tho lardships incident to such a life had often to endure the consequeaces of his father's passionate outbreaks of temper, which were, however, suceeeded by equally violent trans. ports of affection. In such circumstances he was disposed to regard it as an extraordinary piece of good fortune when he succeeded in procuriog the situation of stable boy at Newmarket, an enployment in which he manifested great coolness and courage, and acquired high proficiency. Previous to this he Lad received a pretty good education, and at Newmarket he spent his evenings chicfly in miscellaneous reading and the study of music. Gradually he also sueceeded in obtaining a competent knowledge of French, German, and Italian. On the expiry of his term of engagenient as stable boy he returned to assist his father, who had again resumed his trade of shomaker in London; but after marrying in 1765, be procured the effice of teacher in a small seliool in Liverpoul. 'His subsequent career, like his earlier life, was hard and chequered, but it must suffice to state that, after failing in an attempt to sot up a private school, be followed for several years the professien of an aetor, often at a very meagre salary, and that he was more successful as a dramatist and novelist, hut suffered mueh and frequent anxicty from pcomiary cmbarrassments and repented disappointments. He died 23 d Marelh 1809 from enlargement of the heart, brought on, it is supposed, by the failure of seccral of his dramatic pieces. He was a member of the Society for Constitutional Reform, and on that aeceunt was, in 1794, indicted of high trenson, but acquitted. The best known dramas of Holcreft are Duplicity, The School for Arrogance, The hoat to hiuin, and The Deserted Daughter. Among his novels may be mentioned Alwyn and IIugh Treeor. Ile was also the auther of Travels from Mamburg through I'st'phalia, Holland, and the Netherlands to l'aris, and of some volumes of verse, and translated sevcral works from the French and German with considerable elegance. The interest which still attaches to his carcer is, however, less on account of the intrinsic merit of bis litcrary performances than bis peculiarly chequered life and his perscvering struggle to elevate himsclf above the ignorant and sordid condition of his early years. LIis Memoirs uritten by himself and continued down to the time of his Death, from his Diary, Notes, and other Papers, by William Hazlitt, appeared in 1815, and has gone into several editions.

Hölderlin, Jobania Cbristian Friedrich (17701843), German poet, was born Mareh 29, 1770, at Lauffeu on the Neckar. His mother removing, after a second marriage, to Nürtingen, he began bis edueation at the classical sehool there, where Schelling was his schoolfellow and playmate. He was destmed by his relations for the chureh, aud with this view was later admitted to the free schools of Denkendorf and Maulbronn. At the age of eighteeu, already an exeetent elassical schular, he was scot to the miversity of Tübugen, where, bowever, he showed no inelination to the stuày of theology, He was already the writer of orcastonal verses, and had begun to sketeh Lis first version of $/ I_{y p e r} 2 m$, when he was introduced in 1793 to Schiller, and obtaned through him the post of tutor to the young son of Fran von Kalb. A year later he left thas situation to attend Fiehte's lectures, and to beeome a disciple of Schiller to Jena. Schiller recognized in the young poot something of his own style of geaius, and eneouraged his early literary atterupts by sending some of them to Goethe, and by superintendiug the publication of others in the Thalia and Heren. In 1796 Holderlin obtained the post of tutor to the three young children of a banker aamed Gontard in Frankfort. Gontard's beautiful and gifted wife is the Diotima of Häderlin's Hyperion. For this lady he conceived a foolish and hopcless passion; and sbe beerme at once bis inspiration and bis ruin. At the end of two years, during which time the first volume of IIyperion was published (1797), some kind of crisss appcars to have oecurred in their friendship, for the unhapyy young puet suddenly left Frankfort and the Gentard family; but whether he was dismissed by the indignant hustand of Diotuma, or was impelled by his own better resolutions, has not been explained. In spite of ill beath, he now completed Hyperion, the second volume of which appeared in 1799 , and be began a tragedy, Der Tiod des Empertokitrs, which is published in an untinished condition among his works. Some of his verses appeared in the Taschatynch far firazenzommer in 1799 and 1800 , and he conterplated startug a new literary journal, of whath he was to be the editor, but the scheme was a failure. His friends now became alarmed at the alternate depression and nervous irritability from whieh the euffered, and be was induced to go to Switzerland, as tutor in a fanily at Hamptwill. There his bealth iuproved, and several of his poens, among which are "Der blinde S'auger," "An hie Hoffinang," and "Dichtermuth," were writels at this tme. $1_{11} 1801$ he returned beme to arragge for the publication of a volume of his poems; but, on the failure of thensenterprise, he was obliged to accept another tuturship, in the family of the Hamburg consul in Cordeaux Diotima died a year later, in June 1802, and the news is suphosed to have reached holderlin sbortly afterwards, for in the following month he suddenty left Bordeaux, and travelled homewards on foot through France, arriving at Nirtingen destitute and insane. Kind treatment gradually alleviated his coudition, und in lucid intervals he oeeupied humself by writing verses and tanstiating Greck plays. Two of these translations-the Ampone und Gitipus Fex of Sophocles-appeared in 1silt, and seversl of his shert poems were pullished by Seckendorf in his husenalmanach, 1807 and 1808.: In 1801 Hoderth obtaned the post of libranan to the landgrave of llomburg, and went to live in Homburg under the supervision of froends: but the post was abandoned two years later, and he was taken to Tubingen, where he remaned, irrenediably but hambersly insane, till his death, June $\overline{2}, 1843$.

Holderlin's aritinys are the production of a beautiful and sensitive wind, a mind of high ideals and notbe inupulses; but they aro intincly, aluust morbidly, zubjective, and they lack real bunan streneth. Ferhaps his stronsent
charaezeris:: was has passion ior Grees suojects, and the natural result of this was that he almost entirely discarded rbyme in favour of the aneient verse measures. His poems are all short pieces; of bis tragedy only a fragment was written. Hyperoon, oder der Eremat in Grieehenland, is thus his one important work; and even to this a sequel is wanting. It may be called a prose pnem, and $2 s$ written io the form of letters. Its exquisite language, the purity of its tone, the sad philosophical vem whieh permeates it, together with its autobiographic ebaraeter, claim for it a unque position among German elassics

Au edition of Hoiderlins complete works, with his letters ind biography, appeared in 1846 ; and there 13 a cheap edition of his selected korks. in ith a borraphy by Christoph Theodor Sehwab, published in 1874.
holeschau, Holleschat, or Holesov, chief town of a goverument distriet in Moravia, Austria, cirvle of Hradisch, is situated on the Russama, 20 miles N.N.E. of Hradisch. It has a large castle in the Italisn style (with a five garden), a beautiful deeanal chureh, and a syoagogue. Linen and eleth-weaving are carried on, and there is some trade in boney, was, hides, and wool. The population in 1869 was 5282 , more than a third being Jews.

HOLIBUT, or Halibut (Hippoglossus vulgaris), is the largest of all Flat-fishes, speomens of 5 feet in length aud of 100 Hin weight beiog frequently exposed fer sale in the markets. Ladeed, specimens under 2 feet in leagth are very rarely eanght, and singulariy cneugh., no instanee is known of a very young specimen having been obtained. The bolibut is much more frequent in the higher latitudes of the temperate zone than in its southern portion; it is a eircumpolar speeies, being found on the northern coasts of America, Europe, and Asia, extending in the Pacific southwards to California On the British coasts it keeps at some distance from the shore, and $1 s$ generally caught in from 50 to 150 fathoms. Its flesh is eensidered evarse, though white and firm.
holinshed, or Hollinshed, Raphael, author of Chroncles of Eugland, Scotlund, and Ireland, Hourished in the 16 th century. He helonged to a family settled at Doslers, in Cheshire, and according to Anthony Wood he was edueated at one of the universities and took orders in the church. In the compilation of the Chronctes called ly bus name he hore a leadmg pint, but he reeeived extensive and important aid from stow the antiquary, Harrison, ehaplan to Lord Cohlam, Hooker (colus Yowell), an anele of the divine of that mame, and Franeis Boteville (atras Thin), a learned anticulary. Hohnshad's share on the work comprised the history of Encland down to the year 1577, the date of the first cdition. 1lis will-pronted in Hearne's preface to Camden's droutes-shows that in the latter part of his life he was in the service of Thomas Bendet of Bromote, in Warwickshire. He died betweca 1580 and 1584. The notice of Elizabeth's reign contained mater so offensive to ber and her court that in the second edition, which appeared im 1557 , some of the sheets were cancelled altugether. The castrations were published separately by Dr Drake in 1728 , and in sulsequent reprute have liren restored. The history of Seotlind, in. corporatul ty Itolinslicd in his Chromicles is for the most part a trmaslation from the Latin of Hector Poece, and is interestrig as having furminhed Shakespeare with the groundwork of his tragedy of Aletheth. The Chronicles, being the work of so many different hands, present great varieties of literary quahty, but the learning and researeh they show have made them an invaluable aid in the illustration of the early amals of Eugland. An edition in necordance witio the original text was rullished in 1808, 6 vols.

HOLLAR, the title of tho maharajh of Intore (q. m.), .. Inen territerics are ofteu desimnated Holkar's Domiziziona

H 0 LLAND

PART I.-GEOGRAPHY AND STATISTICS.

HOLLAND is the most usual English name of the country which is nationally designated the Kingdom of the Netherlauds (Koningrijk der Nederlanden). The word, which is popularly explained as if it were Hollowland, and referred to the same physical fact which has given rise to the terms Netherlands and the Low Cuuntries, appears in an older furm as Holtland, and is thus evidently equivalent to Wood-lind. In French the usual expression is Pays-Bas, and in German Niedarlande.
There is no country in Eurepe in which the character of the territory has exercised so great an influence on the inhabitants as in the Netherlands; and, on the other band, no people has so extensively modified the condition of its territory as the Dutch. In a description of Holland, consequently, the greatest importance must be attached to the physical conformation of the country as it was and is; and most of the peculiarities of the pelitical and secial condition of the people must be considered in conaesion with this conformation.
Extent. The size of Holland, being subject to perpetual diminution and increase, cannot ba indicated by a definite figure except as at some definite period; on the one hand, there is loss of area still going on in consequence of the erosion of the coasts, and, on the other hand, this is more than counterbalanced by a continual aequisition of new ground due more especially to "inipoldering " and draining operations. In 1833 the surface of the Netherlands was only 2,270,959 hectares ($5,611,860$ acres, 8768 square miles) ; on the'20th Oct. 18i7, at the time of the conclusion of the cadastral survey, it was $3,207,268$ hectares $(8,148,020$ acres, 12,731 square miles).

The kingdom extends from $53^{\circ} 32^{\prime} 21^{\prime \prime}$ (Groningen Cape on Rottum Island) to $50^{\circ} 45^{\prime} 49^{\prime \prime}$ N. lat. (Mesch in the province of Limburg), and from $3^{\circ} 23^{\prime} 27^{\prime \prime}$ (Sluis in the province of Zealand) to $7^{\circ} 12^{\prime} 20^{\prime \prime} \mathrm{E}$. long. (Langnkkerschans in the province of Groningen). The greatest length from north to south, viz., that from Rottum Island to Eysden near Maestricht is cstimated at 164 miles, and the greatest breadth frum south-west to northeast, or from Zwin near Sluis to Losser in Overyssel at 144 miles. If the Zayder Zee, the parts of Prussia which encroach on the eastern side, and the projecting portions of Limburg and Zealand are disregarded, the general form is almost an oblong. With the exception of Greece and Great Britain, no country of Europe bas so many inlets of the sea as Holland.

The Netherlands are bounded on the E. by the Prussian provinces of Hanover, Westphalia, and the province of the Rhine, and on the S. by the Belgian provinces of Liége, Limburg, Antwerp, and East and West Flanders. A purcly geographical boundary is formed to the W. and tbe N. by the North Sea, at the N.E. corner by the Dollart, and from Stevensweart southward to the extreme corner of Limburg (near Eyaden) by the Maas or Mlense. ${ }^{1}$. Natural ethnographic frontiers, auch as occur where two neighbouring peoples of different origin, race, character, customs, and language are sharply murked off from each other, do not exiat in the case of tha Netherlands. Tha Low German elemant, indeed, of which tha Netherlands form as it were the kernel, apreads beyond Dutch limits both north-east along the ceast of the German Ocean and south-west into Belgium.

[^16]As regards the seaward boundary-the coasts, river. Coast mouthe, and islands-it is necessary, for a just comprehen- liae. sion of its character and of its influence on the formation of the soil, to bear in mind that the coasts of the Netherlands stared in the general vicissitudea of the southern shores of the German Ocean at the time when tha English Channel was still clused. Three perioda may be distinguished in the history of these changea. During the first a row of dunes was formed on the sandy tongue of land which, begianing at Ostend, cut of and formed into an iuland lake a portion of the German Oceab, at that time washing the diluvial strata; these are still indicated along the Dutch and the German coasts by a series of dune-formations, sandbanks, and islands. In the seeond period the separation between ocean and lake was still maintained, the river-water gained the upper hand over the sea-water in the lake, the matter brought down by the riser began to settle, and the morasses and beds of marsh-plants, reeds, and rushes (derrie) were formed which are now found above the old sand beds and below the present clay beds. When in the third penod the coasts sulsided, the duncs were bere and there carried away by the rise of the waters, portions of the land were submerged, and, mud being extensively piled up by the sea, the fertile clay (zeeklei) of the maritime provinces was formed, and at the same time the mouths of the rivers were changed in positiou. And all this took place on a still greater scale when the limestone rocks which united Calais and Dover at last gave way and the great ocean with its heavier incidence of billows and tides drove inte the smaller sea. According to Dr Hartogh Heys van Zouteveen, ${ }^{2} 150,000$ hectares (370,670 acres) of land were lost on the const of the German Ocean, 385,000 hectares (951,390 acres) on the Zuyder Zee and the Wadder, 8432 hectares (20,836 acres) in the Dellart, 10,000 hectares (24,711 acres) in the Biesbosct, and about 27,000 hectares (66,720 acres) more in other parts. According to Dr Staring, the province of Groningen, even during the 18 th and 19 th centuries, bas heen harassed with inundations once in every 155 years, Utrecht and North Holland south of the \mathbf{Y} once in 83 years, South Holland once in 55 years, Friesland, Oreryssel, North Holland north of the Y, and the ceast of North Brabant every 40 years; while the Netherlands in general have been visited by such disasters in 1702, 1715, 1717, $1741,1755,1756,1791,1808,1809$, and 1825 , or on an average once in every eleven years. In this last period, however, of the history of the land the lordship of man ultimately began to make itself felt. The formation of the first dykes to prevent inundations was quichly followed by the constraction of a conrected system of earthen ramparts, behind which the country lies secure, while at the same time hundreds of thonsands of acres of fertile land bave been recovered from the sea. The area ganed from 1833 to 1877 has been already stated. The following table shows the amount reclaimed by endyking down to the dates given :-

To return to the present condition of the eeaboard' of the Netherlands,-it follows from what has been said

[^17]that it consists (1) of coasts still protected by dunes or fringed with sandbanks and islands indicating the direction oi ancient lines of dunes; (${ }^{2}$) of low coasts of seaclay provided with dykes which in more than one quarter have been repeatedly extended so as to enclose land conqnered from the sea (the sea.polders); and finally (3) of some high diluvial strata which rise far enough above the level of the sea to nake dykes unnecessary. The dunes follow the west and derth-west coast almost without a break, exeept in a few quarters where they have been removed and their place supplien by dykes or rubble, as in North Holland between Huisduinen and Nieuwe Diep and between Kamp and Petten, in South Holland on Yoorne, and in Zealand on Schouwen and Walcheren, where the famous Westkappel dyke unites the village of Westkappel with the watering-place of Doobburg. The breadth of the line of duaes naturally varies greatly-from 600 to 7000 feet; and there is a similar variety in the height of the individual dunes proper, called dine-hills (duinheuvels) as compared with the dune pans (duimpannen) or depressions. The elevation of the High Blinkert mear Haarlem (196 feet) is an extreme exceptioo, for the average is nut more than 50 or 60 feet even in the case of the high dunes which lie nearest the shore and are known as "sea-rueners" (zeelooper) or the "shore-ridge" (strandreeks). The dunes show a tendency, except where the Duteh prevent it by plantiog wood or sandoats, to wear away on the side towards the sea, and to "overstuiven" or drift off on the landward side. There is, indeed, a general degradatien of the coast, and a recession towards the east, corresponding to the subsidence which nay be observed along the German seaboard, and probably traceable also, in part at least, to the Channel current, which at mean tide bas a velocity of 14 or 15 irches per second, and especially during strong west or north-west winds carries off large quantities of material. This alteration of eoast-line appears at Loosduinen, where the moor or fenland formerly developed behind the dunes now erops out on the shore amid the sand, being pressed to the compactness of lignite by the weight of the sand drifted over it. Again, the remains of the Roman camp at Brittenburg or 11 uis te Britten, which originally lay within the dunes and, after being covered by them, emerged again in 1520, were, in 1694, 1600 paces ont to sea, epposite Katwijk; while, besides Katwijk itself, several other willages of the west const, as Domburg, Scheveningea, Egmond, have continually to be removed further inland. Two things special to Helland are worthy of particular notice, the artifieial formation of dunes, as at Koegras, Callantsoog, Petten, Katwijk, Seheveningen, and Zandvoort, aod the carrying away of the sand (ajzanderij, "oflisading") by ship or rail, as in the "Westland," for cxample, to the south of the Hague, to serve elsewhicre for engineering operations and the improving of the soil. Mingled with marsh-earth the sand forns a suil suited to the culture of flower-bulbs; with clay it produces that exeellent soil for vegetable gardens for which the Westland is so faneus. It must be further remarked that both the "dune pans," which are naturally marshy through their defective drainage, and the " geest" grounds-that is, the grounds along the foot of the downs-have been in various places either planted with woed or turned into arable and pasture land; while the numerous springs at the base of the duncs rise at sued a height above the ordinary level of the conntry that the water is conveyed by canals to the great citics, and an improvement is thus efficted of ence in the agricultumal condition of the coast-land and in the sanitary condition of the cities.

The sea dykes are found along the nerthern coasts, the cossts of the provinces which berder on the Zuyder Zce, and the coasts of the islaula of Zcaland and South LIelland
so far as they are not protected by dunes. Only in a few places, it will be seen, are the sea-dykes undecessary; as, for example, in Friesland between Stavoren and Olde Mirdum (the bold and steep Roode and Mirdum cliffs) and near Doornspijk, 3 miles south of Elburg, where there are high grounds which stretch 6 miles to the south-west of Harderwijk. The earthen dykes are protected by stoneslopes and by piles, and at the more dsngerous points also by "zinkstukken" (sinking pieces), artificial strnctures of bulrushes, reeds, and branches, laden with stones, and measuring some 400 yards in circnit, by means of which the current is to some extent turned aside. The Westkappel dyke already mentioncd is $12,468 \mathrm{ft}$. long and 23 high, las a seaward slope of 300 ft ., and is protected ly rows of piles and basalt blocks. On its ridge, 39 ft . broad, there is not only a roadway bnt a service railway. When it is remembered that the woodwork is infested by the pile worm (Teredo navalis), the ravages of which were discovered in 1731 , the enormons expense incurred in the construction and maintenance of the 1550 miles of sea-dykes now existing may be imagined. The cost of construction is not overestimated at $150,000,000$ guilders or $£ 12,500,000$.

The Dutch islaods may be divided inte two main classes Islands. -(1) those surrounded on all sides by the German Ocean or its inlets, and (2) those surrounded entirely or in great part by river arms, and separated by these from the mainland or from each other. The first division again comprises two groups-(a) the islands Texel, Vieland, Terschelling, Ameland, Schiernonnikoog, and Rottum, which streteh in a long are from the north point of North Holland to the mouth of the Ems, and indicate the old coast-line, so that they belong to the same physico-geographical group with the islands along the German ceast; and (b) the islands Wieringen, Marken, Urk, and Schokland, which are the relics of the stretch of country formerly comprising the present bed of the Zayder Zee. In the seennd class are to be reckoned the delta of the river Y'sel (Camper Island) and the islands belenging to the contiguous deltas of the Thine, the Meuse, and the Scheldt, including the island of Betuwe between the Rhine and the Waal and the archipelago of South Helland and Zealand.

As the river months of Holland must also be regarded as River gulfs or inlets of the sea, they may be noticed bere. The mouthe average breadth of the Hacingviet at IIelwetsluys is 8860 ft . and at Goedercede 18,045 ; that of the West Scheldt at Ter Nenzen $15,420 \mathrm{ft}$, and at Flushing (Vlissingen) 13,750; that of the East Scheldt at the harbour of Gioes 13,780, and at the larbonr of Zierikzee 13,450 ; and that of the Roompot 21,650 to $29,530 \mathrm{ft}$.

The varying characteristies of the coasts in different places Infugive rise to correspendingly different industries. As re- ence of gards trade and navigation, the west coasts with their shal. the lows and sandbanks can be approached only by small vessels indusof light draught (visscherspinken) unless where access is try. afforded by the iulets of the sea, especially the month of the West Scheldt at Flushiug, that of the East Seheldt at Zierikzee, the Brouwershaven inlet between the islands of Selouwen and Goeree, the Geeree inlet at Helvoetslays, the Marsdicp at the Helder, and the meuth of the Ems at Delfzijl, or where a way las becn opened up by engineering worlis as at Rotterdan and Amsterdam (by the new waterway to the sea and the canal to Ymuiden). As we procced from seuth-west to morth-cast the places along the coast become less and less important; in the provinces of Groningen and Fricsland the approach to the mainland is obstrueted by the Wadden or Shallows; and on the coast of the Zuyder Zen are those harbours, fer the most part rendered useless by alluviol aecretions, which have been so well deseribed by LIavard in his Villes Mortes dia Zuydersec. Along the greater part of these ceasts the:
population is engaged in the fisheries rather than in trade, especially when the neighbourlood of a great town (as Alkmaar for Egmond, Haarlem for Zandroort, Leyden for Katwijk, the Hague for Scheveningen) secures a good market or a ready means of exportation. Many fishing villages on the west coast, e.g., Scheveningen, Domburg, and Zandvoort, have in recent gears acquired repute as watering-places with both natives and foreigners.

The availability of the flat coasts for trade and navigation is to a large extent dependent on tho range of the rise and fall of the tides. As shown in the following table, this steadily decreaaca from south-west to northeast. In the Zuyder Zee it is naturally very small.

Places.	Range of Tides.	Placea	Ranço of Tides.
Off Sluis.	$\begin{aligned} & \text { Foet. } \\ & 119 \end{aligned}$	Petten	Fset. $5 \cdot 1$
Flushing	$12 \cdot 1$	Kijkduia	$4 \cdot 1$
Westknpelle..........	112	Nieurediep	37
Brouwershaven.......	88	Terschelling	$5 \cdot 2$
Goedereede	$5 \cdot 9$	Ameland	$6 \cdot 4$
Helvoetsluys..........	67	Rotturn	7.6
Bricl.........	48	Amoterdam ${ }^{1}$.	12
Coast of Dellland.....	$5 \cdot 7$	Zwanenburs'	$1 \cdot 1$
Eatwijk	$5 \cdot 5$	Spaarndani	1.2

The Shallow (Wadden) of the German Ocean between Groningen and Friesland and the islands Rottum, Schier-
monnikeog, and Ameland are usually seit in great measuro dry at cbb-tide.

The elevation of the surface of the country ranges from Rellef about 650 ft . above to 16 or 20 ft . below the Amsterdam zero, which marks the mean high-water level in the Y in front of the city. The circumstance that so much of it is below the sea-level necessarily exercises a very important influence on the drainage, the climate, and the sanitary condition of the country, as well as on its defence by means of inundation. From the history of the formation of the soil already given, and from the course of the rivers, it may be gathered that the low grounds are in the west, and the higher in the aouth and east. According to the relief nop published by the minister of war (scale 1: 600,000), the provinces of North and South Holland, the western pertion of Utrecht as far as the Vaart Rhine, Zealand, except the southern part of Zealand-Flanders, end also the north-west corner of North Brabant, all lie, with the exception of the dunes, below the Amsterdam zero; while the eastern partion of the country, except a small strip along the Zuyder Zee in the provinces of Guelderland, Overyssel, and Friesland, as well as the lands in the neighbourhood of the Dollart, is situated abore it. The regular slope of the ground from aouth-east to north-west, and the position of the bighest and the lowest points, are indicated by the same anthority. At Vaals, in the extreme south-east, the altitude is 656 ft ., at Valkeuberg 525, at St Pietersberg near Maestricht

Relief and Geological Cha:' of Holland.
The positions of the chief towns are indicated by the initials of their names. In the left-hand chat the undivided horlzontal liges ohew the tracts that lie below the Amsterdam zero, the brokee borizontal lines those under 1 wetre, \&c.

403, at the Imbosch near Dieren and the Hettenheuvel near Heerenberg respectively 360 and 345 , at Meerwijk near Nimeguen 318, at Apeldoorn 233, at Zcist 164, at Oldenzaal 154, at Wageningschenberg and Grebschenbarg respectivoly 151 and 131 , at Hoeoderloo and Koataijk

[^18]in the Veluwe 118 and 98 , at Grocnlo 78, in the "high fuas" of Drenthe near Barge 85, at Lochen and Almelo 39, at Coerorden 31, at Stecnwijk and Boertange 19, at Groningen 18, at Hecrenveeu 065 . Below the Amsterdam zero lie nuturally many impollered districts, especially tho marshes and mercs which have been drained drs as for exsmple the Schermer and Purmer polders and tha.

Uaurlem lake, which are respectively $-10.66,-12.46$, $-13 \cdot 61$, the Schieveen polder near Schiedam - 16.27, the polders at Woubrugge, the Bergschentoek, and the Zuidplas - $16.86,-17.58$, and -18.49 .
sener
Of equal importance with the relief of the country is the geological composition of the soil. It is evident from the history of the origin of the land that Quaternary forma-tions-alluvium and diluvium-must be well represented. In fact they constitute no less than 99.9 per cent. of the surface of the Netherlands, orly 1 per cent. thus remaining for all the older formations-the Tertiary and the Secondary, including the extremely limited Jurassic.

To the alluvial atrata belong, in the first place, the fen (veen) strata, which are subdivided into lov fens, ingh fens, marsh fens, and the "dalgronden" or "reclained high fens." The low fens, which are found in Groningen, Friesland, Overyssel, North and South Holland, and North Brabant (about the Langstraat), have been formed of aquatic plants, and, in the urper layers, of mass; thelr elevation is that of the mean sea-level; from them the "short turf," the best quality of peat, is obtained by dredgug, and, when the standing water which collects after the peat has been dug out has been drained off, they may be turned into very productive arable land. The subsoil, on which the fertility then depends, consista usually of clays and alluvinal sand or dune strata, rarely of diluvial sand strata. These low fens extend to no less than 904,597 acres, or about 11 per cent. of the surface. The high fena, of which the greater part have been "disfenned" or atripped of peat, are found in Groaingen, Friegland, Drenthe, Overysacl, and the "Peel" or Marsh of North Brabant, in the more elevated phains or valleys. They have been formed of trees, heath-plants, and rass, and furnish the softer, inferior kind of peat, the "long turf." As the removal of the peat has been followed by the construction of eanals to carry of the standing water, the high fens are of course free from marshes, but, resting as they do olmost everywhere on diluvial gravel ond sand, they do not furnish so fertile a soil as the low fens. They comprise 226,107 acres, or only about 2.8 per cent. of the surface of the country. The marsh fens ari composed almost exclusively of a few species of sedpe or carex, and constitute, not only in their method of formation, but also in their character and situation, the transition between the high and the low fens. They are widely aenttered, especially along ssuallstreams which carry off water mingled with fenny materials, and are nowhere more numerousiy represented than in Drenthe, where oll the drainage is of this character. The marsh fens occupy 168,551 acres, considerably less than the high fens. The "dalgronden" are formed where regular peat-fielda nee laid out along specially constructed canals, and the denuded surface is usually erubbed up for arable or pasture land, or on rare occasions planted with wood. They comprise abont 207,576 acres, and naturally increase in proportion to the decrease of the high fens. We shall return to these "dalgronden" in conne ion with the canals. Besides the fens, the clay lands and certarn of the samd-strata beleng to the alluvium. The clays-which lurnish the richest arable soils, the most luxuriant meadowland, and in somo places the material for brick and carthenware-may be divided jato the sea-clay, the river-clay, the stream-chay or green earth, and the old sea-clay of the districts recovered from the water. The exceptionally fertile sea-clay in the provinces of Groningen, Fricsland, North and South Holland, and Zealand occupics no lesa than $1,676,860$, or abont 20 per cent. of the surface, while the river-clay, naturally gituated along the banks of the larger rivers, takes up 854,234 acres, or about 10 . ${ }^{\text {per cent. }}$ cenc boundary between the sea-clay and the rivereclay is formed in tho ease of these rivers by the maximum hirch-water line. The stream-- lay or green earth, which ta found, as the former mame implics, on the banks of the smaller rivers or streams, is formed of course on a much smanler seale, ond consists of a stratum on an average from 3 to 5 fect thick, reating almost exclusively on the saml diluvium, from which it is occasionally separated by a fenny stratum. It occurs in the east of Drenthe, Overyssel, and Guriderland, along the small tributaries of the Vecht, along the Vecht, licgece, and Sichipheek in Overyssel, and in like nauner in North Brabant along the Donmel, Aa, Mark, and other unimportant streams. The preen enrth not unfrequently containa iron ore; from this tho mptal is "xeracted in Overyssel and Gutdeland, ond it is asserted that in thirty years the natural processes rephore the excavated mineral. Tho stream deposita occupy about " $1^{\text {ner }}$ bent. of the surface-157,187 actes. Finally the old spa-clay of the reclaimed districts covery 127,518 acrea, or $1 \frac{1}{2}$ per cent. of the surface. As already stated, the subsoil of the low fens is not everywhere clay. It is so is the main in the provinces of North and South Holland, where the drainage neprations were consequently much more remanerative than in Freslami, num in the censt of Utrecht, where the fong restol upan sand. Listimatiog tho total area of the secovered districtg at 197,690 acres, about hive-eighthls of this con-
sists of old sea-clay; and these portions, such as the Haarlem lake grounds, the Beemster and Purmer polders in North Holland, and the Nieuwkoop and Zuidplas polders in South Holland, are reckoned among the richest and most fertile. How these low-lying areas have been endyked and drained, surrounded by canals and kept dry by gigantic steam-pumps, has been explained under the heading

Hafrlem lake.

The alluvial and-strata (to be distinguished from the diluvial Alluri:al sand) may be divided into (1) sand-drifts, (2) river-sand, river- saod. downs, a ad "heibanen," and (2) old sea-sind and the sea-dunes with the geest-groynds. The last of these classes has already been considered in dealing with the sea-coast. The rivers briag down their sand as well as their gravel, not 30 much from the more elevated districts as from the diluvial valleys in which they have excavated their channels. The beds of the rivers themselves consist likewise of sand, mingled here and there with gravel or rolled and polished pelbles, and, where the current is not too strong, covered with a layer of clay. If sand has been accumulated on the shore, the wind soon transforms it after the retreat of the river into hiflocks or river-dunes. When these contain a proportion of clay they are more fertile than the sea-dunes. They occur on both sides of the Guelderland Yssel (between Zalk and Oest), and on the Waal below Hulhuizen and opposite Rossum; and various eninences in other parts of the country, such as Agnietenberg near Zwolle, and the heights near Deventer, near Grafthorst opposite Kampen, and olong the Mense between Venlo and Mook, must be considered as of similar origin. "Heibanen," i.c., heath-tracks, so called on account of their sterility, are beds of ruver gravel casily distinguished from the diluvial gravel by the smooth, wora, and unitorm appearance produced ages ago by the action of the current. They are found, for example, in the Betuwe, abont Avezaat, and between Lienden and Waddenoijen. Sand-drifts are dune formations originated by the action of the wind ou the diluvial sand, where in one way or other it has been stripped of the heath-crust. They extend to 179,220 acres, or about 21 per cent. of the surface. The fen strata occupy in all $1,505,300$ acres, or $18 \frac{1}{2}$ per cent. ; the clay strata $2,815,850$ acres, or about 35 per cent. ; the alluvia! sand strata 475,477 acres, or about 6 per cent. ; and the whole alluwinm $4,799,627$ acres, or 59 per cent.

The daluvial or sand and gravel strata of the Netherlands are Diluva far from being of such economic importance as the alluvial strata. strata The agricultural products-mainly buckwheat and rye-are neither so abundant nor so valuable os the wheat and rape-seed of the clay soils; and neither stack-breeder nor dairy-farmer obtains so satisfactory results. The boundary of the diluvial strata may be roughly indicated by a line running through Winschoten, Groningen, Dokkum, Lceuwarden, Heerenveen, Steenwijk, Zwolle, Elburg, the coast of the Zuyder Zee, Naarden, Uirecht, Rhenen, Bois-le-Duc, Breda, Bergen-op.Zoom, and Antwerp. South and east of this line lies the dilumum, for the most part on the surface, except in the plares already mentioned where the fens, the river-clay, the stream deposits, and the sand-driits are sithated, or in the extreme south and enst where the older strata make thicir appearance. To the north and west of the line the only diluvial strata are those of the Zuyder Zee islands: in Texel. Wieringeu, and Urk the soll is of diluvial origin; aud this probably liolds true also in whole or in part in Vlichand, Ampland, and Terschelling.

The diluvial formations are sublivided into gravel-strata and sand-strata. To tbe former belong (1) the Sendinavian dilavium, in which occur granites and chalk tlints derived from. Scandinavia, situated to the north of the Overyssel Veeht (that is, in Groningen, Irenthe, the south-west of Friesland, ant the islands); (2) tho mixed diluvam," which besides the Scandinavian gravel coutsins stone-grit from Munster, the Tentoburger Wald, and the districts along the Rhine (it is siftuted between the Vecht and the Rhine, in Overyssel, Utrecht, the Guoiland, ${ }^{1}$ and Guelderland); (3) the Rhine dihuvinm, destitute of granite, but with many fragments of white quartz, basalt, and other kimls of stone from the mountaina along the river between Bonn and Collentz (it lies between the Waal and the Meuse) ; (4) the Mensediluvium, containing materials brought from the mometains higher up the stream; and fimally. (5) the Jimburg fliat diluvium, like the preceding variety destitute of any plutonic or volranic roeks, but nevertheless consisting almost exclusirely of thats occuring in the neighbouring chalk formation.
I'he sand-diluvium, which is of later date than the gravel, is foned in ereat level stretches at the foot of the hills of diluvial rravel, and contains no pehbles or coarse gravel. It also occurs in the maritime provinces moder all the marine and fluvial formations. According to some nuthorities it owes its oripin to the influence of rain, or frost, or wind; according to others it has been formed by the sea like the Kempen sami nod that of the dunes, and thea transported liy the south-westerly currents.

* A district formerly called Namifingetland, on the aouthern ahores of the Zayder Zee, inctudtng Naarden, Bussum, Huizen, Blaricum, Laren, llilversim, aud Muiderberg.

In the dilaviun must also be included the loess, which occupies a large proportion of the province of Limburg. The whole diluvium comprises $3,308,330$ acres, or about $40 \frac{1}{2}$ per cent. of the country, distributed thus:-Scandinavian $4 \frac{1}{2}$ per cent., mixed diluwum $4 \frac{1}{2}$, Rhine and Mcuse diluvium and Limburg fint diluvium 1, loess $1 \stackrel{1}{2}$, and lastly the sand diluvium, which includes tho diluvial riverbanks, $2,376,770$ acres, or about 29 per cent.

The older formations, which occupy a very limited area, ocenr in the east of Guclderland and Overyssel, in the south of Limburg, and in Zealand-Flanders. That they also form the substratuin elsewhere, e.g., in Zealand and Brabant, is not mpobable. The area of the Tertiary strata is $3 \$ 25$, and of the Secomlary 3740 acres.

Cultiva.

As regards the capabilities of tife soi!, Hulland does not huld an exceptionally favonrable position,-3. 3 per cent, of the country consisting of good and about 2 per cent. of inferior clay land, while more than 45 per cent. is poor and partially reclaimed sand, and fully 18.5 per eent. is covered with fens. The following figures show the account to which the soil is actually turned : $-64 \cdot 3$ per cent. consists of arable and pasture land, gardens, hay-felds, and orchards; 6 per cent. is occupied by water and rouds ; 7 per cent. is woodland ; 0.7 is covered with buildings; and the rest, or 22 per cent., must cunsequently be assigned to the waste lands, shores, and dunes, the reed.beds, beatbs, and fens, The extent of this uncultivated area is of course being gradually dininisished by the more general employment of improved methods of drainare, by prevention of the pro. gress of the sand-drifts, by reclamation of the fens, by the extension of facilitics for the carriage of manures, and by the parcelling out of the mark-lands or conmons which are now used only as public pastres or for the digging of turf (plagyen). The distributitim of the cultivated lands in the several provinces is consingered below in connexion with the density of the population.
Rivers. The Netberlands are watered by three muin rivers-the Phine, the Meuse or Mass, and the Scheldt or Schelde, besides a great number of smaller streams. How the Pline breaks up into Rlline and Wall, Fline and Yssel, Crooked Rhine and Lek, Old likine and Vecht, and finally reaches the sea at Katwijk, may be seen from the map ; and also how the Meuse at Gorcunn furms a junction wifh' the Waal, flowing on to Dort under the nane of the Mervere, and thence continuing to the sea between tho South Hullanid Islands and South Holland, under the names of the North, the Old, and the New Meuse. There too may be traced the course of the Schellt, with its briad mouthis bounding the Zealand Islands and separating them from the mainland of Fianders, or that of the Yssel by Deventer, Zutphen, and Kampen to the Zuyder Zee. These great rivers render very important service as water-ways, as the following statistics may show :-

Nume.						
				Ui.lvan	${ }^{4}$	
${ }_{\text {ran }}^{\text {rain }}$						
				${ }^{20}$		
				9ii		

- The depths are those of the fairway. . The mean relocity seldom exceeds 4.9 feet, but rises to 64 feet when the river is high. In the lower reaches of the streams the velocity and slope are of course affected ty the tides: In the Waal

[^19]ordinary high water se perceptible as ar up as Bommel; in the Lek the maximnm limits of ordinary and spring tides are at Vianen and at Kuilenburg respectively, in the Yssel above the Katerveer and past Wijhe, and in the Meuse near Heusden and at Well. The fulluwing table shows the fall at ebl) and flood tide respectively in the rivers named:--
Lower Rhine and Lek, from Pannerden to Krimpen.

Ft.
38.827 and $92 \cdot 638$ Waal and Nervede, lion Panucrdeu to llatid. Guxvelia.. Yerland Ysel, from Westervoort to Mo.................................
 33479 $31 \cdot 06$ $31 \cdot 00$ Mense, from Grave to Wublrichem................
The fall in the Mouse foom Macstidiclit to vino is $!07.05$ fcet.
The total length of the navigalide clannels is 1135 mildes, out du certain places sand-banks and slanlows not unfrequently impedo the shippheg trallic at luw water tumg the summer. As a draw. back to the services rendered by the rivels must be mentioned the damage infleted by their inundations and iccedrilts, for protection arranst which river-dykes were constructed as eally as the days of the Romans, and, in the lower reaches, more enpecially in the course of the 11th, $12 t h$, and 13 th centuries. It is only in in \ddagger ers places-for example, on the light hand side of the Fhane-ilat devated banks are foind. Flsewlicre between the dykes ind the stream lie "fore. lands" or "outwerders," which are usamlly subacrged in winter. That the rivers cannotat all times, any mone than the sea, be kept unter contiol by the dykes is shown by the thoads of 1775,1776 , 1784, 1799, 1809, 1820, 1861, \&c.

The smaller streams are often of great mortance. E Exerph where they ise in the fens, they call into life a strip of fruith! verdure in the midst of the banen samb, and thas lead to the existence of many villages. The low-lying spaces at the conflucuces, being readily laid under water, have beeu not unfequently chosen as sites for fortresses. As a mattel of conrsc, the streams are also tumed to account in comexion with the eanal systen, - the Holland Yssel, the Gouwe, the Polte, the Schie, the Spaame, the Zaan, the Anstel, the Dieze, the Amer, the Mark, the Veche, the Zwarte Water (Dlacli-water), the Kuinder, and the unuerous Aus in Drenthe and Groningen being the most important in this respect. Largely by means of these natural water-ways the Dunh Cavalis lave formed for themselves a network of cmals, small and great, the unted length of which anounts to 1522 miles. The camals diller greatly in character in the differcat provinces. In Nouth Brabant and Limbug the Zuid Willemsvart (Soubh Wialliam's caunl) unites Macstricht ma Weent and Helmond with lois le Due ('s Hertogenboseh), communicates by a side branch with limdhoven, and has a connexion with the eanal from Macstricht to Liege. In Zealand the canals give the towns of the interior communication with the sca or the meer munths; for example, camals lead respectwely from Terncuzen to Sis vill Gent and io Ghent, [rom Middle. burg to V"ere and from Middlebur: to llashing, from Gucs to the Eastern Selteldt, and from Zaenkzecalso tho Easten Scheldt. The caual from IIansweert to Wemelimge has been cot to allow ships to pass between the East and the West Scheldt. In South IIolland many canals setve the hke jurpose; thus the Voorn cinal mites the llarimeliet with the New Mcusc, which doe's not allow the passage of large vessels above Biel ; and smmilarly on account of the many banks and shallows in front of Helvoetsluys a new waterway las been opened up to Rattedam by whemag the chanmel of the Scheut worth of Rosenburg, and cuting aeross the Iloek van Holland. 'The Gocree mulet mites that place with the Hatingrliet. Of a different chancter is the Zederik cannl, which untes the prin. cipal river of contral Jolland-the Lek-(it Viamen) by neans of the Linge with the Merwede (at Coreum). As Fotterlam bas its new water-way, so in North IGolland Amsterdan is connected with Nicuwe Diep by the canal via l'umerend and Alkmarr; and, this eanal being too shillow for the largest class of wessels in eargo, the canal to dmuiden has becn constructed across Holland-op-zynsmalst (i.c., Holland at its manowest). Amstendam is further con. nocted with the Vecht by the Kenkshe Vaart, and with the Lek and the Zederik eaual via Utrecht by the Vanst Rhinc. In the province of Guelderland Nijketh inle umates that town with the sca, and Apeldoorn commumeates with Ilattem north.east throurla the Grilt canal and south-cast with the lissel through the Dicren canal. A totally diferent character belones to the canals in the cast and north-east of the country, where, in the absence of great rivers, they form the only water-ways which acuder passible the drainage of the fens amd the export of peat, and unite the lesser streams whth each other. Thus in Overyssel the Willemsvaat connects Zwolle and the Zwarte Water with the Yssel, the Dedemsvaast conneets the VCelit with the Zwarte Water near Hasselt, and a canai counects Almolo with Zwolle. In Dreathe the Smildervaarl
or Drenther Hoofdraart noites Assen with Meppel, and receives on the eastern side the drainage eanals of the Drenthe fens (the Orange canal, the Beilerstroon, and the Hoogeveen Vaart), while the North Willemsvaart unites Assen with Greningen. In the province of Groningen the chief town communicates with Delfzijl and the Dollart both by the Darnsterdiep and by the new ship canal, while the canal to Wiuschoten brings it into connexion with the Hourishing fen colonies, such as Wildervank and Veendam, which bave sprung up in the east of the province and in Drenthe. In Friesland, finally, there are three ship canals :-that from Harlingen to the Lauwer Zee via Franeker, Leeuwarden, and Dokkum; that from Leenwarden to the Lemmer, whence there is a busy traffic with Amsterdan ; and that from Stroobos in the east of the province (in connexion with Groningen) to Stavoren in the southwest. It would be superfluous to enumerate the barge canals by which almost all the large towns communicate with each other; Lakeg. nud it is equally unnecessary to mention all the lakee, which exist in great numbers, especially in Friesland and Groningen, and are connected with rivers or streamlets. Those of Friesland are of note for the abundance of their fish and tleir beauty of situation, on Which last account the Uddelermeer in Guelderland is also celebrated. The Rockanje Lake near Briel is remarkable tor the atrong chalky solution which covers even the growing. reeds with a hard crust. Many of the lakes are nntbing more than deep pits or marshes from which the peat bes beeu extracted.
Climato.
The climate of Holland ${ }^{2}$ is such as might be conjectured fromits geographical position and its generally low level. Situated in the temperate zone between 50° and $53^{\circ} \mathrm{N}$. lat., it shows a difference in the lengths of day and night extending in the north to nine hours, and there is a correspondingly wide range of temperature; it also belongs to the region of variable winds. The following table, from the observations of Professor C. D. Buys Ballot, the well-known director of the Meteorological Institute at Utrecht, shows the average temperatures and the barometric heights re corded there during 1849-1878:

Month.	Therinometer.	Barometer.		Month.	Thermometer.		Barometer.	
	C. IFahr.	Mill.	Inches.		C.	Fahr.	Mill.	Inches
Jan.	194 1549	7.9988	29.916	July	18.52	$65-33$	$760 \cdot 53$	29.943
Fcb.	2.99 87.38	${ }^{761} 20$	29.968	August	17.96	62-32:	76011	29.925
March.	$4.96,40.92$	75395	29.879	Sept.	14.99	58-98	$760 \cdot 70$	29.948
April ...	9*39, 48.90	759771	29'909	Oct.	$10 \cdot 39$	50.70	75883	29870
May....	1210'55'58	759.90	29917	Nov	498	40.96	$758 \cdot 97$	29.850
June.	16.90 ¢ 68	760.90	$29 \cdot 956$	Dce.	$2 \cdot 65$	36.77	760.05	29.933

The mean aunual temperature was $9.91^{\circ} \mathrm{C}$., or 49.83° Fahr.

How largely the westerly winds predominate is shown by the following statistics. On an average of ten ycars 5 per cent. of the wiurls were N., 5 N.N.W., 7 N.W., 6 W.N.W., 7 W., 10 W.S.W., 12 S.W., 7 S.S.W. (total 59 per cent.), and 7 S., 5 S.S.E., 5 S.E., 2 ES.E., 3 E., 6 E.N.E., 8 N.E., 5 N.N.E (total 41 per cent.). The west winds of course increase the moisture, and moderate both the winter cold and the summer heat, while the east winds blowing over the Continent larve an opposite influence. The following table, derived from observations taken at Utrecht, showe that, as might be expected, the rainfall is large :-

Months.	Average Ev.iporstina ($18550-64$).	$\begin{gathered} \text { Ruiny } \\ \text { Days } \\ (1848-78) \end{gathered}$	Average. Raiufall (1818-78).
	Millim. Inches.		Milum. Inches.
January $\cdot .$.	12.8 0.51	401	50.3181 .98
February	$23 \cdot 3091$	380	46.2181
March	$50.5 \quad 1.99$	375	$43.9 \quad 172$
April	87.3 3.43	319	$40 \cdot 5 \quad 1 \cdot 59$
May	124.3 4.89	338	49.718
June	134.2588	306	$50.6 \quad 1.99$
July	$125 \cdot 5 \quad 4 \cdot 94$	358	$74^{4} 4 \quad 2.93$
August	$117 \cdot 3 \quad 4 \cdot 62$	392	$85.9 \quad 3.38$
September	$63.5 \quad 2.74$	381	$69 \cdot 1 \quad 2 \cdot 72$
October	$38 \cdot 1 \quad 1 \cdot 50$	390	$68.7 \quad 2.70$
Novembe	$15 \cdot 3 \quad 0.60$	409	$\begin{array}{ll}58.3 & 2.29\end{array}$
December	$12 \cdot 1 \quad 0 \cdot 47$	406	$58.8 \quad 2: 31$
, Yearly average...	810.2 31.88	148	$695 \cdot 427 \cdot 37$

It caunot be said that the climate is particularly good; indeed to strangers it is rather the reverse of pleasant. Fevers, colds, and, when proper precautions are not taken, chest disease and consumption, are results of the changeableness of the weather, which may alter completely within a single day. The leavy atmosphere likewise, and the necessity of living within doors or in confined localities, cannot but exercise an influence on the character and temperament of the inhabitants. Only of certain districts, however, can it be said that they are positively unhealtliy; to this category belong some parts of Holland, Zealand, and Friesland, where the inhabitants are exposed to the exhalations from the marshy ground, and the atmosphere is burdened with the sea-fogs. To what extent the bealthiness of the different provinces varies may be seen from the following table of the anuual death-rate for the twenty-five years from 1840 to 1865 :-

Provinces.	Males.	Femsles.	Buth Sexes.
Guelderland	1 in $42 \cdot 10$	1 in 44.00	1 in 42.95
North Buabant	,, 4169	,, 4303	, 42.69
Limburg	," 4282	, 42.61	[) 42.68
Drenthe	, 41.98	, 43.62	, 42.54
Friesland	\% 4084	" 43.67	, 42.07
Groningen	, $40 \cdot 00$, 42.94	, 41-24
Overyssel................	, 39.01	, $40 \cdot 54$	$\because 39.75$
Utrecht	$\because 33.68$,, 36.14	, 34.90
North Holland	, 3033	[. 3432	: 32.35
Zealand..	,, 29.51	", 32.24	, $30 \cdot 84$
South Helland	, 29.04	" $32 \cdot 81$, $30 \cdot 60$

For the whole kingdom the annual death-rate was 1 in 36.73 -that for the males being 1 in 35.49 , and for the females 1 in 38.14.

That the density of the pepulation must, apart from Density other causes, increase through the acquisition and cultiva- of popution of new land, and that it visibly differs very greatly lation. according to the difference of the soil in the different provinces, may be seen from the following table, wherein the increase of the percentage of cultivable land and of the pepulation is indicated:-

Frovinces	Waste Lands.		Bubdinge and Pleasure Grounds.		Arable Ladad.		Under Gasss.		Mchards and Nurserice.		- Population.		$\begin{aligned} & \text { Mesn } \\ & \text { Density } \\ & \text { per Sq. } \\ & \text { Mite. } \end{aligned}$
	1833.	1876.	1833.	1876.	1833.	1876.	1833.	1876.	1833.	1876.	1829.	1878.	
Groningers	16	14.7	0.9	0.9	49.3	51.4	24.9	26.7	$\cdots{ }^{\circ}$	\cdots	157,504	249,124	271
Friesland	11.2	10.6	0.8	$0 \cdot 7$	$15 \cdot 6$	16	508,	$59 \cdot 3$	$0 \cdot 3$	$0 \cdot 8$	204,909	823,872	249
Drenthe.	67.5	$57 \cdot 5$	$0 \cdot 3$	$0 \cdot 3$	8.7	12.3	20\% :	$24 \cdot 5$..	$0 \cdot 2$	63,868	-117,026	111
Overysel.	44.5	$35 \cdot 6$	0.5	$0 \cdot 8$	156	17.5	$30 \cdot 4$	32.2	0.08	$0 \cdot 1$	178,595	273,770	208
Gucliterland.	$32 \cdot 4$	$24 \cdot 7$	$0 \cdot 7$	0.8	22.6	25.2	26.9	$27 \cdot 7$	1	0.9	309,793	468,840	231
Utreelit.	119	9.4	1.5	1.8	$21 \cdot 1$	$20 \cdot 7$	$46 \cdot 0$	46.5	$1 \cdot 5$	$1 \cdot 6$	132,359	191,870	349
North llollaud	$15 \cdot 7$	10.2	1.5	$1 \cdot 5$	$4 \cdot 4$	13.1	56.9	56.0	0.4	$0 \cdot 4$	413,988	667,946	609
South Hollamd	6	$4 \cdot 5$	1.5	$1 \cdot 6$	23.7 .	23.1	$47 \cdot 3$	$53 \cdot 2$	1	048	479,737	796,109	653
Zealand	9.5	6.9	$1 \cdot 1$	$1 \cdot 2$	54	58	21.8	$21 \cdot 2$	11.1	0.9	137,762	189, 066	274.
North Braba	35.3	$35 \cdot 4$	0.7	0.6	$26 \cdot 1$	26.2	$20 \cdot 1$	21.0	0.2	$0 \cdot 2$	348,891	468,667	230
Limburg	31.7	$22 \cdot 0$	0\%	$0 \cdot 6$	$38 \cdot 6$	41	$9 \cdot 6$	10.9	2.9	$3 \cdot 1$.	186,281	2 40,497	276
	$27 \cdot 9$	23.3	0.8	0.9	$23 \cdot 9$	957	$32 \cdot 5$	34.1	$0 \cdot 6$	0.7	2,613,487	3,981,887	302

${ }^{1}$ See Dr F. W. C. Krocke. Het Klimat van Nederland. Harlem. 1863-64. nul thy Jarbock of the Kon. Nod. Meterr. Inst.

The greater ciensity of population in the Holland provinces as compared with Drenthe cannot be explained, however, merely by the eharacter of the soil ; the variety of industries and the great number of large towns contribute to the inequality. All the towns with 100,000 inhabitants and upwards (Amsterdam, Rotterdam, aud the Hague) are situated in the provinces of Holland; of the 36 communes with more than 10,000, 9 are in Holland, none in Drenthe; of the 35 communes between 10.000 and 4000,9 are in Holland and 2 in Drenthe. The reason why in the west, and especially in the district between Amsterdam and Kutterdam, there is such a clustering of large towus, ouly surpassed in a few parts of England and Belgium, is to be found in the factittes there afforded for earning a subsistence. Holland is cniphatically a country of large towns. \because. According to the census of 1869 there were forty four which had a population of upwards of 5000 . The greatest of all was Amsterdam, with 256,154 inliabitants; and next in order came Rotterdam, with 113,734. Two others had upwards of 50,000 , the Hague and Utrecht, respectively 81,881 and 57,035. Arnherm, Leyden, Haarlem, Groningen, and Maestiricht were all abuve 25,000 ; and Bois-le-duc, Delft, Dort, and Leenwarden above 20,000 . The fire towns of Nimeguen, Gouda, Helder, Deventer, and Zwolle had each between 15,000 aod 20,000; and Breda, Zutphen, Zaandam, Amersfoort, and Kempen were all above 10,000 , though less than 15,000. Stace that date many of these have coosiderably increased in size. In I 879 Amsterdam had about 300,000 inhabitants, Rotterdam 140,000, the Hague 100,000 , and Utrecht 70,000.

As the density of the population varies within the nar-

Nation-

slities. row limits of the Netherlands, so varies likewise the origin of the peopte. Although ethnographically the whole population belongs to the Indo-Germanic family, or more definitely to the Teutonic branch of it, the descendants of the Frisians may be clearly distinguished in the north-west. The mouths of the Meuse separate these from the descendants of the Franks, who pushed eastward across the Meuse but never settled beyoud the Waal, while the territory of the Saxons, who came later from the east, extends no further than to the Utrecht Vecht. The descendants of the Saxons consequently lis between those of the two firstnamed peoples, although naturally much commingling has taken place between Frisians and Saxons, and Saxous and Franks, especially in the towns and on the newly-acquired leads. The representatives of the Semitic stock (Portugnese or German Jews), though their influence is not unimportant, number only 50,000 of 60,000 , of whom about 40,000 reside at Amsterdam. The descendants of the three Teutome peoples above named are very slightly distinguished from each other by their physical, intellectual, and moral characteristics, and all the less so because the Dutch type is not itself strongly marked and bears the traces of foreign commixture; for many Flemings and Brabantera settled in the country at the time of the revolt against Spain, many Oermans, Englishmen, and Scandinavians during the prosperity of the republic, end many Frouchmen after the revocation of the edict of Nantes. The differences most clearty discernible are in the ald local laws, in the peculiar customs, and above all in the dialects. Among these. last must be distinguished the Holland dialeet (Hollandsch) spoken in .the provinces of Holland and part of Utrecht; the Zealand dialect (Zeenwsch, in Staats Flanders inclioing towards Flemish); the Brabantine (modified), also spoken in a part of Limburg and the south of Guelderland; the Lower Rhenish, which is again subdivided into the Guelderlaud, the Overyssel, and the Drenthe dialects; and, finally, the Groningen dialect. The peasant or country Frisian forms a completely sedarate language
with a literature of its own. It has not been at all satisfactorily determioed in what parts of the Netherlands the remaius of a pre-German population are to be found, nor to what extent they are to be distinguished from the Germans by the form of the akull ; but investigations are being. carried on in this department of inquiry, and a map is being prepared to indicate the boundaries of the various dialects.

The government of the Netherlands is regulated by the constitu-Governtion of 1815 , revised in 1848, under which the king'a person is in. nient violable and the ministers are responsible. The erown is hereditary in both the male and the female line according to primogeniture; but it is only on the complete extinction of the mala line that females can conse to the throne. The erown prince or heir apparent is the first subject of the king, and bears the title of the Priuce of Orange. The king alone has exceutive authority. To him belong the ultimate direction of forcign affars, the power to declsie war and peaco and to make treatses and alliances, the supreme comntand of the army ond navy, the supreme admunstration of the finsmes and of the colonies and other possessions of the kingdom, and the prerogative of merey. By the proviaions of the same constitution he establishes the ministerial depatments, and shares the legislatuve power with the first and second chambers. The heads of the departments to whom the especial executivo functions are entrusted are eight in nomber,-ministers respectavely of the interior, of priblie works (the "waterstaat," including trade and industry, tulways, post-otfice, \&c.), of justice, of tinanec, of war, of matine, of the colonies, and of torelgn aftairs. They are aplointed and dismissed at the pleasure of the king, usually determacd, however, as in all constitntional states, ly the wil of the nation as indicated by its representatives. The members of the first chamber are chosen by the provineial states from among those who hear tha greatest burden of direct taxation in each pruvince, the proportion of persons thus eligible being 1 to every 3000 of the population. North Brabant seuds 5, Guelderland 5, South Holland 7, North Holland 6, Zealand 2, Utrecht 2, Friesland 3, Overyssel 3, Groningen-2, Drenthe 1, Linburg 3-or altogether 39. The duration of parliament is nine years, ze third of the members retiring every three yeare. Tho retiring members are eligible fur re-election. Tha members of the second chsmber are chosen in the clectoral diatriets by all citizens of full age who pay direct taxcs varying according to local circunistances. from 20 to 160 guilders. One member is olected for every 45,000 of the pupulation. At present (1880) there are eighty-six; they must be ot least thirty years old, and they cease to be members if. they take a salaried Government appointment. They discuss all laws, and have the right of proposing amendments. Their term is fonr years, but they are re-eligible. All commanicstions from the king to the states-general and from the states to the king, as well as all general measures relating to internal administration or to foreign possessions, are first submitted to the consideration of the couns cil of state, which also has the right of making suggestions to the king in regard to subjects of legislation and administration. The king appoints the vice-president of the council, which" con. sists of fourteen members; he is himself the president, and can name councillors, to the number of not more than fifteen, for special service.

The provincasf administration is entrusted to tho provincial states, which are returned by direct election by the samo dectors as vote for the second chamber. The term is for six years, but part of the members retire every three yeara. The president of tha assembly is the royal commissioner for the province. As the provincial states only meet a few times in the year, they namena committee of deputy-states to which the management of rurrent general business is entrusted, and which at the same tome administers the affairs of the communes. At the head of every commune etronds a communal council, whose members are chosen by the inhabitants for a definite number of years. The president of the communal counvil, the hurgomaster, is named by the king in every instance for six years, and along with the magistrate to be cliogen by and from, the members of the council is charged with the ordinary admioistrstion. The provinces, as already stated, are eleven in oumber (the grand. duchy of Luxemihourg, over which the king has control, is not incorporated with the kingdom); the number of communes at 81st December 1878 was 1128.

The administration of justico ia entrusted (1) to the high council; sustice. the supreme court of tho whole kingdoni, which holds ibs seasiona at the Jague, and is the tribunal for all high Government officials and for the membera of the atates-general ; (2) to the frve courts of juatice for crimunal eases, and for appeal in more important pohice and civil cases; (3) to courts established in each arrondissement; (1) to cantonal judgea appointed over a group of communes, whose jurisdiction is restricted to claims of emall amonnt (under 200 guilai-isi, find to breaches of police regulations, anil who al the same the look after the initreats of minots.

* mam s. The following atatement or une revenue for the year ending the midalle of 1878 , and of the expenditure for 1877, is taken from the Stuats Courunt for 1879, No. 6:-

		expendiume.
cet taxathen	2, 1 (1).748	Stural hruselok' 572.116
b.xprort and amport duldes ...	301.912	
fixctime	3,24x,29	1repantment of furcign aftars... 50,511
find and situel water	301,4+11	justlee............. 343,201
bintiruct taxution	1,703,314.4	- linlerlur qifterat
mate tomane	1:1.231	mariue............1,175,317
1 Inventhe	302.583	Natlonnl debl......................2,187, 615
Ginvernment tecegraphs	69,290	Department of thance...........1411,102
State lethrimy	36.146	., war...............1,8:15.563
fiamer nd fivlictes	12.5134	, wateratat2,043,588
		124.724
		Unantupatud expenses.......... ${ }^{\text {a,163 }}$
Total	87,992,4	Tutal......es, 871,792

The following tahle shows the revenue and expenditure for the provinces and communes, and the contributions received from the Dotch Inelies:-

	186*.	1869.	1870.	1871.
Reve	A. 95.6100 .48 .1	96,253.3.33	94,144, 872	v. 4.001 .483
Reve	57.972,457	R.021,444	7,954,739	7,833,456
Expenditure	f. $16.18181,448$	$91,424.469$ 7	91, 107750	94,401,038
	28,010,964	7.9\% 20.080	$8,2+2,312$	7,883,336

The amome expended on the war and mariae departments is given above. The standing army consists of infantry, cavalry, artillery, engineurs. anm gendarmeric, forming togcther a force of 60,000 nen, witl 3000 horses. Less than hali, however, is kept in arms the whole ycar. The soldiers are raised partly by voluntary enlistment, and partly by conscription. In 1876, 1877, and 1878 tho conseripts annunted to $10,808,10,878$, and 10,772 respectively. They ure selected from the males who havo entered their twentieth ycar and are not excupted for special reasons. The term of service io time of peace is tive years, but may be extended in time of war; the conscript rueroits, lowever, so far as the number of volunteers permits, nec kept under arms for a few months only. A portion of the aunual coutingent is appropriated to the marine service. In the communcs there are "sclutterijen," militia "trainbads," which in timo of wer serve for tho deface of the country, and at all times for the maintenance of order. Their actual term of service lasts only live years, hut every male inhabitant from his twenty-filth to his thirty-fonrth ycar is liable to be called out. On tho lst of January 1879 there were of these on duty, in 88 com munes, 212 companies, or $41,7: 4$ men, includiag 573 officers.

The atrength of the navy in 1879 was-home service, 17 ships with 3162 men; Indian military marine, 23 ships with 1793 hands; auxiliary squadron, 4 ships with 900 hands; in the West Indies, 2 ships with 206 sicn. The fleet for the protection of the "seagates," or estuaries, coasts, roalsteads, and rivers on the lst August 1878 amounted to 61 ships, of which 23 were armour-plated; 21 ships for general service, of which 2 were armour-plated; besides 7 guardslips and temlers and 7 training vesscls. 'I'he strongth of the marino corps was in July 1878 returned at 2055 , and the uumber of guns carried by the navy at nbout 500 .
Fortifi-
cstlons.
In accordance with the law of April 18, 1874, the military and naval derences are supportcd hy a system of fortification which em.

Years.	Provincial.		Communal.		Cuntributions of Dutch Indics.
	devenue	Expendinure	Rivvenuc.	E.xpenditure:	
1417	2279.090	2\% $2: 1$ 616			
1×1;	273,464	2+4,1295	\ldots	¢897.613
1616	261, 21%	212,418	...	**	1,124.916
1870	323403	31.5477	1,083, 1773
1881	314.760	244,1:7		¢	809,307
187.2	2788043	291.637	£3,502,640	13,160.554	1,832,100
1873	312,143	2,97,250	3,758.897	3,479,869	868.974
189	322,266	322.256	$3,547,573$ $8,1 \times 0,414$	3,277,634	878,714
1875	330,647	365,903	5,180,414	3,565,700	1,925,973

We append the total reccipts of the tea years 1868-77, inclading the ordiuary revenuc, the Indian contributions, balances from previous budgets, proceeds of sale of domaios, \&c., and the total expeaditure for the same ycars, incloding, besides the ordinary hodget, the outlays in payment of annoities, in funding aod discharging debt, in railway extemsion, \&c.:-

1872.	1873.	1874.	1875.	1876	1877
108.932,184	109,507,189	105,263,6:37	119.837.573	105,733,172	102,238,081
9,077,673	0,125,519	8,772,463	9,286,46,4	8,811,097	8,519,350
104,432.183	108,0243,52:3	99,352,345	114, 111,278	112,635.219	118,461,511
0,077,673	0,002,793	8,279,363	0,909,273	3,386,268	9,871,309

the Amsterdam hane from the German Ocean, near Ymuiden, to the Zayder Zee and the Nicuwe Hollandscle water-lıne; the buthturn water-line from the Aleuse above St Andries to the Amer below Gecrtroidenberg; and the warks on the Western Scheldt. As already mentioned, in many cases the fortifications can be supple. meatod by extensive inundations.

The inhabitants of Holland enjoy full religious as well as political Relrgoa liberty. Not only is the frce profession of has rcligious opinions guarantecd to every one by the constitation; the same protection is accorded to all the various ceclesiastical borlics; all the adherents of the different creeds have equal civil and political rights, and equal claims to public offices, dignities, ond apjointracots; and all denomimations possess perfect frecdom of administration in everythigg relating to their religion and its exercise.

At the census of 1869 the population was classified thus as regards religion:-

Cengregatioos.

Low-Dutch Reformed	1,956,852 with 1,343		
Walloons	10,258		17
Remonstrants	5,486		80
Christian Reformed	107,123		390
Baptists.	44,227	"	126
Evangelical Lutherans	57,545	"	50
Old Lutherass	10,525	"	8
Moravians.	311	"	2
English Episcopalians	456	"	2
Scotch Church.......	84.	"	1
Eaglish Presbyterians........	417\%	,	4
Total Protestants.	2,193,284	th	1963
Roman Catholics	1,307,765	,	982
Old Catholirs	5,287	"	16
Greek Church	82	"	2
Low-Dotch Jews	64,748	"	167
Partuguese Jews	3,525	"	2
Uaknown	5,161	,	...

Altogether there are nbout 2800 churches and cbapels. The fol: lowing table shows tho percentage of Protestants, Catholics, and lews in the severs! provinces:braces tho folluwing lines:-the Nieuwe llollandsche water-Jine from the Zuyder Zee by Utrecht, the Lek, and the Merwede, through the district of Altura to the New Merwede: the lioe of the Guelders valley and the Lower Betuwe: the lines of the Hollandsche Diep aad the Volkerak, of the moutly of the Meuse and the llaringuliet, and of the Helder: the works for the protection of the river-crossings and the reception of trons on the Yssel, the Wanl, and the Meuse;

	Grodingen.	Fritgland.	Drenthe.	Overyascl.	Guelderland.	Utrechl.	Narth Hollaod.	South Molland.	2ealaod.	North Brabant.	Limburg.	Holiand.
Protestunts	90:5	90	$93 \cdot 5$	66.5	61	62	$67 \cdot 5$	$73 \cdot 5$	73.5	1) 5	$2 \cdot 5$	69
Voman Catholics	$7 \cdot 5$	9	4.0	320	38	37	$27 \cdot 5$	$24 \cdot 5$	26.0	88°	97.0	39
Jews...............	2.0	1	$2 \cdot 5$	$1 \cdot 5$	1	1	$5 \cdot 0$	$2 \cdot 0$	0.5	0.5	0.5	2

From this it appears thant in the northeenst the Protestant creed greatly preponderates, aud that the majority of the Rommn Catholics ate found in the sonth, while both aro fairly represented in the central provioces. That in the last fifty years there las been over the whole pipulation a atealy increase in the propintion of Protestnots nal Jews, and a corrcajionding decrease of Roman Catholice, is evident from the following table:-

Y'ear of Cictisum	Iroteatenta.		Koman Catholles.		Jowa.		Unknown, "	
	Pumbiber	I'ercl	Number.	I'erct.	Number.	jerrat.	Numb.	leret.
1439	1.841.4R7	5011*	1, 11:10,100	34.99	46,408	174	11,043	012
14.94	1.701.2is	bus 5	1.100.616	;8'48	52.248	$1 \cdot 87$	3,314	$\cdot 011$
18.89	1.2\% 21.8461	. 1969	1.171.924	383.1	B8. 624	1.82	1.469	-00'
18.6	2.01815 .1628	Afts. ${ }^{\text {ch }}$	1,2:21,186	37. 510	62, 790	193	3,826	01:
1888	2,13\%.2א]	4127	1,213,038	8669	68,003	1.00	6,193	-015

The government of each of the Protestant hodies (with tho exception of the Baptists, whe have no central nuthority) is in the hands of an assembly or "gynod" of theputies from tho proviacial judicatures. In the caso of the Neformed Church the affairs of the community arnentrusted to the provineinl synods. The provinces are subdivided into "classes," and the classes agnin into "cireles" (ringon), vach circle comprising from 5 to 25 congregations, and eoeh crygregation being governcd by a "church council" or session. The provincial aypods aro compused of ministers and eldera deputed ty the classes; and these are composed of tho ministers belonging to the particular class and an equal number of elders oppointed liy the local aessions. Tho meetiogs of the circles have no ndministrativo character, but aro mote brotherly conferences. The financial management in each ceagrogation is cutrusted to a special count (kerk-vooglij) comprsed of "motatiles" und chareh wardens. In cuely jroviace there is besides, in the case of the Refornurd

Church, a provincial committee of supervision for the ecelesiastical administration. For the whole kingdom this supervision is entrusted to a common "collegium ' or committee of supervision, which meets at the Hague, and consists of 11 members named by the provincial committoe and 3 named by the synod. Some congregations have within recent years withdrawn trom provincial sipervision, and have thas free controt of their own figancal alfairs. Aa a Ruman Catholic province Holland is divided into 5 dioceaes-the archbishopric of Utrecht, and the sulfragan bishoprics of Haarlem, Bois le Duc, Breda, and Koernund, whach are severally divided into deaneries (dekanaten).

The varions demoninations are subsidized by the state. The total thus expented in 1877 was $£ 65,654$.
Educa-
Primary edneation is being more widely diffused year after year, and at the same time receiving increased support from the state. Whale in 1868 there were 3675 schools, attended by 437,311 pupils, and conducted by 10,375 teaehers, the corresponding bgures for 1877 were respectively $3813,522,861$, and 12,292 ; and while in 1858 the atate, the provinces, and the communes expended only $1,278,894$ guiders (-1 s .8 d. sterhing) on the achools, the expenditure for education in 1877 was 7,271,484 guilders in 1875, 1876, and 1877 there were 841,848 , and 847 in every thonsand boys between six end eight years of age at school, and 786, 796. and 803 out of every thousand girls; and from nine to eleven years of age 881, 890, and 910 aut of every thousand hoys, and 812,815 , and 827 out of every thousand girls. There is thus a steady decrease of non-attendance. The improvement of promary education is shown by the growing decrease io the proportion of conscripts who could neither read nor write: from 1840 to 1858 this was $22 \cdot 82$ per cent.; 1859-62, $19 \cdot 79$; 1863-67, $17 \cdot 74 ; 1868-71,15 \cdot 46$; 1872-76, 13.13; and in 1876 only $11 \cdot 99$ per cent. There are no bilingual schools in Holland, and teachers diseonrage the use of the dialects.
For secondary edueation there were in 187739 "burgher schools" (partly day achools, partly night sehools), with 372 teachers and 4319 pupils; 43 mdustrial art and technical sehools, with 203, teachers and 4145 pupils; 53 higher class "burgher sehools," having eomses of 5 or 6 , of 4 , and of 3 years, with 620 teachers and 4000 pupils; the polytechnic school, wath 12 professors and 13 teachers, and attended by 319 pupils; and the national sehool of agriculture at Wageningen, with lo0 pupila. Schools of navigation were maintained at Rotterdam, Amsterdaın, Helder, Tersehelling, Vlieland, Harlingen, Schiermonnikoog, Groningen, Delfzijl, and Veendan, with a total of 536 pupils and 26 instructors. Tbe secondary school for girls (with courses of 5 and of 4 or 3 years) were 12 in number, and harl about 900 pupils and a teaching stall of 140 . For secondary education in 1876 the state expended 933,721 guilders, the provinces 24,329 , and the communes 906,618 , making a total of $1,861,668$, or $£ 155,389$ sterling.
Thu hisher ellucation is provided for in the four universities of Leyden (foundel in 1575), Utrecht (1536), Grommgen (1614), and Amsterdam (1877), with 45, 34, 31, and 41 professors, and 627, 401, 189, and 389 students respectively. Instructiod is also given by about 100 teachers to 1400 papils in various seminaries and theological achools: the number of datin or grammar schools and gymnasia in 1877-78 was 51, with 240 teachers and 1503 pupils. The total cost of the higher education amounted to $1,057,694$ guiders.

A national institution at beyden for the study of the languages, geography, and ethnology of the Dutch hadier has given place to communal anstitutions of the same nature at Delft and at Leyden, founded in 1864 and 1877 . Nilitary amed naval instuction are provided for by corps sehools, by a trainng battalion at Kiampen, an artillery training company at Schoonhovell, and scientific corrses for the several corps, by the royal military academy (founded 1828), the " schouf of war" for officers, the royal navy institute at WiIlemsoord (1856), and by training ships at Amaterdam, Rotterdam, and Helvoctslnys for apprentice boatswains, sailors, cabin-boys, pilots, and engineers. For the education of medical practitioners, civil and military, the more important institutions are the natomal obstetrical college at Arnsterdam, the national veterinary sehool at Utrecht, the national college for military physicians at Amsterdam, and the establishment at Utrecht for the training of military apothecaries for the East and West Indica.
tific societies exiso at Middelburg, Utreeht, Bors le Duc, and Leeuwarden, and there are privato and municipal associations, institutions, and collections in a large number of the smaller towns. Among others of general utility are the society for the service of the community (Afaatschuppij tot nut van't alycmeen, 1784), and the grographncal seciety at Amsterdam (1873), '1eyler's Stichting or fuphation, and the society of industry at Ifarlem, the royaf iustitute of languages, geerraphy, and ethnology of the Duteh Indies (1851) and the Indian society at the llague, the royal institute of engrneers at Delft (1848), the association for the encouragement of music at Amsterdam, \&c.

The arriculturnl methouls vary according as the seils are sumdy or Agriculrlay. In the first the "three-crop" system (two erops of rye and ane ture of buckwheat) differs widely from the eareful Flemish method of cultivation, in which ceven the pastures are manured. On the clay there is still greater variety both in the modes of treatment and in the amount ol care bestowed on weeding and draining. The produce of the land is thas very different in the various provinces for the same soll. The general value of the crops ia gradually rising, as may be scen from the following statistics, in which the higher figures cannot be altegether aseribed to the greater extent of land brought under cultivation: improved education and the influeace of local associations for the advancement of the interests of agricalture have contributed to the result. In 1851-60 there was under enltivation it grain and other marketable crops 1,637,512 acres, in 1861-70 1,770,890 acres, and in 1871-75 1,860,850 acres. The total value of the crops was $£ 8,311,666$ in $1851, £ 13,445,672$ in $1862, £ 15,870,586$ in 1871, and $\mathbf{2 1 9 , 0 0 1 , 5 9 8}$ in 1875 . Of the total acreage just mentioned about $25 \cdot 9$ per cent. Was devoted to rye, 17.3 to potatoes, $13 \cdot 5$ to oats, $8 \cdot 6$ to buckwheat, 7 to beans and pease, $7 \cdot 1$ to barley, 5 to rape seed, 3 to flax and kemp, 0.8 to madder, 0.6 to garden seeds, 0 ' 2 to tobacco; while the rest is set apart for the special cul. tivation of chicory, hops, beetroot, mangold wurzel, narketgarden produce, $n=w e r s, ~ p h a r m a c e n t i e a l ~ p l a n t s, ~ g r a p e s, ~ \& c . ~ T h e ~ w o o d s ~$ or rather the plantations, corering 6 per cent., consist-of (1) the so-called forest tumber (opgaandhout; French, arbres de haute futaie), -inchuding the beech, oak, elm, poplar, birch, ash, willow, and coniferons trees; and (2) the copse wood (akkermaal or hak-hout),-embracing the alder, willow, beech, oak, \&c. This forms no unimportant hranch of the national wealth.

Stock-breeding varies in the different lrovinces. For cattle, Live Friesland and North and South Molland take the lead as regards stock. both quality and nunibers; sheep are best in Texel and North flolland, and most numerous in Drenthe, whore their preponderance is due to the number of commons whiel still remain inbroken ur. Pigs, for which the low lands are neculiarly farourable, are reared in all the provinces. Goats, mainly kept for their milk, are most numerous in Guelderland and North Brabant. Gnelderland, Frieslame, Zealand, and Gromingen possess the greatest nimber of horses. Poultry, especially fowls, are generally kept. Bec culture is mainly earried on in huckwheat and heath districts (Guelderland, Overyssel, Drenthe, the Gooiland, and Utrecht). A bee market is held at Veenendaal in Utrecht. Stock-breeding is mainly carried on along with dairy-farming and lay-naking on the alluvial soils; and there the cereal crops give way to fodder plants. The permanent pasture iu recent years exteuds to some 2 f millions of acres, and clover, artifieial mealows, \&c., occupy about 400,000 . The production of milk, butter, and cheese amonnts to the value of 90 millious of guilders (1s. 8 d . each); butcher meat produces 35 millinns, end wool, hides, fowls, and game 10 millions; while horse-breeding also yiells a total of 10 millions. In 1870 the number of horses was 252,200 ; cattle, $1,410,800$; sheep, 900,200 ; goats, 150,900 ; and pugs, 329,100 ; whereas in 1876 the horses numberel 268,000 ; cattle, $1,439,257$; sheep, 891,090 ; goats, 150,000 ; and 1iga, 352,000 . The value of this live stock in 1870 was $£ 22,087,375$, and in 1876 £29,799.905.
In the densely peopled Netherlands, with no cxtensive forests, Game hunting forms rather an amusement that a means of subsistence, the only exception being the pursuit of फild-fowl (ducks, geese, and snipes). Hares, partridges, wood-snipes, finelies, and thrnshes are the only form of game; a lew rocbucks and dear are found in Overyssel and Guelderland; rabbita are nomerous in the dunes, and sea-gulls' eggs are gathered in tho north of Texel, which consequently bears the name of Eijerland (i.e., Eggland).

Much more important as a means of subsistence are the fishories, Fidheris which, however, are not at present in a flourishing atate. They are divided into the "deep-sea fishery" (buitenguatsch) in the German Ocean, and the "inner" fisheries (binmengatsch) in the Zuyder Zee, the rivera of Zealand, and the intand waters. The deep-aca fishery may be further divided into the great (the so.called "saltherring") fishery, mainly carsied on from Vlaardingen and Jaassluis, and the "fresh-herring" fishery, chiefly pursucd at Schereningen, Katwijk, and Noordwijk. The deepseat tisheries also yield end and flat fish. In tbe Zuyder Zee llat fish, herrings, anehovies, and shrimps are caught off the islands of Urk and Markel and the coast towns of Vollenhove, Kampen, Harderwijk, Huizen, and Vollendam; and there are oyster banks near Texcl. la the Zealand rivers oysters
and Inussels are obtamed at Bramisse, I'hilipune, and Gramw, and
 curght in the Mense, the Lek, and the Merwede, and rills uthe frisian lakes. The lisheries not only suphly the great local demand, but allow exports to the value of $£ 250,000$.

Tho numbers of men and ressels enployed are as follows:-

Ia 1877 the produce (in cwts.) amounted to-

'I'o olitain a correct wen of the trade of the Netherlands greater attention than would be requisite in the case of other countries tnust be puid to the inlind traffic. It is impossible to state the valuc of this in delinite fignres, but an estimate may be formed of its extent from the mumber of ships which it employs in the rivers and canals, and from the quantity of produce brought to the public markets or alaily transported by thousands of carts and delivered by the peas.unt direct to the salesman. Of the market traffic, even in places of secomlary mank, the following facts may give some iden. There are yealy lrought to market at Gorcum and Hoorn from 10,000 to 13,000 head of cattle, at Barneveld, more than 20,000 sheep; at Alkmarr about 10 million and at Hoorn $5 \frac{1}{2}$ million tb checse; at Delft $1 \frac{1}{2}$ million it butter and 2 millinn it cheese; at Meptel 3 u:illion th butter; at Leenwarden 9 to 11 million th butter, 2 mil. lion th checse, and 7 , million th of grain and secds; at the Ovaryssel markets Zwolle, Deventer, and Kampen, and at Steenwijk null Almelo, $7 t$ ntillion 15 butter; at Utrecht 770,000 and at Gromingen 330,000 bushels of grain and seeds. The turnover at the eattle market at Leyden in 1877 was $£ 639,278$. In 1877 there were 700 steamboats afloat on the rivers and canals in the service of the inland traffic.

The forcign tride, although less than it was formerly, still contimes to be considerable in proportion to the size of the country. In 1878 the merchant marine consisted of 1277 vessels of 958,652 cubit metres (the register ton is mund to 2.83 cubic metres); of which 79 were stemshins of nbont 200,000 cubse metres. In 1877 there entered 8166 vessels with $3,000,000$ tons, and cleared 4936 vessels with $1,800,000$ tons ; to which must be added 20,500 vensels with $2,400,000$ tons, which eame down the rivers in cargo from forcign coustries, and 11,850 vessels, with $1,500,000$ tons, which passed the fromtier upward bound.
The extent of the trade nind its inerease or decrease from year to year is shown approximately in the following table: ${ }^{1}-$

I cars.	Tabal Imports.	Importa far llome Use.	Total Exports.	Transit Trade.
1816-18:50		\pm	$\underset{18,600.000}{\boldsymbol{L}}$	£
1451-1855	27,153, 460	18.4\%8000	23,800.000	0.083 .000
1956-1860	$31.128,000$	25, 2093.000	29.292 .000	0,583,000
18G1-1865	40,512,000	30,001,800	33.833,000	$8.750,000$
186G-1870	48,183,000	39,375,000	44,12:,400	9.500 .000
1871	63,418.000	48,918.000	54083,000	13,750,000
1972	Torts	$\underset{51,500.000}{\text { ¢ }}$	Tnns 1.467 .000	Tons. 439.000
1873	3,450,000	iiti, 813.000	1.467 .000 1.712 .000	139.000 832.000
187.1	3,132,n00	4,5,919,400	1,572,1900	1227.000
1875	3.290 .000	27. 118.000	1,118,000	80.9000
1873	3.780 .000	89,418,000	1,717.1000	713.,000
$18: 7$	3,219,000	62,583,000	1,812.600	691,000

The aix ports which take the largest share in tho foreign trado are Amsterelam, Rotterdam, Iedeler, Dort, Schiddam, and llarlinGrin; at a considerable distance follow Groningen, Mihdelburg, Vlandingen, Purmerend, Zaandam, Elam, Zwolle, Kampen, mid 1) lfaijl. fhe returns of recent years show best in the caso of the South llolland towns; but it must be kept in view that the direet imports, the so-called "proper trade," are nost important at Amster. alam, while a great patt of the commercial business nt Rotterdam

[^20]Lulons to the commission and transit trade. For exports Rotter. than is liy fir the most important, sending our neatly thrice as much as Amsteralam.

An extuination of its lists of exports and imports will show that Hollamel revives from its colonies its spicerics, coffec, sugar, tobace, indigo, cimmon; from England, Prussia, and Belgium its manufactured gools and coals; grain from the Baltic provinces, Archangel, and the ports of the Black Sea; nease and beans from Prussia, timber from Norway and the hasin of the Phine, yarn froun England, wine from Finuce, hops from Eavaria and Alsace; while in its turn it scids its colonial wares to Germany, its agricultural produce to the London market, its fish to Belgium and Gemmany, and its cheese to France, Belgium, and Hamburg, as well os England. The briskest trade is carried on with Germany and England; then follow Java, France, Russia, the United States, \&ic.

The mineral resources of Holland give no encomagement to in- Indusdustrial activity, with the exception ol the coal mining in Limburg, tres the smelting of iron ore in four furnaces in Overyssel and Guelderland, the use of stone and gravel in the making of dykes and roads and of clay in brick works and potteries, tho quarrying of stone at St Pietersberg, \&e. Still the industry of the country has de. veloped itself in a remarkable manner since the separation of Belgitm, and that in spite of the lack of iron and-coal, and the pralry of other productive forms of lahour. The greatest activity is shown in the cotton intustry, which especially Hourishes in T'wenthe (in Overyssel) and also at IIarrem and Veenendaal. In the manufacture of woollen goods Tilburg ranks first, followed by Leyden, Utrecht, and Lisulthven; that of half woollens is best developed at Roermond and Helmord. The cotton and woollen mant. factures together furnish employment to 20,000 hands. The linen mamnfacture is carried on especially in Meierij van den Bosch, Helmond, Boxtel, Woonsel, \&c. Even iron works and machine factories bave greatly increased since the free importation of the raw material was permitted-for example, at Ansteriam and at Fijenoord opposite Roterdam; and in this deprastment more than 6000 workers are cmployed throughout the country. It need hardly be said that sliphuilding is of no small inportance in the Netherlands, not only in the greater but also in the smaller towns olons the rivers and canals; and it is naturally associated with ropespimang and other ansiliary crafts. Among the less noteworthy branches of iudustry are the making of cigars and snuff, especially at Eindhoven, Amsterdam, Utrecht, and Kiampen; diatnond-cutting at Amsterilam; bectroot-sugar refining at Amsterdam; papermaking in the Veluwe, on the Zaan, and in Limburg ; shomaking and deather taming in Brabant (Langstrant); mat-plaitinr and broom-making ot Genenuiden and Blokzijl; the manufacture of glass, crystal, and carthenware at Maestricht; carnet-wcaving at Deventer; working in gold and sitver in North and South Holimul and on a smaller seale at Seloonhoven; and the distillation of brandy, gin, ami liqueurs at Schicdam, Rottertam, and Ansterdam. Tho number of hanis ocenpied in the mannfactories chronglout the whole of the Netherlands is estimated at about 100,000 , of whom three-fourths are settled in Noith and Sontl Ilolland, Nortli Brabint, ond Overysil. The following table shows how great has been the industrial ievelopinent of the last thinty jeats:-

Years.	Stenm Engmes.	Horse. l'oner.	Woukshops will stcam Enclues.	Stenm. bouls.	LacomoNuck	Boilers.
1852	364	0.537	*	...	\ldots	
1862	98.3	15.824		
1872	1.81 .5	20,914				
1886	2.873	- 76,971	2.393	707	617	4,69
1878	5,140	87,338	2,612	622	829	3.39

As the devolopment of trade and industry and agrieulture was Commune promoted by the improvement of elucation and the abolition of ication. transit mend export elues and the lessening of import eines, so also has it loen adranced by the improvement of the means of communi. eation, and of the postal and telegraple systems. The waterwnys of the country have been nlrandy considered. The mals are divited into national or royal ronds, placed elirectly under the control of the "waterstaat" anil stuplorted by" the state; provincial roady, under the direct control of the state's of the provinces, and almost all supparted hy the provincial treasuries; conmmal and poleder mads, maintnined ly the commmal authorities ond the polder boards; and finally, private wands. The system of national ronds, mainly constructed between 1521 and 1827 , but still in proeess of extension, brugs into connexion nearly all the towns. The construction of railways wats long deferred and slawly accomplished: the " Ilolland Railway" was lithl duwn in 1839-47, the Rhine Rail. way in 1813-56, the Aix-Maestriche-Tanden lino in 1853-56, and the Duteh-Brtinin in 1853-51. All the other lines, c.g., that from Maestricht to Liege, the Central Ihilway, the Nimeguen line, the Almelo-Salzberg line, tho State Ralway system, \&er, have been constructed sinco 1861, a large number of them having been opened about 1863 and 1501 , A great improvement hos in consequenco been effected in the communication: The town of Utrocht, whicia
is the centre both of the couniry and of the railway system, nay be approached by six difterent lines. From Amersfoort, Zutphen, Zwulle, Hengelo, Boxtel, Rosendaal, Venlo, add Maestricht lines stretch out in four dircetions, while Groningen, Leenwarden, Mcppel, Enschede, Hilversum, Ansterdam, Háarlen, Uitgeest, the Hague, Rotterdam, Moerdijk, Breda, Tulburg, and Einshoven are cach the meeting place of three liaes. With foremgn cuuntries the Netherlands communicate from Groningen by the Winschoter and Nienwe Schans line; from Overyssel by the Almeio-Salzberg line; from Goelderland by the Arnhem-Erumerik and Nimeguen-Cleves lines, from Limburg by the Gennep-Guch, Venlu-Gladhach, and Maestricht-Aix-la-Chapelle lines; mad in the south with Belgium by the Terneuzen-Ghent, Hulst-St-Nikolaas, Roseodaal-Antwerp, Tilburg-Tumhnut, Einilhovan. Hasselt, Maestricht-Liëge, \&c. Among the lines at present prosectid or in construction may hic mentinged the works yt Austerium by which the Hollaod Railway along the Y is to be brought into coanexwor with the Eastern Rail. way and the Ihave Railway, the line between Zaandarn and Enkhuizen via Purmeread and Hoorn; the Grooiogen-Delfzijl line; and those from 2 wolle to Almelo, and from Kotterdam or Schiedam by Vharditgen to Massluisand the mouth of the New Watervay. The axtent of the nisil aervice routes was 26,898 miles io 1873, and 25,773 mules in 1877 , nnd in the samu years the post-office staff numbered 3026 and 3525 respectively The number of letters (exclustve of amsspapers, printed matter, and nticial letters), which in. 1850 Whs יuly $7,000,000$, had iuereased by 1877 to $50,000,000$. The ummber of ioland post-cards rose from 4,000,000 in 1871 to about to,000, 100 is 1877 , the number of inland gewspapers was ir $I 860$ abuut $5.000,000$, aut ta 1877 abmut $27,000,000$. The follow. iu! use the stutistics for 1853 and 1877 of the national telegraph systew, origmated in $1855^{2}:-$

	Milustine	Mines Wirr.	Messages	Receipts.	Expenditure.
$185: 1$ 187	${ }_{2186}^{1 / 8}$	345 40,050	45,740 2,985,000	¢4,325 $\mathbf{6 5 , 9 0 0}$	$\begin{array}{r} 517,775 \\ 104,775 \end{array}$

Colonies The Dutch colonies, originally mere trading commumties, have se much racreased in importance, through the cultivation of their varmus vegetahle products, the reclaiming of their waste lands, and the working of theır mines, that they cannot be left altogether out of view in considering the trade and fieances of the mother country. The Dutch colnnies in the East Indies, situated between 30° N. lat. and $6^{\circ} \mathrm{S}$. lat., and between 95° and $141^{\circ} \mathrm{E}$. long., cumprise an area of 600,000 square miles, with a population of about $23,000,000$, among which are 35, 000 Europeans, 319,000 Chinese, 15,000 Arabs, and 10,000 other immigrant Asiatics. For convenience of supervision they are divided into the Great Sunda (Soeoda) Islands, the Smaller Sunda Islands, and the Moluccas-a division which is based neither on political nor on ethnological consideratioas, nor on the phenomena of anmal or vegetable distribution. The Great Sunda Jslands are Java. Sumatra, Celebes, and Borneo, all with subsidiary islands: the Snaller Sunda Islands comprise Bali, Lnmbok, Soembawa, Flores, Sandalwood Island, aud Timor; the Molurcas include Halmaheira, Ceram, Buru (Boeroe), Amboyna, Banda, nod the south-eastern groups, besides Western New Guinea. The West Indian possessions of Holland include Dutch Guiana or the governnicut of Surinan!, and the Dutch Aatilles or the goverament of Curaçor and its rependencies (St Eustatius, Saba, the southern half of St Miartio, Curaçoa, Bonaire, end Aruba), a total area of 60,000 square miles, with 90,000 inhabiteots, of whom a small portion are Enropeans, and the rest negroes and other people of colvur, Chinesc,
and otheremigrants. The East Indian possessions yield an anmual a verage contribution, as already stated, of over $£ 800,000$; the West Indian, on the other had, require eid to the amouet of $£ 500,000$ or $£ 600,000$ yearly.

The character of the Dutch people may be largely explained Nations by their history, the conformation of the country, their means of characsubsistence, their strife with the sea, and their stinggles to maintain ter. their independenee against Spaia and against hostile neighbours. The love of frecdom and independence is the leading element in their character; the peculiarity of their soil has constrained them to be industrious and economical ; their cuntest agaiast the sea, their wars, and their distant expeditions, have traiaed them to bravery and self-possessiou; and their liberality has beea stimulated by the disasters which, falling upon one to-day, might be the lot of any other to-morrow. Of course the virtues of the Dutch are ant to be distorted to vices: their composure nut seldon beeones 11 differeoce; their tendency to reflexion makes them laggard in action and deficient in enterprise ; their luve of liberty degeaerates into an extravagat sease of indepeadence that is more concerned about rights than about duties. Socrability is by no means a dominant characteristic of the Dutch; they speak litule a ad laugh less. . But their eppearance and expression give a poor indication of their sterlag qualities. Their general siacerity and uprightness are evident to every one whose owo respectability gaius ham admission, on terms of familiar intercourse, to the respectable cureles of Dutch [ociety.

Bibliography.- The first place in a biblography of Holland 18 duc to the Algow meene Slatustiek can Neverland (Leyden, Ist purt, 1870.2d part, 1873). a work of inuch vaster compass than is indicated by its titte, -consisting, is it docs. of separsio articles on every scientific aspect of the country, contributed by spectalists of high authority. The geodetic portion, for example is furoished by J H. A. Kutjper; Dr F. Fatogh Heys ran Zonteveen wreaty of the soil, rivels. mlands, te., the Leology, end the launa the flora is described by Piofessor Hugo de V'res, Dr C. M. van der Sunde Lacosta, and Professor W F. R. Surmgar; the nicteorolagy is by Professor C. H. D. Buys Ballot, the account of the piovinces and communes by Proicssor S. Visseang, and the vita! staustice by M won Baumhauer. As supplements to this. their greatest wot k. the Goveinment Socicty tor Siarlstics mlso publish Bydragen en Mfededeelingen voor die Stal, wan het Kon. der Nederlanden: Statkundeg en Staathushoudhundig Jaarboehje, ond Stat. Jaar bock voor het Kon. der Nederlandon. The fotlowing are convenient manuals:Dr A. A. van Heusden. Handopek det dardrukskunde. de. van het Kon, der Nederlanden, Haarlem. 1866 , J. Kuijper, Nederland, zune Probincuen en Koionson, Lexuwarden, 1878. Rijkens, Aardryksiunde ran Nederland, Gronmgen, 1s79: M. H. J. Plantenga Mintare Aardivhshunde tan Nederland, new cd., 1880; J. Craandjjk and P A. Schipperns, Schetsen met pen en potood. Haarlem, 1874. The excellent works of W.C. A staring-De Bodem van Sederiand, Haar: lem, 18:6-60: Natur'dunde en Volksviut van Nederiand. Amsterdam, 1870; and Voormaals en thans, Hearlem, 1877-are of a more tlescriptive cast. For the fauna and flora of the country the reader mny consult Professor Schiegel. De dieren van Nedertond, Marrlem. 1862; C. A. J. A.Oudemans. De Flora van Nederland, Haariem, 1871-74; Van Halls. Neerlands Plontenschat, Gron., 1855. Among the mure recent of fircign publirations in tecard to Holland the following rank high-Alph. Esquilos. La Neerlanile et iu rie Hollandarse. Paris. $18 j 9$ (English tranNotion, Duich a: Home. Lowdin, ISG3); J G. Kohl, Resten , den Niederlanden. Leipsic, 1850. Dr A. Widd, Die Wiederiande: 1 hre Jergangentent und Gegenvart, Lempsic, 1862: Henty Havall. La Hollande Pithoresque: Doyago ant villes mortes du Zuderzee. Pabs. 18it, Les Frontiercs Menacees. Paus, 18:6. and Au caur du Paus, Pans isis. ond Edmondo de Amicis, Otandi (Dutch translation by D. Lodecsen, Nederland on zijne betroners. Leyuen, 1-76) The most imporiant maps ond athases ne thic toprctaphic mays of the kingrlom of the Nellierlantlg. Insued by thic War Depailmont, the Hague, 69 sheets,
 by the Ministry of the Interine under the supervision of P Caland and H . Rod de Looi W C. H. Starmg's Geofogsehe Ragrt. cxecuted by tle topographical office of the War Department (1:200,0n0): Koart roor de Notumpunde on Volkspleth and Landboukhaart ran het Kin. der dederlanden (1.200,000); J Kuijper, Gencente Allas van Nederiand, naar officicele bronnen onftrorjen (1205 communal maps ond one large general mapl; and Naturer on Sfaathuishoudtundige Allas van Nederland. There are firce giod gazetteers.-A. J. van der Aa,

 toek tarn Nedertond, Thief, 1871-76.

PART II.--HISTORY.

Marly The oldest inhabitants of Holland ot whom anything is inlabit- known were of Celtic origin; so much may be gatbered wis. from scanty remains found in cairns, from a few proper names, such as Nimeguen (Nimwegen) and Walcheren, and from the Druid altars found in that island. In Cxsar's day the whole distriet between the Rhine and the Scheldt was occupied by Belga, the bravest of Celts, while the Betaw, the "good meadow," the Insula Batavorum, was peopled by a portion of the Germanic tribe of the Chatti, and provided first the stoutest foes and then the most serviceable allies of the Roman empire. But if the Batavi were the most distinguished of the Germanie tribes in the country, the "free Frisians" (see Frisians), who filled the whele urthern pertion of it, were by far the most important; in addition to them, and mostly on the borderland, were others, Usipetes, Bructeri, Sicambri, Chamavi, Eburones, ard the like, of whom we know little but the names.

From 28 to 47 A.D. a struggle went on between the Their Romans and the Frisians, whieh ended in the latter year in strugblee the complete reduction of the tribe by the vigour of with Domitius Corbulo ; the Batavi and Frisians were probably, in the earlier days of their connexion with Rome, admitted, if not to the more honourable position of "socii," at least to the lower grade of "auxilia," their relation to the empire doubtless varying from time to time. This friendly state of things did not last long; for in 70 A.d. Rome had dismissed her Batavian cohorts, and had turned Claudius Civilis, tee "Mithridates of the West," into a bitter foe This remarkable patriot had served for many years in the armies of Rome, and had learnt the seerets of the imperial strength and weakness. Taking advantage of the wrongs of Germans and Gauls, and skilfully using the divisions witkin the empire, he displayed high statesmanlike ability, whits his energy and succéss in war placed him in the
rank on geat capcarns. He declated tor Vespasian against Vitellius, and grouped twetier Celt and Touton in an elfort to sweep the tyrant Roman out of Gaul. At first all went well with them, and the Romans were driven out of all modern Holland, Belgrom, and irom the left bank of the Rhune as far as fisace. Then the Roman power bogan to assert itself once unure. An able general, Cerealis, was sent into the north-west, and after a chequered and oxhausting struggle, in which bath suffered greatly, the Batavan hero grave waj. Peace was made on easy terms; Civilis land down arms, and the Batavians sub. mitted and resumed ther old position towards Rome. The Batavinn island was lined with forts, and became for the Romans the frontier between Gaul and Geruan; much as in far Inter days the Spanish Netherlands were the barrter between the Dutch and the French.

For a time all was quiet on this nerth-western frontier, till late in the 3 d century the Franks appeared (see Franis). In the course of the 5th contury the Salian Franks had occupied a great part of the Netherlands, and when Hlodowig (Clovis) was lifted (481) on his warriors' shiehls, they were possessors of South Holland, the Veluwe, Utrecht, Brabant, Antwerp, Limburg, Liége, Hainault, Namur, and Luxembourg. After his death (511) these districts for the most part belonged to the Austrasian kingdom. Behind the Salians came the Saxons, who had mate themselves felt in the Batavian island by the madle of the 4th century; in the course of the 5th and 6th eenturies they had settled firmly in Overyssel and Dreuthe, lying between the Frisians to the north and the Franks to the south. There they shared, in alliance with the Frisians, the varying fortumes of that struggle against the Frankish power which lasted 400 years, and was ended only by the genius and persistency of Charles the Great.
spreadel The first Christian chureh in the Netherlands was founded Christi- in the time of Dagobert I., who had reduced the Frisians anity. and Saxons at the town of Wiltenberg, alterwards Utrecht, between 622 and 632. But the true apostle of the Netherlands was Willibrord the Northumbrian, first bishop of that see (695). He miade Utrecht the centre from which Christian light spend across a wide circle of heathendom; and under the protection of Pippin of Heristal, the new faitls was so firmly planted in these parts, that when Willibrord dicd Limburg, North Brabant, Utrecht, and other districts had accepted the fath of the Franks. After Willibrord, Clieistianity had in that part of Europe anotlier stout champion, Wolfram of Seus, who had nearly persuaded the Frisian king, Radbod, to be a Christian; and lastly in 755, St Boniface, "the apostle of the Cermans," was martyred at Dokkno in linesland while preaching among the heathen. Towards the end of the century the stern racthods of Charles the Great completed the conversion of the Netherlands.
6) 3 arn. tant nod diviaions of this cmiatry.

As an integral part of the Frankish empire, the land unter Charles and his immedtato successors was divided into "landschafts" and "gius," ruted over by dukes and counts, by the side of whom the church also asserted her tervitorial rights. IIence sprang the dukelom of Brabant, the countships of Flanders, Hollimd, Guelderland, and the bishouric of Utroeht; and these, under the later Carohings, ware indepondent in all but the name. Feclesiastically the northern portion of the Netherkuds, with Sonth Holland and part of Zealand, was under tho bishop of Utrecht; while the enstern districts were undor the Saxon bishops of Minister aml Osnabrick, and the sonthern parts under the Fraakish bishops of Cologne, Liege, and Donruick. The oricimal dukedoms were subdivided pulitically into countships, and geographienlly into grus; ench gan had a chicf town, girt with is wall, wherein count and judges administered justice; such towns were also market-places.

These district, wide agai.i subdirided mo narks or villages, each with its headman, who acted as jugge in lesser and local cases. These gaus were Frisian in the north, Saxon in the middle (about Drenthe, \&c.), and Frankish in the south.

In the great partition of Verdun (843), Lothar, eldest Charges son of Louis the Pious, became lord of North Brabaut (as of tertit is now called), Guelderland, Limburg, and all modern ${ }_{9 \mathrm{th}}^{\text {ship }}$ Belgium ; Charles the Bald got Flanders and part of centurv. Zealand, while Louis the German had whatever lay on the right bank of the Rhine: this district (called Lothariagia in the days of his son Lothar II.) thus became a borderland between Gaul and Germany. Wben Lothar II. died without heirs in 869 , his uncle Charles the Bald got all the northern Netherlands, with Friesland; but the Mersen agreement (870) redistributed these lands,-to Louss the German the districts south of the present Zuyder Zee, including Utrecht and the Veluwe; to Charles the Bald, Holland, Zealand, and modern Belgium. Eventually in 879 Louis, son of Louis the German, got these districts also. In 912 they accepted Charles the Simple of France as overlord; in 924 Henry I. brought them again under German lordship; afterwards Otto the Great granted them as a fief to his brother Bruno, archbishop of Cologne, who, dividing the land into Upper aud Lower Lotharingia, set Gottfried, count of Verdun, over the latter as duke, and himself took the title of archduke. Thus, during this period, the Netherlands from 843 to 863 were a part of Lotharingia (as it came to be called); from 869 to 870 they were under French lordship, from 870 to 879 partly French partly German, from 879 to 912 altogether German, from 912 to 924 French again, and finally after 924 German.

Throughout this time the country was swamp below and The woodland above; and though much forest was cleared North from time to time, it was still a difficult tangle, with little communication except down the rivers and by the old Roman roads. Yet, backward as they were, the Netherlands were rich enough to attract the Northmen, whe ravaged the shores and river sides, und carmed with them southward mayy a willing Saxon and Frisian warrior. Under Lonis the Pious they got firm footing on the cuast, and received the district from Walcheren up to the Weser as a group of fiefs under the emperors; they even took and sacked Utrecht. In 873 Rolf, founder of Normandy, seized Walcheren; in 880 the Northmen took Nimeguen, and spread up the left bank of the lihine as far as Cologne; in the chapel of the Great Charles at Aix they stabled herses and held heathen revel, till bribed to withdraw by Charles the Fat. Their great leader Siegfred had the emperor's daughter to wife, with lands in liriesland; he was witling to become a Christian, though this put no step to his demands; "as the lands granted him hitherto produced no winc," he demanded also thine towns and districts for tho sake of their vintages. Itis father-m-law, however, sent instead men to murder him, and, this beng done, the lord olip of the Northmen in the Netherlands came to an end.

The effect of these viking incursions on Frankish feudal. ism was great. "Eighty years of plunder and murder," says Gerlache (Essai sur les oruntes lipoques, p. 94), " had turned the fields into a wilderness; the towns rose like oases in the desert; the wealth of the monasterics perished; the peeple were either slain with the swerd or had taken to the sword as robbers; all the elements of political lifo, kingship, nobility, elergy, were confounded together, and every tie of eivil socicty relaxed." The impoverished natives took refuge under the nobles, whose power mado great advance. Now aroso, too, a new titl. of mobility, that of margrave,-each margrave being boun? to defend a piece of frontier, recciving in return an alnum:
complete independence : such was the marquis of Antwerp, who guarded the mouth of the Scheldt. The towns also hecame as sanctuaries against the ravager ; the serf who took refuge there presently became free; the burghers began to trade, and found encouragement in their traffic even from the Northmen themselves.

Thus the whole district came to be covered with prosperous towns; it was also divided into independent lordships, among which the countship of Holland, as it soon afterwards was called, was the most prominent and important. The title "count of Holland" does not appear in history till the 11th century. In the latter part of the 9th cenDirt I. "tury there was a certain Count Dirk, to whom, early in the 10th, Charles the Simple granted the abbey of Egmond near Alkmaar. 'Of bis history almost nothing is known; he was dead beforc 942 , as there exists still a document Drík If of that year signed by Dirk II. -Dirk II. was a man of weight ; he got for his younger son the archbishopric of Treves, and Arnulf his elder son married a kinswoman of the emperor Otto II. He himself received in 983 a broad district, that now covered by the Zuyder Zee, from Texel to the north, and the mainland southward down to Nimeguen. He died in 988 ; and Arnulf was count till 993. His son, Dirk III. Dirk III., a boy, on his accession found things in great confusion; the fiefs hell under France were gone, and much besides. But the young count was full of vigour, and gree at last so strong that in 1018 the empernr ordered the duke of Nether Lotharingia to crush him. Dirk, however, completely defeated his assailant, and not only retained the disputed lands and powers, but added thereto Bodegrave, the Merwede, and Swammerdam, as fiefs of the church at Utrecht. It is here that the true history of Holland begins; for Dirk III. now firmly settlen himself in this district, and became lord of the rich wood. land ("IFolt-land," i.e., Holland) on the Rhine and Meuse. Having also subdued the Frisians and set his brother over them, he next went on pilgrimage to Jerusalem, and after his return in 1034 ruled in peace till his death in 1039.
Dirk IV. His son, Dirk IV., was also a man of vigour ; he began the long strife with the counts of Flanders as to the lordship over Walcheren and the other islands of Zealand; the quarrel was important, as dealing with the borderland between French and German overlordship. This strife, which lasted 400 years, did not at first break out into actual warfare, because both Dirk and Baldwin V. of Flanders had a common danger iu the emperor Henry IIL., who in 1046 occupied the lands in dispute; but while other opponents gave in, Dirk, after the manner of his house, stood out, and in the winter of 2047 wilh his light boats took the imperial flect, ruined the imperial army, and dictated his own terms. In 1049, in a fresh contest with the bishop of Utrecht and his allies, Dirk Coris I, met with his death at Dort. His brother, Floris I., succeeded, and carried on the quarrel; in 1061 he was slain on the battlefich, after having won a decisive victory
misis V. over the bishop. His son, Dirk V., was a child, and the neighbouring princes thought the end of the louse of Holland at hand; and though the boy had stout friends, especially Robert "the Frisian," who had marricd his widowed mother, his praspects were at first very gloomy. The battle of Cassel, however, in 1072, in whicl Fobert the Frisian defeated Philip of France and Fichilda of Flanders, secured his possessions for Dirk, who henceforth saw better days, and ruled in peace till his death in 1091.
Floris II. His son, Floris II., the Fat, had also peace, and at his death in 1122 left Holland in great prosperity. His widow,
Dirk VI. Petronilla of Saxony, governed for her young son Dirk VI.,
and continued the joint resistance of Holland and Saxony to the Franconian emperors. But when, on the death of Henry V., Lothair of Saxony became cmperor, this quarrel
came : wau ena, and the fortunes of the house of Holland rose greatly; the Frisian Ostergow and Westergow were transferred from the bishop of Utrecht to Count Dirk in 1125. The Hobenstaufen, on the contrary, favoured the bishop, and gave back the two "gows"; and thus, with gain and loss, Dirk VI. ruled till he died in 1157. It was in bis time that Holland sent out her first colonists; invited by Adolf of Holstein and Albert the Bear of Brandenburg, Hollanders settled on the Elbe and the Havel, and by their skill in reclaiming marshlands, and their thrift and vigour, created a flourishing district out of a waste of wood and water.

Floris IIL., the nest count, allied humself with Frederick Etoris Barbarossa, thus reversing the traditional policy of his III, bouse. He was less fortnnate than lis fathers; the count of Flanders carried off a slice of his territory; he scarcely held his own agaiust West Frieslaud and Groningen; his reign was marked by the great flood of 1170 , which awept over Holland, Friesland, and Utrecht, and belped to form the Zuyder Zee. Later in life Floris followed the omperor on crusade, and soon after the death of the latter, perisherd in 1190 of pestilence at Antioch. His son, Dirk VII., Dirk had a stormy time, losing rather than gaining in the long- VII run. He died in 1203, leaving an only daughter, Ada, with whom came up the question as to female succession to a male fief. Zealand mainly declared for William, thi late count's brother, while Holland went with Ada; ly 1206, however, William har beaten down all opposition, and was undispnted count. He sided with the emperor williama Otto IV., and was present at Bonvines (1214), where I. Philip Augustus crushed the allied forces of Otto, John of England, Flanders, Holland, and Brabant. Soon after this William changed sides, and, attaching himself to Philip Augustus, accompanied Louis to England. After King John's death he joined the fourth crusade, in which his men distinguished themselves greatly at the siege of Damietta in 1219. Returning thence he reigned in peace till his death in 1224. His reign is notable by reason of the civic charters he granted,-one to Geertruidenberg in 1213, another celebrated one to Middelburg in Zealand in 1217. These charters were the models on which later ones were framed; they secured the existing liberties of towns, gave the burgbers the right of being ruled by law, and cstab. fished equal justice within the walls.

William was succeeded by Floris IV., murdered at Corbic Floris in 1235; his son, William IL., was a man of mark. Pope IV. Innocent 1V. baving deposed Frederick II., and wanting in witham prince to sct up against the Hohenstaufen, thought that the, yourg count of Holland might serve, and accordingly had ${ }^{\prime}$ him clected king of the Romans by an assembly composed chiefly of German ecclesiastics. He took Aix-la-Chapellé, and was there crowned king in 1248; and after Frederick's death in 1250 be had a considerable party in Germany. His forcign ambitions were, however, crossed by iroubles at home, and before he received the imperial crown he perished in West Fricslund, going down, horse and armour, through the ice. It was he who fixed the seat of government at.the Hague. His successor was Floris V., a babe. Florta ∇ The fatter had been a young man of unusual promise, ntined by German politics; the son was destined to play a considierable part in Netherlaped history: Hitherto Holland had dealt only with swaller' neighbours, Flanders, Friesland, Utrecht, or Guelderland ; henceforward she takes part in European questions, interfering in the great strife between Elward I. of England and Frauce. For when he canse of age Floris allied himself closely with the English king, and secured great traling advautages for his peoplo ; the staple of wool was placed at Dort, and the Mollauders and Zealanders got fishing rights on the English coast. To balance the power of the nobles, which mure and more
took the form of oppression, he also granted charters to towns (notably to Amsterdam), and forwarded their growth. In l296, finding that Edward of England was dealing with his rival of Flanders, Floris joined Philip the Fair of France; but this act and his severities towards the nobles led to a conspiracy, to which he fell a victim; the burghers and people, who knew him to be their best friend, took such rengeance on his slayers as permanently rerluced the power of the riobles.

John I.

Joln I., his son, was in England when his father was murdered; he was a feeble boy in body and mind, married to the daughter of Edward 1. His reign was a struggle between Zealand, led by Wolfart van Borselen, and Hulland, guided by John of Avennes, the young count's guardian and next heir. In 1299 Van Borselen was killed by the Hollanders, and soon after Count John died. John of drennes was at ouce recognized as count by the Hollanders, and with John I. ended the first line of counts, after a rule of nearly 400 years. Europe has perhaps never seen an abler series of princes; excepting the last, there is not one weals man anong them; they were ready fighters, brive eimsaders, handsome well-built persons, with high chivalrous gifts tainted with corresponding chivalrous vices; they were all ready to advance the commerce of the country; they were the friends of the people, the supporters of the growing towns. . They made their marsh lands fertile, and raised Holland to be a companion of kings.
The in-
depens-
ence of
Holland.
During this time Holland became independent of the imperial authority. The fragments of Nether Lorraine, Molland, Gueldcrlaod, Utreeht, Brabant, and Flanders paid little heed to their nominal lord; Holland especially, so far from the centre of the empire, so nearly forgotten in the greater troubles of Italy or Switzerland, was left to herself. She made her own laws, imposed river-dues (a recognized imperial right), named her own officers, beld high court of justice, coined money, made peace or war at will. Even the de jure authority of the empire over Holland is a matter of doubt, much debated by publicists

Constilu

tion of
bercities.
sprang the title of burgomaster, by which they became known in later days. The "schepenen" administered justice, while the councillors or burgomasters attended to civil affairs, and by degrees threw the judges into the background. Peace and defence were entrusted to a local militia, armed with the cross-bow. Dort was the earliest of these prosperous towns; it enjoyed a very strict stapleright; the commerce of the nurthern districts was compelled to pass through its market. Two centuries later came the prosperity of Amsterdam, and with it the European fane of Dutch butter and cheese; then the wealth arising from the herring-fishery, of which the centre was Enkhuysen. In the l4th century the chief towns had joined the Hansa, and though that exclusive body in the 15th ceutury ejected them, they far more than recovered the loss of their trade through the newly opeued worlds of India and America.

When Juln of Avemes succeeded in 1299 as first count John of of the house of Hainault, the Hollanders were willing to Avennes. receive him, the Zealanders not; and a long struggle between the provinces ensued. In 1301 be coerced Utrecht) into alliance, and got the bishopric for his brother Guy. In 1304 the Flemings were driven out of Holland, and Joln II. was for a few months real lurd of the county. IIe dich that year, and was succeeded by his son William willam. III., "the Good" (1304-1337), who made peace with III. Flanders in 1323 , settled the outstanding quarrel between Holland and Zealand, united the Amstelland and its city Amsterdam to his territories, eacouraged civic life, and developed the resources of his country. He also entered into close relations with the states of Europe, having married Johanna of Valois, niece of the French king; in 1323 the emperor Louis the Bavarian wedded his daughter Margaret, and in 1328 his third daugliter, Philippa of Hainault, was given to Edward III. of England. William III. was in all respects a great prince, and an acute statesman. In 1337 he died, and was succeeded by his $50 n$ William IV., who was killed fighting against the Frisians Willian in 1345. He left no children, and the question as to the IV. succession now brought on Holland a time of violent civil commotions. The county was clained by Margaret, William's cldest sister, as well as by Philippa of Hainault, or, in other words, by Edward III. of England. Margaret Margaren eventually succeeded, siding with the older nobles, and being, therefore, not well received by the towns. Theso are the days in which came "up the famous parties of "Kabbeljaus" and "Hueks," the "Cods" and the "Hooks," the fat burgher fish and the sharp steel-poiated nobles whowauted to catch and devour them. After much buffeting end many clanges of fortune, Margaret resigned her lordship in 1319 in favour of her second son William, willian but again resumerl it in 1350 . Then the struggle between V . nobles and cities broke into open war. Edward III. came to Margarct's aid, winning a sea fight off Veere in 1351 . a few wecks later the Moeks and the English were defeated by Wilkam and the Cods at Vlaardingen-an overthrow which ruined Margaret's cause. She made peace with her son in 1354, and died two years later. He, lowever, shortly after fell mad; so that in 1358 the Hooks hud to call in his younger brother, Albert of Lavaria, to be stadt-Altetitni holder or "ruwaard" in his stcad; he ruled well, and re. Bavaria. stored somo order to the land. In the latter part of his life he went over to the Cods, a step which led to another outbreak of civil war whiel lasted until 1395. In 1404 he died, and was succeeded by his son William VI. who Williaus upheld the Hooks with all his power, and secured their VI. asceudency. He died in 1417, leaving only a daughter, Jacoba (or Jacqueline), wife of Juhn of France, who died Jacola. that aame year. Agrnin was Holland rent with civil atrife; the llooks, as before, redily nerenting a female sovereign,
while the Cods deciared for John of Liége. Jacoba was granddaughter of Philip of Burgundy, who belaved very ill towards her; her romantic and sad life has reudered her the most picturesque figure in all the history of Holland; she struggied long against her powerful kinsfolk, nor did she know happiness till near the end of her life, when she abandoned the unequal strife, and found repose with Francis of Borselen, ruwaard of Holland, her fourth husband. Him Philip the Good of Burgundy craftily seized, and thereby in 1433 Jacoba was compelied to cerle her rights over the counties of Holland, Zealand, Friesland, and Hainauit. Consequently, at her death Philip of in 1436, as she left no caildren, Philip seized on Bur- all her lands. He already held much of the Nethergondy. lands; he had inherited Flanders and Artois, laad bought Namur, had seized Brabant, with Limburg, Antwerp, and Mechlin; le now got Holland, Zealand, and Hainault, with a titular lordship over Friesland; a few years later he became lord also of Luxembourg. By this incorporation with the possessions of the house of Burgundy, the commercial and artistic life of Holland was quickened, but poititical liberties suffered; for the rule of the "good duke" was far from being good. It was a time of luxnry and show, of pageants and display, of the new and brilliant Order of the Golden Fleace (I430), and of the later days of feudalism, with all its brilliancy, corruption, and decline in the presence of the new monarchical spirit of Europe. Duke Philip on his aecession declared that the privileges and constitutions of Holland, to which he had taken oath as ruward for Jacoba, should be null, unless he chose to confirm them as count. From that moment till the latter part of the next century the linerties of the Netherlands were treated with contempt. Holland, however, at first Material contented herself with growing material prosperity : her pro- herring fishery, rendered more valuable than ever by the operity, ${ }^{\text {a }}$ curing process discovered or introduced by Beukelzoon, brought her fresh wealth; and her fishermen were unconscionsly laying the fuandations of her maritime greatness. It was in the days of Duke Philip that Lorenz Koster of Haarlem contributed his share to the diseovery of printing; the arts and learning of the Ronaissance began to flourish greatly. The Burgundian dukes rivalletl their contemporaries the Medici; under them grew up the Flemish school of painters,' headed by the Van Eycks and Mcmling ; architecture edvanced. as stately clurches and towa-houses were built ; the dukea collected priceless manusoripts, founded libraries, and encouraged authors. Lat this speedy growth in art and letters belonged more to Flanders and Brabant than to Holland or Zealand.

In ehort, throughout the Burgundian time Holland plays but an insignificaut part'; and it may merely bo remarked that the friendship of the dukes for the nobility did that class more harm than their hostility to civic liberties hurt the towns; for the lavish waste of Philip's court impoverished the nobles, and the wars of Charies destroyed them. After their days the Ne'berlands nobility were never again powerful. The church also suffered: it was enriched and corrupted by Philip, and was consequently very loyal to him ; but his farour instead of strengthening it made the Reformation necessary. The cities, though oppressed and heavily taxed, grew stronger; and, when Duke Charles perished at Nancy, they at once stood ont for their rights, aniged his sole heir the duchess "Mary, not unwiilingly, to grant then the "Great Privilcge" of March I477, which affirmed the power of the cities and provinces to lioid diets, and reserved to the estates a voice in the decinration of war, and authority to approve of the choico she might make of a busband. It was declared that natives alone might hold high offico ; no new taxe should be laid without the approval of the estates; ae bigh court of justice was
established for Holland, Zealand, and Friesland ; the Dutck language was made official. Thus cane to an end the centralizing despotism of the Burgundian dukes. This period is also remarkable for a reconstruction of the civic government, and for the appearance of the States The General, first summoned by Philip the Good. In the States states of Holliand unany nobles sat in person, though they Generab had but one collective vote. At first all towns, larger and smaller, also sent representatives, but after a time the smaller ceased to appear, and only such larger cities as Dort, Haarlem, Leyden, Atnsterdiam, Gouda, were represented, each haviug one vote. The president was the "adrocatus," or "vogt," of the country, afterwards styled "the pensionary," an officer regarded as the champion of the estates against the counts. In Zealand and eisewhere, clergy, nobles, and cities sat scparately, each order having a single vote. The estates, under the Burgundians, had little power; they could not even control the taxation. Duke Philip in 1464 summoned them to meet him at Bruges, and, though some of the more distant held aloof, the majority obeyed. These States General, however, expressed no national feeling or union of the provinces: that was a far later state of things.

After Mary of Burgundy had granted the Great Privilege, the provinces warmly supported her against Louis XL.; they approved her union with Maxinilian of Austria in MaxiAngust 1477, though it brouglt them no rest; for the o!d milian of parties still survived, and Hooks and Cods fought savagely Austion in almost every town. Maximilian had allied himself with the Cods, and the Hooks were defeated at Leyden and Dort, and finally in their last stronghold, Utrecht, of which city the archduke was made temporal protector in 1483. Before that time (March 1482) Mary of Burgundy had died, and Maximilian, acting for his son Philip, became governor of the Netherlands. After fresh Hook and Cod troubles at Haarlem, he finally made peace with France in Décember 1482, and after the death of Louis XI. brought the Flemings to complete obedience by the peace of Frankfort in 1489. The provinces were still very uneasy, partly through the turbulence of the Hooks, partly because of the autocratic character of his rule, and partly through the socalled "Bread and Cheese" war, caused by famine in the northern provinces. . War with Fiance also complicated matters, and the government over the Netherlands was entrusted to Albert of Saxony. In 1494 Maximilian, having been elected emperor, laid down his office as guardian, and had Philip the Handsome declared of age. He was at once accepted by Brabant, and the estates of Holland even let him sweep away the Great Privitege. He ruled over theni quictly, and got lack their English trade. In 1496 he married Joanna of Aragon, duughter of Ferdinand and Isabella, and afterwards heircss to the new monarchy of Spain. On Pbilip's death in 1506, leaving two sons, Charles and Ferdinand, and four daughters, Maximilian agaio became guardian for his grandson Charles, then but six years old; he named Margaret of Savoy, his daughter, governess of the Netherlants in 1507.

In 1515 Charies was declared of age, and reccived the Connt homage of Hoiland and Zealand, Brabant and Flanders, Charios as Count Charles II. In consequence of hing friendly reia- (eni, tions with Francis 1. of France, Henry of Nassau, bis Cenverac comrade and trusted follower, was wedled to Claude, sister V.). of Philibert, prince of Orange, and from this union springs the great house of Orange-Nassau. On his accession to the Spanish and imperial thrones euccessively, Charles continued his aunt Margaret of Savoy as governess of the Netherlands, with a privy council to assist her.

Ho brought all the proviaces under one hand, having in 1524 become lord of Friesland by purchase, and in 1528 acquired the temporalitics of Utrecht. He now ruled
over seventeen provinces: that is, over four duchies-Brabant, Guelderland, Limburg, and Laxembourg ; seven counties-ilanders, Arteis, Hainsult, Holland, Zealand, Namur, and Zutphen ; the margraviate of Antwerp; and five lerdships-Friesland, Mechlin, Utrecht, Overyssel, and Groningen. with the Ommeland.
After the death in 1530 of Margaret, whe had continued to act for him with her accustemed wisdom and pradence, Charles V. at first treated the provinces with atudied moderation : he redressed some of thsir griefs, reformed the administration and the ceinage, issued sumptaary edicts, regulated their commerce, while he also re-enacted the severe laws against heresy, and gave full powers to the supreme court of Holland-a body completely Ys a of onder his control. He then appointed his sister Mary, ungary queen of Hungary, regent of the Netherlands. She had at regent. first no easy task; for the provinces had on hand a war with Denmark, and Anabsptist tronbles at.-home ; before loug also she had to ask for increased eupplies; and while the Hollanders granted a large auntal subsidy, they refused her a hearth-tax which she demanded. Similar monetary questions in 1539 produced that famous atruggle between the court and Chent which was only ended by the personal intervention of the emperor; after punishing severely the rebellious burghers, he passed on inte Holland, and in 1540, in defiance of the acknowledged rights of the provimees, established a fereigner, René of Chalons, prince Eouse of of Orange, as atadtholder of Holland, Zealand, and Utrecht. Crango- He thus foreed on them that great family which has Liassau. both'shed lustre on the history of Holland, and defended there and elsowhere the liberties of Europe. Rene himself ruled but a short time; he perished in France in 1544, leaving his territories to a little cousin, William of Nassan.

In 1545-46 the estates gave the emperor men and money for his war against the Protestant princes of Germany; after Mühlberg, the Netherlanders hoped that they might now be freed from the foreign troops Charles had quartered among them. He, however, had other plans on hand, and datermined to place permanently in the provinces 4000 horse, entirely at his own orders; he also laid before the estates in 1548 a scheme of incorporation, which aimed at making the Netherlands an integral portion of the empire, under the name of the cirele of Burgundy, and which he abandoned only after the refusal of the seven electors to Pullip of make Philip king of the Romans. In 1549 he revisited the Epain. provinces and called Philip thither also, that they might see their future master; the young prince swore to maintain their rights and customs; and so began between the Netherlands and him the formal relation which uuder circumstances elsewhere related (vol. v. 416, 417) becamo so real on October 25, 1555.

Affar appointing Margaret ot Yarma, a natural daughter of Charles V., to be regent in the Netherlands, in 1559 Philip set eail for Spain, leaving, in spite of tho remonEtrances of the estates, 4000 foreign troops, neminally to protect the froutiers, really to check the independeuce of the people, and to support the pelicy of religious persecution which had beon resolved on. The real direction of all affairs was in the hands of the Burgundian churchman Antony Perrenot, bishop of Arras (afterwards so
"censulta" or secret ceuncil of three. Λ sharp attack on the Reformers now began. The first step, the proposal (which liad originated with Charles) to rcorganize the bishoprics of the Netherlands, was announced at once. Ifitherto ecclesiastieal affairs had been in the charge of four hishops,-Arras, Cambray, Tournay, Utrecht,-the Iast under the archbishop of Colegne, the others under Rheims. It was proposed now to establish a new and national hicrarchy, independent of Germany and Frauce,
with three archbishops and fifteen bishops:-Mechlin, The new the chief arehbishopric, having under it Antwerp, Herzo- bishopgenbusch, Roermond, Ghent, Bruges, and Ypres; Cam. rics. bray, with Tournay, Arras, St Omer, and Namur ; Utrecht, with Haarlem, Middelburg, Leeuwarden, Groningen, and Deventer. Each bishop was to appoint nine new prebendaries to help him in his diocese; of the nine twa should be inquisitors, specislly told off to sniff out and hnnt down heresy. Nor was this all; it was believed that net merely would these new bishoprics strengthen the old episcopal inquisition, but that a mere stringent form of inquisition was to be introduced, organized after the Spanish system, which had been long known fer its eficient severity. The Netherlanders regarded the change, in fact, as part of a general plan for the subjection of the provinces from abroad, by means of foreign troops and ecclesiasties, with con ompt of their feelings, rights, and liberties. All classes-nobles, clergy, burghers, peasants-disliked the new eeclesiastical system, and regarded Granvella, who became first archbishop of Mechlin, with detestation. Though the Spanish troops were withdrawn in 1560, the ferment was not quieted; the nobles were uneasy, and, finding their position uncertain between the court and the populace, began to form cenfederacies and to head the resistance. Even such leading men as William of Orange, who tried to mediate between Government and the provinces, were driven into opposition; in 1561 Granvella's overbearing acts alienated them still more, and Orange and Horn withdrew from the eauncil. Even Margaret felt she could no lenger rule with Granvella at her side ; aud he at last, seeing that a crisis was coming on, witldrew into Burgundy in 1563. Now things were easier; party badges were dropped, and men felt cooler.
But at this momeot the long labours of the Council of TriTrent were ending; and, when in 1565 it finally pro-dentine mulgated its decrees, Philip determined to enforee their decrees acceptance throughout his dominions. Accordingly, he now made a more vehement attack on the Reformers; and then it was that, in 1566, the Netherland nobles, led by Count Brederode, signed the famuus "Compronise," The with which the open rebellion of the provinces begins. "CemOrange, Egmont, and Horn stood aloof. When, in their promise first interview with the regent, the nobles appeared on foot, in sedulously plain guise and without arms, Berlaymont standing by her side begged her net to be alarmed, "for they were but a pack of beggars;" and the phrase being overbeard, at Brederode's banquet that night it was gaily adopted by the young nobles as a party name, "les gucus," and it beeame the fastion for patrivts to wear beggar's garb, and a medal reund the neck, bearing Philip's image on one side and a wallet on the other, with two hands croesed, and the legend "Fideles au roy jusqu" a la besace." Orange, Egmont, and Horn, who drepped in un the revelry at Brederode's honse, joined the merry scene and drank the heggars' health.
To deprecate Philip's anger at the "Compremise," the 「refute council of state sent the marquis of Bergen and Horn's tion to brether, the lord of Montigny, Kinights of the Colden Fleece Prilin and men of ligh repute, to Spain, where Philip received them kindly, but took goed care that they should never again see their bemes. Meauwhile he gathered forees with which to euppress the disturbances, which hail beceme very вerious. Open air prenchings, guarded by armed men, were taking place througheut the provinces, and raised the excitement to such a height that it at last fouid voat in iconoclastic tumults, similar to those of France. This gave the court party only too gool an excuse; it could now interpose with authority on behalf of public order. Matters threatened war. Margaret played with the disconternted molkes, haviug orders from Simain to decoy
and caplure the chief men, and so to breaik up the eonfederacy. Hereon. Orange withdrew into Holland; Horn, in moody opposition, conscious of his integrity, retired to his country house; while Egmont still hovered, a bright flutterer, round the fatal taper of the court. The confederacy was in fact broken up; and Margaret saw with satisfaction a considerable body of German mercenaries enter the provinces to inflict punishment, in all its ghastliest and most brutal forms, on the iconoclasts. In 1567 it came to blows : the undisciplined rabble of Calvinists, who tried to raise the siege of Valenciennes, were eut to pieces by the troops of Egmont and other loyal nobles. William of Orange withdrew to Nassau, after vainly warning Egmont of the imminent peril which he ran.
The duke In spite of Margaret, who assured Philip that the hereties - A Alvs. were completely put down, and their worship abolished, and that consequently there noas no need of an army, and that on the contrary the time for mercy had come, the plan for the utter subjugation of the provinces was adhered to, and the duke of Alva, already famous for his harshness and bigotry, was mamed commander of the forces, with almost unlimited powers. He set forth in May 1567, and all hopes of peace or mercy fled before him. There was a great and desperate exodus of the inbabitants; thousands took refuge in England, Germany, and Denmark, carrying with them, it was thought, the last relies of their faith and party. The nobles' confederacy had alrearly been broken up; now the popular movement was dispersed, despair and belplessness alone remained to greet the cold Spaniard and his train of orthodox executiuners. He entered the Netherlands with about 20,000 men, all tried troops, ready for any eruelties. Their weakness lay in the fact that they were after all mere mercenaries,-Spaniards, Italians, Germans,-and as such ever ready for a motiny, if pay fell short, or if there were none to plunder.
srrest of "Egmont and Horn were arrested at once; the Council of Egmont Troubles-the "Blood-tribunal"-was established; Maraud Horn. garet, thrust aside by the imperious general, resigned her weary office, and carried away with her the last hopes of the wretched people. Alva was now appointed governorgeneral, and the executions of his council filled the land
Willism with blood. Orange was outlawed on his non-appearance;
of Orange it was about this time that he declared bis conversion to outlawed. Calvinism, and so fitted himself in every respect to lead the peuple when the time came. The hostilities of 1568 led to the execution of Egmont and Horn. Though the Gueux under Louis of Nassau won a considerable victory over the Spaniards at Heiligerlee, the arrival of Alva com. pelled him to raise the siege of Groningen, and to withdraw towards the Ems. At Jemmingen Louis was at last utterly defeated, and though the prince of Orange did his utmost to raise the conntry, and skilfully aroided a fatal battle, the campaign ended in his being obliged to withdraw out of the country. "Alva was now at the highest point of his success ; lis statue, cast from cannon taken at Jemmiagen, was set up at Antwerp; the exodus of the inbabitants continued incessantly, especially to England. The advice of Admiral Coligny, that the provinees should wage war from the sea, was hardly listened to at the first. In 1570 , howerer, Orange turned his attention that way, and his little navy under William de la Marck annoyed Spanish commerce and took rich prizes. In 1572 , being unable to find refuge in any ports,-for neither England, nor Denmark, nor Sweden, wonld allow them harbourage, and they were treated not merely as rebels but as pirates,-William de la Marck, with his "Water-Beggars," suddenly seized Capture on Briel, at tho month of the Meuse, and the face of the of Briel. truggle began from that moment to change. Alva, partly from the general requirements of his position, partly from lack of funds and desire of his recently-imposed tenth
penny, had at mis moment dricu the Netherlanders to desperation. He was engaged in a struggle with Brussels and Utrecht, in which city, to punish the inhabitants, be had collected his Spunish soldiery from all the neighbouring towns. The news of the capture of Briel woke him frum his security. Flushing also fell into the kands of the "Water-Beggars," who surprised under its walls a rich convoy from Spain. About the same time, Louis of Nassau, who had been at La Rochelle with the Huguenots, and had received help and encouragement from Charles IX. of France, suddenly seized Mons in Hainault, thas giving the French sympathizers with the revolt the neeans of entering safely into the Walloon provinces. Alva, now seriously alarmed, withdrew from Zealand the whole of the forces with which he had intended to check the movement of the "Water-Beggars," in order that he might repair the great breach thus made in his southern system of defence, and so left the province free to develop its resistance. Hollaud followed quickly, Eukhuizen setting the example; Rerolt of so that, within three months of the capture of Briel, the proAmsterdam was the only town in Holland in the hands vinces. of the Spaniards. In Frieslaud also the revolt spread far and wide. The states of Holland met, and, acting under advice of Philip of Marnix, lord of St Aldegonde, the prince's deputy, declared that William of Orange was, by Philip's nomination, stadtholder of Holland, Zealand, and Willism Friesland; they also declared their intention to raise muney of Oreoge for the costs of war and the relief of Mons, and affirmed stadtagain the liberties of the provinces; finally they named the rough and ready William de la Marek captain-generala man whose prompt and practical daring would supply the qualities which the caution and apparent irresolution and timidity of William of Orange seemed unlikely to provide for the emergency.

Mean while Alva pressed the siege of Mons; French help Alva'a failed utterly ta relieve Louis of Nassau, nor could William succersca of Orange either force his way through the Spanislı lines or induce Alva to fight. At this moment eame tidings of the massacre of St Bartholomew, and the prince, seeing that all hope of aid from France was utterly at an eud, bade his brothermake the best terms he could, and witharew beyond the Rhine and thence into Holland. Mons at once capitulated, and Alva, passing on to Mechlin, pitilessly sacked that wealthy city. Thence be pressed forward to the north; Zutphen was taken, the towns of Guelderland and Fricsland submitted, and for a while nothing seemed to stay his careet of conquest and revenge. The prince of Orange was powerless; but the despair caused by the cruel destruction of Naarden roused a spirit which even Alra could not tame, and the famous siege of Haarlem, lasting through the winter of 1572 till July 1573 , cost 12,000 Spanish troops, and gave the insurgent provinces time to breathe. A great mutiny among Alva's troops still more bindered the work of subjugation. The repulse of Don Frederick of Toledo, Alva's son, from Alkmaar, the capture of Gecrtruidenberg by the Dutch, and Admiral Dirkson's great victory over Alva's flect, entirely changed the aspect of affairs, and saved the towns of North Holland. Alva, who Lad cone as far as Amsterdam, returned to Brussele, and thence, obtaining his reoall, bade farewell to his government. During the six years it had lasted, his exccutioners bad put to death 18,000 persons, to say nothing of the victims in cities captured by his troops; the Spaniards plundered where they could, and considered the whole wealth of tho Netherlands their lawful prey, forfeited by rebellion. But bis pitiless severity only served to raise up a stubhornness of civic resistance, against which the tried discipline of the Spanish soldiery, and the consummate skill of their commander, reckoned to be the firat general in Europe, were powerless.
-Don Louis of Requesens, grand-commander of Castile, was appointed Alva's successor, and after a brief and deceptive lull the war weot on. Io January 1574, by the fall of Middelhurg, the Spaniards lost their last bold on Waleheren and on Zealand, while by the splendid defence of Leyden, unparalleled in the history of beroic endurance. their efforts in another direction were effectually frustrated. After fruitless degotiations with Philip, the estates of

William proclained governor Holiand, in November 157t, formally offered to William "the Silent," prince of Orange, full authority by land and sea, with the title of guvernor or regent. C'onferences were also beld, with a view to peace, at Breda; and oo then faihure, in sammer 1575, Holland and Zealand drew up articles of uniun, and an ordinancs for their joint government under the priace of Orange. By it the receaved supreme command in war and absolute authority in all matters of defence, the control of all money voted h, y the estates, the maintenance of the laws as count, in the king's name, the ultinate appointment (after nomination ly the estates) of all judicial officers. He undertouk tu protect Calvinism, and to suppress "all religion at varimere wath the gospel," while he forbade all inquisition anto private opinons. These terms accepted, William became, in spite of their nominal recognition of Philip, the true prince of the two provinces. Still this union, brought about by the prince's personal character and abiltty, and by the popular faith in him, was distasteful to the larger cithes. Alreaty we may note the begianings of that party division what was afterwards so prominent, and divided Holland between the land-party, popular, quasi-modarchical, Calvinistı, headed by the Orange-Nassan lamily, aul the sea-jarty, the town-party, beaded by the burghers of Amsterdau, Arminian, civie, and aristocratic.

Meanwhile the grand-commander made a successful attempt on the Zealand eoast. His troops took Duiveland. and laid siege to Zierikzee, chief town of Schouwen, and key of tha whole coast. The two provinces, nable to relieve the place, were driven to consider their pusition. So long as they paid any allegiance to Philip of Spain, against whom they were struggling for life, they could never get much belp from any otber priuce, nor were they strung enough to assert their own sovereignty. Three powers lay oaar them:-the empire, alrearly connected with them by old relations, and by the family connexion of the house of Orange; Frauce, with her restless Valuis dukes, ready for any venture, whetber in Poland, England, or Holland; and, lastly, England, whose queen knew well that Phalip was ber foe, and that the Low Countries might effectually hinder his efforts against her. The provinces, though William had suggested it, refused to deal with the emperor, and turned to Flizabetia; she brought them little real help, and they seemed to be on the very briak of roia when fover carried Requesens off io March 1576

The brathing space thos gained enabled them tu strengthen their union ander William; but before the question respecting the position of the duke of $A_{\text {njou }}$ could be settled, the siege of Zienkzee drew to an end. Buisot perished in a too gallant attempt to break the leaguer, and the town yielded. Things looked ill for the patriots, and Zealnod would havo been at the merey of the conqueror, had not another great mutiny neutralized the success of the victors; the Spanish and Walloon troops left Zealand ant, headel, as usual, by their "eletto," marehed into the richer plains of Brabant, seizing Alost, whence they thteatened both Brussels and Antwerp. One of the resulta of the panic they cansed in Brabant was the captare of Ghent by William. Brossels was only saved from being pillaged by them by the vigonr of the inlabitants, who armed in their own defence. Suffering under a yowetless administrative, and amarting from tho curse of the foreiga
anldiery, the southerners now began to wish for freedom and union with the other provinces. The broad liberality of Orange, moderanng the Calvinism of the people, ensbled the two groups to draw together. In Oetober 1576 a Fecificao congress if the States Gederal of the provinees met at tion of Gbent ; the council of state at Brussels was foreibly dis- Ghent. solved: the frightful "Spanish lury" at Antwerp struck such terror into all hearts that a treaty was concluder in November 1576 under the title of the "Pacification of Ghent." It was received with great enthusiasm : in it the provinces agreed frat to eject the foreigner, then to weet in States General and regulate all matters of religion aud defence: it was stipulated that orthing shuuld be done ayainst the Catholic religion; the Spanish king's name was still used; the prince of Oraoge was recognized only as stadtuolder of Hollatud and Zëaland. All the seventeen provinces accepted the liafication; and for a brief space the "Unated Provinces" really did exist.

Early in laruary 157 ' the "Union of Brussels" was Mhion of pit lorth. The document engaged all who joinen to help Atrussela in ejecting the fureign troups, in carrying unt the Pacificathon, in unantanng the Catholic faith, in recognizing Platip's suverelgoty, in defeoding the liberties and constitutions of the provinces. It was eagerly adupted ; and even Holland and Zealand mede no deumr. When tha paper, crowded with signatures, was laid before Don John of Austria, who meanwhile had arrised as regeot, he alsu accepterl it: and on the 17 th February 1577 was signed the " Perpetual Ediet," which ratified the Pacification of PorGhent. Not till the troops were egue should Dou Juhn be poriat received as gevernor-general. Philip 1I. ratified the Edict ENl-t a fow weeks later.

Yet, after all, unity did not ensue from it. The natural divergency between north and sunth at once appeared ; in claracter, in interests, abore all, in religion, they had little in cornmon; and when Willam of Orange refused to publish the edict in Holland and Zealand be was warmly suppurte.l by these provinces. This is perbaps the real point at which Dutch independence Legins. Doo Jolo entered Frussels in triumph, and, by conciliation and widuing manters, had already broken up the union; the whole of the southern provinces wathdrew from it at once, and that well-marked difference in prlitical life, which, after so many changes, sill distinguishes Belgian from Dutehman, was from that moment made clear. Yet, thuugh Den John had achiered so much, the result, after all, disappointed him; he was surrounded by difficulties, suppicions, and plats; be saw the failure of bis larger sehemes, and only the partial success of his effort to reduce the Netherlands; he recognized the dangers whiel the abilities and rivalry of William of Oraoge werc preparing for him. This was soon shown in the seizure of Antwerp citadel by the Se'zuro patriots, and in the destraction of the hated furtifications, "f ink so long the sign and efficient cause of their subjection. win Other castles, auch as that of Ghent, were razed to the ground as soon as the fall of Antwerp citadel was known. Still less was Don John pleased by the election of his rival as ruwasrd of Brabant, and by his eothusiastic reception at Brussels. The States Geueral (7th December 1577)declared strongly against Don John's autherity.
lt was cleár war must begin again; and the patriots raised an army oearly 20,000 strong, which was utterly defeated by Don John and Alexander l'arnese, at Gemblunx near Namur. But their campaign was wasted on isolated movements and towa-taking, while William of Orange fell buek unmolested to Antwerp. A sudde illness, so sudden as to arouse the eommon snspicion of poiaon, carried off the conqueror of Lepanto (lst October 1578), and Alexander of Parma sueceeded bim in the government.

The struggle had now entirely passed into the southern
provinces; Holland and Zealand were left to gather strength; the recevery of Amsterdam (1575) remeved the one lindrance to their prosperity. While the south trusted to foreign help, some John Casimir, or duke of Anjen, the nurth quietly consolidated itself. In January 1579 was Uninn of proclaimed the famous "Union of Utrecht." The docu"1werht. ment professed to make no changes; it would but carry out the l'acification of Ghent by a closer junction of Holland and Zealand with Frislaud, Guelderland with Zutphen, Utrecht, Overyssel, Groningen; united as one, these provinces should still retain their lucal uses and privileges So long as the archduke Matthias, whe had been appointed geverner-general in 1577, remained, bis autherity would be respected; on' his withdrawal in 1580 the States General named a stadtholder William of Orange, who had already exercisear the real authurity over the previnces. A con- liberties, the spirit of William of Orange sarvived in his second sen Maurice, who now, thengh be was only seventeen and a student at Leyden, and though he had an older brother living in Spain, was at once, chiefly threugh the influence of that great statesman John Olden Baraeveldt, named gevernor of the United Provinces, with a council of state, and with Count Hobenlohe, his brother-in-law, as lieutenant-general. He was also, soon after, made stadtholder of Iflland and Zealand, while Utrecht was placed under the lord of Villars as stadtbelder, Guelderland and Overyssel under the count of Meurs, and Friesland under William of Nassau. Never was any one better fitted for his life's task than was this boy, thus early called to rule in troubled times. For Maurice of Nassau had all the coldness and calculatien of his family, all its ambition, all its firminess and tenacity of grasp, while he added thereto a quality wanting in the others, a genius for war, and those gifts which go to make what is commonly called a lueky commander-gifts which may be best described by saying that the lucky captain is he who in war leaves least to luck. For over forty years Maurice was the champion of th. Provinces; and, if we except his treatment of Barneveldt, we nay say that he
comes nest after his rather as a tounder of the Dutch republic.

At the outset his antagenist was that formidable captain, AlexAlexander Farnese, who had by this time nearly subdued pumer all the southern provinees, and whose arms proved success. Farnew ful at Ghent (1584) aud at Antwerp (1585). The northern provinces, thinking it necessary to call in fureign aill, appealed te Henry III. of France, but the outburst of the "War of the thrce Henries," caused by the anxiety of th" Guises lest Henry should draw toe much towards the heretics, put a stop to all hope of help from that side. Olden Barneveldt, therefore, next crossed over to England with offers to Queen Elizabeth, who, though declining fur herself the proffered sovereigaty over the Provinces, undertook to appoint a governor-general, and to send over and fray 5000 foot and 1000 horse ; in return for which she was to be put in possession of certain cautionary towns. Aceordingly, Sir Jolin Norris was at once sent over with the Enylish forces; Sir Philip Sidney was appointed gevernor of Flushing, and the carl of Leicester was named governor- Earl of general by the queen. At first Leicester was welcuned Leicester. with all the joy that his Calvinistic opinions, and Lis position as favourite and representative of Elizaboth, could elicit in the breasts of men whe had now loug been struggling for existence, and who, bereft of their great prince, were yearniug for sone strong hand to guide them. But it did not last: his high pretensions, and his mistress's laughty tone, joined with this foolish interference with Dutch commerce and with the religious difficulties now beginning to show themselves, soon offeaded the States General, and nentralized whatever good the active help of England might have promised them. In 1586 Sir Philip Siduey invaded Flanders, and the young stadtholder of Holland gladly served under him. In the same autumn Leicester himself teok the field, and marched to meet Parma, who was threatening the provinces from the east. Uuder the walls of Zutphen Sir Philip Sidney fell ; and Leicester, findiog his efferts useless, soou raised the siege of that town, and withdrew to the frague. The rest of his time was spent in bitter quarrels with the estates; Olden Barneveldt and Maurice were united for a time by his marked ill-will towards them both; and so strong did the feeling against him grow, that in 1587 Queen Elizabeth was fain to order his recall. For a while there was great soreness between the countries; the general interest, however, was far strouger than any partial pique, and in the erisis of the Spanish Armadia in 1588 the Dutch did very great servica to England by resolutely blockading in their ports the transjerts and army with which Parma had meant to invade the English shores. In the saue year Manrice had the satisfaction of secing the Euglish and Dutch repulse the famous duke from the walls of Pergen-op-Zoom. In 1589, on the other hand, the Enylish garrison of Geertruidenberg betrayed that important ${ }^{1}$ lace, the doorway out of Brabant into Helland, into Parma's hands, and laid the United Provinces opento attack. In other places also the English forces, not yet rithdrawn, were an anxiety and danger to the states. Still, from this moment the fortunes of the Dutch began to rise. No contrast Spanish could be more striking than that between the Spanish NetherNetherlands and the Uuited Provinces. Iu the fertile lanisand districts of IIainanlt and Brabaut, where climate and soil Unted are good and transit casy, utter ruin alone was seen: Proces wolves and wild dogs swarmed; the land was everrun with conweeds and briars; and evon the wealthy cities of the past -rasted were almost deserted. In the Uuited Provinces, on the contrary, the wellbeing of the country was steadily increasing: every year its lardy seamen brouglty back fresh weath; and thonsands of ingenious workers, turning in despair from the hopelessuess of their condition in the

Spanish Netherlands, brought their skill and industry inte the north, which soon became as famous for its manufacturing excellence as for its energy in commerce. It was at this period that, just when the southeru cities were languishing and losiug ground, the northern burgher life made vigorous growth, and prepared the way for that supremacy of town aristocracy which charaeterized the history of Holland in the following century.

War
The year 1500 opened well for the United Provinces: Utreeht joined its fortuncs with those of Holland and Zealand; Guelderland and Overyssel made William Louis of Nassau their stadtholder, so strengthening the power of the family; and Breda was recovered by a daring stratagem. The duke of Parma also, with failing health, was called away to oppose the victorious progress of Henry IV. in narthern France. In 1591 Prince Maurice still further strengthened himself by taking Zutphen, Deventer, Hulst, and eventually Nimeguen, which secured for him the contplete submission of Guelderland. Parma was unable to oppose him effectually, for his troops were again mutinous; he was also once more called off into France. The reputation of Prince Maurice rose now to its highest point: the greatest captain in Europe seemed unable to cope with him, and the vigorous help of Barneveldt still secured him firm support at home. In 1593 he took Geertruidenberg; and in 1594 Groningen, the only stronghold left to the Spaniards in all the Seven Provinces, was reduced.
The appointment of the cardinal arehduke Albert as governor of the Spanish Netherlands did not much cbange the current of aftairs; the Dutch now tried to open up a trade with the East Indies, and made some rigorous explorttions in Arctic seas. In 1596 the archduke reenvered Hulst, which commanded the northernmost parts of Flanders : the Dutch on the other hand, with the English, eacked Cadiz and nestroyed the Spanish fleet; and in the next year Maurice inflicted a defeat on the Spaniards at Turnhout, transferred his sphere of action to the Rhine country, and took town after town, making the provinces aecure on the side of Zutphen, Overyssel, and Friesland. The year 1598 gave a new aspect to affairs by the concinsion of the Franec-Spanish war in the treaty of Vervins, and by the death of I'hilip. II. The Dutch, assisted only by the Euglish; and that chiefly by volunteers, were now to bear the whole brunt of the efforts of Spain. In the autumn of 1590 Prince Maurice endeavoured to transfer the war into Germany: and nfter taking Emmerieh in the Cleves country, delivercd Bommel from the siege which Mendoza, the Spanish general, was laying to it. But diseatisfaction at home, and the unreadiness of his German allies, forced Maurice to turn his cycs towards Flanders, fittlo of which he invaded in the summer of 1600 . Surprised by
Sieuport. the Spaniards in the neighbonrhood of Nicuport, Maurico was attacked by the arehduke Albert in a most critical position, but, after a long and well-balanced battle, inflicted on hind (July 2) a disastrons dicfeat. Maurice could not, however, take the town, and winter put a stop to the empaign without any great clange in the relative position
5 Sago of of the belligerents. In 1601 the archduke began the
Uisenh. fancons siege of Ostend, which lasted three years and two months; the losses on both sides, nore especially among the Spanish, were immense. While it continued, the coolness lectween the States General and Manrice steddily inrreased; for they thonght his colld ambitions nature capable of anything, nud saw with fér the paramount influcuce he land over the army. Their instincts led them to rest on the ships, to prefel peace to war, and commerce. to glory. It was during the sige of Ostend that they establisher the Dutch East India Company in 1602, though its hasis harl been laid down by a group of Amsterdame traters in 1595.

In 1604 Maurice took Sluis, and Ostend at last fell to Spinola. Thenceforward the main lines of the struggle by land were simple enough: the Spaniards tried to transfer the seat of war into the United Provinces, and were steadily foiled by Maurice. A All the while the States General aimed at peace, though the naval war became vigorous as that on land languished. The sen fight off Gibraltar in 1607 utterly ruined the Spanish fleet, and left her commerce powerless. At last, after long negotiations, which served to emphasizc the variance between the patriot party, headed by Barneveldt and Grotius, and the war party, which included the official elasses, the army, navy, East India Company, the chergy, and the populace in the towns, a truce for twelve years was signed, on the uti possidetis ground, between Spain and Hollanu. In the war the Dutch Dutch bad added Overyssel and Groningen to the union; gains in they held. Sluis, Hulst, and other ports on the Flemish the war. side, in what is called "Dutch Flanders"; they had Bergen-op-Zoom, Breda, and Herzogenbusch on the Brabant fronticr, and the forts which commanded the Scheldt and strangled Antwerp for the sake of Amsterdam; lastly, they were become lords of the sea, and the chief traders of the world.

After a bript interfereuce in the añairs of Germany, Theolo where the intricate question of the Cleves-Juliers successien gical was already preparing the way for the Thirty Years' War, coufict Holland settled down into that hot and absorbing theological struggle, which was closely mixed up with political questions, and which stained with n deplorable triumph the last years of the career of Maurice of Nassau. In 1603 Jacob van Hermansen, ir, in Latin form, Arminins (see Arminius), had heen appointed one of the two professors of theology at Leyden, Francis Gomar being the other. The two men took opposite sides with-zeal, Arminius assailing and Gomarus defending the current popular theology. The views of Arminius spread fast among the unper classes, especially in the larger towns, and beeame the theology of the civie aristocracy; the established opinions were tenaciously supported by the bulk of the clergy, the peasantry, the town populace, the army, and the nary. At their head stood Maurice, rcady to use the strongth of Calvinistic fceling to secure his own authority, however little he might care for the tenets of his side; at the head of the other party, more philosophical, less in earnest perhaps, was Barncveldt, with the town traders. King James of England as yet supported the Calvinists, and with Archbishop Abbot influenecd greatly the proecedings of the fancus synod of Dort (1618) in faveur of Prince Maurice and the anti-Remonstrants. The results of the synod enabled the. prinee for his own political purposes' to crush the nristocratic party. Barneveldt and Grotius (another leading Remonstrant) were seized, and in spite of all his great services to his country, his venerable age, and his past support of Maurice, the pensionary was brought to un infamons trial and executed at the Haguo in 1619. Grotius afterwarda escaped from prison and look refuge in France. The silcoced Remenstrants, finding that there was no hope of toleration for them, left the country in great numbers, and formed a prosperous settloment in Holstein in 1621, where they founded the town of Frederickstadt on the Eider.

In 1621 the truce with Spmu eame to an end, and the Thrts Dutch were at once involved in the vortex of the Thirty Yearsi Years' War, which had new been gaing on for a couple of War. years. Spinola, after taking Juliers, attempted Borgeu-opZoom, boping thereby to open a passage into Zealand ; he was, howover, foiled by Maurice. About this time n great coolness sprang up between Holland and Eagland, the beginning of the deadly rivalry whioh lasted so long.

Rralry King James was eager to gain his objects without fighting, and to be on friendly terms wath Spain; he and Laud werc apposed to the Calvinism of the Dutch, and disliked their form of church government ; and commereial jealousy was already beginning to arise. Sucresses and lusses wero evenly balanced in the wir: the Dutch recaptured Juliers and took Cleves, while spinola. after great losses cursed by'the gallant defence of the English, in 1625 twok Bredi. A few days hefore the tawn fell Jlaurice died, leaving the Spaniarls in the heart of his territories, and the Dutch vexed with religious and domestic factions.

His brother, Frederich Henry of Orange.Nassau, succeeded lum as estadtholder of Holland, Zealand, Gnelderland, Utrecht, and Overyssel. 'The nar hy laud became utterly spiritless, though by sea the Dutch still asserterl their maritime supremacy. By land the chtef operations were the siege and capture by Frederict Henry of Herzogenbusch, Maestricht, and Wesel in 1628 ; by sea the Dutch intertered, much aganst the pepular feeling, to assist the Frencl court aganst the Huguenots at Lia lachelle. They blockaded Dunkirk, whence Spamsh privateers had been wont to harass their commerce, under v'iet Heyn of Delftslaven, boldest of their sea-captains, they vexed the Spanish coasts, captured Spanish war ships, carried ofi their "silver fleet," and finally in 1631 won nenr 'Tholen a brilliant victory orer a great Spanish fleet cummanded by Count Jolin of Niasiu, who was endeavouring to make a descent on the Zealand coast.

In this year the States, feeling that the moderation of the stajtholder was honest and salutary, that his inlluence alone seemed ablo to quiet the rage of religious faction, and that his military operations had secured the confidence of the provinces, took the important, and, as it turned out, the ullwise step of securing to bis infant son the reversiou of all his great oftices of stadtholicr, captain, aod admiral. grneral. The Calvinists were willing to grant so much to the head of their party, and made no rbjection to the introduction of the principle of hereditary succession; while the Remonstrants, disceming that Frederick Henry, like his brother loefore him, was personally more favourable to therr tencts than to those of their adversaries, accepted the measure in the bope that when permanently established as thear prince he would carry out ause tolerant views which he was known to hold.

Ir 1632 he justified ther confidence by his masterly siege and capture of Maestricht. in defiance of all the efforts of the Spanish ami mperial generals. Nomu. Luxembuurg, and eastern Firabant were Jaid under contubutiun in com. serfuenre, and the States defemled from danger of attack towards the east. As the war dragged on atter the deach of Ginstavus Arlulphus of Sweden, Fratuce aud lloliand drew mure together, and ai 16,35 an allance abit fartition treaty was made hetween them, in whach it wis propesed that the Spanards should be driven wht of the Necticrlands. which slumld be mane an intependent state, goraranteed by the ralles; that France should recenve, as lier share, the seaconast up to Blankenberg, together with Thunville and - ianur; and that a corresponding portion should be given t." Hollind, if this scheme of an independent state proved a failure, then France and IIolland shuuld divile the whole distruct between them. The joint operatuns eunsequent on this ugreement proved a failure Frederick Henry lad silways been upposed to the alliance, and promably did not wish its success; the divergenee between limand the States General at thas time gave Cardimal Hehelien the opportunity of restoring the Remonstrant purty in llolland, and making at Ferench in sympathy, in oppositinn to the Hlouse of Orange-a combination of which Louis SIV. afterwards made great use. In 1637 the stadtholder recovered Breda, though the gain was balanced y the loss of Poermond and
other places; and in 1638 the war was favourable to the Spaniarils. In 1639, however, a series of great naval triumplas under Tromp and De Witt turaed the scale in favour of the Dutch.

In 1640 , on the death of Count Henry of Sassau, stadtholder of Frieslanil and Groningen, the latter province chose Frederick Henry as its sradtholder, and he tlus became chief of six otht of the seven Uniter Provinces; in the next yen he was able to arrange the marriage of his son William with Mary, etdest daughter of Charles I. of ConFingland, a march devised by the queen-mother of France, nexion while a refugee in Holland, in order to increase the ill-will with betwep! Richelien and the stadthalder. Tlus began the dynastic relation between the Stenarts and the bouse of Orange, which led to such great results before the end of the century. The States Genera! were not too well pleased with this alliance, and looked shyly at Henrictta Maria when she came over to Hulland to get help for Charles L. in 16.42 . They were beconnng alarmed at the great power and growing ambition of France under Iicchelieu, while they sympathized to a great extent with the English L'uitans.

All [arties, except the Frencl, being now utteriy weary of the war, negotiations for peace, long talked of, long prepared for, began in carnest at Munster and Osuabruick. Beture thear cluse Frederick Heary died in 1647 , and was succeeded in his dignities and offices by his young son Willaan II., and almost inmediately afterwards (January William 1648), in spite of the opposition of France and the young If. prince of Urange, the deputies of the Provinces (with exception of Zealand and Utrecht) signed a separate treaty Peace of peace with Spain, which was contirmed and sworn to in with May at Münster. It was a complete surrender of every. Spain. thing for which Spain so long had fought. The United l'rovinces were recognized as free and iodependent, and Spain dropped all her claims ; the uti possidetis basis was adopted in the matter of all conquests; the two contracting parties agreed to respect and keep elear of each other's trading erounds; each should pay, in the ports of the other, only such tolls as natives of the uther yaid; the Scheldt was entirely closed by the States, so that Amsterdam might strangle Antwerp-the chief harbour of the free Provinces thus ruiuing the ehof barbour of those still subject to Spain And su ended the so-called Eighty Years' War.

No sooner was the peace concluded than bitter disputes Holland arose between Holland, on the one band, and the prince of and Orange, supperted by the army and navy and the smaller William proviuees, on the other. He was tempted into frolishacts : varianca he arrested six of the deputies of IIolland; he even tried to surpirise and occupy Amsterdam; be favoured the English royalists, now plentiful in the Provinces, while Aonsterdam and Holland inclined towards the Commonwealth. Things went so far that William II. had almost destroyed the liberties of the Provinces, and was intent on two schemes, -the resumption of war against Spain, wilh a partition with France of the Spanish Netherlands, and interfereace on behalf of Charles II. in Fingland,-when his opportune deatl by small-pox occurred. A fers days afterwards his widow, Mary of England, gave lirth to a son, who was destined to be the mest distinguished man of lis race, William III of Holland and England.

For a time the death of Willinm I. restored the burgher- Amsterparty to power, and made Amsterdam the head of the Cnited dam now 1rovinces. Holland trimmplaed over Zealand; the bouse rales. of Orunge, friend of the stewarts, seemed to suffer eclipse with them; and though the royalist mob even at the Hague, set on by a princely rongh of the palatine house, made it impossible for the enveys of the English Cemmonwealth to come to terms with the republic, still the popular monarchical party was in fact powerless in the Proviaces for more
than twenty years. It was with a view to the security of this aristocratic government that a great assembly of the Provinces was held in 1651, and established that form of rule which Sir William Temple has so well described in his Observations upon the United Provinces of the Netherlands.
There were four chicf elements in that federation:-the tarms of the Union of Utreebt (1579); the claims and position of the bonse of Orange ; the sovereignty, within its own borders, of each province; and lastly, the liberties and perser of the cities. In the last two the lead was taken by Holland: Holland was the chief province, and Amsterdan, its capital, the chief city of the union. And these two parts of the federation were at one also in their resistance to the house of Orange, of which the chief strength lay in Zealand. The union was governed, in theory at least, by the States General of the provinces, which met at the llagne, and consisted of a fluctuating number of deJuties (sometimes as many as 800), and was supplemented hy a permanent council of state, a kiud of eabinet composed of twelve deputies from the proviuces, and a chamber of accounts. Besides this body each province lad its own estates, and each great city its orn senate. Thus Amsterdam was ruled by a senate of thirty-six burgbers, who kept order, administered justice, raised local taxes. The office of senator was for life, originally by electipn of the whole body of freemen, but from the 16 th century by cooptation, so that the government of the city became a close oligarchy. The chief towns followed Amsterdam in this direction. The senate elected the deputies of the city to the states of Holland.

The commereal prosperity of the Provinces went on advancing throughout the 17th century; each town had its own work. Flushing received the West India trade; Middelburg was entrepot for French wines; Terveer was the Scottish and Dort the English staple; Leyden manufactured; Haarlem made linen and mixed stuffs, and grew tulips for profit and pastime; Delft was known for beer and hardware; Zaandam built ships; Enkhuizen caught and cured herrings; Friesland had the Greenland trade; and lastly Amsterdam, recoguized chief of Duteh cities, had the East India tracte, with that of Spain and the Mediterranean : their whole carrying business reached from the Gulf of Bothuia to the farthest Indies. Their seafaring enterprise received an early scientific inpulse from the labours of Cuignet and G. Mercator. All questions as to the nature and development of wealth were still in their infancy: it was believed that all depended on balances of actual bullion; and the Sphniards were onvied because their ships brought over masses of gold and silver. The "balance of trade," the establishment of banks at home and colonies abroad, especially mining colonies, a huge carrying trade, the making of goods to be sold for eash only, the discouragement of all imports, and the sulport of all monopolies-these things, chief elements of Whit is called the "isolation theory of trade," guided the polities of the 1ith century, gave holland vast temporary weath, discouraged ber power of production, and eventanlly have loft ber impotent among the nations.
The : It first William the Silent had been governor of the govemor I'ruwincee, nominally at least under the king of Spain ; and and in the reconstructiou he secured his own rights, whilo Hatos the sovereign power was transferred to the States General. They touk the right of making peace and war, of coucluding allinaces, of taxing and coining. Tho governor had all military commands, liad power to pardon, and eontrolled the civil andwintments; he representel the dignity of the state, with a rourt, and guards, and envoys from other lauds. Fach provinco had its own stadtholder, an oflice in mane at leat derived from the S panish times; each ©,wa lind its own pensionary or chicf minister. Lut after
the death of Willian II., the office of stadtholder of Holland was for a time suspended: there was no captaiu-general or admiral; and the grand pensionary of Holland, first minister of the state, became virtual president of the republic, as we see in the cases of John De Witt and Heinsius.

When the English envoys returned to tell their masters, the Commonwealth, of their failure at the Hague, parliament at once replied by passing the memorable Navigation Act of 1651, which aimed at destroying the carrying-trade of the Provinces. The struggle for the lordship of the seas war which ensued, and with which the names of Tromp and with Ruyter, Blake, and Monk are so splendidly associated, was Cisisno. waged with equal bravery and idearly equal success on both sides, until 1654, when peace was made by the Amsterdam burgher-party. By the terms of the treaty with Cromwell the Orange-Nassau family was altogether to be excladed from the stadtholderate of Holland, the other Provinces reserviag their independence, and the Dutch populace also much disliking the peace. England preserved the honour of her flag, while Holland was seen to be a worthy and cqual rival for the command of the sea. Hostilities between the Dutch and Portuguese respeeting W their rights in Brazil followed, in which, after eacl side with had done much damage to the other, peace nas also made ; Forugal and Holland in 1658 interfered to save the Danes from Charles Gustavus of Sweden. -In 1659 a treaty of peace was made between France, England, and the United Yrovinces, with a view to the settlement of the Dano-swedish question, which ended in seeuring a northern peace in 1660, and in keeping the Baltic waters open for Dutch trade. Since the abolition of the stadtholderate after William's deathin 1650, the centre of authority bad lain in the hands of John de John ar Witt, the sagacious leader of the anti-Orange or Amsterdam Witt. burgher-party; and he guided the foreign affairs of the provinces iu such a way as to secure the fair development of their conmeree on every side.

The momentous year 1660 was almost as critical for War Holland as for any state of Europe. Charles, in England, with Laving re-enacted the Navigation Act, rar again broke England. out in 1665, and the duke of York took the command of the English fleet. At the begianing of June he met the Dutch admiral Opdani, and, after a close-fought battle off Lowestoft, the English were completely victorious. But so bad was the condition of the home Gorerument in Eng. land that in the following year the Dutch had bio far the stronger fleet at sea, and for a time beld their own in the Channel. 'Tbe four-days' battle (June I-4) between Princo lupert and Monk on the one side and linyter on the other ended in an uncertain victors for the Dutch; but on July 25 th they were decidedly defeated off the North Foreland, and driven back to their own shores with immense loss. The English were now masters of the sea; but both parties needed [eace, and negotiations began at Breda. In the course of these liuyter suddenly sailed up the Thames nearly to Gravesend, and struck terror into the very heart of London, which thus lowame all the more eager for a settlement. In July li6i a treaty between England and Ilolland was signed at Preda; anil in the following year Sir William Temple accomplished the triple alliance of England, Molland, and Sweden, Trus. against the aggressive views of Lonis XIV., a hollow aflint, nliane and pernicious in its results to those who made it. It made Louis XIV. detemine to take vengeance on the United Provinces and on the De Witts; it led at once to the lumiliation of England by the treaty of Dover (1670), to the overthrow of the Ansterdam party, and to the miserablo end of the De Witts; and it eventually raised the prince of Orange to supreme authority in the United Provinees.

Nar

 renewed the Duth. with they were left without a friend in Earope. In 1672 the storm broke: the English, without a declaration of war, tried unsuccessfully to intercept the Dutch Mediterrancan fleet; and France at once set forth to cunquer the hated tradesmen of the north. The States were ill-prepared on land, though their fleet was strong and ready; party spirit was exceedingly bitter, and the ruling party, well aware that the prince of Orange was very popular with the land forces, had utterly neglected their army. On May 2S, 1672, Ruyter fought a great naral battle in Southrold Eay (Sulebay) against the duke of York and Marshal D'Estrées : the French held aloof, plessed to see the Duteh nad English destroy each other; the English suffered most, but, as the Dutel withdrew to their orn ports, the others claimed the victory. Meanwhile Lonis XIV. crossed the Rbine and threatened Amsterdam (see France). The young prince of Orange alone seemed to rise to the oceasion; while others were panic-stricken, sending cmlassies of submission to the baughty monarch, making preparations for a great tight by sea, William with bis miserable army did his best, and aroused so strongly the feelings of the people that Amsterdam, passing from dejection to despair and thence to reckless enthusiasm, rose against the De Witts and foully murdered both in the streets. Tbey Rise of had just before proclaimed William stadtholder of Holland William with powers unlimited. And thus Louis XIV. destroyed the proud republic, though in so doing be had raised up the most formidable enemy he was destined to encounter. His invasion did not prosper; other nations began to take up tho Dutch cause; Germans and jpaniards threatened the embarrassed French army in the Trovinces; so that in 1674 Frauce was on the defensive on isery side. William of Orange in that year was defeated at Senef, and had to abandon bis plan of penetrating into France, and in 1675 tho death of Marshal Tureune, and the retirement of the great Conde, turned the tide of war in favour of the Duteh, except on the sea, where the French leet defeated and destroyed in the Mediterraneniu (in 1676) the united uavies of Holland and Spain. In 1677 negotiations for peace went on, and were hastened by the marriage, at the close of the year, of William of Orange with the Princess Mary, daughter of the duke of York. At last, in $: 678$, cause the great peace of Nimeguen, which secured the independence of the Dutch.The aggressive policy of Louis XIV., in the years which iollowed the peace of Nimeguen, enabled William to lay the basis of the famous confederacy which changed the whole front of European politics. Brandenburg, Denmark,
cirgue and England sided with the French king; while the league of Augsburg (16S6), folloming directly after the revocation of the edict of Nantes, placed Willim at tho head of the resistance to Frencb domination. The leagne was joined by tho emperor, Spain, the United Provinces, Eweden, Bavaria, and other German princes. The aceession of James II. to the throne of England made it easy ior the stadtholder to keep 'up elose relations with the maleontents in clurch and state, who regarded hirn and the Prinoess Mary as the natural sucecssors to the English throne. On the birth of the prince of Wales the antiCatholie feeling in England at last grew so strong that William was able to interfere with success; whilc the diversion of the attention of Lonis XIV. from Holland to the Rhine reliered the timid rulers of Amsterdan from all ansiety. The Revolution of 1688 ensued, and England becane, under William's strong rule, the chief member of the great coalition against France. In the graud alliance of 1659-90 he clearly saerificed Dutch to English interssts, aud carried through his policy in spite of great
irritation in Holland and Zealand. His power seemed almost autocratic, and the States impotent. Henceforward their part in history beconies quite secondary compared with that of England, and we may refer for details of the great wars to the articles Exgland and Feance.

In 1690 Waldeck, commanding the Dutch, was defeated Holland by Luxembourg at Fleurus; and the Anglo-Dutch fleet at war was also severcly handled off Beachy Head by the with French, who inflicted terrible losses on Dutch commerce. In 1691 the French took Mons; in 1692 the allied ships ruincd Tourville's tleet off La Hogue, and recovered the command of the sea. On land the allies fared ill: Louis took Namur, and after a hard-fought battle William was defeated at Steenkirk; in 1693 the Dutch shared in the defeat of Neerwinden, and were not fortunate even on the sea. In 1695 the tide of affairs had turned, and Williain retook Namur, his greatest triumph after the battlo of the Boyne. Negotiations for peace, firstattempted in 1694, led to the peace of Ryswick in 1697, in which peace or William was recognized by France as king of England, the Roswiks Dutch obtaining a favourable commercial treaty, and the right to garrison the Netherland barrier-towns. Holland. was still an important factor in the balancing system rendered necessary by the ambition of France. Louis XIV., however, held himself little bound by the peace. In 1701 he elbowed the Duteh troops cut of the barrier. towns; he defied England by recognizing, James III. on the death of his father; and it was clear to all that another war was imminent, when William III. died in 1702. He had been made hereditary stadtholder in fire of the Provioces in 2672 ; but as he left no children as heirs, the old opposition of Holland to his house again sprang " H , and, led by the grand pensionary Heinsius, Amsterlam successfully asserted her independence, and ruled through. out the coming struggle against France with energy aul credit.

When war was declared in 1702 , Marlborough mas named The tra commander-in-cbief of English and Dutch troops, and umvirats thenceformard became the chief man in the famons " trium- against virate" of Marlborough, Heinsins, and Prince Eugene. In Faucc.: 1703 the Dutch inraded. Flanders, and fought the drawn battle of Eckeren; in 1704 they and the English took Gibraltar; in the same jear they took part in the great battle of. Blenheim. In 1705 Marlborough led them into the Netherlands; but, hampered by the deputies of the States, he achiered little. In 1706 be won the battle of Ramillies, and swept the French out of the Netherlands; in 1708 came Oudenarde, and after it an unsuccessful attempt of Louis XIV. to detach the Dutch from the alliance; in 1709 the terrible battle of Malplaquet and the capture of Mons. After this great changes followed in England, and Marlborough's power camo to an end. Negotiations for peace, often tried before, drew towards success in 1712, and in 1713 the peace of Utrecht was Pencent signed. While France received Aire, St Venant, Bethune, Utrechim. and Dunay, the Spanish Netherlands were formally handed orer to the United Provinces, which in their turn passed them on, after conclusion of a barrier treaty, to Austria; henceforth they are known as the Austrian Netlerlands. A farourable commercial treaty was also made between the Dutch and France. The peace of Utrecht made the republic almost as powerful on sliore as she had been by sea;; at the same time it taught ber that the great powers around ber would use her resources for war, and nbandon her when they wanted peace: she therefore determined henceforth to stand clear of all foreign complications. With 'lil3 the importance of Holland in European politics comes almost to an end.

The ruling party, in the States took an active part in securing George I. on the throne of England; and on
the death of Louis XIV. in 1715, the old ill-will between France and the provinces died entirely out, so that they were secure in a position of trauquillity; they also brought to a fair conclusion their difficulties with Austria on the subjcct of the Netherlands barrier. These, however, began again when in 1723 the emperor set on foot the Ostend East Iodia Company, which was at once regarded as an offensive rival by the Amsterdam merchants. For the sake of crushing this competition the States in 173! consented to guarautee the Pragmatic Sanction of Charles VI. In 1743 they joined England in supporting the elaims of Maria Theresa, queen of Hangary, and fell consenuently into complications with France, which invaded the barrier country. In 1744 they granted a subsidy in money and put 20,000 men in the field, and became a member of the Quadruple Alliance with Austria, England, and Saxony. In 1745 the Provinces took their part in the rout of Fontenoy, after which Marshal Saxe overran the Austrian Netherlands, while England and Holland were alike paralysed by the Jacobite rising in Scotland. The States lost every barrier-town, and lay defenceless before the French, who in 1747 entered Dutch Flanders, and made an easy conquest. And now the Orange party, supported by English aid, began to lift its head.. The Provinces had fallen so low that all men began to wisb for a dietator. Accordingly Prinee William Charles Henry Friso was proot Terveer, under the title of William IV. The movement thus begun spread like wildfire; all Zealand accepted him with enthusiasm, and Holland was not far behind ; even ot Amsterdain and the Hague the popular feeling was too strong to be resisted, and the Government had to give way. William IV. became captain and admiral-general of the whole union, and stadtholder of the Seven Pravinces; a little later these offices were declared hereditary in both male and female lincs.
Peace of
The peace of Aix-la-Chapelle, io 1748 , though it nominally restored things to their old estate, could not efface the mischief and humiliation which the war had cansed to Holland. Nor were affairs mended ly the death of the atadtbolder Willian IV. in 1751, who, though dull and quiet, did his lest to develep the commercial and manufacturing prosperity of the States. His widow, Anne of England, dauglter of George II., carried on the governWilliam ment for her son William V. She showed but little V.
whieh four were on me side and three on the other, the United Provinces decided to adopt the Neutrality: and threw in their lot with France and Russia against England. But War though war broke out at once, nothing could cure the vio. with lence of party spirit-the stadtholder and the court party Englant going with the English, and neutralizing all the warlike efforts of the "patriot" party. In 1781 Dutcli commerce was utterly paralysed; the other powers set on the Provinces, and took each its part. Their West India Islands were seized, and it seemed as if they conld do nothing in their own defence. At hast, however, an indecisive but not inglorions action with Admiral Parker at the Dogger Bank roused the national spirit, and the Orange party lost ground everywhere. It 1789 the Previnces recognized the independence of the United States of America; with generons sympathy the aged commonwealth saluted the rising republic of the West, which was destined to take its share also in the ruin of Duteh trade. In 1783 the States made an inglorious peace with England, in which the English got right of free traffic with the Dutch East India colonies.

The patriot party was so much excited by this leng series Troubles of blunders and humiliations that the fall of the house with of Orange seemed imminent, and the king of Prussia had to Prussia interfere on bebalf of his kinsfolk. In 1784 the States ${ }^{\text {a }}$ were in trouble with a new antagonist; the emperor Joseph II. sought to compel them to acquiesce in the reopening of the mouths of the Scheldt, so as to restore some of its ancient prosperity to Antwerp. But as neither party was nble to fight, a peace was patched up iu 1785, though its terms, as usual, were very humiliating to the States. The resistanee against the princess of Orange continued to increase in violence, until in 1787 the Prussians again interfered, occupying Amsterdanı, reinstating the stadtholder, who had been driven out, and compelling the states to ally themselves, much ngainst their will, with England and Prussis.

Under their sway the Dutcl passivelyremained, and when the French Revolution cance they stood neutral as long as they ceuld between it and the kings; it was not till Dumouriez had overrun all the Austrian Netherlands in 1792, and had determined to secure justice to Antwerp by foreing open the passage of the Scheldt, that they were drawn into the strife. On the death of Louis XYI. in War 1793 the national convention at once declared war against with both Eugland and the Provinces. Their first canpaiga Frauco against the Dutch under Dumouriez failed: the mvaders were arrested before Willemstadt, and ultimately were compelled to retreat. But in the autumn of 1793 Jourdan restored the credit of the French arms in the Asstrian Netherlands. In 1794 Pichegru brilliantly completed the conquest of Belgium, and before the end of the ycar invaded the Provinces. The sery severe froet of that winter gave bis army casy passage over all the rivers and low-lying lands, which stlll furned the chicf defence of the states; he occupied Amsterdam, and with his bussars erossed the iee and took the Dutch tleet i.. it lay at the Texel ; the stadtholder Hed (1795) to Eny land; and the shattered remains of the duke of York': army having rached bremen returned beme in disgrace. The republican party in the Provinces now reorganized the government so ns to bring it into close harmony with that of Paris. A new constitution was framed; the The ançient system of representative govermment, the stadt- Batavian lofiderate, and the offices of captain and admiral-general Repubic were all swept away; a fair and open representation was established; and the latavian republic came inte being in close alliance with France. The lreneh with one hand delivered the l'rovinees from a worn-out system of gevernment, and with the other scized on a substantial return for their assistance. The how constitution, so excellent
in appearance, soon proved ele delusion. One cfinge of goverament aucceeded another: after the States General came a national convention; then in 1798 a constituent assembly with an executive directory; then chambers of representatives; then a return to the earlier aystem under the names of the eight provincial and one central commissions (1801).
The peace of Amiens gave the country a little rest, and the Dutch got back the Cape of Good Hope and their South American colonies: it was, however, but the brief and deceptive lull between two storms; when war began again England once more swept away all she had restored.

Bons:
parte'e
constitu tion of 1805.

Louis
Bons-
parte
ting of
Holland.
Holland 1810 Napoleon annexed all Holland to the empire, deannexed claring that it was "in the nature of things nothing French but a portion of France." In 1813 the change in the ampire affairs of Europe encournged the Dutch to join the Restora- geaeral revolt, when they established a limited monarchy.

archy.

Nilliam the 1. king he ine of Whiam $1 .$, king of the Netheriands, in of the 1814. By the treaty of Paris Belgium was united to Nether- Holland, and the seventeen provinces were again forcibly Nether- joined together under one prince. It was settled that the house of Orange should have the hereditary sovereignty, with a fairly liberal constitution. To make up to the new king for the loss of his territories in Germany, the grand duchy of Luxembourg, with the exception of the town and fortress of Luxembourg, was handed over to him as his private possession, not as a part of the kingdom; the bishopric of Liége and the duchy of Bouillon'also went with it. The episode of the "Hundred Days," though it delayed the conclusion of the rery complicated arrangements involved in these transfers, gave the nesw kingdom an opportunity of distinguishing itself: it was the first point of attack, and met the crisis with vigour. The Dutch troops under William, eldest son of the new king, took considerable part in the short and striking campaign whicl was closed on June 18,1815 , by the final victory of Waterloo.

The allied powers now founded in Holland and Pelginm what they hoped would be a solid and permanent kingdom as a barrier against France. It was felt that Napoleon had shown Europe the importance of this district in connexion with his scheme for Enropean domination. The now kingdom under the house of Orange was therefore the subject of great and anxious consideration at. Vienna. The king, an hereditary sovereign, received full executive powers, and the initiative in proposing laws. lfe had also the power of appointing his own council of state. As a legislative body there were the States-General, divided into two chambers; each province had also its own local states. Frecdom of worship and political equality were secured for all.

Diverg:
ence
between Holland and Belgiuni

A highly artificial arrangement like this, however, conld not stand long, if Earope came to throw off the trammels of the monarchical reaction, and to give frecr conrse to those liberal tendencies which had survived the drama of the l'rench Revolution. In religious belief, in laws and usages, in language, in iuterests, the Belgic and Batavian provinces had littlo in common. Their inhabitants were differeut
races, with instincts and feelings not merely diversa but opposed. The Belgic provinces spoke French or Walloon, the Batavians, Dutah. The Belgians were strict Catholics, while the Dutch were Protestants. The Dutch were chiefly a. commercial and seafaring people, with interests in distant lands and colonial possessions; the Belgians were agriculturists, except where thieir abundance of minerals made themmanufacturers. The Dutch connected themselves with Germany and (though often only by way of rivalry) with England ; the Belgians drew their chief inspirations from France, and connected themselves with the French in traditions, religion, and commercial interests. Such a diversity could not possibly stand the brunt of aay great political movement; especially as the Dutch were oppressive towards their Belgian partners in the kingdom. Accordingly we find that in 1830 the revolution at Paris at once aroused the strongest sympathy at Brussels. The duil obstinacy of William I. had emphasized the divergence, and his narrow and aatiquated policy rendered an outburst. inevitable.
The revolt at Brussels, which began on the 25 th The re. August 1830, spread instantly throughout the whole of volt at Belgium. After a short struggle in November, a confer- Brusselt enee of France, England, Prussia, Austria, and Rnssia, sitting in London at the request of William I., proposed an armistice, to which both parties agreed. In the following Jannary the conference attempted to settle the terms of a separation, and proposed that Holland should have Luxembourg and part of the left bank of the Scheldt this the Dutch accepted, while the provisional Governmeat at Brussels protested against it. The assembly at Brussels constructed a new and liberal constitution, with a broad representative government, liberty of teaching, of the press, of public meeting; and in April 1831 the crowr. was offered to Leopold of Saxe-Coburg, who, after ascer- Leopuci taining that he would be recognized by England and king France, did not hesitate to accept it (see Eelelum). This of the appointment caused the utmost irritation at the Hague, Belgians and the Dutch suddenly invaded Belgium; the opportune appearance of a French army checked the Dutch advance, and gave diplomacy time to interfere. The citadel of Antwerp, bowever, was still in Dutch hands, and the allied powers used in vain all their influence to persuado William I. to give it up to the Belgians. War was hereon declared, and Fraace and England blockaded the Dutch ports, while a French army attacked the citadel, and, after a sharp struggle, compelled it to capitulate. The forts of Lillo and Liefkenshoek were Conven. left in the hands of the Dutch; on May 21, 1833, thera tion of was signed at London by the plenipotentiaries of hiolland Londow on one side, and those of England aad France on the other, a conveation in which William I. engaged not to recemmence hostilities against Delginm, and to leave the Scheldt navigatinn open, till the relation between the two countries should be definitely settled by treaty. The fimal settlement of outstanding questions, however, was not reached till six years later, when Limburg and the eastern part of Luxem. bourg were seeured to Itolland, and heary tollis were imposed on the navigation of the Scheldt; then the two kingdoms finally parted company on the 19th of April 1839.
In the following year Willian I. resigned his crown to willanm his son Willian II., who reigned in peace till his death in 11 . 1849, when he was succeeded ly his cldest son William willians III., who still reigns. The wave of revolution which passed over Europe in 1848 had in Holland conparatively little effcet: the constitution of 1814 was revised, and the tranquillity of the country sccured. In 1853, after the establishment by the papacy of Catholic bishoprics in England and Holland, a considerable exciement arose, which resulted in the accession to power of
a moderate, liberal, ard evirely Protestant cabinet, and in the main the Protestauchberal party bas guided the country for the last quarter of a century. The Dutch took but a secendary part in the disputes between France and Germany as to Dutch Luxembourg, which by tie treaty oi London (1867) was declared neutral, and guaranteed to Holland. Recently they have been engaged in a very rexatious and wasteful war with the sultan of Acheen, their neighbour on the island of Sumatra.

Bibliography.

The chief of the older anthorities for the history of Hollant are:Mulis Stoke (c. 1305) ; Willehnus Procurator, 1332; Deka, Cheroricon Uhtroject., 1350; John of Levden; Froissat; Monstrelet; Velius, Chronyt eun Hoorn; Curte Chronizije rau Hollant, 9T3-146e; Gronte Chronyt van Holland; Annales rerum gestarum in Hollanda, 1491-83; OLivier de la Marche, Ménoires; Meteren. Histuria tolgica, nostri potissimum tomporis, 1597; Thuanus, Historia sui emporis, libri lxxx. ; Grotius, De antiquitute resp. Batancu, 1610; 3 uiceardini, Omnis Belaie, sine inferiuris Gcimanica reyiours, 1escriptio, 1013; Hollandie Sclandiaque descripta, 1030; SnoygouJ'anus (Snoius), De republ. Batav. litur xiii., 1620; Boxhonrn, Theatrum, seu Hollandice comitatus et urbium nora descipteo, 1632; Politijer Hudeboch'skn van der Stant ven't Vederlandt, 1650 ; Stıma, Della ifucra di Fiandra, lo3s; Hooft, Nederlaulsche Historre; Bur, Oorsprong, Bogin, en Vervolgh der Nederlandsche Oorlogen; Aitzema, Saker van Stual Oorlogh in ende ontrent de Verconimde Nederlanten (1621-69), 16r9-72; Brandt, Ligf en Letuijf ren Michiel de Fuiter, 3687; Historie der Reformatie, 1671-1704; Le Witt, Bricteu. Among the more modern works are W'iequefort, L'Histoire des Prorinecs Uuirs des Pays-Bas (the IIague, 1719-43, 2 vols., with a large collection of
diplomatic documents ; new edition, by Chais van Buren, Amsterd. 1561-75) ; Wagenaar, De Vederlandsihe Hzstoric (Amsterd., 174s1760, 21 vols.; supplement to 1790 , ibid. 1789-90, 3 vols.; and continuation from 1770 to 1802 , iLid. $1758-1810$, i8 vols.); Bilderdijk, Geschiedenio des Vaderlands (Leyden, 183:-39, 12 vols.); Lev, Zuo'f B'ucher Niedcrlandischer Geschuchte (Halle, 1832-35. 2 vols.); 1. C. de Jonge, Geschudenis tan het Né. Zewezen (tho Hague, 1833-48, 10 vols.): J. P. Arend, Algememe Geschicdenis des Fiwerlauds (Amsterd., 1st0, \&c., contmued by Rees, Brill, and Vian Vloten!; Groen van !'mosterer, Geschiedcnis ran het Vaderland (Leyder, 1846 , thed., Ansterd., 1854, 4 vols., from a Calvinistic pont of view); and Archires mu Correspondance inedite de La Maisone d'Orange-N゙assau (Leyden, 1541-62); Gerlache, Essai sur les grandes Eloques de notre hustoire natwonale (1852), and Histoire du roynume dis Pusw-Dis druuis 1814 jusqu'en 1530 (3 vols., 1559) ; Nuijens, Adgconecee Cuschicd. des Nederlardschen Fohts (Amsterd., 187e-TS, 15 sols., from the Roman Catholie foint of view); J. ran Lenniy, En Gesche ran Nericrland (Leyten, 1578); W. Moll and J. ter Gouw, Federland. Gesch. en Vothsleven (Leyden, 1878 ; this and the prevous work ate of a pobular east); J. A. Fruin, De Nederlandeche "tioucken tot op 1 Jur. 1876 (Utrecht, 15:8); Nippold, Dic rümisihKutholische kirche am Könagreach der Nederlande (Leipsic, 1sii); Wenzelberner, Geach. der Nialerlande (in Heeren ant Uekert's sentes, Cotha, 1878-79); Kemper, Gesch. van Aïclerlanul na 153) (Austend., 1873-76). For English renders the older works of Grattan, History of the Netheriauds (Lardner's series), nud Davies. History of Holland (3 vols., 1841), have teen cast completely into the shade by Motley's Rese of the Dhetch Requilie (Lond, 1856), and The Undid Xitherlands (Lond, 1861-68). A Fipertorium der verkandl. en bijdrayen betr. de goseh. des radertanels in tajdsen verschenen apptared at Leyden, 1563 , and a Feyister zun acad. dhoscrtatict, having the same scope, in 1506 .
(G. W. k.)

PART III.-LANGUACE.

Of the Low German tribes the Old Saxons, the AngloSaxons, the Franks, and the Frisians played a specially important part both in north-western Europe in general and in the Low Countries in particular; and accordingly it is with these tribes that we have in the first place to do when investigating the origin and development of the Dutch language. A great many dialects formerly existed side by side on Dutch ground, and many of them still live on the lips of the people; but they all belonged to one or other of three well-defined groups-Frisian, Saxon, and Frankish.

In the earliest times about which records have come down to us, the Frisian dialect, in varions shades of differeace indeed, occupied a very extensive area. It was the language universally spoken in the pruvinces of Groningen, Friesland, and North Holland. But in Groningen the Frisian bas been superseded by the Saxon, and in North Holland by the Lew Frankish dualect; and the three leading dialects of the Dutch are now distributed in Holland nearly as follows :-(1) Saxon in Groningen, Drentle, Overyssel, and the county of Zatphen; (2) Frisian (more or less corrupt in the towns) in Fricsland; and (3) Lew Frankish in Guelderlana (exce; fing the county of Zutphen), Utrecht, North and South Ifviland, Zealand, North Brabant, and Limburs.

In Groningea ond Nurth Holland the Frisian dialect has left more or less marked traces of its former fre. dominance in the pronunciation, rocabulary, and $1^{\text {ha }}$ raseology of the present spoken language. During a considerable poriod laws, ordinances, contracts, and similar documents were drawn up in the various provinces in the peculiar dialect of each, and many of these documents, especially in Prisian, have come down to our time. The inhabitants of the northern provinces, however, had neither superiority of culture nor pelitical prependerance enough to sccure the assimilation of the adjoining populations. The occopants of the tract in which Low Frankish was spoken were much more favourably situated; and that dialect has in the end onstel the two others, and become the eprech, both oral and writien, of cultured Dutchmer

From the ducuments cellected by Mällenheff and Scherer, and from many others, it is evident that between the Sth and the 12 th century the different German dialects served as vehicles of literary composition, and this, it appcars, must also have been the case in the Netherlands. It may therefore be safely taken for granted that, among the litro Teuthonice scripti referred to in the act given in the year 1502 by the papal legate Guido fer the organization of the bishopric of Liege, there were some written in the vernacular, i.e., in Low Frankish, which after the subjugation of the Frisians and Saxons by the Franks was the idiom of the rictors. Whatever pains Charlemagne took to raise the dignity of the German language, the practice, prevailing at the time and long afterwards, of using Latin in official documonts emonating from the authorities, prevented the predominant form of speeth from encreaching to ans considerable extent on the other dialects. Still it is in this period that we must seek the first iudications of the future victory of the Frankish dialect over the two others. And in corrse of tine the Franks strengthened their palitical ire-eninence by a superiority of a different character, which, added to the first, went for to secure to the Frankish dialect the prerogative of being the universal rehicle of cultured theught, written and spoken, throughout the Netherlands. The barbarous victors could not resist the humanizing influcnce of the higher culture resulting from a lengtheried intercuarse with the Romans. And when, after a considerable lapse of time, the new idiom, thus borm from Latin, began to be employed in the composition of literary proluctions, the influence of these writings soon mads itself sensibly felt in the southern Netherlands. The imhabitants of ancient Belgium had always continued in close intercourse with their brethren in France; and the liternry productions put forth in France, especimlly after the crusades, seon began to engage the attention of the opulent citizens of the thriving towns of Flanders and other parts of the southern Netherlaads, and were diligently translated by them into their own tongue. Holland, Zealaud, and Utrecht in their unra were connected with tho sonthern Netherlands by many cloae ties. The
language spoken in the southern and in the nurthern Netherlands was the same for all practical purposes; and bo it happened that the French literary works and their Flemish reproductions attracted no small share of attention alw in the northern Netherlands. The "Dietsch" dialect, in which the oldest and must popular works, such as Reynard the Pox and the works of Jacob van Maerlant, dating from the close of the 13th century, were composed, became the model speech for every one who wanted to address a larger public than that of his immediate vicinity. It was in this Dietsch dialect that Melis Stoke, an inmate of the monastery of Egmond, composed his Rhymed Chronicle (c. 1305).

From Holland and Utreeht the Dietsch dialect readily iound its way farther north. What the Franks had tried to achieve in times long past was now undertaken by the zounts of Holland and the bishops of Utrecht, viz., the total subjection of the nosrthera provinces to their male. These efforts on the part of the princes just named again nuade Frankish the dialect of the dominant, Frisian and Saxon the idium of the ennquered race. In this way Dietsch, i.e., Low Frankish, became the predomiant dialect all over the Netherlands.-

At a time when laws, mutual contracts, and other official documents issued in Friesland between the Vlie and the Lanwers are still drawn up in pure Old Frisian, the treaty by which the eitizens of Stavoren recognize Count Floris for their sovereigo lord in 1292 is written in Dutch. The contraets drawn up by Frisiaus un both sides are nearly always in Frisian, even down to the close of the 15th century, though oceasionally Dutch was used. In deeds of sale, contraets, \&c., drawn up between 1490 and 1500 , we meet with all-possible shades and varieties of the Dutch dialect, which is seen to be rapidly gaiuing ground Still, this substitution of Dutch for Frisian in dikuments of this nature by no means proses that Frisian was falling into desuetude among the country population. A good deal of course depended on the persons who were employed to compose the docuntents above referred to. The historian of Friesland, Gabbema, writing about 1650, bitterly laments the decay of the Frisian tongue; and even foreign writers, such as Conrad Gesner, refer to the fact in a similar way. But in spite of his lamentations Gabbema submits to the pressure of the times and writes his history not in Frisian but in Dntch. Nay, his friend Cysbert Jipix, the cultivator par excellence of Frisian, the national poet of Friesland, wrote the iutraduction to his Friesche Rijmelerije ("Frisian Rhymes "), and many a manly poem besides, in the samo language. They were by nu means averse to seeing cultured non. Frisians take cognizance of their literary labours; and to satisfy this ambition, there was no other course open than to employ the latrguage which such eminent men as Marnix, Coornhert, livemer, Visser, Stingel, Hooft, luygens, and Vuadel had permanently made the approved vehicle of theught and poetical utterauce throughout the Netherlands, more especially after the fall of Antwerp, in 1585, had induced the most highly cultared minds of tho suathern Netherlanils to migrate to llolland. This had beeu achieved partly by direet endeavons tending to the improvement of the languge and the excision of ali "foreign dross," partly ly the creation of beautiful worlis of literary art, and solid contributions to listhry and erudition. For the language and inteliectual ce:tare of Helland had now cach attained a stage of advanceneme whero neitber imperionsly demanded new capabilities in the other. What thus happened in Friesland also touk iltice elsuwhere, the same or nearly the same causes bringing abont the same results thruaghout the ecuntry.

The languago of the Duteh has travellded to their transmarine possessions, without engendering a now dialect
either in the East or west Indies. But a very different result might be expeeted if at any time their East Indien possessions shonld enter upon an independent eareer. A kind of mongrel dialect would arise, which may be seen fureshadowed in official papers and letters composed by so-called simgos, or "hialf-breeds," in the island of Java. We may even now point to oue such dialect, the speech of the Dutch setters in the Transvaal and the Orange Tervitory in Sonth Africa, who have actually begun to raise their clipped Dutch to the dis:-ity of a written language, in which they are now composing works of general litereture, and even poems, diligently efliting class-books and theulogical treatises, and 1 rinting such newspapers as Den. opregten Afrikamder.

Flemish or South Dutch, z.e., Belgian Dutch, though very nearly allied to North Dutch or the Dntch of Hollaud, essentially differs from the latter in many important points of detail. In its vocabulary, its phrascology, and the structure of its sentences, it clearly betrays the influence of the French-speaking part of the nation. In a novel by a yery popular Flemish author, A. C. van der Cruyssen, printed in bold type in small octavo, and numbering less than 200 pages, the present writer noted far more tban 200 cases in which a North-Dutchman would have chosen quite another turn of expression. The South Dutch dial?it, which after the fall of Antwerp Lad remained almost stationary, but which in our days has become a cultured written language through the diligent efforts of various writers of great talent, bears the evident marks of this recent emergence from a state of utter neglect on the part of cultured men, and to a North-Dutchman has au air of simple-minded artlessuess and innocent naiveté.

The complexity of origin of the Duteh ianguage is most noticeable in the case of the vowels. In the eonsonants the Saxon and the Frankish did not differ greatly, and the Frisian lias lad a much smaller influence. To the Saxon mnst be ascribed the dropping of the nasal before $s, f, t h$, as will as before b and v, in evf (five), sedert (sinthe, since), muiden (mouth), in proper names, de. At the same time there are several words in which the n is pre-served,-most of these being borrowed from the Frankish; as aader, kuude, Yselmonde in Holland, (alongside of $Y_{\text {selmuiden }}$ in Overyssel), and y gns (for which wee have goeze in the Overyssel dialect). The s in the nom. plur of the vowel stems is only partially retained: side by side there exist in Miud!e Dutch plural forms like honde, dorpers, kinder, kinde, figne, which have almust all in later Dutch assumed either s simply, s after the plural form r, or en (originally the plual form of n stems), the s and n being erroneously regarded as a siga of the pheral (sie infra). On the whole the Frankish influence hias teen the most putent,-that of the other troo tongies being only obsersable here and there in the terminations or in a comparatively limited number of words and expressions. The history of the development of the language may le divided into two great praiods. In the first, the Middle Dutch, the fuller furms and long vowels of inflexional and derivotional suffices and the final elements of compond words, wich are preserved in Gouthe and Hich German, hive already becoman short and unareated, while at the same time, through the loss of tho acent, the final elements have party lost heir siguianarce, and uccasimally a notalle abbrevition hlys been citented bota in their proanciation ana their atheoranty. From the Midde Dutch the anoderia language is distinguishen l.y a grouter niegioct and consmeion oi intexionat turms, by the presance of a large manber of foreign words introdheed about thas end of the 15th century, as well as of a miltitude of dialect and aodern terme, and by the disusa or modified significutime of twany et the older words.

Of the Middle Duteh we have no renains entlier than the beginning of the 13th centary, though Saxon and Frankish linguistic monuments go back to the 8th or 9th.

Middle Dutch extends from the 12 th century to 1450 ; then follows a transition period, reaching to 1550 , from which date Modern Duteh has prevailed to the -.esent time. In the period last named a subdivision may be made at 1865, the date of the introduetion of the new spelling. ${ }^{1}$

In Modern Duteh there is a considerable difference between the latcst and the earliest forms. The older language still preserves many words that have now liecome obsulete, and the style is modelled more closely on that of the classical writers. Towards the end of the 18th century the influence of Van Effen, Stijl, Bilderdijk, and others cffected great changes; and while the deflexion largely increased, the Hollandsch dialeet began to make itsclf predominant, especially in regard to the vowels u and y or $i j$ (i). Indeed the main difference between Middle and Modurn Dateh is due to the fact that the former is under the influence of Dietseh (the Flemish-Zealand dialect), while in the latter Hollandseh bas the supremaey.

In the transition period the language was arlulterated by a great number of bastard words and bastard forms derived from French, which obtained curreney throughout Holland, Zealand, Utreeht, and the southern provinces, from the influenee of the court and government of the dukes of Burgundy.

The study of the dialcets and grammar of Middle Dutch has not been presecuted far cnough to allow of very detaled statements rogarding them. Our prineipal authorities for the interpretation of the literary remans are the werks of De Yries, Verwijs, Verdam, Moltzer, and others. Most of these remains are in Dietsch, as the romancos of chivalry, the works of Maerkant, the chronicles bull songs; others, as the St Servaas of Van Veldeke, ars-in the langurfo of the south-east (Limburgsch). Of the medixval langhayfe, as it was spoken in Utrecht or in the Saxon provinces ${ }^{\circ}$ (the oointship of Zutphen, Overyssel, and Drenthe), the only renains aro in charters and similar documents. Since the Saxon, as is indicaten by the conjugation of the verh, has excreised no dominant influerce, and the Hollandsch on the other hand is closely connected with the Dietsch, we will only quote as an example of the language a single strophe from Naerlant's Wapene Mretiyn, with a metrical translation (bitherto unpublished) from the pen of Nicolas Beets (1880).

> God, tliet al bl redene doet,
> Der menscheit renene
> Der menscherk, gendene.
Daticre mede wate gevoct
> Kinle rechet, euge gesenet,
> Finde deven snulis rene.
> Nit a mixrichetit mos wer wof,
> jart ele settet simen monet
> (xil al te hebherace sle ne
> Fifobmme stormen monerntonq.
> llewomme sticlitmen mettet virty
> floge ente hogi: al bene
> Menergen te weme 3
God, dle het al met wijsheld doet Gaf dit vejcanklijlk ruidache roed Den mensehen in't gemeen,
Op chat zij zoulen zijn deveed Jet hiffekleed, gesechocid de voe fenteren rem van reen
Hut 21: nin hoe de hobzuclit woedt 'i Al hembun what allewis
limpon vergior men mernsthenhloed
En boutwl mate rockelonzen spocd Linilitsioton, zwair van stoed
Te manat van menigeen.

The Consmants. - As resarils the consomants, Dutch in the main loes not differ from the other low Gemman I grades. The oxplokive g and the th are wanting. linstial of the former there is a g with "fricative" pronumention, ind as in lligh German the th has pased over intod.

Nrarly all the fimal consonnts in Midlle Dutch are sharpened, and the shatp somms are graplimally representod: in Modern Dutch, on the othre hatu, the historial development of tho langage luiug mor diatinetly kept in view, amd the agreement observed will tha inflexional furms, the suft consoant is written more frequntly that it is sommed; thas we havo Middle Dutch

 is of vary parly dute; even in the Ohl Joteh puatmag interchanges with hereh side by sisle with oreg, just as in Cothie fobdeds and foginm, Auglowsun bork and harges, Oll Saxan mamah nul managh. 'lla! g^{h}, which in Midlle Dhich Irequently appears buma and i, guved tobistingrish the frientive of from the Pronch O; HI liter Mahtlo Dutela we that this olyuet lost sight of, and the th ahen writtun before a, o or u. In Marrlant ghans and ghene bath oerner. In the: 15 th century the gh wasalso ramployed instead of $\mathrm{ch}^{\text {. When }}$ [mople berate "o observe the etymological agrement of

[^21]if hech and si laghen, and in this way arose the spelling ik lagh. This indicated no, clange in pronuaciation. That in Middle Dutch, however, an explosive pronuncintion existed (in some words, more cspecially after n), as well as the aspirated pronunciation, is evident from worls like dinc, gine; this sound did not hold ita gromad but passed into the nasalized guttural now writton ding, ging. The explosive force, hovever, was preserved where the diminutive suffix je followed immediately after $n g$, as well as before lijk and some other affixes, and it is now expressed by k (koninhje, jonkman). In combination with s, g hecame k (specksel, fluks from vlug). So also in intensice verbs like fukken, kuikken, where the k arose from an explosive g before j of the suffix, and was doubled after the short vowels. In non-intensives, as iigyen, zoygen, whero the g was aspirated, that letter was donbied in the same way from gj. The Dutch g is besides sonetimes derived from the cummon German g (gans, dag) ; sometmes it is the Old German h at the end of a word, between vowels, or after liquids (hoog, auig). Sometimes it is a survival of the compound gw, and exissalong with a form in w, as spugeu, spuwen. G arose out of j in kruisigen and other verbs in -igen, just as in Anglo-Saxon. In the beginning of some words in Dliddle Dutch g passed into j, as jonst for gonst, while Modern Dutch again has gunst. The passage of g into y, and i after a or e, and before a vowel, is found both in Middle Dutch and Modern Dutch: scgel becomes zeil, gczegd gczeid. In some words the explosive g has passed into k; in others, and indeed tbe majority, the k, both in the body of the werd and as an initial and a final letter, is the common Low German k. After sinort vowels the k of the compound $k j$ was doubled, and the j dropled off after producing "umluut" (dckien, wekken). An original k remained as an initial letter before n or r in kring, krijpen, \&c., alongside ol' whicb we lave riag, nijpen, \&c., in which the k passed into h and then disnppeared. The k also remaios uodisplaced in the diminutive ken (Taal- en Lettcrbode, ii. 105). BeIore ℓ, k became ch in zucht (こzek), wacht (wakcn).

In Midule Dutch c aod k are interohanged without distiretion of sound. $\quad C$ is used before vowels except e and i, and before l, n, and r, and at the end of a word (cop, clecn, cranc). After u sometimes $c k$ is also employed (ganc and ganck). In later Middle Dutch the, $c k$ is more frequent; in other cases k is common (kinl. $k c r k c$). Frequently we hind k as well as $c,-$ never, however, c before e or i except in French words, where c had the sound of s (citroen). Sometimes ch (as in cheins, chessen) occurs as well as c (ceins, ecssen), where $c h$ represents the palatal sound of the s, which in the more modern languare is rather represented by sj (korsjct and corset, sjokken and sokien, \&c.). The doubling of the k was indicated by ch (deckcn), while qu was the ordinary for kw (bcquame, quedelen, quenc), in Modem Dutch dekken, bekwaam.

In the beginning of words h has lest its original aspirate sound and become a mere breathing, and conscquently it has often dropped off both before other consonants and between vowels: thas hring becomes ring (as early as in the Old Frankish psalms), slahan becomes slarm, viehen in Middle Dutch vien. In some of these words a d has been afterwards inserted aut ol a supposed analogy with weak verbs, as e.g., with belien, belide; where Mlodern Dutch has vicden, gesehieden, Middle Dutch had viicn, gescien; even in Mildle Dutch, indeed, geschicde (Modern Dutch geschicdele) was an alternative form with geschach. In the dinlects h is frequently prefixel improperly (harm for "arm, se.). At the end of worts the h occasiomally kept its fricative som (hoorh, treschach, tooch), as the ch shows. In the verbs hegrn (tiuhan) and tijger (tihan), which sounded tien :and tijen in Middle Dutch, the g has been afterwards introduced iato the prosent stem, probally through the similarity of the soumd of the $h(c h)$ in tooch with the ch sound which y acquires as a final consonant, and through the of of tho wharal jreterite $\begin{gathered}\text { ogen. Chadid not remain in the preterite of all verbs }\end{gathered}$ in Milule Duteh: when has vioc as well as rooch; alongside of this, however, there is on infinitive vieghen, also with a pretorito vooch. From the compound hw the h soon dropped off in the Midillo Dutel (waldisch, wie, war), not, however, where the 70 was vocalized (eompare hui with wori. hoo with woc in the Saxon; in this last caso wof $1^{\text {thesses }}$ further into baf). Liefine t, h retains its aspirato sound,
 before takes the sharpsomut uf ch, although this is not represontod by the spelling in substantives io te, as gobergte, adjectives in - $i j k$, as genofglije, ant in the coniuration hij ligt. The ch in sch (prononued us s: vecsch, Iron. vices), derived hrom the Midlle Dutch se ($s k$), is a mere orthographical convention; us an intial consonant sch is now pronomeed $s g$ (schip), hat in the Suxon dialocts and in Irisian the ohd soum is preservel: ship, skond (sifiola). Seulan has alranly in Middle Dutch ehanged tho se into s, und in Modern Duteh it appars as $\approx(=u l l e n) . \quad$ Ch before t, except where it stands for g, is dirived from an f (eompurn gehucht, kocht, sticht, nlongsido of which we love words in which the j has leen retained, as stift and bruiloft, Middle butch brulochte). Bufneos the guttural is assimilated or syncopated: examples are bus (High, Gcrman bitchsc), vos (fox), zes, dirsim (araguem).
'Ihero is in Dutch a d which corresnonds to tho English thand
the High German d; it is fornied by the tonmue and the npper row of teeth; the d, on the other hand, wiich is like the English d and the High German t is formed by the tongue and the roof of the mouth (or the gums above the teeth).' In the Old Frankish psalms alfercle and elferihi still exist side by side, but even then the d stir ction was probably not a great one; in Middle Dutch th has recome d, or the th is retained as a mere orthographical convention. While in the psalms a distinction is still preservel between th and d as a final letter, inasmuch as d passes into t, but $t h$, or d derived fr,m $t h$, remains, d at the end or words always changes in Middle Dut.h into t or into $d t$. Where, however, the d had remained before vowels in the conjugations of the verbs or the inflexions of the nouns, the d was in several words afterwards restored, although the sharp sound was preserved. In other instances the sharp sound of the nominative affected the oblique cases, and all forms acquired the sharp sound which then remained in Modern Dutch (gesant, gezanten; rit, ritten; verwant, verwanten); and the same change took place especinlly in indeclinable words, as want, met.
In Middle Dutch a tenuis or spirant before d changes it into t but whether it be owing to difference of dialect or to inaceuracies of orthography, many instances may be pointed out where this does not occur; thus we find nochitan, onfacn (for ontlacn), but along with these also nochdanme, ontdacn. In Modern Duteh this is not the case, but a number of forms are due to the same principle, especially in compounds of prepositions with the article (metten, metter), while in the conjugation of weak veros also the sulfix de turns into te alter sharp consonants (legde, lachte, Middle Dutch loceh). On account of the sharpening of the de as a final letter, no d is ever found before the suftix $-\pi i s$, and t even occurs before an afterwards inserted e, as in beclenis (the same is the case with f, b, v, as vergiffenis for vergifnis).

After o, oe, or ui the d passes into j, though io Middle Dutch in. stances seldom occur (Dliddle Dutch ruden, Modern Dutch ruicn; Middle Dutch roden, Modern Dutch uitrocien); sometimes it drops out (hwede, kwec). The spoken language goes moch farther than the written in this use of j for d; thus dooje, goeje are written doode, goede. In like manner the spoken language has changed d into wo after au or ou derived from al or ol; thus we find the pronunciation ouwe, gouren, kowo, with the spelling aude, goudch, haude. In the adjectives ouwelijh and kouwclijh the w has become established. Except after vowels in verbs where h has dropped out, whenever there is no preceding consonant, and an r follows either immediately or after an e, d is inserted after l, π, r (k elder, awaarder, helder, diender, donder), an insertion which is less common in Middle Duteli (helre, solre, donre; also, however, dondre). At the end also of words we often have a paragogic d after n where the Middle Dutch kept the n as the final letter (thus icmand, arend; Middle Dutch icmen, aren) ; after sharp consonants t is added, as gedrocht, burcht, zorst (High German bursche), and also in mijnent, \&c.
D is frequently syncopated as a penultimate consonant before s: thans for thands, volgens for rolgends. Asem, wascm, perhaps, have not dropped the $d(t h)$ before s, but have changed thinto s. While the final t has partly grown out of d, it is partly also the common Low German and English (tal, laten, haat). Between s and r in words derived from the Romance tongues a t is inserted owing to the common German dislike to $s r$ (stroop from sirop) ; after π, and also before the suffix -lijk, the introduction of t, which was frequent in the 16 th century, is less and less heard, and on this point the written speech is far before the spoken (wezenlijk, cigcnlijk are frequently pronounced wczcrtlijh, cigentlijh; ordintclijk alongside of ordelijk at an early date has acquired the t, and afterwards an inserted c, at the same tima modifyngits signification). In the dialects (Limburg, Brabant, Utrecht) the final t after consonants and vowels is frequently dropped: hij heef (hecfl), nie (niet). The compound ts serves in words borrowed from the French to represent the Dutch proounciation of the French sound $\&$ (fatsoen, Fr. facon). While the present language, both in orthograjhy and pronunciation, makes a distinction between s (as io the English sound) and z (as in the English hazcl), the Niddle Dutch had onlys (though in the later IISS. z begins to appear), and Frisian is atill in the same position. Before a vowel or ar, s las for the most part passed intoz, except in those words in which it is followed cither by a long or ahort vowel suceeeded by s, or by a short rovel before s or k; or z was sharpened into s by a t from the preposition $t e:$ zocl, zwah; zitten; sissen, suizen, sokien, samen (from tsamen for te samenl. In foreign words the s usually remains (saluut, soldij). Contrary to the pronunciation, z is written in acsig and zerentig (pronounced sestig, seventig, and in dialects tsestig, tseventig). ${ }^{2}$ The z in the middle of a word, after a syllable which originally had no acceat, has passed into r : genercn, bcurooren; at the same timo we bave the forms gencacn (to heal), bevrosent, and in the Middle Dutch eroos along with zroor, and kozen with koren. In many cases the meaning has been modifiel.
 beforc serenth. lachlig, negentig (d)alct thegentig). Fiom these words tho vistig are pronounced feerrig and fifiny.

Prothesis of s occurs in smocl for mocl. Such forms as slinh and link, snebbe and nobbc, swenkicu and wanken, go back to oller forms, and are thus probably doublets of much oller date than lao break. ing off of the German languages from each other.

As in English so in Dutch b is the undisplaced German niedial. At the beginning and in the body of a word it baa the same sound; at the end it is prooounced as p (see p. 86). In Middle Dutch for the most part b was followed by a vowel (Middle Dutch uebbe, Modern Dutch web); this vowel fell away in Modern Dutch, but tha b remained in the written language. Wherever the b reprasents $b j$ it is doubled, just as after a short vowel (hrab, krabben). So, too, frequentatives have bo (krabbelen, hibbelen, with which compare Modern Duteh Kijuen, Middie Lower German hibben; stribbelen side by side with streven; compare also hebben and hceft, Old Frankish libbat, Dutch levent. After \bar{a} or $\bar{u}+m, b$ fell away both as n middle letter aod as a fimal consonant; but this is not as yet general in Siddle Dutch; alongside of crom, omme, we find cromp, ombe, while in Modern Dutch we always have lam, krom, dom, om. In substantives ending in m with a preceding long vowel, wherever the diminutive particle $j c$ is appended, a p is inserted (-ruim, druinuje; bloem, blocmpje); but this does not take place after an imperfect sowel where an ϵ is inserted ($\mathrm{k} a \mathrm{~m}$, kammetje). As in English the p has not been displaced, and it has the same sound (prard, post, pinh- lap).

For the English f as an initial letter (cf. Sweet, Hist. of English Sounds, p. 78), Modern Dutch as well as Middle Dutch has f and v. In the body of a word the f passes into v ($a v$ in Eoglish lover), or is doubled after chort vowels (leef, lcven; plof, pleffen). At the end and also before coosonants after vowels, v becomes f (hoofl, Middle Dutch hoved; af, Middle Dutch ave and af). Verbs in -elcn have f before c (schuifclen [rom schwiven).
$F(z)$ is the common Gcrman f, and accordingly interchanges with th, us in oftc (Got. aiththan) $=$ English or; but of (Got. isa) $=$ English if; recl (filu). Before vowels and l, f is sometimes preserved in pure German words, while in others of the same sort v appears (frisch, versch; finhi, elah; fcls vechecn); so also in the Old Dutch psalms we find zatcr along with fader, while in Middle Dutch likewise a similar variation prevails. Usually the precedenco of a sharp consonant in Middla Dutch causes the v to become f (mesfal, ontfacn; cf. ral and racn; iut also mesval, \&c.).

Tire combination $f t$ has in Dutch passed into cht, but it appears in the dialects, and was more frequent in Middle Dutch (zerfocht, hecht, sticht, achter; verhoft, heft, stift, after). On the other hand in the psalms and tha Glosso Lipsianc, and also iu dialectic charters, we find occasionally fl for ht: druften (druhtin), sujte (stem sûk), ccilàraftig (for cendrachtig).

The liquids are unchanged, except m and n in inflexional terminations. In certain other cases l ioterchanges with n : for example, slak, High German schuecke; Scheeclingen (17th century), Schercningen, \&c. By the l sound a precediug a or c is turned into o, asovertollig (lal); in some instances ol changes into ou, c.g., goud, ond, aout ; if the o belore c passes into u (sce under 0), then the solution does not take place (guldeu; Middle Dutch hulten, Modern Dutch houten; meniguveldig). In Middle Dutch we have ul, ol, and ous side by side. Mremains with stem rowels, in the suffix $\cdot m$ (even where it becomes n in High German), as blocin, bcecm (High Germas: besen), aud in hem, dat. sing. 31 pers. pron. Io other eases it prasses into n in inflexional terminations; den (lligh German dem), geten (lst pers. pln. pres.); mb becomes $m m$, and consequently m. In maar, 7n represents $n w$ (nvare for ne ware). In drempel, \boldsymbol{m}_{2} : inserted.
Tha r is of very various character. In the first place we bare the dental r, agreeing with the ltalian r in ragazzo-for example, raad, rust, hart; and secondly we have the guttural r, only heard in words which had hrin Old Gcrman (ring, ros, rcuarl). As the former is a difficult sound for many Dutchmen, especially for thoso of the Saxon district, the guttural r is used instead of it. In the Sason distriets we find, besides, a vers strong consouant called hy Sievers the "cercbral" \boldsymbol{r} (c.g., hard, worst, marsch). Although it is not distinctly audible, a practised observer can hear it, just as in the Eoglish lelter. hard. ${ }^{3}$ The r derived from z helongs to the first elass. Through the influence of the r, short vowels are lengethened in Middlo Dutch (acreh, acrbeid, for arg, arbeid). Transposition of the r, both before and after the vowel, is frequent in Middlo Dutch and in Modern Dutch: godsurucht, nooddruff, dertig, סarnen, Diersten (hrist). Befure r, n was elided in Middle Duteh (mirc for minre, \&e.) ; before m it was assimilated (onmatc, ommate), and before b it passed into m (omberaden) ; but in Modern Dutch this change does not take place.
In soble words beginning with a rowel, n has been prefixed through the influence of the declined article, the nossessive pronoun, or the preposition in: thus naarstig, Midile Dutch nnernst, grew out of in erist; navonds from arond; noom (17th century) out of min oom (Molern Dutch, however, has oom). As regard s the preterites dreht and bracht along with denken and brengen, which appear in Middle Dutch, no certainty has been attained. The n in this case
may have dropped out, as in the other German languages, while before ch the a was shortened to a, which like a in other cases before ch passed into o (hence, in the spoken language, brocht, docht exist sile by side with bracht, dacht), or the suffix may be appended to the non-nasalized stem. That tach Germavic language may in these cases have gone its own way is erident froro the AngloSaxon, where such a form as gipohica iodicates nd oIder form gipanhta.

Vorects. - As carly as the Middle Dutch period, the final vowels of the intlexions, i and t as woll as e, had for the most part lost their sound. The i which gave rise to the nmlant was in great measure elided in some words before the nmlant period, in others later. The number of words in which no umlaut occurs is increased ; in eome words it is absent, evea while i is retained or has passed into c; this depends on the greater or less sensitiveness of the dialect for the nmlaut:-laat, comparat. later; beter; Niddle Dutch noved, Modern Dutch hoofd; tergel; Middle Dutch hoge, Modern Dutch verheugd, heug; bleu[de], bloode; edcl, adel. Analogy has also played a great part in the modification of formations (rast, vaster, along with resting, vesten; macht, machtig, along with amecheig; hand, handen, handig, aloog with behendig).
A bas in open syllables the sonnd of English a in father, in closed syllables that of tho English a in as; when there is a perfect sound in closed syllables the spelling is aa (jaar), in open syllables a (maken); in bad, nat, $a=\vec{a}$. An original short a aoal a long a iu open syllables are even in Midule Dutch pronounced alike, and may bs rhymed with each other (dagen, lagen, a rhynie which was not permitted in Middle High German). In the Saxon dialects a was expressed by ao (some words came in this way into Dutch with 00 for ao, as moot, a slice of fish), and a or a in the Frisio-Saxon districts passes into e before r, as jèr (jadr). Middle Dutch preserved a in several words where in Modeern Dutch it fusses into e before r (arg, erg; sare, zerk; warf, werf) ; in others, as aarde, staurt, zwaard, the Middle Dutch had c and a. (crde, slert, swert, swart, start; Modern Dutch zwaard, stuart). In foreign words, likewise, e before r has become a; paars, persc; lantaarn, lenterne (in the dialects e is still frequently retained). In Middle Dutch a before l sometimes, but not usually, becomes o (ovcrtallich side by side with drievoldich); the passage of a intoo befure ch also occurs (ambocht, brocht, \&c.).

In the preterite singular of the first conjugation of strong verbs the a is always retained in Middle Dutch, and has not passed, as in Modern Dutch, into o through the influence of the plural (Aliddle Dutch ic vant, bant, wi vonden, bonien, Modern Dutch ik ron i, bent, \&c.). It is also retained before l and r, e.f.: barg, otarf (thongh side by side with these we have bery, stcrf), where Modern Dutch has borg, stierf, hiclp, \&e. In ie sel, hi sel, the e camo from the pharal wi selon, whereas the prosent form is again ik zal. A similar influence of analogy is observable in the ofor a in the verbs scheren, zwerco, and wegen, which now have schoor, ochoren, zwoor, and wong; Middle Dutch sear, seitren, wach, \&c., in which the a has been displaced by the o of the preterite participle. In the conjugation of the verbs Middle Dutch has c where Modera Dutch has a (grsleyen, dregen, Modern Dutch drayen). In geheven alone c has been kept. In the $3 d$ pers. sing. forms like onffet, geet, stect, occur in Midalo Dutch, along rith untfact, gaet, staet (Modern Dutch ontuangt, gaat, staat). In participles of verbs in the Germanic jan, Middle Dutch has in some cases tho original form without the umlaut, where Modern Dutch, through the analogy with the present, has the umlant : Middle Dutch becant, genant, gesant; Motern Dutch bekend, geondin. This last arose through confusion wath the participle of the vero sinden, which had become olsolete, gezent continuing to exist as a substautive.

In substantives and adjectives we fiad e (derived from a through i) along with the unchanged a (gretig, graog, from gradig; hekel, akeliy; chel, chelel.

The sonnd of the e derived from a does not differ from that of un original e, or of an ε denived from i, as they appear in open sylhathes (vele, steden, pronoumed as a in English nume). If the e derived from a or i on the criminal e encurs in closed syllables, it las a short sound, as m English men, eml, Modern Dutch stem; whilo be fore r it is pronomecd almost is the o in tho lligh German Hocr. Thoe in closed syllables with a full somen (as Englisha; Sweet, ei) is apelled ef: wet, weck (6 from i), beck. Thas alarp, clear ce which entuls from ai before r ank w, followed or not by i or j, is in licated by tho same letters in both open and elosed syblhbles: ear, sumute, z. Before other consmants followed ly i or j we
 (hence iu atomem [huteh pharal-heden). If no i or j followed, then ai berabue er (lecel, brecel). While in the Saxom diallet of Gued derland and Overysel en is alwnys co except when i or j follows, an $c i$ often securs in the wertern diadects, which has not ariser through tho umbut: in some flaces it is even jrononned as at where the
 Duteh stern, geneen.

Sonurtimes the ci han come from ag or ay themgh rocalization of Whe g to j (meid, mugal: zel, segel); sometimes it is from the

Freach ai, ei, ℓ, ℓ_{8} (fontein, hakkenci, balein, \&c.). In indivilaa! cases $e i$ stands where the Midlle Dutch has e before n: decnzen. Middle Dutch denzen; peinzen, Middle Dutch penzen and peizen; sometimes it is the result of an i following: heinde (hende, handi).

Since the umlaut has not been equally effective in all dialects, feing even wanting where i has passed into e or dropped out, we find words with ce side by side with words with ci. Thus, Middle Dutch has recne, kilecne, where Modern Dutch, through the influence of another dialect, has rein, klein. In Modern Dutch ee frequently exists side by side with ei (verbrceden, verbreiden; heelen, keil); :n this case there is usnally a differentiation of meaning. The dialect of North Holland turns ce into ie (biest, stien, bien, for the Duteb beest, steen, been); and this explains some words with ie in the spoken language: for example, tientjc (twig), dricgen (dreigen)17th century.
The letter o represents three sounds:-(1) the short sharp 6 and (2) the short soft o, the former like the 0 in English nol and Freach soldat (Dutch bod, belofti, tocht, kolf), the latter like the Freach o in ballon (Dutcin vod, ploffen, oelitend, 2ol; Midd!t Dutch has frequently u, as uchtend); and (3) the full o as in French noter (Dutck kolen, sloten, verloren). The sharg cleas oo has almost the same sound as the full 0 ; in some dialects (among others the Saxon) it is prononaced as double 00 , in others (Flemish and Hollaadseh) somewhat like az. In Middle Dutch, the lengthening of the vowels was frequently indicated by e (before r sometimes by i, as in oir); bence ac for θ, oe for σ. Where oc occurs in the modern language, it has the snund of u (pronounced like the u in High German, and answering to the Gothic 0 , Old High German uo from uct, which in Middle Dutch was frequently represented by or (au; Swect, p. 6), still so proncunced in West Flemish and the Groningen dialects, thourh before labials and guttarals it was expressed by ue and oe (boue, souticm and aito guet, excrin, but usually goot, soeken, boee). The Saxun dialects sti.l preserve in these cases an 0 sonnd which agrees with the Diddle Duten oc (bok, moder); in two words-romer (rocmer, however, is also used and spook-o has passed from these dialects into Dutch. As the u (Old German u), which in the modern tongues has passed into u a except before r and u, retains the u sound in the Saxon districts, some worda have come into Dutch from these dialects, being writen with oe from the similar sound of oe (from 0) and uo (snoct, boer, soezen, alougside of which are Frankish words, snuit, suizin, \&ic.). Escept in the Saxon dialects, which are more sensitive to the amlaut, the modification of oe by i seldom occurs (Modern Dutch groen, zoct, zocken, but Saxon gryn, zyt, zyken, -of. Sweet, History of English Sounds, p. 6). IutheGroningen dialect, ö in sülken is umlaut of ou (oc=ou; mouder, Modern Dutch, mocder). Forms in Modera Dutch as reukicloos, beuk, geneugte aloagside ol rockeloos, bock, genoegen, show the oc changad before i in el, when of was still prononaced 6 ; they hate thus not umlant of oc but of δ.
In French words which are completely naturalized long o becomes oc (facon= fatsocn).
In Middle Dutch, o in some cases occurs instead of oc (u) in open syllables (gode, moder). This ofor oc thymes with o; rhymes likn gode (goede) and gode (Goth. Gups), stoct (stookt) and socct (cockt). are repeatedly introduced. Thus, too, $\alpha c=\delta$ from αu and $\rho e=$ Goth. 6 aml 22 rhyme with each other.
The Modera Dutch oo front au is represented liy oo both in open and in closed syllables. The full clear ofrom the German o or u is expressed in closed syllalles by 00 , in open syllables by o: kiool, kolen (English coal), stroom, stroomen. The umlaut of the soft and sharp o (eu=0̈ in High German schon) is rare in Middle Dutch: Modern Duteh vecugel, Middle Dutch rlogel; keuken, kokene; verhcugen, hogen. Side by side with some cases where the umbat occurs the form without the umlaut is also retained in Modern Dutch (lingon, login), sometimes with a differcace in the menning. (sprcuk, sprook; heusch, hoojsch). In the dialects the area of the umant is wider.
Oc before m and oc and ou lefore $c h$, esjecinlly in monosyllables, have changed into of: bloem, blom; zockich, zocht; roezen, roche (whence berueht and gerucht); Roopen, kocht. As in rocht, ycrucht, the short soft ofrom the Millle Dutch has in many words passed into u (Middlo Dutch conuen, gonnen, joffer (joneverc); Modern Dutch kunnen, gunnen, juffer); sometimes both forms have contiaud in uso: sworken, snurken; plondercn, plunderen; teelvoudig (reclioldig), monigzuldig. In like manner, the forms u and o from ü exist side by sule (dropuct, druppel; yort, grut), as also af frome bufore $l\left(s^{m} h l\right.$, spel $)$.

The a had still the Old German pronunciation in the Old Frankish psalms, and this was probathly the case also in the oldest Midule Dutch. In Maerlant's style, howewer, it had already ampurd the sound of the French u ia natere: thus, Macthat rhymes nuture, cure; gare, pure; sure, croturi. In tho dialeets we still hear the old somd 2 and not y (sweet, p. 6), e.t., Gueders dialect zur. Dutch zyr. Under the influence of the Mollandseb in the leth and 1ith centuries, the a has passed over through öi into vi
(pronounced nearly as the High German cu, Englislı ay), except betore r and w, where the a keeps the sound $i i$.. Middle Dutcli oi also passed into ui (sloier, sluier), just as $v i$ after consonauts: hui (hwei), duit (thwcit). From the conmen German 2 thus arose the Middle Dutch u in duve, dusent, mues, and in the vetbs sugen, supen, luken, corresponding to the Modern Dutch wi in dutemel, duij, muis, zuigen, zuipen, luiken (in which the High German has au, Old High German a). Ilee words in which thic Saxon has the umlant lave in Middle Dutch likewise u, but in Modern Dutch ui; Middle Dutch budcl, suter, lusteren; Modern Dutch buidel, zuiver, luisleren; Saxon büdel, züre'r, lusteren, \&ic. In Modern Dutch mocl, snoet, knoest, \&c., have oe along with forms in ui (muil, snuil, knazist). In the Saxor dialect, oe (u) and ü occur in sonte cases in the ohlique cases (knoest, pl. hnviste). Tha same thing takes place in the strong verbs, which in Anglo-Saxou have 0 , iu Old ligh German io (Modero Dutch búigen, Anglo-Saxon bugan, Old High German biogan); the Saxon dialects have here sometimes ü (bügen, slüten), sometimes oe (kroepen, schoeven). Old German iu passes before the suffix a into co, io, and finally in Maddle Dutch and Modern Dutch into ie (dier, bieden, kiezen). Hefore r Middle Dutch has the a frequeatly alogg with ie (onghicre, ongehure) ; Modern Dutch duur along with dicibaar (Belgian duurbuar), vuur (from viwar) along with vier. -Sometianes ie changes into ε; deemoedig, (diemoedig, dicnen), dre as well as drie, halen and Modern Dutch hwiden (Cosijn, Noord en Zuid, i. 219). In some cases $u i$ comes from the degradation of $a i$ or i, especially in words borrowed from the French (jruiten, Fr. frale, Lat. frictare; jornuis, Fr. fornaise, Middle Dutch fornays).

If an original $e u$ is followed by j, i, or u, then εu becomes $i u$, Middle Dutch u, Modein Dutch wi: beduden, dutsch, luden, Modern Dutch beduiden, duitsch, luiden, along with which, however, exist the forms dietsch (derived from diet), lieden, bedieden, which must he ascribed to the influence of the Flemish and Zealand dialects. 'lo this iafluence must also be assigned the $i e$ before r and l in strong verbs of the first class which onginally had a (stierf, hielp, \&c.), while the reduplicative verbs in the preterite have ic, just as in Middle German and Modera German it is produced through contraction, according to analogy, and passes before double consonants into I (slicp, ving).

Ie further indicates a lengthened i and ε in syllables on which the chief accent falls (fabrick, fabrichen), while i is used for short i and in unaccented syllables, or, it may be, for short i in closed syllables (fabrikant, sikkel, midden, vinden). The long i is indi. cated by $i e^{\text {, where }} i j$ (which was originally the sign of i, and in Midule Dutch and the dialects is still so pronounced) passes over into ai and ei through dialect influeace, but rotains the written form ij: sijsje (Eng. siskin), portij, pijn, ijs, \&c. In some words in which the original i sound has been preserved, i is also expressed by ic (gerief, wierook, kiem, \&c.).

The sounds in Dutch which are the most difficult for foreigners to pronounce are the aspirated g, the ch after vowels, the sch before vowels, and 1 . This last letter is pronounced by the Germans either as w or as f, and they also usually confound b and p as initial coosonants. Of the vowels, the most difficult is tlie wi, which is almost never prononnced with perfect accuracy by a foreigner. The ij and ei are generally sounded too closely like ai.

Grammar. - In Middle Dutch the different noun-stens are divided into tro principal classes :-(1) a combination of the various vowel stems, which have more or less lost their indivilual characters, though here and there, io particular expressions and dialects, the difference of the stems makes itself apparent ; aml (2) a consonantal decleasion, that of the n stems-the other consonantal stems having been assinilated partiy to the n stemsand partly to the vowel stems. Gradually, bowerer, the two classes begin to he coufused with each other; thus in the vonel stems s completely ousts the e as a sign of the nominative plural, abd consequently açuites a plaral significance as well as en, so that (with some exceptions, like graaf, herlog, \&e., and ndjectives employed as substantives) sand en ale in Modern Dutch nsed indiffereutly as plural terminations, the sclection mainly depebding on the nature of the foregoing consonant. In the words alrcady mentioned-graaf, heer, vorst, se., and in compouads like gravenkroon, hanenkam, the geuitive termination en is preserved. The s of the genitive is employed in feminines whenever the qualified word stands after it, as mucdersking ; with this exception, the s, especially in the spoken speech, is almost entirely superseded by the periphrasis van den; des heeren hecomes tan den heer, the two forms haviag the same meaning, which is not the case in IIigh German,
Neuters have in the plaral the samn inflexion as masculines: but they more frequently thin these have the plural termination ecr, corrupted, however, to eers or -eren (hind, hinders or hindeven), no plural termination in eer alone being now recognized. Some words, which in the siogular had a parallel form with another termination, have the plural according only to one form: stad and stede, for example, have the plural steden. In some cases (as schty, pio:r schepen; smid, piur, smeden) the plural form has not yet becs explainect. In the dialects, especially in the Saxon, the older fo:ms, more particu.
larly of the plural, are still in force: and there is still a certan dif. ference bet weat the su veral stems boom, bl. tevene (bome); gast, yeste.
The old gentive and dative lumbs are only retained in individual expressions, as den lunde, des huzes, \&e.; in all other cases tho genitive and dative nre expressed by the prepositions ran or aan. The accusative is like the nominative, while in the nenter the dativi also whthont aan is like the accusative. From the similarity of the dative and accusative masculine and neuter of the article great similaraty las arisen iu the government of the prepositions; it is only in a few expressions (metlerdaad, van gocden huize) that the origmal cases have been maintained; in all other instances roor, ven, door, met, \&c., govern the accusative. In Middle Dutch this confusion had not advaoced so far. The dropping of the n at tho end after vowels-a special peculiarity of Hollandsch-has given rise to geat neglect of the genders in the spoken language; and this confusion has even made itself felt in the literaly style, though it is kept in chack by the Saxon dialects, which are strongly conservative in this resuect.

The singular of the second personal pronoun $d u$ (still used in Middle Dutch) has heen displaced by the plural gij, which was originally used out of politeness; and U derived from Uwe Elelheid is now employed as the honorific. As dative and accusative of gij, jou is fauilliar in the spoke langlage (Eog. you, Goth. ous). The thirl persen has, as in English, for the masculine hij (hi), thus diverging from the High German; the aeuter is het. The form in use for the neuter article also sounds het; this het is due to the fact that the ahbreviation 't for the pronoun het and for the article dal was the same, - a coincidence which led to an erroneous identification. In Middle Dutch tho reflexive pronoun was hem; Dodera Dutch (agreeing in this with the Old Fiankish psalms) has zich.

Though the strong verbs and the various classes of weak verbs are always kept scparate, many verbs have become through association of ideas almost uarecognizable. Strong verbs have become wholly or partially weak: banmen, bande, gcbannen; spannen, spande, gespan. nen; helen, heelele, verholen and verhceld, beseffín, besefte, beseft (Niddle Dutch besief, beseren); weak verbs have become strong: jagen (Middle Dutch jaagde), joeg and jaetgle, gejaagd; sehenden, schond, geschonder; zenden (see above); prijzen and wijzen 1asstlirough the ij (the weak) iato the strong class (Mildle Dutch, prisde, 'utisde; Modera Dutch, prees, wees, geprezen, gev'ezen. In belijden. beluilde, Midule Dutch belsen, belide, the a of the preterite found its way into the present also and into the infinitive; and the beliden, Modern Dutch belijden, thus formed passed into the $\hat{\imath}$ class of strong verbs. The a of ward, the preterite of worden, has passed into werd, and the plural has through analogy become werden, the present being ik word and the infinitive wordere. The first class of strong verbs has, before $n+$ a consonant i in the stem of the present (binden) or else a (helpen), this e remainjug throughout the coujugation of the present (hij helpt, not, as in High Geiman, hilft). In the preterite the a has changed into o through the influence of the plural, as has already been mentioned undero. The conjunctive or optative is frequently neglected even in Midlle Dutch; in the living langange it is sometimes used after cortan'verbs and conjunctions (op dat and ten einde), but in expressing a wish it is sometimes periphrased by mogen or loten, aud it is very frequently displaced by the indicative. The Hinh German constraction of the verb with zich to express a passive idea is contrary to the genius of Dutch, which employs the periphrastio Jassive form het uordt derar geronden instead of cs fundet sich tha (Fr. il se trouce la). The formation of the future likewise differs from that of the High German, the anxiliary being not werelen but aullen (Eng. shuld): $2 k$ zul het docn $=$ both I shall do it and I will do it.

Much of the vocahulary of Middle Dutch has now beceme obsolete, Soms words have altogether disappeared:-dorper, dorpertiko (Modern Hutch, gemeen), praen (haerel), grein (kern, exec)leat person), ontstaen (afucthten), ors (peazd), oorbacr (iwit). Others hive changed their meanins: -couse, "brceches," now "huse"; elcne, "few," now "small"; onnoozel, "innocent," now "half witted"; slecht, "simple," now "wicked"; bepnoeven, " to prowe," nnw "to attempt"; crane, "weak," now "sick."

Many new native words lave grown up in connexion with trade, industry, art, and science; many forcign words have also been introtuced, such as those taken from the French with tho suffixes eeven, ich, icf; and many words from the dialects hava received rights of citizenshir.
For a fuller surveg of the hastory of Dutch. the reader sa referred to W. Dwight Whiney's Language and its Study, and the excelitat cranstation of it by J. B.
 The grammar of the curent ppech may be studed in the spraakunsten of kerm. P J. Cosijn. Van lelien. For the explanation of Middle Dutch wolds and forms see the pupers of Do Siles, Yerulss, and Verdmm in the Tralght, tho Taul- on Letterbode, and the Taahundige Bydraqen: De Vrics, Jfidelinderiondsche Tanf-

 current lankuage see the Hoortanbotk der Nal Tank, by De Vries, Te Winkel, sc, The old Saxon and Fiankish forms are theated by kein in Taal-en Letlerbods Cosign in the Oud frani. dsedmen, Gallee in Alfsuchsische Laut- und fierionsidiro
 Spellano der síucriardeche Ziaui.'

PART IV.-LITERATURE

As has been shown abeve, the language now known as Dutch or Flemish did not begin to take distinct sbape till about the end of the 11 th century. From a few existing frag. nients-twe incantations from the sth century, a version of the Psalmis from the 9 th century, and several cbarters-a supposed Old Dutchlanguage has been recegnized; but Duteh literature actually commences in the 13th century, as Middle Dutel, the creation of the first national novement in Brabant, Flanders, Holland, and Zealand. Frum the wreck of Frankish auarchy no genuine felk-tales of Duteb antiquity have come down to us, and searcely any echoes of German myth. On the other band, the sngas of Charlemagne and Arthur appear immediately in Middle Dutch forms. These were evidently introduced by wandering minstrels and jougleurs, and trauslated to gratify the curiosity of the noble women. It is rarely that the nama of such a translator has reached us, but we happen to know that the fragments we pessess of the French remance of Irillium of Orange were written ia Dutch by a certain Klass wim Haarlen, between 1191 and 1217. The Chunson de Rolaibd was translated about the same time, and censiderably later Parthenopers de Blozs. The Flemish minstrel Diederic ran Assenede cempleted his version of Floris et Bkanchefleur about 1250 The Arthurian legends appear to have been brought to Flanders by some Flemish colenists in Wales, on their return to their mether-eountry. Abeut 1250 a Brabantine minstrel translated Walter Map's Lancelot duc Lac at the command of his licge, Lodewijk ran Velthem. The Gauvain was translated by Pennine and Vostaert before 1260, while the first original Dutch writer, the fanous Jakob ran Maerlant, eccupied himself about 1260 with several remanees dealing with Merliu and the Holy Grail. The earliest existing fragments of the epic of Reynarl the Fox were written in Latin by Flemish priests, and about 1250 a very impertant version in Duteb was made by

Willen: know no mere, save that he was the translator of a lost romance, Madoc. In bis existing work the auther follows -Pierre de Saint-Cloud, but uet slavishly ; and be is the first really admirablo writer that we meet with in Dutch literature. It is not necessary to dwell at any length on the moukish legonds and the hymns to the Virgin Mary which were abundantly proluced during the 13 th century, and which, though destitute of all literary merit, were of use as exercises in the infancy of the langunge. The first lyrical

Johis I,
dake of Brabant. writer of Holland was John I., duke of Brabant, who pratised the minnelied with suceess, but whese songs are ouly knowa to us through a Swatian versien of a few of them. In Int. the earliest collection of Dutch folk-songs saw the light, and in this volume one or two romances of the 1 thi century are preserved, of whiel Het Daghet in den Uusten is the best known. Almost the earliest fragment of Dutch popular finetry, but of Iater time, is an bis.orical ballad describing the murder of Count Fhoris V mI 296. A very curions collection of mystical mediaval L.jnas ly Sister Hadewych, a yun of Drabant, was first printal in 1877.

Hitherto, as wo have seen, the Midallo Dutch langungo has fheed itself at the service of the aristoeratic and monatic orlers, thatering the traditions of clivalry and of religion, luat searecty linding anything to say to the bulk of the population. With the close of the 13th century a change emue orer the face of Dutch literature. The Flemish tomas legan to prosper and to assert their cmmmereial supremary over the North Sa. Under such mild zulers as William 1f. and Floris V., Dont, Amster
and other cities contrived to win such privileges as amounind almost to political independence, and with this liberty there arose a new sort of literary expression. The founder and creator of this original Ditch literature was Jakob ran MaerMaerlant, bern near Bruges between 1225 and 1250. His lant youth was spent in Holland, and probably in cemnexien with the court, but in 1261 he returned to Flanders, where he died abeut tbirty years later. Maerlant commenced, as his predecessers had done, by translating the courtly romances of the French, but when he returned to Flanders lie began to take bis true position as an original didactic poet. His Flowers of Nuture, written about 1263, forms an epoch in Dutch literature; i is a collection of moral and satirical addresses to all classes of society. With his Rijmbijbel (Rhyming Bible) he nearly brought dern on hia tou secular head, in 1270, the chastisement of the bishop of Utrecht, and thus early in Dutch histery foreshadowed the courage and free-thought of the Reformation. It was not until 1284 that he commenced his masterpiece, De Spieghel Historiael (The Mirror of History), at the command of Couut Floris V. After writing a great many important works, lyrical and didactic, Maerlant died at Damme, about 1291. Of his disciples, the most considerable in Suuth Helland was Jan vau Poendale (1280-1365). He Boondatd was a politician of considerable influence, and his works are histerical and meral in character. In him the last trace of the old chivalric and romantic element has disappeared. He completed his famous rbyme chronicle, the Brabantsche Yeesten, in 1315 ; it contains the history of Brabant down to the times of the author himself. Fer English readers it is disappointing that Boendale's otber great historical Fork, an account of Edward 1II. aud his expedition to Flanders in 1338, has survived only in seme fragments. The remainder of Boen dale's works are didactic peems ${ }_{1}$ pursuing still further the meral thread first taken up by DLaerlant, and founded on nediaval schelastic literature. in Ypres the school of Maerlant was represented by Jan de Weert. Weert, a surgeon, who died in 1362, and who was theauthor of two remarkable works of meral satire and exhorta. tion. In North Felland a greater talent than that of Weert or of Bucndale was exhibited by Melis Stoke, a stoke. monk of Egmoud. whe wrote the listory of the state of Holland to the jear 1305 ; this work, the Rijmkronik, was priated in J591, and for its exacitude and minute detail bas proved of inestimable service to later historians.

With the middle of the 1 th centurs the chivalric spirit eame once moro iuto fashion. A certain revival of the forms of feudal life made its appearance under William IIL and his successors. Knightly romances came once more into vogue, but the new-born didactic poetry contended vigerously against the supremacy of what was lyrical and epieal. It will be seen that from the very first tho literary spirit in Holland began to assert itself in a homely and utilitarian spirit. Jan van IIcelu, a Brabanter, was tho Hook anther of an epic poen ou the battle of Weeronc (1288), and to him has been attribnted tho still finer romance oi the irar of Grimbergen. Still mere thoroughly aristocratic in feeling was Hein van Aken, a priest of Lenvain, who aken lived about 1255-1330, and whe combined to a very curious extent the romantic and didactic elements. da carly as 1230 be had completed his translation of the Roman de la Rose, which lan anst have commenced in the lifetime of Jean de Meung. More remarkable than any of his translated works, lowever, is his original romance Ifeinric en Meryriete, upon which lee was at work for thirty-sever: vears. luring the Bavarian period (1319-1433) very'
litile original writing of wuch value was produced in 'Holland. Buaderiji van der Loren wrote one excellent piece an the Maid of Ghent, in 1389. Augustijnten van Dordt was a peripatetic miustrel of North lJollaud, who composed for the sheriff Aelbrecht and for the count of Btois from 1350 to 1370. Such of his rerses as have been handed down to us are allegorical and moral. Willemı van IIildegaersberch (1350-1408) was another northern peet, of a more strictly political cast. Many of his writings exist still unpublished, and are very rough in style and wanting in form. Towards the end of the 15 th century an erotic poet of considerable power arose in the person of the lord of Waddinssveen and Hubreehtsambacht, Dirk Potter. During a stay of three years in Rome, from 1400 to 1412 , this eminent diplomatist made himself acquainted with the writings of Boccaccio, and commenced a wast poem on the course of love, Der Minnen Loep, which is a wonderful uixture of classical and Biblical instances of amoruus adventure, set in a framework of didactic philosophy. In Dirk Putter the last traces of the chivalric element died out of Dutch literature, and left poetry entirely in the hands of the school of Macrlant.

It is now time to consider the growth of prose literature in the Low Countries. The oldest pieces of Dutch -prose now in existence are chärters of the towns of Flanders and Zenland, dated 1249, 1251, and 1254. A A prose translation of the Old Testament was made about 1300 , and there exists a Life of Jesus of about the same date. Of the mystical preachers whose religions writings bave reached us, the Brussels friar, Jan van Ruysbroec (1294-1381), is the most important. But the most interesting relics of medireval Dutch prose, as far as the formation of the language is concerned, are the popular romances in which the romantic stories of the trouveres and minstrels were translated for the benefit of the unlettered public into simple language. As in most European nations, the re-
Religious ligious drama takes a prominent place in every survey of drama medix'fal literature ir Holland. Unfortunately the text of all the earliest mysteries, the language of which would have an extraordinery interest for us, has been lost. We possess records of dramas haring been played at various places-Our Lord's Resurrection, at the Hague, in 1400 ; Our Lady the Virgin, at Arnbeim, in 1452; and The Three Fings, at Delft, in 1498 . The earliest existing fragment, thowerer, is part of a Limburg-Mfaestricht Passover Play of about 1360. The latest Dutch miracle play was the Mrystery of the Holy Sacrament, composed by a certain Smeken, at Breda, and performerl on St John's Day, 1500. This play was printed in 1867 . With these purely theological Iramas there were acted mundane farces, performed outside the churches, by semi-religious companies; these curious moralities wereknown as "Abelespelen"and "Sotterniec̈n." In these pieces we discover the first traces of that genius for low comedy which was afterwards to take perfect form in the dramas of Brederôo and the paintings of Teniers.
clambers The theatrical companies just alluded to, "Gesellen van den Spele," formed the germ ont of which developed the famons "Chambers of Ribetoric" which united within themselves all the literary movements that ocenpied the Low Conutrics during the 15 th and 1 Gith centurics. The poets of Helland bad already discovered in late mediaval times the value of guilds in promoting the arts and industrial handi. erafts. The term "colleges de rhetorique" is supposerl to have been introduced about 1440 by the courtiers of the Durgun. dian dymsty, but the institutions themselves existed at least from 1400 . These literary guilds lasted for two centuries, and during the greater part of that time preserved a completely medieval character, even when the influenees of the Renaissance and the Reformation abliged them to modify in some degree their ontward forms. They were in almost
ail cases absolutely middle class in tone, and opposed to aristocratic ideas and tendencies in thought. Of these remarkable bodies the earliest were almost cntirely engaged in preparing mysteries and miracle-plays for the populace. Each chamber, and in process of time every town in tha Low Countries, possessed one, and took as its title some fanciful or heraklic sigu. The carliest of all, "The Alpha and Omega," at Ypres, was founded about 1395 ; that of the "Violet," at Antwerp, followed in 1400 ; the "Book," at Brussels, in 1401 ; the "Berberry," at Courtrai, in 1427; the "Holy Ghost," at Bruges, in 1428 ; the "Floweret Jesse," at Niddelburg, in 1430 ; the."Oak Tree," at Vlaardingen, in 1433 ; and the "Marigolrl," at Gonda, in 1137. The most celebrated of all the chambers, that of the "Eglantine" at Amsterdam, with its motto In Liefde Bloeyerde (Blossoming in Love), was not instituted until' l496. Among the most influential chambers not above mentioned should be included the "Fountain" at Dort, the "Cora Flower" at the Hague, the "White Columbine" at Leyden, the "Blue Columbine "at Rotterdam, the " Red Fose" at Schiedam, the "Thistle" at Zierikzee, "Jesus with the Balsam" at Chent, and the "Garland of Mary" at Brussels. And not in these important places only, but in almost every little town, the rbetoricians exerted their influence, mainly in what we may call a social durection. Their wealth was in most cases cousiderable, and it very soon became evident that no festival or procession could take place in a town unless the "Kamer" patronized it. Towards the end of the 15 th century the Ghent chamber of "Jesus with the Balsam" began to exercise a sovereign power over the other Flemish chambers, which was emulated later on in Holland by the "Eglantine" at Amsterdam. But this official recognition proved of no consequence in literature, and it was not in Ghent, but in Antwerp, that intellectual life first began to stir. In Holland the burghers only formed the chambers, while in Flanders the representatives of the noble families were honorary members, and assisted with their money at the arrangement of ecclesias. tical or political pageants. Their frompous landjuweelen, or tournaments of rhetoric, at which rich prizes were contended for, were the great occasions upon mhich the members of the chambers distinguished themselres. Between 1426 and 1620 at least 66 of these festivals were beld. There was a specially splendid landjuweel at Antwerp in 1496 , in which 23 chambers took part, but the gasest of all was that celebrated at Antwerp on the 3d of August 1561. To this the "Book" at Brussels sent 340 members, all on horseback, and clad in crimson mantles. The torn of Antwerp gare a ton of golel to be given in prizes, which were shared among 1893 rhetoricians. This was the zenith of the splendour of the "liamers san Rhetorica," and after this time they soou fell into disfavour. We can trace the progress of literary composition uoder the chambers, although none of their oflicial productions have descended to us. Their dramatic pieces were certainly of a didactic cast, with a strong farcizal flarour, and continued the tradition of Maerlant and his school. Ther very rarely dealt with historical or even Biblical personages, hut entirely with allegorical and moral abstractions, until the age os humanism introduced npon the stage the names withont much of the spirit of mythology. Of the pure farees of the thetorical chambers we can speak witlı still more con fidence, for some of them have come down to us, and amons the authors famed for their skill in this sort of writing are named Cornelis Everaert of Brages and Laurens Janssen of liaarlem. The material of these farces is extremely raw, consisting of rougt jests at the expense of priests and foolisti husbands, silly old men and their light wives. Laurens Janssen is also deserving of remembrance for a satire against the clergy, written in 1553 . The chambers also
eneorraged the compostion of sor.gs, but with very littlo suceess; they produced no lyrical genius more considerable than Matthija de Casteleyn (1488-1550), the founder of the Flemish chameer of "Pax Vobiscum" at Oudenarde, a personage whese infiuence as a fashioner of language would hare been more healthy if his astonnding metrical feata and barlequin tours-de-force had not been performed in a dislect debased with all the worst bsstard phrasea of the Burgundian period.
7. In the middla of the 16 th cenury a group of rhetoriciena in Brabant and Flanders sttempted to put a little new life into the stereatyped forms of the preceding age by introducing in original composition the sew-found branehes of Latin and Greek puetry. The leader of these men was Jean Baptista Heuwaert (1533-1599), a personage of censiderable political influence in his generation. He considered himself a devout disciple of Misthijg de Costeleyn, but his great characteristie was his unbeunded love of elassieal and mythological fancy. His didaetic poems are composed in a wonderfully rococo style, and swarm with misplaced Latinities. In his bastard Burgundian tongue he boasted of baring "poëtelijck geinrenteert ende rhetorijekelijek ghecomponeert" for the Brusels ehamber sueh dramas es Lineas and Dido, Mars and Venus, Narcissus and E'cho, or Leander and Hero. But of all his writings Pegasides Pleyn, or the Palace of Maidens, is the most rerarkable; this is a didactic. poem in sisteen books, ledieated to a diseussion of the variety of earthly lore. Eouwaert's contemperaries nicknamed him "the Homer E. Brabant;" later criticism has preferred to see in him an :mportant link in that chain of homely didactie Dutch which ends in Cats. His writings are composed in a Burgundian 30 base that they hardly belong to Flemisb literature at all. Into the same misersble dialeet Cernelis rsn Ghistele of Antwerp translated, between 1555 and 1583, parts of Terence, Virgil, Horace, and Orid, while the painter Karel ran Mander (1547-1609) put a Freneh version of the Iliad and of tie Eclogues of Virgil into an equilly ill-fitting Flemise ir ress. In no ceuntry of Europe did the húmanisn of the 1 th century at first afeet the national literature so olightly or to so little purpose.

The stir and revival of intellectual life that arrived with the Reformation found its first expression in the composition of Psalms. The earliest printed collection appeared at Antreerp in 1544, unler tho title of Souter-Liedekens, and was dedieated to a Dutch nobleman, Willern van Zuylen van Nieuvelt, by whose name it is usually known. This collcetion, however, was made before the Reformation in Holland really set in. For the Protestant congregatious Jan Utenhore printell a volurne of Psalms in Londen in 1566; Lucas do Iecre, and immediately after him, with much greater success, I'etrus Dathecn (1531-1590), translated the lyymos of Clement Marot. For printing this last volume, in 1567, lerman Schinkel of Delft was burned to death in 1568. Datheen was not is rhetorician, but a person of inmble origin, who wrete in the vulgar tongue, and lis hymns spread far and wide ameng the preople. Until 163 they were in constant usc in the state church of Holland. Siat the great ovents of the period of reforma. tion are not marked by ${ }^{\text {salalms only }}$ in Dutch literature. Two collections of hymns and lyrical pieces, printel in 1562 and 1569, perpetrate the fervour amd despair of the martyrs of the 'Memnonite Church. Similar utterances of the persecuted Protestants were publishell at Marlem and Lectwerden, at Gbont and at liruges. Very different in
for the first time suen classicai snatenes of Duteh song as the Ballad of Feiligerlec, the Politd of Egmond and Horn, and the song of the Storm of Leyden. The political ballads, with their ridicule of the Spanish leaders, form a sertion of the Boecriten which has proved of ineatimable value to bistorians. All these lyrics, hewever, whether of victory or of martyrdem, are still very rough in form and language.

The first mriter who nsed the Dutch tongue with grace anna and precision of style was a woman and a professed Bijus opponent of Lutheranism and reformed thought. Modern Dutch literature practically begina with Anna Bijns. Against the crowd of rhetorieians and psalm-makers of the esrly part of the 16 th century she standa out in relief as the one peet of real genius. The language, oscillating before her time between French and German, formless, corrupt, and invertebrate, took shape and comeliness, whieh node of the male pedants could give it, from the impassioned hands of a woman. Anna Bijns, who is believed to have been born at Antwerp in 1494, was a schoolmistress at that city in her middle life, and in old age she still "instructed youth in the Catholic religion." Headrik Peppinck, a Francisean, whe edited her third volume of poema when she was an old woman in 1567, speaka of ber as "a maiden small of descent, but great of understanding, and godly of life." Her first known volume bears the date 1528, and displays her as already deeply versed in the mysteriea of religion. We gather from all this that she was s lay nuo, and she certainly oceupied a position of great honour and influence at Antwerp. She was named "the Sapphe of Brabant" and the "Princess of all Rhetoricians." She bent the powerful weapon of her verse against the faith and character of Luther. In her volume of 1528 the Lutherans are scarcely mentioned; in that of 1540 every page is oceupied with invectives against them; while the third velume of 1567 is the voice of one from whem her age has passed. All the poems of Anna Bijna whieb we pussess are called refereinen or refrains. Her mastery over verse-form was extremely remarkable, and these refrains are really modified chants-royal. The writings of Auna Bijns offer many points of interest to the philologist. In her the period of Mindle Dutch eloses, snd the modern Dutch begins. In a few grammatical peculiarities-sueh as the formation of the genitive by some verbs which now gurern the accusative, and the use of ghe before the infinitive -her lauguage still belongs to Middle Dutch; but these execptions are rare, and she really initiated that modern speceh which Filips van Maraix adopted and made classienl in the next generation.

In Filips vau Marnis, lord of St Aldegonde (1538-Marale 1598), a much greater personage came forward in the ranks of liberty and reform. He legan life as a disciple of Colvin and Beza in the schools of Geneva. It was as a defenter of the Inteh iconochasts that he first appeared in print, with his tract on The Images thronen down in Hollend in August 1566. He suon became one of the leading spirits in the war of Duteh indelendence, the intimate fricud of the prince of Orange, and the auther of the glorions Jrilhelmustied. It was in the autamm of 1563 that Marnix composed this, the mational hym of Dutch liberty and Protestantism. In 1569 he completed a no less importaut and celehrated prose work, the hitncorf or Dechire of the homish Church. In this fatire he was inspired in a great measure by lablatis, of whom he was an intelligent disciple. It is written in prose that may bo said to mark on epoch in the languago onel literature of 1lolland. Overwhelmed with tho pues of public business, Marnix wrote little more until in 1580 he publisled his Psalms of Demid newly tronstated out of the Mebrew Tongue. Ho occupied the last years of his life iu preparing a Dutch
version of the Bible, translated direct from the original. At his death only Genesis was found completely revised; but in 1619 the synod of Dert placed the unfinisbed work in the hands of tour divines, whe completed it.
coorn.
bert. - In Dirck Volckertsen Coorahert ($52-150$) Holland Sor the first time produced a writer at once eager to compose in his native tongue aud to employ the weapons of bumanism. Coornhert was a typical burgher of North Holland, equally interested in the progress of national emancipation and in the development of national literature. He was a native of Austerdam, but be did not take part in the labours of the old chamber of the Eglantine, but quite early in life proceeded to Haarlem, of which place be remained a citizen until his death. He practised the art of etching, and spent all his spare time in the pursuit of classical learning. He was nearly forty years of age before he marde aay practical use of his attannments. In 1561 he printed bis translation of the De Officus of Cicero, and in 1562 of the De Beneficius of Seneca. In these velumes he opposed with no less zeal than Maraus had done the bastard forms still employed in prose by the rhetoricians of Flanders and Brabant. Durıng the next decade he occupied himself chiefly with plays aod poenis, concelved and expressed with far less freedom than his prose, and more in the approverd conventional fasbion of the rhetericians; the cellected his pocms in 1575. The ueat ten years he occupiel in pelemi:al writing, from the evangelical point of view, against the Calvinists. In 1585 he translated Boetius, and then gave is full attention te his original masterpiece, the Zedekiunst, or Art of Ethics, a philosophical treatise in prose, in which jo studied to adapt the Dutch tongue to the grace and simplicity of Montaigne's French. His humanism unites the Bible, Plutarch, and Marcus Aurelius in one grand system of ethics, and is expressed in a style remarkable for brightness and purity. He died in 1590; his works, in three enernous folio volumes, were first collected in 1630.
Amster- Towards the end of the period of transitien, Amsterdam dam the became the centre of all literary enterprise in Holland. In centre of
lettors.
1585
two of the most impertant chambers of rhetoric in letters. Flanders, the " White Laveader" aud the "Fig-Tree," tnok flight from the south, and settlen themselves in Amsterdam by the side of the "Eglantinc." The last-namerl institution lad aireary observed the new tendency of the age, and was propared to encourage intellectual reform of every kind, and its influence spread tbrough Holland and Zealand. In Flanders, meanwhile, crushed under the yoke of Parma, literature and native theught absolutely expired. From this time forward, ond until the emancipation of the southern provinces, the domain of our inquiry is confined to the district north of the Scheldt.

Iu the chamber of the Eglantine at Amsterdam two men toek a very prominent place, more by their intelligence and modern spirit than by their original genius. Headrick Epieghel. Laurenssen Sprieghel ($1549-1612$) was a humanist of a type were advanced aud less polemical than Coornhert. He wrote a charming poens in praise of dancing; but his chief contributions to literature were his Twespraech van dc Nederduytsche Letterkunst, a philological exhortation, in the manuer of Joachim du Bellay's fameus tract, urging the Dutch nation to purify and enrich its tengue at the fountains of antiquity, and a didactic epic, entitlerl Hertspieghel, which has been greatly praised, but which is now much more antiquated in style and more dificult to enjoy than Coornhert's prose of a similar tendency. Tbat Spieghel was a Catholic prevented him perhaps from excrcising as much public influence as be cxercised privately nmong his younger friconds. The same may be said of the man who, in 1614, first collected Spieghel's writings, and Roemer published them in a volume with his own verses. lioemer visscher. Pieterssen Visscher (1545-16:0) proceeded a step further
than Spieghel in the cultivation of polite letters. He was deeply tioged with a spirit of classical leaming that we.; much more genuine and nearer to the true autique that: any that harl previously been known in Holland. His own disciples called him the Dutch Martial, but he was at best little more than an amateurin peetry, although an amateur whose function it was to perceive and encourage the genius of professional writers. Roemer Visscher stands at the threshold of the new Renaissance literature, himself practising the faderl arts of the rhetericinas, but peinting by his counsel and his conversation to the aturalism of the great period.

It was in the salon at Amsterdam which the beautiful the Reo daugbters of Reemer Visscher formed around their father naissunco and themselves that the new school began to take form. The republic of the United Provinces, with Amsterlam at its hean, had suddenly risen to the first rank among the nations of Europe, and it was under the influençe of so much new emetion and brilliant ambition that the country no less suddenly asserted itself in a great school of painting and poetry. The intellect of the whele Low Countries was cencentrated in Holland and Zealand, while the six great universities, Leyden, Grouingen, Utrecht, Amsterdam, Harderwijk, and Franeker, were enriched by a fuck of learned exiles from Flanders and Brabant. It had occurred, however, to Rocmer Visscher only that the path of literary bonour lay, not along the utilitarian road cut out by Maerlant and Boendale, but in the study of beauty and antiquity. In this he was curiously aided by the scheol of ripe and enthusiastic scholars who began to flourish at Leyden, such as Drusius, Vossius, and Hugo Grotius, who themselves wrote little in Dutch, but whe chastened the style of the rising generation by insisting on a pure and liberal Latiaity. Out of that generation arose the grentest names in the literature of Holland,-Vondel, Hooft, Cats, Huygeas,-in whose bands the language, so long left barbarous and neglected, took at once its highest finish and melody. By the side of this serious and resthetic growth there is to be noticed a quickening of the broad and farcical humour which bad been characteristic of the Datch nation from its commencement. For fity years, and these tho most glerious in the annals of Helland, these two streams of influence, one towards beauty and melody, tho other tewards lively comedy, ran side by side, often in the same chaonel, and producing a rich harvest of great works. It was in the house of the daughters of Roemer Visscher that the tragedies of Vondel and the comedics of Brederôo, the farces of Coster and the odes of Huygens, alike found their first ardmirers and their best critics.

Of the famous daughters of Rocmer, two cultivated Rocnes literature with marked success. Anna (1584-1051) was vis. the auther of a desciptise and didactic pnem, De Rivemster s.her's van den Aemstel (The Glory of the Aemstel), and of variens serra. miscellancous writings ; T'esselschade (1594-1649) wrote some lyrics which still phace her at the head of the fexale poets of Holland, and she translated the great poem of Tasso. They were wonen of univereal acconplishmeat, graceful manners, and singular beauty; and their company attracted to the house of lioemer Visscher all the most gifted youths of the time, several of when were suiters, but in vain, for the band of Auma or of Tesselschade.

Of this Amsterdam school, the first to energe inte pullice Hoort. notice was Pieter Cornelissen IIeoft (1581-1647). He belenged to a patrician family, and berane a nember at a very early age of the chamber of the Eglantine. When he was only cightecn he f roluced, before this body, his tragedy of Achilles and Polyzena (1598), which displased a precocious ease in the use of rhetorical arlifices of style. His intellectanl character, bowever, was formed by a journcy inte Italy which he took in 1598, where he stceped himeelf
for three gears in the best Italian literature, both prose and verse. He returned to Holland in 1601, with his head full of achemes for the creation of a Dutch school of belles lettres. In 1605 he produced his pastoral drama of Granida, in which he proved himself a pupil of Guarini. During the remainder of his life he dedicated himself chiefly to bistory and tragedy. In the latter field be produced Laeto and Geraad van \cdot Velsen; in history he published in 1626 his Life of Henry the Great, while from 1628 to 1642 be was engaged npon his master-work, the History of Holland. Hooft desired to be a severe purist in style, and to a great extent he succeeded, but, like most of the writers of his age, be permitted himself too many Latinisms. In his poetry, especially in the lyrical and pastoral verse of his youth, he is full of Italian reminiscences both of style and matter; in his noble prose work he bas set himself to be a disciple of Tacitns. Mr Motley bas spoken of Hooft as ooe of the greatest historians, not merely of Holland, but of Enrope. His influence in purifying the language of bis country, and in enlarging its sphere of experieace, can hardly be overrated.
Ereder3o. Very dififerent from the long and prosperous career of Hooft was the brief, painful life of the greatest comic dramatist that Holland has produced. Gerbrand Adriaanssen Brederoo (1585-1618) was the son of an Amsterdam shoemaker. He knew no Latin ; he had no taste for humanism ; he was a simple growth of the rich humeur of the people. His life was embittered by a hopeless love for Tesselscbade, to whom lie dedicated his dramas, and whose beanty he celebrated in a whole cycle of love songs. His ideas on the subject of drama were at first a mere derelopment of the mediæval "Abelespelen." He commenced by dramatizing the romance of Roderick and Alphonsus, in 1611, and Griane in 1612, but in the latter year he struck ont a new and more characteristic path in his Farce of the Cow. From this time until his death he continued to pour out cemedies, farces, and romantic dramas, in all of which be displayed a cearse, rough genius net unlike that of Ben Jonson, whose immediate contemporary he was. His last ar.d best piece was Jerolumn, the Spanash Brabanter, a satire upon the exiles from the south who filled tive balls of the Amsterdam chambers of rbetoric with their pompons speeches and preposterous Burgundian phraseology. Brederôo was closely allied in gemus to the dramatists of the Shakespearian age, but he founded no school, and stands almost as a solitary Gigure in the literature of Holland.

The ooly individual at all clearly connected with Brederôo in talent was Dr Samuel Coster, whose dates of birth and death are unknown. He is chicfly remembered for having been the first to take advantage of the growing dissension in the body of the old chamber of the Eglantine to form a new institution. In 1617 Coster founded what he called the "First Dutch Academy." This was in fact a theatre, where, for the first time, dramas conld be publicly acted under the ratronage of no chamber of rhetoric. Coster hionself had come bufore the world in 1612 with his farce of Teawis the foor, and he continued this order of composition in direct emulation of Brederôo, but with less talent. In 1615 he began a series of "blood-and-thunder" tragedies with his horrible ltys, and be continued this coarse style of tragic writing for several ycars. He survived at least until after 1648 as a supremo anthority in Amsterdain roon all dramatic matters.
Fondel
The greatest of all Dutch writers, Joost ran der Vondel (1587-1675), was born at Colegne on the 17 the of November 1587. In 1612 he brought ont his first work, Met Pesches, a tragedy or tragi-comedy on the exodus of the chiliten of Israel, written, libe all his succeeding dramas, on the recognized Dutch phan, in alexandrines, in five acts, and with boral interludes between the acts. There is commaratively
little promise in Het Pascha. "It was much inferior drama. tically to the plays just being produced by Brederôo, and metrically to tbe clear and eloquent tragedies and pastorals of Hooft ; but it secured the young poet a position inferior only to theirs. Yet for a number of years he made no attempt to emphasize the impression be bad produced on the public, but contented himself during the years that are the most fertile in a poet's life with translating and imitating portions of Du Bartas's popular epic. The short and brilliant life of Brederôo, his iamediate contemporary and greatest rival, burned itself out in a surecession of. dramatic victories, aod it was not until tro years after the death of that great poet that Vondel appeared before the public with a second tragedy, the Jerusalem laid Desolate. Five years later, in 1625, he published what seemed an innocent study: from the antique, bis tragedy of Palamedes, or Murdered Innocence All Amsterdam discovered, with smotbered delight, that under the name of the hero was thinly concealed the fignre of Barceveldt, whose execution in 1618 had been a trinmph of the hated Calvinists. Thus, at the age of forty-one, the ohscure Vondel became in a week the mest famons writer in Holland. For the next tweive years, and till the accession of Prince Frederick Hendrick, V゙ondel had to maintain a hand-to-band combat with the "Sainte of Dort." This was the period of his most resolute and stinging satires; Cats took up the cudgels on behalf of the connter-Remonstrants, and there raged a war of pamphlets in verse. A purely fortuitous circumstance led to the next great triumph in Vondel's slowly developing career. The Dntch Academy, fonnded in 1 Cl 7 almost whelly as a dramatic guild, had become so inadequately provided with stage accommodation that in 1638 , having coalesced with the two chambers of the "Eglantiae" and the "White Lavender," it ventured on tbe erection of a large public theatro, the firct in Amsterdam. Vondel, as the greatest poet of the day, was invited to $w r i t e$ a piece for the first night ; on the 3d of Jannary 1638 the theatre was opened with the performance of a new tragedy out of early Dutch history, the famous Gysbreght van Aemstel. The next ten years were rich in dramatic work from Vondel's hand; be supplied the theatre with beroic Scriptural pieces, of which the general reader will obtain the best idea if we point to the Athalie of Racine. In 1654, having already attained an age at which poetical production is usnally discontinued by the most energetic of poets, he brought ont the most exalted and sublime of all his works, the tragedy of Lucifer. Very late in life, through no fault of his own, financial ruin fell on the aged poet, and from 1658 to 1668 -that is, from his seventieth to his eightieth year-this venerable and illustrions persun, the main literary glory of Holland throngh her whole histery, was forced to earn bis bread as a common clerk io a bank, miserably paid, and accused of rasting his masters' time by the writing of verses. The city released him at last from this wretched bondage by a pension, and the wonderfnl old man went on writing odes and tragedies almost to his ninctieth year. He dicd at last in 1679; of no disease, having outlived all his contemporaries and almost all his friends, but calm, sane, and goodhumenred to the last, serenely conscious of the legacy he left to a not too grateful country. Vondel is the typical example of Datch intelligence and imagination at their highest development. Not mercly is he to Holland all that Camocns is to Portugal and Michiewicz to Poland, but lig stands on a lovel with these men in the pesitive value of his writings.

Lyrical art was represented on its more spontancous side Starter ly the songs and ballarls of Jan Janssen Starter (b. 1594), an Englishman by hith, who was brought to Amsterdam in his thirteenth year. Fery early in lifo he was made a nember of the "Eglantinc." and he worked bosido

Brederûo for two years; but in 1614 he wandered away to Leeuwarden, in Friesland, where he founded a literary guild, and brought out, in 1618, his tragi-comedies of Timbrede Cardone and Daraida. But bis great contribution to literature was his exquisite collection of lyrics, entitled the Friesche Lusthof, or Frisian Pleasance. He returned to Amsterdam, but after 1625 we hear no more of him, and he is believed to have died as a soldier in Germany. The songs of Starter are in close relation to the Iyrics of the English Elizabethans, and have the same exquisite simplicity and audacity of style.
While the genius of Holland lustered around the circle of Amsterdam, a school of scarcely less brilliance arose in Middelburg, the capital of Zealand. The ruling spirit of this school was the fanmous Jakob Cats (1577-1660). In this voluminous writer, to whom modern criticism almost denies the name of poet, the genuine Dutch babit of thought, the utilitarian and didactic spirit which we bave already observed in Houwaert and in Boendale, reached its zenith of fluency and popularity. Cats was a man of large property and bigh position in the state, and his ideas never rose above the horizon of wealth and easy domestic satisfaction. Between 1609 and 1621, that is, during early middle life, he produced the most important of his writings, bis pastoral of Galathea, and his didactic poems, the Mrachdenplicht and the Sinne- en Minne-Beelden. In 1624 he removed from Middelburg to Dort, where he sonn after published his tedious ethical work called Houwelick, or Marriage ; and this was followed from time to time by one after another of his monotonous moral pieces. Cats is an exceedingly dull and prosaic writer, whose alexandrines roll smoothly on without any power of riveting the attention or delighting the fancy. Yet his popularity with the middle classes in Hollaud has always been immense, and his influence extremely lurtful to the growth of all branches of literary art Among the disciples of Cats, Jakob Westerbaen (1599-1670) was the most successful. The Jesuit Adriaen Poirters (1606-1675) closely followed Cats in his remarkable Masquer of the World. A poet of Amsterdana, Jan Hermansz Krul, preferred to follow the southern fashion, and wrote didactic pieces in the Catsian manner.

A poet of dignified imagination and versatile form was Sir Constantijn Huygens (1596-1687), the diplomatist Though born and educated at the Hague, he threw in his lot with the great school of Amsterdam, and became the intimate friend and companion of Vondel, Hooft, and the daughters of Roemer Visscher. His famous poem in praise of the Hague, Butava Tempe, appeared in 1621, and was, from a technical point of view, the most accomplished and elegant poem till that time produced in Holland. His collected poems, Otiorum Libri Sex, were printed in 1625. Oogentroost, or Eye Consolution, was the fantastic title of a remarkable poem dedicated in 1647 to his blind friend, Lucretia san Trello. He printed in 1654 a topographical piece describing his own mansion, Hojurijch. Huygens represents the direction in which it would have been desirable that Dutch literature, now completely founded by Hooft and Vondel, should forthwith proceed, while Cats represents the tame and mundane spirit which vas actually adopted by the nation. Huygens had little of the sweetncss of Hooft or of the sublimity of Vondel, but tis genius was eminently bright and qivacious, and he was a consummate artist in metrical form. The Dutck ianguage has never proved so light and supple in any hands as in his, and he attempted no class of writing, whether in prose or verse, that he did not adorn by his delicate taste and sound judgment. A blind admiration for our own John Donne, whose poems be translated, was the greatest fault of Huygens, who, in spite of his conceits, remains one of the
most pleasing of Dutch weiters. In addition to all this he comes down to us with the personal recommendation of having been "one of the nost lovable men that ever lived."

Three Dutchmen of the 17th century distinguished themselves very prominently in the movement of learning and philosophic thought, but the illustrious names of Hugo Grotius (1583-1645) aod of Baruch Spinoza (1632-1677) can scarcely be said to belong to Dutch literature. Balchasar Bekkea Bekker (1631-1698), on the contrary, a Reformed preacher of Amsterdam, was a disciple of Descartes, who deserves to be remembered as the greatest philosophical writer who las used the Dutch language. His masterpiece, Betoverde Wereld, or the Worid Eewitched, appeared in 1691-1 $\mathbf{0} 93$. Bekker is popularly remembered most honourably by his determined attacks upou the system of a penal code for witcheraft.

From 1600 to 1550 was the blossoming time in Dutch literature. During this period the names of greatest genius were first made known to the public, and the vigour and grace of literary expression reached their highest development. It happened, however, that three men of particularly conmmanding talent survived to an extreme old age, and under the shadow of Vondel, Cats, and Huygens there sprang up a new generation which sustained the great tradition until about 1680, when the final decline set ia. Jan Vos (d. 1667) gained one illustrious success with his Vos, tragedy of Aaron and Titus in 1641, and lost still more in the same year by his obscene farce of Oene. His second tragedy of Medea, in 1665, and his collected poems in 1662, supported his position as the foremost pupil of Vondel. Geeraerdt Brandt (1626-1685) deserves remem- Brardto brance less as a tragic dramatist than as a consummate biographer, whose lives of Vondel and of De Ruyter are among the masterpieces of Dutch prose. Johan Antonides Goes van der Goes (164i-16S4) follomed Vos as a skilful imitatur of Vondel's tragical manner. His Chinese tragedies, Trazil (1665) and Zungchin (1666), scarcely gave promise of the brilliant force and fancy of hia Ijstroom, a poem in praise of Amsterdam, 1671. He died suddenly, in early life, leaving unfuisked an epic poem on the life of St Paul. Reyer-Anslo (1626-1669) marks the decline Ansla of taste and vigour ; his once famous descriptive epic, The Ptague at Naples, is singularly tame and rococo in style. Joachim Oudaen (162S-1692) wrote in his youth two Oudsen. promising tragedies, Johanna Gray (1648) and Konradyn (1649). The Amsterdam section of the school of Cats produced Jeremias de Decker (1609-1646) and Joannes Vollenhove (1631-1708), voluminous π riters of didactic verse. The engraver Jau Luiken (1649-1708) published Luiken. in 1671 a very remarkable volume of poems.' In lyrical poetry Starter had a cingle disciple, Daniel Jonctijs (16001652), who publisked a rolume of love songs in 1639 under the affected and antranslatable title of Rooselijns oochjens ontleed. None of these poets, except in some slight degree Luikcn, sut before themselves any more ambitious task than to repeat with skill the effects of their predeccssors.

Meansthile the romantic and voluminous romances of tho French school of Scudery and Honore d'Urfé had insade! Holland and become fashionable. Johan ran Hecmski: : (1597-1656), a councillor of the Haguc, sct bimzelf ts reproduce this product in native form, and publishcd in 1637 his Batavian. Arcadia, the first original Dutch ronance, in which a party of romantic youths journey from the Hague to Katwijk, aud uudergo all sorts of romantic adrentures. This book was cscessively popular, and was imitatcd by Mendrik Zoctebuom in bis Zaanlandsche Arcadia (1658), and by Lambertus Bos in his Dordtsche Arcadia (1662). A far more spirited and original romance is the Mirandor of Nikolaes Heinsius, the younger (b Heirsma 1655), a book which rescmbles Gil Blas, and precedes it
by forts gears. It mas written whon the autbor was only t wents years of age, and gave promise of very great talent in the future; but unfortunately Heinsius committed a murder only two years aftermards, and, escaping to Paris, was never heard of again.
Gallisen Vondel and his immediate disciples. Lodewijeck Heijer translated Corneille, and brought out bis plays on the stage it Amsterdam, where he was manager of the national heatre,or Schouwburg after Jan Vos. In connexion with Andries Pels, author of the tragedy of Dido's Death, Meijer sonstructed a dramatic club; entitled "Nil Volentibus Arduum," the great object of which was to inflict the French taste upon the public Pels furthermure came forward as the censor of letters and satirist of barbarism in Horace's Art of Poetry expounded, in 167\%, and in his l'se and Misuse of the Stage, in 1681. Willem ran Focquenbroch (1640-1679) was the most columinous conic mriter of this period. The close of the century saw the rise of two thoroughly Gallican dramatists, Johan van Paffenrode and Pieter Bernagie, who may not unfarly be compared respectively to our own Farquhar and Shadwell. Thomas Asselijn (1630-1695) was a writer of more considerable talent and more bomely austucts. He attempted to resist the dictatorship of Pels, and to follow the national tradition of Brederôo. He is the creator of the characteristic Dutch type, the comic luver, Jan Klaaszen, whom he presented on the stage in a seriey of ridiculous situations. Abraham Aleviju, author of Jan Los (1721), possessed a coarse vein of dramatic humour ; he lived in lava, and his plays wera produced in Bataria. Finally Pieter Langendijk claims notice among the dramatists of this period, although be Jived from 1683 to 1556, and properly belongs to the next ceutury. With bim the tradition of native comedy expired.

The Augustan period of poetry in Holland was aven more blan's and dull than in the other countries of Northern Europe. Of the names preserved in the history of literature thero are but very few that call for repetition bere. Arould Hoagrliet (1687-1763) wrote a passable poem in acover of the town of Vlaardingen, and a terrible Biblical opic, in the manuer of Blackmore, on the bistory of Abrabam. Habert Corbelissen Poot (1689-1733) showed an unusual lave of nature and freshness of observation in his descriptive piecos. Sybrand Fettama (1694-1758), who translated Voltaire's Henriade, and wrote much dreary verse of the same class himself, is less worthy of notice then Dirk Smits (1702-1752), the mild and elegiac singer of Rotterdam. Tragic drama was more or less capubly represented by Lucretia Wilhelmina van Merken (1722-1789), wife of the very dreary dramatist Nicholans Simon van Winter (1718-1795).

Van

The supremacy of the poetical clubs in every town pro duced a very weakening and Della-Cruscan etfert upon literature, from which the first revolt was mads by the famous brothers Van Haren, so honourably known as diplo- The matists in the history of the Netherlands. Willem van brothere Haren (1710-1768) wrote verses from his earliest youth, van while Onno Zwier van Haren (1713-1779), strangely Haren enough, did not begin to do so uutil he had passed middle life. They were friends of Vultaire, and they were both ambitious of success ta epic writing, as understood in France at that period. Willem published in 1741 his Gerallen ran Friso, an historical epus, and a long series of odes and salemn lyrical pieces Onno, in a somewhat lighter strain, wrote Piet and Agnetje, or Pandora's Box, and a long series, of tragedies in the manner of Voltuire. The Baroness Bamness Juliana Cornelia de Lannoy (1338-1782) was a writer of de considerable talent, also of the sctood of Voltaire; her ${ }^{\text {Lainn }}$. poens were highly esteemed by Bilderdijk, and she bas a neatness of touch end clearness of penetration that give viracity to her studies of social life. Jabobus Bellamy Belam, (1757-1786) was the son of a Swiss baker at Flushiog; his pompous odes struck the final note of the false taste and Gallic pedantry that had deformed Dutch literature now for a century, and were for a short tume excessively admired.

The year 1777 bas been mentioned as the turning-point Tho in the history of letters in the Netherlands. It was in that ladie year that Betjen Wolff (1738-1804), a widow lady in wol Amsterdam, persuaded her friend Aagjen Deked (1741 - $\frac{\text { Ded }}{\text { Deke. }}$ 180立), a poor but extremely intelligent governess, to throw up her situation and live with ber. For nearly thirty years these women continued together, writing in cumbination, and whan the eldar friend died on the $\overline{0}$ th of November 1804, her companiou survived her ouly nine days. Madame Wolff had appeared as a poetess so early as 1762 , and again in 1769 and 1772, but ber talent in verse was by no means very remarkable. But when the friends, in the third year of their association, published their Letters on Divers Subjects, it was plainly seen that in prose their talent was very remarkable indced. Since the appearance of Heinsius's Mirandor more than a century had passed witbout any fresh start in novel- rriting being made in Holland. In 1782 the ladies Wolff and Deken, inspired partly by contemporary Engliah writers, and partly by Goetbe, published their frst noval, Sara Burgerhart. In spite of the close and obvious following of Riclardson, this was a masterly production, and it was enthusiastically reccived. Another novel, Fillem Leevend, followed in 1785, and Cornelia Wildschut in 1792. Tha ladies were residing in France at the breaking-out of the Revolution, and thcy escaped the guillotune with difficulty. After this they wrote no more, baving secured for themselves by their three unrivalled romances a place among the foremest writers of their country.

The last years of the 18tb century were marked in Holland by a general refival of intellectual force. The romantic movement in Germany made itself deeply felt in all branches of Dutch literature, and German lyricism took the place hitherto held by French classicism. Pieter Nieuwland (1764-1794) was a feeble forerunner of the Nienwlanit revival, but his short life and indifferent powers gave him no chance of directing the transition that ho saw to be inevitablo. The real precursor and creator of a new cpoch in letters was the famous Willem Bilderdijk (1756-1831). Tilderdyk This remarkable man, whose force of character was even greater than his genius, impressed his personality on his gencration so iudelihly that to thank of a Dutchman of the hoginning of the present century is to think of Bilderdijk. He was Lorn at Ansterdam on the 7 th of Scptember 1756, and through an accident in early childhood was obliged to rest almost constantly, thus attaining babits of long and
concentrated study. His parents were zeaious in the cause of the house of Orange, and the youth grew up violently monarchical and Calvinistic, as Da Custa says, "autirevolutionary, anti-Barneveldtian, anti-Loevesteinish, autiliberal." In poetry his taste was strictly national and didactic; he began as a disciple of Cats, nor could he to the end of his life tolerate what he called "the puerilities of Shakespeare." His early love-songs, collected in 1781 and $\mathbf{1 7 8 5}$, gave little promise of talent, but in his cpic of Elias in 1786, he showed himself superior to all the Dutch poets since Huygens in mastery of form. For trenty years be lived a busy, eventful life, writing great quantities of verse, and then commenced his most jroductive periol with his didactic poem of The Disease of the Leerned, in 1807; in 1808 be imitated Pope's Essay on MIan, and publisbed Floris F., and in 1809 commenced the work which he designed to be his master piece, the epic of $D e$ Ondergang der eerste Wereld (The Destruction of the First World), which he never finished, and which appeared as a fragraent in 1820. His long and fretful life ceased on the 18 th of December 1831. To the foreign student Bilderdijk is a singularly uninviting aud unpleasing figure. He unites in himself all the unlovely and provincial features which deform the worst of his countrymen. Ho was violent, ignorant, and dull; his view of art was confined to its declamatory aud least beautiful side, and perhaps no writer of equal talent has shown so complete an absence of taste and tact. Ten Brink has summed up the character of Bilderdijk's writings in an excellent passage:-"As an artist," he says, " he can perhaps be best described in short as the cleverest versemaker of the 18 th century. His admirable erudition, his power over language, more extended and more colossal than that of any of his predecessors, enabled him to write pithy and thoroughly original verses, although the general tone of his thought and expression never rose above the ceremonious, stagy, and theatrical ebaracter of the 18th century." But in spite of his outrageous faults, and partly because these faults were the exaggeration of a marked national failing, Bilderdijk has eajoyed almost to the present day an unbroken and unbounded popularity in Holland. Fortunately, however, within the last few years a sounder spirit has arisen in critism, and the prestige of Bilderdijk is no longer preserved so religiously.

Bilderdijk's scoru for the dramas of Shakespeare was almost rivalled by that he felt for the new German poetry. Notwithstanding his opposition, howerer, the romantic fervour found its way into ILolland, and first of all in the gersons of Hicronymus van Alphen (1746-1803) and Pieter Leonard van de Kastiele (1748-1810), who amused themselves by composing funeral poems of the school of Gessacr and Blair. Van Alphen at one time was extolled as a writer of serses for children, but nothor in this nor in tho clegiac line did he possess nearly so much talent as
Eaith. Rhijovia-Feith (1753-1824), burgomaster of Zwolle, the very type of a prosperous aud sentimental Duteliman. In his Julia (1783), a prose romance, Feith proved himself as conipletely the disciple of Gocthe in Werther as Wollif and Deken had been of Richardson in their. Siera Burgerhart. In Johannes Kinker (1764-1845) a comic poet arose who, at the instigation of Bilderdijk, dedicated himself to the ridicule of Feith's sentimentalities. The same uffice was performed with moro dignity and less vivacity by Baron W. E. van Perponcher (1741-1819), but Feith continued to hold the popular ear, and achicved an immenso success with his poem".The Grave, in 1792. IIc then produced tragedies for a while, and in 1803 published Antiquity, a didactic epic. But his popularity waned before his death, and he was troubled by the mirth of such witty scoffers as Arend Fokke Simons (1755--1812), the disciple of Klop-
stock, and as P. de Wacker van Zon (1758-1818), who, m a series of very readable novels issued under the pseudonym of Bruno Dalberg, sharply ridiculed the sentimental anm funereal school.

Under the Batavian republic an historian of great genius Van wes arose in the person of Johannes Henricus van dor Palm Patm. (1763-1840), whose brilliant and patriotic Gclenkselatit van Nedertunds Merstelling (1S16) has somewhat obscured his great fame as: politician and an Orientalist. The work commenced by Van der Pahn in prose was continued iu verse by Coruelis Loots (1765-1854) and Jan Frederik Loun Helmers (1707-1813): Loots, in his Dutavians of the Time of Casar (1805), read his countrymen a lesson in patriotison, which Holmers far exceeded in originality and force by his Helmers Dutch Nution in 1812. Neither of these pocts, however, had sufficient art to render their pieces classical, or, indeed, enough to protect them during their lifetine from the sneers of Bilderdijk. Other political writers, whose lyrical energies were stimulated by the struggle with France, were Mlaurits Cornelis van Hall (1768-1858), Samuel Iperuszoon Wiselius (1769-1845), and Jan ten Brlnk (1771-1839), the secoad of whom immortalized himself and won the favour of Bilderdijk by ridiculing the pretensions of such frivolous tragedians as Shakespeare and Schiller.

The healthy and national spirit in which the ladies Wolff and Deken had written was adopted with great spirit by a novelist in the next generation, Adrian Loosjes (176l-Lowsjes 1818), a bookseller at Haarlem. His romantic stories of medieval life, especially his Charlote van. liombon, are curiously like shadows cast forward by the Waverley Novels, but he has little of Sir Walter Scott's listorica truth of vision. His production was incessant and hes popularity great for many years, but he was couscious all through that he was at best but a disciple of the authoresse. of Sara Burgerhart. Another disciple whose name shoulc not be passed over is Maria Jacoba do Neufville (17751856), author of Little Duties, an excellent story somewhat in the manner of Mrs Opie.

A remarkable poet whose romantic genius strove to com- To'zua bine the power of Bilderdijk with the sweetness of Feith. is Hendrik Tullens (1780-1856), whose verses have shown more vitality than those of most of his contemporaries. He struck out the admirable notion of colebrating the great deeds of Dutch history in a series of lyrical romances, mavy of which possess a lasting charm. 'Besides his folk-song and popular ballads, he succeeded in a long descriptive poem, A Winter in Nova Zemula, 1819. He lacks the full accomplishment of a literary artist, but his inspiration was natural and abundant, and be thoroughly deserved the popularity with which his patriotic ballads were rewarded. Willem Messchert (1790-1844), a friend and follower of MosTollens, pushed the domestic and familiar tone of the latter schen to a still further point, especially in his genre jocm of the Golden Wedding, 1825. Buth these writers were natives and residents of lotterdim, which also claims the honour of being tho birthplace of Adrianus Bogaers (1795-1870), Begaetn the most considerable poetical figure of the time. Without the force and "profusion of Dilderdijk, Bogans has more truth to nature, more sweetness of imagination, and a more genuine gift of poctry than that clamorous writer, and is slowly taking a higher position in Dutch litorature as Bilderdijk comes to take a lower one. Bogaers printed his famous poem Jochebed in 1835, but it had then been in existence more than thirteen years, so that it belongs to the sccond period of imaginative revival in Europe, and connecta the name of its author with those of Pyron and Heine. Still more bcautiful was his Joyage of Meemskierk: to Gibraltar (1836), in which he rose to the bighest level of his gehius. In 18.16 he privately printed his limaners and Balluds. Bogacrs had a great oljection to publicity,
and his reputation was long aclayed by the secrecy with which he circulated his writings among a few intimate friends. A poct of considerable talent, whose powers were awakened by personal intercourse with Bogaers and Tollens, Starng. was Antoni Christian Winand Staring (1767-1840), who first at the age of fifty-three came before the world with a volume of Poems, but who continued to write till past his seventieth year. His amorous and'lumorous lyries recall the hest period of Dutch sons, and are worthy to be anmed beside those of Starter and Vondel.

Since 1830 IIolland bas taken a more prominent position io Furopean thought than she could clains since the end of the 17 th century. In scientifio and religious literature her men of letters have shown themselves cognizant of this newest shades of opinion, and bave freely ventilated their ideas. The language has resisted the pressure of German from the outsile, and from within has broken through its long stagnation and enriched itself, as a medium for literary expression, with a multitude of fresh and colloquial forms. It the same time, no very great genius has arisen io Holland in any branch of literature, and all that a foroign critic can do in such space as is here at his command is to chronicle the names of a few of the most prominent writers of the past and present generations. The vast labours of Jakobus van Lenoep (1802-68) consist of innumerable trabslations, hiatorical norels, and national romances, which bave gained for bim the title of the leader of the Dutch romantic sehool. Reinier Cornelis Bakhuizen van den Brink (1810-65) was the chief critic of the romantic movement, and Everbard Johannes Potgieter (1808-75) its mystical philosopher and esoteric lyrical poet. The genius and intluence of Patgicter were vary coasiderable,
but they were exceeded by the gifts of Nicolaes Beets, author of the famous Camera Obscura (1836), a master piece of humour and cbaracter. Johannes Pieter Hasebroek, who has been called the Dutch Charles Lamb, wrote.in 1840 an admirable collection of essays entitled Truth and Dreams. A poet of unusual power and promise was lost in the early death of Pieter Augustus de Genestet (1830 1861). Criticism las been represented by W. J. A. Jonekbloct, C. Busken Huet, and Jan ten Brink. - With Isaac de Costa (1798-1860), W. J. van Zeggelen, and J. J. L. T'en Kate, the domestic tendeney of Cats and Bilderdijk has averpowered the influence of romanticism. An independent writer of great power and charm both in prose and verse is C. Vosmaer, author of a life of Rembrandt, and of a translation of the Iliad into Dutch hexameters. E. Douwes Dekker, in his novel of Max Havelaar, and Marcellus Emants, in his poem of Lilith, have displayed talents of a very modern and cosmopolitan order, but it yet remains to be seen whether they have sufficient power to sustain their promise.

Flemish literature has agaia come into being since the Revival infependence of Belgium, and has produced two writers of of very remarkahle talent, the popular poet Kurel Lerleganck Flenisb (1805-47), and the still mere popular novelist Hendrik Conscience, But the general use of the French language, although Flemish exercises are encouraged by the Govera. ment, has prevented any considerable cultivation of Flemish, by modern writers of ambition.

Authorikies_-Dr W. J. A. Jonckbloet, Geschiedenis der Nede;landschs Letterkunde, $2 d$ ed., 1873; Dr J. ten Brink, Klcine Geschichemas der Nederlaudschen Lettercn, Haarlem, 1877; Dr J van Vloten, Schets van de Geschicacnis dor' Nederlandschea Letteren, 1879
(E. w. G.)
holland, or Holland and West Friesland, was the aecond province of the republic of the United Netherlands, and consisted of the old countship of Holland, with the addition of the lordship of Voorne. In 1801, after the erection of the Batavian republic, very nearly the same area was incladed in the "department" of Helland; but when in June 1806 Helland became the name of the new king'dom, it ceased to be applied to any of the administrative divisions. On the estiblishment of the kingdom of the Netherlands in 1814 the province of Holland was restored, with its ancient limita only slightly modified. A few further alterations were made ia 1815,1819 , and 1820. It was the only province that had two gevernors, one for the north and another for the south, and the provincial states met alternately at the Hague and at Iaarlem. In 1810 this bipartito arrangement was carried to its logical conclusion by the erection of two distinet proviaces called respectively North and South IIolland.

1. North Holeind (Noordholland), the fourth province of the kingdom of the Netherlands, lies between the German Ocean and the Zuyder Zec, and on the land side is bounded by the provinces of Sonth Molland and Utrecht. The area-which in 1855 wis increased by the commune of Sanrlommermeer, and in 1864 was diminished by the larger part of Lcimuiden-is estimated at 741,551 aeres, exclusive of the newly won lands of the K . The amount of available ground bas been nugmented by the rlatining not only of the IIarlemmermeer but aho of more than a seore of lesser lakes. In 1810 the population was returned at 443,331, in 1850 at 477,079 , in 1860 at 521,125 , and in 1875 at $6,34,890$. In 1870, when the total was 577,436, there wery 389,607 l'rotestants, 157,971 Loman Catholies, 2723 Ohd Catbolics, and 32,053 Jews. Amsterdam is the largest cuy, wath a population in 1876 of 296,200 ; and next in oder ns communes follow llaarlem, 34.797 ; llelder,

22,030; Haarlemmermeer, 13,171; Zaandam, 12,772; Alkmaar, 12,245; Nieuweramstel, 11,502; Hoorn, 9763 ; Hilversum, 7805; Texel, 6383; Enkhuizen, 5560; and Edam, 5361. There are besides 36 communes with more than 2000 inbabitants. -
2. South Holland (Zuidholland) is the third province of the kingdom of the Netherlands., On the W. it is bounded by the German Ocean, on the N. by North Holland, on the E. by Utrecht and Guelderland, on the S.E. by North Brabant, and on the S. by Zealand. The nrea is estipeted at 823,851 acres. In 1850 the population whs returned at 564,000 , in 1860 at 617,699 , and in 1876 at 748,162 . In 1870, when the total was 688,254 , there were 508,132 Protestants, 166,219 Roman Catholics, and 12,152 Jews. The largest city is Rotterdam, with a population in 1876 of 136,230 ; and next in order as communes follow the Hague, 104,095 ; Leyden, 41.298 ; Dort. 26,576; Delft, 24,511; Schiedam, 21,880; Gouda, 17,0:0; Kralingen, 10,313 ; Delfshaven, 10,042 ; and Gorinchom, 9301. There are besiles it communes with more than 2000 inhabitants. :
holland, Sir Henry (1788-1873), physician and auther, was born nt Knutsford, Cheshire, on the 27th October 1788 . Ho could claim relationship to three persons who have attained eminence in careers entirely differen: both from one another and from his own: his materunt grandmother was the sister of Josiah Wedgweod, whose grandson was Charles Darwin ; and his paternal aunt was the mether of Mrs Gaskell. After spending somo years at a private sehool at Kinutsfond, he was sent to a sclvol at Neweastleon-Tyne, whence after four years he was transferred to Dr Estlin's school near Bristol. There he at once took the prosition of heml boy in auccession to John Cam IIobhousc, afterwards Lord Broughton, ao honour which required to be maintained by physical prowess. On leaving
school he became articien clerk to a mercantule firm in Liverpool, but, as the privilege was reserved to him of passing two sessions at Glasgow untversity, be at the close of bia second session sought relief from his articles, and in 1806 began the study of medicine in the university of Edinburgh, where he graduated in 1811. After several years spent in foreign travel, he began practice in 1816 as a physician in London,-according to his own statement, "with a fair angury of succesa speedily and completely fulfilled.". This "success," he adds, " was materially aided by visita for four successive years to Spa, at the close of that which is called the London season." It must also, however, be in a great degree attributed to hia bappy temperament and his giftg as a conversationalist--qualities the influence of which, in the majority of cases belonging to his class of practice, is often of more importance than direct medical treatment. In 1816 he was elected a fellow of the Rojal Society, and in 1828 a fellow of the Royal College of Physicians. He became physician in ordinary to Prince Albert in 1840 , and was appointed in 1852 physician in ordinary to the Queen. In April 1853 he was created a baronet. He was also a D.C.L. of Oxford and a member of the principal learned societies of Europe. He was twice married, his second wife being a daughter of Sydney Smith, a lady of cousiderable literary talent, who published a biography of her father. Sir Henry Holland at an early period of his practice resolvod to devote to his professional duties no more of his time than was necessary to secure an income of $£ 5000$ a-year, and also to spend two months of every year solely in foreign travel. By the former aresolution he secured leisure for a wide acquaintance with general literature, and for a more than superficial cultivation of several branches of science; and the latter enabled him, besides visiting, "and most of them repeatedly, every country of Europe," to make extensive tours in the other three continents, journeying often to places little frequented by European travellers. As, moreover, he procured an introduction to nearly all the eminent personages in his line of travel, and knew man'y of them in his capacity of physician, his acquaintance with "men and cities" was of a apectes without a parallel. The London Meducal Record, in neticing hia death, which took place on his elghty-fifth birthday, Octöber 27, 1873, remarked that it "had occurred under circumstances bighly characteristic of his remarkable career." On his return from a journey in Russia he was present, on Friday. October 24tb, at the trial of Marshal Bazaine in Paris, dining with some of the judges in the evening. He reached London on the Saturday, took ill the following day, and died quietly on the Monday afternoon.
Sir Henry Holland was the author of Gcneral View of the Agricullure of Cheshire, 1807: Travels in the Ionian Isles, Albania, Thessaly, and Grecce. 1812-13, 2 d ed., 1819; Medical Notes and Feflections, 1839; Chapters on Mental Physiology, 1852; Essays on Scientific and other Subjects contributed to the Edinburgh and Quarterly Revicus, 1862 ; and Rccollections of Past Life, 1872, which is less interesting than it might have bcen, owing to the reticence of the author in regard to personal details and characteristics.

HOLLAND, Philemon (1551-1636), usually styled, in the words of Thomas Fuller, "the translator-general of his aga," was born in 1551 at Chelmsford, in Essex, the son of a clergyman, John Holland, who had bcen obliged to take refuge abroad during the Marian persecution. Maving become a fellow of Trinity College, Cambridge, and pasaed M.A. at Oxford in 1587, he forther took the degree of M.D. at Cambridge in 1591 . In 1612 he was sworn frecman of the city of Coventry, and in 1617, dressed in a suit which cost $f 11,1 \mathrm{l} .11 \mathrm{~d}$., he had the honnur of reading, as the recorder'a dcputy, an oration to King James I. In 1628 he was appointed head master of the free school of Coventry, but, owing probably to advancing old_age, he
neia uthce only for eleven months. His latter days were oppressed by poverty, partly relievea by the generosity of the common council of Coventry, which in 1632 assigned $\operatorname{bim} £ 3,6$ s. 8 d . for three years, "if he should live ao long." He died February 9, 1636, survived by only one of his seven sons. The fame of Philemon Holland is due solely to lis activity as a translator; Livy, Pliny'a Natural History, Plutarch's Morals, Suetonios, Ammianus Marcellinus, and Xenophon's Cyropædia successively employed him; and be also published an English version of Camden's Britannia. Pope's allusion to his voluminousness is well known--
"De Lyra there his dreadful front extends, And here the groaning shelves Philemon bends."
Henry Holland, his surviving son, became a London bookseller, and is known to bibliographers for hia Baziliologia; a Booke of Kings, beeing the trup and liuely Effigies of all our English Kings from the Conquest (London, 1618), and hia Herwologia Anglica, hoc est clariss. et doctiss. aliquot Anglorum viuce Effigies, Vitee et Elogia (1620).
See Colvile's Worthes of Warwickshire (Warwick, 1869), and Lowndes's Biblzographical Mfanual.
holland, Henry Richard Vassall Fox, tharo Baron (1773-1840), nephew of Charles James Fox and only aon of Stephen Fox, second Lord Holland, was born at Winterslow House, Wiltshire. 2lst November 1773. Of his ancestry an account 19 given in the articla Fox (Charles James). Not long after bis birth he was with difficulty saved from the flames which destroyed the splendid family mangion in which be was bern. When little more than a year old he succeeded through the death of bis father, to the peerage. On the death of his mother in his fifth year, the eare of his early education nominally devolved upon her brother, the earl of Upper Oasory, but the character of his early training and studies was determined chiefly by his uncle Charles James Fox, of whom he wrote-" He seemed to take pleasure in awakening my ambition, and directing it both by conversation and correspondence, and yet more by talking to me of my studies and inspiring me with a love of poetry both ancient and modern." After spending eight or nine years at Eton, where he had as contemporaries J. Hookham Frere, Mi Canning, and Frederick Howard, fifth earl of Carlisle, be in 1790 entered Christ Church College, Oxford. Thongb the years of his early manhood were occupied more in amusement than in study, he acquired at school and the university a taste for classical literature which ho more fully cultivated in after life. . Before taking his seat in the House of Lords, he made two tours on the Continent,-in 1791, while still a student at Oxford, visiting Paris about the time when Louis XVI. nccepted the revolutionary constitution ; and in 1793 making a prolonged stay in Spain, where he began the study of its language and literature. Thence he went in 1795 to Italy; and at Elorence he formed the acquaintance of Lady Webster, wife of Sit Godfrey Webster, whom after her divorce from her husband -who received $£ 6000$ damages in the action against Lord Holland--he married in 1797. After the marriage he assumed his wife's family name of Vassall, but its use was discontinued by his son, the fourth and last Lord Holland.

Lord Holland's early inheritance of a jecrage must be regarded rather as a misfortune than an advantage, for it debarred him from a carcer in the Honse of Cummona which might have proved as brilliant as that of his uncle Charles Fox, nnd raised him to an assembly, not only more listlcss and much less numerous, but where at the time he entered it the Whig party, of whose principles the influence of his uncle had induced him to become a strenuous aupporter, could muster only a minority of six or seven in a bouse of eighty or ninety. . He began hia political carcer
by a motion against the Assessed Tax Bill, and though his speech had, as was to be expected, no influence on the division, it prosed that be had inherited the oratorical abilities of lis family, and pointed him out as the leader of his uncle's supporters in the Upper House. As his disappruval of most of the proceedingso of the House of Lords was recorded by protests, his copteusness in this species of composition bas perbaps never been equalled. These protests were afterwarls collected and published by D. C. Huylan under the title The Opinions of Lord Holland as recorded in the Journals of the House of Lords, from 1797 to 1841 (London, 1841), and, besides constituting, as they necessarily do, a full though condensed account of his political views and opinions, form one of the most authentic and original records of the course of Whig policy during the rears to which they refer. After the peace of Amiens in 1802 Lord Holland proceerled to Paris, whence he went to Spain, staying in that country until the declaration of war in January 1805 , when he returned to England. Of this second visit to Spain he doubtless took advantage for the purpose of acquiring a more complete mastery of the Spanish language and literature, and the fruit of this was seen by the publication in 1807 of The Life and Writings of Lope Felix de Vega Carpio, and in 1808 of Three Cumedies from the Spanish. When the ministry of "All the Talents" came into office in 1806, Lord Holland was made a privy councillor, and was appointed along with Lord Auckland to negotiate with the Ameriean plenipotentiaries that traty the refusal of whose ratifieation by Mr Jeffersoa resulted in the subsequent war with America. Ca the death of Mr Fox, 15th Octuber following, Lord Holland recciver the privy seal, holding office till the dismissal of the ministry in 1807. When the Spaniards rebelled against the French yoke in 1808, Loril Holland's interest in the country induced bim to pay it a third visit. Le landed at Corunna almost simultanconsly with the division of the British army under Sir David Baird, and did not return to England till the close of 1809. During the long period when the Whigs were excluded from power Lord Holland continued to afford them his stremous and stoady support. He did not join the Canning ministry of 1827, but when the Whigs were recalled in 1830 be became chancellor of the ducty of Laneaster, an office which, with the exception of two short intervals when his party were temporarily excluded from power, be enntinued to hold till bis death at IIolland House, 22d October 1810.

Althongh Lord Ilolland for the greater period of his life had to lead the forlora hope of his party in the Mouse of Lurds, his influence on the pulitics of bis country was of an importance far beyond what was manifest at the time, and without his persistent support in parliament and his aid in maintaituing lis party's courage and discipline, the triumplu of many of the measures he alvocated would in all prokability not bave been sospuery and complete. Few have lecn more closcly identified with all the great political ehanges of the first balf of the present century, more especially the extension of the suffrage, the ahrogation of Catholic disabilities, the abolition of the Test am? Corporation Aets, the repeal of the corn laws, and the repression of the slave trande. Λ sympathizer with the French lievolution, bo difiered from lis party in his admiration and esteent for Nuephenon, against whoso imprisonment he proterted as an nutrugenus violation both of gool faith and of what was dus w fallen greatness. The character of Loril Molliand's oratury very closely resembled that of his uncle Charles Fox, and was inferior to it only perhaps because his matural indulence was not counteracted by the stimulas of a popular assembly cucouraging lime to a more careful study of tho art of elognence, and affurding hitu more onlequate opportunitios for tha disslav. He exedled primeipaly in dase
reasoning rendered clear and easy ot apprehension by copions illustration, and -as was to be expected from the fact that he trnsted little to previous preparation-was more happy in reply than in original statement. - The effect of the best passages of his speeches was often marred by a more agravated form of that tendeney to hesitation which was one of the principal oratorical defects of Fox, the rush of ideas seeming to be too rapid to permit him to sclect with ense from his copious rocabnlary the word most appropriate for his purpose Aecordingt to Lord Brougham-"The same deliente sense of humour which distinguished Mr Fox he also showed, and much of the exquisite Attie wit which formed so large and so effective a portion of that great orator's argumentation, never uselessly introduced, almays adapted nicely to the occasion, always aiding and as it were directing the reasoning." The language both of his spoken and written style was graceful, pure, fowing, and vigorvus, and entirely devoid of estravagance, singularity, or affeetation. In addition to his poetical translations, he was the gathor of fugitive verses of some elegance. Two of his works were published posthumously by his son Heury Elward, fourth Lord Holland -Foreign Reminiscences (1850), and Memoirs of the Whig Perty during my Time (2 vols. 1852-54).

It is, however, as the restorer of Holland House, and as the host of the brilliant company whicb he there assembled, that Lord Holland in all probability will be chiefly remembered by posterity. Though his temper was quiek and excitable, his amiable disposition rendered his manners in private uniformly cordial and engaging. His conversation, easy, uneonstrained, and of great variety both as to manner and matter, was enlivened by a peculiarly genial wit, and a never-failing supply of racy anecdote to which his powers of mimiery gave additional point and zest. The width of bis sympathies and his manifold aequirements enabled him to enjoy the society of persons of every species of intelleetual eminence. Holland House, which owes its name to, Henry Ricl, first earl of Holland, -who was no relatión of the Fos family, -and which had been afterwards the home of Addisun and of other temants of varions kinds of distinction, was restorel by Lord Holland in a manner worthy of the company of European statesmen, artists, and men of letters, of which it became the conmon pretingplace. Nuch of the attraction of these brilhiant gatherings was due to the management aml personal influence of Lady Itolland, who had the peeuliar gift of making herself both feared and faseinating at the sume time. Of her the「rincess Liechtenstein writes-"Beantiful, elever, aud well-informed, sho exercised a matural authority over those around her. But a luabit of contradiction-which, it ls fuir to add, she did not mind being reciprocated upon her-self-occasionally lent animation, not to say animosity, to tho argmuents in which she engaged. It is casy for some matures to say a disagrecable thing, but it is not always ersy to carry a disagreable thing off eleverly. This Lady Holland conld do."

Sue Macanlay's E'says; Brougham's 'Stutemen of the Time of
 Fivallations; and IIolland House, by PrIncess Maric Lieditasstcin, 2 vols., 1874.
holdar, Wenzel or Werceslaus (1607-1077), a edebrated eteher, was born at Prague on July 13, 1 fot, and died. in Westminster, being buried at St Margaret'n church on March 28, 167%. Ilis fumily was ruined by the capture of Prague in the Thirty Years' War, and ymung llollar, who had been destined for tho law, determined to become an artist. The earliest of his works that have conce down to us aro dated 1625 and 1626 ; they are small Whtea, and ono of thm is a copy of a Vivgin and Clind in Inrer. whose inthuence anom Hollar's work was nlwass
great. In 1627 he was at Frankfort, working under Matthew Merian, an eteher and enyraver; thence be passed to Strasburg and thence, in 1633, to Cologne. It was there that he attracted the notice of the famous amateur Thomas, earl of Arundel, then on an embas y^{2} to the umperial eourt; and with him Hollar travelled to Vienna and Prague, and finally came in 1637 to England, destined to be his home for many years. Though he lived in the houselinh of Lord Arundel, he seens to have worked nint exclusively fur him, but to bave begun that slavery to the puhbishers wheh was afterwards the normal condition of his life. In lus first year in England he made for Stent, the printseller, the magrificent View of Greenwich, nearly a yard long. and received thrty sliillings for the plate,perhaps a twentieth part of what would now be pald for a sulysie good impression. Afterwards we hear of his fixing the price of his work at furpence an hour, and measuring bis time by a sandglass. The evvil war had its effeet on his Cortunes, but none on his industry. Lord Arundel left England in 1642, and Hollar passed into the service of the duke of York, takng with hum a wife and two children. With other roynlist artists, notahly Inigo Jones and Fuitborne, be stood the long and erentrul siege of Basing House, and as we have some hindred plates from liss band dated during the years 1613 and 1644 be must have turned his enforced leisure to good purpose. Taken prisoner, he escaped or was released, and joined Lord Aruodel at Antwerp, and there be remained eight years, the primerof his working life, when be produced his finest plates of every kind, his nohlest views, his miraeulous "muffs" and "shells," and the superb portrait of the duke of York. In 1652 he returned to London, and lived for a time with Faithurne the engraver near Temple Bar. During the following gears were published many books which he illustrated:-Ogilby's Virgel and Ilomer, Stapylton's Juvenal, and Dugdale's Warwickshire, St Paul's, and Moaasticun (part i.). The booksellers continued to impose on the simple-ainded foreigner, pretending to decline his work that be might still further reduce the wretched price he eharged them. Nor did the Restoration imprave bis position. The court dill nothing for him, aod in the great plague he lost his young son, who, we are told, might have rivalled his father as an artist. After the great fire be produced some of his famous "Views of London"; and it may have been tiee success of these plates which induced the king to send him, to 1668, to Tangler, to draw the tuwiland furts. During his return to England occurred the desperate and suceessful engagenent fought by bis ship the "Mary Rose." under Captain Kempthorne, agamst seven Algerine men-of-war,-a brilhant affair which Ilollar etehed for Ogilly's Afreca. He lived eight years after bis return, still working for the boeksellers, and retaning to the end his wonderful powers; witness the large plate of Edinburgh (dated 1670), one of the greatest of his works. He died in extreme poverty, his last reeorded words being a request to the bailiffs that they would not carry away the bed on which he was dying.

Hellar has boen called by a recent critic "the most accurate delineater and the most ingenious illustrator of his time, and as to technie the mast able etcher." His variety was boundless; his plates pumber some 2740 , and include views, portraits, shils, religious subjects, heraldic subjects, landscapes, and still life in a hundred diferent forms. No one that ever lived bas been able to represent fur, or shells, or a butterfly's wing, as he has dune. His architeetural drawings, surb as thuse of Antwerp and Strasburg zathedrals, and his views or tumns, are marthematically exact, but they gre pietures as well. He could reproduce the decorative works of other artista quite faultessly as in the famous chatice after Mantegrals driwing. Mis

Theatrian Arulierum and similar collections reproduce for us with literal trath the outward aspects of the people o! lis day; and his portraits, a braneh of art in which be ha: been unfairly disparaged, are of extraordinary refinement and power. Itis genius is wholly unlike that of his great contenporary Remhrandt ; it aims rather at the delicate rendering of details than at the truth of claracter and the mystery of light and shade. But in his own way Hollar is as perfect as Renbrandt.

Almost complete collections of Hollar's works exist in the British Muscum and in the Jibriry at Wiulsor Cistle. Two alnurable catalogues of has phates have been made, one in 1745 (2 d ed., 1759), by George Vertue, and one $\mathrm{m}^{\circ} 1853$ by Parthey. The latter, published at Bualin, is a model of German thoronghness and accuracy, aud laves very litule to be ahled by future research.

HOLLY, Hex, L., a genus of trees and shrubs of the matural order Ilicinece or Aquyoliacece, containing sode ons bundred and fifty species, of which several occur in the temperate northern bemisphere, North. West America exrepted, by far the larger number io tropical Asta and America, and very few in Alrica and Australia. In Europe. where 1 . Aquifolum is the sole survirng species, the genus was richly represented during the Murene period by iormb at first South American and Asiatic, and later Nortb American in type (Schimper, Paléont. Vègèt, iii' 204, 1874). Tho leaves are generally corraceous and evergreen, and are alternate and stalked; the Hawers are commonly dmeelous, are in axillary cymes, fasereles, or unbellules, and have a persistent faur- to five-lobed or parted calyx, a white, rotate four- or rarely five- or sux-eleft corolla, with the four or five stamens adherent to its base in the bale, sometimes hypogynous in the femare flowers, and a two to twelve-celled ovary; ond the frut is a globose, very seldom ovoid, and usuilly red drupe, contaiping two to sisteen one-seeded stones.
The Common Holly, or Hulver (apparently the к $\eta \lambda a \sigma \tau \rho o s$ of Theophrastus;: Ang -Sax., holen or holegn ; Mid. Eng., holyn or holin, whence holm and holintree, ${ }^{2}$ Welsh, celyn: Germ., Steehpalme, Hülse, Hulst; Old Fr., homx; and Fr., houlx). ${ }^{3}$ 1. Aquifolium, L., is an evergreen shrub or low tree, baving smooth, ash coloured bark, and wavy, pointed, smooth, and glossy leaves, 2 to 3 mebes long, with a spinous margin, raised and cartilagnous below, or, as commonly on the upper branches of the older trees, entire -a peculiarity alluded to by Southey in his poem The Holly Tree. The flowers, which apprear in May, are ordinarily diceciuns, as in all the best of the cultivated varicties in nurseries (Gard. Chron, 1877, 1 149). IJarwin (Diff. Forms of Flow, p 297, 1877) suys of the holly: "During aeveral years I have exammed nany plants, but have never found one that was really hermaplirodite." Shirley Hibberd, hawerer (Gard. Chrom., 1877, ii. 777), mentions the occurrence of " llowers learing globese anthers well furnished with pollen, and also ferfeet ovaries." In his opinien, I. Aquifolium elanges its sex from male to femaie with age. In the female flowers the stmens are destitute of pollen, though but slightly or not at all shorter than in the male dowers; the latter are
${ }^{1}$ Ifist. Plant, i. 9. 3.iii. 3. 1, and 4 6. ct gassim. On the aquifolnum or aquifotia of Lath authors, commonly regarded as the holly, see A. de Grandsagne, Nist. Nat. de Pline, bk. xv., "Notes," Dp. 199. 206.
${ }^{2}$ The term "holm," as inibeative of a prevalence of holly, is stated to have entered into the names of several places in Britans. From its supericial resemblance to the holly, the tree Quercos Jiex, L., the evergreen oak, received the appllation of "holm-oak."
${ }^{3}$ Skeat (Eiymolog. Jict. 1879) with refirence to the word holly temarks. "'he torm of the base Kiva. (- Teutone Hun.) is probably connected with Lat. cuimen, a peak, cu'mus a stalk, perluys becnuar
 that the term Mutst, as the O.11.G. Hutis, apphed to the buther"* broom, or knee-hully, in the carliest tames und for bedges, may dave reference to the helly as a wolecting (hüllonter) plat.
more numerous than the female, and have a smaller ovary, and a larger corolla, to which the filaments adhere for a greater length. The corolla in male plants falls off entire, whereas in fruit-bearers it is broken into separate segments by the swelling of the young ovary ($\mathrm{M} \times \mathrm{Na}$). The holly occurs in Britain, north east Scotland excepted, -and in western and snuthern Europe, from as high as $62^{\circ} \mathrm{N}$. lat. in Norway to Turkey and the Caucasus, aud in western Asia. It is found generally in forest glades or in hedges, and does not Hourish under the shade of other trees. In England it is usually small, probably on aceount of its destruetion for timber, but it may attan to 60 or 70 fect in height, and Loudon mentions one tree at Claremont, in Surrey, of 80 ieet. Some of the trees on Bleak Hill, Shropshire, are asserted to be 14 feet in girth at some distance from the ground (N. and Q., 5th ser., sii. 508). The bolly is abundant in France, especially in Britanny. It will grow in almost any soil not absolutely wet, but flourishes best in rather dry than moist sandy loan. Beekmann (Hist. of Invent., i. 193, IS46) says that the plant which first induced J. di Castro to search for alum in Italy was the bolly, which is there still considered to indicate that its babitat is aluminiferous. The holly is propagated by means of the seeds, which do not normally germinate until their second year (see Arboriculture, rol ii. p. 322), by whip-grafting and budding, and by cuttings of the matured summer shoots, which, placed in sandy soil and kept under cover of a hand-glass in sheltered situaticns, generally strike root in spring. Transplantation should be performed in damp weather in September and October, or, aceording to some writers, in spring or on mild days in winter, and care should be taken that the roots are not dried by.esposure to the air. It is rarely injured by frosts in Britain, where its foliage and bright red berries in winter render it a valuable ornamental tree. The yield of berries has been noticed to be less when a warm spring, following on a wet winter season, bas promoted excess of growth. There are numerous varieties of the holly. Some trees have yellow, and others white or even black fruit. In the fruitless variety laurifolia, "the most floriferous of all hollies" (Hibberd), the flowers are highly fragrant; the form known ay femina is, on the other hand, remarkable for the number of its berries. The leares in the unarmed varietics aureo-marginata and albomarginata are of great beauty, and in ferox they are studded with sharp prickles. Tho holly is of importance as a hedge-plant (seo Areoriculture, vol. ii. p. 319), and is patient of elipping, whieh is best performed by the knifo. Evelyn's bully hedse at Say's Ceurt, Dcptiord, was 400 feet long, 9 feet high, and 5 feet in breadth. Te form fenecs, for which Exclyn recommends the employment of aeedlings from woods, the plants should be 9 to 12 itches in beight, with plenty of small fibrous roots, and relpuire to be set 1 to $1 \frac{1}{2}$ feet apart, in well-manured and weeded ground, and thoroughly watered.
The wood of the holly is even-grained and hard, especially when from the heartwool of large trees, and almost ns white as ivory, except near the centre of old trunks, where it is brownish. It is employed in inlaying and turninge, and, since it stains well, in the phace of elony, as for teapot handles. For engraving it is inferior to box. When rlyy it weishas about $17 \frac{1}{2} \mathrm{fb}$ per culie font. From the Lark of the holly lidedime is manufactured. From the leaves are oftainable a colouring matter named ilforenthin, ilecic acil, ant a bitter principle, licim, which las been variousty described by different analytical chemsts. The leaves have been used in rhoumatism, and were at one time, on account of their taste, supposed to be of wahe in intermittent fever. A. Lonicerus (K^{2} reuterls., Th. 1, 1, axxviti., Frankf., 1582, ful.) speaks of their decortion an a remesiy
fur pain in the side. They are earen by sheeg aud deent and in parts of France serve as a winter fodder for cattle. The berries proroke in man violent emesis and eatharsis, but are eaten with immunity by.thrushes and other birds: The larix of the moths Sphinx ligusestri, L., and Phoxoptery.x ncercuna, Hb., have been met with on bolly. The leares are mined by the larva of a fly, Phyiomyza ilicis, and both on them and the tops of the young tivigs occurs the plant-louse Aphis ilicis, Kalt. (Kaltenbach, Pftanzenfeinde, p. 427, 1874). The custom of employing holly and other plants for deeorative purposes at Christmas is one of considerable antiquity, and has been regarded as a survival of the usages of the Roman Saturnalia, or of an old Teutonic practice of hanging the interior of dwellings with ever. greens as a refuge for sylvan spirits from the inelemeney of winter. A Border proverb defines an babitual story-teller as one that "lees never but when the hollen is green." Sevcral popular superstitions exist with respeet to holly. In the county of Rutland it is deemed unlueky to intro. duce it into a house before Cliristmas Ere. In sume English rural districts the prickly and non-priekly kinds are distinguished as "he" and "she" holly; and in Derbyabire the tradition obtains that aceording as the holly brought at Christmas into a bouse is smooth or rough, the wife or the husband will be master. Holly that has adorned ehurehes at that season are in Woreestershire and Hercfordshire mueh esteemed and elierished, the possession of a small branch with berriea being supposed to bring a lucky year; and Lonieerus (op. cit.) mentions a notion in his time rulgarly prevalent in Germany that eonseerated twigs of the plant bung over a door are a protection against thunder.

Among the North Ameriean species of Jlex are I. opaca, Ait., which resembles the European tree, and the Inkberry, I. (Prinos) glabra, L., and the American Black Alder, or Winterberry, I. (Irinos) verticillatr, L. Ilooker (Fl. of Brit. Indis, i. 598,606)' enumerates twenty four Iudian species-of Ile.. The Japaneso 1. crenta, Thb., and I. lutifolia, Thb., a remarkably hardy plant, and the North American I. Dahoun, Walt., are among the species cultivated in Britain. The leaves of several species of $/ l e x$ are used. by dyers. The member of the genus most important economically is I. paraguayensis, St. -Hil., the prepared leaves of which constitute Paraguay tea, or Mate ($(\underline{x}$ i:). Knec Holly is the species Ruscus achleatus, L.; Sea Holly. Eryngium martimum, L.: and the Mountain Holly of America, Ncmopanthes caradensis, D. C.
See, besides the nbove mentloned wolks. T. Forster, The Ferennial Calendur,
 14s5: Lindley, Ned and Geonom. Hot. p. 190, ad ed. 185d: N. Patersnn. Tho Manse Gavden, rp. 17 s\%" 18to; Syme. Soucerby's Eng. Sot. 11219,1864 : Durwin,

HOLLYHOCK (from M.E. holi-doubtless because brought from the Holy Land, where it is indigenous (Wedg.) -and A.S. hoc, a mallow), Althaca rosea, L., a perennial plant of the natural order 1 Iraluacece and tribe IMelvec, a mative of the East, has been cultivated in Grent Britain for abeut three centuries. The orlinary hollyhoek is single-blossomed, but the florists' varieties have all donble flowers, of white, yellow, rose, purple, viulet, and other tints, some being almest black. The plant is in its prime about August, but by careful mamgement examples may be obtained in blossom from July to as late as November. Hollyhocks are propagated from sced, or by division of the root, or by planting unt in rich samdy soil, in a close frame, with a gentle bottom lieat, single iyes from woodshouts, or cuttings from outgrowths of the old stoek or of the lateral oflisets of the spike. The secd may bo suwn in October under cover, the flants obtained being potted in November, and kept under glass till the following April, or, if it he hate-gathered, in May or June, in the "fren ground, whence, if required, the phants are best noverl in Octoler or April. Sedlings may also be raised
in . coruary or marct, oy the aid ι° a gentle Licat, in a light andrich moist soil ; they should not be watered till they have made their second leaves, and when large enough for handling should be pricked off in a colle frame; they are sulsequently transferred to the ilower-bed. Hollyhoeks thrive best in a well-trenched and manured" sandy loam. The spikes as they grow nust be staked; and water and; for the finest blossoms, liquid mauure should be liberaily supplied to the roots. Plants for exhibition require pruning of side growths; and it is recommended, when the tlowerng is over, and the stalks have been cut off 4 to 6 inches above. the soil, to earth up the crowns with sand. . Some of the छnest double-Howered kinds of hollyhock will not bloom well in, Sentland. The plant is susceptible of great moditication under cultivation!. .. The forms now grown are due to the careful selection and crossing of varicties, first by Mr Charles Baron, a shoemaker at Saffron-Walden, and afterwards Ly Mr Paul of Cbeshunt, Messrs R. B. Bircham, W. Chater, Downie \& Laird, John Laing, Anthony Parsuns, and other well-known foriculturists. "It is found that the most diverse varieties may be raised with certainty from plants growing near together. Darwin from the seed of 11 out of 18 varieties procured 62 plants, all perfectly true to their kind, and from the seed of the remaining 7 varieties : 49 plants, bale true and half false. :. Mr Masters of Canterbury, he relates, saved seed fron a great bed of 24 named varieties planted in closely adjoining rows each of which faithfully reproduced itself, with only sometimes a shade of difference ia tint. Since the abundant pollen of the hollyhoci: becomes ripe, and is for the most part shed, before the stigma of the flower affording it is ready for its reception, the preservation of the individuality of different varieties flourishing side by side, iu spite of the frequent visits of bees (unless, as suggested by Mr Turner of Slough, those insects be debarred access to the pollen: and stigmas by the doubleness of the flowers), wonld appear to be due to the prepotency of the pollen of each variety on its own stigma over that of all other plants. The hollyhock is very liable to the attacks of slugs, and to a disease oceasioned by a fungus, Puccinia malvacearum, which, originally from South America, attained notoriety in the Australian colonies, and finally, reaching Europe, threatened the extermination of the hollyhock, the soft parts of the leaves of which it destroys, leaving the venation only romaining. It has been found especially hurtful to the pant in dry seasons. Wild mallows, upoo which also it is parasitic, do not appear to be very injuriously afficetcel by it. As means of getting rid of this pest the following expedinnts have been resorted to :-the application of a weak aqueous solution of Condy's fluid, which in killing it turns its natural light grey colour to a rusty black, or of Ω stronts solution of soft soap with sulphur ("Gishurst compound"); the destruction of the plats, and their replacement by healthy stocks; and, as practised by Mr Chater, cultivation in highly-manured trenches, with all possible exposure to the open air, and mulehing during summer.
See Darwin, Var. of Anim. and Plants unier ioness., ii. 107, 310; Treas. of Sot., 2 d ed., 187.4; M. C. Cooke and M. J. Berkeley', Fungi: their Nature, Infucnce, and Uses, p. 230. 1875; F'prst, 1875; Florol World, 18i7 and 1879; Gardenc's Chron., 1877, i. 114, and 1878, i. 766 , and ii. 478: and. for fic. of pollen of hollyhock, Botany, vol. iv. p. 13 s
llOLMAN, James (c. 1787-1857), the "Blind Traveller," was born about 1787. He entered the British navy in 1798 as first-class volunteer, and was aryointell lieutenant in April 1807. In 1810 he was invalided by an illness which resulted in the total and bopeless deprivation of sight. In considcration of his helpless circunstances he was in 181.2 slpointed one of :the royal kuights of Windsor, but the dutness and seclusion of such a life barmonized so ill with his aetive baliuts and his keen interest in the outsile world
that he requested leave of absence that he mignt go abroad. This being granted, he in 1819, 1820, and 1821 journeyed through France, Italy, Switzerland, the parts of Germany bordering on the Rhine, Belgium, and the Netherlands, In. 1822 le published a narrative of his journey. His enjoyment in his travels was derived from the love. of locomotion and the attendant, exercise, the varieties of company and of topies of conversation, and the informa. tion and deseriptions he:obtained from cye-witnesses, which constantly supplicd him with new materials on which to exercise bis imagination. . He agdin set out in 1822 with the design of making the circuit of the world, but after travelling through Russia into Siberia, he was arrested when he had managed to penetrate 1000 miles beyond Smolensk, and after being conducted to the frontiers of Poland, returned home by Austria, Saxony, Prussia, and Hanover. . The pretext for arresting bim was the suspicion of his being a spy, but the probability is that the authorities wished to prevent him from perseicring in what they must have regarded as, to one in his helpless condition, a foolish and hazardous adventure. An account of his journey was published in 1825. Shortly afterwards he again set out to accomplish by a somewhat different method the design which lad been frustrated by the Russian authoritres; and an account of his remarkable achievement was published in four volumes in 1834-35, under the title of A Voyage round the World, including Travels in Africa, Asia, Australasia, A merica, de., from 1827 to 1832. His last journeys were through Spain, Portugal, Wallachia, Moldavia, Montenegro, Syria, and Turkey; and he was engaged in preparing his journals of this tour for the press when he died at London, 29th July 1857. The works of Holman, besides the interest attaching to them from his incidental references to the peculiarities of his circumstances arising from his physical defect, and to his methods of triumphing over his difficulties, occupy a unique place in literature as products of very extraordinary energy and rerseverance, while, on account of the variety of their information and their frequently graphic descriptions, they are of consitierable value as books of travel.
IIOLSTEIN. See Schleswig-Holstein.
HOL'T, Sir Joen (1642-1710), lord chief.justice of the Court of King's Bench in the reigns of William 1II. and Anue: was born at Thame, Oxfordshire, Decenber 30, 1649. His father, Sir Thomas Holt, possessed a small patrimonial estate, but in order to supplement his income had adopted the profession of law, in which he was not very successful, although be became sergcant in 1675, and afterwards for lis political services to the "Tories", was rewarded with knighthood. :After attending for some years the free school of the town of Abingdon, of which his father was recorder, young Holt in his sisteenth year entercd Oriel College, Oxford. He is said to have spent a very dissipated youth, aud even to have been in the hatit of taking purses on the lighway, but after entering Gray's lun ahout 1660 he completely renounced his old habits and appliet himself with exemplary diligence to the study of law. IIe was called to the bar in 1663, and, althongh his youth hindered his immediate success, when once be bat an opportunity of manifesting his talent he specdily acquired a lucrative practice. An ardent supporter of civil and religions liberty, Le distinguished hinself in the state trials which were then so common by the able and courageons manner in which be supported the pleas of the defeddants. In Felruary 1666 be was appointed recorder of Jondon, and on the 22d of April he was made king'ssergeant and received the honour of knightheod. Lfis giving adecision adverse to the pretensions of the king to exereise martial law in time of peace led to his dismissal from the oflice of recorder, but he was connaual in the office of king s sergeant in order
to prevent him from hacoming comnsel for accused persums. Having been one of the judges who actell as assessors to the pears in the Convention parliamerit, he tuok a leading part in arranging the constututional change by wheh Wiltiam III was called to the throne, and after his accession he was appointed lord chief-justice of the king's Lench. His intrits as a judge are the more aptarcut and the more romarkable when contrasted with the qualitios displayed by his unwortly predecessurs in office. In judicial farness, legal knowledge and ability, clearness of statement, and unbending integrity he has had few if any superiors on the Euglish bench. Over the civil rights of his countrymen be excreised a jealous watchfulness, more especially when gresiding at the trial of state prosecutions, and he was especially careful that all aceused persons should he treated with farness and respect. He is, buwever, best know \bar{n} for the firmness with which be uphell his own prerogatives in opuusition to the anthority of the Houses of Parliament. Gn several oecasions his physical as well as his moral courage was tried by estreme tests. Having been requestel tu surply a number of police to help the soldiery in quelling a riot, he assureil the messenger that if any of the peuple were shot he would have the soldiers hanged, and proceeding himself to the scene of riot be was successful in preventing bluodshed. A still more signal pronf of his courage is said to have been given in the Aytesbury case. Ho derlared in favour of the Ayleskury burgesses, who had been committed to Newgate for complaining about the non-registry of their votes. On this account his commitment was moved by the Tories, but the result of the motion is uncertain. There is a tradition, however, which whether true or not is equally a tribute to bis integrity, that the House of Commons summoned him to appear before them, and that when, on his disremarding the summors, the speaver himself made his appearance, Holt told him that unless he returned to his chair within five minutes he would have him sentto Newgate. While steadtast in his sympathies with the Why larty, Holt maintained on the bench entire political impartinlity, and always held himself aluof from political intrigue. On the retirement of Somers frum the chancellorship in 1700 he was offered the great seal, but decinerl it. IIts death took place 3d Narch 1710, and he was buried in the chancel of Fiedgrave church, where a fine momment in white marble was erected by his brother to his memory.
Fipmes of Cises retermimel by Sir fohen Holl, 1681-1710, aljeared at houdun in 17:38; and The Judgeneatsdeturew in the pesce of ofshby v. Whute and others, wue in the cese of Jotn Paty and others, pernutal
 Tuller, No, xiv; a Life, published in 1764 : Whlsby, Lucs ay
 Campell's Lums of the Lard b'hiff Justicas.
 German poet, and one of tho foumbers of the "Hambund," was horn at Narimace in Hanover, December 31, 17 t . His father, who was a pastor, was three times marrich, and Holly was the eddent of his tenchalren. Ilis second wife, Huly's mother, ded in 175x, and her children were temerly bronght up ly the thard wife, tugether with her own large family: In his ninth year, Ilolty, till then a beatiful and lively chald, was smitten with snallyox, and was for some time emaly howd. On lis recosery, his features aml lisposition were altered, and he was through life pham, silent. and arkwart. From an carly age he was an mbetcrate liver of solitmbe and looves. ife was tanght at home by his father, Lussides the orilinary school branchos, latm, Promet, and llobrew, nud at the age of sixtepol was sent to the pulater seland of Cede. Un lenving Celle three years liter, he went as a theobogieal stabent ou Guthen, where, however, has deroted his lesure hours to the study of the Linghish and Italian poots, and beg口on his own literary
career. The appearance of some of his verses in a Coutingen weekly paper, especially those on the death of Münchhausen, brought his name betore the public, and he was shortly afterwards admitted as a member of the "German Suciety." He now made the arquaintance of Büryer, Niller, Voss, Boie, the brothers Stolberg, and other puets, in conjunction with whom lie formed in 1752 the famous poetical brotherboud known as the "Hambund." The next two years were spent by Holty in this brillant and enthusiastic company; and, with the assistance of a schularship and a pust in the philological seminary in Cuttingen, he succected irr making a scanty livelihood by teracling English and Greek and by making traustations. In 17\% 4 , having abaudened the intention of entering the church, be aceunpanied his lrieud Miller to Lenpsic, where he remained for a year in the hopes ui obtaining a private tutorship. The pennile young puet had for sume time been silently attachaf to a lady, whobout this time married some more eligible suitor. His bealth now began to cause him anxiety, and symptoms of consumption, inherited from his mother, made their appeurance. His prusperts were further altered by the death uf has father in 1775 ; and Holts found him. self ant unly thrown entirely on his own resources, but obliged in some measure to assist his family. Towards the end of 1775 he settled in Hanover, to be near his physician Zimmermann and his fruend Poie, and there he died anehis twenty-eighth year, September 1, 1776. Hölty was a writer of ballads, idylls, elegies, and odes. His conceptions, if nut loity, arc always graceful, his style finished, Lis language aud rlythm faultless. He was from the first one of the slining lights of the "Hainbund," and during his short career became one of the most popular of German lyric poets. Many of his sungs have become folk-sungs, and his ballads have been ranked with those of Bürger.

Holty reas engaged when he died in collecting and revising his poems tor the juess; and after his death his fnemels Boie and Voss undeatook the clarge of their publication. in 1782, however, an incorrect edtion of his works appeared edited by Geissler, whinh contanch many poens not by Holty. The correct cdition was first publishell hy Voss and Stolbern in 1783, and aran, revised, in 1804. An edition of his Gedeflec, with a lingraphital matroduction and notes by Kal Maln, was fubhslued ly Brockhaus in the Bibliothek der Deutschen Nationtlhwothar (1870).

HOLYHEAD (Welsh, C'uer-Gyti, the fort of Gybi), a market-town and parhamentary borough of Anglesey, North Wales, is stmated un a small island on the western extremity of tha county and at the terminus of the Chesto and Holyhead hailway, 2 males from Banger. It is con nected with the mamland by an embankment three quarters uf a mite long, over which piss buth the railway and the rouch roal. Underneath the bridge in the centre tho tide rushes with great velocity. The town, formerly a small fishing village, has since the reign of William III, aequired impurtante as the station of the mail packets for Dublin, aud it now possesses a magnificent harbour of refuge begno in 1817, and formally opencel in September 1873. The uriginal phan includct the crection of a north breakwater 5300 feet in length from the coast line, and also of an cast henkwater 2000 fect in length, but the scheme of the east heakwater, of which the chief object was to cover the Ilatter's nud Slimuer's Rocks, was subscquently abandoned, and their pusitions were markel insteal by buoys. On. account of the number of ressels which began to take ad. vintage of the shelter that was being proviled for then it "as also resolvel to tengthen the northern break water in a unth-eristerly direction by 2000 fect, and subsequently ly 500 fent more, making its total length $7 \$ 60$ feet. By these additions a shetered roalstend of 100 acres in extent wos ohtained, hesides the cuclosed area of 267 acres. The breakwater consists of a rubble mound, upon which is erceted

3 aolid contral wall of massire masonry rising to d height of 38 fect 9 ioches ahowe low water. On the wall there is 3 promenade sheftered on the sea side by a parapet. Ths breakwater is terminated by a head 150 feet long and 50 feet wide, on which is erected a lighthouse. The whole cost of the works was $£ 1,479,538$. In 1873 works were commenced by the railway company for extending the old harbour and increasing the length of the quay to 4000 feet. They were opened by the prince of Wales in June 1880. The cost has been nearly half a million sterling. Upon the pier of the old harbour there is an arch of Mona marble, commemoratise of the sisit of Gearge IV. in 1821 on his way to Ireland. The church, an old embattled building, is said to occupy the site of an ancient monestery founded by St Gybi about 610; and in the south porch there is a rude figore of the patron saint under a canopy. The churchyard is surrounded by a wall 6 feet thick, supposed by same to be of Roman construction.

Holyhead Harbour.
The town possesses assembly-rooms and baths. On the rock aouth of the harbour is an obelisk erected in memory of Captain Skinner, commander of the steam packet, who in 1833 lost his life by being washed overboard. About 2 miles from the town, Pen-Caer-Gybi, or the hill of Holybead, rises perpendicularly from the sea to the beight of 700 feet, affording a fioe view of the town and harbour, and the irregularities of the rock-bound coast. On the aides of the bill thers are traces of an extensive British fortification, and on the summit are remains of a circular building, which in all probability was a Romn watch-tower. The inhabitants are chiefly engaged in the coasting trade and in shipbuilding. Holyhead unites with Beaumaris in returning a member to parliament. The population of the parliamentary borough in 1871 was 8131.
hoLy island, or Lindisfarne, an irregularly shaped island in the North Sea, 10 miles S.S.E. of Berwick, and 2 miles from the coast of Northumberlan!, in which county it is included. It is joined to the mainland at low water by flat sands, over which a track, marked by wooden poats
aud practicable for vehicles, leads to the islind. The pariab of Holy Island includes Fenham and Guswick townshipa on the mainland, and had in 1871 a population of 876. The area of the island is about 1000 acres, of which about 400 are under cultivation, producing abundant cropa of barley, oats, turnips, carrots, and potatoes. The northern part consists chiefiy of barren sand-hills on which rabhita and eider-ducks breed. There are several fresh springs on the island, and in the north-east is a lake of 6 acres. Lime, quarried and burned on the island, is exported chiefly to Dundes. Four vessels are engaged in the trade. Rabbits, fish, cattle, corn, and potatoes aro also exported. At the south-west angle is the little fishing village, formerly much larger, which is now a favourite summer watering-place, Salmon, cod, haddocks, crabs, lobsters, and herrings are the principal fish taken. There are two clurches and a national school on the island. The population of the island proper in 1871 was 553.

Holy lsland derives its name from a monastery founded on it in 635 by Oswald, king of Northumbria, which, after being plundered and destroyed by the Dane in the three preceding centimies, was restored by the Normans in 1082 as a cell of the Benedictine monastery at Durbam. Its ruins, atill extensive and now carefully preserved, justify Scott's description of it as a "solemn, huge, and dark-red pile." Holy Island was also an episcopal see (finally transferred to Durham), of which St Cuthbert was consecrated bishop in 685. Tha castla, aituated to the east of tho village, on a basaltic rock about 90 feot high, dates from a very early period. In 1646 it was garrisoned by parliament, and in 1715 an abortive attempt was mada by tro Jacobites to hold it for the Pretender.

HOLYOKE, a city of Hamden county, Massachusetts, is situated on the west bank of the Connecticut river, crossed there by a bridge, and on the Connecticnt River railroad and the Holyoke and Westfield branch of the New Haven and Northampton line, 8 miles north of Springficld. It is rell aupplied with schools and churehes, and has three hotels and a public library. It was a small village until 1849, when the construction of a dam across the river supplied it with water-power for its manufactories, which now include paper-miills, cotton-mills both for spinning and weaving, woollen-mills, planing-mills, a flour-mill, a wiremill, and machine works. Originally the village was a part of Springfield, and in 1786 it was incorporated with West Springfield under the name of Ireland parish. It was incorporated into a town in 1850 , and in 1873 it was made a city. The population, which in 1870 was 10,733 , was 21,915 in 1880.

HOLY WATER (aqua benedicta, lustralis, exorcizata, aspersoria or aspersionis, ávaonós, víwo cidoyias), in Roman Catholic ritual, is a specially exoreized and conse. crated mixture of salt and water, believed to possess, when duly sprinkled, peculiar potency as a remedy for sickeces, mental or bodily, and as a protection to property. According to present usage preseribed in the $/ / / i s s a l$, it is prepared in the sacristy on Sunday by the priest who is to celebrate high mass (or by some other on whom the duty is devolved) : robed in alb and superpellicenm and wearing his stole, he first exorcizes the salt and the watcr separately; next he mises the two in the name of lather, Son, and Holy Ghost; and finally he pronounces the prayer of consecration over the mixture. Thereupun he assumes his pluvial, goes to the altar, and takes from tho deacon the aspergillum, with which he sprinkles the altar, himself, his assistants, and the eongregation, meanwhile repeating the words of Ps. li. 7. The faithful who desire it are afterwards permitted to carry a supply home with them for application to the sick and for similar purposes. Holy water is solemnly used, not only in the consecration of sacred objects, such as churches, churchyards, bells, images, vestments, and the like, lut also on various domestic occasione such as marriages and fimerils. A holy-water atoup is placad at every church door and the faithful are expected
to make use of it both on enteling and ou leaxiug the building.

The present Occidental usage with regard to holy water admits of being traced substantially, without a break, back to the Carolinhian period. In the pseudo-Isidoriaa decretals, Alexander, bshop of Rome (c. 109 A.D.), commentang on Heb. ix. 13, is represented as applying that test to prove the purifying power of consecrated salt and water; ${ }^{2}$ and in a genuine charge 10 his clergy Leo 1 V . (847 A.D.) says, "Every Lord's day before mass bless water wherewith the people may be sprinkled, and for this have a proper vessel." Hincmar of Rheirns to a similar injunction adds pernis. sion to all who may wish to carry some of the water home in their own clean vessels, and sprinkle it "over their dwellings and fields and vineyards, over their cattle also and their provender, and likemise over their own meat and drink." In Gratian the decree runs -"We bless water sprinkled with salt, that all being therewith bespriokled may be sanctified and purfied. Whieh also we recommend to be doue by all priests." ${ }^{2}$ But from the Ordo Romanus (i. 42) we leara that, in Rome, if not elsewhere in the West, a peculiar sacredness and magical effecey were attributed, to bappecumal water at least, two eenturies before the publication of the forged decretals. After the usual consecration of the font on Easter eve, "the whole people, whoever wished, took a blessing in their vessels of the water itself, before the children were bapitized in it, to sprinkle about their houses and voueyards and fields anul fruits." We learn from Chrysostom (De Bupt. Chr) that in the East a similar custom prevailed evern in hus time, while the Apostolical Constitutions (wiii. 29) show that at a somewhat later period (probably in the 5 th century) it had beeome usual also to bless water and oil without any reference to baptismal uses. An mdication of later Oricntal practice is gathered from Theodore Dalsamon (c. 1200), according to whom, by inmemorial custom, holy water was in has day conseerated in Greck churches at the beginning of every lunar mooth. The use of holy water at the church door can he traced back to pre-Christian pactice, both Jewish and pagan. The laver in front of the altar (Exod. xxx. 18-21) in the old ritual of lsrael had its analogue in the vessels with consecrated
 of the Greek temple; from these the entrants nsed to spromkle themselves, or to be sprinkled by the priests, to symbolize the purity required of those who sought to enter the sanctuary of God Thele is eridence that, as early as Tertullian (De Orat., 11) at least, it was eustomary to place outside Christian places of wowhip in

 which persons ahout to enter were expected to wash thenr hands and (jerthap) aloo the face. The vessel was dot taken into the eharchiand phad near tho entrance of the uavo uutil after the Sth century. it is not evident at what date it became customary withn the Christan Chureh to mix salt with the water employed for sacramental or ghasi-saeramentil furposes, thas practice also, however, must he traced to pre.Chrstian usage (see Mad 1.314: Aristoph., Ilut, 656; and of Tzetzes, Schol. in Lymoph, 135-7i

 [i.e., canonizata, Du Cinge], ultimut, pathosa, luchosa, nigra, inojiciosa, muta, cructs, lamentationam, indulgentue), in the ccclesiastical year the week immedately preceding that of Easter. The carliest allusion to the custom of marking this week as a whole with special observances is to he found in the Aprostolical Constetutions (v.'18.19), datithy from the latter half of the 3 d century a.b. Abstinence Ir m wine and flesh is there conmanded for all the days, whate for the Friday and Saturday an absolute fast is enjoined. Ihinnysius Alexandrinus also, in his canenical cpastle (260
 in a manner which implics that the uservance of then had aiready becone an established usage in has time. There is some doubt about the genuineness of an crdmance attributed to Constantine, in which abstincnce from public business was enforced for the seven days inmediat ly precoding Easter Sunday, and also for the seven which followed it; the Contex Theotosiunns, however, is exphicit in ordering

1 Nara bi cinis bilule alcpersus fangthine populum sanctificalual
 bappata popalum samelificat ivgue momat.

that all actions at law should cease, and the doors of all courts of law be closed during those fifteen days (1. ii. tit. viii). Of the particular days of the "great week" the earliest to emerge into special prominence was naturally. that which commemerated the supreme cr:sis of the passien; next came the Sabbatum Nagnuun (Holy Saturday or Easter Eve) with its vigil, which in the early clurch was associated with an expectation that the secoud advent would occur ou an Easter Sunday. The Dominica Palmarum or
 stum, known and observed uader that name in lis day; for the fact of its obscrvace in the Western Church, however, probably our earlest authority is the Venerable Bede. Maundy Thursday ($\dot{j} \mu \in \gamma \dot{u} \lambda \eta \eta \pi \mu \pi \tau \eta$, feria quinta paschie) is referred to both by Chrysostom and by Augustine as having been in their time marked by a general and sulemu celebration of the sacrament of the supper ; the latter writer also (Ep.118, Ad Januarium) alludes to a partial observance of the pedilavium or footwashing which in later centurics became the most conspicuous feature in the cburch services uf the day. For details of the elaberate cerenoonial observed is the Roman Cathelic Church during thes week, reference must be made to the Missal and Brenury, In the Eastern Church the week is marked by smilar practices, but with less elaboration aud differentation of rite. See also Easter and Good Friday.

HOLYWELL (Welsh, Treffymon, the town of the well), a parliamentary borough and market-town of Flutshire, North Wales, is beautifully situated on an curinence near the left bank of the estuary of the Dee, and about 2 miles from the station on the Chester and Holyhead line, 17 miles from Chester. The strects are rrregular, but spacoous and well- - aved, while nany of the buildings are substantial and clegant, and give the town an air of prosperity and opulence. The farish churct, dedicated to St Whifred, and crected in 1769, but retaining seme columus of a more ancient structure, 1 s a plam edifice with a strong embattled tower. Near the railway station are the re. mains of Basingwerk abbey, partly Saxon and partly Early Poioted. Of the old fort called Basingwerk castle scarcely any traces now remain. Until the conmencement of the present century the size of Holywell was inconsideralle, but since then its prosperity has been uninterruptedly increasing, owing to the lead quarries and the lead, copper, and zinc mines of the vicinity. The town pessesses lead smelting works, a shot manufactory. and coqper, brass, and zinc works. The population of the parhaucntary borough in 1871 was 7961.

The well of St Winifred, from which the town takes its name, lons constered one of the wouders of Wates, is a spring of mater Which ruslics up at the mate of 21 tons a minute. lis temperature is higher than that of ordinary spring water, and varies very little with the different seasons. The stones at the bothom of the well huve a slightly reddish colouring due to vigetahle substances, a fact which doubtless sugsested the legend according to which the spring cushed op on we syot where rested the hand of the vircin Wioifred, who had been decapitited by a lover oldended at fier coustancy to her monastic vows. The well is covered ly a fime Gothe building sad to have lieen crected ly Margaret, comatess of Lichmond, wother of leary Kl1, but lavilig some jortions which are of carlier date. The exyuisite chapel alwese has been restored, and is used for publie service. Many lionau Catholics still visit the well, and swimming-kaths have leen erectal for general use.
IHOLZMINDEN, the chief town of a circle in the duchy of linuswick, Germany, is situated on the right bauk of the Weser, at the foot of the Sullinger mountains, and on the railway from Kreiensen to Altenbeken, 56 miles southwest of Drunswick. It is the seat of a circle administration, of a circle and common court, and of a general suprerintendent. The educational cetablishments include a gymnasium and an arehitectural school, the latter attended by upwards of 1000 scholars. Tha prosperity of the town
depends chiefly on agriculture and the manufacture of iron and steel-wares, but weaving and the making of pottery are also carried on, and there are baryta mills and polishing-mills for sandstone. Dy means of the Weser it carries on a lively trade. Holzminden obtained town rights from Count Otto of Eberstein in 1245. In 1410 it camo inte the possession of Brunswick. The population in 1875 was 6887.

HOMAGE (from homo, through the Low Latin hominaticum, which occurs in a document of 1035) was one of the ceremonies used in the granting of a ficf, and indicated the submission of a vassal to his lord. It could be received only by the suzerain in person. With head uncovered the vassal humbly requested to be allowed to cnter iuto the fendal relation; he then laid aside his sword and spurs, ungirt his belt, and kneeling before his lord uttered words to this effect:-"I become your man from this day forth, of life and limb, and will hold faith to you for the hands I claim to hold of you." The oath of fealty, which could be received by proxy, followed the act of homnge; then came the ceremony of iavestiture, cither directly on the ground or by the delivery of a turf, a bandful of earth, a stnne, or some other symbolical object. Homage was done net only by the vassal to whom feudal lands were first granted but by every one in turn by whom they were inberited, since they were not granted absolutcly but only on condition of military and other service. An infint might do homage, but he did not thus enter into full possession of his laods. The ceremony was of a preliminary nature, securing that the fief would not be alienated; but the rassal had to take the oath of feilty, and to be formally invested, when he reached his majority. The obligations involved in the act of homage were more general than those associated with the oath of fealty, but they provider a strong moral sanction for more specific engagements. They essentially resembled the obligations undertaken towards a Teutonic chief by the members of his "cemitatus" or "gefolge," ono of the institutions from which feudalism directly sprang. Besides honajium ligeum, there was a kind of homnge which imposed no feudal duty; this was homagium per parafium, such as the dukes of Normandy rendered to the kings of -France, and as the dukes of Normandy received from the dukes of Britanny. The act of liege homage to a particular lord did not interfere with the vassal's allegriance as a subject to his sovereign, or with his duty to any other suzerain of whom he might hold lands.

HOMBERG, Whinelm (1652-1715), an cminent natural philosopher, born at Batavia, January 8, 165 ?, was educated in Holland, studied law at Jena and Leipsie, and became an anvocate at Magdeburg in 1674. In that town he interested himself in betany and astronomy, nud made the aequaintance of Otto von Gucricke, under whose inllucnce, renouncing his profession, he finally deroted himself exclusively to the matural seiences. Haring travelled in Italy, Frace, and England, and profited by the instructions of the anatomist Graf in Mellinnl, he took the degree of dector of medicine nt Wittemberg; and, after visiting Germany, Hungary, Beliemia, and Sweden, he in 1685 settled in Rome, where he practised physie with great success. At Paris, whither ho repaired in 1691, he was elected a member of tho Academy of Sciences, and became (1702) teacher of physics and (1705) private physician to the duke of Orleans. He died at Paris, September 24, 1715. In 1702 Homberg discorered beracie acid, termed at first the sal scdativum Hombcrgi, the trise nature of which was nscertained by Eergman iu $1 \mathrm{i}_{\mathrm{i}}$. What is known as "Homberg's plosphorus" is a mixture of calcinm chloride and lime, which, after beating in a sealed tube and exposure to sunlight, rhosphoresecs in the dark.

Numerous treatises by Homberg, cliefy chemical, wers published in tie licucil de l'Académie des siciences, 1692, ite. See Chauffepié, Dictionnaire, and Cnemistrir, vol. y. p. 461.

HOMBURG-von-der-EZune, chief town of the circle of Obertaunus in the Wiesbaden government district of the Prussinn province of Hesse-Nassau, is prettily situated on a small stream at the foot of a spur of the Taunus mountains, about 11 miles north of Frankfort-on-the-Main, with which it is connected by rail. Homburg consists of an old and a now town, the latter, founded by the landgrave Frederick II., being regular and well-built. Besides the palatial edifices erected in connexion with the mineral water-cure, the mest important buildings are the theatre, the synagegue, and the variouschurebes, schools, and venevolent institutions. On a neighbouring hill stands the castle of the former landgraves, built in 1680 , and subsequently enlarged and improved. The White Tower, 183 fcet in licight, is said to date from Roman times, and certainly cxisted under the lords of Eppstein, whe held the district in the 12th century. The castle is surromed by extensive grounds, laid out in the manner of an English park. The woollen and linen manufactures of Homburg are unimportant, the prosperity of the town being almost entirely due to the anoual influs

of visitors, which in the senson lasting from May to Octnber inclusive averages 9000 or 10,000 . The five mineral springs which form the chief attraction to strangers aro very saline, and contain a considerable propertion of carbonate of lime. Their use is beneficial for diseases of the stomach ond intestines, and exterually for diseases of the skin and rbeumatism. The pepulation of the town in 1875 , including the garrison, was 8204.

Homburg first came into repute ns a watering. liace in 183 , and owng to its gambliur-tathes, which were set up soon after, it rupifly became one of the favourite and most fastionable heat thresorts of the Conturent. In '1849 the torn was occupued by Anstrian troors for the furpose of enforcing the inperial decree agsiust gambling establishtucnts, but immediately on their withdrawal the bank was again opered, and play continued unchecked till 1872. when the Prussian Government refused to renew the lease for gambling purposes which then expired. As the capital of the forucr landyraviato of Itesce-1 fomburg the town slared the vieissitules of that state.

See Schadtes fiomburg unel scine Uimgcounacn, 11th el., $18 \pi 5$.
home, Henry. See Kimes, Lord.
HOME, Jons (1722-1808), a Scottish dramatic pret, was born on 20th September 1722 at Leith, where his father, Alexander Home, filled the oflice of town-clerk. He was educated at the grammar selool of his uative town, and at the university of Fdinburgh, where be graduated as M.A. in 1742. Though in his youth he was distinguished for viracity, and showed a fondmess for the profession of arms;
be ultimately studied divinity, and was licensed by the presbytery of Edinburgh in 1745. In the same year he joined as a volunteer against the Pretender, and was taken prisoner at the battle of Falkirk. Along with many others he was carried to the castle of Doune, from which, bowever, he soon effected his escape. In July 1746 Home was presented to the parish of Athelstaneford in Haddingtonshire, vacant by the death of Robert Blair, the author of The Grave. There he devoted bimself to dramatic literature. and his first production. The Trogedy of Agre, was fmished in 1719 He took it to London and submitied it to Garrick for representation at Drury Lane, but it was rejected as unsuitable for the stage. Being but litle disappointed, he pryected a now work, and baving beard a lady sing the 1 rillud of Gil Morice, he formed the idea of The Tragedy of fomstus, which after five years' labour be completed, and twik to London for Garrick's opinion. It also was rejected, b,at on lis return to Edinburgh bis friends resolved that it * bould be brought out in that city, where it met with overwhehming success, in spite of the opposition of the clergy, who suspended one member of the presbytery for a month for having attended its representation. As the anthor of the tragedy might count on beng dealt with yet more severely, Home resigned his cbarge in 1757, and shortly afterwards he was appointed lecturer in a Presbyterian chapel in Silver Street, London. In 1758 lie became private secretary to Lord Eute, then secretary of state; and three years later his patron's influenco procured him a pension of $£ 300$ per annum. A Letter from a Dlucksmith to the Ministers and Elders of the Church of Scoltand, in which the manner of public worship in that church is consilered, published in 1759, has been attributed to his pen. In 1760 Home brought out another tragedy, The Siege of Apritein, which was put on the stage. Garrick taking the part of Emilius. "In 1763 . he was appointed to the sinecure office of conservator of Sconts privileges at Compvere. In 1769 IInme's tragcly of The Futal Discovery had a run of nine bights; Alonzo also (1773) had fair success in the representation, but his last tragely, iffred (1778), was so coully reccived that he gave up writing for the stage. From 1667 he re..del either at Elinburgh or at a villa which he built at killuff near his former parish it was at this time that he wrote his /hastryy of the litbellion of 1715 , which appared in 1802 Home doed at Merwhiston Pank, near Edinburgh. in 1808, in lis eghty-ssxth year. He was a man ot great amability of character, and numberal among his friends most of the Scottish liter ti of the last century His writings, while they des. Hay fervid feeling, and h..ve less artificiality than the works of the poets of his time, are now. with the exception of bouptas. compratively little known.

The watks of Jlomu were collected and published ly IIonry Buplonze 1 1822 (3 tols Evo), but seversl of his smallen poums It th have escapel the chlitors oliservation. These ate-"The F In of Casar"" "Ve"sequon loverany." "Epmple to the bent of F, lminoun." "Jrolonge ou the lamblay of the I'rance of Wales. 175!" and several " Ephgam," shoth are pumted 16 vol 11 of

HOMEIL, or Gomel, a town of litussia in Europe, in the frovernmett of Mohilet 132 miles S of Mohilett, on the hishway to 'l'chernigoff, and om the right lank of the Sosh, which duns the Daieper abont 45 miles forther down lt is it place of considerable importance, jossessing (according
 13.030, the suburb of theitsa being incladed. Most of the homies are of wood, but there are n goonl mmaner of churches, several hespitals, mul public scheols. 'l'luree of the Onthomox churcheg were built by Fumantzol, uho lies burical in St Peter's. The suga-refineries are the most im firitunt of the industrial entablishments. if gond trake is carried on in the agricultural prodnee of the surromading
district, partly with Warsaw and partly with Riga. In 1860 , when the population amounted to 13,659 , there were 3637 Raskolniks (separatists) and 6518 Jews.

Honel, which appears in the older documents as Gomie or Gomi and Gom, is nentioncd tor the fist tume in llf', when it belonged to the Tchemgolf principality The first mhabiants were Roili. mitchans. In the $12 t h$ century we find lzwaslati Dawititch takng defuge at Homet on his expulston fiom lifet Along with Thernigoft the town passed under the power of Lithuania: but in the 15 th century Simeon, son of John ot Mozhaisk, to whom it hail been entrusted by ling Alexander, enteicd the service of Johin III. of Dloscow, and it was not till $1: 337$ that it was recovered for Sigismund Augustus by Panco Radzaill and a body of Crim Tatars. The bailawick was granted to the Polish grandees; aud by the last of these-Pance Tcharovizhski-a strong naken casthe was elected. In 1648 the town suttered from the measton of Bogndan libumed. mtzEl, who put to death 1500 Roman Catholies and Jews. In 1655 it passed voluntarily to the side of the msurgent Cossacks, but at the peace of Andrusoli it remaned whe Poland. It was unt incolporated with White Pussia till the reign of Catheriue 11., who assigned it to Fich-Dlarshal Rumantzell Zadnaaski. In 1834 it was furchased by Pumee Paskevteh, and in 1852 it was made the chief town of a distruct.
HOMER (O $\mathrm{O} \mu \mathrm{\eta}$ 位) was by the general sensent of antiquity the first and greatest of poets. Many of the works once attributed to bim are lost. those which remain are the twogreat epics, the lliad and the Odyssey, about thirty Hymns, a mock epic (the Buttle of the Frugs and Mice), and some preces of a few lines each (the sa-called Epigrems).

Ancent Accounts of Homer. - Of the date of Homer probably no record, real ur pretended, ever existed. Herodutus (ii. 53) mantans that Hesiod and Honer lived not more than 400 years before his own tume, consequently not much before 850 в.c From the controversial tone in which he expresses himself it is evident that others bad made Honer more ancient ; and accordingly the dates given by later autheritics, thoug very various, generally fall within the 10th and $1 / t h$ centuries b.c. It is needless to go into the questuons raised hy these statements, none of which has any clam to the cbaracter of external evidence. ${ }^{1}$
The extant lives of Homer (edited in Westermann's I'itarum Serptores Guct minores) are eight in number, including the piece called the C'ontest of Hesiod and Homer. The longest is written in the Ionic dialect, and bears the mame of Herodotus, but is certainly spurious. According to 1 doh. Eelmidt (in the Dissertationcs philologice IHatenses, vol. it ill. $97-219$), it belongs to the time which was fruitful heyond all others in literary forgeries, siz, the 2 d century of our era. The other lives are probably not more ancient. They contan a strange medley, ranging from the smplest outgrowth of popular fancy to the frigid inventions of the age which would mint eonfess itself ignorant of the mame of Ilecnba's mother. Thus the story that Homer was the son of the Meles (the river on which Smyrma is situated) and the nymp Critheis is evidently a local legend. Anuther story of a primitive east describes the maner of Homer's death in the island of Ios. Seeing some young fishermen on the beach with their nets, he askel them-
"Fisherncen sprung of Areadia, have we aught ?"
To which they answered in a ridulle-
What we canght we left hulum?
What we eanglat vot we lear with us.
Homer comht not explain this, and then he remembered an oracle which hat told him to beware of the young men's ndulle. He wrote an cpitaph for himself, and died on the third day after. This story comes from a lost work of Aristotle. On the nther hand, when we are told in the Herolotean life that Critheis was a daughter of Melanepus, one of the colonists who came to C ene from Magnesia, that lecing foumb to be with child she was sent with the fresh
' see laner, Giseh, det Homer. P'oesie, pp. 115-30; Sengebusch, Huncrica desserbatio postertur, p. 7\%.:
criony that founded Smyrnn, that she there brought forth Honter on the bunks of the Meles, whence he was called Helesigenes, -in this form of the story it is casy to recoginize the hand of the critic. There is an evident desire to get rid of the primitive supernatural element, and also to reconcile the clams of two citus, Cyme and Smyma, to the enved distinction of giving birth to Homer. There are other incidents it the lleredotean life which seem devised merely to fit certain of the minor charactere in the Homeric poens. Phemias, we are told, was is schoolmaster of Smyrna, who was Lind to the young Melesigenes, and - was accerdingly immortalized as the singer in the Otlysey; the original of Mentor was a man of I thaca, who entertanied I'omer and tended him in illness; and so on.

The chiff value of these "Lives," and espectally of the Herolotean life, lies in the curious short poems which they have preserved. These poens are the Epegretes which tised to be printed at the end of Homer, but are banished by the somewhat inconvenient purism of modern editors One of them (Epigr. iv.) is put in the mouth of a native of " Kulian Snyyrua," whose poetical ahl has been spurned by the people of Cyme, and who is accombugly departing to sume other city Epryr. vi. is a prayer to l'oseidon for sate arrival at Erythrie, Epigr. vii. describes the rocky suil of that place. There is also an Epigram addressed to the prople of Neonteichos (Eptgr. i.), ant another which brings in the pinc woods of Mount Ida and the iron-mines of that district (Eptyr. x.). Besides these pieces, the intercst of which is topographical, there is in miteresting little poem addressed to pottera beginning-
" if you give me hire I will sug, O putters,"
and another called Eipeoioun, wheh, according to the autbor of the life, was sung by the children in Samos when they went round begging at the festival of Aprollo, also certain verses addressed to sailurs (viii., is.), to a geat-herd (xi.), \&e. All these short puems have a common character. They are "rhymes" such as every cunntry prossesses in greater or less number, treasured by the people as a kind of proverbs. Sunte of them may be fragments of longer poems, but they are certamly nut the work of any one poet. The circmmstance that they are niscribed to Homer nerely shows that his mame had geamed such a hold on the magimation of the Ioman and Folian Creek: as to draw to itself all ancient and popular verse.

Such being the true character of the Epigrams, it follows that, so fat from being " oceastunal verses," surgested by moments in Homer's life, they are really the omgual documents, to which the normive was afterwards aljusted Even the leading acident of the Herwhotean life-the brth of Homer at Smyrua-may have been origitully dernved from Fpigr. iv. The epithet "Eolian" indicates high antiquity; for Smyrna (according to Herodotus) was lost by the Eolians abont 688 b.c. Similarly, the clatm of Cyme was donbtless supported (not quite so lugically) by the mention of that place in Epigr. iv. and i.

The same lime of argument may be extonded to the Hymas, and even to some of the lost works of the "Cyclic" pocts; with the result of making it probable that nust of the traditions about Homer rest ultimately on perems communly ascribed to him. Thus-

1. The hynan to the Delian Apollo ends with an address of the poct. to his audience. When any stranger comes and asks who is the sweetest singer, they are to answer with une voice, the "blind man that drells in rocky Chios; his songs deserve the prize for all time to come." "Thuegrlides, who quontes this passage to show the ancient character of the Delian festival, seems to have no doubt of the Homeric authorship of the hymn. Hence we may most uaturally account for the belief that Homer was a Chian. That it was a general belief is shown by a passuge (interestith is
the earliest express quotation from Homer) in which Simonides calls him simply the "man of Chius" (fr. 85):-

It was also suppurted by the Chian family or gens of Homeridx, of whom more will be said hereafter.
2. The Meryites-a humorous poem which kept its ground as the reputed work of llomer down to the time of Aristotle-begin with the words, "There came to Colophon an old man, a divine smger, servant of the Muses and A bodlo." Ilence doubtless the clam of Colophon to Le the mative city of IIomer-a claim sujported in the early times of Ilomeric learning by the Colophonian poct and grammarian Antimachus.
3. The poem catled the Cupra was sant to have been given by Homer to Stasimus of Cyjras as a daugtier's duwry. The comexion wht Cyprus appears further in the fuedominance given on the poem to Aphrodite. From the argument preserved by Prochos it is evilent that Aphrodite held the sane place in the Cypria which Athene has in the Olyssey.
4. The Little Ihat and the Fhocuts, according to the Iterodutean life, were composed by Humer when he lired at Phocara wath a certam Thestorides, who carned them of to Cluus and there gained fome by reetung them as his own. The name Thestorides vecurs in Eprar. \&.

Phese moluations make it probable that the stories conneething Homer with different eities and islands do not rest upon any better foundation than supposed allusions in poems, none of wheh, to all appearance, can make good the chaim to Homerte anthorship. And this result is confirmed by the want of positive authority in favour of any one verston. The number of opimons is proverbial, and most of them are supported by relatively ancient testimony.

It is plain that the contention for Homer began at a time when his real history had been lost. And since the inevitable legend found no clue in the Ilaze and Olyssey, it was driven tu seek tor une in poems of secendary valuc.

A singnlar exeeption is formed by Miletus, one of the greatest of Ioman cities, for wibl no legend elams cren a visat from Homer. Yet Arctimns of Nitetus is said to have been a "disciple of Homer," and bis Ethopis was a continuation of the Ihud. Anuther equally exceptional fact is that no puem of Arctinus is cver ascribed to llomer. Are we to suppose that the authorship of the poens of Arctinus never fell into doubt? If so, it is a confirmation, from the negative side, of the theory advanced above, viz., that the stories of Honer's comexion walh different places are suggested for the wost part by the poems which came to be assigaed to ham in popular belief.

Recetation of the Pocms. - The recitation of epie poetry was culled in listorical times "rhapsody" (paqwốa). The word putwóos is post-Homerie, but occurs m lindar, who gives two ditterent explamations of it-"singer of stitched verse" (juatīv $\dot{\epsilon} \boldsymbol{\pi} \dot{\epsilon} \omega v$ aoiovi), and "singer with the wand" (\quad a β Bois). Of these the first is ctymologically correct (except that it should rather be "stitcher of werse"); the second ayrees with the fact, for which there is early evidence, that the reciter was accustomed to hold a wand in his band-perhaps, like the sceptre in the IIomeric assembly, as a symbol of the right to a hearing. ${ }^{1}$

The first notice of rhapsody mects us at Sicyon, in the reign of Clisthenes ($600-560 \mathrm{B.c}$), who, as Herodotus tells us (v. 67), "put down the hapsodists on accomt of the poems of Homer, because they are all about Arges and the Argives." This description applies very well to the Iliud, in which Aryas and Argives occur on almost every page. It may have suited the Thebaid still better, but there is no
'Compare the brach of myrtle at an Atheoian feast (Aristoph., A~и.. 1364 .
need to unierstand it onlr of that poem, as Mr Grote does (Part i. c. 21). In any case the incident shoms that the poems of the Ionic Homer lad gained in the 6th century b.c., and in the Doric parts of the Peloponnesus, the asceudency, the national importance, and the almost canonical character whichithey ever afterwards retained. ${ }^{\text {b }}$

At Athens there was a law that the Homeric peems should be recited (ρ áwociotat) on every occasion of the Panathenæa. This law is appealed to as an especial glory of Athens by the orator Lycurgus (Lencr., 102). F'erhaps therefore the custom of public recitation was exceptional, and unfortunately we do not know when or by whom it was introduced. . The Platonic dialogue Mipparchess attributes it to Hipparchus, son of Pisistratus. This, however, is part of the historical myth, in the Platonic style, of which the dialogue mainly consists. The choice of a member of the tyrant family as the type of an enlightened despet was evidently made, net on grounds of evidence, but merely as a sign of reactiou against popular sentiment. Moreover, the zuthor of the dialogue makes "(perhaps wilfully) all the historical mistakes which Thucydides notices in a wellknown passage (vi. 54-59). In one point, however, his testimony is valuable. He tells us that the law required the rhapsodists to recite "taking each other up in order
 different forin in the statement of Diogenes Laertius (i. 2, 57) that Solon made a law that the poems should be recited "with prompting" (so we must understand $\epsilon_{5}^{\xi} \dot{i \pi} \pi \beta \beta_{0} \lambda \bar{\eta} s$). The question as between Solon and Hipparchus cannot be settled; but it is at least clear that a due order of recitrtion weas secured by the presence of a persen ebarged to give the rhapsodists their cue (inoßán $\lambda \epsilon \frac{1 v}{}$). It was necessary, of course, to divide the poem to be recited into parts, and to compel each contending rhapsodist to take the part assigned to him. Otherwiso they would choose favourite or show passages.

The practice of pocts or rhapsodists (we cannot always tell which) contending for the prize at the great religieus festivals is of considerable antiquity; theugh apparently post-Homeric. It is brnught vividly before us in the Hymn to Apollo (sec the paseage mentioned above), and in two Hymus to Aphrodite (v. and ix.). The latter of these may evidently te taken to belong to Salamis in Cyurus and the featival of the Cyprian Aphrodite, in the same way that the hymm to Kpullo belongs to Delos and the Deliau gathering. 'Ihe germ of such contests may, however, be found in the story of Thamyris, the Thmeian singer, who boasted that he could conquer even the Muses in song (Il. ii. 594 7).).

Much has been made in this part of the subjeet of a family or clan (féros) of Hemeride in the island of Chios. On the one hand, it seemed to follow from the existence of such a family that liemer is a more "eponymus," or mythical ancestor; on the other hand, it became easy to imagine the Homeric peems handed down orally in a family whose hereditary occupation it was to recite them, possibly to ald new episodes from time to time, or to combine their materials in new ways, as their poetical gifts permitted. But, athourh there is no reason to doubt tho existence of a fanily of "llomeridie," it is far from certain that they had anythins to do with Homeric petry. The word occurs first in lindar (Lem. 2, 2), who applies it to the rhapsodists ("Opinpiôar puaténv éréovv dotón'). On this a scholiast says that "Homeride" denoted originally the descendants "f Hom"r, whesang his poems in sucression, hout afterwards the rhapsutists whe did net. claim desent from him. Ile

- We m ay compre the exclamaton of the Spartan envoss to Ilicro,

aulds that there tras a famons rhapsodist, Cynethus u. Chios, who was said to be the author of the Hymin to Apello, and to have first recited Homer at Syracuse about the 69 th Olympiad. Nothing here counects the Homerida with Chios. Our knowledge of Chinn Homerida cemes chiefly from the lexicon of Harpocration, where we are told that Acusilaus and Hellanicus said that they were so called from the peet, but that Seleucus pronounced this to be an error. Strabo, also, says that the Chians put forward the flomeridæ as an argument in support of their claim to Homer. These Homeride, then, belonged to Chies, but there is no indication of their being rhapsedists. On the contrary, Plato uses the word to include interpreters and admirers-in shert, the whole "spiritual kindred"-of Homer (Rep., 599 E ; Phedr., 252 B ; Ion, 530 D). And although we hear of "descendants of Crenphylus" as in possession of the Homeric poems, there is no simular story nbout descendants of Homer himself. Such is the evidence on which so many inferences are based.

The result of the notices now collected is to show that the early history of epic recitation consists of (l) passages in the Homeric hymns showing that poets contended for the prize at the great festivals, (2) the passing mention in Herodotus of rhapsedists at Sicyon, and (3) a law at Athens, of unknown date, ${ }^{2}$ regulating the recitation at the Panathenra. Let us now compare these data rith the account given in the Homeric poems. The rord "rhapsode" does not yet exist; we hear only of the "singer" (aotós), who does not carry a wand or laurelbranch, but the lyre (ϕ óput ${ }^{\xi}$), with which he accompanies his "song." In the lliad even the epic "singer" is not met with, but Achilles binnelf sings the stories of heroes ($\kappa \lambda \lambda^{\prime} \alpha \dot{\alpha} \dot{\alpha} \delta_{\rho} \hat{\omega} v$) in his tent, and Patroelus is maiting apparently to take up the song in his turn (Il. ix. 191). Again we do not hear of poetical contests (except in the story of Thamyris already mentioned) or of recitation of epic poetry at festivals. The Odyssey gives us pictures of two great houses, in Ithaca and in Phancia ; and each has its singer. The song is on a subject taken from the Trojan war, at some point chosen by the singer hiuself, or by his hearers Thus Phenius pleases the suitors by singing of the calamitous return of the Grecks ; Demedocus sings of a quarred between Ulysses and Achilles, and then, on being asked to change the theme, of the rooden horse and the eapture of Troy.
It may be granted that the auther of the Odysery can hardly have been just such n singer as he hinaself describes. The songs of Phemins and Demodocus are too short, and hare too much the character of improsisations. Nor is it necessary to suppose that cpic poetry, at the time to which the picture in the Odyssey belongs, was confined to the one type represented. let in several respects the conditions mider which the singer find himself in the honse of a chief like Oilysseus or Alcinous are more in harmony with the character of Homeric poetry than those of the liter rhapsodic contests. The subdixision of a poem like the Ilided or Odyssiy among different nod necessarily unequal nerformers must have been injurious to the effect. The hidhly theatrical manner of recitation whicks ras fostered by the spirit of competition, and by the example of the stage, eanot have dine justice to the even movement of the epie style: It is not certain indeed that tho practice of reciting a long poem by the agency of several competitors was aucient, or that it prevailed elserthere than at Athens; but as rhapsodists were mumerons, and popular fawour througlout Grece becamo moro and more confined to one or two great works. it must have become nlmost a

[^22]necessity. That it was the mode of recitation contemplated by the authur of the Ilied or Odyssey it is impossitle to believe.

The diference made by substituting the wand or brauch of laurel for the lyre of the Homeric singer is a slighter one, though net without siguificince. The recitation of the Hesiodic poems was from the first unaccompaaied by the lyre, ${ }^{1}$ i,e., they were confessedly said, not sung; and it was natural that the example should bo sitended to Ilomer. For it is difficuit to Lelieve that the Homeric poems were ever "sung" in the strict sense of the word. Wo can only suppose that the lyre in the hands of the epic poet or reciter was in reality a piece of convention, a "survival" from the stage in. which narrative poetry had a lyrical character. Probably the poets of the Homeric school-that which deait with war and adventare-were the genuine deseendants of panstrels whose "lays" or "ballids" were the amusement of the feasts in an earlicr aeroic age; whereas the Hesiodic compositions were nonlyrical from the first, and were unly a verse because that was the universal form of literature.

It seems, then, that if we magne Hemer as a singer in a royal honse of the 1 Iomeric age, but with more freedion regarding the limits of lis subject, and a more tranquil audience than is allowed him in the rapid movenent of the O lyssey, we shall prubably not be far from the truth.

Time and Place of Ilomer.-The oldest direct references to the llad and Odyssey are in Herodotus, who quotes from both poems (ii. 53). Tite quotation from the Lliad is of interest because it is made in order to show that Homer supported the story of the tra\%els of Paris to Egypt nonl Sidoo (whereas the Cyche poen called the Cypria ignored them), and also because the part of the Iliad from which it comes is cited as the "Aristeia of Diomede." This was therefore a recognized part of the poem. ${ }^{2}$

The earliest mention of the name of Homer is found in a fragment of the philosopter Xenophanes (of the 6 Lh century b.c., of possibly 'earlier), who complains of the false notions implanted throngh the teadug of Homer ($\epsilon \xi$
 shows, net merely that Homer was well known at Colophon in the time of Xenophanes, but also that the great allvance in moral and religious ideas which forced Plito to banish Homer from lus republic had made itself felt in the davs of the early Ionic philosophers.

Failing external testimony, the time and placo of the Homeric poems can ouly be determmed (if at all) by internal evidence. This 13 of two man kinds :-(1) evidence of history, consisting in a comparison of the political and social coadition, the geography, the institutions, the manners, arts, and ideas of Homer with those of other times; (2) cvidence of language, cunsisting in a comparisun with later dialects, in respect of grammar aad vocabulary. To these may be added, as occasionally of value, (3) evidence of the direct indluence of Homer upou the subsequent course of literature and art.
(I) The political condition of Grecce in the earliest times known to history is separated from the Grecce of Homer by un interval which can bardly be overestimated. The great national nnmes are different: instead of Acheans, Argives,

[^23]Danai, we fud Itellencs, Dorians, Ionians, Eelians-names either unknuwn to Hemer, or mentioned in terms more significant than silence. Mycen:e is no longer the centre of empire; new. empires, polities, and civilizations lave grown up,-Sparta with its military discipline, Delphi with its religious supremacy, Miletus with its commerce and numberless coloties, Liolis and Ionia, 'Sicily and Magua Grecia.

While the political centre of Homeric Greece is Mycenx, the real centre is cevidently Deotia, The Catalogue of the Ships begins with Dceotia; the list of Bœotian towns is much the longest ; and they sail, not from the bay of Argos, but frum the Bootian harbour of Aulis. This $\mathrm{I}^{\text {rosition }}$ is not due to its chiefs, who are all of iaferior rank. The importance of Beotia for civilization is further shown by the uncient worship of the Mases on Mount Heliean, and the fact that the oldest puet whose lirthplace is known was the Bootian Hessod. Next to Deotia and the neigh. bouring countries, Phocis, Lucris, Athens, it appears ihat the Peloponnesus, Crete, and Thessaly are the most im. portant seats of Greek population.

In the Peloponnesus the face of things was completely altered ly the Durian conqnest, no trace of which is fonud in Humer. The only Durians known in Homer are those that the Odyssey (xix. 177) places in Crete. It seems difficult to comect them with the Dorians of Listory.

The eastern shores of the Agean, which the earliest historical records represent to us as the seat of a billiant crvilization, giving way before the adsance of the great military empires (Lydia and afterwards Persia), are almost a blank in Homer's map. 'Clie line of settlenents can be traced in the Catalogue from Crete to Fhodes, and embraces the neighbouring islands of Cos and Calymnes. Tho colonization of Thodes by Tlepolemus is related (II. ii, 661 (ff), and seems to mark the furthest point reached in the Homeric age. Detween lilhodes and the Troal the ouly name is Miletus, and that is still in the hatus of "barbarous speaking" Carians. Even the Cyclades-Naxos, Paros, Melus-are unknown to the Homeric world. The disposition of the Greeks to look to the west for the centres of religious feeling alpears in the mention of Dodona anil the Dodonean Zeus, put in the mouth of the Thessalian Achilles.

To the uorth we find the Thracians, known from the stories of Thamyris the singer (1l. ii. 595), and Lycurgus, the eumy of the young god Dionssus (1l. vi. 130). Ilere the 'Trojan enpiré begins. It dues not appear, however, that the Trojans are thought of as preple of a dillerent language. As this is expressly said of the Canians, and of the Trujan allies who were "summoned from afar," the contrary rather is iuplied regarding Troy itself.

The mixed type of govermont described by Howerconsistiug of a kang gaided ly a ceuncil of clders, and lringing all important resolutions before the assembly of the fighting men-does not seem to have been universal in Indo. Enropean communities, but to have grown up in many dillerent parts of the world under the stress of similar conditions. The king is the commander iu war, and the office probally owed its existence to military necessities, It is not surrounded with any gpecial sacreducss. There wero ruling families, laying clam to divine descunt, frum whon the king was naturally chosen, buit his own fitness is the essence of histitle. The adged Laertes is set aside; the young I'elemachns docsinot succeed as a mater of course. Nor are any. very definite rights attachell to the office. Each taile in the arny before Troy was commanted by its own biag (or kingsi); lut Agamemon was surreme, because he was "more a king" (ßacildeitefos) than any other. The assembly is summoned on all critical occasions, and its approval is the ultimate sanetion. A king there.
fore stands in almost as much need of oratory as of warlike skill and prowess. Even the division of the spuil is not made in the Iliad by Agamemnon, but by "the Acheans" (II. i. 162, 368). The taking of Brisers from Achilles was an arbitrary act, and agamst all rule and custom. The council is more dificult to understand. The "elders" (y'fortes) of the lliud are the same as the subordinate "kings"; they are summoned by Agamemnon to his tent, and form a small counci] of nine or ten persons. In Troy
 Priam, and are men past the military age. So in Ithaca there are elders who have not gone to Troy with the army. It wothl seem ticrefore that the meeting in Agamemmons tent ras only a copy or adaptation of the trie constitutional "council of elders," which indeed was essentially unfitted for the purposes of military service.

Priesthood in Homer is found in the case of particular temples, where an officer is naturally wanted to take charge of the sacred inclosure and the sacrifices offered within it. It is perhaps an accident that we do not hear of priests in Ithaca. Agameman performs sacrifice himself, not because a priestly character was attached to the kingly office, but simply because he was "master in his own house."

The couception of "law" is foreign to Hemer. The later words for it (vóuos, pirpa) are unknown, and the terms which he uses ($\delta i \kappa \eta$ and $\theta \dot{\epsilon} \mu \mathrm{s}$) mean merely "custom." Judicial functions are in the hands of the elders, who " have to do with suits" (סeка \quad modot), and "uphold judg. ments" (θ є́ μ ortas ϵ ipvaral $)$. On such matters as the compensation in cases of homicide, it is cuident that there were no rules, but merely a feeling, created by use and wont, that the relatives of the slain man should be willing to recept payment. The sense of anger which follows a riola. tion of custom has the name of "Nemesis "-righteous displeasure.

As there is no law in Homer, so there is no morality. That is to say, there are no general principles of action, and no words which indicate that acts have been classified as good or bad, right or wrong. Moral fieling, indeed, existed, and was denoted by "Aides"; bot the numernus meanings of this word-shame, veneration, pity-show how rudimentary the idea was. And when we look to prectice we find that cruel and even treacherous deeds are spoken of without the least sense that they deserve censure. The heroes of Hemer are hardly more moral agents than the giants and enchanters of a fairy tale. ${ }^{1}$

The religious ideas of Homer differ in some impertant points from those of later Greece. The Apollo of the Iliad has the character of a local deity-" ruler of Chryse and goodly Cilla and Tenedns." Ile may be compared with the Clarian and the Lycian god, but he is unlike the Apollo of Dorian times, the "deliverer" and giver of oracles. Again, the worship of Dionysus, and of Deneter and Persephone, is mainly or wholly post-1 1 omeric. The greatest difference, however, lies in the absence of hero-worship from the Homeric order of things. Castor and Polydeuces, for instance, are simply brothers of Ilelen who died before the expedition to Troy (II. iii. 943).

The military tacties of Ilomer belong to the age when the chariot was the principal engine of warfare. Cavalry is unknown, and the lattles ase mainly decided by the prowess of the chiefs. The use of the trumpet is alsn later. It has heen sumposed indeed that the art of riding was known in Homer's own time, because it occurs in comparisons. But the riding which he flescribes (/1. xv. 679) is a mere exhibition of ekill, such as we may see in a motern circus. And thongh he mations the trumpet (//. xwiii. 219),

[^24]there is notbing to show that it was used, as in historical times, to give the signal for the cbarge. The chief iw dustries of Homeric times are those of the carpenter ($\tau \in \kappa \tau \omega \nu$), the worker in leather ($\sigma \times v \tau 0 \tau \dot{\prime} \mu \circ$), the smith ot worker in metal ($\chi^{a \lambda} \times \epsilon \dot{y}$), -whose implements are the hammer and pincers,-and the potter ($\kappa \in р а \mu \neq \dot{s}$); also spinning and wearing, whict were carried on by the womea. The fine arts are represented by sculpture in relief, carving in wood and ivory, embroidery. Statuary is later; it appears to have come into existence in the 7 th century, about the time when casting in metal was invented by Phoecus of Samos. In general, as has been well shown by Mr A. S. Murray," Homeric art does not rise above the stage of decoration, applied to objects in common use; while in point of style it is characterized by a richness and variety of ornament which is in the strongest contrast to the simplicity of the best periods. It is the work, in short, not of artists but of skilled workmen; the ideal artist is "Drdalus," a name which implies miechanical skill and intricate workmanship, not beauty of design. Mr Murray further shows (following Professor Brunn of Munich) that the Greek art of the Homeric period is identical in origin with contemperary Assyrian work. The sculptures on the shield of Achilles, in particular, are quite Assyrian in type; and the same may be said of the work which has the best claim to equal antiguity with the Homeric poems-the lions sculptured in Hat relief over the gate of Mycenæ.

One art of the highest importance remains. The question whether writing was known in the time of Homer was raised in antiquity, and has been debated with especial eagerness ever since the appearance of Wolf's Prolegomena. In this case we bave to consider not merely the indications of the poems, but also the exteral evidence which we possess regarding the use of writing in Greece. This latter kind of evidence is much mere considerable now than it was in Wolf's time. It will be found in a very convenient form in A. Kirchotr's Studien zur Geschichte des griechischen Alphabets (Berlin, 1877).

The oldest known stage of the Greek alphabet appears to be represented by inseriptions of the islands of Thera, Melos, and Crete, which are referred to the 40 th Olympind (620 b.c.). The oldest specimen of a distinctively Ioninn alphaket is the famous inseription of the mereenaries of I'sammetichus, in Ulper Egypt, as to which the only doubt is whether the Psammetichus in question is the first or the secend, and conseguently whether the inscription is to be diated Ol. 40 or O1. 47. Considering that the divergence of two alphabets (like the difference of two dialects) requires both time and familiar use, we may gather from these facts that writing was well known in Greece early ju the 7th century b.c. ${ }^{3}$
The rise of prose composition in the 6th century b.c. las been thought to mark the time when memery was practically superseded by writing as a means of preserving literature,-the earlier use of letters being confined to short documenta, such as lists of names, treatics, laws, iec. This conclusion, however, is by no means necessary. It may be that down to comparntively late times poetry was not commonly read, but was recited from menory. But the question is - From what time are we to suppuse that the preservation of long poems was generally seenred by the existence of written copies? Now, without counting the Homeric

[^25]poems--which doubtless had oxceptional adrantages in their fame and popularity-we find a body of literature dating from the 8 th contury b.c. to which the theory of oral transmission is wholly inapplieable. In the Trojan cycle alone we know of the two cpies of Arctinus, the Little Iliad of Lesches, the Cypria, the Nostoi. The Theban cycle is represented by the Thebaid (which Callintis, who was of the 7th century, ascribed to Hamer) and the Epigoni. Other ancient epies-ancient enough to have passed under the name of Humer-are the Taking of Gechalia, and the Phocaïs. Again, there are the numerous works attributed to Hesiod and other paets of the didactic and the quasihistorical sehouls,-Eumelus of Corinth, Cinrethon of Sparta, Agias of Trœzen, and many more. The preservation of this vast mass is not explained by auy of the various considerations which have been bronght to bear on the Homeric poems-national interest, families of rhapsodists, public recitation, dc. It ean only be attributed to writing, which must therefore have been in use for two centuries or more before there was any considerable prose literature. Nor is this in itself improbable. On the contrary, when we see how gradual aud tentative progress is, and how great is the influence of an established literary form, re must feel it to be probable that the art of writing had been applied to the existing kinds of literature loug before it led to the creation of a new type.

The further question, whether the Jliced and Odyssey were originally written, is much more difficult. External evidence does not reach back so far, and the internal evidence is curiously indecisive. The only passage which can be interpreted as a reference to writing oecurs in the ftury of Bellerophon, told by Glaucus in the sisth book of the Iliad. Protus, king of Corinth, sent Bellerophon to his father-in-law the king of Lyeia, and gave him " baveful tokens, scratching on a folded tablet many spirit-destroying things, and bade him show this to his father-in-law, that he might perish." The king of Lycia asked duly (on the tenth day from the guest's coming) for a token (yipee $\sigma \hat{\eta} \mu a$ iś $\sigma \theta a i$), and then knew what Proetus wished to be done. ${ }^{1}$ In this account there is nothing to show exactly how the message of Prœutus was expressed. The use of writing for the purpose of the taken between "guest-fritmis" (lessera hosputalis) is certainly very ancient. Mommsen (Rom. Forsch. i. p. 338 If.) aptly compares the use in treaties, which are the oldest species of public documents. But we may suppose that tokens of some kind-like the marks which the Greek chiefs make on the lots (Il. vii. 175 If.) were in use before writing was known. In any system of aigns there were doubtless means of recommending a friend, or giving warning of the presence of an enemy. There is no dialiculty, therefore, in understanding the message of Pruetns without alphabetical writmg. But, on the uther hand, there is no reason for-so understanding it.

If the language of Homer is 80 ambiguous where tho use of writing would naturally be mentioned, we cannot expect to find more decisive referenecs clsewhere. Arguments have been founded upan the descriptions of the blind singers in the Odyssey, with their songs inspired directly by the Muse ; upon the appeals of the poct to the Muses, especially fil such a place as the opening of the Catalogue: upoo the Catalogue itself; which is a kind of historical document put into verse to help the memory; upon the shipowner in the Odyssey, who has "a good momory for his cargo," \&c. It may be answered, however, in the first place, that much of this is traditional, handed down from the time when all poctry was unwritten, and in the second

[^26]place that the furm of poetry is determined by the manner in which it is used,-tho recitation or performance, if wo may give a wide meaning to that term,-not by the mumner in which it is composed or preserved. And the "performance " of epic poetry still depended upon the power of memory long after written copies were in existence. In short, it is one thing to recognize that a literature is essentially oral in its form, characteristic of an age which was one of hearing rather than of reading, and quite another to loold that the same literature was preserved entirely by oral transmission. And finally, if writing was used in Homeric times, the absence of all mention of it may be connected with the peculiar silence-impnsed doubtless by the tradition of his art-which the poet observes regarding himself and his circumstanees.

The result of these various considerations seems to be that the age which we may call the Homeric-the age which is brought before us in vivid outlines in the Iliad and Olyssey-lies beyond the carliest point to which history enables us to penetrate. And so far as we can draw any conclusion as to the author (or authors) of the two poems, it is that the whale debate between the cities of Eolis and Ionia was wide of the mark. The author of the Iliad, at least; was evidently a European Greek who lived before. the colonization of Asia Minor; and the claims of tise Asiatic cities mean no more than that in the days of theis prosperity these were the chief seats of the fame of Homer. ${ }^{2}$

This is perhaps the place to consider whether the poems are to be regarded as possessing in any degree the character of historical record. The question is one which in the absence of satisfactory criteria will generally be dceided by taste and predilection. A few suggestions, however, may be made.

1. The events of the Iliad take place in a real locality, the general features of which are kept steadily in view. There is no douht about Sigeum and Rhocteum, or the rivers Scamander and Simois, or the islands Imbros, Lemnos, and Tenedos. It is at leost remarkable that a legend of the national interest of the "tale of Troy" should be so definitely localized, and that in a district which uas never famons as a seat of Greck population.
2. The discoveries of Schliemann prove that the Homeric Troy (which can hardly be other than Hissarlik, sce Trov) was an ancient seat of pre-Hellence population. This circumstance Ierhaprs adds something to the probability that the legend was founded on fact.
3. The story of the Iliad is singularly frce from the exaggerated and marvellous character which belongs to most legends. The apple of discord, the arrows of Philoctetes, the invuluerability of Achilles, und similar fancies, are the additions of later paets. This sobricty, however, belongs not to the whole Miad, but to the events and characters of the war. Such figures as Bellerophon, Niobe, the Amazons, which are thought of as traditions from an carlicr gencristion, show the marvellous clement at work.
4. Certain persons and events in the stary have a distinctly mythical stamp. Helen is a tigure of this kind. There was another story aecording to which she was carried off by Thescus, and recovered by her brothers the Dioscuri. There are even traces of a third version, in which the Messenian twins, Idas and Lyacens, appear.
5. The analogy of the French epic, the Fhansona de Fotand, favours the belief that there was some nuclens of fact. The defent of Roncevaux was really suffered by a part of Charlemague's arny. lint the Saracen army is purely mythical, the true cormy having been the Gascons. Thus the element of fact is founl in the phace where the battle was fought, and the name of the great empicror. If similarly we leave, as historical, the plain of 7 loy , and the namo Aganacmona, we shall perliaps not be far wrong.
(2) The dialect of Homer is properly to be called Old Ionie: that is to say, it is the dialect of whieh the New Ionic of Herodatus and the Attie are varieties, but it is in a much eartier stage of development. The proof of this proposition is to be obtained chielly by eomparing the grammatical formation and the syntax of Homer with those of Attic. The comparison of the vocabulary is in the nature of things less conclusive on the question of date. It would be impossible to give the evidence in full without writing a Homerie grammar, but a few specimens may be of interest.
[^27]1. "The first aorist in Greek beng a "weak" tense, i.e., Jormed by a suffix ($\sigma a \bar{a}$), whereas the secoad aorist is a "strong" tense, distinguished by the form of the root-syllable, we expect to tind a constant tendency to diminish the number of second aorists in use. No new second aorists, we nay be sure, were formed any more than new "strong" tenses, such as came or sang, can be formed in English. Now in Homer there are upwards of 80 second aorists (not reckoning aorists of "Verbs in " μ," such as $\bar{\epsilon} \sigma \tau \eta \nu$, ${ }^{〔} \beta \eta \nu$), whereas in all Attic prose not more than 30 are found. In this point therefore the llomeric language is manifestly older. In Attic poets, it is true, the number of such aorists is mach larger than in prose. But here again we find that they bear witness to Homer. Of the poetical norists in Attic the larger part are also Homeric. Others are not really Attic at all, but borrowed from earlier Eolic aad Doric poetry. It is plain, in short, that the later poetical vocabulary was separated from that of prose mainly by the forms which the influence of Homer had saved from being forgottea.
2. While the whole class of "strong" aorists diminished, certain maller groups in the class disappeared altogether. Thus we find in Homer-
(r.) The second aorist middle without the "thematic" \in or o: as

(b.) The aorist formed by redoplication: as δ esacy, taught; גeגаß́foga, to scizc. These constitute a distiact formation, generally with a " causative." meaning ; the solitary Attic specimen is syarov.
3. Another "exception," which is really a survival from a former rule, is seen in the short ayllable of the plural of oifa (Y $\sigma \mu \in \nu$, in Homer tō- $\mathcal{V} \nu$, Yote, \&c.). Other examples occur in Homer, both in the indicative and in the participle, as ápmpás, fem. ápăpvia; sa $\mu \notin \mu \kappa v i a, ~ i \delta v i a, ~ \& c$.$) . But this variation of the stem in different$ parts of a single tense is exactly one of the complexities from which language is ever striving to free itself; and accordingly in Attic it has all but disappeared.
4. It had long been known that the subjunctive in Homer aften takes a short vowel (e.g., in the plural, -o $\mu \in \nu,-\in \tau \epsilon$ instead of -w $\mu \in \nu$, $\cdot \eta \tau \epsilon$, and in the Mid. -opab, \&c, instead of $-\omega \mu a, \& c$.). This was generally said to be doue by "poetic licence" or metri gratia. In fact, however, the Homeric subjunctive is almost quite "regular," though the rule which it obefs is a different one from the Attic. It may be summed up by saying that the subjunctive takes ω or η when the indicative has oo ar ϵ, and not otherwise. Thus Homer has $t-\mu \in \nu$, wo go, $\gamma-\sigma-\mu \in \nu$, lel us go. The later $Y-\omega-\mu \in \nu$ was at first a solecism, an attempt to conjugate a "verb in μ " like the "verbs in ω." It will be evident that under this rule the perfect and first norist subjunctive should always take a short vowel; and this accoulingly is the case, with very few exceptions.
5. The article $\left(\delta, \frac{\eta}{\eta}, \tau \delta\right)$ in Homer is chiclly used as an independent pronoun (he, she $i()$, a use which in Attic appears only in a few combinations(such as $\delta \mu \in ย . . . \delta \delta \epsilon^{\prime}$, the one... the other). This dilfercnce is parallel to the relation between the Latin ille and the article of the Romance languages.
6. The prepositions offer several points of comparison. What the grammariuns called "tmesis," tho separation of the preposition from the verb with which it is compoundel, is peculiar to Homer. The true account of the matter is that in Homer tho place of the preposition is not rigidly fixed, as if was afterwards. Again "with" is in Homer σ óv (with the dative), in Attic prose $\mu \in \tau d$ with the genitive. Ilere Attic poctry is intermediate; the use of $\sigma v y$ is retained as a picce of poetical tradition.
7. In addition to the particle av, Homer lias another, кev, hardly distinguistable in meaning. The llomeric uses of $\not \approx \nu$ and $\kappa \in \nu$ are different in screral respects from the Attic, the general result being that the Ilomeric syntax is more clastic. Thus avand $\kappa \in \nu$ are used in Homer with tho future, and with the subjunctive in simple sentences (oivk à τ ct xpalop η, shall nos avail thee). Again in clauses introduced by the. relative, or by ϵi, if, the subjuactive is found both with and without \& ν or wev; whereas in Attic (except in a few poctical instances) av is ulways found (ós $\langle v$, \&d v). And yet the Ilomeric fyatax is porfectly definite and jrecise. Ilomer uses no constructions loosely or without corresponding differences of meaning. Ilis rules aro equally atrict with those of the liter langusge, but they are not the same rules. And they differ chiefly in this, that the less common combinations of the carlicr juriod were disused altogether in the later.
8. In tho vocabulary the most striking differenco is that many words appenr from the metre to havo contained a sound which they ufterwardy lost, viz., that which is writton in some Greck alphatets
 ral many others most havo becil writt'n nt one time favak, fáron, fipgav, fitas. Thiy lecter, however, died out earlier in lonic tion in hosest dialects, and there is no proof that the lomeric peoms wero cucr written with it.

The foints that have heen mentioued, to which many others might be added, make it clear that the lloneric and Attic dialects are separated by differences which alfect the -Holo strueture of tho language, and requiro a considerablo
time for their development. . At the same time there is hardly one of these differences which caunot be aecounted for by the natural growth of the language. It has been thought indeed that the Homeric dialect was a mixed one, containing Folic and even Doric forms, but the proof of this is scanty and doubtful. There are doubtless many Homeric fornis which were unkoown to the later Ionic avd Attic, and which are found in Eolic or other dialects. In general, however, these are older forms, which must have existed in Ionic at one time, and may very well have belonged to the Ionic of Homer's time. So too the digamma is called "Æolic" by grammarians, and is found on Æolic and Doric inscriptions. But the letter was one of the original alphabet, and was retained universally as a numeral. It can only have fallen into disuse by degrees, as the sound which it denoted ceased to be pronouneed. The fact that there are so many traces of it in Homer is a strong proof of the antiquity of the poems, but no proof of admixture with Æolic.

There is one sense, however, in which an admixture of dialects may be recognized. It is clear that the variety of forms in Homer is too great for any actual spoken dialect. To take a siagle instance : it is impossible that the genitives in oot and in ov should both have been in everyday use together. The form in -oto must have been poetical or literary, like our-eth of the third persou singular, or like ye for you, whoso for whoever, and the like. The origin of such double forms is not far to seek. The effect of dialect on style was always recognized in Greece, and the dialect which had once been adopted by a particular kind of poetry was ever afterwards adhered to. The Epic of Homer was doubtless formed originally from a spoken variety of Ionie, but became literary and conventional with time. It is Homer's own testimony that all the Greelss spoke one langaage ($l l$. iv. 437),-that is to say, that they understood one aoother, in epite of the joevitable local differences. In these circumstances experience shows that some one dialeet gains a literary supremacy to whieh the whole nation yields. So Tuscan beeane the type of Italian, and Anglian of English. But as soon as the dialect is adopted, it begias to diverge from the colloquial form. Just as modern poetical Italian uses many older grammatical forms peculiar to iteclf, so the language of poetry, even in Homeric times, had formed a deposit (so to speak) of archaic grammar. There were doubtless poets before Homer, as well as brave men hefore Agameminon; and indeed the formation of a conventional dialeet such as the Homeric must have beeu the work of several gencrations.

The uso of Ionic (instead of Nolic) by the Bœotian poet Hesiod, in a kind of poetry which was not of the Homeric type, texds to confirm the conclusion that the literary asceadeney of Ionic was anterior to the Iliad and Odyssey. It follows that the choice of Ionic as the language of the Homeric poens is no argument for the Ionian birth of their author (or authors).
The argument for the antiquity of Homer fouuded upon the traces of Homeric influence in later peetry cannot be profitably discussed without going inta details which would bo out of place hero. When a phrmse or idea is found in Homer, and again in a later author, wo havo to iaquire whether it may not belong to the common stock from which the poet of the Jliad or Odyssey hiniself drow, and then whether it proves anything as to the antiquity of the poems in their present form. Hence it is seldum that auch consideratious yield a satisfactory proof. ${ }^{1}$ The caso is

1 This is not the jhace to notiee the argument which has been founded upon the differences between Homer nusd later poets. It may ho observed, however, that, while agreement between pocts widely mparated by timo calls for notico and oxplanation, differenco ia only what wo expect.
sumewhat diffcrent with the arguments derived from the early epic poems called "cyclic." The fragments of these poems, indeed, are so scanty that we cannot compare them with Homer in respect of style or language, but enough is known of their subjects to indicate that they presuppose an Iliad and Odyssey of somelhing like their present form nod extent. The Lhthopes of Arctinus (who was of the Sth century) took up the story of the Trojan war at the point where the lliad leaves it, and similarly the Telegoneia of Eugammon (fl. 568 b.c.) is a mere continuation of the Odyssey.

Study of Honer. - The 1fomerir: Qucstion. -The critical study of Homer began in Grecee ahmost wath the berinntig of prose writing. "fhe first oame is that ol Thengenes of Rhegram, contenporaty of Cambyses ($5: 25 \mathrm{~B} . \mathrm{C}$.), who is satll to have founded the "new granmar" (the older "gramnary" bemer the aut of reading and writing), and to have been the mventor of the allegorical miterpetations by wheh it was sought to reconcile the Homene mythology with the morality and speculative udeas of the oth century p.c. Tho same attitude in the "ancient quan rel of proctry and phalosuphy" was soon afterwards taken by Alaxagoras; and after him by his pupil Betrodorus of Lampsucus, who explained away all the gots, and even the heroes, as elementary substances and forees (A gomennon as the upper arr, \&c.)

The next wraters on llomer of the "grammatical" type were Stesimbrotns of Thaso: (contemporary with Cmonf and Antimachus of Colophon, homself an epic poet of mark. The Thcbered of Antinachus, however, was not popalar, and seems to have leven a great storehouse of my tholugical learnurer rather than a boetn of the Homerie sthool.

Other names of the pre.Sorratic and Socrate times are mentioned by Xenophon, Plato, and Arstotle. These were the "ancient Homeries" (oi kpxaio: Ounpıкoi), who busied themselves much with the hiddea neaniars of Homer; of whom Anstotle says, with his profound insight, that they see the small likenesses and ovenook the great ones (Mctaph., xii.).

The text of Homer must have attracted some attention when Antimachus came to be kuown as the "correcter" (δ oopowrins) of a distiact edition (кк反оors). Aristotle is sand himself to have made n recension for the use of Slexander the Great. His remarks on Homer (in the Poctics and elsewhere) show that he had made a enceful study of the structure and leading ideas of the pooms. but do not throw much light on the text.

The real work of criticism berame possible only when great collections of manuscripts began to be made by the prinecs of the generation after Alexander, and when men of learning were employed to sift and arrange these treasures. In this way the gleat Alexandrian school of Homeric criticism began with Zenodotns, the first chacf of the Muscum, abd was contunued by Aristophanes and Aristarchus. In Aristarchus aocient philology culminated, as philosophy had done in Socrates. All earlier learning either passed into his writings, or was lost; all subseruent research turned uoon his critical and grammatical work.

The means of forming a juigment of the critucism of Aristarchus are scanty. The literary form which preserval the works of the great hitorians was unfortuuately wanting, or was not sulliciently valued, in the case of the grammarians. Abmdements and newer treatises soon drove out the writings of Aristarchis. antul other founders of the semence. Morcover, a recension could not be rejuroduced withont new errors soon creeping in. Thas we fiml that Didymus, writing in the tirnu of Cicero, does not quote the readmers of Aristarchus as we should quotu a textas receptus. Indeed, the object of his work secuss to have been to determine what those readings were. Enough, however, remans to show that Arstarchus had a clear notion of the chef problems of philology (except perhaps those conceraing etymology). He saw, for example, that it was not enough to find a meaning for the archaie words (the $\gamma \lambda \bar{\omega} \sigma \sigma a 1$, as they were called), but that common words (such as movos, $q \delta \beta_{0}$) had their Homerie uses, which were to be gathered by dhe induction. In the same spirit he looked upon the ideas and beliefs of llomer as a consistent. whole, which might be determmed from the evidenco of the poems. He noticed esjecially the diflerenee between the stories known to Homer and those given by later poots, and made many aomparisons between Homoric and later mmmers, arts, and institutions. Again, he was scosible of the paramount value of manuscript autlority, and appears to have introduced no reallings from mere conjecture. The frequeot mention in the Scholia of "better" and "inferior" texts nayy inlicate a classification made by bim. Jis use of the "olelus" to distinguish sparious verses, which made so large a part of his fame in antiquity, has rather told against him with modern acholars.' It is chuctly interesting as a proof of the confusion in which the text must have been before the

* See the chapter iu Cobet's Jiscellanea Critica, pp. 220-239.

Alexambian tines ; for it is impossible to understand the readinese of dristanchus to suspect the getuineness of verses unless the state of the copies liad pinited to the existence of numerous interpolations. On this matter, however, we aro left to mere conjecture. 'The quota. tions from Homer in pre- Alexandrian authors we so inaceurate an to thow litele or no light on the text which they used. It is at least clear that our manuseripts are mueh mone tastwothy thon the recollection of these ancient writers. ${ }^{\text {a }}$

Our knowledge of Alexandian criticism is derived almost wholly from a single document, the famous Iliad of the libiuy wi st Maik in Venice (Codex Veactus, or Ver. A), first published by the French scholar Villoison in 1788 (Scholig antiquissima ad homeri Itadem). This manuseript, written in tho loth centiry, contains (1) the best text of the Haut, (2) the critical mrarks of Aristarchus, and (3) Sclolna, consisting manly of extracts from four grammatical works, viz., Didymas (contemporary of Cicero) on the weension of Aristarelnes, Aristonicus (II. 24 bec) on the critical marks of Aristarelms, Herodian (11. 16 A.n.) on the acrentenation, and Niemor (11. 127 A.D.) on the punctuation, of the Iliad.

These extracts present themselvey in two distinct forms. One serges of seholit is "ritten in the usual way, on a mounin reserver for the purpose. 'Ihe other consists of briet scholia, written in very small chancters (but of the same period) on the narow: space luft vaeant round the text. Occasionally a seholium of this hinal kives tite substance of one of the longer extracts; but as a tule they ate distinct. It would secm, therefore, that after the mammenipt was fimshed the "margmal selfolia" were dincovered to be ex. temely defective, and a new series of extracts wiss ndeled in a form wheh zoterfered as little as pussible with the allicarance of tho book. ${ }^{3}$

The mention of the Venctian Scholia leals us at once to the Ilomeric coutroversy; for the immontal froleyoment of Wolf appeared a few years after Villoisons phblication, and was funmed in gient masure ujon the fresh and abondat materials whel it furmshel. Not that the "Wolfian theory" of the Jlonseric poems is directly supported by anything in the Scholia; the immediate ohject of the Prolegomere was not to lut forward that theory; but to eluchate the new and renakable conditions under whicle the text of Honoer lad to be settled, viz., the diseovery of an apmarates criticus of the et century b.c. The questions regardato the original structure and early hastory of the poems were mised (loreced apon ham, it may be sald) by the critical jroblem; but they war really ongmated by fuets and ideas of a wholly dilferent onder:

The 1 sth century, in which the spinit of elassical correctness han the most absolute dominion, did not conte to an end before a powerful reaction set in, which alfected not only litenature but also speculation and polities. In this movement the leading ideas were conentrated in the word Nature. The matural condition of society, natural law, natural religion, the morality of fecling, the poetry of nature, gained a singular holl, first on the English philosopherw from Hume onwards, aod then (through lioussean chielly) on the general drift of thought and action in Europr. In literatire tho elfect of these ideas was to set op a false oprosition between naturo and art. As political writers imagined a pattiarchal innocence prior to codes of law, so then of letters songht iu popular unwhitteo poctiy the freshness and smplieity which were wating in the prevalinis styles. The blind minstrel was the counterpart of the noble savare. The supposed discovery of the proms of Ussian fell In with this train of sentment, and created an enthusiasm for the stady of canly popular poetry. Homer was soon drawn into the circle of inquiry. Blackwell (Professor of Greek at Aberdech) had inssted, in a houk published in 1735 , on the "naturalucss" of $110 \operatorname{ser}$; and Wood (Essey on the Oraginal Genus of Hoater, London, 1769) was the first who mantaned that Homer composed without the help of writing,
${ }^{2}$ For example, Eschmes says that the words ϕ njun δ ' is orpardy Fine occur repeatedly in the lliced, wheress they never occur there. llad Aschines havel two centuries earlicr, how deensne this wond have seefued aganst the antiquaty of "our Homer"" As* it is, it only proves the weakness of all such arguments. On the Homeric quotations in Aristotle, see Cope's edhtion of Anstotle's Iihetoric, vul. iii ${ }_{3}$ P. 48.
${ }^{3}$ The exrstence of two grougs of the Venctian Scholia was fint noticel by Professor La Finche, and they were first distmgtushed in the cultion of 1 V . Dindorf (Oxforl, 1875). There is also a group of Schula, chittly excgetical, a coltection of whoh was publishell hy Villoison from a secund Vetetian MS. whs chatuon of 1788 , and has been agan cdited by W. Dimions (Oxforl, 1877). The most important collecton of this group is contantud in the Codec Tunenleamus of the Brotish Nascum, wheh is shll unedited, though a MS. probably eopuel from it, the Coder l'utorsumes at Munulh, was nsed by Bekker for has edition of the Schola (Eetin, 1895). The tast commentary of Eustathon (of the 1 coth centuis) maiks a third stage in the progress of ancient llomeac learviag.

- Prolegomena ad Homernen, sate deoperwil Tiomericornin prised .. genutna forma varisque mutationibns et prubibile rationc enierdant. ocrapit Frad. Aup Weltius. Volunca
and aupporied his thesis oy ancieat suthority, and also by the parallel of Ossian. Both these books were translated into German, and their idcas passed into the popular philosophy of the day. Everything in short was ripe for the reception of a book that brought together, with masterly ease and vigonr, the old and the new Homeric learning, and drew from it the bistorical prouf that Homer was no single poet, writing according to art and iule, but a name which atood for a golden age of the true spontaneous poctry of renius and nature.

The part of the Prolegomena which deals with the original form of the Homeric poems occupies pp. xl.-clx. (in the frsit edition). Wolf showa how the question of the date of writing incets us on the threahold of the textual criticism of Homer, and accordingly enters into a full discussion, first of the external evidence, then of the indications furnished by the poems. Having satisfed himgelf that writing was unkdown to Homer, he is led to consider the real mude of transmission, and finds this in the Rhapsodists, of whom the Homeridee were an hereditary school. And then comes the conclnsion to which all this has been tending: "the die is cast"- the Iliad and Odyssey cannot hase been composed in the form in which we know them without the aid of writing. They must therefore have been, as Bentley had said, "a sequel of songs and rhapsodies," "loose songs not collected together in the form of an epic poem till abont 500 years after." This conclusion be then supports by the character attributed to the "Cyclic" poems (whose want of unty ahowed that the structure of the Iliad and Odyssey must be the work of a later time), by one or two indications of imperfect connexlon, and by the doubts of ancient critics as to the genuineness of certain parts. These, however, are matters of conjecture. "His. toria loquitur." The voice of antiquity is unanimous in declar. ing that "Pisistratus first committed the poems of Homer to writing, and rednced them to the order in which we now read them.

Tha appeal of Wolf to the "voice of all antiquity" is by no means berna out by the different statements on thie subject. According to Heraclides Ponticus (pupil of Plato), the poetry of Homer was first brought to the Peloponnesus by Lycurgus, who obtained it from the descendants of Creophylus (Polit., fr. 2). Plutarch in his Lifc of Lycurgise (c. 4) repeats this story, with the addition that there was nlready a faint report of the peems in Greece, and that certain detached fragments were in the possession of a few persons
 $\left.\delta \leqslant a \notin p \not \mu \epsilon_{\nu} \nu s\right)$. Again, the Platonic dialogne Hipparchus (which though not genuine is probably earlier than the Alexandrian times) asscrts that Hipparchus, sod of Pisistratus, first brought the poems to Athens, and obliged the rhapsodists at the Panathenea to follow the order of the text, "as they still do," instead of reciting pertions chosen at will. The earliest authority for attribating any work of the kind to Pisistratus is the woll known passage of Cicere (De Orat., 3, 34: "Quis doctior eisdem temporibus illis, aut cujns eloquentia littoris instructior fuisse traditur quam lisistrati? qui primus Homeri libros, confusos antea, sic disposuisse dicitur ot nonc halemus"). To the same effect Pausanias (vii. p. 594) says that the chango of the name Donoessa to Gonocssa (in M. ii. 573) was theught to have been made by "Pisistratus or one of his compan. jons,' when ho collected the loems, which were then in a fragmen-
 \$0porse). Finally, Diogenes Laertius (i. 5i) says that Solon made a law that the poens should be recited with the help of a prompter (ek ino $\beta_{0} \lambda \bar{\eta} s$), so that each rhapsodist should begin where the last left off; and he argnes from this that Solod did more than Pisistratus to make Homer known. The argument is directed against a certain Dieuchidas of Megara, who sypears to have maintained that the verses about Athens in the Cutalogne (Il. ii. 546-556) wore interpolated by Pisistratus. The passage is unfortunately corrupt, but it is at least clear that in the time of Solon, accord. ing to Diogenes, there ware conplete copieg of the peems, such ns could be nsed to control the recitations. Hence the account of Diogenes is quite irreconcilablo with the notices on which Wolf relied.

It is needless to examine thr attempts which have been made to luarmonize these accounts. Such attemptu usually start with the tacit nesumption that each of the persons resecerned-Lycurgus,
 text of llomer, or for the ragulation of the thapsodists. lint we have first to consider whether any of the necounts come to us on such evidence that we, are bond to comsider thern as containing a markelys of truth.

In the first place, the gtatement that lycurgus olvained tho poems from descembints of Creophylus must ho wimited to be pirely mythical: but if we reject it, have we nny better reason for believing the parallel assertion in the Platonic Jipmerchus? It is true that llippirchas is ualoubtedly a real person. On the other lamel it is uvilent that the l'isistratibe soon becime the siblifect of many fables. Thucyblidu notices as a popular mistake the belief that Hipparchus whe the "hest son of l'isistratu, and that consugumaty he was tha relgainz "tyrant" when he was killed by Aristogiton. The
 fore be regarded as representing (at best) mere lacal tradition. He may reasonably go further, nel see in this part of the dialogue o picce of historical romauce, designed to put the "tyrant" family in a farourable light, as patrons of literature and learning.

Again, the account of the Hipparchus is codtradicted by Diogenes Laertius, who says that Solon provided for the due recitation of the Homenc poems. The only good anthorities as to this pointare the orators Lycurrus and lsocrates, who mention the law prescribing the recitation, but do mot say when or by whom it was enacted. 'lhe inference seuma fair one, that the suthor of the law was really unknown.

W'ith repard to the statements which attribute some work in connexnon with Homer to Pisistratus, it was noticed by Wolf that Cicero, Parsanins, and the others who mentiea the matter do so nearly in the same words, and therefore a pear to have drawn lirom a common sonrce. This source was in all probability an epigram quoted in two of the short lives of Homer, and there said to have been inscribed on the statnc of Pasistratus at Athens. In it Pisistratus is made to say of himsclf that he "collected Homer, who was formerly sung
 for the golden poet was a crtizen of ours, since we Atheniaos founded Smyra." The other statements repeat these words with various minor additions, chicfly intended to explain how the poems had been reduced to this fragmentary condition, and how Pisistratus set to work to restore them. Thus all the authority for the work of Pisistratus "reduces itself to the testimony of \& singie enonymous. inscription" (Nutzhorn, p. 40). Now, what is the valre of that testimony? It is impossible of conrse to believe that a siatice of Pisistratus was set up at Atheus in the time of the free republic. The epigram is almost certainly a mere literary exercise. And what exactly does it say? Only that Homer was recitci in fragments by the rhapsodists, and that these partial recitations were made into a continuous whole by Pisistratus; which does not necessarily mean more than that Pisistratus did what other autherities ascribe to Solon and Hipparchus, viz., regulated the recitation.
Agaiust the theory which sees in Pisistratus the author of the first complete text of Homer wo bave to set the absolute silence of Herodetus, Thucydides, tho orators, and the Alexandrian grammarians. And it can hardly be thought that their silence is accidental. Herodotus and Thucydides seem to tell us all that they know of Pisistratus. The órators Lycurgus and Isocrates mako o great deal of the recitation of Homer at the Panathenea, but know nothing of the peems having beed collected and arranged at Athens. a fact which would have redounded still more to the hodeur of the city. Finally, the Ścholia of the Ven. A contain no reference or allusion to the story of Pisistratua. As these Scholia are derived in substance from the writings of Aristarchns, it seems impossible to helieve that the stery was koown to him. The circumstance that it is referred to in the later Scholia Victoriana, and in Eustathius, gives additionnl weight to this argument.

The result of these considerations seems to be that nothing rests on geod evidence beyond the fact that Homer was recited by law at the Panathenaic festival. The rest of the stery is probably the result of gradual expansion and accretion. It was inevitabla that later writers should speculate abeut the antlership of such a law. aud that it should be attributed with more or less confidence to Solon or Pisistratus or Hipparchus. The choice monld be determoned in great measure by political feeling. It is probably not an accident that Diouchidas, who attributed so much te Pisistratus, was a Degarian. The suthor of the Hipporchus is evidently influenced by the anti-democratical tendencies in which he only followed Plato. "In the times to which the story of Pisiatratus can he traced, the 1st century n.c., the substitution of the "tyrant" for the legislator was extremely natural. It was equally matural that the impertance of his work as regards the text of Homer shonld be exaggerated. The spleadid patronage of letters by tha successors of Alexander, and especially the great institutions xhich had been founded at Alexandria and I'ergamus, had mado an impression on the imagination of learned men which was reflectod in the current notions of the ancient despots. It may oven be suspected thint aocedotes in praise of Pisistratus and Hipparchus vere a delicato form of thattery ndurcssed to the relgning Ptolcmy. Under these influences the older stories of Lycurgus bringing llomer to tho I'doponnesus, and Solou providing for tho recitation at Athens, were thrown inte the ahade.

In the later Byzantine times it was belicred thant Pisistratus was sided by seventy grammarinns, of whom Zenodetus and Aristarches wero the clicf. The great Alexandriat grammaninns hat becomo firures in n new mythology. It is trno that Tretzes, one of tho wfiters from whom we huve this story, gives o better version, accombing to which Pisistmtus employid four men, viz., Onom:critus. Zopyrus of Jemahen, Orphens of Croton, and one whose name is compt (writton emiкójкu入os). Many geholars (among them litsckil) accept this account as probnhle. Ict It resta upon wo better evidence than the other.

The efect of the Prelegomera was so ovel whelnung that, althongb.
a few protests were made at the time, the true Homeric coutroversy did not begin till after the death of Wolf (1824). llis speculations were tharanghly in harmony with the deas and sentiment of the time, and his historical arguments, especially his long array of entimonies. to the work ol Pisistratus, were hardly challenged.

The first considerable antagonist of the Wolfinn school nas G. W. Nitzsch, whose writings cover the space 182S-1962, and deal with every side of the controversy. In the carlier pari of his Meletcmuta (1830) he took up the question of written or anwritten literature, on which Wolf's whole argument turned, and showed that tho art of writing must be anterior to Pisistratus. In the Jater part of the same series of discussions (1837), and in his chief work (Dic sayenpoesie der Gricchen, 1852), be investigated the structure of the llancric pocms, and their relation to the other epies of the Trojan cycle. These epics hat meanwhile been made the subject of a work which for exhanstive learning and delicacy of artistic urcepition has few rivals in the history of philology, the Epic Cycle of F. G. Welcker. The confusion which previous schalars had mada between the ancient post-Homeric pocts (Arctinus, lusches, \&e.) and the learned mythological writers (such as the "scriptar cychicus" of Harace) was first cleared up by Weleker. Woli had argued that if the cyclic writers had known the Iliad and Otyssey which we possess, they would have imitated the unity of structure which distinguishes these two poems. The' result of Welcker's labours was to show that the Homeric pooms had inAluencell both the form and the substance of epic poetry.

In this way there arose a conservative school who admitted more or loss freely the absorption af pre-existing lays in the formation of the Iliad and Odysscy, and also the existence of considerable inter. polations, but assigned the main work of formation to prehistoric times, and to the genius of a great poet. Whether the two epics wera by tho same author remained an open question; the tendency of this group of scholars was decidedly towards separation. Regarding the use of writing toe they were not unanimous. K. O. Biiller, for instance, maintained the view of Walf on this point, while ho atrenuously combated the inference which Wolf drew from it.

The Prologomena bare on the title page the words "Volumen 1." ; but no second volume ever appeared, nor was any attempt made by Wolf himself to carry his theory further. The first important steps in that direction were taken Iy Gottfried Hermann, chiefly in tro dissertations, De interpolationibus Homeri (Leips., 1832), and De itcratis IIomeri (Leins., 1840), called forth by the writings of Nitasch. As the word "interpolation" implies, Hermann did not maintain the hypothesis of a congeries of independent "lays." Feching the difficulty of supposing that all the aucient minstrels sang of the "wrath of Achilles" or the "return of Ulysses" (leaving out even the capture of Troy itself), he was led to assune that two poems of no great compass dealing with these two themes became so famous at an early period as te throw otber parts of the Trojan into the back. groued, and were then cnlarged by successive generations of rhapsodists. Same parts of the Iliad, moreover, seemed to him to be older than the peem on the wrath of Achilles; and thus in addition to the "Homeric" and "post-Homeric" matter he distinguished a "pre-llameric" clement.
The canjectures of Hermann, in which the Wolfian theory found a modified and tentative application, were presently thrown into the shaule by the more trenchant method of Lachmanin, wha (in two papers read to the Beılin Academy in 1837 aud 1841) sought to show that the Iliud was made up of sixteen independent "lays," with varions enlargements and interpolations, all finally reducen to order by Pisistratus. The first book, for instance, cansists of a lay on the anger of Achilles (1-347), and two continuations, the return of Chryseis (430-492) and the scenes in Olympus (348-429, 493-611). The second kinak forms a second lay, but several passages, among them the speech of Ulysses (278-332), are inturpalated. In the third book the scenes in which llelen and Priam take part (including the making of the trucc) are pronounced to be interpolations; and so on. Regarding the cvidence on which these aweeping results are founded, opinions will vary. The degree of smoothness ar consistency which is to be expected on the hypo. thesis of a single author will be determined by taste rather than argument. The dissection of the first book, for instance, turns partly on a chronolagical inaccuracy which might well escafc the joct as well as his hearers. In examiving such points we are apt to forget that the contradictions by which a stary is shown to be untruc are quite different from those by which a confessedly untrue story would be shawn to be the woik of different authors.

Structure of the Iliad.-The subjeet of the Jliad, as the first line proclaims, is the "anger of Achilles." The manner in which this subject is worked out will appear from the following summary, in which we distinguish (1) the plot, i.e., the story of the quariel, (2) the main course of the war, which forms a sort of underplot, and (3) suberdinnte episodes.

1. Quarrel of Achilles with Agamemnon and the Greek armos -Agamemnon, having been comuclled to give up his prize Chryscis, takes Briscis from Achilles-Thereupon Achilles appeals to bis mother Thetis, who obtains froa Zens a promise that he will give victary to the Projans antil the Greeks pay due honour to her son-Meanwhile dehilles takes no prirt in the war.
Il Agamemmon is persuaded by a dicam sent from Kous to take the field with all his forces.

IIs attempt to test the temper of the army nearly leads to their return. Catalogue of the army.
Trojan muster-Trojan catalogre.
11. Aceting of the armies-Paris challenges MenelausTruce made.
"Teichascapy," Iiclen painting aut to Priam the Greek leaders.
The Iuel-Paris is saved by Aphrodite.
IV. Truce broken by Pandarus.

Advance of thearmies-Battle.
V. Aristeia af Dionede-hiscombat with Aphrodite

V1.
(1-311)
(312-529)
v1l.
vil.

VIII
VII! Battle-The Trojans encarmp on the field.
1X. agamemnon sends an embassy by night, offerng Achilleb restitution and foll amends-Achilles refuses.

Doloneia-Night expedition of Odysseus abd Diomede.
ZI. Aristeia of Agamemnon-he is wounded-Wound. ing of Diomede and Odysseus.
Achilles sends Antilochus to inquire ahont Machaon.
XII. Storming of the wall-the Trojans reacl the ships, XIlI. Zeus ceases to watch the fieh-Paseidou accretly comes to the aid of the Grecks.
XIV. Sleep of Zeus, by the contrivance of Here.
XV. Zeus awakened-Restores the advantage to the T'ro. jans-A jax alone defends the ships.
XV1. Achilles is persuaded to allow Patroelus to take the fiehl. Patroclus drives back the Trojans-kills Sarpedonis himself kulled by Hector.
XVII. Battleforthe body of Patroclus-Aristeia of Menelans.

XVIll. News of the death of Patroclus is brought to AchilleyThetis comes with the Nereids-promises to obtain now armour for him from Ilephestus.

The shield of Achilles described.
XIX. Reconciliation of Achilles-His grief and desire to avenga Patroclus.
XX. The gods come down to the plain-Comhat of Achilles witl Eneas and llector, who escape.
XX1. The Scamander is clooked with slain-rises against The Scamander is clooked with slanit-
Achilles, wha is saved by 1 lephastus.
XX11. Hector alone stands agninst Achilles-his fight round the walls-he is slain.
XXIII.
XXIV.

Burial of Patroclus-Funeral games.
Such is the "action" ($\pi \rho \hat{\alpha} \xi(s)$ which in Aristotle's opinion showed the superiority of Homer to all later cpic poets. But the proof that his scheme was the work of a great poet does not depend merely upon the arlistic unity which excited the wonder of Aristotle. A number of separate "lays" night conceivably be arranged anil conncted by a man of poetical taste in a mamer that would satisfy all requirements. In such a case, however, the connecting passages would be slight and weak. Now, in the Iliad these passages are the finest and most characteristic. The element of connexion and unity is the story of the "wrath of Achilles"; and we have only tu look at the books which give the story of the wrath to see how essential they are. Even if the nimth book is rejected (as Grote proposed), there remain tinc speecles of the first, sixtecnth, and nineteenth books. These speceles form the carlinal points in the action of the lliad-the framework into which everything elso is set; and they have also the best. title to the namo of Homer.
The further question, boweve, remains, - What shnnter barrative piece fulshling the conditions of an inderendent
poem bas Lachmann succeeded in disengaging from the existing Iliad? It must be admitted that when tried by this test his "Jays" generally fail. The "quarrel of the cliefs," the " muster of the army," the "duel of Paris and Menclaus," \&ic., are excellent beginnings, but have no satisfying cenclusion. And the reason is not far to seek. The Ilicl is net a history, ner is it a series of incidents in the history, of the siege. It turns entirely upon a single incident, occupying a few days only. The several episorles of the peem are not so many distinct stories, each with an interest of its own. They are only parts of a single main event. Censequently the type of epic peem which would be produced by an aggregation of shorter lays is not the type which we have in the Iliad. Rather the Iliad is itself a single lay which has grown with the growth of poetical art to the dimensions of an epic.

But the original nucleus and parts of the incidents may be the work of a singlo great poet, and yet other episodes may be of different authorship, wrought inte the structure of the peem in later times. Various theories have been based on this supposition. Grote in particular held that the original poem, which he called the Aclilles, did not include books ii.-vii., ix., x., xxiii., sxiv. Such a view may be defended snmewhat as follows.

Of the books which rolate the events during the absence of Achilles from the Greek ranks (ii.-xv.), the last five are directly related to the maiu action. They deseribe the euccessive steps by which the Greeks are driven baek, first from the plain to the rampart, then to their ships. Moreover three of the chief heroes, Agamemnon, Diomede, and Ulysses are wounded, and this cireumstance, as Lachmann bimself admitterl, is stcadily kept in mind throughout. It is otherwise with the earlier hoeks (especially ii--vii.). The chief incidents in that part of the poem-the panic rush to the ships, the duels of Paris and Menclaus, and of Hector and Ajax, the Aristeia of Diomede-stand in no relation to the mainspring of the poem, the promise made by Zeus to Thetis. It is true that in thic thirteenth and foufteenth books the purpese of Zeus is thwarted for a time by other gods; but in beoks ii.-vii. it is not se much thwarted as ignored. Further, the events follow without suffieient connexion. The truec of tho third book is broken by Pandarns, and Agamemnon passes along the Greck ranks with worls of encouragement, but without a hint of the treachery just committed. The Aristeia of Diomede ends in the midelle of the sisth book; he is uppermost in all thoushts down to ver. 31 I , but from this peint, in the meetings of Mector with Helen and Andromache, and again in the seventh book when Hector challenges the Greek chiefs, his prewess is forgotten. Once more, some of the ineidents scem to belong properly to the beginning of the war. Tho joy of Menelaus on sceing l'aris, Priam's ignorance of the Greck leaders, tho speeches of A gamemnon in his review of the ranks (in book iv.), the building of the wall-nill these are in place after the Greek landing, but hardly in the ninth year of the siege.

On the other hand, it may be saill, the second boek opens with a direct reference to the events of the first, and the mention of Achilles in the spech of Thersites (ii. 939.7%. is sufficient to keep the main comse of events in view. The Catalogue is connected with its duee in the poem by the lines about Achilles (686-69y). When Diomede is at the height of his Aristein llelemes says (I/. vi. 99), "We did not so fear even Achilles." And when in tho third honk I'riam asks Helen abont the Crock captains, or wten in the seventh book nine champins come forward to contend with Hector, the want of the greatest here of nll is sulliciontly felt. If these passages du not belong to tho perioul of the wrath of Achilles, how alo we to account for his concpichens absane?

Further, the want of smootluess and unity which is visible in this part of the Iliad may be duc to other cenuses than difference of date or authorship. A natienal poet such as the author of the Iliad cannet always choose or arrange his matter at his own will. He is bound by the traditions of his art, and by the feelings and expectations of his hearers. The poet who brought tho exploits of Diemede into the Iliad doubtless had his reasons for doing so, which were equally strong whether he was the peet of the Achilleis or a later Homerid or rhapsedist. And if some of the incidents (those of the third book in particular) seem to belong to the beginning of the war, it must be considered that poetically, and to the hearers of the Iliad, the war opens in the third book, and the incidents are of the kind that is required in such a place. The truce makes a pause which heightens the interest of the impending battle; the duel and the scene on the walls are effective in bringing some of the leading eharacters on the stage, and in making us acquainted with the previous history. The stery of Paris and Helen especially, and the general position of affairs in Troy, is put before us in a singularly vivid manner. The book in shert forms se good a prologue to the action of the war that we can bardly be wrong in attributing it to the genius which devised the rest of the Ilind.

The case argainst the remaining books is of a different kind. The niuth and tenth seem like two independent pictures of the night before the great battle of zi.-xvii. Either is enough to fill the space in Homer's canvas; and the suspicion arises (as when two Platonic dialogues bear the same name) that if cither had been genuine, the other would not have come inte existence. If one of the two is to be rejecterl it must be the tenth, which is certainly the less Homeric. It relates a picturesque adventure, cenceived in a vein more approaching that of comedy than any other part of the Iliad. Moreover, the language in several places exhibits traces of post-Homeric date. The ninth beok, on the other hand, was rejected by Grote, chiefly on the grounds that the embassy to Achilles ought to have put an end te the quarrel, and that it is ignored in later passages, especially in the specehes of Achilles (xi. 609 ; xvi. 72, 85). His argument, however, rests on an assumption which we are apt to bring with us to the reading of tho Iliad, but which is not borne out by its language, viz., that there was some definito atenement demanded by Achilles, or due to him according to the custom and sentiment of the time. But in the Ificed tho whole stress is laid on the anger of Achillcs, which can only be satisfed by the defeat and extreme peril of the Greeks. ${ }^{1}$ He is inlluenced by his own feeling, and by nothing else. Accordingly, in the ninth book, when they are still protected by the rampart (seo 3.18 .ff.), he rejeets gifts and fair words alike; in the sixteenth he is moved by tho tears and entreatics of Patroclus, and the sight of the Greek ships on fire ; in the ninetecnth his anger is quenched in grici. But ho makes ne cenditions, cither in rejecting the offers of the embassy or in returning to the Greck arnuy. And this conduct is the result, not only of his fieree and inexorable character, but also (as the silence of Jlomer shows) of tho want of any gencral rules or principles, any code of merality or of henour, which would have required him to act in a different way.

Finally, Grote objected to the two last books that they prolong the action of the Iliad beyond the exigencies of a coherent scheme. Of the two, the twenty-third conld mere easily be spared. In language, and lerhaps in style and manner, it is akin to the tenth; while the twenty-fourth is in the pathetie vein of tho ninth, and like it serves to bring out new aspeets of the character of Achilles.

- On this point seo a paper by frofessor Packad in the Trens. of the A merican L'hiloloyical Asswabion, 18%.

A recent writer. (Dr E. Kammer) has given some strons reasors for doubting the genuineness of the passage in book xx. describing the duel between Achilles and Eaeas ($79-352$). The incident is curtainly very much out of keeping, with the vehement action of that part of the poem, and especially with the moment when Achilles returns to the field, eager to meet Hector and avienge the death of bis friend. The interpolation (if it is one) is probably due to local interests. It contains the well-known prophecy that the cescendants of Eneas are to rule over the Trojans,-pointing to the existence of an Enead dynasty in the Traad. So, too, the legend of Anchises in the Hymn to Aphrodite is evidently local ; and Eneas becomes more prominent in the later epics, espceially the

F: Structure of the Odyssey.- In the Odyssey, as in the Iliad, the events related fall within a short space of time. The difificulty of adapting the long wanderings of Ulysses to a plan of this type is got over by the device-first met with in the Odyssey-of making the hero tell the story of his own adrentures. In this way the action is made to begin almost immediately before the actual return of Ulysses. Up to the time when he reaches Ithacs it moves on three distinct scenes: we follow the fortunes of Ulysses, of Telemachus on his vogage in the Peloponnesus, and of Penelope with the suitors. The art with which these threads are woven together wàs recognized by Wolf himself, who admitted the difficulty of applying his theory to the "admirabilis summa et conpages" of the poem. Of the comparatively few attempts which have been made to dissect the Odyssey, the most moderate and attractive is that of Professor A. Kirchoff of Berlin. ${ }^{2}$
According to Kirchoff, the Odyssey as we have it is the result of additions made to an original nucleus. There was first of all a "Retura of Odysseus," relating chiefly the adventares with the Cyclops, Calypso, and the Phæacians; then-a.continuation, the acene of which lay in Ithaca, embracing the bulk of books xiii.--xxiii. The poem so formed was enlarged at some time hetween Ol. 30 and Ol. 50 by the stories of books X - -xii. (Ciree, the Sirens, Scylla, \&c.), and the adventures of Telemachins. Lastly, a few passages were interpolated in the time of Pisistratus.
The proof that the scenes in Ithaca are by a later hand than the eneient "Return" is found chiefly in a contradiction discussed by Kirchoff in bis sisth dissertation (pp. 135 ff., ed. 1869). Sometimes Ulysses is represented as aged and worn by toil, so that Penelope, for instance, cannot recognize him; sometimes he is really in the prime of heroie vigour, and his appearing as a heggarly old man is the work of Athenc's wand. The first of these represcatations is ovidently natural, considering the twenty eventful years that have passed ; but the second, Kirehoff holds, is the Ulysses of Calypso's islad and the Phæacian conrt. He concludes that the aged Ulysses belongs to the "continuation" (the change wrought by Athene's wand being a device to reconcile the two views), and hence that the continuation is the work of a different author.
Ingenious as this is, there is really very slender cround for Kirchoff's thesis. The passages in the second balf of the Odyssey which describe the appearadce of Ulysses do not give two wellmarked representations of him Sometimes Athene disruises lim as a decrepit beggar, sometimes she bestows on him superatural beauty and vigour. It must he admitted that we are not told exuctly how long in each case the effect of these changes lasted. But neither answers to bis natural appesrance, or to the appearance which be is imagined to present in the carlier books. In the palace of Alcinous, for instance, it is noticed that he is vigorons but
 and this agrees with the scenea of reeognition in the latter part of the poem.
The arguments by which Kirchoff seeks to prove that the storiea of books x.-xii. are much later than those of book ix. are nat more convinciog. He points ont some resemblances between theso three books and the Argonautic fables, among them the circumstance that a fountain Artacia occurs in both. In tho Argonautic atory this fouatain is placed in the neighbourhood of Cyzicus, and answers to on aetual fountain known in bistorical times. Kirchoff argues that the Artacia of tho Argonantie story most have been tsken from tho real Artacia, and the Artacia of the Odyssey again from that of the Argonautic story. And as Cyzicus was settled from Miletus, he infers that both sets of stories must be comparatively late. It is more probable, surely, that the name Artacia oceurred independently (as most geographical names are found to occur, in more than

[^28]ene jlues. Or it may be that the Artacia of the Odysscy surgested the name to the colonists of Cyzicus, whence it was adopted into the later versions of the Argonautic story. The further argument that the Nostoi recognized a son of Calypso by Ulysses but no son of Circe, consequently that Circe was unknown to the poet of the Nostoi, rests (in the first place) upan a conjectural alteration of a passarge in Eustathius, and moreover has all the weakness of an argument from siknce, in addition to the uncertainty arising from our very slight knowledge of the author whose silence is in question. Finally, when Kirchoff tinds traces in books x_{o}-xii. of their having been originally told by the poet himself iastead of being put in the mouth of his hero, we feel that inaccuracies of this kind are apt to creep in whenever a fietitious story is thrown into the form of au autobiography.
loquiries condućted with the .refinement which chameterizes those of Kirchoff are olways instructive, and his book contains very many just observations; but it ls impossible. to admit his maln conclusions. And perhaps we may infer that no similar attenipt can be mare successful. It does not indeed follow that the Odyssy is free from interpolations. The $N \in \kappa v i a$ of book xi. may be later (as Laner maintained), or it may contain additions, which could easily be inserted in a description of the kind. And the last book is probably by a different hand, as the ancieat critics beliered. But the unity of the Odyssey as a whole is apparcatly beyond the reach of the existing weapons of criticism.

Chorizontes.-When we are satisfied that each of the great Homeric poems is either wholly or mainly the work of a single poet, a question remains which has been matter of controversy in ancient as well as modern times-Are they the work of the same poet? Two ancient grammarians, Xeno and Hellanicus, were known as the separators (oi $\chi \omega \rho i \zeta(\% \nu \epsilon s)$; and Aristarchus appears to have written a treatise against their beresy. In medern times some of the greatest names have been on the side of the "Chorizontes."

If, as bas been maintained in tive preceding pages, the external evidence regarding Homer is of no value, the problem now before us may be stated in this form:-Given tro poems of which nothing is known except that they are of the same school of poetry, what is the probability that they are by the same author? We may find a fair parallel by imagining two plays drawn at bazard from the works of the great tragic writers. It is-evident that the burden of proof would rest with those who beld them to be by the sams band.

The arguments used in this discassion bare been of very various calibre. The ancient Chorizontes observed that the messenger of Zeus is Iris in the Iliad, but Hermes in the Odyssey; that the wife of Hephæstus is one of the Charites in the Iliad, but Aphrodite in the Odyssey; that the heroes in the Iliad do not eat fish; that Crete has a huodred cities accerding to the Iliad, and only ninety according to the Odyssey; that tponapootc is used in the Ilicud of place, in the Odyssey of time, de. Modern scholars have added to the list, especially by making careful comparisons of the two peems in respect of vecabulary and grammatical forms, Nothing is more difficult than to assign tho degree of weight to be given to such facts. The difference of subject between the two peems is so great that it lcads to the most striking differences of detail, especially in the rocabulary. For instance, the word фóßos, which in Homer means "flight in battle" (not "fear"), occurs thirty-nine times in the Iliad, and only once in the Odyssey; but then there are no battles in the Odyssey. Again, the verb pंभुvvue," to break," occars forty-eight times in the Iliad, and once in the Odyssey,-the reason being that it is constantly. used of breaking the armour of an enemy, the gate of a city, the hostile rauks, \&c. Once more, the word $\dot{\sigma} \times$ óros, "diarkness," occurs fourteen times in the Iliad, once in the Odyssey. But in cvery one of the fourteen places it is used of "darkacss." coming over the sight of n fallen warrior On the other side, if werls such as ácámuvos, "a bath," х'िvé, "a basin for the hands," λ érox", "a place to meet and talk," \&c.; are peculiar to the Odyssey, we have only to remember that the scene in the Iliad is hardly ever laid
within ang walls except those of a tort. These cxaralles will show thase mere statistics of the occurreuce of words prove little, aud that we must begin by looking to the subject and character of each poem. When we do so, we at once find ourselves in the presence of differences of the broadest kind. The Iliad is much more historical in tone and character. The scene of the poem is a real place, and the poet- singe (as Ulysses says of Demodocus) as though he had been present himself, or had heard from one who had been. - The supernatural element is confined to an interference of the gods, which to the common eye hardly disturbs the natural current of affairs. The Odyssey, on the contrary, is full of the magical and rumantic-"speciosa miracula," as Horace called then. Noreover, these marvels -which in their original form are doubtless as old as anything in the Ihad, since in fact they are part of the vast stock of popular tales (Märchen) diffused all over the world-are mixed up in the Odyssey with the heroes of the Trojan war. This has been especially noticed in the ease of the story of Polyphemus, oue that is found in many countries, and in versions which cannet all be derived from Homer. W. Grimm has pointed out that the behaviour of Ulysses in that stury is senseless and foolhardy, utterly bencath the wise and much-enduring Ulysses of the Trojan war. The reason is simple; he is not the same Ulysses, but a being of the same werld as Polyphenus himsalf-the world of giants and ogres. The question then is-How long must the name of Ulysses have been familiar in the legend (Sage) of Troy before it made its way into the tales of giants and ogres (Märchen), where the poet of the Otlyssey found it ?

Again, the Trojan legend has itself received some extension betweon the time of the Ilicul and that of the Odyssey. The stary of the Wooden Horse is not only unknown to the ilicel, but ws of a kind which we can hardly imagine the poet of the lliad arlmitting. The part taken by Neoptolemus seems also to be a later adrlition. The tendency to amplify and complete the story shows itself still more in the Cyclie poets. Between the lliad aud theso poets the Olyssey often occupies an intermediate position.

This great and significant change in the treatment of tho heroie legends is accompanied by numerous minor differenees (such as the ancionts remarked) in belief, in manners and institutions, and in language. Theso differences bear out the inference that the Olyssey is of a later age. The progress of reflexion is especially shown in the higher ideas entortained regardiog the gerls. The turbulent Olympian court has almost disappeared. Zeus has acquired the charactor of a supreme moral ruler ; and although Athene and Poseidon are adverse influences in the poem, the notion of a direct eontest between them is serupulously avoided. The advance of morality is shown in the more frequent use of terms such as "just" (δ iкatos), "picty" (óri"), "insolence" ("ßpts), "god-fearing" (Ocovovis), "pure" ($\mathrm{a} \gamma \nu \mathrm{o}$) ; and also in the plot of the story, which is distinetly a contest between right and wrong. In matters bearing upon the arts of life it is unsafe to press the silence of tho Mlikel. We may wote, however, the difference between the house of I'riam, surrotuded by distinct dweltings for his many sons and dangliters, and the houses of Ulysses and Alcinuus, with many chambers under a singte ronf. The singer, too, who is so prominent a figure in the Oifysey ean lardly bo thought to be absent from the Ilial merely becanse the seene is laid in a camp.

Stylt of Homer. - A few worls remain to be said on the style and general chameter of the Itomeric poems, ant on the comparisons which may bo made betweon llumer and anatoruns poetry in other comtries.

Tho carilimal qualities of the stvlo of Ifomer have been printod unt once for all loy Mr Mathew Amohl. "dhe
translator of Homar," He says, "should above all be pene trated by a sense of four qualities of his author-that he is emineutly rapid; that he is cminently plain and direct, both in the evolution of bis thought and in the expression of it, that is, beth in his syntax and in his words; that he is cminently plain and drect in the substance of his thought, that is, in his matter and ideas; and finally, that be is emineutly noble" (On Translating llomer, p. 9).

The peculiar rapidity o Homer is due in great measure to his use of the bexameter verse. It is characteristio of early literature that the evolution of the thought-that is, the grammatical form of the sentence-is guided by the structure of the verse; and the correspondence which consequently obtains between the rhythm and the grammarthe thought being given out in leogils, as it were, and these again divided by tolerably uniform pauses-produces a swift flowing movenent, such as is rarely found when the periods have been constructed without direct reference to the metre. That Homer possesses this rapidity without falling into the corresponding faults-that is, without becoming eithor "jerky" or monetonous-is perhaps the best proof of his unequalled poetical skill. The plainness and dircetness, both of thought and of expression, which characterize Homer wore doubtless qualities of his age; but the author of the Iliad (like Voltaire, to whom Mr Arnold happily compares him) must have possessed the national' gift in a surpassing degree. The Odyssey is in this respect perceptitly below the level of the lliad.

Rapidity or ease of movement, plainness of expression, and phainness of thought, these are not the distinguishing qualitios of the great epic pocts-Virgil, Dante, Milten. On the contrary, they belong rather to the humbler epicolyrical school for whieh Homer has been so often elaimed. The preof that Homer does not belong to that scbealthat his poetry is not in any true sonse "ballad-pectry"is furnished by the higher artistic strueture of his pooms (already discussod), and as regards style by the fourth of the qualities distinguished by Mr Amold-the quality of nobleness. It is his noble and powerful style, sustained throngh every change of idea and subject, that finally separates Homer from all forms of "ballad-pootry" and "pupular epic."

But while we are on our guard against a once common error, we may reegnize the historical comexion between the Iliad and Odyssey and the "baltad" literature which undoubtedly precedtal them in Greoce. It may even be admitted that the swift-llowing movement, and the simplicity of thought and style, which we admire in the llutd
 such as Achilles and Patreclus sang to the lyre in their tent. Even the metre-the hexameter verse-may be assigned to them. But between these lays and Homer we must place the cultivation of epic poctry as an art. ${ }^{2}$ The pro-Ilomeric lays doubtless furnished the elements of such a poetrythe alphabet, so to speak, of tho art; but they must have been refined, and transmuted before they furmed poems like the Ilical and Ot 1 yssey.

A single example will illustrate this. In the seene on the walls of Troy, in the third book of the Iliad, after Helen has printed out Agamemmon, Ulysses, and Λ jax in answer to Priam's questions, she goes on masked to name Idomeneus. Lachnann, whose mind is full of the ballad manner, fastens upon this as an irregularity. "The uuskit.

[^29]ful tranation from $A \mathrm{jax}$ to Idemenens, ajoc:t whem no ques. sion had been asked," he cannot attribute to the original poet of the lay (Betrachtuagin, p. 15, ed. 1865). But, as jas lately been pointed out. ${ }^{1}$ this is exactly the variation which a poet would introduce to relicve the primitive balicedlike sameness of question and answer; and moreover it :orms the transition to the lines about the Dioscuri by which the scene is so touchingly brought to a close.
Aradogies.-The developnient of epic poetry (properly so salled) out of the oral songs or ballads of a country is a proaess which in the nature of things can seldom be observed. It seems clear, however, that the hypothesis of epics such ${ }^{1 s}$ the Iliad and Odyssey having been formed by putting sogether or even by working up shorter poems finds no support from analogy.
Narrative poetry of great interest is fonod in several zountries (such as Spain and Servia), in which it has, never ittained to the epic stage. In Scandinavia, in Lithuania, in Russia, according to M. Gaston Paris (IIistoire poétique te Charlemagne, p. 9), the national songs have been arrested in a form which may be called intermediate between contemporary poetry and the epic. The true epics are those of India, Persia, Greece, Germany, Britain, and France. Mast of these, however, fail to afford any useful poiats of somparisen, either from their utter unlikeness to Homer, or because there is no evidenee of the existence of anterior popular songs. The most instructive, perhaps the only instructive, parallel is to be found in the French "chansons de geste," of which the Chanson de Roland is the earliest and best example. These poems are traced back with much probability to the 10 th century. They are epic in character, and were recited by professional jougleurs (who may be compared to the doioi of Homer). But as early as the 7 th century we come upen traces of short lays (the so-called cantilenes) which were in the mouths of all, and were sung in cherus. It has been leld that the chansons de geste were formed by joiring together ",bunches" of these earlier cantilènes, and this was the view taken by M. Léo:a Gaatier in the first edition of his great work, Les Epopées francecises, published in 1865. In the second edition, of which the first volume appeared in 1878 , be has abandoned this theory. He still believes that the epics were generally composed under the influence of earlier songs. "Our first epic paets," he now says, "did not actually and matcrially patch tagether pre-esistent cantilenes. They were only inspired by these popular songs; they only borrowed from them the traditional and legendary elements. In short, they took nothing from them but the ideas, the spirit, the life; they 'found' (ils ont trouve) all the rest" (p. 80). But he admits that "some of the old poems may bave been borrowed from tradition, without any interme. rliary" (ibid.); and when it is considered that the traces of the "cantilenes" are slight, and that the degree in which they inspired the later puetry must be a matter of impression rather than of proof, it does not surprise us to find other scholars (notably M. Paul Meyer) attaching less importance to them, or even doubting their existence. ${ }^{3}$

[^30]When M. Léon Gautier shons liow nistury passes into legend, and legend again into ronance, we are reminded of the difference noticed above between the lliend and the Olyssey, and between IIomer and the early Cyelic poems. And as has been recently pointed out, the peculiar degradation of Homeric charicters which appears in some poets (especially Euripides) finds a parallel in the later chansons de geste. ${ }^{3}$

The comparison of Homer with the great literary epics calls for more discursive treatment than wonld be is place bere. Some external differences have been already indicated. Like the French epics, Homeric poetry is indigenous, and is distinguished by tbis fact, and by the case of movement and the simplicity which result from it, from poets sucb as Virgil, Dante, and Milton. It is also distin. guished from then by the comparative absence of uaderlying motive or sentiment. In Virgil's poetry a sense of the greatness of Come and Italy is the leading motive of a passiouate rbetoric, partly reilerl by the "chosen delicacy" of his language. Dante and Milton are still more faithful exponents of the religion and politics of their time. Even the Frencl epics are pervaded by the sentiment of fear aod batred of the Saracens. But in Homer the interest is purely dramatic. There is no strong antipathy of race or religion; the war turns on no political event ; the capture of Troy lies outside the range of the Ilicad. Even the heroes are not the chief national beroes of Greece. The iuterest lies wholly (so far as we can see) in the picture of human action and feeling.

Biblingraphy.-A complete bibliography of Homer woulld fll volumes. The fullowing list is intended to include those books only which are of first-rate importance, or which would be found of use to a student at the present time.

The caitio prinecps of Honicr, published at Florence in 1488 , by Demetrius Chalcondylas, and the Aldiue editions of 1504 and 1517, have still some value beyond that of curiosity. The chief modern critical editions are those of Wolf (Halle, 1794-95; Leipsic, 1804-7), Spitzner (Gotha, 1832-36), Pekker (Berlin, 1843; Bonn, 1855), and La Roehe (Odyssey, 1867-68; Iliad, 1873-76, both at Leipsic). The commentaries of Barnes, Clarke, and Ernesti are practically superseded; but Heyne's Iliad (Leipsic, 1802), and Nitzsch's commentary on the Odyssey (books i.-xii., Hanover, 1826-40) are still useful. Nägelbach's Anmerkunycn zur Ilias (A, B 1-4 $\$ 3, \Gamma$) is of great value, especially the third edition (by Antenmeth, Nuremberg, 1864]. The school editions of Faesi, Ameis, and La loche should be added to the corresponding English books. The uninue Seholia Ireneta on the lliad vere first made known by Villoison (IIomeri. Ilias ad veteris codicis Veneti fuem recensita, Seholia in cam antipuissima ax codem codice aliisque nune primum celidit. evia Asteriscis, Obeliscis, aliisque signis criticis, Joh. Baptista Cespra d'Ansse de Villoison, Venice, 1788); reprinted, with many additions from other MSS., by Bekker (Scholia in Homeri IViadem, Brrlin, 1825-26). A new edition is being published by the Oxford l'ress (Scholia Graca in Homeri Iliadem, ed. Gul. Dindorfus); four volumes have appeared (1875-77). The rast commentary of Eustathius was first printed at Rome in 1542; the last edition is that of Stallbaum (Leipsic, 1827). The Scholia on the Odyssey were published by Buttmann (Berlin, 1821), and with pleater approach to completeness by W. Dindorf (Oxford, 1855). Although Wolf at once perceived the ralue of the Venetian Sclolia on the Miad, the first scholar who thoroughly explored them was K. Lehrs (De Aristarchi studiis IIomericis, Konigsberg, 1833; 2d יd. Iceipsic, 1865). Of the studies in the same field wlich have appeared since, the most important are:-Aug. Nauck, Arastophanis Byzantit jragmenta (Halle, 1848); L. Friedlander, Aristonici mepl onutiun '1aıádos reliquite (Göttingen. 1853): M. Schmidt, Didymi Chal. ecnteri jragmenta (Leipsic, 1854 ; I. Jriedlander, Nicanoris π (ρ l
 Technici roliquia (Leipsic, 1867); J, La hoche. Die homerische Texthritik im Alterthum (Leipsic, 18Gt), and Homerische Untersuchungen (Leipsic, 1869); Ad. liomer, Dic II'cric der Aristarcheer in Cod. I'enct. A. (Munich, 1875).
The literature of the "Homeric Question"" begins. practically. with Wolf's Prolcyomena (ILalic, 1795). Of the earlier books
arrivées ì l'ipopée. . Et c'est Ic malheur de cette thiorie : faute de preuves directes, rlle cherche des allalogies au dehors; en Eapache. elle trouve des 'cantilénes,' man pas dépopé ; en Alemagne, wo «ronee, niais pas de cantilenes!" (hbid., p, 66).

Wood's Essey on the Original Grnius ami Writings of Honcri is the most interesting. Wolf's views were skiliully pophlarized in W. Muller's Honcriseke lorschule (Dd. ed., Leipste, 1836). G. Hermann's dissertations De interpoictionibus Homeri (1832) and De itcratis apuld Horacrum (1840) are reprinted in his Opiscula. Lachraann's two papers (Betrachtunychn uber Homer's Itiacs) were edited together 'y MI. Haupt (2d ed., Berlin, 1865). Besides the somewhiat volumaous witings of Nitzsch, and the discussions cou$t_{\text {tined }}$ in the histories of Greek literature by K. O. Muller, Bernharly, Ulrici, and Th. Bergk, and in Grote's History of Grcece, the chief books are:-Welcker, Der epische Cyclus oder die homerischen Enchter (Bom, 1835-49); Lauer, (Ceschichte der homerischen Poesie (Berlin, 1851); Sengebusch, two dissertations prefixed to the two volumes of W. Dindorf's Homer in the Teubner series (1855-56); Friedlander, Dis Homeristhe Eritik von Wolf bis Grots (Berlin, 1853): Nutzhoro, Die Entstehungsweise der Honerischen Gadichte, mit l'orwort von J. N. Madvig (Leipsic, 1869); E. Kammer, Zur homerischen Frage (Konigsberg, 1870); A. Eirchoff, Die Comprosition der Odyssec "(Berlin, 1869); Volkmann, Geschichte und Krititit det Wolf'schen Prolegomena (Leipsic, 1874). The interest taken in the question by Eaglish students is sulficiently shown in the writings of Mr Gladstone, Professor Blackie, Mr Paley, Dr Hayman (in the Introduction to his Odyssey), and Professor Geddes.

The Homeric dialect must be studied in the books (guch as those of G. Curtius) that deal with Greek on the comparative method. The best special work is the Griechische Formenlehre of H. L. Ahrens (Göttingen, 1852). On Homeric syntax the chief book is B. Delbrick's Syntactische Forschungen (Halle, 1871-79), especially vols. i. and iv.; ou retre, \&c., Hartel's Homerischc Studiens (i.--iii., Vienna), and Knos, De diganmo Homerico quastiones (Upsala, 1872-73-78). The papers reprinted in Eekker's Homerische Bhuther (Boan, 1863-72) and Cobet's Miserllanca Critica (Leyden, 1876) are of the highest value. Hoffrnann's Questiones Homeriece (Clausthal, 1842) is a useful collection of facts. Buttmanu's Lexilogus, as an example of method, is still worth study.

The antiquitics of Homer-using the word in a wide sense-may le studied in the following books:-Voleker, Ueber Homerische fieographie und WFelthunde (1lanover, 1830); Nagelsbach's Homerische Theotogie (2d ed., Nurembery, 1861); H. Bruna, Die Kunst bei ffomer (Munich, 1868); W. W. Lloyd, On, the Homeric Design of the Shield of Achillcs (London, 1551); Buchholz, Die नouncrischen Tadien (Leipsic, 1871-73).
Among other aids should be mentioned the Index Homericus of S'icber (Oxford, 1780); Mr Prendergast's Concordance to the Iliad (London, 1875): Autenrieth's Homeric Dictionary (London, 1877); end the fixicon Honericum, cdited by H. Ebeling (in the course of publication).

HOMESTEAD.

BY the IFomesterad Privilege. the lawn or the United States give to every lerson who is the head of a fam. ily. or who is twenty one years or more of are, and a citizen of the luited siates, or who has filtedis decla. ration that be intends to beeome a citizen, the pivilege to enter a homestead of 160 acres of orlinaty surveyed lands, or 80 acres of alternate sections, lying along the fines of railroads, or otber worls of intermalimprovement. Oue purpose seems oliviously to be aimed at hy the homestead law, and that is, to secure to every man who has a family, and derires to obtain a home, 160 seres, to be seleeted at will from any of the unapproariated public lands, free from all cost, except entry fees. This bomesteud is set apart from the general ustate of the housebolder; it canot be alienated by him, nor can it be seized by his creditors for the purmese of satisfying their clebts. The glministration of the bomestead. and other land laws; is entrusted to the fieveral Land Odice, which was established April 25 , 1812, in the 'Treasury Deparment. All executive daties appertaining to the surveying and sule of the pablic lands are performed by the commissioner of the tienera! Land Oflice, under the direction of the Secretary of the laterior. To the Secretary of the Interior is given uppellate jorisdiction in all land cases.
On March 2, 1889, Congress approved no net to with. flaw ectain public-lands from private entry, and for other purposes. Said act provides that from and after its pasage, "no public lands of the United Nitntes, except those in the state of Missouri, shall be subject to
s rivate entry." This relates to the private sale or entry of "offered" lands under sections 2345 and 2354, U.S.R.

For the sake of convenience to those who may de. sire to take up land in any of the states or territories, where public lands are still to be found, local Land Offices have been established in the districts where such lands are found. Each office is under the charge of a registrar and a receiver, who have control and attend to the disposal, of the public lands. To obtain a homestead the following conditions must be observed: The applicant must, in connection with his application, make affidavit before the regisirar or receiver that he is twenty-one years old, or over; or the head of a family; that he is a citizen of the United States, or intends to become a citizen; that the entry is made for his exclusive use and benefit, and for actual settlement and cultivation. He must then pay the legal fee and that part of the commission which is payable when entry is made. Where actual settlement has been made by the applicant, and he is prevented from appearing in person at the district Land Office. the affilavit may be made before the clerk of the court for the county in which the land is situated. On compliance with the foregoing requisition, the receiver will issue his receipt for the fee and for the commission paid. Upon a faithful observance of the law, at the expiration of tive years from the date of settlement, or within two years thereafter, upon proper proof and payment to the receiver of the balance of commission due, proper returns will be made to the General Land Office, upon which a patent will be issued. In case the applicant abandons the land, or remains absent from it for a period of more than six months, the entry may be contested and cancelled, after which the land reverts to the government, and the tract is again open to the first legal applicant. The ariginal claimant is not permitted to make a second eatry, as but one homestead privilege is allowed by law. It is important that the applicant making a homestead entry should know that no one else has located, aud made improvements upon the land preparatory to a claim under the preemption laws, as such a claim, under the land laws, would antedate his own. After the applicant has resided upon and cultivated his claim for five years, he is allowed two years more in which to make "tioal proof." When any settler desires to make final proof, he must file a written notice at the district Land Office, describing the land, and giving the names aud residences of two disinterested witncsses by whom the necessary facts are to be established, with a sofficient deposit to pay the cost of a public notice stating the fact. When notice has been given in legal manner, the applicant may appear in person at the district Land Office, with the two winnesses, and make afficlavit and final proof of his clam, or he may appear with his witnesses lefore the judge of a court of record having jurisdiction, and make final prool, which when duly anthenticated by the courl seal, must be transmitted to the registrar and receiver of claims, together with the proper fees. lat the absence of the judge the clerk may act, and so certify. The aflidavit given must show that the applicant is a citian of the United Siates; that he has mate actual settlement, and has cultivated the land in grod faith for the time required. It mast further slow that he has never perfectedor abnuloned a previons entry made mader the lomestemd laws. When the homestead is situated in an umorganized connty, proof may be made in uny aljacent comity of the state or territory. If any objection appears at any time, the homestendsetter will be advised of his rights. Final proof having heen made, and the full amount of thones pail. proper returns will be certitied to the General band Onlec, aud a jatent or tithe to the land wild ") isshed.

In case of the death of the homestead settler, the legal heir or heirs may continus set tlement, with all the rights and privileges of the deceased applicant. If the widow proves un on the clain, the title passea to lier. If the heirs on her death make the uronf, the title will pass to them. Bot where both parents die, the homestead may he eold for eash for the benefit of their infnat ebildren. Under ne condition, however, does the right of sale inure to ang homestead settler befare the completion of the title, and sueh privilege is not recogaized by the General Land office. The elaim to a homestend may be relinquished if is desired, but the titie to the land is hell by the government. Where application is ioade to test the ralidity of a howestead entry on the ground of atiandonment, an affidavit dovenibing the tract, giving the anme of tbe settler. and containing the allegations on which the elaim is founded, must be filed in the Distriet Land Office. A day tor bearing the case witl then beget, and the parties interested witl he given doe notice. The results of the trial will be transmitted to the (reneral Land Offioc. The expenses incident to such a contest must he borne by the contestant; and if the informant desires the lanad, be must, when notice of eancellation is reeeived at the District Land Uffice, make formal application. The tand, after notice of cancelIation, is open to the first legal applicant, unless the land ia withdrawn by the governapent. In such cases that come unfor trial proferenco is alwaya given to actual bona fide settlers. But one homestead privilege is allowed. exeept the applicant enn prove that the abandonment or relinquishment was net a wiliat act on his part.

A preemption declaration may he changed into a homeatead. if the pre emption laws have been complied with, and the tiwe will be credited on the period of residence and cultivation on the homestead. But in making fina! proot the settler must take the additional " pre emption homestend affidavit." A bomestead setther may ut miny time after six montbs' residence on the homestend; pay" "for it with cash. warrants, college serip, or private land scrip." All lands thus obtained, under the homestend lays are held exempt from liability for debts contracted prior to the issuigg of the patent therefor. The government lands are held at the minimum price of $\& 1.25$ an acre. When alternate sections bafe beengranted to railroads or other works of internal improvement, the remaining sections have heen beld at "double minimum" or $\boldsymbol{\varepsilon}^{\prime} .50$ at acre. 'revious to July 1, 1579 , no settler conald enter more than 80 acres on a'"double minimum" of reserved section, unless he had been a on a doubleminimu of reserved section, unless he had been a
sol hier or sailor in the war for the vion, when he was allowed to enter as homestead claimant $f_{y} 160$ aeres. This privilego is now made general, with the excepion of some portions of Alabama. Mississippi, nad other staces where no more than 80 aeres of "double uinimum" land can be taken. Every person who has served in the army or nary of the United States, for a period not less than ninety days. during the war for the Uoion of 1861, and who was honorably discharged, may enter. under the provisions of the homestead laws. 160 geres of minimum or double minimum hand, with tbe following privileges: Ho will be allowed to deduct his term of service, if honorably discharged, or the terin of enlistment, if discharged by reason of wounds. from the neriod of five years' residence required by law, provided he sball reside at least one year on the homestead, and any nerson baving entered under the above privileges a smaller quantity than 160 aeres, roay enter additional land not to exceed a total of 160 acres: and in this case the time of his residence on the tract first entered will be deducted from the five ycars, so that in making his final proof he need show oceupaney and cultivation of his additional homestead for the five years, less the time ho was enlisted in the army or oavy. Such entries are mide without the payment of commissions and fees. Instead of making such an additional entry tbe soldier settler may surrender his existing entry to the government, and enter another claim of 1 tioneres if be chooses. Such settlers, who were soldiers of sailorg in the war for the Union, and who. prior to June 22 , 1574. had made homestead entries of less than 160 geres, have the further privilege of selecting their additional entries from any unoccupied laots, whether adjoiniog their origioal homestends or not. The ummarried widow of an officer, soldier, or sailor, of the army or nave. is entitled to atl his aequired rights to the date of his death, with thosdditional mivilege, that if h r busbend died during his term ef enlistment, she shall bave the benctit of the during his terim er enistment, she sumiledave the bencit of the Whole rerm of enlistment, to be deducted from the tye years of
required residenceon the homestend. The officers, soldiers, suilors, or their wi lows, after their chaims are filed, are allowed six months in which to hegin settlement and improvement. The proof regoired of soldiers and sailors is a certitiod copy of discharge, showing late of enlistment, or proof by ilisinterested witnesses of the facts, or the persons infidurvit to the samm. In the case of a widow, ovidence of the military or naval scrvice of the hushand. proof of widowbood, and date of the busband's deatb are required.
If thosettler ontering a homestead claim does not with to remain Give years upnn the land, he is permitted to pay for it with eash, military bounty. lanil warrants, or arricultural colfeg', private, or certain other scrins, upon making pronf of his residcoce ypon, and cultivation of, the land for a period of not less than six monthe from date of settlement. When the land is phid for in this way the claim becomes n precmption. The difference between the homastead nnd pre cmption law is this: Excepting tho necessary registry fees nothine is paid for land homesteads, while from $\$ 1.25$
 the homestead right begon with the date of entry, but now settloment is necessary to constitute a right to the land, in in preemp
 emptions can he tuken on land unsurveyed. and aftry survicy the pre-emption claim may be changed inton homestead entry if de sired. The taws in the case of pre-cmption, as in tbat of home-
stead allow time for the makiug of finn proof, and also require revidence and cultivation to secore the titlle.
For homestead entries on lands in Michipan, Wisconsin, Iowa, Missouri, Minnesota. Kansas, Nebraska, Dukota, Alabama, Mississippi, Louisiana, Arkansas, and Florida commissions und fees are to be paid according to the following table, taken from the laws of thellnited Etates regulating the loterior lepartiment

Acres.	$\begin{gathered} \text { PaICE } \\ \text { PER } \\ \text { ACRE. } \end{gathered}$	Commissions.			
160	82.50	\$8.00	83,00	S10.176	\$26.00
80	$\underline{2.51)}$	4.06	4.00	5.00	13.00
40	2.50	2.60	2.01	500	9 t0
160	1.25	4.101	4.00	111.00	18.10
81	125	2.00	2.60	500	9.00
40	1.25	1.10	1.00	5.101	7.010

In addition to the states and territories above named the same rate will apply to Ohio, ladigna and Illinois, if nuy vacant traets can be found liable to entry in these tbree states, where but very few isoluted tracts of nublie land remain uodisposed of. In the Pacifie and other politieal divisions, namels, on lands in California, Nevada, Uregon, Colorado. New Ilexico, Whanifton, Arizona, Idaho, Utah, W yoming and Montana, commissions and fees are to be paid according to the fillowing table:

ACRES.	$\begin{gathered} \text { Prife } \\ \text { rere } \\ \text { acte. } \end{gathered}$	commissions.			
160	\$2.51)	\$12.00	\$12.00	\$310.00	834.00
80	2.50	6.00	6.00	5.10	17.6)
40	250	3.00	3.00	5.00	11.00
160	1.25	6.10	6.40	10.011	22.00
81	1.25	- 3.00	3.00	5.10	11.00
41	1.2 i	1.50	1.50	1.50	510

The first step in securing a pre-emption elaim is to go unon tbe land, and begin to make improveuents. When this has been done and the tand is offered for sale, hy proclamation of the President or otherwise, the pre emptor must file a declaratory statement with the District Land Office setting forth his claim, within thirty With the District land onnce setting forth his clam, within thirty
days. And within a year, from the date of settemeat, be must appear before the Kegistrar and Receiver, and make pronf of his actuat residence upon, and cultivation of the land. Me will then be permitted to obtain title to the tract by payinf $\$ 1.25$ per acre. or, if the land is within the limits of the public imprevement grant, s.an per acre.
Whan the land on which the pre-emptor has settled has not heen effered for sale, he is given three months in which to file his declaratory statement. and thirty, three months from the time of bis settlement, in whieb to make fimal proof and may for the land. In the ease where land is unsurveyed, when the gettlement is first nude, the applicant must file his declaration wihhia there menths from the date of the receint at the District Land (Hlice of the anproved plat of the survey of the townshin, embracing said armil cant's claim.
When it is rendered impessible to eomply with the laws governing homesteads or pre cmptions, on account of the destruction of crops, an absence of one yar sallowed, charing when no moverke right ean chims, as wail as humesteads, n part of the land must huve been brought under eultivation, and there whe hit a halit-
 nble house. Whichis used ly thesterr as a home. Eand entered tion during those years whinh arr necessars to acquive a title.
Lund ean le taken un under the timber culture laws on prairie land or land naturalty devoid of trces. Nothisg is paid for the land except the neeesary fees, hut the purty tukitg the lounacres under this law is obliged tw set out a pertain yumbir of acres to tresench year. antil be lans one sisternth of it in growirg trees.
 hreak five acres the first yeur, and five neres mere the seeond year. hreak fue acres the first yentant multivate the five acres broken During the second vear he mist yurn the first fivencres mast he the previous year. On the thatimur the five acres braken tho second year mast he cultivated maninudditional tiveneres broken. and so on till the reguired bortion is in tiab bro According to the
 this land for eight years. If then hemplrove by wo distinternsted witnesses that his cultivatim has licn succesful. he is enonted to a putent to the land. At any time after one sear from tho time of contry, his claim becomes liuble to eontest. and, upon dice proof that the applientht has failed to comply with the requirements proof that the appleant haw fatad to comply with the requirements of the net, the entry will herancelld and the title will revert to the government. The for for tinh erams is so for more than

The desert funds, mineral land, etc., are sabject to epecial laws. Deseri lands ares such as will not produce cropes withott artiticial Irrigation. The act of March 3 , 18.7 , provideg that persons ming. irrigation. The act of March 3 , 18.7 , providea that persn
The applicant for such land must file a declaration that he is a Itizen, that be intende whyin three years to reclaim the said tract f desert, land by conducting water thereon. It muet alea be shown bat the tract comes witain the platutory tlescription of desurt ands: tben, at the end of three years, on proof that the land has oem, reclamed by irrgatimn, a paremt will inglle for it nn payment of 25 cents an acre. These desert lands are found in the following tatez ansl territories: Calfornia, Orezon, Nevada. Idabo, Wiabhington, Montana, Utab. Wyoming, Arizona, Jew Mtexico and Dar ingta.
The mineral lands in the public domain, surveyed or msnr. veyed, are open for expioration, ociupation and purchase to all citizeris of the Cnitud States, and all peraons who uave declared thear intwntion to become cittzene. Righta under patent: herctofore issued are pnlargetl by the Izevized Statotes, so as to invest the lawful owner with tille to all veins, lades or ledges throughont their entire drpth. the top or apex of which dira within the end and side boundary lines of his claime on the surface, as patented, extending downward or vertically. A qualified preron may clam and hold as a mininer tract, not more than 1,5 (n) linear feet along the course of anymineral vein. One handred dollars worth of latior must be performed. or improve mandred dolars worth of latior must be performed. or improvesume annually thereafter, or the claim will becont subject to relamation.
Permons who decire tn establish a town or city may acquire title Dy purchase, to the extent of the tract occupled for town or city purposes. accordmg to the number of inhabitants: 320 atres. for 100 to 200 persons: tifosacres, for 200 to 1.000: 1,280 acrea, for 1,000 and 32u acres for each additional thousandinhabitants, not exceeding 5,000 in all. The title is isuued in the mayor or to the judge, in irust for the purchareer, and the Territorial or State Legislature nust provide the mode of distribution of the lots.
The sale of coal lands is provided for hy ordinary private antry, and hy granting it preference right of purchase bised on priority of posscasion and improvement. Eutry is coafined to surveyed lands: to such as are wacant, not otherwise appropriated, reserved hy competent muthority, or containing valuable mincrals other than coal. Individuals or associations may purchase, prowiced such purchasers are each 21 years of age, and citizens of the Unated Stat.心, or have dectared theirintention so to be.

An individual muy enter, by legal subdivisions, any aica not exceeding 160 acrea; and an association, of not leme than foar perFons, duly qualified. who have expended not less than $\$ 5.000$ in working and unproving any coal wine or mines, may enter p rlasm not excepiing 610 acres.
On the admission of Texas into the Cuion the disposal of the mulic lands was entrasted to the state. The laws of Texas rearding land entries do not differ very widely from those of the cured states. The length of residence required on a homeatead claim in thrpe years, and every male citizen over eighteen years of age may acquire title to 80 acres. In the cabe of yre-emption the pricu peracre is one dollar; but no person, who is the owner of finacres in Texan, is allowed to pre-empt a claim. The school land-may bu purchased hy uctual seltlers at the appraisement value of the land. "which in no case shall be less than $\$ 1.50$ per acre.
(E. C. H.

HOMFYEP, Karl Gustav (1795-1874), was born August 13, 1795, at Wolgast, a small town in Pomerania, which at that time was still Swedish territory. After a four years' stay in Sweden, whither his father, a merchant, had taken him in 1806, and where he may have laid the foundation of that knowlelge of the languages and laws of the North which is so conspicuous in lis later works, he was in 1810 received into the honse of his mele Itiilss, the learned historian, who harl just been called to the professor. ship of history at the newly-founded university of Berlin. He subsequently went through the course of law study at She universities of Perlin, Ciittingen, and ITeideborg (18131817). It was in berlin esuccially that he was introdnced to the principles of the socalled historical sehoot of the seience of law by Savigny and Eichhom, who were his principal teachers. In 1821 he settied as in privat-lucent at tho university of Berlin, where he was promoted to an extraordinary professurship in 18.2 , and to the ordinary Soman law chair in 1897. Hiss arincipal work are his odition of tho Sechsenspiegel (in 3 vols, enutaining also anome other important sources of Saxon or Luw (ierman law , which is stall unsurgnossed in acentacy and sugacity of reasorch, and his look on Die Itous- whe Hojmertion 1870), in which he las given a histary of the neco of trate-

which is full of important elucidations of the history of law and also contains valuable contributions to the history of art and civilization. In 1850 Homeyer was elected a member of the Berlin Academy of Sciences, in the Transactions of which he published various papers exhibiting profound learning (" Ueber die Heimath," 1852; "Genealogie der Handschriften des Sachsenspiegels," 1859; "Die Staltbuicher des Mittelalters," 1860; "Der Dreissigste,", 1864, \&c.). He died October 20, 1874.

HOLIICIDE, in law, is the act of killing a human being, whether such act be criminal or not. Blackstone distin. guishes three kinds of homicide-(1) justifiable, (2) excusalle, and (3) felonious.

The most impertant case of justifiable homicide is the execution of a criminal in due course of public justice. This condition is most stringently interpreted. "To kill the greatest of malefactors deliberately, uncompelled, and extra. judicinlly is murder.

And further, if judgment ol death be given by a judge not authorized by lawful commission, and execution is done accordingly, the judge is guilty of murder " (Stephen's Commentaries, book vi, c. 1v.). The execution nust be carried out by the proper officer ol his deputy: any person executing the sentence without such anthority, were it the judge himself, would be guilty of murder. And the sentence must be strictly pursued to exceute a criminal by a kind of death other than that to which he has been judicially condemned is murder.

Homicide committed by an officer of justice in the course of carrying ont his duty, as such, is also justifinble ; e.g., where a person resists a legnl arrest and is killed in the struggle; where officers in dispersing a riotous assemblage kill any of the mob, \&e. In these cases the homicide must be shown to have been absolutely necessary. Again, homicide committed for the prevention of forcible and heinous crime, such as violent robbery, or murder, or house. brenking during the night, is justifiable.

Excusable homicide is homicile committed either by misadventure or in self-defence. In the former case, where a man in the course of doing some lawful work, aceidentally and without intention kills another, the homicide is excused; e.y., shooting at a mark and undesignedly bitting and killing a man. The act must be strictly lavful, and denth by misadventure in unlawful sports is net a case of excusable homicide. Homicide in self-defence is excusable when the slayer is himself in immediate danger of death, and has done all he could to avoin the assault. Accordingly, if he strikes and kills his assailant after the assault is over, this is not exé...jable homicide. And if the assault has been premeditated, as in the case of a duel, the death of either intagonist is murder, and not excusable homicide. The excuse of se defendendo covers the ease in which a person in Hefence of others whom it is his duty to protect-children, wife, master, \&c.-kills an assailant. It has been considered doubtful whether the plea of self-defence is available to one who has himself provoked a fray, in the course of which he is so pressed by his antagonist that his only resmurce is to kill him.

The distinction between excusable and justiffable homieides refers back to a perimi in the history of the law when the fomer were considered to carry with them some taint of guilt, and to require some kimb of pumishment or expiatim. In early law honicide, however imocent, subifects the slayer to the lawfol vengeance of the kindred of the doma 1man. We have a goul exmple of this feeling in the Jewish institution of cities of refuge, to which imbocent manslayers might fle from the aveluer of blool. The case mentionel in Dent, xix. of is a typical instane of what we should call excusable homicite :-" A man goctl into the wood with his neighbour tol:ew wonl, and his hand feteheth a stroke with the axe to cut down the tree, and the hend and weth
from the helve, and lighteth upon his ncightum, that he die." In English law, the same feeling long remainerl. Excusable hemicide involved at least forfeiture of goods, which, however, might be recovered as a matter of course by the innocent criminal obtaining a pardon and writ of restitution. Afterwards judges appear to have been in the habit of direeting an acquittal in such eases. It is only by a statute so recent as 9 Gco . IV. c. 31 that the innoccnce of excusable homieide is expressly declared.

Felnnious homicide includes Suicide, Masslaughter, and Murder - the law relatiog to which is discussed under the rifferent headings. These distinctions of the English hiw correspoud generally to those of other systems. The clief difficulty is the defiaition of inurder-the distinction between the highest and second degree of criminal homi. cide. In English law the clement of malice aforethought chiefly distinguishes murder from manslaughter. In Scotland the term culpable homicide is the equivalent of the manslaughter of English law.
homily, homiliariun, books of homilies.
 mumion, intercourse, qud especially interehange of thought and feeling by means of words (courcrsation), was early employed in classical Greek to denote the instruction which a philosopher gave to his pupils in familiar talk (Xen., Men., I. ii. 6,15). This usage of the word was loug preserved (Elian, V. H., iii. 19); and the סpedígas of Acts xx. 11 may safely be taken to assign not only a tree and informal but also a didactic character to the apostle Paul's discourse in the upper chamber at'Troas, when "he talked a long while, even till break of day." That the "talk" on that occasion partook of the nature of the "exposition " (Tָּיָּׁי) of Scrip. ture, which, undertaken by a priest, elder, or nther compe. tent person, had bccome a regular part of the service of the Jewish synagogue, ${ }^{1}$ may also with much probability be assumed. T'he eustom of delisering expositions or com. ments more or less extemporaneous on the lessons of the day at all events passed over•soon and readily into the Christian Church, as may be gathered from the first Apology (c. 67) of Justin Martyr, where we read that, in connesion with the practice of rearling portions from the collected writings of the prophets and from the memoirs of the apostles, it had by that time become usual for the presiding minister to deliver a discourse in which "he admonishes the people, stirring them up to an imitation of the good works which have becu brought before their notice." This Niscourse, from its esplanatory character, and from the easy conversational manner of its delivery, was for a long time called jucdiu rather than dóyos, it was regarded as part of the regular duty of the bishop, but he could devolve it, if the though fit, on a preshyter, or dleacon, or even on a layman. An early and well known instance of such delegration is that mentioned by Eusebius (11 E., vi. 19) in the case of Origen (216 A.D.). ${ }^{2}$ In course of time the exprisition of the lesson for the day came more frequently to assume a more elaborate character, and to pass into the category of a dóyos or even фidocopia or фidorró申nua; but when it did so the fact was as far as possible denoted ly a change of mame, the word iprdia being reserved for the expository or exegetical lecture as distinguished from the pulpit oration or sermon. ${ }^{3}$ While the church of the 3 and the thenturies

[^31]could point to a brilliant succession ni great preashers, whose rliscourses were wont to be taken down in short hand and circulated among the Christian public"us erlifying reating, it does not appear that the supply of orrinary homiletical talent kept pace with the rapidity of her extension throughont the Roman empire. In the smaller and remoter communities it not uncommonly happened that the ininister was totally unqualified to undertake the work of preaching ; and though, as is curiously shown by the case of Rome (Sozom., H. E., vii. 19), the regular exposition of the appointer lessons was by no means regarderl as part of the necessary business of a church, it was generally felt to be advisable that some provision slould he made for the public instruction of congregations. Even in Jerome's time (De Vir. Ill., c. 115), accordincly, it had become usual to read, in the regular meetings of the churches which were not so fortunate as to possess a competent preacher, the written discourses of celebrated fathers; and at a considerably later periorl we have on record the canon of at least one provincial council (that of Vaus, probably the third, held in 529 A.D.), positively enjoining that if the presbyter through any infirmity is unable himself to preach, "homilics of the holy fathers" (homilix sanctorum patrum) are to be read by the deacons. Thus the finally fixed meaning of the word homily as an ecclesiastical term came to be a written niiscourse (generally possessing the sanction of some great name) read in church by or for the officiating clergy. man when from any cause the was unable to deliver a sermon of his own. As the staudard of clerical education sink during the dark ages, the labit of using the sermons of others became almost universal. Among the authors whose works were found specially serviceable in this way may be mentioned the Venerable Bede, who is credited with no fewer than 140 homilies in the Basel and Cologne editions of his works, and who certainly was the author of many Homilice de Tempore which were much in vogue during the 8th and fullowing centuries. Prior to Charlemagne it is probable that several other collections of homilies bad obtained considerable pupularity, but if the time of that emperor these had suffered so many mutilations and corruplions that af authoritative revision was felt to be impera. tively necessary. The result was the well-known Homilia. rumm, prepared by Paul Warncfrid, otherwise known as Paulus Diaconus. ${ }^{4}$.It consists of 176 homilies arranged in order for all the Sundays and festivals of the ecclesinstical year; and probably was completed before the year 780 . 'lhough written in Latin, its discourses were doubtless intended to be delivered in the vulgar tongue; the clergy, however, were often too indolent or too ignomat for this, althnugh by more than one provincial council they were enjoined to exert themselves so that they might be able to do so. ${ }^{5}$ Hence an important form of literary activity came ta be the translation of the homilies approved by the church into the vernacular. Thus we find Alfred the Great translating the homilies of Bede; and in a similar manner arose
based on Scripture required to bo more or less "exegetical" and "textual," it would obviously be sometmes very liand to draw the line of distinction between duidía and dúgos. lt would be difficult to define very precisely the difference in French between a "conference" and a "sermon;" and the same difficulty seems to have been experienced in Creek by Photins, who says of the eloquent pulpit orations of Chrysostom, that they were $\delta \mu \mathrm{i}$ fac anthe than dózor.

4 it was first printed at Spires in 1482 . In the Cologne edition of 1530 the tithe runs-lfomilier sele mazis sermones szee concioncs ub populum, prastantissimorum ecclesace doclorian Hietonymi, iugustini, Ambrosiz, Gregori, Ormgenis, Chrysostomi, Bedee, de., in hune ordi. nem digeste per fichumum lerntam, idque mjungente ca Carolo M. Fom. Inp. cui a secretis jut, 'Thonch thus atmbuted here to Alenin, who is known to have restsel the lectionary or Cones Hacronymi, the compulation of the Ilomaluerium is in the cmperor's own conmissan entrusted to Paul, to whom it is assigned in the earlier yrmitu cudions also.
o Neander, Church Kistiony, v. 174 (F゙ge tansl. of 1851)

Alfric's Anglo-Saxon IIomilies and the German ifunieitarium of Ottfried of Weissenburg. Such IIomiliaria as were in use in England down to the eod of the 15th century were at the time of the Reformation eagerly sought fur and destroyed, so that they are now extremcly rare, and the few copies which have been preserved are generally in a mutiliterl or imperfect form. ${ }^{1}$
The Book; of Ifomilies referred to in the 35 th Article of the Church of England originated at a convocation in 1542, at which it was agreed "to make certain homilies for stay of such errors as were then by ignorant preachers sparkled amourg the people." Certain homilies accordingly, composed by dignitaries of the lower house, were in the following year produced by the prolocutor; and after some delay a volume was published in $15+7$ entitled Certun sermons or homilies appointed by the King's Majesty to be declared and read by all parsons, vicars, or chrutes every Sunday in their churches where they have cure. In 1563 a second Book of Homilies was submitted along with the 39 Articles to couvocation; it was issued the same year under the title The second Tome of IIomilies of surh matters as were promised und instituted in the former part of Homities, set out by the authority of the Queen's Majesty, and to be real in every Parish. Church agreeably. Of the twelve bomilies contained in the first book, four (the 1st, 2d, 3d, and 4 th) are probably to be attributed to Cranmer, and one (the 12 th) possibly to Latimer; one (the 6th) is by Bonner; another (the 2d) is by Harpsfield, archdeacon of London, and a third (the 11th) by Becon, one of Cranmer's chaplains. The authorship of the 8th and 10th is quite unknown ; and Becon and Ridley have been only doubtfully conjectured as the authors of the 7 th and 9 th respectively. The second book consists of twenty-two homilies, of which the 1st, 2d, 3d, 7 th, 8 th, 9 th, 16 th , and 17 th have been assigned to Jewel, the thh to Griudal, the 5th and 6th to Pilkington, and the 18th to Parker. See the critical edition by Griffiths, Oxford, 1869. For The Clementine Hoonilies see Apostouc Fathers, vol. ii. p. 196.
hOMCOPATHY (from іноoтdi θ ea, a similarity of feeling or condition) as a distinctive system of medicine owes its origin to Hahnemann, a German physieian (see Habnemans). It is customary to regard homoeupathy as a mere system of therapeutics, having reference only to the question how and on what principle is disease to be treated. But a careiul student of Hahnemann or of his Organon will soon discover that the system with which his name iss fuadamentally associated is one not merely of therapeutics but of pathology, and that any complete exposition of it must embrace an account of Hahnemann's views of the ultimate nature and cause of disease, ns well as of the remedies by which it is to be eombated, and the principles or prineiple on which these are to be selected.

Hahnemann taught that disease is to be regarded as consisting essentially of the symptoms of it as experienced and expressed by the patient, or as detectal by the physician; in other words, that the chicf symptoms, or the "totality of the symptoms," constitute the disease, and that disease is in no ease caused ly any material substance, but is only and always a peculiar, virtual, dymamic derangement of the bealth. "Diseases" (intrmiuction to the Organon, p. 17) "will not cease to be spiritual dynamic derange ments of our spiritual vital principle." He says on paye 3 of the Organon, "For ats far the greatest number of disenaes are of dynamic (spiritual) origin and dynamie (spritual) mature, their cause is therefore not perceptible

[^32]to the senses;" and at page 18 , referring "to small-pox, s disease accompanied by almost general su|puration," he asks, "is it possibla to entertain the idea of a material morbific matter being introauced into the blood!" He held that the psoric miasm, of which the iteb is the outward and visible and comparatively harmless sign, was at the root of nearly all clirunic disease, viz., of all chronic disease that was not due to syphilis or sycosis. He tells us in a note to the 80 th section of the Organon that he spent twelve years in the investigations, which led to the discovery of that great source of chronic disense and of its remedies (antipsoric remedies). It was a very essential part of Habnemaun's teaching that nature is a bad physician; and not to be much trusted; that drugs are the real curative agents provided by the beneticence of the Almighty; that drugs given to healthy persoos bave a power of producing symptoms of disease. The ascertainment of the symptems produced by drugs in healthy persons is called technically, "proving," and the record of such provings constitutes a large part of the literature of bomœopathy. This power of drugs he perpetuallyrefers to as their "pathogenetic power." His great therapeutical doctrine, fur formulating which his followers call him, with doubtful taste, "the Messiah of Medicine," was to this effect, that there is a correspondence between the symptoms proluced by any given drug administered to a healthy person and its power of coring any given disease, and that the remedy for any given disease, that is, for any set of symptoms "in their totality," is that drug which, given to any bealthy person, will produce the most perfect imitation of the said set of: symptoms; in other words, Similia similibus curantur. Further, the dose of medicine is to be so attenuated as to cure the disease without burtiog the patient. 'This attenation of medicines constitutes, not only the most popular note of the system of Hahnemana, but that feature of it which. is most characteristic of his own views and practice, and which in well-known words he declared to be established beyond the reach of cavil from future experience either of allopaths or of practitioners of the " new mongrel system made up of a misture of allopathic and henocopathic procosses." He gives minate directions as to the processet by which this attenuation is to be achicved, the principaid of which are trituration, succussion, and dilntoo. These processes developed what he called the "spiritual power which lies hill in the inner nature of medicines" (20th section of the Organon). Hahnemann bell that medie:nes became, for curative purposes, more powertul as they became more attcnuated; in his last edition of the Organon (1833), and in its last fages, he gave the most expressive evillence of his belef in the virtuc of attenuation by saying that he could scarcely name one discase which in the last year he and his assistants had not treated with the most happy results, solely by means of "olfaction"; and he added that a patient even destitute of the sense of smell may expect an equally prefect action and cure from the medicine by olfaction. He condenmal strongly the administration simultanenusly of a number of medieines, and insisted that only one should be given at a time. Finally, it would be unjust to him not to bear in mind that he chaimed to base his viows and practice on experience and sound experiment. Some points of his systen were borrowed by llahnemann from previous writers-as, inived, he himself, though imperfectly, almits. Not to mention others, he was anticipated by llippocrates, and esprecinally by laracelsus (1495-1541), in bis doctrine of Similue similibus curantur, if not in its cxclusive application. These identical words occur in the Geneva edition (1658) of thoo works of Paracelsus, as a marginal heading to one of the paragraphs ; and in the "Pragmenta Medica." Op. Omnia, vul. i. 168, 169. occura the following passace:--
$$
\text { Н O М Е O P A, T H Y Y } 127
$$

Simile similis cura; non comercoum.
"Quisjois enim' cum laude atere Medicunt volet, is fas nugas longe valere jubeat. Nec enim ullus unquan monhus caludus jer frigida sanatus fuit, nee frigıdus per calida. Sumle autem suan sinule frequenter curavit, scilicet Mercurius sulphur, et su!phur Stercurium; et sal illa, velut et illa sal. Interdinn quidem cum propretate junctum fryiduns sanavit calidum; sed sh nou factum tsi rathone frigidi, verum ratione matura alterius, quan a primo illo aw: muc diversiun freciuns."

It is very remarkinble that in Iahnemanu's enumeration af'authors who anticlpated him in regard to the ductrine of Similia, he makes no mention of the views of Paracelsus, thongh the very words seem tu be taken from the works of that physician. The other point in Jlabnemann's loctrine-that medicines should be tried first on lealthy persons-he admits to have been enanciated by Ilaller. Roughly it has been acted on by physicians in all ages, but certainly more systematically since Hahnemann's time, though the result is often not such as to sujport his theory in regard to the action of medicine on the diseased as compared with the bealthy body.

In the must characteristic teacure of Hahnemann's practice-" the poteutizing," "dynamizing," of medicinal substances - he appears to have been original. It has been generally affirmed that be was led to adopt his doctrine of "attenuation" by the fact that the medrines he adminis. tered produced smilar effects to those of the disease, and tat in any gross quantity, as be admitted, they would aggravate matters. But another and a chief reason is to be found in his views of the "spiritual," "immaterial," "dynamic" orrgia of disease, and his resentment against the old modes of practice of medicine.

The followers of Hahnemann are true to him in making light comparatively of pathological facts, aud gising their main attention to therapeutics. 'Chey are still concerned mainly with medicines, and one very large Amencan encyclopædia is devoted exclusively to a record of "Provings"; it is edited by Dr Timothy Allen, professor of materia medica and therapeuties in the New lork Homœopathic Medicsl College. For some years Halımemann's disciples sontinued pretty faithful to the doctrine of Similia similuus curantur; but they were not long in making some changes in it. We can only notice a few of the leading deviations. Dr Sharp, of Rugby, who has striven hard to overcome objectors, while admatting the doctrine of Similia, requires that it have regard, not to mere symptoms, but to the seat and patbology of the case; that the drug used be one which shall aflect the organ at fault. Homœopathy cannot beconse a science till it is founded on what he calls Organopathy, or a much more careful consideration of the seat of discase than is involved in Habnemanu's views, who, he complains, passionately rejected pathology and morbil anatomy. Recently a leading homoopathist has published a book, the very title of which contradicts the doctrine of his master. Habnemann maintains that cures never were eflected in auy other manner than by means of medicines of bomeropathic puwer (Organon, p. 100), and that, whenever cures were wrought by those who did not understand homaopathy, it was in virtue of the bomeopathic law, "the only law consonant to nature." But in 1878 Dr Kidd, the leadiug consultant among homoopathic practitioners in London, published a book on the Laus of Therapeatics. It is true that Le does not carry the plaralizing far: he only substitutes two for Habnemann's one law; but it is not the less a very remarkable departure. He is still faithful to the idea of a relationship between the action of medicines on the healthy and their curative value in sickness; but the law of Similice is sadly cumpromised. "In most cases that relationship is either of similarity or of contraricty." "Looking," says he, "to the observation of facts apart from theoretic speculations, two primary laws of therspentics
unfoll themsclves. Those two laws of therapeutics may wall be called Cialen's law, founded upon the rule of contruriu contruriis, and Hahnemann's or the homueppsthic law, founded upon the relationship uf smilars." This is certainly a compreliensive if a rather unphilosophical generalization. The practice of Hahnemann as to the use of highly attenuated doses of medicine is evidently not more closely adbered to than bis ductrine of Similia. This fact is the subject of complaint in homœopathic journals. The Medicul Investiyutor, in 1876 , says reprovingly: "Huw many chaiming to be bomoopaths are daily entirely disregarding the law of Similia. It is getting to be nuite a rare thing to hear of a homeopathic practitioner conducting a serious case from beginning to end without using as such cattrartics, sudorifics, duretics, $\mathfrak{d c}$., in darect opposition to our law; not only are these drugs used in thas way, but there are some also gu so far as to say that they cannot be dis. pensed with." Dr Wyld, the vice-president of the British Homœopathic Society, in a letter to Dr W. B. Richardson, published in the Lancet of June 2, 18i7, arguing for an abolition of the schism of the profession on this question, thus sums up the admissions which he as a sonew hat repre. sentative man was prepared to make:-" First, that the' views expressed by l[alinemann are often extravagant and incorrect; Secondly, that Hippocrates was right wheu lie said some diseases are best treated by similars and some by contraries, and therefore it is unwise and incurrect to assume the title of homwopathist; Thirdly, that although many believe that the action of the infinitesimal in mature can be demonstrated, its use in meducine is practically by a large number in this country all but abandoned." It inust not, however, be supposed that there are not many true behevers in Hahnemann's doctrines both of Simalia, dic., and of infinitesimal doses, extending even to olfactions. In fact, one recent writer goes beyond Hahnemano. In the Homueopathic Olserver, after many years of anxious experimenting, he claims to have discovered decided results trom olfaction, or the smelling of medicines, but more especially by means of medicines contained in closed vessels beld in the band. Mlons. Ciranier, of Nimes, carries the dyammic theory of Hahnemann farther than its author. "Medicints," Le says, "are fluidic powers, they are beings (êtres) that man may create at his will. I wish I conld say they are occuit jowers, forming the chain of fluidic connection between the world and the tomb; but I ani convinced in my own mind that, placed on the limets of fludic dynamism, our obscrvation might cast its scrutimaing glance into the unscen world."

Homoopathy has a considerable number of adherents in Great Britain, in the United States, and on the continent of Europe. In order to ascertain the esteem accorded to it in the land of its origin, inquiries have been made of neutral and unbiassed authorities, and the general result is that it has no scientific recognition, but that many of the public believe in it, and consult practitioners who profess to practise it. The system has no place in any of the universities of Germany, nor does it seem to have a single school of its own in the entire German empire. It. is universally condemned in Germany by meu who have anything to do with biolugical science, and even in the lectures on therapentics it is not mentioned at all. In Great Britain the Medical Act of 1858 gises power to the Privy Council severely to prohibit attempts by any examin. ing body to impose restrictions as to any theory of medicine or surgery ou candidates for examimation. There is a homeopathic hospital with 100 beds in London, to which is attached a homecopathic school (see Dr Wyld in Lancel, June 2, 18:7). Ilouropathy is not strong in England. There are said to be 105 homœopathic practitioners in London. In Great Britain and Ireland, with a population
of thirty-five millions, there are but 275 homeenpathic plysicians. Liverpoul and Glasgow, each with about half a million of population, have respectively fifteen and tive homeopathic ductors. The somewhat weak and failing condition of homoopathy in Britain is thus contrasted by a writer in the monthly IInnceoprethic Review for January 1880 with its condition in America: in four chief Anterican citics there are 462 bumeopathic doctors, in four English tuwns 139; in New York city the homeopathic Ihysiemans are to the aliopathic as I to 6 , in London the propurtion is 1 to 20 . The writer attributes the lower condition of homeopathy in England to the fact " that it has ceasel to be a nuvelty, that it has revolutionized urthurbux medicine, and that many of our own men (homoenathic practitioners) abjure the minute doses which served so well in the hands of Ilahnemann and many of lus carlier disciples." But all these facts or factors must obtain equally in America. It is prubable that the different system of medical education and qualification in the two countries has something to du witll the difference. In the United States honceopathy has naturally had freer scope than in Eurupe. Some have estrmated the proportion of hoincopathic practitioners in the States as being one-eighth of the whole number of legally qualified practitioners. Every Statc determines for itself the couditions of qualification in medicine; and there is thus a rast number of separate medical schools giring both education and diplomas. Consequently there is a serious inequality in the severity of medical education and examination. In some States, as in that of Michigan, the legislature has engrafted on the university a department for teaching its youth the principles and therapeutics of homoopathy; and very lately the same legislature has provided a lospital for the homœopathic treatment of disease.

In all countries the doctrine of homœoprathy is still without broad scientific recognition; and certainly in England its chicf representatives are anxions to cease their existence as a distinctive school, and have, by their avowed departure from IIalnemann's law of Simelia, and his mode of attenuating and administering medicines, brought themselves under the severest condemnation of their master's few faithful followers, amongst whom are still included men of hith character. We need not discuss in detail the indi. vidnal fluctrines of Hahnemann, especially those just reforred to, as they are scareely fought for by those who now represent what remains of the homeopathic school. Ilalincmann's fundamental views of disease deserve more attention. He despised any deep study of disease, and theorized abont it instead. Had he carefully inquired into the nature and natural history of disease as Hippocrates di.l, or as he himself iaquited into the sensations of those who tuok infioitesimal doses, he would have done more for the world and his own reputation. Hahnemann was casily captivated by theories, and not very sound in his reasoning. Thit underlying all his system, as we have seen, was the ide. that the causes of disease were impalpable, imnaterial, spiritual, dymamic. And this great foundation was rotten. IIndem medicine is doing some of its best work in showng the material and the visible character of the canses of nany of the commonest diseases, and suggests this in meny eases where it has not as yet been demonstrated. The cause of many diseases is shown to be a living germ - particle which can be discerned under the miernscope, uan be carrical on a lancet or in a tuhe, and inserted under the skin sh as to produce its peculiar disease. This is arue of small ${ }^{n \prime \prime}$, Hahmemmn notwithstanding. The germ can be preserved at it can be killed, and thus disease can !re propagatel or prevented. The close air of workstops, Foluch generates consumption in such amount, cau be blawn to be foll if impurities, chemical or orgmic. The
eauses of other diseases are often, not merely visible unoer a nicroscope, hat coarsely visible. We have been lately told on bigll anthority that to produce certan forms of blud-polsoning one or two ounces at least of septic fluid are necessary. So with other forms of common disease. Alcuhol dues not destroy a liver or bidney in any dynamic or immaterial form, bat in coarse quantities diligently repeated. The lead which paralyses the painter's wrist is nut a "spiritual" thing. It is an accumulation of matter in the wrong place, and enters his body in palpable quantities, and, what is more, can be recovered in similar quantities from his body. So with the uric aeid or its salts in the blood of a person who has inherited his father's gout, and perhaps his port wine. It is not a "spiritual" affair at all, but can be demunstrated chemically and under the microscope. The itch, to whose mysterious workings Hahnemann attributed two-thirds of the internal diseases of the body, iocluding mania, cancer, gout, de., is easily demonstrated to be dependent on an ugly crab-like insect, which can be destroyed in a few hours with sulphur, when there is an end both of it and of the itch. We are aware of the euphemistic form which is given to Halnemann's views of the psoric or itch disease ; and we are partly dis. posed to adnuit, with the late Professor Henderson, the ablest and wisest of Hahnemann's supporters in England, that Hahnemann was unfortunate in the exposition of his own views of this subject. But Hahnemann's fine but fundamental theories about the spiritual and dynamic origin of disease are all exploded by the revelations of modern pathology, and their demolition only completes that of his therapeutical theories which rested on them.

Still it does not follow that homœopathy bas been of no use. Hahnemann deserves the credit of being the first to break decidedly with the old school of medical practice, in which, forgetful of the teachings of Hippocrates, nature was cither overlooked or rudely opposed by wrong and ungentle methods. He was so dissatisfied with this system that he gave up practice. We cau scarcely now estimate the force of character and of courage which was implied, eighty years back, in abandoning the conımon lines of medicine. More than this, be and his followers showed results in the treatment of disease which compared very favourably with the results of orthodox practice. But they entirely missed the right conclusion from their experience. Let us take, for example, the statistics of the treatment of inflammation of the lung (pneumonia), adduced, not by Hahnemann,-for it is one of his very wak points that he did not record cases, -but, after his death, by Dr Fleischmann of Vienua. Dr Henderson quotes these and other homœopathic statistics with great satisfaction, and undoubtedly and properly they procuced a great effeet, showing a mortality of 1 in 21 cases only, which was a much higher percentage of success than under the ordinary treatment. But these statistics have since been entirely eclipsed by the minute and historical record of cases treated in the Edinburgh Infirmary, where the late Dr Hughes Bennett treated 105 cases of acute pneumonia, extending over sixteen years, without one death. Still we must ndmit that Fleischmann's results were greatly better than the old ones, and that but for thi homoopathic practice, which most practitioners regarded as a negation, tantamount to leaving the disense to nature, the emancipation from traditional methods of treatment would have been much slower than it was.

Besides this, homeopathy may be credited with two other services. It has given prominence to the therapentical side of medicine, and has done much to atimulate the study of the physiological action of Jrugs. No doubt Hahneman' completcly erred in despising nature, and in magnifyin, medicines in the cure of disease. Put his very method. olnomet, unintentionally on his part, what nature could do;
and his devotion and that of his school to therapeutics has acted as a somewhat deserved rebuke to those physiciana who get so absorbed in the study of disease as to forget that the great interest of mankind in it is to have it cured with as little delay as possible. It may be admitted that homeopathy has done some service in directing more special iattention to various powerful drugs, such as aconite, mux vomica, belladonna, and to the advantage of giving them in simpler forms than ware ennmon before the days of Hahuemann.
\% Hahnemann's errers were great." His doctrine of specifies was highly retrograde and unscientific, and his disparagement of the prineiple of tolle causum. and of those who aimed at discovering the causes of disease (Organon, p. 3) was unphilosophical. He was fanciful and theoretical to a very high degree. He led his followers far out of the track of senud views of disease and the methorls by which it can best be prevented and cured. But, with all his defeets, it must be admitted that he had the great merit of disturbing and discreditin! indefensible modes of practice.
(J. G. G.)
honda, or san baritlutimet de fonda, a town of the republic of Culombia, in the state of Cundinamarca, on the left bank of the river Magdalena, about 575 miles from the sea, in $5^{\circ} 11^{\prime} 42^{\prime \prime} \mathrm{N}$. lat. and $74^{\circ} 41^{\prime} 6^{\prime \prime} \mathrm{W}$. long. It is regular and well-built, but none of its public edificeschurches, convents, or hospitals-call for special remark. Situated at the spot where the uprard navigation of the Magdalena is stopped by a series of rapids, Honda was formerly the seat of a very considerable trade, and it still retains a certain amount of commercial importance. Goods a:d passengers for Bogotá, the capital of Colombia, are now disembarked at Caracoli about 2 miles further down. The population of Honda is stated at 4000 or 5000 . See Colombia, vol. vi. p. 153.

HONDECOETER, Melchor d' (c.1636-1695), painter,' was born at Utreeht, it is said, about 1636, and died at Amsterdam, April 3, 1695 . Old historians say that, beivg the grandsou of Gillis and son of Gisbert d'Hondeceeter, as well as nephew of J. B. Weenix, he was brought up by the last two to the profession of painting. Of Weenix we know that he married one Josina d'Hopndecoeter in 1633. Melchior was, therefore, related to Weenix, who certainly influenced bis style. As to Gillis and Gisbert sume points still remain obscure, and it is difficult to aecept the statement that they stood towards each other in the relation of father and son, since beth were registered as painters at Utrecht in 1637. Both it appears had practised art before coming to Utreeht, but where they resided or what they painted is uncertain. Unhappily pictures scarcely help us to clear up the mystery. In the Fïrstenberg collection at Donanesehingen there is a Coneert of Birds dated 1620, and signed with the menogram G. D. H. ; and we may presume that G. D. H. is th~ man whose Hen and Chickens in a Landscape in the gallery of Rotterdam is inseribed "G. D. Hondeeoeter, 1652 ;" but we ask, Ia the first letter of the monogram to stand for Gillis ar Gisbert ! In the museums of Dresden and Cassel handscapes with sportsmen are catalogued under the name of Gabriel de Heusch (1), one of them dated 1529, ancl certified with the menogram G. D. H., challenging attention by resemblance to a canvas of the same class inseribed G . D. Hond, in the Berlin Museum. The quostion here is also whether G. means Gillis or Gisbert. Obviously there are two artists to consider, one of whom paints birds, the ather landscapes and spertsmen. Perhaps the firat is Gisbert, whose son Melehior also chose birls as Lis peculicr subject." Weenix too would naturally teach his nephew to atury the feathered tribe. Mclehior, however, began his career with a different slreeialty from that by which he is nutually tnown. - Mr de Stuers affirms that be produced
sea-pieces. One of his earliest works is a Tub with Fish, dated 1655, in the gallery of Brunswick. But Melchior soon ubandoned fish for fowl. He acquired celebrity as a painter of birds only, which lie represented not exclnsively, like Fyt, as the ganekeeper's perquisite after a day's shoot. ing, or stoek of a poulterer's shop, but as living beings with passions, joys, fears, and quarrels, to which naturaliste will tell us that birds are subject. Without the brilliant tone and high finish of Fyt, his Dutelı rival's birds are full of aetion ; and, as Biirger truly says, Hondeceeter displays the maternity of the hen with as much tenderness and feeling as Raphael the maternity of Madonnas. But Fyt. was at home in depicting the coat of deer and dogs as well as plumage. Hondecoeter coltivates a narrower field, and seldom goee beyond a coek-fight or a display of mere bird life. Very few of his pictures are dated, though nore aro signed. Amongst the former we should note the Jackdaw deprived of his Berrowed Plomes (1671), at the Hague, ot which Earl Cadogan has a variety ; or Game and Poultry and a Spaniel hunting a Partridge ${ }^{\circ}$ (1672), in the gallery of Brussels; or a Park with Poultry (1686) at the Hermitage of St Petersourg. Hondecoeter, in great favour with the magnates of the Netherlands, became a member of the painters' academy at the Hague in 1659 . Willism III. employed him to paint his menagerie at Loo, and the pieture; now at the Hague museum, shows that be could at a pinch overcome the difficulty of representing, India's cattle, elephants, and gazelles. But he is better in homelier works, with which he adorned the royal chateans of Pens. berg and Oranienstein at different periods of his life (Hague and Amsterdam). In 1488 Hondecoeter took the freedom of the eity of Amsterdam, where be resided till his death.' His earliest works are more conscientious, lighter, and more transparent than his later ones. At all times he is bold of tonch and sure of eye, giving the motion of birds with great spirit and accuracy. His masterpieces are at the Hague and at Amsterdam. But there are fine examples in private coslections in England, and in the public galleries of Berlits. Caen, Carlsruhe, Cassel, Cologne, Copenhagen, Dresden Dublin, Florence, Glasgow, Hanover, Loudon, Lyons Montpellier, Munich, laris, Rotterdaw, Roneu, St Peters burg, Stuttgardt, and Vienna.

HONDURAS.

HONDURAS, a republican state of Central America, See Plaextends from oorth latitude $13^{\circ} 10^{\prime}$ to 16°, and III. from west longitude $83^{\circ} 11^{\prime}$ to $89^{\circ} 30^{\prime}$. It is the roL st third largest state of Central America, and is bounded on the Dorth and east by the Bay of Hoaduras and the Caribbean Sea, on the south by Nicaragus, on the south and southerest by San Salvador and Guntemala. It extends east and west, from the Caribbean Sea to the Pacific Ocean, and separates Nicaragua on the southeast from Guatemala on the northwest. The coast line is about 400 miles long, extending from the mouth of the Rio Tinto to the mouth of the Rio Wanks. Honduras has also 60 miles of coast on the Gulf of Fonseca.

Constitution and Government - The republic of Honduras was established November 5. 1838. before the diasolation of the confederation of Central Ancerica in 1839. It is governed under a charter prochamed in November, $186 \overline{5}$, but greatly modified and revised by the new constitution of November 1. 1880 II gives the legislative power to a Congress of Depulies composed of 37 members, with a president, nominated and elected by popular fote for a term of fous years.

General Don Luis Bogran was elected President of the Reputblic of Honduras on the 9th of Norember, 1883, and re-electerl September, 1887.

There were no regular elections of presidents in preceding years, and none servel the full term of ofice. The administration of the republic is carried on by a
council of ministers, to whom are entrusted the de partments of foreign affairs, the department of the interior, public works, war, finance, public instruction and justice. The active army consists of 500 men, with 3,000 militia. The chief execulive is assisted by a council of state, consisting of two ministers, each appointed by the chief executive, by a judge of the supreme court and a senator elected by the Congress. A senate and chamber of deputies constitute the legislative department of the government. Politically, the republic is divided into seven departments, for administrative purposes. That of Comayagua contains the capital by the same name, and is situated in the center of the state. It is famous for growing in abundance the nopal, which is largely cultivated in many of the South American states and in Mexico. The nopal is the food for the cocbineal insect, used for coloring purposes. The climate is semi-tropical, and coffee, cotton, oranges and bananas, india rubber and other products of a semi-tropical country flourisb here. Mahogany is shipped in large quantities; also eattle, hides, silks, pine and oak timber, which grows on the hills in quantities sufficient for profitable commercial purposes.
The plain of Comayagua once supported a large and flourishing population, and the rich soil is capable of doing so now, but the city and surrounding country have deteriorated till at present the trade of Comayagua is very small. Donuments of a former civilization are not unfrequently scattered over this division. They were probably built to serve religious purposes, or as defeuces against intruding peoples in a time of war. There are not less than 300 of these interesting structures of a less remote antiquity. In form these structures are pyramidical, conical, ofteu terraced, or consist merely of walls of stone. They are of various sizes, from 20 feet square to 80 feet broad by 300 feet long.
Pottery in great quantities has been found in some of these mouuds or pyramids, specimens of which have found their way to the Smithsonian Institute and other collections of antiquilies.

The department of Gracias lies in the northwestern part of the repullic. It borders on Salvador and Guatemala. This department is by far the most interesting in the republic. Its valleys are rich and fertile, producing cotton and the semi-tropical fruits, hay and grain. The mountains and hills are well wooled, and here are found many of the choice cabinetwool producing trees, such as mahogany, rosewood, cedar, ete. Pine is found on the mountains. Copal, liquidambar and tolucco form a considerable portion of the exports.

Fruits, such as apples, peaches, plums, pears, fourish in the northern part of the division; also the smaller fruits, blackherries in particular, are found among the hills. There are beds of lignile in (iracias, and opals are found that are second only to those found in Hungary. Coaz is found in hedss and 10 feet thick; cinnabar, asbestos, platimum and amethysts are found in several places.
Santa larrlara is situated between Gracias and Comayagua. It touches on the Bay of Monduras. This portion hordering on the bay is known as the plain of Sula; it is 60 or 70 miles long and ho miles wide, streteling larek from the bay. The Ilain has an area of 1,500 sefuare miles, producing all the grains, tibers and irmits of the tropics. It is will watered; but the fivers that infest a low country are not wanting here.
Chonatera, in the extreme gonthern part of the republle, hat a

 the bay furnam, grazing land for thonamatm of catthe, which conatitate the breater portion of wealth for the departanent. Sbiver orem, in ulmont ervery variety, are found, an woll meneveral other

Soro format the northern portion of IIonduran. The surface fa mobnturioms, cut by numaroum amall atreames. 'l'he mineral Wealth of the depurtment has never been ndequately develaped. the atemion of capisal has chefly been drawn to the catting of
cabinet-roods that grow in the ralleys. The popalation is very sparse, bot the area is greater than that of any other divibion of Hondnras. It embraces 15,000 square miles. The mineral weatb is fonnd in the Pija and sulaco monntains.
Olancho is the principal gold pruducing department. It is obtained from "washinge." Nearly"all the streams are gold produc ing, and their sands pay for washing. Large herde of cattle arp raised on the savanuas, and they form the chief source of wealth. Tobacco and cotion grow on the low allnvial soile. The depart ment emhraces about 11,300 square miles, and is the most progrea aive of any in Hondaras.
Tegucigalpa is the gold and eilver region of Hondaras. Teg. ocigalpa is the largest and most prosperons city of Hondaras. It is one of the capitals of the repuhlic, alternating with Comayagua, The enrface of the conntry presents a platean with an elevation of from 2,000 to 4,000 feet above the level of the sea. Mining constitutes the chief industry of this division, although agriculture and cattle raibing are important industries.
Area and Population.-The area of the Repnblic is calcnlated to embrace 47 , (tis equare miles. The popalation in 1889 was 431 , 917 , or about nine inhabitants to the square mile. The Repablic is divided into 60 districts and 212 municipalities. A large numher of the inhabitants consists of ahoriginal Indians. There are 205,000 mestizos. The Europesn popolation, which is very sparce is mainly of Spanieh origin, und is found in the emall sea ports of the Pacitic coast, and in the town of Santa Rosas in the tobscco districts of the department of Gracias
In the eastern part of Hondoras, between the Rio Roman and Cape Graciaa a Dios and the Segovia River are the Xloaques and Poyas. They are tearly all Catholica. They make good laborets, are peaceful and indnstrions. In the more remote districts thene aboriginal trihes of Indians still conform to the custome of their ancebtors. The Jndians and negroes hare mixed, and under the name of Samboa occapy a territory above Cape Gractas. The Caribe, who were brought to Honduras by the Fnglish in 1746 from the Windward Islands to the number of severat thonsand occupy the entire northern coast. They are the wood choppers of the state. They are mostly Catholics, bat are very saperatitions and cling to many of their old customs. A sprinkling of negro blood among them has given a portion of these people the dame of "The Black Caribs." The European population, consisting, aa has been eaid, mainly of descendants from the Spanlsh, is to be found on the Pacife slope, and the Atlantic slope is settled mainly by tue Indiane. Dany toman or villages are fornd in the departments of Gracias, Choluteca and Conayagna where the lndian language only is spoken, and a very close adherence is preserved still to all that is ahoriginal. It is a matter entirely Imporslble to obtain an exact census of these tribes, as many of them live in the monntaina and avoid a cenkns. Tegucigalpa, wbich alternatee with Comayagua as the seat of government, has a popnlation of 12,600 , meluding the district, and is sitoated nearly in the center of the State. It is the chief station on the Inter-oceande railway that has been laid ont.
Instruction.-In $18 \% 8$ the government fonnded n national college and seminary, both of which are under the direction of Amer. can teachers. There are besides two muver-itice and several col. leges. There were $5 \pi 3$ schoola in 1889, with 20,518 scholars Schools are to he fond now in every village, and edocation la nominally compulsory. The relicion of the conntryls Roman Catholic. The Bishop, under whose jorisdiction the State is placed, bas his see at Comayagna.
Communication, -In 185 there were 33 postoflices which carried 209,614 lettere and newspapers. There are 1,800 milea of telegraph lines, with 63 oflices, and there is a railway frou Pnerto Cortez to San Pedrosula, a distance of 35 milem. It cost about $82,000,000$ and its rolling stock in valued at \$50, (00). Honduras and San Salvador have madeattempte that have been partially successfol to put all the States of Central Ameriea in telegraphic commanica.
tion. An jnteroceanic ralway is projected from Puerto Cortez tion. An inter.oceanic rainay is projectel from Puerto Cortez
to Amapala on the Dacific coast. Also a line from Puerto Cortez to Amapaia on the Pacific coast. Also a line from Puerto Cortez
hy the north coast through one of the best fruit districte of the hy the north coast through one of the best fruit districts of the
Republic. The learth oi the proposed Inter-oceanic rallway is 148 milen. It was first proposed by Mr. E. G. Squire of Nev York vity. The American war and the conpletion of the Union Pacitic rililway puta stop to the building of the road and antlcipated tomends. There je atill need enongh of the road, and when Hondirar comera be in a lese bankrupt condition, it will on. doubtedly be completed, making nother higliway for antlonal ravel.
Money, Weights and Measures. - The money, weighte and meas are of ilondiras, with the 13 ritish eguivalente, are ne followa:
Worey-The dollar of low center has a nominal value of 4 Eng lish ehilhage, but the real value is only 38.40 .

Wehinta ani Meanitise
The Arroha, for whe................... 31 imperial gatlona
"the Arroba, for oll..................... 23 intereral gablone
The square Vera, equal to 1.08 Vara................ 1 yard
The Fandya...................... fomala condition of llondaras. The actual revenne in 1885

 intercourae with outeide mations enharged, puble hizhwaye conHtracted, bridgeanal new hult, and bether enforred aysteme of ed. uention alopted. For the two yearn, 1886 to 1 R8s, embing duly

 revente, and the debelth hat to le coverd lyy loans. The revenue in drawn mainly from comonne and exeloe ditiong

The falustion-was very low and the rates of interest were high. The debt $\begin{gathered}\text { fes contracted in behalf of the Inter-ocernic railway }\end{gathered}$ Srom the Bay of LIonduras to the Guif of Fonaeca, on the Pacific coast, The origin of the debt is in some obscarity, hot the ral lahed, leaviag 176 yet to be completed.
Trade and Commerce.-The exports of Hondorss consist chlefly af cattie, mahogany, hidea and india rnbber. The importa com prise cotton goode, silk fshrics and hardware.

The exporte for the financial year 1887-88
were valoed st. \qquad . $\$ 3,350,064$
$\begin{array}{ll}\text { The vegetable prodncts amonoted to } \\ \text { Animal and induatrial products.................. } & 2,716,76 \\ 376,65\end{array}$ Minerals, exelusive of gold and silver............ : $, 683,449$ Gold and eliver.
-98,853

The vaiue of these exporte thet went to the

United Stater was.
2,790,405
To England
105,088
To France...
To Germany
To the Central American Repubilica...
81,566
8,003
367.599

1 Cocoanuts grow on the northern coast. Nany of the lubabitanta have gone extenaively into the coltivation of this iruit. The goid and silver mines of the conutry are in a fair way of development. The importa consist to the extent of more then one haif of cotton goode and cotton manufaciorea, woolen goods coming next io order of Importance, foliowed by sijke, wines and epirite. Large nambers of cattle are yaarly shipped to Caba. Tobacco, sarsaparilla indigo and other dye otnfle are among the exporta. Coarae poolen ataffa and rade ntenaile for home ose are the oniy articles of manufactare. Bees are nomerons, and produce a large quanof manufactare. Bees are nomer
Resources.-Hondnras is capable of being made particalarly prodactive in her agriculturai department. The soil prodnces vai abble timber, fralt treee, cotton, angar, coifee, tobacco, indigo maize, Wheat, potatoes, yama plantains, bananae, pine apples oranges and beans. Like the copal, the sngar cane is indigenone to the coantry, growing well at elevatione of 4,000 feet above the levet of tha eea. Coffee fouriahea and forma a large part of the exporta of Hondaras. Tobacco of a very fine quality and a deservedly high repntation is raised. Pimentum, capsicnm and other spices are plentifal, While in the woode and forests are found choice cabinat-woods, snch as mahogany, roeewood, cedar, lignem vitre, oak and pine. Peachea, applee, piame and berriea floorish on the hill sides, and delicions fraite make rich the val leys. The climate in the hilly and monntainone regiona je cool and bealthtal. The region aiong the Caribbean aea lo extremely hot, and is sobject to miasmatic fevers.
Stock Raising.-The and riaes by gentle terraces from the Bay of Fonsecs. These terraces etretch back in brosd tabie lande or eavannss, which furnieh grazing for thoneands of herds of cattle. These form one of the chief resonrces or wealth for Hondnras. Larye quantities are annosily ehipped to Cnba, where there is an Large quantities are annosity ehipped to Cnba, where there is an cary frequent the foreste, and their skins and bidee go to make up one of the staples of export.
Dining.-Honduras abounds in mineral wealth. The chief source of wealth is in the ellver mines, though gold, copper, iron, clonabar, coal, zinc, antimony, tin, platioum, opal, asbestos, amethyete, chalk, limestone and marble are fond. This branch of indnstry was at one time the chief bnainces of Hondnras, but mining has in iate yeara been almost abandoned. The great draw hack to mining has been the lack of facility for tranaportation There is no question but that llondurss ranks first, in respect to mineral resnorces, among the etstes of Central Americs, as inatemala ranke first in agricaltare. Silver is the chiet mining intereat. Silver oree of aeveral varieties are foned on the Pacific coset, smong the mountaine and ranges of monntaine which line that coast. It is fonnd in combinations of Iron, copper, lead and antimony. Siver chlorides are the richest ores, bat are rather less ahondant than the others. The gold mines or "washings" are fond on the Atsutle coast aud, as was remarked onder the head of Olsucho, they are most prodactive in that department Iron maggetite is found in rich ores. It is 80 pure that it can often he worked Withont the proceas of amelting. Lignite ia the depart ment of Gracias, in which very berotiful opals are fonnd, exista in large deposits. Copper is usually found In combination with aiver. These mine:als together with cosl, antimony, zinc and tin form the principal objecte of mining loduatry.
Physical Constitution.- Mondarae is Iavored in that it has its bigh moontain rangea on the weat. The Cordilieras follow, in ger ersi, the Pacific coast From these ran out spore and ranges that traverse the state, formiog valieys and hasina for rivere which water end drain the conniry. Hondaras, in its northern part, if hilly aod, in tis westers portion, is motntainoas. The coantry over which it la proposed to lay the Inter-oceanic railway presents a level valley breaking t^{2} ongh the Cordilera monatalin. This valley marks the conrse the Hunaya river, flowing north to the Atiantic, and Goascorn river, flowing ponth to the Pacific. Thie vailiey, Atretching throngh the centre of the state, has a length of aboat 40 miles and a breadth of about 10 miles. Except for a narrow atripe of awamp latud along each coast, the country is, In general, a table land, its serfes of a: vated piateans broken by broad and fer tle plaing and valleys. It monntain ridgee reach the height of 8 , ono reet. "The higheat peak in the otate 18 Nontafia de seiaque, whicn eaches to a helghi of 10120 feet. The Cordillerga connect the Andes on tho sonth with the Sierra Madre co the north. There sre no actlve volcanoca.
"he mean temperatnre in most of the towne of importonce is 74° Fahrenheit. Heavy fro. a occur in Novemher and December in the moon nina. Suow has uever been known. The rainy season extendefrom May to November.
Rivers and Bays.-Hondnras is well sopplied with rivers. The Ula is the largest. It is navigable for emall eraft, the most of its
some of the richest alinvial eoile of Hondorae. The Wanke or Segovia is 850 miles long, and forms the boondary line between Hondoran and Nicbragua. It riee within 50 milee of Foneecallay, and empties into the Caribbead aea. It ia navigable for about 100 miles. For 250 miles it flows through a very rough, moontsinous and onsettled conatry, navigable only for canoea. The kio Aguan (Roman river) has a length of 121 miles, and empties into the sea near Truxillo. The Rio Mangualil, noted for ita gold washioge, is near Truxillo. The Rio manguali, noted ior itt golg washioge, is the targest tributary to the rio Aguan. It is navigable for hight
boata for 80 milea of its coorse. The Rio Negro is 120 miles long and is aavigable for 40 or 50 miles. This river la known aleo as the Black river, or Poyer or Poyas. The Gosscoron, Nacome and Cholnteca are ehort rivers, drainjgg the western const of Hondorae The Cordilleras are not more than 500 c 6 milles from the ocean, so that the longer rivers are loand on the castern oide of this range The Jaitique and Sacapa drain the lake of Yojoa, which is 25 milee long by about 7 milea broad. It hae an ootlet aleo throagh a atream that flows into the Ula. The lake has an elevation of over stream that fiowe into the Ula. Th.
2,000 teet above the levei of the
Bays, Harbors and Islands.-Honduras, San Salvador and Nic aragua all front on the Bay of Fonseca. Thia bsyaffords one of the best Pacilitica for ahipping on the eatire Pacific coast. The bsy is oval in shape, having a length of 50 miles, and is 30 milea broad. The entrance is between Cosegnins and Conchagoa mountsins, and is 18 milee wide. Hondurae bas more of a frontage on tha bay than either San Salvador or Nicaragna. Thera are foar distinct channela for entrance. Theee channels are formed by islands lylag at the month of the bay. The bay is full of ialande. The principai ones are Sacate Grande, Tjere, Esporescion, Guegnenei, Martin Perez, Punta Sacate, Conchaguita, Miangulri; of gnene, Martin Perez, Panta Sacate, Conchaguita, Miangali; of Honduras. The bay is foll of frande and Esposeacion aeloog to
Hesera. The ahores Bra "reeding gronnds" for quantities of water iowis. The coontry, back from the bay, la fertile and prodoctive. Froits grow on the low lande, as well as tobacco. The land riees in a series of terraced gavannee or table lande fornishing grazing for catte. Near the bay are aiso found the cbolce woode, as well as onk and pine for lumber. The silver and gold districts are within a few miles of the bay, while sandstone, Iimestone and coal are all found within abipping diatance. Traxillo la an ancient port. Ite tradela priacipally with the department of Olaneho. The port of Omoa is defended by a fort known as El Castilio de San Fernando. The anchorage is goodand affe. There is a large trade from this port in allver and gold, hides, tobacco, indigo and fruit. This is also a ehipping point for the cattue that are eent to Coba. Mahogany is one of the stapis exports. The town has a popalation of abont 600 only. Pnerto Caballoa wan formeriy selected by Cortee, when he made his expedition into Hondaras, as the location of the acttiement which he proposed to be the port of entry for the New Spain that be was attempting to foond. It was the chief port of the cosat for upwards of two centaries, but was removed to Omoa, ae the latter place admitted of fortification. Cortas named the colony he fonnded Natividsd. The port le snch that the largast ocean ateamers may anchor there. Docke hava been construetad that afford ample accommodation for sil ocesn freight carrying parposes. The rise and fall of the tide le scarcely perceptible. There is a depth of from 4 to 19 fathoms of water orer the most of the bay. The bay is aloo aheltered from the wind, so that, alitogether, the port is one of the best as weli as one of the moet eecu: on the bay or on the cosat. Triunio de la Crnz, ertende from Cabo Triunfo to Pnerto Sal, with a coast line of 30 miles. Tho Bay of Hondoras has in its waters the groops of ielands called Bay Islands. The principal island of the group is lioatan. Tuls gronp was proclaimed a British proriace io 1852. The othe ialanda of the group are Guanja, Utila, Barbaretta, Morat and Helena. Roatan is 30 miles long, averagng 9 miles in width Gaanja, next in size, is 9 miles long and abont 5 milea broad. These ialande are weli wooded. There is quite a trade with New Orleana in fraits, etc. Goanja was discovered by Christopher Colpmbos. The port of Amajiala, on the mouth of the Sacate Grande Island, is intereating on several accounts. The inland rises to a height of $\mathbf{2 , 5 0 0}$ feet above sea level. On its lower sides the soll admits of coitivation. The ieland ie some \boldsymbol{r} miles long and 3 or 4 miles wide. On the north side are stretches of sandy heach, on one of which was the headquarters of Drake while he was aperatitig in the Sonth Sea. The island whe a favorite hannt of pirates and boccaneere. On one of these anndy beaches, where ships find an anchorage, Within a very ehort distance of the sliore is the port town of Amapala.

Birds and Animals.- In the foreste of lionduras are found the ocelot and deer whose ekins are take by the natives, and form a large source of income, and the peccary. The tapir is foond in regions neur the sen, and the northern etreamate frequented by the manatee. The ailigator is found in all the streama and lakes. The Igaana lizard aud ecores of other varictien abound in that ropicai climate. Monkeys are numerona about the cocosnat plantationa and in the foresty, hand there are many differen varleties of them. The raccoon, oposam, squirrel, armadillo ond ant eater are foond in ali localitien. The rattlemake and corral sra the only venomode eerpetite, and other varieties are goite ecarce. Locusts often come in great quatitiesand are as destrnctive as a plague. The bank nul misngrove oreter is found in almoat all the bays. Tortoines mind turtjen are of aevernl epecies. They are found quite generally in nll localitity, but ia greatest sbobdance on the adjacentislants, in the Bay istauds and along both coasts. Lobsters, crabs and timb of all binds are foond in

 nstbes. Bees are mumerous, mid ot sevcral varietics. lloney ia prodnced in considerable quantutien, and the plinre and care of beea is coming to be a mare important indastry. Turantulas, acorpions and venomana innects of varione klodn infest every part
of the contry. The prefatory birda are the hawk, valture and of the coontry. The predatory birds are the hawk, volture sind pigeon in the ioterior fornish sttractions for the hincers. Tha
pamot, macaw and toacan are indigenous to the climate, and the corrmon birds of the United States are found everywhere, such a the crow, blackbird, etc. Aqnatic birds are numeroan.
History- Hondoras was first discovered by Colambus in 1502 , gnd it was here that he first set foot on the soil of America. It was on his lourth voyage across the Allantic. He landed on the island of Gaanaja, whence be saw heyond the mountains of the Sonth American continent, and on the 14th of August, 1502, planted the spanish flag and took the conntry in the name of planted the Spanish thag and took the conntry in ine name of the spanish singdom. The spot on which be landed be called Punta de Cassinas. The place is now a vinage by the no the eastward. He enconntered torms, and the crew, as well as Colnmhue, thonght that destruction way jnevitable. After passing throngh mamerous dangers, ho reached the cape known a日 Cabo Gracias a Dios, which be thus named on acconnt ot his deliverance from dsuger. It means, Thanks be to God. Less than 20 years aftur this, Cortes undertook an expedition into Ifonduias, which will long stand a wonder of skill in military management and determination. His amy was made up of Europeano and Indian which he bronght with him from Nexico. He wise two long years marching throtst unbroken wildernesges and swampe, enduring all the hardshipsand privations of an adrance throughan unknown and the bardshpa and privationa of an adrance through an unknown and
eparsely intabited country. At the end of two years, in 15ab, Lereparsely intabited country. At the end of two years, in 1528, ISer-
nands Cortes resched Cabo de Honduras, where Columbus first nando Cortes resched Cabo de Honduras, Where Columbos first now called Pnerto Corter. Soon after, llonduras fell under the dominion of Spain. and Gracias was the seat of gosernment. This accounts for the settlements of Spanish and Europeans that exist to the present day along this coast. Io 18×2 IIonauras became a part of the Central American Confederation. In 1839 Hondnras asserted its independence, disolving the unjon with the otherstates. Those in the state who were more liberal made repeated attempts to form a confederation with San Salvador aud Nicaragua. Thia to form a confederation with san salvador aud Nicaragua. Ihis led to more than twenty yeara of internaletrife. The efforte to form
an alliance with San Salvador and Nicarsgar eren led to wars with an alliance with San Salvador and Nicarsgaa even led to wars with parties, and exiled. His ouccessor, Guardiola, concluded a treaty of peace with Gaatemala in 1856 . In 1861 an ineurrection, instigated by the clergy, arose. Thereattemptewereat length put down by Presi dent Guardiols. He pardonel all the conepiratorg, but was aseas. ainated in 1862. Jontes, who succeeded Gnardiola, made an alliance with San Salvador. This alliance was formed for the purpose of defeatitur fruatemala and Vicarapa Monter mas how ever, defeated in batle. Medina, one of his own generals, deserted bim, joined the victors and usurped the kingdom in the year 1803. In ixi? Don Celeo Arias denosed. Nedina, and himpelf took the presidency. He governed till August is is, when Dr. Darco Aurelio soto was nppointed provincial governor. A new conetitu tion was adopted by which in May, is, 6 , Soto was appoioted by the unanimous voice of the peaple to be their presideat for the term of four years. The internecine strifes, the ware with the neighuor ins states, the tumales and distarbinces had a most diagstrous effect uron the country. Government was demoralized, finance dextroyed, the schooln vacutod, commerce ruined, agriculture neglected; the state was deeply in deht to France, England and Spain, and the citizens were left in uncertainty and fear. Since fós there has been a great chnnge in all the aftairs of Ionduras. Sabthere ham ocen a great chnnge in anl tha afairs of ionduras, Schools are inund in every vilage. highwaye are bunding. allowed to till with water are now being reopsmed and worked. Conmerce is extemding to neighboring ntates and io foreign states. Capital from outwide in comimy in sind buniness apringing up ir many llifereat directions. Railroadmare much needed to open up the resonre's of the country, to develop her mining interests and urnimh trammoortution for the lumher of all eorth that growe in the interior of the gtnte. L'nder a new regine of peace the ontlook lor growth and prospersty, and the further entightenment of the aative tribus, is certamly enconraging.
Foints of Interest-C'tribs.- Ihe C'nribs were formerly lndians of the Wert Imdia lelanda. About the time of Columbus they were very unmerons and pownrful. They were warlikenad aggrem. sive, and htubbornly oppuatd any advancea of kuropean civiliza tion. 'luey were remmonel latur in Jarte mumhers to IIoudurnes Where is now the principal ewtloment of tham mople. T"lify have almost contirely dimappeared from the Weat Indin Inlands. In IIondiras they form an indumtrious and tolrably pronuerous portion of the people. They ettll roinin their anciont language and many of tiefr cuntoma ind rellgione quperatitions. It jn be Deved, alisougb it cannot be prowod, that they were formerly can nibuls. It was in lafit that the innglinh refined donger to put up with their contrated dinturbaforex, mad trmangerted then from the

 are io ull appegrancem of the nome orifinal ran with the red Caribs. Monuminta aum Ancient huinm. - There will romana ncatered over ibe flatim numerabmevidences of a formar fivilization. Theme
 numbuls of warth, turraced wtrmetarem of mont walle, "J'ha most ramarkabla' ruin fa that of 'lemunpua in the flepartment of Com-

 great thicktean. 'I'he that of then were oue atory high. but thare
were many of two and some of three stories: in thesc cases each Ses Ptest successive story was smaller than the one below it. Ths fronts 11 were usually of stone, though they were sometimes stuccoed and covered with elahorately carved figure and ornaments, many of into narrow corridors and dark chamberb, which were arched, or rather the roof were supported by overlapping coursea of stoue. The walls of the corridors were often stuccoed and covered with paintings and figorea in bas-reliel. In some of them, tablete hars been found withelaborate and srtistic benlptnres and hieroglyphics In these chambers are atill found the remains of idols and altars and evidences of an ancient sacrifice. There
difference between these structures of Honduras and those of Mexico, but not enough to make a question of doubt that they be longed to the same ancient race, as can be seen ly comparing them in general with the great temple of Mexico. This temple of mexico consisted of an immense equare area, surronnded by e wall of stowe and lime eight feet thick, with battlemente orna mented with many stone figures in the form of serpente. The extent of this inclosare, which occupied the center of the ancien city, may be inferred from the assertion of Cortes, that it might contain a town of 500 houses. It was payed with polished atones, o Emooth bat the borses of the Spaniards, which Cortes was leading, conld not tread on them without slipping. In the center of thisgreat area arose the great temple, an immense pyramidal structare of five several stages, faced all the way up with stone. The structure was 300 feet square at the hase and lwo feet bigh. The form was a truacated pyramid, with a level summit, apon Which were two towere, the shrines of the divinities to whom it was consecrated, and it was there that the sacrifices were per sormed. One of the shrimes was dedicated to Tezcatlipoca, the other to lluitzlipochtli. There were forty sinilar etruc. tures, of small size, consecrated to the separate divinities, as tures of emall size, consecrated to the separate divinities, as
well as dwellings for the priesta' attendants. There were aemin Well as dwelings for the priesta attendants. There were semin-
arien for the ingtruction of the youth, together with ponde and fountains, groves and gardens, etc. The early acconnte of this great temple are sustained by the imposing ruins of Papantla, Xoxachalco, Miscantla, qaemada and many other monnmenta, solic peaks of eight tempiesin the City of Mexico of nearly equaj grandear with the great tempie. The anme autbority estimates that those of smaller size number filly 2,000. They were dedicated to as many iklols of ditferent nanee, forms and attributea. Tor quemadn estimates the number of temples in the Mexican empire and Central American biates at 40,000 , and Clivigero placea the number far higher. It is helieved that the pyramids of Teotihucan, on the plains of Otumba, are probably among the most ancient monaments, either of Hondnras, Mexico or any of the Centres American states. There are two pribcipal ones, dedicated, accord ing to tradition, to the oun and moon respectively. It has been variously stated that the beight of the larger is 150,171 and 291 lect. It jo 680 feet aquare nt the base, add covers an area of 11 acrea, or a epace nearly equal to that covered by the great pyramide of Cheope in Egyft. The pyramid of Cholula also has tonr stagea and when measured by Humboldt was 160 feet high. It was 1,400 feet square at the base, and covered an nrea of 45 acrea. Io the department of Comayarua, among the earth works, are tracea of towers and remains of water reservoirs. Moet of the monads occnr in groups, and show that they were arranged with respect to occnr in roups, and show that they were arranged with respect to and of aeveral stages high, as those before spoken of. Great quantities of earthenware, pottery, stucco work, ctc., ara fouad in these ruins. A great many of the pieces are painted and otherwibe ornamented. There are in the state some 300 or 400 of thege pyramide, truncated, conical or in the form of mere mounda.

Ancient Civilization.-The country of Ihonduras is interesting in that it wat in the fery beart of the home of American civilaation in historic or traditionary times. The numerous nations in Iahitating Central Ampracanad Ilonduras at the time of the conguest fell nuturally into two groupa; the one, the Mayns, of Honduras and Central America; the other, the Natane, ren. resented chiclly by the Aztwes nad the cognate dwellere of Mexico. Prior to the tine of the conqueat the hioroglyphlca of the May ae, the nnciont inhahitanta of llonduram, defy interpreta then. 'I'he ignorant frunticion of the spandard, who burmed as a religions duty all the recordm that could be found when he invaded the conntry, han left only a few uncertain leftimin as to the nacient himtory of the Mayus mid Qniche"n of Honduras. The key to the bieroglyphice erterated on the monumbits in ntterly lost. The grent atome idole that the k poople wormhipled were different from the winke adorncal livinities of the Mexicans, mul were of a mildea and hurher type. Ir. lBancroft helieven that the power of the Mayan was the firet to be developed in Central Amerjca, and that contemporaneous with it nrone the nocient government in Mextec
which finally overthriw the gower of cinfrn] Anerica. E. C. H

BRITISH HONDURAS.

BRITISH HONDURAS, Balize, or Belize, lios on the Bay of llonduras in the Caribbean Sea. This col ony of the Fuglish crown occapice the castern shore of the peninsula of lincatan, and extembs from $16^{\circ} 45$ to $18^{\circ}: 30$ morth latilude, and trom $88^{\circ} 10$ to 89° west hongitule. It sepmates the fiulf of Mexico from
 Lreatest length is 160 miles and its greatest brealth 60 mikes. It lies west from Jamica bfion miles. The nppromeh to the coast is remberm dangerens by coral reafe. The country presents a varielsurface fromilow marshes along the shore to mantais in the inte: ior which run in paralled chans, followime the geamal line of the const. The Mmatere hill fian is hima an lomeet whate
the Cockscomb mountains are about 4.000 feet above the level of the sea. Between these two extremes of marsh and mountains are rieb alluvial lands and broad savannas. A great number of streams find their sources In these mountains and empty into the sea. Beyond the Cockscomb mountains is a tract of land which would make excellent grazing and support thousands of cattle. It has never yet been taken possession of for any kind of civilization. It is open land, well covered with a very rich, nutritious grass, watered by numerous streams, and lies from 1,200 to 3,300 feet above sea level.

Among the mountains of the interior there are indications of the presence of gold and silver, but this country has been so slightly developed yet that nothing has been done in the way of mining. As in the state of Honduras, so in the British colony, many remains and indications of an extinct civilization are found. The ruins of ancient cities, earth works, monoliths and pyramids are similar to those in Honduras, q. v. The climate is hot and damp, and were it not for the trade winds the heat \rightarrow uld be extreme. The country has occasionally been visited by cholera and yellow fever.

History. Not the least valuable among the spoils obtained by the famous buccaneers during their depredations on the Spanish main were the quantities of dyewoods which they found deposited at certain points on the coast of Yucatan, awaiting shipment. With the decline of their lawless pursuits the more industrious of the inhabitants, especially the English, turned their attention to the cutting and shipment of dye-wood and mahogany, and with this object in view established setthements on the coasts of the Province. In the latter part of the seventeenth century that portion of Yucatan bordering on the Bay of Honduras was abandoned by the Spaniards, owing to the destruction by pirates and Indians of the town of Bacalor. Its isolated position, together with the ruggedness of the surrounding country aad the numberless reefs and shoals on its sea-coast, made it peeuliarly fitted for the hannts of buccaneers. One of these, Peter Wallace, a Scotchman, landed with some 80 companions at the mouth of the Belize river, and erected on its banks a few houses which be eaclosed with a rude palisade. His name was given both to the river and the setulement, and subsequently to the whole region occupied by the English. This country was variously termed by the Spanish, Walis, Balis and Walix, and the word became finally corrupted into the present name of Beliee, Belize or Balize. This name, however, Mr. Squier, in his "States of Central America,"' is disposed to believe originated from the French word, balize, a beacon, "since no doubt some signal or beacon was raised here to guide the freebooters to the common rendezvous." The existence of the piratical settlement of Wallace and his companions was not discovered until the beginning of the eighteenth century, by the Spaniards. In 1725 Antonio de Figuero y Silva was ordered to expel the English. Apprised of this design, the wood cutters of Belize not only prepared for a determined resistance, but with their usual intrepidity resolved to anticipate the Spaniards by invading their territory. The wood-cutters successfully met this and all subsequent attempts to expel then, and the English government afterwards extended over them its protection. In 1739 war again broke out between Spain and England and the Spanish desisted for a time from further operations against belize, althongh the determination to regain this territory thus wrested from them had not been abandoued. In April. 1754, a forminable attempt was mate to expel the wood citters. The expedition was, however, completely defeated. This appears to have been the last expedition sent against belize for several years. In the treaty with Span, in 1763 , although agreeing to demolish " all fortifications which her subjects may have constructed in the Bay of Honduras, and other places of the territory of Spain, in that part of the worlo," England insited unon the insertion of a clause in the treaty whereby the cutters of lor wood were ginaranteed the right to continue unmolested the eutting and ahipping of the same, and the ersction of the necessary
buildings for this purpose, within those districts. This was a virtual recognition of the right of the English to occupy indetinitely a portion of her territory, and no limits were tixed to the encroachments of the wood-cutters, nor were they made subject to Spain. Soon after the ratification of this treaty, the English government commissioned Sir William Burnaby to proceed to Belize, establish the limits in which wood-cutting was to be contined, and draw up a code of laws for the regulation of the colony. This he did, and for many years the Burnaby Code formad the only laws by which Belize was governed. In 1779, war having broken out afresh between Spain and England, the former determined to profit by the opportunity to give the final blow to the existence of the English settlements in her territory

The sixth article of the treaty of Versailles, signed September 3, 1783, defined the limits of Belize and the rights of the wood cutters. The boundaries tixed were the Belize and Hondo rivers, the northwest boundary being almost a straight line between the two rivers, so as to pass through the source of New River. The southeast boundary was the coast. Another treaty signed at London, July 14, 1786, making the Sibun or Jubon River the western boundary. This treaty gave England only the right to cut wood and trade; the lands belonged to the crown of Spain. In Oetober, 1796. England declared war against Spain. Spain again attempted to expel the men of Belize, but failed. Thenceforth the stipulations of treaties were disregarded, and the territory as far south as the Sarstun was gradually taken possession of and held by right of conquest, the subsequent revolution throughout the colonies rendering the Spaniards powerless to prevent these encroachments.

Alexander McDonald, while holding the office of superintendent, on the $2 d$ of November, 1840 , set aside the laws and usages of the couniry, declaring that from that time the laws of England should he the law of the settlement or colony of British Honduras, aud that all local customs and laws reprgnant to the spirit of the law of England, and opposed to the principles of equity and justice, should be null and void. McDonald then appointed an executive council. He assumed control of the finanees, and not satisfied with the right of veto, he legislated in his own person by proclamation. The inhabitants protested against his usurpation of powers, and appealed to the British government and parliament. They also petitioned that the government should openly assume the sovereignty, so that they might possess their lands without reservation in respect to Spain or Mexico. Therefore the government, in 1845, sent out a chief justice, a queen's advocate, and other judicial officers. In later years the government has been in the hands of a lieutenant governor, with an executive and legislative council, and the colony has the usual judicial establishment. The legislative council consists of tive official and five unofficial nembers. An agricultural hoard has been established for the purpose of facilitating the distribution of information respecting the cultivation of staple products. There are stationed in the colony detachments of the $2 d$ West India Regiment. There is a public hospital, an almshouse, a lunatic asclum and a registry ollice of land titles. The coat of arms of Belize reads as follows: Chief dexter argent-the Union jack, proper, chief sinister. on the proper-the chief divided from the body of the shiehl by a chevron-shaped partition from the fess of the derter and sinister base Points, the intermediate space, azure, a ship with set sails on the sea, passant proper. (rrest, malogany tree. Motto, "Sub Umbra Floren." Supporters, negroes; the one to the left with a pachile; the other to the right with an axe over his slooulder. The popmation is mainly negro, originally introduced as slaves; the rest, excepting a fow white men, is a hybrid race resulting from intercourse with Duropeans and Indians.

The town of Belize, at the month of Belize river, nas a popnlation of 5,80 . It is the capital of B=itish Itonduras. The dwellings of the wealthy clarg, says the Packet Intelltgencer, are large and comcortable. Besides the government housee, court housee, barrack and jail, there are several churches-Episcopal, Methodist, Baptist, and Presbyterian, and some lirge and costly fire-proof warehonses. The town has txperienced two destructive conflagrations, one in 1854 and another in 18ti3.
Slavery was abolished by an act of the inhabitants on the 1at of August, 18%.
In former times, according to Bancroft, the port of Belize was an entrepôt for the neighborng states of Incatan. Gnatemala and Honduras. Smasgline was coustantly carried on fromit, both in the line of exports and imports. Atter the opening of direct trade with the l'mited starso and Enrope, and the diversion of trade on the Pa cific to Panama, that sonrce of prosperity ceased.

The average rate of duties on imports is ten per cent, ad valorem; machinery, coal, and books enter free. The chief sources of revenue to the colony are customs duties, which iu 1888 amounted to $£^{\prime \prime \prime} 0,971$, excise licenses, land tax aud the sale and letting of crown lands. The expendinures are made mainly for maintaining the administrative machincry of the government, and for varions services. The public debt amounted to £16.650 in 1888 . There is a savings bauk in the City of Belize with two brimehes. The amount on hand in de-

In 1857 there were in British LIonduras 27 sehools of all grades. There were in athendance 2,612 pupils; of these, 1.086 were Roman Catholies, 1, 199 Protestants. The govemment grant fur their support was $\$ 11,023$.

From the very first, the colony of Honduras was noted for its exportation of choire wools. Indeed, it was the class known as worl-cilters who first opened up the country, making a living by cutling and exportinf the loge wood and malugany that grew aloug the banks of its mumerons streams. British llonduras is also procluctive of fruits. Its climate makes it possible to raise all the tropical and semi-tropient plants and fruits, all of which fiml a ready markelin Now Orleans ame other North Ameriean purts, Sugar pantations are kept thy the white of Itombaras to a considerable extont. The prownetion of sugar cane is caty amb the mandfatare of sugar and the rasing of lave canc forms one of the haree imhastrice.

 of fruit watrapmotal the same year, the most of it groing
 (foffee does wall in many parts of latiosh Itondaras, and eocomut fewser are being wanter, so that they torm one of the staples of exportation with banaman
prautains, and other tropical fruits. Besides its production of mahogany, in which it ranks very high, and log. wood, British Honduras furnishes rosewood, sapodilla, Santa Marie, and other varieties of choice woods, besides pine and oak on the hill tops and mountains, The Coyol palm, from whose fruit or nut a valuable oil is extracted, grows well. Cotton grows readily in several varieties, some of which are choice and valuable.

In the interior sursaparilla and vanilla are fonnd, and several kinds of spices. The waters, both fresh and salt, ahound in all kinde of fish, turtles, crabs, cray-fish, water-fowl, etc., while fur bearing animsis are found along the streams; among them are the ounce and panther (American). Monkeys of many varieties are fonnd in the forests, also deer, rattlesnakes, tarantulas, scorpiona, and a venomous tly infest certain localities. Turkeys, pigeons, ducks, etc., are among the game birds. Parrots, pelicans, valtures, 1 buzzards, macaws, and hamming birds, and all the varieties of feathered fowls common to the temperate zone are to be fonnd in the woode and abont the waters of the Colony. The wood-tick which is common to all Central America is a pest. Alligators are found in all the rivers and bodies of water, also the manatee. Cattle and horses are not raised in great quantities, though the uniands farnist good grazing for stock. Present statistics indicate that the colony is rather retrograding than advancing. The augar plantations are in flourishing condition, and the product of sugar is yeasly increaning.
I.. C. H.

HONE. Under the nanie of hones, whetstons, of: sharpening stones, a variety of finely siliceaus stones arr, employed for whetting or sharpening edge $t \cdot o l s$, and for abrading steel and other hard surfaces. They generally are prepared in the form of flat slabs or small pencils ot rods of the material, but some are made with the outline of the special instrument they are designed to sharpen. Their abrading action is due to the quartz or silica whick is always present in predominatìng proportion, some kinds consisting of almost pure quartz, while in others the siliceaus element is very intimately nixed with aluminous or calcareous natter, forming a uniform compact stone, the extremely fine siliceous particles of which impart a remarkably keen edge to the iustruments for the sharpening o_{0}^{*} which they are applied. Hones are used either dry, with water, or with oil, and generally the objeet to he sharpened is drawn with hand pressure backward and forward orer the surface of the hone; but sometimes the stone is moved ore: the cutting edge. The caarsest type of stone whinh can be included among hones is the bat or scythe stone, a jurous fine-grained saudstone used for sharpening seythes and cutters of mowing machines, and for other like purposes. Next come the ragstones, which consist of quartzose micischist, and give a finer edge than any sandstane. Uuder the head of oilstones or hones proper the most famous and best-known qualities are the German razor hone, the Turker oilstone, and the Arkansas stone. The German razor hone, used, as its name implies, chietly for razors, is obtained from the slate mountains near Ratisbon, where it forms a yellow vein of from 1 to 18 inches in the blue slate. It is sawn into thin slabs, and these are cemented to slabs of slate which scrve as a support. Turkey oilstone is a closegrainel bluish stone containing from 70 to 75 per cent. of siliea in a state of very tine division, intimately blended with about 20 to 25 per cent. of calcite. It is obtained ouly in small picces, frequently flawed and not tough, so that the slabs nust have a backing of slate or wood. It is one of the most valuable of all whetstones, abrading the hardest stcel, and possessing sullicient compactness to resist the pressure required for sharpening gravers. The stone comes from the interior of A sia Minor, whence it is earried to Smyma. Of Arkansas stones there are two varieties hoth found in the same district, Garland county, Arkansas, United States. The finer kind, known as Arkausas hone, is ubtained in small pieces at the hot springs, and the second quality, listinguished as Washita stone, comes from Washitá or Ouachita river. 'I'he hones yicld on anaiysis 98 pe" cent. of silicn, with small proportions of alumina," potesh,: and sonla, and mere traces of iron, lime, magnesiu, and hydrolluoric acid. They are whito in celour. ratremely,
hard and keen in grit, and not eazily worn down or broken. Geologically the materials belong to the millstone grit series, aod are supposed to be metamorphosed sandstone resulting frofn the permestion through the mass of heated nlkaline siliceous waters. The finer kind is employed for fine cutting instruments, and also for polishing steel pivots of watch-wheels and similar minute work, the secend and coarser quality being used for common toels. Both varieties are largely exported from the United States to all quarters in the form of blecks, elips, pencils, rods, and wheels. During the Centennial Exhibition of 1876 the comparative value of hones per to was thus quotedArkansas $\$ 1 \cdot 50$, Washita 35 , Turkey 1.00 . Among hones of less importance in general use may be aoted Charnley Forest stone, a goed substitute for Turkey oilstane; Water of Ayr otone, Scotch stone, or snake stone, used for tools and for polishing marble and copperplates; Idwal or Welsh oilsione, used for small articles; and cutlers' greenstone from Soowdon, very bard and close in texture, used for giving the last edge to lancets.

HONE, William (1780-1842), a political saturist and a writer on antiquarian and miscellaneous subjects, was born at Bath, June 3, 1780. His father, a man of deep spiritual experience in that time of religious reviral, brought up his children in strictness and reverence, but not without the sectarian narrewness that so frequently produces reaction. The parodist of the litany and of the Athanasian creed was taught to read from the Bible only. Hone received no systematic educatiou. His father haring removed to London in 1783, he was in 1790 placed in an atterney's office. Becoming connected with the London Corresponding Society, which was given to freethought and to political agitation, he was remored by his father to the office of a solicitor at Chatham, but after two years and a half he returned to London and became clerk to a soliciter in Gray's Inn. Having no liking for the study of the law, and apparently no hope of succeeding in it, Hone, being then married, started in 1800 a book and priat shop and a circulating library in Lambeth Walk, and he soon after removed to St Martin's Churchyard, where he brought out his first publication, Shaw's Gardener, and suffered much loss from a fire. It was at this time that Hone matured and with a friend endeavoured to realize a plan for the eatablisbment of popular savings banks, and even had an interview on the subject with the Right Hon. George Rose, then presideat of the Board of Trade. This scheme, hewever, fell through from lack of support. His partner in the savings bank became next his partner in a brokseller's business; but Hone's babits were not those of a tradesman, and bankruptey was the result. After several removals, having corapiled an indes to Lerd Berner's translation of Froissart, he was in 1811 chosen by the booksellers as auctioneer to the trade, and had an office in Ivy Lane. Independent investigatiens carried on by bim inte the cendition of lunatic asylums led again to difficulties and failure, but, etruggling bravely puder his burdens, he took a small lodging in the Old Bailey, and kept himself and his now large family by contributions to magazines and reviews. He hired a small shep (er rather box) in Fleat Strect, but this was on two separate nights broken into, and raluable bauks lent fer shew were stolen. In 1815 he started the Traveller newspaper, and endesvoured vainly to exculpate Flizz Fenning, a poor girl, apparently quite guiltless, executed on a charge of poisoning. From February 1 to October 25, 1817, he published the Reformist's Register, writing in it as the serious critic of the state abuses, to which he sonn after applied the lash of satire in those politieal equibs and paredies that made his name knewn througheut the laud, and that first gave nutoriety to Geerge Cruikshank, who was his artistic collaborator. In April

1817 three ex officio informatious were filct against fim by the attorney-general, Sir Willian Garrow, and he wes seized while reading in the street and hurried to the lock-up. Three separate trials took place in the Guildhall before special juries on the 18th, 19th, and 20th of Deeember 1817. The first, for publishing Wilkes's Catechism of a Ministirial Mfember, was before Mr Justice Abbot (afterwards Lord Teaterden); the second, for parodying the litany and libelling the prince regent, and the third, for publishing the Sinecurist's Creed, a parody on the Athanasian creed, were before Lord Ellenborough. The prosecuting officials, among whom we must include the judges, took the ground that the prints were calculated to injure public morals, and to bring the prayer-boek and even religion itself into contempt. But there can be no doubt that tho real metives of the prosecution were pelitical; Hone had ridiculed the habits and expesed the corruptien ef the princes regent and of other persons in power. He went to the root of the matter when he wished the jury "to understand that, had he been a publisher of ministerial parodies, be would not then have been defending himself on the floor of that ceurt." In spite of illness and exhaustion Hone displayed great courage, ability, dignity, and presence o: mind. On each of the three days he spoke on an averago seveu hours. Notwithstanding the powerful prosecution and the bias of the judges, he was acquitted on each count, and the result on each occasion mas received with enthusiastic cheers by immense crewds within and without the ceurt. Soon after the trials a public meeting, in which Alderman Waithman, Sir F. Burdett, and Lord Coebrane took part, was held, and a subscription was begun, by which a large sum was seen collected to euable Hone to get over the difficulties caused by bis prosecution.

Hone's most successful political satires were published within a few years after his trial. Among them we may mentien The Political House that Jack built, The Queen's Matrimonial Ladder (in favour of Queen Caroline), The Man in the Moon, The Political Showman, all illustrated by Cruikshank. Many of his squibs are directed against a certain "Dr slop," a nickname given by him to Dr (afterwards Sir Jehn) Stoddart, a writer in the Times. In researches for his defence he had come upon some curieus and at that time little trodden literary ground, and the results were shown by his publication iu 1820 of bus Apocryphal New Testament, and in 1823 of his Ancient Mysteries Erplained. He proposed in 1820 to writa bo History of Parody, but this never appeared. In 182 gh he published the Every-day Book, in 1827-8 the Talle-Book, and in $18: 9$ the Year-Book; all three were collections of curious information on manners, antiquities, and various other subjects. ${ }^{1}$ These are the warks by which Hene is best rememberd. In prepariug them he had the warm approval of Southey and the assistance of Charles Lamb, but pecuniarily they were not successinul, and Hone was lodged in King's Bench prison fer debt. Friends, how. ever, again came to his assistance, and he wes established, in a coffe-house in Gracechurch Street; but this again, like most of his enterprises, ended in failure. Hone's attitude of mind had gradually clanged to that of estreme devoutness, and during the latter years of his lifo he frequently preached in Weigh House Chapel, East cheap. In 1830 he edited Strutt's Sports and P'astiones, and, on the starting in 1832 of the Perny Magazine, he contributed to the first number. He was also for some years sub-editor of the Patriet. He died at Tottenham. 8th Norember 1842.

[^33]HONEX (Chun., mè ;'Sausk., .nautu, mead, honey,-cf. A. S., medo, medu, mead ; Greek, μ é $\lambda \iota$, in which θ or δ is changed into λ; Lat., mel; Fr., miel; A. S., hunig; Germ., Honig), ${ }^{1}$ a aweet viscid liquid, obtained by bees chiefly from the nectaries of flewers, i.e., these parts of fiowers specially censtructed for the elaboration of honey (see Botany, vol. iv. p. 134), and after transpertation to the hive in the proventriculus or crop of the iasects, discharged by them inte the cells prepared for its receptiou. Whether the nectar undergoes any alteration within the crop of the bee is a point on which authors bave differed. Seme wasps, e.g., Myrapetra acutellaris ${ }^{2}$ and the genus Nectarina, cellect honey. A honay-like fluid, which coosists of a nearly pure solution of uncrystallizable augar baving the formula $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{7}$ after drying in vacac, and which is used by the Mexicans in the preparation of a beverage, is yielded by certain inactive individuals of Myrmecocystus mexicanus, Wesmael, the heney-ants or pouched ants (hormigas mieleras or mochileras) of Mexice. ${ }^{5}$ The abdomen in these insects, owing to the distensibility of the membrane conaecting its segments, becomes converted into a globular thin-walled sac by the accumulation within it of the nectar aupplied to them by their working comrades (Weamael, Bull. de l'Acad. Roy. de Brux., v. 766, 1838). By the Rev. H. C. M'Cook, who discovered the insect in the Garden of the Geds, Colorade, the honey-bearers were fouod hanging. by their feet, ia groups of about thirty, to the roofs of special chambers in their uaderground nests, thsir large globular abdomeas cansing them to resemble "bunches of small Dalaware grapes" (Proc. Acad. Nat. Sci. Philad., 1879, p. 197). A bladder-like formation on the metathorax of enother ant, Crematogaster inftatus (F. Smith, Cat. of Hymenoptera, pt. vi. pp. 136 and 200, pl. ix. fig. 1), which has a emall circular orifice at each posterior lateral angle, appears to possess a function similar to that of the abdemen in the honey-ant.
It is a popular saying that where is the best honey there also is the best wool ; and a pastoral district, since it affords a graater prefusion of flowers, is auperior for the production of beney to one under tillage. ${ }^{4}$ Dry warm weather is that most favourable to the secretion of nectar by flowers. This they protect frem rain by various internal structures, sach as papille, cushiens of lairs, and apurs, or by virtne of their position (in the raspberry, dreoping), or the arrangement of their coustituent parts. Dr A. W. Benaett (How Flowers are Fertilized, p. 31, 1873) has remarked that the perfame of flowers is gonerally derived frem their nectar ; the blossoms of some plants, however, as iyy and holly, though alnost aceutless, are highly nectariferous. The exudation of a honcylike or sacclarine fluid, es has frequeatly been attested, is not a function exclusively of tho flowers in all plants. A sweet material; the manna of pharmacy, e.g., is produced by the loaves and stems of a specics of ash, Fraxinus Oraus; f.nd heney-secreting glands are to be met with on the leaves, petioler, phyllodes, stipules (as in Vicia sativa), or bractere (as in the Maregraviacece) of a considerable namber of diffrent vegetable forms. The origin of the hency-yielding propertics manifested specially hy flowers ameng the scveral parts of plants has becn carefully consifered by Darwin, who regards the saccharine matter in nectar as a waste product of chernical changes in the sap, which, when it hajpened to

[^34]be excreted within the envelopes of Howers, was utilized for the important object of cross-fertilization, and subaequently was much increased in quantity, and stored in various ways (see Cross and Self Fertilization of Plants, p. 402 sq., 1876). It has been neted with respect to the nectar of the fuchsia that it is most abundant when the anthers are about to dehisce, and absent in t.t.a unexpanded flower.
Pettigrev is of opinion that few bees go more than two miles from home in search of honey. The number of blossoma visited in order to meet the requirementa of a siogle hire of bees must be very great, for it has been found by A. S. Wilson (" On the Nectar of Flowers," Brit. Assoc. Kep., $187 \mathrm{~s}, \mathrm{p} .567$) that 125 heads of common red clover, which is a plant comparatively abundant io nectar, yield but one gramme ($15 \cdot 432$ grains) of sugar ; and as each head contains about 60 florets, $7,500,000$ distinet flower-tubes must on this estimate be exhausted for each kilogramme ($2 \cdot 204$ tt) of sugar collected. Among the rieher sourees of honey are reekoaed the apple, asparagus, asters, barberry, basswood (Tilia americana), and the European lime or linden (T. europaca), beans, bonesets (Eupatorizm), borage, broom, buckwheat, catnip, or catmint (Nepeta Cataria), cherry, cleome, clover, cotton, crocus, currant, dandelion, eucalyptus, figwort (Scrophularia), furze, golden-rod (Solidago), gooseberry, hawthorn, heather, hepatiea, horehound, byacinth, lucerne, maple, mignonette, mint, motherwort (Lconurus), mustard, onion, peach, pear, poplar, quince, rape, raspberry, sage, silver maple, snapdragon, sour-wood (Oxydendron arboreum, D.C.), strawberry, sycamore, teasel, thyme, tulip-tree (more eapecially rich in pollen), tarnip, violet, and willows, and the "honey-dew" of the leaves of the whitethorn (Bonaer), oak, linden, beech, and some other trees.
Honey coutains dextroglucose and levoglucose (the former practically insoluble, the latter soluble in $\frac{1}{8}$ pt. of cold strong alcohol), cane-sugar (according to sonue), mucilage, water, wax, cssential oil, colouring bodies, a minute quantity of mineral matter, and poilen. By a apecies of fermentation, the cane-sugar is said to be gradually transformed into inverted sugar (levoglucese with dextroglucose). The pollen, as a source of ditrogen, is of importance te the bees feeding on the honey. It may be obtained for examination as a sediment from a mixture of honey and water. Other substances which have been discovered in honey are mannite (Guibeurt), a free acid which precipitates the salts of silver and of lead, and is solnble in water and alcohol (Calloux), and an uncryskallizable sugar, nearly related to inverted sugar (Sou'eeiran, Compt. Rend., xxviii. 774-75, 1849). Erittany honey contains couvain, a ferment wish determines its active decomposition (Wurtz, Dict. de Chem., ii. 430). In the honey of Polybia apicipennis, a wasp of tropical Ameriea, cane-sugar uecurs in crystals of large sizo (Karsten, Pogy. Anar., C. 550). Dr J. Campbell Brown ("On the Composition of Honcy," Analyst, iii. 267, 1878) is donbtful as to the presence of canc-sugar in any one of nine samples, from various sourcos, examined by him. The following average percontago numbers are afforded by his analyses:-læevulose, 36.45 ; dextrose, 36.57 ; nincral matter, 15 ; water expelled at $100^{\circ} \mathrm{C}$, 18.5 , and at a much higher temperatare, with loss, 7×81 : the wax, rollen, and iasoluble matter vary from a trace to $2 \cdot 1$ per cent. The specific gravity of honey is about $\mathbb{I} 41$. The rotation of a polarized ray by a solution of 16.26 grammes of crule honey in $100 \mathrm{c} . \mathrm{c}$. of water is generally from $-3 \cdot 2^{\circ}$ to -5° at $60^{\circ} \mathrm{F}$.; in the case of Creck houcy it is nearly -55°. Almost all purc honcy, when exposed for some time to light and cold, becomes mere or less granular in consistency. Any liguid pertion can be readily separated by straining through linen. Honey sold out of the corb is commonly clarified by heating and skimming; but according to Bonucr it is always lest in its natural state. The med depuratum of liritish pharmacy is prepared by heatiog honcy in is water-hath, and straining through flanel previously moistened with warm water.

The tem "virgin-honey" (A.S., humigear") is applicd to the loney of youns bees which have never 3warmed, or 1.. that which fluws smunianeously fron honucomb with or
without the application of heat. The honey obtained from old hives, considered inferior to it in quality, is ordiasrily darker, thicker, and less pleasant in taste and odour. The yield of boney is less in proportion to weight in old than io yonng or virgin combs. The far-famed boney of Narboane is white, very granular; and bighly aromatic ; and still Giner boney is that procured from the Corbieres mountains, 6 to 9 miles to the south-west. The boney of Gâtioais is usually white, and is. less odorous, and granulates less readily than that of Narbonne. Honey from white clover has a greenish-white, and that from heather a rich goldenyellow hue. What is made from honey-dew is dark in culour, and disagreeable to the palate, and does not candy like good honey. "We have seen aphide honey from sycamores," says F. Cheshire (Pract. Bee-Keeping, p. 74), "a as deep-in tone as waluat liquor, and where much of it is stored the value of the whole crop is practically nil." The iloney of the stingless bees (Melipona and Trigona) of Brazil varies greatly in quality according to the species of flowers from which it is collected, some kinds being black and sour, and others excellent (F. Smith, Trans. Ent. Soc., 3d ser., i. pt. vi., 1863). That of Apis Peronii, of India and Timor, is yellow, and of very agreeable tla ponr, and is more liquid than the British sorts. A. qnicolor, a bee indigenous to Madagasear, and paturalized in Mauritius and the island of Reunion, furnishes a thick and syrapy, peculiarly scented green honey, highly esteemed in Western India. A rose coloured honey is stated (Gard. Chron., 1870, p. 1698) to have been procured by artifcial feeding. The fine aroma of Maltese honey is due to its collection from orange blossoms. Narbonne honey being harrested chiefly from Labiate plants, as rosemary, an imitation of it is sometimes prepared by flavouring ordiasry honey with infusion of rosemary flowers.

Adaltarations of honey are starch, detectable by tha microscope, and by its blue reaction with iodine, also wheaten flour, getatin, chalk, gypsum, pipe-clay, added water, cane-sugar, and common ayrup, and the different varieties of manufactured glucose. Honey sophiaticated with glucose containing copperas as an impurity is turned of an inky colour by liquids containing tannin, as tea. Elm leaves have been used in America for the flavouring of imitation honey. Stone jars should be employed in preference to common earthenware for the storage of boney, whicb acts upon the lead glaze of the latter.

Honey is mildly laxative in properties. Some few kinds are poisonous, ns frequently the reddish honey stored by the Brazilan wasp Aectarina (Polistes, Latr. ${ }^{1}$) Lecheguana, Shuck, the effects of which have bsen vividly described by Aug. de Saint-Hilaire, ${ }^{2}$ the gpring honey of the wild bees of East Nepaul, said to be rendered noxious by collection from rhododendion flowers (Hooker, Himalayan Journals, i. 190, ed. 1855), and the honey of Trebizond, which from its source, the blossoms, it is stated, of Azalea pontica and Rhododendron ponticum (perhaps to be identified with Pluy's Egolethron), acquires the qualities of an irritant anil intuxicant narcotic, as described by Xenophon (Anab., iv. 8). Pliny (Nat. Hist., xsi. 45) describes as noxious a livid-coloured honey found in Persia and Getulia. Honey obtained from Kalmia latifolia, L., the calico bush, meuntain laurel, or spoon-wood of the northera United States, and allied species, is reputed deleterious; also that of the cour-wood is by some good authorities considered to possess undeniable griping properties; and G. Bidie (Madras Quart. Journ. Med. Sci., Oct. 1861, p. 399) mentions urtication, headache, extreme prostration and nausea, and intense thirst among the symptoms produced by a small quantity only of a honey from Coorg jungle. A South African species of Euphorbia, as was experienced by the missionary Moffat (Miss. Lab., p. 32, 1846), yields a misonons honey.

[^35]The nectar of certain flowers is asserted tu sause even in bees a fatal kiud of vertigo. As a demulcent and flavour: ing agent, honey is cmployed in the oxymel, oxymel scilla, mel boracis, confectio piperis, conf. scammonii, and conf. terebinthine of the British Pharmacopaia. To the aucients luney was of very grent importauce as an article of diet, being almost their only available source of gugar. It was valued by them also for its medicinal virtues; and in recipes of the Saxon and later periods it is a common ingredient. ${ }^{3}$ Of the eight kinds of honey mentioned by the great Indian surgical writer Susruta, four are not described by recent anthors, viz., argha, or wild honey, cullected by a sort of yellow bee; chhatra, made by tawny or yellow wasps; audálaka, a bitter and acrid honcy-like substance found in the nest of white ants; and dala, or unprepared boney occurring on flowers. According to Hindu medical writers, honey when new is laxative, aud when more than a year old astringent (U. C. Dutt MMatMed. of the Hindus, p. 277, 1877). Ceromel. formed by mixing at a gentle heat one part by weight of yellow wax with four of clarified boney, and straining, is used in India and other tropical conntrics as a mild stimulant for ulcers io the place of animal fata, which there rapidly become rancid and nofit for medicinal purposes. The Koran, in the clapter entitled "The Bee," remarks with reference to bees and their honey: "There proceedeth from their bellies a liquor of varions colour, wherein is a medicine for med" (Sale's Koran, chap. xvi.). Pills prepared with honey as an excipient are said to remain unindurated, however long they may be kept (Med. Times, 1357, i. 269). Mead, of yore a favourite beverage in Eng. land (vol. iv. p. 264), is made by fermentation of the liquor obtained by boiling in water combs from which the honey has been drained. In the preparation of sack-mead, an ounce of hops is added to each gallon of the liquor, and after the fermentation a kmall quantity of brandy. Metheglin, or hydromel, is manufactured by fermenting with jeast a solution of honey flavoured with boiled hops (see Cooley, Cyclop.). A kind of mead is largely consumed in Abyssinia (vol. i. p. 64), where it is carried on journeys in large horns (Stern, Wanderings, p. 317, 1862). In Russia a drink termed lipetz is made from the delicions honey of the linden. The mulsum of the ancient Ramans consisted of boney, wine, and water boiled together. The clarre, or piment, of Chancer's time was wine mixed with boney aud spices, and strained till clear; a similar drink was bracket, made with wort of ale instead of wine. L. Manrial (L'Insectologie Agricole for 1868, p. 206) reports unfavourably as to the use of honey for tle production of alcohol; he recommends it, buwever, as supcriar to sugar for the thickening of liqueurs, and also as a means of arretening imperfectly ripened vintages. It is occasionally employed for giving strength and flavour to ale. In ancient Egypt it was ralued as an embalming material; and in the East, for the preservation of fruit, and the making of cakes, sweatmeats, and other articles of food, it is largely consumed. Grafts, scels, and birds' ergs, for transmiasion to great distances, are sometimes packed in boney. In India a mixture of honey and milk, or of equal parts of curds, honey, and clarified butter (Sansk, madhu-parka), is a respectful offering to a guest, or to a bridegronm on bis arrival at the donr of the bride's father; and one of the parificatory ceremonies of the Hiadne (Sansk., madhu-prāana) is the placing of a little boney in the month of a new-born male infant. Honey is frequently alluded to by the writers of antiquity as food for children; it is not to this, however, as already mentioned,

[^36]that Isa. vii. 15 refers. Cream or fresh butter togenef with honey, and with or without bread, is a favcurite dish with the Arabs.

Among the obserrances at the Fandróana, or New Year's Festival, in Madagascar, is the eating of mingles. ace and honey by the queen and her guests; in the same cenntry honey is placed in the sacred water of spromkling used at the blessing of the children previous to circumcision (Sibree, The Great African Is., pp. 219, 314, 1880). Honey was frequently employed in the ancient religious ceremonies nf the heathen, but was forbidden as a sacrifice in the Jewish ritual (Lev. ii. 11). Witli milk or water it was presented by the Greeks as a libation to the dead (Odyss., xi. 27 ; Eurip., Orest., 115). A honey-cake was the montlily food of the fabled serpent-guardian of the Acropolis (Herod., viii. 41). By the aborigines of Yeru boney was offered to the sun.

The Hebrew word translated "honey" in the authorized rersiou of the English Bible is debash, practically synonymous with which are jeiar or jaiarth had-debash (1 Sam. xix. 25-27; cj. Cint. v. 1) and rowheth (Ps. xix. 10, \&c.), rendered "honey-comb." Debash denotes bee-honey (as in Dout. xxxii. 13, and Jud. xuv. 8); the manna of trees, hy some writers considered to have been the "wild honey" eaten by Jobn the Baptist (Matt. iii. 4) ; the syrup of dates or the fraits themsel ves; and probably in some passages (as Gen. xliii. 11 and Ez. xxvii. 17) the sytupy bolled juice of the grape, resembling thin molasses, in use in Palestine especinlly at Hebron, under the name of dibs (see Kitto, Cyclop, and E. Robinson, Bibl. Res., ii. 81). Josephus (E. J., iv. 8, 3) speaks highly of a honey froduced at Jericho, cousisting of the expressed juicc of the truit of palm trees; and Herodotus (iv. 194) mentions a similar preparation made by the Gyzantians in North Africa, where it is ytill in use. The honey most esteemed by the ancients was that of Mount Hybla in Sicily, and of Monnt Hymetus in Attira (vol. iii. p. 59). Mahafly (Manbles in Grece, p. 148, 2d ed., 187S) deseribes the honey of Hymettus as by no means so good as the produce of other parts of Greece-not to say of the heather hills of Scotland and Ireland. That of Thebes, and more especially that of Corinth, which is made in the thymy hills towards Cleonæ, be found much better (ef. wol. si. p. 85). Honey and wax, still' largely obtained in Corsica (vol. vi. P. 440), were in olden times the chief productions of the island. In Euglani, in the 13th aud 14th centaries, honey sold at from about 7d. to is. 2d. a gallon, and oceasionally was disposed of by the swarm or hive, or rusche (Rogers, Mist. nf Ugric. and Prices in Eng., i. 418). At Wrexbam, Denbigh, Wales, two honey fairs are annually held, the ove on the Thursday next after the ist September, and the other, the more recently instituted and by fir the larger, on the Thorsday following the first Wedues. dny in October. In Hungary the amoonts of honey and of wax are in favourable years respectively abont 190,000 and $12,000 \mathrm{cwt}$. . and in unfavourable years, as, e.g., 1874, about 12.000 and 3000 $c \mathrm{cwt}$. The hives there in 1870 numbered 617,407 (or 40 per 1000 of the population, against 45 in Anstria). Of these 365,711 were in Ilangary I'roner, and 91.348 (87 per 1000 persons) in the Military Frontier (Keleti, Uebersicht der Bevolk: Ungarns, 187]; Schwicker, Statistik d. H^{\prime} (tyqurin, 1877). In Poland the system of bee-keeping introluced by Dolinowski has been found to afford an avcrage of 40 th of honey and axa and two new swarms per hive, the common peasaut's heve yielling, with two swarms, only 3 to of honey and was. In forests and places renote from villates in Podotia and parts of Volhyma, as many as 1000 huws may he sech in one apiary. In the distuct of Ostrolenka, in the govermment on Plock, and in the wooly regron of folesia, it Lithuania, a methom is practised of rearang heq in accavated trunks of trees (Stanton, "On the Treatment of Bees in l'oland," Tichnologis'. 57 45, 1s66). When, in Augut, in the lutier valleys of Bormio, Itals. flowering ceases, the bets in their wonden hum are by means of enmotearts traneported at night to tower tegions, where they ohtan from the backwhat erops the inferior howey whela serves then for winter conqumption (1b., F. 38).

In lubestone, "the land flowing with milk and honey ' ${ }^{\prime \prime}$ (Ex. wii. 17; Numb. xai. 27), wild lues ate very manerous, espemally in the widderiess of dulpa, arnl the silling of thar produce, olminel fron crevice in fonks, hollows in treps, and wowhere, is with many if the inhalatants a mans of subsstance. Commontron 1 S゙m. xiv. Lhe I. Roherts (Uriontal Illust.) rumarks thit m the East "rhen forenfoliterally llow with honey; targer combs may be seen hanging:

carried on. The hives are sun-burnt tubes of mud, about 4 feet 1:! !ength and 8 idches in diameter, and, with the exception of a small centra! aperture for the passage nf the bees, closed at each end with mod These are laid together in long rows, or piled pyranid. atly, and are protected from the sua ly a covering of mud and of boughs. The honey isextracted, when the cods have been removed, by menns of ani iton hook. (See Tristram, Nint. Hist. of the Bille, ip. 322,9 , 2 d ed., 1868). Apicuitare in Turkey is in a very rude condition. The Eali-dagh, or "Honey Mount", in the phiu of Tring, is so called on accoint of the numerous wild bees tenanting the caves in its precipitous rocks to the south. In warious regions of A frien, as on the west, near the Gandia, bees abound. Cameron was informed by his guides that the large guantities of honey at the clitfis by the niver Makanyazi were under ibe protection of an evil spirit, aad not one of his men could be persuaded to gather any (Across Africa, i. 266). On the precipitous slopes of the Teestio salley, in India, the procuring of honey from the pendulous bees:rests, which are sometinues large enough to be conspicnous features at a mile's distance, 15 the only means by which the idle poor raise their annual rent (Hooker, Mim. Journ., ii. 41).

To reach the large comus of Apis dorsula and A. lestacea, the natives of Timor, by whom both the boney and young bees are esteemed delicacies, ascend the trunks of lofty forest trees by the use of a loop of crecper. Protected from the myriads of angry in. sects by a small torch only, they detaeh the combs from the under surface of the branches, and lower them by slender cords to the ground (Wallace, Journ. Linn. Soc., Zool., vol. xi.). For addıtional facts concerniag honey, and a sketch of the processes of apiculture nsually adopted in the Old World, see the article Bee. vol. iii. pp. 484-503.
On honey, and bees and bee-kecping in general, sec, Ucsides the above-menlioned works, J. Bnuner. A New Plan for specdily increasing the number of Bre. hives in Scotiand. 1705. contaning the substance of The Bec-Sfizter's Companion. 17E3, by the same autbor: V. Fendu. Trave pratrque sur les Abrilles, 1838; Hunn's Honey Dee, ed, by E. Bevan J. Samuclson. Humble Crpatures, pt. it.. 1400; F. Taylor, The Bee-Keeper's Jfanual, 6 th ed., 1860 ; F. Cowan, Curious
 Fine of Bees. 19:1); G. de Larens. Eletage des Abeilles par les Proceifes Hoderne. 187t: J. de Ifdalgo Tabtada, Tratada de las abogas, Madi. 18:5; A. J. Durye. The llahan Syetem of Bce-Kecphg, 182 E ; and A. H. Hassall. Food and ris Adui. terahtons, p. 266, 1876.
(F.H.B.)

Honey. Farmisg in America. - So mpid of late years has been the devcloparent of becheeping in the United States, that tbe taking of stens to securc the fullest and most accurate details with respeet to that industry has been deemed necessary by the commis. sioners of agriculture. It has been estimated by sereral intelligent bec-kcepers that there are in the United States 700,000 hives of bees, owned by 35,000 people, of whom at least 30,000 are farmers possessing on an average not more than 3 hives cach, the remaining 5000 being professionel aniarians. Mr G. M. Doolittle, of Borodino, N.Y., on the Auburn branch of the New York Central liailway, obtained in 1877 an arerage of 100 lb of honey apicee from his hives, and from one of them the exceptinnally large yreld of 700 tt . It is not unreasomable to say that the hives in the United States alford each a net supply of about 50 lb of surplos honey, which, selling at 20 cents (10l.) per 10 , returns a good profit to the owners. All American boney is classed by the up. culturist according to the phants from which it is derived. It is only in rave cases that pasturage is specially cultivated for the bees. lu the States east of the Rocky Monntains there are three chief sonrees of honey. 'Those which yith the most delicately llavoured and whitest aul therefore most valuahle commodity (see ahove) are, first, the immense forests of basswood, the honey from whieh has perhaps a slicht manty havour, and, secondly, white clover Erass, cultwated throughout the States for bay and stock pasturc. which furnishes a homry pronounced by competent junges superior to that of the world-remowned $11 y$ metins. Bees having aceess to both haswood and whete clover frequently store the honcy from fach in the same cells. The that and ofter richest source of supply is buchisheat, wheh blosmans after the lasswowl and white elover herer ceasend to yould. The pumgent honey obtained therefrom. thongh by ats dark colour rembered unsutable hor the table, is greaty vaibed for ramatietarmg purposes, more espently in the brewing of fine heer, sunce it forms a juerfectly chear solntion, fermonta well, and is richor in saccharine matter that the glucose commonly cmplover] by lorewers, which moreover is apt to be con. tammated with the arils emplogel in its preparation. Bnekwheas huncy is also accomed a good remedy m brouchind affections, ant s therefore us reptest for the making of congh maxtures. The day is pobably not fir distant when the rehnimg of the large quitutites of disk honey which are harvested will be undertaken or :m extensire seale.

Fru the sucecssful prosecution of locekepping energy and nerse. widme, as wedl as exfrience and considerable caphtal, are requisite. Where are not mone than fons berovepers in the Unated States who own so many as 2500 or 3 noo hives. The largest apiaries aro the promery of Bres. S. Hathison of Califormat I'hey are six in oumber ablal situated withe casy patrol distanee from one notnes

In the extreme south.west corner of the United States, in a narron strp oi country known as the "bee-belt" of California, which enjoys the soft and equable elimate of the Pacific coast. Timber in this region is confined to the bottoms near running strearns, and to the canuns, the valleys and hill-sides being covered with stunted brushwood ant an ahundant growth of white sage, -an herb similar to the garden sage, and not to be confounded with the zagebrush of Nevada and Utah, which is a species of wormwood, sumach, and other llowering plants. These bloom nine months in the yenr, but are most luxnriant in May and June. The white sage affords a honcy compurable to that obtained irom the basswood of the eustern States. The Calitornian honey, owing to the innocuous nature of the thowers from which it is procired, is devoid of the colic-protucing properties ascribed to sone other varieties of honey:. Mr Harbison employs fifteen men in his apiaries, and is reaping rich profits from very many thousinds of acres useless for odinary purposes. Active operations begin m February, and in March or Aprit the bees swarm. The taking of the honey commences usually about May 20th. From the early part of August till as late 2s October the flowers provide no more howey than is just sufficient for the subsistence of the bees. When October has beguu, though the air is still mild, the bees cease to work, beeoming serui-dormait, exeept for an hour or two every eight or ten days, when they fly near their hives in the sunshine. The faet that boncy until the midute of the 16 th century was the only sweet in general use, and that the aggregate annual consumption of sugar is now from 2 to $2 \frac{1}{2}$ miltinos of tons, points to the conclusion that apiculture, if skilfully and extensively conducted, might ere long beeome produetive of results of very high importance to commerce. For further information regarding Aneriean l:oney-farming see The American Bee Journal, The Bec-Keqyers' Exchenye, Gleanings in Bee Culterc, and The Bec-Kecpers' Mayazite.

HONEY-EATER, or Honey-sucker, names applicd by many writers in a very loose way to a large number of birds, some of whick, perbaps, have no intimate affinity; but here to be used, as before in this work (Birds, vol. iii. p. 739), in a more restricted sense for what, in the opinion of a guod many recent authorities, ${ }^{1}$ should really be deemed the Family Meliphagidex-excluding therefrom the Natarinidere or Sun-binds (which see) as well as the gedera Promerops and Zusterops with whatever allies they may possess. Even with this restriction, the extent of tho Family must be regarded as very indefinite, owing to the absence of materials sufficient for arriviog at a satisfactory conclusion, though the existence of such a Family is probably indisputable. Making allowance theu for the imperfect light in which they must at present be viewed, what are bere called Meliphagiace include some of the most characteristic forms of the ornithology of the great Australian Region-members of the Family inbabiting almost every part of it, and a single species only, Ptilotis lunbata, being said to occur outside its limits. They all possess, or are sapposed to possess, a long protrusible tongue with a brushlike tip, differing, it is believed, in structure from that fonod in any other bird,-Promerops perlinps execpted,and capable of being formed into a suctorial tube, by means of which honey is absorbed from the nectary of fluwers, though it would seem that insects aleracted by the honey furnish the chief nourishment of many species, while others andoubtedly feed to a greater or less extent on iruits. The Ifeliphagider, as now considered, are for the most part small birds, never cxceeding the size of a Mistletoe Thrush; and they have been divided into more than 20 genera, containing above 200 species, of which only a few can here be particularized. Most of these species have a very confioed range, being found perhaps only on a single island or group of islands in the legion, but there are a fow which are more widely distributed-such as Glycyphila rufigrons, the White-throated Huney-cater, found over the greater part of Australia and Tasmania. In plumage they vary much. Most of the species of Ptilotis are characterized by a tuft of white, or in others of yellow, feathers springing from behind the car. In the greater number of the genus

[^37]Nysomelda the males are recognizable by a gorgeous display of crimson or scarlet, which bas caused one species, M. sanguinolenta, to be known as the Soldier-bird to Australian culonists; but in uthers no brilliant colour appears, and those of several genera have no special ornamentation, white some have a particularly plain appearance. One of the most carious forms is Prosthemadera-the Tui or Parsun-bird of New \%ealand, so called from the two tufts of white fcathers which hang beneath its chin in great contrast to its dark silky plunage, and suggest a likeness to the bands worn by ministers of several religious denominatioos when officiating. ${ }^{4}$ The Pell-bird of the same island, Anthornis melanura-whose melody excited the admiration of Cook the morning after he bad anchored in Queen Charlotte's Sound-is another member of this Family, and unfortunately seems to be fast becoming extinct. But it would be impossible here to enter much further into detail, thangh the Wattle-birds, Anthochera, of Australia bave at leist to be named. Mcution, however, must be marle of the Friar-birds, Tropidorhynchus, of which nearly a score of species, five of them belonging to xustralia, have been described. With their stout bills. mostly surmounted by an excrescence, they seem to be the most abnornal forms oi the Fumily, and most of them are besides remarisable for the baldness if some part at least of their head. They asseuble in troops, sitting on dead trees, with a loud call, and are very pugnacious, frequently driviug away Hawks and Crows. Mr Wallace (Malay Archipelugo, ii. pp. 150153) discovered the curious fact that two species of this genus,- P. bourensis and P. subcornutus,-respectively in. babiting the islands of Bouru and Ceram, were the object of matural "minicry" on the part of two species of Oriole of the genus Mimeta, M. bourouensis and: M. jorsteni, inhabiting the same islands, so as to be on a superficial examination identical in appearance,-the Honey-eater and the Oriole of each island presenting exactly the same tints, -the black patch of bare skin round the eyes of the former, for instance, being copied in the latter by a patch of black feathers and even the protuberance on the beak of the Tropidorhynchus being imitated by a similar enlargement of the beik of the Mimeti. The very reasonable explana. tion which Mr Wallace offers is that the pugnacity of the former has led the smaller Birds-of-prey to respect it, and it is therefore an advantage for the latter, being weaker and less courageous, to be uistaken for it.
(A. N.)

HONEY-GUIDE, a bird so called from its babit or supposed habit of pointing out to man and to the Ratel (.Ifclliena capensis) the nests of bees. Storics to this effect have been often told, and may be found in the narratives of inany African travellers, from Bruce to Livingstone. Yet Ir Layard says (B. South Africe, p. 242) that the birds will not unfrequeutly lead any one to a leopard or a snake, and will follow a dog with vocifcrations, ${ }^{5}$ so that at present judgment may perhaps be suspended on the matter, though its noisy cry and antics unquestionably have in

3 Mr W. A. Forbes has published a careful monograph of this geous io the Proccciings of the Zonlogical Society for 1879, pp. 256-279.
" I'luis brol, neeording to Mr Bulter (Burds of Dew Zealand, 1. 8S), while uthering its wild motes, indulges in mucla gesticulation, which adds to the suggested resemblance. It has great power of mimiery, and is a pavourite eage-bird both with the watives and colonists. On one occasion, enys this gentleman, he had addressod a large meeting of Maries on a matter of considerable politieal importanee, when "immediatcly on the conclusion of my speech, and beforo the ohl chief to whom my arguments wero chiefly addressed had time to rejly, a Tui, whose netted cage hung to a ralter overhead, responded in a clear emphatie wity, "Tito!' (false). The circumstance naturally caused nueh merriment anong my audicice, and quite upset the gravity of the venerable old chief Niepra Taratoa. 'Fried,', said he, langhing, 'your arguments are very gool; but my mokui is a very wise burd, aut be is nut yel convinced!
s'Tlus is also a well-known haljit with some Corvide-the Jaje ars" Yies for example.
many cases the effect signified by ats English name. If not its first discoverer, Sparrman, in 1777, was the first who described and figured this bird, which he met with in the Cape Colony (Phil. Transactions, lxvii. pp. 42-47, pl. i.), giving it the name of Cuculus indicator, its zygodactylous feet with the toes placed in pairs-two before and two behind-indacing the belief that it must be referred to that genus. Vieillot in 1816 elevated it to the rank of a genus, Indicator; but it was still considered to belong to the Family Cuculide (its asserted parasitical habits lending ferce to that belief) by all systematists except Blyth and Jerdon, until it was shewn by Mr Blanford (Obs . Geol. and Zool. Abyssinia, pp. 308, 309) and Mr Sclater (1bis, 1870, pp. 176-180) that it was more allied to the Barbets, Capitonidor, and, in consequence, was then marle the type of a distinct Family, Indicatoridae. In the meanwhile other species häd been discovered, some of them differing sufficiently to warrant Sundevall's foundation of a second genus, Prodotiscus, of the group. The HeneyGuides are small birds, the largest hardly exceeding a Lark in size, and of plain plumage, with what appears to be a very Sparrow-like bill. Mr Sharpe, in a revision of the Family published in 1876 (Om. Misceliany, i. pp. 192209), recognizes ten species of the genus Indicator, to which another has since been added by Dr Reichenom (Joum. für Omithologie, 1877, p. 110), and iwo of Prodotiscus. Four species of the former, including I. sparmmani, which was the first mande known, are found in South Africa, and one of the latter. The rest inhabit other parts of the same continent, except I. archipelagicus, which seems to be peculiar to Borneo, and I. xanthonotus, which occurs on the Himalayas from the borders of Afghanistan to Bhotan. The ioterrupted geographical distribution of this genus is a very curious fact, no species having been found in the Indian or Malayan peuinsula to conncct the outlying forms with those of Africa, which must be regarded as their metropolis.
(A, N.)
HONEYSUCKLE (M.E., honysocle, i.e., any plant from which honey may be sucked,-rf. Ang.-Sax., huni-suge, ر, rivel; Germ., Geissblatt ; Fr., Chèrefeuille), Lonicerus, L., a genus of climbing, erect, or prestrate shrubs, of tho natural order Caprifoliacece, so named after the German betanist Adam Lonicer. The British species are L. Periclymenum, the woodbine, L. Caprifolium, and $L . X_{y}$ losteum. Some of the garden varieties of the woodbine are very beautiful, and are held in high esteem foe their delicious fragrance; cven the wild plant, with its pale llowers, compensating for its sickly looks "with never-cloying odours" The Nerth American subevergreen L. semper. virens, with jts fino beads of Jlossoms, commonly called the trumper loneysuckle, is a distinct and
 leautiful species producing both searlet and yellow tlewered warieties, and the
 its charmingly waticgntel leaves. The fly honesuckle, L. If tosteum, ib lardy shats of dwarfish crect labit, and L.
tatarica, of similar haul, both Eiu upean, are amongor the oldest English garden shrubs, and bear axillary flowers of various celours, occurring two on a peduncle. There are numerous other species, many of them introduced to our gardens, and well worth cultivating in shrubberies or as climbers on walls and bewers, either for their beauty or the fragrance of their blossoms.

In the western counties of England, and generally by agriculturists, the name honeysuckle is applied to the meadow clover, Irifolium pratense. Another plant of the same leguminens family, Hedysarum coronarium, a very handsomo hardy biennial often seen in old-fashioned collections of garden plants, is commonly called the French honeysuckle. The name is moreover applied with various affixes to several other totally different plants. Thus white honeysuckle and false honeysuckle are names for the Nerth American Azalea viscosa; Australian or heath honeysuckle is the Australian Banksia serrata, Jamaica honeysuckle the Passiflora laurifolia, dwarf honeysuckle the widely spread Cormus suecica, Virgin Mary's honeysuckle the European Pulmonaria officinalis, wlile West Indian huneysuckle is the Tecoma capensis, and is also a name applied to Desmodium.

The mood of the fly honeysuckie is extremely hard, and the clear portions between the joints of the stems, when their pith has been removed, are stated by Linneus to be utilized in Sweden for making tobacco-pipes. Tho rood is also emploged to make teeth for rakes; and, like that of L. tatarica, it is a favourite material for walking. stichs.

HONFLEUR, a town of France, at the head of a canton in the arrondissement of Pont l'Evêque iu the department of Calvados, is situated on the south side of the estuary of the Seine directly opposite Havre, and about 10 miles to the north of Pont l'Eveque and 37 miles to the north-east of Caen. With the general railway system of northern France it is connected by a lice ronning by Pont l'Érêque to Lisieux; and a concession was granted in 1879 for anether line to Pont-Andemer. As a turn Honfleur las the typical aspect of a small old-fashioned seaport, equally heedless of symmetry in its plan and cleanliness in its economy. The most noteworthy of its buildings is the chorch of St Catherine, constructed entircly of timber work and plaster, and consisting of two parallel naves, of which the moro ancient is suppesed to date from the cnd of the 15 th century. A process of restoration is at present (1880) going on under Government supervision. Within the church are several antique statues and a painting by Jordaens-Jesns in the Garden of Gethsemane. Tho church tewer stauds on the other side of a street. St Leonard's dates from the 17th century, with the exception of its fine ogival portal and rose-window belonging' to the 16 th, and its octagonal tower crected in the 18 th . The ruins of a 16 th century castle, and sevcral houses of the same period, are the only buildings of antiquarian interest. The town-house, which contains the exchange and the commercial court, is of modern erection. On the rising ground ahove the town is tho chapel of Notre Dame de Gríce, a shrine much resorted to by pilgrim sailors, which was founded in 1034 by Robert the Magnificent of Nermandy; and rebuilt in 1606 . Honfleur is the scat of a commercial college, a school of hytrography, a clamber of commerce, a custom-house, and various other Government offices, as well as of soveral consular cstablishments. The harbour, which consists of threc basins, has been greatly improved between 1860 and 1875 by the extcusion of the pier and the formation of a new chamel, which lias a depth of 21 feet at neap tides and of 24 to 27 at spring-tides; and n fourth hacin, decreed by the (honemment in 1879, will be completed by lesi. A reservir of 120 acres iu extent
anuras the means of sluicing toe chandel. In 1878 the gross returns of the shipping showed $89+$ vessels, of which 586 were British, 118 Norwegian, and 62 French, the total burthen amounting to 200,933 tons; and there were besides 840 Freach coasting vessels, with 48,000 tons. The export tride consists almost exclusively of eggs (from 10 to 12 million dozens yearly, poultry, table.fruits, nuts, butter (9 to 12 million ${ }^{\text {b }}$), and similar produce for the London markct ; and the principal imports are coals, iron, wheat and oats, cement, wool, and marble, also deals from Normay, Sweden, and Rassia, and oak timber from Gernany. In i879 the wheat imported from the United States amounted to 64,000 tons. Shipbuilding was formerly ad extensive industry in Honfleur, most of the vessels of from 400 to 1200 tons belonging to the Harre shipowners issuing from its yards; but the number now laid on the stocks is very small. Saw-mills, oil-faetories, soap-works, paper-mills, and marble-works are the main industrial establishments. The population of Honfleur, estimated at 8800 shortly before the great Revolution, was 9946 in 1872 . In 1876 the census showed 9037 inlabitants in the town aod 9425 in the commune.
Honflear, Latinized as Honflorium, dates from the 11 th centary, and is thus four or five hundred years older than its greater rival Harre. During the English wars it was frequently taken and retaken, the longest English occupation being from i430 to 1440. In 1562 the Protestant forces got possession of it ouly after a regular siege of the fanbourg St Léonard; and though Henry IV effected its capture in 1590 he had again to invest it in 1594 after alt the rest of Normandy had submitted to his arns. In the earlier venrs of the 17 th century Hoofleur colonists foonded Qnebec, and Honfleur traders under Binot Paulmier established factories in Java and Sumatra. The German troops occupied the town in February 1871. Among the local celebrities are the admirals Doublet, Boitard, and Hamelin.
See A. Labutte Essai historique sur Honfleur et Larrondissement de PontEceque, 1840; P. P. V. Thomas Hist. de la rille de Honfleur. 1840 ; Hist. de Honfteur par un enfant de Honkur, 1s67; Abbé Saurage, Etudes rist, normandes: Honileur au XIFe siécle, 1875.

HONG-KONG, properly Hiang-Kiang (the place of "sweet streams"), an important British island-possession, cituated off the south-east coast of China, opposite the province of K raog-tung, on the east side of the estuary of the Chu-Kiang or Canton river, 38 miles east of Macao and 75 south-east of Canton, between $22^{\circ} 9^{\prime}$ and $22^{\circ} 1^{\prime}$ N. lat. and $114^{\circ} 5^{\prime}$ and $114^{\circ} 18^{\prime} \mathrm{E}$. long. It is one of a small cluster named by the Portuguese "Ladrones" or Thieves, on account of the notorious habits of their old inhabitants. Estremely irregular in outline, it has ao area of 29 square miles, measuriog $10 \frac{1}{2}$ miles in estreme length from northcast to south-west, and rarying in breadth from 2 to 5 miles. From the mainland it is separated by a narrow chantel, which at Hong-Kong roads, between Vietoria, the island capital, and Kan-lung Point, is about one mile broad, and which narrows at Ly-ce-moon Pass tolittle over a quarter of a mile. The southern coast in patticular is deeply indented; and there tro bold peninsulas, extending Ior several miles into the sea, form two capacious datural harbours, namely, Deep Water Bay, with the village of Stabley to the east, and Tytam Bay, which has a safe, well-protected eatrance ahowing a depth of 10 to 16 fathoms. An in-shore island on the west coast, called Aberdeen or Taplichao, affords protection to the Shekpywan or Aberdeen harbour, an inlet provided with a granite graving dock, the caisson gate of which is 60 feet wide, and the Hope dock, opened in 1867, with a length of 425 feet and a depth of 24 feet. Olposite the same part of the coost, but nearly 2 miles distant, rises the largest of the surrounding islands, the Lamma, whosa conspicuous peak, Muunt Stenhouse, attains a height of Il 40 feet, and is a landmark for local narigation. On the northern sbore of Hong. Kong there is a patcut slip at East or Matheson Point, which is serviceable during the nortb-east monsoon, when sailing vessels frequently approach Victoria through the Lj-ce-moou Pass. The ordinary course fur sucin
vessels is from the .restrard, on whicu siae they are sheltered by Green Island and Kellett Bank. There is good anchorage throughout the entire cbanael separating the island from the mainland, except in the Ly -ce-moen Pass, where the water is deep; the best anchorage is in HongKong roads, in front of Victoria, where, over goud holding ground, the depth is 5 to 9 fathoms. The inner aochorage of Victoria Bay, about half a mile off shore and out of the strength of the tide, is 6 to 7 fathoms. Victoria, the seat alike of government and of trade, is the ehief ceotre of populitiou, but in recent years a tract of 4 square miles on the mainland has been cuvered with public buildings and villa resideoces. Practically an outlying suburb of Victoria, Kau-lung (Nine Dragnos), or as it is commonly called Kowloon, ia free from the extreme heat of the capital, being esposed to the south-west monsood. Numerous villas have also been crected along the beautiful western coast of the island, while Stanley, in the south, has lately been attracting attention by its excellent qualifications as a wateringplace.
The island is mountainous thrnughout, the \ln granite ridges, parted by bleak, tortuous ralleys, leaving in some

Hoog-Kong, with adjaceot Coast and Islands.
places a narrom stripe of level coast-land, and in others overhanging the sea in lofty precipices. From the sea, erid especially frum the magnifizent harbour which faces the capital, the general aspect of llong-Kong is nne of singular beauty:" With something of the rugged granleur of the western Scottish isles, and a suggestion of Italian seftness and grace, it is distinguished by unmistakable traces of a purely tropical character. Inland the prospect is wild, dreary, and monotonous. The hills have a painfully bare appearance from the want of trees. The streams, which are plentiful, are traced thruugh the uplands and glens by a line of stragging brashwood and rank herbage. Nowhere is the eye relieved ly the grateful evidences of cultiration or fertility. The mountains, which are mainly composed of granite, scrpentine, and syenite, rise in irregular masses to considcrallo heights, the lottiest point, Victeria Peak, reaching an alutudc of 1825 feet. The Peak lies immediately to the south west of the capital, in the cstreme north-west corner of the istand, and is used as a station for signalling the approach of vessels. l'atcbes of land, ebiofy around the ceast, have been hind under rice, sweet potate:3, and yams, but the island is hardly oble to raise a howa-
supply of vegetables. The mango, lichen, pear, and orange are indigenous, and to these the English have added several fruits and esculents. One of the clief products is buildingstone, which is quarried by the Chinese. The animals are few, comprising a land tortoise, the armadillo, a species of boa, several poisonous suakes, and some woodcuck. The public works euffer from the ravages of white ants. Water everywhere abounds, and is supplied to the shipping by means of tanks. Hoog-Kong acquired the name of an extremely unhenlthy place at the time of settlement, bat it has been found that the mortality is only high in certain seasons. It is not free from a certain malaria which, according to Montgomery Martin, is thrown off by the decomposed rocks that have been baked by a strong sua duriag the day. The change from the heat and rain of summer (May to October) to the refreshing temperature of the cool season tends to produce disease of the kidneys, \&c. During the years 1871-75 the mean temperature was 73° Fahr. in the shade, and the range from 56° to 84°, taking the mean readiags for the months. Occasionally the thermometer registers below 40°, and on 26 th February 1876, when extreme cold was experienced, water was frozen to the thickness of $\frac{1}{4}$ of an inch. The annual rainfall was $99 \cdot 24$ inches in 1871 and 83.43 in 1875 . The population, which in 1841 was only 5000 , had increased to 21,514 in 1848 , to 37,058 in 1852 , to 123,511 in 1862 , and to 139,144 in 1876 . According to the census of 1872, there were of Europeans and Americaus 5931, of Chinese 115,444, and of natives of India, Goa, Manila, \&c., 2623. Victoria was the residence of almost all the Europeans, and of the Chinese 83,487 (14,269 women) resided there, including a boat population of 12,309, while 10,507 resided in Kau-lung and other villages, and 11,400 were scattered along the coast in boats.
Formerly an integral part of China, the island was frst ceded to Great Britain in 1841, and the cession was confirmed by the treaty of Nanking in 1842, the charter bearing date 5th April 1843. Kau-lung, temporarily occupied for avaral years as a military ganatarium, wias ceded by a treaty oontracted by Lord Elgin in 1861. The colony is under a goveroor, and an executive conncil comprising the coleaial secretary, the commander of the troops, the attorney-gencral, and the auditor-general. The legislative council, presided arer by the governor, is composed of all these officials (except the commander), with the addition of four unofficial members, nominated by the crown on tha recommendation of tho goveraor. The occupation of Hong-Kong was effected at a considerable outlay, but the parliamentary vote on its behalf was reduced from $£ 50,000$ in 1845 to $£ 9200$ in 1853 , and sinee 1855 the colony has paid its loeal eatablishments. Iu 1868 it extiaguished its debt, which had dwiodled to $£ 15,625$, and it now pays $£ 20,000$ a year as military contribution to the imperial exchequer.

The capital, aituated at the uorth-west extramity of the island, is laid out in fine wide straeta and terraces. The huildings, mostly of atone and hrick, are greatly superier to those of a Chinese city. The merchants houscs are clegant and apacious, with broad yerandahs and tasteful gardens. Incluling the Chinesa town, Victeria extends for 3 miles along the bay, towerds which it slopes from the base of the liille. It is lighted with gas, and aupplied with water from the Pokovfulun reservoir, which impounds 74 million gallona. The main thoroughfare is protected by a massive seawall, and the appearance of the town has been greatly improved by the construction of public gardens. Besides several haulsome Goveroment buildings, Victoria has a large exchange, a cathedral and bishop's palace, ecveral good bospitals, extensive barracks, and a few higher class achools. A city hall with library and museum was opencd in 1876, and the public werks completed in that year (the extension of public gardens, construction of many miles of monntain path, and improvement of drainage) invelving an outlay of $£ 30,81 ; 7$. Tho educational provision of the Govermaent in 1876 comprised 54 sehools, with an attendance of 3111 pupils, and of these 16 with 1816 purils were native sebools, in which the language is Chincse. At the central school (556 pupils in 1876) there is a Chineso class for Europans, as there is nlso in several of the x" sionary and "grant-in-nid" "echools. Hong-Kong yrublishes, in addition to 5 English newspapera (2 daily), 1 in Chinese every second day and a P'ertugucse weekly. The streeta are guarded by a atrong foree of lmian sepoys, and the natives are not nllowed to po abroad nfter 8 e'dlock at night without a pass ; hut the general haracter of tho towa is orderly, os ia attested by the police returns.
from which it appears that only 65 persoas were convicted before the superior courts in 1875 . The common mode of street conveyance is by chairs, which are carried by coolies, while the passage across to Kau-lung is usually effected io sampans or pull-away boats. Victoria has a few slight industries, including sugarrefining, rum-distilling, aud ice-making. In 1877 the introduction of a steana laundry broke the monopely of the dhoby. There are upwards of 500 Chinese hongs of a superior class belonging to ship compradores and to dealers in fancy goods, china ware, articles in gold and silver, opinm and other drugs, rice, piece goods, tea, \&c.
Although formerly the central point of the great European Chiness trade and still a thriving seal of conmerce, Houg-Kong owes its present importance chiefly to its 6 nancial prominenee as the headquarters of the banking interest, and to its magnificent harbour, which makes it both the statioa of the British fleet and an entrepôt for the custom trade of all nations. In 1877 it was the residence of 14 foreiga consuls, and had 10 large banking-houses. It still imports opium more largely than any other port, and among other articles of which it is the centre of trade are sugar, flonr, salt. china ware, nut-oil, amber, cotton, sandalwood, ivory, betel, live stock, granite, and ship supplies. The principal transactions in tea and silk are controlled by firms residing in Hong-Kong. As it is a free pert there are no canat returas of trade, but in 1877 the 1 m ports frotn Great Britaio alone amounted to $£ 3,0 \ddagger 5,068$ and the exports thither to $£ 1,895,310$. Chief of these exports was tea, the value of which in 1876 was $£ 839,568$. In the same year the opium imported amounted to 96,985 pieuls, as compared with 69,851 piculs rectived at all the other treaty ports. Oi' 3424 chests of Rengal opium imported ia Febrnary 1876, 1500 passed into the hands of local consumers and 1924 were exported; at the same date there wers 4800 chests in stoek as eompared with 1374 at Shanghai. There is an enormous passenger tratiie: between the years 1871 and 1876 there have passed through the port oo fewer than 15,000 Chincsa coolies, of whom the majerity have gone to the United States. In the year 1876 Queensland drafted hence as nany as 8325 emigrants. Large steamers ge and corne aluost daily, the perts in regular communication with Hong-Koug iocluding Bombay, Calentta, Singapore, Canton, San Franeisco, Yokohama, and (since 1875) Sydney. The aggregate shipping that entered the port in 1878 amonated to $3,900,891$ tons. Of this $45 \cdot 2$ per ecnt. were juaks, $43 \cdot 7$ steamers, and $11 \cdot 1$ European and American built sailing vessels. Exchsive of native craft there entered and cleared (1876) 4, 359,616 tons, of which $3,150,952$ were in British and 1,208,664 in foreigu vessels. The revenue in 1878, derived from land rents, fines, licences to sell opium, and spirits, \&c., amonnted to $£ 197,424$, the expenditure to £189,695; thera is nsually a anrplus of revente. At the 31 st Janary 1877 the bauk-notes in cireulation were stated at $\$ 3,536,380$, and the specie in reserve at $\$ 1,295,000$. Hong-Kong has a dollar of its own coining (4s. 2d.), but its mint, which entailed a cost of $£ 9,000$ a ycar, has ceased to operate. Other coins in circulation are tbe Mexican dollar, Chinese tacls and cash, the Ameriean trade dollar, end Japazese silver yen. A movement is at present on foot to have the last two coins placed on an equality with the Mexican dollar. The atandard of value is 1000 Mexican dollars to 717 taels by weight. In spito of the great increase in recent ycars of the direct trade with the varions treaty ports, the progress of HongKong has beeu steady, and there is every probatility of its maintaining its peeuliar position of influenee in the Chinese trade.' In 1871 it was placed in telegraphic communication with England, ond in its receat legislative action it has shown vitality and caterprise. The gambling practices which prevailed here, as thry still do in many Chinese towns, have been vigorously suppressed, and tho difficulties arising from the sudden development of the coolio emigration have been overceme. The presence of Chinesc reveoue cruiser's in Hong-Kong waters has led (Fehruary 1880) to a storm of opposition on the part of resident British merchants, who dectare that this amounts to a blockade of the island; bnt British ofliciols uphold the action of China as a necessary check upon the opium and salt smuggling.

Besdes the Government papers und The Hong. Kong Almanac and Directory, seo A Letter from Hong. Long, drscriphue of that Culony, by a leessitent. id ed.. l.nush.,

IIONITON, a municipal borough and market-town of England, county of Devou, is pleasantly situated on a rising ground on the left bank of the Otter and on tho London and Seuth-Western lailuay, 16 miles E.N.E. of Exeter. It consists of one wide strect about a milo in length, crosscd by a smaller one at right angles. Aloug the main otreet there runs a small strean of water. The only buildings of inpertance are the ofd parish church, on an eminesce about Lalf a mile from the town, built by Courtenay, bishop of Exeter, about 1482, aud possessing a curiously carved sercen: the chureh of St laul's (nuw tha rarish church)

In the centre of the tomn, in the Norman style; the dispensary ; the St Margaret's charity, originally erected as a hospital for lepers, but now used as almshouses; the union workhouse, crected in 1836, with accommodation for 250 inmates; the grammar sehool, the national schools, and the British school opened in 1578. The town is famed for its lace manufacture ; and there are also breweries, malting establishments, flour mills, tanneries, brick and tile works, and an iron foundry. The population of the municipal borough in 1871 was 3464.
Honiton is supposed to have originated in a Roman settlement at Hembury fort, about 3 miles from the town, where there are still traces of an extensive camp conjectured to be the Moridunum of Antoninus. The town first sent members to yarliament in the reign of Edward I., but after the reign of Edward 11 . the privilege was suspended ontil 1640 . In 1867 its representation was limited to one member, and in 1868 it was disfranchised. It was incorporated as a municipal borougit in 1846 .
honolulu. See Hawaian Islands, vol. xi. p. 531.
honorius, flavius Augustus, was emperor of the West from 397 to 425 A.d. His reign of twenty-eight years was one of the most eventful in the Roman annals; the weakness and timidity of the emperor co-operated with the attacks of the Goths and Vandals in promoting the rapid disintegration of the empire. But his influence on the current of events was purely negative, and his reign will be noticed under Roman History.
HONORIUS I., pope from 625 to 638 , succeeded Boniface V. The festiral of the Eleration of the Cross is said to have been instituted during his pontificate, which was marked also by considerable missionary enterprise. Honorius in his lifetime had favoured the formula proposed by the emperor Heraclius with the design of bringing about a recouciliation between the Monophysites and the Catholics, which bore that Christ bad accomplished His work of redemption by one manifestation of His will as the God-man. For this he was, more than forty years after lis death, anathematized by name along with the other Monothelite beretics by the council of Constantinople (First Trullan) in 680 ; and this condemuation was subsequently confirmed by more than one pope, particularly by Leo II., as has been abundantly proved by unimpeachable evidence against the contentions of Baronius and Bellarmine (see Hefele, Die Irrlehre des Monorius u. das vatisanische Lehire der Unfehlbarkeit, 1871, who, however, has modified his view in Conciliengeschichte, 1877). Honorius I. was aucceeded by Severinus.

HONORIUS I1. ${ }^{1}$ (Lambert of Ostia), pope from 1124 to I130, succeeded Calixtus II. As papal legate he had been one of the framers of the concordat of Worms (1122). Daring his pontificato the Priemonstratensian order, and also that of the Knights Templars, received papal sanetion. His successor was Inrocent II.

HONORIUS III., pope from 1216 to 1227 , was the successor of Innocent Ill., whose uncompromising policy in the struggle between the papaey and the empire he had not firmness und vigour to continue. He consented to crown Frederick If. as Holy Roman emperor in 1220, althongh the engagements made with his predecessor bad not been fulfilled; the promises which he bimself had exacted he was somewhat slow to urge, and it was left to his suecessor Gregory IX. to insist upon their accomplishment. He gave papal sanction to the Dominiean order in 1216, and to the Francisean in 1223; and during his pontificate also many of the tertiary orders first came into existence.

HONOHIUS IV succeeded Martin IV., and was pope for two years (1285-1287). After an uneventful pontificate be was suceceded by Nicholas IV.

[^38]honthein, Jouany Nikolaus von (1701-1790), n zealous opponent of Ultramontanism, was born at Treves, January 27, 17.01. After receiving his early education at the Jesuit college of his native town, he stadied jurisprudence both there and at Luavain and Leyden. On obtaining the degree of doctor of laus at Treves in 1724 be took the ecelesiastical habit, and went to Rome in order to make himself acquainted with the forms of the curia. Returning to Treves in 1728, he was appointed eeclesiastical councillor of the ennsistory, in 1732 professor of law, in 1741 privy councillor of the archbishop, and in 1748 suffragan of the see. In 1750 be published at Treves Historia Trevirensis diplonatica, and in 1763, under the pseudonym of Justinus Felronius, De Stata ecelesice et legitima potestate Romani Pontifcis liter singularis, in which he maintained the Gallican theory that the auprene authority of the church was vested not in the pope but in the geueral council. This work he in perfect simphicity and siucerity dedicated to Pope Clement XIIL., who, however, condemned it and caused it to be burned at Rome. When Hontheim was discovered to be the anthor he was induced to make a retractation, but in his Febronius abbreviatus et emendatus (Viemna, 17i1) and Fibronii commentarius (Vienna, 1781) he nevertleless gave further currency to his old views. He died at Montquintin, Luxembourg, September 2, 1790.
honthorst, Gerard van (born at Utrecht 1590, died at Utreeht 1656), was brougbt up as a painter at the school of Bloemart, who eschanged the style of the Franckens for that of the pseudo-ltalians at the beginning of the 16th century. Infeeted thus early with a mania whieh eame to be very general in Holland, Honthorst went to Italy, where he copied the naturalism and cecentricities of Slichelangelo da Caravaggio. Home again about 1614, after acquiring a considerable praetice in Rome, he set up a school at Utreebt which flourished exceedingly; and he soou became so fashionable that Sir Dudley Carleton, then English enroy at the Hague, recommended his works to the earl of Arundel and Lord Dorchester. At the same time the queen of Bohemia, sister of Charles I. and electress palatine, being an exile in Holland, gave him her countenance and asked hin to teach her children drawing ; and Honthorst, thus approved and courted, became known to Caarles I., who invited him to England. There he painted several portraits, and a vast allegory, now at Hampton Court, of Charles and his queen as Diana and Apollo in the clouds receiving the duke of Buckingham as Mercury and guardian of the king of Bohemia's children. Charles I., whose tasto was flattered alike by the enorgy of Rubeus and the clegance of Van Dyck, was thus first eaptivated by the fanciful mediocrity of Honthorst, who though a poor esecutant had luckils for himself caught, as Lord Arundel said, " much of the manner of Caravaggio's colouring, then so much esteemed at Rome." It was his habit to transmute every subject into a night scene, from the Nativity, for which there was warrant in the example of.Correggio, to the penitence of the Magdalen, for which there was no warrant at all. But unhappily this caprice, though "sublime in Allegri and Rembrandt," was but a phantasm in the hands of Honthorst, whose prosaie pencil was not capable of more than vulgar ntterances, and art gained little from the repetition of these quaint vagaries. Sandrart gave the measure of Honthorst's popularity at this period when ho says that he had as many as twenty apprentices at one time, each of whom paid him a fee of 100 florins a year. In 1623 he was president of his guild at Utrecht. After that be went to England as above stated, returning to settle anew at Utecht, where he married. His position amongst artists was acknowledged to be important, and in 1626 he received a visit from lubens, whom he painted as the
lonest man songht for and found by Diogenes Honthorst. In his home at Utrecht Euouthorst succeeded in preserving the support of the English monarch, for whom he finished in 1631 a large picture of the king and queen of Bohemia "and all their children." For Lord Dorchester about the same period he completed some illustrations of the Odyssey, oae of which survives in the Weld-Blundell collection at Ince; for the king of Denmark he composed incidents of Danish bistory, of which one example remains, in the gallery of Copenhagen. In the course of a large practice he had painted many likenesses-Charles I. and his queen, the duke of Buckingham, and the king and queen of Bohemia. He now became court painter to the princess of Orange, settled (1637) at the Hague, and painted in succession at the Castle of Ryswick and the House in the Woord. The time not eonsumed in preducing pictures was devoted to portraits. Even now his works are very numerous, and amply represented in Eaglish aud Contioental gallerics. His most attractive pieces are those in which he cultivates the style of Caravaggio, those, namely which represent taverns, with players, singers, and eaters. He shows great skill in reproduciag scenes illominated by a single candle. But he seems to Lave studied too much in dark rooms, where the subtletics of flesh celeur are lost in the dusky smoothness and uniform redness of tints procurable from farthing dips. Of great interest still, though rather sharp in outline and barl iu modelling, are his portraits of the Duke of Buekingham and Family (IIampton Court), the King and Queen of Bohemia (Hanover and Combe Abbey), Mary de Medici (Amsterdam town-ball, 1628), the Stadtholders and their Wives (Amsterdam and Hagne), Charles Leuis and Rupert, Charles I.'s nephews (Louvre, St Petersburg, Combe Abbey, and Willin), and Lord Craven (National Portrait Gallery). His early form may be judged by a Lute-player (1614) at the Louvre, the Martyrdom of St John in S. M. della Scala at Rome, or the Liberation of Peter in the Berlin Museum ; his latest style is that of the House in the Wood (1648), where he appears to disadvantage by the side of Jordaens and others. Honthorst was succeeded by lis brother William, born at Utrecht in 1604, who died it is said in 1666. He lived chiefly in his native place, temporarily at Berlin. But he has left little behind except a portrait at Amsterdam, and likenesses in the Berlin Museum of William and Mary of England.

HOOCII, Pieter de, a Dutch painter of note, was born it is thought abont 1632, and died it is suppesed in 1681 at Haarlem. Public records testify that he was a native of Rotterdam, and wandered carly to Delft, where he married in 1654 and practiscd till 1657. From that time onward his life is obseure; and the only proefs of his existence to which we can point are the dates on his pictures, which range from 1658 to 1670. The registry of "Pieter de Hooge's" death at Haarlem on the 28th of Pebruary 1681 is believed to refer to our artist. Thongh neglected by his contemporaries, De Ifooch is one of the kindliest and most charming painters of homely subjects that Hulland has produced. He seems to have been born at the same time and taught in the same school as Van der Meer and Maes, but his works are more harmonionsly colourcll than those of Maes, nald ruore boldly touched than thosio of Nicer. In one respert all three are alike, being disciples of the school of Tombrandt. De Hoorh only once paintel a carvas of uny size, and that unfortunately perisherl in a fire at listteriam in 1064. liut his small pieces display perfect firish and great dexterity of hand, enmbined with that power of discrimimation whichaccumplishes detail whilst avoiling rapidity and smoothucss. Though he sometimes pints open-air secoes, these are not his favourito sulajecte. He is most at hume in iutu.tore, end his delight is to contrast in one picture the
different atmosphertu u - reoms illumuateu uy different lights with the radiauce of day as seen through doors and windows. He thus brings together the most debeate varietics of tone, and produces chords that vibrate with harmony. The themes which he illustrates are thoroughly suited to his purpose. Sometimes he chooses the drawing-room where dames and cavaliers dance, or diae, or sing ; sometimes-mostly iadeed-he likes cottages or courtyards, where housewives tend their children or superintead the labours of the cook. Satin and gold are as familiar to him as camlet and fur, but the latter are his favourites; and there is no article of furniture in a Duteh house of the middle class that he does not paint with pleasure. What distinguishes him most besides subtle suggestiveness is the serenity of his pietures, whether in the open or in confined spaces. One of his most charming arrangements is a canvas in the Ashburton collection, where an old lady with a dish of apples walks with a child along a street bonnded by a high wall, above which gables and a church steeple are seen. The dame is busied with the child, whilst a gentleman in a hat and cleak shows his back in the distance. The sun radiates and glitters joyfnily over the whole. Fine in another way is the Mug of Beer in the Amsterdam museum, an iaterior where a woman is seen coming out of a pantry and giving a measure of beer to a little girl. The light Hows iu here from a small closed window. But through the door to tho right we look into a drawing-reom, and through the open sash of that room we see the open air. The three lights are managed with supreme canniug: In such masterpieces as these we discern the models familiar to later artists such as Boursse and Koedijk, and a delicate gradation of tints which Maes and Meer might have envied. Beautiful for its lighting again is the Mother peeling Apples, whilst her child looks on supported in leading strings by a nurse, the sun shining through the cascment to the left, a gem in the Speck collection at Lütschena near Leipsie, More subtly suggestive, in the museum of Berlin, is the Mother seated near a Cradle, whilst a child totters away into a lobby on the right. The mother looks into the deptle of the cradle with a smile, thos betraying to us the presence of the baby which we cannot see. A Card Party, dated 1658, at Buckingham Palace is a good example of De Hooch's drawing-room scenes, counterpart as to date and value of a Woman and Child in the National Gallery, and a Smoking Party belonging to Lord Enfield. Other pictures later onward in the master's career are-the Lady and Child in a Courtyard, of 1665 , in the National Gallery, and the Lady rcceiving a Letter, of 16T0, in the Van der Hoop collection at Amsterdam. It is pessible to bring together between fifty and sixty examples of De llooch, but not more. There are eight at St l'etersbarg alone, threo in Buckinghom Palace, thrce in the National Gallery, fire, or at least four of undunbted genvineness, in the Hoop collection at Amsterdam, some in the Louvre, at Munich, and Darmstadt; the rest are chietly in private galleries in England. For England was tho first to recognize the merit of De llooch, who only began to bo valned in Holland in tho midhlo of last century. A celebrated picture at Amsterdam, sold for 450 Lorins in 1765 , fetched 4000 in 1817, and now even that price is thought a bagatelle, sinco tho Berlin museum gave $L^{\prime} 6000$ for a De Hoorh at the Schneider sale in 1876.

1100-ClIOW-ROO, a city of China, in the province of Che-keang, lies a little to the sonth of Lake Tai-hoo, in lon milst of the central silk district. According to Chines. authorities, it is 6 miles in firemmerence, and contan about 100,000 families; but Fortune thinks it is not man than 3 or 4 miles romarl. A hroad stream or canal cres: the city from soutin to north, and forms the princif birhwily fur buat tratic. The man trade of the pha
in raw silk, but seme silk fuibics, such as flowered crape (tchoisha), are also manufactured. Silk is largely worn even by the lowest elasses of the inhabitants.
HOOD, Robin. See Rouns Hood.
1100D. Thomas (1780-18.15), hamorist and poet, horn $23 d$ May 1789, was the sen of Mr Hood, bookselier, of the firm of Vernor \& Hood, a man of inteligence, and the auther of two novels. "Next to being a citizen of the world," writes Thomas Hood in his Literary Reministences, "it must be the best thing to be born a eitizen of the world's greatest city." The best ineident of his boyhood was his instruction by a sehoclmaster who appreciated his talents, and, as he sayz, "made him feel it impossible not to take an interest in learning while he seemed so interested in teaching." Under the eare of this "deeayed dominie," whom he has so affectionately recorded, he earned a few guincas-bis first literary fec-by revising for the press a new edition of Paul and Virginia. Admitted soon after into the counting-house of a fricend of his family, he "t turned his stool into a Pegasus on thrce legs, every foot, of course, heing a daetyl or a spendee;" but the uncongeuial profession affected his health, which was never streng, and he was transferred to the care of a relation at Dundee. He has graphically deseribed his unconditional rejection by this inhospitable personage, and the circumstances under which he found himself in a strange town without an aequaintance, with the most sympathetie nature, auxious for intellectual aud moral culture, but without guidance, instruetion, or control. This self-dependence, however, suited the origiaality of his character : he became a large and indiscriminate reader, and before long contributed humorous and peetical articles to the proviacial newspapers and magazines. As a proof of the seriousness with which he regarded the literary vocation, it may be mentioned that ho used to write out his poems in printed characters, believiug that that process best enabled him to understand his own peculiarities and faults, and probably noconscious that Coleridge had recommended some such method of criticism when he said he thought "priat settles it."

His modest judgmeat of his own abilities, however, deterred him from literature as a profession, and on hia return to London he applied himself assiduously to the art of engraving, in which be nequired a skill that in after years became a most valuable assistant to his literary labours, and enabled Lim to illustrate his various humours and fancies by a profusion of quaint devices, which not only repeated to the eye the impressions of the text, but, by suggesting amusing analogies and contrasts, added considerably to the sense and effect of the work.

In 1821 Mr John Seutt, the editor of the London Mayazine, was killed in a duel, and that periodical passed into the hands of some friends of Hood, who proposed to him to take a part in its publication. His installation iuto this congenial post at onec introduced bim to the best litcrary socicty of the time; and in becoming the associate of such men as Charles Lamb, Cary, Do Quinecy, Allan Cunningham, Preetor, Talfourd, Hartley Coleridge, the peasant-poct Clare, and other contributors to that remarkable miscellany, he gradoally developed bis own intellectual powers, and enjoyed that bappy intereourse with superior minds for which his cordial and genial character was so well adapted, and which he has deseribed in his best manner in several ebapters of Hood's Orrn. Odes and Aderesses-his first work-were-written about this time, in conjunction with his brother-in-law Mr J. II. Reynolds, the friend of Keats; and it is agreeable to find Sir Walter Scott aeknowledging the gift of the work with ne formal expressions of gratifieation, but "wishing the unknown author good health, good forture, and whatever other good thiugs can best surpert and encourage his lively vein of
inoffensi:e and humorous satire." Whims and Oddtios Nutionul T'ales, I'ylaey Matl, a novel, and The Plea of the Midsummer P'airies followed. In these works the humorous facalty not only predominated, but expressed itself with a freshness, origioality, and perwer which the puetical element could not claim. There was much true poetry in the rerse, and much sound sease and keen observation in the prose of those works; lut the peetical fecling and lyrical facility of the one, and the more solid qualities of the other, seemed best employed when they were subservicnt to his rapid wit, and to the ingenious coruscations of his fancy. This impression was confirmed by the series of the Comic Ammeul, a kiod of publication at that time popular, which liood undertook and continued, almost nassisted, for screral sears. Uader that somewhat frivelous title he treated all the leading events of the day in a fine spirit of caricature, entirely free from grossness and rulgarity, without a trait of personal malice, and with an under-curreat of true sympathy and honest purpose that will preserve these papiers, like the sketelies of Hegarth, long after the events and manaers they illustrate have passed from the minds of men. But just as the agrecable jester rose into thie earnest satirist, one of the most striking peculiarities of his style berame a more manifest defect. The attention uf the reader was distracted, and his good taste annoyed, the incessant play upon words, of which Hood had writter in his own vindication-

> "However critics may take offence, A double meaning has double sense."

Now it is true that the eritic must be unconselous of some of the subtlest charms and aicest delicacies of language who would exelude from humorous writing all those impressions and surprises which depend on the use of the diverse senso of words. Tho history, indeed, of many a. word lies hid in its equivocal uses; and it in no way derogates from the digaity of the bighest poetry to gain streagth and variety from the iagenious application of the same sounds to different senses, any more than from the contrivances of rhythm or the accompaniment of initative sounds. But when this habit becomes the characteristic of any wit, it is impossible to prevent it from degeaerating into oceasional buffoonery, and from supplying a cheap and ready resource, whenever the true vein of humour becomes thin or rare. Artists have been known to have used the left hand in the hope of cheeking the fatal facility which practice had conferred on the right; and if Hood had been able to place under some restraint the curious and complex machinery of words and syllables which his fancy was incessantly producing, his style would have been a great gainer, and much real earnestness of object, which now lies confased by the brilliant kaleidoscope of language, would have remained definite and clear. Ie was probably not unconscious of this danger; for, as he gained experience as a writer, his diction became more eimple, and his ludierous illustrations less frequent. In another annual called the Gem ajpeared the peem on the story of "Eugene Aram," which first manifested the full extent of that poetical vigour which seemed to advance just in proportion as his physiea! health declined. Ho atarted 2 magazine in his own naue. for which he secured the assistance of many literary men of rcputation and authority, but which was mainly sustained hy his own intellectual aetivit:y From a siek-bed, from which he never rose, he conductic this work with surprising energy, and there composed those poems, too fow in number. but immortal in the English language, such as tho "Song of the Shirt," the "Lridge of Sighs," and tho "Song of "Lo Labourer," whieh seized the duep) haman iuterests of the time, and transporterl them from the ground of social philosophy inte tho loftier domain of the imagination. They are no clamorous expressious of anger at the discrepancies
and cortrasts of bumanity, but plain, solemn pictures of coaditions of life, which neither the politician nor the moralist can deny to exist, and which they are inperatively called upon to remedy. Woman, in her wasted life, in ber hurried death, here stands appealing to the suciety that degrades luer, with a combination of eloquence and poetry, of forms of art at once instantaneous and permanent, and with a metrical energy and variety of which perhaps our Ianguage alone is capable. Prolonged illness brought on atraitened circumstances; and application was made to Sir Robert Peel to place Hood's naue on the pension list with which the British state so moderately rewards the national services of literary men. This was done readily and without delay, and the peasion was continued to his wife and family after his death, which occurred on the 3d of May 1845. Nine years after, a monument, raised by public subscription, in the cemetery of Kensal Green, was Enaugurated by Mr Monckton Milnes (Lord Houghton) with a concourse of spectators that showed how well the memory of the poet stood tiee test of time. Artisaus came from a great distance to view and honour the image of the popular writer whose hest efforts had been dedicated to the cause and the sufferings of the workers of the world ; and literary men of all opinions gathered round the grave of one of their brethren whose writings were at once the delight of svery boy and the instruction of cvery man who read then. Happy the bumorist whose works aind life are an illustration of the great moral truth that the sense of humour is the just balance of all the faculties of man, the best security against the pride of knowledge and the conbeits of the imagination, the strongest inducement to submit with a wise and pions patience to the vicissitudes of human axistence. This was the lesson that Thomas Hood left behind him, and which lis countrymen will not casily forget.

HOOD, Tom (1835-1874), son of Thomas Hood, and the inheritor of similar though less brilliant literary talents, was born at Lake House, Wanstead, January 19, 1835. After attending University College Schuol and Louth Grammar School he entered Pembroke College, Oxford, where he passed all the examinations for the degrec of B.A., but did not graduate. At Oxford he also wrote his Girst work, Pen and Pencil Pictures, which appeared in 1854-55. This was followed in 1861 by The Daughters of King Daker, and other Poems, after which he publisbed a number of amusing books for children. His serious novels were not so successful, and are now almost wholly forgotten. He also wiclded the pencil with considerable facility, among his illustrations being those of several of his father's comic verses. Having become editor of the comic paper F un in 1865, he succeeded in acquiring for it a wide popularity, -rincipally as a depictor of the bumours and eccentricitics of middlo elass life. Privately his lightsomeness, geniality, and sincero friendliness secured him the affection and esteem of his wide circle of acquaintance. He died 20th November 18 it.

Ifood, Sameel IIood, First Viscount (1724-181G); English admiral, was born in 179.4 at Butleigh in Somersetshire, where his father was rector. Dutering the navy at sixteen years of age, he quickly obtained promotion, becoming lieutenant in 1746 and commander in 1754 . In 1757 bo eaptured a French ship of equal si\%e with his own, and in 1759 be repeated the achievement. After holding sucecseively the appointments of chief commander of the Dostom asval station and commissioner of the dockyards at Portsmonth, ho was in 1780 promoterl to the rank of rearadnural, and sent to co-operate with Sir George Modncy in Lie West Indics, where le fought some indecisive actions with the Conte de Crasse. In July of the following year bs succeaterl Rodney in the supreme command, shortly
after which the fect set sall for America. Aithough in January 1782 Hood failed to hold the island of St Cliri.. topher's against the superior forees of the French, he succeeded in very difficult circumstances in preserving lis Ileet intace until the arrival of Rodney, when he so distinguished himself in the action of the 9 th April and the more important one of the $12 t h$, that for his services lie was creater a peer of lreland with the title of Baron Hood of Catherngton. On Rodney's return home he was again promoted to the chief command, which be helrl till peace was proclained in 1783 . In 1784 Lord Huod successfully opposed Charles Fox as parliamentary candi. date for Westminster, and, thongh he lost his seat on being made a lord of the admiralty in 1788, he regained it in 1790. On the ontbreak of war with France, after the Revolution, in 1793, he was appointed to the commani of the fleet in the Mediterranean; where be received the surreader, of Toulon from the French royalists. Before evacuating it tu Napoleon on December 18th, Hood burned the arsenal, and destrnyed fifteen sail of the line besides carrying off eight. In the following year he succeeded, after a stubborn resistance, in expelling the French from Corsica; and after his return home he was in 1796 appointed governor of Greenwich Ilospital and raised to the Euglish peerage with the title of Viscount Hood of Whitley. In 1799 he was promoted to the rank of arlmital, and in 1 SOt he received the grand cross of the bath. He died at Batl: 27 th June 1810. The achievements of Lord Hood, though not of so brilliant a character as those of a Blake or a Nelson, were the result of thorough seamanship, and of a rare union of courage and rlecsion with coulness and caution.
hooft, Pieter Cornelissen (1581-1647), Dutch poet and historian, was born at Amsterdam on the lGth of Mareh 1581. If father was one of the leading eitizens of Holland, both in politics and in the patronage of letters, and for some time burgomaster of Ansterdam. As early as 1598 the young man was made a member of the chamber of rhetoric of the Eglantinc, aud produced before that body his tragedy of Achilles and Polyxena, not printed until 1614. In June 1598 be left Holland and proceeded to Paris, where on the 10th of April 1590 he saw the body of Gabrielle d'Estrics lying in state. He went a few months later to Venice, Florence, and Rome. In 1600 he proceeded to Naples, and during all this Italian sojourn he made a deep and fruitful study of the best literature of Italy. In July 1600 be sent home to the Eglantine a very fine letter in verse, which is considered to mark an epach in the development of .Dutch poctry: He returned through Germany, and after an absence of three years and a half found himself in Amsterdam again on the Sth of May 1601. . Ile soon after brought out his second tragedy, tle Ariadne, in 1602. In 1605 be completed his beautiful prastoral drama Granida, not published until 1615. He studied law at Leyden from 1606 to 1609 , and in June of the latter year receivel from the prince of Orange the appointment of steward of Minden, bailif of Gooiland, and lord of Wcesp, a joint ollice of great emolmuent. Hc occupical himself with reparing and adorning the decayed castle of Minden, which was his resiluasc cluring the remainder of his life. In August 1610 he married the famons botanist, Christina van lipp. In 1612 Hooft produced, and in 1613 printed, his mational tragedy of Geeraerdt ren. 「'elsen, a story of the reign of Count Floris V. In 1614 was performed at Coster's academy IInoft's concedy of Ware-nar, an adaptation of the Awheria of Plautus, first printed in 1017. In 1016 he wrote another tragedy, Ifetio, or the Origin of the Dutch, not printed until 1626. It was in 16 is that he abandoned poctry for history, and in 1626 he published the first of his great prose worbs, tho

IIistory of Henry the Gireat (Henry IV. of France) His next production was his Miseries of the Princes of the Ilousc of Medici, printed in 163 S . In 1642 be publisbed the inasterpiece of his life, his Dutch Mistory, a magnificent periormance, to the perfecting of which be had given fifteen years of labour. Hooft died on a visit to Prince Frederick IIenry at the Hague on the 21st of May IG47, and was buried in the New Church at Amsterdam.

Hooft is one of the most brilliant figures that adorn Dutch literature at its best period. He was the first writer to introduce a modern and Eiropeau tone into belles lettres, and the first to refresh the sources of native thougbt from the springs of antique aod Renaissance poetry. His lyrics and his pastoral of Granida are strongly marked by the influence of Tasso and Sannazaro; his later tragedies belong more exactly to the familiar tone of his native country. But high as Hooft stands among the Duteh poets, he stands higher, be holds perhaps the highest place, among writers of Dutch prose. His historical style has won the warmest eulogy from so temperate a critic as Motley, and bis letters are the most charming ever published in the Dutcb language. After Vondel, he may on tle whole be coosidered the most considerable author that Holland has produced.

Hoofts poetical and dranatic works were collected in two volumes, 1571,1575, by P: Ecendertz. Many editions exist of his prose works.

HOCGEVEEN (i.e., High Fen or Moor), a village and commune of the Netherlands in the province of Drenthe, about 12 miles north-east of Meppel on the raiiway opened in 1870 between that town and Groningen. The village contains a Reformed church, crected in 1652 a.1d restored in 1766 and 1801 , a small but bandsomt, oynagogue, a poorhouse dating from 1810, and a library belonging to the local branch of the society Tot nut van 't Algemeen; and annong the industrial establishments of the comr.: :ne are timber yards, sail factories, block factories, tanoeries, brick-works, gin distilleries, and brewcries. Hoogeveen was founded in 1025 by Baron van Eichten, and ${ }^{\circ}$, ne following year it was erected into a lordship whech lasted till 179 . . The population of the commune, which was 7339 in 1840 , had risen to 10,763 in 1874.

HOOGHLY, or Húgli. The Hooghly river is the most westerly and commercially the most important channel by which the Ganges enters the Bay of Bengal. It takes its distinctive nawe near the town of Santipur, about 120 miles from the sea. The stream now known as the Hooghly represents three western deltaic distributaries of the Ganges -viz., (1) the Bhágirathi, (2) the Jalangi, and (3) part of the Mátabhanga. The Bhagiratht and Jalangi mite at Nadiyi, above the point of their junction with the lower watcrs of the Matabbangh, which has taken the name of the Churnl before the point of junction and thrown out new distributaries of its own. These three western distributaries are known as."The Nadiyá Rivers," and are important, not only as great highways for internal traffic, but also as the hend waters of the Hooghly. Like other deltaic distributaries, they are suhject to sudden changes in their channels, and to constant silting up. The supervising and keeping open of the Nadiya rivers bas, therefore, formed one of the great tusks of fluvial engineering in Bengal. Proceeding south from Sántipur, with a twist to the east, the Hooghly river divides Murshidabarl from Hooghly district, until it touches the district of the Twenty-Four Jarganas in $22^{\circ} 57^{\prime}$ $30^{\circ} \mathrm{N}$. lat. and $88^{\circ} 27^{\prime} 15^{\prime \prime}$ E. long. It then proceeds almost due south to Calcutta, next twists to the south-west, and finally turns south, entering the Day of Dengral in 21° 41^{\prime} N. lat. and $85^{\circ} \mathrm{E}$. loag.

In the 40 miles of its course that are above Calcutta, the channels of the Honghly are under no supervision, and the result is that they have silted up and shifted to such an extent as to be no longer navigable for sea-going
shups. lict it was upon this upper section that all the famous ports of lengal lay in olden times. From Calcatta to the sea (about 80 miles) the river is a record of engineering improvement and success. A minute supervision, with steady dredging and constaut readjustment of buoys, now renders it a sale waterway to Calcutta for ships of the largest tomage. Much attention Las also been paid to the port of Calcutta: For its trade, shipping, and administration, see Calcutta.

The tide runs rapidy on the Ifooghy, and produces a remabsablo example of the Huwial phenomenoul linown as a "bore." This consists of the headwave of the advancing tide, hemmed in where tho estuary narrows suddenly into the river, and often exeerds 7 feet in height. It is felt as high uip) as Calcuta, and frequently siuks small boats or dashes them to pheces on the bank. The differeuce from the lowest promt of low-water in the dry season to the highest point of high-water in the rains is reported at 20 feet 10 inches. The greatest mean rise of tide, about 16 fect, takes place in March, April, or May,-with a dechaning range during the rainy scason to a mean of 10 feet, and a minmmun during freshets of 3 feet 6 inches. The scenery on the banks of the Hooghly varies greatly. The sea approach presents nothing to view but sandbanks, succeedec hy mean-looking mud formations covered with coarse grass. As the river narrows, however, the country inproves. . Trees and rice field. and villages are common, and at length a section is reached where the banks are high, and lined with baolets buned under evergreen groves. Then come long tiers of shlpping, with the stately pantel mansions of Garden Reach on the margin in the foreground, the fort rising from the great plain on the bank higber up, and the domes, steeples, and noble public buildings of Calcuta beyond, all gradually unfolding their beautics in a long panorama.

HOOGHLY, a British district in the lientenant-governorship of Bengal, lying between $22^{\circ} 13^{\prime} 45^{\prime \prime}$ and $23^{\circ} 13^{\prime} 15^{\prime \prime}$ N. lat., and between $87^{\circ} 47^{\prime}$ and $88^{\circ} 33^{\prime}$ E. long. The area, including the magistracy of Howrah, amounted in 1878 to 1467 syidare miles. It forms the south-eastern portion of the Bardwan izvision, and is bounded N. by the district of Bardwin, E. by the Hooghly river, separating it from the districts of Nadiya and the Twenty-Four Parganas; S. by the Rupnaráyan, separating it from Midnapur; and W. by the same river, separating it from Midnapur, and by Bardwín district.

The district is flat, with a gradual ascent to the north and oorth-west. The scenery along the bigh-lying bank of the Honghly has a quiet beauty of its own, presenting the appearance of a connected scries of orchards and gardens, interspersed with factories, villages, and temples. The principal rivers are the Hooglly, the Damodar, and the Rúpnarayan. The Dimodar is the only large river which intersects the district. As in other deltaic districts, the highest land lies nearest the rivers, and the lowest levels are found midway between two streans. There are in consequence considerable marshes both between'the Hooghly and the Damodar and between the Jatter river aud the Rúpnáriyan.

The first rugular census of the district (1872) showed a population of $1,485,556$ ricrsons, of whom 720,856 were males and 765,700 females. Of these 813 were Non-Asiatics, the great majority of then Europeans, and 557 were of mixed aces (Jurasians). The llindus numbered 1,186,435; Mthometans, 299,025; and the Charistian community, 2583 . Seven muricupalities contain a propulation of over 5000 each, viz. Howrah, 97,781 ; Hooghly and Chinsurah given as one town, 34,761; Serampur, 24,448 Baidyabati, 13,332 ; Dansbairia, 7861 ; Bhadreswar, 7417 ; and Kotrang, 6811. Howralt (q.v.) is the largest and most impartant town in the district. Amongst other places of interest areTribeni, a place of great sanctity, and the scente of miny religiotis gatherings; Panduah, now a chall villare, but in aucient times the fortitied seat of a Hinduraja: Tarakeswar, a village contraning a large and richly endowed slirme of atcat holiness, visited at al times of the vear by crowds of pilgrans. The totat rovenue in 15i0-71 was 2230,452 , and the exjmuthre 284,989. In 1870 there were 36 magisterial and 35 civil and revenuc courts, with 8 covenanted English ollicers. The recrular police force of Hooghly and Howrah consisted (1871) of 1140 nien, maintrined at a cost of 200,726. There was also in 1870 a monicipal force (exflusive of Ifowrah) of 583 men, costinc £ $£ 475$, and a miral पolice of 7068 men, cusung $£ 17,855$. The uunter of Goverament-nided schools in

1877-75 was 625, athended by 22,663 punils. The principal eltacational institution in the district is the Hooghy College, attended in 1872 by 3142 studenta; on which the expendtuce was $£ 5143$.

Rice forms the staple crop of the.district, occupyiag about thirtees-sixteenths of the cultivated area; tho otber cercals are barley, wheat, and Indian corn. The other crops consist of luase, pulses, oil-seels, veretalles, jute, henip, cotton, sugarecaoe, indigo, nulberry, tobacco, and pare: Elights occasionally visit "Hooghiy and Howral, but they have not affected any crop throughout the entire disinct. do excentional case was that of the "Bombay sutar-cane," which was totally destroyed by ulight in 1 soot. Droughts caused hy defieney of rainfall sometimes occur, but not to any serious extent, Floots are rarc. . l 'be trade of the clistrict is chiefly carried on by means of permanent markets. The principal exports are-fine rice, silk, inhigo, jute, cotton cloth, and verembles; the chief imports are cummon rice, English piece goots, lime, timber, \&e. 'The thiaf manufactures are silk and cotron. In 1970 there were 100 miles of road in Hooghly district, manatainei at a cost of $£ 4010$. The East Inlian Railway has its primeiphl temanus at liowrah, and rous through the dustrat for
 six manals ia llourhly disticut used for water-cartiage, of a total lemeth of 33 miles.

Whe chmate does not liffir from that of lower Bengal generally. The $3 v e r a g e$ maxmmon temperture is $92^{\circ} \mathfrak{F}^{\circ}$, the minimum $68^{\circ} \mathrm{F}$, and the averace anmal rankull about io iurhes. The diseases of the listrict are fover, cholera, dysentery, \&o, An epulemic madarions ferer hats rugel at intorents, nom is sul to harecartied of more than half the population and to liwe almost depopulated certain wllaces. There are 7 hospotals and dispensaties.

From an hustorical point of riew the listrict possesses as much intcrest as any in liongal, or indecd in India. In the early period of the Mahometan rale Siterion was the seat of the governors of Lower bengal and a mont town. It was also a place of great comnereval tmportance. In consequenco of the silting up of the Saraseati, the river on wheh Sitgion was situatel, the town became inaccessible to large shipe, and the fortughese morod to Hoomlly. In 1632 tho lattor place, having beed taken from the lortuguese hy the Mahometans, was made the royal port of Pengal : and all the public offices aod records wore withdrawn trom Satgion, which rapidly fell iato decay. In 1640 the East India Company established a lactory at Hooghty. This was the lirst English setthement iu Lower Bengal. In 1695 , a dispute having taken plare betwen the English factors and the nawab of Bengal, the town was bomburded and burned to the ground. This was not the lirst time that Hooghly had been the scenc of a staggle deriding the fate of a European power in ludia. Ia 1629, when hell by the Portugnese, it was busiond for three monthe amb a half by a large Mahometan force sent by the emperor Slah Jahin. The place was carried by storm; more than 1000 Portuguese were killen, upwards of 4000 primuners taken, ant of 300 vessels only 3 cscaped. But ITonehly district possesses historacul interest for other Ebropean
 thenseles at Chinsurah in the 17 th century, and halll the place tall 1825, whon it was couled to fireat liritain in exchange for the ishand of Jona. The banes settled at Serampar, where they rembined
 the Eenst luda Comprany 'homarnager becanac a Froneh sethe-
 1816 it has remamed an the posessiou of the French.

Hoognty, the admmistrative headquarters of the abure district, is a town attuated on the right or west bank of the IIooghly, $23^{\circ} 54^{\prime \prime} 4 t^{\prime \prime} \mathrm{N}$ Iat. and $88^{\circ} 26^{\prime} 28^{\prime \prime} \mathrm{E}$. long. Ilooghy and Chinsurah form one municipality, and the two towns were treated as one in the enmincration of 187 .2. P'pulation, 31,791, viz, 17,114 males and 17.647 females-IDinlus, 27, 129 ; Mahometans, 60.52 ; Christinns. 328; "uthers," 5. Wunghly is a station on the Last Inlian lindway, e5 milew from (aleuta. The principal haideng is a hamlsome "inambire," constructed out of funds which had accmandol from an endowment originally lufe for the purpose by a weathy Shat gentleman, Muhamand Molsin. "Jhe town is said to have been fonnlat by the lortuguese in 1537, on the decay of Subaton, the royal port of Dengal. Ueme estallishimer thmolves they built a fort at a phace catled Sholghat
 In the hat of the river. Ihis fort gradually erew into the thwn amil port of ILmbly. (w . נ.)
 sitit, in 1627 at the llagne, and dicd at Dert, October 19,

167s. This artist, who was first a papil of his fatior. lived at the Hague and at Dort till about 1640, when on the death of Dirk Hoogstrateu he changed his resideace to Amsterdam and entered the school of Pembrandt. A short time aftermarls lie started as a master and painter of portraits, set out on a round of travels which took him (1651) to Vienna, Rome, and London, and funally retired to. Dort, where he marrien in $165 G$, and held an appointment as "provost of the mint." Hoorstraten's works are scarce; 'but a sufficient number of them bizs been preserved to show that he strove to imitate difterent styles at different times. In a portrait dated 1645 in the Lichtenstein collection at Vienna he imitates lembrande, and he contioues in this vein as late as 1653 , when he produced that wonderful figure of a Jew looking out of a cisement, whet is one of the most characteristic examples of his manner in the Belvedere at Viema. A siew of the Vienna Hofburg, dated 1652 , in the same gallery displays his still as a painter of architecture, whist in a piece at the Hague representing a Lady Realing a Letter as sbe crosses a Cuurtyard, or a Lady Consulting a Doctor, in the Van der Huop Husoum at Amsterdam, be anitates De llooch. One of his Iatest woris is a partrat of Mathys ann den Prouck, dated 1670, in the gallery of Aasterdint. The scarcity of Hoogstraten's fictures is probably due to his versatility. Besides directing a mint, he desoted sme time to literary labours, wrote a book on the theory of painting, and composed sonnete aud a tragedy. Wie are indebted to him for scone oi the familiar sayings of liembrandt. He was an ercher too, and some of lis plates are still preserved. His portrait engraved by hmself at the age of fifty still exists.

MOOK, Theodore Edward (ITSS-1841), novelist. dramatist, and improvisatore, was born in London 20. 1 September 1788. At tlarrow he receiver but a scant education, and although the subsequently oratriculated at Oxford be oever actunlly residel at the university. Indeed he seems to have abimboned all thought of serious study about 1802, on the death of his uother, nee Madden, a lady of singular beauty and ability The fatber, James Hook, a composer of some distiuction, took great delielt in exlubiting the extraurdinary musical and metrical gifts of tho stripling, and before many months the precocious Theodure had hecome "the little pet lion of the green ronm." At the age of sixteen lie scoed a drawatio success with The Soldier's Return, a come opera, and this be rapurly followed up with a semes of over a dozen sparkling ventures, the instant popularity of which mas hardly dependent on the inimitable acting of Listonand Mathews But an overweening luve of socicty withleld Hook from a lncrative career as a dnamatic anthor, and for wouc ten of the best years of his life he gave himself up to the pleacures of the town, wiuning a foremost flace in the wrold of fashion by his matehless puwers of improvisation and mimery, and startling the pullic by the audacty of lis practacal jokes. Ilis unique gift of impromptu minstrelsy "mystifiel" Sheridan, astumished Colerilge, nud eventually charmed the Prince Reent into a Ifedaration that "sulething must be done for llook" The prince was as groud as lis wom, and the victun of social sucess was npputhed acomanategeneral and trasurer uf the Mauthus with 3 salary of egoon a year for tive delightful years lank was the life and soul of the istand, but in 1817, a seriong defieterey having been discovered on the reasnry accomets be was arrestul and brought to Englatil on a crimitabl charge. It transpired that a sum of ahout $£ 12.000$ lad been abstracted ly a deprty uflictal, and for thas auount llow was hehl responible.

During the tands setutuy of the andit limarit he lived obscurely and mantinned himself by wrotur for masazmes
and newspapers. In 1820 he launched the Jokn Bull, the champion of high Toryism and the virulent detractor of Quen Caroline. Witty, incisive critieism and pitiless invective secured a large circulation for the newspaper, nud from this source alone Hook derived, for the first year at least, an income of $£ 2000$. In the midst of lis labours, however, he was arrested for the second time on account of his debt to the state, which he made no effort to defray. Confined for eight months in a sponging-louse, he issued thence the first series of his lively Sayings and Doings (3d senes, 1828). On his liberation he continued to work with lis pen indefatigably, pouriog forth in the remaning twenty-three years of his life no fewer than thirty-eight volumes, besides numberless articles, squibs, and sketehes. His novels are not works of enduring interest, but they are saved from mediocrity by frequent passages of macy narrative and vivid portraiture. The hest are Maxwell (1S30), Lave and Pride (1833), the autsbiographic Gilbert Gurney (1835), Jack Brag (1837), Gurney Married (1839), and Peregrine Bunce (1841). Incessant work harl alrcady begun to tell on his health, when Hook returned to his old social babits, and a prolonged attenpt to combine industry and dissipation resulter in the sad cenfession that he was "done up in purse, in mind, and in borly too at last." He died 24th August 1841. His writings in great part are of a purely ephemeral character; the less transient, touched though they be with a sparkling faney, have long since passen out of favour ; while the greatest triumplas of the inprovisatore may be said to have heen writ in wine. Putting aside, however, his claim to literary greatness, Hook will be remembered as one of the most brilliant, genial, and origioal figures of Georgian times.
See Lockhart's Bingraphic Skectch (1852), and the Rev. R. H. D. Bartham s Life and Licmazns (3d ed., 1877).
hook, Walter Farquiar (1798-1875), son of the Rev. Dr James Hook, deau of Worcester, and nephew of the witty Theodore, was born in London, 13th March 1798. Educated at Tiverton and Winchester, he gradunted at Osford (Christ Chureh) in 1821, and after Lolding an incumbency in Coventry, 1829-37, and in Leeds, 1837-59, was nominated dean of Chichester by Lord Derby. He lind receiverl the degree of D.D. in 1837. His friendship towards the Tractarians exposed him to considerable persecution, but his simple manly character and zealous devotion to parochial work gained him the support of widely divergent classes. Throughout life he held steadily by sober high-church principles, and the earnest, clevated tone of his mind is exemplified in such sermons as "Hear the Church!" which was preached before the eourt in 1837, and subsequently passed through many large editions. The vigerous practical turn of his Christianity is attested by the erection to the parish of Leeds, during lis incumbency, of 21 new elurches, 32 parsonages, and over 60 sehools, in addition to the rebuildung of the parish church at a cost of $£ 28,000$. 1lis literary works, which are numerous, attain the limit of their design in advaneing some incidental plen or in contributing to the sturlent's resources. The principal are An Ercleszastical Iioyrap phy, containing the Lives of Ancent Futhers and Modern Divines (3 vols., 1845-52), A Church Dictionary (8 th ed., 1859), The Means of Rendering more Effectual the Elucution of the Prople (10th ed., 1851), The Cross of Christ (1873), The Church and its Ordinances (sermons, 4 vols., 1876), and Lives of the Arelhishops of Canterbury (12 vols., 1860-i6). He died 20th October 1875. A memorial chureh has been erecterl in his hunour at Leeds; it is a 13 th century Gothic structure, designerl by Sir G. G. Scott (cost fe25,000), and was consecrated 29 th January 1850.
Sec Lifc and Letters of Dean Hook by his son-in-haw, W. R. W. Stepthens (2 vols., 1878), and Parish Sermons (1879).

HOOKE, Robert (1635-1503), an original and ingenious experimental philosopher, was born at Freshwater, in the Lste of Wight, July 18, 1635. His father, who was minister of the parish, destined him for the ehursh; but his constitutional ill-health precluded study, and threw him instead on the resources affordel by his precocious mechanical genius. From the workshop of Sir Peter Lely, whero he was placed after bis father's denth in 164s, he was transferred to the hoise of Dr Busby, master of Westminster School ; and there his edncation progressed with surprising rapidity both in its classical and mathematical branches. In 1653 he entered Christ Chureb, Oxford, as serviter; and ten yearo later he took his M.A. degree by special recommendation of Lord Clarendon, then chancellor of the university. After 1655 he was enployed and patronized by the Hon. Hobert Boyle, who turned his skill to account in the conslruction of his celebrated air-pump. Hooke's inventive faculty exercised itself, between 1657 and 1659 , in devising thirty different methods of flying, and more profitably in regulating the movement of watches by the application of the balance spring. In 1C75 a lively controversy arose between him and Huygens respecting their rival claims to this ingenious invention. The truth seems to be that the original idea belonged to Huoke, but that the coiled form of the spring, on which its practical utility depends, was due to Huygens. On the 12th of November 1662 Hooke was appointed curntor of esperiments to the Royal Society, and filled the office with extraordinary diligence and skill during the remainder of his life. In 1664 Sir John Catler instituted for his benefit a meehanical lectureship of $£ 50$ a year, and in the following year he was nominnted professor of geoonetry in Gresham College, where he subsequently resided. Atter the grent fire of 1666 he constructed a model for the rebuildiag of the city, which was highly approved, although the design of Wren was preferred. During the progress of the works, however, Hooke aeted as surveyor, nud nceunulated in that luerative employment a sum of several thousand pounds, discovered after his death in an old iron clest, which had evidently lain uoopened for above thirty years. He fulfilled the duties of secretary to the Royal Society duriog five years after the denth of Oldenburg in 167i, publishing in 1681-82 the papers read before that body under the title of Ihilosophical Collections. A protracted eontroversy with Hevelins, in which Hooke urged the advantages of telescopic over phain sights, brought him little but discredit. His reasons were good; but his oftensive style of argument rendered them unpalatable and Linself unpopular. Many circumstanees concurred to embitter the latter years of his life. The death, in 1687, of his miece, Mrs Grace Honke, who bad lived with him for many years, causel him deep affliction; a law suit with Sir Jolin Cutier abour his salary (decider, however, in his favour in 1696) oceasioned him Irolonged anxiety; and the repeated anticipation of his discoveries inspired lim with a morbid jcalousy: Marks of public respect were not indeed wanting to him. A degree of M.D. was conferred on him at Doctors' Commons, December 7. 1691, and the Royal Society made him, in 1696. a grant to enable him to complete his philosophical inventions. While engaged on this task he died, worn out with disease and toil, Marel 3,1703, and was buried in St Helen's Chureh, Eishoj.sgate Strcet.
In personal appearance llooke made but a sorry show. IIis figure was erooked, his limbs slrunken ; his hinir hung in dishevelled locks over his liaggard countenance. His temper was irritable, his halits penurious and solitary. He was, however, blameless in morals, nud reverent in religion. His seientific performanes would probably have been nore striking if they had been less varied. Ife originuted muelh, but perfected little. His optical investiga-
tions led hum to adopt in au imperfect form the undulatery theory of light, to anticipate the doctrine of interference, and to obserpe, independently of though subsequently to Grimaldi, the phenomenon of diffraction. He was the first to state clearly that the motions of the heavenly bodies must bo regarded as a mechanical problem, and he approached in a remarkable manaer the discovery of universal gravitation. He suggested a method of meteorological forecasting and a system of telescopic signalling, anticipated Chladni's experiment of strewing a vibrating bell with flour, investigated the nature of sounds and the fuaction of the air in respiration and combustion, and originated the idea of using the pendulum as a measure of gravity.
His principal writings are Micrographia, 1654 ; Lectiones Cutleriafee, 1674-79; and Posthumus Works, containing a sketch of bis "Philosophical Algebre," published by Waller in 1705.

HOOKER, Josepr (1814-1879), Ameriean general, was born in Old Hadley, Massachusetts, November 13, 1814. He was educated at the Military Aeademy at West Poiat, 1833-37, and immediately commissioned second lieutenant in the lst Artillery. In the war with Mexico (1846-48) 1 e served as aide-de-camp and assistant adjutant-general, and was breveted captain, major, and lieuteant-colonel, and commissioned captain, for meritorious services in the engagemeats at Monterey, National Bridge, and Chapultepec. He was transferred with his regiment to Califoraia in 1849. In 1853 be resigned his commission and bought a large farm near Sonoma, which he managed successfally till 1858 , when he was made superintendent of military roads in Oregon. Upon the opening of hostilities in tho civil war of 1861-65, he sacrificed his fine estate and offered his sworl to the Ferleral Goverament. He was commissioned brigadier-general of volunteers, May 17, 1861, end major-general May 5, 1862. At Williamsburg, May 5 th, he attacked a strang Confederate position, and for nine hours maintained the fight, inflieting and sustaining beavy loss, and winning tho title of "Fighting Joe." llo was engaged at Fair Oaks, June 1st, and at Malvern Hill, July lst, and did signal service at Charles City Cross Ruads, June 20th, when his division aided in holding a vital position on the flank of the Union Army, in its noted "change of base." In the campaign of Northern Virginia, under General Pope, August 27 to Soptember 1, 1862, he led his division in the actions at Eristoo Station, Manassas, and Chantilly. In the Maryland campaign, Sertember 6-17 (under General M'Cleltan), he commanded the first corps, and grallantly carried tho north pass of South Mount, opening the way for the advance of the army. Ho opened the battlo of Antietam on the $14 t h$, aml on the following morning was pitted agrinst "Stomowill" Jackson, at tho noted "cornfield," where he usod his artillery with ierrible effect; hat received a minful wound, and was borne from the fieh. Howas commissioned brigadier-general in the United States army September $20,186^{2}$, and in the disastrous battlo of Fredericksburg, under Burnsile, ho commanded the centro agrand division (3d and 5th earps). He commander the srmy of the Putomas Janusy Lith to Jume 28th, 1863, ond, having by a fine straterie movinent thrown his army "eross a turbulent stream in face uf the foe, fought a severe uthe at Chmeellorsville, where ho was serionsly injured; ant, his arny leing thrown into an unfarourable position by the mexpected giving way of hits rifht wing, ho decided In retire. He was relieyed at his own remuest, on tho 28th of Jume, with the thanks of Congress "for skill, energy,
 paign. 110 commandes tho 20 th corps (1th and lith corps anmondatorl) in tho Atlanta compaign, winmin,:

hundred dafs, and until tae capture of Atianta, the noise of battle searcely ceased, his corps doing signal service at Mill Creck, Resaca, New Hope Church, Yine Mount, Peach Tree Creek, and the siege of Atlanta. He was commissioned brevet-major-general in the United States army, Mareh 13, 1865, and retired from active service at his own request, October 15, 1868. The last years of bis life were passed in the neighbourhond of New York. He died at Garden City, Long Island, October 31, 1879.

HOOKER, Riciard (1553-1600), author of the Laz's of Ecclesiastical Polity, was born at Heavitree, near the city of Exeter, about the end of 1553 or begianing of 1554. At school, not only his facility in mastering his tasks, bui his intellectual incquisitiveness and his fine moral qualities, attracted the special notice of his teacher, who strongly recommeaded his parents to educato him for the church. Though well connected, they were, however, somewhat straiteaed in their worldly circimistances, and Hooker was indebted for almission to the university to his uncle, John Hooker, chamberlain of Exeter, and in his day a man of some literary repute, rho, besides giving him an annual pension, induced Bishop Jewel to become his piatroa and to bestow on bim a clerk's place in Corpus Collcge, Oxford. To this Hooker was admitted in I567. Bishop Jewel died in September 1571, but Dr Cole, presideat of the college, from the strong interest he felt in the young man, on account at once of his character and his abilities, spontaneously offered to take the bishop's place as his patron; aurl shortly afterwards Hooker, by his own labours as a tutor, became independent of gratuitous aid: Two of his pupils, and these his farourite ones, were Edwin' Sandys, afterwards anthor of Europoe Speculum, and George Cranmer, grand-aepher of the archbishop. Hooker's reputation as a futor soon became very high, for he had employed his five years at the unirersity to such good purpose as not only to have aequired great proficiency in the learned languages, but to have joined to this a wide and varied culture which had delivered hitu from the bondago of learned pedantry; in addition to which he is saill to have possessed a remarkable talent for communicating knowledge in a clear and interesting manner, aurl to have exercised a special influenco over his pupils' intellectual and moral tenleneies. In December 1573 he was elected to a foundation in his college; in July 1577 he procecded M.A., and in September of the samo year he was admitted a fellow. In 1579 he was appointed by the chancellor of the university to read tho lablic Hebrew lecture, a duty which to continued to discharge till lw left Oxford. Not long after his admission into holy orders, about 1581, he was appointed to preach at St Paul's Cross ; and, according to Walton, he was so kindly entertained by Mrs Churelman, who kept the Stumamite's honse where the preachers were boarded, that he permittel her to chuoso him a wife, "promising upon a fair smmmons to return to Londun and aceept of her choiec." The larly sedected by her was "her daughter Joan," who, says the same authority, "found lims neither beauty nor portion; nud for her conditions they were too like that wife's which is by Solomon compared to a dripping house." It is probible that Walton bas exag. gerated the simplicity end passiveness of llooker in the matter, but though, as kehle observes with justice, his writings betray meommon shrewdness and quitiness of olservation, as well as a vein of licenest humour, it would appear that either gratitudo or some other impulse had on this ofcasion leal his julgment atray. After lis marriago he was abont the eml of 1581 presenten to tho living of 1Hayton Peanchan in luckinghamshire. In the follow: ing your le reccival a visit fom his two puphils Edwin Gondya and Ceorgo Crammer. who Eomd him with the dhis of Horaco in his Land, tembing tho sheep while the
servant was at dinner, atter which, when they on the return of the servant accotnpanied him to his bouse, "Richard was called to rock the cradle:" Fiading him so engrossed by worldly and domestic cares, "they stayed but till the next moraing," and, greatly grieved at his narrow circumstances and unhappy domestic condition, "left him to the company of his wife Joa.."

The visit had, however, results of the highest moment, not only in regard to the career of Hooker, but in regard to English literature and English philosephical thought. Sandys prevailed on his father, the arehbishop of York, to recommend Hooker for presentation to the mastership of the Temple, and Hooker, though his "wish was rather to gain a better country living," having agreed after some hesitation to become a candidate, the patent conferring upon him the mastership was granted 17th March 1585. The rival candidate was Walter Travers, a Presbyterian and evening leeturer in the same church. Being continued io the lectureship after the appointment of Hooker, Travers was in the habit of attempting a refutation in the evening of what Hooker had spoken in the morning, Hooker again replying on the following Sunday ; so it was said "the forenoun sermon spake Canterbury, the afternoon Geneva.". On account of the keen feeling displayed by the partisans of both, Archbishop Whitgift deemed it prudeat to prohibit the freaching of Travers, whereupen he presented a petition to the council to have the prohibition recalled. Hoober published an Answer to the Petition of Mr Travers, and also printed several sermens bearing on special points of the contreversy; but, feeling strongly the unsatisfactory nature of such an isolated and fragmentary discussion of separate points, he resolved to compose an elaborate and exhaustive treatise, exhibiting the fundanental principles by which the question in dispute must be derided. It is probable that the work was begun in the latter half of 1586, and he had made considerable progress with it before, with a view to its completion, he petitioned Whitgift to be :emoved to a country parsonage, in order that, as he said, "I may keep myself io peace and privacy, and behold God's blessing spring out of my mother earth, and eat my own bread without oppositions." His desire was granted in 1591 by a presentation to the rectory of Boscombe near Salisbury. There he completed the rolume containing the uirst four of the proposed Eight Book's of the Lavs of Ecclesiastical Polity. 'It was entered at Stationcrs' Hall, 9th March 1592, but was not puolished till 1593 or 1594. In July 1595 he was promoted by the crown to the rectory of Bishopsbourne near Canterbury, where he lived to see the completion of the fifth book in 1597 . In the passage from Loadon to Gravesend seme time io 1600 he caught a severe cold from which he never recovered, but, notwithstanding great weakness and constant suffering, he "was solicitous in his study," his one desire being "to live to finish the three remaini:!r books of Polity." His death took place about November of the same year. A volume professing to contain tho sixth and eighth books of the Polity was published at Londoa in 1648, but the bulk of the sixth book, as has beea shown by Keble, is an entire deviation from the subject on which Hooker proposed to treat, and doubtless the genuioo copy, known'to have been completed, has been lost. The seventh book, which was prblished in a new edition of the work by Gauden in 1662 , and the eighth book, may be regarded as in substance the eomposition of Hooker; but, as, in addition to wanting his final revision, they havo beea very unskilfully edited, if they have not been manipulated for theological purposes, their statements in regard to donbtful matters must be received with due reserve, and no relianco can be placed on their testimony where their meaning coatradicts that of other portions of the Polity.

The couception of Hooker in his later years which we form from the various accessible soarces is that of a person of low stature and not immediately impressive appearance, much bent by the influence of sedentary and meditative habits, of quiet and retiring manners, and discoloured in complexion and woro and marked in feature from the hard mental toil which he had expended on his great piort. There seems, however, exaggeration in Walton's statemeat as to the meanaess of his dress; and Walton certainly misreads his character when he portrays him as a kind or ascetic mystic. Though he was unworldly and simple in his desires, and engrossed in the purpose to which he baid devoted his life,-ilie "completion of the Polity,"-bis writings indieate that he possessed a cheerful and healthy disposition, and that he was capable of discovering enjoy. ment is everylay pleasures, and of appreciating human lifo and ebaracter in a wide variety of aspects. He seems to havo lad a special delight in outward nature-as he expressed it, he loved "to see Ged's blessing spring out of his mother earth;" and he spent much of his spare time in visiting his parishioners, his deference towards then, if excessive, being yet mingled with a grave dignity which renderer un uarrantable liberties impessible. As a preacher, though singularly deroid of the qualities which win the applanse of the multitude, he always exeited the interest of the more intelligent, the brearlth and finely balanced wisdem of his thoughts and the fascination of his composition greatly moditying the impression produced by his weal voice and ineffective manuer. Partly, doubtless, on account of his dimsightedness, he never removed lris eye from his manuscript, and, according to Fuller, "he may be said to have made geod music with his fiddle and stick alone, having neither pronunciation nor gesture to grace his matter."

To accele without explanation to the claim put forth for tho Eictesiaslical Polity of Hooker, that it marks an epoch in Engisis prose literature and English thought, would both be to do son: injustice to writers previons to him, and, if not to overestimate his influence, to misinterpret its charneter. By no means can his excursions in English prose be regarded as chiefly those of a pioneer ; and not only is his intellectual position inferior to that of Shakespeare, Spenser, and Bacon, who alone can be propelly reckoned as the master spirits of the age, but in reality what cffect he may have had upon the thonght of his contemporaries was soon disregarded and swept out of sight in the hand-to-hand strnggle with Puritanism, and his infuence, so far from veing immediate and confined to one particular era, bas since the reaction egaiust Puritanism been slowly and imperceptibly permeating and colouring English thought dosa to the present time. His work is, however: the earliest in English proso with crough of the preserving salt of excellence to edant it to the mental palate of modera realers. Attempts more claborate than those of the old chroniclers land been made two centuries previously to employ English prose both for marrative and for discussion ; and, a few years before him, Roger Ascham, Sir Tbornas More, Latimer, Sir Philip Sidnes; the compilers of the prayer book, and various translators of the nible had in widely diflerent departments of literature brought to light many samples of the rich realth of expression that was latent in th: l:mguage; but lleoker's is the first independent work in English prose of notable power ond geoius, and the vigour aud grasp on its thonght are not more remarkablo than the felicity of its litenary style. its more ustual and obvious excellences are cian?ness of expression, notwithstanding oceasionally cornplirated methods; great aptress and conciseness in tho formation of individual clansess and such a fine sense of proportion and rhythm in their arrangement as almost conceals the difficulties of syrntax by which he was hampered; finished simplicity, notwithstanding a stateliness toc nuiform and unbroken; a nice discrimination in the cboice of worls and phrases, so as both to portiay the exact shade of his meening, and to express each of his thoughts with that degree of emplasis appropriate to its place in his composition. In regard to qualities nore relating to the mather tlau the manner we may note the subte and gartly hidden lamour; the strong enthusiasm underlying that secmingly calm and pascinalcss exposition of principles

[^39]wilich continually led him away from the minutix of temporary dismutes, and has earned for him the somewhat misleaking epithet of "judicious"; the solidity of learning not ostentationsly displayed, but iadicated in the character and variety of his illustrations and his comprehensive mastery of all that relates to his suliject; the breadth of his conceptions, and the sweep and ease of his movements in the highest regions of thought ; the fine poctical descriptions oerasionally introduced, in which his eloquence attains a frave, rich, and massive harmony that compares aot unfavourably with the finest prose of Milton. His manner is, of course, defective it the flexibility aod rariety characteristic of the best models of Enslish frose literature after the language had been entiched and perlected by long use, and his sentences, constructed too much accolding to Latin usages, are often tautological and too frotracted into long concatenations of clauses; but if, when regarded superficially, his style presents in sone respects a stitf and antiouated aspect, it yet possesses an original and innate charm that has rutamed its freshness after the dapse of nearly three centurics.

The direct interest in the Esclesiastical Polity is now philosophi cal and plitical rather than theological, for what theological ins. portance it possessed was rather in regard to the spirit and method in which theology should bo discussed than in regard to the decision of strictly theological points. Hooker bases his reasoning on pridciples which he discovered in Augustinc and Thomas Aquinas, but tho intellectual atmosnhere of his age was diferent from that which eurrounded them; he was acted upon by new and more various im. pulses enabling him to imbibe more thoroughly the spirit of Greek thought which was the source of their inspiration, and thus to reach a higher and from reation than scholasticism, and in a sense to inaugurate modern philosophy in England. It may be adnitted that his principles ure only partially and in some degree capriciously wrought out, - that if he is not under the dominiou of intellnetnid tendencies leading to opposite results there are occasional blanks and gais in inis argument where he seenis sometimes to be groping after a meaning which ho cannot fully grasp; but he is often charged with obscurity simply because readers of varions theological schools, behohiog in his prineiples what seem the outline and justification of their own ideas, are slisappointed when they find that these outlines instad of aequiring as they narrowly examine then the full and definite form of their anticipations, widen out into a region beyond their notions and sympathies, and therefore from their point of view enveloped in mist and shade. It is the exposition of philosophical principles in the first and second books of the Polity, and not the application of these pribeiples in the remaining books that gives the work its shandard phate in Enghish literature. It was intended to ban answer"to the attacks of the Presbyterians on the Episcopalian polity and custons, but no attemet is made directly to oust Presbyteriauism from the place it then held in the Chareh of England. The work must ratlier be regarded as a remonstrance against the narrow grount chosen hy the Preshyterians for their hasis of attack, Hooker's exact positions being that "a necessity of polity nod reginent may be lield in all churches without holding any form to be necessary." The general furpose of his reasoning is to rindicate Episcopacy from ohyections that han heen urged against it, but he attains a result which has other and wider eonsequences than this. The fundamental princifle ou which he bases his rasoning is the unity and all-cmbracing character of law-law "whoso seat," he benatifully tays, "is the homm of God, whone voice the harmony of the uorld" Law-as uprative in nature, as rogulating ench man's imlivilual chamerer and motions, as serm in the formations of societies and rovermants-is matly a manims. tation and develonment of the diwne onder according to whach God llimself acts, is the expressman banounforms of the divine reason. He makes a listinctuon betwen natural and gositive laws, the one being etemal and immutahle, the othr varyog areonling to ex. tornal necessity and expmiency, and he imelutes all the forms of goverament under laws that ane fositive and herefore alterable according to circmastanecs. Their appleathon as on he determined by reavon, reasonenlightcued and strengthemed lyevery varicty of know leder, discipline, and expericuce. The bemblor frature in his system ia the high plite assigned to reawon, fur, themeth attirming that cortain
 divino resclation, be yet clevalespeason mate the craterion liv whath these truths are to be juderem, and the sambind to detemme what an revelation is temporal and what cumal. "It is ant the worm of e"ral itself," he says, "which loth or fossibly can assure us that
for well to thank it llis word." At the sitme time ho sazes lime - If from the dimgere of abstanet mad mash themiging hy a deep and ofbehate regaved for facts, the diligent and aeerorate stwly of whels
 pabral and perpetual voice of wow is," he says, "the the sinleme of (ienl llambilf. For that whath all men have nt all times hearmed,

ginning hath set Himself to do all things by ;" this law is to bediscovered by reason; and the perfection which reason teacbes us to strive after is stated, with characteristic breadth of conception and regard to the facts of human nature, to be " a triple perfection : first a sensual, consisting in those things which very life itself requireth, either as necessary supplements, or as beauties or ormaments thereof ; then an intellectual, conssting in thase thangs which none underneath man is either capable of or achuainted with; lastly, a spiritual or divine, consisting in those things wbereunto we tend by supernatural means bere, but canoot here attain unto them." Ajp plying his principles to man as a member of a community, hre assigus practically the same origin and sanctions to ecelesiastical as to civil govermment. His theory of govemment forms the basis of the Treatise on Civil Gotermment by Locke, although locke developed the theory in a way that Hooker would vothave sanctioned. The foree and justification of goverument Hooker derives from public approbation, either given directly by the jarties immediately concerued, or indirectly through inheritance from their ancestors. "Sith men," hesays, "naturally have no full and perfect power to command whole politic moltitudes of men, therefore utterly without our consent we could in such sort be at no man's commandment living. And to be commanded we do consent, when that society whereof we are part hath at any time before consented, without revoking the same after, by the like unversal agreement." His theory as he stated it is in various of its aspects and applications liable to objection; but takinn as a whole it is the first philosophical statenent of the principles which, though disregarded in the succeding age, have since regulated political progress in England, and gradually modified its constitution into its present form. One of the corollaries of his principles, his theory of the relation of church and state, according to which, with the qualifications implied in his theory of government, he asserts the royal supremacy in matters of religion, and identifies the ehurch and commonwealth as but different aspects of the same government, has not met with such general approval, but practically it is the theory of the ablest defenders of state churehes at the present time.
A life of Hooker by Dr Gnuden was published in lis edition or Hooker's works, London. 36i2. To conreet the errurs in this life waton whote unother, which way published ta the $2 d$ edition of Hooker"s works in 1 ti6k The standard modern edinon of Hooker's works is that by Keble, which tivot appeared in 1836, und has since been several times ieprinted. 'The firnt buok of the Laurs of Eatesustral Pohty has been edited for the "Clarendun I'mess Senes," by R. W. Church, M.A
(1868). F. M.) (1868).

HOOKER, Sir William Jackson (1785-1865), a distinguished English botanist, was born at Norwich, July 6, 1785. His father, Joseph Hooker of Excter, a menuber of the same family as the celebrated Fichard Hooker, devoted much of his time to the stady of German literature and the cultivation of curions plants. The son was educated at the high school of Norwich, on leaving which his independent nocans conabled him to travel and to take up as a recreation the study of natural history, especially ornithology and entomology. Ho subsequently confined his attention to botany, on the recommendation of Sir James E. Smith, whom he lad consulted respecting a rare moss picked up in a ramblue. His first botanical expedition was nude in leeland, in the summer of 1809, at tho suggestion of Sur doscph lianks: but the natural history specimens which be collected, wilh his notes and drawings, were tust on the bemeward voyage through the burning of the ship, and the young botanist bimself hadl a narrow escape with his hifo. A goed memory, however, aided him to publish an aceome of the isham, and of its inlabhtants and thora (Towr in leelond, 1809), promately crreulated in 1811, and remined in 1813. In 1810-11 he made extensive preparations, and sacrfices which proved financially seroms, with a view to accompuny Sir R. Brownriger to Ceyton to explore that temming though then almost unknown islind ; but the disturbanees created by the king of Candy led to the abadomment of the projected expedition. Hooker immediately fixed his attention, however, on the formation of an herbarium which was destined to become the finest in Europe, and in 1814 he spent nine monnlis in botanizing cxeusions in France, Switzerland, and Northern Italy, during which he beeame acquainted with many of the leading Continental botanists. Tho following year he married the eldest daughter of Mr Diason Turner, F.li.S., a laly who, during forty yeurs, 1:ared in the labours of his study. Settling at lloles
worth, Suffolk, he continued to increase his herbarium, which became the resort and admiration of Britisli and Cuntinental botanists. In 1816 appeared the British dengermannze, his first scientific work, which is even nuw a model of microscopic dissection and of accurate description and figuring. This was succeeded by a new edition of Curtis's Flora Loulinensis, for which he wrote the deseriptions (1817-28); by a description of the Planke Cryptogamice of A. de Humboldt and A. Bonplaud; by the Muscologia Britannica, a very complete account of the mosses of Great Britain and Ireland, prepared in conjunction with Dr T. Taylor (1818); and by his Iusci Exoticr, 2 vols. (1818-20), devoted to new foreign mosses and other cryptogamic plants. In 1820 be accepted the regius professorship of botany in Glasgow unuverstty, and entered upon a new career of activity, in which he soon became popalar as a lecturer, his style being bnth clear and ready. The following year he brought out the Flora Scotica, in which the natural method of arrangement of British plants was given with the artificial. During the twenty years he remamed at Glasgow he prepared and took part in many works, the more ituportant being the following:-
The Botanical Mlustrations; Exosic Flora, indicating such of the suecimens as are deserving cuttivation; 3 vots. 1 $3222-27$; Accomnt of Salinc's Arctic Plants, 1824; Cataloguc of Plants in the Clasgow Botanic Garden, 1825; the Botany of Parry's Third Voyage. 1826; The Botanical Magazinc, 1827-65, 39 vols.; Lcones Filicim, in concert with Dr R. K. Greville, 1S29-31, '2 vols. ; Brilish Flora, of which several editions appearcd, undertaken with Dr G. A. W. Arnott, $1830, \& \mathrm{c}$.; British Flora Cryployamia (Fungi), 1833; Characters of Gcnera from the Bretish Flori, 1830 ; Flora Rureali-Ancricana, 1840, 2 vols., being the botany of British North America collected in Sir J. Franklin's voyage ; The Journal of Botany, 1830-42, 4 vols., Companion to the Botunical Magazinc, 1835-36, 2 vols.; Iconcs Plantaruin, 1837-54, 10 vols.; the Botany of Becchey's Voynge to the Pacificand Bchriny's Straits (with Dr Araott, 1841); the Gencra Filiciem, 1842, from the originat coloured drawngs of F. Bayer, with aulditions and descriptive letterpress; Thic London Journal of Lolany, 1842-48, 7 vols. ; Notes on the Botany of the Antarctic Voyage of the Erctues and Terror, 1813; Specics Filicum, 18:6-64, 5 vols., the standart work on this subject; A Cculury of Orchidece, 1840 ; Journal of Botany ame Kew Garilen Miscellany, 1849-57, 9 vols. In 1849 he edited the N"iger Flore of Vogel, and the Dhododendrons of Sikkim, Victoria Rcyia, 1851 ; Muscum of Economic Botany at Kcw, 1855; Fulices Ewtici, 1857-59; The Britush Ferns, 1861-62; A Century of Ferns, 1554; A Sccond Ccntury of Ferns, 1860-61, The estimation in whelh he held his patron the duke of Budford is shown in the Letter on liis grace's death printed in 1840, calling attention to the servicts rendered by him to botany and horticulture.

It was mainly by IIooker's exertions that butanists were appointed to the Government expeditions. While bis works were in progress his berbarium received large and valuablo additions from all parts of the globe, and his position as a botanist was thus vastly improved. IIe received the honour of knighthood from William IV. in 1836 is eonsideration of his meritorious researehes in scieotific botany; and a few years later, in 1841 , be was appointed director of the Ruyal Butanical Gardens of Kew, on the resignation of Mr Aiton. The attainment of this post had long been the object of his life. The gardens flourished umber his administration; the Government had confidence in him, and his numerous fricnds and correspondents took pride in contributing to the scientific needs of hisherbarium. From small beginnings the gardens expanded under his direction to 75 acres, with an arboretum of 270 acres; and tbree museums, enriched with many thousand examples of vegetable products, bavo been arhled, forming together, with the magnificent palm-house and conservatorics, the most delightful and beautiful resort that the indabitants of London possess; while lis extensive library of reference and admirably arranged herbarium, the greater part of which was presented by Sir Willian to the country, form a constant attraction to the botanist. IIe was engaged on
the Synopsis Filicum with J. G. Baker when an epidenic at Kew brouglit his valuable life to a close. He died August 12, 1865 , in the cighty-first year of his age.

HOOLE, Jons (1727-1S03), translator and dramatat, was born at Moorfelds, London, in December 1727. It the age of seventeen he became a clerk in the accountants' departaient of the East India House. His leisure hours be devoted to the study of Latin and especially Italian, after obtanaing a mastery of which he commenced writing translations of the chief works of the Italian poets. He pubiished the Jerusatem Dilivered of Tasso in 1763, the Orlando Furioso of Ariosto in 1733-1783, the Dramas of Mctastasio in 1767, and Rinalilo, an early work of Tarso, in 1792. He also wrote the following dramas-Cyrus (1765), Timantles (1770), and Clconia (1775), none of which achieved success. The verses of Iloole have been praised by Johnson, with whom be was on terms of intimacy, but, though currect, smooth, and fluwing, they cannot be commended lor any uthermerit; aud the noblo poetry of Italy, transmuted through the crucible of bis translations, becomes spiritless and commonplace. In 1773 ho was promoted to beauditor of Indian accounts, which office he resigncd in 1783 , and in 1780 be retired to Abinger near Dorking, Surrey, where he died $2 d$ April 1803.
See Anectotes of the Lijc of john Ifoolc, by the Fer. Sanducl Hoole, Lontion, 1803.

HOOPER, Joнn (¿. 1495-1555), bishop and martyr, was a native of Sumersetshire, and was born about 1495. He was educated at Merton College, Oxford, and after talung his degree of ercielor of arts in 151 S joined tho order of Cisteraian monis at Gloncester. Subsequently, "while living too mesl of a court life in the palnce of the kiog:" has attention was directed to the writings of Zwingli, and the result of bis perusing them was that after a diligent study of the Scriptures he became a zealous advocate of the principles of the Reformation. For a short time he was chaplain to Sir Thomas Aruadel, but, veine warned of the danger to which bis opinivos exposed bun, lie in 1533 made lis escape to France. Pewaraing to England sucetly afterwards, he foand that fors rere again being laid for his life, and escaped ts Irebaid disguised as a sailor. From Ireland he agaio went to Eranee, passing thence to Germany, where be married, piobabiy in 1546. After his marriage he settled in Zurich till Mareh 1549, when he set out for England. Immediately on arriving in London he began to apply himself to the work of instructing the masses, and so successfui were his labours that the churches in ribich le lectured were crowded by cager audiences, and that the King specially requested tim to remain in London to furtber the progress of the lieformation. In 1550 he was presented to the bishopric of Cloncester; but, refusing it on account of objections to the oath and vestments, he was summoned before the council, aml ultimately was imprisoned for some time in the Fleet, till he intimatell that his seruples bad been remored. The duties of his episcopate he discharged with a diligence, zeal, and self-sacrifice that havo been rarely equalled. He preached three or four times a day in the towns aud villages of his diocese, and so regardless was he of fatigue that his wife wrote bullinger to "rccommend Master IInoper to be more moderate in his lahuur," lest bis "overabumlant excrtions should cause a premature decay;" he made minute inquiry in to the knowledre, dectrine, conduct, and worllly cundition of his clergy, whose impoverisbed livings he petitioned the council to be allowed to augment out of bis own income; and he supplied a free dinner in his hall to the poor of the city daily, sitting down and sltaring it with them. In 1552 be was crated bishop of Worcester in commendim. On the acces. sion of Mary in the following year he was immediately arrested und sent to the Flect, and after suffering eightecn
months' imprisonment be was on January 29, 1555, tried for beresy und condemned to death. The sentence was carried out on February 9th, the martyr enduring the agonies of the stake, which on account of the accidental use of green wood were unusually protracted, with great fortitude. Hooper's opinions were more decidedly autiRomish than those of Crammer or Ridley, and very nearly ideutical with those afterwards promulgated by the Puritans. He was the author of various sermons and coutroversial treatises.

His Early Writings, edited for the Parker Society by the Rev. Samuel Carr, appeared in 1843, and his Later Writings, edited for the same society by the Rev. Charles Nevinson, M.A., in 1852. A new edition of his works was published at Oxford in 1855.

HOOPING-COUGH, or Whooring-Cougn (syn. Pertussis, Chin-Cough), au infectious disease of the respiratory mucous membrane, manifesting itself by frequently re curring paroxysms of convulsive conghing accompanied with peeuliar sonorous inspirations. It occurs for the most bart among ehildren, and only ouce in a lifetime.

The specific cause of hooping.ceugh is unknown, but the view which ascribes it to some atmospheric condition appears to derive support from the frequency of this disease is an epidemic; whether, however, that be the presence of a peeuliar form of germ, as is held by some, remains as yet undetermined. Although specially a disease of chilahood, hooping-cough is by no means limited to that period, but may occur at any time of life, even to old age, should there have been no provious attack. It is most common between the ages of one nad four, and is rareafter teu. Dr Edward Sraith's statistics showed that it was the most fatal of all diseases of children under one year, that 68 per cent. of the deaths from hooping-eough oceurred under the age of two, and that only 6 per cent. of the deaths were recorded after fivo years, It bas been oecasionally observed in newly-born infants. It is more common in female than in male children. Hooping-cough is hirhly contagious during any stage of its progress, but apparently more so in its eommencement. It is not only communicated ly the lreath, but may, as bas been clearly proved, be conveyed by the medium of elothing and by persons who have been in eentact with those dffected. It is said to be favoured by cold and damp weather, and to prevail mostly in spring and autumn, doubtless owing to thess seasons inereasing the predisposition to affections of the respiratory passages. Epidemics of hooping-cough have often been noticed to succeed or even to accompany those of measles or scarlet fever, nlthough no eausal comexion between these diseases can be admitted.

With respect to the sympoums of hooping-cough, threo stages of tho disease are recognized, viz, (1) the eatarrhal stang, (2) the spasmodic stare, (3) the staro of decline.

The first stage is characterized by the ordinary phenomena of a eatarrh, with snewzing, watering of the eyes, irritation of the throat, feverinhess and congh, but in genern there is nothing in the symptoms to inlicate that they are to develop inte hooping-cough. "The catarrhal stage usually lasts from ten to fonrteen days. The second stetm is narked by the abatement of the catarrhal symums, but at the sime time by increase in the cough, which new oceurs in irregalar paroxysms both by day and by night. Wach paroxysm conaists in a series of volent and rapid expiratory eoughs, succeded by a land sonorons or crowing inspiration-the "whoup." During the coughing effots the air is driven wich great furce out of the luyes, and as none cam enter tho chest the symptoms of impenting ayhyxia appear. Tho pationt grows deep-red or livid in the fuce, the eyes appenr as if they would burst from their suckets, nod suffocation atoms imminent till relief is bronght. by the "whonp"the loutur and moro visurous the buter. Occasionally
blood bursts from the nose, mouth, and ears, or is exfravasated into the conjunctiva of the eyes. A sagle fit rarely lasts beyond from half to three-quarters of a minute, but after the "whoop" another recurs, and of these a number may come and go for several minutes. The paroxysm ends by the coughing or vomiting up of a viscid tenacious seeretion, and usually after this the patient seems comparatively well, or, it may be, somewhat wearied and fretful. The frequency of the paroxysms varies according to the severity of the case, being in some iustances only to the extent of one or two in the whole day, while in others there may be several in the course of a single hour. Slight causes serve to bring on the fits of coughing, such as the acts of swallowing, talking, laughing, erying,-\&c., or they may oceur without any apparent exciting cause. In general children come to recognize an impending attack by a feeling of tiekling in the throat, and they eling with dread to their mothers or nurses, or take hold of some object near them for support during the paroxysm; but although exbausted by the severe fit of coughiug they soon resume their play, apparently little the worse. The atticks are on the whole most severe at night. This stage of the disease usually continues for thirty to fifty days, but it may be shorter or longer. It is during this time that complications are apt to arise whiel may become a source of danger greater even than the malady itself. The chief of these are inflammatory affiections of the bronchi and lungs, and convulsions, any of which may prove fatal. When, however, the disease progresses favourably, ns it usually does, the third or terminal stage is announced by the less frequent paroxysms of the cough, which generally loses in great measure its "whooping" character. The patient's condition altogether undergoes amendment, and the symptems disappear in from one to three weeks. It is to be observed, however, that for a long period afterwards in any simple catarrb from which the phtient suffors the eough often assumes a spasmodic character, which may suggest the erronenus notion that a relapse of the hooping-cough has occurred.

In severo cases it cecasionally happens that the disease leaves behind it such structural changes iu the lungs (emphysema, \&e.), as entail permaneut shorthess of breathing or a liability to attacks of asthma. Further, hoopingcough is well known to be one of those diseases of early life which are apt to give rise to a weakened and vulnerable state of the general health, or to call into activity any inherited morbid temeney, such as that towards consumption.

As regarts the treatment of hooping-cough in mild enses, little is necessary beyond keeping the patient warm and carefully uttending to the general health. The remedies applicable in the case of catarrh or the miklar forms of bronchitis are of service bere, while gentle counter-irritation to the ehest by stimblating liniments may be employed oll through the attack. In mild weather the patient may be in the open air. In the mure severe forms effort's havo to be cmployed to modify the severity of the paroxysme. Numerous remedies aro recommended, the elief of wbieh are the bronides of ammouium or jutassium, hydrocynnic arid, chloral, chloric ether, \&e. These can only be safely administured under medical advice, and with due regard to the symptons in fndividual cases. During convaleseence, where the cough still contimues to be troublesome, a cliange of air will often effect its removal.
(.. o. A.)

HOODOE (Freneh IIuphe, Latin Upupa, Greek inoyall uames bostowed apparently from its cry), a bird long celebrated in literature, and conspicnous by its variegated plomare and its largo ercetile crest, ${ }^{1}$ the U_{J} mpa epops of naturalists, whieh is tho type of the very peculiar F'nmily Upupider, placed ly Prof. Huxley inhisgroup Coccygomorzhe,

1 Iterec the secontary meaning of the french wond hrgpe-a crest or tutt ($C f$. Littre. Mict. Fraucase, i. ©ució).
but considered by Dr Murie (Ibis, 1873, p. 208) to deserve sepurste rank as Epopomorpher. This species has an execedingly wide range in the Old World, being a regular summerrisitant to the whole of Europe, in some parts of which it is abundant, as well as to Siberia, mostly retiring southwards in autumn to winter in equatorial Africa and India, though it would seem to be resident throughout the year in North-Eastern Africa and in China. Its power of wing ordinarily seemss to be feeble; but it is capable of sery extended flight, as is testified by its wandering habits (for it oceasionally makes its appearnoce in places very far removed from its usual baunts), and also by the fact that when pursued by a Falcon it will rapidly mount to an extreme leight and frequently effect its escape from the encmy. About the size of a Thrush, with a long, pointed, aud slightly arched bill, its head and neck are of a golden-buff-the former adorned by the crest already mentioned, which begins to rise from the forehead and consists of broad fcatbers, gradually increasing in lengith, tipped with black, and having a subterminal bar of yellowish-white. The upper part of the back is of a vinous-grey, and the.scapulars

and fight-feathers are black, broadly barred with whito tinged in the former with buff. The tail is black with. a white chovron, marking of about tho distal third part of its length. The legs and feet are as well adapted for running or walking as for perching, and the scutellations, are continued round the whole of the tarsi. Chiefly on account of this charaeter, which is also possessed by the Larks, Sunderall (Tentanen, 11. 53-55) united tho Upupide and Alaudide in the same "cohors" Holaspidece. Comparative anatomy, bowever, forbids its being taken to signify any real affinity between these groups, and the resemblance on this point, which is by no means so striking as that dis. playad by the form of the bill and the coloration in certain Larks (of the genus Certhilauda, for instance), must be ascribed to analogy merely, though at present no explanation of the why and the whereforo can be offered.

Pleasing as is the appearance of tho Hoopoe as it fearlessly parades its showy plumage, ite babita are much the reversc. All observers arree in stating that it delights to find its food among filth of the most abominable description, and this especially in its winter-quarters. But where it breeds, its nest, usually in the hole of a treo or of a wall, is not only paitly composed of tho fenlest matcrial, but its condition becomes worse as incubation proceeds, for tho hen scarcely ever leaves her eggs, being assiduously fod by, the cock as she sits; and when the young are hatched,
their faces are not remored by their parents, ${ }^{1}$ as is the case with most birds, but are disclarged in the immediate acighbourliood of the nest, the unsanitary condition of which can realily be imagined. Worms, grubs, and insects generally, form the 1 Itoopos' foad, and uleon it they get so fat in autumn that they are esteemed a delicate morsel in some of the countries of Southern Europe, and especially ly the Christian population of Constantiuople. ${ }^{2}$

Not a year passes but the Hoopoo makes its appearsoce in some part or other of the British Isiands, most often in spring, and if unmolested would doubtless stop to breed in then, and a few instances are known in which it has done so. But its remarkable plumage always attracts attention, and it is gencrally shot down so soou as it is seen, and before it has time to begin a nest, which there is reason to think would not in a temperate clinate become so offensive a nuisance as it is in more southern latitudes. Eight or nine so-called species of the genus bave been described, but of then the existence of five only has been recognazed by the writers who have most lately investigated themMessrs Sharpe and Dresser (Lirds of Europe, pt. vii.). Besides the Upapa epops above treated, these are U. indica, resideut in India and Ceylon ; U. longirostris, which seems to be the form of the Indo-Chincse countries; U. marginata, peculiar to Madayascar; and U. africence or U. minor of some writers, which inlabits Souti Africa to the Zambesi on the cast and Benguela on the west coast. In babits and appearance they all rescmble the best-known and most widely-spread species, and their particular differences cannot, for want of space, be here pointed out. ${ }^{3}$ (... v.)
HOORN, a town of Holland, at the hear of an arrondissement in the province of North Holland, 20 miles N.N.E. of Amsterdam and 10 miles S.W. of Enkhuizen, with which it is conneeted by the road called De Streek, or The Stroke. The Hoornerhop, a bay of the Zuyder Zee, forms a good outer harbour, and the inner harbour is shut in by a sluice which can be epenerl only when the water within and without has nearly the same level. Of the massive walls by which Hoorn was formerly surrounden few indications are left except in the shape of promenndes and gardens; but two of the old gateways, the Bast Gate and the Cow Gate, and a few towers still remaiu. The West Gate is gone, with its monument to the filial piety of Lambert Mcliszoon, a young man who by beroic excrtions managed to bring his aged mother to refnge within the town when the country around was overrun by the Spaniards in 15i9. Most of the ordinary houses are old-fashioned, and interesting from the sculptures or earvings with which they are decorated; but the problic buillings have littic to boast of in the way of arehiteetural excellence or peculiarity. It is enough to meution the town-house (formerly the stato college), the weigh house, the olid admiralty-house or princes' court, the house of correction (formerly the admiralty magazine), the old mint, occupied ns barracks, the new infirmary, the orphanage, and the ofd women's hospital. Of the eight churches the prineipal is the Groote Kerk, occupying the site of the fanous 14th century ellifice of the same name, which perished by fire in 1835. A communal high school, a Latin school, a medical and clemical society, and a branch of the society T'ot mut ana 't Algemeen are the maia

[^40]educational institutions. The extensive foreign commerce which Hoorn enjoyed in the 16 th and 17 th centuries has almest entirely vanished; but there is still a good trade pith other parts of the Netherlands, especially in cheese end cattle. The annual export of cheese is about 23,000 tons. Saw-milts and boat-building yards are the chief industrial establishments. The population was 8780 in 1870, and 9763 in 1876 . Of the 9391 inhalitants in the commune in 1870, 5112 belonged to the Dutch Reformed Church, 2954 were Roman Catholics, and 386 were Jews.
1 Hoorn, Latinized as Herna or Hornum, has existed at least from the first part of the 14th century, as it is mentioned in a document of the year 1311, five years eartier than the date usually assigned for its foundation. It was at Hoorn in 1416 that the first great net was mado for the herring fishery, an industry which leng proved an aburdant source of wealth to the town. During the 15 th century Hoorn shared in the troubles occasioned by the different factions; in 1518 it was molested by Greote Pier, and in 1566 and 1567 by Henry of Brederode. The Spanish forces entered the town in 1569 ; but in $15 i 2$ it cast in its lot with the States of the Netherlands, and four years later it assisted in defeating the duke of Alva's admiral, Count de Bossu, who remained for seme timo a prisoner within its walls. The riot against the burgomaster Langewagen in 1672 was a matter of purely local interest. A company of commerce and navigation was formed at IIoorn in 1720; but on the other hand, in 1795, the admiralty offices and storehouses were removed to Medemblik. The English under Abercromby took possession of the town in 1799, and in 1811 it suffered severely from the French. Among the celebrities of Hoorn are William Schouten, whe discovered in 1616 the passage round Cape Horn or Hoorn, as lie called it in henour of his birthplace: Abel Janszoen Tasman, whose fumc is associated with Casmania; and Jan Pieters Koen, the founder of Batavia.
HOP (German, Hopjen; French, houblon), HIumulus Luputus, L., the sole representative of its genus, an herbaceous twining plant, belonging to the natural order Cannabinacec, which is by some botanists included in the larger group called Urticacece by Endlicher. It is of common occurrence in hedges and thickets in the southern counties of England, but is believed not to be native in Seotiand. On the Continent it is distributed from Greace to Scandinavia, and extends through the Caucasus and Central Asir to the Altai Mountains. It is common, but doubtfully indigenous, in tho northern and western States of. North America, and has been introduced into Brazil, Australia, and the IFinalayas.

It is a dicecions perennial plant, producing annually several long twining roughish striated stems, which twist from left to right, aro often 15 to 20 feet long, and climb freely over helges and bushes. The leaves are stalked, opposite, 3-5 lobed, and coarsely serrate, and bear a general resemblance to thono of the vine, but are, as well as tho whole plant, rough to tho touch; the upper leaves are sonetimes seareely divided, or quite entire. The stipules are interpetiolar, each consisting of tro lateral ones united, or rarely with tho tipg free. The male infloreseenco (fig. 1, 1) forms a punicle; the flowers consist of a small greenish five paitet porianth (a) enclosing five stamens, whose anthers (h) open by termina! slits. The female inflorescence (firs. 1, b) is loss conspichous in the young stato. The catkin or Ftrobile consists of a number of small aente bracts, with iwo rossile ovaries at their base, earh subtended hya rounded bractlet (e). Both tho bracts and Lractlets enlarece greatly during the development of the ovary, and form, when fully erown, the membranons seales of the strobile (fig. 2, a). The hacts enn then only bo distinguished from the bractfot by baine rather nore acute and more stromely veined. Th. prianth (lig. 1, d) is short, cur-shaped, modicided, and closely applied to tho ovary, which it ultimate!y encloses. In sho yromg strobile the two purde hairy styles (c) of each wary project leyond the bracts. The uvary contains a singh calbuminous seed, containing a pirally coiled embryo (fis 2, b).
"ithe wity bend the basn of the bracts are enverel with a yeilorion fowier, consisting of minute vessit erning (sce
vol. iv. p. 91, fig. 48) called lupulin or lupuliuic glands (see vol. i. p. 381). These glands (tig. 2, c) are stated by Stoddart to be from $\frac{1}{2} \overline{5} \sigma$ to $\frac{1}{1} \frac{1}{9}$ inch in diameter, like flattened subovate little saucers in shape, and attached to a short pedicel ; by the expansion of the central portion during growth their apex ultimately becomes convex instead of concave. The upper or hemispherical portion consists of a delicate continuous membrane, and the lower part of tnbular polyhedric cells. The stalk is not perceptible in the gland as found in commerce. When fresh the gland

Fic. 1.-Mate (A) and Female (B) Inforescenco of the Ilop.
is seen to be flled with a yellowish or dark brown liquid; this on drying contracts in bulk and forms a ceutral mass. The contents of these glands, according to Lermer, are chicily was (nyricylic palmitate) and resins, one of which is erystalline and unites with bases; with theso the bitter acic of hops is present in small proportion. It is to theso lupulinic glands that the medicinal properties of the hop aro chielly duc. By careful sifting, abont 1 oz . may be obtained from 1 lb of hops, but the Enst Kent raricty is said to yield more than the Sussex hopls.

In hop gardens a few malo planta, uswally three or four to an acre, are sometimes planted, that number being deemed sufficient to fertilize the female flowers. It is stated, however, that the femalo plant produces suthicient malo flowers for self fertilization (linyle). The blossoms are producod in August, and the strobiles are fit for gathering from tho begimning of September to the middle of October, according to the weather.

The cultivation of hops for use in tho manufacturo of heer dates from an early periocl. In the Sth and ath centuries hop gardens, called "hnmularia" or "humuleta," existed in France and Germany. In tho herbatimm of Apuleius (1050 A. n.) the hop ("hymele") is said to havo been put in the usund drinks of lengland on aceount of its goor qualities. Until the I 6 th centary, however, hops appear to havo been grown in a very fitfil manner, and to a limited extent, generally ondy for privato consumption; hat after the commencement of the 17 th century the cul:ivition inercased rapidly. At tho present time England.
produces a larger quantity than any other country in Europe. l'oraserly several plants were used as well as hops to season ate, hence the name "alehoof" for Nepeta Glechoma, and "alecost" for Balsamita vulgaris. The sweet gale, Myrica Gale, and the sage, Salvia officinalis, were also simijarly cmplosed. Various hop substitntes, in the form of powder, liave been offered in commerce of late years, most of which appear to have quassin as a chief ingredient.

The young tender tops of the hop are in Betgium cut off in spring and eaten like asparagns, and are forced from December to February. They are not only considcred a delicacy, but valuable as a dict for anæmic, serofulous, and rachitic persons.

Fic. 2.-Fruit of Hop.
Hoin are extensively cultivated in parts of New England, New York, and Micbigan, and most of the hops consumed in the United States are supplied by those distriets. AIthough the hop was introduced into America ararly 250 years ago, and its cultivation encouraged by legislative enactments in 1657, it is only about seventy-five years since its culture was commenced on an extensive scale; but from that time the progress has been rapid, and hops have been grown in nearly every State in the Union. The amount produced in the United States was estimated in 18.40 at 6196 bales, in 1850 at 17,485 , in 1860 at 54,960 , and in 1870 at 127,283. As in England, the hep is subject to discase and blight, and in consequence the crop is variable; thus, in 1869, 69,463 bales were exported fron New York and none imported, and in 1873 only 315 bales were exported and 20,885 imported. The English eluster and crape hops seem to bo most generally -cultivated in New York and Wisconsin. Hops are also groma largely in Detgium, Prussia, France, Würtemberg, and central Germany. In 1879 only 7153 cwts. of hod's were experted from England chicily to Australia and other British possessions,
while 262,765 ewts. were imported, of which 108,306 ewts. were derived from the United States, 63,485 cwts. from Belgium, 50,567 from Germany, 26,796 from Holland, and smaller quantities from France and Dritish North America. The first packages of hops collected in England often fetch an extravagant price, and are sometimes disposed of with remarkable celerity. The first pocket of hops gathered in 1879 is said to have been picked, dried, sent to Londen, sold by auction, subjected to hydranlic pressure, packed and banded with iron, covered with three coats of paint, and despatched to an Indian mail steamer-all within twenty-four hours. The better qualities are nsually packed in tine and the inferior in coarse sacking. In Germany two varieties of the hop aro distinguished, the dugust and the autumn hop, the former being preferred.

The stem of the hop abounds in fibre similar to that of hemp and tax, and has been used in Sweden in the production of a strong durable white cloth. Ilitherto it has been usual to steep the stem mater during the wholo winter in order to separate the tibre easily: A nuch quicker process has, however, been patented, by which the fibre can be speedily extracted. This process consists in boiling the stems first for three quarters of an hour in alkaline lye, and then, after rinsing in water, for the same time in acetic acid; the fibre is thus obtained in a state fit for bleachng. The leaves, stem, and root possess elso an astringent property, and their use for tanning purposes was lience at one time patented in England. 'Thy leaves have also been recommended as fodder in the frosh state, mixed with other materials, and are said to incrense the quantity and improve the quality of milk yielded by cows. The stems or "bine " are usually burncd in the hop garden. The speat hops from brewerics form excellent manure for light soils, and together with the leaves should be returned to the hop-gardens, the materials absorbed from the ground by the hop plant being thus in some measure restored to it.

Dy distillation with water, hops yielh 0.9 per cent. of a volatile oil, of a greenish colour if from fresh, but reddishbrown if from old bops. Exposed to the air it resinifies. This oil, according to Personne, contains valciol, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$, which soon passes into valerinnic acid, 0.1 to 0.17 of this acid having been found by Melu in the lupulinic glands. The unpleasant odour of old hops is due to this change, which may be prevented or retarded by exposure to tho action of sulphurons acid gas. For medicinal, use fresi hops which have neither nodergone this change nor becu treated with sulphurous acid should be used. For brewing purposes, according to Liebig, the use of sulphured hops is not objectionable. The bitter acid principle, $\mathrm{C}_{32} \mathrm{H}_{511} \mathrm{O}_{7}$, to which bops probably owe their tonic propertics, althangh noticed by Payen, was first obtained in the pure state by Lermer in 1863. It crystallizes in large rhombic prisms, and is soluble in ether. It has been varionsly called lupalin, hupnline, lupulite, and humulin. Griessmayer (1574) has shown that hops contain also in small proportion a liquid volatule alkaloid, not jet analysed, which has the ouour of conia ; to this alkaloid its narectic property is perlaps due. The same chenist found timethylamine in hops. Etti (1876-78) has found in the scales of the hon strobiles an astringent principle, humulotamic acid, $\mathrm{C}_{50} \mathrm{I}_{45} \mathrm{O}_{26}$, which is incapable of precipitatin's gelatin, bat which, when boilad in alcohol or water or heated to $130^{\circ} \mathrm{C}$, changes to a red substance, phlobapplen, $\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{O}_{25}$, whose solution in alcohol possesses that property. Etti likewise obtained a cryse talline white and an amorphous brown resin, ${ }^{1}$ also malate,

[^41]citrate, nitrate, phosphate, and sulphate of potassinm, and pectic acid.

The use of hops in medicine dates from a very early period. Coles, in his Historly of Plants (1657), says-"They are good to cleanse the kidncys of gravel and provoke urine; they likewise open obstrnctions of the liver and srleen, and cleanse the blood and loosen the belly; and as they cleanse the blood, so consequently they help to care eruptions of the skin." Brooke"s Dispensatory(1753)recom. mends them also as an altcrative, and as a remedy for bypochoodriasis. Hops are, however, bat little used in medicine at the presentday, although official in the British and United States Pharmacopcias. According to Bartholow bops increase the action of the heart, excite the cutaneous circulation, and canse diaphoresis. A slight cerebral excitement is first produced, soon followed by a disposition to sleep. Hops also possess soncenaphrodisiac properties. The preparations used are the tiacture, infusion, and extract, the oleoresin, and the lupulinic glands. The drug is gencrally employed cither as a stomachic in dyspepsia, or to allay nervons irritability or cerebral excitement in delirium tremens, where the use of opium is inadmissible. A combination of the tinctures of lupulin and capsicum is said to be one If the best substitutes for alcoholic stimulants when their habitual use is to be discontinucd. A pillow stuffed with hops forms a well-known domestic remedy for sleeplessuess, and a bag of hops dipped in hot water is often used as anexternal application to relieve pain or inflammation, especially of the abdominal organs.

See Fluckiger and Hanbury, Pharmacographia, $2 d$ ed., p. 551 ; Bentley and Trimen, Mcd. Plands, No, 230; Griessmayer, Amor. Joure. Pharm., Ang. 1876, p. 360; Etti, in Dingler's Polyt. Journ. cexxvii. p. 49 t ; cexxviii. pp. 354, 357 ; Bartholow, Mat. Mcd., p. 362; Watson, Rural Encyclopadie, ii. pp. 686-699; Darwin, Climbing flants, P. 2 ; Scot. Perfite Platforme of a Moppe Garden, 1576 ; Freatie, Humulus Lupulus in Gout, 1806; La Belgique Florticole, 1851, t. i. 311; Perin, Culture due Hondon, Strasburar, 1874; and for details as to the cultivation and varietics and the picking and preparation of hops, and their enployment in the making of beer, see Agriculture, vol. i. p. 3St, and Inewing, vol. iv. pp. 272-273.
(E. M. H.)

HOPE; Thomas (c. 1770-1831), the anthor of Anastasius, born at London abont 1770, was descended from a branch of an old Scotch family who for several generations were extensive inerchants in London and Amsterdam. About the age of eighteen he started on a tour through various parts of Europe, Asia, and Africa, where he interested himself especially in architecture and sculptare, making a large collection of the mincipal objects which attracted his attention. On lis return to London he purchased a house in Duchess Street, which he fitted ap in a very ornamental and claborate style, from drawings made by himsclf. In 1805 he published sketches of bis furniture, accompanied by letterpress, in a folio volume, entitled Mousehold Furaiture and Decoration, which harl considerable influcuce in effecting a change in the upholstery and interincdecoration of houscs. In-1809 ho published the Costumes of the Anrients, and in 1812 Designs of Modern Costumes, works which display a large amount of special antiquarian research. He was also a munificent patron of the highest forms of art, and both at his London house and his enuntry seat at Deepdene near Dorking he formed large collections of paintings, sculpture, and antiques. Thorwaldsen, the Danish sculptor, was indebted to bin for the carly recumition of his talents, and ho also gave frecuent employment to Chantrey and laxman. In 1819 he published anonymonsly his novel Amotasines, or Memoirs of a Molem Cireth, witten at the rlose of the 18th rentury, a work which, chielly on account of the novel charmeter of its subject, caused a great sensation. It was Ronerally attributed to Lord Byron, but, though remarkable for the ucduantance it displays with Eastern life, and dis-
tinguished by considerable imaginative riguur and mon: graphic and picturesque description, its paradoses are not so striking as those in which Lord Byron indnlged; and, notwithstanding some eloquent and forcible passages, the only reaspn which warranted its ascription to him was the general type of character to which its hero belonged. Hope dicd Februaㅜ, 3, 1831. He was the anthor of two works published posthumously,- the Origin and Prospects of Man, 1831, in which he indulged in speculations diverging widely from the usual orthodox opinions, and an Historical Essay on Arclitecture, 1835, an elaborate description of the architecture of the Middle Ages, illustrated by drawinga taade by himself in Italy and Germany
hopltal. See L'Hoprtal.
HOPKINS, Ezekiel (1633-1690), bishop of Londonderry, and a Calvinistic divine of some repute, was born at Stanforl, Devon (where his father was curate), in 1633, was edveated at Magdalen College, Oxford, where he identified himself with the Presbyterian party, and about 1660 became assistant to Dr W. Spurstow of Hackney, the W.S. [UU.S.] of "Smectymnuus." He was sabsequently presented to the living of St Mary Woolnoth, London, which at the outbreak of the plague he exchanged for thit of St Mary's, Exeter. Having narried a daughter of Lord Robartes, who in 1669 became lord-lieutenant of Ireland, he was soon afterwards promoted to the deanery of Raphoe, and in 1671 he was raised to the bishopric of that diocese. Translated to the see of Londonderry in 1681 , he continued to discharge his episcopal functions until the perior of the famous siege, when, after haring vainly sought to inculcate the doctrine of passive resistancc, he withdrew to London, where in 1689 be accepted the living of St Mary Aldermanbury. He died in Junc 1690.

His works, consisting chicfly of discourscs, but including A prac. ticat Exposition of the Lord's Prayer and An Exposition of the Trn Compandments, were first published in a conplete and uniform edition in 1701; they were reprinted in 4 vols. in 1809, with a Life prefixed, by Pratt, and again, in 2 vols., in 1841-44. Though marked by "strength of thought, originality of illustration, and felicity of stylc," they are now but seddom read.

HOPKINS, Samuel (1721-1803), the theologian from whom the Itopkinsians or Hopkinsian Calvinists take their name, was born at Waterbury, Connceticut, on September 17, 1721. About his fiftecnth year he entered Yale College, where he graduated in 1741 ; he afterwards studied divinity at Northampton with Jonathan Erwards; and in 1743 he was ordained pastor of the cherch at Housatonnue (now Great Barrington), Massachusetts. There in the midst of a small settlement of only thirty families he laboured for six and twenty years, preaching, studying, and writing, until in 1769 he was dismissed from his office on the alleged ground of want of fuurls for his support. Ilo next began to preach in Newport, hhode Island, where, in 1770, he was settled as pastor of a small congregation, and where, with an interval from 1776 to 1780 , caused by the occupation of the British, be continued to labour until about the close of the century. In 1799 he had an attack of paralysis, from which lo never wholly recovered; but he continued to pre:ch occasionally, and with umimpaired mental vigour, almost autil his death, which oceurred on December 20, 1 s03.

While in vigone of intellect nud in strength nud purity of moral tone hadly infiot to donathan Edwards, llopkins cunsiderably excelled his master m foreo and enerey of chanacter, To him in longes the honomr of having been one of the first to stir up and uranize polition netion against slavery; am to his permatent though hitterly opposed efforts are chiedty to be nttributed the law of 177^{4}, which forbade live importation of negraes into New Fingland, ns also that of 1781 , which declared thatall children of slaves born alter the following March shoula be freee Iho was the nathor of mumerous pmophlets, addresses, and semons; and heniso published lives of Jonathan bidwards, Susammah Anthany, mud Mrs Osborm. lint his distinetive theohgrical tenets aro chirfly to be songht in his important work, the Systom of Theolony, which, published in 1791. has had an induenco hardly inferior to that excreised by the writ-
ings of Edvards himself. They may pe summed np. as follows :(1) Gou is the efficient cause of all the volitious of the human heart, whether theso be good or evil; (2) the guilt of Adam's first sin lics upon Adam alone; moral corruption consists exclusively in the oplosition offered by the human heart to lhe doing of that which it is really and fully capable of doing; (3) all virtue or true holiness consìts in disiuterested bencrolence ; (4) all sin consists in selfishness; (5) reconciliation and redemption are fundamentally distinct ; the former opens the gate of mercy, the latter applies to individuals Christ's saving benefits; (6) effectual calling consists in a willidigness to allow himself to be saved, produced in the heart of the sinner by God; (7) although the righteousness of Christ is the sole groumd of the sinner's justification, yct is that righteousness not impnted; (8) repentance is prior in point of time to the exercise of faith in Christ.

The works of Hopkins, first published in two volumes at Boston in 1701, appeared io a 2d edition in 1811. The latest ard best edtion is that of 1852 , io three volumes, also published at Bnston; to it thare is prefixed a biographical sketch by Professor Paik of Andover.
hOPKINSON, Francls (1737-1791), an American author, and one of the signers of the Declaration of Inde.pendence, was born at Philadelphia in 1737. He studied at the college of Philadelphia, and aiter graduating in 1763, resolved to prepare himself for the legal profession. After being admitted to the bar in 1765, he spent two years in England, and on his return in 1768 he obtained a lucrative public appointment in New Jersey. In 1776-77 he repregented that State in Congress. In 1779 he was appointed judge of admiralty for Pennsylvania, and in 1790 district judge for the same state. He died at Philadelphia 9th May 1791. Hopkinson was the author of several songs to which he wrote popular airs, and of various political poems, pamphlets, and jeux d'esprit, which from their humorons satire had a wide circulation, and powerfully assisted in arousing and fostering the spirit of political iadependence that issued in the American Revolution.
His principal writings are The Pretty Story, 1774 ; The Prophecy, 1776; The Political Catechism, 1777. Among his songs may be mentioned The Treaty, The Battle of the Kegs, and The Nevo Roof, a Song for Federal Mcchanics; and the best known of his satirical pieces are Typographical Mcthod of conducting a Quarrel, Essay on White Washing, and Modern Learning. His Miscellaneous Essays and Occasional' IVritings were published at Philudelphin in 3 vols., 1792.

HOPPNER, Jozn (1758-1810), English portrait-painter, was born, it is said, on April 4; 1758, at Whitechapel. His father was of German extraction, and his mother was one of the German attendants at the royal palace. Hoppner was consequeatly brought early under the notice and received the patronage of George III., whose regard ior him gave rise to unfounded scandal. As a boy he was a chorister at the royal chapel, but showing strong inclination for art, he in 1775 entered as a student at the Royal Academy - In 1778 he took a silver medal for drawing from the life, and in 1782 the Acadeny's highest award, the gold medal for historical painting, his subject being King Lear. He first exhibited at the Royal Acadeny in 1780. His earliest love was for landscape, but necessity obliged him to turn to the more lucrative business of portraitpainting. At once successful, he had, throughout life, the most fashionable and wealthy sitters, and was the greatest rival of the growing attraction of Lawrence. Ideal subjects were very rarely nttempted by Huppner, though a Sleeping Venus, Belisarius, Jupiter and Ios a Bacchante, and Cupid and Psyche are mentioned among his works. The prince of Wales especially patronized him, and many of his finest portraits are in the state apartments at St James's Palace, the best perhaps being those of the prince, or the duke and duchess of York, of Lord Rodney, and of Lord Nelson. Among his other aitters we may mention Sir Walter Scott, Wellington, Frere, and Sir George Beaumont. Competent judges hayo deemed bia most successful works to be his partraits of women and children. A Series of Portraits of Ladies was published by him in 1803, and a volume of translations of Eastern tales into English verse in 1805.

The verso is of but wediucre qnality. In his later years Hoppner auffered from a chronic disease of the liver; be died January 23,1810 . He was confessedly an imitator of Reynolds. When first painted, his works wero muck admired for the brilliaucy and harmony of their colouring, but they have been much injured by lapae of time: His drawing is faulty, but his touch has qualities of breadth and freedom that give to his paintings a faint reflexion of the charm of Reynolds. Hoppner was a man of great social power, and had the knowledge and accomplishments of a man of the world.

HOR, Mount ((הָ spicuous double-topped mountain in Arabia Petrea, forming part of the great Jurassic chain of Shera or Seir. It stands on the eastern edge of the great valley of the Arabah, which extends from the hearl of the Gulf of Akabah to the valley of the Jordan, and it is referred to in Scripture as "on the border" or "at the edge" of the land of Edom (Numb. xx. 23, xxxiii. 37). According to the most recent measurements, its height is 4800 feet above the level of the sea. Mount Hor was the first halting.place of the Israelites after they had turned from Kadesh on their way southwards towards Zalmonah and the Red Sea, in order to encompass the land of Edom; and it was while the host. was encamped at Kadesh that Aaron ascenderl this mountain to die. Tlis last event is commemorated in the modern name of the mountain, Djebel Nebi Harán, "the hill of the prophet Aaron," whose "tomb," a small square Saracenic structure, now occupies one of the summits. Another Mount Hor ($\tau \grave{o ̀}$ òpos rò ò ôos, LXX.) is mentioned in Scripture in the passage which (Numb. xxxiv. 7, 8) defines the northern boundary of the prospective conquests of the Israelites. It is probably to be identified with Lebanon.

HORACE ($65-8$ в.c.). No ancient writer has been at once so familiarly known and so generally appreciated is modera times as Quintus Horatius Flaccus. We aeem to know his tastes and babits, and almost to catch the toaes of his conversation, from his own works, as we know the character and manner of Dr Johnson from the pages of Boswell. His twofold function of a satiric moralist and a lyric poet give a peculiar value both to his self-portraiture and to the impressions which he has left of his age. From his Satires, which deal chiefly with the manners and outward lives of men, we know him is his relations to society and his ordinary moods; from his Epistlec, which deal more with the inder life, we best understand his deepest convietione and the practical side of his phile. sophy; while his Odes have perpetuated the finest pleasure which he derived from art, nature, and the intercourse of life, bave idcalized some of the graver as well as tha lighter aspects of his reflexion, and given an elevated expression to his sympathy with the national ideas and roverement of his time.

His own writings afford mucl the fullestand most truaiworthy naterials for his biography and for the estimate of his character. But a few facts, in addition to those recorded by the poet himself, are known from the short lifo originally contained in the work of Suetonius, De Viris Illustribus.

Horace was born on the 8 th of Dccember 65 B.c., in the consulship of L. Manlius Torquatus and L. Aurelius Cotta (Ode iii. 21, 1; Epode 13, 6). His birthplace was the town of Venusia on the borders of Lucania and Apulia, whence he describes himself as "Lucauus an Apulus anceps" (Sat. ii. 1, 34). In his "Journey to Brundusium "(Sat. i. 5), he marks his recognition of tho familiar shapea of tha Apulian Lills-

[^42]and in one of his finest odes he speaks of Mount Yulturnus as the scene of an adventure of his childhoorl, which marked him out as a special object of divine protection and as appointed to a poetic destiny: The descriptive touches in that passage, sucb as "celsw vidum Acheront!e,". show that the scenery by which be was surrounded in his early years had imprinted itself vividly on his mind. As he connects his native mountains with the dann of his poetic inspiration, so be assaciates the name of the "far-sounding Anfdus," the river familiar to his early recollection, in more than one passage of his Oldes (iii. 30,10 ; iv. 9, 2) with his bopes of poetic immortality. He dwells fordly on the rirtues of the penple belonging to his native district, as in that picture of family happiness and innocence which he paints in the second E pode-

> "Qued si pudica mulier in partem juret
> Dumum atque dulces liberos,
> Subina qualis, aut purusta solibus
> Pemicis unor Apuli ;"
and elsewhere be recalls with pride the old martial glory of the race amongst whom his first jears were passed (Ode i. 22, 14; iii. 5, 9). Like Virgil he regards the Sabelian stock as that branch of the Italian people which had contributed most to the virtue of Finme as well as to her greatness in war. In the Ofella of the Saties we meet with a still surviving type of that primitive sirtue. The Servius Oppidius, whose dying directions to his sons are recorded in Sat. ii. 3,168 , sc., seems to bave been another representative of "the nisdom unborrowed from the schoels," who must have been known to Horace througi the tio of neighhourhood. We note also, as a trace of the influence of early impressions on his later tastes, that the name of the "Bandusian fountain," which be has made ns immortal as the names of Castalia or Aganippe, seems to have been transferred by him from a spring in his native district to one on bis Sabine farm, which charmed and iaspired him in the meridian of his poetical power. We may thus trace, some of the germs of his poetical inspira. thon, as well as of his moral sympathies, to the early ycars which ho spent on the farm near Vemusia. But the most important moral influence of his youth was the training and example of his father, of whoso warth, affectionate solicitude, and homoly wishom Horace has given a most pleasing and lifolike picture (Sat. i. 6, 70, de.). He was a freedman by position; and it is supposed that be had been originally a slave of the town of Venusia, and on his emansipation had received tho gentile namo of Horatius from the Moratian tribe in which the imhabitants of Venusia wore enrolled. After lis cmancipation he acquired by the occupation of "coactur" (a collector of the pryments mato at public auctions, or, uccording to another interpretation, a collectnr of tayes) sufficient means to cuable him to buy a small farm (" macro pauper acello," Sat i 6, 71), to make sufficient provision for the future of his son (Sat i 4.108), and to tak's him to Rome to give him the advantoge of the best education there. To his care Horace attributes, roat only the intellectual training which cuabled him in later infe to take his place anoong the best men of Rome, but also his inonuoity from the baser forms of inoral evil (Sol i. G. 68, de.). 'I'o his practical teaching he atributes also his tondency to moralize and to observe character (fiat i $1,10 \%$, Sc.) -the teviency which enahled him to become the most truthful painter of social lifo and manners which tho ancient world produced. If Horace drew some of his pectical scusibility from tho intucnees of his mative distriet, we may believe tiat he deriveni his moral heath and practical sagacity from a father who combined with the intelligence and prodenco uhich raised him above his origimal position the serims apirit and wapect for the morality landed down

(" mi satis est. si
 Traditum ab antiquis morem servare," sc.ر-

 which formed the basis of the old Italian character. ${ }^{1}$In one of his latest writings (Epist. ii. 2, 42, \&0. Horace gives a further account of bis education; butwe Lear no more of his father, oor is there any allusion in bis writings to the existeace of any other member of his family or any other relative. After the ordinary grammatical and Jiterary training at Rome, be went to Athens, the most famous school of philosophy, as Rhodes was of oratory; and be describes himself while there as "searching after truth among the groves of the Academy "as well as advancing in literary accomplishment. His pleasant residence there was interrupted by the breaking out of the civil war. Following the example of his young associates, he attached himself to the canse of Brutus, whom be seems to have accompanied ti" Asia, probably as a member of his staff; and he served at the battle of Philippi in the post of onilitary tribune. He shared in the rout which followed the battle, and in an ode adaressed to lis old comrado Pompeins Grosphus he alludes, in mitation of a similar confession of Alcaus, to the inglorious casting away of his shield In interpreting such passages in the works of Horace, we havo always to bear in mind the irony habitual to him, and the reserve imposed on him by his subsequent relations to the chiefs of the victorious party. The enthusiasm which he bad felt for the repubhican cause, thougb necessarily repressed, still betrays itself it some expressions of that ode, and in that aldressed to Asimius Pollo (ii 1, 21 de.), and though he describes himself as

> "' lmbellis et firnus parum,"
and as more. fitted to treat of the ligit warfare of love than of the themes of actual war, yet both the martial and the patriotic feeling expressed in many of his later Odes enables us to understand the motives which induced him to quit tho placid haunts of art and literature for tho harsher experience of the campaign and battlefield.

He returned to Rome shortly alter the battle, stripped of his property, which formed part of the land confiscated for the benefil of the soldiers of Ortavianus and Autony. It may uave been at this time that he encountered the danger of shupwreck, which he mentions among the perils from which his life had been protected by supermatural aid (Ode iii. 4, 28) lie procured in some way the post of a clerkshp in the quastor's office, and about three years ofter the battle of Philippi, he was antroduced by Virgil and Varius to Mocenas. This was the turning point of his fortuecs. Ile owed his friendship with the greatest of literary batrons to his personal merits rather than to his poetic fame; for, though some of his shorter and less im portant picces may have been known to a small circle of frionds before the date of this introduction, his first pub lished work (book i. of the Sateres) shows that the relations of intimacy and mutual confidence which were never a?terwards disturbel had been established between the statesman and poet some time before this book was given to the world Ile tells us in one of has Suthes (i 10,31) that his eariiest ambition was to write Greck verses. In giving this diree tion to his ambition, he was probably infuenced by his admiration of the old ambe and lyracal poets whom he has made the models of his onn biputes and Odes. A parallel to this may be found in the early Latin verse of Milton and Gray, in whom, as m Hurace, the gift of expression bus hecei brought to the highest perfection lis common sense as well as bis national leeling fortumately saved him from becoming a socondrate Gieck versifier in an age when poctic inspiration had passcd from Grocce to Italy, and the

[^43]fiving language of Ronie was a more fitting vebicle for the new leelings and interests of men than the echoes of the uld Ionian or Elelian melodies. His, earliest Latin compositions were, as he tells us, written under the instigation of poverty; and they alone betray any traco of the bittorness of spirit which the defeat of his hopes and the lardships which ho bad to encounter on his first return to Rome may have temporarily profuced ou him. Some of the Lipodes, of the naturo of personal and licentious lampoons, and the second Sative of book i., in which there is some trace of an angry republican feeling, belong to these carly compositions. But ly the time the first book of Satires was completed and published (35 B.c.) his temper had recovered its natural serenity, and, though he had not yet attained to the height of lis fortmes, his personal position was one of comfort and security, and his intimate relation with the leading men in literaturo and social rank was firmly established.

About a year after the publication of this first book of Satires Mkeenas presented him with a farm among the Sabine hills, in the valley crowned by Mount Lucretilis and watered by the stream Digentia, which joins the main valley of the Anio near the modern Vico Varo (the "Varia" mentioned in the Epistles), and about 8 miles above the modern Tivoli. No kind of gift coald have adderl more to the poet's lappiness on exercised a more salutary influence on his genius. It made him independent in point of fortune ; it satisfied the love of nature which had been implanted in lim during the carly years spent on the Venusian farm; and it attorded him a welcome escape from the distractions of city life and the dangers of a Roman antumn. The lines (Epist. i. 16, 15, sc.)-
" Hæ latebro dulces, ctiam, si eredis, amenne.
Incolumem tibi me priestant Septembribus horis"-
express with simple and sincere feeling the charm of peace and outward beauty as well as the restorativc infuence which this retreat in the Sabine highlands afforded him. Many passages in the Satires, Odes, and Epistles, which recur to the memory of every reader of his poems, express the lappiness and pride with which the thought of his own valley filled him, and the interest which he took in the simple and homely ways of his country reighbours. The inspiration of the Satives came fron the heart of Rome; tho feeling of many of tho Odes comes direct from tho Sabine hills ; and even the meditative spirit of the later Epistles tells of tho leisure and peace of quiet days spent among books, or in the open air, at a distance from "the smoke, wealth, and tumult" of the great metropolis.
The second book of Satires was published in 29 b.c.; the Epodes apparently about a year earlier, though many of them are, as recgards the date of their composition, to be ranked among the earlisst estant writing of Horace. Horace speaks of them under the name of "iambi." In one of lis Epistles (i. 19, 25) he rests his first claim to originality on his having introluced into Latium the metres and spirit of Archiloclius-

> "Parios ego primus inmbos
> Ostcadi Latio, numeros aniniosque secutus Archilochi."

Yet, whatever technical claim ho may have to nave naturalized some special combination of metre employcd by the poet of Paros, Catullus, Calrus, and Pibaculus had in the prozediug generation employed the iambic metre in the spirit of Archilochis more effectively than IIoráce. His personal lampoons are the least successful of his works; and those of the Epodes which treat of other subjects in a poetical spirit are inferior in metrical effect, and in truth and freshness of feeling, both to tho lighter lyrics of Catullus and to his own later and more carefully meditated Odes. The Epodes are chiefly interesting as a record of
the personal feelings of Horace during the years which immediately followed his return to Rome, and as a prolude to the higher art and inspiration of the first three books of the Odes, which were published together about the cnd of 24 or the beginning of 23 r.c. ${ }^{1}$ The composition of theso Odes extended over several years, but all the most important among them belong to the years between the battle of Actium and 24 1.c., at which time tho poct was between the age of thirty-five and forty. Iis lyrical puetry is thus, not, like that of Catullus, the ardent utterance of his youth, but the mature and finisherl workmanship of his manhood. The state of public affairs was more favourable than it had been since the outbreak of the civil war between Cusar and Pompey for the ippearance of lyrical poetry. Peace, order, and national unity had been seeured by the triumph of Augustus, and the enthusiasm in faveur of the new government had not yet been chilled by experience of its repressing infuence. The poct's circunstances were, at the same time, most îavourable for the excreise of his lyrical gift during these years. He lived partly at Rome, partly at his Sabine farm, varying his residience occasionally by visits, to Tibur, Præneste, or Baix. His intimacy with Mæcenas was strengthened. He was no longer one amonis a favoured band of poets, but he had become the familiar friend of the great minister. He was treated with distinction by Augustus, and by the foremost men in Ruman society. He complains oceasinually that the pleasures of his youth are passing from him, but he does so in the spirit of a temperate Epicurean, who found new enjoyments in hife as the zest for the old enjoyments decayed, and who considered the wisdon and meditative spirit,-" "the philosuphic mind that years had brought,"-an ample compensation for the extinct fires of his youth. The sobering influence of time is acknowledged by him in such lines as

> "Lenit albescens animos capillus;"
or in the still finer expression of the Epistles (ii. 2, 2it), "Lenior et melior fis accedente senecta?"
About feur years after the publication of the three books of Odes, the first book of the Epistles appeared, introduced, as his Epodes, Satires, and Odes had been, by a special address to Mecenas. From theso Epistles, ns compared with the Satires, we gather that he had gradually adopted a more retired aud meditative life, and had become fouder of the country and of study, and that, while owing alleginace to no school or sect of philosophy, he was framing for himself a scheme of life, was endeavouring to conform to it, and was bent on inculeating it on others. He maintaitied his old friendships, and contimed to form new intimacies, especially with younger men engaged in public aftairs or animated by literary ambition. After the death of Virgil he was recognized as pre-eminently the greatest living poet, and was accordingly called upon by Augustus to compose the sacred hymn for the celebration of the secular gates in 17 b.o. Abnut four years later he published the fourth book of Odes, having been called upon to do so by the emperor, in order that the victories of hie stepsons. Drusu3 and Tiberius over tho Thecti and Vindelici might bo worthily celebrated. He lived about five years longer, and during these years published the second book of Epistles, and the Eipistle to the Pisos, mote generally known as the "Ars Poctica." Theso later Fipistles are mainly devoted to literary criticism, with tho cspecial object of vindicating the poetic claims of his own age over those of the age of Ennius and the other early poets of Rome. Ite might havo becu expected, as a great critic and lawgiver on literature, to have exercised a beneficial influence on the futuro poetry

[^44]of his country, and to beve applied as much wisdom to the tingory of his own art as to that of a right life. But his critical Epistlesure ehiefly devoted to a controversial attack or the older writers and to the exposition of the laws of dramatic poetry, on which his own powers had never been exercised, and for which either the genius or circumstances of the Romans were unsuited. The same subordination of imagination and enthusiasm to good sense and sober judgment chavacterizes his opinions ou poetry as on morals.

Fie died somerthat suddenly in the Norember of the year 8 B.c., within a few wecks of the death of Mæcenas, thus strangely couffrming the declaration made by him iu one of his Oiles (ii. 17). Though not an old man, he had reached the full maturity of his faculties, and fully accomplishod the work be was f tted to do in the world. He lived longer than any of the illustrious poets immediately contemporary with hiu or belonging to the preceding generation; and his works show a mature character and a mellow wisdow in striking contrast to the tone of the only other great lyrical poet of Rome, "the youug Catullus."

Horace is une of the few writers, ancient or modern, who hepe written a great deal about themselves without laying themselves open to the charge of wealiness or egotism. Eis chief claim to literary originality is not that on which he himself rested bis hopes of immortality, -that of being the first to adapt certain lyrical metres to the Latin tongue, -but rather that of being the first of those whose works have reached us who establishes a personal relation with his reader, speaks to him as a familiar friend, gives him good advice, tells bim the story of his life, nud shares with him his private tastes and pleasures,-and all this without eny loss of self-respect, any want of modesty or breach of good manners, and in a style so lively and natural that oach new generation of readers might fancy that he was ndilressing them personally and speaking to them on subjects of everyday modern interest. . In his self-portraiture, so far from wishing to make himself out better or greater than he was, he seems to write under the influence of an itonical restraint which checks him in the utterance of.his highest moral teaching and of his poetical enthusiasm. He afords us some indications of his personal appearance, as Where he speaks of the "nigros angusta fronte capillos" of his youth, and describes himself after ho had completed his forty-furth December as of small stature, prematurely grey, and fond of basking in the sun (Epist. i. 20, 24).

In his later years his health became weaker or more uncertain, and this caused a considerable change in his habits, tastea, and places of residence. It inclined him more to a life of retirement and simplicity, and also it stimulated bis tendency to self-introspection aud self-culture. In his moro vigorous years, when he lived much in Roman society, he claims to have neted in all his relations to others in accordance with the standard recognized among men of honour in every age, to have been elaritably indulgent to the weakuess of his friends, and to have been exempt from petty jealousies and the spirit of detraction. If ever he deviates from his ordinary vein of irony and quiet sense into carnest indignation, it is in denouning conduct involving tratehery or malice in the relations of friends-as in the lines (Sat. i. 4, 81, \&c.) -
" Absentem qui rolit amicum.
Qui non defendit alio culpante, solutos
Qui captnt risus hominum famanque dinacis.
Fingreq qui non visa potest, commisai tacern
Qui nequit, hic niger est, hunc tu. Lomanu, caveto "'

[^45]He claims to be auderidently aims at being independer: of fortune, superior to luxury, exempt both from the sordil cares of avarice and the coarser forms of profligacy. Ai the same time he makes a frank confession of indoleuce and of oceasioual failure in the pursuit of his idcal self-mastery. He admits his irascibility, his love of pleasure, his sensitiveness to opinion, and sonce touch of ranity or at least of gratified ambition arising out of the favour which through all his life he had enjoyed from those much above him in social station, "Me primis urbis belli placuisse domique" (Epist. i. 20, 23). Yet there appears no trace of any unworthy deference in Horace's feelings to the great. Even towards Augustus be maintained his attitude of independeace, by declining the office of private secretary which the emperor wished to force upon him; and be did so with such tact as peither to give offecee nor to forfeit the regard of his superior. His feeling towards Mæcenas is more like that which Pope entertained to Bulingbroke than that which a client in ancient or modern times entertains towards his patron. He felt pride in his protection and in the intellectual sympathy which united him with one whose personal qualities had enabled him to play so prominent and beneficent a part in public affairs. Their friendship mas slowly formed, but when once established coatinued' unshaken through their lives. Many passages in the Odes and the Epistles show how perfect the confidence was betweeu them, how completely Horace remained his own master, bow certainly the bond that united them was one of mutual affection and estecm, not of vanity and interest.

There is indeed nothing more remarkable in Horace than the independence, or rather the self-dependence, of .his character. This saved him from the danger to which his genial qualities expesed him of becoming, like Moore or Burns, the slave of sueiety or the slave of passion. The enjoyment which he drew from his Sabine farm consisted partly in the sefreshment to bis spirit from the familiar beanty of the place, partly in the "otia liberrima" from the claims of busiuess and society which it aftorded him. His love poems, when compared with those of Catullus, Tibullus, and Propertius, show that be never, in his mature years at least, allowed his peace of mind to be at the mercy of any one. They are the expressions of a fine and subtle and often a bumorous observation rather than of ardent feeling. There is perbaps a touch of pathos in his reference in the Odes to the early death of Cinara. but the epithet he appliee to her in the Epistles,
"Quem scis immunem Cinare placuisse rapaci,".
shows that the pain of thinking of her could not have been very heart-felt. Even when the Odes addressed to real or imaginary beautics are most genuine in feeling, they are more the artistic rekindling of extinct fires than the utterance of recent passion. • In his friendships he had not the self-forgetful devotion which is the most atiractive side of the character of Catullus; but be studied how to gain and keep tho regard of those whose society ho valued, and he repaid this regard by a fine courtesy and by a delicate appreciution of their higher gifts and qualities, whether proved in literature, or war, or affairs of state, or the ordinary dealings of men. He made lifo more pleasant to himsedf and others by restraining the propensities which give pain to others, as well as by active grond offices and the expression of kindly feelings. He enjoyed the great world, and it treated him well; but he resolutely maintained his personal independence and the equipoise of his fecling and judgment. The mention of Virgil nud Macenas clicits from him warmer expressions of affection and appreciation than that of any of tho other famous men of tho time; but thero is no strain of oxaggeration in the langlage which he applies even to them. If it is thought -hat in attributine a divine function to Augustus he has gone
beyond the bounds of a sincere and temperate admuration, a comparison of the Odes in which this occurs with the first Epistle of the second book shows that he certainly recognized in the emperar a great and successful administrator on whem depended the peace, order, and prosperity of the world, and that the language which at first sight offends our modern sensibilities is to be regarded rather as the artistic expression of the prevailing national seutiment than as the tribute of an insincere adulation.
The aim of Horace's pbilosophy was to "be master of oneself"--

> " "Ille potens sui
> Latusqục deget," \&c.:
to retain the " mens æqua" in all ciromustances"Quod petis hic est,
Est Ulubris, animus si te zen deficit equus:-*
to use the gifts of fortune while they remained, and to be prepared to part with them with equanimity; to make the most of life, and to contemplate its incritable end without anxiety. Self-reliance and resignation are the lessens which he censtantly inculcates. His philosophy is thus a mode of practical Epicureanism cembined with other elements which have more affinity with Stoicism. In his early life he professed his adherence to the former system, and several expressions in his first published work show the influences of the stady of Lucretius. At the time when the first book of the Epistles was published be professes to assume the position of an eclectic rather than that of an adherent of either school (Epist. i. 1, 13-19). We note in the passage here referred to, as in other passages, that he mentions Aristippus, the chief of the Cyrenaic school which anticipated the doctrines of Epicarus, rather than Epicnras himself, as the master under whose inflacnce he from time to time insensibly lapsed. Yet the dominant tone of his teaching is that of a refined Epicareanism, not so elcvated or purely contemplative as thä̀ préached by Lucretius, but yet more within the reach of a society which, thongh luxurious and pleasure-loving, had not yet become theroughly frivolous and enervated. His advice is to makc the most of the present which alone is within our power-
" "Quod adest memento
ere xquus;"
Componere xquis;"
to enjoy the pleasures of youth in their season, but to shoose some more serious object as life goes on-
"Nec lusisse pudet, sed non incidere ludum;"
to subdue all violent emetion of fear or desire; to estimate all things calmly-"nil admirari;" to choose the mean between a ligh and low estate; and to find one's bappiness in plain living rather than in luxarious indulgence. His social and friendly qualities, his enjoyment of refined and aimple pleasures, the attitude which he assumed of a critical spectator ratlier than of an active participater in the various modes of human activity, were all in barmony with the practioe and the teaching of Epicuras. Still there was in Horace a robuster fibre, inherited from the old Italian race, which moved him to value the dignity and nobleness of life more highly than its ease and enjoyment. This is perhaps the secret cause of.that weariness and dissatisfaction with the comfortalie routine of existence which occasionally betrays itself in some of his later writings. But in some of the stronger utterances of his Odes, where he expresses sympathy with the manlier qualitics of character, whether manifested in the persons of the ancient mational herees or in the civic dress of his own day, we recognize the resistent attitnde of Stoicism ratber than the passive acquiescence of Epicurcanism. The concluding stanzas of the aideress to Lollius (Ode iv. 9) exhibit the Epienrean and Stoical view of lifo se combined as to be mere worthy of human dignity tian tho genial worldly wisdom of the former school, more
in harmony with human experience than the formal precepts of the latter--

> Wou possiitentem multa vocaveris
> Recte bcatum; rectius occupat Nomen beati, qui doorum Muneritus supicuter uti
> Duramque caltet paperiem pati.
> Pcjusque tcto flagitium timet :
> Non illo pro caris amicis
> Aut patria timidus perira."

It is intercoung to trace the growth of Horace in clevation of sentiment and scrions conviction from his first ridicule of the paradoxes of Stoicism in the two books of tho Satives to the appeal which he makes in some of the Odes of the third book to the strengest Roman instincts of fortitude and self-sacrifice. A similar modification of his religious and political attitude may he noticed between his early declaration of Epicurean unbelicf-

> " Namque deos didici securum agere ævum"-
and the sympathy which he shows with the religious reaction fostered by Augustus; and again between the Epicurean indifference to national affairs expressed in tha words

> "Quia Tiridatem terreat unice Securus"
and the strong support which he gives to the national policy of the emperor in the first six Odes of the third book, and in the fifth and fifteenth of the fourth boek. In bis whole religious attitude he seems to stand midway between the consistent denial of Lucretius and Virgil's pious endeavour to reconcile ancient faith with the couclusions of philosophy. His introduction into some of lis Odes of the gods of mythology must be regarded as morely artistic or symbolical. Yet in such lines as

> " Di me tuentur, dis pietas mes Et musa cordi est,"
> " Dis te minorem quod geris, imperas,
> " lmmuuis aram si tetigit manus," \&c.,
we recognize the expression of a natural piety, thankful for the blessing bestowed on purity and simplicity of life, and acknowledging a higher and more majestic law, governing nations through their voluntary obedieace. On the other hand, his allusions to a future life, as in the "domus exilis Plutonia," and the "furvæ regna Proserpinæ," are shadowy and artificial. The inage of death is constantly obtruded in lis poems to enhance the sense of present enjoyment. In the true spirit of paganism he associates all thoughts of love and wine, of the meeting of friends, or of the changen of the seasons with the recollection of the transitoriness of our pleasures-
" Nos, ubi decidimns

> Quo pius Eneas quo dives Tullus et ancus.
> $\because \quad$ Putvis ct umbra sumus."

Herace is se much of a moralist in all his writings that; in order to enter into the spirit both of his familiar and of his lyrical poetry, it is essential that we shonld realize to ourselves what were his views of life and the influences under which they were formed. He is, thongh in a different sense from Lucretius, eminently a philosedhical and reflective poct. He is also, like all the other peets of the Angustan ago, a poct in whoso composition culture and criticism were as conspicuous elements as epontaneous inspiration. In the judgment be passes on the older poetry of Rome and on that of his contcmporarics, be seems to attach more importaric to the eritical and artistic than to the creative and inventive functions of genius. It is on the labour and judgment with which he bas cultivated his gift-

"Spintung Grais tenucm Canones "

that he rests his hopes of fane. The whole poctry of the Angustan age was based on the woiks of jolder yects, Roman
as rell as Greek. Its aim was to perfect the more immature workmanship of the former, and to adapt the forms, manners, and metres of the latter to subjects of inmediate and national interest. As Virgil' performed for his generation the same kind of office which Ennius performed for an older geaeration, so Horace in his Satires, and to a more limited extent in his Episties, brought to perfection for the amusement and instruction of his contemporaries the rude but vigorous desigus of Lucilius. Notwithstanding ereat differences in their intellectnal tastes and culture, and the great differences between a time of republican freedem and one of imperial restraint, in which their respcetive lots were cast, there was a real atinity of temper and disposition between the first and the secend in the line of the great Roman satirists. Horace seems to have made Lucilius to some extent his model, in his manaer of life as woll as in the form and substance of his satire. Wo find in the fragments of Lucilius expressions of a love of freedom and independence, of indifference to wealth or public employment, of joy at escaping from the atorms of life inte a quiet haven, of contentment with his own let, of the superiority of plain living to luxury, identical in spirit and often similar in manner to those that are almost the common-places of Horace.
It was the example of Lucilius which induced Horace to commit all his private thonghts, feelings, and experience "to his books as to trusty companions," and also to comment freely on the characters and lives of other men. Many of the subjects of particular satires of Horace were immediately suggested by these treated by Lucilins. Thus the "Journey to Brundusium" reproduced the outliues of Incilius's "Journey tu the Sicilian Straits." The discourse of Ofella on luxury was founded on a similar discourse of Lxlius on glattony, and the "Banquet of Nasidienus" may have been suggested by the description by the older poet of a rustic entertainment. The same kinds of excess are satirized by both, aspecinlly the restless passion of moneymaking and the sordid anxieties of moncy-saving, and the opposite extreme of profuse and ostentatious expeaditure. There was more of moral censure and personal aggressivoness ia the satire of the older poet. The ironical temper of Horace induced him to treat the follics of society in the spirit of a lumerist and man of the world, rather than to assail vice with the severity of a censor; and the greater urbanity of his age or of his disposition restrained in him the direct personality of satire. The names intraduced by him to mark types of character, such as Nomentanus, Mmains, Pantolabus, \&c., are reproduced from the writings of the older poet. Horace also followed Lacilius in the variety of forms which his satire assumes, nud especially in the frequent adoption of tho form of dialugue, derived from the "dramatic reedley" which was the origiaal character of the Roman Satura. This form suited the spirit in which Horace regarded the world, and also the dramatic quality of his genias, just as the direct denunciatioa and claborate painting of character suited the "sievo indignatio" and the oraterical genius of Juvenal.

Horace's satire is accordingly to a great extent a reproduction in form, manner, substance, and tone of tho satire of Lucilius; or mether it is a casting in the mould of Lucilins of his own observation and experience. There is little trace of the inlluence of his Groek studies either in the matter or the manner of this thoroughly Roman wouk; thourh he mentions in one parsage that, as aids to composition, he hal carrivi with him to the ceuntry the works of Archilochus, and of the comic pouta Eupolis, Plato, ard Menander. But a conyarison of the fragments of lucilius with the tinished compesitions of IIorace brings out in the strongest light the artistio unginality and skill of tho latter poet in bis mauagement of metro and style. Nothing cas bo
rougher and harsher than the bexameters of Lucilius, or cruder than his expressien. In his management of the more natural trochaic metre, he has sbown much grcater ease and simplicity. It is one great triumph of Herace's genius that he was the first and indeed the only Latin writer who could bend the stately iexameter to the uses of natural and easy, and, at the same time, terse and happy conversational style. Catullus, in his hendecasyllabics had shown the vivacity with which that light and gracefu! metre could be employed in telling sume short story on describing some trivial situation dramatically. But no cne before Horace had succeeded in applying the metre of beroic verse to the uses of common life. But he liad one great native model in the mastery of a terse, refined, ironical, and nataral conversational style, Terence; and the Satires show, not only in allusions to incidents and personages, but in many happy turns of expression very frequent traces of Harace's familiarity with the works of the Roman Menander.

The Epistles are more original in form, more philosophic in spirit, more finished in style than the Satires. The form of composition may have been suggested by that of some of the satires of Lucilius, which were composed as letters to his persocal frionds. But letter-writing in prose, and occasionally also in verse, had been common among the Romans from the tinie of the siege of Coriath; and a practice originating in the wants and cenvenience of friends temporarily separated from one another by the public service was ultimately cultivated as a literary accomplishment. It was a happy idea of Herace to adopt this form for his didactic writings on life and literature. It suited bim as an oclectic and not a systematic thinker, and as a friendly counsellor rather than a formal teacuer of his age. It suited bis circumstances in the latter years of his life, when his tastes iuclined him nore to retirement and study, while he jet wished to retain his hold on society and to extend his relations with younger men who were rising inte eminence. It suited the class who cared for literature,-a limited circle of educated men, intiunate with one another, and sharigg the same tastes and pursuits. While giving expression to lessons applicable to all men, he in this way seems to address each reader individnally, "admissus circum pracordia ludit," with a subtle power of sympathy and of iuspiring sympathy, which respects buth himself and his reader. In spirit the Epistles are more ethical and meditative than the Sutires. Like the Odes they exhibit the twofold aspects of his philosephy, that of temperate Epicureanism and that of mere serious and elevated conviction. Ia the actual maxims winch he lays down, in his apparent belicf in the efficacy of addressing philosophical texts to the mind, he exemplifics the triteness and limitation of all Roman thonght. But the epirit and sentiment of his practical philosophy is ynite gennine and original. The individuality of the great Fuman moralists, such ae Lucretius aad Horace, appesry not in any difference in the results at which they have arrived, bot in the differace of spirit with which they regard the spectacle of human life. In reading Lncretius we are improssed by his carnestness, his pathos, his olevation of focling; in Horace we are charmed by the screnity of his temper and the flavour of a delicate and subtle wisdon. Wo note also in the Epistles the presence of a more whilosophic spirit, not only in the expression of his personal convictions and aims, but also in his comments on seciety. In the Satires he paints the outward efferts of the pinsions of the age. Ho ahows us prominent types of character-the miser, the parasite, the legacy-hunter, the parvenu, ive, but he docs not try to trace these different namifestations of life to their source. In the Epistles he finds the socret spring of the social vices of tho age in the desirc, as uarked in other times as in
those of Horace, to beeone rich too fast, and in the tendency to value men according to their wealth, and to sacrifice the eńds of life to a superflaons care for the means of living. In the Satires he d wells on the discontent of men with their actual condition as he notieed the outward manifestation of this spirit in the various callings of life; in his Epistles he lays his finger on the real evil from which seciety was suffering. The cause of all this aimless restlessness and unreasonable desiro is sumned up in the words "Strenua nos exercet inertia." In point of style the Epiotles occupy a middle position between the "sermo pedcstris" of the Satires, and the studied grace or the grave biajesty of the Odes. It is the perfection of that kind of style which conceals much thought, insight, and character under a quiet and unpretending exterior. It combines two great excellences of manner buth in writiug and in conduct, self-restraint with sincerity and simplicity.

In his Satires and Epistles Horace shows himself a genuine moralist, a subtle observer and true painter of life, and an admirable writer. But for buth of these works lie himself disclaims the title of puetry. He rests his clains as a poet on his Odes. They reveal an entirely different aspect of his genius, his spirit, and his culture. He is one among the few great writers of the world who have attained high excellence in two widely separated provinces of literature. If this division of his powers has been unfavourable to the intensity and spontaneity of his lyrical poetry, it has made him more interesting as a man, and more complete as a representative of his age. Through all his life he was probably conscious of the "ingeni benigna vena," which in his youth made him the sympathetic student and initator of the older lyrical poetry of Greece, and directed his latest efforts to poetic criticism. But it was in the years that intervened between the publication of his Satires and Epistles that his lyrical genius asserted itself as lis predominant faculty. At that time he had outlived the cuarser pleasures and risen above the harassing cares of his earlier carcer; a fresh source of happiuess and inspira. tion had been opened up to him in his beantifol Sabine retreat; he had become not only reconciled to the rule of Angustus, but a thoronghly conrinced and, so far as his temperament adinitted of enthusiasm, an eathusiastic belierer in its beneficeuce. But it was only piter much labour that his original vein of genius obtained a free and abundant outct. He lays no claim to the "profuse strains of unpremeditated art," with which other great lyrical poets of ancient and modern times have charmed the world. He recognizes with ciodest and truthful self-appreciation the source of bis power in the lines in which he contrasts his genius with that of Findar:-

> "Fgo, apis Matine
> More :modoque,
> Grata carpentis thyma per laborem
> Plutimum, cirea netnus uvidique
> Tiburis ripas, operosa parvus
> Carmina fingo."

His first efforts.were apparently imitative," and wers directed to the attainment of perfect mastery over form, metre, and rhythm. The first nine Oles of the first buok are experiments in different kinds of metre. They and all the other metres cmploged by him are based on those employed by the older poets of Greeco,-Alcæus, Sappho, Archilochus, Aleman, \&e. He has built the structure of his lighter Odes also on their model, while in some of those in which the matter is more weighty, as in that in which he calls on Calliope "to dictate a long continuous strain,", he has endearoured to reproduce something of the intricate morement, the abrupt transitions, the interpenctration of narrative and reflexion, which characterize the art of Findar. He frequently reproduces tha
language and some of the thoughts of his masters, but he gives to them new application, or stamps then with the impress of his own experience. He brought the metres which he has employed to such perfection that the art perished with him. A great proof of his mastery over rhythm is the skill with which lie has varied his metres according to the sentiment which he wishes to express. He has impressed the stamp of his own inclividuality or of his race upon all of them. Thus his great metre, the Alcaic, has a character of stateliness and majesty in addition to the energy and impetus originally imparted to it by Alcieus. The Sapphic metre he employs with a peculiar lightness and vivacity which larmonize admirably with his gayer mouds In his combinations of the Asclepiadean we note the grave and thoughtful temperance of tone which pervades those in which the threc Asclepiadean line are combined with one Glyconic as in the "Qnis desiderio, \&c.," "Inclusam Danaen," \&c., the "Divis orts bonis," \&c., and the peculiar simplicity aod grace, of a graver character than that of the Sapphic, in those Odes in which two Asclepiadean lines are combined with ono Pherecratean and one Glyconic, as in the

or the

" Quis multa gracilis te puer in rosa,"
"O fons Bandusire, splendidior vitro."
Again in regard to his diction, if Horace has learncd his subtlety and moderation from his Greek masters, he has tempered those qualities with the masculine claracteristics of his race. No writer is more Roman in the stateliness and dignity, the terseness, occasionally even in the sobriety and bare literalness, of his diction. The individuality of the man is equally marked in his vivid and graphic condensation of phrase, whether employed in description of outward scencry or in noral portraiture, in the latent fervour or ironical reserve employed in the indication of persunal feeling, and in the generalizing maxims whici troosmute the expericnce of some special occasion into a universal experience.

While it is mainly owing to the extreme care which Horace gave to form, rhythm, and diction that his own prophecy
"Usque ogo postera ${ }^{\text {" }}$
Crescam laude recens"
has been so amply fulfilled, yet no greater injustice could be done to him than to rank him either as poet or critic with those who consider form everything in literature. Had he been a writer of that stamp he would probably have attached himself to the school of Alexandrian imitators; and such excellence as he might have obtained would have been apprecinted only by limited coteries, whose opinion and tastes do not long influence eitber the educated of uneducated world. With Horace the. mastery over the vehicle of expression was merely an essential preliminary to making a worthy and serious use of that vehiele. He may hare erred, in theory at least, rather in the other extreme of exaggorating the didactic oflice of poetry. If an explanation is to be songht for his disparaging reference to the lyrical art of his predecessor, Catullus, it is not necessary to find that explanation in jealousy, nor in any insensibility to a porer of expression of which he bas shown the sincerest admiration by attempting to imitate it. It is more likely that ho was repelled by the purely persunal and, as he may have thought, trivial subjects, whether of love or hate, to which the art of his predecessor was almost exclusively limited. The poet, from IIorace's point of view, was intended not merely to give refined pleasure to a few, but, above all things, to be "utilis urbi" Yet he is seved, in his practice, from the abuse of this theory by his admirando sease, his irouical huntour, his iatolorance of preterision
and pedantry. Opinions will differ as to whether be or Catullus is to be regarded as the greater lyrical poet. Those who assign the paim to Horace will do so, certainly not because they recognize in hior richer or equally rich gifts of feeliag, conception, and expression, but because the subjects to which bis art bas been devoted have a fuller, more varied, more mature, and permanent interest for the world.
For the most commete and exact account of the MSS. and the various editions of Horace, readers are referred to the Introduction to the admirable edition of Mr E. C. Wickham, of which only the first volume, containing the Odcs and Epodus, has appeared. For English readers the translation of the Odes and Satires by Sir Theodore Martin, and of the Uucs, Satires, and Epistles by the late Prolissor Conington, and the Life of Horace by the late Dean Milman, uay be especially recommended.
(W. Y. S.)

HORATII, tliree brothers bern at one birth, who were the champions of Kome in the war against Alba Longa. Three Alban brothers, named the Curiatii, likewise born at one lirth, were opposed to them. The mothers were also twin sisters, who had been marricd at the same time, and had given birtb to their sons on one day. When the Alban army under their king Cluilius lay encamped some miles from Rome, Tullus Hostilius the Roman king agreed with them that the issue should deprend on the combat between the two families. Two of the Horatii were soon slain; the third brother feigned flight, and when the Curiatii who were all wounded pursued him without concert he turaed and slew them one by one. Now the sister of the Horatii was engaged to one of the Curiatii, and lad made for bim a beautiful mantle. When the victor, adorned with this trophy, was entering Rome in triumpt, his sister came to greet him by the Porta Capena; but when the fatal mantle, which he wore as a trophy, showed her that her lover had fallen by her brother's hand, she involed a curse on him. Enraged at her reproaches, he slew leer on the spot; and the body of her that preferred her lover to her country lay unburied till passers by covered it with stones. Horativs was condemned by duzmeviri, specially appointed as his jultes, to be scourged to death ; but his father justified his action, and on appeal the peopic spared bis life, condemning him iu penalty to walk with veiled head below the sororium tigillum. Horatius was afterwards sent to destroy Alba Longa and transport all the inhabitants to Rome. Monuments of the tragic tale were shown by the Romans in tho time of Livy :- the mila Ionratia in the forum, where the rictor bung his spoils: the beam under which the brothor passed, and which atnod across a marrow street near the site of the later Flavian Amphitheatre ; tho sister's grave outside the gate; the grave of the two lloratii, and those of the three Curiatia where each hard fallen; the fossa Cluitia dug by the Allams to defend their camp.

The mythical elaracter of many of these details is esident; and indeed it was even doultful which of the two sets of brothers belonged to liome and which in Alva. Under the tale lie historical facts known on other evidence -the elose relationship aud the fival internccino strifo betweon the two citios. Alba, the ancicht city on the Alban monnt, was tho mother of all the Iatin cities, and of limme it iff; but the ancient eity on tho Allan lifl had gradmolly given way to the youngr cities in the phan, and was Gually destroged ly them, white the inhabitants were transperted to Romeand varions other Latincities. With the tais that formad romed this fact were connceted variuns monumonts on the road that leil from the loman formm to Aiba foment. According to Schwergler, the finssa Chuilhi. (flues, to purify) was probably an attemit to hain the comentry: and the soration timitum was icthaps the memoaial of the bubtiation of jution trial for the older patriurchat jurisliction in ciase of mundr. lyer, Kimgs if foren wriutaine tas historical character of the tate.

HORDE, a manufacturing towu of Westpbalia, Prussia circle of Dortmund, govermment district of Arnsberg, is situated on the railway from Dortmund to Soest, 2 miles south-east from Dortmund. It has one Roman Catholic and two Evangelical churcbes. Its industry is almost wholly connected with iron, and it possesses a large sueltingwork, foundries, pudding-works, rolling-mils, and manufactures of iron and $\mathrm{I}^{\text {lated }}$ wares. In the neighbourhood there are large iron and coal-pits. The population in 1875 was $12,837$.
horeb. See Sinal.
HOREHOUND (Ang.-Sax., havtune; Germ. Andorn; Fr., Marrube), Marrutium, L, a genus of perennial, usually cottony or woolly herbs, of the natural order Labiata, and tribe Stachydece. Common or white horehound, M. vulgare, L., bas a short and stout rootstock, and thick stems, about a foot in beight, which, as well as their numerous branches, are coated with a white or hoary felt-whence the popular aame of the plant. The leaves have long pctioles, aud are roundish, or rhombic-ovate, crenate-serrate,
much wrinkled, white and woolly below, and pale green and downy above; the flowers are sessile, in dense whorls or elusters, small, and dullwhite, with calyx 10 -toothed, and tho upper lobe of the corolla long and bifid. The plant occurs in Europe, North Africa, end North Asia to North-West India, and has been naturalized in parts of America. In Britain, where it is found gencrally on sandy or dry chalky ground, it is far from common. Y:hite horehound coutains a volatile oil, resin, a crystallizable bitter prineinle termed marrubiin,
 aud other substonces, and has a not unpieasant aromatic odour, and a persistent bitter taste. It poossesses expectorant, tonic, and carminative properties, and in large doses is diuretie and haxative. Formerly it was official in British pharmacopeeias ; and the infusion, syrup, or confection of horehond las long been in repute for the treatment of coughs und astlima, and bas been recommeaded also in phthisis, chronic rheumatism, hepatic and uterino disorders, hystrua, and chlorosis. For medicinal purposes the phant should be gathered when in flower, and is preferable in the fresh condition. Black horehound, Ballota mipra, L., is a bairy percmuial labiate plant, of fatid odour; is 2 to 3 feet in height; has petiolate, roundish-ovate, serrate leaves, and numerous flowers, in dense axillary elusters, with a green or purplish calyx, and a pale redpurple corolla; nat oceurs in Europe, North Africa, and Russian Asia, and in Pritain, except ia northern Seotland, and has beca iatroduced into North America. Water horolound is the Lyyopus europerus of Limiana

 Licitliy und Trimmi, Med. Pl., pt. 11, fig. 210; and Stillé and Maiseh, The Nithional Dispersetory, p. 901, 1870.

MORCEN, a villago in the Swiss emton of Zurich, eapital of the district of Horgen, is situated on the left bank of the Zurtich lake, 1500 fcet above sea-level, and 9 miles sonth of Zurich, It is sumomuded ly meadows and vineyards, ath possesses many handsono houses, and a beautiful churdh with frescos by Darzaghi. The town is on of the contres of the Zarich silk industry and vine culture,
T He meeting place of tho boats which piny on the north
and south banks of the lake. 'The population in 1870 was 5199 , of whom 4744 were Protestants.

HORITZ (Bohemian Morice), a town of Bohenia, Austria, government district of Königgrïtz, is situated on the right baak of the Bistritz, 10 miles N.E. from Bidschow. Among the principal buildings are the district court of justice, the castle, the synagogue, the town-house, the poorhouse, and the infirmary. It possesses woollen and linen manufactories, a brewery, flour-mills, and saw-mills. Flax and fruit are grown in the vicinity. The population in 1869 was 5659.
hormayr, Joseph, Baeon von, German statesmon and historian, was born at Innsbruck, January 90 ih 1781, and died at Munich, November 5th, 1848. After studying law for several years (1794-1797) in his native town, and attaining the rank of major in the Tyrul laudwehr, the young man, who had the advantage of being the grandson of Joseph von Hormayr (17051781), chancellor of Tyrol, obtained a post in the foreign office at Vienua (1801), from which he roso in 1803 to be court secretary and director of the secret archives of the kingdom and court. During the insurrection by which in 1809 the Tyrolese sought to throw off the Bararian supremacy confirmed by the treaty of Pressburg, Hormayr was the mainstay of the Austrian party, and assumed the administration of everything save the military arrangements ; but, returning home without the prestige and pretection of success, he fell into disfavour both with the emperor Francis I. and the prine minister Metteraich, and at length in 1813 he was arrested and imprisoned. In 1816 seme amends were made to him by iuis appeintment as historiographer royal ; but so little was he satisfied with the general policy and conduct of the Austrian court that in 1828 he accepted an iuvitation to the Bavarian capital, where he became ministerial councillor in the department of foreign affairs. In 1832 he was appointed Bavarian minister at Hanover, and from 1839 to 1846 he held ths same position at Bremen. The last two years of his life were spent at Mfunich as superintendent of the national archives. Hormayr's literary activity was closely conditioned by the circumstances of his polittial carcer: while the access which ho enjoyed to origina! documents gave value to his treatmeat of the past, his ecord or criticism lof contemporary events received authorit, and interest from the character of his personal experience. In his later writings he is a keen opponent of the puicy of the court of Vieana.

The following are among Hormayn's more important works:- -Kritisch-diplomazische Britrage zur Geschichto Tirols in Mittelatter, Innsb., 1802-3; Gesch. der gefürst. Grafschaft Tirol, Tiub., 1806-8; Oesterreichischer Plutarch, 20 rols., Vienna, 1807-20; Archiv fur Gesch. Stat. Lit. und Kunst, 20 vols, $1809-28$; Wien. scine Gcseh. und Denkwuirdigkeitin, Vienna, 1823-25; Lebenshiider aus den Defreiungstriege, Jena, 1841-44; Die goldene Chroniki ron Hohenchuwangau, Munich, 1842; Anemoncon aus dem Tagrbuch eincs allen Pilgermanns, Jena, 1845-47. Along with Melnyanski (1784-1844) he fuunded Trachenbuch fur dic Vaterländ. Gesch., Vienna, 1811-48.

HORMISDAS, pope from 514-523, in succession to Symmachus, was a native of Campania. Although on his clection overtures wero at onco made by Anastasius I., emperor of the East, for the rcunion of the Eastern and Western Churches, which had been separated sinco the excomunication of Acacius in 484, the zeal or intolerance of the pope delayed it till he was ablo to procure it on his own terms, in 519, from the orthorlox emperor Justin. Iormisdas paid much attention to the instruction of his elergy in psalnody. "He was succeeded in 523 by John I. Eighty of his letters are preserved in Lablo's Sacrosanda Concilia, vol v. (1728), and aro also to be found in vol. Ixiii. of Migne'a Patrologice Cursus Completus (Latin scries).

HORN. The weapons whien project from the beads of various species of anirtals, constituting what are known as horns, cmbrace substances which are, in their anatomical structure and chemical conposition, quite distinct from cach other; and although in commerce also they are known indiscriminately as hurn, their uses are altogether dissimilar. These differences in structure and properties are thus indieated by Irofessor Owen:-"The weapons to which the term horn is properly or technically applied consist of very different substances, and belong to two organic systems, as distinct from cach other as both are from the tectl. Thus the horns of deer consist of bunc, and are processes of the frontal bone; these of the giratie are inde: pendent bones or 'epiphyses' euvered by hairy skin; those of oxen, sheep, and antelopes are 'apophyses' of the frontal bone, covered by the corim and by a sheath of true horny material ; those of the prong-berned antelope consist at their basis of bony processes covered by hairy skia, and are cerered by horny sleaths in the rest of their extent. They thus combine the claracter of those of the giraffe and ordinary antelope, togetber with the expanded and branched furm of the antlers of deers. Only the borns of the rhinoceros are composed wholly of horny matter, and this is disposed in longitudinal fibres, so that the horns seem rather to consist of coarse bristles compactly matted together in the form of a more or less elongated sub-compressed cane." True horny matter is really a molified form of epidermic tissue, and consists of an albuminoid principle termed "keratin." It forms, not only the horns of the ox tribe, but also the hoofs, claws, or nails of animals generally, the carapace of the tortoises and the armadilloes, the scales of the pangolin, percupine quills, and birds' feathers, \&c. The principal application of herns is for the manufacture of combs, and under the Jeading Comb, vol. vi. pp. 177-78, that industry is described. The other uses to which horn is now deroted, amngg which may be noted the pressing of buttons, the making of handles for walking-sticks, umbrellas, and knives, tha manufacture of drinking-cups, spoons of various kinds, and snuff-boxes, do not here require extended nutice. The parings and refuse of horn are valuable for the manufacture of lrussiato of potash and as manure; and the ash of the cores of horn makes excellent cupels for the assay of precious metals. In former times hora was applied to several uses for which it is no longer required, althourh such applications have left their traces in our language. Thus the musical instruments and fog signals known as horns indicate their descent from earlier and simpler forms of apparatus made from horn. In the same way powder-horns were spoken of long after they ceasel to be made of that substance; to a sinall eatent lanterns still continue to be "glazed" with thia transparent plates of horn, a practice which a century ago was universal. Herdbooks consister of spellingr books with their leaves protected by thin plates of horn, and it was in former times customary to protect the titles of valuable MSS. in the same way. Deer-horn is almost exelusively used for handles by cutlers and walkinestick and umbelia makers The largest suply is obtained from the East ludies, and consists principally of the antlers of the axis, Axis maculcoo. and the Rusa decr, Rust Avistotedis.

HORN, or Fresch llors, a wind instrument made at parious times of various materials such as wood, ivory, and several metals, but belonging in its modern significance to the class of brass instruments. In how far the instrnments of similar type or character used by the Jews anet other Eastern mations, by the Liomans, and by mediac:al knights may have been related to the modern horn it is needless to investignte here. The instrument as wo know it dates at least from the lfith century, for a ricture of the circular horn is fomm in Virdung's Musicu (1511). But
ruder representations of similarly-shaped instruments occur in armorial bearings of a much remoter period. The horn in its earlier form scrved exclusively the various purposes of the hurit, whence its name in the different languages: Italian, cormn di caccia ; French, cor de chasse ; German, Waldhorn. Originally there secms to have been only a single ring, but a sccond semicircle occurs at an early date. The capabilities of the primitive instrument were as limited as its purpose, the latter being chiefly thet of cunouncing by signals the various stages and incidents of the hunt, such as the Reveille, the Hallali, and the Mort. Simple tunes, however, were within its range, for Mersenne mentions a "concert í quatre" for horns as early as 1637. The demands on the horn were, naturally much anlarged when it was introduced into the orchestra as an exponent of artistic and complicated music. As to the date of this event opinions differ eonsiderably. It has been asserted that Gossec was the first to malse use of the born in au important occhestral part in 1759. But this is true, if true at all, of France only. In Germany and Eagland the instrument was in common use at a much earlier period. From 1712-1740 two hornists were members of the imperial chapel in Vienna at the not inconsiderable salary of 360 florins. Moreover, both Handel (in his Water Music, 1715, ancl elsewhere) and Bach assign important parts to the horn. The notes natural to the horn and produced by the action of the lips alone are the so-called harmonics or partial tones of the bottom note between the extrome limits of the C below the staff in the bass clef to the Ein alt. Some of these notes are, however, not used in practico. In order to supply the notes not in the scale of natural harmonics various methods have been used. The simplest is the insertion of the hand in the bell of the instrument, accidentally discovered by a German hornplayer towards the end of tho last century. The effect is to lower the note by a ssmitone or a whole tone, according to the extent that the orifice is closed. The drawback attaching to this system is that the "closed " or "stopped " (ctouf"e) notes differ in character from the opon ones, and are in part dull. It is true that a good composer may produce eertain effects by this means. In the modern horn a mechanical eontrivance gencrally takes tho place of the hand. This is the valvo or ventil, an apparatus for lowering the note by menns of the pressure of the fingers. There are three valves attached to the ventil-hora, lowering the note by one, troo, and three semitones respectively. Most modera compogers write for the ventil-horn exclusively; others use it in combination with natural or hand horns. Another important applimen of the herru is the crook, which may best be described as a transposing machine. The crooks can be removed at will, their effect (by altering tho length of tho tubo) being to transpose the notes produced by the lips into anything that is repuired. The phayer therefore rays as it were in no and tho same key. and tho diffoulty of transposing his part meatatly is sared to him. In consequence tho horn part in a scoro is alwaya written in tho key of C , which may to changed into E flat or for 1) by morely iuserting the crook intedded fur that key. In this way not only the diatonic gento, but all kinds of chrenation progreasions can lin prodaced on tho lann Of theso opportanitios morlern connesers have largely availed themalvea, froquently tasking tho caprebilitios of the players to the utmost degreo. Tho pasage fire there heris in the great aesen of Fidelio in leethoven'suprat of thet mame is celehratof for its effertiveness as well iss for its dificulty. With Warede also tho loures are favourite instruments. In the emonmy of the orehestra the horns form there tramsition from the wond winds to the trumpete, trumbones, and
 be frimar vath the power of the lather, und may be nised
with equal efficet both in filling up the harmony and in emphasizing the melody. In works of a romantic character, such as Mendelssohn's overture to A Midsummer Night's Dream, or Weber's Der Freischütz, they are invaluable for the purpose of local colouring. There are also many solo pieces written for the horn, amongst which Mozart's thrce concerti for hora and orcliestra, Schumann's concerto for 4 horas and orchestra (op. 86), Beethoven's horn sonata (op. 17), and Brahms's trio for pianoforte, violin, aud horn (op. 40) may be cited.

HORNEEAM, Carpinus, Tournef., a small genus of trees of the natural order Cupilliferce and sub-order Corylece. The Latin name Carpinus has been thought to be derived from the Ccltic car, wood, and pin or pen, head, the wood of hombcams having been used for yokes of eattle (see Loudon, Ency. of Pl., p. 792, new ed.,'1855, and Littré, Dict., ii. 556). The common hornbenm, or yoke-elm, Citrpinus Betulus, L. (Gr., probably Gvia; Germ., Hornbaum and Hormbuthe; Fr., charme), is indigenous in the temperate parts of western Asia and of Asia Minor, and in Europe, where it ranges as high as 55° and $56^{\circ} \mathrm{N}$. lat. It is common in woods and hedges in parts of Wales and of the soutl of England. The trunk is usually flattened, and twisted as though composed of several stems united; the bark is smooth, and light grey; and the lcaves are subdistichous, 2 to 3 inches long, elliptic-ovate, doubly scriute, pointed, numerously ribbed, hairy below, and opaque, andnot glossy as in the beech, have large ŝ́tipules and short petioles, and when young are plaited. The flowers appear with the leaves in April and May. The. male catkins are about $1 \frac{1}{2}$ inches long, and have pale yellow ânthers, bearing tufts of hairs at the apex; the female attain a length of 2 to 4 inches, with bracts 1 to $1 \frac{1}{2}$ inches long. The grecu and angular fruit or "nut "ripens in October; it is about $\frac{1}{4}$ inch in lensth, is in shape like a small chestnut, and is enclosed in leafy. 3-lobed bracts. The hornbeam thrives well on stiff, clayey, moist soils, iuto which its roots penetrate deeply; on chalk or gravel it does not. flourish. Raised from seed it may become a tree 40 to às much as 70 feet in height, greatly resembling the beech, escept in its rounder and closer heal. It is, however, rarcly grown as a timber-treo, its chief employment beiug for hedges. "In the single row," says Evelyn (Sylut, p. 29, 166t), "it makes the noblest and the stateliest hedges for long Walks in Gardens or Parks, of any Tree whatsocver whose leaves are deciluous." As it hears clipping well, it was formerly much used io geometric gardening. The branches should not be lepped in spring, on account of their tendency to blecd nit that season.

The wood of tho bornberm is white and elose-grained, ond polishes ill, is of considerablo tenacity and little flexibility, and is extremely toush and hard to work- rhence, according to Gerard, the namo of the trec. It has been found to loso about 8 per cent. of its weight by drying. As a fuel it idexcellent; and its charcoal is much estcemed for making gunpowiler. The bark of the hornbeam has tonie irrepertics, aud the inner part is stated by Linmens to afford a yellow dyo. In Franee the loases serve as fotder. Tho tree is a favourite with hares and rabbits, and the seedlings aro apt to be destroyed by mice. Pliny (Nat. Hist., axvi. 26), who desaribes its wood as red and easily split, elasses tho hornbeam with maples. The Amorien horubram, blue or water beceh, or iron-wood, is Carpinites amerirana, Mieh. ; tho common hop-hornbeant, a nativo of the south of Europe, is Ostrya vulyaris, Willd., and the American, O. eriginien, Willh.
-Sce Gilpin, For, Sechery, i., ed Lander, 1831 ; Loulon, Arboretum, iii. 20)4, 1838; Selly, Forest T'ress, p. 337, 1842; Benthan,
 viit. 176, 1868 ; J. D. Hooker, Student's Flora, p. $365,2 \mathrm{~d}$ ed. ${ }^{1} 9 \ddot{8}$ and Armoricuitum, vol. ii. p. 317.

HORNBILL, the Engtish name for a long while generally given to all the birds of the Family Bucerotide of modern ornithologists, from the extraordinary horn-like excrescence (epithema) developed on the bill of most of the species, though to which of them it was frst applided seems doubt. ful. Among classical authors Pliny had heard of such animals, and mentions them (Hist. Nat., lib. x. cap. lxx.) under the name of Tragopan ; but he deemed their existence fabulous, comparing them with Pegasi aud Gryphones-in the words of Holland, his translator (vol. i. p. 296)-"I thinke the same of the Tragopanades, which many men affirme to bee greater than the Egle; having crooked hornes like a Ram on eitber side of the bead, of the colour of yron, and the head onely red." Yet this is but an exaggerated description of some of the species with which doubtless his informants had an imperfect acquaintance. Medieral writers found Pliny's bird to be no fable, for specimens of the beak of one species or another seem occasionally to have been brought to Europe, where they were preserved in the cabinets of the curious, and thus Aldrovandus was able to describe pretty fairly and to figure (Ornithologia, lib. xii. cap, xx. tab. x. fig. 7) one of them under the naue of "Phinoceros Avis," thongla the rest of the bird was wholly unknown to him. When the exploration of the East Indies had extended further, more examplesreached Europe, and the "Corvus Indicus comatus" of Bontius becanie futly recognized by Willughby and Ray, under the title of the "Horned Indian Raven or Topau called the Rhinocerot Bird." Since the time of thosc excellent ornithologistsour knorledge of the Hornbills has been steadily increasing, but it must be confessed that in regard to many points there is still great lack of precise information, and accordingly the completion of Mr Elliot's "Monograph of the Bucerotide" (now in course of publication) is most earnestiy to be desired, for therein it is to be hoped that all questions respecting their history and classification may be fully treated. At present great diversity of opinion prevails as to how many real genera the Family comprises, or how many species. The group, though no doubt ought to be entertained as to its limits, ${ }^{1}$ bas not attracted sufficient notice from ornithologists, and therefore, apart from the merest superficial characters, the difference of the several sections which it includes has never been properly explained, nor 'have their distinctions been placed on a firm basis. Some authors appear to have despaired of dividing it satisfactorily, and have left all tho described species in the Linnæan genus Buceros, as for example, Professor Schlegel (Cat. du Nus. des Pays Bas, Buceros); others have split that genus into more than a score-a number which scems to be quite unnecessary. Sundevail (Tentamen, pp. 96, 97), with his usual caution, has restrained himself to the rccognition of three genera, but it is unquestionable that more should reasonably be admitted, though the present writer is not prepared to state how many are required.
The first genus admitted by Sundevall is Rhinoplax, which scems properly to contain but one species, the Butcross vigii, B. scutatus, or 3 . gateatus of authors, commonly known as the Helmet-II ormbill, a mative of Sunatra and Borneo. This is easily distinguished by having the front of its uearly vertical and slighly convex epitheme connposed of a solid mass of born ${ }^{2}$ instead of a thin coiting of the

[^46]light and colhalar structure found in the others. So dense and hard is this portion of the "helmet" that Chinese and Malay artists carve figures on its surface, or cut ic transversely into plates, which from their agreeable colouring, bright yellow with a seariet rim, are worn ns brooches or other ormaments. This bird, which is larger than a Raven, is also remarkalle for its long graduated tai!, having the two midule feathers nearly twice the length of the res.Nothing is known of its habits. 1ts head was figured by Edwards more than a century ago, but little else had been seen of it until 1801, when Latham deseribed the phange from a spocimen in the British Museum, and the first figure of the whole hird from an cxample in the Museum at Calcuta was published by llardwiske in $18 \% 3$ (Trans. Linn. Socicty, xiv. plt. 23). Xet more than twenty years elapsed before French naturalists becamc acquainted with it. Under Fihinoplux Sundevall places the Euceros cornutus of hatles; but this would seem to be a wrong position for that species, the tyene of Bonaparte's genus Bercnicornis, since it does not alpear to possess a frontlet of solid horn.
Sundevall divides the genus Duccros into three sections, of which one, Buceros proper, contains the species having the exithema devcloped to its greatest extent, sueli as B. rlinoccros, B. hydrocorax, B. bicomis, and ochers, while the remaining seetions have little or no epithema, and onc of them has the throat feathered. This last includes tho African forms which seem to belong to the genus Toccas of Lesson, while the other comprises the Oriental species exempliticd by Dir Hodrson's genus Accros; but the arrangement cannot le deemed wholly satisfactory, and must bo refrarded only as an approach to a better. The presence or alsence of the cpithema may indeed be considered in distinguishing genera; but among those that possess it, seeing that its development is to a great degree dependent upon age and perhaps sex (this last being uncertain), its size and share hardly allord good generic characters, and, thongh the group assigned by Sundevall to Euceros proper donbtless requires further separation, some less superficial distinctions must be pointed out than those which have been taken as sufficient to establish many of the "genera" of this family suggested by several ornithologists. Again, in the grouping of those forms which possess little or no cpilhema sound characters are cqually wanting tor the divisions as yet set forth, and until further investigations have been made the limits of even the genera Accros and Toccus cannot be laid down. Tickell in his maunscipt Eirds of India (in the library of the Zoological Society of Londoa) divides the Hombills of that country into two genera only, Euceros and Aceros, remarking that the birds of the former fly by alternately flapping their wings and sailing, while those of the latter tly by regular flapping only. ${ }^{3}$ Several differences of structure are presented by the sternal apparatus of the varions Luccrotiche, and it is quite possible that these differences may Le correhated with Tickell's observations so as to furnish, when inore is known about these birds, a better mode of elassing them, and the same may be sad of those of the Afican group containing the genus Toccus and its allies.

Lastly, we lave the genus Eucorves, or Bucorax as some call it, confined to Africa, ant containing at least two and perhaps more species, distinguishable by their longer legs and shorter toes, the Ground. Hornbills of English writess, in comtrast to all the preceding, which are chietly artoreal in their halits, and when not flying move by ahort leaps or hops, while the menbers of this gronp walk and run with facility. From the days of Brace at least there are few African travellers who have not met with and in their marratives more or less fully described one or other of these hirids, whose large size and fearless habits render them conspienous oljects.

As a whole the Hornbills, of which more than 50 species have been described, form a very matural and in some respects an isolated group, placed by Professor Huxley among his Coccygomorphe. It has been suggested that they bave some affinity with the Hoopoes (C° nepride), but even if that view be gond the allinity cannot be very near. Their supposed alliance to the Toncans (Rhamphastide) rests only on the apparent similarity presented by the enormous beak, and is contradicted by important structural characters. In many of their habits, so far as these are known, all Ilornbilis seem to be much alike, and t!ough the modification in the form of the beak, and the prescuce or absence of the extraordinary excresecnce, whence their name is

[^47]derived, causes great diversity of aspect among them, the possession of prominent eyelashes (not a common feature in Birds) produces a uniformity of expression which makes it impossible to mistake any member of the family. Hornbills are social birds, keeping in companjes, not to say focks, and living chiefly on fruits and seeds; but the bigger species also capture and devour a large number of snakes, :while the smaller are great destroyers of insects. The older writers say that they eat carrion, but further evidence to that effect is required before the statement can be believed. Almost every morsel of food that is picked up is tossed into the air, and then caught in the bill before it is swallowed. They breed in holes of trees, laying large white

Great Indat llombill (B. bicornis). After Tickell's drawmin $1 /$ the Zuofogical Soctety's library.
eggs, and when the hen begins to sit the cock plasters up the entrance with mud or clay, leaving only a small window through which ste receives the food he brings her during ber incarceration.

This remarkal,le halit, almost simultancously notiecd by Dr Sason in Burma, Tickell in India, and Livingstone in Africa, and sinco confirmed by other observers, espuccially Mr W'allace' in the Malay Archipelago, has been connected by Mir Bartlett (Proc. Vool. Soriety, 1869, p. 142) with a peculiarity as renarkable, which he was the first to notice. This is the fact that Hornbills at intervals of time, whether perindical ur irregular is not yet known, east tho epithelial layer of their gizard, that layer being formed liy a seeretion derived from the glands of the proventriculus or some other apher part of the alimentary canal. Tho opithelium is ejected in the form of a sack or bag, the mouth of which is
he du lares must hinder them from getting their fond with eace. The only corrabontuin hia purvertel view receives is afforded by the observell lhat Itombila, in captivity at any rate, never have any fat

 frem is as an phan lake a real horl."
elosely folded, and is filled with the fruit that the bird bas been cating. The announcement of a circumstance so extraordinary naturally caused some hesitation in its acceptance, but the essential truth of Mr Bartlett's observations has been sbundantly confirmed by Professor Flower (tom. cit., p. 150), and especially by Dr Murie (op. cit., 1874, p. 420), and what seems now to be most wanted is to know whether these castings are really intended to form the hen bird's food during her continement.
(A. N.) 1

HORN-BOOK, a name sometimes given to an elementary treatise on any subject. It was originally applied to a sheet contaning the letters of the alphabet, which formed a primer for the use of children. It was mounted on wood and protected with transparent horn. Sometimes tho leaf was simply pasted against the slice of horn. The wooden frame had a handle, and it was usually lung at the child's girdle. The sheet, which in ancient times was of vellum and latterly of paper, contained first a large cross-the criss-crossefrom which the horn-book was called the Christ Cross Row, or criss-cross-row. The alphabet in large and small letters followed. The vowels then formed a line, and their combinations with the consonants were given in a tabular form. The usual exoreism-" in the name of the Father and of the Sonne and of the Holy Ghost, Amen "-followed, then the Lord's Prayer, the whole concluding with the Roman numerals. The horn-book is mentioned in Shakespeare's Love's Labour's Lost, $\nabla .1$, where the ba, the a, e, i, o, u, and the horn, are alluded to by Moth. It is also described by Ben Jonson-

> "The letters may be read, through the horn, 'That make tho story perfect."

Horn-books are now of great rarity. A representation of a goud specimen will be found prefixed to Halliwell's Notices of Fugitive Tracts, in the twenty-ninth volume of the worke printed for the Percy Society.

HORNCASTLE, a market-town giviug its name to a soke in Lincolnshire, England, is situated at the foot of a line of low hills called tho Wolds, on an angle formed by the confluence of the Bain and Waring, and at the terminus of a brauch Jine of the Great Northern Railway, 21 miles east of Lincoln. The principal buildings are the parish church of St Mary's (supposed to have been originally erected in the time of Henry VII., porsessing a square embattled tower, many fine old monuments, and an old brass), Queen Flizabeth's grammar school founded in 1562 , the dispensary opened in 1789, the corn exchange opened in 1856, with a room for public meetings, and accommodation for the mechanies' institute, a library; and a news-room. There are also national and Wesleyan sehools, and an infant schooi for poor chilhlren. Among the charitics is one for apprenticing orphan boys belonging to the purish. A few fragmenta still remain of the ancient fortifiention from which the town takes its name, and many lioman urns and coins have been discovered in the vicinity. Near the contluence of the rivers there at one time existed an ancient labyrinth called the Julian bower. To the southeast of the town there is a sut called IIangman's Corner, where erminals were formerly executed. The prosperity of the town is chielly dependent on agriculture and its horse fairs, - that held in August being the largest of its class in England. Drewing, malting, and eurrying are carried on, and there is some trade in cmal and irom. The populathen of the parish in 1871 was 4917 , r.ud of the soke 10,469 .
Horneastle is budievel to be the Roman Rem:onallum. The
 fortifind aul stromsi.and ly Horsa, the brother al Hengest, but shontly alterwards demolished by Vortimer, king of the Britmo. Themanor ret the tine of the Norman survey belonged to the king, and ofter loging for an untanty priod in private hands, was solf in the reigno of Ilenry 111 . th the bishop of Carlisle, who rwefived from In orry a churter anthorizing hime to try foloms and hold a cours bata and grantiog free warlen mad an nemal fair.

HORNE, George (1730-1792), bishop of Norwich, was born on Norember 1, 1730, at-Otham near Maidstone, whcre his father was a clergyman, and received his early education at the Maidstone school, whence he procceded to University College, Oxford. In 1749 he became a fellow of Magdalen College, of which in 1768 be was appointed president. As a preacher be ear!y attained great popularity; and his reputation was further helped by several clever if somewhat wrong hcaded publications, including a satirical panyblet entitled The Theology and Philosophy of Cicero's Somaizm Scipionis (1751), a defcace of the Hutchinsonians in A Fair, Candid, and Impartial Stute of the Case between Sir Isaac Newton and Mr Hutchnson (1753), and critiques upon Dr Shuckford (1754) and Dr Kennicott (1760). In 1776 be published his well-known Commentary on the Book of Psalms, and in the same year be was chosen vice-chancelior of his university; in 1781 be was made dean of Clanterbury, and in 1790 he was raised to the see of Norwich, which, Lowever, he beld for less than two years. He died at Bath January 17, 1792 .
His collected Works were first published, with a Memoir by one of his chaplains (Jones), in 1795. There have been sceveral subsequent edtions, the latest being that of 1830 . The most popular and also the best of his writings, the Commentary on thc Psalms, has been still more frequently reprinted, oceasionally along with an essay by James Montgomery, or with a mucla more remarkable discourse ly Edward Irving.
horne, Thomas Hartwell (1780-1862), a wellknewn writer on Biblical introduction, was bern in London on October 20, 1780, and from 1789-95 was educated at Christ'a Hospital, where Coleridge was an elder contemporary. On leaving scheol, his circumstances not permitting him to proceed to the university, he became clerk to a barrister, but early manifested an unconquerable passion for literary pursuits. When barely twenty years of age he published (1800) A Brief View of the Necessity and Truth of the Christian Revelation, which reached a second edition in 1802. In the yoars immediately following he becane the author of several minor werks, and in 1814, having been appointed librarian of the Surrey Institution, he issued his Introduction to the Study of Bibliography. This was followed in 1818 by the werk to which he had devoted the best part of many years, the Introduction to the Critical Study of the Holy Scriptures, which rapidly attained a rare popularity, and securcd for its author a bigh and secure place among contemperary scholars. In 1819 be received ordination from the bishop of London, although unpossessed of the customary university degrce, and some time afterwards ho was appointed to the cure of the united parishes of St Edmund the King and St Nicolas Acons io Londen. On the breaking up of the Surrey Institution in 1823, he was appointed (1824) to superintend the classification and publication of the British Muscum Catalogne. After the project of making a classed cataloguc had been abandoned, he continuied to take part in the preparation of the alphabetical catalogue, and his conncxion with the museum continued to subsist until 1861, when his infirmities caused him to resign. He died in London on January 26, 186z.

Besides tho works alrendy mentioned Iornc wrote numerons uthers of seeondary importance, which, as catalogued in Allibone's Dictionary by himself, exceed forty in number. The Introciection, edited by Ayre and Tregciles, reached a 12 th cdition in 1869 (4 yols. svo) ; but, owing to the recent rapid advances of critical science, it is now sonewhat out of date.

HORNELLSVILLE, a township and post village of Steuben county, New York, is situated on the Canisto river and on the Erie Railway, 90 miles soulh-east of Buffalo. It is well supplied with schools and churches, and pessesses planing-mills, tanucries, and factorics for casties and blinds, formiture, ears, nowing-machines, and
boots and shoes. The population was 5639 in 1870 , and 9852 in 1880.

HORNER, Francis (1778-1817), political ecnnomist, was born at Ediaburgh, August 12th, 1778. Aiter passing through the usual courses at the high school and university of lis native city, he devoted five ycars, the first twe in England, to comprehensive but desultory study, aud in 1800 was called to the Scotch bar. Desirous, bowever, of a wider sphere, Horner removed to Loudon in 1802, and occopied the interval that elapsed before his admission to the English bar in 1807 with researches in law, philosophy, and pelitical econony, and latterly with parliamentary duties. In Fcbruary 1806 he became one of the cemmissieners fer adjnsting the claims against the nawab of Arcet, and in November entered parliament as member for St Ives. Next year be sat fer Wendover, and in 1812 for St Mawes, in the patreatege of the marquis of Buckingham. In 1811, when Lord Grenville was organizing a prospective ministry, Horner bad the offer, which be refused, of a treasury secretaryship. Ho had resolved not to accept office till he could afford to live out of office; and his professional income, on which he depended, was at no time preportienate to his abilities. . His labours at last began to tell upon a constitution never robust, and in Octeber 1816 his physicians ordered him to Italy; where, however, he sank under his malady. He died at Pisa, February 8, 1817. He was buried at Leghorn, and a marble statue by Chantrey was erected to bis memory in Westminster Abbey.

Without the advantagcs of rank, or wealth, or even of genius, Francis Horner rese to a bigh position of public influence and private esteem. The speeches in the House of Commons on the occasion of moring for a new writ for St Mawes combine with the letters of private friends in testifying to the respect and bonour conmanded by his iategrity and wide and cultured iatellect, and to the affection won by his sweet and noble disposition, as weli as to the general regret fer the untimely death of one ato gave promise of such abilities as a statesman. The eariy fricud of Brougham and Jcffrey in Edinburgh, and welcomed in London by Remilly, Mackintosh, Abercrombs, and Lord Holland, Herner was by sincere cenviction a Whig. His special ficld was political economy. Master of that subject, and excrcising a sert of mocal as well as intellectral influence over the House of Commens, he, by his nervous and earucst rather than elequent style of speaking, could $6 x$ its attention for hours on such dry tepics as finance, and coinage, and currency. As chairman of the parliamentary committeo for investigating tho depreciation of bank notes, for which he meved in 1810, he extended and confirmed his fame as a political economist by his share in the fameus bullion Report. It was chiefly through his cfforts that the paper-issue of the English banks was checked, and geld and silver reinstated in thcir true position as circulating media; and his viens on free trade and commerce lave been generally accepted at their really high ralue. Horner was one of the prometers of the Eilinhurgh Review in 1803. His articles in tho carly numbers of that publication, chicfly on political economy, ferm bis only literary legacy.
M.moirs and Correspondence of Fransis Morner, M.P., was published hy his brother in 1813 . Seo aloo the Edinburgh and Quarterly Revews for the same year ; ant Blactowod's Magazine, vol. i.

honner. See Wasp.

HORNPIPE was originally the name of an instrument ne longer in existence, and is now nsed for an English national dance. The sailor's lurnpipe, although the most cem. mon, is by no means the only furm of the dance, for there is a pretty tune known as the "Cellege Moropipe," and other specimens of a siunilar kiod might ve cited. The
composition of hornpipes Alourisled chicfly in the last century, and even Handel did vot disdain to use the characteristic rhythm. The hornpipe may be written in $\frac{3}{2}$ or in common time, and is always of a lively nature.
horrocks, Jeremah (1619-1641), an astronomer of estraordinary promise blighted by a premature. death, was born in 1619 at Tosteth Park, near Liverpool. Of the circumstauces of his family little is known, further than that they were poor; but the register of Emmanuel College, Cambridge, testifies to his entry as sizar, May 18 , 1632. Isolated in his scieutific tastes, and painfully straitened in means, he pursued amid innumerahle dificulties his purpose of self-education. His university career lasted threo years, and on his return to Lancashire he deroted to astronomical obseryations the briof intervals of leisure snatched from the fiarassing occupations of a laborious life. In 1636 he niet with a congenial spirit in William Crabtree, a draper of Broughton, near Manchester; and encouraged by his advice he exchanged the guidance of Lansberg, a pretentious but inaccurate Belgian astronomer, for that of Kepler. - He now set himself to the revision of the Rudolphine Tables (published by Kepler in 1627), and in the progress of his task became convinced that a transit of Veuus overlooked by Kopler would nevertheless occur on the 24 th of November (O.S.) 1639. He was at this time curate of Hoole, near Preston, having recently taken orders in the Church of England, although, according to the received accounts, he had not attained the canonical age. The 24th of November falling on a Sunday, his clerical duties threatened fatally to clash with his astronomical observations; ho was, however, relensed just in time to witness the punctual verification of his forecast, and carefully noted the progress of the phenomenon during half an hour before sunset (3.15 to 3.45). This transit of Venus is remarkable as the first ever observed, that of 1631 predicted by Kepler having been invisible in Euripe. Notwithstanding the rude character of the apparatus at his disposal, Horrocks was cuabled by his observation of it to iutroduce some important corrections into the elements of the planet's orbit, and to reduce to its exact value tho received estimato of its apparent diameter,

After a year spent at Hoole, he returncd to Tosteth, and there, on the eve of a long-promised vist to his friend Craltrec, unexpectedly expired, January 3,1641 , in the twenty-second year of his age. It is difficult to overestimate the services which, had his life been prolonged, this singulnrly gifted youth might have rendered to astronomical science. To the invertive activity of the discoveret he already united the patient skill of the observer and the practical sagacity of the experimentalist. Before be was twenty he had afforded a specimen of his powers by an important contribution to the lunar theory. Hc first brought the revolutions of our satellite within the domain of Kepler's laws, pointing out that her apparent irregularities could be completely accounted for by supposing her to move in an ellipse with a variable eccentricity and directly rotatory major asis, of which the earth occupied one focus. These precise conditions were afterwards demonstrated by Nenton to follow necessarily from the law of gravitation.
In his speculations as to the physical cause of the celestial motions, his mind, though not as yet wholly emancipated from the tyranny of gratuitous assumptions, was working steadily towards the light. He clearly ycrceived the significant analogy between terrestrial gravity and the force exerted in the solar system, and used an ingenious experiment to illustrate the composite character of the planetary movements. He also reduced the solar parallas to $1 t^{\prime \prime}$ (less than a quarter of Kepler's estimate), corrected the sun's semi-diameter to $15^{\prime} 45^{\prime \prime}$, recommended decimal notation, and was the first to make tidal observations.

Only a remnant of the payers left by Horrocks was preserved by the eare of William Crabtree. After his cleath (which occured soois after that of his friend), these were purchased by Dr Worthington, of Cambridge; and from his hands the treatise tenus on sole visa passed into those of llevelus, and tas published by him in 1662 with his own observations on a transit of Mercury. The remaining fragments were, ander the directious of the Foyal Society, reduced by Dr Wiallis to a compaet form, with the heading Astronomia kipleriana defensa ct promota, aud published with numerous extracts from the letters of Itorrocks to Crabtree, in a volume entitled Jcremice Morrorii Opera Posthuma, London, 167s. A memoir ol his life by the Rev. Aruntell Blownt Whatton, prefixed to a translation of the bicuus in sole msa, appeared at London in 1859.

H 0 R S E

part I-ZOOLOGY and anatomy.

Zool.ogy.

ThIIE horse and its near allics, the several species of asses

1and zebras, constitute the genus Equus of Linnawas, a small group of animals of the class Mammetia, so distiant in their organization from all other existing members of the class that in inany of the older zoological systeus they were placed in an order apart, under the name of Solidungula or Monodacylta.

Investigations in complaritive amatomy bave, however, denonstrated that their structure, at first sight so singular and exceptional, is really but a modification of the same general plan upon which the tupirs and rhinoceroses are formed, and the discovery and resturation of the characters of extinct species, inaugurated by Cuvier luring his fruitful researches into the faum of the Paxis banin, continued in varions Earopean localities by Kanp, liutinayer, Gorvais, Ganilry, IIusley, and others, and recently combucted on a more anmos scale in the probific fossilifermes strata of North Americia by Leidy, Marsh, aml Cope, have revealed numerous internediate stages through which the existing horase apyear to have patised in their modifiention from a very diferent ancestral form.
The ciani beet unlerstaud what a horse really is if we first
consider its origin and lineage; and this wo are in a better position to do than with almost any otlicr animal, as it is one of the few whose history (if the evidence aflorded by 1macoutology can be relied upon) can be traced back through an almost unbotoken clain of links as far as the earliest Tertiary age.
We have as yet no cogmizance of the histery of any manmals of the group to which the horse helenss hefure the dawn of the Eocene perim. Of where they lived and what they were like, from what carlier foms and hy whan stages of modifications descended, our actual knowlefige a: an absolute blank. Conjecture helps us but little, ant why none of their remains have not ere this been disentered is a palteontological mystery. We have, huwever, certaiu knowledge that when the lime which formed the bottom of the great cretaceous occan which flowed overa consideralile fart of the present continents of Europe and North America was lifted above the level of the water and becane fitted for the hathitation of terrestrial amimals, it was very soon the abode of vast numbers of hertiverous mamals behonging to the group now called linguluta or "hoofed animals." Wherever they came from, they lade existed suficiently long to have becoule already comiltely diffrentiated into two
principal forms, separated from, each other by many distinct points in their organization, among which one of the most externally conspicuows was the structure of their feet. From this character the one form bas received the name of Artiodactyla or "even-tocd," the other Perissodactyla or "odd-toed." It is only of the latter that we shall bave to speak in this article.
Perhaps the best notion of a perissodactyle ungulate of the Eocene age can be derived from tle tapir of the present day, an animal which has changed less from the primitive and generalized type of the group of that time than any other existing member of the order. Tiese early forms had all the complete number of teeth found in so many of the mammals of that period of various orders, arranged aceording to the well-known formula-incisor's $\frac{3}{3}$, canines $\frac{1}{1}$, premolars $\frac{4}{4}$, molars $\frac{3}{3}=\frac{11}{11}$ on each side, or 44 in all. The molar teeth had very short square erowns, with transverse or oblique ridges on the grinding surface. In the fore limbs the radins and ulua, and in the hind limbs the tibia and fibula, were distinct and well-developed bones. Whatever the number of toes on each foot, the one corresponding tothe middle or third digit of the generalized pentadactyle limb was the longest ; its ungual phalanx was symmetrical in itself, and it formed the centre of the foot, on each side of which the other toes were arranged in complete or partial symmetry according to the stage of development. In the hind fuot in all known eases the symmetry was complete, only one toe on each side of the middle digit being present (fig. 3, c): but in the fore foot the primitive symmetry, formed by the presence of two toes on each side of the middle toe, had been lost in nearly all, by the disappearance of one of the outer toes (the first), the condition still retained by the tapirs (fig. 3, a); or it had been replaced by the second stage of symmetry, in which both outer toes are absent, and only three remain, as in the modern rhinoceros (fig. 3, c). By no animal of this period had the third, or most highly specialized stage of symmetry, that which, as we shall see, characterizes tho modern horses (fig. 3, e), been attained.

By various and gradually progressing deviations from the cummon original type, these animals began at a very early period to break up into several groups, some of whieh (ns Macrauchenia), after undergoing a considerable degree of specialization, have become extinct without leaving auccessors; but three of these modified types, already distinct at the close of tho Eocene period, have continued up to the present day, gradually, as time advanced, becoming more and more divergent from each other. These are now represented by the three families of the rhinoceroses, tho tapirs, and the horses. Great as may be the differences between these animals as we see them now, we can trace their history step by step, as revealed by the fragments preserved from former nges, further and further back in time, their differences continually becoming less marked, and ultimately blending together, if not into ono common oncestor, at all events into forms so closely alike in all essentials that no reasonable doubt ean be held as to their coumon origin.

Leaving out of further consideration the two collsteral branches, it will be our purpose now to follow the history of thr special subject of this article.

The remains of the earliest known animals to which it is possible to trace back the modern horse by a series of suecessive modifications are found in the lowest strata of the great lacustrine formations assigned to the Eocene period, spread over considerable portions of the present territories of New Mesico, Wyoming, and Utah in North America. That similar animals may have existed in other parts of the world is extremely probable. Negative evidence in snch eases is of little value, as may be judged by the fact that it is only within a very few years that tho
existence of these deposits teeming with fossil remains of previously unsuspected forms has been brought to light, and their systematic exploration has searcely yet commenced. A little animal, not larger than a fox, Eohippus of Marsb, presented the most generalized form of the perissodactylo type as yet discovered, as besides the four well-developed toes of the fore foot, found in so many others, it had at least a rudiment of a fifth. All analogy leads to the supposition that this must in its turn have been represented at a still earlier period by another form with all five toes complete, but direct evidence of this is at present wanting.

The transition from this horse-like animal of the early period to the horses of modern times has been accompanied by a gradual increase in size. The diminutive Eocene Eohippus and Orohippus were succeeded in the Miocene period by other forms to which the names of Anchitherium and Miohippus have been given, of the size of sheep; these again in Pliocene times by Hippraion and Pliohippus, as large as the modern donkeys ; and it is only in the Pleistocene perion that Equide eppeared which approached in size the existing horse., Important structural modifications have also taken place, with corresponding ehanges in the mode of life of the animal. The neck has become elongated, the skull altered in form, the teeth greatly moditied, and the limbs have undergone remarkable changes. The last two require to be described more in detail.

The teeth in the Eocene forms had, as mentioned above, the characteristic number of forty-four. This number has been retained throughout the series, at least theoretically; but one tooth on each side of each jaw, the anterior premolar, which in all the Eocene and Miocene species was a well-developed tooth, persisting through the life time of the animal, is in all modern horses rudimentary, functionless, and generally lost at an early period of life, evidently passing through a stage which must soon lead to its complete disappearance. The canines have slso greatly diminished in size, and are rarely present in the female sex, so that practically a very large number of adult horses of the present day have eight teeth less than the number possessed by their predecessors. The diastema or interval between the incisor and premolar teeth, of essentisl importance in the domesticated horse to his master, as without it there eould be no room for inserting the special instrument of subjugation to his commends, the bit, already existed in the earliest known forms, but has gradually iucreased in length. The incisors have undergone in comparatively recent times that curious change producing the structure which will be more fully described herenfter, and which distinguishes the horse's incisors from those, of all other known animals. Lastly, the molars bave undergone a remarkable series of modifieations, much resembling in principle those that have taken placo in several other groups of herbivorous animals. Distinetions in form which existed between the premolars, at least the anterior members of tho series, and the true molars have gradually disappeared, the teeth beeoming all pery uniform in the shape and structure of their grinding surface. The crowns of all these teeth in the carly forms were very short(see fig. 2, a); there was a distinct eonstriction, the neck, between the erown and roots; and when the tooth ras developing, as soon as the neek noee rose fairly above the alveclar margin, the tooth remainet permanently in this position. T'be tern "brachyorlont" expresses this condition of teeth, the mode of growth of which may be illustrated ly those of man. The free surface had two nearly transverse eurved ridges, with valleys between (fig. 2,a); but the ralleys were shallow and had no deposit of cementum filling them, the whole exposed surface of the unworn tooth beiog formed of cnamel. When the ridges became worndown the dentine of the interior was exposed, forming islands surrounded ly cnamel. With the progress of timo
the crowss of the tecth gradualiy become longer, the valleys deeper, and the ridges not only more elerated but more curved and comples in arrangement. To give support to these bigh ridges and save them from breaking in use, the Falleys or cavities between them becamc filled up to the top with cementum, and as the crown wore down an admirable grinding surface consisting of patches and islaads of the two

Fio. 1.-a. Ginding sultace of unvort molay tooth of Anchithernam; b, corresponding surface of unworn molar of young horse; c, the same tooth after it has been some time in use. The uncoloured portions are the dentine or fvory, the shaded parts the cenentum filling the cavities and surrounding the exterior. The black line separating these two atructures is the enamel of bardest constifuent of the tooth
softer substances, dentine and cement, separated by varionsly reduplicated and contorted lines of intensely hard enamel, resulted (fig. 2, c). The crown continued lengthening until in the modern horses it has assumed the form called "bypsidont" (fig. $2, b$). Instead of enntracting into a neck, and forming roots, its sides continue parallel for a considerable depth in the socket, and as the surface wears away, the whole tooth slowly pushes up, and maintains the grinding edge constantly at the same level above the alveolus, mach as in the perpotually growing rodent's tecth. But in existing borses there is still a limit to the growth of the molar. After a length is attained rhich in normal conditions supplies sufficient grinding surface for the lifetime of the animal, a seek and roots are formed, and the tooth is reduced to the condition of Fio. 2.-a. Side view of second uper that of the brachyodont an- molar toolh of Anchitherimm (brachyocestor It is perfectly cler dont form): b. enfrespooding tooth of estor. It is perfectly clear

も
that this lengthening of the crown adds greatly to the power of the teeth as organs of mastication, and enables the animals in which it has taken placo to find their sastenance among the comparatively dry and harsh herbago of tho open plains, instead of bcing limited to the more succulent regetable productions of the marshes and forests in which their predecessors mainly dwelt.

The modifications of the limbs which took place pari passue with these of the teeth must havo been associated with increased speed, especially over firm nad unyielding gromd. Short, stout logs, and broad fect, with numerous tocs, spreading apart from each other when the weight of the creature is berne on them, are sufliciently well adapted for plodding deliberately over marshy and yielding surfaces, and the tapirs and the rhinoccroses, which in the structure of the limbs have altered but little from the primitive Encene forms, still haunt the borlers of streams and lakes and the shady depths of tho forests, as was probably the tabit of their ancient representatives, while the horses aro all inhabitants of the open plains, for life upon which their Whole organization is in the most eminent degree adapted. The length and mobility of the neek, position of the cye and ear, and great development of tho organ of socell, give them anple means of beconing aware of the apyruach of enemies, whate the length of their limbe, the angles the
different segments form with each other, and especially the combination of firmness, stability, and lightness in the reductien of all the tocs to a single onc, upon which the whole reight of the body and all the muscular power are concentrated, give them speed and endurance surpassigg that of almost any other anmal. When sh.prised, however, they are by no means helpless, both fore and Liad feet beeoming at need powerful weapens of defence.

If we were not.so habituated to the sight of the horss as hardly ever to cousider its structure, we should greatly marvel at being told of a mammal so strangely constructed that it had but a single toe on each extremity, on the end of the nail of which it walked or galloped. Such a formation is without a parallel in the vertebrate series, and is one of the most remarkable instances of specialization, or deviation from the usual type, in accordance with special conditions of life. It can be demonstrated, both by the structare of the foot itself, and alse by an examination of the intermediate forms, that this toe corresponds to the middle or third of the complete typical or pentadactyle foot, the "ring finger" of man; and there is very strong evidence to show that by a gradual concentration of all the power of the limb upon this toe, and the concument dwindling away and final disappearance of all the others, the preseat condition of the horse's foot has been prodaced.

The small borse-like animals of the Eocene period with four, or rudiments at least of five, toes on the fore foot bave been elready mentioned. In the early Miocene period: the animal most like an existing horse was the Anchitherium, the remains of which are found in a fossil state both in Europe and in America. In this genus there were three well developed toes reaching the ground on each foot, and

Fio. 3.-Succesmive stages of modifleation of the feet of exllinet forms of horse-like ooimals (ohlefly from slarsh, showing gradual reduction of the outer and enlargement of the mblute tou (11t). a, Orohinpus (Encene); b, sesohippus (Early Mlocenc); as Biohtpput and Anchitherturn (Late Mioceac); d /hppa. rion and Plohippus (1'lucene): e, Eyuus (Pletstocene).
the radius and ulna, and the tibia and fibula of the hind leg, were completc and distinct. This was succeeded on the Earopean and Asiatic continent by IIipparion and in America by Pliohippus, perbaps more directly in the line of descent, as Mipparion has some special characters of its own ia the tecth and skull, which make it probable that it is a collateral branch which became extinct without leaving desecndants. In these and other forms which fourished at this period, tho lateral tocs, though containing the full namber of benes, were much rednced in size, and did not reaeb the ground, but were suspendel to the outside of and rather behind the large middle one, like the rudimentary outer toes of the deer, or the short first digit ("dew-elaw ') of the dog. Herses, or rather horse-like creatures, with this structure of fect were no louger met with in tho Pleistocene period, but then for tho first time appeared tho true horse in its development caactly or very nearly as we know it now. The onter toes were redeced to rudiments of the metacarpala or metatarsals only, the so-called "splint bones" entiroly concealed benrath the skin (fig. $3, e$, 11. and iv.), the middlo
toe (ini.) greatly etongated, and with its ungual phatinx and hoof expanded, and the stability of the forearm and leg increased by the complete subordination of the uhna and fibula to the larger bones, the radius and tibia, which alone are concerned in the formation of the wrist and ankle joint.

Fossil remains of true horses, differing but very slightly from the smaller and inferior breeds of those now existing, are found abundantly in deposits of the most recent geological age, in almost every part of America, from Esebolz Bay in the north to Patagonia in the south. In that centinent, however, they became quite extinet, and no horses, either wild or domesticated, existed there at the time of the Spanish conquest, which is the more remarkable as, when introduced from Europe, the horses that ran wild proved by their rapid multiplication in the plains of Suuth America and Texas that the climate, food, and other circumstances were highly favourable for their existence. The former great abundance of Equidee in America, their complete extinction, and their perfoet acelimatization when reintroduced by man, form curious but as yet unsolved problems in geographical distribution.

The existing species of the genus Equus are the follow-ing:-

- (1.) The Horse, Equus cuballus, Linn is distinguished from the others by the long hairs of the tail being mure abundant and growing quite from the base as well as the end and sides, and also by possessing a small bare cilllosity on the inner side of the bind log, just below the "hock" or heel joint, in addition to the one on the inner side of the forearm above the carpus, common to all the genus. The mane is also longer and more flowing, and the ears shorter, the limbs longer, and the head smaller.

Though the_existing horses are usually not marked in any definite manner, or only irregularly dappled, or spetted with light surronnded by a darker ring, many examples aro met with showing a dark median dorsal streak like that found in all the other members of the genus, and even with dark stripes on the shoulders and legs indicating "the probability of the descent of all the existing races from a single dun-coloured, more or less stripen, primitive stock, to which our horses still occasionslly revert." ${ }^{1}$

In Europe wild horses were extremely abundant in the Neolithic or pelished-stone peried. Julging from the quantity of their remains found associated with those of the men of that time, the chase of these animals must have been among his chief oceupations, and they must have furnished him with one of his most important food supplies. The characters of the bones preserved, and certain rude but graphic representations carved on bones or reindecrs' antlers, enable us to know that they were rather small in size, and heavy in build, with large heads and rough shaggy manes and tails, much like, in fact, the present wild borses of the steppes of the south of Russia. These horses were domesticated by the inhabitants of Europe before the dawn of history, but it is doubtfn! whether the majerity of the animals now existing on the Continent are derived directly from them, asoit is mere probable that they are descendants from horses imported though Grecce and Italy from Asia, derived from a still earlier domestication, followed by gradual improvement through lonecontimed attention bestowed on their breediug and training. Horses are now diffused by the agency of man throughout almost the whole of the inbabited parts of the glowe, and tho great modifications they have undergene in consequence of clumestication and selective breeding are well cxemplified by comparing such extreme forms as the SLetland pony, dwarfed by uncongenial climate, the thoroughbred racer, nud the London dray-horse. In Australia, as in America,

[^48]horses impurted oy the European settlers lave escaped into the unreclaimed lands, and multiplied to a prodigious extent, roaming in vast herds over the plains where no hoofed animal cver trod before.
(2.) L'fuus usinus, Linn.-The Domestic Ass is nearly as widely diffused and useful to man as tho horse. It was known in Egypt long before the horse, and is provably of Afriean origin, indecd its close resemblance to the existing wild ass of Abyssinia, E. teniopes, Meuglin, leaves littlo doubt as to its identity with that species.
(3.) The Asiatic Wild Asses, which roam in small herds in the open plains of Syria, of many parts of Persia, of the north-west of India, and the highlands of Tartary and Tiket from the shores of the Caspian to the froutiers of China, differ from the last in being of a mure rufous or isabelline colour, instcad of pure grey, in wanting the dark streak across the shoulder, and having smaller cars. They have all a dark-celoured median dursal stripe. Though it is considered probable by many zoologists that they form but a single species (E. hemionus, Pallas), they present such marked variations in size and form that they have commonly been divided into three-the Syrian Wild Ass (E. hemippus, Geoff.), the Onager (E. onager, Pall.) from Persia, the P'unjab, Scinde and the desert of Cutch, and the Kiang or Dzeggetai (E. lemionzs, Pallas) of the high table-lands of Tibet, where it is usually mei with at an elevation of 15,000 feet and upwards above the sea-level. The last is considerably larger than cither of the others, and differs from them in external appearance, having more the aspect of the horse. They are all remarkably swift, having been knewn to outstrip the Hectest horse in speed.

Lastly, there are three striped species, all inhabitants of Sonth Africa. These constitnte the genns Hippotigris of Hamilten Snith, but they are not separable exeept by their coloration from the true asses, and one of them (4), the Quagga (E. quagga, Gmel.), may be considcred as intermediate. This animal has the dark stripes limited to the head, neek, and shoulders, upon a brown ground. In (5) the Dauw or Burebell's Zebra (E. burchellii, Gray), the gronnd colour is white, and the stripes cover the body and upper part of the limbs. This is the commonest species in the great plains of Sonth Africa, where it roams in large berds, often in company with the quagga and numerous species of antelope. It ranges from the Orange River to the confincs of Abyssinia In (6) the Mountain Zebra (E. zcbra, Linn.) the contrast between the clear white of the ground and the black of the stripes is most marked, and the latter extend quite down to the hoofs. This is, consequently, the most beautifnl species of the group as regards colour, if the horse may bear the palm in clegance of form. It frequents mountainous districts rather than the open plains which are the dwelling-places of the other two species, and as it appears to be limited to the sonthern portion of the continent, within the confines of the Cape Colony, its numbers are rapidly diminishing under the cocroacliments of Enropean civilization.

There are thus at least six modifications of the borse type at present existing, sufliciently distinet to be reckoned as species by all zoolegists, and easily recognized by their external characters. They are, however, all sucloscly allied that each will, at least in a statc of dumestication or eaptivity, breed with perfect freedom with any of the others. Cases of fertile union are recorded between the horse and the quagga, the horse and the dauw or Burchell's zebra, the horse and the hemionus or Asiatic wild ass, the common ass and the zebra, the common ass and the dauw, the common ass and the bemionus, the hemionus and the zebra, and the hemionus and the dauw. Tbe two species which are perhaps the farthest removed in general structure, the horse and the ass, produce, as is well kuown, hybrids of
mules, which in some qualities useful to man eseel both their progenitors, and in some countries and for certain kinds of work are in greater requisition than either. Alt hough oceasional instances have been reeorded of iemale mules breeding with the males of one or other of the pure species, it is doubtru! if any case has occurred of their breeding inter se, although the opportunities of doing so must have been great, as mules have been reared in ins. mense numbers for at least several thousands of years. We may therefore consider it settled that the different species of the group are now in that degree of plysiological differentiation which enables them to produce offspring with eacb other, but does not permit of the progeny continuing the race, at all events untess reinforeed by the aid of one of the pure forms.

The several members of the groun show mental differences quite as striking as thọse exhibited by their external form, and more than perhaps might be expected from the similarity of their cerebral organization. The patience of the ass, the high spirit of the horse, the obstinacy of the mule, have long been proverbial. It is very remarkabls that, out of so many species, two only should have shown any.aptitude for domestication, and that these two should have been from time immemorial the naiversal and most useful companions and servants of man, while all the others remain in their native freedom to this day. It is, however, still a question whether this really arises from a different mental constitution eausing a natural capacity for entering into relations mith man, or whether it may not be owing to their having been breught gradually into this condition by long continued and persevering efforts when the need of their services was keenly folt. It is quite possible that one reason why most of the attempts to add new species to the list of our domestic animals in modern times have ended in failure is that it does not answer to do so in cases in whieh existing species supply all the principal purposes to which the new ones might be put. It ean hardly be expected that zebras and quaggas fresh from their native mountains and plains can be brought into competition as beasts of burden and dranght with borses and asses, whose naturally useful qualities hare been augmented by the training of thousands of generations of progenitors.-

Not unfrequently instances occur of domestic horses being produced with a small additional toe with complete hoof, usually on the inside of the principal toc, and, though far more rarely, three or more toes may be present. These malformations are often cited as instances of reversion to the condition of some of the earlier forms of equine animals previously meetioned. Such explanations, however plausible they appear at first sight, are nevertheless very doubtful. All the feet of polydactyle horses which we bave examined boar little resemblance to those of the extinct Hipparion or Anchitherium, but look rather as ii due to that tendency to reduplieation of parts whieh oeeurs so frequently as a teratologieal condition, especially amons domestic animals, and which, whatevor its origin, certainly cannot in many instanees, as the cases of entire limbs superadded, or of six digits in nan, be attributed to reversion.

Anatomy.

The anatomical structnre of the horse las been deseribed ingerat detail in several works devoted to the subject, which will he mentioned in the Libliography, though these laze gancrally been written from the point of view of the veterimarian rathar than of the comprative anatomist. The linits of the present article will only admit of the most salient points lacing indicated, particularly those in which the horan insers from the other Ungulate. Inveway utherwise sperified, it must be understood that all that is stated
here, althnugh mostly derived from noservation upon the horse, applies equally well to the other existing members of the group.

Skeleton.-The skult as a whole is greatly elongated, chiefly in consequence of the immense size of the face as compared with the hinder or true cranial portion. The basal line of the cranium fron the lower border of the foramen nagnum to the incisor border of the palate is rery nearly straight. The orbit, of nearly eireular form, thungh small in Proportion to the size of the whole skull, is distinctly marted, being completely surrounded by a strong ring of bone with prominent edges. Behind it, and freely communicating with it beneath the osseous bridge (the post-orbital process of the frontal) forming the boundary bet ween thenn, is the small temporal fossa ocenpying the whole of the side of the eranium proper, and in front is the great flattened expanse of the "cheek," formed chiefly by the superior masilla, giving support to the long row of molar teeth, and having a promicent ridge running forward from below the orbit for the attachment of the masseter muscle. The laerymal occupies a considerable space on the flat surface of the cheek in front of the orbit, and belows it the malar does the same. The latter sends a horizontal or sigightly ascending process backwards below the orbit to join the

Fso. 4.- SIde view of skull of hntse, with the bnneremoved an as to expose we whole of the teeth. PMx, preinaxilla; M x, maxillu, Na, nasal bone ; M/a, malar bono: L. incrymalbone; Fr, frontal bonc: Sq, squamosal bone : Pa, paldetal bone : os,
 $e^{\text {e the canine tooth : }} \mathrm{pm}$. the situathon of tho rudimentary

under sarface of the zygomatic process of the squamosnl, which is remarkably large, and instead of ending as usmal behind the orbit, runs forwards to join the greatly developed post-orbital proeess of the frental, nnd even forms part of the posterior and inferior boundary of the orbit, an arrangement not met with in other mammals. The closure of the erbit bohind distinguishes the skull of the horse from that of its allies the rhinoeeros and tapir, and also ffom all of the perissodactyles of the Eocene period. In front of the cerebral cavity, tho great tubular nasal cavities are proviled with well-decelopel turbinal bones, and are roofed over by very large nasals, broad behind, and ending in front ly a narrow deenrved point. The opening of the anterior nares is prolonged backwarls on each sile of the face between the uasals and the elongated slender premaxille. The latter expand in front, and are curved downwards to form the semicitenlar alvedar berder which supports the large incisur teeth. Tho p^{3} ate is marrow in the interval betwen tho incisor and inolar teeth, in whieh are situuted the large andarior paletine foramina. Between the molar teeth it is
gronder, and it whts posteriorly in a rounded excavated burder opposite the hinder border of the penultimate molar is oth. It is mainly formerl by the maxilla, as the palatines 3re very narrow. The pterygoids are delicate slender slips of bone attescled to the hinder burder of the palatines, and supported externally by, and genewly ankylosed tos the rough pteryoid plates of the alisphenofl, with no ptergyoid iussa between. They slope very obliquely forwards, and end in curved, compressed, Lamular processes. There is, a distinet alisphencid canal for the passage of the internal maxillary artery. The base of the crammo is long and narrow; the alisphenoid is very obliquely perforated by the turamen rotundum, but the foramen ovale is confluent with the large lorameu Lacerum medium belind. The glenoirl surface for the articulation of the mandible is greatly exteaded transversely, concave from side to side, convex from before backwards in front, and hollow behind, and is bounded posteriorly at its iuner part by a prominent postslonoid process. The squamosal enters considerably into the formation of the temporal fossa, and, besides sending the zygomatic process forwards, it sends down behind the meatus auditorins a post-tympanie process which aids to hold in place the otherwise loose tympano-periotie bone. Behind this the exoccipital gives off a very long paroceipital process. The periotie and tympanie are ankylosed together, but not with the squamosal. The former has a wide but shallow Hoecular fossa on its inner site, and seuds backwards a considerable "pars mastoiden," which appears on the outer surface of the skull between the post-tympanic process of the syuamosal and the exoceipital. The tympauic forms a tubular meatus auditorius exterwus directed outwards and slightly backwards. It is not dilated into a distinet bulla, but euds in front in a pointed styliform process. It completely embraces the truncated eylindrical tympanohyab whieb is of great size, corresponding with the large development of the whole anterior arch of the hyoid. This consists milinly of a long and compressed stylohyal, expanded at the upper end, where it sends off a triangular posterior process. The basi-hyal is remarkable for the long, median, pininted, compressed "glossohyal" process, which it sends fiorward from its anterior border into the base of the tongue. A similar but less developed process is found in the rhinoceros and tapir. The mandible is largety developed, especially the region of the angle, which is expanded and flattened, giving great surface for the attachment of the masseter musele. The eondyle is greatly elevated ahove the nlveolar border; its articular surface 1s very wide transwersely, and narrow and convex irom before baekwards. The eoronoid process is slender, straight, and inelined backwards. The horizonmal ramus, long, straight, and compressed, gradually narrows towards the symplysis, where it expands laterally to form with the ankylosed opposite ramus the wide, semicircular, shallow alveolar border for the incisor teeth.

The vertebral column eonsists of seven cervical, eighteen hursal, six lumbar, five sacral, and fifteen to eighteen caudal vertebra. There may be nineteen rib-bearing vertebra, in which ease five only will be reckoned as belonging to the umbar series. The odontoid process of the atlas is wide, hat, and hollowed above, as in the ruminants. The bodies of the cervieal vertebre are elongated, strongly keelen, and markedly opisthocolous, or concave behind and conves in front. The neural laminæ are very broad, the spines almost ubsolete, except in the seventh, and the transverse processes now largely developed. In the trunk vertehrer the upistioncmelons character of the centrum gradually diminishes. The spinous processes of the anterior thoracie region are high and compressed. To these is attached the nowerful lastic ligament, ligamentum nucher, or "paxwax." which . -ssing forwards in the middle line of the neck abowe the 1:-
neural arehes of the cervical verteire, to whel it is also connected, is attached to the oeciput and supports the weight of the head. The transverse processes of the lunzar. vertebre are long, flattened, and project horizontally outwards or slightly forward from the arch. The metapophyses are moderately developed, and there are no anapophyses. I'be cuudal vertcbre, except those quite at the base, are slender and cylindrical, without processes and without chevron hones bencath. The ribs are eighteen on ${ }^{\circ}$ nineteen in mumber on each side, flattencd, and ubited to the stermum by short, stout, tolerably well ossified sternal ribs. The stemun cousists of six pieces; the anterior or prasternum is extremely compressed, and projeets forwards like the prow of a boat. The segments which follow gradually widen, and the hinder part of the sternum is broal and flat.

As in all other ungulates, there are no clavicles. The scapula is long and slender; the supra-scapular border is rounded, and slowly and impericetly ossified. The spine is very slightly developed; rather above the middle its edge is thickened and somewhat turned backwards, but it gradually subsides at the lower extremity without iorming any acromial process. The coracoid is a prominent rounded nodule. The homervs is stout and rather short. The uln: is quite rudimentary, being only represented by little more than the olecranon. The shaft gradunily tapers below and is firmly ankylosed to the radius. The latter bone is of nearly equal width thruughout. The three bones of the first row of the carpus (the scaphoid, lumar, and cunciform) are subequal in size. The seeond row consists of a very broad and that magnuns, supporting the great third metacarpal, liaving to its radial side the trapezoid, and to its ulnar side the unciform, which are both small, and articulate distally with the rudimentary second and fourth metacarpals. The pisifurm is large and prominent, flattoned, and eurved; it articulates partly with the cuneiform and partly with the lower end of the radius. The large metacarpal is called in veterinary anatomy "cannon bone"; the small lateral metacarpals, which gradually taper towards their lower extremities, and lie in elose contact with the large one, are called "splint boues." The single digit consists of a moderate-sized proximal (os suffraginis, or large pastern), a very short middle ($n s$ coronex, or small pastern), and a wide, semi-lunar, ungual phaianx (os pedis, or coffin bone). There is a pair of large nodular sesamoids behind the metacarpo-phalangenl articulation, and a single large transversely-extended sesamoid bebind the joint between the second and third phalans, called the " navicular bone."

The carpal joint, corresponding to the wrist of man, is commonly called the "knce" of the horse, the joint between the metacarpal and the first phalanx the "fetlock," tlat between the first and second phalanges the "pastern," and that between the second and third phalanges the "coffin joint."

In the hinder limb the femur is marked, as an all other known perissodactyles, by the presence of a "third trochanter," a tlattened process, chrving forwards, arising from the niter side of the bone, abont one-third of the distance from the upper end. The fibula is reduced to a mere styliform rudiment of the upper end. The lower part is absent or completely fosed with the tibia. The os calcis has a long and compressed ealcafeal process. The astragalus has a large flat articnlar surface in front for the davicular, and a very small one for the cuboid. The mavicular and the exteroal cunciform boncs are very broad and flat. The euboid is small, ant the internal and middle cm: :form bones are small and united together. The metapod: 's and phalinges resenble very elosely those of the fore linth. but the principal metatarsal is more laterally cumpessen! at its upper end than is the corresponding metacarpal.

The joint between the fenur and tibia, corresponding to the knee of man, is callerl the "stifle joint"; that betreen the tibia and tarsus, corresponding to the ankle of man, is called the "lock." The boncs and joints of the foat have the same names as in the fore limb. The horse is eminently "digitigrate," standing on the extremity of the single disit of cach fout, which is kept habitually in a position appraxhing to vertical.

The muscles of the limbs are modifiod from these of the ordinary mammaljan type in accordance with the reduced condition of the bones and the simple requirements of flexion and extension of the joints, no such actions as promation and supination, or opposition of digits, being possible or neerled. The muscles therefore which perform theso functions in other quarlruperls are absent or rudimentary.

Delow the carpal and tarsal joints, the fore and hind limus correspond almost exactly in structure as well as function. On the anterior or extensor surface of the limb a nowerful tenton (7 in fig. 5), that of the anterior catencor

Fia. S.-Section of font of horse. 1, metacminal initie: ?. Arst phatanx cos suftragians): 3. second phananx (os corones) 4, that or ungual fualanx (os pedis, or
 cuht boac; 7_{4} forminn of athenior extensor of the phatanges: 8 , iendon of Anperfictal flexor (f. perforafus); 6, lendun of deep flexwr (ft perforans); jo, susherisary lignment of fetlozk; 11, juferior or shout sesamoid ligathent: 12, derma or akin of the foot, covered will laar, and continuded into 13. tho

 cushifull of felinek.
of the fhalanges (corresponiting to the extensor communuis digiorum of the arm and estensor Congus digitorum of thic foo: of man) passes down over the metacarpal tone and thaianges, to be inserted mainly into tho upper enge of the autcrior surface of the last phalaux or pedal bene. Thero is alse a much smaller socond extensor on tho outer sida of this in each lind, the lateral extensor of the sthalanges. In the fore leg the tondon of this musele (which corresponds with the extensor miuimi figitiof man) receives a slip from that of the principal extensor, and is guserted intw the first plalanx. In the himil leg (where it is tho homologne apparently of tho pereneneus trevis of man) the tendua becomes blendel with thit of the harge extensor.

A very strong ligamentons land belind the metapodium, nrisisg from near the upper extremity of its !rasterior surface, divides into two at its lower cmul, and cach division, b, cin; first comected with one of the paireal upper sesamoid Dones, passes by tho side of the first , thalanx to join the extursor tondon of tho phalanges. This is called in vecterinary anatomy tho "suspensory ligancint of tho kesamnids," or of the "fetlock" (10 in tig. .5); ; the its attachments and relations, as well ns the necasiumal presence of musenlar fibres in its sulbstance, slow that it is the thumalogue of the interosscous muscles of other mnimals, curiously motificel looth in structure and function, to suit
the requirements on the hursc's toot. Behind en superficial to this are placed the two strong tendons of the flexor museles, the most superficial, or ftexor perforatus (8), dividing to allow the other to pass through, and then inserted into the middle phalans. The fexor perforer.s (9) is as usual inserted into the terminal plalanx. In the fure leg these muscles correspond with those similarly named in man. In the hind leg, the perforated tendon is a continuation of that of the plantaris, passing pulley-wise over the tuberosity of the os calcis. The perforating tendon is recrived from the musele corresponding with the long Hexnr of man, and the smaller tenton of the oblique flexol (tibialis porticus of man) is united with it.

The hoof of the horse-corresponds to the nail or claw 0 : other mammals, but is so constructed as to form a complete and very solid case to the expanded termination of the tee, giving a firm basis of support formed of a nonsensitive substance, which is contmually renewed by the aduition of material from within, as its surface wears avay by friction against the ground. The termimal phalans of the toe is greatly enlargerl and modified in form to support this hoof, and the size of the intermal framework of the foot is further increased by a pair of lateral fibro-cartilaginous masses attached on each side to the hinder edges of the bene, and by a fibro-cellular and adipose plantar cushion in the median part. These structures are all enclosed in the kcrategenous membrane or "subcorneous integument," a continuation of the ordinary derma of the limb, but extremely vascular, and having its superficial extent greatly increased by being developed into papille or lamine. From this the borny material which constitutes the hoof is cxuded. A thickened ring encircling the upper part, called coronary cushion (13), and the sole (15), are covered with numerous thickly-set papille or villi, and take the greatest sharo in the formation of the hoof; the intermediate part constituting the frout and side of the foot (14), corresponding witly the wall of the hoof, is covered with parallel, fine longitudinal lamme, which fit into corresponding depressions in the inner side of the horny hoof. ."

The borny hoef is divided into al wall or crust consisting of the front and sides, the flattened or concave sole, and the froge, a triangular mealian prominence, untehed posterionly. with the apes turned forwards, situated in the hinder part of the sole. It is formod of pacment epitleclial cells, which are mainly gromped in a concentric manmer around the vaseular papilla of the keratogenous membrane, so that a section near the base of the hoot, cut transversely to the long axis of these papillar, shows a number of small cirenlar or oval orifices, with cells arranged concentrically round them. The nearer the surface of the hoof, or further removed from the seat of growth, the more indistinct the structure becomes.

Small round or oval plates of tiorny epthehmm called "chestnuts," growing like the hoof from cularged mpillat of the skin, are foum on the inner face of the fore arm, above the carpal joint in all species of Equithe, and in tho horso (E. caballus) similar formations oceur near the upper extremity of the inner face of the metatarsus. Their use is unknown.

Dertilion.-The dentition of the horse, when all the teeth are in place, is, as etated before, expressed hy the formula i. $\frac{3}{3}, c . \frac{1}{2}, p . \frac{4}{5}, m . \frac{3}{3}=44$. The incisors of cach jaw are placed in closo contact, forming a semicircle. The crowns are bread, somowhat nwl-shaped, and of nearly equal size. They havo all the great peculiarity, not found in the tecth of nuy other mmmal, nud only in the Equide of comparatively recent geological periods, of an involution of the external surfaco of the tooth (sce fig. 6), by which what should properly be the apex is carried deeply into thes interior of the crown, forming a fossa or pit, the hotton
of which becomes partially filled up with crusta petrosa or censentum. As the tonth wears, the surface, besides the esternal enmel layer as in an ordinary simule tooth, shows in adrition a second inner ring of the same hard substance surrounding the pit, which of course adds greatly to the efficieucy of the tooth as an organ for biting tough, fibrous substances. This pit, generally filled in the living animal with particles of food, is conspicuous from its dark coluar, and constitutes the "mark" by which the age of the horse is juldged, as in consequence of its only extending to a certain depth in the crown it becomes obliterated as the crown wears away, and t!en the tooth asmues the character of that of an ordinary incisor, consistiug only of a core of dentine, surromed by the extermal enanel layer. It is not quite so deep in the lower as in the upper tecth.

The canines are cither quite rurlimentary or entirely absent in the female. In the male they are compressed, pointed, and smaller than the incisors, from which they are separated by a slight interval. The tecth of the molar series are all in contact with each other, but separated from the canines by a considerable toothless space. The anterior premolars are quite rudimentary, sometimes not developed at all, and gonerally fall by the time the animal attains maturity, so that there are but six functional grinding teeth,-three that have predecessors in the milk dentition, and hence are considered as premolars, and three true molars, but otherwise, except the first and last of the serics, not distinguishable in form or atrocture. These teeth in both upper and lower jaws are extremely long-crowned or hypsidaat, successive portions being pushed out as the surface wears away, a process which continues until the animal becomes advanced in age. The enamelled surface is infolded in a complex manoer (a modification of that found in other perissodactyles), the folds extending guite to the base of the crown, and the interstices being filled and the surface covered with a considerable mass of cenent, which binds tugether and strengtheas the whole tooth. Is the teeth wear, the folded enamel, being harder than the other constituents, the dentine and cement, forms projecting ridges on the suriace arranged in a defiuite pattern, which give it great efficiency as a grinding instrument (see fig. l, b and c). The free surfaces of the upper tecth are quadrate, except tho first and last, which are nearly triangular. Ihe lower teetl are much narrower than the npper.

Tho milk dentition consists of i. $\frac{3}{3}, c . \frac{0}{0}, 7, \frac{33}{3}=24$, -the canines and first or rudimentary premolars having apparcatiy so predecessors., In form and structure they much
resemble the permanent teeth, uaving the same characteris. tie cmamel fuldings. Their eroption commences a few days after birth, and is complete before the end of the first year, the upper tecth usually appearing somewhat eaflier than those of the lower jaw. 'l'lie first teeth which appear aro the first and secont milk molars (abont five days), then the central incisur (from seven to ton days); this is fullowed by the second incisur (at one month), then the third molar, and finally the third incisor. Of the permanent teeth the first frue molar appears a little after the cond of the first year, followed by the second molar before the cnd of the second year. At about two and a half years the first premolar replaces its predecessor. Detween two and a half and three years the first incisor appears. At three years the second and third premolars, and the third true molar have appeared, nt from three and a half to four years the secoud incisor, at four to four and a half years the canine, and, finally, at five years, the third incisor, completing the pemment dentition. U_{l} to this period the age of the borse is clearly shown by the condition of dentition, nad for some time longer-indications can be obtained from the wear of the incisor teeth, though this depends to a certain extent upon the hardness of the food or other accideutal circumstances. As a general rule, the depression caused by the infolding of the surface of the incisor (the "mark") is obliterated in the first or central incisor at six years, in the second at seven years, and in the third at eight years. In the upper teeth, as the depressions are deeper, this obliteration does not take place until about two years later. After this period no certain indications can be ubtained of the age of the horse from the tecth.

Digestive Organs.-Tbe lips are flesible and prehensile. The membrane that lines them and the cheeks is quite smooth. The palate is long and narrow; its mucous surface has seventeen pairs of not very sharply defined obligue ridges, extending as far back as the last molar tooth, beyond which the velum palati exteuds for about 3 incles, having a soft corrugated surface, and ending posteriorly in an arched border without uvula. This embraces the base of the epiglottis, and, except while swallowing food, shuts off all communication between the cavity of the muth and the plargnx, respiration being, undet ordinary circumstances, exclusively through the postrils. Between the mucous menbrane and the bone of the hard palate is a dense vascular and nervous plesus. The membrane lining the fances is soft and corrugated. An elungated raised glandular mass, 3 inches long and 1 inch from above downwards, extending backwards from the root of the tongue alung the side of the fances, with openinge on the surface leading into erypts with glandular walls, represents the tonsil. The tongue, corresponimg to the general form of the mouth, is long and arrow. It consists of a compressed intermolar portion with a flat upper surface, broad behind and becoming narrower in front, and of a depressed anterior part rather shorter than the former, and which is narrow hehind aud widens towards the evenly rounded ajex: The dorsal surface generally is very soft and smooth. There are two large circumvallate papille near the base, rather irregular in form, about a quarter of an inch in diameter and half an inch apart. The conical papille are very small and close set, though longer and nore filamentous on the intermolar portion. There are no fangiform papille on the dorsam, but a few not very conspicuous ones seattered along the sides of the organ.

Of the salivary glands the parotid is by far the largest, and elengated in the vertical clurection, and narrower ia the middle than at either npper or lower extremity. Its upper extremity embraces the lower surface of the cartilagivens ear-conch; its lower end reaches the level of the inferior margin of the mandible, along, the posterior margio of which
it is placed. Its duct leaves the inferics anterior angle, at first descends a little, and runs forward under cover of the rounded inferior border of the mandibular ramus, then curves up along the anterior margin of the masseter muscle, becoming superficial, pierces the buccinator, and enters the mouth by a simple aperture opposite the middle of the crown of the thind premolar tooth. It is not quite sn thick as a groseguill when distended, and nearly a foot in length.

The submaxillary gland is of very similar texture to the last, but much smaller; it is placed deeper, and lies with its main axis horizontal. It is elongated and slender, aud flattened from within outwurds. lts posterior end rests against the anterior surface of the transverse process of the atlas, from which it extends forwards and downwards, slightly curved, to beneath the ramus of the jaw. The duct which runs along its upper and intermal border passes forwards in the usual course, lying in the inner side of the sublingual gland, to open on the outer surface of a distinct papilla, situated on the floor of the mouth, half an inch from the middle line, and midway between the lower incisor teeth and the attachment of the frenum lingure. The sublingual is represented by a mass of glands lying just beneath the mucous membrane of the floor of the mouth on the side of the tongue, causing a distinct ridge, extending from the fronum backwards, the numerous ducts opening separately along the summit of the ridge. The buccal glands are arranged in two rows parallel with the molar tecth. The upper ones are the largest, and are contimous anteriorly with the labial glands, the ducts of which open on the nucous membrane of the upper lip.

The stomach of the horse is simple in its external form, with a largely developed right cul de sac, and is a good deal curved on itself, so that the cardiac and pyloric orifices are brought near together. The antrum pyloricum is small and not very distinctly marked off. The interior is divided by the character of the lining membrane into two very distinct portions, right and left. Over the latter the dense white smooth epithelial lining of the resophagus is continued, terminating abruptly by a raised erenellated border. Over the right part (rather the larger portion) the mucous membrane bas a greyish-red colour aad a velvety appearance, and contains very numerous peptic glands, which are wanting in the cardiac portion. The oesoplageal orifice is very small, and is guarded by a strong crescentic or rather horseshoe-like band of muscular fibres, which is supposed to be the cause of the difficulty of vomiting in the horse. The small intestine is of great length (80 to 90 feet), its mucons membrane being covered with numerous fine villi. The crecum is of conical form, about 2 fect long and nearly a foot in diameter; its walls are sacculated, especially near the bose, having four longitudinal muscular bands; and its capacity is about twice that of the stomach. . It lies with its base near the lower part of the abdomen, and its apex directed towards the thorax. The colon is about one-third the length of the small intestine, and very capacious in the grenter part of its course. As usmal it may bo divided into on ascending, transverse, and descending portion; but the middle or transverse portion is foldes into a great loop, which descends as low as the putis ; su that the colon forms altogether four folds, generally parallel to the long axis of the body. The descending eolon is much narrower than the rest, and not sacculated, and, being considerably longer than the distaneo it bas to traverse, is thrown into numerons folds.

The liver is tolerably symmetrical in its general arrango. m"t, being divided nearly equally into segments by a well. mist 1 umbilical fissure. Fhach segment is again divided by l.i. - : fissurey, which do not extend quite to the pusteriur bu:ticr of the organ; of the eratral lobes thus cu:t off,
the right is rather the larger, and has two fissures in its free border subdividing it into lobules. The extent of these varies, however, in different individuals. The two latera! lubes are subtriangular in form. The Spigelian lobe i: represented by a flat surfince between the pustal fissure and the posterior border, not distinctly marked off from the left lateral by a fissure of the ductus venosus, as this vessel is burien deep in the hepatic substance, but the caudate lobe is distinct and tongue-shaped, its free apex reaching uearly to the border of the right lateral lobe. In most works on the anatomy of the horse this has been confounded with the Spigelian lobe of man. There is no gall-bladder, and the biliary duct enters the duodenum about 6 inches from the pylorus. The pancreas has two lobes or branches, is long one passing to the left and reaching the spleen, and a shorter right lobe. The principal duct enters the duodenums with the bile-duct, and there is often a second small duct which opens separately near to this.

Circulatory and Respiratory Organs. - The heart has the form of wrather elongated and pointed cone. There is one anterior vena cava, formed by the union of the two jugular and two axillary veins. The aorta gives off a large branch (the anterior 2orta) very near its origin, from which arist -first, the left axillary, and afterwards the right axillar, and the two carotid arteries.

Under ordinary circumstances the horse breathes entirely ${ }^{\circ}$ by the nasal passages, the communication between tho laryns and the mouth being closed by the velum palati. The nostrils are placed laterally, near the termination of the muzzle, and are large and very dilatable, being bordered by cartilages upon which several muscles act. Immediately within the opening of the nostril, the respiratory canal sends off on its upper and outer side a diverticulum or blind ponch (called "false nostril") of a conical form, and curved, 2 to 3 incbes in depth, lying in the notch formeds between the nasal and premaxillary bones. It is lined by mucnus membrane continuous with that of the nasal passage, and its use is not apparent. It is longer in the ass than in the horse. Here may be mentioned the guttural pouches, large air sacs, diverticula from the Etistachian tubes, and lying behind the upper part of the pharynx, the function of which is also not clearly understood. The larynx has the lateral saceuli well developed, thongh entirely concealed within the alx of the thyroid cartilage. The trachea divides into two bronchi, one for each lung.

Nervous System.-The brain differs little, except in details of arrangement of convelutions, frem that of other ungulates. The cerebral hemispleres are rather elongated and subeylindrical, the olfactory lobes are large and project freely in front of the hemispheres, and the greater part of the ecrebellum is uncovered. The cye is provided with a nietitating membrane or thitd eyelid, at the base of which the duets of the Harderian gland ojen.
liproductive System.-The testes are situated in a distinct sessile or slightly pedunculated scrotum, into whicin they descenil from the sixth to the tenth month after birth. Tho accessory generative glands are the two vesiculas seminales, with the medinn third vasicle, or uteris mascu. linus, lying between them, the single bilobed prostate, and a pair of globular Cowper's glands. The penis is very large, cylindrical, with a truncated, expanded, ilattened termination. When in a state of repose it is retracted, by a musclo arising from the sacrum, within the prepuce, a cutaneous fold attached below the symphysis pubia.

The uterus is bicornuato. The vaginis is often partially divided by a membeancous septum or hymen. Tho mamme are two, inguimally phaced. The surface of tho chorion is roverod even! with minuto villi, constituting a dilhise noudecihate placenta. Tho period of gestation is eleven months.

Bibliography.-M. S. Arloing, "Organısation du pied ehe\% te tvorglcich. Anat. der Kaussäugcthucrc, 2 vols., 1822; Huct, "Croise. :hoval," Aur. Sct. Nat., 1867, viii. pp. 55-81; H. Burmeister, Los caballos fosilas de la Pampe Argcnlina, Buenos dyres, 1875 ; Cllauveau and Arloing, Traite d'anatomic comparé des animaux domustigüs, Paris, $18 \overline{1} 1$, and English cdition by G. Fleming, 1873 ; A. E.cker, "Das Europaische Wildpferd and dessen Beziëhnongen zuin domesticirten Pferd," Globus, Bu. xxxiv., Brunswick, 1878; Major Forsyth, "Beitrago zur Geschiehte der fossilen Pferte besanders ltaliens," Abh. Schw. Pal. Ges., iv. 1p. 1-16, ןt. iv.; George," Étades zool. sur les llemones et quelques autres especes chevalines," Anu. Sci. Nal., 1869, xii. p. 5; E. F. Gurlt, Anatomische Abbildungen Uer Uuussaugelhicre, 1824, and Hand. der
 Muséun, 2d ser., tom. ii. p. 46, 1879; Leisering, Allos der Anatnmic des Pjerdes, Leipsic, 1861; O. C. Marsh," "Natice of New Equure Mammals from the Tertiary Formation," Am. Journ of Scuerce and Arts, vol. vii., March 1874; Id., "Fossil Horses 11 Anrerica," Amer. Naturalust, vol. viii, May 1874; Ju., "Poly. dactyle Horses," Am. Journ. Sci. and Arts, vol. xvii., Junc 1879, Finnz Muller, Lehrbuch der Anatomie des Pferdes, Vienia, 1853: R. Owen, "Equine Remains in Cavern of Bruniquel," Phzl. Traus., vol. clix. (1870), p. 535; W. Percivall, The Anatomy of the Horse, 1852; C. Stubbe, Anatomy of the Fiorse, 1766 . (W. H. F.)

PART II.-HISTORX, MANAGEMENT, AND BREEDING.

From the evidence of philology it is plain that the horse -as already known to the dryans before the period of , Leir dispersion. ${ }^{1}$
The first mention of the British horse occurs in the well-known passages in Cesar (B. G., iv. 24, 33; v. 15, 16; cf. Pomp. Mela, iii 6), in which be mentions the native "essedarii" and the skill with which they handled their war chariots. We are left quite in the dark as to the character of the animal thus employed; bat there would appear to be much probability in the surmisc of Youatt, who conjectures the borse to bave been, "then as ever, the creature of the country in which be lived. With short fare, and exposed to the rigour of the seasons, he was probably the little bardy thing we yet see bini; but an the marshes of the Nen and the Witham, and on the borders of the Tees and the Clyde, there would be as much proportionate development of frame and strength as we find at the present day." After the occupation of the country by the Romans, it appears that the borses of their cavalry were crossed with the native mares, and thus there was infased into the breed new blood, consisting probably of strains from every quarter from which Roman remounts were procured. As to the effiect of this cross we are not, however, in a position to judge. We are also quite oncertain as to the extent to which the Jutes and Saxons may in their turn bave again introduced a new breed of horses into England; and even to the close of the AngloSason period of English bistory allusions to the horse are still very unfrequent. The horsthegn we know, however, was from an early period a high court official; and from such a law as that of Athelstin probibiting the ex. portation of horses except as presents, it may be inferred that the English breed was not only much valued at home but also in great request abroad. ${ }^{3}$
The period of the Norman Conquest marks an important TCompare Sanser, afea; Zentish and old Persimi, actir ; Lithuanian, reszva (mare): Prussian, asvinan (ware's milk). Old High German, ehu; Anslo-Saxon, eoh; lcet.; ;izr; Gothic, arhos, akhous (i): O:d I rish, ech; old Canbrian and Gaelic, op (as in Eppona, the horse Sollless); Litt., equics: Gr, itrios ar twxos. The word seemis, however, to havo disappeared from the Slavonic langugzes The root is probably $a k$, with the idea of sharpness, or swittress (axpos, wxis, neses, orior). See Pott, Etym. Forsch, ii. 256. an! Hehn. Kultur-- Tonsen u. Husthicre in threm Uebbergang ous dswen nach Griechen-
 ihn last unmel aulhor, who points out the absence of the horse from the Esyytian monuments prior to tho begiuning of the 18th century B.C., ant the fict that the earliest references to this animal in Hebrew literature (Julg. v. 22, 23; cf. Josh., xi. 4) to not carry us any further lack, is of npinion that the Semitic peoples as a whole wero milelem: for the horse to the lands of han. ITo also shows that literature affonts no trace of the horse as indigenous to Aravia prior to about the beginaing of the 5 th century A.D., althougt references abound in the pre-I slanitic poetry. Honses were not numerains even in Malumet's time (Syrenger, Leeb, Noho, iii. 133, 140). Compare Ignazin Gauli's papur "Della sede primitiva dei popoli Semitici" in the Transactions of the Accalemias Lei Lincei (1878-79).
? Some fragments of legislation relating to the horse abont this :uriod way be gleaned fromin Ancient Laress and Instituctes of Englund
 Londoa, 13412
stage in the bistory of the British horse. William the Conqueror's own horse was of the Spanish breed, and others of the same kind were introduced by the barons on their estates. Bat the Norman horses included many varicties, and there is no doubt that to the Conquest the inhabitants of Britan were indebted for a decided improvement in the native horse, as well as for the introduction of several varieties previously unknown. According to Giraldus Cambrensis, Roger de Bellesme, a follower of William I., afterwards created earl of Shrewsbury, innported some stallions from Spain into England; their produce was celebrated by Drayton the 1,oet. It is curions to notice that agriculture seems to be the last use to which the horse has been put. The earliest'suggestion that horses were used in agricaltare is derived from a piece. of the Bayeux tapestry, where a borse is represented as drawing a harrow. This, however, must have been an exceptional case, for we know that oxen were used until a comparatively late time, and that in Wales a law existed forbidding horses to be used for ploughing.

In 1121 two Eastern horses are said to have beetu imported,-one of them renaining in England, and the other being sent as a present by King Alexander I. to the church of St Andrews, in Scotland. It has been alleged that these horses were Barbs from Morocco, but a still more likely theory is that they existed only in name, and never reached either England or Scotland. The crusades were probably the means of introducing fresh strains of blood into Eugland, and of giving opportunity for fresh crossings. The Spanish jennet was brought over about 1182. King John gave great encouragement to horsebreeding: one of his earliest efforts was to import a hundred Flemish stallions, and, having thas paved the way for improving the breed of agricultural horses, he set about acquiring a valuable stud for bis own use.

Edward III. was likewise an adnuirer of the borse; he procured fifty Spanish horses, probably jenncts. At this time there was evidently a tendency to breedi a somewhat lighter and speedier horse; but, while toc introduction of a more active animal would soon have led to the displacernent of the ponderons but powerfnl cavalry horse then in use, the substituted variety would have been mable to earry tho weight of armour with which horse and rider were alike protected; 'and so in the end the ohd breed was kept up for a time. With the object of $\mathrm{I}^{\text {re- }}$ serving to England whatever advantagos might accrue from her care and skill in breeding an improved stamp of horses, Edward Ill. forbade their exportation; they consequently improved so rapidly in value that kialard 11 compelled dealers to limit their prices to a fixed miximum In the ninth year of his reign, Edward received from tho king of Navarre a present of two ruming horses, supposed to have lenas valuable. The wara of 1340 checked the improvement of borses, and undid manch onf what had been proviultsly acconplisher?, for we read that the cavalry taken into France by Edward III. were tut
indifierently moauted, and that in consequence he bau to parchase large numbers of forcigu horses: trom Hamault and elsewhere for remomets. The reign of Richard III, dozs not seem to lave been rennmbable for the furtherance of borse-breeding, but it was then that post-Lorses and stages were introduced.

Our information on the whole subject is but scanty down to the reign of Henry VII., who contunucd the enactment against the exportation of stallions, but relaxed it ia the case of mares above two years old. His object was to retan the best horses in the country, and to kecp the price of them down by limiting the demand and encouraging the supply. In his reign geldug is believed to bave bad its origin, on account of numerous berds of horses belonging to different proprictors grazug tagethicr, especially in time of harest Henry Vill. was particelarly careful that horse breeding should be condacted on right principles, and his enactments, if somewhat arbitrary, were singularly to the point. In the tharty-second year of this reign, the "bill for the breed of horses" was passed, the preamble of which runs thus:-"Fornsmuch as the generation and breet of good and strong hurses withon thas realm estendeth not only to a great help and defence of the same, but also is a great coinmondity and profit to the inhabitants thercof, which is now much decayed and diminished, by reason that, in forests, chases, moors, and waste grounds with:n this realm, little stoned horses, and nags of small statare and of little value, be not only suiitred to pasture thereupen, but also to cover mares feeding there, whereof cometh in manuer no profit or commodity." See titon 2 of the Act provides that no entire horse boing above the age of two years, and not beng of the beight of 15 " bandfulls," shall be put to graze on any common or waste land in certain counties; any one was to be at liberty to seize a horse of unlawiul heght, and those whose daty it was to measure hosses, but who refused to do so, were to be fined 40s. By se:uriou 6 all forests, chases, commons, (sc., were to be "driven" within fifteen days of Michuelnus day, and all horses, mares, and colts uot giving pronise of growing into serviceable animals, or of producing them. were to be killect. The am of the Act was to prevent oreedugg from animals not calculated to produce the class of horse suited to the needs of the coentry. Ry another Act (27 Henry VIII. chapter 6), after stating that the "brced of good strong horses" was likely to diminish, it was ordered that the owners of all parks and enclosed grounds of the extent of one milo should keep two marco 13 laads high for breeding purposes, of if the extent of the ground was four miles, four mares. The statute was not to extend to the counties of Westmoreland, Cumberland, Northumberland, or the bishopric of Durbam Henry took great paina to improve the royal stud: accorditig to Sir Thomas Chaloner-a writer in the reign of Elizabetli-he imported herses from Torkey, Naples, and Spau.

Qaeen Flizabech is repated to lave been an aceomplishel horoewoma, and to bave itodultel in riding late in hefe. In the first year of her reign she revived an Act passed by Theary VIII. making it felmy "to sell, exchange, or deliver within Scotlinul, or to the use of any Scottishman, anv horse; "this, however, was very maturally repealed by dames J. Carriages wero soon after introduced, and the use of them speedily becamo so fashionablo that a bill was breusht in "to restrain the excessive aml suferlluous uso of conches." l'rior to tho introduction of carriages, horsehatk was the means of hocomotion, and Qucen Elizabeth rufle in state to sit Paul's on a pillion; lime even after carraser we re used, howehack was hotd to te more dignified, for James I and his joulges role on horsebrack to Weminster 12.th. One advantage of the introduct:on
of carriages was that it created a derand for a lighter ant quatker sort of horse, minstead of the punderus animal which, despite all attenipts to banish bim, was still the loroo of England-the uge of cbuvalry baving been the first epoch of the British horse.
Gunpuwder, too, was invented; and now that the weight of the cavalry suldier was diminished by the sabstitution of lighter armour, a quicker and better bred horse was thought desirable for military service. The intruduction of carriages and the invention of gunpowder thus opened out a new industry in breeding ; and a decided change was gradually creeping on by the time that James I. cano to the throne (1603), which commences the secon: epocli. James was a thooogh sportsnian, and bis taste for racing. in which be freely indulged, caesed lum to thank liut litile of the speed of even the best English horses. With the laudable motive therefore of effecting improveutent in horses, he gave the then large sum of 500 guntas ior an Arab stallion which bad been procured from Constathenople by a Mr Markham, surce known as the "Markham Arubian." This is the first authentic account we have of the importa ton of A rab blood, and the Stud- Bool says he was the first of that breed ever seen in England. The people liaving to do with horses at that time were as conservaticu in therr notions as most of the groems are now, and the " Markham Arabion" was not at all appreved of. The duke of Newcastle, iu his treatise on hoisemanship, sand that he had seen the above Arabian, and deseribed him as a smail bay horse and not of very excellent shaje. In this instance, howcerer, prejudice (and it is difficult to believe thut it was anything else) was right, for King James's first. venture does not appear to have been a success citber as a race-horse or as a sire, and thus Arabian blood was brunght mito disrepute. The king, however, resolved to give Eastern blood another trial, and bought a horse known as Place's White Turk frum a Mr Place, who subsequenuly beid some office in comexion with the stable under Cromwell. Charles I. followed in the footsteps of James, and lent such patronage to the breeling of a better kind of horse that a memorial was presented to him, asking that oome measures might be taken to prevent the old stamp of horse: "fit for the defence of the ceuntry" from dying out.

We now come to a very important period in the history of the British horse, for Charles II. warmly esponsed the introduction of Eastern blood into England. He sent bis master of the herse abroad to purchase a number of foreign borses and mares for brecding, and the mares brought over. by him (as also many of their produce) wore called "royal mares"; they form a conspicuous feature in the annals of breeding. The Stud-Book shows of what breed the ruyal mares really were : one of them, the donn of Dodsworth (who, though foaled in England, was a natural Barb), was a Earb mare ; she was sold by the studmaster, after Charles IL.'s death, for forty guincas, at twenty years old, when in foal by the Helmsley Turk.
James II. was a good horseman, and had circumstancos been more prupitiens he might have left his mark in tho sporting anmals of the country.' In his reign, according to the Stut-Siook, the Stradling or Lister Turk was brought into England by the duke of Ferwick from the siege of Buda.
The reign of Willian III. is noteworthy as the cra in which, among other importations, there appeared the first. of three Enstern horses to which the modern thoroughbred race-horse traces back as the founders of his linege. This was the liyerly Turk, of whom nothing mure is known than that-to ase the words of the first velume of the Stud-Book-he was C'pptain lyyerly's charser in Ireland in King Willian's wurs. The second of the three horses above alluded to was the Darley Arabian, who was =
genuine Arab, and was mporter frum ticure by a bruther of Mr Darley of Aldhy Park, Yorkshire, about the end of the reign of William III. or the beginning of that of Anne. The thrd horse of the famons trio, the Godolphin Arabian or Barb, brought to England about five and twenty years after the Dariey Arabiat, will be more particularly referverl to further on. All the horses now on the turf or at the atud trace their ancestry m the direct male liue to one or other of these threc,-the Byerly Twurk, the Dirloy Arabian, and the Goduldin Arabian or Brob, Int the female liae their pedigrees can be traced to other suarces, hut for all practical purposes it suffices to regard one or ther of these three animals as the ullinat Thate of racing pedigree. Of course there is a large muterfasion of the blood of each of the trio through the dans of horses of the present day; indeed, it is inpossible to find an Enclish race-hurse which does not combine the blood of all three.

The Thoroughbred. - 'l'he third and last epoch of the British horse, viz., that of the thoroughbred racer, may be taken to date from the beginning of the 18th century. By thoroughbred is meant a horse or mare whose pedigree is registered in the Stuct-Book kept by Messrs Weatherby, the ofincial agents of the Jockey Clob-origially termed the keepers of the match-book-as well as publishers of the Racing Calendar. The first attempt to erolve order out of the chaos which bad long reigned supreme was made in 1791, fur we find in the preface of the first volume of the Stud-Book, published in 1808 , that "with a view to correct the then increasing evil of false and inaccurate pedigrees, the author was in the year $1: 91$ prevailed upon to publists an Introduction to a General. Stad-liook, consisting of a snal! collection of pedigrees which he had extracteci from racing calendars and sale papers and arranged on a new plan." It will be seen that the compiler of the volunie on which so much depends had to go back fully a century, with little else to ginide him but odds and ends in the way of publicatiuns and tradition. Mistakes under such circumstances are pardonable. The Stul-Book then (sol. i.), which is the oldest authority we have, contains the manes and in most cases the pedigrees, obscure thoagh they may be, of a very large number of horses and mares of note from the canlient acconnts, but with two exceptions no dates prior to the 1 Sth century are specified in it. These exceptions are the Byerly Turk, who was "Captain Byelly's charger in Ireland in King William's. Wars (1689 , de.)," and a horse called Counsellor, bred by Mr Egerton in 1694, by Lord D'Arcy's Counsellor by Lord Lonsdale's Counsellor by the Shaftesbury Turk out of sister to Spanker-all the dams in Counsellar's pedigree tracing back to Eastern mares. There is not the least doubt that many of the animals named in the Stud-Book were fonled much eartier than the above dates, but we have no particulars as to time; and niter all it is not of much consequence.

The Stud-Book gnes on to say of the Bycrly Turk that he did not cover many bred mares, but was the sire of the Duke of Devonshire's Basto, Halloway's Jigg, and others. Jigge, or Jig, is a very important factor, as will be seen hereafter: The Stud-Book, although silent as to the date of his birth, says he was a common country stallion in Lincolushire antil Partner was six years nhland we know from the same authority that partner was foalcd in 1il8; we may therefore conclude that Jigg was a later foal than Basto, who, according to Whyte's Ilistory of the Z'urf, was a brown horse foaled in 1703 .

The reiga of Queen Anne, however (1702 to 1714), is that which will ever be inseparably connectecl with thic :haroughbred race-hnres on account of the fane during that period of the Darley Arabian, a bay stallion, from 6:hm our very best horses are descendecl. According to
the Sturd-Book, "Darley's Arabian was brought over by a brother of Mr Darley of Yorkshire, who, beiug, an agent in merchandise abroad, became member of a huiting club, by'which means he acquired interest to procure this horse." The Stucd-Book is silent, and other authorities difter, as to the date of the importation of this celebrated Arab, some saying he came over in the year 1700; others that he arrived somewhat hater; but we know from the Stul-Book that Mame:a (fualed in 1707), Aleppo (1711), Almanzor (1713), and lilying Childers (1715) were got by him, a: also was Bartlett's Chidlers, a younger brother of Flying Childers. It is generally believed that lie was imported in Aune's reign, but the exact date is immaterial, for, assuming that he was brought over as early as 1700 from Aleppa, le could scarcely have had a toal living before 1701, the first year of the 18th centary. Tho Darley Arabian did much to remove the prejudice against Eastern blood which had been iustilled into the publie mind by the duke of Newcastle's dennneiation of the Markham Arabian. Prince George of Denmark, consort of Queen Anne, was himsclf a large horse-owner; and it was in a great measure owing to his intervention that so many valuable stallions were imported during her reign.

At this perion we find, among a mass of horses and marcs in the Stud.Book without any dates against their names, many animals of mote with the earliest chronology extant, from Grey Rameden (1704) and Bay Bolton (1705) down to a mare who exercised a most important influence on the English blood-liorse. This was Roxama (iT18) by the Bald Galloway, her dam sister to Chanter by the Akaster Turk, from a daughter of Leedes's Arabian and a mare by Spanker. Roxana threw in I732 the bay colt Lath by the Gololphin Arabian, the surrel colt Roundlead by Childers in 1733, and the bay colt Cade by the Gudolphin Arabian in 133f, in which year she died within a fortnight after foaling, the produce-Cade-being reared on cow's milk. The Godulphin Barb or Arabian, as be was commonly called, was a brown bay about 15 hands in stature, with an unnaturally high crest, and with some white on his off hind lice!. He is sail to bave been importal into England from France by Mr Coke, where, as the editor of the Stud-Book was informed by a French genticman, he was so little thowght of that he had actually drawn a cart in the strcets of Palis. Mr Colke gave him to a Mr Williams, who in his tutu, presented him to the earl of Collophin. Although called an Arabian, there is little doubt he was a Barb pure and siuple. In 1731, being then the property of Mr Coke, he was tenzer to Ilobgoblin, and on the latter refusing his services to Ioxana, the mare was put to tho Goclophinin; and the produce was Lath (1732), the first of his get, and the most celebrated race-horse of his day atter Flying Childers. Ite was alsn the sire of Cade, own brother to Lath, and of Regalus the maternal grandsire of Eelipse. He died at Cogmagors in Cambrilgeshire, in the possession of Lord Godolphin, in 1753, being then, as is supposed, in his twenty-ninth year. He is belicred to have been foaled in Barbary about 172., and to have been imported during the reign of George II.
In regard to the mares generally, we have a recoul of the royal mares already altuded to, and likewise of three Turk mares brought over frum the siege of Vienna in 165:, as well as of ether importations; but it is unquestionable that there was a very large number of native mares in England, improved probably from time to time by racing, however mueh they may have been crussed at various periods with foreign horses, and that from this original stock were to some extent derived the size and stride which characterized the English race-horse, while his powers of endurance andelegantshape were no doubt inherited frow, the Eastern hirses, most of which were of a low stat:!re.

14 hands or thereabouts. It is ouly recessary to truee carefully back the pedigree of most of tho famous horses of early times to discover faults on the side of the damthat is to say, the expression "dam's pedigree unknown," which evidently means of original or native blood. Whatever therefure may be owing to Eastern blood, of which from the middle of the 17 th to the beginning of the 18 th century a complete wave swept over the British Isles, some credit is unquestionably due to the uative mares (which Blaine says were moslly Cleveland bays) upon which the Arabian, Barb, or Turk blood was grafted, and which laiel the foundation of the modern thoroughbred. Other mations nay hnve furnished the blood, but England has made the race-horso

Without proseruting this sulject further, it may be enough here to follow out the lines of the Darley Arabian, the byerly Turk, and the Godolphin Arabian or Bath, the main ancestors of the British thoroughbred of the 1Sthatul $19 t h$ centurics, through several famous race-horses, each and all brilliant winners,-Flyıg Childers, Eclipse, Herod, and Matchem,-to whom it is considered sufficient to look as the great progenitors of the race-horse of to-day.

The Darley Arabian's line is represented in a twofold degreefirst, through his son Flying Childers, has gramusons Blaze anid Snip, and his grent-grandson Smap, and, secondly, through his other gon Bartlett's Chillers and his great-great-grandson Eelipse. Fiying or Devonshire Childers, so called to distinguish lim Trom other horses of the same name, was a bay horse of entirely Fasten blood, with a blaze in his fice and four white feet, foalet in 1715. He was bred by Mr Leonard Childers of Carr House near Doncaster, and was purchased when young by the duke of Devonstive. Ho was got by the Darley Arabian from Betty Leedes, by Careless from enster to Leedes, by Leedes's Arabinn from a nare by Spanker ont of a Barl mare, who was Spanker's own mother. Spanker himself was by D'Arcy's Yellow Turk from a daughter of the Aoroceo Barl and Old Bald Peg, hy an Arab horse from a Barb more. Careless was hy Spanker from a Barb waro, so that Childers's dam was elosely in-bred to Spanker. Flying Chillers-the wonder of his tinewas never beaten, and died in the duke of Devonshire'a stud in 1741, aged twenty-six years. He was the sire of, among other horses, Blaze (1733) and Snip (1736). Snip too had a celebrated son called Snap (1750), anul it is chiefly in the female line through the mares by these horses, of which there are fully thirty in the StuedBook, that the blood of Flying Childers is handed down to us.

The other representative line of the Darley Arabian is through Bartlett's Childers, also bred by Mr Leonaril Childers, atul soll to Mir Bartlett of Masham, in Yorkshice. He was for aeveral yenrs called Young Chilters,-it being gencrally supposed that he was a ynunger brother of his Flying mamesake, but his date of lurth is not on reeord,-and aulisequently Bartlett's Childers. This horse, who was never traidect, was the gire of Syuirt (1732), whose son Marsku (1750) begrt Eclipse and Yopng Marske (1762), sire of Shuttle (1793), This at lenst is the goneraily aceepted theory, nlthough Eeclipacis dam is said to have bem covered by Shakespento ns well as by Marsko. Shakespeare wa he aon of Hob,goblin hy Alejpo, unt const. quently the male line of the larley Arahian wouldemuc throuth these borses instead of through Bartlett's Childers, Squirt, and Marsku; the Stud-Book, however, anys that Marsko was the sire of Filipse. This lest-named celebratel horse-periaps the most eclectrated in the annals of the turf-way firaliod on the 1st of April 1764, the day on which a renarkable rilipsu of the sun occured, athe be was named after it. 110 whe Ired ly the duke of Cumberlant, after whose decease be was purcharell by a Mr Wilman, nod enhaseguently sold to Mr D O'Kelly, with whom he will ever he
 Thin Barb, from Mother Western, by a son of Sunke from a matre l,y Ohd Montague our ol a marse Ly Hanthy, from a diangher of
 pedigree there are upwards of a dozen mases whise pedigrese are
 was a chestnut horse with a white bhaz down his fare; his olt hime 1.0. was white from the lork dnwnwarlo, anil he hat hatk spots

 4th Getoluer 1730, at Nrwmaket. Ho ran or walked over for
 Mir whelly terok the oulds to a large mombat. before the stare firs the

?hlyo firet, and the fest nowherc."

Eelipse commenced his stud carcer in 1771, and had in cmormons number of foals, of wheh four ouly in the direct malo line hive come down to us, viz., Potoou00000, or, as he is commonly calles. Pot-8-os (1773), his mast eclebrated son, King Fergus (17:5), Jns Andrews (1778), and Nercury (1778), thongh several others are represented in the female line. Pot-S-os was the sire of Waxy, (1790) ont of Maria ;1777) by 1 le ered out of Lisctte (1772) by Snalp. Waxy, who has been not inaptly termed the ace of trumps in the Stuul-Bok, bugat Whalebone (is07), Web (1808), Wotinl (1809), Wire (1811), Whisker (1812), and Waxy Pope (1806), all but the list beug out of Penelope (1798) by Trumpator (1782) from Prunella (1788) by Highflytr out of Pronise by Snap, while Waxy Pope was out of l'runella, dam of Parasol (1800) by Pot-8-0s. Trumprator was a son of Conductor, who was by Matchem out of a mare by Snap.

Whalebonc's best sons were Camel (1829) and Sir Hercules (1826). Camel was the sure of Defence (1824) and 'Touchstone (1831), while Sir Hercules was the sure of Firdcatcher (1833) and Faugh-a-Ballagh (1841), own brotbers, and of Gemmn di Vergy (1854). Touchstone was the sire of Newminster (1848), who begat Lord Cliflen, Adventurer, and the Hermut, as well as of Orlando (1841) sire of Tuldington (1848) Whalebone's blood also destends through Waserley (1817) and his son the Sadder (1828), while Whasker is represented by the Colunel (1825) and by Etonomist (1825) and has son Hakaway (1834), suce of King Tom (1851). Birdeatelier hegrat, tesdes Samterer (1854), the Baron (1842), sire of Stoekwell (1854) and of hataplan (1850). Stuckwell, who was a chestmut whith black sprots, was the sire of Blar Athol (1861). a chestout, and also of Doncaster (1870), another chestnut, but with the characteristic black spents of his erandsire; and Doncaster was the stre of the chestnut Bemb Or (1877).

To turn to Eelipse's other sons. King Fergus (1:75) was the sire of Brningbrough (1791), whose son was Orville (1799), whence comes some of the stoutest blood on the qurf, iaclanting Emilius (1820) and his son Priam (1827), Plenipotentiary (1831), Muley (1810), Chesterteld (1834), and the Hero (1843). Joo Andrews (1778) was the sure of Dick Andrews (1797), and from him deseent 'Tramp (1810), Lottery (1820), Liverpool (1828), Sheet Anchor (1832), Lanereost (1835), Weatherbit (1842), Beadsman (1855), an.l Blue Gowa (1865). Merenry was sire of Gohanna (1790), who was fraled in the same gear as Waxy, and the two, who were both krandsons of Eclipse and both out of Herod mares, had several contests, Waxy generally getting the better of his consin. Gohanma's deseculants come down through Golumpus (1802), ('atton (1809), Mulatto (1823), Royal Oak (1823), and Slane (1833).
2. The Byerly Turk's liue is represented by Herod, the Turk being the sire of Jige, who was the sire of Purtner (1718), whose son Tartar (1743) berat King Herol, or Herod as he was eommmnly calleal, foaled in 1758 Herod's dam was Cypron (1750) by Blaze (1733), on of Flymg Chbhlers. ('ypron's dam was Solima by Bethel's Arahinu hon a mare by Graham's Champion from a daughter of the Darley Arahian and a mare who claims-Merlin for her sire, bat whose mother's peligice is unknown. In Herod'a peligree there are fully a dozen dams whose jedigree ia unknown. Derol was a bay horse about 15 lamals 3 inelies lagh, ponsessed both of substance nod length, -those grand requisites in a race-liorse, - combmed with monmmon power and stamima or lastung qualities. Ho way bred by Willian, iluke of Cumberland, uncle of King George 111 He commented his racing taver in Oetober 1763, when he was five years oll, and enled it on the 16th of May 1767 . He ran t"n times, winning six and losug four races. H1o died in 1780, and atmong other progeny left two fanous sons, Woodiceker (17i3), whose dim was Miss Kitosition (1760) by Cale, son of tho Godelphon Part, but descendad aloo on the damis side from the Darley Arabian amd the Byerly Tluk, and Highflyer (1774), whose dam was Rachel (1763) by Blank, son of the Godolphin Barb from a ilaughter of hegulus, nlso son of the Godolphin. These two hosses have transmittel Heral'a qualitics down to the present lay in the direct male line, although in the female line ho is represented through some of his wher sons aum his danghters as well. WhoulFreker was the sioe of Binzand (1787), who in his turn heenme the hather of three eelebrated sons, Casted (1801), Selim (1802), atud linhons (1803), wh them chastants, mat all ont of an Alexamer matre (1790), who therehy tecame fanmos. This mare ans by bilipsors sm" Aleximitr (1782) out of a maro by llightyer (son of Hered) out of a dangher ol Alimed, by Matchem out of a daghter of Snap. Bustard (1813), whose dam was a daughter of Shutte, anl his son Hevom (1833), Sultan (1816) and his sons Glencoo (1831) nuil bay Miduldeton (1833) and Midileton's sons Cowl (1842) and the Flymig Dutiman (1816), latatatoo (188.1) mull his son Whithomil (1897), Lankur (1817) anil his som Fipitus (1834) an! gramben Fyryhns the l'irst (1813), are representatives of Castrel tume sultim.
Highlyger is ropresenteld through his greatly estecmed son Sit later Thase, commonly ealled Sir leter (178i), whose dam was

Panlowit: (1813), Cain (1522), Ion (1835), Wihi Dayrell (2852), 3nil his swn l'uccaneer (1857) brin" down Sir l'aut's blood; whilst Walton is represented throurh Phantom (1806), Partisan (1811) and his sons Glaneus (1829) and Venison (1833) and Glatiator (1833), Venisun's sous Alarm (1842) and Kiturston (1849), Gladtator's sun siweetmeat (1812), Sweetmeat's sons Macaroni (1860) and Parmesan (1857), and Parmesan's sons Favomiss (1868) and Cremorne (1869). It may be aditut that in the first velume of the Stud-Eook there are nearly a hundred Herod and Highther mares registered.
3. The Godolphin Eatb is represented by Matchem, as the former was the sire of Cade (1734), and Cade begat Matchem, who was foaich in 1748. He was thus ten years the seniur of Herol, reprewating the Byerly Turk, and sixteon jears before Eelipes, though long sulsequent to Flying Childers, who replesent the Darley halinai. Natchem was a browa bay horse with sume white on lis if hand heel, about 15 hauds high, bien! by Sir John 11 olme of allise, and sold to Mr W. Fenwiek of Bywedl, Northumberiand. His dan was sister to Miss l'aitner (1735) by l'arther out of Brown Farewcll by Makeless (son of the Orfethorpe Arabian) fiom a dushter of Brimumer out of Trampet's Cam, by Place's White Two firm a daughter of the Barb Dodsworth and a Layton Barb mare; "Hhate Brimuer was by D'Arey's lellow Turk from a royal hatc. Mitchem eommenced his racing career on thie 2d of August 1753 , and terminated it on 1st Scpternber 1758 . Out oi thateen engagenatents le won eleven and lost two. He died in 1781, aged thity. thrue years. His best son was Conductor (1767) out of a marc by Suap; Conductor was the sire of Trumpator (1782), whose two sons, Sorcerer (1790) and Paynator (1791), thausmit the blood of the Godolphn down to modern times. Suiceter was the sire of Soulh. sajer (1808), Conus (1809), and Snolensko (1810). Comus was the sire of Humphrey Cliaker (1822), whose son was Melbourne (1834), sire of We:t Australian (1850) and of many valuable mares, iueluding Canezou (1845) and Blink Bonny (1854), dam of Blair Athol. Paynator was the sire of Dr Syntax (1811), who had a eeleLrated daughter called Beeswing (1533), dan of Nowminster by Touchstone.
The gems of the three lines may be briefly enumerated thus: -(1) of the Darley Aratis line-Snap, Shuttle, Waxy, and Orwille-the stoutest blood on the thif; (2) of the Byerly Turk's line-Buzzard and Sir Peter-speedy blowl, the latter the stouter of the two; (3) of the Godolphin Barb's line-Sorcerer-ofter poo. ducing large-sized animals, hut showiug a tendency to die out, and tecoming rave.

On the principle that as a rulc liko begets like, it has been the practice to select as sires the best public performers on the turf, and of two horses of like blood it is sound sense to choose the better as against the inficrior public performer. Bat there can be little doubt that the mating of mares with horses has been often pursued on a haphazard plan, or on no system at all; to this the Stud-Book testifies too plainly. Recently more attention seems to be pinid to the successful blending of certain strains of bloorl, though it cannot be seid that more than two or three really first class horses are produced each year. The following is a list of the principal sires whose progeny find a place among the winners of the three great races, the Derby (D), Oaks (O), and St I.eger (L) :-
Eclupe: Young Ecliqse (D), Saltram (D), Sergeant (1), Ammette (0).

Herorl: Bridget (O), Faith (O), Maid of the Oaks (O), Thenomenon (L).

Matchem: Teetotum (O), Mollandaise (L).
Flrizel (son of Herod): Diomed (D), Eager (D), Tar:ar (L), Ninetythrec (L).
Highflyer: Nable (D), Sir Peter Teazlu (D), Skescraper (D), Viol:unte (0), Omphale (L), Cowslip (L), Spadille (L), Young Flora (L).

- R.8-0s: Waxy (D), Champion (D, L), Tyrant (D), Nimhtshate (O). Pcter (D) : Sir Marry (D), Archduko (D), Ditto (D), baris (D), Hermions (O). Parasite (O , Ambrosio (L), Fydencr (L), l'aulina (L), I'etronius (L).
Waxy (D) : Popo (D), Whalehone (D), Bhucher (D), Whasker (D), Music (O), Minuet (O), Corime (0).
Whalebone (D): Moses (D), Lapdor (D), Spaniel (D), Caroline (O). Wojul : Augusta (0), Zinc (0), Theodore (L).
Whisher (D): Memnon (L), The Colonel (L).
Thantom: Cedric (D), Middleton (D), Cobsub (O).
Orvilla (L) : Octavins (D), Emilius (D), Ehor (L).
rrump: St Giles (D), Dangerous (D), Carefoot (i.).
Linzihus ([1): I'riam (D), Plenipotentiary (D), Oxygen (O), Dango (L).

Pricm (D): Miss Seltz (O), Industry (O), Crucifix (O).

Touchstone (L) : Cotherstono (D), Orlando (D), Surplice ($\mathrm{D}_{1} \mathrm{~L}$), Mendient (O), Blue Bonnet' (L), Newminster (L).
Birdcatcher (L): Daniel O Rourko (D), Songstress (O), Fnight of St Georko (L), Warlock (L), The tharon (L)
The Earon (L) : Stockwell (L).
Mcllourne : West Australian (D, L), Blink Ponny (D, O), Sir Tatton Sytes (L).
Necuninster (1.) : Musjiit (D), Hermit (D), Lord Clifden (L).
Sesctmeat: Macaroni (D), Mincemeat (O), Mincepie (O).
Stockwall (L): 13lair Athol (D, L), Lord Lyon (D, L), Doncaster (D), Reralia (O), St Albans (L), Caller On (L), The Marquis (L), Aonievement (L).
King Tom: Kinuctaft (D), Tormentor (O), Ilippia (O), Hann:b (C' L).
Rataplin (son of the Barou) : Kettledrum (D).
Monarguc: Gladiateur (D, L).
Parmesan (son of Sweatmeat): Favonius (D), Chemorne (D). Bucea 2ecr: Kisher (D), Formosa (0, L), Bhigantino (O).
Lord Clleflen (L) : Janoette (O, L), Hawthornden (L), Wenlock (a Petrarch (L).
Advertarer: Pretender (D), Apoligy (O, L), Whasel of Fortune ($(\%$. Blair Alhol (D, L) : Silvio (D, L), Craig Millar (D).
The successes of the St Leger winters, the Erron and his sun Stockwell and his grandson Dlair Athol, as well as of Touchstone and his son Newminster and his grandsons Lord Clifden and Adventurer, as stud horses, are more merked than perbaps those of any others in the annals of the turf, except Waxy and his descendants, of whom Whalebone is perhaps the best. Indced the most successful cross of modern times is the double cross of Whalebone, the "rcady money" cross as it is called, which is arrived at by interinising the descendants of Whalebone through Sir Herculcs, Birdeatcher, the Baron, Stockwell, Rataplan, Camel, Touchstone, Newminster, and Adventurer. Isonomy, by Sterling, son of Oxford by Birdcatcher, is a case in point ; he is oce of the best and best bred horses of the century." He has no less than five strains of Whalebone and seren of Waxy in his pedigree, as well as one of Shuttle, the scarcest blood of all.

In regard to mares it bas very frequeutly turned out that animals which wer brilliant public performers Lave been far less successful as dams than others which were comparatively valueless as runners. Beeswing, a brilliant public performer, gave birth to a good horse in Newminster ; the same may be said of Alice Hawthorn, clam of Thormanby, of Canczou, dam of Fazzoletto, of Crucifix, dam of Snrplice, and of Blink Bonny, dam of Blair Athol; but many of the greatest wimers have dropped nothing worth training. On the other hand, there are mares of little or no value as racers who hare become the mothers of some of the most celebrated horses on the turf; among them we may cite Queen Mary; Pocahontas, and Paradigm. Queen Mary, who was by Gladiator out of a daughter of Plenipotentiary and Myrria by Whalebone, when mated with Melbotirao produced Blink Bonny (wimner of the Derby and Oaks); when mated with Mango and Lancrost she produced Haricot, dam of Caller Ou (wimer of the St Leger). Pocahontas, perhaps the most remarkable mare in the StudBook, never won a race on the turf, but threw Stockwell and Rataplan to the Baron, son of Birdeatcher, King Tom to Harkaway, Knight of St Patrick to Kinight of St Geara. and Kmoght of Kars to Nutwith-aH these horses being 16 hands high and upwards, while Pocahontas was a long, low mare of about 15 hands or a tritle more. She also gavo birth to Ayacanora by Firdcatcher, and to Arancaria by Ambrose, both very valuable brood inares, Araucaria lieirg the dam of Chamant by Mortemer, and of Rayon d'Or by Flagedet, son of Jlutus by Tuuchstone. Paradigm again produced, among several wimers of more or less celcbrity, Lord Lyon (winner of the Two Thousand Cuincas, Derby, and St Leger) and Achicrement (wimer of the St Leger), both being by Stackwell. Another mare that has become famous was Mangancse (1853) by Birdeatcher from Moonbeam by Tomboy from Lunatic by the Prime Minister from Marioe by Shathe. Mongancse when matod with Rataina
threw Mandragora, dam of Apologs, winner of the Oaks and St Leger, whose sire was Adventurer, son of Newminster. She also threw Mineral, who, when mated with Lord Clifden, produced Wenlock, winner of the St Leger, and after being sold to go to Hungary; was there mated riitl- Buecaneer, the produce being IKisber, winner of the Derby. It is usual to select sound, roomy mares, giving preference to those that are comparatively speaking low and long, and whose temper and disposition are good, of course paying strict attention to their blood, more especially if breeding from such large horses as the sons of Pocahontas.

We append the pedigree of Blair Athol, winner of the

Derby and St Leger in 1864, who, when subsequently sold by auction, fetched the unprecedented sum of 12,000 guineas, as it contains, not only Stnekwell (the emperor of stallions, as he has been termed), but 'Blink Bonny and Eleanor-in which latter animal are combined the blood of Eelipse, Herod, Matchem, and Snap,-the only two mares that have ever won the Derby, in 1801 and 1857 respectively, as well as those queens of the stud, Eleanor's great-granddaughter Pocahontas and Blink Bonny's dam Queen Mary. Buth Eleanor and Blink Bonny won the Oaks as well as the Derby, and it may be observed that they are the only winners of the former race that appear in the pedigroe.

Point of The shape of a race horse is of considemble importance, the raco- although it is said with some degrec of truth that they borso - win in all shopes. There are the neat and elegant animals, liko the descendants of Saunterer and Swectmeat; the large-framel, plain-looking, and heavy-headed Melbournes, often with lopears; the descendants of liadcatcher, full of quality, and of more than average stature, tbough sometimes disfigured with eurhy hocks; and the mediunsieed hut withal speedy descements of 'Jonchstone, though in some cases characterized by somewhat loabled sibnulders. In height it will ho found that tho most sucensful meers average from 15 to $16!$ hands, thas tremer buine ene idered somewhat small, whilo the datter 38 numperemaldy very bate ; the menn may la taken ns butwera bit and fe hands (the banlat inchos). The
head should be light and lean, and well set on; the ears small and pricked, but not too short; the eyes full; the forebcad broad and that; the nustrils large and dilating ; the muzzo fino ; tho neek moderate in length, wide, musentar, and yet light; the throat clear ; the windpino spacious and loosely attached to the neek; tho crest thin, not coarso and arched. The withers may bo moderately high and thin; the chest well derwoped, but not too wide or deep; the shoukder shoukd lio well on the chest, and be nbliquo and well covered with muscle, so as to reduce concussion itn galloping; the upper and lower arms shoulal he long and muscular; the knees broad and stroup; legs short, flat, and broad: fetlock joints large: phstemg strong and of moderato kogth; the fect shouk be sandmratmy lage, with the heds open and froms sond
-with no sigus of contraction. The budy or barrel should be moderately deep, long, and straight, the length being really in the shoulders and in the quarters; the back should be strong and muscular, with the sboulders and loins running well in at each end ; the loins themselves should have great breadth and substance, this being a vital necessity for weiglit-carrying and propelling power uphill. The hips should be long and wide, with the stitie and thigh strong, Jong, and proportionately developed, and the hind quarters woll let down. The hock should have plenty of bone, and be strongly affized to the leg, and show no signs of curb; the bones bolow the hoek should be flat, and frec from adhesions; the ligaments and tendons well developed, and standing out from the bone; the joints well formed and wide, yet without undue culargement; the pesterns and fcet similar to those of the forehand. The tail should be high set on, the croup being continued in a straight line to the tail, and not falling away and drooping to a low set tail. Fine action is the best criterion of everything fitting properly, and all a horse's points ought to harmonize or bo in proportion to one another, no one point being more prominent than another, such as good shoulders, fine loins, or excellent quarters.. If the observer is struck with the remarkable prominence of any one feature, it is probable that the remaining parts are deficient. "A well-made horse wants dissecting in detail, and then if a good judge can discover no fault with.any part, but finds each of good proportions, and the whule to harmonize without defect, deformity, or deficiency, he has before him a well-shaped horse; and of two equally well-made and equitably pruportioned horses the best bred one will be the best. As regards hue, the favourite colour of the ancients, according to Xeuophon, was bay, and for a long time it was the fashionable colour in England; but for some time chestnut thoroughbreds have been the most conspicuous figure or English race-courses, so far as the more important events are concerned. Eclipse was a chestnut; Castrel, Selim, and Rubens were chestnuts; so also were Glencoe and Pantaloon, of whom the latter had black spots on his hind quarters like Eclipse, and more recently Stockwell and Doncaster. Birdcatcher was a chestuut, so also were Stockwell and his brother Rataplan, Manganese, Mandragora, Thormanby, Kettledrum, St Albans, Blair Athol, Regalia, Formosa, Hermit, Marie Stuart, Doncaster, George Frederick, Apology, Craig Millar, Prince Charlie, Rayon d'Or, and Bend Or. The dark browns or black browns, such as the Sweetmeat tribe, are not so common as the bays, and black or grey horses are alnost as unusual as roans. The skin aud hair of the thoroughbred are finer, and the veins which underlie the skin are larger and more prominent than in other horses. The mane and tail sheuld be silky and devoid of curl, which is a sign of impurity.

Whether the race-horse of today is as good as the stock to which he traces back has often been disputed, clicfly no doubt because he is brought to more carly maturity, cemmencing to win races at two years instead of at five years of age, as in the days of Clilders and Eclipse; but the highest authorities, and none more emphatically than the late Adminh Rous, arec that he can not only stay quite as long as his ancestors, butalso go a goud deal faster. In size and shape the modern race-horse is unquestionably superior, being on an average fully a hand bigher than the Eastern horses from which he is descended ; ind in eleganee of shape and beauty of ontline he has certainly never been surpassed. That experiments, founded on the study of his nature and properties, which have from time to time been made to improvo the breed, and bring the different varieties to the perfection in which
we now find them, have succeerled, is best confirmed lyy the high estimation in which the horses of Great Britain are held in all parts of the civilized world; and it. is not too much to assert that, altbough the cold, humid, and variable nature of their climate is by no means favourable to the production of these animals in their very best form, Englishmen hare by great caro, and by ceduluus attention to breeding, bigh feeding, and good grocming, with consequent development of muscle, brought them to the highest state of perfection of which their nature is cap able. Sce the section on Horse-Racing, p. 199.

The IIunter. - A good specimen of an English hunter The may be described as a horse for universal use. He may hupter. be a coach-horse, for in many of the animals runuing in the coaches called into existence during the summer months by the coaching revival may be recognized a hunter of known character; he may be a good roadster, for, so far as conformation is concerned, there is nuthing in a hunter to unfit him from being a first-class back; nor is hunting incompatible with military duties, for, by the regulations of the service, officers are permitted to bunt their second chargers. For harness work be is perfectly adapted, provided only the vehicle to be drawn is in proportion to bis size; while most people will recall instances of hunters laving for sume reason or other to be so far humbled as to have to take a turn at the plough or harrow, or, in their older days, even in a chaff-cutter. A hunter may be either Tho thurouglibred or halfbred. In the grass countries, such as rough. Leicestershire or Northamptonshire, riders to hounds endea- bred vour to get their hunters as nearly clean bred as possible; but, in spite of this ambition, it may be doubted whether one in twenty, even in the most fashionable cuuntries, is thorongbbred, thereby proving that a thoroughbred hunter, although undoubtedly a luxury, is not a virtual necessity. When it can be acquired, a thoroughbred hunter that knows his business is a nost desirable possession, save perhaps in a rough country, where bis fine skin shrinks from contact with the objects therein encountered. The comparative scarceness of these animals is, bowever, easily accounted for. From 12 to 14 stonc is by no means an uncommon weight for a man to ride hunting, saddle ineluded, but few thoroughbreds are up to it; one that is commands a large price, from $£ 250$ upwards, according to "manners." It is often said that thorouglibreds do not make pleasant hunters, but the complaint, if tbere is any ground for it at all, is really against the result of the treatment to which nincteen out of twenty thoroughbreds hare to submit, and not against pure blood itsclf. A large proportion of thoroughbred stock come to the starting-post at two years old; and this means that they bave been in the traincr's bands since they were ycarlings at least. Now a training stable is just the place for colts to pick up sundry undesirable tricks, which may at some future time cause the unprofessional rider a little trouble; they get to lean on the hand, often turn out fidgety and fractious, and are not unfrequently inveterate pullers. When fit to go, the young one will bave been tried, and if he fails to gallop fialf a mile at best pace he is probably turned out of training, although perbaps it was not till the last dozen yards were reached that there was any sign of failing power. Now, although the colt may be numble to stand the test applied to him by the trainer, there is no reason at all why be should not be able to go all day at hunting pace, becauso the powers of speed are not taxed to the same degree. The young thuroughbred is thon perbaps culucated for hunting ; and hence it is that nearly all bunters-thoroughbred ones, that is to say-ivegin life in a training stable. Instancer are comparatively rare of persons brecding thoroughioted stock and then keying them for hunting purpuses. The ranks of hurdle-racers and stecple-chusers too are filled
oy theroughored horsce, which but fur these interventions come under the care of the hanting groom.

The halfbred hunter, as he is eccinically called, may be, and is, a very good substitute for the thoroughbred; he nay bave nineteen-twentietbs of pure bloud in his reiss, und still be only "halfbred." P'erhaps seven-eighths of pure blood is about the average for high-class horses; but, iking English hunters all round, the majority are halfbred in a more literal sense, being for the most part by a horse nearly, if not quite, theroaghbred, out of a cummon mare. It is much to ho regrested that the breeding of balfbred dunters is too often neglected altogether, or at least conducted on haphazard principles. Many men take it into their heads to brecd a colt simply because they have a inare which, owing to age or accident, is ne longer fitted for active work; and then, be the mare good, bad, or indifierent, there is little or $n 0$ judgment exercised in the choice of a sire. Nearly all country phaces are periodically visited by travelling stallions, many of which are utterly vorthless, but nevertheless the services of one of them are probably secured by the intending breeder simply because of the saving of trouble. He forgets that there is but little difierence between the charge for a good and that for a bad horse, and finds, when the effspring is ready for sale, that the result of his happy-go-lucky system remains on his hands for lack of a buyer, and costs as much to keep as a valuable animal. Very often, too, a man who has expected to breed a bunter will find himself the owner of a fairly promising colt for a brougham, but having hoped for a hunter ho is unwilling to believe it anything else.
Breed.
Compare this method of setting to work with that adopted by breeders of thoroughbred stock, and indeed by all judicious breeders. Tu begin with, the choice of a dam is a matter of moment; and it is dillicult to sce why anything should be thought good enough for a hunter, even by the inexperienced. The first requisite for a brood mare is that she should be free from all constitutional infirmitics, such as roaring, bat sight, fe. ; and the breeder should be on his gnard when breeding from mares whose legs have given way. True, it may be the resule of an accident, hut care should be taken to ascertain that it arase from that cause, and that a predisposition to inillammation had nothing to do with it. For the same reason persons should be chary of breeding from mares that bave splute, spavins, de., and should certainly reject one whose dam or sire had them as well. Mares that have done much hard work are not the best dams that can be selected, as they are apt to ship their fuals, or to throw undersized ones. The selcetion of a stallion is the more important the more defects there are in the mare. Shombl sho be the least delicate, the stallion should be remorkablu for a hardy constitution, for considering that a hanter has to he out of his stahte for as much as twelvo honss sometimes, and rarely less than seven or eight, and has to earry a heavy weight and gallop and jump, it is plain that a horse with no stamina would be nearly worthless as a hunter, no matter what other giow qualities he might possens. So, too, at to shape: shonh the mare be too bugy on the leg or in the Inck, or too low in front, the stallion shoukd bo singularly free from the defect in question.

While the mare is in foal she shonth be kept on the best foul, for the nourishment given to her is given indirectly to the feat. The keep of the feral in iticuarly thas is not less impurtant than the choice of dam and sire. Thoroughbred colts eat corn from the time they are it month or five weeks mit; ant the samogenerons diet should be ullowed on halfhect homera, at it is only by this, acempanted of course by froper exercise, that tha fames of yong therses expand to their full extent, or that a fonashation is laid

expensive than kecping a colt on hay aml grass durith the first three years of his life, but it will repay itself in the long run, for very often under its influence a cult will develop into a weight-carrying hunter or valuable carriage horse, whete, under more parsmonious treatment, be would never have grown into anything strons enough it carry over 11 or 12 stone.

The breaking and training of hunters is all-impurtant, Brakbecause, m spite of the care that nay hive been expended ing ans upon the choice of site and dam and the keep of the colt, tranis : many young oncs are mined beyoud all hope of recovery daring this process. The colt strould be handled from the day of its birth, so that it may grow thoromghly accustomed to man, without ever having experienced the feehng of fear. The person selected to attend on mares and foals, as well as be that undertakes the training part, should be naturally fond of animals; be should be ceol, and of an almost imperturbable temper, or he will be anicted to deal with the waywardness of some of his pupis, which during their early career may at times expose him to persunal danger, especially if they be well bred; he should thercfore be well endowed with courage and firmness, for an irresolute man is sure to speil every borse he has to do with.

When abeut six months old the colt should receive his first lesson in jumping. Where practicabie, there is no better plan than to feed him in one spot, the approach to which is guarded by a stout rail, which should in the first instance lie on the ground, and over which he must step in order to reach lis corn. In the of urse of about a month the rail may be raised C inches and so on from time to time, but the process should be gradual in the extreme; 2 or 3 inches a month is sufficient until it is a couple of feet high, where it should remain for a time, but at three years the colt should jump it at 3 feet. Befure he reaches this age tho saddle should have been put on and left there for hall an hour at a time, the gruom letting che girths and stirups flap about. At three years the pupil shouk be backed by a light woight; if the rider be the usnal attondant, so much the better, for then it is ineprobable that much resistance will be sbown. The riding asercise should be varied by the young borse being lat by a rather long rein over roughish gromen, such as a common or a plonghed field, when it is not too hard, and over little ditches and very low fences, but they must be small, as it is very undesirahle to have a horse reluse at linst, or to have him fall dosn in attempting a jump. He slanuld be subsequently ridden over small places, but should always have a lead given th ham by an old horse; und the two should stand in aljoming hoxes, so that the enlt may be accustomed to has pulot. At four years old he may be radiden to the moct, and suffered to see a fox fount, but should on no accomet be ridhen up to the homads, nor should he be used as a regular huntur ull he is six.- if net till soven it wall be all the better for him.

In the hunting fiell there are three kinds of jumps at which many refusals and falls take fhace. The first is tmber, the second water or wille open ditehes, and the that a hedge with a diteh on the taking ofl side. As te timber jumping, tho course we have just recommended is the best possille preparation; in jumping the mill, the colt begins carly to excreise, mul therefore to strengthen, the very muscles lue will want by and ly in jumping a gate, if his owner ever siles him at one. A fouther comse of instruction in this must uschal ant may be given in a "circus," that is, a double row of posts mad rals in a eircle abont the size of a cireas ring. Detwren the two sets a comple of strong timber janys should be put ur, one of about 3 feen and the other of about 3 lect 6 inches in height; the howse is then but into the space between the two rails, one
persun stubding in the centre holding a lunge reio, while ภn assistant is present vith a whip, which should, however, be used but sparingly. Really good water jumpers are so scarce that it would well repay the owner of a promising young one to teach him, or have him taught, this most important part of a hunter's business. If a small water. course eas be found handy, it will do for a commencement; the colt should, in his early days, be led orer this; nnd, if possible, the place should be widened gradually, and the water dammed up, the ontt being always lunged over it beforo being tidden, and when ridden ledd over by an old horse. The same course should be pursued in the ease of dry ditches, and hedges with a ditith on the taking of side, both of which must be jumpled bollly, if the rider wish to keep his place with hounds. This gradeal teaching, and the trouble it undoubtedly entails, may sound too theoretical to some who are desiruvs of turning out a finished hunter in the space of sis weeks; but it is to this liurrying, and the substitution of coerctive measures for time and gentleness, that we are to attribute the number of indifierent hunters we find. Every hunting man Enows the ınormous prices realized by really clever hunters; and theso animals are simply orlinary borses on whose ellucation much trouble bas becu espended.
 ant l quilly fast, that wull be nost valuathe which cin gillo and
 grice, but a horise up to weight will nlways, fetch a large sumn Whatever weight has to be carried, nere size minst not bo con. foundel with power; A lorie 16 hands hiyh is not neeessarily a weiglt carrier. A compact well-kait frame is of primars importance ; and although it is a task of great difificulty to explain the points $\mathbf{0 i}$ a alorse on paper, the in intending bilyer may with adrantage mave his attention drawn to some, of the more important requisites. To cress a country well. the hunter mist have long and obligue shoulders; and. in the case of a seight carrier, they ahould be ratier thick. Shoulld the realle have any dificiculty in deciding wtatio oblinuc shoulde satie, he nay get some assittance Trcm punting a sudde on a horse, setting it of course in the right place, and then looking ot the horse from a side view. Should the ho fese have good shoulders, the atirrup leather will hang down at some distanco byzinind the forelega ; bitit if, on the other hand, the shouldeqa bo prichio, the stirupa will be commaratively cloosito the forelegs, emi, on mounting, the rider will tind himelf sitting over the lega instead of behind ithem. Care shoulil bo taken, yiouever, that the sthonlder is well clotheil with muscle. The chest should be hroand ; narrow horsea are sull|wsen to he faster, but under weight they knuck their legz about. The arm must be long, and of course muscultr, the kniee wile, the "cannon bone" (i.e., the bane het ween the knee and the fetlock) short, and the legs flat, with sirong back sinews. The for slowld be moderately wide, and unve gand strong heels, or they will not stand the batering about that falls to the lot of even the most carefully rididen humter.
The clest must be duep pothervise the hose will in all 1 ikelihood Se a short-winded onel), nind as a conseqnence the girth will be great ; a weight carrier shoultid measire 6 f cee 3 inches in condtition round lie barrel, just whete the girth comes. A horso with a well. developed 'Fraute, and of large girth, is generatly a short-legged horse, ase it is called, not that the leess are really shorter-very short legrs are a defornity -but the body is' not too small in proportion is the height of the leg.
ft 1 s cormmonly sail that thic back of a weizht carrier must to short; but tbis does not mean that the hoose should the short from the ellust to the trit, for he should have mucch of his length in liis shoulders and quarters. For very heavy men, the back proper should not tee long; but, as a matter of fact, feys harsss are found the length of wlose back would be a ajudgdged, perifection. A mode. rate length of back is cssential to pinc, and on this question the lito Mhjor Whyt Melville writes as follows :-" 1 t may not be out of place here to to iserve, as an ill ilstration of the well-known maxim HIlores can go in all alapes,' that of the three heaviest men 1 can vill to mind who rode perfectly straight to hoonnts, the best hunter owneed by each wna too long in the back." The loins should be strong, and the liips wide ; fif ragged they will be none the worse.
Thie lind legs aro most important, not only becanse the seat of the , lropelling power is there, but also because they affect the
 ieml. The thimhtheolld be forig and muscullar. the thock well thent, null not benting inwards, when the horse is called "colv-

chould he well guarded by strong sinews, and the masterna moderately lona, and by no means straight. Horscs with straight, aliort pasterns are rough to ride, and ili adapted to stand hard work.
So far, then, as the body is concerned, strong legs, wide hins,
depth of girth, and a short back, or, more properly, a back not depth of girth, and a short back, or, more propurly, a back not too long, are all important ; but it must be remicmbered that, bejond a certain point, the development of any extraordinary stiength is accompanied by a loss of speed, therefore $\begin{gathered}\text { cry } \\ \text { beavy }\end{gathered}$ men must be content to be carried by an animal not unlike an active cart-horse, for a well-bred horse capable of galloping and jumping under 18 stone is ravely scen, and the few that do exist cannot be acquired except at an enormous outlay.

When a mian gets on a horse to try him, the formation and the carrage of the head asal Dtech have a great deal to do with the subsequent purchase or rejection: of liia. If aipearance bo a sine qua non, the head should be smell, but, except for the look of the thang, the size is mmaterial, provided it bo mell set on to a properly shaped neck, the characteristics of which will be presently explaioed. The jaws should be wide, as atso should the head between the ears. The nostrils, though which alone a horse breathes, should be moderatcly large, otherwise free respiration will be interfered with. The eye should the bright and fi!l, but not unduly prominent ; small pig.like eyes are nearly certaio indications of bad temper. The neck should rise out of the shoulders in an easy curve, and be neither very long nor very short; muscular it must be, and the principal muscle is the one running along the top of the neck, a miscular develophent here is usually accompanied by muscular proportions generaliy. The strength of the reck is important, because upon thia the position of the head depends, and if the head be wrongly placed, the horse will never go pleasantly to the hand; indeed, of sucl moment is the position of the head that a horse is often unmanageable when his head is in an improper position, although he is easy of control when it is in the right place. A short-necked horse is sure to make the rider carry its head, because, from the lower part being thick, as it must be where it springs from the shoulder, the head caisnot be set nis at a proper angle. It has been said that a lour neck is productive ol the same inconvonience, but the better opinioas are hostile to this thenry, and experience docs not tend to convince one that a long. necked horse is neeessarily heary in the hand.

A huoter should have a good mouth, and should not pull, - both Fhich matters depen! a good deal upouthe rider, -and should not be given to shying. He shonld, however, be naturally bold, or he may refuse any fence of an uniaviting appearance. Good tenner is a a absolute mpcessity. A strong and resolate rider may put me with a puller, in consideration of many good ponts, but a ball-tenpered horse is of no use in the field, as he is sure to loss his rider his place in a run; moreover, a horse that will be wanted all day cannot afford t , lose his temper and take what is equal to half an hour's work out of himseli at every turn or check, or at every gate-nost that may be enconntered during the day.

Wbatever number of good points a hunter may posiess, they will all be utterly valueless unless he be sound into the bargain. There are two kinds of soundncss, practical and legal. A horse is not legally sound, that is to say, lie is legally unsound, if there is any structural alteration, however slight, in any part of his body, though it may not unfit him in any degree for the innmediate performance of his dutics. To be legally sound, a horse must ho in the same perfect state as when foaled; and each reader must determine for himself how often this can be found in a field of say one hundred horses. To be practically sound, a horse must have nothing the matter with him that is likely to interfere with his dutirg as a hunter, and he can be in this condition without being legally sound. For instance, suppose a man, after buying a horse warrinted sound, take off the shoes and find the smallest possible corn, which would never be fclt, nor diminish the value by one pensy, that horse is not legally sound, lecause the corn, small as it is, is held to be a structural alteration; so, too, a pimple on the body where the saddle would cover it is an unsoundness in a hunter while it lasts. if it prevents the suldle from being put on. A temporary cough is also an unsonndness; so is lamencss c:msed by being pricked during shoeing; yet for sonse of these no man in the worlud would reject a good hunter. It need hardly be ailded that any enlarged joints, of other tokens of work, prevent a horse from being legally sound. On the other hand a horse if not actunlly lame, is legally sound although its legs aro so bafly formed that the merest tyin could predict lameness as the inevitablo result of half an heur's journes.

As to the wind and eyes, however, a hunter shonhl be legally and absolutely soumd. The usual mothod of testing the wind by punching the horsa or jinching the wind pipe is not quate satisfactory; the horse should be gelloped. The amateur will do well to get the bust peterinary surgeon sithin reach to examine tbe eyes of any horse be contemplates haying. Cataract, in its incipient atage, is so difficnlt to liscover that it escapes the notice of any but the most practised person. With restard to the feet and legs, the buyo will line io rost satisted with an essurance that bis horso is

Iractically sound; for of really sound hurses there are not two in a bundred.

The Purchase of a Hunter. - The ature of the country in which the horse is to be used shouli be the intending purchaser's first consideration, because upon it will depend the stamp of animal required, and it is advisable, if jossible, to get a horse that has been used to the prevalent style of fences. Where the fielids are large and strongly enclosed with what are called fying fences, rohing is better than a horse which is nearly or quite thorough. bred; but if the enclosures are small, and separated from each other by banks, with or withont hedges on the top, and with a ditch on one or both sides, a rather more compact liorse will uot only be more suitablo, but cheaper into the bargain. A horse intended for Leicestershire, or any other giass country, motst be aearly thoronghbred, and not ander $15 \cdot 3$, or he would be blown hefore he had erossed half a dozen of the big fields theye : while a lattle horse would take too much out of himself at eacli fence. But for Devonshire, Surrey, Essex, or Sussex, where the Gelds are amall and the foneing for the most part what is called cramped, a horse with less blood and of simaller stature will answer'every jurpose, anul, what is a great coosideration, can be bought for about one-third of the price of a Leicestershire horse. So too a horse unaccustomed to water would be useless in Lord Fitzhardinge's country, nor would a bad timber jumper show to mlvantage with the Blackmoor Vile hounds. Whatever stamp of loorse is used, however, the points we have iosisted on mnst cxist : good shoulders, back, loins, legs, hocks, and feet are nceded in every hunting country in the United Kinglom.
The borse may be purchased cither at auction, Trom a private person, or from a dealer. The first method is not to be recommended nuless the buyer or his agent be a good judge of a lorse, or unless one of the other happen to know something of the antecedents of any lot intended to bn pirchased. Few real bargains aro pieked up at the hammer. Horses of known charaeter, especially if comprised in a stud, always fetch their full value; and to buy a borse of which nothing is known is simply to taks part in a lottery. Buying from a private person is not.aliways a antisfactory proceeding, even when the performances of the horse are known. People entertain different ideas as to what constitutes unsoundness; and in many cases the groom is the only peraon who knows that thero is a serew loose somewhere, and what that acrew is. Purehasing from a dealer requires some little knnvledge. Some men trade only in the highest class of horses, and nust perforee ask long prices to afford a fair margin of profit to cover the original outlay, coupled with the expense of schooling and keep. Others again make a epceialty of "useful" animals at a molerate price. The buyer"s auccess in either case will, to a great extent; depeod upon how be goes to work. I The best course is to select a dealer who has a nane to lose, and to tell hins at once the kind of horse that is wanted, and about the price tbe parchaser is willing to pay. The dealer will then offer whatever horses he can eell at the price, and the buyer can take or reject them as he pleases.

Formerly a warranty of soundriess by the seller reas a necessary factor in every horse sale; but now warrantics aro going out of fashion, many of the leading dealers refusing altogether to give one. Nor is this surprising when the effect of a warranty ia looked at ; no lapso of time puts an end to a warranty. The seller of a yearling may have an action brought againat him in four years time, and, If the jury can be got to believe that the unsoundness complained of existed at the time of sale, the buyer will win. In giving a warranty, the seller of a horso insures, as it were, the care and skill of the buyer, and mny have to sutfer for selling a sound horse which ignorance and carelessness reduced to the lovel of a surew in six months.

There is also a limited warracty; that is, the dealer nay be nibling to warrant the horse for ono month, or fouteen days, or for any other fixed period. In this case, the dealer only warants ngainst such defects as may be discovered within the stipulated tibuc. This kiud of whranty should be lookel at with somonmonnt of suspicion. It is very often given with a horse that mitht not pass the veterinary surgeon, and that has some defeet of which the dealer knows, which retalers it problematical whether he will krep found for miny lengthenel period. With n limited warraty the lorse often eseapes the veterinary onrgeon's inspection ; he lasts eothd for a short time, and then goes lame, the time of the limited warranty luaving monwhile expired.

Tho most sutisfactory mad at present jerhops the most usual course of business is for n horse to bo sold suliject to a velerinary (examination and a trial. A skilful man should discover all syanpetoms of what may be enlled external unsoundmess, while ons in disense of the liver, or any matomal complant, if the veterinary surgon cannot disenver it there is no racmen why the deater shmal have bern athe to find it ont. The trial the hayw will probally mako himself, and, if with hounds, it will be well to narertain what condition then liorse is in. An naimal just out of a dealer's show stable would have mithar his numedes for his wind in a state that would cmulte him to live with hounda ten minates. evern at a
moderate pace. Early symptoms of distress therefore, under sueh circumstances, should not of themselves prompt the rejection of a horse, if he is satisfactory at starting, and if his physical structure is that of a bunter. The age of the horse is determined by the appearance of the tecth till he is seven years old, but the legs are as good a test as anything. Many a horse at five years old is olten worth less as a hunter than one of ten or twelve years old, owing either to a natural want of stamina or to premature overwork. If the legs show mueh signs of work, and if the joints are round and big, tbe money paid should as a vale differ materially from a "sound price." Not tliat perfectly fresll legs can be expected in aged horses, particularly if good purformers; but there is a puint below which "honourable scars" should be looked upon as ali objection, unless the buyer inted to have a "serew."

The Hack. - Under the term "hack" may be ranked The cover hack, park hack, cob, pony, and, in short, saddle hack horses of all kinds save hunters and racers.
The park hack, as its name implies, is for use in fashion. Park frequented places, and must therefore be worth looking hack
at. Fashion has prescribed that the genuine thing slall be about 143 , with a small and well set-on head, good sloping shoulders, and well formed hind legs; he must also be very well bred. So much for his points. A wonderfully good temper is absolutely essential. Street vehicles give but little place to the equestrian, and a series of hurried retreats out of harm's way might ruffle a horse of uncertain temper and not hard worked.jnto the bargain. Tricks of all sorts must be unknown; a whole week's ideness should not produce any uncalled-for gambols. The park hack'e breeding and shape will probably have endowerl him with a fair turu of speed; this is not a necessity. providing his walk and tret be perfection. He should bi able to walk 5 miles in an hour, or he will be picrpetually breaking into an uncomfortable jog when required to keep pace with a quick walking companion. In trotting he should have good but not extravagant action, and, it he is equally easy whether going $5 \frac{1}{2}$ or 9 miles per hour, he is one of twenty. He should be bitted to a nicety, and should have been theroughly well trained. - Especial care should be exercised in the selection of the lady's horse; and the perfection which is so often theoretical in the ense of a gentleman's hack should approdeh a reality when a horse is intended to carry a lady. With regard to the size, it had better not be under 151 at the least, and should have. very good shoulders and by no means a short neck, or clse the rider will esperience that uncomfortable sensation of having nuthing in front of the saddlo.

- The cob is a a nondeacript animal, but withal a very cou valuable one when good. An underbred thickset nnimal, termed a "stocky" horse in somo parts of England, is nut the fashioaable cob, which should have a geod deal of breeding and the strength of a dray horse. Although n cob should not-exceed $1 / 4$, he should bo master-of 15 stone, being generally ridulen by clderly heavy persons. To he worth a largo sum heimist unito to a symmetrieal shape au even temper, perfect manncrs, and casiness in his paces. "If any unc," says a writer in tho Field, "possesses a enb up to .16 stone, who ean walk 4 miles an huur and tret 12, with a.grod mouth and amiable disposition. who fears nothing, and never stumbles, let him, if a rich man, keep him, he will nat get another such in a hurry; if a poor one, let him, in offering him for sale, fear not to 'open his mouth' buddly,' ond demand for him a price which shall make a differenco in this (tho owner's) yenr's income ; fur people must, and usually are realy to, pay for their fancies, and a gooll eub, as already remarked, is, of all the equine race, essentially a fancy article, and one ton for which the demand is always brisk."

A Galloway, althungh strictly speaking a distinct breed, is commonly understood to be a horse not over It hands. I'rior to the introduction of milways, or even before tho fant conches were put upon the rual. Galloways were a
favourite means of locomotion by persons of moderate weight and stature.

A pony must be less than 52 inches (13 hands) from the ground to the top of the withers; else he is a Galloway. Ponies, as a rule, will do far nore work than a full-sized horse; 'they improve wonderfully in a well organized stable; they are, it is said, never lame in the feet, and seldom become roarers; but, as a set off against these good points, they are often very tricky, and sometimes troublesome in the stable. In proof of the powers of endurance possessed by ponies, it is related that a well known one, 12 hands high, called Sir Teddy, raced the mail from Loodon to Exeter, beating it by 59 minutes, and doing the 172 miles in 23 hours nnd 28 minutes. The extraordinary little animal was led between two other horses all the way, and carried no weight.
The chief use of the cover hack is to take the rider to the meet, usnally at the unnecessarily hasty pace of 10 to 12 miles an bour, at which rate the hack should be able to go with tulerable ease to himself and great ease to his rider. He should be from 14 to 15 hands in size, and should, in fact, be a somewhat undersized light-weight hunter. Although the corer hack will generally be asked to canter or gallop, be may be required to trot, and this nust be done at 9 or 10 miles per hour. To accomplish this he must have good hind actinn, but in front he should waste no time by picking up his feet after the showy manner of his park brother; in fact, appearance is not of much importance so. long as the necessary working qualifications exist. A^{*} good temper is desirable, and, although the cover lack need not have such a perfect mouth as the Loudon horse, he should be by no neans a puller.
The breeding of hacks, like breeding for any particular stamp of horse, is all chanee work, especially in the case of halifreds. A rather small thoroughbred borse aud a hackney mare may produce a thing like a pooy, or a ligger animal that is quite useless for saddle work. Even in breeding for hunters, two or perhaps three out of five colts will grow up more fitted for the shafts than for a bridle. Perhaps the generality of hacks are either thoronghbreds which bave been turned out of training, or horsss that havo grown up too small for huoting purposes.
The Churger and 7'roop-Horse.-These are bracketed together because their training and dnty are nearly identical (tho charger of a field officer of an infiantry regiment need only be a decent saddle horse that will stand fire), the chicf lifference between the two being that the latter being paid for by the country is ordinarily a chenper article than the former, which the officer buys for himself.

A charger, fit fur the mounted arm of the service, is a difficult article to meet witl, at least a perfect one is, because so many good qualities must be found combined. A hunter is capital raw material out of which to make a charger; but appearanee, which is not a sine quad non in \mathfrak{a} bunter, is indispensable in a clarger, which must also hare bigh action, though the paces must be easy in consequence of much riding having to be done without stirrups. The best size for a cbarger or a trooper is about 15.2 or 15.3; moderate-sized horses can be made more handy than larger ones, and experience scems to show that they are more hardy and better doers than borses of greater stature. When a horso has been fonnd that for slape and sizo will do for a chnrger, he must be of tho right colour for the regiment, if it be de re riguecir to have any particullar colour, and he must be passed as sound by the regimental veterinary surgeon.
The troop-hirse must be as mach like the echarger as possible, but, as the trooper's prico is limited to about $£ 40$, a difference, and that a very' striking one, nust alway 3
exist. The bulk of the troup-horses are bought wher rising funr years, having of course been passed by the veterinary surgeon; and, being nourished on the best food, these often develnp into well-grown animals by the time they take their place in the ramks. "Before that time comes, however, there is a grod deal to be done in the way of training, fur no matter how quict the four year old may be to ride, or how well be may have been broken from a civilian's point of view, he is no more fitterl for cavalry purposes, until he has passed through the rough rider's hands, than if he bud never been handled at all:

The young horse's presenee at barracks shows that both the colonel and the regimental veterinary surgeon are satisfied with him. Lunging constitutes the first part of his education, after which he is ridden. Now comes the forma-* tien of the paces, instruction in passaging, i.e., walking sideways. on a pressure by the rider's leg on the side opposite to that towards which the lorse is required to move, and in reining back. All these things are done with the snafle only; and, when something like familiarity with these exercises has been acquired, the bit is nsed. The tronp-horse goes more on his haunches than a civilian's horse, and, while be is taught to walk at a fairly quick pace, the canter is practised as slowly as possible. Then comes jumping practice over the bar; and finally sword, carbine, or lance exercise is performed by his rider, and he is ridden first at drill practice, then at ordinary drills, and last of all on a field day.

As the cavalry soldier has to use his weapons with one land, he has only one for the reins; and this renders it important first that the borse should be so broken that the rider can effect with his leg or heel what civilians do with the second hand, and next that the horse should be well under the control of a single band. As before remarked, the position of the bead makes a-great difference in the caso with which the horse can be governed, and as troopers have all to do the same things in the saddle, it follows that they should as far as possible all ride the same sort of horses; accordingly all troop-horses are trained to carry their heads es nearly as possible in one position, that being chosen in which the angle formed by the head and neck gives most power to the rider.

IIarmess Horses.-Just as a hunter is metamorphosed Haroeed into a hack by using a sharper bit aod riding him on the hurses. road, so the mere fact of driving a horse in harness makes him a harness horse, whether he really be hack, hunter, or charger. Carriages are now made of endlesa patterns and of all sizes, so that there is not a saddle horse to be found that could not be accommodated with something ndapted to his appearance and powers. Perhaps the only class of harness horses except cart horses that are not fitted for saddle work are the regular heavy carriage horses-great upstanding animals $16 \frac{1}{2}$ or 17 hands high. These are generally bay, and are bred in Yorkshire or abroad. They aro purchased at three years old by the few dealers who trade in them; and are brought to town, where they are carefully driven about by an experienced breaksman until they are well used to the sights and sounds of London, and have action and strength enough to go to regular work. One well-known firm of dealers never sells these horses, but jobs them, the charge for a year varying from $£ 80$ to $£ 120$ for a pair, accoraing to the value, the hirer of course keeping them, but iaving the right to call upon the dealers to send a fresh horse to replace one that may fall aick or become lane or fail to give salisfaction to the hircr. During the London season many of these pairs may be scen in the carriages of the titcol and the wealthr. Thes are imposing-looking animals owing to their greai size and to the massiveness of the harness, hut when closely examincal they exhibit many faults. Wheir heads are often large,
ehouldere straight, and bind legs defective in power. They are not a very proitable stamp of horse to have much to do with; they must have a certain amount of action, and this on the London stones soon knocks to pieces legs that are not particularly calculated to withstand wear and tear in the first instance; and it very often happens that durings treaking a horse's legs show signs of failing, and he has io be thrown up for a while. Carriage horses are of rurse rot always bay; but greys, chestruts, and brewns are now of any distinct breed.

A really well matched pair, with good action, are worth a long price; and it is most unreasomable for persons, siter sclecting their horses no less with an eye to their : Atural good appearance than for other qualities, to persist in making them carry themselves in a bighly unnatural position, by the grossly unnatural use of the bearing rein, which is buckled up cruelly short. If a carriage horse carried lis head naturally in the position into which it is forced by the abuse of this contrivance, he would be rejected at once; tight reining up is the cause of many horses becoming roarers.

With regard to harness horses of a smaller size, their ranks may be recruited from the class that supplies hunters and hacks ; but straight and loaded shoulders and straight hind legs, unpardonable defects in a saddle horse, are net quite so objectionable behind the collar. Phaeton horses thould bave moderately bigh action, and be compactly yuilt, and should not exceed 15 l , unless the velicle be ery bigh on the wheel. Stage coaching, as a trade, no langer exists in England, but, during the summer months, many well-appointed coaches are put on different roads to places within a day's journey, not only from London, but cisewhere. For this work the leaders are generally about $15 \cdot 2$, and the wheelers an inch higher; they should all have good sound legs and faet, and free but not high uction; the wheelers should have plenty of strength for the exertion required of them in going down hill.

The Cart-Horse. - At the present time it is diffeult to
materials, and heavy iron work, such as boilers, parts of bridges, de. From their great size they require a large amount of food; and, although occasionally useful for drawing heavy weights, they are being gradually displaceal by a lighter and more active horse.

Stable Management.

In treating of this part of the subject, it is assumed that the stable is in a bealthy situation, for in an unhealthy one trouble or expense will be simply thrown away. Horses dislike bad smells; the drainage of the stable should therefure be well looked to, and the traps should be as far from the stable as circtustances will permit. The pit for the reception of the manure and foul litter, which should be constantly removed, should also be some distance from the stable.

Stalls should not be less than 6 feet wide, if 3 neches stalls. more can be had so much the better. The partitions should be long enough to prevent horses kicking each ather, and high enough, towards the head, to prevent then biting one another. Some authorities recommend that the partitious be so arranged that horses cannot see each other; it makes them restless they say. The soundness of this advice is open to question: it may perhaps hold good with regard to race-horses ; but the horse is fond of company, and certainly horses that are driven together, or ridden in company, seem to like the society of cheir fellows in the stable, while, as already stated, a stable companion is useful to lead young horses over feaces in their early attempts at leaping.

In dealers' stables the floor of the stalls often slopes considerably from front to back. This makes a horse louk bigger than he weally is, but it throws all the strain of supporting the borly on to the back tendons, and showld not be permitted in private stables. A fall of $2 \frac{1}{2}$ inches is more than enough for the purposes of draining.
As regards the internal arrangements, especial care should hirit. be paid to light, ventilation, and temperature. A sufficient iog ampunt of light is indispensable for the bealth of the borse. Horses, like men, are greatly influenced by surroundings, and, considering the number of hours in the week spent indoors, a borse can no more thrive in a dark stable than a man in a dark room. Moreover, a borse brought out of a dark stable is much more likely to shy than one whose eyes had not been dazzled by the sudden change from dark to light. Dark stables were once thought to be conducire to good feeding, and to making a borse lie down, but the idea is now exploded. The horse owner may here be warned against seeking to make up for a deficiency of natural light by having the whole of the interior of the stable whitewashed. To the height of 7 feet from the ground the walls should be coloured with some neutral tint, that the horse's cyes may not be injured by the glare inseparable from whited walls. Dark stables encourage earclessness in the groom, the result being an accumalation of dirt; and, even if the stableman be an honest worker, he cannot see to clean the foors and carners properly unless light be freely admitted to the buililing.

In the ventilation of stables many theories have been Ventlle propounded, und many appliances suggested, but most of tion. the latter have failed from lefting in cold currents to a greater extent than they let ont the fonl air. In nineteen cuses out of twenty, the ventilation of private stahles consists of holes in the brickwork. In using these it will be found advisable to havo thin pieces of zine, with felt edging to prevent noise, and with easy working hinges, nailed outside tbe wall, to act as valves; then silould the wind set from the fuarter in which tho ventilutors aro sitnated, the zinc coveringe will be blown against tho apertures, and the cor
trance of cold currents to any great extent therelyy lindered. When the stable is empty, dours.and windews should be thrown open if the weather allow it to be done without reducing the temperature too much. These remarks on ventilation apply chiefly to smaller stables built in the vicinity of a dwelling house ; in the case of stables built in open spaces, for the reception of a large stud, recourse will generally be had to the advice of a civil enginecr on the question of ventilation, but even then experience has shown that the difficulty will not be wholly overcome. The apertures in the walls for the eseape of fuul air, which, being hifliter than fresh, ascends, should in no case be less than 7 feet from the ground. If the ventilators are lower than this there will be a current of cold air blowing on the horse's body, which would be injurious at all times, but especially when the horse comes in warn from work.
Temperature is of course an important matter, but chiefly so during the colder portions of the year. In summer it is all but impossible to keep stables cool when the thermometer is standing at 80° Fahr. in the shade; still if the situation is favourable to coulness, and the temperature can be kept below 70°, so much the better. During the bunting season, stables may be too warm by accident or frum design: they may be owerheaterl owing to in. sutheient rentilation, or becalise the gromm connects a glossy coat with a stable bordering on tropical beat. Abuit 55° Fahr. is a good mean temperature, but this cannot of course be maintained when the outside air is some 10 or 15 degrees higher; the most that can be done is to kecp, the temperature up to that point in cold weather A moderate temperature and moderate clothing are better than too low a temperature with excessive covering, or too high a temperature with but little clothing.

Having mentioned clothing incidentaily, it may here be said that the best shape is the ordinary sheet, cut out at the neck, and buckled across the chest; the sheet should be long enough to reach the root of the tail, and should ho large enough to buckle easily round the chest; it it be tight the hair will be rubbed. Some people prefer a straight rug that does not buckle, the front being formed of a separate breast cloth. Hoods are only needed when at exercise in bad reather, or when the horse is travelling by railway. Particular care should be taken that the roller does not touch the back bone; the parls should be so placed that there is a clear spaco of 4 imeles between them, so as to leave a clear clannel over the back bonc. The neglect of this precantion will inevitably produce a sore lack, and, while first of all making the horse slyy. of leing touched, may subscguently make him visious in the stable.
Cineral alarity is a bsolately indispicnsable to successiul stible Recut.
fully, to discover whether any injory has been received during the night irom kicking, getting cast, or ally other cause. Horses are then fod and watered, the litter is turued up, that which has been in use daring the night not being allowed to remain in the stable dnring the day, and the stable is put in order ; exercise succeeds, after which the animals are thoroughly dressed, but the dressing should never be performed ont of doors. Feeding takes place agnin at 12 noon, 4 P.M., and 8 r.m., when the horses are done up for the night.

Of the feeding of race-horses nothing need be said here, feeding as their care is a business of itsclf, with which the private person las nothing to do.

Oats and hay form the diet upon which horses are kept, to which beans are added for hunters and horses in hard work; while bran, liased, and carrots are used for special purposes, in addition to, or sometimes in substitution for, the regular food. Hacks and horses in light work will do well on a daily allowance of 8 to 10 tb of oats and 10 or 12 tb of hay. Beans, which cotatain about 30 per cent. of nutriment, are heating, and should be given only now and then in small quantities. The oats are best divided into four feeds, and beans when used should be given at the midila: and last feeds A handful or two of chaff is useful witis each feed, as it compels a horse to masticate, but in many stables there is a prejudice against it, and the hay is pui into the rack four times a day, not more than 3 lb being given at one time. Oats shonld be braised; but, as they soon tum sour, it will be best to bruise every morning only as much as will suffice for the day's consumption.

Bran is indigestible, but it is a laxative, and, so far as hunters are concerned, it is only given in the form of a mash after a day's hunting, and on Saturday nights. Tc make a bran mash, put half a pint of linseed in a pan, pour a quart of bciling water upon it, and let it soak for four hours, then take about $2 \frac{1}{2} \mathrm{~b}$ of bran and mix with it enough bet water to saturate it; stir the linseed composition into this, and it is fit for use. Should the mash be pot in the manger, the latter should be scoured out with hot water afterwards, or the sourness of the remains of the mash will make many horses refuse their corn.

A fow carrots, which must be carcfully washed and scraped, given every now and then, are useful as tending to keep the blood in good order, and checking any symptoms of fever induced by the dry food upon which loorses live.

Maize or Indian corn contams so small a proportion of nutritious matter that it is not fit for hunters or for horses from which fast work is required. The London General Omnibus Company feed their large stud almost entirely on this diet, and it is found to answer (see Mr Cburch's evidence before Lord Rosebery's Morse Cummittoe, 1873). It is given in the same quantity as oats.

Of late years corn merchants hare introduced the system of foraging gentlemen's horses at the fixed price of ene shilling per hand per week. Thus a horse of 15.2 would be foraged for 16 s , and one between 14 and 15 hands for 15 s .

A correct system of watering horses is no less important Wate than proper feeding with dry food. Many grooms, in thicis ing. horror at giving 100 much, fall into tho opposite extreme, and stint the lonses muder their care to an extent that is positively cruel. The result of such a system is fever in various shapes, and in general loss of condition. There has of late years been a growing tendency to favour the plan of letting horses have access to water at ail hours of tho day and night, and experience has shown that the effect is beneficial. A separate tank in the stall or loose box is feti. by a tap, and a constant supply should be kept up. If a harse watered of this plea le watched, it will be even thas
he never takes more than a very few simall mouthfuls at a time, notbing like the quantity allowed by the most stingy eronm; and, if the amount consumed be measured, it will We formd that, after the first day or two, the horse actualiy drinks less than when waterel at stated intervals. JVhace the al litilem plan is not adopted, horses should he waterel four times a day. "Nothing can be more unwise than the unducstinting hunters of their water un hunting days; no one could expect as sutisfactory day's work from an aminal suffering from excessive thirst. Where horses can" have water when they like, it will searcely be necessary to do moro than to put the cover on the water tank at about $9 \cdot 30$ on lunting mornings, assuming the meet to be at 11 . . It need hardis be said that the quality of water supplied to stables should be carefully attended to. Horses are easily made sict by impurities, and are very dainty in their choice of water. Whew on a journey, lorses should never be allowed to drink at public trouglas, as disease is very likely ta be contracted by such a proceeding.
Fxercise. Exercise is a great preservative of health, but, like food and medicines it should be given at proper times and in proper quantities. Exercise must not be confounded with work; the severe work horses are sometitues called upon to perform takes much out of them, and exercise is ono of the means adopterl to counteract any ill efiects of hard work. In order that the muscles of a horse may not bacome prematurely tired, it is not sufficient that they should bo violently taxed some three days a fortnight as with hunters; they must be used every day, and the exercise by which this is effected causes all the tissmes of the body to receive their support by reason of the tone given In the eireulation of the blood. Hacks, harness horses, and particularly ladies' horses, 'should be sufficiently well exercised to guard against an excessive exuberance of spirits; for nothing is more annoying than to have an animal, quiet ennugh in an ordinary way, perpetually jumping about at the approach of vehicles or other horses, merely becanse be is too fresh. Hunters should have two bours walking exercise daily; sometimes a. slow trot of 3 or 4 miles may be indulged in, but, when the hunting season fairly sets in, and horses are hunted regularly, cantering should be forbidden at exesise unless either master or man happens to be a very good judge of what kind of exercise a horse requires.
Treat-
Ilacks und harness horses are but mely called upon to pierform sent of duties so exlansting ns these of the hunter. In the caso of the Ludters. former animals, a anitable stable, gool fool and water, ventilation, athl "xercise, complel of comrse with careful supervision. should, savo under exceptional circumstanece, suffice to keep them in groml bealth. All the previmus remarks apply in the case of hunters, but with them something more is needed. First there is tho grtting thin animal into condition, and then comes the proper modo of tueatment nfter work, when the system is cxhansted, and the horse entrering perhajs from the effects of a blow or a dall. . The art ind getting hunters into condition lins made fereat strides during tho Inst fifty years. Nowadigs one selitom hars of hoises lying in the field through sheer exhaustion; and it cannot be said that their work is ijghter now than it was then.

To hegin at the begimning, n hunter should he fit for uso by the ent dof Octoler, and the ghestion then arises, how Inher before this time shonld ha have been in what may be enllal traning? -asing the wom. Inf conrse, in a differnt sense from what is umherstom by trainind in atacing shate. The noswe to this questiondepends very much byon how, at the termination of the last hanturg season, the owner polvel the difficuley of "what to alo with thu horsps." Λ ssuming forseanre to be kepit through the sumbur, it will probshly he nearly fonothafter the base hanting day befon the summerng tratment
 If wise, the owner will have called in a vetomany surment to see what damarea loave tem sustainal; but he shonk the one wacd to tumpors and their peculiar intimitios

Many perann witl tho best intentions, and followind very buenat trablams, lom their horsey ont to grasa, bayime that a

tarne.d mito a fiell e.. '「uesday without his cluthiner, and left to sulmat entircly on "grass. This sulden change of lwing, which used to be so universal in the case of horses, is condemned in the haman subject; and that is not the least powerful algument that can lu urged aginst it. Morcover, most veterinayy surgeons agree that more huntors have been male roavers or contractet alisease of some kint fomb buing turnel out to grass than fiom abnost any other canse. In the days when summering in the fell!s was the usual nethod pursucd, a lunter was never really fit antul the sinsun was far alvancel, and the thming out to grass in Nay was simply maduins all that had been doue since the previons sugust. Albough locre and these a few indiviluals adopted a more common senso way of summering their lamters; the full evils of the grazing system wero not impressed upen the public until "Nimuod," in letter's to the Old Sporting Magazine, advocated the aloption of a more enlightened system, and showed the weak points in the old one. - The advantages clamed for the phan of tuining out to gitws were that the horse's system and his feet bencfited, and that it was cheaper. : But violeut changes in the nanner of living cannot be beneficial, and; as regards the feet, Mr Goodwin, yeterinaly surgeon to Geergo [V., sait: "l. have invariably oliserved, where horses are turned ont to grass during tho diy and hot summer months, that, on bringing them up to be put into stable condition, their fiet are in a much worse state than when they went out, llien up, and so hard and brittle that, on the application of a tool to bring them into a form to receive a slioe, the boun breaks like a piece of glass, and all the naturally tough and elastic property is lost, so that it requires some months to remove its bed ettects. Horses at grass are much inclined to thrush." As to the expense, the olyjection is too tritting to be taken as a set off against any real advautages tho system alvocated by "Nimrnl," and now generally adopted, may be found to possess.
But in whatever way a horse is summered, it is clear that there must he a great cbange from a state of hard work to one of absolute rest and guiet, and this change should not be the work of a moment. a Enless an owner be particularly lucky, somo one or more of his hunters will gencrally show signs of weas and tear before the end of the season has arrived, and these should be the first thrown up. They shonh he exereised daily, but their corn should he dininished, and theredressing in the stable need not be of the same thorongla kind as when they were in full work. After about a fortnight of this treatment summerng may begin un its full scnuc "The state of the horse's legs, and the judymeot of the owner, will determine whether the horse shall be exerensed daringr the summer, or left to exrucise himself. In the former case be must rimain shom, and have his fect stopped two mights a week with lamp tow, or, if there he much tenuency to fever, with tow dipped in the best Stockholm tar. Exercise should take placo in the cool of the day, in the moruing for choice, ou soft ground, for abou: an hour and a half. Whero the horse is left to exercise himself, he should be housed in a good-sized shel or box openiog into a stiaw. yaril or smell paddeck, which shouh be shaded by trees or huildin:og, so that tho maximum of air can he breathed with the mmimuns of expraure to the sun. A horse thas kept should havo his shoes removel, aud, as his feet cannot then he stopped, he should stand ouce or twire a week, fir an hour at a time, on wet clay.
a. Tho constitution of each purtocular horse should be taken into account in deciding how he shall he fed during the summer months. The ain to he kept in vive is to maintain the strength, but not to enspmiter fover, - to let the system down as it were, but not to undo all that has been done during the lunting season to a greater exteut than may be found necessary. As a general rule, three feeds of oats a dhy (the feds being rather smaller than those given during wark) will be sufficient; benns should be eschewed, but 8 or 9 lb of h.y may bogiven. Grecu food should be given with cantion, say twre or thrice a weck, to assist in mantamiog a healthy action of the bowels.

The getting the liorse into contition "again" for the ensuing season shoull he accomplished gradually, and all violent exertion should be avoidel, About the beginning of August the shoes should tie put on the unshod horse, and he shonh have ou hour's walkin. exercise daily for about a week, when the time may he extended b: degrees. The borso that has beren liscreised all the smmmer with ned no special attention-until the lemmong of Scptember, nout which tine all the horses should have show trotting exereise twice a week on soft, but not deep, grouml. During Oetolor canteringe may be indulged in twice a woek, hut jlenty of walking exireise should form part of orry day's work. 'The quantity of onts giveli should of conrse he incrasel as the work gets stroner, un't. before the commencement of the humting sason, the fuil quantisy is reverted to.

It is of course the groom's duty to get a hamter into comblition. and to npply the proper trentment on his return to the stalike, when thed by the day's work; but during the lay the horse will be und r the care of the rider, mad carclessness or wat of judgment in his fort inay occasion injuries not to be overcome by any linuwn sy etem

if more thin a mile or two from lidme, or if the day has been at oll s:verc, shouhl get lis horse some gruel at the nearest inn or cottare, or, failing fruel, a little tepid water, with or without a hambul or two of hlour stirred into it. A horse's stomach is small in proportion to the size of his body; he should not thervore be hejt without sustenanco of some sort longer than is necessary. Shonld the animal nhow signs of ereat distress, he should be got into the lirst stable that is reached, or if there is not one handy into: slud, and the more airy it is the better. Tho head and legs should bo well rubbed; clothing should be put on the body, and a condial of sume sort ailministered as quickly as possible, -slerry, finits, or beer will do; and a veteriualy surgeon should be sent fur at mice.

When the hooter retums to his own stable, he should first have his [iai] of warm gruel and linseed malo necolding to the receipt aren alove; and after he is dressed, it will only be necessary to see whether he teeds as usual. If be does nut, water with the chill of :my be given to lim. Shonld he be merely fatigued, a night's rest in an arry box will sonn restore him; and here it may be ouserved that all stables shouht inelude at least one loose box for the reception of a horse returning from liuntiog; sest caunot be so satisfactorily taken in an stall.
'The treatment of horses' legs is a most important part of stablo management, and one whiels is but too oftea imperfectly understood liy men who, though nothing hut strappers, call themsetves grooms. la many stables it is the custom to wasli the fuet and legs of hutses ri:turniug from work, but the practice is calculated to produco cracked heels, a state of things which often resulte also from a too frequent use of wet lineu bandages. The better plan is to forhid the use of water above the hoof; and, as soon as the hunter comés in, some rough serge bandages (kept for the purpose) sloould bo put loosely on his legs. These may be removed after the rest of his boxly has been dressed, when tho legs will be found quite dry, and thu inud will crumble off like sand, while half the labour that wonld have been needul to dry tho washed legs will suffice to brush every particle of grit froun the lair and skin. The legs shoula then be well hanl-rubbed, and the onlinary bandages may be put un for atout four hours; on their removal more.. band-iubbing should take place. A constant use of bandages is to be deprecated, inless it is orilered for sumo particular purpose by tho veterinary surgeon.

I'he reader has bern alrealy worned against being lis own veteilnaly surgeon; but there are certain fainor casualties to which cvery horse is liable, and which an average groom should know how to treat. A very common cause at a huater teing laid up is a blow
on tha leg, which may be cither on the skin or on the sinew. If on the skin, the leg should be bathel with hot vinegar aud water, in equal proportions, three or four times a day. \mathbb{A} blow on the boze alten causes a hony enlargement, but beyond constitutiog a blenish is of no importance. A blow on the sioew is geaeraily the cause of a long period of lanseness, and firing may be needed. If the blow -be only a slight one, bathiug in cold water is the best thing that can be donc.

Cutting is sometimes the result of malformation of the legs, and Cutiong. sometimes the lesult of fitigur, for some horses will now and then brush themsclves after a long and tiring day, who never do so in going to cover. A bont anil change of shoeing must be resorted to.

Corns are to he laid at the door of the shoeing smith. They Corns. arise from the shoe being too tight, or from its being nailed too near the heel. A carcful groom should superintend the shoeing, and shouid instruct the snith to pare the sole at the seat of the corn, and to take care that the aew shoes do not press upon the sole. Tho sole oust be kepit well pared and dressed with tar. Should the corns be so bad as to suppurate, liot liusecd meal poultices should be applied, and work.dispensed with.

Thrush is a diseased state of the trog, caused, in most iustances, Turusa. by the fect heing neglected in the stable. The diseased parts should be cut away, aud the opeaings in the hoof stopeped with tow dipped io tar.

Cracked heels gencrally owe their existence to the legs having eracker been left wet after washiog. la the carly stages cut the thair fon hecis. the sore part, wash witb warm water, dry, and apply glycetin lotion. If riding or driving a horse nith cracked heels, never allow the sores to be rubbed with grease before starting, as the dust or dirt will cling to this, and by getting into the sore make it worse than ever.

An over-reach is a not uncommon occurrence io the hunting Overfield. An old piece of linen, folded three or four times, shoald be reach. soaked in water and fastened on the place, and a prece of oiled silk should be kept on over the linen to prevent evaporation.

Sore backs aro very troublesome to get rid of, and would not Sore happen so often as they do were more attention paid to the back. fitting of the saddle and the way it is stuffed. Dlost saddlers put too little stuffing in a saddle, and so after it is used a few times the inside becomes hord. When tho skio is found to be rubbed, use the wet linen and oiled silk as for an over-reach, and afterwards chloride of zine lotion.

Fever in the feet is gerferally the result of too mach linocking Fever it about on hard roads. Dircetly laneness appears, take off the shoe feet. and place the foot in cold water, putting on a poultice at aigbt.

PART III.-HORSEMANSHIP

Horses being ridden for several distinct purposes, viz, in the csvalry service, for hunting, racing, steeple-chasing, un the road, and in the schoul, there are separate styles of hursemansbip adiaphed to each purpose, and a rider excelling in ona is not of necossity a proficient in the others ; in fact few persons, if any, are cqually good, for instance, at military or manege riding and at stceple-chasiug.

The first step in horsemanship is to mount a horse; but for the performance of this apparently simple feat no fixed rule ean be laid duwn for tho guidance of the civilian. llaving taken up the reins, the rider should stand at his larse's near shoulder facing towards the tail, and in that Insition hold the stirrup with bis right hand for the reception of his left foot. By standing at the shoulder the rider is out of harm'y way in the event of the lurse kicking while he mounts. It is perfectly casy to rarry wot these directions when the man and horse are lonth of middle beight; but it is simply impossible for a shemt man to mount a horse uf 16 hands high in sueh a uanner, he must risk tho kick and stand where he can rcach the stirrup-behind it. Having gained the saddle, the necessity arises for seat and bands. The fact that the seat of a civilian rider must vary to some extent acourding to the size and shape of the animal upon which be finds himself, dwes mot preclude certain principles from apllying in the formation of it, and it is towards the proper understanding of these principles, and the adoption of the right pusitinn of the legs and body, that good instruction is desirable at the outset.

The great desideratum in a scat on horseback is that it
should be frm, and this for two reasons In the first place, a rider with an insecuro seat is apt to be thrown by any unexpected movement the horse may make, such as a slight stumble, or shying; and secondly, without a firm seat, the acquirement of good hands is well nigh hopeless, because, when the batance is once disturbed, the rider will bave to depend on something else for the maintenance of his scat, and this other means of support will gencrally take the shape of "riding the bridle," a practice as much opposed to good horsemanship as it is in trinus to the horse's mouth.

Having gained the saddle, the rider sbould seat himself in the middle of it, and shou:d never allow any part of his person to overlap the cantle, as is but too often seen. Many rules are given for adjusting the stirrups to the proper length before mounting, but in practice they are not to be depended upon,--first, because all men are uot made in quite the same propurtions; socomlly, where two men are of equal height, tho man with the thecker and rounder legs will require a slueter stirmp, than the one with lean and flat legs; and thurlly, men of any build will need a shorter stirrap on: a wide herce than on a narrow one, besides, which, if a horse pulls at all, another hole or twn will give the rider additinal power over his animal. The proper length of stirmb, then, rannot lee satisfactorily ascortained till tha: roder as mamed. . Sithus well in the middlu of the saddle, the thanha being turned in, and the heels drawn smmewhat lark, the stirtup leathers may be let out or taken up imtil the treabl of the stirrup is on a level with the immarakle lume: and it this leugth, when the rider sumith Mr, bat low will dear the pmanel of the
sudale :... aout 3 inhes. For maintaning bis seat the horsonian showid dopend upon his thighs and koees, and wot upon the knee and calf only; at times, of course, when s.a a restive hurse, every available muscle may have to be brouget into play, but the proper rule is as stated. Some people say they ride by balance only, and others that they rido by grip; a proper scat should be an admixture of the two: a man riding by balance only is sure to be licked off while to grip with all one's might duriug an hour's ride is to undertake as much exertion as should last for is whole day. The position or the foot exercises some influence on the security of the seat; at one time it was thought proper to turn the toes in and depress the heel, a pesture that tended to diminish the grip of the thighs, but now the toe should bo turned a little untward, and but rery little upward. A good seat on a horse stould not be strong marely; it shoukt be as gracefnl as the make and shape uf horse and rider allow ; but it shonld not be a stifí, stuck-up seat, which is never graceful, because it is not atural. Abose the loins the budy should be loose, so as readily to allapt itself to every motion of the horse; but it should be upright, for if the rider lean fermard in bis saddle, a false step on the part of the horse is very apt to sead him tlying over its head. The position of the hands has a great deal to do with the seat, but the hands and the reias will be treated of presently.

Eeginners are often advised to learn to ride withont stirrups; if they do, they should have no saddle either, for ridiag in a saddle without stirrups is likely to produce rupture. The soundness of this advice, however, may be questioned, cecause, although riding without stirrups will unduubtedly tend to a firm seat, it will not be one of the seme sort as when stirrups are used ; there must therefore be a process of learning and unlearning The better plan is to prartice both ways eoncurently. Thas let the pupil be properly placed in a saddle with stirrups, and when he las ridden hall an hour let a cloth be substituted for the staille for abuat ten minutes, care being taken to observe the rules alreany laid down for the prition of the leas ; in this way the proper seat will be strengthened, instend of a new one veing formed.

hands
sand the
reing.

The proper adjustment of the reins is the next thing to be attended to, and as the management of these depents so mueh upon the seat being firm and independent of the linille, the acquisition of a firm seat is certainly half way tuwards tho acquirement of good hands. Assuming a siogle rein suafle to be the brille used, the second, third, and fourth fingers of the laft land should bo inserted botwen the reins, which should be alrawn up gently with tho tight hand until the rider fcels that he has got an equal hole of his horse's mouth on both sides, and with just so much pressure that the shightest movement of the left or right rein would cmuso him to turn to tho left or right respecticely; the fure and middle fingers of the right hand should then tako holl of the right rein, which may bo drawn out from the left hand so as to ematlo the hands to be held about 4 or 5 inches apart. The arms from the shoulder to the elbow should hang naturally close to the sides, and the arms from elbow to wrist shonld be about jurallel to the ground, the wrist being hepe loose, so as to yield gently with every motion of the horse. The rider sittiner in thr position deseribed, square to tho front, with his shonders well back, witl be ridiug with fatery Jung reins, one uf the secrets of good lamls; if he stomp forward nod carry his bridle hand at somodistance in front of his burly, so ins tu take a shott hold of his borse's head, scat an I liands will hoth be bast.

When a duntw remed bridte 1 used, the thime finger of She left laml shomb be first inserted lict wern the :nathe

be between the curb reius, the two outside reins will then be the eurb, and the two inside ones the snafle. In this manuer of holding the reins the suaffe is not so likely to slip, while the curb can be easily slackened or dramn tighter. As military riders invariably use the curbonly, the position of snaftle and curb as just explained is reversed in the cavalry service.

When the horse is in motiun, the lands should not be kept in one spet, so as to act like the pert on the pad of a harness horse to which the bearing rein is fastened, as the mouth would thereby becone dead, and the horse would lean unpleasantly on the bit; but the rider should give and take, so that while the pressure is not stronger at one moment than at another (unless there be a reason for it), yet, on the other hand, the hold should never be entirely relared.

In order to encourage the hurse to walk, the head must wa:s not be confined, but the light feeling on the horse's mouth ing. must be kept up. Should the horse break into that unconfortable paee, a jog trot, which, by the way, a well-broken hack should not do, never snntch at his mouth, but restrain him gently. To trot press the legs to the saddle, Trotitis. raise the bridle hand a little, and urge him if necessary with the voice. The rising to the trot should be performed easily; the legs must not swing backwards and formards, mor should the hands be jerked up and down, while the action of the rider should be in perfect time with the motion of the horse, or a passer by may remark that the horseman is riding faster than his horse. To start in the eanter take up Cacter the curb rein a little and turo the horse's bead slightly to the right, at the same time pressing the left leg behind the saddle, the horse will then lead with tho off fore leg which is generally preferred under ordinary circumstances; hut a well-broken haek should be tought to lead with either, and if he becantered in a circle to the left ho must leat with the near leg, as otherwisenn ugly fall is likely to result from the leg being crossed. Galluping is a pace not gene-Gatico rally indulged in by hack riders; when it is, tho hands ing. should be kept low, the body thrown baek, and an extria grip taken, as nearly all horses pull more or less when extended.

Hitherto, only roat or park riding las been considered, ond, with wise people, haeking (except bueking to cover, or in the performance of a journey against time) mews progressing at a strictly moderate pace-for the sake of theis horse, if for no other reason.

Bergimers of all ages are strongly advised to undergo Riding proper iustruction when commencing to dearn to ride. The lessowe fuw dircetions atrealy given may serve to remind a person what to avoid, but an hour's teaching is worth volumes of theury. The instractor shomh, however, be a practieal and well-tanght horseman himself; to be this it mattors not whether he be n prufessional riding master or not. When onee the proper phace for the logs and hands is pointed ont, and the proper way of handing a horso and sitting in the walk, trot, and canter,-when, in short, a person has been put in the way of becoming a fair road rider, he has mate some progress towards being a hunting man. Ihut if, on the other hand, first prineiples are disregardet, noll a riter believes in the system of "it doesn't matter how you ride so lones as you only stick on," it will be a long while before he reaches his own stmolard, except with the compratively few men who seem to have been intented by mature for hersemen. Few self-tanght riders attain to anything like excellence; they may rife quict horses with fair success, amb even in hanting, if possessed If fienty of courage, and mountel on a bold and not ton tender-monthen horse, they may kecp a gand place, but forsemen in the proper sense of the word they never with 1,

Now, assuming the beginner to have acquired some proficiency in riding, nod to have bad a little practice over the leaping bar, he may be desiruus of making his first appearance with hounds, and the question then arises how is the lacking-seat to be exelanged for the hunting one, of which he will probably have heard a great deal, and have seen some very extraordinary specimens.

For practical purposes the chief difference between a park seat and a hunting one consists in the substitution of buots and breeches for trousers, and the shortening of the stirrups some two or three holes. Nest to that of a jockey, the seat of the hunting man is the most importart of any connected with amusement; he must sit firm, so as not to be thrown off when his herse leaps, or makes a slight mistake, technically called "pecking," on landing after jumping a fence, and so as to be able to handle his herse delicately under all cireumstanees, and to make as much of him as possible. As with road riding, so with hunting, the actual length of the stirrups will depend a geod deal upon the forin and action of the horse, but the nature of the animal and the peculiarities of the country ridden over will also have sumething to do with their adjustment. A puller will compel the rider to pull up his leathers one or perhaps two extra holes-a course that may also be rendered necessary in a hilly country, for, in going down hill, the stirrups, if kept at the ordinary length, will generally feel a great deal too long. The rider's body must be kept close to the suddle in leaping, for if he were jerked up, the weight of say only a 10 -stone man coming down on the horse a couple of secends after be has negutiated a large fence is sufficient to throw him down. Nothing but actual practice with hounds can teach a man the kind of horsemanship required for hunting where land of all kinds has to be ridden over, and obstacles of various sorts, natural and artificial, have to be encountered.

Considerable progress may, as already stated, be made in seat and hands within the four walls of a good riding sehool, but as the art of warfare must be learned on active service, and not on the parade ground, so nothing but actual practice in the lunting field will teach a man that kind of lorsentanship adapter to the ever-varying conditions and rlifferent situntions to be met with in a single day's hunting. For example, the geound gone over is not always the level springy turf of the race-course; it is up hill and down date, acrass ridge and furrow, over ground studded with ant-hills (which, unlike mole-Lills, are often very hard), over ploughed lauds, and in boggy countries. Now each of these varicties requires a different method of riding over, and nearly every horse will require different handing under similar circumistances; some oan go well threuth the dirt, while others can only ge on the top of the ground ; some will require ronsing at their fences, while others will want quieting. It will therefore be seen that muci depends on the rider haring good hands. This qualification, though generally understood, is very diflicult to define. A rider with good linnds never depends upun his reins for retaining his seat; nor doos lie pull at the horse's mouth so as to make him nfraid to go up to his bit; nor again dees he ever use any mure force than is necessary for the accomplishment of what Lie desires to perform. But besides all this, there is an unaccountable something about the man with good hands that cannot be described. Pullers appear to renounce pulling, refusers take to jumping, and clumsy horses aprear ncarly as handy as a trick hurse in n circns. Though "hands" can to a great extent bo acquired ly care and practice, yet in the highest form it is a gift like the "hand for crnst" which is deuied to many cooks and cannot be learned.
Ponce. Tore are different kinds of "fences," as all obstacles are

and rails; the first two are, nine times out of ten, awkward jumps, as the take off is either poached by cattle, or clse is on the ascent or descent. Hedges vary according to the custom of the country in which they are fonnd: they either grew in the soil of the field, and are protected by a ditch on one side, or are planted on a bank with a diteli on one side or sometinues on buth. The rider may here be reminded that if a bank is high and the ditch before it but small, there is pretty certain to be another diteli on the far side, for the bank is made by throwing up the carth taken from the ditehes. Then again there are the large banks fund in Wales, Devon, and Cornwall. Lastly come water jumps, which are net with in two forms: the water is either within an inch or two of the top of the bank, so as to be about on a level witb the field through which it Hows, or there may be a space of some 6 or 7 feet from the bank to the water. For the successful negotiation of bruoks a bold horse is required, ridden ly a bold man. No fence that is ever encountered stops such a large eproportion of the field as water; even a clear 6 feet of it will prove a hindrance to some, while anything over 10 or 12 feet will in general be crossed only by a very few. Some horses, good performers over any other description of fence, vill not junip water under any circumstances; while the chance of a ducking deters many from riding at it; and, however bold the horse , y be, he will soon refuse wate: if his rider be perpetually ni two minds when aprouching a bruok.

The pace at when a thunter should be ridden at his fences depends upen the nature of the fence itself, and the peculiarities of each individual horse. With some very good jumpers-they can hardly be called good huntersto steady them is to bid for a fall, while with seme very clever hunters to hurry them is to bring them to grief. With ordinary horses, however, it is a good generai rule to ride at fences of all descriptions as slowly as the nature of the ohstacle admits. In grass countrics, where "flying fences" are found, the rate of speed must of necessity be quicker than when about to take a Devonshise bank of sume 7 feet high, but even at a flying fence the rider slomid steady his horse so as to contract the length of his stride, in order that he may measure the distance for taking off with gieater accuracy. Flying fences consist of a hedre with or without a post and rail, and with or without a ditch on one or betlo sides; consequently a herse has to jump both high and wide to clear them. But in jumping a gite, or a fight of rails, as ordinarily situated, there is no width to be cuvered, and to make a borse go through the excrtion of jumping both high and wide when he need only do one is to waste hi: power, aded to which to ride fast at timber, unless very low woth a ditch on the landing side, is highly dangerous.

All hedges on banks, banks, and douldes must ve riditen at slowly; they are usually of such a size as to make flyin'f them innessible, or at least undesirable. Iorses jump them on and off, and in taking them at a moderate pace thera is a chance of stopping on the top and cheosing a better place to jump from, or, if neets be, of returning and taking the fence at another place. Cramped places will lave to be jumped from a walk or even at a stand; for instance, a tree may be in a line with and cluse te the only practicable $\mathrm{p}^{\text {linee }}$ in a fence; it then becemes necessary to go round the tree before a run at the place can be managed. So, toe, with places that have to be crawled over betncen trees, or with dykes to be crawled klown.

In jumping an ordinary hedge or ditel at moderate siecd, there is of course a monent of time during which the horso is on his hind legs, and in theory the rider should then tea forward, but, in practice, this pusition is so momentary, as i the lash out of the hime legs in the suring is so powerful,
thet it is best not to lean formard at all, because of the difineulty, if not impossibility, of getting back in time for the reverse movement, when the rider should be prt paring to reader the horse some assistance with the bridle as his feet toueh the ground.

Water, as was said befure, stops a field more than any other kind of fence, because, so far as the rider is concerned, a strain to the horse's back or a bad over.reach is likely to result, and the contemplation of a ducking is nut pleasant on a cold day. Then as to the hurse, if he ever got into a brook when young, and found ary diffieulty in getting out agrain, it is ten to one against his ever taking kiudly to water afterwards. When a line of willows indicates the whereabouts of a broek, the horse should be well cullected, a clear place selected, so far as cireumstances allow, ani the pace inereased, though in short strides, up to the very brink. If the hounds jump at the brouk, eyen though they fail to clear it, the rider may take it for granted that at that place the leap is within the capacity of any ordinary lunter in his stride; bence if, when going at three parts speed, a herse's feet come just right to take off, the mere monentum of his body would take him over a place 15 feet wide.

Rility:
Now jumping a fenee is one thing, and riding to hounds is another; a man may be a very good horseman, and yet be a very bad man to hounds. The leading bounds stouild be watehed, and when they turn right or left the rider shonld tura too. Then the choies of ground is important; ridge aud furrow should be taken diagonally, or, if the field be entered towards either end, time will ultimately be saved in going round by the firmer ground at the sides. Ploughed land requires the rider's special attention; an injudicious burry over a couple of deep, fields has settled many a good hunt:re for the remainder of the run. In jumpitg into a phongled field the fence should be taken slowly, and tho rider should lean well back in the saddle, because, lacking the elasticity of turf, a ploughed field, espeeially after rain or a frost, will let a horse's legs sink in deep on landing, and if ho has been ridden at the fence quickly, the sudden resist:ance offered by the soft ground will inevitably cause a fall. When the ground is deep, therefore, the rider's judgment will be shown in avoiding, where possible, large alying fences into a ploughed field, and in ehoosing places that can be jumped quietly.

Pace is a relative term; when the thoroughbred is but cantering, the underbred will be doing his utmost; the horseman must therefore always have an eye to his horse, and must be careful not to press him beyond a certain pace, unless of course he neans to be satisficd with a short life aod a merry one.

The experience of a single duy's harting will teach the novice that gates are far oftener opeoed than jumped; it is therefore necessary that a hunter should be handy at opening them. Many accidents have arisen from horses rushing through a gatoway directly the latch is released, or from their jumping a gate at whieh they bave been pulled up to enable the rider to open it. The horse should be taught to obey the leg as well as the hand, and, by a shight jreessure of the leg, should throw his hamehes round to the left or right as occasion may repuire.

Most writers on hunting aver that there is un art in falting, aud the young gportsman is duly toh to get clear of his hurse as 400 n as possibie. It is not to bo denied that them number of accidents in the lunting field are but fow wnsidering the muther of falls that take pace during the huntiog season, but the rarity of acridents can barlify le nscribed in all beriousness to a proficieney in the art of falling. In the first place, thithes canse many falls, by the horse dropping his hind legs into them; that is to bay, lis prorrcess is arrested white the ridur continues
in the course his horse would have takea had the diteh not been there. When the hind legs are dropped the rider chutches instinetively with his hands and legs, and the violence of his fall is thereby broken, while in ninety-uine cases out of every hundred the ditch prevents the horse from rolling over the recumbent sportsman. Then again as to falls at fying fences $\because:$ en at a somewhat quiek rate, it is lucky for hunting uen that under such circumstances the rider is in the majority of iustances thrown clear of his herse iudependently of any skill or effort of his own. It is only in what may be termed "slow falls" that the rider can save himself by presence of mind and aetivity. When a horse slips into a diteh, or drops quietly on to his knees preparatory to molling on his side, a practised rider bas tine to get clear; but in falls over timber, or over fences ridden at quickly, the freedom from accident must in sober truth be ascribed to luck rather than to good judyment.

Saddles and bridles form uo unimportant feature in the equestrian art, as well as in the establishment of a sportsman. A well-made saddle and bridle make a horse look worth an extra $£ 20$, while nothing contributes more to the safety and conifort of a rider than a well-made roomy saddle. The bunting maxu will be well advised if he patronizes only such establishments as make hunting saddles their peculiar study. Each borse should have its own saddle, and the closer it fits, provided it does not press upon the withers or touch the spioe, the better; but, as oven the best saddlers are addicted to putting too little stuffing into them, the purchaser should, when ordering. stipulate for a liberal quantity. The stirrup irons shouli be mioderately heavy, and, if they are for full grown men. of the largest size made, for the foot will be all the less likely to be caught in the event of a fall.

The sclection of a bridle will depend upon the horse's month and upon the rider's hands. Fur hacking purpose: a double bridle is intmost invariably used, the curb enablin! the rider to make' the horse appear to the best advantage: and, as a gencral rule, a double bridle with an easy curl bit (the eurb chain being protected by a leather strap) is best for hunting purposes, as with it the horse can be collected at lis feneos, and held together in deep ground better than with the snafle only. Some persons use nothing but snafiles on principle, and will submit to a vast amount of diseomfort rather than call in the aid of a curb; but there are not five perfect snafle-bridle hunters out of a hundred, and riding a horse in a snaftle is quite another thing from ridiag a spaffle-bridle horse. The curb, however, should be of no greater severity than is absolutely neeessary; pulling is far nore often caused by the pain of a slarp bit than by auything else. Whatever bit be used, it is uscless to keep up one contiuned drag at the horse's mouth, as it thereby becomes eallous and ceases to be sensitive to any gentle indications. With a puller the bit should be kept moving in the mouth, aud a ehange of bits is often bene. fieial, each pattern acting in a different way, and taking a horse, so to speak, by surjrise.

The less whipsand spurs are used the better; unfinished riders will do well to leave the latter at loune, for although they are very uscful on the heels of a skiltul person, nu mintentional ajplication of them is often attended with disistrons cursequences.

The qualities possessed by a good joekey, either on Trainng the llat or over a country, fully bear out what has been of sail before concerniug the value of early insiruction in jockeya riding, and the impossibility of the existenco of any regular system of civilion horsemanship. After having leen sone timo in a training stable, a lad is put on a guiet horse at exercise; his stirrups are adjusted, and tho reins knoted for him at a proper leneth. He subseruentls
rides other horses each with some peculiurity perhaps, and, to keep his place in the string, a slug must be kept geing, and an impetuops one restrained; they eannot both be ridden alike, bat they mast both be ridden as a jockey anould ride them. In this way the lad learns the principle of holding a puller, getting pace out of a lazy onc, and leaving well alune with a nice free bat temperate mover, he learns to do everything in a borsemanlike manner, and when he has raised himself to the pitch of a "fashionable " juckey, he will frequently be called upon to ride three or four horses a day at race meetings. A juckey must therefore, more than any other civilian rider, have a hand for all sorts
of horses, and in the case of two and three year olds a vary good hand it must be. The same ability to adapt himself to circumstances must be possessed by the steeple-chase jockey, who should possess fine hands to enable him to handle his horse while going at his fences at three quarter speed. In most details the nearer a hunting man approaches to a stecple-chase jockey the better; but in the matter of the seat it must he remembered that a jockoy's exertions list but a few minutes, while none can tell when the hunting man may finish his day's work; the jockey can therefore ride with more absolute grip during his race than the rider to hounds.

PART IV.-HORSE-RACING.

Probably the earliest instance of horse-racing recorded in literature oecurs in $1 /$. axiii. 212-650, where the variuas incidents of the elhariot race at the funeral games held in honour of Patroclus are detailed with much vividness. How far such competitions, which bear in Homer a semi-religious character, may have arisen out of the not unnatural practice an instance of whieh oceurs earlier in the same comexion (Il. xxiii. 13, 14) can only be con. jectured; it is certain, however, that they very soon came to be of-national importance. Aceording to the ancient authorities the fonr-horse ehariut race was introduced into the Olympic games as early as the 23 d Olympiad; to this the race with mounted horses was added in the 33d; while other variations (such as two-borse chariot races, mule races, loose-horse races, special races for under-aged horses) were admitted at a still later period. Of the training and management of the Olympic race-horse we are left in ignorance; bnt it is known that the equestrian candidates were reqnired to onter their nanies and send their borses to Elis at least thirty days befure the celebration of the games commenced, and that the charioteers and riders, whether owners or proxies, went through a preseribed course of exereise during the intervening month. At all the other national games of Greece (Pythinn, Isthmian, Nemean), as well as at many of the lueai festivals (the Athenian Olympia and Panathenea), similar contests had a prominent place. Sume indication of the extent to which the passion for horse-racing was indulged in at Athens, for example, about the tinae of Aristophanes may bo obtained from the scene with which The Clouds opens; while it is a signifient fact that the Bceotiaus termed one of the months of their year, eorresponding to the Athenian Heeatombreon, Hippodromius ("Horse-race month"; see Plutareh, Cam. 15). Details as to the chariot-races and berse-races of the Greeks. nud also of their imitaters the Ronans, will be found under tho headings Circus and Games.

There is no direct historical evidence to show that the ancient Britons addicted themselves to any furm of this amusement ; but there are indications that among some at least of the Germanie tribes, from a very early period, horse-racing was an accompaniment of their religious cultus. There can he no doubt that the Romans eñcouraged the pursuit in Britain, if they did not introduce it ; traces of race-courses belonging to the peried of their ocenpation bave been frequently discovered. The influence of the Christinn Church was cverywhere at first strongly against the practice. The opinion of Augustine and other fathers of the church with regarl to attendance at the spectacles, whether of theatre or of circus, is well known ; those who performed in them wore rigidly eseluded from elurch fellowship, and sometimes even those who mercly frequented them. Thas the first council of Arles, in its fourth canon. deelared than these members
of the church who drove chariots at the public games should, so long as they continued in that enployment, he deniell communion. (Compare the rule in the $A p$. Const., viii 32 ; ap. Bingham, Ant. Chr. Church, xvi. 4, 10.) In many cases, however, the weight of ecclesiastical authority proved insufficient to cope with the furee of old custom, or with the fascinatinn of a sport the unchristian charater of which was not very easily demonstrable; and ultimately in Germany and elsewhere the old local races appear to have been admitted to a recognized place among the ceremonies peeuliar to certain Cbristian festivals.

The first distinet indication which contemporary history affords of horse-racing as a sport occurs in the "Deseription of the City of London " of William Fitzstephen (c. 1174). He says that in a certain "plane feld without one of the gates (quidam planus campus re et nomineSmithfield, quasi Smoothfield) every Friday, unless it be one of the more solemn festivals, is a noted show of wellbred (nobilium) borses exposed for tale. The earls, barons, and knights whe are resident in the city, as well as a multitude of citizens, flock thither either to look on or buy." After deseribing the different varieties of horses brought into the market, especially the more valuable chargers (dextrarios preciosos), he says: "When a race is to be ran by such horses as these, and perhaps by others which, in like manner, according to their breed are strong for earriage and vigurous for the course, the people raise a shout and order the common horses to be withdrawn to another part of the field. The jockeys, who are buys expert in the management of horses, which they regulato by means of curb bridles, sometimes by threes and sometimes hy twos, as the match is made, prepare tliemselves for the contest. Their clicf aim is to prevent a competitor from getting befure them. The horses tou, after their mamer, are eager for the race; their linubs tremble, and impatient of delay.thes cannot stand still; upon the signal being given they stretch out their limbs, hurry on the course, and are borne along with unremitting apeed: The riders, inspired with the love of praise and the hope of victory, clap spurs to their 日lying borses, lashing them with whips, and inciting them by their shouts" (ace Stow's 'Translation).

In the reign of Riehard I. knights rode nt Whitsuntide on steeds and palfreys over a three-mile conrse for " forty pounds of ready gold," accordiug to the old romance of Sir Bevys of Hampton. The feats of the tilt-yard, however, seem to have surpassed horse-racing in popular eatimation at the period of the crusades. That the spint was to some extent indulged in by King John is quito possible, as running horses are frequently nentioned in the register of royal expenditure ; and we know that Edward III. had a number of ruming horses, luat it is probahle they were chiefly used for field sports.

Ao evidence of the growing favour in which horse-
racing was held as a popular amusement is furnished by the fact that public races were established at Chester in 1512. Fandle Holme of that city tells us that towards the latter part of Hemry Vlll's reign, on Slirove Tuesday, the company of sadilers of Choster presented to "the drapers a wooden ball embellished with Howers, and placed upon the point of a lance. This ceremeny was perfromed in the presence of the mayor at the cruss of the Foody or Foonle, an open place near the city; but this fear (1540) the ball was changed into a silver bell, ralued it three shillings and sispence or more, to be given to him who shall rua best and furthest on horsebaci before them on the smme day, Shrove Tuesday; these bells were denominated St George's bells." In the reign of Elizabetio there is evidence from the poems of Bishop Hall (i597) that acing was in rogue, though apparently not patronized by the queen, or it would no doubt have formed part of the :estimes at Kenilworth ; indeed, it seems then to hare gone ruch out of fashion.

The accession of the Stuarts opened up au era of pros;erity for the sport, for James I., who, according to Youatt, had encouraged if not cstablished horse-racing in Scotland, greatly patronized it in England when he came to the throne. Nut only did he ruo races at Croydon and Enfeld, but he endeavoured to improve the breed of horses by the purchase for a high figure of Markham's Arabian, which hittle horse, huwever, was beaten in every race lie ran.

In 1607, according to Camden's Britamia, races were run near York, the prize being a little golden bell. Camden elso mentions as the prize fur running borses in Gatherley Forest a little golden ball, which was apparently anteriur to the bell. In 1609 Mr liobert Anibrye, sometime sheriff of the city of Chester, caused three silver bells to be made of good value, which bells he appointed to be rea for with Lorses on St Gearge's day upon the Ruodee, the first hurse to have the best bell and the money put in by the horses that ran-in other words, a sweepstake-the bells to be returned that day twelvemonth as challenge cups are new; towards the expenses he had an allowance from the city. In 1613 subscription purses are first mentimed. Nichulls, in his Progress of Jemes 1., makes mention of racing in the jears 1617 and 1619. Challenge bells appear to havo continued to be the prizes at Chester, according to Randle Ilolme the younger, and Ormerod's History of Chaster, until 1623 or 1624 , when Mr John Brereton, mayur of Chester, alicred the course and caused the horses to run five times round the Ruodec, tho bell to be of good value, $£ S$ or $£ 10$, and to be a free bell to be held fur ever,-in other words, a preseotation and not a challenge prize.
louring James's reign public race meetings were established at Gatherley or Garterley, near Richmond in lorkshire, at Croydon in Surrey, and at Enfeld Chase, the last two being patronized by the king, whe not only had races at Epsom during his residence at Nonsuch, but also lmilt a house at Newmarket for the purpose of enjoying lunting, and no doubt racing too, as we lime a note of there having been horse-races at this place as carly as 1605 . Races are also recorded as having talien flitee at Linton near C'mbridge, but they were probably merely casual mectinges. The prives were for the most part silver or gold hells, whence the fhase "bearing away the lotll." "lhe purf intwed appears to have attracted a great deal of notice, and the eystematic preparation of rmoning horses was studied, atention being paid to their fecting and training, to the instruction of joekeys,-althongh private matehes hetweeu gentlemen who rode their own horges were very common, -in.it to the aeljusturent of weighta, wheh were tisually ebmut 10 stoms. 'The spurt also seems bu hate themen firm bold of the peonle, and to have become vary papulat.

The reigu of Clarles I., which commenced in 1625, saw still mere marked strides made, fur the king not only patronized the racing at Newmarket, which we know was current in 1640 , but theroughly established it there, and built a stand house in 1667 , since which year the races bave been annual. Mention is likewise made in the comedy of the Merry Beggars, played in 16 ± 1, of races, both hurse and fout, in Hyde l'ark, which were patronized by Charles I., who gave a silver cup, value 100 guineas, to be run for instead of bells. Butcher, in his survey of the town of Staniford (1646), also says that a race was annually rua in that towa for a silwer and gilt cup and cover, of the value of $£ 7$ or $£ 8$, provided by the care of the ahtermen for the time being out of the interest of a stock furmerly made by the nobility and gentry of the neighbuurhood.

In 1648 Clarendon tells us that a meeting of Royalists was held at Banstead Dewns, as Epsom Dowas were then called, "under the pretence of a horse-race," so that horseracing at Epsom was not unknown early in the 17 th century; Pepys, too, in his Diary of 1663, mentions his laving iutended to go to Banstead Dewns to see a fanous horse-race. Cromwell is said to have kept running horses in the year 1653 , but in 1654 he appears to have gone so far as to forbid racing for six and eight mouths respectively. After the lestoration in 1660 , a new impetus was given to horse-racing, which had languished during the civil wars, and the races at Newmarket, which had been suspended, were rostored and atteaded by the king; and as an additional spur to emulation, according to Youatt, royal plates were given at each of the principal cuurses, and royal mares, as they were called, were imported from abroad. Charles II. rebuilt the house originally crected at Newmarket by Janies I., which had fallen into decay. The Round course was made in 1666, and racing at the headquarters of the turf was regulated in the most systematic way, as to thie course, weights, and other conditions. Charles II. was the first monarch who entered and ran horses in his own name ; and, besides being a frequent visitor at the races on Newmarket Heath, and on Burfurd Downs, near Stockbridge, where the Bibury Club meeting was held, he establisbed races at Datchet. In the reign of James 1I, nothing specially noteworthy occurred, but William III. centinned former cruwu donations and even addel to them.

Anne was mach devoted to horse-racing, ana nue onty gave royal phates to be competed for, but ran hurses for them in her own name. In 1703 Duncaster races were established, when 4 guineas a year were voted by the compration towards a plate, and in 1716 the Town Plate was established by the same authority, to be run on Doncaster Moor. Nearly a eentury, however, elapsed before the St Leger mas instituted. Matehes at Newmarket had hecome common, for we find that Baste, oue of the earliest race horses of whom wo bave any autheutic account, won sevend matehes there in 1708 and 1709 . In the latter year, according to Camden, York races were established, the course at lirst being on Clifton Ings, hut it was subsequently removed to Knavesmire, on which the races are now run. In 1710 tho first gold eup said to have heen given liy the Queen, of 60 guincas salue, was run for by six year old hurees earrying 12 stone cach, the best of fliree 4 -mile heats, and was won by Pay Bulton. In 1711 it was increased to 100 gumeas. In 1713 Queen Anue's geldug lepper ran for the Coyal Cup of $£ 100$ at York, and her Mustard, a nutmeg grey horse, ran for the same pize in 1713. Again in 171i her Majesty's bay herse Star won a swecpstake of 10 guineas added to a plate of © 10 at the same f lace, in four heats, carrying 11 stone. In 1716 the Ladies' Plate at York for five year olds was won hy Alepor, son of the Danley Arahim. lacing and mateh
making continued to be a regular sport at Newnarket, and at York and lfambleton, and we also find a record of a race at Lincoln in August 1717 for a silver tea-board, won by Brocklesby Betty, as was the Queen's Plate at Black Harubleton in the year before.

Between 1714 and 1720 there were races at l'untetract in Yorkshire for plates or money. The best of two out of three heats was to be the winner, provided the said horse was not distanced in the third heat-the distance post being 1 furlong from the winning post; and this appears to have bcen a usual condition. In or about the year 172l Flying Cbiders is said to have run a trial agamst Amanzor and Brown Betty uver tho Round course at Newmarket (3 m .4 f .93 g .) in 6 ml .40 s , and another trial over the Beacon conrse ($t \mathrm{~m} .1 \mathrm{f} .133 \mathrm{y}$.) in 7 m .30 s .which is fast even for a six year old ; but it is just possible that in those days the art of time taking was unything but. perfect. In 1721 George I. gave 100 guincas in specie in lieu of the gold cup at lork presented by Anne, and the kiag's or queen's phates bave been given in cash ever since. In 1725 a ladies' plate, was run for on September 14 by female riders on Ripon Heath in Yorksbire. In 1727 Mr Jolin Cheney established the Racing C'aleadaran hastorical list of all the horse matches run, and of all plates and prizes run for in England and Wales of the value of $£ 10$ or upwards in 1727, \&c. No systematic records liad till then been preserved of the running of the race-borses of the day, and it is only through the performances of certain celebrated horses and mares that we heve any information of what actually took place, and even that is more or less of a fragmentary kind. At this time racing was thoroughly established as a national and popular sport, for there were upwards of a hundred meetings in England and Wales; but the plates or sweepstakes run for were for the most part of small ralue, as $£ 10, £ 20, £ 30, £ 40$, and sometimes $£ 50$. In 1727, according to Whyte, there were only a dozen royal plates run for in England :-one at Newmarket in April for six year old borses at 12 stone each, in Leats over the Kound course-first called the King's Ilate course; one for five year old mares at 10 stone each, in one heat, and another in October for six year old horsea at 12 stone, in heats over the same course; one at York (which commenced in 1711) for six ycar old borses, 12 stone each, 4 -mile heats; one at Black Hambleton, Yorkshire (of which no regular account was kept until 1715), for five year old mares, 10 stone, 4 miles; one at each of the following places, Nottingham, Lincoln, Guildford, Winchester, Salisbury. and Lewes, for oix year old horses, 12 stone cach, 4 -milo heats; and one at $l_{\text {puwich }}$ for five year old horses, 10 stone each. A royal plate was also run for at Elinburgh in 1728 or 1729 , and one at the Curragh of Kildare in 1711.

In 1739 an Act was passed to prevent racing by ponies and weak horses, 13 Geo. 1I. eap. 10, which also prohibited prizes or plates of less value than $£ 50$. At this perind tho best horses seldom ran more than fivo or siv times, and some not so often, there being scarecly any plates of note expept royal ones, and very few sweepstakes or matches of valine except at Newmarket until after 1750 ; moreover, as the races were run in heats, best three out of four, cirer a course of several miles in length, the task set the horses before winning a plate was vẹry severe, and liy no means eommensurate with the value of the prize. In 1751 tho great subscription races commenced at York, the city also giving $£ 50$ added moncy to each day's racing. At Nowmarket there were only two metings, one in Apsi] and the other in October, bat in 1753 a second epring meeting was established, and in that year the Jockey Club, which was founded in 1750 , parchased tiee nresent racing
grumnd. In 1762 a second October mectirg rina edded, in 1765 the July meeting, in 1770 the Houghton meeting, and in 1771 the Craven meeting. In 1766 Tattersall': was established at Hyde Park Corner by Richard Tattersal: for the sale of borses; it remained the great emporium of horses, and the rendezvous for betting on horse races, until 1865, when, the lease of the premises at tho Corner having run ont, it was removed to its present site at Knightsbridge.

We now come to a very important period-that at which the great three year oll races were instituted.

The St Leger was established in 1776 by Colonel St The St Leger, who resided at Parkhill, near Doncaster. On the Leger. 24 th September, during the Doncaster races, which took place annually in the autnmn, at hia suggestion a sweepatake of 25 guincas each for three year old colts and fillies was run over a 2 mile course; there were six competitors, the property of as many subscribers,-a very small begirning, it must be owned. The race was won by a filly by Sampson, belonging to Lord Rockiogham, which was afterwards named Allabaculia. In the following year the same stake bad twelve atibscribers and ten starters, and was won by Mr Sotheron's Bourbon. It was not, bowever, until the succeeding year, 1778, that it was named the St Leger, in complement to the fonndcr, at the suggestion o the marquis of Rockingham, on which occasion it was wo by Mr T. Gascoigue's Hollandaise, another filly; thus al the beginning, as well as a century tater, the fillies, from Allabaculia and Hollandaise to Ayology and Jannette, owing to the cool scason of the year as which it is run, were found capablo of taking their own part against the colts in the race. The stakes were increased in 1832 to 50 sovs. each, and the weights bave been raised from time to time to keep pace with modern requirements. The Deneaster Cup, a weight for age race for three year olda and upwards, was established in 1801. The course is nearly flat, of an oval or kite shape, about $1 \frac{3}{4}$ miles round the town-moor. It bas been run in 3 m .14 s . by three year old horses, earrying 8 st .10 fb , and fillies 8 st. 5 ib .

The Derby and Oaks wero established in 1779 and 1780 , The the Oaks in the former and the Derby in the latter year. Derly It is true that in 1730 Epsom races became annual, but and the prizes were nothing more than the usual plates run for in heats, the money required being raised by voluntary aubucriptions, as well by the owners of bouths on the downs as by the parties more immediately interested, whence arose the custom of charges being male by the lord of the manor for permission to erect booths, \&c., during the race mectings. On the 1 th May 1779 the trelfth earl of Derby uriginated the Oaks stakes inamed after his seat or hunting box "The Oaks" at Woodmansterne), a sweepstake for three year oh fillics run on a courso $1 \frac{1}{2}$ miles long. The race on its incoption was won by Lord Derby's Lay fily Pridget, bred by bimselfher sire being llerod and har dam vemema. In the fol-
 cach, half forfeit, for three jear oid culta. Tive distance was then one mile, but it has sinco been altere! to a mile and a half, and is now rin on a new cunse starting c:s a ligher level than before, and joining the old course on the top) of the lall. Being a very billy or up and down couree, - Tpsom is excessively trying to hirsca no plerfe thy sound. On the first occasion of the I. riy being $? \cdots$.. won
 of Iferod, who beat cigt. normenets, inchang the dake of Buands Ing Lown .i.? Lard Grosvenor's Diadem. Theso two races buve since ... arm for regularly ever! year, tho I)crby, which befor 1 -32 was run on the Thur: day, now taking place on the Wennesday, and the Ont 3 on the Friday it the same mect at the end of May. T:so
fillies only nave won both races, viz., Sir C. Bunbury's Eleanor in 1801 and Mr W. I'Anson's Blink Bonny in 1857, but Deception ran second for the Derby in 1839, and subsequently won the Oaks. The course has been run in 2 m .43 s by colts and in 2 m .44 s . by fillies.
Ascot races, which are held on Aseot Heath, on the congines of Windsor Park, close to the kennels of the royal buckhounds, were established by the duke of Cumberland, uncle of George IIL, and are patronized by royalty in state or semi-state. Thay are mentioned in the first Racing Calendar, published in 1727, but the races were for the most part plates and other prizes of small importance, though a royal plate for hunters appears to have been given in 1785 . The Gold Cup was first given in 1807, and has been regularly competed for ever since, though from 1845 to 1853 inclusive it went by the designation of the Emperor's Plate, the prize being offered by the emperor of Russia. In 1854, during the Crimean war, the cup was again called the Ascot Gold Cup, and was given froni the race fund. The Queen's Vase was first given in 1838, and the Royal Hunt Cup in 1843, while in 1865 a new long-distance race for :our year olds and upwards was established, and named the Alexandra Plate, after the Princess of Wales.
Goodwood races were established by the duke of Richmond on the downs at the northern edge of Goodwood Park in 1802, upon the earl of Egremont discontinuing races in his park at Petworth. The course is situated ir most lovely scenery, about 5 miles from Chichester, with downs and woodlands to the north, and the sea and the Isle of Wight to the south. The races take place at the end of July, on the clese of the London season. The Goodwood Cup, the chief prize of the meeting, was first given in 1812; but from 1815 to 1824 inclusive there was no race cor it, with the single exception of 1816 . Since 1824 it has been competed for annually.
During the latter half of the 18th ceatury horse-raciag declincd very mucl in England, and numbers of meetings were discontinued, the wars which took place necessarily causing the change. From the beginning of the 10th century, and especially after the conclusion of the French war in 1815 , racing rapidly revived, and many new meet:ngs were cither founded or renewed after a periond of euspension, and new races were from tince to time estab-

Two
Thousand, sce. lished. Among others tho Two Thousand Gumeas at Newmarket for three year old colts and fillies, and tho Onc Tbousand Guineas for fillies, were established in 1809 and 1814 respectively, the Goodwood Stakes in 1823, the Chester Cup and Drighton Siakes in 1824, the Liverpool Summer Cup in 1828, the Northumberland Plate in 1833, the Manchester Cup in.183t, the Ascot Stakes and the Cesarewitch and Cambridgcshire Handicips at Newmarket in 1839, the Stewards' and Chesterfiekl Cups at Goodworal in 1840 , the Great Jibor IIandicap at York in 18.3, and, to omit others, the City and Suburban Handicap at Epsom in 1851, and the Lincoln 1hndicap in 1853. With the exception of the Two Thonsand and Ono Thousand Guizeas run for in the spring at Nuwmarket, which are as it were junior Derby and Oaks, or at any rato public trisls for Handicapa, those events, all these races are handicaps, which came into fashion for the following reasons:-
In the carly days of racing the plates or stakes were given for conpetition by horses of not less than five and Cenerally of six yeirs of age, all corrying tho same weights, so that if a four year old, as sometimus happened, entered, it tuok no allowance from its older and moro matare coponents, bat lay thempete with them on evan terns, or at a materiat disadvantage considering the diference in afge. Wo then find that weight for age races were intro. duced, a ansuified differenco in weight for eadh year, where all wery not of the sarne age, being concecied by the ulder
horses As time went on, however, it was found that when well-known winners entered for a race, other competitors withdrew, and sport was spoiled. A' remedy was devised in bandicapping, that is, in apportioning a table of weights to the competitors, placing the beaviest impost on the best public performers, and lighter weights in a deseending seale upoo those of lower calibre, in proportion to their known or assumed demerits. The object of course was in theory to place all, both good and bad, on an equal footing,-in other yords, so to burden then that on paper they should all be equal and run a dead heat. "In practice it is often far otherwise, for the real nerits of a horse ars frequently kept secret, and he is sent to run in public balf trained, with the -view of deceiving the handicapper, who then puts on him a lighter weight than he is capable of carrying, and the race and a large stakc of money in bets are frequently so won. It is unnecessary to say that bandicaps are thus responsible for mueh of the malpractice which prevails on the turf, and for keeping in training inferios horses otherwise valueless.

No horses of less than three years of age are allowed to rua in handicaps, and at present the lowest weight is 5 st. 7 it, although some years back it was as low as 4 stonc, a weight carried to victory in the Chester Cup by Red Deer in 1844. It would be a step in the right direction to raiso the minimum to 7 stone, which would not only tend to the improvement of the horses running, but permit abler and stronger jockeys than the present feather-weights to ride.
Two year-old racing was established very shortly after the great three year old races, and on a similar footing, that is to say, the competitors carried the same weights, with the exception of a slight allowance for sex,-the July Stakes at the Nermarket midsummer meeting having been founded as early as 1786. The Woodcote Stakes at Epsom succeeded in 1807, the Champagne Stakes at Doncaster in 1823, the Criterion Stakes at the Houghton meeting in 1829, the Chesterfield Stakes at tho Newmarket July meeting in 1834. the New Stakes at Ascot in 1843, the Middle Park Plate (or two yoar old Derby, as it is sometimes called) at the Newmariset second October mecting in 1866, the Dewhurst plate at the Honghton meeting in 1875, and the Ricll. mond Stakes at Goodwood in 1877.
No race is now run over a shorter courso than 5 furlongs.
The number of races in Great Britain in the year 1879, Stathsaccording to the Racing Calendar, was 1626, of which tics of fifty-nine only were of 2 miles and upwards, ten of 3 miles $\begin{aligned} & \text { reasing } \\ & \text { and }\end{aligned}$ and above, and two of 4 miles. The number of horses Gritair. competing was 8.44 two year olds, 633 three year olds, 314 four year olds, and $3 \geqslant 2$ of fivo ycars and upwardsin all 2113; and the value of the stakes runfor amounted to $£ 380,699$. During the same period there were foaled 955 thoroughbred colts and 900 fillies, while 716 mares were barren, 98 slippod their foals, 152 were covered by halfbred lorses or not covercd at all, and $17 \dot{4}$ either died or were sc_t abroad before foaling-the total number of mares on the register being nearly 3000 . The horses at the stud who sired the above foals amounted in round numbers to 350 .
The following table will show tho value of the principal two and three year old races for the last six years:-

	137.	1875.	1576.	1877.	187 S .	1279.
Two Tholsund	$\stackrel{ \pm}{\text { ¢ }}$	5	10	$\stackrel{5}{5}$	$\stackrel{L}{\sim}$	
Guincas.........	4200	4550	4100	5200	650	0
One Thousand	3050	2350	3100	$\$ 750$	4500	4200
Dcrby	5350	4060	5575	6050	5825	7050
Dak: ${ }^{\text {a }}$	4375	2925	4800	4150	5000	4425
St Leger	4625	4150	4525	5025	5750	6550
Mithlo Park Plate	3340	38:0	$3 ¢ 60$	3610	3790	3470

Few handicaps ever rewin $£ 2000$ in value; but to the Wanchester Cup of 1880 the sum of $£ 2000$ added money was advertised, beiog the largest amount ever given to a single race, of course irrespective of the stakes of the. individual entrics.

In regard to the sums won by individual horses we may instance $£ 18,681$ won by Gladiateur as a three year old, and $£ 18,025$ by Lord Lyon, both of whom won Guincas, Derby, and St Leger ; £17,851) by Formosa, who divided the Two Thousand Guineas, and won the One Thousand, Oaks, and St Leger; $£ 11,755$ by Achievement, who took the One Thousaad and St Leger, after having won $£ 10,387$. as a two year old; aod $\mathfrak{x l 2 , 0 7 4 \text { by Whecl of Fortune; }}$ including the One Thousand and the Oaks, after having taken $£ 7665$ as a two year old.

The treatment or training of racers is essentially a trade of itself, for horses intended to run for stakes are either sent, if few in number, to a public training stable, such as those at Newmarket and other places, or else, when numerous, are prepared for their engagements by a private trainer, the treatment in both cases being the same. The usual eharge per horse in a public stable is from 2 to 21 guineas a week, which includes feeding and grooming.

Racing has made considerable progress in other countries besides Great Eritain, notably in France, Germany, and Austria-Hungary, whither some of the very best bred English horses and mares have from time to time been exported to increase the numbers of thoroughbreds reared on tbe Continent. Tbence have been sent to compete in Englaud auch horses as Jouvence, Baroneino, Monarque, Dollar, and Flageolet, winoers of the GondwoodCup in 1853, 1855, 1857, 1864, and 1873 respectively; Gladiateur, winner of the Two Thousand Guineas, Derby, and St Leger in 1865 ; Fille de l'Air, Reine, and Enguerrande, wioners of the Oaks in 1864, 1872, and 1876; Mortemer, Henry, Boiard, and Verneuil, winners of the Ascot Cup in 1871, 1872, 1874, and 1878; Chamant, winner of the Twe Thousand Gnineas in 1877; Sornette and Dutch Skater, winuers of the Doncaster Cup in 1870 and 1872 ; and Rayon d'Or, winner of the St Leger in 1879. From Austria-Hungary have come Kisber, winner of the Dorby in 1876, and the unbeaten filly Kincsem, winner of the Goudwood Cup in 1878. In France especially, enormous strides bave been made in racing, and, when the superiority of its climate over that of England is considered, it ia not surprisiog that French horses baro achieved a fair measure of success in the leading races of the Eaglish turf.

Anacrican horses bave sometimes been sent over to compete in England, but on the whole they havo not been very successful, as they have found the Eaglish horses too good for them. Their chief successes have been those of Prioress in the Cesarewitch in 1857, of Starke in the Goodwood Cup of 1861, and of Parble in the Newmarket Handicap and the City and Surburban and Metropolitan Stakes at Epsom in 1879.

Steeplc-chasing and burdle-racing take place during the winter months, partly in amalgamaterl meetings of flat and cross-country races, and partly in mectings purely aeross country and over fences. The ehicf event is the Liverpool Grand National, run at Aintree towards the elose of the hunting season. It dates from 1839, and, though formerly won by well-bred hunters, now commonly falls to thoroughbreds cast off from racing stablea as too slow for the flat, as do ncarly all the steeple-chases aod hurdle-races. Its value averages from $£ 1500$ to $£ 1700$. There aro many meetings in tho provinces and in the London district at which steeple-chases and hurdle races nie run, but the more important of them are at Croydon, Sandown Park near Esier, Lincoln, Rugby, Warwiek, Bristol, \&e. The prizes are nearly alwaya won by.thoroughbreds.
(E. D. B.)

Horse-Raeno and Thuiting in tery United Statro.

Horse-racing was indulged iu to a limited catent in Maryland and Amert Virginia as carly as the middle of the 17 th centory, particilarly can rao in the latter colony. Most of the inhabitants of both were either ing. from the British Isles or were descended from parents who had inmigrated from them, and they inherited a tasto for the sport. Tho onimals usell for this purpose, however, were not higbly prized at the time, and the pedigree of not even one of them has been preserved. A horse called Bully Rock by the Darley Arabian out of a mare by we Byerly Turk, granddant by the Lister Turk, great-granddam a royal mare, foaled 1718, is the first recorded importation of a thoroughbred horse into America. He "way imported into Virginia in 1730 . In 1723 the duke of Bolion bred a mare mamed Bonny Lass by his celebrated horse Bay Boiton out of a daughter of the Darley Arabian. She lecame colebrated in England as a brood maro, and was tho first thoroughbred mare, according to the recorls, that was carized to America. This is supposed to have been in or after 1740, as the Stud-Book ellows slie produced in England after 1739 a filly ly Lord Lonsdale's Arabian, and subsequently becano familiar to the public as tha grandlam of Zamora. The importations increased very rapidly from this period, and many valuable shipments were made befo:s the war which resulted in. a separation of the colonics from the mother country. This aequisition of thoroughbred stock increas-d the number and value of racing prizes, end extended the ara of opreratious into the Carolinas in the South, and New Jersey aud New York in the North. The first race run in South Carolina was in February 1734, for 220. It took place over "the Green," on Charleston Neck. This shows that the earlier races in Amerien were actually on the turf, as they have always been in England. The next year a Jockey Club was organized at Charleston (1735), and a courso was prepared, such as those which have since como into general use throughout the States, from whieh the turf is removed and the ground is made as nearly level as may be. They aro generally oval in shape, and a mile in length, with posts a furlong apart. A race of greater distance than one mile is accomplished by traversing the track the necessary number of times to complete the distance prescribed by the conditions of the race.
Aiter the establishment of the governneent of the United States (1776), the importation of thoroughlred horses from England became ynite common, and selections were made from the best stocks in the United Kingdom. This continued and even increased as the country became developed, down to 1840 . The following Derby winners, were among those carried into the States :-Diomed, who won the first Derby in 1780 ; Saltram, winner in 1783 ; Johe Bull, winner in 1792 ; Spread Eagle, winner in 1795; Sir Harry, winner in 1798; Archduke, winner in 1799; and Priam, who won in 1830. The most important and valuable importations, however, proved to be Jolly Roger, Fearnought, Medley, Travelier, and Diomed in the last century, and Glencoe, Leviathan, Tranby, Lexington, Margrave, Yorkshiro Buzzard, Albion, and Leamington of the present century. The best results liave been obtained from Diomed and Glencoe. Dionied sired one horse, Sir Archy, who founded a family to whieh ncarly all the blood horses of America trace back. He was fealed in 1805, in Virginia, and became celebrated as a sire. The snperiority of his progeny was so generally conceded, that they were grcatly sought after. From this period, too, the number and value of races increased ; still they were comparatively few in number, and could not compare in yalue with those of Great Britain. UP to 1860 the value of racing prizes was quite inadequato to develop large breeding establislunents, or to sustain extensive training stables. During that year the number of races iun was about 250 , of tho estimated value of $\$ 100,000(£ 20,000)$. The institution, however, was in a healthy condition, and gained ranidly in public favour, when the civil war between the North and the South broko out, which raged for four years. Breeding estiblishments were broken upduring that time; the horses were taken by the armies for cavally purposes, for which scrviee they were highly prized; and racing was completely paralysed for that period. It took some time to regain its streagth; but an era of prosperity set in, ahout 1870, and it has since continued to grow and extend the area of its operations, until it has become the chief sport and ammsement of the more populous ritieg of the States.

In 1874 there wero 958 races run of the value of $\$ 496.772$; in 1875, 866 races, of the valuc of $\$ 490,649$; in 1876. 782 raere, valued at $\$ 485,509$; in 1877, 907 races, valual at S141,652; in 1578, 1058 races, valued at 8161,395 ; and in 1870, 1221 races were run, of the valuo of 8545,624 . In 1877 as many as 1003 horses stanted ; in 1878 there were 1382, and last year 1524. This increase in the valuc of racing events, and the conserinent lemand for horse of this clases, have stimulaterl the brecting interests of the country. Thers aro only four prominent breeding est:blishments which breel and sell the foals produced as yarimg's to the public amnually. Thero ace, however, a large number of privnte brecding estublisiments, pozie of them nearly nr quite as extensive as the public atnds. a a a number of brood mases in the country is about 2100; the emulhons
number over 300 ，and the annual number of foals is estimated at ivout i400．There are no officiel records of the produce．

One of the peculiar fatures of racing in America iq that all events aro olficially timen，and the time is recorded by the clerks of the jockey elubs upon the books of the club．By it the value of ditfer－ cont performances by the same．or diferent horses is generally esti－ ranted．Of course other elements are considered，such is the wright carried，tha age of the horses，the weather，the condition of the track，sc．If a hurse of the same age and welght，and over courses of similar conditions，can rus a mile a second yuicker than another horse，he is regarded as fister at the distance than his rival． The artihoial tracks of the country make time a reasonably accurate test when welohed in connexion with other circumstances．Each chub has its oflicial timer，who gives the tame taken to the clerk as soon as the race is over：＂fhe followng is the lastest tume made at all distances in the L＂nited States，down to July 1，1890：－
Half mile，－Two year olds． $47 \frac{3}{3} \mathrm{~s}$ ，older harsestiave no record at tist distance Three quarters of a mile．－Two year olds， 1 in 153. ，three year olds． 1 m .15 s ． fon year olds and upwards． 1 nl Its．
Dee mile．－Two year ohls． 1 m 43 s ；three year olds， $1 \mathrm{~m} .41 \frac{1}{4}$ s．four years and upwadic． 1 m .39 s．
One mite and a furlong．－Ther year oids， 1 m ，万4 s ：forir jeals and upwads． $1 \mathrm{~m} .855^{3}$.
One mille and a quarter，－Three year olde． 2 m sfs．：four years and upuards． 2 m 8 l ．
De mille and a half．－Three year ofds， 2 m 37 s ；four year olds and upwands， $2 \mathrm{~m} .343_{8}$.
 wardg． 2 m .539.
One mile ard the quaters．－Three year olds． $3 \mathrm{~m} .5!\mathrm{s}$ ：four years and up－ wards， $3 m+3$ ．

two miles and a fuitong－Three year cilds． 3 m ．名 a ；four years and upwacte， 3 m .45 ！ s
Iwo miles and a quarter：－Three year olds． 4 m ． 2 g ．：four jears ond upwalds， 3 m .5 f ！ s ．
Two miles and a fall．－Tarce year olds， 4 m .31 s. ；four years and upwards 4 m .27 s 9
Two mites and lisee quaterg－Four year olds and upwaids， 4 m 683 s ．

Ameri－
Trolting．－The development of speed in the trotting－horso throagh systematic breeding and training is one of the great industries of the United States of America and the Dominion of Canala，ind in no other jortion of the world is it pursucd to ary greatextent，except in Russia．This interest，which has attainel vast proportions，is entirely the growth of a century，dating back to the importation to Philadeluhia from England，in 1788，of the thorough－ bred horse Messenger．This was a grey stallion，by Mambrino， lst dam by＇furf， 2 d dam by Regulus， 31 dam by Starling，4th dam by Fox， 5 th dam Gipsey，by Bay Bolton，Eth dam by duke of Newcastle＇s Turk，7th dam by Byerly Turk，8th dam hy Taffolet Barb， $9 t h \mathrm{dam}$ by Place＇s white Turk．He was eigint years old when imported to the Lnited States．He was at the stud for twenty years，in＂？vicinity of Philadelphin and New York， serving a number of thuroughbred mares，hut a far greater number of colid－bloaled mares，and in the progeny of the latter the tratting in－ stinct was almost in تariatly devcloped，while his thoroughbred sons， who became scattered over the country，were also noted for transmit． ting the trotionginstinct．That Mpssenger was the fommain－heudef Americau trotting is shown by the fact that almost every trotter of merit in that country，whose peligree is reasombly yell established， traces to him in one or more lines，amd the more Messenger strains there are in a pedigree the greater is its estcemed value．It was years after the death of Messenger，however，hefore thesc facts be－ carae apparent ；the taste of the country in racing matters was ron－ fined to romint contrsta，and systematic trotting breching is of much later growth．The first public trotting race of which there is any acconnt in the Unitell States was in 1818．When the grey gelding Boston blue was mathed to trot a mile in 3 minutes，a fent deemed impossble，but he won，though the time of his purlormane las not been preservel From about that date，interest in this gat began to increase ；breaders of trothers，in a small way，sprang up，and horses were trained for trottion contests the problem of breeding tropters has been necessarily fonm to bo a much more complex ane than that of brembige the tharoteditred，as in the lather
 While in the thaner the bese resulta wore conatutly being obtamel from most taneppeted soneces．At the prestat day，the leadine fatalica are the fambletobita，of whimh the mollern heat was

the Stars，springing from Stockholm＇s american Star，by Duroc， sun of imp．Diomed；the Morgans，whose fonnder was Justio Nor－ gato，folled 1793，by a horse called True Briton，or Beautuful Bay， who was probably thoroughbred ；the Black Hawks，a branch of the Morgao faraily ；the Blue Bulls，descended from Doyle＇s Blue Bull，foaled 1855，a pacer，sired by a pacer of the same name，dam by Blacknose，son of Medoc ；the Canadians，whose best represen－ tatives were St Lawrence and pacing Pilot，horses of unknown pedi－ gree，the Gold Dusts，enother branch of the Morgan family；and the Royal Georges，syringing from Tippoo，a horse who was pro－ bahly by Ugden＇s Sessenger，son of imp．Messenger．There are many subordinate branches of these leading families nut named here，and in some cases trotters of great speed have beea produced which do not trace to any of the sources mentioced．It follows that the breeder has an extensive field before him，and the question of in－breeding or out－crossing，of tho falue of thoroughbred crosser． pacing crosses，se，have to te considered，and are abundantls da． cussed．There are many large sod anccossful establishments ins treeding trotters at the present day．All of them are extensive in acreage，while on several a hundred or more brood mares are kent， besides a number of stallions．As a rule，the stallions do service outside the farms of their owner，but in some cases they are re－ served strictly for home use．Very large prices are frequently paid for youngsters，solely no the strength of their breeding．In 1876 813,000 was paid for two two year ohl filhes，and 31,200 for a lot of thirteen，nealyall young．Steinwas a three year old colt，was sold In 1879 to go to California，for 813,000 ；and in 1878 \＄21，000 was paid for the four year old filly Nault S．，atier she had trotted a mile in public in 2 m .17 各s．Mueñ larger sums have been paid， however，for matured trotiers，such as 840,000 for the stallion Smuggler， 838,000 for Pocahontas，$\$ 35,000$ for Dexter，$\$ 36,000$ for Rarus，and long prices for many others；St Julien，the trotter with the fastest recorl at the close of 1879 ，was held at 850,000 ，while Rysdyk＇s Mambletonian，Messeuger；Duroc，and．Volunteer wero valued，in their prime，at $\$ 100,000$ each．

Since the early days of American trotting，the advance has been rapid and the changes marked．After the performance of Boston －Blue，mentioned above，more attention was paid to the gait，but for a long time the races were generally under saddle，and at long distances， 3 miles being rather the favourite．The best of the old time trotters were Edwio Forrest，who trotied a mile in $2 \mathrm{~m}, 31 \frac{1}{2} \mathrm{~s}$ ． in 1834；Dutchman，nhose 3 miles under saddle，in $7 \mathrm{~m} .32 \frac{1}{2} \mathrm{~s}$ ．，is still the best on record；ripton；Lady Suffolk，who trotted a nile ia $2 \mathrm{~m} .26 \pm \mathrm{s}$ ．in 1543 ，and headed the list of performers；Mac，Tacoriy， \＆ic．Since 1850，however，the thste of the people bas settled upon the style of race called＂mile heats，best three out of five；in harness，＂ as the favonrite，and nine ont of ten contests are of this character． By＂in barness＂ia meant that the horse traws a sulky，a lighat two－wheeled vehicle in which the driver sits close to the horse，with his legs on each side of his flanks．These sulkies often weigh less than 40 t ．The driver is required to weigh，with the blanket oo which he sits， 150 It ，while for saldle races the regulation weight is 145 t ，or 10 st ． 5 th．Each heat of a mile is a separate race； 20 mioutes is allowed between heats；and the horse that first placrs three heats to his crellit wins the race．There are varions penalties imposed upon a horse that breaks into a run in a trotting race． The driver is requirel to puld him tor a trot as quickly as possilue；if the horse gains by running，the judges set hom back at the finish twice the distance he has gainel．，in then estima－ tion，by running；and for repeated＂breaks＂they can declare him distanced．The fust－class tracks are of oval shape，wish long stretches and easy curves，measuring 1 mile at 3 fect distance from the＂pole．＂as the inner railing of the track is called＂The tume in which the lemding horse trots each heat is accurately kept，phated on a blackboard in fromt of the junges＇stand for the information of the pulbic，and also placed in the book of the course．The lastest time that any trotec hes is thas entered as his＂recorl．＂Thas is none of the distinctive tatures of trotting in Amerma．The perses that
 chasses，such as for borses that have hever beatem 3 mantes，that have
 for the record of a trother to le kip as s！ow as possible，that he may
 into three or fonm nomes，and the secomblyony is nsually half as large as the hist，drvers froquently＂pall＂at suphor anamal，and content themselves with an inferion portion of the purse for the sake of aymiling a reworl，whieh attaches only to the winner of a hant， and from thas cance spring angent doal hi dislonest racing．If is in tho power ef the judips，when they think that a horso is mot trmer driven to win，to substitutu mother hiver，and this is often done．
frior to 1 siti purses for trotars were small ；matoh raves were more in voghe，und the trotling turf was in hal ondmat．In tant

 eluratom．．＂The exprriment was successful；athor cities followed the fromethe of Bullab；larger and langer patses were given；and at Buf．
C.lo in 1872 the prizes amounted to 870,000 . Twice at this point
 arerage Derby winning. Other cities are also in the habit of exang large purses, and the ch:ount offered in the United States and Canda, during a single yuar, hats reached neasly $81,500,000$. Indivilual troters, in the cullse of a lone tonf carter, carn enormms anomits. The mest remakable mstance of thas was the mare Gridsmith Mad, by Alexamber's Abdalla! (a son of Rysdyks Ilombletonianh, out of an Abdaflak mare. Shac legan trothong m 1sibi, and left the turf in 1878, when twenty-obe yays ohe and her winnings amounted to over $\$ 200,000$.
In 1869 the organization now known as than Noboral Trotting Association was formed, and it embraces in its membership all the Finchal tracks of the continent. Alt members of this association. rspect the penaltes inposed by any other member, and exclusion otn the prixileges of one is exchusion frem the privileges of all. this has had a great tendeney to reform abuses on the twotting turf, ctabling severe peneltecs to be inflicted for infractions of the anles, a very elaborate code of which has been published by the National Trotting Assuciation, and is revised trienuially.
In trotting races, it wits be noted, the time test is supreme, differof from ronning races, in which time is of compratively hitle conquence. The arimal which has the fastest recent for 1 mife in arness is, untid deposed, the king or queen of the trotting turf. .uly Sulfolk, with her record of ${ }^{2} 2 \mathrm{~m}$. 295 s ., in 1843 , held this honour until 1853, when Tacony trotted in $2 \mathrm{~m} .25!\mathrm{s}$. under sadlle ; Flora Temple wrested it from him in 1856 by trotting in? 1 a. 243 s. in harness. This latter mare, in 1859 , trotted a mile in $2 \mathrm{~m} .19^{\frac{3}{3}} \mathrm{~s}$ s., a feat whach the best horsumen thought would never be repeated, but since that țime forty -two trotters have beaten 2 m 20 s . Dexter's iceord was 2 m 17f s. in 1867, and Goldsmith Mail's in 1871 was 2 at. 17 s ., which she redoeed, by suceessive efforts, to $2 \mathrm{~m} .166_{4}^{9} \mathrm{~s}$, ? m. $16 \mathrm{~s}, 2 \mathrm{~m} .15 \mathrm{~s} ., 2 \mathrm{~m} .14 \mathrm{~g}$ s., and finally, in 8874 , to 2 m .14 s . Ia 1878 Rarus trotied a mile in 2 ml 13| s , and in Oetober 1879 the bay gelding St Jutica, by Volmateer, son of Rysdyk's Ham. bletonan, dan by Heary Clay, trotted a mile in Calitornia in 2 m $12 \cdot 3.5$. There is a great diversity of opinion among the best informed horsemen as to the linit of trotting speed, but none fix it slower than 2 m 10s., while the more saogoine believe that a mile will yet Ine made by a trotter in 2 minutes. The pacing gait, in which the front uod land legs on the same side are moved in the same direction simaltacoously, is admitted to be faster than the trotting, in which the nuar fore leg and the off hind leg move together, bot as pacing is not fastuonable, and small purses are given for contests between pacers, a great deal of skill bas been expended, of late years, io eonverting pacers to troters. This is done by mesus of toe-weights on the forward feet, which are knobs of brass or iron screwed into the boof or fastened to the ahoe, by meane of which a competent traioer can not only change a pacing into a trotting horse, but ean correet any crrors of gait in a natoral tretter. With inveterate pacers very beavg weights have to be used, bot these can gradually pe lessened as the horso becomes acenstomed to the trot. So effecrive are these weights found that there are very fow fast trotte"s upon whom they are not used to some extent, unless the sane object is effected by wearing a very heavy forwaru shoe.
The market for American troters is by no means co:ifned to those intending to use them for track purposes. While there are probably t.an thousund in training, at least an oqual nomber are used by fentlemèn for road purposes; and thero is great rivalry among millionaires with a taste for driving to sceure the best stable, and especially the lastest double team. In Soptember 1877 Mr W. H. Vanierbilt drove his team, composed of Small Hopes and Lady Dac, a full mile over Fleetwood Park track, near New York city, in 2 in 23 s , whieh is 3 t seconds faster than tho best record for a mile by a double team, the' 2 m .23 s . performance not being a techoical record.

As an indeation of the rapid advance that has been made in the general speed of the American trotter, a table receutly publisbed in the United States, giving the umes of all horses that had trotted

A mile in farness in 2 m .25 s ., or better, up to the elose of $1 \mathrm{~s}^{\circ} \mathrm{a}$, includes 317 performers, and all these, except 25 , were liviog when the table was pmblishel. This shows that a 2 m .25 g . recod was a very unmanal occurtence only a horse gencration since, while now an animat who cumot show that sate of spoed is not considered a promisur connethtor in larf contests.

Every year a book is published containing summaries of all the trathing and baciug evetts of the preceding year The revord for 1575 showed 3304 ceme nmont of purses and stakes, $81,418,971$:
 1878, 2737, 8517,629 ; and for 1879, 2216 races, amount of purse and stakes, 8750,000 .
W., give, in conclusion, a table of the fastest trotion and parims records, at all distances, ares, and ways of gomir, complete bu! is July 1880:-

Troting in Afarness.

 One mide (thud licat)-Raus, liulfulo N Y'. August 3. 1878.2 m 13!

 heat by us stallion
Italfomule, by a yearling-Smmento. Lexington, Ky, Octoher 10.1877 .1 m int s

 Ore mite, five year ohl-Simat Claus, Sacramento. Cal. Sept $11, j$ sig. 5 in is a

 $2 \mathrm{ml} 1: 31 \mathrm{~A}, 2 \mathrm{~m} \quad 133 \mathrm{~s}$.
One milu. fistest threc consecumpe heats-Rarus, Harforf. Cunn., Anewn :3.

One male. fastent Cour consccubve lwas-Ghaser, Enchester, N.Y. Ausum 14,

 frot mbes-Trustec. Cinion Cousse, L L.. June 13,1849 . 11 m 6 s

 Wiften matu-Ginda. San Fiancinco Cal., Ampust 6, Jbi4. 47 m .20 s

 Trotting to Widggon.
One mile-Mopeful. Chicaro, III, Ocrober 13. 1878, 2 m .164 s ., in a first heat One mlle (secoud heat)-Hopieful, Clacago. 111 ., October $12,1878.2 \mathrm{~m} 12 \mathrm{~s}$
 One milc. dawang zoth th-Mouman Maid. Long lsland, 186.5, 3 in $21!$ Tuo miles-Gen. Butler Gong Island. 1863 , fist heat. 4 m .56$\}$ s.: Deatu, Lung [sland, October 27, 1865 . secund hear, $4 \mathrm{ma}, 56$) s .
Thee mines-Kemble. Jackson. June $1,1853.8 \mathrm{~m} 3 \mathrm{~s}$,
Finr miles-Longfellow, Califorma, Decembir Sl, $1869,10 \mathrm{~m}, 34 \frac{1}{2}$ s
Five milles-Litle $\$ 1$ nck, Fashion Couisc, $L 1$, October $29,18 t 3.1 .3 \mathrm{~m} .41!3$ Twenty miles-Controlirr. Sun Franus o Cal, Apul $20,1838,58 \mathrm{~m}$. wis Fift) miles-Spanfle, October 15, 18SS, 3 h .45 cm .4 s.

Trotting, Double Teams.
One melle-Gen. Cobb and Lulu Mny, San tiancisco. Cal. 1877.2 m . 20j S. in a thud hert
One mile, with minning mate-Etinn Allen and mate. Fashion Course, L. In June 21. 1867.2 m 155. In a flist heat.

One hundzed miles-Master Burke and Fobin, $10 \mathrm{~h}, 17 \mathrm{~m}, 22$ s.
7rotting under. Sistille
One mile-Creat Eastern, Hectuond Pork, N 1. Scplember 22. 187?. 2 in 1 is Thomiles-Dexter. Lang Inand. 1865 , 5 m of s .
 Foul miles-Iutchnnan, $183 G_{0} 10$ In 31 s .

Pacing

One mlie. In harness-Slecpy Tom, Chlcacn, Ili., July 25. 1879.2 m 12d

 Two miles, in larness-Ifelo. May $17,18 i 3$. I n bifs.

 si] B .

HORSECHESTNUT, Esculus, L. (Germ, Rossio. stanie; Fr., marronnier d' inde), a genus of trecs or shrubs indigenous to North America and mountainous regions in Mexico, New Granada, Persia, North India, and the Malayan peninsula, of the natural order Sapindacee and suburder Sapindex, having exstipulate, opposite, digitate, 5 - to 9 -lobed leavos, an irregular campanumate or tubular 5 -lobed calyx, 4 to 5 petals, 5 to 8 stamens, one style, a 3 -celled ovary, with 6 ovnles, of which 3 or more abort, exalbuminous seeds, and a smooth or cehinate coriaceous capsulo. The Common Horse-chestrut, E. Hip pocastanum, L., has been ststent to be a native of Thibet.
and to bave becn brought thence to England in 1550 ; it is now, however, thought to be fadigenons in the montains of nurthern Grece, where it uceurs wild at 3000 to 4000 feet alose sea level (Gard. Chron, 1880, i. 488). Mattholus, who attributes the oricin of the mame of tho tree to the use of the nuts by the inhabitants of Constantinolle for the relicf of short-windedness and cough in horses, remarks that no ancient writer appesis

[^49]to hare made mention of the horse-chestnut. Clusius (Rarinrum phentarum hist., lib. i. p. 8, 1601) describes it as a vegetable curiosity, of which in 1585 he had left in Vienna a living specimon, but of which he had not yot seen either the thwers or recent fruit. The dry frnit, he says, lad frequently been brought from Constantimple into Europe. The tree grews rapidly; it flourishes best in a sandy; sumewhat moist loam, and attains a height of 51) to 60 or more fect, assuming a pyramidal outline. Its boums are strons and spreadiug. 'The buds, conspicuous for their size, are protected by a cont of a glutinous substance, which is impervious to water; in spring this melts, and the bud-scales are then cast off. The leaves are composed of 7 obovate-cuncate radiating leafets (sce vol. iv. 1. 112, fig. 115); whea young they are downy and drool. ing. From the carly date of its leafing year by yoar, a borsochest nat in the Tuileries is known as the "Marronnier du 20 Mars." The flowers of the horse-chestunt, which are white dashed with red and yollow, appear in May, and sometimes, but quite exceptionally, again in autumn (Guth. Cheron., 1868, p. 1116); they are very numerous in cach rachis, and form a thyrse. Comparatively few of them atford mature fruit. The fruit is ripe in et shortly befure the first week in October, when it falls to the ground, and the three-valved thorny capsule divides, disclosing the brown and at first beautifully glossy seeds or nute, having in resemblance to sweet chestnuts, and commonly thrce or else two in number. For propagation of the tree, the nuts may be sown either when fresh, or, if prescrved in sand or earth, in spring. Drying by exposure to the air for a month has been found to prevent their germination. The cotyledons do not rise to the surface of the soil. Ronks are wont to remove the nuts from the tree just before they fall, and to disperse then in varions directions (R. Jllison, Berwickshire Naturalist, quoted in J. of Forestry, Apr. 1880, pp. 877, 878).

The bark of the horse-chestnnt contains a greenish oil, resin, a yollow lody, Ω tanmin, $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{13}$, existing likewise in the seeds and warions parts of the tree, and decomposable into phloroglucin and arsciglyozalic arid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$, nlso asculetin hydrate, nul the crystalline hurescont compoumil ascelin, of the fommata $\mathrm{C}_{21} 1 \mathrm{I}_{24} \mathrm{O}_{13}$ (Thochleder and Schwara), with which occurs a similar substanee fraxin, the pravion of Stokes (Q. J. Chem. Soc., xi. 17, 1850; xii. 126,1860), who suggests that its presence may perhaps aecount for the discrepancies in the analyses of eseulin given by different authors. Fom the seets have been obtained stareh (about 14 per rent.), gum, macilage, a mon-drying oil, phosphorie acid, salts of caleinm, saponin, ly boiling which with dilute lydrochloric or sulphuric acial esculic cocid is obtainch, quercitrian, present also in the fully devclopect leaved, asciycnin, $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$, nod uscotetin, $\mathrm{C}_{0}, 11_{6} \mathrm{O}_{4}$, which is f mentible also, but in small quantity only, from the bark. Rochleler has described as constituent principles of the cutyplons aphroduscin, $\mathrm{C}_{\text {no }} \mathrm{I}_{\text {an }} \mathrm{O}_{\text {an }}$, a bitter ghacoside, argyrascin,
 found also in the laves. io prepare pure stach from the secels, Flawin (Compl. Renl., xxuii. 391, 1848: xxwiii. 138, 1849) recommends kuealing then, when foded and bruised, in an aqueous solution of Tha to of of their weight of sonlium carbonate. E. E. stathel (Amn. d. Chcin. u. Dharm., 1xxvi, 1850, p. 379) after dryinco fumb, in spring and antuma respertively, $10 ?$ and 3.38 per emit. of ash in the wool, 8 68 and $6: 57$ in the bark, and 768 nuld 7 the in the laves of the horse.chestunt. The ash of the nmije frait coutains 58.77, that of the rip" kerncl fir-74, and that of the grecu shrll 7591 per cent. of potish (E . Woilit).

The wond of the horse-chestnut is suft, ant serves only for the making of water-pipes, for turner's work and common earpentry, as a source of charooal for sinniowder, and as fucl. Newly cut it weighs 60 lh , amd ilry 35 lt per cubic foot approximately. The lark has leen imployed for ryeing yellow and for tanning, and was formerly in jopular rembe as a febrifuge and tonic. The Luwder of the dried nuts way at one timo preseribed as a sternutatory in the Filnburgh Jhormacoperia. It is stateal in form with aham water. n size or coment highly oflensive to vermin, and with two parts of wheaten llour the materind for a
strong bookbinder's paste. Infusion of hurse-chestnuts is found to expel wornis from soil, and soon to lill them if thicy are left in it (Thr, Garden, xiii. 198, 1878). The muts furthermore have been apllied to the nfanufacture of an oil for burning, cosmetic preparations, and starch (י. sup.), and in Switzorland, France, and Ireland, when rasped or ground, to the bleaching of tlax, hemp, silk, and wool. In Geneva loosechesthuts are largely cunsumed by grazing stock, a single shecp recciving ef fb crushed morning and evening. Given to cows in moderate quantity, thev have been found to enhance both the yield and flavour of milk. Decr readily cat them, and, after a preliminary steeping in lime-water, pigs also. For poultry they shonld be used boiled, a ad mised with other nourishment. The fallen leaves are relished by sheep and deen, and afford a good litter for flocks and herds.

One variety of the horse-chestnut has variegated leaves, and another double flowers. Darwin has observed that EE. Pavia, L., the lied Buckeye of North America, exhibits a special tendency, under unfavourable conditions, to bo double-blossomed (Anim. and Il., ii. 168). The seeds of this species are userl to stupefy fish. The Scarlet-flowered Horse-chestnut, d. rubicunda, is a handsome tree, less in height, and having a rounder head than the common form. Another specics, possessing flowers with the lotver petals white with a red tinge, and the upper yollow and red with a white border, and fruit unarmed, is $A E$ indica. Among the North American species are the Fretid or Ohio Buckeye, A. glabra, Willd., and SE. flava, Ait., the Swect Buckeyc. A. californica, Nutt., when full-grown and in flower, is a beautiful tree, but its leaves often fall before midsummer.
See Loulon, Arboretum, i. 147, 462 ; Gard. Chron., 1843, ${ }^{1}$. 7, 737;1878, i. 768, 828, and ii. 53; Technologist, 1865, p. 3 ; Asa Gray, Man. of Bot., p. 117, 5th ed., 1872; Brewer and Watson, Gcui. sirv. Calif. " Bot." i. 106; Arboriculture, vol. ii. p. 319; and, o. the chemistry, Rochloder and Schwarz, Aun. d. Chem. u' Pharhin., Isxxvii., 1853, p. 186, and lexxviii. 356 ; C. Zwenger, Ib, xe., 1854, p. 63; and Rochleder, Wien. Akial. Sitzungsber., xl., 1860, xlv., 1862, slviii., 1863, liv.-Ivii., 1866-68.
(F. H. B.)

HORSE-MACKEREL is the name applied to a genus of fishes (Caranx) found in abundance in alnost all temperate and especially in tropical seas. The designation "cavalli," given to them by the early Portuguese nawgators, and often met with in the accounts of the advenlures of the buccanecrs, is still in frequent use among the sailors of all nations. Some ningly different kiads are linown,-the majority being wholesome food, and some of tho species attaining a length of 3 fect and more. The fish to which the name horse-mackerel is applied in Great Britain is Caranx trachuius, distinguished by having the lateral lino in its whole length armed with large but narrow hony plates. Horse-mackerel are found singly on the coast all the year round; but sometimes they congregate in shoals of many thousands. Although well-llavoured, they are much more frequently used for bait than for food. This suecies has a most extraordinary range, heing found almost cecrywhere within the temperate and tropical zones of the northern and srathern hemispheres.

HORSEMANSHIP. See llonse, p. 195.
IIORSENS, a seaport town of Denmark, in the provino of Aarhume and amt of Skanderbore, is sitnated at thre head of the Horsens-fired on the east coast of Jutland, and on the railway from Fridericia to Langa, 25 miles sonthwest of Aarhuus. It is a well-built town, and contains a Jatin school and two market-jlaces. In the neighbourhood there is a large prison. The town possesses a hargo foundry, machine shops, shiphuilding yards, lime works, and manufartures of cloth and of woodwares; it has nlso a good harhour. It is the birtlyhace of tho navigator Vitus Prering or Behring, tho discoverer of Behring Strails. The ropulation in 1870 was $10,501$.

HORSE-POWEis is un name given to the unit in terns of which engineers measure the power of steamengines, water-wheels, and other prime movers. It is defined to be the rate at which an engine works when it does 33,000 foot-pounds of work per minute, a foot-pound being the amount of work neecssary to raise a pound weight a foot high. We must go back tu the carly history of the steam-engine to discover the reason why this number was arlopted. The first steam-engines were employed to drive mills, pumps, and other machinery which bad previously been driven by horses; and it scemed natural to express their working-power in terms of the number of horses whose work they were got to accomplish. This led to experiments being made in order to get an estimate of the average working-power of a horse. . Several such estimates have been given, all differing considerably from each other; but the one adopted whereby to express horse-pewer is that obtained by Boulton and Watt from observations on the strong dray horses employed at the Lendon breweries working eight hours a day. They found that a horse was able to go at the rate of $2 \frac{1}{2}$ miles per hour and at the same time raise a weight of 150 tb by means of a rope led over a pulley. : This is easily seen to be equivalent to $33,000 \mathrm{Ib}$ raised one foot per minute, and hence the number given above. In connexion with this subject it is necessary to distinguish clearly bet ween "horse-power indicated"anil"horsepower nominal" as applied to steam-engines. The horsepower indicated is got from an examination of the indicator diagram (see Diaorams, vol vii. p. 152). The area of the closed curve traced on the diagram, or "card" as it is technically called, gives the work done by the steam on the piston during each complete stroke. This divided by the difference between the extreme abscisse gives the average pressure (p) on the piston. If we multiply this by the area of the piston (A) and by the length of stroke (x) we get the number of foot-pounds of work done during each stroke, and this multiplied by the number (n) of strokes per minute and divided by 33,000 gives the indicated horsenower. Thus-

$$
\text { Indicated H.P. }=\frac{p \mathrm{~A} 2 \Lambda x}{33,000}
$$

Nominal horse-power is a purcly conventional term adopted by makers of steam-cngines, and has no fixed relation to indicated horse-power. The method of calculat. ing it dates from the time of Boulton and Watt. In their engines they supposed the average pressure on the piston to be 7 lb on the square inch, and the velocity of the piston in feet per minute to be 128 times the cube root of the length of stroke in feet. Computiug from these supposed data, we get the nominal horse-power. Thus-

$$
\text { Neninal II.P. }=\frac{7 \times \Lambda \times 128 \times \sqrt[2]{x}}{33,000} .
$$

The British Admiralty rale for nominal horse-power differs from this in using the actual velocity of the piston instead of the above supposed velocity. These rules only apply to low-pressure engines; for bigh-pressure engines it is usual, after Bourne, to assume 21 Ib as the average pressure on the piston, the other data remaining as before. See Raukine's Steam-Engine.

HORSE-RACING. Sec Horse, p. 199.
IIORSERADISH (Ger., Meerrattig; Fr., rayfort = racine forte, cran de Bretague ; Swed., Peppar-rot; Russ., chren), Cochlearia Armoracia, L., a perennial plant of the natural onder Crucifcree and tribe Alyssinece, having radical leaves on long stalhs, ovate or oval-oblong, 4 to 6 inchos broad, about a foot in length, subceriaccous, crenate or serrate, ind coarsely veined; stem-leaves short-stallied or sessile, longate, and tapering to their attachment, the lower ones iten decply toothed; flowers, which appear in May and

June, $\frac{3}{8}$-inch in width, in flat-topped panicles, with sepals purplish, and petals white; and fruit a small silicula, which in the climate of Eugland seldom bears seed. The horseradish is indigenous to eastern Europe. Into western Europe and Great Britain, wherc it is to be met with on waste ground, it was probably introduced from Russia (De Candulle, Géogr. Botan., ii. 654, 1855). It was wild in various parts of Eugland in Gcrard's time. The root, the armoracice radix of pharmacy, is $\frac{1}{2}$ to 2 inches or more in diametcr, and commonly a foot, sometimes 3 feet in length; the upper part is enlarged into a crown, which is annulated with the scars of fallen leaves; and from the numerous irregular lateral lyanches are produced vertical stolons, and also adventitious buds, which latter render the plant very dificult of extirpation. Fron the root of Aconite ($q . n$, , vol. i. p. 98), which has occasionally been mistaken for it, horseradish root differs in boing more or lesa cyliudrical from a little below the crown, and in its pale yellowish (or brownish) white hue externally, acrid and penetrating odour when scraped or bruised, and pungent and either sweetish or bitter taste (see Bentley, Pharm. Journ., Ist ser., xv. 449, 1856). The fresh root yields on distillation with water about 05 per cent. of a volatile vil identical with that of black mustard, resulting from the mutual reaction of sinigrin (potassium myronate) and myrosin in the presence of the water. After drying, the root has been found to afford I1-15 per cent. of ash. Horseradish root is an ingredient in the spiritus armoracic compositus of the British Pharmacopcia. It possesses stomachic, diaphuretic, and diuretic properties, and hence is administered in atonic dyspepsia, cbronic rheumatism, and dropsies. As a masticatory, or in the form of syrup or infusion, it is used for hoarseness. Gerard speaks of it as anthelmintic and emetic. Esternally applied it acts as a rubefacient; and the juice with vinegar is a popular remedy for frcckles. In common with other species of Cochlearia, the horseradish was foriverly in high repute as an antiscorbutic. The root was, as well as the leaves, taken with food by the Germans in the Middle Ages, whence the old French name for it, moularde des Allemands; and Coles, writing in 1657, mentions its use with meat in. England, where it is now ehicfly employed as a condiment with beef. For the successful cultivation of the horscradish, a light and friable damp soil is the most suitable; this having been trenched 3 feet decp in autumn, and the surface turned down with a liberal sopply of farm-yard manure, a second dressing of decomposed manure should in the eusuing spring be dug in 2 feet decp, and picces of the root 6 iaches in length may then be planted a foot apart in harrow trenches. During summer the ground requires to be kept free of weeds; and the application of liguid manure twice or thrice in sufficient quantity to reach the lowest roots is an advantage. When dug the roat may be long preserved in good condition by placing it in sand. The horseradish tree is the Morinya pterygosperna of Girtucr.
See Gerard, Herball, p. 240, ed. Johnson, 1636; Syme, Sowerby's Eng. Sit., i. 183, pl. cxxix., 1563; Florist, 1575, p. 191; Floral Wordd, is79, 1. 149 ; Flickiger and IIabury, Pharmacographia, I. 71, 2d cd., 1S:99; Bentley and Trimen, Med. Ml., i. 21, 1880.

HORSETAIL, Equisetum, the sole genus of the natural order Equisetacect, consists of a group of vascular cryptogamous plants remarkable for its resemblance in gencral appearance to the phancrogamic genera Caskarize and fi)hedra. The stem is jointed, consisting of numerous casily separalue tubular sheaths toetbed at the apex, and is. gencrally furnished with whorls of similar but more slender branches. The fructification is berne at the apes of the stem in the form of a dense oval, oblong, or eylindrical spike, consisting of a mulmber of shortly-stalked peltat-
seales, each of which has attached to its under surface a circle of spore cases. These open by a longitudinal slit oa their mater side. The spores differ from those of ferns in their outer coat beiag split up into four club-shaped bygroscopic tbreads or elaters, which are curled when muist, but becone straightened when dry. The apparent roots consist of under, r round stems, aay portion of which broken uti is capable of produciag a dew plant; hence the difficuity of eraticating them when once established. There are 95 known species of the horsetail, and the genus 18 universally distributed

The Corn Horsetail, E. arvense, L., one of the commonest species, is a troublesoms weed in claycy cornfields. The fructification appears ia March and Aprl, termmating in short unbranched stems. It is sad to produce diarrboez a sucb cattle as eat it. The Bog Horsetail. E palustre, is suid to possess similar properties. It grows in marsbes, ditches, pools, and drams in meadows, and sometimes obstructs the flow of water with its dense matted roots. The fructucation in thes species is cyimdrical, and in that of E limosum, L, which grows in simuar satuations, it is ovate in outline. The largest Eritish species, E. muxamom, L., grows 10 wet sandy declivities by ral way embankments or streans. ©c., and is remarkible for its beauty, due to the abundsnce of its elegant branches and the alternately green and white appearance of the stem. In this spectes the fructification is concal or lanceolate, and is found in the month of Apral, on short stout unbranctued steos, which have large loose sheaths. Horses appear to be fond of this species, and in Sweden it is stored for use as winter fodder. E. hyenate, L., commooly known as the Dutch rush, is much more abundant in Holland thin in Britaiu; it is used for potishing purposes, and also in medicine by homoopathic practitioners. E variegatum, Sub., groms on wet sandy ground, aad serves by means of its fibrous ruats to bind the sand tugether. The bursetails are remarkable for the large quantity of silica they contan, which often amounts to balf the weight of the asth yielded by buraing them, and the roots contain a quantity of starch.
HORSHAM, a parliamentary borough and market-town of Sussex, England, is pleasintly stuated in tho midst of a fertle country near the source of the Arun and on the MillSussex Railway, 37f cules south of Loudon lt consists chtefly of two streets erossing each other at right angles, and a picturesque causeway leading to the church, adorned with rows of trees. Witha recent years the town has undergone great improvements, and at now possesses well paved streets and some bindsome buildinga. In the vicinity there are sevemal fiae thansions. Works were crected in 1865 for supplying the town with water from a well in the aelghbourhood. The prometpal buildings are the parish church, often repared, and in 1865 entensively restored, a very ancient structure in tho Early English style, with the remains of Norman work, baving a lofty tower surmounted by a epire, and contaning several fino monuments and tombs, und two brasses; the grammar school, founded in 1540 and rebuilt in 1810, recomenended to be used is a middle chass school by the Enduwed Schools Commission; the curn exchange, erected in 1760 in the Italian styie, with g room for assemblea and public meetings; the Lioman Catholic chapel of St. Iohn in the Early English atyle, erected in $180 \hat{6}$ at the cost of the duehess of Norfolk. A school board was formed in 1873, which, besiles baving the managenent of most of the schools previously existing, Ins recectel new buildings in the cast cand of the town, at is erost of atuve. 1000 . There are a number of smatl charitica, anl almshouses wero founded in 18.42 by the Rev. Jurvis kenrick. The town possesses a tannery, a foundry, a carriáde factury, and severial flour mills. The area o! :Lo
parish and parliamentary borough is 10,741 acres, and the population in 1871 was 7831 .

There is a tradition which derives the name of Horsham from Horsa the brother of Hengist, who is said to have been slain in the weinity; wthers derive it from horsham, the horses' meadorw ; but the nost proballe dervation is Hurst-Ham or the Han (village) in the Hurst (forest). The town is a borough by prescription, and returned two ntembers to parliament from the 23 d yoar of the reign of Edward I. to the 2d of William 1V., when it was deprivell of one of its members. It has never been incorpotated, and it is now governed by a local board.

HOFSLEY Joan (c. 1685̄-1732), a distinguished antiquary of the last century, the date and lace of whose birth as well as his parentage are uncertain. The late Rev. Jobn Modgson, the historian of Northumberland, in a short memoir of ham published in 1831 , countenances the belic: that he was born in 1685, at Piokie, in the parish of Inveresi and county of Midtotbian. This statement be reconciles with Horsley's subsequent history, by supposing that his father was a Northumberland Nonconfermist, r.jo had migrated to Scotland during the reign of Charls II. or James II., but returned to England soon after the Revolution. of 1688 On the other band, Mr J. H. Hinde, in "Notes" on the life ol llorsley, printed in the Archaologia .etliana for February 1865, leass to the opinion that he was a native of Newcastle-ou-Tyne, and the soa of Charles Horsley, a member of the Tailors' Cuapany of that town, an opinion to which colour is given by some expressions of Horsley's own 10 the Britannia Romana.

Horsley undoubtedly received his early education at the grammar sebool of Newcastle, and completed it at the university of Edinburgh, where he was admitted to the degree of master of arts oa the 29th of April 1701. For years afterwards nothing seems to be knowa of him, though some of them must have been given to the study of theology ta cunnexion with the body of dissenters to which he belouged. "There is some evideace tending to show that Horsley "was settled ia Morpeth as a Presbyterian munster as early as 1709." Mr Hodgson, however, thinks that up to 1721, at which time be was residing at Widdrington, "he had not received ordination, but preached as a licentiate." Even if he was ordained then his stay at the latter place was probably prolonged beyond that datc; for he communicated to the Philosophicat Transactions notes on the rainfall there in the years 17:2 and 1723. Mr Hinde also shows that during theso years, in addition to his other duties, whatever their nature, " he certanly followed a secular employment as agent to the York Buldings Compang, who lad contracted to purchase and were then in posisssioo of the Widdrangton estates." Soon after settliag at Morpeth, Horsley began to supplement his professional incomo, probably slender, by opeuing a privato school. Tho enterprise was snecessful. Respect for his character and abilities attracted pupils. irrespective of religious conncrion, one of then becoming afterwards Dean of Westminster. Ile likewise found tima to give courses of lectures on mechanics and hydrostatics in Morpeth, Alnwick, and Neweastlo; and it was doubticss in reengnition of his scientific tastes and attainnents that bo was electedon the 23d April 1730 a Fellew of the Royal Socic!y.

It is, lowever, in connexion with his archeological researches that John Horsley is now so well and sis honourably known, though strangely cnough ao phace appears to have been hithetto found for his nable io stich works as the present. Among those who have investigated the traces left by the Somans of their presenco in Britain be stands, and must ever stand, as in many respects the foremost. His great work, Rritanuide Romzana, or the Roman Antiquities of Dritain (Lordon, 1732), ono of the scarcest and most valuable of its class, coutains the result of no nomount of patient labour in this extensivo feld that in the
case of a man in his position is tiuy marvellous. Nor was the acuteness of his intellectual powers less remarkable; for so aceurately were his researches conducted and so solid was the judgment he brought to bear upon them that a century and a half of subseqnent iuqniry bas invalidated ouly a few of the conclusions he came to.
Hursley died suddenly, of apoplexy, on the 12th of January 1732, his constitution laving been in all likelihood prematurely worn ont by the toil he had undergone in the composition of the Brilannaa Romana, then on the eve of publication. The following extract from the burial register if the parish of Morpeth gives the date of his interment:
$173 \frac{1}{2}$, Jan. 15, Mr John Horsiey," but the site of his grave is unknown. Besides the Britannaa Romana, Horsley published two sermons and a hand-book to his lectures on mechanics, de. He also projected a history of Northumberland and Durbam, collections for which were found among his papers. By lus wife, a daughter of the Rev. William ILamilton, D.D., minster of Cramond, afterwards professor of divinity in the university of Edinbargh, he had one sni and two daughters.
HORSLEY, Samuel (1733-1806), a learned Anglican prelate, was born 10 Loudon in 1733. Enteriug Trinity College, Cambridge, he became LL.B. in 1758 without graduatiog in arts, and in the following year snceeeded his father in the living of Newington Bntts in Surrey. Horsley was elected a Fellow of the Royal Society in 1767; but, in consequence of a difference with the president, he withdrew from it in 1784 . He had been secretary since 1773. In 1768 he attended the eldest son of the earl of Aylesford to Oxford as private tator; and, after receiving through the earl and Bishop Lowth various minor preferments, which by dispensations be cembined with his first living, he was installed in 1781 as archdeacon of St Albans. In 1774 the university of Oxford cunferred on him the degree of LL.D. Whilst archdeacon, Horslcy entered upon Liis famous controversy with the Socinian, Dr Priestley, who dened that the early Christians held ṭhe doctrine of the Trinity. In this controversy, conducted on both sides in the fiercest polemical spirit, Horsley showed the superior learning and ability. His aim was to lessen the influence which the prestige of Priestley's name gave to his views, by proving from his writings the latter's incompetence throngh ignorance to form an authoritative judg. ment on the disputed points. For the energy displayed in the contest Horsley was rewarded by Lord Chancellor Thurlow with a prebendal stall at Gloucester; and in 1788 the same patre - procured his promotion to the episeopal see of St David's. As a bishop, Horsley was energetic both in his diocese and in parliament. The efficient support which he afforded tho Government in the latter place was acknowledged by lis snceessive translations to Rechester in 1793, and to St Asaph in 1802. With the bishopric of Rochester he held the deanery of Westminster. He died at Brighton on October 4, 1806.
Besides the controversial Tracts, which appeared in 1783-84-86, and were repubtished in 1789 and 1812, Horsicy's more import.ant works nee:-Apollonii Pergai Inclinntionzum Librit duo, 1770; Necmurks on tho Obscrvations. \because for determining the acceleration of the Poululum in Lat. $70^{\circ} 61^{\prime}$, 1774 ; Iseaci Novetoni Opera quec celant Omnith, with in coumentiry, 5 vols. 4to, 1779-84; obn the Proncretics of the Greck and Latin Languages, 1799; Disquisithons on Istiah xviii, 1798; Hosea, translated froin the Hibreve, vith Noles, 1801; Elcmentery Trcatiscs on . . . Wathematics, 1801 ; Enctidis Elcmentorimn Libri priores XII., 1802; Euclidit Datorum Liticr, 1 s03; Virgil's Tuto Seasens of Honcy, ec., 1 sons; and pnpers in the Philosophticat Transactions from $1 \overline{167}$ to 1776 . Since tiis deall have nppeared-S.rmons, 1S10-12; Specehcs in Farliament, 1813; Book of Psslms, translatcd with Notes, 1815; Liblical Criti-' rism, 1820; Collcetd Thcological Works, 6 vols. Swo, 1815. Sce Nichol's Liecrary Anecelotes, vol. iv.
horsley, Willam (1774-I858), an Engiish musician of considerable reputation, was born November 15, 1774, $1: 2-10$
and became in 1790 the pupit of Theonore Smith, an indifferent musician of the time, whe, however, taught him sullicient to obtain the position of urganist at Ely Chapel, Holborn. This post lie resigned in 1798, to become organist at the Asylum for Female Orphans, as assistant to Dr Calleott, with whom he lad leng been on terms of personal and artistic intimacy, and whose cildest daughter be married. In 1802 he became his fremd's successur upon the latter's resignation. Besides holding this appointmient he became in 1812 organist of Belgrave Chapel, Hulkin Street, and in 1837 of the Charter Honse. ILe died Junc 12, 1858. Horsley's compositions are numerous, and include amongst other instrnmental pieces three symphonies for full orchestra. Infinitely more important are his glees, of which he published five books, besides contributing many detached glees and part songs to various collections. Mr Barrett, in his lecture on "English gleo and madrigal writers," calls Horsley "one of the princes amongst glea writers," and attributes to him "a fine and powerful dramatic aim and an elegant taste." Horsley's compositions are moreover distinguished by a remarkable purity of style, which sometimes verges on pedantry. His glees, "By Celia's arbour," "O nightiugale," " Now the storm begins to lower," and others, are amongst tho finest specimens of this peculiarly English elass of compositions. Horsley's son (Charles Edward), born in I822, enjoyed a certain reputation as a musician. He studied in Germany under Hauptimann and Mendelssohn, and on bis return to England compesed several oratorios and other pieces, none of which had permanent success. In 1868 he emigrated to Australia. He died March 2, I876, at New York.
HORTEN (Karlomanswarn), a seapart town of Norway, in the ant of Jarlsberg-Laurvig, is beautifnlly situated on the west bank of the Christiana fjord, opposite Moss, and 32 miles south of Christianin. It is defended by strong fortifications, is the headquarters of the Norwegian flect, and possesses an arsenal and shipboildiug yards, as well as a real schoel, a national sehonl of the bigher grade, an observatury, a nautical museum, and an infirmary. It also carries on a considerable shipping trade. The population, which in 1830 did not exceed 200 , was 5457 in 1875.
HORTENSE (1783-1837), queen of Holland, is familiarly known as La Reine Hortense. Her proper name was Engenie Hortense de Beauharmais, and she was the only daughter of Alexandre de Beanharnais and Josephine'Tascher de la Pagerie. She was born on the 10th of April 1783. When fuar years old she accompanied her mother to Martinique, and returned with her three years later to be subjected to all the dangers of the Revolution. For a time she was sent with her brother to England, but soen returned. The marriage of her mother to Napoleon Bonaparte maturally altered her prospeets altogether, and, as sho grets to woman's estate, several marriages of more or less impötance wero proposed for her. It suited the first cousul, however, that she should marry his brother Louis, and despite her tears and entreaties the marriage was conelueled. In ono of his moments of bratal frankincss Napoleon confessed tbat his brother as a husband was "insupportable," though he eharacteristienlly proceeded to charge liortense with baving been the cause of his own misfortanes in not agreeily, with her busband. Lonis it appears was sincercly masious to please his young wife. Fiut his health was bad and his temper glonny, while Ilortense was exceptionally lively and fond of gaiety. The natural ennsequence was an infinity of senindal, some of it of a very grave character. The recent publication of Madame de Lecmusat's memoirs has, however, gone far to excrerate Iortense. The writer, equally outspoken ard well informed, gives instanees of
the most fantastie and disgusting exereise of conjugal tyranny on Louis's part, and denies that his wife in any way misconducted herself, the malignant jealousy of the Bonaparte sisters being eredited with the accusation. Within seren years of her marriage Horteuse bad three chillaren, whose numenclature, unless earefully studied, is somewhat puzzling. Tho eldest, Napolcon-Luuis-Charies, was bori in 1802 and died in 1807 . The next, NapoleonLouis, was born in $180 \pm$ and died in 1831. The third, Charles-Lonis-Napoleon, was born in 1807, and lived to be thelate emperor Napoleon 111. When Napoleon distributed crowns to his relations Hortense was rery ansious that her husband should receive that of Italy. Holland, however, fell to his share, and the ill-matched pair retired thither. The death of her eldest son made Holland intolerable to IIortense, and before long she returued to Paris and estabished herself in the Rue Cerutti. Nor did she from that time forward ever live in any regular fashion with her husband, whose forced abdication of his crown soun follored. In Paris sho was more popular than respected, and her leisure time was filled up with many quasi-literary and artistic employments. It was there that she signalized hercelf by composing among other airs the famous melody of Partant pour la Syrie. The ineffable silliness of the words of this song is not due to her, but to a certain M. do Laborde; and it is only fair to say that it took Frenchmen twenty years to find out that the air was ngly, and that it was possibly stolen. Hortense continued even after her muther's divorce to exercise a certain influence over her atepfathor. At the first Restoration she was confirmed in her title aud possessions as Duchesse de Saint-Leu. . But she ardently welcomed the returning emperor, and thence. forward France was hardly a residence for her, while her private life was disturbed by constant and indecent liekerings with her busband about the custody of her children. She bought a house at Arenenberg on the Lake of Constance and anuther at Augsburg, for the sake of educating her sons, and from time to time she uadertook varions journeys ia the hope of furthering their interests. The Revolution of July gave her some chance of returning to France, but imiaediately afterwards grave misfortunes overtook her. Her sons took part in the Italian risings, and the elder died of measles. Scarcely had she recovered from this whon the Strasburg attempt was made against her advice. She lived long cnough to see the future emperor return from America, and lied at Arenenberg on the 3d Uctober 1837. Generally speaking, Flortense appears to have teen nn amiable woman, whose life was opoilt by the tyrannical egotism of herostepfather, She seems, huwever, to bavo leen unduly given to intriguc; and she herself admitted that she might have lived on better torms with her husband, unon whom sha was forcel almost as much as he was forced on her.

HORTENSIUS, Quintus, was une of the first and most famons orators at the Roman bar in tho latter days of the republic, when tho orator's art was particularly tlourishing and was diligently enltivated. Wis father had beengovernor of Sicily, and hat left Peltimel him a goorl mame for justice and uprightness. IIo was himself born in 114 nec., and he lived to the year 50 b.c., so that his life and rarcer ran piratled to that of Cicero, whose senior he was by only eight years. Ha hat the best possible intrininctions into public life, und at tho age of nimeteen herembe las first speech at the bay, and shortly afterwards suremsfully conducted the defence of a petty king of Bitlyynis, one of Reme's many depurntuts in the list. Promitat time his reputation as an whopent advocate was decisively "atablished. Se the som-an law of Catulus he was attached to the aristocratient prtiy of wheh sulla was the hearl, and among bis clients has anherel several of it most emin at members. Inam:

Sulla's ascendeney the courts of law were under the eontrol of the senate, the judges being themselves senators. To this circumstance perhaps as well as to his own merits Horteasius may have been indebterl for much of his success. Many of his clients were the governors of prorinces which they were acensed of haring plundered, and such men were senerally sure to find themselves brought befure a somewhat lemient or eren friemily tribunal, one, ton, which was shamefully accessible to corruption. Hortensius himself, according to Cicero, was not ashamed to avail himself of this disgraceful weakness, and a good deal of the plunder which his chents had got from the prowncials went into the puckets of the judges. Cicero made this statement in open court, ind we are thus driven to assume that it must have had some foundation.

Hortensius, like other eminent Roman eitizens, passed through the regular suecession of public offices, rising from the questorship in 81 to the consulship in 69 B.c. In the year before his consulship be came into collisiun with the nuw rapidly rising eloquence of Ciccro in the memorable case of Verres, and trom that time his supremacy at tho bar was shaken. In fact lus gnunger rival stepped into his positıon. Cicero's success against a man who was backed up by all the intluence of Sulla's party was a splendid triomph, and it must have been a heavy blow to Hortensius. Shortly aftervards be was again pitted agamst Cicero, and agam failed. In 67 a proposal was made to supersede Lueullus in his command in the East aganst Mithradates in favour of Pompeins. This was supported by Cicero, and was successfully carricd in face of the opposition of Hortensius. From the year 63 b.c., the fantons year of Cicero's consulship and of the Catiline conspracy,, we fiad the two great rivals often associated together as counsel in the ssme case. The fact was that Cicero was now himself drawn towards the aristucratical party,-the party of Hortensius. Coosequently, in the many cases which hail unore or less of a political cumplexion as arising nut of the disorder and turbulence incident to party quarrels, it was natural that the two men should have the samo syimpathies and be engaged on the same side. So it hapjened, for example, in the case of Licinius Murena, whom Cicero defended along with Hortensios against a cliarge of bribery in canvassing for the consulship. Hnd so strongly declared was bis sympathy fith Milo against Cicern's bitter enemy Clodms that he was nearly murdered by some of Clodius's gang. After Pomperus's return from the East in 61 bc., and the political revolution which tor a tume united him witl Ciesur. IInrtensus withdrew from public life and deroted humsi:! exclusively to his profession. For nine more years be was in continual employment as an advocate, and won a number of verdiets. In 50 b.c., the last year of his life, he defended successfully one Appins Claudius against Dolathella, Ciceru's son-in-law, who wrosecuted the man on a serious charge of bribery.

None of Hortensius's specelos hare come down to us; and it was, it seems, only on special acensions that he wrote them. Almost all our knowledge of him is derwed from Cicero. Ile was undoubtedly a lighly-gifted and aeeomphished man, and though of course he owed his very carly success to his great coumexions, yet he was perfectly well able to stand on his own conspicueus merits. Ilis elingence perhaps was not quite of the highest order;-it wis not for the most part what Ciecro ealled "gravis," weighty, digniffed, impressive; there was, it nay be presmeal, an absence of those appeals to great moral principles which give such grandear to the lest speches of Cicero nod Demosthenes, and of ournow Purke. IIis oratery, according to has geme rival. was of the Asiatie style, by whieh appare to be memt a floid rhetoric, better :o hear than to read. tha hat the gift ofe a mascllonsly tenachan memory, and.
could retain every single print in his opponent's argument. His action was highly artificial, and even his mmner of folding his toga was noted by eminent tragic acturs of the day, and is lelt on record by Macrubius. He bad, tou, a tine musical veice, which he could skillully command.

Cicero sometimes speaks of Hortensius very favoufalily, and even almost affectionately, thungh at would appear from some passages in bis letters that he never quate trusted bim. He conld not bave thought him a ligh-principded man, as he openly charged him with bribery, and as be actually mentions a case in whel he clamed property under a will which he knew to be a forgery (De Ofliciis, iii. 18). Hortensius, in fact, seems to lave been a las, casygoing, clever man, with very little noble ambition and very little real mural worth. "An amiable Epicurean" is a phrase which describes lim not unfuirly. The anecdotes we have
about him all point to a man ot Iuxurrous tastes and a great capacity for enjoyment. The vast wealth he had accumulated during forty-four years of suecessful practice he spent alter the fashion of rich Roman nobles, in splendid villas, in parks, in fish punds, and costly entertainments. He left has heir an unusually weil-stocked cellar of wive, and his park at Lamentum aboumded in every variety of game. Me was also a great luyer of pictures and works of art. With true consistency he opposel Pompeius and Crassus when they proposed their sumptuary law. He is sadd to bave spoken witily on the oceasion; he was at any rate successlul.

Thate is a good accomin of Hortensius in Dunlop's Rioman Lutera. turc.(ii. 222), and in Smith's Ductronary of Grcek and Lioman Biogrophy his lite and careerare traced as thoroughly as the materials at our distrosal allow.

H ORTICULTURE

H°ORTICLLTURE embraces both the art and the science of the cultivation of garden plants, whether for utilitarian or for derorative purpuses. The subject haturally divides itseli into two sections, which we here propose to treat separately, commencing with the science, and passing on to the practice of the cultivation of flowers, tuits, and veretables as applicable to the home garden.

part I- Principles or Science of Hurticulture.

Horticulture, apart from tie mechanical details connected with the maintenance of a garden and its appurtenances, may be considered as the application of the principles of vegetable physiology to tho cultivation of plants. The lessons derived from the abstraet prineiples enunciated by the physiologist, the chemist, and the physicist require, however, to be modified to suit the special circumstances of plants under cultivation. The necessity for this modifieation arises from the fact that such plants are subjected to conditions more or less unnatural to them, and that they are grown for special purposics which are at varianee, in derree at any rate, with their natural requirements.

Tbe life of the plant makes itself manifest in the processes of growth, development, and reproduction. By growth io bere meant mero inerease in bulk, and by development the series of gradual modifications by which a plant originally simple in its structure and conformation beeomes eventually complicated, and endowed with distinct parts or organs. The reproduction of the higher phuts takes place etther asexually by the formation of buds or organs answering thereto, or sexmally by the production of an embryo plant within the seed. The conditions requisite for the growth, developneent, and reproduction of plants are, in general terms, exposure, at tho proper time, to suitable amounts of light, heat, and moisture, and a due supply of appropriate food. The various amounts of these needed in different cases have to be aljusted hy the "irdener, according to the nature of the plant, its "habit" wr general mode of growth in its native country, and the inHuence to which it is there subjected, as also in aceordance with the purposes for which it is to be eultivated. ide. It is but rarely that direct information on all these points can be obtained; but inference from previous experienee, especially with regard to allied vegetable forms, will go far to supply such deficiencies. Moreover, it must be remombered that the conditions most fivourablo to pliuts are not ulways those to which they are subjected in nature, fur owing to the empetition of other vegetahlo foms in the strugble for existence, liability to injury from inscets, and other adverṣe cireumstances, plants may netualiy be excluded
from the localities best suited for their development. The gardener therefore may, by modifying, improve upon the conditions under which a plant naturally exists. Thus it frequently happens that in our gardens flowers have a beauty and a fragrance, and fruits a size and savour depied to them in their native haunts. It behoves the judicius gaidener, then, not to be slavish in his attempts to imitate natural conditions, and to bear in mind that such attempts must sometimes necessarily be failures. The most successful gardening is that which turns to the best accuunt the plastic organization of the plant, and anables it to develop and multiply as perfectly as possible. Experience, coupled with observation and reflexion, as well as the more indirect teachings of tradition, are therefore of primary im. portance to the practical gardener.

We propose here to notice briefly the several parts of a flowering plant, and to point out the rationale of the cultural procedures cunnected with them.

The Roon. - The root, though not preeluded from access of air, is not directly dependent for its growth on the agency of light. . The efficiency of drainage, digging, hoeing, and like uperations is accounted for by tho manner in which they promote aeration of the soil, raise its temperature, and remove its stagnant or superfluous moisture. Owing to their growth in length at, or rather in the immediate vieinity of, their tips, roots are enabled to traverse long distanees by surmounting some obstaeles, penetrating others, and insinuating themselves into narrow crevices. As they have no power of absorbing solid materials, their food must be of a liquid or gaseous character. It is taken up from the interstices between the particles of boil exclusively by the finest subdivisions of the fibrila, and in many cases by the extremely delicato thread-like cells which project from them, and which are known as root-bairs. The number and density of thece latter are in direct proportion to the abundanco and suitability of the food of the platit. The importance of the root-fibres, or "feeding roots," justifics the care which is taken by every good gardener to secure their fullest development, and to prevent as far as possible any injury to them in digging, potting, and transplanting, such operations being therefore least prejndicial at seasoms when the plant is in a state of comparative rest.

Root-Pruaring and Lifling. - In apparent disregari of the general rule just enunciated is the practice of root-pruning fruit trees, when, from the formation of woud being more active than that of fruit, they bear badly. The contrariety is mote apparent than roas, as the oferation cunsists in the removal of the coarser routs, a jucocess which result: in the develooment of a leash of fino fcoding ruots. Noreover,
there is a generally recognized quasi-antagonism between the vegetative and reproductive processes, so that, other things being equal, anything that cbecks the one helps forward the other.

Wutering.-So far as practical gardenng is concerned, feeding by the roots after thcy have been placed in suntable soll is confined principally to the admumstration of water and, under certain circumstances, of liquid manure; and wo operations demand more judicious nanagement. The amount of water required, and the times when it should be applied, vary greatly according to the kind of plant and the object for which it is grown, the season, the supply of hast and liget, and numerous other conditions, the influence of which is to be learnt by experience only The same may be sald wath respect to the application of maunres. The waterng of pot-plants requires especial care. Water should ns a rule be used at a tsinperature not lower than that of the surrouucing atmusphere, and preferably after exposure for some time to the arr.

Bottom-Ifeat.-ins "optimum" temperature, or that best suited to promote the general activity of roots, and, indeed, of all vegetable organs, uecessarily varies very much witb the nature of the plant, and the circumstances in which it is placed, and is ascertained by practical experience. Artificial heat applied to the roots, called by gardeaers "bottom-heat," is supplied by fermenting materials, dung, tan, flues, or hot-water pipes. In some eases solar heat is as it were entrapped by placing beneath the roots substances such as bricks, the heat previously absorbed by which is slowly radiated. In winter the temperature of the soil, uut of doors, beyond a .certain depth is usually higher than that of the atmosphere, so that the roots are in a warner and more uniform medium than are the upper parts of the plant. Often the cscape of heat from the soil is prevented by "mulching," i.e., by depositing on it a thick layer of litter, etraw, dead leaves, and the like.

The Stem and its subdivisions or branches lengthen, not only near the thp, but also lower down, by interealary gruwth. They uprase to.. the light and air the leaves and liowers, and serve as channels for the passage to them of fluids from the roots, and they act as reservoirs for nutritive substances. Therr functions in annual plants ccase ofter the ripening of the seed, whilst in plants of lonser duration layer after layer of strong woody tissue is formed, which enables them to bear the strains which the weight of folinge and the exposure to wind, \&e., entail. Tho gardener aims usually at producing stout, robust. shortjointed stems, instead of long lanky growths defective in woody ussue. To secure these conditions free exposure to light and air is requisite, but in the ease of culpice woods, or where long straight spars aro nceded by the forester, plants are allowed to grow thickly so as to ensure development in an upward rather than in a lateral diruction. This and like matters will, however, be moro filly considered in dealing hercafter with the buds and their treatment.

Lenues.-Tho work of the leaves may briefly be stated to consist in the processes of nutrition and of respiration. Nutrotion by the leaves includes the imbalation of nir, and the combination, under the influence of light and in the presence of chlorophyll, of carbon from the carbonic acid $g^{2}{ }^{24}$ in the air with hydrugen from the watery vapour it comtinins, oxygen being exhaled. There is also a process of true respiration, in which atmosplieric oxygen unites with a pertion of the carbon in the plant, and is evolved os carbotence arid gias.

Syrinyeng, de.-In certan carcumstances water is abenrber by the surface of leaves, especially when the supply of moisture at the root da defective, and when by too long
exposure to drought the watery constituents of the plant bave evaporated. A certain amount of evaporation of superfluous watery fluid or vapour is a neeessary acconpanment of nutrition, but this nuy casily become excessive, especially where the plant cannut readily recoup itsclf. In these circumstances auch operations as "syringing" and "dampung down" are of special value. Evaporating Lasins or tauks in houses for orchid and other plants are beneficial for like reasons. Following Boussinganlt and Henslow, by whom the absorption of water by leaves bas been proved, we may sum up the advantages of syringing as follows :-it washes off dust and insects from: the leaves, and by moistening the cuticle promotes res piration and the absorption of water; it checks loss by transpiration, and so enables terminal shoots and young leaves to receive a sutticiency of sap from the stem; it kceps the air cool by evaporation; and lestly, ns moisture is actually imbibed by the greea parts of plants, it belps to compensate for any loss from within, and thus supplements rout absorption.

In accurdance with the facts just cited it is found that the preservation of cut flowers is pronoted by inserting some of their leaves as well as thcir stalks in water. By cuting au herbaceous stem under water, so that the sevcred end is never exposed to the air, withering can to a large extent be prevented ; and a bouquet may be kept fresh for a long time either by immersing the whole in water, or by simply covering the vase of water io which it is placed with a bell-giass. Io the case of "cuttings" excessive transpiration is obviated by means of bell-glasses and by shading, and sometinces by burying a portion of the cutting with a leaf attached.

Carnivorous Plants.-Before leaving the subject of nutrition by leaves, reference may be made to the so-ealled carnivorous plants, e.g, D roserce. Substances, particuliarly such as contain nitrogen, as iasects or fragments of meat, when brought into contact with the surface of the leaves, or with certain glands on the leaves, become dissolved by the agency of a digestive ferment secreted therein, are then absorbed and serve as nutriment. See Insectivorous Plants.

Resparation, already alluded to, is not directly conneeted with exposure to light, since it goes on by night as freely as by day. It is a process requisite for the health of the plaut, and contributes to maintain its beat, to perfect its structure, to eliminate some of its secretions, and to destroy effete or impure matters. Chlurophyll, according to Prinesheim, acts ns a regulator of the respiration of plants by absorbing sone of the luminous rays, and thereby favouring the function of assimilation.

As a result of the processes earrica on in the teaves under the influence of light, wany of the secretions, as starch, sugar, oils, and colouring nnd odoriferous matters are formed. These either nt once subserve the nutrition of the plant or are stored in its tissucs, ns in the ease of tubers and many seeds. Usually beforo it ean be rendered available as nourisbment the stored matter las to undergo a change from a more ur less insoluble to a soluble form. The changes which they undergo within the plant require very carcful study, and indced constitute a department of physiology still very greatly in need of elucidation. Pringsheim's recent rescarches on the action of light on chlorophyll, prosecuted with the bid of a small lens and observed under tho mieruscope, bid fair, if confirmed, matcrially to change the views of chemists as to the processes which go on in leaves ns a consequence of exposure to light; but, although they may chango or even reverse nur notions as to the modo of nction of chlorophyll, they will not detract from its importance.

Buds-The recognition of the various forms of buds
and their mudes of disposition in different plants, on which see Betany, vol. iv. pp. $95-99,118,119$, is a matter of the first consegnence in the operations of praning and training. Flower-buds may be produced on the old wood, i.e., the shoots of the past year's growth, or on a shoot of the present year. The pear and rhododendron develop flowerbuds for the next season speedily after blossoming, and these may be stimulated into premature growth. The peculiar short stunted branches or "spurs" which bear the flowerbuds of the pear, apple, and their allies, and of the laburnum, deserve special attention. In the rose, in which the flowerbuds are developed at the ends of the youns shoot of the year, we have an example of a plant destitute of flowerbuds during the winter.

Propagation by Euts.-The detached leaf-buds (gemme or bulbils) of some plants are capable under favourable conditions of forming ner plants. The edges of the leaves of Bryophyllum calycinum (sce vol. iv. p. 98, (g.g. 67) and of Curdumine pratensis, and the axils of the leaves of Litium bulbijerum (iv. 99, fig. 71), produce buds of this character. It is a matter of familiar observation that the ends of the shoots of brambles take root when bent down to the ground. In rare instances buds form on the reots, and may be used for parposes of proparation, as in tho Japan quince. Of the tendency in buls to assumie an independent existence gardeners avail themselves in the operations of striking "cuttings,", aud making layers and "pipings," as also in budding and grafting. In taking a slip or eutting the gardener removes from the parent plant one or more bnds or "eyes," in the case of the vine one only, attached or not to a short shoot, and places them in a moist and sufficiently warm situation, where, as previously mentioned, undue eraporation from the surface of the leaf or leaves is presented. For some cuttings pots filled with light soil, with the protection of the proparating house and of bell-glasses, are requisite; but for many, such as willows, no such precautions are neeessary, and the thrusting of the end of a shoot into moist ground suffices to ensure its growth. In the case of the more delicate plants, the formation of roots is preceded by the production from the cambitun of the cuttings of a succulent mass of tissuc, the callus. It is important in some cases to retain on the cutting some of its leaves, so as to suply the requisite food for storage in the callus. In other cases, where the buds themselves contain a sufficiency of nutritive matter for the young growths, the retention of leaves is not necessary. In the tissues of willow-stakes just refered to there exists an abundance of material available for the supply of the young roots. The must successful mode of forming roats is to place the euttings in a mild bottom-heat, which expedites their growth, even in the caso of many hardy phants whoso cuttings striko roots in the open soil. With some hardwooded trees, as the common white-thorn, roots cannot he obtained without bottom-bant. It is a general rule throughout plant culture that the activity of the roots elhall be in advance of that of the leares. Cuttings of deciluons trees and shrubs succeed best if Ilanted early in sutum while tho soil still reteins the solar heat absorbed during summer. For evergreens April or May and August or Scptember, and for greenhouse and stove-plants the siring and summer months, are the times must snitable for prop a gation by cuttiugs. The great olject to be attained is to secure tho formation of active roots before the approach of winter.

Leycring consists smaply in bending down a branch and keeping it in contact with or buried to a small deptly in the soil until roots are forqued ; the connexion with the parent plant may then be severed. Many plauts can be far more easily propagated thus than by cuttings.

Grafting or "working" cunsists in the transfer of a
branch, the "grätt". or "scinn," from one plant to another, which latter is termed the "stock." T'the operation must be so perfermed that the growing tissines, or cambium-layer of the scion, may fit accurately to the corresponding layer of the stock. In budding, as with roses and peaches, a single bud only is implanted. Inarching is essentiatly the promotion of the anion of one shoot to another of a diflerent plant. " The outer bark of each being removed, the two shoots are kept in contact by ligature until union is established, when the scion is completely sevcred from its original attachments. This operation is varied in detail according to the kind of plant to be propagated, but it is essential in all cases that the affinity between fhe two plants be near, that the union be neatly efiected, and that the ratio as well as the season of growth of stock and scion be similar.

The selection of suitable stocks is a matter still requiring much seientific experiment. The olject of grafting is to expodite and inerease the formation of fowers and fruit. Strong-giowing pears, for instance, are grafted on the quince stock in order to restrict their tendency to form "gross" shoots, and a superabundance of wood in place of flowers and fruit. Apples, for the same reason, are "worked" on the "paradise" or "doucin" stocks, whieh from their influcnee on the seion are known as dwarfing stocks. Scions from a tree which is weakly, or liable to injury by frosts, are strengthened by engraiting on robnst stocks. Lindley has pointed out that, while in Persia, its native country, the peach is probably best gralted on the peach, or on its wild type the almond, in England, the summer temperature of whose soil is much lower than that of Persia, it might be expected, as experience has proved, to be most successful on stocks of the native plum.

The soil on which the stoek grows is a peint demand: ing attention. From a careful series of experiments mado in the Hortieultural Society's Garden at Chiswick, it was found that where the soil is loamy, or light and slightly enriched with decayed vegetable matter, the aiple sueceeds best on the doucin stock, and the pear on the quince; and where it is chalky it is preferable to graft the apple on the crab, and the pear the wild pear. For the plum on loamy soils the plam, and on chally and light soils the almond, are the thust desimale stucks, and for the cherry on loany or light fich soils the wihd cherry, and on chalk the " malaleb" stock.

The form and especially the quality of fruit is more or less affected by the stock unon which it is grown. The Stanvick nctarine, so apt to crack and not to ripen when worked in the ordmary way, is said to tee cured of theso propensities b_{j} being first budded close to the ground, on a wry strong-growing Magnum Bonum pham, worked on a limasels stuck, ant hy then buding the neetarine on the Megrane Boma about a foot from the gromen. Tho fruit of the prear is oi a higher colour and smatler on tho quince stock than on the wild pear; still more so on the meflay. On the monutain ash the fear becomes carler.
The cfients produced by sterk on scion, and more particularly by acion on stock, are as a rule with difinculty arpreciable. Nevertheless, in exceptional cases modifer (ryw ths, termed "gratt-bytrids," have Leen ohtained which lave been attributed to the commingling of the characteristics of stock and sciun. Of these the most remarkuble example is Cytisus hltami, a tree which year after year produces some shoots, folinge, and flowers like those of the common laburnum, others like these of the very different looking dwarf slrub C. purpureus, and others again internediate between these. We may hence iufer that C. purpuriens was graftel or budded on the common laburnum, aul that the intermediate forms are the result of gralt-
hybridization. Numerous similar facts have been recorded. Among gardeners the general opimen is agamst the possibility of graft-bybridization. The wonder, however, seems to be that it ducs not oceur more frequently, seemg that fluids must pass from stuck to sciva, and matter elaborated in the leaves of the scion must certataly to some extent enter the stock. It is clear, nevertbeless, from examination that as a rale the weod of the stock and the prood of the scion retain their external characters year by jear without chaoge. Still, as in the lahurnom just mentioned, in the variegated jasunine and in Abutalun Darwini, in the copper beech and in the borse ebestnat, the influence of a varicgated scion has occasionally shown itsolf in the prodaction from the stock of variegated sloots. At a meeting of the Scottish Horturultural Association (see Gard. Chron., Jan. 10, 1880, ng 12-14) specmens of a small roundish pear, the "Asion Town," and of the elongated kind known as "Beurré Clargean," were ex. hibited. Two more dissimilar pears bardly exist. The result of working the Beurré Clargean upon the Aston Town was the production of fruits precisely intermediate io size, form, colour, speckling of rind, and other characteristics. Similar, though less marked, intermediate charscters were obvions in the foliage ead flowers.

Double grafting (French, greffe sur grefte) is sufficiently explained by its name. By means of it a variety may often be propagated, or its fruit improved ia a way not found practicableunderordinary circumstadces. Fer its successful prosecution prolonged experiments in different localities and in gardeas devoted to the parpose are requisite.

Planting.-By removal from one place to ancther the growth of every plant receives a check. How thes check can be obvisted or reduced, with regard to the season, the state of atmosphere, and the condition and circumstances of the plant generally, is a matter to be considered by the practical gardener.

As to seasod, it is now admitted with respect to deciduous trees and shrubs that the earlier in autum planting is performed the better; although some extend it from the period when the leaves fall to the first part of spring, before the sap begias to move. If feasible, the operation should be completed by the end of Nusember, whilst the seil is still warm with the heat sbsorbed doriog sumoier. Attention to this rule is specially important io the case of rare and delicate plants. Early autamn planting enables wounded parts of routs to be healed over, and to form fibrils, which will be ready in spring, when it is most required, to collect food fer the plant. Planting late 10 spring should, as far as possible, be avoided, for the buds then begin to awaben into sctive life, and the draught upon the roots becomes great. It has been supposed that because the surface of the young leaves is small transpiration is correspoedingly fecble; but it must bo remembered, not only that their nexly-formed tisene is anable without an abondat supply of sap from the roots to resist the oxcessive drying action of the atmospbere, but that, in spring, the lowness of the temperatare at that season in Great Britain proventa the fiee circulation of the gap. The comprative dryness of the atmosplere in spring also canses a greater amomnt of transpiration then than in sutumn and winter. Another fact in favour of autumal Manting is the preduction of roots in winter.

Tho bost way of performine transphatation depends greatly on the size of the trees, the soil in which they grow, and the mechanical appliances mate use of in lifting and transpurting them. Tho smaller the tree the more successfully cno it be romoved. Tho morn argillaccous and the leas siliceons the soil the more readily citn balls of carth be retainal about the roots. All platers lay great stress on the preservation of the fibrils; all indeed almit them
to be indispensable for the ausurption of nutriment. The point principally disputed is to what extent they can with satety be allowed tu be cot off in transplantation. Trees and shrubs in thick plantations, or in sbeltered warm places, are ill titted for plantug in bleak and cold situathos. During their removal it is inportant that the reuts be corered, if only to prevent desiccation by the air. Damp days are therefore the best for the operation; the dryest months are the most unfavonrable. Though success in transplanting depends mach on the hamidity of the atmesplure, the most impertant requisite is warmth in the soll, buendity can be suppled sruficially, but beat canoot.

Pruneng, or the removal of supertiuots growths, is practised in ordef to equalize the development of the differeat parts of trees, or to promote it io particular directions eo as to secore a certain form, and, by checkug uadue loxuriance, to promete eahaoced fertility. In the rose-bash, for instance, in which, ss we have seen, the tlower-buds sre formed on the new wood of the year, proning causes the old wood to "break," 2.e., to put forth a number of new buds, some of which will produce flowers at their extremities. The manner and the time in which promeg should be accomplisbed, and its estent, vary with the plant, the uhjects of the operation, ie.. Whether for the production of timber or frut, the season, snd rartous other circumstances. So mach judgment and experience does the operation call for that it is a trusm to say that bad proning is worse than none. The removal of weakly, sickly, uvercrowded, and gross infertule sheots is asually, however, a matter abont which there cao be few mistakes when once the habit of growth and the form and arrangement of the buds are known. Winter pruning is effected when the tree 13 comparstively at reṣt, and is therefore less lisble to "bleeding " or outpouring of sap. Summer praning or puching off the tips of such of the younger shoots as are not required for the extenston of the tree, when not carried to tuo great sn extent, is preferable to the coarser more reckless style of proning. The injury inflicted is less and not so concentrated; the wounds sre smaller, and have time to heal before winter sets in. The effects of badly-executed praning, or rather hacking, are most noticeable in the case of forest trees, the mutilatien of which often results in rotting, canker, and other diseases. Judicions and timely thinning so as to allow the trees room to grow, and to give them sufficiency of light and air, will generally obviate the need of the pruniag. saw, except to a relatively small extent.

Tramizg is a procedure adopted when it is required to grow plants in a limited area, or in a particular shape, as in the case of many plants of trailing habit Judicions training also may be of impertance as encoaraging the formation of flowers and froit. Growth in length is msinly in a vertical direction, or at least at the ends of the sboots; and this shonld bo enconraged, in the case of a timber tree, or of a climbing plant which it is desired should cover a roall quickly; hut where flowers or frait aro specially desircd, then, when the wood requared is formod, the lateral shoots may often be trained more or less downward t, induce fertility. The refinements of training, as of prun ing, may, however, be carried too far; and not unfrequently the gynmetrically trained trees of the French excite admira. tion in every respect save fertility.

Sports or bud lariations.- Ilere wo may conveniently mention certain variations from tho normal condition in the size, form, or disposition of bude or shoots on a given plant. An inferior variety of pear, for instance, may suldenly proture a shoot bearing fruit of superior quality; a beech tree without obvious cause, a shoot with finely divided foliage; or a comellia an utuwontedly fine flower. When removed from the plant and treated as cuttings or grafts, such sports may bo perpctuated. Manv garden
varicties of flowers and fruits lave thas originated. The cause of their production is very obscurc. In certain instances where plants have been "crossed" or hybridized, perhaps for generations, the phenomenon may be explained on the suppostion of a dissociation of previously mixed elementa, or of a reversion to some ancestral conditions.

Formation of Flowers.-Flowers, whether for their own sake or as the necessary precursors of the fruit and seed, are objects of the greatest concern to the grardener. As a rule they are not formed until the plant has arrived at a certain degree of vigour, or until a sullicient supply of nourishment has beea stored in the tissues of the plant. The reproductive process of which the formation of the Hower is the irst atage being an exhaustive one, it is necessary that the plant, as gardeners say, should get "established " before it flowers. Moreover, allbough the green portions of the llower do indeed perform the same ottice as the leaves, the more highly colonred and more specialized portions, which are further removed from the typical leaf-form, do not carry on those processes for which the presence of chlorophyll is essential;- and the flural organs may, therefore, in a rough sense, be said to be parasitic upon the green parts. A check or arrest of growth in the vegetative organs seems to be a necessary preliminary to the developinent of the flower. The flower itself is always the modified extremity of a shoot or atalk, which .only exceptionally lengt hens beyond the flower, as, for example, in "proliferous" roses. See Botany, vol. iv. p. 119, fig. 145.

A diminished supply of water at the root is requisite, so as to check energy of growth, or rather to divert it from leaf-making. Partial starvation will sometimes effect this; lience the grafting of free-growing fruit trecs upon dwarfing stocks, as before alluded to, and also the "ringing" or girdling of fruit trees, i.e., the removal from the branch of a ring of bark, or the application of a tight ciactnre, in consequence of which the growth of the fruits above the wound or the obstruction is enhanced. On the same principle the use of small pots to confine the roots, routpruning and lifting the roots, and exposing them to the sun, as is done in the case of the vine in some countrics, are resorted to. A higher temperature, especially with deficiency of moisture, will tend to throw a plant into a flowaring condition. This is exemplified by the fact that the temperature of the climate of Great Britain is too low for the flowering, though sufficiently high for the growth of many plants. Thns the Jerusalem artichoke, thongh able to produce stems and tubers abundantly, only flowers in exceptionally hot seasons.

Forcing.-The operation of forcing is based upon the facts just mentioned. By subjecting a plant to a gradually increasing temperature, and supplying water in preportion, its growth may be accelerated; its season of development may be, as it were, anticipated; it is roused from a domant to an active state. Forcing therefore demands the most careful adjustment of temperature aod supplies of moisture and light.

Deficieney of light is less injurious than might at first be expected, because the plant to be forced has stored up in its tissues, and available for use, a reservo stock of material formed through the agency of light in former seasons. The intensity of the colour of flowers and the richness of flavour of fruit are, however, deficient whero there is feebleness of light. Recent experiments of Dr Siemens have shown that the gardener may avail himself of the electric light, which is proved to exereise on chlorouhyll the same kind of intluence as to the solar rays, aod that ho may thus supply the deficiencies of natural illumination. The employment of that light for forcing purposes would aeem to be at present a question of expense. The great advantage hitherto obtained from its use has enne:. :
in the rapidity with which flowers have been formed and fruits ripened under its influence, circumstances which go tuwards compensating for the extra cost of prodection.

Double $H^{\prime \prime}$ uners. - The taste of the day demands that "donble llowers" should be largely growa. Thongh in some instances, as in hyacinths, they are deeidedly less beautifnl than single ones, they almays present the advantage of buing less evanescent. Uuder the rague term "double" many very different morphological changes are iachaded. The thower of a donble dablia, e.g., otlers a totally diflerent comlition of structuro from that of a rose or a byacinth. Tho double poinsettia, again, owes its socalled donble condition merely, to the increased number of its scarlet involucal leaves, which are not parts of the flower at all. It is reasonable, therefore, to infer that the causes leading to the production of double flowers are varied. A good deal of difference of opinion exists as to whether they are the result of arrested growth or of exnberant development, and accordingly whether restricted food or abundant gupplies of nourishment are the more necessary for their production. It must suffice here to say that double llowers are most commonly the result of the substitution of brightly-coloured petals for stamens or pistils or buth, and that a perfectly double flower where all the stamens and pistils are thus metamorphosed is necessarily barren. Such a plant must needs be propagated by enttings. It rarely happens, however, that the change is quite complete throughout the flower, and so a few seeds may be formed, some of which may be expected to reproduce the donble-blossomed plants. By continuous selection of seed from the best varieties, and "rogning" or eliminating plants of the ordinary type, a "strain" or race of double Howers is gradually produced.

Formation of Seed-Fertilization.-In fertilizationthe influence in flowering plants of the sperm-cell, or its contents upen the germ-cell (see Botany, vol. iv. 147, and Biology, vol: iii. 695)-there are many circumstances of importance horticnlturally, to which therefore brief reference must be made: Flowers, generally speaking, are either self-fertilized, cross-fertilized, or hybridized. Self-fertilization occurs when the pollen of a given flower affects the germ-cell of the same individual flower. Such a flower is hermaphrodite functionally as well as structurally. In self-fertilizing flowers the structure is such that the polleo inevitably comes in contact with the stigma; but fertilization is nlso dependent on the simultaneous maturity of pollen and stigma. Cross-fertilization varies both in maneer and degree. Iu the simplest instances the pollen of one flower fertilizes the ovules of another on the same plant, owing to the stamens arriving at maturity in any one flower earlier or later than the pistils. Snch flowers though structurally bermaphrodite are, at any given time, functionally uniscxual. In many plants a polymorphic condition occurs: thus, in the same sjecies of primrose some flowers have the stamens short, and within the tube of the corolla, with the style projecting beyond the month, giring tho appearance termed "pineyed," while others, known as "thrum-cycd," |resent exactly teverse conditions of stamens and style. In the common loose-strife, I.ythrum Selicuria, the stamens are of three lengtha, and the styles dilier correspoudingly. In sueh di- or tri-morphicflowers, as Mr Darwh's experiments have shown, the most complete fertility ocenrs when a cross is effected between a tlower having short stamens and one with sloort styles. It is asserted that, not only is such a mion more fertile than when pollen from a short stamen is placed on a long style, or vice versa, but the sceding flants aro as a rulo more vigorous.

Cross-fertilization must. of necessity occur when the flowers aro structurally uniseanal, as in the hazel, in which the male and female flowers ere monocious. os
beparate on the same plant, and in the willow, in which they aro dicceious, or on different plants. A conspicuous example of a diccious plant is the common aucuba, of which for years only the female plant was known in Britain. Wene, through the introdiction of the male plant from farar, its fertilization was rendered pussible, ripe berries, heiver unknorn, became edmmon ornaments of the shrub.

The convegane of pollen from one flower to another in cross foctilization is effeeted naturally by the wind, or by the agency of insects and other creatures. Flowers that require the aif of inscets usually offer some attraetion to their visiturs in the shape of bright colour, fragrance, or sweet juiccs. The colour and markings of a flower often serve to gritle the insects to the honey, in the obtaining of which they ate compelled either to remove or to deposit pollen. The reeprueal alaptations of inseets and flowers demand attentive obscrvation on the part of the gardener concerncl with the growing of grapes, eucumbers, meions, and strawbervies, or with the raising of new and improved varictics of plants. Searcely less remarkable, though not so important in the present connexion, are the means liy which the risits of such insects as are useless for the purpose of fertilization, or even injurious to the plant, as preying without advantage to it on its seceetions, are prevented or rendered ineflective. In wind-fertilized plants the dowers are compratively inconspieuous and deroid of much attractions for inseets; and their pollencells aro smoother and smatler, and better adapted for trausport by tho wind, than those of insect-fcrtilized plunts, the roughness of which adart them for attachment to the budies of inseets.

Althongh the reneral facts with respect to fertilization are as above stated, it must be remembered that probably solf.fertilization is not constant in any plant muder all circumstances, and that it certainly does sometimes take flace in Howers which are usually eross fertilized. It may be that, while continued selffertilization ensures the perpeturtion of certain qualitics, cross-fertilization induces beneficial variation. Sume botanists doubt the injurious elfeets atrributed to selffertilization, and, so long as a plant is healthy, it can be attended with but little disadvantage; hut after a time in any caso a cross is protably uscful, and sometimes fertility is fund to be muel greater, and, in rare instuces, noly possible, when inpregnation is effecter by pullen not produced ly a fower's own stamens.

It is very proballe that the same flower at certain times and seasuns is solf fertilizing, and at others not so. The defects which canse graileners to speak of certain vines as "shy setters," and of ecrtein strawherries as "hlind," may be due cither to unsuitable conditions of external temperature, or tu the non-accomblishment, from some canse or ather, of cruss fertilization. In a vinery or a peachhomse it is oftem grow practice at the time of thowering to tap the hranches sumerty with a stick so as the ensure the dispers i of the pollen. Sometimes more delicate mudirect manyultion is required, and tho girdener ha ? !imself th convey the prollon from uno flower to amother, for which Furpuso a small camel'ghair punct is tenerally suitable. The deare of iertility varies grealy arcordine to extermal condifions, the structural and fumbimal arrangements just. allute ! the am other causes which may rongly be ceituch com-titumal. 'Thus, it oflow hainn that an aprarently vely that, chame in climate alters the degree of fertility. Certan phants which erem almast sterite with their own futhen beenme fertilo if graften on sume whers. In a particular cmantry or at certain seasnas nue flower will be
 oulluace of combitimens min the formation of "races," and the ranserum impatane to the horticultarist serking to

in different localities, lave been specially insisted on by Darwin. The advantages of this practice are analogous to those accruing from what gardeners call "change of seed," i.e., the sowing of zeed or the planting of tubers, say of potatoes, in localities and on soils other than those in which they themselves were produced.

Hybricization. - Sonce of the most interesting results and many of the gardener's greatest triumphs have bèen obtained by hybridization, i.c., the crossing two individuals, not of the same but of two distinct specics of plants, as, for instance, two species of rhododendron or two specles of orehid. It is obvious that lyybridization differs more in degrec than in kind from cross-fertilization. The occurrenee of hybrids in mature exphains the diffeculty experienced by botimists in deciding on what is a species, and the widely different limitations of the term alopted by different observers in the ease of willows, roses, brambles, \&c. The artificial process is practically the same in hybridization as in cross-fertilization, but usually requires more eare. To prevent self-fertilization, or the access of insects, it is advisable to remore the stamens and even the corolia from the flower to be impregnated, as its own pollen or that of a Hower of the same species is often found to be "prepotent." There arc, however, cases, e.g, some passion-flowers and rhododendrons, in which a flower is more or less sterile with its own, but fertile with foreign pollen, even when this is from a distinet species. It is a singular circumstance that reciprocal crosses are not always or even often possible; thus, one rholodendron may afford pollon perfectly potent on the stigma of another kind, by the pollen of which latter its own stigma is unaffeeted. With respect to the relations of the hybrid offspring, which partakes sometimes more of the claracteristies of the male or pollen parent, sometimes more of those of tho female or scel-parent, the opinions of practieal experimenters arc so diverse that at prosent no gencral rule ean be estathished. A valuable essay on the subject is the presidential nddress read loy Mr AndersonHenry at the anmual mecting of the Betanical Society of Edinburgh in 1867. A reneral ressume of the facts will bo foumd in Darwin's Origrn of Sjectes, his Variations of Animals and Plants under Donesercation, and his works on tho. fertilization of llowers. Sce also Hybridism.

The object of the hybridizer is to obtain varicties exhibiting improvements in hardihoul, vigour, size, shape, colour, fruifulness, or other attributes. His success depends not alone on skill and judgment, for some seasons, or days even, are found more propitions than others. Although promiscnous and hap-hazanil proeedures no doubt meet with a measure of suceess, the best results are those which are attaincd ly systematic work with a definite aim. To sccurc early and frec-flowering varictics, Mr. Henry advises "violent" crosses, i.e., crosses between varieties or species as distantly related as is practicalle. Carcful expeciments are still greatly needed for the elucidation of the mysteries and thic develpment of the resentes of herbitization. It is difficult to understand why some very cherly-relaterl species, eff, the aple and pear, the currant and ginsumery, refuse to intercross, whilu minch more remote spereis, or even members of different wenta, cau be made to tho so, as in the ease of the hymind Phitugerite (sce Prembencrs' (formick, 187, p. ning, which is the result of a cross letwern the climbing phant Lapageria rosea and the dwarf bush Phithsia burifolit.

Myhnids are usmilly loss Tertile than pure hred species, and are necasionally quite strole. Sime hyluids, however, are as fertile as [ure-het? phams, Hybriil phats may bo again erussed, on even re-hybrilized, so as to proluce a progeny of ve:y mixel parentage. This is the easo with many of our roses, dahlian, heyonias, pelargoniums, and other long or widely cultisatcd gurden plants.

Reversion.- In moulified forms of plants there is frequently a tendency to "sport" or revert to parental or ancestral characteristics. So markedly is this the case with hybrids that in a few generations all traces of a hybrid origin may disappear. Tho dissociation of the hybrid element in a plant must be obviated by careful selection.

Germination.-The length of the periud during which seeds remain dormant after their formation is very variable. The condtions for germination are much the sime as for growth in general. Access to light is not required, beeause tho seed contains a sufficiency of stored-up, fool. The temperature necessary varies according to the nature and souree of the seed. Some seeds require prolonged immersion in water to soften their shells; others are of so delicate a texture that they would dry up and perish if not kept constantly in a moist atmospliere. Seeds buried too deeply receive a deficient supply of air. As a rule, seeds require to be sown more deeply in proportion to their size and the lightness of the soil.

The time required for geauination in the most favourable circumstances varies very greatly, even iu the same species, and in seeds taken from one pod. Thus the seeds of Primula japonica, though sown under precisely similar conditions, yet come up at very irregular intervals of time. Germination is often slower where there is a store of available food in the perisperm or albumen, or in the embryo itself, than where this is seanty or wanting. In the latter care the seedling has early to shift for itself, and to form roots and leaves for the supply of its needs.

Selection.-Supposing seedlings to have been developed, it is found that a large number of them present considerable variations, some being especially robust, others peculiar in size or form. Those most suitable for the purpose of the gardener are carefully selected for propagation, while others not so desirable are destroyed; and thus after a few generations a fixed variety, race, or strain superior to the original furm is obtained. Many garden plants have originated solely by selection; and it is certain that, quite independently of cross-breeding, much could still be done to improve our breeds of vegetables, flowers, and fruit by more systenatic selection. The remarkable results obtained in the case of Major Hallett's pedigree wheat and Mr Lennett's hybrid tea-roses are instances in point. Two robust-growing varieties of potato, the "Magnum Bonum" and the "Champion," bave been found to resist better than others the attacks of fungus to which the plant is liable. Whatever may be the eause, whether the possession by the tuber of a more than ordiuarily thick skin, or other peculiarity, it is obvious that selection with a view to the development of this quality might be productive of the mostimportant results. Darwin recommends, os a means of improving bealth and fertility by intercrossing without loss of purity of race, to sow in altornate rows seeds growa under as different couditions as possible.

Largo and well-formed seeds are to be preferred for harvesting. The seeds should be kept in saeks or bags iu a dry place, and if from plants which are rare, or liable to lose their vitality, they are adrantageonsly jacked for transmission to a distauce in bottles or jars filled with earth or sphagnum moss, without the addition of moisture. Cuttings and entire plants may be transported in widemouthed bottles.
It will have beon gathered from what has been said that seeds cannot always be depended on to reproduco exactly the characteristics of tho plant whiel yielded them; for instance, seeds of the greengage plum or of the Ribston pippin will produce a plum or an apple, but not these particular varioties, to perpetuate which grafts or buds mast be employed.
$32-1 \rho *$
(M. т. M.)

Part II.-The Practice of Horticulture.

The details of hortieultural practice naturally. range under the three beads of flowers, fruits, and vegetables. There are, however, certain general aspects of the subject which will be more couveniently noticed apart, sinee they aply alike to each department: We shall therefore first treat of these under four headings:-formation and pre-' paration of the garden, garden structures and edifices, garden materials and applianees, and garden operations.

I. Formation ani Preparution of the Gurden-

I. Site. -The site chosen for the mansion will more or site. less determine that of the garden, the pleasure grounds and tlower garden being placed so as to surround or lie contiguous to it, while the fruit and regetable gardens, either together or separate, should be placed on one side or in tho rear, according to fitness as regards the nature of the soil and subsoil, the slope of the surface, or the general features of the park scenery. In the case of villa gardens there is usually little choice: the land to be occupied is ent up into plots, usually rectangular, and of greater or less breadth, and in laying out these plots there is generoli; a smaller space left in the front of the villa residenaee and a arg-r one behind, the front plot being usually deroted to alproa二ns, shrubbery, and plantations, flower beds being added if space permits, while the back or more private plot has a piece of lawn grass with flower beds next the house, and a space for vegetables and fruit trees at the far end, this latter being shat off from the lawn by an intervening sereen of evergreens. Between these two classes of gardens there are many gradations, but our remarks will chiefly apply to those of larger extent.

The almost universal praetice as to have the fruit and vegetable gardens combined; and tho flower garden may sometimes be convenieutly placed in juxtaposition with them. When the fruit and vegetable gardens are combined, the smaller and choicer frnit trees only should be admitted. such larger-growing hardy fruits as apples, pears, plums, eherries, de., being relegated to the orehard.

Ground possessing a gentle inclination to mard the sontt is desirable for a garden. On such a slope effectual drain. ing is easily accomplished, and the greatest possible benefit is derived from the sun's rays. It is well also to have an open exposure towards the east and west, so that the garden may enjoy the full benefit of the morning aud evening sun, especially the latter; but shelter is desirable on the nortt and north-east, or in any direction in which the particulat locality may happen to be exposed.
2. Soil and Subsoil.-A hazel-coloured loam, moderately Soil light in texture, is well-adapterl for must garden erops, whether of froits or culinary regetables, especially a good warm deep loam resting upon chalk; and if such a soil oceurs naturally in the selected site, but little will be required in the way of preparation. If the soil is not moderately good and of fair depth, the situation is not an eligible one for gardening parposes. Wherever the soil is not quite suitable, but is capable of being made so, it is bost to remedy the defeet at the outset ; and as it will be fombl easicr to ronder a light soil sufticiently retentive than to make a tomacous clay suffiently porous, a light soil is to be preferred to one wlich is excessitely stiff and heavy. It is advantageous to possess a variety of soils and if the garden be on a slope, it will often be practicable to render the upper part light and itry, while the lower remains of a heavier and damper nature.

Natural soils consist of substances derived from tho decomposition of varions kinds of roeks, the bulk consisting of elay, silica, and lime, in varions proportions. As regards preparation, draining is of course of the utmost importance.

The ground should also be treached to the depth of 3 feet at least, but the deeper the better, provided the good soil be not buried under a mass of inferior quality. In this operation all stones larger than a man's fist must be taken out, and all reots of trees and of perennial weeds carefully cleared away. When the whole ground has been thus treated, a moderate liming will, in general, be useful. After this, supposing the werk to have occupied mest of the summer, the whole may be laid up in ridges, to expose as great a surface as possible to the action of the winter's frost.

Argillaceous or clay soils are those which contain a large percentage ($45-50$) of clay, and a small percentage (5 or less) of lime. These are unfitted for garden purposes until inaproved by draming, liming, trenching, and the addition of porous materials, such as ashes, burnt ballast, or sand, but when thoroughly improved they are very fertile and less liable to become exhausted than mostother soils. Loamy soils contain a considerable quantity ($30-45$ per cent.) of clay, and smaller quantities (5 or less) of lime and humus. Such soils irroperly drained and yrepared are rery suitable for orchards, and when the proportion of clay is smaller (20-30 per cens.) they form excellent garden soils, in which the better sort of fruit trees luxuriate. Marly soils are those which contain a considerable percentage (10-20) of lime, and are calted' clay marls, loamy marls, and sandy marls, atcording as these several ingredients preponderate. The clay marls are. like clay soils, too stiff for garden purposes until ameliorated; but loany marls are fertile and well suited to fruit trees, and sandy narls are adapted for producing early crops. Calcareous soils, which may also be heavy, intermediate, or light, aro those which contain more than 20 per cent. of lime, their fertility depending on the proportions of clay and sand which enter into their conposition; they are generally cold and wet. Vegetable soils or moulds, or humus soils, cuntain a considerable percentage (more than ${ }^{\circ}$ 5) of humus, and embrace both the rich productive garden moulds and thoso known as peaty soils.
The nature of the subsoil is of scareely less importance than that of the surface soil. If an unsuitable subseil has to be dealt with, it must be removed or amelierated. An uneven subsoil, especially if retentive, is most undesirable, as water is apt to collect in the hellows, and thus affect the upper soil. The remedy is to make the plane of its surface agree with that of the ground. When there is a hard pan this should be brokeu up, and if of bad quality the material should be removed altogether. When there is an injurious preponderance of metallic oxides or other deleterious substances, the roots of trees would be affected by them, and they must therefore be remeved. When the subsoil is too compact to be pervious to water, effeetual drainage must be resorted to ; when it is very loose, so that it drains away the fertile ingredients of the soil as well as those whieh are artifieially supplied, the compactness of the stratum must be inereased. The best of all subsuils is a dry bed of elay overlying sandstene.
3. Size and Form.-The general size of a garden adjoining a mansion is frem 4 to 6 acres; but in many places the extent varies from 12 to 20 or even 30 acres. A garden of 2 to 3 seres, enelosed by walls and surrounded by slips, will, howover, suffice for the suplly of a moderate cstablishment.

In laying out the garden, the phan should be prepared in minute detail before commencing operations. The ferm of the kitchea and fruit garden should be square or oblong, rather than curvilinear, since the working and crepping of the ground can thus be more casily carried out. The whole should te coupactly arranged, so as to facilitate working, and to afferd convenient access for the carting of the heavy matcrials. This aceess is especinlly desirable as regards the store-yards and framing ground, where fermenting manures and tree leaves for making up hot beds, coals or wood for fuel, and ingredients for comprosts, together with flower pots and the many neeessaries of garden culure, have te he aecommodated. In tho case of villas or pictaresque residences, gardens of irregular form may be bernitted; when adaped to the conditions of the locality, they associate better with surrounding objects, but in sach gardens wall space is usually limited.

The distribution of the garden area in walks, borders, and compartments must be pertly regulated by the outline of the ground. In general, a gravel walk, 6 or 8 feet brosd, is led quite round the garden, beth within and without the walls. A walk of similar dimensions is often constructed in the centre of the garden in the direction of the glazed heuses, and this is sometimes crossed by another at right angles, which is far preferable to having the walks led diagonally from the corners, since this throws the enelosed plots out of the square. The space between the wall and the walk that skirts it is called the wall-border, and is cemmonly from 15 to 20 feet broad. On the interior of the walk there is usually another border 5 or 6 feet broad, which is generally occupied by fruit trees, trained either as espaliers, as dwarfs, or as pyramids. The middle part of the garden is divided inte rectangular compartmeuts for raising the various culinary crops. It is advantageous to have several small beds, in which to cultivate the less bulky subjeets, such as basil, sage, tarragon, \&e., which, in large spaces, are apt to be overlooked or neglected.

A consilerable portion of the north wall is usually covered in frent with the glazed structures called foreing. houses, and to these the heuses for ornamental plants are sometimes attached; but a more appropriate site for the latter is the fiower garden, when that ferms a separate department. It is well, however, that everything connected with the forcing of fruits or flowers should be cencentrated in one place. The frame ground, including melon and pine pits, should oecupy some well-sheltered spot in the slips, or on one side of the gardea, and adjoining to this may be found a suitable site for the compest ground, in which the various kinds of soils aro kept in store, and in which alse composts may be prepared.

As the walls afford valuable space for the growth of the choicer kinds of hardy fruits, the direction in which they are built is of considerable importance. In the warmer parts of the country the wall on the north side of the
garden should be so placed as to face the sun at about an hour before noon, or a little to the east of seuth; in less fareured loealities it should be made to fnee direet south, and in still mere unfavourable distriets it should face the sun an hour

after noen, or a little west of seuth. The east and west walls should run parallel to each other, and at right nugles to that on the nerth side, in all the most favented locslities; but in colder or later ones, thengh parallel, they slould be se far removed from a right angle as to get the sun by eleven o'clock. On the whole, the form of a parallelogran with its longest sides in the proportion of about five to three of the shorter, and rumniag east and west, may be considered the best form, sinee it afferds a groater cxtent of south wall than any other. Mr Thempsen, in the Gurdener's Assistent, gives a figure which is nearly in this propertion (fig. 1), representing a amall garden 2724 feet by 160 , and therefore containing exactly in nere. This figure aduits of nearly deuble the number of trees on the south aspeet as compared with the east and west; it nllows a greater number of eepalier or pyramid trees to face the south ; and it admits of being dirided into equal principal cempartments, each of which ferms noarly a equare. Tho size of course can be increased to any requisite extent. That of the reyal gardeas at. Frogmore,

760 feet irom eids to west, aud 440 feet from north to south, is nearly of the same proportions.

Tho spaces botween the walls and the outer fence are called slips. A considerable extent is sometimes thas enclosed, and otilized for the growth of such vegratables as potatoes, winter greens, and sea-kale, for the small bush frnits, and for strowberries. The sljps are also contenient as affording a variety of aspects, and thus helping to prolong the scason of particular vegetable crops.
4. Shelter: $-\Lambda$ screen of some kiud to tomper the fury of the blast is absolutely necessary. If the situation is not naturally well sleltered, the defeet may lie remedied by masses of forest trees disposed at a cousider:able distance eo as not to shade the walls or fruit trees. They should not be nearer than say 50 yards, and may vary from that to 100 or 150 yards distance according to circunastances, regard being had especially to peculiarities occasioned by the configuration of the country, as for instance to aerial currents fruin adjacent emincuces. Care should be taken, hawever, not to lem in the garden by crowded plantatians, shelter from the prevailing strons winds being all that is required, while the mare open it is in other directions the better. The trees employed for screens should include beth those of deciduous and of evergreen hakit, and should suit the peculiarities of local soil and climate. Of deciduous trees the sycamore, wychelm, horse-chestnut, beech, lime, plane, and poplar may be used,-the Populus canademsis nova being one of the most rapid-growing of all trecs, and, like other poplars, well-suited for nursing other cheicer subjects; while of evergreeus, the holm oak, holly, lanrel (both common and Portugal), and such conifers as the Scotel, Weymouth, and Austrian pincs, witl spruce and silfer firs and yew's, are suitable. The conifers make the most effective screens.

Extensive gardens in exposed sitnations are often divided into compartments by hedges, so disposed as to break the force of high winds. Where these are required to be narros as well as lofty, holly, yow, or beech is to be preferred, but, if there is sufficient space, the beautiful laurel and tho bay may be employed where they will thrive. Smallor hedges may le formed of evergreen privet, or of trec-bax. These suberdinate divisions furnish, not only shelter, but also shade, which, at certain seasons, is peculiarly valuable.

Belts of slurubbery may be placed round the slips ontside the walls; and these may in many cases, or in certain parts, be of sufficient breadth to furnish pleasunt retired promenades, at the same time that thoy serve to mask the formality of the walled gardens, and are made to Larmonize with the picturesc, ue scenery of the pleasure ground.
5. Water Supply. - Although water is one of the most important elements in vegetable life, we do not find one garden in twenty where even ordinary precoutiuns have boen taken to seeure a competent supply. Fiain-water is the s best, next to that river or pend water, and lasi of all that from springs; but a chemical analjsis shoull bo made of the last before introducing it, as somo spring waters contain mineral ingredients iajurious to vegetation. Iren bipes are the best conductors; they slould lad to a capacious open reservoir placed outside the gurden, and at the higbest convenient lovel, in order to secure suf. ficient pressure for elfective distribution, and so that the wall trees also may be effectually washed. Stand pipes obould be placed at intervals beside the walks and in ot her convenient places from which water may at all times be drawn; and short flexible tubes should Le made to fit on to them, to which a garden lose can be attached, so as to permit of the whole garden being realily and when neecsgary profusely watered. The mains shouk be placed under tho wallis for arfety, oud alsn that they may tw casily
reached when repairs aro required. Pipee should also be laid having a connexion witli all the various greenhooses and foreing-houses, cach of which should bo provided with a cistern for acrating the daily supplies. In fact, every part of the gardon, including the working sheds and officen, should buve water supplical without stint. At the ammo time it is not expedient to admit of large basins or ponds, and far less of a rumning stream in a garden.
6. Appronch aud l'cuce-The entrance to tho gardan En. from without is a matter requiring the exercise of sumo traoces. taste and of sound judgment. If possible, it should be from the south and front, se that the pleasing effect of tho range of glazed houses may be realized by tho visitur on entering. Sometimes a lateral entrance, leading from the flower. gatden through an intermediate shrubbery, and coming upon the but-huuses in flauk, may be necessary. Tho worst of all entrances is from the baek or nonth, everything being then viewed in reverse.

All gardens of large extent should be cheireled by an Enonter boundary, which is often furmed by a sunk wall or clusuro. ha-ha surronnded by an invisible wire fance to exclude ground game, or consists of a hedge with low wire fence on its inner side. Occasionally this sunk wall is placed on tho exterior of the sereen plantations, and walks lead through the trees, so that views aro obtained of the adjacent country. Althongh the interior garden reccives its form from tho walls, the ring fence and plantations may be adapted to the shape and surface of the ground. In smaller conutry gardens the enclosure or onter fence is often a hedge, and there is possibly no sjace enclosed by walls, but some divisional wall having a snitable aspect is utilized for the growth of peaches, apricots, dc., and the hedge merely separates the garden from a paddock used for grazing. 'The still smaller gardens of villas are generally bounded by a wall or wood fence, the inner side of which is appropriated to fruit trees. For the latter, walls aro much more convenient and suitable than a boarded fence, Lut in general these are too low to be of uuch value as aids to cultivation, and they are best covered with busd fruits or with ormamenlal plants of limited growth.
7. I'alhs and Edyings.-The best material for the con- Walks. struction of garden wallis is good binding gravel. The ground should be excavated to the depth of a foot or more, the bottum bein: mado firm and slighlly concare, so that it may slope to the centre, where a drain sbould bo introduced; or the betrom may be made convex and the water allowed to drain away at the sides. The vettom 9 inches should be filled in compactly with hard coarse materials, such as stones, brickbats, clinkers, burned clay, de., on which should be laid two or three inches of coarse gravel, and then an inch or two of firm bituling gravel on the surface. The surface of the walks should be kept well rolled, for notbing contribntes more to their elegrance and durability.

All the prineipal lines of walk should be broad enough to allow at least three persons to walk abreast; the others may bo narrower, but a multitude of narrow walks Las a pury effect. Much of the ncatness of walks depends upon the matcrial of which they are made. Giravel from an infand pit is to be preferred; though oceasionally very excellent varietios are found upon the sea-coast. The gravela of Kensingtun and Rlackhoath have attained considerable celebrity, and have been ferumently employed in remote parts of the kinglom, the expense being lessened by their being conveyed tu dillerent sea-ports as ballast for ships. Gravel walks must be kejt free from weeds, either by hand weeding, by occasiontly salting the surface, or by watering with boling salt water. In some parts of the country the available material dees not bind to form a close even surface, and such walks are kept clean by hoeing.

Grass walks were common in English gardens during the
presalence of the Dutch taste, but, owing to the frequent humidity of the climate, they have in a great measure been disearded. Their disuse is perhaps to be regretted, as in some sitaations, particularly behind lengthened scree... of trees, they furm very agreeable promenades in dry, hot weather. Grass walks were made in the same way as grass larms. When the space to be thus occupied had been prepared, a thin layer of sand or poor earth was laid upon the surfice, and over this a similar layer of good soil. This arrangement was adopted in order to prevent escossive luxariance in the grass.
Edgings. Elyings.- Walks are separated from the adjoining beds and borders in a variety of ways. If a living edging is adopted, by far the best is afforded by the dwarf Dutch box planted elosely in line. It is of extremely neat gromth, and, when annually clipped, will remain ia good order for many years. Very good engings, but of a less durable character, are furmed by thrift (Statice A Americt), double daisy (Sellis perennis), gentianella (Gentiancu acoulis), and London pride (Suxifrutht umbrose) ; or by some of the finer grasses very carefully selected, such as the shecp's fescue (Festuca ovina) or its glancous-leaved variety. Indeed, any low-growing herbaceour plant, susceptille of minute division, is suitable ior an elging. Elgings may also be formed of narrow slips of sandztone flag, slate, fire elay tiles, bricks, glass, or eastiron. Anexcellent form of edging tile is that invented by Mr Stevens of Trent. ham Gardens (fig. 2), which is made of a very durable kind of chay, and is remarkathy neat in appearance. It is 18 iuches long, 5 inches deep, and 5 inches broad, and, resting on tho broad base, is held firmly by the gravel used for filling up the walk. One advantage of using edgings of this kind, especially in kitchen gardens, is that they do not harbour slugs and sinilar vermin, which all live efluing do, and often to a serions extent, if they are left to grow large. In shrubberies and harge flower-plots, verges of grass-turf, from 1 to 3 feet in breadth, according to the size of the border and width of the walk, make a very handsome edging, but they should not be allowed to rise more than an inch and a half above the gravel, the grass being kept short by repeated mowings, and the edges kept trim and weell-defined by frequently elipping with shears, and cutting once a year with an edging iron.

II. Garden Siruetures.

Gar-
dinaer's
house.

Wails

Fig. 2.-Stevens's Etging Tile.
equal to the mean temperature of the open plain 7° farther sonth. The eastern and western nspects are set apart for fruits of a somewhat hardier character.

Where the inclination of the ground is considerable, and the presence of high walls would be objectionable, the latter may bo replueed by sunk walls. These should not rise more than 3 feet above the level of the ground behind them. As dryness is favomiable to an inerease of heat, such walls should be either built hollow, or packed behind to the thickness of 3 or 4 feet with rubble stones, flints, brickbats, or similar material, thoronghly drained at bottom. For mere purposes of shelter a height of 6 or 7 feet will generally be sufficient for the walls of a garden, but for the training of fruit trees it is found that an average beight of 12 feet is most suitable. In gardens of large size the northern or principal wall may be 14 feet, and the side walls 12 feet in height; while smaller areas of an aere or so should have the principal walls 12 and the side walls 10 feet in height. As brick is more easily built hollow than stone, it is to be preferred for garden walls. A 14 -inch hollow wall will take in its construction 12,800 bricks, while a solid 9 inch one, with piers, will take 11,000 ; but the hollow wall, while thus oniy a little more costly, will be greatly superior, being drier and warmer, as well as more substantial. Bricks cannot be too well burnt for garden walls; the harder they are the less moisture will they absorb. The darker colour they acquire when the process of burning is prolonged is also more in harmony with the surrounding objects. At one time brick walls were preferred on account of the facility they afforded for training trees, but now castiron studs (fig. 3) or sometimes nails are placed in the wall during its erection, being pushed into the joints before the mortar becomes set, and ranged in straight lines, both vertically and horizontally; for peaches, de., they are placed 9 inches apart, and for pears, dc., 15 inches. The trees are fastened to them by soft liga. tures of twine or matting, which shonld
 be twisted after being tied to the stud or

Fic. 3.-Cast-Iron
Wall Stud. mail, so as to prevent contact between the branch and the metal. Many excellent walls are built of stone. The best is dark-coloured whinstone, because it absorbs very little moisture, or in Scotland Caithness pavement 4 inches thick. The stones can be cut (in the quarries) to any required length, and built in regular eourses. Stone walls should always bo built with thin courses for cenvenience of training over their surface. Conerete walls, properly coped and provided witb a trellis, may in some phaces be cheapest, and they are very durable. Common rubble walls are the wors of all.

The eopung of garuen walls is impertant, both for the preservation of the walls and for throwing the rain-water off their suifaces. It should not project less than from 2 to $2 \frac{1}{2}$ inches, but in wet districts may be extended to 6 inches. Stoue copings aro best, but they are costly, and Porthand cement is sometimes substituted. Temporar: copings of wood, which may be fixed by means of permanent iron brackets just below the stome coping, are extremely nseful in spring for the protection of the hissoms of fruit trees. They should be 9 incles or a foot wide, and should be fut on during spring lefore the blossom huds begin to expand; they should have attached to them scrim cloth (a sort of thin canvas), which admits liglit pretty frecly, yet is sufficient to ward off ordinary frosts; this eanvas is to be let down towards evening, nud drawn up ngain in the moming. These copings shoutd be removed when they are of no further utility as protectors, so that the foliage may have the full benefit of rain and
dew. Any contrivance that serves to interrupt radiation, though it may not keep the temperature much above freezing, will be found sufficient. Standard fruit trees must be left to take their chance; and, indeed from the lateness of their flowering, they are genemily more injured by blight, and by drencling rains, which wash away the pollen of the flowers, than by the direct effects of cold.

Hot walls, whether construetel to be warmed by llues or hot-water pipes, are nearly or quite obsolete. Their chief use is to assist in ripening the goung wod and the crops of the later rarieties of tender fruits by the aid of artificial beat, but the expenditure would be more usefully directed to the construction of a glazed house for that purpose.
Espalier Espalier Rails.-Subsidiary to walls as a means of training fruit trees, espalier rails were formerly much employed, and are still used in many gardens. In their simplest form, they are merely a row of slender stakes of larch or other wood driven into the ground, and connected by a slight rod or fillet at top. The use of iron rails has now been almost wholly discontinted on account of metallie substances acting as powerfal conductors of both heat and cold in equal extremes. Trees trained to espalier rails have some adrantiges, as they are easily got at for all cultural operations, space is saved, and the fruit, while freely exposed to sun and air, is tolerably secure against wind. They form, moreover, neat cnclosures for the vegetable quarters, and, previded cxeess of growth from the centre is successfully grappled with, they are productive in soils and situations which are suitnble.
10. Plant Houses. -These include all those structures which are more intimately associated with the growth of ornamental plants and flowers, and comprise conservatory, plant stove, greenhonse, and the subsidiary pits and frames. They should be so erected as to present the smallest extent of opaque surface consistent with stability. With this object in $\pi \mathrm{cw}$, the early improvers of hot-house architecture substituted metal for wood in the construction of the roofs, and for the most part dispensed with back ralls; but the conducting power of the metal caused a great irregularity of temperature, which it was found difficult to contrel; and, notwithstanding the elegance of metallic bouses, this circumstance, together with their greater cost, and some doubt as to their durability, has induced most recent autherities to gise the preference to wond. The combination of the two, however, as in the Crystal Palace at Sydenham, shows clearly that, without much variation of heat or loss of light, any extent of space may be covered, and houses of any altitude constructed.

The earliest notice we have of sheh structures is given in the Latin writers of the lst century (Mart., Epigr:, viii. It and 68) ; the 'A δ 'ur δ os kirrou, to which allusion is made by various Greck authors, have no clam to be mentioned in this connexion. Columellia (xi. 3, 51, 52) and Pliny (II.N., six. 23) beth refer to their use in Italy for the cultivation of the rarer and more delicate sorts of plants and trees. Seneca has given us a deseription of the applicafon of hot water for securing the necessary temperature. The hotanist Jungermann had plant houses at Aledorf in Siwterland; those of Loader, a London merchant, and the conservatory in the A potheearics' Botanic Garden at Chelsea, were the first structures of the kind erected in British gardens. These were, however, ill adapted for the growth of plants, as they ennsisted of little else than a huge chamber of masonry, having large windows in front, with the roof invariably opaque. The next step was taken when it became fashiomable to have conservatorics attached to maisions, instead of having them in tho pleasure grounds. This arrangement brought them within the province of architects, and for nearly a century utility and fitress for the cultivation of plants were sacrificed, as still
is often the ense, to the unity of architectural expression between the conservatory and the mansion.

Plant houses must be as far as possible impervious to wet and cold air from the exterior, provision at the same time being made for ventilation, while the escap of wam air from the interior must alsf be under control. The most important part of the enclosing material is necessamily glass. Lut as the rays ol light, even in bassing through transparent glass, lose much of their energy, which is further weakened in propurtion to the distance it has to travel, the nearer the plant can be placed to the ghass the nore perfectly will its furctions bo performed : Lence the impertance of constructing the roofs at such an angle as will admit the most light, especially sunlight, at the timo it is most required. Plants in glass honses require for their fullest development more solar light probably than even our best hot-honses transmit, -certainly much more than is transmitted through the roofs of houses as generally constructed. ${ }^{1}$

Plant houses shenld be constructed of the best Paltic pine timber, as being the most durable, but the whole of the parts should be kept as light as possible. In many houses, especially those where ornament is of no conse. quence, the rafters are now omitted, or only used at wide intervals, somewhat stouter sasin-bars being adoptcd, and

Fio. 4.-Lenn-to Hlant Honse.
stout panes of glass, 8 to 12 inches wide, marle use of. Such bouses are very light; being also very close, they require careful ventilation. The glass roof is commonly designed so as to form a uniform plane or slope from back to front in lean-to houses (fig. 4), and from centre to sides in span-roofed houses. In some cases, however, the roof sashes are fitted up on the ridge-ind-furrow principle invented by Sir Joscph Paston, shown in fig 5, which represents the original ridge-and-furrow house erected by him at Chatsworth. To secure the gientest possiblo influx of light, some seientific horticulturists recummend curvilinear roofs; but the superionity of these is largely

[^50]due to tae absence of rafters, which may also be dispensed with in plain roofs. Span and ridge-and-furrow roofs, the forms now mostly preferred, are exceedingly well adapted for the admissiva of light, especially when they are glazed to within a few inches of the gramed. They can be made, too, to corer in any extent of area without sustaining walls. Indeed, it has been proposed to sup. port such ruofs to a great extent upon suspension principles, the internal columns of support being utilized for can-

Fio. 5.-Ritge-and-Furrow Flant House. ducting the rain-water off the roof to underground drains or reservoirs. The lean-to is the least desirable form, sines it scarcely admits of elegance of design, but it is neeessarily adopted in some cases.

In glazing, the greater the surface of glass, and the less space oecupied by rafters and natragals as well as overlaps, the greater the admission of light. Some prefer that the sash-bars sheuld be grooved instead of rebated, and this plan exposes less putty to the action of the weather. The simple bedding of the glass, without the nse of over patty, seems to be wridely approved; but the glass may be fixed in a variety of other ways, sume of which are patented. In Beard's method (a very good one) the glass is fixed between strips of felt, the covering bar being held in position by white metal nuts tightly screwed. Good results have also been obtained from the system introduced and improved by Rendle, which covers all the framework of the roof, so that the timber is not exposed to the vieissitudes of weather.
Conaer.
The Conservatory is often built in connexion with the manston, 80 as to be entered from the drawing room or boudoir. But when so situated it is apt to anffer from the shade of the building, and is objectionable on necount of almitting dimp to the drawng. room. Where circumstances will admit, it is better to placo it at some distance from the bouse, and to form a connexion by means of a glass comer In order that the conservatory nady be kept gay with llowers, thare should be a subsidary structure to receive the plants as they go out of bloom. The conservatory may also with great propricty be pluced in the flower garden, where it may ocenpy en elevated terrace, and form tho termination of one of the inore important walks.

Great varitty of design is admissible in the conservatory, but it ought always to bu adapted to the style of the mansion of which it is a prominent appindace. Sowo very ploasing oxamples aro to be met with which have the form of a parallelogram with a lightly monded ronf. others of nppropriate character are equare or nerarly an, with a ridgo-mind furrow romf. Whatever the form, thare must be high an whufanco, aml the shade both of baildings and of thees must the avoided. A southern nspect, or one varying to south-anst or sonth-west, is preferable, if these nspents cronot be seeured, the plants elected must be adapted to the position. Thu sentral part of the house may be devoted to permament plants; tho sido talipe and open spaces ta the permanent beels shouk to resurval for tho temprory finute.

The knd of plants milapted for planting out in conservatorics are plane, cycads, imacomes, aratias, luculas, cameltins, de., with

 \& C., un the ranf.

The Browhores ts a stminture designed for the growth of surls

 semparalsely how pheh are botter than hather ones where the phants hum to sbad at a greater distano fion the ghass, and
therefore in greater gloom. Fig. 6 represents a form of louse ardopted by a most successful cultivator, Mr B. S. Willuans, of Holloway. It is 20 teet wide and 12 feet high, the length in this ase beng 50 fect, but of course any other convenient lencth coubd be alonted. The sude walls are smmounted by shurt opright sashes which open outwards by mitchinery a, and the rool is provided witla slid. ing upper sashes tor top ventalathon. In the centre is a two. tier stuge for plants, 6 feet Whle, with a side 3 feet wide, und a sade table 4 feet wide, the side tables being llat, and the centre stage

Fig. 6.-Suction of Greenliouse. having the middle portion one-thind of the width elevated 1 foot above the rest, so as to lift up the middle row of plants nearer the light. Span-roofed houses of this character should run north and south so as to secure an equalization of light, and should be warmed by two 4 -inch hot-water pipes carried uuder the side tables along each side and across each end. Where it is desired to cultivate a large number of plants, it is much better to increase the number of such houses than to provile larger structures. The smaller houses are far better for cultural purjoses, while the plants can be elassified, and the little details of manarement more conveviently attended to. Pelagoniums, cineruids, calcevarias, cyclamens, eamellias, heaths, Australian plants, roses, und other specinlities might thus have to themselves either whole house or part of a house, the combitions of which coull then be more accurately fitterl to the wants of the inmates.
The lean-to house is in most respects infurior to the spian-roofed : one of the latter could be converted into two of the furmer of apposite aspects by a divisional wall along the centre. Except where space does not permit a span-roofed building to be introduced, n lean-to is not to be recommended; but a house of this class may often be greatly improved by adopting a half-span or hipped roof (as in fig. 9), that is, one with a short slupe behnd and a longer in front.
Where the cultivation of large specimens of heatlus, Australian plants, hidian azaleas. \&e., inns to be carried on, a spon-roofed house of greater height und lurgel dimensions may sometimes provo useful: but space for this class of plunts may genernlly be secured un a house of the smaller elevation, simply by lowering or removing altogether the staging erected for smaller plants, und allowing the lorger ones to stand on or nenter the fioor.

The Plant Stove differs m no respect from the greenhouse except pint in having a greater extcut of hot-wnter pipes for the purpose of sture securing a greater degree of heat, although, as the plants in stove heuses often attan a largel saze, and many of them require a tan Led to suphly them witl, bottom heat, a somewhat greater clevation may furhals be odeasionally rejumed in some of the houses. For
the sumalter planis, sud for aff choicer subjects, the smaller size of house alrendy recommended for greeahouses, name. 1y, 20 feet wile and 12 feet high, with a sible tuble of, 4 fiet on each side, n path. way of 3 foet, and a critial st:uge on two levels of G fuet wile, wall be jrefer. able, bedase mote
casify managed as to the supply of hoat ant moisturo. Mr Williams's phant
 ktove (lig. 7), whish is a very good madel, is of the formonige limentions. It has, low. ever, a lifhrent arraberment from the greenhouse as to ventilation. Jt will he seen that alome the blda of then rof a mised pontion or
 contimons ventalators, me alomg curh sible, for the egress of hented
 onpmite tre loot.witer pues for the admistion of pure cold air.

Cliree or faur rows of pipes will be required on each side, according to the boat proposel to be maintained.
In their interior fittings plant stoves require more care than greenhouses, which are much drier, and in which consegnently the blugiog does not so soon decay. In stoves the tables shoukd always be of glate or stoue, and the supperts of iron; slate is now most comatonly used. This should be covered with it layer of 2 or 3 iuches of some coarse gritty naterial, such as nounded spar, or tlie ahell sand ohtained on the sea-coast, on which the pots are to ctand; its uso is to absorb moisture and gralnally give it out for the benefit of the plants. The pathways should be paved, or mado of concrete and cement, and the surface should be gently rounded so that the water required for evaperation may drain to the sides while the centre is sufficieutly dry to walk uposi they should also have brlck or stone edginge to prevent the sater so applied soaking away ot the sides an itaus being wasted.
Position of plant houses. the greenhouses, if large ond ornamental, shomld be contiguous o the flower garden or pleasure ground; but if of the simple character employed only for growing decorative plants, it is better to associato them with aimilar houses set apart for otler purposes, io an eoclosed portion of the grounds contiguous to the potting aheds, where fucl and other materials required can be conreniently atored, and where all the untidiness of the workshops may be masked. For this reason it is a very conveniont plan to place side by side a series of amall span-roofed houses for growing plants, Where they cao be connceted by a glazed passagc-way at the back. The glazed cay may be utilizod for the cultivation of plants requiriog less light than others, such as ferns, comellias, \&c.; it should commuaicate with the workmen's offices, which ore commonly placed on the oorth side of the garden wall, so that potting and other cultural operations may bo carried on without creating a block or confusion in the several houses. Wherever placed, it is imperative that all plant houses should hare a free and abundant admission of hight.
11. Fruit Houses.-The principal of these are the vincry, pinery, peach house, cucumber and melon house, and orchard house. These or a portion of them, especially the vineries nud peacheries, are frequently brosght together into a range along the principal interior or south wall of the garden, where they are well exposed to sun and light, an ornamental plant bouse being sometimes introduced into the centre of the range in order to give effect to the outline of the buildings. When thus associated, the houses are usually of the lean-to class, which have the advantage of being more easily warmed and kept warm than buildings having glass on both sides, a matter of gieat importance for forcing purposes.
Vinery. The Vinery is a house devotad to the culture ot the grapersile, Which is by far the most important exotic fruit cultivated in Engliah gardona. When forming part of a range e yinery would in most cases bo a lean-to atructure, with a sharp pitch $\left(45^{\circ}-50^{\circ}\right)$ if

Fin. 8.-Lean-te Vinery.
"incries, namely, eirrly for the production of eariy or tored granes, teneralerop, for all milicatel grape houses, and bape for producing and kecping grapes till late in the season, each requiring its own special arrangernents. 'lhe following are the three forms of housps recommended hy him, (1) The leren-fu(fig. s) is the simplest form, often erected against some cxisting wali, amd the best for early forcing, heing warmer on account of the shelter atlorded by the hask wall in this hanse the principal fart of the roof is a fix ure.
ventilation being provided for by small lifting sashes against the back wall, and by the upright fromt sashes being hung on a pivot so as to swigg outwards on the lower sidu. The peressary lomat is provided by four 4 -inch hot-water pipes, which would perlaps be best placed if all laid side hy side, while the rines are planted in front, and tramed upwards under the rool. i seconel set of vines may bo planted against the back wall, and will thrive tlere until the shade of the roaf becomes too dense. (2) The hipped-roofed or three-quarter span (hig. 9) is a combination of the lean-to and the spanroofed, uniting to a great degree the advantages of both, being warmer than the span and lighter than the lean-to. The heating and ventilating arrange. ments are much the same as in the lean-to, only
 the top sashes which open are on the back slope, and therefore do not iaterfere so much with the vines on the front slope. In both this and the lean to the aspect should bo as nearly due south as possible. Houses of this form are excellent for general: purposes, and they are well adapted both for muscats, which require a high temperature, and for late-keeping grapes. (3) The span-roofod (fig. 10), the most elegant oud ornamontal

Fio. 10.-Span-Roofed Vinery.
form, is especially adapted for isolated positions ; indeed, no othes form affords so much roof spaec for the development of the vines The amount of light admitted being vary great, these houses answer well for gencral purposes and for the main crop. The large amount of glass or cooling surface, bowever, makes it mme difficult to keep up a high and regular teniperature in them, and from this causo they ore not so well adapted for very cirly or very late crops. They are best, ncvertheless, when grapes and ormamental phants aro grown in the same house, except, indeed, in very wet and cohl diatricts, where, iu consequence of its greater warmth, the lean-to is to be preferrad.
The Pinery is a house devoted to tho cultiration of tho pine. Pioary apple. The pinerics or pine stoves of former times welc generally large lofty atruetures of tho lean to vinery fashion, and heated ly smoke flues; but these were anperseded by luildings of more conpact form, such ns that of Ballwin, a noted pine grower of his day, in which the low ronf was hipped, the shert or nonthern slope being of slate, and the glazed sashes being fixtures. These wero again improved by the substitution of glass ior slate in the back slope, and of hot.

Fio. 11.-Section of Pinery. watar pipes for smoke lhous as the heation medium, openinga being poritmat at back and funt, as at a, a (fig. 11), lor ventilation. Such houspa as thas: ate low, and therefore nere more economit ally belt at the bigh lemprathat necessary for pine growimg. The best form of finery is a low strueture of this kind, but some. what wider, so as to mernsit of the utilitation of the front and bacis
spaces for general forcing purposes (tg 12). Sucit a house inight ve 14 feat wille, consisting of a plunging bed for bottom heat 8 fect wide, a back path of 2 feet provileal with a shelf for strawberries near the glass, a front path of 2 fect, and between that ant the front wall a stage for pots, which might be nsed for foreing French beans, and which shond be on the sanue level as the fiont ent of the centre pit, and about 2 ? feet from the glass. The lewhtt of the lack watl should be 15 feet. The homse shoubl be hated by three or four hetwater piges placel heneath the front stare, and two placed cluse to the wall in the hack path; and the

Fio. 12. - Matern [imery.
necessary bottom heat should be provided by fermenting tan or leaves, or hy hot-water pipes or a lot-water tank placed beueath the plunging hed. Ventilators should be fixed at shout intermals in the front wall bencath the stage and oprosite the heating lipes; and the altermate upher sashes slould be mate to open, or corresponding veutilators close to the top of the back wall shonld be provided.

If the stock of pine plants is not extensive, certam and abundant crops of fruit camot be expected; and it is therefore nocessary to have not only fruiting pineries but pineries for succession plants. These are gencrally called piue pits, aml differ little from the gits used for accommodating other teuder plants. Two or three sucers. zion pits are required to provide a stock of plants to keep the fruiting-house filled. Low-roofed pits are to be preferren, not only on account of their appearance, but becanse the pine can only be cultivated in its highest state of perfection when grown in pits just sufficient for the full development of the folinge anul crown of the frout. These pits, if span-roufel, should he provided with a central path under the ridge, just high cnough for a work. man to stand upright, and a plunging ${ }^{\text {ant on each sille; bat any }}$ ordinary well-constrocted pit will auswer the purpose if sulficiently heated.
The Peach House is a structure in which the ripening of the froit is accelerated by the julicious employment of artificial heat. For early forcing, as in vinerles, the lean-to form is to le preferret, and the house may have a lulerahly sharp pitch. A width of 7 or 8 feet, with the glass slope contiuncil dnwn to within a foat or two of the ground, and without any upright front sashes, will be suitable for such a house, which may also be convemently divided into compartmenta of from 30 to 50 feet in length according to the extent of the building, suall houses being preferable to langus ones. As a very high temperatare is not required, two or three pipes -anning the whole length of the house wall suffice. The front vall should be built on piers and areles to allow the roots to pass outards into a mepral horler, the trees beiog planted just within he honse. Abundant means of ventiation should he providel.
For more genemal purposes the lunse rejrescuted in fig. 13 will te foond more useful. One sist of toens is planted war the front, and trained to an arehed trollas b. Anuther set is planted at the bark, and tramerl on a trollis r, which is nearly mpight, ant leans bainst the back wall; or the back wall itself may be used for aibuing. There are wo upright front sashes, but to facilitate rentilition there aro ventilators d in the front wall, and the 1 piber roof sashes are made tu move bi rad duwn fir the same olycut. Two or threo hot-water pipies ner pibeed near the front watl. "I'ho bate wall is nsually junteal with dwaf man standad trees alter nately, the fatter being temproary, sud momad to furmish the upher part of tho trellis, while the permanout dwafs are gralually Gilline op the trillis from below. In any rase the front trollis should stop conveniently short of the top of tho sashes if there are trees against the back wall, in order to ndsait light to them. They would also bo hottor enrried up nearly paraliel to tho roof, and at ahont 1 foot distant from it, supposing there were no trees at the lark.

A spar-roond house, being lighter than a lensto, woull be so
muen the ictere for peacin culture, especially for the crop grown just in anticipation of those from the open walls, since a high temperature is not required. A low span, with dwarf side walls. and a lantern ventilatem along the ridge, tho height in the centre being 9 feet, would bo very well sdanted for the porpose. The trees shoukd be planted insine and tained up towards the rillee on a trellis about a loot from the glass, the walls being arehed to permit the earess of the roots. A trellis path shonld run alonr the centre, and mov.

le proviled to prevent tranipling, on the soil while dressing and tying in the yomg wood.

The Cucumber cend Mclon Mouse. - Wherever a continuous supply Cucume of cucumbers and a considerable number of melons are required, it ber and is found most convenient to grow them in houses, the attention melon required and the risk of failures being much less than when hot-house beds and pits lieated by fermenting materials are employed. The lest form of house is n narrow sjan (fig. 14), on account of the much greater amonut of light which it admits. The width should be 12 fuct, the beight about 10 feet, ond the length divided into short portions so as to be worked in succession; $n 60$-fect house divided into three 20 -feet prortions would be found very useful, as

Fio. 14.-Span-Roofed Cucumber Llouse.
one or more could be taken for cither crop acconding to tho domand The insido arrangements shonla include a pathway a of 3 feet in tho centro, two beds b, b provided with het-water pipes c, c or hotwater tank for bottom heat, two pipes d, d on cach side for warm. in: the atmosphere, a lantern ventilator e at the ridge, and oper. inge in the wall f bernenth the beds to admit fresh nir, and a trellis g for training the plants, fixed et 12 or 18 inches from the roof.

Where the houso is built against a wall, the hipped form of ronf is to be preferred, as it will admit more light, and also allows moro space for the cucamber or molon vines. ' Fig. 15, from Moore's Treatise on the Cucunher, shows such a structure, in which b is tho pathway, c front ventilator, d back ventilator, c lot-water pipes, and f tank for bottom beat. Tho cold nir nulmitted at c cnters a chamber g; thence it nasses into the sprom
is over the water in the tank, and is admitted througlu a tube m, whicb passes up through tho bed of :oil, into the huuse near tho front; simitar tubes n, inserted at intervals along the front of the Led, are intended for supplying water amongst the rubble, to keep the soil about the roots constantly moistened.

Pits and frames of various kinds are also frequently used for the cultivation of cucumbers and melons, as well as hot beds covered by ordinary garden frames. In these cases the first supply of heat is derived from the hot bed mado up within the pit (fig. 17, a), which is ail the better for laving a layer or two of faggot-wood worked into it to facilitate the distribution of the heat from the linings later on. When tho heat of the original bed subsides, linings of fermenting dung $3, b$ must be added, and these must be kept active by occasional turnings and the addition of fresh. material as often as

Figs. 16 and 17 show different forms of pits of this character. It is, however, a vast improvement upon the old dystem to effect both top and bot. tom heating by hot-water pipes (fig. $16, a, a$), in which case the width of the pits may be increased by at least ${ }_{2}^{2}$ feet. Where there is much forcing carried on, the judicious arrangement of the several structures, permitting of their being worked from one boiler, should be carefully seen to.
Onibard
houses. tion of the lates are the invenSawbridgeworth. In all the more genial portions of England and
 Scotland they may be used without fire-heat, and chicfly for potted fruit trees ; and if the trees are well managed, a very large guantity and variety of fruit can be produced, of excellent if not first-rate quality. These houses will be found useful adjuncts to

Fro. 17.-Cucumber Pit heated by Fermenting Dung.
other struetures even in largo gardens, while they are of the utmost value to amateurs, who would otherwise be deprendent on ontdoor erops. They are, morenver, exceedingly economicnl, and may be turned to a variety of uses, being just as suitable for the growth of half-hardy flowers as for our less hardy fruits. For fruit trees the corchard houses are of most value in spring, not to cxcite but to protect the blossom buds, and in autumn to assist in ripening both fruit and wood. While peaches, nectarincs, and apricots arc the primanent occupants of the house, except in lifte autumn, when they may be set out of doors, plums, pears, and npples may pll by this means be assisted to produco good crops. Duriug winter and spring (when they should be kept cool) the trees may be stored as closcly as pocsilile, aml in this state they may remain antil after blooming is over and the fruits are set, whon the hardier kinds should be gradually drawn out and hardened in sheltered spots, and eventually plunged in tho open garden to swell their fruits, this thinning out affording room lor the tenderer kinls.
The orcharil house may he of the lean-to form or a span ; but the latter is mueh to be preferred. Fig. 18 is a sketch of \$1r Eivers's amall spen-roofed orchard house, which is built of wood
and glass. Two rows, 14 fect apart, of oak posts a, $a, 5$ by 3 inches and 9 feet long, or of dẹal posts set in cast-iron suckets, are timmly fixed 3 feet in the ground and 5 feet apart. On each of these should he firmily nailed the plate $b, 4$ inches by 3 , to recerse the ends of the rafters c, c, which should be S foot long and 3 inches by $1 \frac{1}{2}$. The ridgo board d should be 3 inches by 1 , to which the upler ends of the rafters, after being sloped, should be nailed. At the lower end a drip board, 5 inches by 1 , placed sloping to recaive the lower ends of the glass, must be fixed on the juate the full length of the houso; and on tho ridge board a small ledge must bo nailed for the upleer ends of the glass panes to rest upon. On the upper edge of the ridge board a cap, 3 inches by 1 , slaped thus \wedge, should le nailed, to sloot off the its entrance at the ridge. The sides i are boarded, and the roof is of 21 oz .
 glass, the rafters

Ero. 18.-Rivers's Span-Roofed Orehard House. (stout snsh-bars) being 20 inches apart, and the pancs 15 inches long, set end to end in glacing. Under the glass g on each side is a ventilating shutter h, $\frac{3}{4}$ inch broad and 1 loot wide, hinged and opening downwards. The roof is stayd by irons serewed to every fourth rafter. The angular apace over the door forms a ventilator, A house of this form should have a central path c, the t wo beds or spaces on each side f, f ascommodating the fruit trees cither planted ont or grown in pots. These beds may be raised above the path if used for dwarf trces.
As a larger loonse, one of 24 feet width (fig. I9) might be reconmended. The oak posts or deal posts in sockets, 6 incles by 4 , must be set in tiro rows $a, a, 24$ feet asunder, 6 feet apart in the rows, and the plates, rafters, ridge board, and drip board should be as deseribed above. The apex of the ridge d should be 12 feet from the surface. The roof itself e is supported and steadied by two rows of iron pillars k connected by tie rods, and glazed with 21 oz . glass,

Fio. 19.-Orchard llouse with Raised Beds.
the rafters being 20 inclies \&part. The sides and ends are boarded, nnd provided with binged ventilators as in the smaller house. The floor may be lovel with the ground, and with a central path or two side paths e, e. For dwalfer nud noere bushy plants, and fo general purposes, the beds may be slightly raised, as f, f, f in fig. 19. When the trees are planted out the raised beds would be objectionable as diminishing the arailable height, but for potted plants they are nn advantige, raising the trecs nearer to tho light.。

In the north of Englund, and in all moist amd cold districts of Scotland or Irelant, Mr Rivers recommends the introduction of a hot-water pipe or two into houses in which peaches, nectarines, and apricots are to be grown, not to force them, but to ensure the ripening of hotly wood and fruit.
12. Pits and Franes. - These are used both for the pin summer growth and winter $ן$ rotection of various kinds of ormamental plants, for the growith of such fruits as chonmbers, melons, and striwberries, and for the forcing of vegetables. When heat is required, it is sometimes supplied by means of fermenting dung, or dung and leaves, or
tanner's bark, but it is much more economicalify provided, on the score of labour at least, by hot-water pipes. Pits of many diferent forms havo ween designet, but it may bo sufficient hero to describe one or two which can be recommended for gencral puruoses.

Fig. 20 represints a simple and useful form of pit desioned for the Chiswick garden by Mr Sibthorpe, and published by Mir R. Thompson (Gardener's Assistant, 499). It is 7 feet wide, the front wall 2 feet high, the back wall $3 \frac{1}{2}$ feet. The walls are one brick thick, or $4 \frac{1}{2}$ iuches, with a 4 -1uch pier a at every third rafter, the

Fig. 20.-Sibthorpe's Plant Pit.
foundations being respectively 9 aod 14 iaches. The wall plates both at front aad back project so as to allow the drip to fall clear of the walls; and fillets of woad fixed to their under surfaces and close up to the wall on each side serve to maintain both the wall plate and top of the wall steadily in their pusitioos. Such a pit used for cucumbers or melons might be excavated slightly below the ground level to admit of bottom licat being supplied by a bed of fermenting dung, over which the soil should be placed in the usual way, bringing the plants up ncar to the glass; or the bottom Leat might be supplicd by the tank system of heating or by hotwater pipes. For small store plants of any kind the interior might be filled up with any porous materinlq, finishing off with a surface of tine coal-ashes at a suitable heinht, or larger plants might be accommodated by using it as shown, without any filling up. Heat can easily be supplied by one or two 4 -inch pipes, front and back, according to the temperature required; but if fermesting material be used for this purpose, the lower purtion of the walls, as far up as will be covered by the interior filling, should be pigeon-holed.

An excelleat pit for wintering bedding-out plants or young greenhouse stock is ahown at fig. 21. It is buit upoa the pigeoabole principle as high astheground level $a_{1} a_{1}$, nuld ahove that in 9 iuch brickwork. At a distance of 9 inches retainigg walls b, b are built up to the ground level, and the spaces between the two are covered by thick boarding, which is to bo shust down as ahown at c in
 coll weather to excluile frost, aud oprned as shown at d in mild wather to promote a free circulaton of ar through the pit. Tha luyight of the fit might be reducal necoriling to the stze of the finuts; und, to sernre the interor arainst frost, a flow and return bot-w tel pipe e should fass nlong beneath the staring, which

 1. wospork. The water wheh draios from the plate or is agilt in

prevented the sashes from being opened. A pit of this character may be sunk inte the greund deeper than is indicated in the figure if the sabsoil is dry and gravelly, but in the case of a damp subsoil it should rather be more elevated, fis the soil could easily be eloped up to mest the retaining wall.:

For all usefulpurposes these two forms of pits will suffice, but Frames, there will always be found occupation for sone of the common hotbed frames (fig. 22). They should be made of the best red deal, $1 \ddagger$ inch thick. A convenieat size is 6 feet wide, 24 inches high at the back and 15 in front; and they are usually 12 feet long, which makes three lights and sashes, though they can be made with twn lights or one light for particular purposes. Judced, a one-light
frame (fig, 23) is often found very convenient for "many purposes. The lights should be 2 inches thick, and glazed with 21 oz . sheet glass, in broad panes four or five to the breadth of a light, and of a length which will work in conveniently and economically, wery long panes being undesirable from the bavoc caused

Fia. 23. - One-Light Frame.
being objectionable as nulutiplying the chances of drip; panes of from 6 or 8 to 12 iuches long are of convenient size for garden lights of this character. In all gardena the frames and lights should be of one size so as to be interchange. able, and a good supply of extra liphts (sashes) may always be turned to good account for various purposes.

Fio. 24. - Span-Roof. Frame.
Boulton and faul's span-roof garden frame (tig. 24) may under semo oircumstances be useful as a substitute lor the three-light frame. It is adapted for storing plants in winter, for nursing small plants is summer, and for the culture of melons and other crops requiring glass shelter. These framcs are made 11 inclics high in froat, 24 at the back, and 32 at the ridge, with ends of $1 \frac{1}{3}$ inch red deat; the sashes, which are 2 inches thick, open ty. gearing, the front and back separately. The lights are hinged so that they can be turaed completely back when necessary. I'lis more direct and ready access to the plants within is one of the principal recommendations of this form of pit.
13. Nfushroom House.-Mushrooms may be grown in Nush. sheds and cellars, or even in protected ridges in the open rooms ground, but a apecial structure is usually devoted to them. A lean-to against the north side of the garden wall will be found suitable for the purpose, theagh a spau-roofed form may also be adopted, especially if the buihliag stands apart.
'l'be ioternal arrangemeat of a leanto mushroom houre is shown is fig. 25. Tho length may wary frum 30 feet to 60 fect; a convoontht width is 10 feec, which admita of a 3 f fout centrol path, nud Inde s fect wille on man side. Tha shives should le of shite a, u, sirpported hy iron uprothts b, b, rach lomlf having a front leobe of briaks set an dolyo in cement
 $c_{\text {a }} \therefore$ Tho slabs of shate forming the shelveg should not lee tim - losnly fitted, na a small interval will prevent tho necomulation at hoishre at the bothom the hat thev may be supponter?
oy mon standats or hrick mers, bark ind front, bearmer up a flat bas of iron on which the slates maty rest ; the nise of the bins wal? give wider intervals bentwen the supprots, which will ine fombil comwoment for billing am: emptymg the levis. "Ther roof may be
 there should be an inner roof or ceiling d, the space betwerm which and the onter boote shonhl the packe! with siwhlust. A leot-water pipe f shontel rum along beth sidey uf the jouthwas, cloze to the frant ledge of the lnwent beds. The ditfrant shelves cata be phanted in succession ; and the lower ones, espuctilly those on the floor level, ns being most convenient, can be utilized for forcing sea-kale and rhubarb.

Another styde of house which naswers remanearly well may he formed by an arch of lorickwork, making a kind of tummed, or by a mini-arch projected against a brick wall or against the sile of a ank (Gg, 26). . In cither case the arch d shonld be covered with

Fio. 26. -Semi-Arch Mushroom Hisuse,
n thick bank of eartio r, and planted with spreanong shrubs to kup it cool nod shaded. 'I'he size of the beds not the fiting up may be, exictly the same as in tig. 25 already desenilual, except that on one side the avnilable height will be necessarily less.
14. Fruit Room.-In many gardens a portion of tho slied accommodation behind the ranges of glass-houses is made to do service as a fruit room, but it is sometimes daticult to secure in this way the conditions favourable for the conservation of fruit., Tho main requisites are coolness and a stealy uniform temperature, combined with darkuess and moderate but not excessive dryness. A dry coul cellar makes an excellent fruit room.

One of the most successfal examples of a fuut lomin is mat or Mr Mamman of Clapham, deserifed ly Mr Robert 'lloompson in the Jourmat of the Iforticultural Socirly (vi. 110), of which tigs. 27 and 28 vepresent a dlan and section. The bublding in this ense

was nol specia!ly ereche iur n trme room, hawne bsen orgeimally a loft over a coach-lwhes. The walls have ast unver linimg of bomat ruciosmg n cavity- wheh 1.3 probably one cuase of the fllicioney of Ilio arnetment, situe the woot loning nul the easity contanime air suith are os slaw conductors of heat. The ceilins "n the nerth sw"
 wimdor b, openci a licte sacasomally, but alwas enverval with a
 but celnom: usch, and pever for the sake of wommer theair, ushess The twaterature is nebow it.cezing ; hamp is observed a dittle fire is lighted on adiy day an! this with ventilation som diasi-

Fro. 28.-Moorman's Fruit Room (section)

pates it. The Irnit sheives d, d are made with batiens $1 t$ tnch wide and $1+$ inch apart, with it layer of clean straw placed across them, and on this the fruit is lail out singly: The shelves are enclosed by a partition of open work c, e, which is mate of battens similar to the shelves themselves.
'l'he froit room in the Rayal Horticultaral Garden at Chiswicis is a very good example of one on a larger scale. . The floor of this is sunk abont 18 inches below tho ground level, and is conereted to kepp ont rats and mice. It is kuilt against a north wall, and hus a low sloping roof of slate. Thice or four ranges of shelves are fixed all round against the walls, snd there is a tabio occupying the centre for the display of samples of the different kinds grown. Such an apartment would form n convenient fruit roont in n privato garden establishment. The walls should he bollow; and n ventilator made to open and shut, and communicating obliquely with the external nir, bhould be inselted in the veiling near each ond, the interval between ceiling and roof being packed with dry sawdust to assist in keeping uy a miform temprature. The shelves should be male of narrow battens of wood lid somewhat npart, as in Mr Moarmatis lonse, and the central table should be fitted with shallow drawers in wlich to store the very choicest fruite, such as the finer destent pars, which shonid be individually wrapud in tisme faper and laid in a single tier. The better kinds of fruits on tha open bhelves should be laid ont singly. It is a wise economy not to stint space in ench a structure, as many things can be accommodated for a timo in a rown of this sort; for example, the flow space bencath the shelves liamo a gond phace for storing need potatoes, especiaily thase for the ently erops. A uiminw is necessary, as light will be accusionally required to cxamine and to select the fruits, but it should be tight-fitting, and on all other owsions closed by shutters so as to keep the interior dark. The dew shoulit aino tre closcly fittet, to exclutio the external nir; indeed it is better if the fruit womblitach can bo - uturel from an adjoining apmitmont, fiom a hich light nace not bo excluterl, and which may nerve as a seed wom nind atore romm for many uf lir smaller ghderbepusites. If a hot-wher pipe can
 so murh tho lneller, but in the fivit rom poper th thould only Ife Hed occurnnally to dispel damp, or, in the case of very ecture weather, to kep whit frost.
 variety of ways, lut practically sunt - limes ars liot-witcr pipes are primipally male use of. "ace cust of crection is a little more kor lout water pignes then for dhes, but the former ase the ches" r in the 'nd. Stram is not aow usol as a beatineg malinm, except where tho waste nteam of it mannfartory :s damed to account in some adjoining girden, the we of formontity regelable kubstances in The braluction of la*at is rabully disumparing from cur best graders before the afplication of hot water, which is far unore economical aml catain in its effects.

The Smok Prue, that is, tha comtinumb cavity commancing at

a source of heat，should be carricd along the front of the tomse， returning near the back；by the time it has run thus far most of the heat taken up from the fuel will be in course of transmission to the enclosed atmosphere of the house to be heated．＇l＇here shonld be a gradual rise lur some disturec attor leange the furnace， which shonld be from 1 to 2 feet below the level of the tront flue； aod there should be no sharp angles or turniags．Earthenware pipes may be substituted when appearance is not a coosideration． Smoke thues shonld be cleaned out at least once a year．When properly constructed，they answer their purpose sufficiently well； but this mode of heating is now protually superseded in all gardens of note by the hot－water system．
班化
Hot Wrater．－The difisios of heat in plant houses by causing anater． hot water to circulate in iron pipes or vessels was brought into sotice in 1827，and has graduaily sumerseded all other modes．The apparatus is more durable than flnes，occuries less space，can be placed in situations where flues canoot，is more elegant in appear－ ance，gives out a more steady and uniform heat，and can seldom be overheated．The true cause of the circulation of the water in the pipes may be oxplained by fig． 29 ．When the water in the boiler

Fig．29．－Diagram of Tank Boiler showing Circulation io Pipes．
a is heatesl up，it expands＇and so becoones lighter than that in the cistern b ；the pressure at z in the horizontal pipe d is thus less than at y ，so that the water flows through d from b to a ，and b is kept supplied from the pipe c ．In this arrangenent，which cepresonts tha common tank boiler，with a cistern at the extremity of the pipes，the process of heating was slow，aad many changes have consequently been made．

The Furnece．－The most perfect furnace is that in which the combustion is most complete．On this account the fire shonld be surrounded by slow conductors of heat，such as Welsh lumps or other kinds of fire－brick；and the sides of the fumace should not be formed by nny part of the hoiler，nor should the furnace bars be tubular and connected with the boiler，though this latter plan is sometimes alopted to prevent the burning out of the bars．All the air necessary for maintaining combustion should enter from below，that is，throuch the ash－pit，and not throngh the door or aides of the furnace；but to produce this eflect the furnace should he fittell with double doors and ash－pit re日isters，tor thas oaly an

Fio．30．－Sliding Furnace Duors，
the foker liavo control over his fumace．Py shuting the ash－ fis dnif furnace dour closely combustion is lissomed，and the tine
 t éther；white，on opening either the dowr on ash－pit register，air

 been lable tote ant of wher．Thwse doms are dowd with fire－

32），that，to prevent the burning away of the furnace bars and t ！ formation of clinkers，the ash－pit should bo kept filled with wates＂ and states that the bars will then last three times as long as witu the ordinary dry ash－pit．The ash－pit may be balt in cencut for this purpose，or ditted with a cast－imon pen for the water，

Hot．W＇ater Boilers．－Only a few of the principal types of the Boilers very diverse kinds of boilers can be noticed here．The simpler the form and the less complicated the whole apparatus is the better． It is cssential that a large area of the bofter surface should bo brought within the clirect action of the fire．
Rogurs＇s Conical Boiler（fig．Il），which has long been in use，is Conica very suitablu for heating pits and small houses，since it in erono－boiler．

Fio．31．－Rogers＇s Conical Boiler．
mical of fuel，and gives out a steady heat for a long time－ 15 to 20 lours，It is formel of two truncated concentric cones，with a space of 2 or 8 inches between them for the water，the furnace being in the inner cone，and the fuel supplied from the top．It was originally surrounded with brickwork，but several improve． ments have been introduced．In fig． 31 the boiler is placed in a cast－iron stand，with ground circular furmace，and register ash－pit doors，$-a$ being the fumace，b the boiler，c fow and return pipes， d the furnace door，c smoke－pipe to the vent，f ash－pit，g grating， h bole for cleaning the furmace．The best liuds of fuel are coke， gas cindors，and anthracite；but common coal whith does not cake very nuch is also snitable，as it is soon formed into coke．

Saddle Boilcrs．－The sadde boiler is a very ctlicient form，steady soddle and sure in its woming．In its improved foms it is，mollaps，the boilers best for general purposes．It shonld be set over a furmace，the sides and end of which shombl be of firebrick．It may be quite plain，or with the inmer surface riluned or cormgated（lig．32），a， modification adofted by Mr Gray of Chelsea．Inall saddle boilers．

Fru．32－Giay＇s Saulle Doiler．
which shond ho derp from front to back，and set well back trola． the doors of the turnace，the full force of the lire strikes the dome of the milur direstly，and so bunge as the fire continmes this is the part most directly intmenced by its heat．The thow pipe is shown， at a，and the wimn piju at \dot{b} ，while e sepresents an ofeming（one an each side）los the pressige of the smoke mo the thafs，the end buing water－wiy，and formane patst of the boiler．The boiler is montiod by a smith turalfixal to the pijo shown in the front．

these, with a terminal water-way, is shown in elevation at fig. 33, and in section, showing the mode of setting, at fig. 34. The fire is made noder the principal areh a; the llame and smoke return theos the llue b, ard then tum back over the top of the boiler

Fio. 33.-Flued Sadde Builer.
to the outlet c, which can be placed at whatever point is in eacl case most convenient. The other parts referred to are d flow pipe, c return pipes, f soot-door for cleaning flues, g furnace door, h ash-pit door.

Fio. 34:-Flued Sadile Boiler (section).
The Gold Medal Boiler (figs. 35-38) is perhaps one of the best of these modified saddles, and like the others has a dome or arch a, and back water-way b; the heated products of combustion striking against this baek are sent up the central flue c, and then diverted into the side flues d, d, before passing into the chimney shaft c. Fig. 36 shows a transverse section, and fig. 37 a longitudinal section set in brickwork, which is shown in elevation in fig. 38.

Fio. 35.-Eivid Jicdal Doiler.
The ash-rit is shom at f, the furnace door at $h_{\text {, }}$, the eentre and side flues at c and d, the Fatar-way end at b, the soot-dinor at t, the gludge-plugs for cleanizs out the interior at g, the flow lipe at m, the rethan at n, white slaws a hollow space around the boiler for atilizing the heat giren off by its exterior surface. This boiler is mamed from its having won the gold medn in a boilet conpetition at Birminthem in sis. The Witley Conrt boiler and the Glasgow boiler are bothe excelient forms of the Aucd sauhle tyic.

Stcvens's Trentham Boiler (fig. 39) is a very powerful and Trentcconomical one, for large establishuents especially. It is a modif- ham cation of the well-known Comish boiler, and consists of two bonlez wroughtiron cylimders substantially rivetted together, and having

Fig. 36.-Gold Medsl Builer (transverse section).
a rrater space of about 2 inches hetween them. The frame for the furnace doors d is attached to the front. It is supported by two cast-iron chairs a, a, the front clair forming the frame for the lower llue doors $\dot{0}$, which fasten by a simple catch, and can readils

Fio. 37.-Gold Medal Boiler (longitudina! section)
be lifted off for eleaning tho fines. The plage, opencd by unserew ing it, is for the parpose of clearing ont all interior accumulation of dirt, which should be done thoroughly at short intervals. The, flow pite is at r, the return at f. In sctting, the chairs are place

leve! on a solid foundation, and two a-inch walls are built up so as just to clear the boiler, and abont level with the centre of the cylinder ; on these a course of fire-hrick lumps is laid, and hronght dose uy to the side of the cylamfre, and resting on the lumpe ad
arch is turned leaving a space the depth of the top flue doors b, to 3erve as an upper flue, while the apace below forms a lower flue. The grate bars are inside the eylinder towards the lower part, the yace above them forming the furnace, and that below them the

Fio. 39.-Stevens's Trenthan Boiler.
sh-pit. The heat thas passes through the centre of the cylinder, then returns by the upper the over its top, and is conducted to the chimney by the lower due, which arrangement is fom to work better than when the heated air is made to pass through the lower flue first.

Eubutar
boiler:

Tubular Boilers. - While the action of tubular boilers is rapid, and they are undoubtedly very powerfal, they are said to be prodigal in their consumption of fuel, and liable to crack. In many cases, how. sver, they have done good wotk for many years, and they are conse, quently enployed to a considerable extent. The original tubalar Loilers were horizontal, but the upright fomn has nearly snperseded this, aud the Uuright Oval Tubztar of Mr Gray, and thevDuplex Upright Trbular of Messrs Weeks \& Co, both of Cbelsea,-the latter marked by improvements introduced specially to meut the foregoing objections,-are the best forms at present in use. The Duplex (fig. 40) is uade in two elluil parts, cach being caprable of

Fio. 40, We Wes's Inplex Tubular Boilo.
being worked alone. Fiach suction consists of a semicirele of up. nehe tubes forming the bobler proper, litted with the diaphragm a, hy which more perfect rombusturn of the fuel is secured, it series of
 puo c, and an outet d for removing sedimentary deposits from the interior.

Letdels's Boiler (fig. 41) is a horizontal tubular, which is fomme to. be extronely powerfol as well as econonical. It is a rectangular. box 6 feet long, made of 2 -inch iron pipes, fixed into hollow water spaces which form the ends; these pipes act as fire bars, and form the sides of the furnace. Alove the fire there are three series of horizontal pipes, each covered by a layer of tiles so placed as to ronvert tho two intervening spaces uto fives, along which the flimes and smoke travel for 18 feet, the smoko escaping at the far end by an opening in the upper layer of tiles. Each tier of pipes

Fio. 41.-Ladds's Boiler
in its tum therefore gets its share of heat from the burning fuel, and the eonsequence is that the apparatus is very quick in its action. Tlie tubes are fitted in with Portland cement and hempen cord packing-tar ropies being found to destroy the ccment. These builers ench leat 3000 feet or more of 4 -inch pping. On the top of the upper layer of tiles aro placed about 9 inches of ashes, then ordinary wh boards which rest on 4 -inch retaining walls, and on these 8 or 10 inches more of ashes, which very etheiently prevents any loss of heat.

Stuves, de.- In the mase ve very small houses petroleum stoves or Stoves. lanys are sullicient to keep out all ordmary frosts, but they aro atterded wath a dissigreatble smell. A small couical or cylindrical boiler attached to a system of piping is liy far the safest and best in such citses. The furnace heating may also be effected cither with Fretroleum, or, better still, as reguiring no attemdance, with gas. The furmace should tue accessible from the outside only, so that none of the products of combustion may euter the bouse. A smull conservatury might lee reathly heated in this way from a furnace fixed in a receso of the back wall or in the bisement of the bouse, and placed near one of the dire-places, so that the outlet nay be conducted into tho chimney. A flow and return passing aloug under the side and front stage (avoiding doorways) might be kept beated by means of a small boiler of any form set over a circlet of gas jets. If on the level, the armogement wand be more simple still, sinee the builur coulal be set in the house withont brickwork, and the fumace constructad leneath it by jierong thromg the exterior wall, and fitting the opening with an ordinary furnace door
llot-water pipes are best made of east-inon. Tow or rope, and a Material muxturo of red and white lead, are genemally used for packing or shane, caulking the joints, though some prefer vulcanized india-rubler anu suze rings, which make good sound joints, wod are very easily romov. of pijes able; for the joints near the firc iron coment must, howeren, be used. Frat pipes, and iluted or semi-circular pipes haro sumatimes been used, bit the eylimitieal form is much to be preferred. The mumber of fipes nust be regulated by the exteut to be heated, amd the dugrec of thmperature required; it is ofen well to havo three or even four flow pupes and only one retum pupe.
 pijes may oftoll be used in small houses. It is a imstake to stun the quantity of piping smee it is far more eronomucal and better for the plants to have a larger surface lieated moderately than a smatler surface heated to the highest possible degree. Tho pipes shoulil, moreover, be placed near the front or lowest past of the honse, and, to prevent lows of heat by conduction, should bo supported clear of the ground, net less than 6 inches, upon cast-iron chairs.

Mr Cannell of Swanley has anopret the plation fixing two or fite threo listinct lines of small piphg closo under tho roof glase, so wuler as to preveut tho air near tho glass from setting eold. This root contrivance is particularly useful in repelling danty, during winter; glase man it may also be allopted for warming jits intended for the guowe of halfolarily plants.
lhat water may be benefferiany applied to garlen walls, not, Heating lonerwer, for the firfoses of foremg the blossoms, but to assist in of walle " ":

To thla end the walls must be built hollow, atul the pipes placed near the bottom of the cavity, and supported on cast-mron charry placed on the top of the foundation course of nisterial. 'I'his method was first exemplified by Mr Atkinson in the girdens of the duke of Bediord at Woburn Abbey in 1828.
Heating The Tauk System of heating garden structures was introduced by tukks. some years since by Dtr W. E. Rendle. It consists in creulating hot water in broad shallow tanks instead of closed pifes. It will bo obvious that as tha water is to flow along these open (or only loosely covered) conduits, they must themselves bo level, sud tie boiler must be either at tho same level or kndow it, the connexion between the two being made in elther case hy hut-water pipus of suitable length. The tanks are formed of wood, lurick, stone, or cast-iron. When of wood, they rergine to he made of good sombd Mlank, not less than einches theck, and properly junted, and they He usually covered with slates. Stone or brick tanks require to be lined witli a thick coating of Ronan cement, while stone, slate, or trick pavement may be employed for covers. The cast-irun tanks lisve covers of the same material.

When one tank only is employed, as for example in supplying bottom heat to the front bed of a propagating pit, it should be constrncted with a diviston along the centre, rumang to within about a foot of the end, which should be left open to allow of the water passing to the other side; the How pipe from the boiler shoull be connceted with the end of the tank on one side of the centril division, 3nd the return pipe for leadng the water back to the boiler should be connected at the same end on the uther sule of the division, a sufficient number of pipes beingalso connected with tho flow and return pipes to heat the atmosphere to the temperature desired. It is convenient to have valves fixed in the llow and return pipes, so as to shut off buthom or top leat as may be required. In a larger houso a tank may run along the front, across the end, and along the back to the end whence it started; aud this may be either divided along the centre as in the former case, tha water llowing the whole distance on one stde the division and returning on the other, or a broad tank may uroupy the front and back, and be connected at the end by an ordinary i-inch plle. the flow from the boiler teing united with the front tank, and the return earred from the back tank into the boiler.

The tank snstem of heating is perhaps one of the readiest modes of supplying bottom heat to plumging beds either for fropanatung or for giowing plants, though the same end is practically attained by runoing aome of the ordinary 4 -inch pipes romuected with the heatug apparatus through a tank wheh can be charged with water when necessary, and emptied when heat is not requiled. When the plan is used for supplying both top abd hothon laral, provision must be made to prevent too marl of the stean ir vapour from pasing into the house; mil. on arrount of the danger of having tou much dampat certan seasens, it is jrehapis prefrimble to have a segarate set of pipes for the supply of atmonaluerte herat

Solar Heat. - The rays of the sha reflected linn walls amd other sutames become a somre of artational hat 'flas sperems of beat, however, is materaily allected by the admosmon of the ar meerssary to the health of the plants Solar heat, if poondy regulatud liy ventalation, is of mmense impontane in the bipenimg of alf the
 in the wase of flowrtug plants ln the "ithatil homse, fruma air
 solar lieat durng the day as pussilile, the vrotilaturs should line opened eally in the moming, ahd ilosed rally in the aftermom.
Ventila. 16. Ventilating Apparatus.-The object of ventilation thon.
require fresh air by night as well as by day, and in all countries cool aights succeed even the bottest days.

The mude of ventalating plant houses formerly in use was by letling down the top roof sasles; thls was often supplemented by having the front or upright sasbes also made novable, and more or less widely opened either outwards or laterally during the daytime. It is much more economical, bowever, and equally elfeacious, to bave the roof sashes fixed, and the top ventilation effected by means of a lantern in the case of a span-rovfed bouse, or by horizontal rentilaturs near the top of the back wall in a lean-to. The front ventilation may be cffected by openings in the front wall opposite the lienting pipes, by which means the cold air is warmed, which is the best plan in all houses where a high temperature loas to be maintained, and is espectally necessary in formongouses, on account of the risk of injury to the follage from cold air ; or the frout sashes may be made movalle, which is better in temperate houses. In the case of pits, where there are no front sashes provided, the ventilators are sufficient for the purpose. The sliding down of one sash over the utber, as once generally and even now frequently practised, greatly augments the shade in oblique sumshine, and is strongly objectionable on that account. The lantern mode of couscruction ubviates this, but in a lean-lo, and even with span roofs, it is Letter to bave shotter movable sashes, hung so as to open by being clevated at the lower edge instead of shding one over the other. A very slight elevation is sufficient for the egress of vitiated air.

A successful plan of warming the iresh air, recommended many years ago by Mr T. Noure (Journ. Hort. Soc, i. I! 0), consists in passing the air after its admission by front ventilators through a beated chamber separate from the tank used as the heating medium, but admiting of communication with the tank clamber il necessary for the purpose of supplying moisture. Tbe warmed fresls air is then led out in front of the tank, and carried forwidts by the carculation up the slope of the roof, descendmes thear the back wall to the foor, whence it is sucked into the heated chamber, mingling with the fresh ars as il enters to repeat the circuit. A ventilator in the back wall provides the menas of egress when this is required. Another plan, well adapted tor foreughouses, consists in fixing from end to end, beluw the hat-water pipes used for heatnag the structure, a zanc pipe of C-anch or 8.anch diameter, and perforated with small holes, wne enal of the tube gassing through an onter wall, and being fitted with a valve which can be whully of pirtly clused at jleasure Otber means of accumplishang the sume end may bo adopted to suat particular cinses.

In order to secure the circhlation of the confined air during the ulght, and thus to prevent an injurious rise of the temperature, and also to economize fuel, it is of ad. vantage where practicable to use slutters. These should consat of a light frame, readily movable, ant titted so as to shile reudily in growes on a skeleton roof; and they should be cuvered with asphulted filt, or strong brown paper coated with tar, whach ie much used in Germany for covering purposes, and is both duralie and cheap. This should form a close unter covering, the ventiktors being set open at bultem and top.

Formerly all ventilation bequ to be effected by the hand unaided, each sash beiner opened or shat separalely, a matter of some urgency win the surden vutburst of sunsbine. In ali good ranges of glass, and in detached houses also, the work is now elfected by machinery, many ingenious combinations of which are in use for this purpose.
17. Ify!rometry. - liur the healthy growih of plants, Hyenw the regulation of tlie moisture is as necessary as the regu- metr). dsmon ul the heat. A considerable derree of monsture is
necessary in the cases of most plants cultivated in a high temperature ; but tho amount varies of course in different cases, and this presents one of the principal difficulties in the manarement of what is called a mixed collection, whether of store or greenhouse plants. In the case of fruita, where a house is mosity devoted to one subject, whetber grapes, peaches, piues, or melons, the requisite conditions can be noro readily eecurel. The instrument with which tha amount of moisture present in the atuosphere is measured is the hygrometer. The two hygrometers mest generally used are Daniell's and the dry and wet bulo, the former a more delicate instrument, best adapted for scientific observations, the lattor a simple: instrament, better adapted fur horicicalitual purposes, because requiring less delicate maripulation. It censists of two thermometers mounted on one frame, the readings of which when uncovered sheuld correspond. Ono bulb is loft uncovered, the other is covered with muslin, and a fow threads of cotion, with their other ondsimmerscd in water, keep it constantly moist. The temperature is lowered by the evaperation from the meistened bulb, and the diflerence in the readings of the two thermometors shows the degree of dryness. Mr Glaisher'a instructions, which accompany the eet of hygrometrical tables publishod by him, will be found of great assistauce by every ono making use of this instrument.

III. Garden Materials andi Appliances.

18. Soils and Composts.-The principal soils used in gardenz, fither alone, or mixed to form what are called composts, are-loam, sand, peat, leaf-mould, and various mixtures and combinations of these made up to suit the diflorent subjects.under cultivation.

Loam is the staple soil for the gardener; it is not only used oxtensively in the paro and simple state, but onters into most of the compests propared specially for his plants. For garden purposes luan should be rather unctuens or soapy to the touch when mederatcly dry, not clinging nor adhesive, and should readily crumble when a compressed hanlful is thrown on the ground. If it clings together closoly it is too heavy and requircs nemelioration by the olmixture of gritty material ; if it has little or no colesion when squeezed tightly in the hand, it is too light, and noeds to be improved by the addition of hoarier or claycy material. Sound friable loam cht one sol doep from the surface of a pasture, and stackel up for tweive months in a lieap or ridge, is invaluable to the gardener. Whon omployed for making vino horders, loam of a somewhat hearier nature can bo wed with adwantage, on account of the porous materials which shuuld accompany it. Fur stuno iruits a calcaronus loam is lest ; imlech, for these subjects a rich calcarenns luan used in a pure and simplo stato cangut be surpased. Somowhat heavy lums are best for potting pine apmos, for moluns and strawberrios, and may to used with the ahlition of manures only; but for onumental phouts a loan of a sunceshat feer texture is preferable and more plosisnt t, work. Donn which contains much red matter (iromi) showh ho avaiden.
 for which phouse fane clean sham silver simi is the best ; and sinmownat curber lime, if it is gritty, is to the ferferted to the commenntel sames which comtain a large proportion of eathy mater. liver samit and tho shap grit washed up sum times by the real silo are excullent materizls for laying armuld fludec bulbs at planting time to prevent contact with carth which is perhaps manue-tanten. Sea smat may the alvanmanoly lysed loulh for propagatint furnses and for mixing in componts. Fur the growth of pot plats saml is no essential part of most comprasts, in orily to cive them tho nsodful dorosity to carry off all oxeoss of moisture frim
the roots. Ii the finer earthy sands only are obtainable, they must be rendered sharper by washing away inc eunthy particles. Washed sand is best fer all plants like heathewhich need a pure and lasting compost.

Peat soil is largely employed for tho culture of American plants, as rhodudendrons, azaleas, heaths, \&c. In districts where heather and gritty soil predominate, the pat soil is poor and unprofitable, but solectious from buth the heathy and the richer peat soils, collected with judgment, and stored in a dry part of the compost yard, are essential ingrodionts io the cultivation of many choice pot-nlants, such as the Cape heaths and many of the Ausiralian plants. Most monocetyledons do well in peat, even if they du not absolutely require it.

Leaf-mould is eminently suited for the growth of many free-growing plants, especially when it has been mixed with stable manure and has been subjected to fermentation for the formation of hot beds. In any state most plants feed greedily upon it, and when pure or free from decaying wood or sticks it is a very safe ingredient in composts; but it is ca liable to generate fungus, and the mycelium or spawn of certain fungi is so injurions to the ronts of trees, attacking them if at all sickly or weakened by drought, that many cultivators prefor not to mix leai-mould with the soil used for permanent plants, as peaches or choice ornamental trees. For quick growing plants, hewever, as for example most annuals cultivated in pots, such as balsams, cockscombs, globe-amaranths, and the like, for cucumbers, and fur young soft-wooded plants gererally, it is exceedingly useful, both by proventing the conselidation of the soil and as a manure. The accumulations of light eartl formed on the surface in woods whore the leaves fall and decay annually aro leaf. mauld of the finest quality.

The material known as cocoa-nut fibre refuse is analogous to leaf soil, and may be employed for similar purposes.' It should be mixed with gritty matter to favour the passage. of water, and indeed requires to be so mixed when in an advanced stage of deay, in order to prevent its collapse into ar close pasty mass. This cocoa-nut rofuse is also a useful light material into which to plunge pots containing plants, as a preservative of the reots from the drying effects of the sun or the chilliag cllects of frost.

Composts are mixtures of the foregoing ingredients inumvarying proportions, and in combimation with manures if posts. nocessary, so as to suit particular plants or classes of plants. The chief point to be berne in mind in making these mixtures is not to combine in the same combost any bedies that are antagonistic in their nature, as for example limo aud ammonia. In making up compests for pot plants, the fibrous portion shouhl not be removed by sifting, execpt for small sized pots, but the turiy pertions should be broken up by hand aut distributed in smaller or larger lumps throughout the miss. When sifting is lad recourse to, the fibrou matter shouh be ribbel through tho meshes of the gievo unng with the carthy partieles. Before being used the turfy ingrealients of composts shonk lie together in a heap only long unough fur tho ruots of the herbage to die, not to decompese.
19. Iftemers - These aro of two classes, organic and Manures inorginic-the forme leing of animal am regetablo, the latter of mincral origin.

Furm-zuthe mimure consists of tho mixul dung of horses nul Organio cathe throwa togetlier, and mome or less soaked nith liquid druin - manure ings of the stalile m byre. It is maloubt the finest stimulant for the growth al plands, aml that mest ndapted to resfore the fertile rlements which the phants hase absuacted from exhausted soils. This mamer is leat fitted for gorsten use when in a moderately fermunted slates.
Ifurse dhuy is femerally the principal ineredient in nll hot bod
 eshamsted hot bets, it is well adnpted for anden use. It is most

Qeneficial on cold stiff soils. It should not be allowed to lie too long unmored when fresh, as it will then heat violently, and the ammonia is thus driven off. To avoid this, it should be turned over two or three times if practicable, and well moistened-preferably with farm-yard drainings.

Cow dung is less fertilizing than horse dung, but beirg slower in its action it is moro durablo ; it is also cooler, aod therefore better for hot dry soils. Thoroughly decayed, it is one of the best of all manures for mixing in composts for florists' flowers and othor choice plants.

Pig dung is very powerful, containing more uitrogen than borse dung; it is therefore desirable that it should undergo moderate fermentation, which will be secured by mixing it with litter and a portion of earth. When weeds are thrown to the pigs, this fermentation becomes apecislly desirable to kill their seeds. The drainings of a pig-stye form a most valuable liquid manure for vegetablo crops.

Nightsoil is an excellent manare for all bulky erops, but requires to be mixed with earth or peat, or coal-ashes, so as both to deodorize it and to enaure its being equally distributed. Quick lime should not be used, as it dispels the greater part of the ammonla. When prepared by drying and mixing with various substances, night-soil is aold as poudrette, or desiecated ulght-soil, the valus of which depends upon the materials used for adinixture.

Malt-dust is an active manure froquently used as a top-dressing, especially for fruit trees in pots. It is rapid in its action, but its effects are not very pormazent. Rape dust is somewhat similar in its character and action.

Boncs are employed as a manure with decided advantage both to vegetable crops and to fruit trees, as well as to flowers. For turnips bone manure is invaluable. The etfects of bones are no doubt mainly due to the phosphates they contain, and they are most effectual on dry soils. They are most quiekly availahle when dis. solved in sulphuric acid.

Cuano is a valuable manure now much employed, and may be applied to almost every kiad of crop with decided edvantage. It should be mixed with six or eight times its weight of loam or ashes, charred peat, charcoal-dust, or some earthy matter, before it is applied to tho aoil, as from its causticity it is othervise not unlikely to kill or injure the pleuts to which it is administered.

Pigeon dung approaches guano in its power as manure. It shoulal be laid up in ridges of good loamy soil in alternate layers to form a compost, which beoomea a valuablo stimulant for any very choice subjects if cantiously used. Tho dung of the domestic fowl is very similar in character.

Horn, hoof-parings, woollen rags, fish, blubber, and blood are all good manures, and ahould be utilized if readily obtainable. Sauaiust and $t a n$ are of less value.

Liquid manure, consisting of the drainings of dung-heaps, stahles, cowsheds, \&c., or of urine collected from dwelling houses or other sonrces, is a most valuable and powerful stimulant, and can be readily applied to the roots of growing plants. The urine should be allowed to putrefy, as it its decomposition a large amount of ammonia is formed, which should then be fixed by sulphuric acid or gypsum ; or it may be applied to the growing erops after heing freely diluted with water or absorbed in a compost heap. Liquid manures can be rendily made from most of the solid manures when required, simply by admixture with water. When thus artificially compounded, unless for immediate nse, they should be made strong for convenience of storage, and arplied as required much diluted.
In rganic Anmonia is the most powerful of the manures of the inorganic anoures. serics, and one of the moat important of the constituents of mames geverally, aince it is the chief aource whence flants derive their nitrogen. It is largely supplied in all the most fertilizing of orgame manures, but when required in the inorganic state must be ohtained from some of the salts of ammoria, as the sulphate, the muriate, or the phopphate, all of which, being extremely energetic, require to bo used with great caution. 'These snlta of ammonia may be used at the rate of from 2 to 3 ewt. per acre as a top-dressing in maist weather. When dissolved in water they form active lipuil manares,

Potash and sodu are also valuable inorganic mamas in the fsom of carbonates, sulphates, silicates, and ihosphates, bit the most extersively employed is the nitrate of potish. The ranmurs of this class are of course of value only in cases where the suil is matirally deficient in them. On this account the sults of soda aro nf less importance than those of potash. The value of wood ashes as a manure very mach depends upon tho carboate and other salts of potash which they coutain.

Lime in the cinstic stato is beneficially applied to soils which contain an excess of inert vegetable matter, and hence may be used for tho inprovement of old garden scrils saturated with humus, or of peaty soils not thoroughly reclaimed. It does not surply the place of organic manures, but only renders that which is present avallablo for the nourishmont of the.plants. It also improves the texture of clay soils.

Gyusum, or sulphate of lime, applied as a topdressing at the rate of 2 to 3 cwt. per acre, has been found to yich grood resules,
csperially on light soils. It is also employed in the ease of liquid mamures to thx the ammonia.

Bernt clay has a rery beneficial effect on elay land by improving its texture add rendring soluble the alkaline sumstances it cootains, The clay should be only slightly burat, so as to make it crumble down readily; in jact, the fire should not be allowed to break through, but should be constantly repressed by the addition of material. The burning should be effected when the soil is dry.

Vegetable refuse of all kinda, when smother-burned in a simitar nay, becomes a valuable mechanical improver of the soil; but the preferable course is to decompose it in a heap with quick lime and layers of earth, converting it into lcaf-mould.

Soot forms a good top-dressing ; it consists principally of charcoal, but contains ammonia, whence jts value as a wanure is derived. It abould be kept dry uotil required for use. It may also be used - Frnefially in preventiog the attacks of insects, such as the ouiun gnat and turnip fly, by dustiog the plants or dresising the ground with it.

Common salt acts as a mamure when used in moderaie quantities, but in strong doses is injurious to vegetatiou. It suito many of the esculent crops, as onions, beans, cabbages, carrots, beet-root, asparagus, sc.; the quantity applied varies from 5 to 10 bushels per acre. It is used as a top-dressing sown by the hand. Hyacinths and other bulbs derive benefit from slight duses, while to asparagus as much as 20 lb to the rood has been used with beweficial effect. At the rate of from 6 to 10 bushels to the acre it may be used on garden lawns to prevent worm easts. For the destruction of weeds on gravel walks or in paved yards a strong dose of salt, applied either dry or in solution, is found very cffective, especially a hot solntion, but after a time much of it becomes washed down, aud the residue acts as a manure; its continued application is uudesirable, as gravel so treated becomes pasty.
20. Tools, Implements, dic. -With regard to gardon tools, Tools. instruments, implements, and machinery, it is only some of the more uodern inventions and inprovements that can be touched on here. The two indispensable tools are the spade and the knife. The spade is commonly used for digging and trenching, but much of this work is now better done by means of Parkes's digging fork (fig. 42), which is both handier and lighter, and breaks up the ground better than the spade. The pickfork or Canterbury boe (fig. 43) is a very useful tool for breaking up the surface soil, the threcpronged end being used for the looser parts, and the mattock end for breuking clods, or when the surface has become much consolidated. The drag (fig. 4.1) is also useful-a light three-pronged tool, which may be used for loosening the sail amonest vegetable crops as well as flower garden plants, and may also be sometimes employed, if the tines are suificiently marrow anel pointed, to drag off meeds from the surface. The hand-fork (fig. 45), a short-

Fic. 42,-l'ankes's Digeing-Fork.

$$
\text { ecus } 1 \text { 名位 }
$$

latudled three-tmed implement, is extremely handy for many purposes, suclu as lousening weeds for land-weeding, or for ${ }^{\text {nlanting }}$ or transplanting small subjeets; it is also very handy for plunging pots, enther indones or out, in tan.
beds, ash beds, or common soil. Hoes and rakes made with a tapered neek and socket, into which the handle is fitted, do not cog so readily es when they are driven into a ferruled handle.

For pruning purposes a variety of instruments have been invented, under the names of sécateurs, proning-shears, proning-scissors, \&ce, but nothing equals a well-tempered old-fashioned knife, varied in form, strength, and size to suit the partieular object to be operated on. The averruncator is a useful instrument for cutting branches at a considerabla elevation (12 to 15 feet) from the ground. Selby's flower gatherer (6g. 46), which cuts and holds the.

Read's patent, watch acts by a piston and ball valve; while for the more powerful garden euginea, those manufactured by Read (fic. 50) and Warner have the preference.

Fro. 50.-Rerd's Garden Engino.
Tallies of wood should be slightly smeared with white Tallece paint and then written on while damp with a hlack-lead pencil. To preserve them from decay they should first be soaked in linseed oil. Zinc tallies are the best, on account of their durability, if written upon with a proper ink,-12 grains of bichloride of platinum diasolved in 1 oz . of distilled water. Larger labels of various materials and patterna are provided for trees and shrubs, and other permanent outdoor plants. Lead labels with stamped figures are very useful. For numbering pot plants, these may be wedge-shaped and bent over cluse to the pot-rim ; for collections of plants they should be emall and light, so that the suspending wire may not cut inte the bark of the plauts. Ziac lahels with the names shown in relief are to be recoummended when they can be obtained ready made, but are too expeusive when they have to be apecially prepared.

1V. Garden Operations.

21. Propagation. - The increase of plants, so for as the Propasnproduction of new individuals of particular kinds is con- tiod. cerned, is one of the most important and constantly recurring of gardening operations. In effocting this, varlous broeesses are adopted, which will now be described.
(1) Dy Seels. - This may he called the natural meme of increas. Seede ing the number of ony jarticular kind of phat, but it is to be rememered that wo do not hy that menus secura an oxact reproduction of the parent. We may get a progeny very closely resembing it, yet each phat posecsing a distinef individuality of ity own; or we may get a propeny very unlike the parent, or a mixed progny showing varions ingres of divergence. Many secds
 gental ruld seads have to lue belt for simpe wewks or months in stow, and hrace they binuld low theroughly whemet before being
 the roadily get consulidited. In then ease of cutdoor erepss, if the
 serels with a light compuist. Yrery sniall spold dhenld only have as sprinkling of light earth or of samb, and sunt thes only a thin layer of soft moss to exchule light nud proserve nti cqualdo degree
 tu tho depth of our-eighth or inn-fourth of at moth, seementag to their size. Ontdme crops requre to be sown, the simaller seeds from half an inch to an inela, and the larger enes from 2 to t incion
under the surface, the cosering of the smaller ones especially being light and open. Many sceds grow well when raked in ; that is, tou surface on which they are scattered is raked backwards and Jurwarda until most of them are covered. Whatever the sceds, the ground should be made tolerably from both bereath and above them; this may be done by treading in the case of most kitchen garden crops, which are also better sown in drills, this inlmittug the more readily of the ground being kept clear from weeds by hocing. All sceds require a certain degreo of heat to imduce germination. For tropical plants the heat of a propagating house- 75° to $\mathrm{S} 0^{\circ}$, with a bottom heat of 80° to 90°-is desirable, and in maty cascs absolutely pecessary; for others, such as half-hardy ammals, a midd hot bed, or a temperate pit ranging from 60° to $\frac{7}{} 0^{\circ}$, is convenient; while of course all outdoor crops hare to submit to the natural temperaturo of the season. It is very important that seeds should be sown when the ground is in a good working condition, and not clammy with moisture.
(2) By Offscis.-This mode of inerease applies specially to bulbous plants, such as the lily and hyacinth, which produce little bulbs on the exterior round their base. Most bulbs do so naturally to a limited but variable extent; when more rapid inerease is wanted the heart is destroyed, and this induces the formation of a larger number of offsets. The stem bulbs of lilies ore similar in character to the offsets from the parent bulb. The same mode of increase eecurs in the gladiolus and crocus, but their bulb-like permanent parts are called corms, not bulbs A fter they have ripened in connexion with the parent bulb, the offets are taken off, stored in appropriate places, and at the proper season phated out in nursery lieds.
Tubers. (3) By Tubers. - The tuber is a fleshy underground stem, furnished with eyes which are either visible, as in the potato and in some familiar. kinds of Tropacolum (T. tuberosum) and of Oxalis (O. crenala), or latent, as in the Chinese yam (Dioscorca Batatas). For a fuller description see Botany, vol. iv. p. ©8. When used for propagation, the tubers are cut up into what are called ". scts," every portion having an eye attacled being capable of forming an independent plant. The cut portions of bulky sets should be suffered to lie a short time before being planted, in order to dry the surface and prevent rotting ; this should not, however, be done with such tropical subjects as caladiums, the tubers of which are ofton cut up into very small fragments for propagation, and of course require to be manipulated in a properly heated propagating pit. No eyes are visible in the Chinese yam, but slices-of the long club-shaped tubers will push out young shoots and form independent plants, if planted with ordimary care.
Division, (4) By Division.-Division, or partition, is usually resorted to in the case of tufted growing dants, clicfly perennial herbs; they may he evergreen, as chamomile or thrift, or when dormant may consist only of underground ciowns, as larkspur or lily-of-thevalley; but in either case the old tufted plant being dug up may be divider into separate pieces, each inrnished with roots, and, when replanted, generally starting on its own account without much cbeck. Sulfruticose filants and even small shrubs may be liropagated in this way, by first planting them deeper than they are ordinarily grown, and then after tho lapse of a year, which time they require to get rooted, taking them up again and dividing them into fiarts or separate plants. Jox-edging and southernwood are cxamples. The same ends may sometimes be effected by merely working fine soil in amongst the base of the stems, and giving them time to throw out roots before garting thent.
(5) By Suckers.-Root suckers are young shoots from the roots of plants, chiefly woody plants, as may oft"n be seen in the case of the elm and the plum. The shoots when used for proparation must be transplanted with all the roots attachol to them, care being taken not to injure the parent plant. If they spring from a thick root it is not to be wantonly seveled, but the sonl slaould be removed and the sucker taken off by cuttirs away a clean slice of the root, which will then heal anl sustain mo hirm. Stem ouckers are such as proceed from the base of the stem, as is often oeen in the case of the currant and lilac. They should be removed

Fio. 51.-Suckering Iron.
in any ase $;$ when required for promagation they "Shoull be taken with all the roots attached to them, and thoy showd be as theroughly disbudded below ground as possible, or they are liable to continue the hidit of suckering. In this ease, too, the sot? should be carcfully opened and the shoots removed with a suckering iron, a sharp concave implement with long ion landle (tig. 51). When tho number of roots is limited, the tops should be shortened, nold some care in watering and mulching should be bestowed on the plant if it is of value.
(6) Iy Runhers.-A definition of runners will be found in Rotany, vol. iv. r. 97. The young string-like shoots provluced by the, strawberry are a vell-known cxample of them. The prom
cess of rooting these runners should be facilitated by faxing them close down to the soil, which is done by small wooden hooked pegs or by stones; hair-pins, short lengths of bent wire, \&er., may also be used. After the roots ara formed, the strings are cut through, und the runners become independent plants.
(7) Sy Prolifirous Buds. - Not anlike the runncr, thougn grow- lroliferm ing in a rery different way, are the bud-plants formed on tbo fronds ouabude of serctal kinds of ferus belongine to the genera Amplenium, Wooduardia, IOlysichum, Lastrca, Adiantum, Cystopteris, se. In some of these (Hituntum coudatun, Polystichum lemidocauton) the rachis of the fiond is lengtheued out much like the string of the strawberry runner, and lears a plant at its apex. In others (Polystichum angulurc prolifcrum), the stipes below and the rachis amongst the finnse develop buds, which are often numerous and crowded. In others again (Woodwardia orientalis, Asplenium bulbiferum), buds are numeronsly produced on the npper surface of the fronds. These will derelop on the jllant if allowed to remain. For propegation the bulbiferous portion is pegged down on the surface of a pot of suitable soil ; if Eept close in a moist atmosphere, the little buds wiil soon strike root and form independent plants, In the Cystopterio the buds are deciduous, falling off as tbe fronds acquire maturity, but, if collected and pressed into the surface of a pot of soil and kept close, they will grow up into young plants the following scason.
(8) By Laycrs. - Layering consists in preparing the branch of a Layera plant while atill attached to the prarent, bending it so that the part operated on is brought under ground, and then fixing it there by means of a forked peg. Some plants root oo freely that they need only pegging down; but in most cases the arrest of the returning sap to form a callus, and ultimately young roots, must be brought about artificially, either by twisting the branch, by splitting it, by girding it closely with wire, by taking off a ring of bark, or by "tonguing." In tongaing the leaves are cut off the portion which has to be brought under ground, and a tongue or slit is then cut from below upwards close beyond a joint, of such length that, wheu the cut part of the layer is pegged an inch or two (or in larger woody aubjects 3 or 4 inches) below the surface, the elevation of the point of the eloot to an upright pasition may

Fio. 5z.-Propagation by Layers-a, tonguing; b, ringing.
open the incision, and thus set it free, so that it may be surrounded by earth to induce it to form roots. The whole lranch, excert a few buds at the extremity, is covered with soil. The best seasons for theso operations are early spring and midsummer. that is, before the sap begins toflow, and after the first llush of growth las passed off. Dhe whole summer, sometimes two, must elapse before the layers vill be fully rooted in the ease of woody plauts; but sweh plants as camations and picotees, whieh are usually propagated in this way, in favourahle seasone take only a few weeks to root, os they are layered towarts the chd of the boomion season in Iuly, and are taken off aud planted separately carly in the autumn. Fig. 52 shows a woody phant with one lager drel ard by tonguing and another ly ringing.

In general, each shoot makes one layer, lut in flants like tho Wistaria or C"omatis, which make long shouts, what is ealled serpentine lapering may be adogted; that is, the shoot is taken altemately below and above the smfoce, as fromently as its length jermits. There mast, however, be a juint at the umderground part where it is to be tongued and jegreel, ami at least one soumd bud in each exposed Inart, from which a shout may be developed to form the top of the young bant.
(9) By Circumposition. When a plant is too high or its hahit Cirentydoes not convertiontly almit of its being layeral, it may often be ponisua increased by what is called circumposition, the soil being carried ulu to the branch operated on. 'The branch is to be prepared by rimging or motchang or wising as in layering, and a temporary stand made to sujport the vezsel which is to contain the soil. The vessel may be a llower-pet sawn in two, so that the halves may be bound together when used, or it may be a flower-pht or box with a side slit- which will admit the shoot: this vessel is to be
filled compactly with suitable porous carth, the opening at the slit being stopped by pieces of slate or tite. The carth must be kept moist, whirh is perhaps best done by a thack malching of moss, the moss being also bound chosely orer the openings in the ressel, and all being kept damp by frequent syringings. lied remarks of this methorl of propagation that he has eflected it with clay and cow dung well mixed, after the bark had been taken off all round, sad Hrappel about with a double or triple swadding' of straw or hay ropey (Scols Gardencr, 1721).
This irocess is sometimes found very useful in the case of choice conserastory plants which may be getting too tall for the house, such as a fivo Dracana (fig-53) or Yucca. Such a plant may be eperatul on wherever the stem has become firm and woody; toe top will not fail to make a fine young specimen plant, which nuight be removed in the courso of about twelve months, while other shoots mould no douht be obtained from the old stem, which, with its head thus rednced, might bo removed to guarters where it would not be an eyesore. The bead would perbaps require steadying if the stem were loaded with a pot or box of soil, as at a in tho figure. Mr Baid records (Punt. Mig. Eot, xvi. 46) a successful experiment of this kind with a Dracena Draco which was getting too tal! forits prosition. An incision was made in the stem half ao inch dcep to the extedt of half ita circumference, lime being applied to the wound to dry up tho sap. This incision was from time to time deepened fand lime. dried) until segered, the top being saspended from the roof. After some months roots were protruded from between the woody structure and its bush-like corering, and the grignatic cutting was lowered into its place, and grew away frecly. In this case Mr bain was of apidion that success was due to the slowress of tho process and the precautions taken to dry and harden the stem.
(10) By Grafts.-Grafting is so extensively resorted to that it is impossible here to notice all its phases. It is perhaps of most importanco as the principal means of proparating our hardy kinuls of fruit, especially the apple and the pear: but the process is the samo with nost ather fruits and ornamental hasdy trees and slorubs that are thus propagated. The stocks ire commonly divided into
 two clusses:-(1) free stocks, which cansist of sembling plants, thielly of tho same genus or speres as the trees frum which the scions are taken; and (2) dwarfin: stocks, which are of moro diminutive growth, either waricties of the saton species or species of the same or soma alhed gemes as tho sefon, which have a tend. ency to lessen the oxprension of the emgrafted tree. The Freach Poradise in the lest dwarfing alock bor nylles, an! the quince for pears. Io determining the choices of storks. the nature of the soil in which the frafted trees are to frow showl have full wioht. In a snil, for ceamphe, natarally amist, it iv probne far graft pars on the prane becanse this phat not only maser in fuch in soil, but sirves to "hack tha luxariancer thomby proluced. The sedons
 salectul frombealthy parents; in the gave if shy-heamer, kinds,

 buried in the enth, sjuce the otrik at the time of arofting chand in pobst of berg hitan be somewhat in atwame of the graft. During

 burify subjeres is the month of Min in; lint 11 may lue comanomed

transverse cut as shown at a, a slice is then pared of the side as at b, and on the face of this a tongue or notch is made, the cut being in a townward direction; the scion c is pared off in a similar way by a single clean sharp cut, and this is notehed or tongued in the opposito direction as the figure indicates; the two are then fitted together as shown at u, so that the iuner bark of each may come in contact at least on one side, and then tied round with damp soft bast as at e; next some grafting clay is taken on the forefinger an,

Fia. 54. -Whip-Grafting ar Tongue-Grafting.
[ushed down on each site so as to fill out the space between the top of the stock and the graft, and a portiou is also rubleal over tha ligatures on tho side wher the graft is placed. a handful of the clay is then taken, flattened out, and rolled closely round the whole point of junction, heing finisbed off to a tapering form luth ahove :moll holow, as shown by the dotted line f. To do this deftly, the bands should be plungelf from time to those in dry ashes, to provent the clay from stieking to theto.

Cleft-grafting (6g. 65) is arother method in common use. The steck a is cleft down from the horizontal ent d, and the scon, when cut to a thio woyg form, as shown at c and ε, is inserted into tho cleft ; tho whole is the bumbl up and clayed as in the former casc. This is not so good a plan as rhip-grafting, it is mproved ly sloping the stock on ono sude to the size of the grait

Fio. 55-Cleft Graftome
Fis 5 . - Cown-Graltiog.
 prafenge intanuch as it leases no apm spaces in the wood The stock b is cut of horzontally of warle an and a slit is then cut in the bark $f_{1} f_{0}$ a woder-shaped purer of wave bobeg inserted ic Tanse the hatk; the semon is then ant to the same wedge-shaped
 allumera amb the bark, after whel at ted down athe elayed ower an the manmer nlponde desenthed

 It may be proctased for the pubpese of chameind a pat of the tres.
 trome espriblly
 to the sube in the stoxk, whed is phatued ar pottod thow to the phat
 atfached to the parent trew, and remmo so motil bintud. In tha

 in lla

nre, bowerer, sometimes so small that the tongino of the graft is dispensed with, and the two stems simply pared smooth and bound together. In this way hariy rhododeudrons of choice sorts, grembouso rateas, the varicties of the crange fanily, camellias, roses, sato conifers, and numerous other plants ave inereased. In suall subjects soft cotton is used for tying instead of bast, and graftingrax is substituted for grafting clay. The best is tho rieuch cold mastic "I'Hommo Lefort." All grafting of this kind is done in the propagating bouse, at say season when grafts aro ohtaimable in a it state, -the plants when aperated on being jlaced iu closo frames warined to a suitable teraperature.

Root-grafting is sometimes resorted to where extensive increaso is an ohject, or whero stem-grafting or other means of propagation aro njt available. In this caso the seion is grafted directly on to a portion of the root of some appropriate stock, both graft and stoek - being usually very small; the grafted root is then potted so as to cover the point of junction with the soil, and is plunged in the bed of tho propagating house, where it gets the slught stimulus of a gentlo bottom hest. Dahlias (fig. 57) and paonies may be grafted

Fio. $57 .-$ Root-Grafting
of Dahlia.

Fig. 58.-Root-Grafting of
Woody Plant.
by inserting young sloots into the neck of one of the fleshy rooto of cach kind rospectively-the best method of doing so being to eut A triangular section ncar the upper end of the root, just large enough to admit the young shoot when slightly pared away on two sides to give it a simiar form. In the case of large woody plants thurs worked (fig. 53) the grafted roots, after the operation is completed, are planted in nursery heds, so that the upper buds only are exposed to the atmosphere, as shown at c tn tbo figure.
(11) By Bueds. - Budding is tho inserting of a bud cut with a portion of bark of the phat to be propurgated into the bark of the stock, where it is bound gently but Ermily. Stone fruits, such na puaches, apricnta, ploms, chertics sut, ane porargated in this wiy, as well as roses, and many other plants. In the propreating lomse budding mey be dome at any season when the saf is in motion; but for fruit trees, noses, de., in the open air, it is ushblly doue in. Italy or August, when the buds distined for the following gear are rompletely formed in the axils of the leaves, and when the kark separates freely frim the wood it covers. Those burls are to tre preferred, as heing 'sist ripened, which ocenr ou the midule portion of a youmg shoot.
The simplest and most genernlly practisel form of bolding is ${ }^{11}$ tat called Shich-budding or T-budeling (hig. 599). Th. operitor dould be provided with a hudding-knife in whicli the cutting edhe of the blade is rounded off at the point, and which has a thin irory or-bone handle, for raising the bark of the stock. A hotizontal incision is made in the barte quite down to the wood, and from this 2 perpendieular slit isurum downwards to the extent of perlapss an inch, so that tbe slit has a resemblaner to the letter T, as at a. A bed is then chit by a clean incision from the tree intended to he propagated, haring a portinn of the wood attached to it, and so that the whole may be rut inch and a half long, as at d. The bit of wood e must be gently witldrawn, care being taken that the bud adheres wholly to the bark or shindi, as it is called. of which f is a sido view. The kark on each side of the perpendieular slat beine then cantiously jucned, ss at b, with the handle of the knife, the bud aud shich! are
zontally, and brouglit to fit the oark of the stock at the transverse incision. Slight ties of soft cottup. wool or worsted, or even moist bast-nnatting, are then aphied. In about a montin or six weeks the ligntures may bo taken away, when, if the onetation has beers

Fio. 59.-Snield-Budding.
successful, the bud will be fresh snd full, and the shicld firmly united to the wood. In the following spnogna strong shoot will be throm out, and to this the stock is headed down by gradations during the course of the surnmer.

To be anccessful the operation should be performed with a quick and light hand, so that an part of the delicate tissues be injured, as would happen if they wdre left for a time exposed, or if the bod were forced in like a wedge. The uniou is effected as in grafting. by means of the organizable sap or cambinm, and the less this in disturbed until the inner bark of vie shicld is pressed and fixed against it the better. Inverted T-budding, in which tho two incisions are in the form 1 , is for some reasons preferable to the more ordinary method.
(12) Dy Branch Cuttings. - Propagation by cuttings is the mode Rrarch, of increase most commonly adopted, next to that by seeds. It is cutioneso effected by taking a portion from a branch or shoot of the plant, and racing it in the soid. There are great differences to be observed in the selection and treatment of cottings. Sometimes soft green shoots, as in Verbena (fy. 60, a), are used; sometimes the shoots must be lalf-ripened, aud cometimes fully inatured. So of the mode of preparation; some will root if cot off or broken ofl at uny $l^{\text {bint }}$ and thrust into wet earth or sand in a warm place (fig. 60, a) ; others require to becut with the utmost care just below a joint or leaf-base, and by a keen blade so ss to sever the tissucs withont tearing or bruising; and others again after being cut across require to bo split up for a short distance. It is usual and in most cases necessary to rut away the lower portion of a cutting up to just below the

Fic. 60,- Froparation hy Cuttings
none or joint (fig. 60, $, \alpha, c$). The internoual Iarts will not often divide so as to form separato indishbalphants: sometimes, however, this happens; it is said thas the smallest phere of Tormia asiatica, for instance, will grow. Thers ats to posithon, certain cuttings grow readily enough if plauted outdoors in the olen soil, some prefering shate, others sunshine, whle luse hardy sulpects must be cosered with a bell-glass, or must he in a close atmoribue with bottom het, or must lave the aid of pore silver sam! to facilitate their rooting (fig. 60, c). Cuttings simmld in all eases be taken from healthy plants, and from shoots of a mundante degree of virour. It is also important to select leafy growths, am! not such as will at once run up to tlower. Yonng shoots whinh have herome moderately firm generally make the bost cutaniss, hat sometimes the very softest shoots strike more realily. Jorail plants in a growing state spring is the safost time for toking cuttings.

Cutturg of decibuous pants shond he taken off after the fall of
the leaf, and should have s!l underground buds carefully removed so as to prevent as far as nossuble the formatioo of suckers. These cuttings should be about ono foot 10 length, and should be piantel at once in the ground so as to leave only the top with the two or three preserved buds exposed If a clean stem, however, is desired, s longer portion may be left uncovered.
Cuttings of growing plants are prepared by removing with a sharp Enife, snd moderatcly close, the few leaves which would othermse we buried in the soil, they are then cut clean across just below s joint; the fewer the liaves thus removed, howerer, the better, eas if kept from beage exhausted they help to supply the organizable natter out of which the roots are formed. Free. rooting subjects strike in any hgbtish sandy maxture , but difficult subjects shouht have therenghly well-dramed pots, a protion of the soil proner for the particular plants made very sandy, and a surfacing of clean sharp silver sand sbout as deep as the length of the rutting (figg 60, c) Mr Asres, writing in the Gardeners' Chromule (1543, p-110), recom. meods 5 -iach pots for cuttings, and these he prepares by puacing over the bolo at the bottom of each an inverted 3 -inch pot, around it potsherds broken small, over these some moss, and then the corapost mada up of equal quantities of peat, sand, and leaf-mould, leaving sheut half an inch st top for white sand, which runs mato the heles as the cuttingsare inserted Mr Ayras advises that "astock of pots thus prepared should be kept in a frame or propagating beuae, as nothing is se lojurious to cut. tinges taken from plants growing in heat as to pui thera rato cold aoil. Cuttings cannot be too short if they have the necessary buds to firm a plant: nother can they be inserted too shallow, if they aromadetirm in tha pots.

61.-Doubse Cutting Pot. kept in a tempersture rather higher chan that io which they grow naturally, and the soil about theo should be kept moist, although they must net from waot of drainage an any dagrea get sodden with wet. The bumadity kept up about the cuttings is arantained by covering them with bell-glasses, or rettug then in handlights or small glazed frames of coovecient size.

A ypecial contrivance for a cutting pot (fig. 61) was brought into notice many years ago by Mr A. Forsyth. A smaller pot was put into a larger one, the hole ot the bettom heing closed with rlay a, the bottom of the outer pot is filled with crocks b, so that the sinall pot is breught up to the level of the larger one. and the space between the two pots c is filled with propagating som, the cuttings being so planted that their ends reat against the sides of the inner pot, which is then filled with water. sall this passing slowis through the sides of the pots, just kaeps the soll moistened

Fio. fo. - Lenf Cutioga

 the enission of ruts congenind soll for them to grow 1 (tyg fill. .)

Hardy plauts, such as pinks, pansies, \&c., are propagated by cuttings planted duriag early summer in hight neh soil. The cuttings of punks are called pipings (fig. $00, d$, and are planted ahout June, while pansies may be renewed in this way both in spring and an autumn.
(13) By Lcaf Cuttings. - Many, plants may he propagated by Leaf planting their leaves or portions of their leaves as cuttings, as, for cottings exatoule, the herbareous Clownuz (fig. 62, a) Bud Gesnera, the sucuulent Sempervizum, Echevera, Pachyphytum, and their allie日, and such hard-leaved plants as Thnophrasta (fig. 62, b). The leaves are best taken off with the base whole, and should be glanted 111 well-dranted sandy soil. in due time they form roots, and ultinately from some latut had a little shoot which forms the young plant. The tredtuent is precisely like that of branch cut. tings Gloxioias, begouns, \& grow readily from fragments of

Fig. 63.-Leaf Propagation. the leaves cut clean through the thick reias and ribs, and planted edgewise like cuttiags. This class of subjects may also be tixed that on the surface of the cutturg pot, by means of little pegsor books, the main ribs being cut scross at intervals, and from these points roots, sid oventusliy young tuhers, will be produced (fig 0.3).
(14) By Root Cultings.-Some flents which are not easily increased Ront by other means propagate readily from root cuttings. Anongst the cutuna indoer plaats which may be so treated, the Bourardia, Pelargoniuen, Aralia, and Wigundia mas be mentioved. The nodus coperandi is to tura the plant out ot its pot, shake away the aeil sa as to fres the roots, and then select as many pleces of the stouter roots $8 s$ may be recuired These are cot up into hali-inch leugths fometiones less), a od itberted in light saudy seil reund the margin of a entung jot, so that the upper end of the root cutting may be level with the ael or only just covered by it The pots should be watered so as to acttle tho soll, snd tre placed in the close atmosjinere of the propagating pit or frame, where they will ueed scarcely any water until the buds are seen pushing through the surface.
 such as sea-kule and horseradish, sud, nroong ornamental plants, the beautiful nutumo-blooming Anemone japonza and Severio putcher The sea-kale and horseradisb require to be treated in the open garden, where the cut portions shoud he planted in linea in well-norked sol, but the roets of the Anemore and Sonecin should be fanted in foits and kept in a clusa fraine with a litte warmoth till the young shoota have Healtorl.

Various hardy er. namental trees aro also inereased in this way, ns tho quance, tor, robimis, and mul. berry, and the rose amosigest ehrubs. The most important use us "hich tho mente of propagation is put is, howeret. the moremser of reses, sod of the various pluma nurd Ins stechs for wark. ing the chowrer stone fruits The tumblion withe hattor cane la tor selace rume avaraging the thahbers in the luthe fimper, to rat these into lemgethos of nkwnt 3 ur +

Fiu. 64 - Cuttog of Single Eye Wehes, and tophant the on in haes just lumeth the shfore in marsery beds The ron cultinge of rose stocks aro propared aid treated "u a sumblat way

 an. $!$ below It is a common mode of propagathg vimes, the erves
being in this case cut from the ripened leafless mool. The cyes (fig. 64, a) are planted just below the surface in pots of light soil, which are placed in a hot bed or proparating pht, ant in dac time each pushes up a young shoot which Corms the future stem, \quad hhte from about its base tho young roots are produced (tig. eit. b) which convert it into an independent plant. In the case of phants with persistent leaves, the stem may be cnt through just above and below the bud, retaining the leaf which is left on the cutting, the old wood and cye being placed beneath the oil and the leaf left cxposed. In thig way the india-rubler tree (ficus elastica), for cximple, and many other tender plants may be increased with the aid of a brisk bottom heat. Many of the frem-growing soft-vooded phants may also be grown from cuttings of single joints of the young wood, where rapid inerease is desircd; and in the case of opporiteleavel plants two cuttings may often be made from one joint by splitting the stem longitudinally, each cutting consisting of a leaf and a perfect bud attuched to half the thickness of the stem.
2.. Planting and Transplanting. - In prepariog a fruit tree for transplantation, the forst thing to bo dono is to open a trench round it at a distance of from 3 to 4 feet, aecording to size. The trench should bo opeaed to about two spades' depth, and any coarse roots which may extend thus far from the trunk may be cut cleao off with a sharp knife. The soil between the trench and tho stem is to be reduced as far as may seem necessary or practicable by means of a digging fork, tho roots as soon as they aro liberated being fixed on one sido and cacefully preserved. By working in this way all round the ball, the best roots will be got out and preserved, aud the ball lightened of all supsrluous soil. The tree will then be ready to lift if carofully prized up from beoeatly the ball, and if it does not lift readily, it will probably be found that a root has struck downwards, which will have to bo sought out and cut through. Whenever practicable, it is best to sccure a ball of earth round the roots. On tho tree being lifted from its bolo the roots should bo examined, snd all which have been sovered roughly with tho spade should have the eods cut smooth with the kaife to facilitate the emission of fibres. The tree can then be transported to its new position. The hole for its reception should be of sufficient depth to allow the base of the ball of earth, or of the roots, to stand so that the point whenco the uppermost roots spring from the stem may be 2 or 3 inches above the general surface level. Thea tho bottom being regulated so as to leavo the soil rather highest in the centre, the plant is to bo set in the bole in the position desired, snd steadied thera by hand. Next the roots from the lower portion of the ball are to bo sought out and lind outwards in lines raliating from the stem, being distributod equally on all sides as nearly as this can be done; some fne and suitable good earth should be thrown amongst the roots as they are thus being placed, and worked in well up te the base of the ball. Thas soil covering the roots may be gently pressed down, but the treo should not bo pulled up and dowo, as is sonotiunes done, to settle the soil. This done, another set of roots higler up the ball must be laid out in the samo way, and agnin another, until the whole of the roots, thus carefully laid, are embedded as firmly as may be io the noil, which may now rece: *o another gootlo treading. Tbo stem should next be supported permanently, oither iny one stako or by three, accoriling to its sizo. Tho excavation will now be filled up about two-thirds perbaps; and if so the treo may have a thorough grod watering, sufficient to sestle the soil closely about-its roots. After twenty four bours the hole may tee levelled in, with moderate treading, if tho water Uis soaked well in, the surface being left slighty sloping upwards wwards tho stem of the tree. In transplanting reuss of the ormamental class, less need be attempterl in respeet to providing new soil, although tho soil should lw mato as congonial as practicable.

In transplanting smaller subjects, such as ulants for the suwer garden, much less effort is required. 'lhe pant must
be lifted with as little injury to its rootlets as possible, and carefully set into tho hole, the soil being filled ia round it, and carefully pressed close by the hand. For moving small plants the garden trowel is a very convenicut tool, but we are inclined to give the preference to the hand-fork (fig. 45). For larger masses, such as strong-glowiug herbaceous phants, a spade or digging-fork will be renuisite.

When seelliugs of vigorous plants have to be "pricked ont," a dibble (fig. 6t) is the best implement to bo used. The ground being prepared and, if necessary, enricined, and the surface made fine and smootb, a liole is onado with the dibble deep enough and large cnough to roceive the roots of tho secdling plants without donbling them ap, and the hole is filled in by workiog the soil close to the plant with the point of tho dibble. The pricking out of seedlings in pots in the propagating pit is effected io a similar way. Tho plants, indeed, often require to bo removed and set from half an inch to an inch apart before they hase become sufficiently developed to admit of being bandled with any degree of faclity, and for these a pointed stick of convenient size is used as a dibble. Io extreme cases it is best to lift the little seedling on the end of a flattish pointed stick, pressing this into the new soil where the plant is to be placed, and liberating it and closiog the earth about it by the aid of a similar stick held in the otlier hand.

Large trees may be successfully transplanted by the aid of traneplanting machines, of which different forous are in use. These will be fonod figured and described io the various horticultural sod arburicultural publications. See, e.g., M'Intosh's Book of the Garden (ii. p. 374 sq.). The best season for traosplanting decidnons trees is during the early autumn months. As regards evergreens opinions are divided, somo preferring August and September, uther April or May. They can be successfully planted at either period, but for subjects which aro at all diffecult to remore the spring months are to bo preferred.
23. Potting and Repotting.-Carden pots are made Potting. with a comparatively large hole in the bottom, and those of the largest size have also boles at tho side acar the botton; these openings are to prevent the soil becuming saturated or sonred with superabundatut water. To prepare the pot for the plact, a broadish piece of potsherd, called a "crock," is placed over the large hole, and if there be side holes they also are covered. The bottom crock is mado from a pieco of a broken garden pot, and is laid with the convex side upwards; then comes a layer of itregular picces of crock of parious sizes, about an inch deep in a 5 inch pot, 2 inches in an I l-incla or 12 -inch pot, de. The node of crocking a pot is shown in tig. 65. A few of the coarser lumps from the outer cdge of the heap of potting soil aro
 sprearl over the crocks. The same cnt?, that of keeping the finer particles of Fia. 65.-Section of Pot the soil from mixing with the drainage crocks, may be attained by thaking in a little elean moss A handful or two of the suil is then put in, and on this the plant with its roots ofread ont is to be set a trille higher than the plant should stand in the pot when finished of: ; moro soil is to be alded, ant the whole pressed firmly with the fogers, the base of the stem being just below the potrim, and the surface leming smoothed utf so as to slope a little outwards. When fimished oll, the pote should be well watered, to settle the sril; but they should stand till the water has well drained away, since, if they are moved about while the fresh soil is very wet, there will be a risk of its becouning pudded or tom much consolindated Larger plants do not need quite such delicate treatinent,
bút care should be taken not to handle the roots roughly. The soil for these should be less comminuted, and the amount of drainage material more ample. Larger bodies of soil also require to be more thoroughly. consolidated before watering; otherwise they would settle down so as to leave an urisightly void at the pot-rim.

Somo plants, espeeially when potted temporarily, may be dealt with in a simpler way. A single crock may be used in some eases, and in others no crock at all, but a handful of half-decayed leaves or half-decayed dung thrown into the bottom of the pot. This mode of potting does well for bulbs, such as hyacisths, which are either thrown away or planted out when the bloom is over. The bedding plants generally may be potted in this way, the adrantage Leing that at planting-out time there is less risk of disturbing tise roots than if there were potsherds to remove. Plants of this character should be potted a little less firmly that specimens which are likely to stand long in the pot, and indeed the soil should be made comparatively light by the iutermixture of leaf-mould or some equiralent, in order that the roots may run freely and quickly into it.

For epiphytal plants like orchids the most thorough drainage must be secured by the abundant use of potsherds, amall pots being sometimes inserted inside the larger oncs, or by planting in shallow pots or pans, so that there ehall be no large mass of soil to get consolidated. For nost of these the lightest spongy but sweet turfy peat must bo used, this being packed lightly about the roots, and built up above the pot-rim, or in some cases frccly mixed before use with chopped sphagnum moss and nodules of broken pois or of charcoal. The plants under these conditions often require to be supported by wooden pegs or sticks. Some of the species grow better when altogether taken out of the soil and fixed to blocks of wood, but in this case they require a little coaxing with moss about the roots until they get establighed. In other cases they are planted in open baskets of wood or wire, using the porous peat and sphagnum compost. Both blocks and baskets are usually suspended from the roof of the house, hanging free, so that no accumulation of water is possible. In these cases, howerer, the greatest caution is necessary to prevent the plants from suffering from drought.

When repotting is adopted as a temporary expedient, as in the case of bedding-out plants which it is required to push forward as much as possible, it will suffice if provision is made to prevent the drainage hole from getting llocked, nud a rich light compost is provided for the encouragement of the roots. When, however, a hard-woolded plant has to be repotted, the easo is different; it may stand without further pottiug for one year or two years or more, and therefore much more care is necessary. The old ball of earth must be frecd from all or most of tho old crocks without doing injury to the roots, and the sharp edgo of the upper surface gently rubbed off. If there be any sour or suiden or effeto soil into which the roots havo not run this shouh bo carefully picked out with a pointed stick. The ball is to be set on the new soil just high enough that when finishel the base of the stem may be abont level with the pot-rim, tuwards wheh the surface should shae gently, and the space between the old ball and tho sifess of the pot is to be find in gratually with the preparal eonipost, which is from time to time to be pressed llown with a blumt-ended flat yicee of wood called a potting-stick, so as to remder the new soil as solid as the oll. The object of this is th prevent the phat from etarving by the water applied all ruming otf ly way of tho new soil, and not penetrating the origiual ball of earth. When this amount of pressure is necessary, especially in the case of loamy composts, tho soil itself shonhl be rether inclinel io dryness, and should in no caso bo "?
ficiently moist to kuead together into a pasty mass. In ordinary cases the potting soil should be just so far removed from dryness that when a handful is gently pressed it may hang together, but may lose its cohesion when dropped.

When plants are required to stand in ormamental china pots or vases, it is better both for the plants and for avoiding risk of breaknge to grow them in ordiuary garden pots of a size that will drop into tho more valuable ressels. Slate pots or tubs, usually square, are sometimes adopted, and are durable and otherwise unobjectionable, only, their sides being less porous, the earth docs not dry so rapidly, and some modification of treatment as to watering is necessary. For large conservatory specimens wooden tubs, round or square, are frequently used; these should Be coated with pitch inside to render them more durable.

Various other contrivances take the place of garden pots for special purposes. Thus shallow square or oblong wooden boxes, made of light inexpeusive wood, are very useful for seed-sowing, for pricking out seedlings, or for planting cuttings. When the disturbance of the roots incidental to all transplanting is sought to be avoided, the seed or plant is started in some cases in squares of turf (used grassy-side downwards), which can when ready be transferred to the place the plant is to occupy. Cucumber and melon plants and vines reared from eyes are sometimes started in this way, both for the reason above mentioned, and becauso it prevents the curling of the roots apt to take place in plants raised in pots. Strips of turf aro sometimes used for the rearing of early peas, which are sown in a warmish house or frame, and gradually hardened so as to bear exposure before removal to the opea air.
24. "ratering.-The guiding principle in watering plants wa ater is to do it thoroughly when it is required, and to abstain lag. from giving a sccond supply till the first has been taken up.

When watering becomes necessary for kitchen-garden crops, the hose should be laid on and the lines of esculents allowed to drink their fill, if fresh sacculent regetables are desired. So also, if well-swelled and luscious fruits, such as strawberries, are required, there must be no parching at the roots. This applies even more strongly to conservatory borders and to forcing-houses than to the outside fruit-tree borders, because from these the natural rain supply is in most cases more distinetly ent off. In the case of foreing-houscs, the water should be heated before being applied to the borders containing the roots of the trees.

In the watering of pot plants the utmost care 18 requisite if the plant be a shy-growing or valuable one, and yet it is almost impossible to give any intelligible instrnction for performing the operation. The roots should never bo suffered either to get thoroughly dry or to get sodden with exeess of water. An adept will know by the ring of the pot on striking it with his knuckles whether water is wanted or not, according as it rings loud and clear or dull and heary. With very choice subjects watering may bo nccessary two or threo times a day in drying summer weathor. It is a wrong though common practico to p ress tho surface of the soil in the pot in order to feel if it is moist enongh, as this soon consolidates it, and prevents it from gettiug the full benefit of acration.

In all hented houses the water used should be warmed at least up to the temperaturo of tho atmosphero, so as to avoid chlilling tho roots. I'lis is also necessary in the case of water usel for syringing the plants, which should be lone two or threo times a day in all stoves and forcing. houses, especially during the period when the young growth is being developed. Tho damping of ald absorbent surfices, such as the Hoors or lare walls, de., is frequently necessary several times a diy in tho growiug ecason, so.
as to keep up a humit atmosehere; lience the adrantaye of lay:ng the floors a little rounded, as then the water draws off to the sides against the berbstone, while the centre remaina dry for promenaders.

In cooler structures it becomes neeessary in the dull s:ason of the year ta prevent the slopming of water over the plants or on the floor, as this tends to cuuse "damping otf,"-tho stems assuming a state of midewy deeay, which not usfequently, if it onco attacks a plant, will destroy it piece by piece. For the same reason cicanliness and free ventilation are of great importance.
25. Proning.-Pruning is a very important operation in the frutt garden, its ubject being twofuld, - (1) to give form to the tree, and (2) to induce the free production of flower buds as the precursors of a plentiful crop of fruit. To form a standard tree, enther the stock is allowed to grow up with a straight stem, by cuting away all side branches up to the beight requirel, say about 6 feet, the scion or bud being worked at that pont, and the bead developed therefrom; or the stock ts worked dose to the ground, and the young shoot obsained therefrom is allowed to grow up, u the same way, bing pruned in its progress to keep it sughe and straight, and the top being cut olf when the desired height is reached, so as to cause the gromth of lateral shoots. If these are three or Cour in momber, and farly batanced as to streristh and position, intte pruming will be required. The tips of unspened woul should be cot back about one-third their length at a: outwardly placed hud, and the cinief promug thereafter required will be to cut away inwardly directed shouts which cross or crowd eacis other and tend to confuse the centre of the tree. Bushy heads should be thimed out, and those that are too large cut back so as to remadel tiscm. If the shoots produced are not sufficient in uumber, or are ladly placet, or very unequal in rigour, the nead shond be cut back moderatcly clise, leaving a few iuches only of the young shoots, which sbould be pruned back to buds ao placed as to furnish shoots in the positions desired. When worked at the top of a stem formed of the stuck, the growth from the gralt or bod must be pruned in a similar way. Three or four leading shoots should be selected to pass ere long into boughs and form a well-halaneed skeleton for the tree; these boughs, however, will soon grow Leyond any artificial system the proner may adopt.

Fig. 66.-Dwarf-Treo Pruning.
To form a dwarf or bush fruit tree the stoek must be worked near the ground, and the young shoot produced from the seion or bud must be cut baek to whatever height it is desired the dwarf stem shonld be, say $1 \frac{1}{2}$ to 2 feet.

The joung shouts proluced from the partion of the new wood retaused are to form the stecteton of the bush tree, and must be dealt with as in the case of standard trees. Tho growth of inwardyydirected shoots is to be prevented, and the centre kept open, the tree assuming a cul-shapeit onlinc. Hige 66, reluced from M. Hardy's excellent work, Truite de lu Taille des Arbres Fruitiers, will give a goos ithe how these Ilwarf trees are to he manajated, a showing the first year's developuent from the maiden tree alter beng headed back, and 4 the form assmmed a vear or two later.

In forming a fyramidal tree, the laterat growths, justean of being removed, as in the standard tree, are cneouraged to the itmost ; and in under to strengehen theru the upper part of the leading shout is removel nomually, the eide bramlies being also shortened somewhat as the tree advances in size It fig. 67, reduced frona M. Wards'e "orb;

Fio. 67. -Pyramid Pruning.
a shows a young tree with its second year's growth, the upright shoot of the maiden tree having been moderately beaded back, being left longer if the buds near the base promise to break freely, or cut shorter if they are wask and wanting in vigour. The winter pruning, carried out with the view to shape the tree into a well-grown pyramid, would be effected at the places marked by a eross line. The lowest brancb would havo four buds retained, the end one being on the lower side of the branch. The two next would be eut to three buds, which hero also are fortunately so situated that the upper one is on the lower side of the branches. The fourth is not cut at all, its terminal bud being allowed to grow to draw strength into it. The fifth is an example whero the bud to which the shoot should be cut back is wrongly placed; a shoot resulting from auch a cut ia apt instead of growing outwards to gow erect, and lead to confusion is the form of the tree, to avoid
which it is tied down in its proper place during the summer by a small twig. The upper shoots are cut eloser in. Near the base of the stem are two prominent buds, which would produce two tigorous shorts, but these would be too near the ground, and the buds should thereloro be suppressed ; but, to strengthen the lower part, the weaker buds just above and below the lowest branch should oe foreed into growth, by making a transverse incision close above each. Fig. 67, b shows what a similar tree would be at the end of the third year's growth.

In order to bring a young tree into the cordon shape, all its side branches are shortened back, either to form permanent spurs, as in the case of pears, or to yield annual young shoots, as in peaches and nectarines. The single-stemmed sordon may be trained horizontally, obliquely at any required angle, or vertically if required, the first two arrangements being preferable. If a double cordon is required, the original young stem must be beaded back, and the two best shootg produced must be selected, trained right and left, and treated as for the single cordon.

The forms chiefly adopted for trees trained to walls and espalier rails are the fan-shaped, the half-fan, and the horizontal, with their various modifications.

Of late years the close pruning of the yound trees has been objected to, and the "extension system" has, in many cases, been adopted. The maiden tree is headed down, and two shoots led away right and left. Two laterals should be allowed to grow from the upper side of them, one from near the base, the other from near the middle, all others being pinched out beyond the yecond or third leaf during summer, but cut away to the last bud in winter. The tree will thus consist of six shoots, probably 3 feet to 4 feet long, which are not to be pruned unless they are unequal in strength, a defect which is sather to be remedied by summer pinching than by winter pruning. The second year three young shoots are to be left on each of the six, one close to the base, one about the middle, and one at the point, the rest being rubbed off. These three shoots will produce laterals, of which one or two may be selected and lairl in; and thus a number of moderately strong fertile shoots will be obtainer, and at the end of the season a comparatively large tree will be the result.

$F_{10} 08,-$ Pruning for Fan-Shaye Tree.

Fin. 1in, - The smuc -thmb ywar.

The utethof of prining formerly adopteal for the formation of a fan-shapul twe was to liead down the maiden plant to about two eyes, so phecil as to yield a young shot on each side (fig G以), the supermmerary shoots beine rubben oft while guite young, and the reservedshouts tramed against the wall loring the summer so as to get them well matured. The arat year they were mat back again, ofton nearly to the bise, in order that the lower pair of these shoots might cach prolure two well phaced young shants, nund the upper bair there young shons. The trec womll thos comist of tom shones, of in laid out at regraber distaneses, and then if chasely ent the skeleton of the tree woult be as in fig. Gib. 'lhas anan thonts were not negin to be shont mem back, hat from emp of them throw yonage shora wate to be seledend and traned in two, an the upere sille, one near the hase, and the other hatf.

was also to be aailed in, made four branches of the current year from each of the ten main branches, and the form of the tree would therefore be that of fig. 70. The other young shoots produced were pinched off while quite young, to throw all the strength of the tree into those which were to form its basis, and to secure abundant lifht and air. In after years the leading shoot was not to be cut back, but all

Fig. 70.-The same-iourth year.
the lateral shoots were to be shortened, and from these year by year other shoots were to be selected to fill up the area occupied by the tree.

In pruning for a horizontal tree the young maiden tree has to be headed back nearly to its base, and from the young shnots three are to be selected, the two best placed lower ones to form an opposite or nearly opposite pair of main branches, and the best placed upper one to continue the erect stem (fig. 71). This upper shoot is at the next winter pruning to be cut down to within about a foot of the

Fre. 71.-Pruning for Horizontally.Trained Tree.

$$
\begin{aligned}
& \text { Fig. To.-The same } \\
& \text {-third year. }
\end{aligned}
$$

point whence it sprimg, and its buds rubbed off except the upper one for a leader, and one on each side just below it to furnish another pair of side shoots; these being trained in position, the tree would appear as in fig. 72. The same course is to be fullowed annually till the space is filled. Sometimes in very favonrable scils and with vigorous trees two pairs of branches may be obtained in one season by summer-stopping the erect shoots and selecting others from the young growths thus induced, but more commonly tho trees have to be built up by forming one pair refranohes

anmually. - The slionts are not at limst fowered to the herizontal line, lint are brought dewn gradually; ; and while the tree is heing formed weik whom may la allowed to grow in a more cred position than it is altimately intended they shoulal necury. Thus in for or five years the tree will have arquired something the damacter of fys. 73 , and wil

The nalf-fan is a combination of the two forms, but as rejards pruning does net materially diffur from the horizontal, is two opposite side branches are produced in succession "pwards till the space is filled, only they are not taken out $\dot{\omega}$ abruptly, but are allowed to rise at an acute angle and den to eurve into the borizuntal linc.

In all the various furms of cordons, in horizontal training, and in fan and half-fin trannug, the prunithe of the main urabches when the forn of the tree is worked out wall vary in aceordance with the kind of fruit under treatiment. Thus in the peach, nectarine, apricot, flum, and elierry, which are commonly traned fau-fashon, the first two will have to be pruned so as to keep a succession of young annual shoots, these being therr fruit-bearing wool. The others are generally pruned so as to combine a moderate supply of young wood with a greater or less number of fruit spurs. In the pear and apple the fruit is borne princtpally on spurs, and hence what is known as spur-prunngrg has to be adopted, the young shouts being all cut back nearly to their base, so as to cause fruit buds to evolve from the remainang eyes or buds. Cordons of apples and pears have to be similarly treated, but cordons of peaches and nectarines are pruned so as to provide the necessary annua uecession of young bearing wood.

The tuature of the eut itself in pruning is ot z:ore consequence, especially in the case of fruit trees, than at first sight may arpear. The branches should be separated by a clean cut at an angle of about 45°, just at the back of a bud, the cut entering on a level with the base of the bud and prasing out on a level Fith its top (fig. 74, a), for when

Fiu. 74.-Cuts-Guod aud Bal.
cut in this way the wound becomes rapidly covered with new wood. as soon as growth recommences, whereas if the cut is too close the bud is starved, or if less close sn ugly aud awkwsed snag is left. Fig. 74, b and c, are examples of the former, and $d_{1} e, f$ of the latter. Dr Lindley las designated tine cut shown at fig. 74, b the cut to quick (Gardeners' Chronicle, 1847, 1. 19):-
"In order to avold the risk of the 'cot to the qunck," some gardeners make use of the smay cut " $\left(d, c_{1} f\right)$, in which the wound is made on the sime side of thu Granch as that oceupred by the bud, slanting downwards towards it That man is objectionable. for it involves the necessity of leaving behnd a dead portion of the branch, to be removed at a later pruning, so the work must be done twice over : moreover, it is an admission of a want of the skill required tu make the clean cut skilfally. Lastly, there is the "slivenng cut ${ }^{*}(c)$, in which a long ragged unergual shave is taken off the branch, much ton low in the beginnmg, and much ton hish at the end. It is the cut made by garico labourers. It is chumsy, ugly, awkward, aod dangerons, for it is apt to injure tho branch om which it is mado. In all rases, the amputation shoull tre made by one firmdrawn cut The cleao cut can bo performed tyy a dexterous operator 10 within a shaving of the right line, aod the mastery of this art is no mean acquisition."

In the case of fruit trees, and indeed of deciuluous plants gencrally, pruning requires to be done during the winter or resting period, and the earlier in that period the better, as then the buds become plump and full of sap, and produce strong shoots when the time for growth arrives. If, nn the contrary, it is done while the plarst is in full growth, tue whole system of the tree sustains a thecis, the circuic. tion is deranged, the quality of the sap becomes deterionterl, and a dean stump or unhealthe shoot is the frepueut resilt.

This, however, ducs not apply to the pruning of the berbaccous or succulent growths of the curient season, nor to soft-wooded plants generally, for this kind of rruning, called summer pruning, is essential to the formation of bandsome specimens of the latter, and is a very importaut help in the formation of the fruit or blossom buds of fruit trees.

Sumaner Praning should be perfurmed while the shoots are yet young and succulent, so that they may in most eases be nipped off with the thumb-nail It is very necessary in the case of trees trained to a flat surface, as a wall or espalier rail, to prevent undue erowding. In sorne cases, as, for example, with peaches, the superfluous sboots are wholly remored, and certain selected shoots reserved to supply bearing wood for next year. In others, as pears, the tops of the young shoots are removed, leaving three or four leaves and their buds at the base, to be develuped into fruit buds by the alditional nourish. ment thus thrown into them (fig. $75, a$). One or two may'

Fio. 75. . summer Proning for Spurs.
push out a late summer growth, b; this will serve as a vent for the vigous of the tree, and if the lowermost only ge to the formation of a fruit spur, the object will hare been gained. They are cut to the last dormant bud in winter.

Eut summer pruning has been mach extended since the introduction of restricted growth and the use of dwarfing stocks. Orchard-house trees, aud also pyramidal and bush trees of apples, pears, and plums, are mainly fashioned by summer pruning; in fact, the less the knife is used upon them, excert in the necessary eutting of the roots in potted trees, the betier. In the case of orchard house plants no shoots are suffered to lengthen out, exiept as occasionally wanted to fll up a gap in the outline of the tree. On the contrary, the tops of all young shoots are pinched off when some three or four leaves are formed, and this is done again and again throughout the season. When this pruning is just brought to a balance with the vigour of the roots, the consequence is that fruit buds are formed all over the tree, instead of a thicket of sterile and useless wood. Fyramidal and bush trees out of doors are, of eourse, suffered to become somewhat larger, and sufficient wood must be allowed to grow to give them the form desired ; but after the first year or two, when the framework is laid out, they are pernitted to extend vory slowly, and never to sny great extent, while the young growths are continually nipped off, so as to elothe the branches with iruit buds as closely placed as will permit of their healthy development. ${ }^{1}$

The Pruming of Flouering Plants is generally a much lighter matter theu the pruning of fruit trees. If a young scedling or cetting of any soft-woded plant is to be bushy, it must have its top nipped cut by the thumb-nail or pruniug-scissors at a very early stage, and this stoplling must lue repeated frequently. If what is called a well-furnished plant is requireci, an arerage of from 2 to 3 iuches is all the c-iension that must be per-

[^51]mitted-sometimes searcely so mech-before the top is nipped out; and this must be continued until the desired size is attained, whether that be large or small. Then generally the plant is allowed to grow away till bloom or blooming shoots are developed. Tu form a pyramidal plant, Which is a very clegant and useful shape to give to a decorative pot plant, the main stem should be encouraged to grow upright, for a length perhaps of 6 or 8 inches before it is topred; this induces the formation of laterals, and favours their development. The best-placed uppr goung shoot is selected and trained upright to a slender stake, aud this also is topped shen it has advauced 6 or 8 inches further, in order to induce the laterals on the seconl portion to push freely. This process is continned till the required size is gained. With all the difficult and slow-growing plants of the hard-wouted section, all the pruniug mest be done in this gradual way in the young wood as the plant progresses.

Some plants, like pelargoniums, can only be kept handsomety formed and well furmisbed by cutting then down eeverely every season, after the blooming is over. Tho plants shuuld be prepared for this by leeping them rather dry at the root, amd after cuttons they must stand with little or no water till the stems heal over, and proluce young shoots, or "break," as it is technicially termed. The appearance of a specimen pelargunium properly prumes is shown in fig. 76, io which a shows a goung flant, the

Fig. 78.
head of which has been taken uff to form a euting, and whose buds are ready to break into young shoots. Three shouts will be produced, and these, alter growing from 4 to 6 inches in length, should be stopped by pimeling out the point, this givng rise to lateral shoots. These will blussom in due conrse, adod, after being ripened thoroughly hy full expusure to the sun, should be cut back as shown at b. This is the proper foundation for a good specimen, und illustrates bow all such subjects should be pruned to keep them stocky and preseutable in form.

Root Pruning is must commouly practised in fruit tree cultivation. It is often resorted to as a raeans of restoring fertility in plants which have becone ovir rank and aterile in growth. The effect of it, or of transplanting, is to reduca the supply of eriulo sap to the branches, and consequently to cause a check in their development. In rootpruning all roots that have struck downwards into a cold uncogenial aubsoil must he proned off if they cannot bo turned in a lateral direction, and atl tho lateral ones that have becemo coarse and fibreless mest also he shotentad back by means of a clean cut with a sharp knife, white some bard rubbly material may if necessary to put under the tree befure it is again planted, all its roots being laid out laterally, radiating as equally as possible from the centre. The operation is bent performud carly in antamin, and may bo safcly resorted to in tho case of fruit. trees of moderate age, and even of ohd trees if due eare be exercised. In transplanting treca all the roots which may have become loruised or broken in tho process of lifting should bo cut clean away behind the brokon part, as they tuen more readily strike ont new roots from the ent parts. In all
these cases the cut should be a clean sloping one, and made io an upward and outward direction.

The root-proning of pot-plants is necessary in the case of many soft-wooded subjects which are grown on jear after year-polargoniums and fuchsias, for example. After tho close pruning of the branches to which they are annually subjected, and when the young shoots have shot forth an inch or two in length, they are turned out of their pots and have the old suil shaken away from their roots, the longest of which, to the exient of about-half the existing quantity, are then cut clean away, and the plants repotted into small pots. This permits the growing plant to be fed with rich fresh soil, without baving been negessarily trauslened to pots of unwielly size by the time the flowering stage is reached.

Renginy.-One of the experients for inducing a state of Rimg frutfulness in trees, is the ringing of the branches or stem, that is, removing a narrow annular portion of the bark, by which means, it is said, the trees are not only reodered productive, but the quality of the fruit is at the same timo muproved. The advantage depends on the obstruction given to the descent of the sap. The ring should be ct: out in spring, and be of such a width that the barls may. remain separated for the scason. A tight ligature of twite or wire answers the same end. The advantages of tho opreration may perhaps be gained by judicious root pruning, and it is not at all adapted for the various stone fruits.
26. Training.-What is called training is the guiding Trair of the branches of a tree or plant in certain positious which they would not naturally assume, the object being partly to secure their full exposure ic light, and partly to regulate the flow and distribntion of the sap. To secure the furmer olject, the branches must be so fixed as to shade cach ather as little as possible; and to realize the second, the branches must have glven to them an upward or domaward direction, as they may require to be encouraged ae repressed. Something of the same vegetntive vigons which is given to a plant or tree by hard pruning is allorded by training in an upward direction so as to $\mathrm{p}^{\text {ru }}$ mote the How of the sap; while the repression effertid Ly summer pruning is supplemented by dowaward training, which acts as a check. One maia object is the $\mathrm{f}^{\mathrm{r}} \mathrm{m}$

Fug. 77.- Diagram illastiating Branch Distribution.
servation of equilibrium in the growth of the acveral pats Iof the trec; and for this various mioor details deserve 'nttention. Thus a shoot will grow more vigorously whilst waving in the air that when nailed close to the wall ; consequently a weak sl ant should he left free, whilst its atronger antagonist should be restrained; and a luxuriant shoot may be rotarded for some time by having its tender extremity pioched off to allow a weaker shoot to overtake it.

Mr Robert Thompson, who is to be regarded as an autuority, saya (Gardiner's Assistant, 340) :-
"A fair exposure to light is one of the prineipal objects to bo borno in mind in training: but the branches may be well rogulated as regards exposure to light, without boing equally so with respect to the flow of sap. loor instance, they may be disposed liko tho radii of a circlo touching tho cirenmferenco at equal diatancos (bif. 77. ats. Bb, ce, v). Whalsall, howover, suppose that the centrul

Fertical shoot v has been cut back nearly to its base in order to finnish from buds there sitanted the rudinents of ofher brameles. The sap flows with much greitur foice into the uphifit of mearly upright branches than it does into those liaving a heilizabal prosition. therefore branches radiatiug at equal dostances, like those the the figure, would soon become very unemual m point nโ vignur, ec would of course be strong, an comparatively wath, "halst in would mant. tain a somewhat intermediate condition. It. Instewl of tabnug the shoots e in a straight direction, we lejptes theso at did and bend them in the growing season as Hultated ky the eurved lane towarls bb, we shall greatly check thent wer-luaurame On the other hand, by elevating the horizantad shonts at x, nhul tratump
 le thoreby ereatly invigorated. In short. loy ravilug the uliner lipanches downwards abd the bater uncs ujwirds. the llow of sap is checked in the former and promoterl th the bates. asbl the cent.
 wiher."

By these and other expedients, and ly the prodent ase of the knife, fruit trees may be readily traned into the forms indicated below, which are amonyst the best out of -a many which have been devised.

Fio. 78. - Pyramidal Trasoiog.

510 79 -Tramus er qumontlo
ae traioing of standard and bush trees in the afen siound has been already referred to under the scstum Pruning. When the growth of 1 yramuls is completed, the outline is something like that of fig. 28 , and very pretty trees are thus formed. It is bettel, bowever, especially if the tendency to bear fruit is rather slark, to adupt what the French call en quenoulle traimg (fig 79), whicle consistsin tying or weightigy the this of the brimches so as to give them all a downard curve. Pear thees worked on the quince stock, and trained on quenouille, are getherally very fertile.

Fio. 80.-Horizontal Traning
Wall trees, it must be evident, are placed in a very unnatural and constrained position, and would in fact sonn be reduced to a state of utter confusion, if allowed to grow uarestricted; hence the following modes of training have been adopted.
Morizintal Traiking (fig. 80) has lony been a favourite Corm in Encland. There is now wincinal asconding stem
from which the branches depart at rigncangles, at intervals of about a foot. Hurizuntal training is best adapted to the aplle and the pear; and for the more twiggy growing slender varicties, the forms shown in fig. Sl have beed recommended. In these the horizontal branches are placed wider, 15 to 20 inches apart, and the sninller shomts aro trainel between them, either on both siles, is at a, or dellesed trom the lower side, as at b. The latter is :r"

Fia. 81.-Foious of Liomzond Trabune.
excelient method of reclaiming neglected trees. Every alcermate brauch should be taken away, and the spurs cut otf, altar which the young sboots are trained in, und soou produce good fruit.

In Fan Trainiug (fig. 82) there is no leading stem, but the branches sprin from the base and are arranged somewhat like the spokes of a fan. This mode of training is com-

Fio. 82. - Fun Training
monly adopted for the peach, nectarine, apricot, and Marello cherry, to whicl it is lest alapted. Though sometimes adopted, it is not so well suited as the horizontal form for arydes and pears, lecause, when the tranches reach the top of the wall, where they must be cut short, a tete de sande, or hedse of young shuots, is inevitalle. A modilication of the fan slape (fig. 83) is sonctimes adogted for

Fio. S3-Monlfot Fan Traning.
stone fruits, such as the apricot. In this the object is to establish a number of mether branchos, and on thicse to form a series of subordinate members, chielly composed of bearing woon. The mother lranches or limbs should not be numerous, but welt-marked, equal in strenglt, ame regularly disposed. The side branches should be pretty
abundent, shert, and not so vigorons as to rivel the leading mawhers.

The Hatfion mode of trainin ${ }^{\circ}$, which is metermediate hetween horizontai and fan training, is mest neally allied to the former, but the branches leave the stem at an acute angle, a disposition supposed to favour the mere equal distribution of the sap. Sometimes, as in fig. S4, two vertical stems are adopted, but there is no particular adlvantage in this, and a single-stemmed tree is more manageable. The half-fan form is well adapted for such fruits as the plum and the cherry; and, iudeed, for fruits of vigoraus habit, it seems to combine the advantages of both the feregoing.

Trees nust be fixed to the walls and buildings against which they are trained by means of nails and shreds, or in cases where it is desired to preserve the wall surface intact, by permanent nails or studs drisen in in regular order. Sornetimes the walls are furnished with gralvanized wires, but this has been objected to as causing cankering of the shoota, for which, however, painting is reconmended as a rensedy, and which is also avoided, it is said, by crossing the tying material between the wire and the woed, and so preventing them from coming in contact. If they are adopted, the wires should be close to the wall to prevent a cold draught between it and the tree. Care should be taken that the ties or fastenings do not eventually cut

Fio. 84. - Half. Fan Training.

into the bark as the branches swell with increased age. When shreds and nails are used, cast wall nails and "medicated shreds" are the best; the nails should be of emall size for the young sheots.

For tying plants to trellises and stakes nothing is better Lban coft tarred string. Osier ties are sometimes used fer espaliors. The training in of summer shoots on wall-trees is often dene by means of slender twigs; indeed the prunings of the trees themselves, stripped of their leaves, often serve the purpose very well; the ends are tucked under the adjacent fixed shorts, the young shoots to be fastened in being thus held clase to the wall. Crocked sboots ehould be straightened at the principal or winter training; this is done by pulling the convex sido toward3 the etraight line desired by menns of the tie or shred, the neat above and below being set so as te pull in the opposite dircetion.

In training grcenbouse plants the young branches shouhd be drawn outwards by means of ties fastened to a string or wire under the potrim; the centre then fills up, and alender stakes are used as required; but the fewer these are in aumber the better. Climbers are trained from the bottom around or across trellises, of which the eylindrieal or the balleon-shaped, or sotnetimes the flat oval or eircular, are the best forms. The size shonld be adapted to the habit of the plant, which should cover the whole Ly the time flowers are producti. Past fibre and raphia fibse are to be preferred for light subjects of this character, as they can in split to any degree of finenesa; but the

growing burder tlowera. Very drinip tretsers for green. house climbers are made of slender round iron rods fic: standards, having a series of hooks on the inner edge, into which rings of similar metal are dropped; the rings may be graduated so as to form a broad open top, or may be all of the same size, when the trellis will assume the cylinilrical form. Fig. 85 shows a pot specimen of clematis trained over a balloen-shaped trellis.

Fio: 85. -Clematis trained on Balloon-shaped Trellis.
The training of bedding plants over the surface of the suil is done by small pegs of birch wood or bracken, b : loops of wire, or sometimes by loops of bast having the ends fixed in the soil by the aid of the dibble. The object is to fill up the blank space as quickly and as evenly as possible.
27. Forcing is the accelerating, by special treatment, Forcir of the growth of certain plants, which are required to be bad in leaf, in flower, or in fruit before their natural season,-as, for instance, the leaves of mint at Eastertido or the leafstalks of sea-kale and rhubarb at Christmas, the flowers of summer in the depth of winter, or some of the choicest fruits perfocted so much before their normal period as to complete, with the retarded crops of winter, the circle of the scasons.

In the management of artificial heat for this purpose a considerable degrec of caution is required. The tirst stages of forcing should, of ceurse, be vory gentle, so that the whole growth of the plants may advance in harmony. A very hot atmesphere would unduly force the tops, while the roats remained partially or wholly inactive; and a stronf bottom heat, if it did not cause injury by its excess, would probably result in abortive growth.

Any sudden decrease of warmth wonld be very prejudicial to the progress of vegetalion through tho successive stages of foliation, infloreseence, aud fructification. But it is not necessary that one unvarying range of temperature should be kept up at whatever pains or risk. Indeed, in very severe weather it is foum better to drop a little from the maximum temperature by tire heat, and the loss so oceasioned may be made good hy a little extra heat applied when the wealher is more geninl. Night temperatures also should always be allewed to drop somewhat, the heat being incrased again in the morning. 'In other words, the arti-

myght, should rise iu summer and rall in winter, slould, in siort, imitate as vearly as possible the varying influence of the sun.

For the growth of flowers generally, and for that of all fruits, every ray of light to be obtained in the dull winter season is required, and therefore every possible care should be taken to keep the glasa clean. A moist genial atmosphere too is essential, a point requiring unremitting attention on account of the necessity of keeping up strong fires. With moisture as with heat, the cultivator must hold bis. hand somewhat in very. severe or very dull weather; but while heat must not drop so as to chill the progressing vegetation, so neither must the lack of moisture parch the pilants so as to check their growth.
,There are some few subjects which wheo forced do not require a light bouse. Thus amongst flowers the white blossoms of the lilac, so much prized during winter, are produced by forcing the plant in darkness. Rhubarb and sea-kale among esculents both need to be forced in darkness to keep them crisp and teeder, and mushroems also are always growa in dark structures. In fact, a roomy mushroom house is one of the most convenient of all places for forcing the vegetables just referred to. The lilac would be better placed in a dark shed heated to about 60°, in which some dung and leaves could be allowed to lie and ferment, giving off both a genial heat and moisture.

One of the most important preliminarics to successful forcing is the securing to the plants a previous state of rest. The thorough ripening of the preceding season's wood in fruit trees and flowering plants, and of the crown in perennial herbs like strawberries, and the cessation of all active growth before the time they are to start into new growth, arc of paramount importance. The ripening process must be brought about by free exposure to light, and by the application of a little extra heat with dryness, if the season should be unfavourable; and both roots and tops must submit to a limitation of their water supply. When the ripening is perfected, the resting process must be aided by keeping the temperature in which they await the forcing process as low as each particular subject can bear.

V. Flowers.

28. Flower Gardeia and Pleasure Grounds. - wherever tbere is a flower garden of considerable magnitude, and in a separate situation, it should be constructed on principles of its own. The great object must be to exhibit to advantage the graceful forms and glorious hues of flowering plants and slrubs. Two varietics of flower gardens have chiefly prevailed in Britain. In one the ground is turf, out of which flower-beds, of varied patterns, are cut; in the other the flower-beds are separated by gravel walks, mithout tha intruduction of grass. When the flower garden is to be seen from the windows, or any other clevated point of view, the Tormer is to be preferred; but where the surface is irregular, and the situation more renote, and especially where the beauty of flowers is mainly looked to, the choice should probably fall on the latter.

The situation of the flower garden must be influenced by the nature of the lawns, and of the site of the mansion to which it is attacted. Geaerally spcaking, it should not be at any great distance from the house; and in places where there is no distant view of importance, it may be constructed under the windows. On the other hand, when the park is spacions, and the prospects cxtensive and picturesque, it is perbaps better that the flower garden should be at a little distance from and out of sight of the house, but easy of access in any sort of weather. In most cases, eren when it is in the vicinity of the mansion, the flower garden should for security against ground game and other intruders be eacircled with some sort of fence. In
detached localities the fences may be máde sufficiestly strong to prevent the intrision of every species of vagrant; it is not difficult to mask them with shrubs and trees. Th; style of the mansion should determine that of the Hower garden, and also its position. The flower garden attached to an elaborate mansion, should, for the mest part, accupy the lawn on the south, the east, or the west front; ; and tha carriage-entrance, where possible, should be on the north front, tha park extending vearly or quite up to the front dour. This arraugement must, however, sometimes be de. parted from in consequence of the difficulties of providing a proper approach to the entrance-door, and must also. be regulated by the position of the principal rooms, which should if possiole command a view of the flower garden.

Whea the garden is upon a large scale, and especially where a natural inclination in the ground exists, or can be formed artificially, terraces and parapet walls should be introduced, with flights of steps, and embellishments in connexion with them, such as fountains, statuary, aculpture, dic. Grass terraces alone have a mean appearance in such a position. The parapet walls afford excellent accommoda. tion for balf-bardy and beautiful flowering plants.

With regard to tlower-plots, when the figures are separated by turf, it is necessary that the little la wns or glades should have a certain degree of breadth, as nothing has a worse effect than overcrowding. A multitude of little figures should also be avoided, as they produce the disagreeabla effect well named by Gilpin "spottiness." In tuis sort of Hower garden it is desirable that a gravel walk should skirt at least ore side of the principal figures, for in the humid climate of Britain the grass would otherwise render them inaccessible with comfort during a great part of the year, In those gardens where turf is wholly or partly excludedi the compartments should be of a larger and more massive character. Narron borders, bounded by parallel straight lines and concentric curves, should be avoided. The centres of the figures should be filled with tall-growing shrubs, and even with an occasional low evergreen tree, such as a yew or a holly: The walks, arranged in long concave curves, may communicate here and there with ons aoother. A dial, a few seats and arbours, with an urn or tro or a vase, may be introduced with good effect.

The flower garden may include several different compartments. Thus, for example, there is the "Rock Garden." which should consist of variously grouped masses of larea stones, those which are remarkable for being ingured by water-wearing, or containing petrifaetions or inpressious, or showing something of natural stratification, being generally preferred. In the carities between the stones. filled with earth, alpine or trailing plants are inserted, and also some of the choicest flowers. In proper situations, a stall pool of water may be introduced for the culture of aquatic plants. In a suitable position one of the walks is sometimes arched over with wire-work, and covercd with ornamental climbing shrabs, forming a delightful promenade in the glowing days of summer. A scparate compartment laid out on some regular phan is often set apart for roses, under the name of the "Rosery." A moist or rather a shady border, or a section of the pleasure ground supplied with bog earth, may be devoted to what is called tho "American Garden," which, as it includes the gorgeous rhododendrons and azaleas, forms one of the grandest features of the establishment during the early summer, while if properly sclected the phants are effective as a garden of evergreens at all seasons. The number o. variegated and variouscoloured hardy shrubs is now eo great that a móst pleassunt plot for a "Winter Garden" may be arrayed with plants of this class; with whict may ba associated hardy subjects which flower during that scasinn or very carly spring, as the Christmas rese, and
amongs oubs the crocus and snowarop. Later on, the sluring garden department is a sceue of great attraction; aud some of the gardens of this character, as those of Cliveden and Belvoir, are among the most fascinating examples of horticultural art.
La:
29. Lawns.- In the formation of lawns the ground must be regularly broken up so that it may settle down cvenly, any deep excavations that may have to be filled in being very carefully rammed down to prevent subsequent settlement. The ground must also be thoroughly cleared of the roots of all coarse peremnial weeds, and be worked to a fine tilth ready for turfing o: sowing. The nore expeditious method is of course to lay down turf, which should be free from weads, and is cut usually in strips of 1 foot wide, 3 feet long, and about an iach in thickness. This must be laid very evenly and compactly, and should then be beaten down firmly with the implement called a turf-beater (Gig. 86). When
 there is a large space to cover, it is much the cheaper plan to sow the lawn with grasi-seeds, and equally effective, though the sward takes longer to thicken. It is of the utmost importance that a good selection of grasses be made, and that pure seeds should be obtained. The following sorts can be recommended, the quantities given being those for sowing an acre of ground :-
Cynosurus cristatus-Crested Dog's-tail..... 6 tb
Festuca duriuscula-Hard Fescue 3 th
Festuca ovina-Sheep's Fescue 3 It
Lolium perenne tenue.18 tb
F'oa nemorals sempervirens-Evergreen Meadow grass. 3 tt
Poa trivialis-Trivial Meadow grass 3 H
Trisetum flavescens-Yellow Oat-grass. 216
Trufoliun repens-Duteh Clover © to

The seeds should be thoroughly mixed, and very evenly sown, after which the surface should be raked over to bury them, and then rolled down while dry so as to finish it off smoath and level. When thas sown, lawns require to be promptly weeded. During the growing season cstablished lawns should be mown at least once a week. They should be oceasionally rolled, and towards autuinn they reguire Irequent sweepings to remove worm-easts.
30. llamiv Ansuals. - Anmal flants are those which groer up from sed, flower, ripen sead, and die in the course of one seas " n me year, they are uscfal the thixed garden, for though in t me cases they are of short duration, inany of then are pessessed of mueh beataty of hae and cherace of iorm. Annabla may be divided into three chasses:- the hardy, which are sown at once in the ground they are to nceupy; the huth. hatdyo whill succeed best when aided at firt by a slight hot bed, and then temandamed into the open arr; and the tender, which are kejt in jrota, and treated as greenhonse or stove phats, to wnich departurnte thry propmerly behnge. *ine of the more mopular annals, hardy and halfhardy. have been very
 purchases may bo made in the seed sherpos of suth thines as Chine nsters, stocks, Chinese and Indian juks, larkspurs, phloxes, and whers, anongrat which sorac of the mest beautial of the summer flomer may bo foume.

The harily ammals may he sown in the ofen grond during the later part of March or begmang of Apmb, as the sempon way dremme, for the weather shouh be dry and ofen, and the soil in a foreworkng cromlition betore sming is attmptul. In favourable situations had siasona some of the very hardiost, as Silisie pendula, Snpmaria, Nemphila, Gilla, \&e, may lw sown in Spptember on Outahre, und transhatat to the heds or borders for very carly spring
 Whase, if luft to llower where they are sown, should be thinned Nut whle youns, to give them space for proper devolomment. It is Hen havas anfle romo that pricked out ransplantod semplings oftern mbers the Gatest piants. The suil should be tich mat hatht
 in mild hat, in order to accelerate germinatioa. Those of them which are in danger of beconiag leggy should be sneedily removed to a cooler frame and placed near the glass, the young plants beug priched ofl' into fresh soil, in other pots or pars or loxes, as may serm thest in each case. All the phants must be hardened off gradually during the month of April, and may generally be planted out some time in May, carlier or later according to the season.

The class of tender anauals, being chiefly grown for greenhouse decoration, shonld be treated much the same as solt-wooded plants, being sowa in spring, and grown on rapidly in brisk heat, near the glass, and finally hardened off to stand ia the greenhouse whea in Hower.
We add a select list of some of the more distinct annuals desirable for general cultivation as decorative plants, and shal then mention a few of the most popular kinds separately :-

Actorlidimin roseum : hall hardy, 1 ft., rose-piuk or white everlastiog, Agrostis pulchella hatily, 6 in.; a anost gracefu\} giass for bouquets. Amberhea nosclata atropurpurea (Sweet Sultanj. hardy, $1 \frac{1}{2} \mathrm{ft}$., parple musk scented
Bartonia aurea: hardy, 2 ft, goldee yellow: showy and free.
Brachycome bermine,jiz hali hady, 1 ft , blue or white with dark disk
Caleuthla ofticinalis Meteor. hardy, ift, orange striped with yellow
Calhopsis bucolor (tinctoria) hardy, 2 to 3 ft , yellow aut chestnut brown Calhopsis Drummondii hardy, 1 to 2 ft , gollen yellow with red dish.
Campanula Loreyi: harily, $1 \frac{1 t}{1}$, parplish-litac or white.
Centaurea Cyanus : hardy, 3 th., blue, purple, pink, or white, showy.
Clithia pulchella ! hardy, if ft., rosy, purple; some varitties very haudsome Cullansa bicolor: hardy, if it, white and purple , pretty.
Collinsia verna. harity, 1 it, white and azure; sow ats soon as ripe
Couvolvulus tricelor atroviolacea: hardy, 1 ft., whate, blue, and y ellow This is the Convolvultis mumor of gardens.
Erysimum Peroftstianum: hardy, 2 ft , deep orange; in erect racemes
Eschscholtzia californica: harily, $1 \frac{\mathrm{ft} \text {., yellow with siffron eye. }}{\text { ent }}$
Eschscholuzia crocea llore pleno: hardy, it ft., nrange yellow: donble
Eutoea viscila: hardy, $\% \mathrm{ft}$, bright hlue with white hainy centre.
Giblhrdia Drummondii (picta): half-hardy, if ft., crimson, yehew margia
Golia achilleicfolia; hanty, 2 ft., deep bhe; in large globose theads.
Goletia Linulieyana: hurily, to 3 ft , rose-purple, with crimsou spots.
Godetra Whitney; harly, i it., rosy-red, with crimsoe spots. The vartet.
Laty Albeniarle is wholly crimson, and very hamelsome.
Gypsophila clegans: hardy, $\frac{1}{3}$ fi, pale rose; Lranched, vary gracefol.
llelisuthons cucumerifelins: hardy, 3 to 4 ft ., gohled yellow, black disk; tranchng, iree, anal bohl without coarseness.

Ifuhchaysum bracteatum; half-hardy, 2 ft: ; the incurvel criason, rose, and other forms very hamisome.

Hidiscus Trionnm (aficianus) : hardy, 1 fl f., cream colour, black centre.
Iheris anluelluta (Canlytuf): hatdy, 1 tt , whte, rose, parple, crmmson
Sone new dwarf white and tlesh-edoured variutus a'e very hanisone.
Kaulfussin amelloides: hardy, ift., blue or tuse; the var. kermesina if deep cimson.

Konigamaritima (Sweet Alyssum). hardy, 1 ft., white ; iragrant, cemgact
Lavalera trmestris lardy, 3 ft, pale rose showy matwaceums thomers.
Leptosiphon densifions hinray in light soil, 1 ft. gunjulish or rosy lune.
 Lanaria hmartitas spemdita: havily, 1 ft, deep purple.
Liaum granditlorman, lardy, 1 [t, sjlenlide crimsen- var, roseum is pink. [-upinis lutcus: larily eft, bratit yellow, frngrant.
Lupinns mutalnlis (ruckshanksif; hardy, 4 ft, bhe and yellow; changeable

Halcolmia misfitm (Vireinian stock) : harily, 6 in., hlac, rose, or whito.

Matthola greve (Waifower-lvi. Stuch) : Mardy. 1 ft . valous as in Stock. Besembryththemmm triculor: halt-hardy, 3 im, pink add crimeon, with dak centre.

Mimulus cupreus : half hardy, G in., coppery red, varying consinerahly.
Mimulus luteus tigrams: hatimady, 1 it., yellow spothed whth red; var difuct lias hose-jb-luse towers.

Minahlis Jnlapa: half hardy 3 [f. various colours; fowers cyeniagesented. Nemesia tlarhumba : hardy, 1 ft.. white mad yellow: pretty and compaut

Nempluila machlata: lonily, 6 in. white with violet spots ut the edge
Nigelis hispamen : hardy, itit, phe line, whate, or dark purple.

 Bomuthuss frimencl.
 Fharbilia hisjuda: lately, 6 it., vamuts; the miny-culoured twomg Con vilvulas major.
flatystemon ealifoniulus: harely, 1 ft, suly hur yellow : mat and dirtiact.

 foliage, aud numb used fod ledrling,
 rant, there are sumbe chonee luw sonts
 beals than the next.

 mach varud and beantalally veined.
 cambent.
Situmaria calatitia: lariy, ofos in. bright rose phak or white; condina

Seluzatstlus yimmatus: hadjy, 1 to a ft , purple-liac, prettily blotehed: curhasty laheal ilomurs.
 onsly tringed putals.
 domble torms are slous y
 compurta forms close denace thitas.

Sphenogyue specios: : half-hardy, 1 ft., orauge-yellow, with black rimg around the disk.
Tagutes sugnata: hall.hardy, if th., gelden yeltow; continuons hlooming. with elegrat Ioliage.
Tropeolum aduceum (Cunary Creeper): bali hardy, 10 ft , yellow, fringed; an clegaat ctimber.
Visearia eucti rosa: hardy, if ft., rosy-purple with pale centre : pritty.
Viscaria ou ulata cardinalis: hardy, il ft, rusy-crimson; very bhilame.
Waitzia aurea: half-harily, il ft., golden yenow; a showy everlistho: Xeranthemutw amuum Ilure-plead: hardy, e ft., lilit-jurple; llonferous
The following annubls aro entitled to separate notice:-
31. The Chima Astar (Callistu:phus ehinensis). The groups of asters are very numerous; but sonic of the best for omamental gardeong are the chrysanthenum-flowered, tbe peony- llowertal, the crown or cockale, ant the globe-guilled, of each of which thareare from six to a dozen distinct colours. What are ealled crown asters have a white centre and lark erimson or purple circumfirence, und are very beautiful. The colours tinge from white and blush through pink and rose to crimsun, and from lilae through Llae to puipla, in farmous shadrs. These shomld be sown early in April in pans, in a gentle heat, the young , lauts being quickly trinsfirred to a cool pit, and there pricked out in rich soil as soon is large enough, and eventatly planted uat in the garden in Nay ur June, in soil which has been well worked and condously manured, where they grow from 8 to 18 inchos hish, aud Hower in great beanty towards the eud of smmaer They also make vary hamdsume pot phants fur the conservatory.

32 The Stock (Matthola annua), These also are muel varied both in respect to ladit und colour, and of some ot the furms as many as two doen sulours arecultwated, some of which are very beatiful The Ten-week and the large-flowerod German are both favourite strains. The fragrance of these flowers renders them universal luvourites. They should be treated much tha same as esters for autumin-blooming plants, but for early blooming require to be sown about Aurust, and wintered in pois in a cold frame, for which purpose the Intermediate Stock is the best adapted (see Bientials, par. 41). They grow from 1 to 2 feet higb, accordiag to the variety.
33. The Snaplragon (Antirrhinam majas), which grows about 2 fect bigh, should be sown to February in a warm pit; prick off in pots, and subsequently into boxes, draring off 10 tu a cool frame a hen established, and planting out in May or June. They are not true annuals, but may be treated as soch.
34. The Chinese or Induth Pink (Dinutbus chiaensis, and its varieties Heddewigii and laciniatus) aud several allied forms, which grow from 6 unches io a foot higb, are very richly coloured, and highly varied in marking. Sow in pits in gentle heat, in Mareh, transferring them quickly after germination to a cool pit, that they may not get drawu ar leggy; they may ba planted out in May. They will also hower later on iu favomrable seasons, if sown out. doors eally in April
35. The Larkspur affords two distinct types, the Rocket Lark. spur (Delphinmir Ajacts), which varics from a foot to a foot and a half, and the branchang Iarkspur (LI. Cunsolita), growing 3 feet hirh, of each of which there are various colours, double and single. The candelabium form of the Jatter is very liantsome. Sow in March in the open border where they are to dower.

36 The Phlox Drummondiz, a sprading plant alout a foot high, of which there are now many varieties of colour, is one of the most Leatutifu of all onnunds, and very prolific of blossom. Sow in the l.mes where it is to flower, in Λ pil, in grood firm soil.

37 The Sweat Pen (Lathyrus odomas) is mdispensible in every garden, especially Painted Lady (white and rose) and the improved forms called Invincible Scurlet and Immacible Black. Sow in rows ul patehes in Eubruary, and again iu March, in good rich soil. The plants grow 3 to 4 feet bigh, and require stakes to support the stems

The Naslurtium (Tronxolum majus), in its dwarf form known as Ton Thumb ('T. m. onntin), is an excellent bedding or border llower, growing about a foot bigh, each flant formang a dense pateh full of tlowers, and thooming on for a emonderable period if kept growing. The scarlet, the yellow, and the ruse colonred are very attractive. Sow in April in the beds or borders, aud agnon in Miy for a succesyinn.
39. 'Ihe Ziunia clegans, of wheh both single and toulle", forms are cultivatel, grows about 2 feet hagh, ond proluees Howers of various colours, the donble unes being about the saze of asters, and very handsome. Tho colours melude white, yellow, orange, searlet, crimson, ami purple. It is half-hady, and shondd be sown and treated much the same as the aster.
flardy cunaial
40. Hardy Biexnials- - Bmamals live as modeveloped plants tlirongh one winter perioh. They require to he sown in the summer montlis, about June or ,luly, in orler to get established bubere winter; they should be pricked ont as soon as large clough, and shoull havo uruple space so as to become laraly ant stucky. They hurlil he panted in gool soil, lout not of ton stimelathig á clar. dre. Those that are perlectly larily are best plated whore they
are to fower in good time during autumn. This transplanting sets os a kind of cheek, which is rather beneficial than otherwise. Uf those that are liable to sulfer injury in winter, as the 13:ompton and Qucen Stocks, a portion should be potted and wintered in cold frames ventilated as freely as the weather will permit.

The number of biennials is not large, but a few very desimbla gardon plants, such as the jollowing, oceur anoongst thens:-
Agrostemma coronaria (Rose Campion) : dardy, if it ., bright rose-purple or rase and white.
Beta Cicla variegnta: hardy, 2 ft ., beautifully coloured leaves and midribs. crimsun, golden, dic
Campanula Medum (Canterbury Bell): hardy, 2 ft., blue, white, rose, \&c. The doulle-lhowered varieties of variuus eolours are very handsotne.
Canpanula Medsum calyeanthena : bardy, $2 \cdot \mathrm{ft}$., blue or white ; liose-in. Loso dowered.
catananche eccrulea: hardy, 2 th 3 ft. blue or white.
Celsia cretica: lardy, 4 to 5 st., yellow, with two dark aputs hear centre; in spibes.
Dituthus barbatus (Sweet William) : hardy, 1 to $1 f$ ft., crimsod, purple, white, or parti-coloured.
Dlanthus chinensis (Indian Piok): half hardy, I ft., various; these dower earlier if treated us lienni:13.
Disitalis purpurea (Foxglove): hardy, 3 ta 5 ft., rosy-purple or white; beatifully epotten in the variety called gloxmiadtura.
Echium pomponitum; hardy, ift., resy junk.
Hcdysarum coronarian (Freach Houeysuchle): hardy, 2 te 3 ft, scarlet or liute : frabrant.
Hesperis tristig (Night scented Rocket): hardy, 3 ft., dull purplish; Irograat at might.
Lunaria blennis (Honesty): hardy, 2 to 3 ft , purple; the silvery dissepiment altrative aniong everlustings.
Unothera Lanarckiaea (Evenfug Pinnrose): hasdy, 5 th, bright yelluw; large.
Scaliosa stropurpurea (Siveet Scabious): hardy, 3 ft, dark purple, showy;
the variety nama flore.plenu is duarier and las double duwers.
Stlene compacta: hilf-hardy, 2 to 3 It., Utsght piuk; clustered as in S. Armeria.
Velbascum Blattaria: hardy, 3 to 4 ft, yellowish, with purple hairs on the fitaments; in tall spikes.
41. The most important of the bienninls are the different kinds Stocks of Stock's. 'The Intirmodiate Stock' (Matthiola annua interaledia) is one of the so-called scarlet stocks, and is very useful, when preserved through the water ia frames, for its dwarfness and carly. Howering labit. It is used very extensively for furnishing jardinieres, window hoxes, flower beds, \&e., during the London season, for which purpose it is sown in July and August, while if sown in spring it thoms in autumin, and furmishes a useful successional crop of flowers. Ot the East Lothian stock, which is a somewhat larger grower, thelf are some half dozen colours, those called New Crimson and Maur Beauty being specially admired; these are sown in July and Augnst lor suinmer blooming, and early in sprigg for flowering in autumm.
42. The Brompton Stock (Mathiola incana simplicicaulis) is a robust plant, growing 3 feet high, with a long central flower stem bearing very large tlowers, which are crimson, jurple, or white. They requite tich soil, and should be sown in June or July, being pricked ont into nursery beds, and planted in September in the Lorders where they are to bloom. Two or three plants should bo put in one patch, as then any surplusage of single-ffowered individuals may be pulled away.
43. The Qucen or Tuctkenhan Stock (Natthiola incane semperHorens) is less vigorous in habit than the Brompton, and is of move spreading habit, the plants growing about 2 feet high, with the lateral banches very much developed. There ore the three usual colours purple, searlet, ond white, the first-named being a special favourite. They require to be sown in June or July, and planted out in September, so as to get well established before winter, and if they lave the odvantage of good soil they will flower freely in the carly pratt of the ensuing summer. Sometinies the plants aequire almost a woorly habit, und live over tho second year, but the howers are not equal to those produced the first blooming season.
44. Hardy Perbsitars. - This term includes, not only those Hardy fibrous-rooted plants of herbaccous habit which spring up from the peremroot year after year, but also those old-fashioned subjects knoren os atale florists' Howers, and the hardy bulbs. Some of the most beautifu] of hatdy llowering plants belong to this class, and their great variety, as well as tho long period through which they, one or other of thein, yeld ther llowers, are beginning again to secure them aome of tha consuleration which has long been given mainly to budding plants,

When the length of the flowering season is considered, it will be obvious that it is impossible to kerp up, the show of a single border or plot lor six nonths together, since plants, as they are commonly arranged, come dropping unto flower one niter another; and even where a certan number are in bloom at the same time, they neceasumy stand aprart, and so the etlects of contrast, which caa be percerved inly among ndjacent oljjects, are lost. To obviate this defect, it has been recommended thet ornamental plants should be formed into lour or five separate suites of fowering, to he distributed over the garden. Not to mention the more vernal flowers, the first might contan the flom of May, the second that of June; the third that of Ju:ly; and the fourth that of August and the following noonths. These comproments should be so intermingled that no fiarticular class moy be cutnely absent from any one quarter of the gard.u.

Before comonencing to rant, it would be well to construct tables or lists of the plants, specifying their respective tines of flowering, colonrs, and altitndes. To diversify properly and mingle well together the reds, whites, parples, ycllows, and blues, with all their intervening shades, requires considerable taste and powers of combination; and ascertained failures may be rectified at the proper time the next season. The one great object ained at should be to present an agrecable contrast ; and, as at particular scasons a noonotony of tint prevails, it is ascinl at such times to be in possession of spine streng glaring colonrs. White, for instance, should be moch employed in July, to breat the duller blues and pnrples which then preponderate. Orange, too, is very effective at this season. On the ather hand, yellows are superabundant in antumn, and therefore reds and blues should then bo sought for. The flower-gardener shonld have a small nursery, or reserve garden, for the propagation of the finer plants, to be transferred into the bordere as often as is required.

As a rule, all the fibrous-rooted herbaceous plants flourish in sood sail which has been fairly enriched with manure, that of a loany character being the nost sutitable. Nany of them also grow satisfactorily 11 a peaty soil if well worked, especially if they have a cool moist subsoil. l'entstenons and phloxes, amonist others, succeed well in soll of this character, unt the surface most be well drained ; the former are rather art to perish in winter in loamy soil, if at all close and heavy. The herbaccous botder should be a distinct cormpartment, and not less than 10 foet in width, backed up by evergreens. Such a border will take in about fonr lines of plants, the tallest being placed at the back and the others graduated in height down to the front. In tho front row patches of the white arabis, the yellow alyssum, and the purple anbrietia, recurring at intervals of 5 or 6 yards on a lorder of considerable length, carry the eye forwards and give a balanced kind of finish to the whole. The same might be done with dianthuses or the larger narcissi in the second row, with preonies, colnmbines, and pbloxes in the third, and with delphiniums, aconitums, and some of the taller yellow composites as belianthus and radbeckia at the back. Spring and antumn fowers, as well as those bloaming in summer, should be regularly distributed throurhout the border, which will then at no season be devoid of interest in any part. Many of the little alpines may be brought into the front line planted between suitable pieces of stone, or they may be relegated to a particular spot, and placed on an artificial rockery. Most of the harly bulbs will do well enongh in the border, care being taken not to disturh them while leafless and dormant.
Some decp-rooting perenuials do not spread much at the sarface, and only require retreshing from time to time by top-dressings. Others, as the asters, sprealrapidly; those possessing this habitshould be taken up every second or third year, and, a nice patch being selected for replanting from the outer portions, tho rest may be either thrown asile, or reserved for increase; the portion selected for replanting should be returned to its place, the ground baring meanwhile been well broken up. Some plants are apt to decay at the base, frequently from exposure caused by the lifting process going on during thair growth; these should be taken op anmally in early autum, the soil refreshed, and the plants returned to their places, care being taken to plant them sufficiently deep.
Genera
list of
harily
pren
aials.
Only a selection of some ol the best of the decorative hardy pereunials can be noted, before we pass on to those popular subjects of this chass which hare been directly intuenced by the hybridizer and impenver. Many more might be added to the subjoined list :-
Acond.- Yeat trailing plants alapted for roekwork, thriving in sandy soil. A. miercphylhand A. myriophylia have protty spiny heads of howers
annthotionon.-Pretly dwarl tuftal phats, with needle-shaped leaves, adapted fur rockwork. A. glmmacenm abid. venustum bear bright pink thowers in July and Anyust. Ljelit nampy ham
Actnthors.- Rold handsome plants, with stately spikes, 2 to 3 feet high, of slowers with eriny hracts. A. nollis, A. latifnhes, and A. bongifolius are bread Javel burts: A. spinosis and A. EIinosissimus have darrower spiny torithe ll layes.
 in common soil. A. Vuraturimm ant bipendula, 3 to 4 fect, have shasey
 tore-plemo 2 feet, tomble whits Howers, others buitable fire front lawe

 Hinvera.
demitum, - Handsone horder phata, the tall stems erowned hy racemea of
 Aumat: A. sinense, 18 to 2 feel, has large dask maple howers in seritember:

 both problat in sertember and rictuler.
 A. Nenticulathe is feel, thork blar; and in A. inifntia, is fect, pale bluc:

 April, tweblijhtesoml.

Alstromeria.-Deautiful hants with fleshy tuherous roots, which are the better if hot uften disturbce. A. aurantiaca, 2lu 3 feet, orange straked with red, in July and August; A. chilansis, 2 to 3 fect, bloud-red, streaked with yellow, allording matuy varieties. Deep saody loam or peat. Should be planted at least 6 or S inches deep.
Alyssum.-Showy rockwork or front row borler phats of easy culture in any lifht soil; the plats should be flequently reftewed from cutlings A. saxatile, with greyisla leaves, and deep yellow huwers, produced ia April and May, aud the dwidfer A. montanumare usefut
A maryllis.-Noble half-hardy bulbs, for plantang near the front wall of it hot-house or cruenboose ; the soil matst be defp, ribh, atw well-dranted a Belladouna, the Belladumat Lily, 3 feet, has large luphel-shaped flowers in Septenber, of a delicate mose coluur The variety a hituda has palet fluwers, a finost white.
A nchusa.- l'retty boraginaceous herbs, easily grown A. italica, 3 to 4 feat, lias hue star-tike thowers. A. sempervireus, fo feet, rich blue, is well suited for rough borders.
Andrusace. - Pretty dwarf rock plants, refuiring raller eareful management and a gritty suil. A Vitaliana, yellow, A. Wulfemana, porplishermson; A. villosa, white or pale rose: A lactea, white wath yellow eyc; A. lamugio
the best.
Antennaria.-Composite plants, with everlasting flowers. A margaritacen. I' to 2 feet, has white woolly stems and leaves, and white flower hearls.

Anthericum, ©harming border fluwers. A liliastum, st Rיunos Lils. It fect, bears jretty white sweet-scented fowers in Iny, A ITonken (Cliry ha-
 cuol fuaty sail
Aduilegtit. - The Columbine family, eonsisting of beautiful border thowers in great variety, ranging from 1 to 2 or 3 feet in hegrit. Eesides the comuma purpie A. vilgaris with its numerous varieties, double and siogle, here are fand A curpea bloe aud white: A leptoteras. blue and, yellow. A cauadensis, A. Skinneri, and A. truncata (califernica), scallet and jelrow. A. chrysanthin yellow; and A. fragrans, white or l!esh-colour, very fragrant. Light rich garden suil.

Arabis-Dwarf close-growing evergreen ertuciferous plants, adapled ior rockwork and the froat pat of the tlowel border, and of the easiest cullure A. alhida forms a conspuchons mass of greysh leaves and white hossimis: A. locida, which is also white-tluwered, hears if brioht green leaves iu rosettes, and has a valiety with pretily gold-mat, fined leaves.
Arenaria.- Everrecn rock plants of easy culture. A. traminifolia and laricifolia are tufted, with enassy foliare and white flowers, while A. baleariea, a crecping plant, has broad leayes and solitaty white fowers

Armeria. - The Thrift or Sua rink, of which the common form A. maritima is sondtumes planted as an edging for garden walks; there aro three varieties, the commoo pale pink, the deep rose, and the white, the last two bemer the most dosidable. A. ccplatotes, 1.1 feet, is a larger plant, with tufts of finear lance-shaped leaves, and abundant globular heads of deep rose llow'r's, in Juve and July.

Arum.-kenarkable plants, with tuherous roots, and ereet hood-liko spathes enctosing the spike of flowers (spadix). A. erioitum, if feet, has pedate leaves, and fetid dark chocolate baily spaties; A. Dracumenlus, 3 feet, has sputicd stems, pedate leaves, and duli purple spathes; A. italicum, with greenish suathes, has the cordate thastate leaves eonspicuously vefned :vith white
Aschpixts-A. Luberosa is a hanilsome fleshy-rooted plant, very impatient of beius distumed, and freterming gom peat soil; it grows I to ly feet high, and hears cuymbs of deep yellow and orange llowers in Septeniber. A nearmita e to f feut, produces deep rose swect-scented llowers towards tho cod of shmmer
Asphoilelus - Wadsome hhiaceous plants, with fleshy roots, ereet stems, and showy llowers, thation in any good garden soll. A. allius, 4 , tet, A and single or majed the flow fuwers A capill is is shajed leaves and ecrse spohes of ratant gedow.
Abter,--s vely lage finaly of autuma-blooming composites, inclubing some ormmental species, all of the easiest culture. of these, A. alphus foot, and A. Amellus, if fect, with its var. hessaribicus have bothisis hlumt lexdos, and latge stamy bhash liowers; A. langifolins formosns, reet brint mo, hasus, 2 feet, purjishoblue ; A. Jumbulus, y rec, white, changing to ruse

 esune ally userul fiom their late-nomerine halnt

Astraghlus, - Shumy pea-fowered phants the amaller spocies ndapted for rockwork; sandy suil. A. dasghlettis, 6 inches. las hhash purple thowers in
 duly; whe A, howers, whind are cither futhe or white. There nee many very Pretty flowers, y

 tuple; A. gambllera and graeda are sather lasger, bat of a lighter hue linglit samb sull
Thambuac, - The Bamboo family, some of wheh we hary, at lease in

 White an
the bowit

Bulbocodium, - Fretty spring-flowering crocus-like buibs. B. vernum, 4 Wo inches high, purplishlilac, blooms in March. Good garden soil. Buphthalmum.-Robust composite herbs with striking foliage, for the back of herbaceous ar shrubbery borders. B. cordifolium, t feet, has large cordate leaves, aad heads of rich orange fowers in cymose panicles in July. Also called Telekia speciosa.
Calandrinia. - Showy dwarf plants for sunny rocswork, in light sandy soil. C. umbellata, 3 to 4 inches, much braached, with narrow hary leaves, aud corymus of nageata-crimson fowers in the summer months.
Caltha. - Showy marsh plants, adapted for the margius of lakes, streamets, or artificial bogs. C. palustris Hore-pleao, 1 foot, has double brilliant yellow flowers in May.
Calyntegic.-Twiniag plats with runaing perennial roots. C. pubescebs fiore-pleno, 8 to 10 feet, has show double-pink cousolvuloid towers in July c. dahurica is a landsome single-fowered summer-blooming kind, with rosy. calotired flowers.
Cumyanula.- Beautiful, as well as varied ia habit and character. They are called bell-flowers. C: pulla, 6 inehes. purplish, nodiling, on slender erect stalks: C. turbinats, 9 iaches, purple, broad-belled; C. carpatica, 1 foot, blue, broad-belled; C. nobilis, 12 fect, long-belled, whitish or tinted with chocolate; C. persicifolia, 2 feet, a fiae border plant, single or douthe, white chocnate; pipersictona, bloong in July; and C. pyramidalis. 6 fect, blue or white, in (ir purple, bloonuog in July; and C. pyraming spikes, are good and diverse. There are many other fine surts.
Crntautera.-Bold-habited composites of showy character; common soil. C. habylonica, 5 to 7 feet, has winged stems, silvery leaves, and yellow flowertheads from Jude to September; C. moatana, 3 feet, deep bright hlue or white.
Centranthus. - Showy free-flowering plants, for rockwork, lanks, or stony soil. C. ruber, 2 feet, branches and blooms freely all summer, and varies with rosy, or crimson, or white flowers. It clothes the ehalk cuttings on some Eaglish railways with a sheet of colour in the bloonine seasm
Cheiranthes. - Pretty rock plants, for light stony soils. C. alpinis, 6 inches, grows io dense hifts, and bears sulphur-yellow flowers in May. C. ochroeucus is similar in character
Chionodoza.-Charmiag dwarf hardy hulbous plants of the litiaccous order blooming io the early spring in coropaay with Scilla sibirica, aad of eflually easy cultivation. C. Lucilixe, 6 inches, has star-shaped tlowers of a brilliant blue with a white ceatre, and is the finest of the few known spccies. It looras nhout April.
Colchicum.-Showy autumn-bloomiag bubs (corms), with crocus-like nowers, all rosy-purple or white. C. speciosum, C. authninate, single and cole, c. byzantinam, aad c. varicgatur are ail worth growing,
Contalluria.-C. majalis, the Lily of the Yalley, a well-kuownsweet-sceated Savoarite spring fower, Erowing freely in rich garden sonl; its spikes, 6 inches bich, of pretty white fragrant bells, are produced in May and June ; Coreopsis-Erfeclive composite plants thriving ind.
Coreopsis.- Etfeclive composite plants, thriving in goorl garden soil C . nurieulata, 2 to 3 feet, has yellow and browa fowers in yuly and Angust; C.
grandiflora, 3 to 4 feet, bright yellow, io August ; C. tenuffolia, 2 feet, rich arandiflora, 3 to 4 feet
golden yellow, in July.
Cerydalis.-Interesting and elegant plaats, mostly tuherous, growing in good garden soil. C. bracteata, 9 iuches, has sulphur-coloured flowers in Arril, aad C. nobilis, 1 foot, rich yellow, in Itay; C. sollda, with purpilish, and C. tuberosa, with white flowers, are pretty spring-lowering flauts, ito 6 iaches high.
Cyclamen.-Charming tuberous-rooted plants of dwart habit, suitable fir sheltered rockeries, and growing ia light gritty soil. C. curopamm, reddish-parple, flowers in sammer, and C. hederifoium in autumn.
Cypripedium.- Beantiful terrestrial orchids, requiriog to be planted ia peat soil, in s cool and rather shady situation. C. spectabile, $1 \frac{1}{}$ to y fret, white and rose colour, ia June, is a lovely species, as is C. Calceolus, 1 Ioot, yllow and brown, in Yay; all are full of intercst and beauty.
Delphinium.-The Larkspur fanily, tall showy plants, with spikes of blue flovers in July. The popular gardea varieties are noted under par. 53. Other distinct aorts are D. Grandiflorum and D. Eramuliforum filore-pleno, 2 to 3 foet, of the richest dazzling blue, flowering on till September; D. chinense, 2 feat blue, and its doubleflowered variety, are good, as is D. Bariowi, 3 fect, a brüluat double bloe jurple. D. nudicaule, 2 feet, orange.scarlet, very shnwy, is best treated as a bicoaial, its brillisot flowers beimg produced freely in the second year trom the seed.
Dianehus.-Chiefly rock plauts with handsome and fragrant flowers, the snaller sorts growing in light sandy soil, and the larger lowher plants io rich sarden earth.. of the dwarter sorts for rock gardens, 1 . alpinus, D. casiins, D. deltoides, D. dentosus, D. neglectus, D. petricus, and D. giacialis are gond examples; while for borders or larger rockwerk' 1 . Mumarius. D. supat bus, D. Fischeri, D. cruentas, and the clove section of D. Caryozhyllus are most desirable.
Dictannus.-D. Fraxinella is a very characteristic and attractive plant, 2 to 3 fect, with bold pionate leavea, nod talt racemes of irregular slapped purple or whin flowers. It is everywhere glandular, and strongly scented.
Dorlitra.- Very elegant pulants, of easy grow it in food soul. It spectabilis, 2 to 3 feet, has prony like foliage, and gracefulty tronpinc spikes of heartsisiers from spring frosts and winds ; D. formosa aul D. eximia, iloot, are sin pretty rosy-tlowerct'species.
Digitalis, Stately erect-growing plants, with long racebes of pouch. sharwh drooping llowers. The mative D. purpurca, or roxelove, 3 to 5 fect, hilh its deuse racemes of purple flowers, spotted inside, is very slowy, but ds surpassed by the garulen varnety ealled clowioiondes. The yeliow-dowered D. 1utca rud D. graadiflora are less showy. Good gardea soil, and frequent renewal from seeds,
Doromicum,-Shovy eomposites of fred growth in ordinary soil. I. caucasicum and D. anstriacum, 1 to 13 feet, both yellow-fluwered, bloom in cop:lny a ad carly summer.
Iraba.-Good rockwork cruciferous phats. D. alpina, D. aizoides, D. Chliwis, D. Aizooa, and D. censpilnta bear yelow flowers in early soring: D. ciacrea aod D. ciliata have white tlowers. Gritty well-4ramed hoil.

Drceocephahum. - llaudsome labiate plauts, requrimg a warm nod welt-
 Ifoot and D. Ruyschiana, if feet, with its var. japonicum, nll produce showy blue lowers during the summer noonths.
d'chinacea.-Stout prowing showy coninosites for late suonncr and antumn luwering, requiriag rich deep soil, and not to be offet disturbed. Fi. thrastifola, 3 to 4 feet, light purplish-rose, and E. intermedia, 3 to. + feet, endish purple, are desirable kiods.
 tad carious fowers, E. macrastiom, white flowers, and fo, rithrum, ted, Thes bloom in spring, and prefer a slady gituatiou and a mede zoil, :e3s so finsermi- Corapowite plants, variahle in character. E. Wryuzels is fect,
dark blue; and E. pulchellus, 1 font, rich orange, flowering, daring the Erinus.-E. alputus is a beautilul litle slpine fir rockwork, 3 to 6 iuches. of tufted habit, with small-toothed leaves, und heads of mokish-purple or, in a variety, white flowers, early in slmmer. Sandy well-(treined sonl.
Erodum.-Haudsone dwarl tulted plants. E. Manescavi, 1 to $1 f$ feet, has large purplish-red flowers ia summer; Fi Reicharli, a minute stemiess plant, has small heart-shaped leaves in rosette-like tults, and white fluwers siriped with pink, produced stucessively. Light soil.
Eringium-- very reloarkalle plants of the umbeliferous order, mostly of an attractive character. E. ancthystinum, 2 fect, has the opper part of the Eten, the bracts, and heads of tlowers all of an amethystine bhe. Some of more recent mirodaction have the aspect of the pine-apple, each as bromelhatohum, E. pandanifolinm, and E. elpurneum. Leep light soil. brallons plant with spotted leaves, and rosy or white flowers produced in spming, and having rettexed petals. Mised peaty and loany sont, deep and sining
cool.
Euphorbia, - Flants whose beanty resiles in the bracts or Horal leaves Which surromb the inconsfnemons flowers. \mathfrak{E}. aleprica. a deet, and K . Characias, 2 to 3 feet, with greea bracts, are the plants for rockwork or sheltered coruers.
lor shrubbery borde mbelhferous jhants, with maguigicent foliage, adapted dor shrubery borders or cisen spots on lawns. They have thick theshy routs, deeply peactrating, and therufure reguiring deep soil, which should be of a with glossy lozence-shaped leathets, frow s to lu fa, and F. tiogitana, the tast With glossy lozenge-shaped leathets, prow 8 to 10 fect high; F. Ferulago, with
move Goely cut leaves, grows 5 to ef fuct hich. They tower in and all have a fine arpearance when is bloon, on account of their large showy nubels of yellow Howers.

Funkia,-l'retty liliaceous plants, with simple coasnicuously longitudiaalribued leaves, the racemose flowers funnel-shaped and deflexed. F. Bieboldiana, 1 foot, has blac flowers; f. prandiflora, 15 inches, is white and fragraat:
F. corulea, 15 inches, is wislet. F. corulen, 15 inches, is vilet-hlue; F. albo-marginata, 15 inches, has the
leaves edged with white, and the fowers lilac. Rich garden soil. leaves edged with white, and the fowers lilac. Rich garden soil.
Gaillardia.- Showy composite plants, thriving in good garden soil. G. aristata, ${ }^{2}$ feet, has harge yellow hower-heads. 2 or 3 inches acrass, ia
summer; G. Jceschari and G . Lolsehi have the lower part of the rastor summer; G. Baselari and G. Loisehi have the lower part of the ray-tlorets red, the upper part yellow
Galanthus.-The Snowdrop. Early spring-flowering amaryllidaceous bulbs,
wih pretty drooping flowers, snow-nhite, havia the jetals preen. The conimers, snow-nhite, haviag the tirs of the enclosed fietals green. The common sort is G. aivalis, which blossoms on the frst break of the wider frosts; G. Imperati and G, plicaths have larger flowers.
Gaura. -G . Lindheineri, 3 to 5 teet, is muchi hranched, with elegant white and red tlowers of the onagraceous type, in long stember ramose spikes duriag the late sumber and autuma months. Light garden soil ; not long-lived. Gentiana.-Beautiful tufted erect-stemnich phants breferring a strong rich
loamy soil. G. acaulis, known as the Geotianclla, forms a loany soil. G. acaulis, known as the Geatianella, forms a close carpet of shining leaves, and io summer bcars large erect tubular deep blue flowers. G. Andrewsii, 1 foot, has, dirige summer, large deep blue flowers in clusters,
the corollas closed at the mouth; G, asclepusdea, 15 mehes, purplisb-blue, the eorollas closed at the mouth; G, asclepusdea, 15 unches, purplisb-blue,
flowers in July. flowers in July.
Geranium.-Showy border fowers, mostly growing to a height of $1 \frac{1}{2}$ or ε leet, having deeply cut leaves, and abundant saucer-shaped blossoms ol considerable size. G. ibericum, platypetalum, and Rackhousianom are desirable purple flowered sorts; G. Eagquineum, a tufted grower, has the fowers a deep rose colour ; and the double flowered white and blue forme of G. pratense and G. sylvaticum make pretty summer flowers. Good sardea sod.
Gicum.-Pretty rosaceous rlants. The single and donble flowered forms of G. chiloease, 2 feet, with briliant searlet flowers, and G. montana 8 jaches, yellow, are aruongst the best sorts. Gool garden aoil.
Gymerium. - The Fampas-Grass, a noble species, introduced from buenos Ayres; it forms huge tussocks, 4 or 5 feet high, above which towards autuma rise the bohd dense silvery plumes of the infloreseence. It does best in sheltered nooks.
Gypsophita--Interesting caryophyllaceous plants, thriving io dryish situations. G. paniculata, 2 fect, from siberia, forms a dense semi-globulat mass of small white flowers from July onwards till autumn, and is very useful for cutting.
Inclentim.-Shony composites of free growth ia lightish soil. H. autum. nate, t feet, bears a trofusion of yellow-rayed flower-heads in August and september.
If Lianthemum. - Drar! subshrubby phants well suited for rockwork, and called Sun-koses from their hossoms resembling smal! wild roses, and their thriviog hest in sumy sputs. Sume of the handsomest art fi. roseum, mutahite, cuprenm, and thidathum, "th red Howers; fi vulgare flore-pleno, grashithrum, and straminemn, will ydlow tlowers; and H. macranthum and papyaceum, with the llowers white.
Helianthus, The smather werms. of which there are several oroameatal
 golden yellow llower-deads in profusions, and are well adapted for shrabbery Holichrymanats, character known as Everhastings. Hi, srenariun, 6 to 8 inches, is a protty mpecies, of lwarf spreuling hatit, with woolly leaves and corymbs of golden yellow flowers, alout Juls.
Hethborus.-Charming very early hooming hath raounculsceous berbe n. niger or christanas hose, the finest variety uf which ja calied mavimua, has white show s sanecr-shaped thow crs; H. oricintalis, 1 foct, rose-coloured; \mathbf{H}. ntrorubens, 1 foot, purphizh-red; Abd 1 L . colchicus, 1 foot, deep purple. Deep rich loam.
Hrextica.-Charming littlo tufted plants reqniring gond lonmy soil, and icnves and a profusion of sman white, Hinco or pink single or double tlowera frora lebrary onwards: II, anculosa, from Transylvania, 6 to 8 iuches, is a hurcer plant, with sky.hlue towera
Merperit--11. Datronaliq, 1 to 2 feet, ia hio old garden Fincket, al which some donblo forms with white and purphiall Hassonis are amongst the choncest of barter flowers. Thoy rephare a rich losmy beil, met too ary, and should bo divided nud transplant
year, in the early antuon seggon
Hibiacus- - Showy mavacem4 Jinnts. 11. Moschentos, moso colaured, and 11. paluseris, phrpte, both worth Amencan leerbs, 3 to 5 fect hich, are suitablo for moist burters or for largey phaces near the margin of lakes.
Ifrris. - The Canuytath, tif which swerat dwait spresding subshrubby species are whongst the inst of reck phats, cluthing the surface with tafts al green forfs, ant lywwing in masars dubig May and June The best are (variunsly' callorl entiares, camost, urrextuin), 12 inehes.

rings in June; L. latifolius, the Everlasting Pea, 6 feet, has bright rosy Howers in the late snmmer and autumn: the vars. aluus, white, and superbus, deep rose, are distinct. Ordidary garden soil.
Lavatera.-L. thuringiacea, 4 leet, is a ane erect-growing manvaceous glaot, producing
Lewcojum.-Snowflake. Pretty early-blooming bulbs, quite hardy. I ernum, 6 inches, blooms shortly after the snowdrop, aud should have a light rich soil and sheltered position; L. pulchellum, it feet, blooms in April aod May; and L.
Liatris.-Pretty composites with the flewer-heads collected into spikes. L. pumila, 1 foot, L. situarrosa, 2 to 3 feet, L. spicata, 3 to 4 feet, L. pycnostachya, 3 to + feet, all have rosy-purplish Howers. Deep, cool, aod moist soil. Linaria.-Toadfax. Pretty scrophulariads. of which L. alpina, 3 to 6 inches, with bluish-violet fowery having a brilliant orange spot, is suitable for rockwork; L dalmatica, 4 feet, and L. geristsefolia, 3 fcet, both yellow fowered, are good border platits
Linum. - Flax. L. alpinum, 6 loches, large, dark blue ; L. oarbonense, $1 \frac{1}{8}$ feet, large, blue; L. perenne, if leet, cobalt blue; and L. arboreum (flavim), ifoot, yellow, are all pretty. The last is liable to suffer from damp duriog winter, and some spare plants should be wintered in a frame.

Lithospermum.-L. prostratum, 3 jaches, is it trailing evergreen herb, with
Larow hairy leaves, and paoiculate brilliant blue towers in May anil Juoe. Warrow hairy leaves, and paciculate briliant blue
Lupinus. -Showy erect-growing plants with papilionaceous flowers, thriving in good decp garden suit. L. polyphyllus, 3 feet, forms noble tufts of palmate leaves, and loog spikes of bluish-purple or whitc fowers in June and palmate leave3, and 100 spikes of bluish-purple or whits
Lychois.-Brilliant erect-grewing caryophyllaceous plauts, thriving best is beds of peat earth, or of deep sandy loam. L. chalccdooica, 3 feet, has dense beds of peat earth, or of deep sandy loam. L. chatccdobica, neet, has dense headsens, I foot, vermilion; L. Haageana, 1 I feet, scarlet ; and L. graodifora, fulgens, I foot, vermilion; L. Haageana, I feet, scarlet; and L. graodifora,
l coot, coppery-omnge, are all larga-fowered and showy, but require a little 1 loot, coppery-omng
protection in winter.
protecion in winter. Mata, 2 feet, with a profusion of pale plak or white flowers, anil musky deeply-cut leaves, though a British plant, is worth intruducing to and musky deeply-cut leaves, though a British pla
Mertersia.-II. virginica, 1 to $1 \frac{1}{2}$ feet, azure-blue, shows flowers in drooping panicles in Miy mat June. It does best in shady peat borders.
Almulits. - Monkey-flower. Free-blooming, showy scrophulariaceous plats, thriving test in moist situations. Mi. cardinalis, 2 to 3 fect, has scarlet fowers, with the limb segonents refloxed; M. luteus and its many garden forms 1 to $1 f$ feet, are varlously coloured and often richly spotted; and M. cupreus R t" lo inches, is bright coppery-rel. M, moschatus is the Musk-plant, of ycliow flowers.
Ifonarin.- Finndsome labiate planta, fiowering towards antuma, and preerring a cool suil and partinlly shadel' sitmation. DH. didyona, o feet, acarlet or white; AI. fstilusi, 3 feet, purple; ond M, purpurea, 2 feet, decp purple, re gond border fluwers,
Muxcari.- Fretty dwart spting.fowering bulbs. M. botryoides (Grape Tyeinth), 6 inches, blne or white, is the hambsomest; Ni, moschatum (Wisk IIyachth), 10 inches, has peculiar hivid greenish-ycllow thowers and a strong masky oulour; A. monstrosum (Feather Hyacinth), bears sterle towers broken up iutu in feather-like inass. Good garden soü.
Ifyosotis- Furget-me-not. Lovely boragitaceons plants. BI. dissitifora f to 8 inches, with large hambome and abundant sky-blue flowers, is the best aml earliest, lowerin; from February onwarals; it does well io light cool soils, preferring peaty ones, aud shonld be renewed annually froon seeds or euttings. M. ruphenla, 2 to 3 inches, intense blue, is a flue rock plint, pre. erring shody situations and gritty soll; M. sylvatica, 1 loot, bluc, piok, or White, used for spring bedding, should be sowu annually in August
Nardosmia,-N. fragrans, the Winter Helintrepe, though of weedy lablit, with ample corlate coltsfont-like leaves, yielis in Jomary and Feliruary its abundant aplkes, about a fout high, of greyish nowers scented like licfiotrope; It should have a corner to itself
Nepeta.-N. Mussinil, 1 foot, is a compactly spreading greyish-leaved labiate, with lavender-hine flowers, amd is sounctanes used for bedding or for maryinal lines to largs compouod beds.
Nierembergia. N , rivularis, 4 inches, from La plata, has slender creeping ootiog stems, bearing blalked ovnte leaves, and harge funncl-shapeal whio lowers, witha remarkably long slender tube; especially adapted for rock wurk, requiring moist sandy loano.
Qnothera. - The genns of tho Evenlog Irimrase, coosisting of showy onagrads, all of whleb grow and blussodi freety in reh deep eoils. ©s. mis sourlensis (macrocarpa), 6 to 12 inches, has atont truibug brinches, latice chaped leavos, noll largo yellow hlosyoms; (E., taraxacifolin, 6 to 12 inches, tas a stout crown from which the trailing branches spring out, and thess bear very large white dowers changing to delicate roso; thls jerishcs in cold seils, and should thereforo he raised from seed annuntly. Of erect habit are (k. specioss, I to 2 feet, with large whito flowers; ©E. fruticosa, 2 to 3 fect, with bundant yellow fowers; abd (F,. serotina, 2 fect, nlso bright yellow
Omphatudes-Elegnint iwarf borageworts. O, verna, it 0 inches, a crcepIng thado loviog plank, has brtght hlae flowers in the very early gotbig; o, Lictliag, 6 inclics, has mnch larger lilac-blue tlowers, and is an exguisito rock blant for warme sheltorod pots. lights sandy soil.
Onasma, -0 . taurien, 6 to 8 inches, is a charminit horaginaceous plant, from the Caucasus, prodictrg hisplit leaves, und eymoso heats of drooping tubular yallow flowers. It is of everkreen halist, nod reguires a warm josition on the rock work, and well drahach ABady soll; or a duplicato shouhi bo sheltered during winter in a colil dry framu.
Ourinis,-Iandgojoo scromhularlaecons planta, from Chili, thriving in molst well-dralned peaty soll, anil th moderato shale. O, cocclnea, 1 fuot, han erect racemes of pendent crimson howers.
rapaber. - Tho lopjy. Very ghowy plinta, niten of stro gerowth, and of easy culturo lo orilmary garden soll. 2 , orientale, 8 teet, has crimson-scarlet flowers, f laches across, nati the varinty hrurteatnin closelyidesomblea it, hat hing lwafy lifacts just heocath tho blosaom. l', alphouro, 6 theach, white with yultuw centro; H nudicanlo, 1 foot, yelliw, scented, and E. ghosum, ito 2 yot, deep oranigo, aro ormaniental smatice kinils.
fionatarmon. - Tha pophtar karilen varlictles aro noticed under par. G3. other distinct kinis are P. campnanlatus, il ieet, jule roge, of busiy
 Jafrayamine, 2 to 3 fect, all hrlaht bhan; 1 , barimtus, 3 to 4 fect, scatlot, in
 conmate lonves;
colonmal tlowers.

 downy hoary lorveq, come in wotl in hrunil limsir lurilera

gardeo soils. P. imbricata, 5 to 6 fcet, has pale purple flowers in closcty imbricated spikes.

Potemonium-Pretty border flowers. P. cceruleum (Jacobs Ladder), 2 feet, has elegant pinnate leaves, and long panicles uf blue rotate fowers. The variety called varisgatum has very elegantly marked leaves, and is sobetimes used as a margin or otherwise in bedding arrangemonta. Good gardee soil.
Polygonatum.-Elegant iiliaceous plants, with Thizornatous stems. P. multitiorum (Solomon's Seal), 2 to 3 fcet, with arching stems, and drooping white flowers irom the leal axuls, is a handsome border plant, doing especially well in partial shade amongst shrubs, and also well adapted for pot culture for early iorcing. Good garden soil.
Polygonum. - A large faruily, varyiog much in character, often weedy, but of easy culture io ordinary soil. P. vaccinifoliun, 6 to 10 inches, is a pretty prostrate subshrubby species, with handsome rose-pink flowers, suitable for rockwork, and prefers bogity soil; P, affioe (Brunonis), 1 foot, deep ruse, is a showy border plant, fowering in the late summer; P. cuspidatum, 8 to 10 feet, is a graod object for plantiog where a scteen is desired, as it suckers abundantly, and its tall spotted stems and haodsone cordate leaves have quite a noble appearance.
Primula.-Beautiful and popular spriog fowers, of waich many forms are highly estcemed in most gardens. P. vilgaris, 6 iaches, affords numerous handsome single and double-tlowered varicties, with various-coloured flowers for the spriug fluwer beds and borders (par. 68). Besides this, P. Sieboldis (cortusoides anoma), 1 foot, originally deep rose with white eye, but now includiog many varieties of colour, such as white, pink, lilae, nad purple; P. japonica, 1 to 2 feet, crimsoo-rose; P. denticulata, I feot, bright plaish-lilac, with its allies P, erosa aod P. purpurea, all best grown io a colia frame; P. viscosa, 6 inches, purple, and its white variety nivalis, with frame; P. viscos 3,6 inches, purple, and its whie variety mivalis, with
P. pedenodana and P. spectabilis, 6 inches, beth purple; and the charming little Indian P. rosea, 3 to 6 inches, bright cherry rose colour, are but a few of the many beantiful kinds in cultivativa.

Pulmonaria.-Handsome dwarf berageworts, requiring good deep garden soil. P. officionlis, 1 foot, has prettily mottled leaves and blue flowers; P. sibirica is similar in character, but bas Lroader leaves more distinctly mottled with white.
Pyrcthrurn. - Composite plants of various character, out of easy culture P. Partheninm eximium, 2 feet. is a handsome donble white form of ornamental character for the mixed border; P, uliginosum, 5 to 6 feet, has floe large white radiate flowers, it Octcber; P. Tchihatchewi, a close-growlog dense evergreen creeping species, with long.stalked whits fiver-heods, is adapted for coveriog slopes in lien of turf, aod for rockwork

Ramondia. - R. pyrenaica, 8 to 6 inches, is a pretty dwari plant, requiring n warm position on the rockwork, and a moist peaty soll more or less gritty it has rosettes of ovate spreadiog reot-leaves, and large purple yellow centren rotate nowers, solitary or two to three together, an naked staks, caulis, 1 fout, white ; R. aconitifolius, 1 to 2 fect, white, with its double variety R. aconitifolius flore-plene (Fair Maids of Frabce); and R. acris forepleno R. aconititolius thore-plene (Fair Maids of Frabe); and R. acris fore pileno
(Bachelor's Buttons), 2 feet, gelden yellow, are pretty. Oi dwarier interest(Bachelor's Buttons), 2 feet, geldeo yellow, are predy. Oi dwarier interest-
iog plants there are R. alpestris, 4 ioches, white; \mathbf{R}. granineus, 6 to 10
 inches, yelluw; \mathcal{N}, paroassifolus,
6 inches, white with orange centre.

Rudbeckia. - Bold-habited composite plants, well suited for shrubbery borders, and thriving in light loamy soil. The flower-heads have a dark colonred clevated disk. x. Drurphe 2 , reflexcd, yellow at the hy and purplish-brown towards the bise; \mathbf{R}. Iulgifs,
2 feet, guldea yellow with dark chocolate disk, the flower-heads 2 to 3 2 feet, goltelt yellow with dark chocolate disk, the flower-heads 2 to 3
juches neross; and R. speciosa, 2 to 3 fcet, ornoge-yellow with blackishjuches nuross; and R. speciosa, 2 to 3 feet, ornoge-yellow with
purple disk, the flower-heats 3 to 4 inches across, nre shuwy plants.

Saluia.-The Sare, a large getus of labiates, often very handsome, but same tinics too tender fur English winters. S. Sclarea, 5 to fifeet, is a very atrikin: plant little niore than a biconal, with bratiched pataicles of blulsh tlowers issuing from rosy-coloured bracts; S. pateos, 2 feet, which is totense azure has taberons roots, and may be taken up, stored away, and replanted in
 spring like a dahlin. S. pritensis, 4 feet, blue, a show
hardy; the varicty lupinoides has the centre of the lower lip white.
Soxifraga.-A vory large genus, comprising phants of varied aspect, many of them handsome though simple it character, and must of them adnpted for ruckwork, requiring only ordinary good soil. Sotne of the larger growing spceles, wow often ealted Aegasan, are grand enrly-tluwering border plants
 porpurasecns, S. corditolia, and S. crassifelis, with their vartetlos, of another group with silvery leaves there are repuresentatives io. 8 . longifolin, S. cesin, S. Cotyledon, S pectmatn, and S. Rochelimal of tho green mossy group in S. hypmoides, S ecratophylla, S. muscoides, de. ; and af the landon Pribe section in 3. umbroa, S. Andrewsit, S. Geubr, S. oppositifollia, 2 to 3 inches, jurple or white, In a brilliant plant for reck work, folming a carpet over thu surface of the stones.

Scilla.-lbenutiful dwart bilbous plants, thalving in well-worked sandy lomm, or sandy jert. S. bifolin, 3 Inches, and S . slbirica, 4 inches, woth Interise blue, are anong the most charming of early epring fowers; S. phtuln, to 8 inches, int s. campanimitio, 1 fout, with star-bhaped flowers, freaty produced, ary thae border plants, as to the later blooming 3. peruviama, 6 tos inches, dark bluc or whitu.
 rockwork. They are namerolls, viared la the culonr of both leaves and ouliare, nod mostly of eumpact tufted growth. A. spectabllo, 1 to $1 \&$ fect, pink, in great eymome heads, is a find plant for the bordors, and worthy also
 oommon S., ac
Sempervigum.-Wouso-Leek. Nent-growlng aneculent plauts, formong rosettes of fleshy leaves elose to the groumb, and mopldy facreasiog by runner-like otisots: they aro well nubated for ruokwork, and to best hasandy soll. Tho flowers are stellate, eyonose, "in stems risiug from the heart of the

 honves tipped with prople ; R. lleuffelii, yellow, with decp chocolate lea, es suls. Wulteni, sulphur yellow, are from s to 1 ' inehes high
Silene,-1'retty enrophyllaceous plants, preferring sandy loam, aod well stapted for rocksork. S, alpeatre, 8 buthos, white, and s. guadridentuta, d hifhes, white, are henutiful tnftod phots for rockwork ur tho front parts of
 bricht roso, and s. Schafta, binches, purpliah-rose, aro also sood kinils,
 Ifie blant fur put-cutturo la cold frames.
furcra, -Vigorana growing plants of arent beanty, preferring good sleep

S. Filipendula nore-pleno, 14 fect, and s. Ulinaria fore pleno. 3 fect, 1 wh white; S palmata, 2 teet, rosycrimsun; and s . bubsta, 3 fect, calluiuc tose, ara some of tho vest.
Stalice-Pretty plants with broad radical leaves, and a mheh-bratuched enforescence of numerous small thowers. S. latifolia. 2 fect, breyish-bine S tatarica, 1 foot, laveoder pink; S . speciosa, $1 \frac{1}{2}$ rect, rose citluir, and S eximia, $1 \neq$ lect, rosy-bilac-are good border plants. S. belbdifolia, 9 inthes, tavender; S. emarginata, 6 inches, purple ; stoblatamit
hite ; and S. nana, 4 inches-are good sorts for the reckery
Stenactis.-S. specios, 1 to 2 feet, is a show composite, of easy culture it goud garden soil ; it produces large corymbs of fluwer-hends, with numerous narrow blue ray. forets surrounding the yellow disk.
Stipa.-S. pennata (Feather Grass), if feet is a very gracefut-habited grass with stiff slender erect leaves, and loug ieathery awns to the poucrs.

Stokesin. -S. cyanea, ifeet, is a grand autmmn tlowering composite pant with blue flower-heads, 4 ioches across Sandy loant and warm situation. Syinphytum, - Rather coarsegrowing hut showy borapmaceous phors, succesising in nolinary soll. S. caucasicum, 2 fect, with blue fowers changnug to red, is one of the finer kimas for early summer bloomiag.
Thaliotrom. Frce.growing but rather weedy ramunculaceous plants. in many cases havin"g elegnutly cut folage. T aruilegufulum, \& teet. purplish fromi the conspicuous stamens, the leaves plancous, is a good burder filant: and T. minus bas foliane somewhat resembling that of the Maidenhair rern. Drduary garden soul
rritcleia.-CHarming sprius-Rowering butbs, thriving in any goms sandy anh. T. Murrayana, 8 viches, laventer blue, anil T, wallora, 6 mehes. white, a both pretty pluts of the casicst ctalturc. either tur bordera or ruckeries.

Triforn -Spectulat stoutish-growing plants of nohle aspect. familiarty hnuwn as the poher plant, from their elect rigid sjithes of thane-coloured thwers; sumetinus calleth reil, passing to yellow in the lower flowers, is a hine authrinal decorative plant. They shoulif be protected [rous frosts by a covering of asbes over the crown dulitge winter
Trollins-Showy ranunculaceous plants, of free growth, foweing about

 fret'showy hinds. Rich anil rather nwist soil

Tutipa.-Splendid dwartish bullis, thriving in alcep satmy wedt cnriched garden soil, and increasel by offsets. They hoom iluring the spring amt early summer moblis. T. Gesmerima, the parent of tho forists tulip (par. 71), 12 to is inches, erimson and uther culuars; T. Euchleri, 1 fort, crimsin with dark spot; T. Grcisi, I foot, orabse with dark spot edged with yellow, and having dark spotted leaves: T. wenlos solis, 1 foot, scallet with black contre: nnd T . sylvestris, 1 : to is inches, luritht yellow, are showy tinits.

Verbazinn. - Showy burter towers uf crect spirc-like halnt, of the casies enture. Chaixi, t to 5 feet, ybllow, in large pyramidal panicles: V. phaniceum, 3 fect, rich purple or white; and

Veronica. - The Speedwell fanily, containug many ormanental niculicrs; all the hardy species are of the casiest caltivition in ordimary farden sult. The rotate Howers are in close erect sphe's. somatames brambich crassifolia, 2 fect, dark blue: V. incarnata, 1 fect, llesh-edour ; V. cils ni longa, if feet, pale blue io corgmmosely.arranged racenics: vi gentianuiles. fect, grey with thacestreak; and V. vildinica, 5 fect. white, are distinct

Fince. - Teriwinkte. Pretty rock llats, growilly frecly in ortinaty soit. V. herluace, of ereppug halit, wilh purplish-blue towcrs: V. mans, ul trailing habie, bue: and V, major. ito 2 fect figh, also trailing, are subthle fur the rock garten. The last two are evergrecu, anm atforll barities whith differ in the colour of their finwers, while sonte are single and others domble. liula.-Viblet. Chammin: dwart platis, nostly evergrecn and of tufted hitit, requiring well-wothell rich saluly sull. y calcarata, 6 inches, likit blue: V. cornuta, 6 to 8 inches, bhe; V. lutea, q inches. yellow; V. altaica
 laventer,blue: V. pedata, 6 inches, pale blue; amblyams, odorata, the Sweet Vinlet, in its muny single and donble thowered varictics, are alt desirable.

Fucca.- Noble subarloorescent liliaccous ndants, which should be arraun
very garden. They do well in light well-tramed soils, and bate a ciose every garden. ohaped lowers, and the foliage rosulate, swordshaped, and spear-puinted ahaped Jowerg, and the foldage rosulate, sword shafcd, and spear-phinted ore good and distinct; and of the finditer and more herlarmens somes y^{\prime} : ore good and distinct and of the dwarer and more herlarmens sonts erst two llowering ammully.

The taste for cultivation of the class of plants of which tho foregoing list embraces the more prominent members is on the incerease, and our gardens will beacfit by its extension, but we may hope that the folly of limiting the interest of the llower garden to this class of subjects alone, to the exclusion of the brilliant lredding flowers which have been evolvel out of less showy materials by the gardener's ekill, as some writers would seem to desirc, may neve, be realized.
We now proceed to notice at areater lengtl the more important plants of this clase, -those to which horticultorists have devoted the greatest attention, with the result, in many cases, of largely increasidg the varictics of these " horists" flowers.
45. The Ancmone (Anemono coronaria), often called the Pofly Anemone, is a tuberous-rooted plant, with parsley-like divided leaves, and harge showy popprylike blossoms on stalk of froni 6 to 9 inclics high; the howers are of trarious colours, but the priacipal are scarlet, crimson, Llue, puryle, am white. There are also donkle-fowerd varicties, in which the stamens in the centre are replaced by a tult of marrow petals. It is an nld garden favourite, and of the doublo forths there are named warietics. Theygrow lirst in a loamy soil, errichel with well-rotten manure, which shothd !e dua in tutow the tulcers. These may be planted io October, and for sucerssion in January, the abtum planted mes lwing protectel by a covering of leaves or slonet stable litter. They will flower in Mhes and June, and when the leaves have ripened should be taken uf inere a diy room till planting tinc. Arcmones aro easily raisel frotn the sced, and a bed of the singlo varicties is a valuable oudditen to a flowergarden, as it alf rume in a varm situation, an abumbance of handsome add often bredingt spring tlowers. alumast as early as tho suew-
drop or crocus. The genus contains many other lively §jping bluothln, jlants, of which A hortensis and a fulgens have les dividual lasues aml splendid rosy-purple or scarlet Howers, the: repore simine t atment Another bet is represented hy A Pulsa. tilla, the l'usque-flower, whose violet blossons I eve the outer surfice hairy, these preter a calcatcous soil Thu splendid a japonea, and its white waricty called Honorine Jobert, the latter espectally. are amongst the fine"t of autuman boming hindy furenmals, they grow well in light wil, and tath $2 \frac{1}{2}$ to 3 Feet in lught, bloomng continually for several weeks. A grould of deall spectes, represented by the mative Bitish A. Hemorest and A. apemma, are anoongst the must beautiful of sjuing thowers for planting in woods and slindy llaces.

46 The Antionhinum (Antirrhinum majus) is vesy easily managed. Sown in heat, and forwarded antil the general time for planting out, it becomes a summer annual, and may be so treated (par. 33). bnt under a slower and more harly regine it may be somn in boxes io August, and pricked off intu other boses and wintered in a lrane for, thongh not offen destroyed, it sometimes suffers greatly un o severe season So treated, and planted out in welf-prepared beds oi good frable garden soil, it will become very showy and effective, and if a good straill of seed has been obtained many very beautifal kinds may genemally be sclected from the progeny. The oamed sorts are propiagated by cuttings, and wintered in a frame. Sone of tha double-flowerd solts are interesting. There ase forms with white, yellow, rose, crimson, magenta, and varionsly motlled and striped flowers, some of tien of great beauty, but the named sorts are too fugitive to make it desimble to record a list of them.

47 The Auricula (l'rimula Aurieula), a native of the Alps, has been Aurarul. an immate of British gasdens for about thrce hundred years, and is still prized by florists as one of their choicest flowers. The auricula loves a cool soil and shaly situation. The florists' varieties are grown in ricle composts, for the preparation of wbich numberless reteints have been given; but many of the old oostrums are now exploded, and a more rational treatment has taken their place. Thus Mr Douglis, themost accont anthority, writes (Hardy Florists' Flowers):-
"There is no nystery, as some surpose, about the pothiog, any more than there is ithout the putting material. The cumpost ohould conaist of turly luan fonf parts, leaf monhli one part, Blarp river or silver sand one part, and arom 3 to 44 inches ill diameter, insile mensure; abnut 1 inch of potsheri', fromb be placul in the button of each put, and over this some fitrous turi shonld be plachi inl whe bution of each thet, and over this some fibrous turi, slauld pe slahen from the ruots of the plants to be potted; snd before potting cut nff, if Decestary :athorts.
lather firmly aluabil the roots.

Auriculas are lest grown in a cold framic mounted on legs about 2 feet from the ground, and provirled with hinged sashes. A graduated stage Formed of woot hattens 6 inches broad, "ith a rise of 2 inches, slould the fixel so as to take cach oue row of pots, with the phants standing at about 15 inches from the glass; the spaces berween the shelves should be closen, while the top loand of itie back and the froat shoull he binged so as to be let down when desired for ventilation, the sashes, too, being movable for the same pupose, and also to afford facilities for examining aml attending to the plants. flois frame should fice the north, and stand undir shedter of a wall or hedge No protection will be nechel except in very severe fiosts, when two or thre thicknesses of gatedn nate may be thown oser the glass, and allowed to wumaiu of uatil the soil is thawed, shoulat it become frozen.

Auriculas may he propneated from seed, which is to be sown as soon as ripe, it luly or Ausust, in boxes. kept umber cover, mal exposed only to the rays of the moming sun When seed has been saved fom the funer sorts, thooperation is one of consinterable nicety, as it not unfregnently lapywn that the best seculings are at dist excedingly weak. They generally llower in the stconll or thind year, a few govel sorts beinio all that can be expected from a lage sowng. The established varnetios are increased by laking off the offshoots, an operation which is performed at the time of potting in July of the beginaing of August

The oliginal of the auricula is a hardy perenpial houb, of dware habit, bearing dall yellowish hossoms. "This and the commoner forms raised form seed, as well as one or twodouble furms, ane interesting: hardy botder flowers. 'lhe choice thetists" warieties are disided into live classes:- the greerecdget, with the margits of the flowers green; the grey-cdycd, "ith the great marions powdered nith meal so as to ajpear to be culourid grey; the while-edrcel, with the mealy powiel so dense as to cower the grenn; the selfs, whieh have none of the areen varieyntion of margin seen in the foregoing, but ate of some: distim t colonr, as purple, maroon, \&e. but have, lake the jreceling, in wite praste smatumang the eye; afd the alpincs, which texmbla the selts in not having any giten murginal varigation, Dut diber in havine a yrllowecntae more or less dense. T'lu Einlivitual fowers of the dirst thue groups of flovists' auriculas show four distinct cirches - fit, the the duter, which should have tin stamens lyiug in it. hut comeetimes has the pin-headed stigma instead, which is a defect: surend, them paste or cirele of pure whito slarounding the eye: i thital. the hady colour, a circte of some dask int, is maroun of viule:, which fouthers ont more or less towardy
the edge, but is the more perfect the less it is so feathered, and is quite fally if if breaks through to the outer circle; fourth, the margin, which is green or grey or white These circles should be about equal in width and clearly dofined, and the nearer they are to this standard the more perfect is the flower. In the group of selfs tho conditions are the same, except that there is no margin, and consequently the body colour, which should be uniform in tone, extends to the edge. ln the alpines there should be no paste or white surrounding the eye, but this space should be either golden-yellow or creamy-yellow, which makes two subdivisions in this group; and tho body colour is more or less distinctiy sbaded, the edges beng of a paler hue. There is besides a group of laced alpines, in which a distinct and regular horder of colour surrounds cach of the marginal lobes.

The following is a selection of good sorts now obtaiuable in the respective groups:-
Green-edopl.-Leiph's Cul. Taylor, Booth's Freedom, Iitton's Imperator, Ashton's Erince of Wales. Trail's Prince of Greens, Pace's Champinn. Grep-edged,-Heatly's, George Lighthody, Lancashire's Lancashire Hero, Sykes's Complete, Kay's Alexader Melkiejohn, Walkers George Levick Headly's C. E Brow'

White edged. Heap's Smiling Leauty, Hepworth's True Eriton, Ashworth's Regular, Taylur's Glory, summerscale's Catherina, Lee's Eright venus. Selfs.-Netherwood's Othello, Compbell's Pizarro, Spalding's Blackbird, Pohlman's Garibaldi, Turner's C . J. Perry, Lightbody's Meteor Flag.

Alpines.-Turner's Joho Leech, Turner's Eessle Ray, Gorton's Diadom, Turner's A. F. Darron, Turner's Tessie, Turner's Suste Matthams.
48. The Carnation (Dianthus Caryonhyllus), a native, is some suppose, of Italy, hut occasionally found in an apparently wild state in Englaml, has long been held in high estimation as a garden flower, not only for the beauty but for the delightful fragrance of its blossoms. The varieties are numerous, and are rangod under three groups, called bizirres, flakes, and picotecs. The last, from their distinctness of character, are now generally looked upon as if they were a different plant, whereas they are, in truth, bot on seminal develomment from the carnation itself, their numbor and varisty being entirely owing to the assidnous endeavours of the modern florist to vary and to improve them.

The true carnations, as distinguished from picotees, are those which have the colours arranged in longitudinal stripes or bars of variable width on each petal, the ground colour being white. The bizarres are those in which strijes of two distinct colours occur on the white ground, and it is on the purity of the white ground and the clearness and evenness of the striping that the techoical merit of each variety rests. There are scarlet bizarres marked with scarlet and maroon, crimson bizarres marked with crimson and purple, and pink and parple bizarres marked mith those two calours. The flakes are those which have stripes of orly, one colour on the white ground, and here we have phrple thakes striped with purple, sarlet flakes striped with scarlet, aml rose flakes striped with roso colour. There aro still the selfs, or those showing one colour only, as white, yellow, crimson, purple, de., and these are commonly ealled clores.

The piefoce differs from tho carnation in having the petals laced insteal of striped with a distinct colour; the sulgroups bear the designations red-edged, furple-edgel, rose-elged, and scarlet-edged, all having white gromels; each eronf divides into two sections, the heavy-edged and the light-edged respectively. In the heavyedged sorts the colonr appears to be laid on in littlo tonches, passing from the elge inwarls, but so chosily that they coalesco iuto one line of colour from tha to it 2 of an inch broal, and more or less feathered on the imer edge, the less featheroll the betor; while the lightedged sorts display only a fine cife, commonly called a wire edge, of colour on the white grounl. To these have to he added yollow picotees, a group of great beanty, but deficient in correctress of marking.

Even the choico varieties of the carnation or pirotao may be very successfully grown is most unfavouratle localities; but tho commoner sorta, sucle as anty le raised freely from sced, on account of their robust constitution, are perhapes to bo preferred for the ondinary flower rarden; while the single llowered sorts aro by no means to be lespised, especially those hawing decided colours. It is by gelecting the best seedlings that bow varnties of merit are probucol. The atablisheal varimes are propacater! by layers or by pinuse, the formerphan beingadoped whth stomg heal hy platsinanordinarily congenial season. 'fle latter is sometisies had recourse to when the

 in a bud whe there is a very slight bombun lut, vill generally root. layering is, fowever, a more expeditions mombe, It is perfurned at the time th:o phata are in thower, ar aq smon after as pussille. Tho rontal fayersmay heremovel and lutted or hanted nat towards the emi of Sapember, or varly is Cectuber, the chrsine sorts being lottod in rathres suall pots and kigt in a colli fiameduring winter, at which seaton the ereat enemy In bu grandoll netant is domp.
 free from wireworm, and as this as it ram levebtimnen! to four

 old limm rubhiah, if athiatab, will als, bo an alvandye. Thas
sloould be laid up in a dry place, and frequently turned over with the fork or spate. so as to be in a free friable condition for uso towards the end of February or early in March. As to the size of the blooming pots, Mr Douglas observes:-
"I do not care to use them larger than 10 inches in diameter, insite measure, and three plants may be put into a pot that size; a 9 -inch pot may be used for a pair of a strong growing sort, whine weaker growers may he potted two in an s-inch or even a 7 -inch pot. If it is intended to proparale all the layers produced, that must be taken into account, as the plants will not have so good in chance in a small as io a large pot. After putting they should be kept in a well-ventilated frame until estahlished, and set in the open air in an open sunny spot when the weather becomes genihl, the flowiring stems being tied up carefully as they grow up. At the thowering seasou they should he put in a thoronghly ventilated glass house, where they can be should he put in at inoronghy ventilated glass house, where they can the keep off rain ind sum. Where there is any tendency in the thowers to hurst the calyx on one side the other divisions should be slit down a little, and the calys should have a ligature, not too tight, of thread or matting; this, if tone caly should have a deature, not too tight, of thread or mating; this, if thne
early, will prevent the petals falling aside and destroying the symuerry of early, will p
the flower."

The groups are so numerous that to name a selection of the best sorts would occupy too much space. Ample information on this head may be oltained irom Mr Douglas's book already referred to (IIardy Florists' Floucrs) ; and critically descriptive lists of all the valieties then grown, by the highest authority, MrE.S. Dodwell, will be found in the volunes of the Florist and Pomologist for 1876 and 1877.
49. The Chrysanthemum (Chrysanthemum sineose) is one of the Chrywan most popular of autumn Howers. It is a native of China, whence thenum it has long been introduced. The small-flowered pompous, and the grotesque-llowered dapmese sorts are of more recent date, the former having originated from the Chusan daisy, a variety introduced by Mr Fortune in 1846, and the latter having also been introduced by the same traveller about 1862 . The plants may be increased by division, in March or April, the divided portions being planted in beds of rich seil, under the shelter of a wall or fence, as a safeguard against cold and stormy weather. The shoots shonld be thinned out to abovt four or six from each root, and these should bo staked as they grow up. They look extremely well in such a borter, if arranged in two or three rows according to their heights, and with a juilicious intermixture of colours, the advantage of growing them in this way being that a canvos screen can be put over them, by which means they not only tlower in greater perlection, but last for a longer perinil. They are of the easiest culture, and may be grown readily chongh even in town gardens.

The chrysanthemum is, however, of very great importance as a greenhouse phat for nutumn and winter flowering", and for this purpose, as well as for exhibition culture, it is generally raised from cuttings, of suckers, which are taken off by some growers abont Octolier, and planted singly in 3-inch pots, the plants being wintered in cold frames, and shifted into larger-sized pots about March; they are tepled when about 6 inches high, and the young shoots thas induced are again topped when 3 or 4 inches long. Others take short cuttingsin in March, and strike them quiekly in a mide hotbed, airing freely as soon as rooted, aud shifting and stopping is in the other case. As soon as fine weather sets in in June, the plants, having rescived one or two previo:s shifts according to the size which they aro required to reach, should be plunged outhoers in a tolerably opon spot, and there carefally watered and syringed. Almut the middle of J uly they should be shifted into their blooming pots, the fompous requiring less room than the large-flowered and Japanese sorts, and alte: the end of duly it is not adrisable to continno the topping-techically "stojying"-of the young shoots, as it may interfere with the blooming. As soon as the flower-buls become visibhe, the phonts are benefited by a watering of weak liquid manuro two or three times a week. The pots should still be planged in a bed of coal ashes or cocoa-nut refuse, till about the cad of Soptember, when they shouh bo pit under glass as a precaution aganst injury from antunn frosts, having, however, full ventilataon by day. Almmlant root watering is nesessary matil the llowers are levelopel, when the supply may be slighty diminished, and tho at mosphere shond bo kept dryish liy abondant ventilation. Tho comynst used for posting in all the stages after the cuttines, for which any light earth will suftice, should consist of four parts loam to one of rotien dungand ono of leaf-monld, givitug mather more deafomotal atme loss manure for the first potting, atul rither more manure fir the last: a litthe eonssely-ponded fritty matter may be alded alventagionsly. For the linge-lloweded sorts 11 -inch pots are largo enouth to phence very hampomes specimens, and S-inch pots stafieo fur the pompons, hat very nethl plans may be had in stialler pots than these. por fine spectmen flowers only a single shoot is allowed to grow up, athl this roes en unstopneti, and limally flevelops two or three very largo flowrs; these lattur repuire disbubliug, as some sorta give lhe best flowers from the terminal buis, others from the sido bris. The aphis or green fly is armat. enmy to the plants, and nast lue bept umder ; instinir the luart of the shocts witb tablacen powder is a safe and ceflicient remedy; but, whateser bo the muthon "mphoyed, it shoulal lar aphed bufore the blossums open.

Tha following are a fow of the hest vanotios in each section :

Jardin des Plantes, Lady Hardinge, Mrs Georre Fandle, Mra Heale, Prineo Alfred, Prince of Wales, Princess of Wales, Venus, White Globe. These are alt ineurved towers. To them night te added, for their merit as conservatopy ghelmea Mauts, Chevalier Doonase, Crimson Velvet, Julie Labravere, and
$31 r s$ Forsyth. 31 rs Forsy th.
Japanese.- Flaine, Falr Maid of Guernsey, James Salter, any Wizard, early sorts; Ur Masters, Gultoo, Grandillorn, Hero of Madala, Me's Mcrrilees, Furptreum albun, Fed Drapon, and The Daimio, later Surts.
Anemone-flowered.-Acyuisitiun, Empress, Wleurde Marie, Gluck, King of Anemones, laty Marsidet, bunis Lionimy, Miss Margaret, Niss pethers, Arince of Ancmones, lriacess Louise, Sunthower:
Pompuns-Adonis, Audromeda, Brilliant, General Canrobert, Mille. Vartha, Nodele, st Michaed, Salamon. To these may be added of Anemoveflowered pompons-Autonius, Astrea, Culliope, Cedo Nulli (four coloursh, Firetly. Jan IIachette, Madame Montels, Marie Stuart, Miss Nightingale, Mr Astie, Derle, kose Anaguerite, Vmginale.
Within the hast few yenrs a new type of dwart-growing early-blooming varietie's lits spung up, aut these nre now increasiog in number. They some inta lhouer in sugnst athl Sentenber, athl are extremely useful for Hlling upexhansted beals in the llower garderias well as for cutting. They are cultivated exactly as the others. Five following are usefol sorts of this group:-Alrastug, Cluenatella, Delphine Cabuehe, Eréderie Pelé, Madame

50. The Crocus sets our garlens aglow with its bright colours almost as soon as winter has departed. These crocusea of the flower garden are mostly scmmal varieties of C. vernus ant C. aureus, the Tomer jielling the purple and striped, and the latter the yellow varieties. The headquaters of the genus is in eastere Europe and Asia Minor, but C. vermes is found wild io some parts of Englaod. It has been much inproved by luth florists, and large quautities are annually imperted from lholland. The erocus succeeds in any fairly good garderisonl, and is usually planted near the edges of beds or borders in the flower garden, or in broadish patches at intervals along the mixed borders. The roots or conns should be planted Sinches below the surface, and as they become crowded they should e taken ul' unll reflaoted with a refreghusent of the soil, at least every five or six years. Crocuses have also a pleasing effect when doted about on the lawns and grassy banks of the pleasure ground. Some of the best of the varieries are :-

Purple: Davil Eizzio, Sir J. Franklin. Shaded lightblue: Lilaceus euperbus. Blue tipped with white: Ne plusultra. Strivet: Albion, ha Majestueuse, Sir Walter Scott, Cloth of Silver. Bhite: Carolive Chisholm. Jellow: Large Duteh, Cloth of Gold.

Tho species of Crocus are not very readily obtainable, but those who make a speciality of hardy bulbs ought certainly to seareh them out and grow them. They require the same culture as the more fumilisr garden varieties; but, as some of them are apt to suffer from exeess of moisture, it is advisable to plant them in prepared soil in a raised pit, where they are brought nearer to the eye, and where they can be sheltered when necessary by glazed sashes, -which, however, should not be kept closed except when the plants are at rest. The autumn-blooming kinds ioclude maoy plants of very great beauty.

Of the spring-fowering species, these are C. aureus, Susianus, stellaris, sulphureus, chrysanchus, mesiaeus, olivieri, and vitellious, having yellow flowers of various shades; C. vernus, etruecus, 1 mperati, mioimus, susveolens, and velnebeosis, with blue or lilae fowers; C. albitlorus, Fleischerianus, versicolor, stricius, and bifforus, with white or whitish flowers. Of the nutumn-btooming species, tbere are C. speciogus, Clusizous, medius, orphaDills, Jongifiorus (odorus), Pallasit, Thomasil, Salzmannianus, Duditlorus, euturoualis, serosinus, Sicberi, Cariwrightianus, nod byzantinus, with lilac or purple flowers; C. Doryauus, vallicols, hadriaticus, eaucellatus, and Cambessedisuus, with white or winitisb flowers; sad C. Scharojani with flowers of a rish saffod yellow.
51. The Crown Imperial (Fritillaria imperialis) growsup to a height of about 3 feet, the lower part of the stoutish stem being furnished with leaves, while near the top is developed a coronal of large pendent flowers surmounted by a tuft of bright green leaves like those of the lower part of the stem, only smaller. The flowers are bell-shaped, yellow or red, and in some of the iorms doable. The plant grows freely in good garden soil, preferring a deep well-drained loam, and is all the vetter for a top-dressing of manureas it approuches the flowering stage. Stroag clumpa of hive or six roots of ono kind hapo a very fine effect. It is a very suitable subject for the back row in mixed Hower borders, or for recesses io the frotet part of shrublery borders. It flowers in April or carly in May. There are a few named varicties, but the most generally grown are tho eingle and doublo yellow, and the single and double red, the single red having also two variegated varietics, with the leaves striped respectively with white end ${ }^{3} \mathrm{ellow}$.
52. Tho florista' Dahlia (Dablia variabilis) yields two groups or vrictics, which are known as show and fancy dahtias, - tho former congisting of all self-coloured flowers and these light-ground onea which are edget, tipped, or laced with a dark colour; the latter, all fowess with the colour in stripes like a carnation, and all darkgrond flowers tipped with white. Besides these there are ledhing dailias, which are dwarf-growing sorta with decided calours, much nsell in flowor-gurdens where large effeets are required to be producad; and poinpon dahlins, which are very symmetrical small. Aowered sorts, better adajted for cutting than the more hulky flowers of the ahow rarieties. The single-flowered D. caccinea, a most brilliant and highly effective ornamental plant, with somo other allied kinds, has recently attracted mach attention, and can be commandod as an admirable half-hardy border fower, and well adarited
forms of D. rariabilis, and the tuberous roots are very apt to be lost during kinter, but it is readily raised from seeds, and if sown early flowers the same sesson. The varieties of the tlorists' dedilia aolected for the flovier garden should be those ouly which are of effective colours, whether selfs or others, and such as throw out their flower heads or long stalks elear of the follage. The same remark applies to the pompons.
New varicties are procured from seod, which should be sown in pots or pans towards the end of March, and placed in a hotlied or propagating pit, the young plants being pricked of in to nots or boxes, aud gradually hardened off For planting out in June ; they. will fower the same season if the summer is a genial one. The older varicties are propagated by dividing the large tuberous roots, in doing which care ia ust be taken to leave an eye to each portion of inber, otherwise it will not grow. liare.varicties are sometimes grafted on the roots of others (see fig. 57, 1. 237). The best and most general mode of propagation is by cuttings, to obtain which, the old tubers are placed in heat in February, and as the foung shoots, which rise freely from them, attain the height of 3 inches, they are taken off with a heel, and planted singly in sroall pots filled with fine sandy suil, and pluaged ia a moderate lieat. They root speedily, and are then transferred to larrer pots in light rich soil, and their growth encouraged nntil the plantiug-out season arrives, which is about the midde of June.

Dihlias succeed best in an opeu situation, and in riche deep losm, but there is scarcely any garden soil in which they winl not thrise, if it is maured. For the production of fine show flowers the ground must be deeply trenched, and well mamured annually. The bravehes as well as the blossoms require a considerable hut judicious arnount of thinuing; they also need shading in some caves, and individual protection from rain and wind. They may stand singly lito ecanmon border howers, but have the most inposing appearsico when seen in masses arranged according to their height. Florista uaadly devote a plot of ground to then, and plant them in lines 5 to 10 feet apart. This is dono about the beginning of June, shakering them if necessary from late frosts by inverted pots or in somo othes convenient way. Ohd roots often throw up a multitude of shoma, which render thinning necessary. As the plants ivereaae in height they are furnished with strong stakes, to seeure them from hige winds. Dahlias flover on till they are iaterrupted by frost is autumn. The roots are then taken up, dried, and gtored in a cellar, or some other place where they may be secare from fros and moisture. See article Dahlia, vol. vi. p. 762.
53. The Delphinium, or Bee-Larkspur, is so called from the resem- Isiblance of the petals in the original species, D. elatum, to the hairy phintu body of a bee. The original had comparatively small flowers, bat by hybridizing they have been very much increased in size, and improped in quality, and now constitute one of the brightest ornanonis of the mixed border, or the shrubbery group, often throwing np secondary blooming stems, especially if the first are removed in good time, instead of being allowed to form seeds. The colour varies from red diah-blue to pale blue or grey, but the prevailing one is dark blae. Delphiniums need a good rieh soil, that of a lonmy character being the best. They must be replanted at least erery second jear, and the soil either renesed or sell manured and thorougbly broken up. Replatiog may be done equally well early in autmon or when growth recommences in spring. The commoner single varieties, such ${ }^{i} 3 y$ the brilliaut D. formosum, may be reproduced with but alight variation from seed, but the doulle ones must be pronagated by division. Unless sewn as soon as ripe the seed is apt to take long to vegetate. If novelties are required, the flowers cin be cross. fertilized. For mere propagation the best method is division: for this purpose the stems should be cut dovin early, soy "3 July, the offect. potted each into a small prot of light soil, and wirtered in a frame The plants slould tee well exposed to the sun; but shelteres? from strong winds, and promptly and carcfully staked. In a mixed bord. they should be planted in one of the back rows; lut their spirt. like inflorescence is very effective when they are phated seomb together in a gronp or bed in the front part of the shrolbery border. They vary in height from 3 to 6 feet. The following are some of the best modern varieties:-
Sirgle fincered.-Amahilis, Celestin, Gloire de St Marde, Mailame Cheld Madaune Hicnri Jacotot, Mrs Gerard lejgh.
Dowhle-foncered.-Barlovi, Clair Courant
Mantern de Minera, Foil Léopold. Courant, grandlonim plequm, Ketclects
54. The Gludiolus. described scparately in vol. x. p. 732, has be- G:'rio come one of our most popular flowers, anl is a striking ornament of our gardena during the late summer months. The modera race of flowers has sprung Erom G. gandarensis, but others (see separate article)are gromn to a snaller extent, and come in st an carlier season. G. cardinalis, crucntus, and floribundus belong to this latter series, and are pretty subjects for tho mized borders, while for beds G. brenchleyensia, one of the early hylurids, is still onc of thas most luilliant and effective, the flowers being of a glowing acarlat Thes choicer kinda afford a variety of colours, including white, yellow, blush, rose, salmon, cerise, scarlet, crimson, nod mar-purgle, many of them being prettily atriped or blotched. Beicy tall (3 tes 4 text),

furnished below with some bushy foliage plants, Letween whieh their spikes of brilliant flowers inay appear; or they may be planted in the nixed border, where clumps of half a dozen roots of one kind have a much finer appearance than when they are dotted about singly.
A deep sandy loam is the best soil for the gladiolus, and this should be trenehed up in October and enriched with well-decomposed manure, consisting partly of cow dung, the manure heing disposed altogether below the bulbs, a layer at the bottom of the upper trench, say 9 inches from the surface, and another layer at donble that depth. The bulbs (technically, corms) should be planied in succession at intervals of two or three weeks through the months of March, April, and May. They should be planted about 3 inches deep, a little pure soil or sand being laid over each before the earth is closed in about them, an arrangement which may be advantageonsly followed with bulbous plants generally. In hot summer weather they should have a good mulching of half-rotten manure, and, as soon as the flower spikes are produced, liquid manure may oceasionally be given them with advantage.

The gladiolus is easily raised from sceds, which should be sown in March, in pots of rich soil placed iu heat, the pots being kept near the glass after they begin to grow, and the rlants being gradually lardened to permit their being placed out-of-doors in a sheltered spot for the aummer. In October they will have ripened off, and must be taken out of the soil, and atored in paper bags in a dry room secure from frost. They will have made little bulbs from the size of a hazel nut downwards, according to their vigour. In the spuing they should be planted like the old bulbs, and the larger ones will flower during the season, while the smaller ones must be again harvested and planted out as before.
The following are good varieties of their respective colours, but new varicties are contindally appearing, which havo at least the merit of coustitutional rigour :-

Crimson, Scarlet, Red, de-Horsce Femet, John Wैaterer, Lord Bridport, Victory, Virgil, Lord Napier, Hesperia, Marniticent, Astrea, Lycoria, Adilison, Meyerbeer.
Rose, Salmon, de-Figaro, Mons. Legruve, Sappho, Madame Furtuio, Oberon, Grandeur, Ulysse, Miton, Ninon de J'Enclos, Sir Jusenh Paxtom.
Purple, Antiope, Lugene Scribe, Robert Fortune, Lavépede, Thomas Methven, Nadame Vilmorin, La Favorite, Mozart.
White grount.-Accius, Mrs Rejnolds Ilole, Reine Blanche, Camova, Mogarth, Osci, Didon, Norma, Sylphide, Madame Adele Souchet, Burtie Rabourdin.
Yellow,-Citrinns, Nestor, Yellow King, Ophir, Crcesas, Pactolo.
55. The Ifllyhock (Althea rosea), having been already treatel of in this volumo (page 102), it only remins to add that, though it is a peremnial, it is not to be had in perfection unless a supply of younir plants is raised annually. The early part of Augnst may be considered as the season for the blooming of the hollyliock.
The fullowing are a few good sorts for a begimer:-Acme. Back Com, Cunstiree, Conquest, Edward Speed, Eleador, Emperor, Jiuc Kine, (iollen Drap, Incompurable, Jessie Dean, Joshna Clarke, Marvellous, Jr Chater, Octryia, Luby Quecu, Scarlet Gem, Tyrian Prince.

Flys.

56. The Hyacinth (Hyacinthus orientalis), noticed under the houding IPracinth (q.v.), one of the most beantiful and fragrant of the sping Howers, is a native of the Levant, where it occurs abundantly, in form not unlike our common harehell. It has long beosa a Fivourite in the East; but it has leen brought to its present atificial perfection iu Lolland, chicfly singe the beginning of the last century, ant the bulbs are annually imported from Haarlom and its vicinity in very large numbers.
The hyacinth delights in a rich light sandy soil. The Dutch incorporate freely with their naturally light soil a compost consisting of one-third consse sea or river simel, one-third rotten cow dung witheut litter, and one-third lear-mould. The soil tlus renovated rotaing its qualities for six or seven years, but byacinths aro not Ifanted upon the same place for two years successively, intermediary crofs of narcissus, crocus, or tulips heing taken. A good comfinst for hyacinths is sanly lom, decayed foaf-nould, rotten cow ilung, noll sharp samel in "qual parts, the wholo being collected and hail up in a heaparel turnesl ower recasionally. Well drained beds made ap of this soil, and refreshef with a portion of new compost annually, would grow the lyarinth to perfection. "hae best tine to want the bulth is towards the ent of October; they should be arrunged in rows, 8 inchess as miler, thero being four rows in canh bed. Tho holbs shobth the swhe ahout 3 or 4 inclues dwep, with a small quantity of cleav sant phacel helow moround cach of them. The beds slomld the cowrod with deceyed tan-lark, or halforten dung litter, amb in sewro wather may bo cowred with mats supportes on hocpla, whith may the continuel at night whon the plazte have grown up, hat they should have hull cxpuraro to layligit. As the flowerestums infura, they are tiel to lutle rods to preserve them from actintut. If the hullse nre at all pized, the etrans shmid be brok ofn offas sow an the thowering is
 colomo. the hullas may loe taken mp, the leaveacut iff near their liae, wh the loblublait out in a dry airy shaly lawe to ripm, after which

tips of the leaves assume a witherdi apperrance, to bake ur tho butbs, and to lay them sideways ow the ground, covering them with an inch or two of earth. About three weeks later they are again taken up and cleaned. In the storeroom the roats should be k*pt dry, well-aired, and apart from each other.

Few plants are better adapted thary the hyacinth for pot culture as greenhouse decorative plants ; and by the aid of forcing they may be had in bloom as early as Christmas.. They flower fairly well ins 5 -inch pots, the stronger bulbs in 6 -inch pots. To bloom at Christmas, they should be potted carly in Scptember, in a compost resembling that already recommended for the open-ais bells; and, to keep up a. succession of bloom, others should be ponted at intervals of a few weeks till the middle or end of Novernber. The bulbs should bo planted about level with the soil, and if a Iittle sand is put immedi. ately around them so mueh the better. Tle z pots should be set in an open place on a dry hard bed of ashes, and ke covered over to a depth of 6 or 8 inches with the same material; and when the roots are well developed, which will take from six to eight weeks, they may be removed to a frame, ansl gradually exposed to light, and then placed in a forcing pit in a heat of from 60° to 70°. When the flowers are fairly open, they may be removed to the greenthouse or conservatory.

The hyacinth may be very successfully grown in glasses for ornament in dwelling honses. The glasses are filled to the neek with rain water, a few lumps of charcoal being dropped into them. Tho bulbs are placed in the hollow provided for them, so that their baso just tosches the water. This may be done in september or October. They are then set in a dark eupboarl for a few weeks till roots are froely produced, and then gradually exposed to light.

There are botwsingle and double-flowered varieties, but the singlo are generally preforred, as the bells are arrange more elosely, so that they form a better spike than the doubles. i few good sorts aro named below :-
Rads-Of singlez-Cnvaignac, Lina, Macaulay, Nonms, Sultan's Favourite, Yon shaider, Vuarbaak, Josebhine, Fabioh, Robert Steiger, Madame Hulgsun, Enmelins. Of doubles-Lord Wellington, Waterloo, Niltun.

Dises,-Of siughes-Areus, Charles Dickens, Grand Lilss, Haydn, Lord Phhmerston, Orombates, Larun von Tuyll, Bleu Aforant, Leonidas, General Ilnvelock, Fernck Khan, Von Jlumbollt; the Last three very dark. Of dobbles-Ranrens Foster, Vin Speyk, Blokslierg.
Whites-Of singles-Grand Vainguiur, Nont Blane, Queen of the Netherlands, Grand Vedethe, Madame Van der Hoon, La Erinchise, La Grandesse, lilfridin (blush), Gandeur à Merveille (blush), alba anaxima, Miraniolime. grueen Vietorja Df doubles-La Cour d'Auroggne, Frince of Wiaterloo, Jertiv Lind.
Iellors - of simples-Ita, Bird of Paralise, Due de Matakof (striped with rei). Of doubles Janne Supreme, Ophir al'Or. Croesus.
To thase may be alded the carly-flowering single white Roman hyacinth, is smatl-growing pure white varicty, remarkalsle for its fragrance, and well adapted for forcing, as it can be had in bloom if reqpired by November. For wimbows it grows well in the smill glasses combranly used for erocuses suth for alecorative purposes should he plantod abont five bubs in a 5 -inch pot, ne in paus belding a ilosen each. If rown for cut fuwers it ean be plantul thickly m boxes of nuy convenieut saze.
57. The Fris family includes a largo number of kinds of various labit and chavacter, all of them being plants of exeeeding beantyf and remardable for their brilliant colours, am? for having the three outer segments of their flowers reflexed. "lhere are two well-distinguished groups ealled the bulbons. and the rhizonatous. The hardier bulbous irises, including the Spanish iris (I. Xiphinm), and the English iris (1. xiphoidos), repuite to be planted in thoroughly drained beds in very light open soil, moderately enriched, and should havos rather shoitered position. Both thess present a long series of trantiful varieties of the most diverso colours, flowering in June and July, the smaller Spanish iris being tho earlier of the two. Thwre are wany other smaller species of bulbous iris. Being liahle to perish from cxeess of moisture, they should have a wull-drained bed of goot but porous soil made up for them, in somo sunny spot, and in winter should le potected by a G-inela tovering of half-deciyed leaves or frosh cocoa-titue refuse. To this sut belong 1. persira, retieulata, filifolia, lliszrio, juncea, and otlers.

The lerbaceons pereminal hises, known commonly as tho Hag inises, are for the most purt of the easicst eultury ; they grow ia any good freo gatalen soll, the sumbler and more deliente speches enty needing the aul of turfy ingedients, either peaty or loumy, to keep it light and oben in texture. 'The emrliest to blam are the fums of 1. pumila, which blosson during Marel, April, nud May, and are guitoi dwarf in luhit. I. susiana and I. iberica, with singularly noteded flowers, also alwarf in habit, bloom in April and May; and during tho latter month and tho following ono most of tho larger species, such as F. mrumaica, dorentina, billida, variegata, amoma, tlavescens, sambineina, negheta, ruthenien, de., produce their gorgeons llowers. of many of the formoning there nre, lonsinles the typieal form, a eone

'The buntiful Iapanese Inis Kinurfori is of comparatively motern introduction, and thongla of a distinct typo is equally leantiful with the better known specins. In their onter sekments thoy aro rather sprealing than deflexed, fomming an almost cioudar lower, whieh beeonus grite so in some of the vay remmaknble daplex variotios, in which six of these broal segments are primbued instsad of three. ()f this ton there are numberloges varieties cultivated nuter anime They repuise a sumdy pent soil, on a yool moist subsoil.

Lhy 68. The Lily (Lilium) is a very popular fimuly of hatly bulbous flowers, and one which takes a high position in public estimation. I'lie species are very handsome, and some of them have long been grown. They are so numerous and varied that no general ciltuma instructions will be alike suitable to all. Some species, as L. Martagon, candiclun, chalcedonicum, Szovitzianm, and others, will grow in almost any good garden soil, and succeed adruirably in loan of a rather lieavy character. L. chalcedonicum has an especial dislike to peat, which on the other land suits the tiger lily (L. tigrinume) well, and is indispensable for the beantiful Ancrican L. superbmu and canadeose. The choice and more delicate species, such as the grand L. auratuns, speciosum, and Krameri, which lave conec to us in recent times from Japan, the Californian L. JJumbokltii, pardalinmon, de., and the splendil hybrid L. Parkmanmi, are more particular as to soil, and require a deep bed of mixed thrfy loant and peat, with plonty of sharp grit, and a cool moist bottom. The margin of rhododendron beds, where there are sheltered recesses anongst the plants, suit many of the more delicate specics well, partial shade and shelter of some kind being essential. The intbs should be planted about 6 inches helow the surface, which should at once be mulched over with half-decayed leaves or coconGhere to keep out frost.

Ur Wallace, who has paid much attention to the culture of these plants, remarks, in his Notes on Lilics, that-
"Lilies require, so inr as their roots are concerned, a cool botton, abun. tant moisture, and for biost kinds a free draimage."' He also recommiends to "plant deeply, say G in 8 ioches, so that the roots may casily get into a
 sum's rays, to plant carly in the autumn, so that the roois may be at work all
the winter, and to plant ia a cool shady border, not exliausted by the roots of trecs, where the roots may always obtain moisture, and yet not be saturated."
The noble L. auratum, with its large white flowers, haring a yellow band and mumerous red or purple spots, is a magnificent plant when grown to perfection; and so are the varieties called rubro-vittatum and crientum, which have the central band crimson insteal of yellow. Of L. speciosum, also Japanese, the truc typieal form and the red-spotted and white varieties are grand plants for late summer blouming in the conservatory. The tiger lily, $\mathrm{J}_{\text {. }}$ tigrimum, and its varieties Fortumei, splendidum, and flore-pleno, are anonast the best species for the flower garden, L. Thunbergianum and its many varietics being also good border flowers. The pretty L. Leichtlinii and colehicum, with dronping yellow flowers, and the scarlet drooping-flowered L. tenuifolium make up, with those already mentioned, a series of the finest hardy flowers of the summer garlen. The Indian L. giganteum is pericetly distinct in character, having broad heart-shaped leaves, and a noble stem 10 fect ligh, bearing a dozen or more large deflexed, funnel-shaped, white, purple-stainel fowers; and the Chinese L. cordifolium is similar in claracter, but dwarfer in labit.

For pot culture, the soil should consist of three parts turfy lonm to one of leaf-mould and thoroughly rotted manure, adding enough pure grit to keep the mass porous. If leaf-mould isnot at hand, tuify peat may be substituted for it. The plants should be potted in October. The pots should be plunged in a cold frame and protected from frost, and about May inay be reinoved to a sheltesed and maderately shady place out-doors to remain till they flower, when theymay be pemoved to the greeplouse. This treatment suits the gorgeons L auratum, the splendid varieties of L. speciosum, and also the chaste-flowering trumpet-tubed L. longiflorun and it varicties.
59. The Lobelia is farmiliar in gardens under two very different forms, that of the dwari-cufted plants used for summer bediling, and that of the tall showy perennials. Of the former the best type is L. Erimus, growing from 4 to 6 inches ligh, with many slender steus, bearing througha a long period aprofusion of small but bright bluc twe lipped tlowers. That which is called sleciosa offers the best strain of the dwari' lobelias, but the actual varieties are being constantly superseded by new sorts. A gool varicty will reproduce itself sufficiently truc from seed for ordinary flower borders, but for formal bedding arrangements it is necessaly to secure exact uniformity by propagating from cuttings.

The berbaccous lobelias, of which L. fulacus may be taken as the type, may be called hardy cxcept in so far as they suffer from damp in winter; they throw upa serics of short rosette-like suckers round the base of the old flowering stem, and these sometimes, despite all the caro taken of them, rot off during winter. The roots should cither be taken up in auturan, and planted closely side by side in boxes of dry coal ashes, these being set for the timo they are dormant cither in a cold frame or in any airy place in the greenlouse; or they may be left in the ground, in which case a brick or two should be put beside the plants, some coal ashes being first placed round thein, and slates to protect the plants being laid over the hricks, one end resting on the carth beyond. About February they should be placed in a warm pit, and after a few days shaken out and the suckers parted, and potted singly into small pots of light rich earth. After being kept in the forcing pit uotil well established, they should be moved to a more airy greenhouse pit, and eventually to a cold frame preparatory to planting out. They should have a loamy
soil, well enriched with maune ; they require copnous waterners when they start into free growth. These tall growing lobelias mate gool pot jlants, for which purpose the suckers should be parted and the strong ones only potted singly in autumm; they should bo placed in a warn pit to induce them to root freely, trasserred when well established to an airy greenhouse shelf, and shifted on frequently during sping till they occupy fots a 900 in diameter. The soil shonld be a Yry rich loan, top-dressing being giten when they are coming into flower, and a very fre supply of water is essential. flay may be taised from seeds, which, being very fine, require to be sown carefully; but they do not flower usually till the second year except they are sown very early in heat. I few good sonts are-Curmuata, Distinction, Excellent, Peach-blosson, Tiuby, and Victoria Jegina.
60. The Nercissus is a garden flower of great beauty and consider. Narable varicty of form. the speces are ill bulbous plants of low cissus stature, and are with few exceptions periectly hardy. There are live well-marked sectious.
The Hoop-peticoat Nareissi, sometimes separated as the genus Corbularia, are not more than from 3 to 6 inches in height, and possess grassy ioliage and yellow or white flowers. These have the coronet in the centre of the flower very large in proportion to the other parts, and much expanded, like the ohd hooped yetticoats. The common hoop-petticoat, \mathcal{I}. Bubocoliam, has comparatively large bright yellow howers; N. tenuifolius is smaller and somewhat paler; N. citrimus is paler and larger; whie N. monophyllus is white. The small bulbs should be taken up in autumn and replanted in Jomuary or Febrnary, according to the state of the season. They bloom about Marel or April. The soil should be free and open, so that water may pass off readily.

A secoud group is that of the Pseudo-Nareissi, constituting tho gems Ajax of some botanists, of which the daffodil, N. Pseudo-Narcissus, is the type. In this the corona is also very large and pro minent, but is more clongated and trumpet-shaped. Ot this group the most striking species perhaps is N^{-}. bicolor, which has the perianth almost white, and the coronet deep yellow; it yiclds two tine varietics, Horsfieldii anl Entpress. N. cernuus (moschatus) and N. cernuus plenus are double and single forms of a creant-colouret species of great beauty; and besides these there are N. lobularis, nobilis, obvallaris, Telamonius, maximus, and others, amongst the most stately of the species, besides N . minor and minimns, which are niniature repetitions of the daffodil. All these grows well in good garden soil, and blossom from March onwards, coming in very. early in genial seasons.

Another group, the Mock Narcissi, with coronets of medium size, includes the fine varieties of N . incomparabilis, one of which is known as butter-and-eggs, N. pocuiformis (montanus), N. odorus and odorus minor (Queen Ann's jonquit), N. juncifolius, ado others. The hardier forms of this set thrive in the open border, but the smaller sorts, like Queed Ann's jonquil, are better taken up in autumn, and replanted in February; they bloom freely about April of May.

The Polyanthus ${ }^{2}$ areissi.form another mell-inatked group, whose peculiarity of podncing many flowers on the sten is indicated by the uame. In these the corona is small and slallow as compared with the perianth. Some of the hardier forms, as N. l'azetta itsulf, the type of the gromp, suceced in the open borders in light welldrained sonl, but tie bulbs should be deeply planted, not less than 6 or 8 inches below the surface, to escape risk of injury from frost. Dany varicties of this form of nareissus are gromm. Zhey aud. mit of jeing forcad into cally bloom, like the lyacinth and tulip. They vary with 3 white creany or vell 1 perianth, 2 m a yellow, lemon, primrose, or white cup or corouet; and, being richly fragrant, they are general farourites anongst spring llowers. The jonyuls, noticed above, as well as the dotuble white narcissus, are also grown in pots for carly flowering; and the polyantlus nareissi are sometimes used for bediling out in the spring garden. The dollowing varieties are good:-Razelman uajor, Gloriosa, Sir Ianac ぶewton, white with yellow cup; Grand Monarnue and White learl, whice with pale yellow enp'; Paper White, mure white, early ; Bathurst, P'erle d'Amonr, and Sulphurine, yellow with yellow or orange cup; and Grand Primo, a very fine yellow. These are planted or potted about October, and treated in the same way as the hyacinth.
There remains another little group, the Pheasant's-ege Nareiss (N. poeticus), in which the perimath is large, spreading, and conspicuous, and the coronet or eup very small and shallow. These pheasant'secye nareissi, of which there are screral species or wellmarked varieties, as N. radithoms, postarum, recurvus, se., blossom in succession during April and May, and all do well in the open borders as permanent hardy bulbs N. billorus, tbe primrose peeriess, a two-llowered whith yellow-cuppel spocies, is equally hardy ant casy of culure; \boldsymbol{N}. gracilis is yellow-flowered and blooms later, as does the yollow-fowered N. Jonquilla, better known as the jonquil, of which there are singlo and double donered varieties, the latter species being a great favourite.
61. The Trony is a remarkably showy piant, of which tro very fis. Pxomy tinct types ocenr in Euidens:-one the sthurgrowing herbacentis
perennials, with fleshy tuberiform roots and anmual stems, which have sprung mainly from [eonia alliftora and P. officinalis; the otber called the tree peony, stiff growing plants with half-wooly permanent stems, which have sprung from the Chinese P. Montan.

The berbaceas [reonies usually grow from 2 to 3 feet in height, and have large moch-divided leares, and ample flowers of varied and attractive colours, anl of a globular form in the double varieties which are those most prized ia pardens. They blossom about the months of May and the as well as laterin the summer, and as ornaments for large beds in pleasure grounds, and for the front parts of shrubberies, few fowers equal them in-gorgeous effect. A good loamy sail-rather light than heavy-suits them best, and a moderate surply of manure is beneficial. They are impatient of frequent transplantings or repeated divisions for purpuses of propagation, but when necessary they may be multiplied by this means, care being taken that a sound bud is attached to each portion of the tuberous roots.

The older varieties of P. albiflora include cindida, Iesta, fragrans, Humei, Pottsii, Reevesii, rubescens, vestalis, Whitleyi, \&c.; those of P. officinalis embrace albicans, anemoniflora, Baxteri, blanda, rosea, Sabini, \&c. The garden varieties of modern times are, however, still more beautiful, the flowers being in many instances delicately tinted with more than one colour, such as buff with bronzy centre, carmine with yellowish centre, rose with orange centre, white tinted with rose, \&c. We name a selection of a few of the light and dark coloured sorts, the former including tinted whites aud yellows, and the latter crimsons, roses, pinks, \&c.:-

Light-coloured Varieties:-Aurora, Boulede Neige, candida plena, carnea plena, Chamois, Cleopatra, delicata, festiva nusima, Impératrice Charlotte, Leoaie, Madamo Calot, Madame Vilmorin, maguittca, Marie Lemoine, Virginie.
Dark-coloared Varietics:-Ambroise Verschaffelt, ntrosnnguinen, Bossuct, Dr Bretonneau, Gloire de Douai, Jcauve d'Arc, Medame Furtado, ModesteGuérin, Mons. de Villeocuve, Oberlin, Prince Troobetskoi, purpurea superba, Reine des Roses, Souvenir de I'Exposition Uuiverselle, Surpasse Pottsii, Victoire dalme.

The Siluerian P. tenuifolia, with finely-cut leavea, and crimson flowers, is a graceful border plant, and its double-flowered variety is perhaps the most clegrant of its race.

The Noutans or Tree Peonies are remarkable for their subshrubby habit, forming vigorous plants sometimes attaining a height of 6 to 8 feet, and producing in April or May magnificent flowers which vary in colour from white to lilac, purple, and rose. These are produced on the young shoots, which naturally buil forth early in the spring, and are in consequence liable, uuless protected, to be cut off by spring frosts. They require to be thoroughly ripened in summer, and therefore a hot season and a dryish situation are desirable for their well-being; and they require perfect rest during winter. Small plants with a single stem, if well natured 80 as to ensure their hlossoming, maks very attractive plants when forced. 'lhey are increased by grafting in autumn on the roots of the herbaceous pxonies.
of the older varletics the nost conspicums is papaverifolia, while the following are of more recent asquisitun:-Atrozagninea, globosa, lilacina, I ieta, Keevesiana, sihmonea, anil yersicolor. Other garden varietiea areGlorlis Welparum, allaz granditlora, Emperor of China, lactea, ocellata, pur. pura, atromerpurea, Rulisson, violacea purpurea, violacea pleua, unicolor purpurea, beauty of Canton, Blanche de Noisette, Comte do Flandse, Elzabeili a'tatio, Hontersoni, Imperatrice, Jose phine, Leonollii, Madame Sthart Low. Mandarin, Professeur Morren, Hobert Fortune, Triompho de Gand, and Souvenir du Gand.
62. The Pansy.-This pomular flower, also called heartsease, bas gprung from the native British Viola tricolor, which has probably been crossel with some of the allitel speeies of this large and varied genus. The mollern varietics of the parsy consist in the main of three types:- the show varieties; the fancy varieties, ohtained a few years ogo from Belgium, and now vory much improved ; and tho belling varieties, which aro free-hlooming sorts marked rather hy effectiveness of colour in the mass than by quality in the inilividual Sower. The later are extromely usolul in spring flower gatdening.
The pasy dourishes in woll onriehed gaten soil, in on open bit cool situation, a lonmy acil boing preterable. Cow dung is the bust manure. The established sorts arvincreased by cuttings, whilst. qeeds are sown to procure moveltieg. The cuttings, which should eonsist by yreference of the smaller growths from the contre of tho plarit, may bo planted carly in Septerober, in samily soil, under a hand light or in boxes umder giass, nnul ns sumon as roated shonhe bin removed to a fresh bed of fine annly suil. Tlie seeds may be sown in Auguat or Septenter. The ben may be prepared enrly in Sep. tember, to be in readiness for planting, by bung will mamed with enw dung and treocted up to a depith of 2 fert. 'libe plants shoulal be plantorl in rows at atont a foot apapt. In spring they should bo moled with half-roten manure, and the shonts as they lengthan should be regened down into this emiched surfacu to inubce the formation of new ronta. If the hboms slow signs of exhanation by the inconstancy of their colone or making, all the fowera alomblibe jicked off, aml this top-dressinganl bexging down frawesp prormed in a thorongh nunner, watering in dry weather, ind kruphafe as cool aq possible. Sumessional bed may be put in sbeat Yubruary, tho young lianta being struck later, min wiatered
in cold frames. The fancy pansies require simila: treatment, ?ut are generally of a more vigorous constitution.

When grown in pots io a cold frame, about half a dozen shoots filling out a 6 inch pot, pansies are very handsome decorative objects. The cuttings should be struck early in Augusi, 'and the plants shifted into their blooming pots by the middle of October; a rich open loamy compost is necessary to success, and they must be kept free of aphides. Both the pofted plants and those grown in the open beds are benefited by the ase of liquid manure.
The bedding pansies possess a dwarf compact free-branched habit of growth, whieh results in the production of a constant succession of tlowers. They are a hardy race, flowering freely from the early spring onwards. These, with the varieties of Violia lutea and Viola cornuta, have latterly acquired great prominence from their utility in furnishing early flowers for the spring garden, and novelties are being rapidly produced.
63. The Pentstemon. - Nany species of Pentstemon have been in. Pentster troduced to our gardens, and rank amongst the finest of all the her- pos. baceous perennials. The pentswmon of the florist has, however, sprung from. P. Hartwegii, a suffruticose species, which has been more or less hybridized with P. gentianoides, P. Cobæa, snd possibly some others. The plants are not absolutely hardy, but eadure English winters unharmed in favoured situations. They are freely multiplied by cuttings, selected from the young side shoots, planted early in September, and kept in a close cold frame or under a hand light till rooted. They should then be potted singly in small pots, and wintered in a cold lrame, the pots being plunged in ashes or cocoa-nut refuse, in order to keep the soil from drying too rapidly, and to prevent the frost from injuring the young roots. To obtain strong plants, they should be shifted into 5 -inch pots early in March, and kept growing in well-ventilated frames until May. They flower freely in Jnly and August and onwards till cut down by frosts. Smaller plants nay be had by leaving the cuttings in. the eutting pot during the winter, aad introducing them to the propagating pit in February or Mach, when their young shoots can bo taken off, struck, potted, and grown on in frames till about May. Secllings, if raised in heat in February or early in March, and pricked out and forwarded under glass till May, will flower the same year, but probably not so early as those raised fron cuttings.
The following are good kiods, aed varied in colour and character, but new ones appear every season, and sometimes show a marked advance on the older serts:-Andrew Hunter, Apollon, Countess of Eglinton, Bon Villageois, Col. Long, The Bride, Dr St Paul, Johu F. Kiughorn, Johe Dl'Pherson, Lhdy Coutts Lindsay, Moliere, Mre A'. Sturry' W. P. Laird, Le Khédive, Hlack Indight, Stanstead Rival, Souvenir de St Paul, Georges Sand.
64. The Phlox, with its modernimprovements, constitutes one of Ehloze the finest of harly herbaceons plants. There are two types- the pyranidalis or carly-flowering sorts, which appear to grow best in the northeru districts, and the decussata or late-flowering sorts, which are taller and are those most frequently grown in English gardens.

The early-flowering phloxes aro increased by division of tho root or by cuttings which may be obtained about the middle or end of March, and striko readily under a hand glass. They shouk be grown in beds, and will make good blooming plants for the following year. The older or blooming plants should bo growd in beds of deep rich lonmy soil, nulched with half-rotten dung as they come on towards tlowering. They should have abundance of water in dry weather. It' is not advisable to allow more than five stems to grow up to flower. The varieties of this section flower a month or six weeks carlier than those of the decussata group, and are at the height of their bloom in July.
Afew rood borts are-Ducheas of Athole, Lady Napler, Mise Rohertson, Perfectiod, Waverley, Stella, Alexandru, Iona, Marquis, James Mitehell, Eivina, Jemes Nellsod, Miss Huter, Bayard, Purple Emperor, Mauvo Queen.
Ihe late-flowering phloxes may be raised either from cuttinge or liy division. From cuttings in early spring vigorous young plants maty be obtained which flower well the following season. . By division of the older plants into separato rooted portions, plants aro obtained which fower well the same year. The lattor requiro a depply trenched soil, thoroughly manured, and should be well watered in dry wenther ; indeed, as they grow up to bloom, manure Water may be given juliciously with advantage.
A good geluction of these are-A. F. Barron, hervallf, Lothair, Rol des Roses, Lnelen Tisscrund, Badane la Comtesse de Turenne, Madame Donage, Menottil, Mons. H. Low, Coccinea, Mra Eaing, Reve d'Or, Marie Snibson,

65. The fink of the garden has resulted from the cultivationand Ping improvernent of Dianthus plumarius. The pink is a great favourite with tlorists, those varieties being preferred which have the margiu of the petals entire, and which are well marked in the contre with bright erimson or dark purple. Its grassy but glaucous folingo is much like that of the carnation, hut the whole plant is smoller, en the greater portion of the colouring of the flowers forme a blotele nemr the loaso of the petal, instemb of leing laid on in atripee ae in the rumation, or conifined to ther outer edge as in tho pricoteo.
l'inks require a fre loamy soil depply trenched, and well eariched with cow dung. They are rembly increanel by pipinge (fig. 60, a) t,k"n of during the flowering period, onl plantad in light soid
under a hand light. or in the open ground in a shady situration; they may be planted an meh apart in rows 2 or 3 meles asunder, and sloould be pessed firmily anto the soil. When rooted, which will be about August, they should be planted 4 inches apart in a nursery bed, where they may renam till the latter part of September or the early part of Octoter. The chicf attention required durng winter is to press them down firmly shonld they become lifud by frosts, and in spring the eround shombl be frequently stirred and kept free from weeds. As the flowerng stems grow up they should be supported by sticks, and when the buds appear they should be assisted to burst regularly by tying a soft ligature round then. The pink is also raised from seeds, not only to obtain new varieties, but to keep up a race of sigorous growing sorts. The seeds may be sown in March or April, in pots in a warm frame, and the young plants. may be pricked off into boxes and sheltered in a cold frame. They should Lie planted out in the early part of the summer in nursery beds, in which, if they have space, they may reman to flower, or the altermate ones may be transplanted to a blooming bed in September or the early part of October; in either case they will bloom the following summer. These will grow in any good garden soil, but the richer it is the better.

There is also a number of rarieties which are useful for forcing during the early spring months. These are propagated from early jipings, and grown in nursery beds, being taken up in Oetober, and pocted in a rich loamy conipost, and wintered in a cold pit till required for the foreing house. The varieties named Anne Boleyn, Lady Blanch, Lord'Lyons, Mrs Pettifer, and Coccmea are good useful forcing sorts.
Of cholce florista varieties the number is not very large. The following wout form a good selectinn-Turners Boaris, Dr Masters, Dr Maclean. Shitey Hiblerd, Lord Kirkaldy, Goulfrey, aut Eertrant; Maclean's Annic, teauty, Jobo Ball, and, Dew Criterion ; Marris Excelsior and Vesm;
hirthand's Bep. Geas; Brages Donparen and Golath; and Hooper's hurthands Rey.
Benart of Bath
66. The Polyanthus is one of the ollest of the florists' flowers, and is no doubt au umbeliate fornt of the pramrose, Prumula valgaris. For some time it has been helil in low repute, but is now coming into greater favour, aan novelties arc being slowly produced. The florists' polyanthus has a golden margin, anul is known as the gold laced polvanthus, the propertues bengr very distinetly laid down aod rigidly adhered to. The chat of these are-a clear unshaded blackish or reddish ground colour, on twen margan or laeng of Sellow exteoding round each semment and cutthig through its centre down to the ground colou!, and n yellow band surrounding the tube of exactly the same hue as the yellow of the lacing. The plants are quite hardy, and grow best in strong loamy soal, toler. ahly well eoriched with duns and leaf-monld; they slould be planted about October. Plants inr exlibition present a much better appearance if kept durng woter in a coll well-aired frame. Of these, Chesbire Favonritc. Finl of Lineoln, and Criterion, with |thaek grounds, and Exile, Lancer, aml Sumise, with red grounds, are amongst the best.

For the flower borders what are ealled fancy polyanthuses are anlopted. These are best rascd ammally from seed, the young crop each year blooming m succession. The seed should be sown as soon as ripe, the yonng flants belligg allowed to stand through the winter in the seed bed. In April or Mav they are planted out in a bed of rich garden soil, and they will bloom abundantly the following sprong. A few of the better thrum-eyed sorts should be allowed to ripen seall; the rest may be thrown away.
67. The rotentilla, as a specality, is a flower of modern times. The double-flowered varictwis are especanlly remarkable for their ornamental qualitues. A soll of a good loamy staple, enriched with rotten dung, will grow the protentula to perlection. They may be nucreased, though not vely ircely, by pating theminto as many preces as there are crowns, the side growths being those which can usually he thus separated. This nay be done in autumn or spring, and the plants will genomally bloom the following season. The plants like an upen situation, and are well suted for filling a small or moderatesacd bed, as the lolinge is of a neat and pleasiog character when the plants are not in bloom.
The following are good named sorts:-Chromatella. Le Vésuve, Lollis Van Houlte, Meteor, Pluton, Vulcan, Lo Dame, Mars, Nigra, Camelcon, Fénelon, Ena.
68. The Double Primrose is closely, allied to the polyanthus. There are some very handsome varieties grown, as the crimson, white, yellow, purjile, blec, and others. These all succeed under the treatment given to the choicer kinds of polyanthas (par. 66).
69. The Pyrethrum is quite a modern garden flower, extremely useful as blooming in the carly summer months, and remarkable for its neat habit and the great variety of eharacter and colour which it presents. The type forms are the P. roseum and P earnenm of botanists, harly perennials, with fuely cut leaves, and large flowerheads, having in the one case a ray of deep rose-coloured and in the other of flesh-coloured ligulate florets surrounding the centre or tiish. They blnom during the months of May and June, as well as later on, and ate always mast welcome ornaments for the flower borders, and useful for euttiug for decorative purposes.

The pyrethrum grows best in soif of a loany texture ; this should he wellmanured and deefly tremened uphe home fanturs, and shonh be mulehod in the sprang hy a suttue dressmen al halloderatyon manure. The plants nay be increased by dwisan, the sule sluwis being rakea off early in autumn will a porwors of wots attached. They may be placed either in sepanate lnals o: int the furxed flower border as may be requred. In berla thay ran be sumpemented as the season passes on by the intermaxture of huter-hbomung suljects, such as gladioli. Slugs are often destructur: to the young shouts. Seeds should be sown m spung an a cold frame, and the young planis should be put out into beds when large enougtr, and sboul? flower the following May.
The tolloning wall make a useful selection of sorts:-Aurora, Ronamy, Roule de Neige, Brillant, curmuatum pleman, Charles Baltet, delocatum, Emite Lemone, flotibundam plenum, Gtoire dtalje, Hermamn stenger Iveryanam, La Vestale, Le Dante, Madame Buliard, Mincrva, Ne plus ultra,
Frnce of Wales, Soliaterre, Titicng.
70 The Rananculus (R. aajaticus), a native of the Lesant, is one of Rapur. the older florists' flowers, whicl: has sported into mublerless varieties, culus. but was formerly held in much greater esteem than it is at the present time. According to the canons of the florists, the flowers, tu be perfect, should be of the form of two-thirds of a ball, the outime foming a perfect carcle, with the centre close, the petals snooth. edged, the colour dense, and the manking uniform.

The ranunculus requires it strong and moist soll. wit?: a fourth of rotten dung. The soil should be fiom 18 inches to 2 leet dect, and at about 5 inches below the sulface there should be !laced a stratum 6 or 8 inches thick of two-ycar-old roten cow dung, maxed with eanth, the earth above this stratum, where the roots are to be placed, benge perfectly free from fresh dung. The tubers are 1 lanted in russ or 6 iaches apart, and 3 or t iuches scparate in the rows, the turbat sorts in October, the more choice varieties in February. Tha, should be so elose that the foliage may cover the surface o! the beed The autumn-planted roots must be slueltered from frose by old tas. or sifted coal ashes. The plauts when in flower should be covered with an awning; when the leaves wither, the roots are to be takes up, dried, and stored. The ranumeulus is readily mopagated from seed obtained from semi-double sorts, which are aften of themsolses very beautiful Howers. It 13 generally sown in hoxes 10 autuman of spring. The young plants thus rased flower olten in the second, and alrays in tbe tbird year.

The turban varieties, which are very showy for the borders, are of a few positive colours, as sealet, yellow, bown, carmine, an? White. The forists varietics have been bred from the Persian ty"n, which is more delicate.
The followmy sorts may he taken as the fommation of a collection :Apollo, Eliza, Marqus of Hertiond, Helema. Interestor, sincerity, Garibales. Enslianter, Flammaus, Coronaton, Strephon, Melanch hun.
71. The Tulip (Tulipa Gesnerana) is a oative of the East, when'e Tulip it was introduced into Enrole abont the maddle of the $16 \mathrm{th}^{2}$ cen. tury. About the year 1635 its culture was very engrossing; an l, inceed, tho rage for possessing rate sorts had become so great :n Holland as to give rise to a stramge species of gambling, known to the collectors of litenary and scmentitie anedotes by the name of Tultuo-mania. At present, though not to be met with in every* garden, the finer tulipshave vet some ardent culturators, while certan varieties, as the paly Due Van Thol mod its allies, and the double tuhps of the Tournesol type, are much used for general garden decoration, and tor forcing. The latter, however, syang from other species of the chenus.

The florists varieties of tulips, which have spume from Tulipa Gesneriana, are arranged in selayate classes hationl baturne byblemens, and roses, accordiner to thenr colonir and markins.
Tulips are reanlily rased from seds, and the seenlings when thes Tulips are realily rased from seeds, and the reetlings when they
first fower are of one colour, - that is, they are selt-coloural. Juhged by the llonsts' rules, they are either good or bad in form, and jure or stasned (white or yellow) at the base; the badly formed and stained flowers are thrown away, while the crod and purc are grown orn, these being known as "breeder" tuhps. The breeder bublis and their offseis may grow on for years producing orly self-colournd flowers, but after a tme, which is varued aud indetinite, some of the procreny "break," that is, produce llowers wath the varicgaturn which is so much prazed. The flower as then saill to be "rectified" ; it is a bizarre when it has a yellow gromml markel with puple nr red, a byekencen when it has a whte grumal marked wath wa'et or porple, or a rose when it has a white fromud markel whth some colour. One of the most momortant of the properics of a fine forists' tulip is that the cuin shoud fonm, when expanded, from half to a third of a hollow ball, the divisons of the prepranth betag six of. number, broad at the euls, and smootla at the edecs, so that the divisions may seateely show an indenture. Anothur is that the ground colonr shond be clear and distanct, whether white or yellow. The least stan at the base of the flower, technieally calied the "bottom," would render a tulip comparatively valucless. What are called fenthered thowrs ate thone whieh lave an even close feathering. forming an unbroken cignig of colour all rouml, flamed flowers being those wheh have a beam or holl mark down the centr, not reaching to the hottom of the cup. Solnc flowers are both
featherd and flaned，and in all cases the eolour must be uniform！ distributed．

Tulips ate usually crown in beds，which should be mate up，to the depth of about 2 feet，with a rich compost of about lour jarts loam to one of leaf－mould and one of thoroughly decomposed nian． ure，which should have boen well mixed some time before reguired for use．The bottom of the bed must be thoroughly drained，ind so arranged that the witter may not only soak down to the bottom，unt find egress there．New soili is not required every year，but it shomhl be deenly terned upand laid in ridges，and every third year it should lerenewed to about a foot in depth，and the new soil well mixed with the olf．Tlue bed should be in an open but sheltered posi－ tion，and shonld be got ready in Scptember or early in October， the bulbs being planted in October or carly in November， 6 inches apart，and 3 or 4 inches deep．The bed should be 4 feet wide－ suffcient to take seven rows of bulbs，a little river sand being placed about each．An awning shonded be placed over the bed when the buls show colour，in order to lengthen the duration of the flowers， and removed when the flowers fade．After the flowers have fallen， the soed－vessels are broken off elose by the stem，to nrevent the plant from exhansting itself in perfecting seed，and to direct its cuergies to the forming of the new bulb，and when the leaves and stalks turn brown the bulbs are taken un and laid out for a few days in a cool airy place，when they should be stored in drawers till planting time，buing oceasionally examined in easc any of them decay．

Tulips are readily propagated by offsets，whieh are taken off from the parent bulbs，and nursed in separate beds till they be full grown．Jew varieties are raised from＇seed，and are from five to seven years old before they flower．

The following are a good selcetion of slow tulips：－
Bizarres，－Feathered：Demosthenets，Sur Juseph Paxton，Garibaldi，Com－ mander，Sulphur，George Hayward．Flamed：Excelstor，Dr Hardy，Surpass Colyphemus，wasterpiece，Ajax，Wuliam Lea．
Byblemens．－Feathered：William Bentley，Friar Tuck，David Jackson Dessie，Mrs Cooper．Talisman．Flamed：Duchess of Sutheriaad，Simbus． Falisman，Bacchus，Adonis，Carhuacle．
Roses－Feathereit：Charmer，Industry，Vanny Gibson，Lady Wihtou，Mrs l．e：Malame St Armsul．Flamed；Amie Nacgregor，Lady Seftoa．Mrs Liarlow，Sarah Headly，Adair，Triomphe Royale．
For decorative purposes，as forcung and spring bedding，the following are gme of the best sorts grown：－
Simbes－Canary Bird，Couleur Cardinal，Conroane Ponrpre，Duc Van Thol，Duchesso de Pirma，Feizerskroon，Proseryine，Roi Fepia，fride of II，arlem，Pottebakker．White Fottebakicr，Thomas Doore，Vernillou Erillant，Iellow Ironce．
Doubles－－Comromue Jis Itoses，Duhe uf lonk，Gloris Solis，Imperator linirorum，Mariace de mat Fille，Overwimar，Kex libororum，Tournesol， y＇cllow Tourtesol，La Candeur．
ilardy
trees an

72．H．ardy Trees and Surves．－Much of the beaty of the pleasure garden depenls upon the proper selection and disposition of ormamental trecsan！shabs．It is to be regreted that this depart－ munt of the gerden is often greatly neglected，and the many orna－ mental subjects introlucid during the last half century are too Prequently overlooked by planters amd garden artistes．We ean only atford suace here for lists of sone of the better aml more useful and ormanental treesand shruhs，ond and new，shiplemented by a bring notice of the rhododendron and ats congeners，and of the rose．

The following lust，which is not exhanstive，furnishes maternal from which a selection may be male to snit various soils and situa－ tions．The slirubs marked＊are climbers．

Mitdy Deciduous Tross．

Acur－Maple
F－sculus－llorze．cheatnut
Alantus－Irce of If aven．
Alous－Ahler．
Anysumins－Alanm
jetmha－Itirch．
Carpinus－llornhean
Carya－llickory．
Cistanea－Cheatrut
Catalyn．
Geltis－Nu＊tle Trev
＂cratis－cherty．
crecis＿Judha Tred
Cotoneantur
（ratergis3－f1ath
finaporids．
Facis－in cint．

（ilethechas－It ancy laculy
1；bmbnelilth－Kentucky Culfee Tree Juctans－Walnut Gulrenteria．

I．shartamm
Larix－biarch．
Limindentron－Tulip．
Mastholia
Sorus－Bulberry．
Senmodo－bow lilder
Avery：－IIOp Hornbean
Panlownia

Ilatanus－Platu
［＇川uいlis－Pujlar．
Prever－IIop lace
1）rus－l Mar，Ne．
？ 11 гС 1 －- hak
Chbus－simmach．
fonman－incemst Trec
G．dix－Willos
Siphoma

Tiltit－l．nthe
IThus－Kihn
Vircila
Xinathoceray
treen Trios
Bilumedrus
Bl． 5 nuha

1＇llus－！＇sin

le tisncisputa．
Gendugn：

brys－ics

Mardy Decituous Shrubs．
Alucha
Nert－V
Esculu
Amelanchaer
Ampelopsis
Amybihalopsis．
Arthia
Aristolochia．
Jierleris－berberiy
Eligunia－－＇tumyt Flower
（：alophaca．
Calycauthas－Carolina Allspuce

Cerashs－cherry
Chimonant hus
clematts．
Colaten－Blabider Scnua
Cornus－Dogwood．
Cotoncaster
Cratcens－Thorn．
Cyduna－dapan Quitnce
Bisus－Broom，dec
Finuhne．
Treutza：
Filwindsia
FWeาgut！
Eи～ロyimus－Spindie Tree．
Forsythia
Fremouti？
Geutsia．

Halesia－snowirop Tree． Itamanstlo－Wych Hazel Hithseus－Althen frutex，de IIıpophae－xea Buckthorn． Syperterm－st Jolin＇s Wort． Iasminum＊－Jasmine kerria
J．turns－I．anrel
Ligustrum－Privet
Lonnera＊－llunes suckle
Lycinm：
Venispermum＊－\＄coonseed
！＇criploca．＊
Phaladebmus－－Mock Orange．
Rhus－Ihurbrec，dc．
Lilnes－Flowerint Curraut．
Rulnma－Iose Acacia，de
Eusa－Rose
spartinn－Syanish Broom．
－piraca．
Siaphyim－Eladder－šnt． －ympliormarpus－Snuwberry Syring－Lilac
hmajix－Tamarisk．
Viburnm－Guelders Fose，d．
Vitis－Viae
Weigela．

Hardy Evergrech Shrubs．

Akebin
Arbutus．
Aucuba－Japan Laurel
Azata．
Pambusa－Bamboo．
berberulopsis
licrberis－Berberry
lunluleta．
Rupleurum．
Buxus－Box
Ceamothus．
Cerasiss－Cherry－Laurel，dic．
Cistus－Sun－Rose．
Cotoncaster．
Cuatagus－Thorn
Daphne
Desiontainea．
Erica－lleath
Escallonia．
Enonymus．
Fabisina．
Fatsia（Aralia）．
Garrya．
Griselavia．
Hedera－lvy．

73．The Rhododenaron．－In places where the soil is suitable，the Rhorh rhododendron，on account of its flowering yualities，is fast taking dendroe the phace of the laurel in the mixed shmbery．This plant，with its associates the azalea，kalmin，andromeda，and the like，requires， generally speaking，a peaty soil，and a cool，rather moist situation； but，though a peaty soil is preferable，especially for the choice kinds， it is not essential．When，however，the soil is loamy，it must hava incorporated with it a libpral portion of leaf－mould and decayed manure，cow dung being preferable，ant，if at all heavy，some elean roal grit．The plants do not thrive in soil which contains cal－ careoüs matter．
These subjects，in view of the souree of most of the originals，are commonly called American plants；and a separate plat（called the American garden）is often sit apart for them．For sueh a plot the entawhense type of rhodudendron is preferable，being hardier， probucing better folinge，and eonyrising miny of the finest flower－ ing sorts．Such varieties as Sit Thomas Scbright，Olel l＇ort，Mrs Heneate，Michael Waterer，H．W．Sargent，Alexander Daneer， Brayamm，Scipio，Everestianum，Minnic，Mrs John Clutton，J． Marshill l Brooks，Siginaud Rucker，Mrs Miluer，and fastuusum Rore－pleno．may be counted on as sterliug sorts，which will always give satisfaction．The varieties of Azalea，thongh de－ cillums in habit，are desirable on account of their brilliant and effective colours，and with them may be associated sueh subjects as Andromed，Cisemilra，Lenenthoc，D，beocia，Dapline C＇neorum，the howly Ileaths，（：aultheria，Kalmia，Ledum，I＇ernettya，Rhodora， Vaccinim，and Zanubia．
74．The Rose．The rose is so univisal a farourite that some por．Ros tion of the garden must necessarily be devoted to it，if the situation Winall favmable．lioses will not，however，thrive in the vicinity of large nowns，since they require a pure air，and do not endure a smiky athmandere．The best soit for them is a deep rield strong loam free from stagnamt moistur．Very light samb or gravelly soils，or soils which arechyey and badly drame？，are mot suitable，and hoth most he grentry mineved if rose－growing on them is attempted．Lipht soils nomb be mproven ly a dressug of stron loan in conjunction with cow dung or nightsoil；Hhe latter，providnd it is properly pre－ finm an lut too forsh，is imben the very hest manure for roses in all hit smila which ate maturally wry tich．Heary soils aro imporend

druined. Rnses repuire a constant annual supply of mamure, and, if this is given as a mulehing in autumn, it serves to protect their roots through the winter. They also require liberal supplies of water during the growing season, and especially to be kept clear of aphides and other insect pests, which may be done by dusting them with snutf while moist, ind washing it oll with the syringe next day, or by syringing with dilute tobacco witer or some of the many insetticides now provided to facilitate thos rather troublesome task.

Somo growers preler roses grown on their own roats, some on the Banetti, nod others on the brier stock. There is this to be said IIf favour of their own ronts that, if the tops are killed down by ascident or by severe weather, the ronts will usually thruw ul new shoots truo to their klnd, which cannot be looked for if they are worked, though it is s metiates recommended to plant drep 1 order Hath the rose itsell nay learn to do without its fnster pareat the mack. Too fien, howevel, in the cise of jersons unfamiliar with suses, tho cloome rose dios, ond the stock nsurps its place.
in open situarm, not shaded, but sheltered from strung winds, is "har the rose prefers October and November are the lanst uonthe for planting :he harty kinds. The tender varieties ore hetter laid in in a shelected [lace, and the phantivg deferred tall Mareh or Agiril. In reraid to pruang, roses vary considerably, some reyuiring.elose eustmg anel ofthets only thimoing out; some demn may be sately prunct in antumi, and othets an better left tall spring. Instrue. thons on this pont as to tha scveral groups of varneties will be lound in most rose catalogues.

Where dauri besls of ruses ase required, a good plan is to per Uovn to widhin ahout 6 inches from the grumbl the strong ane year olid aloots irom the root 10 due time blooming slioots break out from nearly overy eye. ant massts of tlowems ate secured, while strong young sliunts dae thown from the centre, the plant lining on its own routs bufore winter sets in the old shoots whith havo thus ilowerel aml exhansted themselves are cut away, and three or four or move of the strangest and hest ripeued young shonts are reserved for pegethg lown the lollowing season, which shoulal be done ahout liburany In the meantine, after the pronug has becn eliected, plenty of goon monore should have been dug in about tho roots I'hus treated, the plants never fall to podinee plenty of strong wood for pegging down wach succeeding season

Boldeng 75. Beudini l'bant's. - This term is chiefly aprlied to those thats. summer-llowering pliats, sueh as pelargoniums, putunias, dwarf lobelias, verbents, \&r., which are emplojed in masses for filling the beds of a geopetrical parterre. Or late years, however, more attention has been bustused on arrangements of urilliant fiowering plants with those of hine foliago, and the massing also of hardy carly. blooming plants in paterre fashon has been very greatly extended. Hedding plants thave best in maiden soil, and therelore the beds shonlit be oceatsmally wholly or partly renovated with frest earth. A light loam, liberally manured with theroughly rottin dung from an old boibud or thoronghly decomposed cow ilroppints and learmould, forms the best kind of compost, but in the ease of free. growing plaets, like pelargoniums, over-richaess must le avoided.
76. Spyring Licdelang. - For this deseription of bedliog, hardy phants only must he used, lut even then the choice is tolcrably exteusive. For example, there are the Alyssums, of which A. saxatile and A. gemonense are in cultivation ; Antennaria tomentosit; Arabis albida, Aubrictias, of whioh tho best sorts aro A. Canoplellia and A. giambillora the double Bellis perennis or Ditisy ; the Wallflowers, including Chemanthus Cheri (the Common Wallfower), C. alpina, and C. Murshaliii ; Ifepatieas, the prineipal of which are the varicties of H. trilrina, and the blue 11. aogulosa; I beris or Candytuft; Lithospermum froticosum, Myosntis or For, \quad et-me-not, including M. alpestris, M. disnitillora, Mlazomea, and Nl sylvestris; Phjoxes, Jiko l'. sululatn, with its saricties setacea, Nelsoni, nivalis; the singlefluwered varieties of the Prinnose, Prinula mideria; Pyrethrumo Partheninm aureum, called Golden Feather; Senpervinum calcareun; the jank-flowered Sileao pudula, self-colonred varseties of the Pansy, V. trheohr, and of V litea and V. cornuta, as well as some rewent hybrids. liesudes thege theroaro the various spring-Howering lulbs, sueh as the varieties of llyacintlus, Tulipa, Nareissus, Fritil laria, Mustafl or Grupe Ilyacioth, Crocus, Scilla, and Falanthus or Snowilrol
77. Summer Beduling. - There is great variety amongst tlo flants which are waed for lectaling nut in tho garden during then sumbitr months, but we can note unly some of the most importarst of then. Amangst them are the Agoratums, the old $1: 111$-gtom ing sorts of which have been superseled by twarfer varicties, as Imperial [wor and Swanley Bluo, Alternantheras, the prineipal of which are A amma, amrena spectalinis, magnifiea, paronyelioides major anca, and amabilis ; Alyssum maritimum variegatum; some of the bamod varielies of Antirrhinum majus, especially the dwarf varieties ; Aruado Donax variegata; Begonias; Calecolarias; Cannas; Cen. taurea ragusina; Ctematises, of thich the hybrils of the Jackmami type are hest; Dahlia rariabilis, and the single-llowered forms of 13. coecinca: Echeverias, of which E. secumda and E. netallica are much emoloved: Gazanias; Heliotropinm peruvianum; lresine:
the Lantanas; Lobelias; Mcsembryanthemum cordifoliunt variefite tum; l'elargoniums, of which the various classes of zonal or beddiog varieties are unapmoachable for effect and general utility; Petunias; lhloxes; l'olemonium cœruleum variegatum; Pyrethium Parthenium aureum, especially useful as an edging to define the outline of beds upon grass; Tropxolums, especially some of tbe varietics of T. Lobbianum; and Verbeoas, the offspring of Tweedieana, chanoedrifolia, and others. Fuw bullos come inta the summer flower gardens, but amongst those which shoukd always be well representud are the Cludiolus, the Lilium, and the Tigridia.
78. Suhtropical Bulding.-A few years ago the late Mr John Giluson, then superinterulent of Battersea l'ank, introduced the style of plant. ing known as subtropical gardening, from the use that is made of subtropical plants. Ju the clinate of London and the south and west of England this new fiature proved very successful, but less so in tho north of Empland and in Scothand, except in very favoured localitues. Thesu subtropieal materials may be usal either in nuisses of one kind, or in groupds arrangel for contrast, or as the centre: of groups of less imposing or of dwarfer-fowering sulyeets; or they may te flanted as single specimens in apropiate open spaces, in recesses, or th distant striking oljjects terminating, a vista. Some of the finest of these plants of bold and striking habit ave found in the Aralid or Fatsia, the Wigandia, the Montagmea, the Whelea, and the Ferdannda; Aralia japonica and papyrifera are very fine, and so 3re Wigaudia caracasania and Vigieri, Montognea heraeluitulia (also known as Polymnia grandis), Uhdea lipmmatifia, and Ferdimanda eminens. Many jalms, some tree ferms, and the noblo Musis, esplecially Musa Ensete, do fairly well in sheltered situations. The Cannas alford great variety of size, form, and colour. The different forms of Ricimus, which are of the boluer type of subjects, the more elegant Arundo Donax and its variegated variety, and the very gracerul Armudo conspicua may also be named. Arundinaria fileata and other Bamboos, if grown in large pots or tubs and plunged in shady sbelterat places during summer, give a striking tropical etfect; and in wam situations some of these may be introduced as pemanent plants. Of lesser subjects Centaurea ragusina anl gymnocarpa, Erythrinas, Funkias, Gunnera seabra, and some of the Solanums, as.S. bargioatum and robustum, are all useful and eflective; and many others night be added.
79. (arant Badling or Mosaiculture consists io covering the surface of a bell, or a series of beds forming a design, with close low-growing plants, in which certain figures are brought out by means of plants of a ditherent habit or having different-coloured leares. Sometimes, in adilition to the carpet or ground colour, individual plants of larger size and handsome appearance are dotted syametrically over the beals, an arrangement which is very tulling. Some of the best plants for carpeting the surface of the beds ar-Antemaria tomentosa, white; Sedum corsicum and glaucun, grey; and Sedum Lydium, Mentha Pulegina gibraltarienm, and llemaria glabra, green. The Alternantheras, Amaranthuses, Iresines, and Coleuses furnish high and warm colours; while Pyrethrum Partheniun aureun yields greenish yellow; Mesembryanthemum cozdifolinn variegatum, ereamy yellow; Centaureas and others, white; aod the succulent Eeheverias and Sempervivums, glaucous rosettes, which last add much to the general eflect.
80. Greenhouse Plants.-These are plants requiring the shiclet irceno of a ghaes house, provided with a moderate degree of heat, of which house 35° Falur. may be taken as the toinimuna. The honse should be planta. opeued for ventiation in all mild weather in winter, and daily throughout the rest of the year.

Théfollowing is a select list of miscellaneous decoralive plants in aldition to sperial suljects which will be noticed seprately:Abutilon Boule de Neige has pure white trooging bull-shaped nowess. Acacias are remarkally profuse-flowering platsts with yellow lowers. A. armata aod A. Drummontifitare fowering bushes: A. lophantha has amyto fery-like leaves: A. Riceana has pale sellow llowers in caly sprimg and is
well suited for trafoling up rafters or pillars.
Adenandra fragrans produces highly fragraat pink star-shaped nowers in May and Juac.
Agapanthus is very ornameotal and casily grown. A. unhellatus having a larce nobel of pale bluc flowers, anil A. buichatus atbillerns white llowers. Arhelexis eubraces vatious species of close-prowing plants, hall yrochus. lechi in hatie, producing handsuan purplish-criman anil russ wink everlastmag fowers frecly on tho points of the shoots in May and Juno.
Atalias have lirge patmate leaves.
Ariburia eveclsa has regularly spreadiog branches reseubbling gigantic oserielh feathers
liegonas. The new thherous-rooted hybrids are wery shomy, nall continna to flower all thonght the summer and authmin.
boronias gro a hine group of hard-wouded shrum, having chicty junk fowers, which bloom frofisely from the noture woot: the best essurites of the fanily are fo pimuta, Drummomlii, and sertulata.
Chorozenas are quick-growing slonder-habikd plants, with hifhly coloured
 leaves; © varimm, cordatum, amispectahile ave fine aod diationt
Cordylines are stately plants, of whith the principal are C. Iodivia, wtth a onlate crova of glavcous lewes marked by orauge ribs, and C. austratio with oarrow er leaves
Cytisus racernosus is one of the liest subjects for carly apriog bloming, of dense bushy habit, aud bearing yelluw Howere; C. Evercstianus has fowera of a decp orange.
Itapinie iridica is unsurpassed for its perfuose.

The Dasylirions have stout woouy stems and large heals of narrow leaves, Lpactis is a water-duwering, benus, easily gron'l and free-blooming, the rmeipal sorts beng E. hyacinthinora candidissions, hyacinthithora car mata, muista, and the pure white onosmetlora hore-pleno nivalis,
Grevilleas are shubs of slender hisbit, some having handsone fiowers, while B. robusta and others almust rival the ferms in the elegance of their leaves. Lydrangea Hortensas pruduces inmense heads uf biuom of a delicate pmk, wh.sh contmnue long in Hower, and may be changed to blue by the adminture of a ron nlangs with the sund.
!mantaphyllum maniatum is a grand plant, the umbels of pale dame-red flewera bebne prodaced at variums seasons.
Salossmbtes cousista of spleudid tlowering plants, whint, however, rarely Givant well two yerrs in succession.
tachenalis ponlula, luteda, and tricolor are exceediogly pretty dwarf 2nb, u*eful about April aad Jay.
2untrial rosea is one of the very fnest greenhouso climbers in existeace, heibr wavy lodi shaped red towers, olottled with white; L. rosea alba di more liraufful, a clear wayy white.
ham anratum, speciosam, and Kramerlare \mathbf{G} oe, L. auratum being one of n, inlest thowering plaves in existence.
andevilla suaveolens, a stroug growiug elimber, bears beautiful, fragrant, atput-shaped white blossoms in August sud September
The seninins are tall strong-growing subjects, with fowers of great beanty, (harid in cymes from the poiats of the mature shoots.
The Passafluras produce thelr shony singularly-fornued flowers most prow (usely, and are very suitable for decorating the rool of a consersatory
Fineleas are frec-jrowing, compact-lisbited plants, producing flower-liesds from the points of the shoots; P. spectabilis rosea has fower-heads, white fuzbed with rose, almost as lirge as those of a guelder-rote; P. Hendersoni lias deep pink, P. hispla white, and P , elegans straw-coloured flowers
kleroms elegans is a free-flowering melastomsceous shrab, producing in satcession its lovely asilcel-shaped tiomera of the most inteose purple bite, frum June to september.
Plumbsgo capensis is anether abundant bloomer, and one of the very best of ereenhoase chmbers, with large uynches of delicate grey-bine flowers. The Rhicdolendron furnishes a large contugent, of which the most suitable are Couatess of Iladhagton, Dalhousia, Edgworthii, Gibsoni, Thompsom, javanicum, with fasminifornm and its beaneiful valieties, Princess Koyal, [rancess alexanira, ['riacess of Wries, and Duchess of Edinburgh.
stathes miclude some very lighly orosmental plants, especially S. bras. sicmfolia, profuga, and imbricsta.

Tachoniss are magrificent chmbers; indeed, I. Van Volxemil is one of the very flnest of the climbing llants which flower in antumin
Trachelosperimum jasminoules, better known as Ehisnchospermam, very fragrant, and moderately vigorons, is suitable for s pillar, and produces white flewers in May and June

Tropecolums are chaming pot chmbers, of which may be meationed I areum, Irachyceras, speciosum, tricolorum, and Jarrstiii,
F'allots is a very thowe tvirsreen bulb, V. purpurea producing highly. doured scarlet fowers, m umbels, in August and septernber
Agave
81. Agaie.- Bnld-habited succuleat plants, some of the larger of which are well uluptedi for conservatory decoration and prominent situntinas on terfires, \& ${ }^{\text {de }}$. The American Aloe, Agave aniricana, with its vapkties fariegata and mediopicta, all require to be kept muderate!y dry and safe from frost during the winter, and grow Wehl in strong loan, saod, and sotten maoure. Anvong others of the larger varictics are A. potatorum and miradorensis, and of the smaller omes, A. filfera, umlanata, Verschafleltii, and sehidigera. Still smaller dimsegroning sorts are A. Pichardii, borrida, Victorie keriua, and Yessererian.t.
8.3. floe-Succuleat plants, extremely゙variable in character. Thes all thrise best in a samdy loam, well drained, and not over watered. "n" ${ }^{2}$ olld Partridgebreast Aloe, A. variegita, is well aulapted for a rindow ; A. ferox, suןralovis, and arborescens are tall plants; A. stionarin, mitreformis, albocincta, end lioeata are smaller: A, serra, viriugota, linmilis, and serrulata aro duarf. "lhe Fan Aloe, A. il!
 in araty sprime The following are of a spiral hahit of gowth-

 be recomammaded. Bemiles these there are the Aproras aht the

 fred from a few oripinals, matirns of the hilly regions of lamib and

 Lor sone of the sarieties maty be fumed into lowom dariag the

 laranal. Them bust tame to pot azaleas is thate or fonr werks after

forms from Chili and Peru, the calceolaria of the present day has Caicto been developed into a highly decorative plant, in which the her-lavia. baccous habit bas preponderated. The plants are now very generally raised annually from seed, whieh is sown about the end of July in a mixture of loan, lesf-mould, and sand, and, being very suall, must only be slightly covered. When the plants are largo enough to handle they are pricked out an inch or two apart into 3 -inch or 5 -ineh pots; when a little more advanced they are potted singly. They should be wintered in a greenhouse with a night temperature of about 40°, occupying a shelf near the light. By the eod of Febriary they should be noved into 8 -inch or 10 -inch pote, using a compost of three parts good turfy loam, une part leaf: mould, and one part thoroughly rotten manure, with a fair addition of sand. They need plenty of light aod air, but must not be sub jected to draughts. When the pots get well filled with roots, the ' must be liberally supplied with manure water. In the early sta;" of growth the plants are subject to the attacks of the green fly, it. which they must be funigated. Named varieties are not now grown, as a good atrain of seed will yichd satisfactory flowers.
The shrubby calceolarias used for bedding are increased from cuttings, planted in autumn in cold frames, wbere they can be wintered, by the use of mats and a good layer of litter placed over the glass and round the sides as a protection from frost.
85. Cumcllia.--This favourite plant, a native of Japan, is deserv. edly popular, ou account of its glossy faliage and magnfficent flowers. It is usually propagated by cuttings, to furnish stocks on which the choicer kinds are grafted. It will succeed either in peat or loam or a mixture of both, but in any case an addition of turfy fibre and of sand is also necessary. The plants should bave abuadance of water, especially in the growing season, and should be potted as they complete their growth and are about to set their flowers; they do not, however, require repotting so often as most plants, Firt heat need only be employed when the object is to obtain flowers in the antumn and winter montlis. To produce them at this season it becomes recessary to start the plants into growth correspondiagly early. When grown in-cold houses, they do not generally tower until about Febmary or Mareh, at which stage the plants enjoy a temperature of 45° or 50°. When fre beat is applied to assist the openilyg of the llowers, it should not much exceed 55° and whilst the plants are subjected to this heat the atmosphero must on no account be allowed to become dry, or the buds will probably drop. When making their growth they' need an abundant supply of water at the roots, as well as copions syringings twice a day, but as terminal buds become visible they should lie kept drict Liquid manure is of great assistance to flants that lase flowerel very heavily, while they are making their growth, and the addition of a littlo soot imparts a dark-green colour to the leaves. If grame in an open-roofeel light honse, shade will be required during very hright weather whilst the young shoots are being developed, but it grown in a lean-tohonse faciog the sorth, shade will not be required. It is sometimes necussary to move the plants ont of the honse after they have set their llowers, to keep them from coming on too rapidly. In this case they shonld have phaced over them a light framework and movable seren.
The seale is the most tromblesome insect which attacks the eamellia. To remove the white seale, the phants shonld be washed with a pooge and solution of solt soap as soon ats their growth is completed, and again before the buds begiu to swell. The brown scale may be get rid of lyy repeated washings with one of the many insecticides, such as Fowler's, but it shond be applied at a temperature of 90°. See Cimeliha, rol. iv. 1. 737
 Thabmana, candilissima, chandhers Elequns, Contessa Lavinia, Magei,

 nora, and bateavarcdo.
85. Cinerarius can he rased frety from sueds, and thongh there Ciner. are hamed varieties in exiatenee, a gool suam of seed will vich aras thewers almost as fine. They mast le hept, eapectally while young free from aphides, to which they are more than ondinaily subject. For spring flowering the seds may he sown in April or May in well. draimd pots or pans, in soil of thee parts lonin to tso phats leaf monlh, with one-sixth sand a cover the seml thinly with lime soil and press the surface firm. When the sedibuts are large chonghto humdle, prick them out it pias or phe of simatar soil, and when more aduncel fot thent singly in 4 -hoch puts, using soll a triks Jress samby. They shoud be grown in shathw fannes faring the morth, mint, if sos simated that the sun shanes upon the phats in the midhe of the das, they must he slimety shanded ; bive photy of air, amd never allaw then to ged dey, When well established with roots, Shitt theminto b-ituth pats, which shombl be liberally supplied with manare water at they got billad with roots. In wint er they shotid he removel to a pit or hoswa, where a little heat can le supplied

wall be in bloom by Claristmas if kept in a temperature of from 40° to 45° at night, with a little more warmth in the day ; and those sown in April and May will succeed them during the early spring months, the latter set of plants being subjected to a temperature of 33° or 40° during the night.

87 Corrca.-This genus of Australian plants is extremely useful for winter flowering. The best of them is C . cardinalis, which atlords a succession of tube-shaped crimson fluwers during the whole of the winter. They are increased by cuttings, and grown in rough peaty soil, with a slight addition of loam and sand. After the plauts have done flowering, they should all get a little artificial warmth, plenty of moisture, and a slight shade, while they aro making their growth, during which period the tips of the young shoots should be nipped out when 6 or 8 inches long. When the growth is complete, a half-shady place outdoors during August and Scptember will be suitable, with protection from parching wints and hot sunshine.
88. Cyclanen.-Of late jears this flower has been so much improved that no plant of moderate size can be made to contribute more floral display in winter. It is raised from seeds in vations shades of colour, from the purest whito to a deep purple. The seeds should be sown in Oetober or November, id well-drained secdpans, in an equal uixture of fine loam and leaf-mould with an addition of sand, the seeds slightly covered, and the pans placed near the light in a temperature of 50°. When the seedlings appear, they must be pricked out into 5 -inch pots, six or eight in cach, ant wintered in a similar temperature and situation. In spring they must be potted singly in 3 -inch pots, and thinly shaded during bright weatber. When they have filled their pots with roots they should be repotted, using similar soil, into 4 -ineh pots, in which they are to flower. In potting, the corms or tuberous roots should not be more than half covered with the soil. A low house or pit is the best place in which to grow them, shading them if requisite, giving plenty of air, watering regularly, and syringing ovethead in the afternoon to keep down thrips and red spider. The tem. perature should range from 45° to 50°, with plenty of air.* They shouhl hower in February and March. After blooming they should, be placed in a pit where they can be shaded as required, and as they show signs of going to rest they should receive less whter, but should not be allowed to get quite dry. In autumn they may be shifted into pota a size larger, and they will come into flowerearlier tban io the first year. It is not advisable to keep them after the third scason. Some growers recommend after flowering to turn the plants ont of their pots into a bed of prepared peat or leaf-soil in some half-sharly spot, where they can be sprinkled overhead every afternown during dry sunny weather, so as to encourage plenty of licalthy foliage. In this case they should be lifted early in the autumn.
59. Erica.-The species of heaths eultivated in English greenlonuses are mostly South African, or have sprung from South African originals. They are of alense twiggy growth, with needle-shaped ieaves, and beautifn! wax-like fowers, which in some or other of the kiads are produced almost throughout the year. During the winter and early months E. caffra, gracilis, vernalis, hiemalis, melanthera, persoluta, rubens, Willnorci, Sindryana, and others proluce their blossoms; later on bloom K. Horida, athmis, Cavendiahiana, exquisita, rentricosa and its many varieties, and the charming aristata; next come E. Savileana, Irbyana, Austiniana, Jacksoni, retorta major, and others, which last on till September, a few continuing till the end of the year. lleaths are propagated under bell-glasses by cuttings, which sloould be taken as soon in the spring as the wood is sutficiently firm, and planted in silver sand, the lower leaves liaving been renoval ; they should be kept ia a temperature of 60°, and the glasses must be wiped occasionally to prevent the plants from damping ofr. When rooted they shonid be gradually inured to the air lyy the occasional removal of the ylasses. In the spring frillowing they should be potted singly into thumb pots, and kept close and moist until they take to the new soil. Heaths require peat soil, which for hard-wooned slow-growing kinds should be of a close hard texture, while for soft-wooded slow-growing sorts a mixture of two-thirds of harl peat with one of a softer nature, and for the soft-wooded quickgrowing varicties equal quantities of hard and soft peat should be used, with silver sand according to the composition of the peat. The pots must always be well drained, and the plants must never be allowed to become pot-bound. The best season for potting is in March and April, or in Suptember when the sumner heats are over. The new soil must be made as firm os the old ball, so as to retain the water. A low span-roofed house, adanitting albundanco of light, is most suitable for tl-ese plauts; and they require air in alundauce, especially durine the season of active growth. They have so great 1 dislike to fire heat that any degtee of cold sliort of actual frost is preferable to it. When they have grown into speeimen plants they slould le set nut of doors, from the latier part of July till the beginnius of September, in order to enable them to resist the attacks oi mildew. Water should never be given before the soil lias got sufticiently dry to need it, nor thonld the plants le syringed overhead summer or winter. Especially is this the case with the liard. voodod kinds. Sco ILeath, vol. 3i. p. 559.

Some of the best of the carlier fowerng heatus are-E amais, aristata, Ber. giana, Candolleana, Cavendishiana, Devonana, florids, hienalis, Lindleysna, and ts varieties, vietoria, and Willmorei. The later ones are well repres sented by E. Austinjana, ampullacea and its varieties, Aitouiana Turnbullii, ferruginea superba, genmifera elegans, Hartnelli, Irbyana, jasminifora alba, Marnockiana, obhata, Parmentieriana rosea, laxtoni, Savileana major, Spenceriana, Shanvoni, tricolor and its varjeties, and vestita and ita variethea.
90. Fuchsia. -This well-known decorative soft-rooded plant Fuchsin comes from the temperate parts of South America, but has been iniproved lyy selection and bybridization. Fuchsias strike readily from cuttings, the most usual method being to place old plants in warmeth about February, and as soon as they bave pushed shoots a couple of inches or so in length, to take thein off and put them in small pots, in a temperature of 60°; they wall root in two or threo weeks, when they should be moved singly into 3 -inch pots; and they must be again shifted into 8 -inch or 9 -inch pots as soon as thosa they already occupy are moderately filled with roots. The leading shoot, as well as the sude branches, should be topped two or three times durng the spring, and a single stick placed to the mam stem so as to keep it upright. They should be synnged in the after. noons, to promote growth and to kecp down aphades and red spider. By the end of June or July such plants whll te disposed to flower. A good compost for fuclisias consists of four parts good fibrous loata to two parts well-rotted manture and leaf-mould, wath a fair spronkling of sand. When larger plants are requred the cuttings should be struck about the cud of July or beginning of dugost, adol kept gently growing through the autumn and water in 6-iuch pots on a shelf near the glass, with a night temperature of 50° At the end of Febrnary they should be shifted into $10-$ meh or 12 -imeh pots, and by the end of April they will be in a condition to move to le-inch or 18 -iach pots, and the temperature should be raised to 55° The shape of the plants should be regulated by tamely finching of the sloots, the pyramidal and staudard forms being the most elegant. The old plants may be kept during winter in any dryish place free from frost; jrune them back in sping, acd repot in fresh soil. The varieties are constantly changing through the introduction of nuvelties. Sce Fucusia, vol. ix. p. 806.
91. Hetiotropuem.-The Peruviau Heliotrope, Heliotropium pern- Helinviaumm, is a great favourite with cultuvators, on account of the tropurn. delicous fragance of its blossoms, whel has obtained for it the popular name of "cherry pie." The plants are easily increased by cuttings, which are struck in July and August, or from young shoots obtained in heat in eaty suring; wlien rooted they should be potted simgly into small pots, usiny as a compust floy loam, sandy luat, and well-decomposed slable manure from an old hotbed. The plants soon reguire to be shifted into a pot a size larger. To secure early-flowering lilants, cuttings should be struck in August, gotted ofl' before winter sets in, and kopt in a warm greulousc. In the spring larger pots should be gwen, and the plants shortened back to make them bushy. They regure frequent shiftings during tho summer, to induce them to bloomfrely. There are mamy varitties, diflering in habit and in the colonr of their tlowers.

The beliotrope makes an elegant standard. The plants nust un thas case be allowed to sumb uir a central shoot, anil all the side growths must be bincled off until the necessary height is reached, when the shoot must te stopled and lateral growths will be prodaced to form the head. Du!ing whiter they should be kept some. what ilry, and n suring the ball shank be reduced and the plants repotted, the shoots being slightly pumen, so as to maintain as symmetrical head. When tley are flanted ont against the walls and pillars of the grecuhouse or conservatory an abundance of highlyperfunsed blossonis will be supylied all the year round. See llentorhore, vol. xi. p. 633.
92. Mesenbryauthemam.-These are interesting Cape fianto, some Mesem of then of a very showy character, and others remakatio as curiosi- bryanties. They bolong to the chass of sumendents, and with the exception thenum of the curious sorts, all grow and strike ficely in a mixture of loan and leaf-nould with a dash of sand. Tho ilowering kimels should be kept only two or three years. Cuttings should be put in atoont May, and well exposed. They will stand a few degrees of frost, but should be kept from growing in winter.
The best flowering sorts, most of which are atapted for window-hoxes. are-M, batbatum, blandum, candens, conspicmum, chrviformo, falcatum,
 roquire it can he pegged town. Af the curious varieties, bome of the

 thm, unt octophythm. These are all dwarl cremers, and require more sand aud some brick rubbish luthe soil: :hey allunth also have less water.
93. Pelargonium. - The warions raens of pelargonimas have sprung Pelar from the iotermixitre of some of the species obtined trom the Cape. gonum The ohder show-flowered watiotins have. luen graldally acquired through a long semes of yairs. "The fancy vaicties, as well as the French spotef vanuties and the maket tyle, lave leen evolvel from thein. Tho zonal race, on the other hand, has heen perfected within the last quarter of a montury. In all the sections thu vancties are of a highly omanchat chanocter, but dor genctal cuati-
vation the market type is preferable for indoor purnoses, while the zonals are effective either in the greenhouse or flower garden. Some of the Cape snecies are still in cultivation,-the leaves of many of them being beautifully subdivided, almoat fern-like in character, and some of them deliciously scented. A few of these are well adapted for bedding out.

Some of the most striking of this aet are-P. Blandfordianum, echinatum. graveolena, melananthum, and Schottii; while the following have finely-bcented leaves: $-P$. capitatum, citriodorum, crispum, and oduratissimum. To these may be added, from amongst the earlier bybrids, those Pully quercifolino and its varicties, shrubland Pet and the various apoly from, quercrolium and its Yarieties, Shrubland Pet, and the various sport

The best soil for pelargoniums is a mellow fibrous loam with good stable manure in about the proportion of one-fifth; when used it should not he sifted, but pulled to pieces by the hand, and as much sand should be added as will allow the water to pass freuly through it. The large-flowered and fancy kinds cannot bear so much-water as most goft-wooded plants, and the latter should have a rather lighter soil.

All the pelargoniums are readily increased by cuttings made from the shoots when the plants are headed down after flowering, or in the spring, when they will root freely in a temperature of 50°. They mnst not be kept too close, and must be very moderately watered. When rooted they may be moved into well-drained 3 -inch pots, and should have the points pinched out in order to induce thern to push out several shootg neargthe hase. These shoots are, when long cnough, to be trained in a horizontal direction; and when thay have made three joints they should have tha points again pinched out. These early-struck plants will be ready for shifting into 6 -inch pots by the autumn, and should still be trained outwards. The ahow varieties after flowering should be set out of doors in a sunny spot to riper their wood, and should only get water enough to keep them from llagging. In the course of two or three weeks they will bo ready to cut back within two joints of where these were last stopped, when they should be placed in a frame or pit, and kent close and dry until they have broken. When they have pushed an iach or so, turn them out of their pots, shake oft the old soil, trim the gtraggling roots, and repot them firmly in smaller pots if practicable; keep them near the light, and as the sloots grow eontinue to train them outwardly. They require to be kept in a light house, and to bo set well up to the glass; the night temperature should range about 45°; and air should be given on all mild days, but no cold currents allowed, nor more water than is necessary to keep the soil from getting parched. The young shoots should be topped about the cad of October, and when they have grown an inch or two heyond this, they may be shifted into 7 -inch pots for flowering. The ahoots must bo kept tied out as as to be fully exposed to the light. If required to llower early they ahould not be stopped again; if not until June they may be stopped in February.

The zonal varieties, which are almost continuous bloomers, are of much value as lecorative aubjects; they seldom require much pruning after the first stopping. For winter llowering, young plants aliould be grown on during the summer, and not allowed to dower When blossoms ate required, they should be placed elose up to the glass in a light house with a temperature of 60°, only just as much water being given as will keep them growing. For bedding purposea the zonal varicties are best struck towards the middle of August in the open air, takeo up and proted or planted in boxes as soon as struck, and proservel in frames or in the greenhouse during winter.

The fancy varicties root best oarly in spring from the half-ripened ehoots; but they are slow growers, rather delicate in constitution, and very impatient of excesa of water at the root
94. Prlunia. - The varietieg of petunia, especially the double forms, make admirable apecimens for pot culture. These and the other pamed varieties are propagatcl by cuttings taken from stock plants kept through the winter on a dry warm shelf, and inoved into a brisk moist heat in carly suring; the young shoots are planted in pans or pots filled with sandy soil, and, aided by a brisk bottom heat, strike roet in a few dnys. They are then potted singly into thumbpots, and when once established are aradually harlened off, and afterwards repoted as required. The shoots shond be topfed to mako busliy plants, and their tops may be utilized as cuttinge, Tle single varieties are raisel from seals sown in light sandy goil in heat, in the early spring, eud very slightly coverol. The plants noed to bo pricked out or potted off ins suon as large enough to liantle. Coot stritins of seeds supply plants suitable for bediling; but, as they do not reproluce themselves exartly, nny sorts particularly requirel nast be propagated, like the double ones, from eutting
95. Primule. - One of the most popular of winter aml early spring derorative plants is the Chinese l'rimrose, l'rimula sinensis, of whinh some superb straing havo during the last fuw years been at, itinul. For ordinary purfoses young plants aro raisad amually from and an, sumn about tho hewinning of March, and ngain for sucensaison in Aprat, nonl if needel in May. The sard shonlal be sown in

not germinate freely if the soil contains stagnaat moisture. The surfine should be pressed smooth and gently patered before sowing, and the secds ghould be only just covered with some very fine compost, half soil half sand, and over that a thin layer of chopped sphagnum to keep it damp, and obviate the pecessity of watering. When the seeds germinate, remove the moss, and place them in a well-lighted position near the glass, shading them from the sun with thin white japer, and giving water moderately as required. When they are large enough to handle, prick them out in pans or shallow boxes, and, as soon as they bave made leaves an inch long, pot them singly in 3 -inch pots, using in the soil a little rotten dung. They ghould then be placed in a light frame near the glass in an open situation, facing the north. When their pots are filled with ronts they should be moved into 6 -inch or 7 -inch pots. The soil should now consist of three parts good loam broken with the hand, one part rotten dung and leal-mould, and as much sand as will keep the whole opea. They should be potted firmly, and kept in frames close up to the glass till September, excess in watering being curefully avoided. In the autumn they should be trausferred to a light house and placed aear the glasy, the atmosplere being kept dry by the occasional use of fire heat. Thenight temperature should bo kept about 45°. When the flowering stemg are growing up, manure water once or twice a week will be beneficial. The gemi-double varieties are increased from seeds, but the fully double ones and any particular sort can only be increased by cuttings made by dividing the crowns with a portion of stem attached, the plants being first well dried, almost to shrivelling; the cuttings should be placed in small pots in sandy soil, put in a morlerate diyish heat, and only just watered enough to prevent flagging. When they are well rooted, they may be potted like the others. In winter they require an intermediate temperature of 45° or 50° at night, and a little higher in the day, with air when the weather is suitable.
96. Richardia.-Tbis plant, R. æthiopica, called also Calla æthio- Fichpica and the Nile Lily, is a fine subject for greenhouse decoration ardia duriag the spring months. It is a stately tuberous-rooted perennial, with broad arrow-shaped leavea, and large white fower-spathes, that last long in beauty. The plants should be carefully divided about March, and planted out during May in well-enrichad shallow trenches. Being sami-aquatics, they cannot be kept too moist all through the summer munths. Plants kept in pots are generally neglected in this way, and bence are rarely scen in really first-class condition. The richardias are hardy if their crowns are kept under water; but a very littla frost disfigures the foliage, and thereforo they should be placed in the pits or the greenhouse towards the cad of Octover. They may be had in flower during the winter, but in that case they must have a little warmith to give them a atart
97. Salvia.-Some of the Salvias or Sages are among the best and Salrio most showy among soft-wooded winter-flowering plants, the hlossoms being of a bright-glowing scarlet. The three most useful species are S. splendens, S. Heeri, and S. gesneraflora, the first commencing to flower carly in tbe autamn and lasting till Christmas, while the others follow immediately in succession, and continue in full beauty till April. Young plants ahould be propagated annually about Fehrnaty, and after mursing through the spring should be grown outdoors in a fully exposed situation, where they can be plunged in aome non-conducting material, auch as balf-decompeserl leaves. The young shoots should be atopped to secure bushy plants, but not later than the middle of August. The most suitable compost for them is a mixture of mollow fibry loam enriched with a little mild thoroughly decomposed manure, made sufficiently porous by the addition of sand or grit. In spring, and during the bloomisp period, the temperature should bo intermediate between that of : stove and greenhouso. Thero are other very ornamental species a easy growth, increased by cuttings in apring, and succeculag wet in ordinary rich loamy soil. Of theso S . angustifolia bears suiked of fine bright-blue flowers in May or June; S. chamedryoides, a dwarfish subject, has deep-blue tlowers in August; S. fulgens produces acarlet flowers in August; and S. involucrata produces fino rel flowers during the antumn. S. patens is a lovely Whe freeblooming sort, flowering in August, the colour being unique.
98. Stove Plants. - For the snecessful culturo of stove plants two Stove houses at least, wherein different temperatures can bo maintained, plants should he devotel to their growth. The tomperature during wiuter shothl range at night from abont 65° in the cooler to 65° in the warmer house, anl from 65° to 75° by day, allowing a few degrees further rise hy sun heat. In summer the temperature may rango 10° higher hy artiticinl heat, mioht and day, and will often by ano heat run up to 90° or even 95^{2}, boyonl which it should be kept down liy ventilation. During the growing periol the atmosphuro must he.kegt moist by damping tho walls and pathways, and by syringing the plants, aceording to their newes; whengrowth is completed less mointure will be necessary. Watering, which, except during the resting period, should generally le copions, is best done in the forenoon; while syringing should bo done early in tho afternonn tualanit of the folizge drying moderately before night. When the pots become filled with routs, waterings of weak liquid manure

Itw wery much tovarjs a successful blooming. In ventilating, colld draughts mulnst te a voiled.

The following aro select inseellancous stove plants:-

Acalypha tricolor (Willesiana)
Aischynamthus Buschlaulus, Lobl!. Anus, anilsplenderis.
alhmamda Chelsoni, Schottif, granhimora, Membersoni, atul mubilis. Atocasia Jenningsii, Lawii, V'citchit, lica.
Anthariam crystalhanm, regate, War. ucumeanon, veitchii, nuagnitleunt scherzerianum, anal Andreatum.
Aphelandra nitens and liocelit.
dialia elegantissima, nticifolia, and Veitehil.
Arlisia crenalata aryl Oliverl.
Aristolsjhia Duchatirel and tloriAris.ols.
bamd.
Bertulenta
Bertulenia sumerbissima and Vian :1) ronia
fighonia Chamlicrlaynif and venusta,
Gumainvillea glabra and spectabilis.
centropoznn Lueganus.
Clesses discolor.
cevitendrum fallax, Ralfousianom, anit splendens.
Cimbretum purpuresum
roturn anypstifulnus, tribulus Dis. raell, Anircanus, briminng, tnajesticos, indulatis, Weisnanmi, spiralis, and Hillamsid
Cyanoply llow magniflenm.
Diellenbachia Bansci,
Carderi, and splendens
Miplailenia Brearleyana, reglna, and amatilis.
Fictis clastica (Inclia rulber IVant). Franciscea eximia, ealycura, nagaillea, and eonlertillura.
Gardenia Stanleyana, citriodora, and Hurida
Gessera Cooperii, Domelethari, and suilurba
99. Achinctes have sealy tubers, which are kept dry ant in a state of rest in a temperature of 55° during the winter montlis, and started into growth ubont Marel, a sccond batch being started in A prit. They shoulil be placed 6 inches asunder in pans filled to within $1 \frac{1}{2}$ inches of the rim with leaf-mould or cocoa-retiose, matde rather sandy, and slightly covered with the soil. The paus should be set in a wam pit or frame, and the soil kept slightly noistench, and when the young shoots are a couple of inches loneg they may be placed bix or cight in a 6 -inch pot, in a soil of three parts filrous loan and two part leaf-mould, mixed with a little sand. The temperature shouhd be from 65° to 70°, and they should be well exposed to light. When 6 inches long, pincli ont the points to induce them to branch, and give more water, syringing overlsad to keep red spider in check. As seon as the llower bitis appear, cive weak manure water two or thrce times a week. They should all through their growth ave suffecent air to kecp them from getting drawn, and when the dowers begin to open shunld be grailanlly inured to bear the tenferature of the conservatary. When they show signs of foing to iest, less water may be given ; and after the tops love died down, the tubers mity be storel in dry sand in a temperature of abont 55° Achimenes have also a fine elfect grown in wire baskets from the roof uf the plant house.
The dollowing are good khuls:-imbroise Verschaffelt, beimontensis, Firchy, lumeitlora alla, longillura major, Mauve Queen, Parsonsii, Rose Queen, Stella, ant Williamsii.

100 Amaryllis. I'his gemus, also called Tlippeastrum, consists of sulendin bulbons plants, of casy culture and fice-blooming habit. i, ke other bulbs they are inereased by offsets, which shombl be carefilly removed when the plants are at rest, and should he allowed to xtain a fuir size before removal. These young bulbs shoulal be potted singly in Felonary or \$areh, in mellow loany soil with a moderato quantity of sind, abont two thirls of the bulb being kept above the level of the soil, which shoulit be made quite solish. They shouk be removed to a temperature of $60^{\circ} \mathrm{by}$ night amil 70° by day, very carcfully watered until the roots have beron to grow ficely, after whirh the soil shonld be kept moderately moist. As they allvane the tmporatures shoulal be raisal to 70° at night, amd to $\$ 0^{\circ}$ or laigher with sull heat by day, They do not need sharling, but shoulil liave plenty of air, and be sjoringel daily in the aftermoon. When Frowing they reyuire a good supply of water. After the decay of the flowers they should be returinel to a lrisk moist temperature of from 70° to 80° ly day during summer to jerfect their leaves, and then be ripeneel nif in autumn. I'lirought the winter they sliond have less water, but must not be kept entirely dry. The midimum tenperature shoulli] now be alront 55°, to be inereaseld 10° or 15° in siring. As the lulbs get large they will accasionally need shifting infa larger pots.

A few of the lrest surts are - Ackermanat pulelerrima, aulica, conepheua, Ducluess of Commanglt, Hercules, Lenpmotii, Meteor, Wrg Noker, Nirs

101. Begonias are represented ly numerous species, herbaccous Jegon and subshrubby. There are several free-llowerity hy brids, sucll as 13. weltoniensis, Saundersii, fuclsioides, prestoniensis, ascotieusis, Sc.; there is the gronpol ornamental-leaved kinds represented by B. Rex; and there is the tuberous-rooted free-blonming brilliant race, developed recently, mainly from B. boliviensas and B. Veitchii.

Cuttings from flowerng begonias root freely in sand y soil, placed in heat at any season when stodetately firm, and as soon as rooted should be potted singly into 3 -inch pots, in sady loam mixed wath leaf-mould and sand. They sltould be stopped to keep them bushy, placed in a light situation, and thinly shaded in the middle of very bright days. Iu a few weeks they will retuire another slaft. They should not be overpotted, but instead assisted by manure water. The pots should be placed in a light pit near the roof glass. The sum. mer-lloweriog kinds will soon commence Llooming, lut the antumu and wiater-flowering sorts should be kept growing on in a temperature of from 55° to 60° by night, with a few degrees more in the day. The tuberous-rooted sorts requice to be kept at rest in winter, in a mediun temperature, almost but not quite dry. In February they should be potted in a compost of sandy loam and leafrmould, and placed in a temperate pit until Nay or June, when they may be moved to the greenhouse for flowering. If they afterwards get at all pot-tound, weak manure should be applied. After blooming the supply of water must be again slackened, and in winter the plants should be stored in a dry place, secure from frost; they are increaseu by late summer and autuma enttings, afier being pantially cut down.
102. Bouvardia. -These plants are best increased by cuttings Bontaken off in April, and placed in a brisk heat in a propagating frame valdia with a close atmosphere. When rooted they should be putted singly into 3 -inch pots in fibrous peat and lown, mixed whth one-fouth leaf-mould, and a good sprinkling of sand, and kept in a temarature of 70° by night and 80° during the day; shade when required; syringe overhead in the afternow, ant close the house with stinheat. The plants should be toppred to ensuse a busliy habit, and as they grow must be shifted intu 6 -jnch or i-anch poots. Alter midsummer they shonld be moved to a cool lit, where they may remain till the middle of September, receiving plenty of air and space. They should then be removed to a honse, and a poition of the phants shonld be put atonce in a temperature of about 70° at night, with a few derrees higher in the day time, to bring them into flower. Others must be moved into licat to sulply flowers in succession throngl the winter and spring. Some of the best kindsare B. eligans, llogarth, jasminiflom, Maiden's Blush, and Virelandi.
103. Cactus. -This old-fashioned mame includes many modera Cactas. genera of handsome or interesting sucenlents, the principal of wheh are brielly mentioncd below. Carozs is well represinted ly C. speciosissinnus, a quadrangaher-stemmed sjany plant, requiring stove heat, and a loany soil freely mixed with hard dminare materint; it must not be overpotical. Echinocactus is a genus of dward Ileshy spiny plants, wheli are slow growits, ami mist have plenty of sun licat: they require samly loam, with a mixture of sand and bricks fincly broken, and must he potted fimly, and kept dry in winter. Sehinopsis is a group of Awafish plants resembling the belnonacti, which bear flowers abont a foot long, varying from white to deep sose. Epiphyllum is a group of handsome plants easily inctedsed from euttings, but from their droping habit they are better adapted lor graftingonthelerestia, so as fofom small stamlads. The ledeskia stocks are struck during the winter or sprimg from cuthing flaced in heat, und should the grown in sandy loam, the prats lomg well drained; these must be kept to a simgle stem, and when a luct or 18 inches high, and of a tim woody textme, shonld be gratteal with small pieces of the E]iphyllnm. They may be wrown for a considerable time in tionch or 7 -juch pots, but mast have frec draimage. After grafting they should be grown on in frent am in plenty of light through the summer, but by the antann should have less warmth and moisture. A winter temperature of 50° will he sulticient, but in January a portion may be states in a temperature of 80°, in which they will soon show thower. 'this treatment being continued they will last fur many years, and go on movasing in size. There are a mumber of varieties of E. trancatims, diftrini chiclly in the amount and slade of rose colour or crimonn in the flowers. Mammillaria consists of very intorcstmg dwarl fehobar or eyline daical plants, remarkable for the beautiful colour vi their numerous spines, and the imegular arrangement of the mammille into which their surface is broken up. They giow theely in a conl greenhonse, and require moderate watering in summer, with nceashonal syringine overlead. The spines are in some species white, in nethers yelhow. or red, ar brown, or almost blatk. Opmen is the prickly fear of southern Europe, or Imlian fie of Sow:h America, the species aro scarcely ornamental plants, bnt are interesting on accoment of their variable develupment. The cochineal inswet is reared on some on the larger-growing sorts. O. viliniris and lininestuiana are hady in the south of Ehglamd. Jhyllocectus is one of the most ornamental genera of cacti, and is of easy culture, requiring alry stove treatment. Cuitings strike rablily in spring hefore growth las commonect: tley should be potwel if 3.inch or finch pons, well-drained, in loany soil made very forons by the admisture of handy-luroken crochs aud
gand, and placed in a temprature of 60°; Then these pots are filled with roots they are to be shifted into larger ones, but overpotting must be avoided. During the sumuer they need considerable heat, all the light possible, and plenty of air. In sinter a temperature of 45° or 50° will be sufficient, and they must be kept tolerably dry at the root. By the spring they may have larger pots if required and should be kept in a hot and fairly moistened at mosphere; and Ly the end of June, when they have male new growth, they may be turned out under a south wall in the full sun, water being given only as required. In autumn they are to be returned to a cool house, and wintered in a dry stove. The turning of them outloors to ripen then gromth is the surest way to obtain flowers, but they do not take op a free blooming habit until they have attained some age. Amongst the best sorts are P. Ackermanni, Jenkinsoni, crenatus, and speerosus.
101. Caladium. - These beautiful arads are increased by division of the young growths made in the spring. They should be potted in small pots in tibroussandy peat, welldrained, and kept in a temperature of 65° by aight ; afterwarda they should be changed into larger enes, using lumpy soil. The summer temperature may range about 65° or 70° by nigbt, with an increase of 10° by day. The plants will go to rest torards autumn, and when the leaves have all died away the soil may be allowed to become nearly dry, and the pots may be bet on a shelf, in a temperature of about 55°, till February.
105. Coleus. - These are veryornamental plants, the colourof their leaves being exceedingly varied, and often very brilliant. They areof the easiest culture. The cuttingsof young shoots should be propagated every year, about March, being planted in thumb pots, in sandy loana, and-placed in a close temperature of 70°. Aiter taking root they should be shifted into 6 -inch pots, using ordinary hight loamy compost, containing abuntance of leaf-mould and sand, and keeping them near the light. They may be passed on into larger pots as often as required, but 3 -inch pots will be large enough for general purposes, astheycan hefed with liquidmanure. The youngspring-struck plants like a warm growing atmosphere, but by midsummer they will benr more air and stand in a greenhouse or conservatory. They should be wintered in a temperature of 60° to 65°. The stopping of the young shoots must be regulated by the consideration whether bushy or nyramidal plants are desired.
106. Draciona. - These are extremely uscinl as decorative stove plants, and are easy to grow. They may be increased by cuttings planted in sandy soil in a temperature of from 65° to 70° by night, the spring being tho best time for propagation. The old stens laid flat in a propagating frame will push young shoots, which may be taken of with a heel when 2 or 3 inches long, and phanted in sandy pent in 3 -inch pots; the tops can also be taken off and struck. The established plants do best in fibry peat made porous by sand. In autumer they should have a day temperature of 75°, and in winter one of 65°. Shift as required, using coarser soll as the fots hecome larger. By the end of the summer the small cuttings will have mado niceplante, and in the spring following they can be kept growing by the use of manure water twice a werk. Those intended for the conkervitory shouln bo gradually imured to more air by midsummer, but kept out of cold drangbts. When the phants get two large they can be headed down and the tops made cuttings. D. terminatis, with its bronay leaves and rosy variegation, still ranks nmongst the best sorts, tut there aro also many novel varieties of great merit and beanty. D. Goldieana is a grandly variegated species fron tropical Alrica, and requires more heat.
Eucharis plants, having white flowers, ol a very distinct character it is a bullous plant, and is propagatel by removing tho offsets, which may bo done in spring, potting them siugly in 6-minch pots. It muires qood loamy soil, with saml enongh to keep the compast onell, and should have a gond sumply of water and a temperature of 65 ta 70° during thanight, with a risu of 8° or 10° in the day. During summer, growth is to bo encouraged by repotting, but the phimts shoulal afterwards be shohtly restril by removal to a night tempera ture of ahont 50°, water being withheh tor a thase, thonght they must unt go ton long lry, the plant being an overgreen. By the turn of tho year they may again have nore hat and moro water, and this will prohaly induce them to flower. After this isover thoy may be whifted and grown again as before ; and, as they get large, they em cither be diviled to firm now plants or allowed to dowelop inte now en arrimens. With a stock of the smaller plants tostat them in succession, they may be had in flower all the vear romed.
109. Glorimin.-The gloxinia, a eharming decorative phant, may be
 will frohnco thany supsrh and chamingly coloured. varinties, and if sown carly ir syrige in a temperature of to at nifht, they may be: shifted an intu 6 .inch lmes, and in these may be dowered during the sammols. 'lhe bulhs are kont at rest thromgh the winter in a dry sumb, in a tmmproture of 50°, and to yteld a sucensuion shomh lue statedat intervals, say fot tho end of Febraty and the beginning of dpril. To prolone the blamine spasm, wa wak manture water

scarlet bracts, stands unrivalled amongst decorative plants. The Pain white-bracted sort, F. p. alba, 18 not so efleetive, but the double- sctica flowered P. p. plenissima, in which the cymose inflorescence is branched, is as brilliant as the type, and keeps long in tlower. They are inereasel by euttings in spring, which when taken of with a heel strike freely in a brisk heat. They require good turly loam, with an addition of oue-sixth of leaf-mould and a little sand, and should be kept in a heat of from 65° to 70° at night, with a riso of 10° by day. To prevent their growing lanky, they should be kept with their heads almost touching the glass; and as the nots get filled with roots they must be shifted into others, S inches or 10 inclies in diameter. About August they may be inured to a heat of 50 at night, and should be brought to bear air night and day whilst tho weather is warm, or they may be placed out of doors for a month under a south wall in the full sun. This treatment matures ane: prepares then for flowering. In autumn they must be removed : a house where the temperature is 50° at night, and by the end ... September some of then may be put in the stove, where they wil come into flower, the remainder being placed under heat later fo succession. When in bloom they may be kept at about 55° by night, and so placed will last longer than if kept in a higher temperature
110. .Tydeca. - These handsome plants, which have sprung from T;us the heantiful Achimenes picta, require similar treatment to achimenes, except that, being wister blomers, they must be started into growth at a different season, namely; the later spring nonths, as April and May. The summer-bloming sorts, which should be started earliest, should, as they come into flower, be removed to the conservatory. Theautumpand winter ftowering sorts, being at first grown slowly in a gentle heat, must as they show Hower have a nice growing temperature of 70° or 75° affored them with abundanee of light; manure water may be given once a week. The tubers shotid be stored away dry in winter, like those of acbimenes.
111. Onchids.-For the successful eultivation of a mixed collec. Grchids tion of tropical orchids, it is necessary that two or three houses, in which differeat temperatures can be maintained, should be provided. The greater number of them are apiphytes or air plants, and heat and moisture afford all or nearly all the nourishment they require. The plants themselves are tho better for being associated with such objects as ferns and palms, and the appearance of the houses is greatly innproved by their being thus crouped.

The East Indian orchid house takes in those species which are found in the warm parts of the eastern hemisphere, as well as those from the hottest parts of the western, and its temperature should range from about 75° to 85° during the summer or growing season, and from 65° to 70° during winter. The Mexican or Brazilian orcliid house accommodates the plants from the warm parts of Sonth America, and its temperature should range from about 65° to 75° during summer, and from 60° to 65° in winter. A structure callad the cool orchid house is set apart for the accommodntion of the many lovely mountain species from Sunth America and India, such as orlontoglossums, masidevallias, \&c., and in this the more uniform the temperature ean be kent the better, that in summer varying betwern 60° and 70°, and in winter from 45° to 60°. A genial moist atmosphere must he kent up in the hottest houses during the growing season, with a free circulation of air admitted very cautionsly by wellgataded ventilators. In winter, when the flants are at rest, little water will be necessary; but in the case of those plants which hare no fleshy pseudobulbs to fall back upon for sustenance, they must not be suffered to become so dry as to catuse the leaves to shrived. In the Mexican house the flants will generally be able to withstand greater drought oceasionally, being greatly assisted by their thick piseudobulbs. In the coul or odontoglossum honse 4 considerable degree of moisture must be matintained at all times, for in these the plants keep growing more or less continuously

For potting or basketing purposes, or for plants requiring hlock culture, the only materials admissible aro light fibrous peat and livine suhagum moss, which supply free drathage for the copious supply of water reguared, The water should, howrver, be so uscat as not to run down into the sheathimg bases of the leaves. While in flower, erchids may with advantare be removed to a drier ami cooler situation, and may he utilized in the drawng-rom or beudeir.

From amongst the great wealth of tropieal orchids, now in cul tivation, the following is a very limited selection of some of tho most useful:-

Adra.-Ephpytal: A. aurantiaca
mace fipiuhytat: a utline
bile, odoratur turl sumvesinume
A myrscam- - bipiphytal: A. sespuipedate

Culanthe.-Terrestrinl: C. Mtunen, V'citehii, and vestita.
 deas lalinta, folata, Mossuse, quabibulor, skimeri, sumerla, and Iriane

nd surichen

color, Dayanta, Harrisinmam, insigue Mau!cl, levigatum, Lowli, nivenm, Sehtimmi, Stuaci, Bull superbiens.
Dendrobithm,-Epiphytal: D. aggregatum nexills, Ansu orthii. Lartatalum, Tenseaie, ehrysotis, ehrysotoxuat, ciassioode, crystallinum, fevosianuan, Faleoveri, fimurstum uculatum, formosun giganteum, lituiflor um, oubile
Paxtoui, pulcheltum, suavissitumm, aud Wardianum.
Dendrochilum.-Epiphytal: D. illiforme and glunaceum.
D^{*} sa.-Cool terrestrial: D. grandifora avd Barrellii.
Epidendrum.-Epiphytal: E. dichromun, Frederici Guilielmi, ibaguense, macrochilum, nemurale majus, aod vitelliuum majus.
Lnelia.-Epiphytal : L. anceps, antumnalis, cilnaharioa, clegans, harpophylla, majalis, Perrinii, purpurata, and sujerbicas.
Limatodes. - Terrestrial: L. rosea.
Lycaste.-Cool cpiphytal : L, Skinneri, with its many variations
Masdecallia,-Cool epiphytal: ML. Daviaii, lfarryana, iguea, Lindent, tovarensis, and Veitchiana.
Mesospinidium.-Cool epiphytal: M. sanguineum and vulcanicum.
Mittonia.-Fpiphytal: M. spectabilis, with its the vanety Moreliana
Odontoglossum.-Cool epiphytal: O. Alexandre (crispum), Andersonianum,
elfrosmum, cirrhosum, grande, Ialii, Lusleayi, membravaceum, Pescatorei, Ihalaoopsis, Roczili, triumphaus, vexillarium.
Oncidium.-Epiphytal: O. amphatum uajus, Barkeri, crispua, cuculatum, curtum, macranthum, Marshallianum, urnithorrhyuchum, roseum, Eagalie riajus, aarcodes, and varicosum Rogersil.
Pescatoria.-Epiphytal: P. Dayana, lamellosa, Roezlii, and Wallisi
phajus.-Terrestrial : P. grandifolius and Wallichii.
Phatanopsis.-Epiphytal: P. auabilis, gravdifloris, and Schilleriana.
Pleione (Indsan Crocus).-Epiphytal:
asculata, precox, Rencheobachaua, and Wallichiaus
Renanthera.-EOiphytial: K. cuccinea and Luwii.
Saccolabium.-Epiphytal : S. ampuilaceum, Blumei majus, curvitolium,
cuttatum, miniatum, and retusum.
Sobralic.-Terrestrial : S. Dacrantha splendens.
©ophronitis.-Epiphytal: S. grandiffora
Stank cpea.-Epiphytal: S. grandinora, insignis, oculata, and tigrina Thunia-Terrestrial: T. alba and Beosonice
Trichopilia.-Epiphytal: T. crispa, marginata, susvis, and tortilis
Vanda-Epiphytal: V. Catheartif, corulea, ecrulesceus, suavis, and ricolor.
Zygopetalum,-Epiphytal: Z. Gautieri, Mackayi, maxillare, and rostratum.
112. Palms, while quite young, form charming ornaments for the drawing-room and the dimaer table. When more fully developed, and long beforc their fuli growth is attained, they are among the best ornamental foliaged conservatory plants. For the urost part they are stove plants $\left(75^{\circ}\right.$ to $\left.80^{\circ}\right)$, but after the growth is matured, many of them thrive for some time in the temperature of a dwelling house. They are of very easy cultivation, but require pleuty of water and. thorough drainage. The soil should consist of equal parts of loaun, peat, and vegetable mould, with abundance of sand, and they thrive best in comparatively small pots. See Palms.
The following is a selection of useful species:
Acanthophanix.-Pionate: A. crinita and Merhstii
Acanthorrhiza.-Fan-leaved: A. stauracantha and Warscewiczii.
Areca.-Pinaate: A. alba, surea, lutescees, sad rubra
| Astrocaryum.-Pinnate: A. acaule, Murumuru, and rostratnm.
Attalea.- Pinate: A. Iunifera, nucifera, and speciosa,
Bactris.-Pianate: B. baeulifera, integrifolia, and simplicifrons
Brahea.-Fan-leaved: B. flamentosa (e Califormian species, haviag the edges of the leaf-segments developed into Jong threadlike peodent filaments) and B. Roezliti.
Calamus.-Finnate, and exceedingly handsome as young plant, but ifterwards assuming the habit of elimbers: C. adspersus, asperrimus, ciliaris, Flagellum, Imperatrice Jarie, Jeukinsianus, melanochetes, palenluanicus, plumosus, and viminalis.
Caryota.-Pinoate: C. Cumingii is the dwarfest of the species, bipiosate, the leaves front 3 to 8 feel long; C. urens.
Ceroxylon..-Pinnate: C. andicola ja a majestic species.
Chamadorea.- Pionate, and well suited for indoorldecoration during the wiater mooths: C. Arembergiana, desmencoides, elegras, Erbesti-Augusti, glancifolia, gramluilulia, nicrophylla, and Warseewiczii.
Chanarops. - Fan-leaved, comparatively dwari, and admirahlythlapted for
decoration: C. excelsa, Fortunei, humilis, and Martiama.
Cocos.-Pinnate : Shade-loving plats, some of which are most eharmiug,
espeeially C. Bonneti, elegantissima, plumosa, and Weddelliana.
Cyphokentia.-Piunate: C. gracilis and macrocarpa (Keutla Lindeni)
Euterpe.-Piunate : E. ectinlis
Gconoma.-Planale: Sarall-growing and rearly all very hatadsome while young, especially G congcsta elegass, gracilig, macrostachys, slartiana Porteana, pumita, and Schottiana
Hyophorbe.-Pinnate: IL, amaricalilig, indica, and Verschaffeltis.
Jubar.-Pinaate: the Chiliga J. spectabilis is highly decerative, and may be grown ia the open during summer.
Kentia.-Pionate: K. Baueri, Belnoreana, Fostertana, saplda, and Wead-
inodiana are ornanental greeahouse palms.
fahania.-Fan leaved: L. auren, Cummersonf, ond rubra.
Eictala.-Fan leaved: L. acutiflda, elegaus, aud peltata.
Livistonia.-Fan-leaved, ard of robust censtitution; L. altissima, australls,
Hisogendorif, oliveformig, nnd aioensis (latapia borbonica).
Malortica.-Pinoate, dwari elegant palms, well adopted for table decomtinn: 31. graelis and almplex.
Marlinezia.-Pinnate, with siagular erose leaflets: M. orosa, grauatensis,
and Lindeniana Pinnate: O. Van Houttcanum, a splendid plant for exhibition porposes.
Oreodoxa.-Pinnate, and white young beatiful as table plants, standing lung in a room without injury: : O. oleracea and regia
Phonicophorium.-Entiredeaved, magnificent ornamentg in the stove: P. schellarum, known also as Stevensunia graadifora
Phonix.-The Date Paim ol commerce, I', dactylifera, altheugh common, is extremely ornamental, and so hardy that it may be uscd in ahmost any situa. tion durlag the aummer montha; other fine sorts are P, reclinata, rupicola, sylvestris, and tenuia.
syivestchardia.-Fan-licaved : P. surca, grandis, macrocarpa, Martiana, and pacifica
Ptychosperma, - Pianate, and of rohust constitution: P. Alexandro, Cunainghamii (Seaforthia elegans), and rupicola.
Gabeliformis and hunilis

太sbal.-Fambleaved, mole plants reaching bigatic proportions: S. Bhackburnima and umbrachlifera

Thrinax. - Fan.leaved, with siender petioles, and leaves much divided; peculiarly lightit and clegant for table or other decoration: T. arberea barbadersis, clegans, graminitlern, multifora, parvitlora, and radiata.

Trithrinax.-Fin-leaved: T. mauritizeformis.
Verichaffeltia,-Entire-leaved, in the way of Phonicophorium, and requir. Ing strong moist heat: Y. melanochetes and spleadida (Regelia majeatica) are remarkable for their long needle-like black spines.
Welfa.-l'inuate:

Welfia.-l'ivuate: W. regia-
113. Ferns. - These popular plants are usually increased by means Ferua of their spores, the " lust" produced on the back of their fronds. The spores should be sown in well-drained pots or seed pans on tho surface of a mixture of fibrous sifted feat and small broken crocks or sandstone; this soil should be firmly pressed and well-watered, and the spores scattered over it, and at onev covered with propagating glasses or pieces of sheet glass, to prevent water or dry air getting to the surface. The pots should be placed in ${ }^{2}$ nas full of water, which they will absorb as requiret. A shady place is desirable, with tem. perature of 50° to 55° by uight amd 60° to 70° by day, or they may be set on a shelf in an ordinary propagating pit. The spores may ho sown as soon as ripe, and when the young plants can be handleel, or rather can be lifted with the end of a pointed that stick, they should be pricked out into well-dramed pots or pans filled with similar soil, and should be kejt moist and shady. As they becomo large enough, pot then singly fn 3 -inch pots, and when the pots are fairly filled with routs shift on into larger ones.
The best time for a ger:cral repotting of ferns is in spring, just before growth commences. Those with creephig hizomes cau be propagated by dividing these into well-rooted portions, and, if a number of crowns is formed, they can bo diviled at that scason. In most cases this can be performed with little risk, but the gloichemas, for example, must only be cut into large portions, as sman divisions of the rhizomes are almost certain to die; in such eases, however, the points of the rhizones can, be led over and laycred into small pots, several in succession, and allowed to remain unsevered from the parent plant until they become well-rooted. In potting the well-established plants, and all those of considerable size, the soil should be used in a rough turfy state, not sifted but broken. and one-sixth of broken crocks or charcoal and as much sand as will insure firee peicolation shonld be mixed with it.

The stove lerns require a day tempuature of 65° to 75°, but do not thrive in an excessively high or close dry atmosphere. They retuire only such shade as will shut out the direct rays of the sun, and, though ah,uodant moisture aust be supplied, the atmosphere should not be loaded with it. The water used should always be at or near the temperature of the house in which the plants are growing. Some ferns, as the difierent kiads of Gymnogrammand Cheilanthes, prefer a drier atmosphere than others, and the former do not well bear a lower winter temperature than abont 60° by night. Most other stove ferns, if dormant, will hear a temperature as low as 55° by night and 60° by day from Novemher to February. Ahout the end of the latter month the wholo collection should be turned out of the pots, and redrained or repotted into larger pots as required. This should take place before growth has commenced. Towards the end of March tho night tenperature may be raised to 60°, and the day temperature to 70° or 75°, the plants being shaded in bright weather. Such ferns as Gymnogrammas, which liave their surface eovered with golden or silver powder, and certain species of sealy. surfaced Cheilanthes and Nothochhana, as they cannot bear to have their fronds wetted, should never be syringed ; but most other ferns may have a moderate sprinkling aceasionally (not necessarily daily), and as the season advances, sufficieut air and light must be admitted to solidify the tissues.

Space will only permit that we should append a list of choice ferns, which, however, might be much extended. Wa slall arrange thera under the beads of stove, greenhousc, and hardy.

Sclect Stove Fems,

Acrophortag affinls, chxrophyllus, and inmersus (Leucost cgha),
Acrostichum aureum.
Adiantum emblum. cardjochlona, caudatum, concimum, cristatum, cmeatan, eurvatum, faricy cose, gracillimum, Ilensloviaum, luunatum, macrophyllum, muddum, periviamm, polyphylun, brimeeps, pulveru:
 villosum, and williamsii.
Alsophila arnata, aspera, glauea, philippensis, prumata, pyenucarya, radcns, and Tæritis.
Ajlamorpha Meyenianum.
Anernia adiautifolia, cheilanthnides, collina, ind mandlocenna.
Anemidictyon Phylititis, and its several forms-fraxinfullum, laclalatum rongifolinm, and tesscilatum.
Aspidiun trifoliatum.
Asplenium alatum, caulatum, cicutarium, erectum, Fabianum, terulaceum. formosum, heterocarjum, hoırisum, lasepitifotivn, lompsainum, myriu. phyllum, neo-caledonicusu, planicatle, tachuhazon, hizop horam, schizodon, phyllum, neo-catedoucush, planicathes, tubarh
Ifechun brasiliense, gracile, Lanceula, longifolium, occideatale, and Dkichnu
orientale.
Campyloncurun lucidun, repens, sitidnm, and decurrena
Cernenpteris thalictroides, an agantic sub-annual apecies with prollferous Cernenperts
st crile fronds.
Cheilanthes Borsjgiana, cuncala, clegans, farinoss, figida, pulveracoa. odiata, spectabilis, aul viscusa.

CiL tium famonctz, Chamissnh glaucum. Menziesij, pruinusum, regale, nnt Scha:al
Cathid. 132 : brorei.
Cyu:4ea aborea, samaliculata, execlsa, iosignis (Cibotiom princeps), and
barallia aculea!a, bullatib, tissecta, divaricata (jolyantha). elata, elegans,
Hjptieis, Moorana, ornata, peutaphylla, bulida, and tenuifolia.
Debnesticlihe cicutaria.
Drteria prulifera.
Jicksonia chry sutricha.
fictyoxiphium paninmeins
Drdyuthlemg lumblata.
Difazitom alternfolhm, celtidifotum, grandifolium, Sheqherdii, striatum,
ojlvaticum, and zes lamenm.
Doryonteris collini, nothtis, falmata, and sapithefolin.
Drmarat coronans, diversifulia, morbillusi, and usercifolia.

end mumerous ufler species.
Gloichomiodichotoma, furcata, pectinatn, and puhesceus.
Gomiohledine a puendeulatum, calputes, lachmojus, Lepldopteris, fori-
ceunt, stuanatum, subinationalarl, amd vertucosum
Gonsopteris asplenivides, crenata, Gliteslreahtia, refracta, and rejtans.
G!monomumma chrysuphyla and its varicty Parsonsii: Hexnsis, E'Uermimeri, Yeated, perbiana and its varicty argyrophylla, pulchella, sul-
gharea, tertarea, trifohata, ame Wettemhalliana.
Hemililitt granditolia, horrida. Karsteniada, add apeciosa.
Humata nlpma, heterophylla, and pedata.
Hymenodium crinitum.
Hymenophyllum, any of the species.
Hymutnostrichys elegans.
dypalepis repens.
Lastrea avgescens, deltoidea, patens, recedens, adi sirlgosa (crinita),
Lindsca cultrala, guianensis, and trapezitormus.
Litobruchia aurita, denticniata, niacroptera, podophylla, and tripartita
Lomaria attenmata, fraximifolia, L'Herminieri, ond onocleojdes
Lugodictyon Forsteri.
Lpgodirun flexuoaum, veoustum, and volubile.
Micralepia hirta cristata.
Nephrodium articulatum, cyathcoides, Hookeril, pteroides, truncatum, unitum, aad venustum
Nephrolepis davallioldes add its variety furcans; Duffi, ensifolia, exaltota, pectinata, pluma, tuverosa, and undulata.
Niphobolus costatup, Gardaeri, and pertuaus
Nothochlena flavens, niven, rula, aintuta, and trichomanoldes.
Jleandra articulata, beriformia, and nodosa
Olferia cerviua.
Onychium auratum.
Agmunda paluatria (evercreen)
phlebodium areolatum, aureum, pulvinatum, and aporadocarpum.
Platycerium alcicorne and its varlety majua, lifcrme, grande, Hillii, Stemmaria, "Wallichii, and Willinckii.
beocnemia Leuzeana.
oleopeltis atbo-aquamata, incurvata, lelorhiza, longlssima, and Phymatodes.
Polybotrye caudata and osmundacea
Polypodirem Diant, Paradigese, pectinatım, and Schkuhril.
Polystichtan conifolium, denticulatum, lentum, ordioatum, triangnlum, and viviparun.
f^{2} teris argyrea, aspericaulis, longifolia, quadrlaurita, aemiplnaata, tricolor, serrulata and its many varteties.

Sadleria cyatheoiles.
Somenia cicutaria, macrophylta, Pica, and repaoda
Schizea dichotoma and elegans.
Stenosemia aurita
Thmmnopteris australasica and Nidus.
Thursorteris elegang
Trudionanes, any of the specles.

Select Grecnhouse Ferns.

Aeroyhorng hiaplidus (Davallin Nova-Zelandiar).
Ilianture athne, assimile, chmeatum, decorum, excisum and its varlety multithlum: tormosum, glavcophyllun, higjidulum, reniforme, and sul dhureum.

Alsophila nusiralfs, capenais, excelen, nod Jeichoritiana
Aspleniun appendicniathm, haluiferum, Coleusol, compressum, dimor -him, Degesnum, llatiblifolinn, Haccidum, Itenionitis (palmatum) buctum, nannnthembim, obtusstun, polyodon, aod pramoraum.

Batantinm Coulcita.
Fimchaum nustrale and serrulatum.
retrach ansenm.
Cheilanth's alalnmergia, argenten, capensis, frabtang, hirta Elialbna,

puselhar eabrarensia atri py vilat.1.

 cabrata ant its variuty combluens; תul media.
日atuhata, hecistonhylla, rujestris, scmivestita, and suelumeno

A.oformehit romana, macilerta, mad vespertilionis
baven cherdmatia

Por amer bounuinghamii.

corymbifera, cristats, cristata variegata, Goeziana, polydactyla, aeoufastigiata,
Legi, and mmuriata), tremulia, and umarosa.
Roder butbara (alricana), Fraseri, hymenophylloides (peltucida), atht auperba.
richomanes elongatum, reuifurne, add reuusum.
Woodsia multis.
Wooduardia orientalis, and radicans with its variety crigtata
Sclect Hardy Ferms.
Adiantuin Capillus Voneris and the varjeties iocisum, magnificum, aut cormhiense; aod pedatum.

Allusiorus crispus.
Aspenium Adiantum nigrum and the variety grandi:eps: alternans, angustifolium, thenens, fontanum; lanceolatnm and the varicty microdon, marinum and the valbties ramosinn, tapeziorme, subbipmaturn, amd crematum ; Trichomanes aud the varietieg iulisum, Muslei, ramosum, undt Glum, and cristatum.

Athyrium Filix fumina aod the varieties corymhifcrum, urtspum, Frizellre Applebyaumi, grandiceps, plumosum, Victoris, apiculatum, scruelaph," apurforme coronatum, Elworthii, sracillimum, Graftix, marioum, nuls cepe, multifdun, pulyclados, polydactylon, thyssunotum, se.; soil Gne"
gianim yictum.
Blechuum Spicant ond the varieties imbricatum, multifurcatum, ramosun, Camptosorus rhizophyllus.
Ceterach oficinaruns.
Custopteris unlifera, fragilis and the varieties augustata and Dickicana, muntama, snd audetica
Dennstcedtia punctilalula (Dicksoois pilosidsubla)
Dennstadia punctiloun
Diplazium laoceum and thelypteroides
Gleichenia alpius.
Hynnenophyllum tunbridgense and unilaterale.
Lastrea remula (fennigecii), atrata, eristata: dilstata aot its varieties Chanterix, dumetoruni, lepidota; erythrosora; Filix mas and the varieties kullandiz, eristata. eristata angustata, grandiceps, paleacea, limeri: Guldieana, warginalis; montasa anit the vorietieg erispa, criatata, Nuwelliana; duveboraceosis, renota, rigida, spinulosa and thelypleris.

Lomaria olpiua and chilensis.
Lygodium palmatum
Nothochlana Marantix and vestita
Oroclea acoalbilis.
Onychium lucidum (japonicum)
Osmunda cinnamomea, spectabilis, gracilis, Claytoniana (laterruptah cegalis ard its variety cristata.
Polypodiun alpestre and its variety texile; Dryopteris, Kranicri, l'heropterig, Robertianum (calcareumb, vulgare and its varieties cambisum, cristatum, omoilacerum, phlcherumum, semilacerom, and cornubiense.
folystichun acrostichudes; , aculeatim ont its varitics lobstum, nultifldum, acroclation, \&c.; angalare and its tatieties cristatum, grandicets Fuleanse, parvissimum, Patey, nolydactylun, proliferim, prolifermm Wok tastoni, rotuddatum, graddideng, imbricatum, plunosum, Kitsonis, ptenc phornm, tripinoutum, \&c. : Valciaellum, Loochitis, and setosumb.

Preris aquilion, cretics albo-linesta, and scalierula-
Scolopendrium vislgave and its varieties atroclalon, (laphamil, columnare, Cooliogii, crispum, crispum fertile, crispumminus, crispumiatum, cristatum, laceratum, marginatum, multilldum, Staosfieldii, and numy uthers.

Struthiopteris germannica, japonica, and pennsyl ranica
Trichomanes radicana.
Woodria alpida, ilvensig, obtuso, and polystichoides Vcitchii.
Woodeardua arcolata, japonica, aul virginica.
Seo Ferns, vol. ix. yp 100-107

VI. Fruits.

114. Fruit Tree Borders.-No pains should be epared, in the: preparation of fruit tree borders, to secure their thorough drainage. The soil is sometimes placed upon a pavement flooring supported by stone or brick piets, with a cavity below of 18 inches or 2 fect deep, into u bich air is adnitted by small vertical eyes, placed along the edges of the walk, and covered with open iron eratings. This arraugement is expensive, and the same advantages can generally bo secured by placing over the sloping buttom a grod layer of coarse rubbly matcrial, commonicating with a drain in liont to carry off the water, while earthenware drain tubes may be laid bencath the rubble from 8 to 10 fect apart, so as to form air drains, and prosided wish opemngs hoth at the side of tho walk and also wear tho hase of the wall. Over this rubbly matter, rough turty soil, gritss-side down warts, should be laid, and on thes the goned prepared sm! in which the trees are to be plonted. Sueb an elabome. system of drainage is necessary only th the case ot adbesive clayey subsoils.

The borders shond emsist uf theen prors rich turfy eal. earcuns loam, the top spit of a piature, and oue part light gritty earth, such as roadgrit, with a small portion (omesixth) of fine limo and hatio molish. They should not he less than 12 fect in breadth, and may vary up 1015 wis feet, with a fall from the wall of about linch in 3 fect. Ziso boriler itself shoshli he mased a foot or more namo the general level. The buttom of the horder as well as that of the drain must be ken lower than the genem lavel of the sulsoil, else the suakign will gather io all the little do-
pressions of tes sutface. Fruit-tree borders slould not be at all cropped with culinary regetables, or very slightly so, as the process of digging destroys the roots of the trees, and drives them from near the surface, where they ouglit to be.

Shallow planting, whether of wall trees or atandards, is generally to be preferred, a covering of a fow inches of soil being sufficient for the roots, but a surface of at least equal size to the surface of the hole should be covered with dung or litter so as to restrain evaporation and preserve moisture. In the case of wall trees, a space of 5 or 6 inches is usually iff between the stem at the insertion of the roots and the wall, to allow for increase of girth. Young standard trees should be tied to stakes so as to prevent their roots being cuptured by the wind-raring of the stems.

In the selection end distribution of fruit trees regard must of course be had to local situntion and climate. The best walls having a south or south-east aspect are devoted to the peach, apricot, aod fig. Cherrics and the generality of plums succeed very well either on an east or a west aspect. In Scotland the mulberry requires the protection of a wall, and several of the finer epples and pears do not arrive at perfection without this help, and a tolerably good aspect. The wall-trees intended to be permanent are called dwarfs, from their branches apringing from near the ground. Between these, trees with tall stems, called riders, are planted an temporary occupants of the upper part of the wall. The riders should bave been trained in the nursery into good-sized trees, in order that when planted out they tnay come into bearing as spcedily as possible.

Standard Fruit Trees should not be planted, if it can be avoided, in the borders of the kitchen garden, but in the onter slips, where they either may be allowed to attain their full size, or may be kept dwarfed. Each sort of frujt should be planted by itself, for the sake of orderly arrangement, and in order to facilitnte protection when necessary by a covering of nets. Their produce is often euperior in flavour to that of the same kiad of fruit grown on walls.

Almovel- 115. The Almond, Amygdalus communis, is very ornamental in respect to its flowers in the carly spring months, but of little value lior its fruit. There are two variaties, ono producing large flowêrs and aweet-kernelled fruits, and the other amall flowers and bitter kernels. Every good garden ahould contain a tree or two, especially of the aweet almond, for their ornamental aspect in spring. Tha nlmond requires a warm light sonl, well drained, and a aheltered position and warm aspect. It is propagated by hudding on tha seedling almond, or for heavier soila on the plum stock. Seo Almond, vol. i. p. 694.
116. The Apple, Pyrus Malus, is amongst the most uscful of ell our hardy fruits, and oucceeds in localities too cold for either tho pear or the plum, while from its flowering later in the spring it is less liable to he cut off by frosts.
It may be propagated by sceds to obtain stocks for grafting, and also for the production of new varieties. The established sorts aro usually increased by grafting, the method called whip-grafting being preferred. The stocks should be at least as thick as the finger ; and should be headed back to whare the graft is to be fixed in January, unless tho weather is frosty, but in any case before vegetation becomes active. The scions should be cut about the same time, and laid in firmly in a trench, in contact with the moist soil, until required.

The appla-tree will thrive in any good well-drained soil, tho best being a good mellow calcareous loam, while the less iron there is in tha subsoil the better. The addition of marl to soils that aro nait naturally calcarcous very much improves them. The trees are linhlo to canker in undrained soils or those of a hot sendy nature. Where the soil is not naturally rich enough, it shonld be well manured, but not to the extent of encouragiag over-luxurianco. It is better to apply manure in the form of a compost than to use it in a fresh etate or unmixed.
To form an orchard, staindard trees shonld be planted at from 25 to 40 feet betwcen the Jows, according to the fertility of tho soil and other considerations. The trecs should be selected with clean, sfraight, self-aupporting stems, and the head should be shapely and aynmatrical, with the main branches well balanect. In order to obtrin such a stem, all tha leaves on tho first shoot from tho graft of bud should be encouraged to grow, and in the second season the terminal bud should be allowed to develop a further leading shoot,
while the lateral shoots should be allowed to grow, hut so that they do not compete with the leader, on which the growth of leaves should be eacouraged in order that they may give additional strength to the stem bolow them. The side shoots ehould be removed gradually, so that the diminution of foliage in this direution may not excced the increase made by the new branches and shoots of the upper portion. Dwarf pyraaids, which occupy less spece than open dwarfs, if not ellowed to grow tall, may he planted et from 10 to 12 feet apart. Dwarf bush troes may he planted from 10 to 15 feet apart, according to the variety and the soil. I warf bushes on the Paradise stock are both ornamental and useful in small gardene, tho trecs being always couveniently under control. These bash trees, which must he on the proper stock-the French laradiso-may be planted at first 6 ficet apart, with the same distance between the rows, the space being efterwards increased, if desired, to 12 feet apart, by removing every alternate row.
"Cordons" are trees trained to a single shoot, the laterals of which are kept spurred. They are usually trained horizontally, at about $1 \frac{1}{2}$ feet from the ground, and nay consist of one stem or of two, the stems in the latter case being trained in opposite directions. In cold districts the finer sorts of apples may be grown against walls as upright or oblique cordona. Frem these cordon trees very fine fruit may often be obtained. The opple may also ba grown as an espalier tree, a fonu which does not require much lateral apace. The ordinary trained trees for espaliers end walls should be planted 20 feet npart.
The fruit of the apple is produced on apurs which form on the branchlets of tivo years old and upwards, and continue fertile for a scries of years. The principal pruning should ke performed in summer, the young shoots if crowded being thinned out, and the superabundant laterals shortened by breaking them lalf'through The general winter pruning of the trees may take place any time from the beginning of November to the beginning of March, in opea weather. The trees are rather subject to the attacke of the Ainerican blight (Eriosoma mali), which may be removad by scrubbing with a hard brush, by painting the affected spots with any bland oil, or by washing thent with dilute paratfin and soft soap.

The following are a few of the most approved varieties of the apple tree, arranged io the order of their ripening, with the months in which they are in use:-

Dessert Apples.

hite JuneatingJuly.	Rilsston Pippia
Early Red Margaret......Aug.	Golden ripyu.
Irish YeachA	Goldeo peinetleNav,-Apr.
Devonshire Quaitenden . Aug., Sept.	Yorthern
Duchess of Uluenburg....aug., Sept.	Rosemary
Oslin \ldots............... Ang,	Ashmead's B
Red Astrachansept.	Aromatic
Kerry PlppinSept., Oct.	White Winter Calville - Dec.-Mar.
Peastoods Nonesuch ... sept, Jct.	
Cox's Orange PippinOct.-Feb.	Court-pend 0 llat Dec-Apr.
Court of Wick (het.-Nar.	Wyken rippin
Blenheim PippinNov.-Feb.	Coraish Gillitlowe
Sam Young. Nov.-Feb.	Coldeu Marvey
3ykehouse Russet. Nov.	scarlet Nopparcll Jau
Fearn's 1ippinNov.-Mar.	Cockle's PippinJan
Herefordsture Pearmain. . Nov.- Mar.	Lamb Abbcy Pearmaln . . Jan
Mannlogtoa's Pearmala . . N	
Margil Nov.-3lar.	Sturmer Pippia
Kitchen	Applcs.
Keswick Codlin..........Aug., Sept.	Gloria MundiNov.J
Lord SuffieldAdg., Sept.	Elenbeim Pippiu
Mauks CodlinAug.-Oct.	Tuwer of Glammi
Ecklinville Seedling Aug.-Nov.	Waraer's King
Stirliog Castle.Aug.-Nov.	-1friston
Stone'sAug.-Nov.	Loadon Pip
Emperor Alexander........Sept.-1)ec.	Northera
Wall ham Abbey Sceding sent.-In	Reinctle de Canada...... Nov--Apr.
llini Uct.t Nov.	
Oravenstein Oct.-De.	Royal Russet Nov.June
awtheruden...........oct-Dec.	Goosplerry Nov.-J
Reioethe led...iter Oct.Jan.	Winter Greening Nov.-July.
Mere de Ménage..........Oct-Jan.	
Beauty of KentOct.-Fel).	Lane's Prince Albert.. ..Jan.dune.
cb.	Nortolk Beauth Jan.Junc.

117. The Apricot, Prudus Armeninca or Armeniaca vilgaris, is Apricot: propagated by budding on the mussel or conmon phum stock. The treo aucceeds in good well-drained loamy soil, rather light than henvy. It is usually grown es a wall tree, the east and west aspecte being preferred to the south, which induces mealiness in the fruit, though in Scothand the best aspects are nocessary. The most usual and best mode of training is the fan method in tha modified form represented in par. 26, under fig. 83. The fruit is produced on shoots of the preceding year, and on small close spurs formed on the two-gear-oll wool. The trees should be planted about 20 feet apart. The summer pruning should commence carly in June, at which periol all the irregular fore-right and useless ahoots are to be pinched off; ond, shortly afterwards, those which remain are to be fastened to the wall. At the winter fruning a'l brancles not duly furnished with spurs and fruit buds are to bo
removed. The young bearing shoots are moderately pruned at the points, cure being, however, taken to leave a terminal shoot or leader to each branch. The most common error in the pruning of apricots is laying in the bearing shouts too thickly; the branches aaturally liverre in fan traming, and when they extend so as to be abont 15 nches aurt, a fresh branch should bo lad in, to be again sub. divided as required. The blassums of the apricot open early in spring, but are more harly than those of the peach; the same neans of protectiou when necessary may be employm for both. If the frait sets ton numerously, it is thinned ont in June and in the hegianiag of July, the later thinnings being used for tarts. In the south of Enybmi, where the soil is suitable, the hardier sorts of apricot, as the Treda and Brussels bear well as standard trees in rivorable scasons. In such cascs the trecs may be planted from 2) to 25 feet arart

Furcing. - The ripening of the fruit of the apricat may be aceler. ted by culture under glass, the trees being either planted out like peaches, ar grown in piotis on the otward-house system. They unst be very gently excitel, since they naturally bloon when the surn temperature is connaratively luw. It first a maximum of \&" only must be permitted; after two or three werks it may bo nused to 45°, and later on to 50° and 55°, and thas continnal till lius trees are in Hower, air being frecy admitted, and the minimun or aight temperature ranging from 49° to 45°. After the fruit is sot tho temperature should be gradually raised, being kept higher in char weather thau in dull. When the froit has stoned, the tumperature may be raised to 60° or 65° by day and 60° by aight: and fur ripening off it may be allowed to reach 70° or 80° by sun heat.
The Mompark is undoubtedly the best apricot in cultivation, ind should l心 planted for all geueral purpoges; the frach is a very similar variety, nut Goute idertical; and the Hemskerk is also simatar, but harder. The carke 1..nly, which ripens in the end of Joy and Kashe, a sweethernelled variety, which ripens in the rumtie of Aurust, are alin to be recommended. For standard trees an, vol, ii. p. 24 .
118. The Cherry, Cerasus ayium and C. vulgaris, is increased uy buddiag on the wild goan, obtained by sowing the stones of the frmall black or red will cherries. To secure very ilwarf trees, the Cerasus Mahadel has been med Cor the May Duke, Kinatish, Norello, anl analogous sorts, but it is not arlaftel for strong-rrowing rietics hike the ligarreans. The stocks are buldel, or, more Hely, grafted, at the usual scasons. hle cherry prefers in free, I-uny soil, with a well-drained subsoil. Still smils ant dry gravelly Elikoils are both unsuitable, though the trees require a large smonnt of moisture, particularly the large-leaved sorts, such as the Digareans. Fur standard trees, the bianrreau sectinn should he planter 30 fect apart, or more in rinh soil, am? the May buke, Morello, ami similar waritits 20 or 25 feet apat ; while, as trained Gwes arninst walls and espaliers, from oif to $2 f$ feet shouh be allowed for the former, and from 15 to 20 feet for the lattir"

In forming the stems of a stamhard tree, thm temanorary side-shoots chould not be allowid to attain twe great al henerth, and shouk not le more thon two boas old whan they are tut close to the stem. Thas first lham shots retainm to form the foral slamhl he shortened to about 15 inches, amd two shousts from eardenconremb, sun at the rad an! the other 3 or 4 inches lower duwn. Whern
 nat that chandy an h. p the promipal hanches as nearly equal in

 Whar the brameses, and those sphers will continu profluctive for an ind finite mriod.

the pots shonld be pratected fum snow-showers zad cold rains. Occasionally trees have been taken up in antumn with balls, proted, anl forcel in the following spring; but those which have bee: established a year in the pots are to be preferred. Such only as a. 3 well furmished with blossom-huls should be selccted. The trees should be removed to the forcing house in the beginning of December. if fruit be required very early in the season. During the first and second weeks it may be kept nearly closo; but, as vegetatiou alvances, air becomes absolutely necessary during the day, and even at Dight when the weather will permit. If forcing is commenced about the middle or third week of December, the fruit ought to be lipo by about the end of Marcb. After the frnit is githerel, the trees should be duly supplied with water at tho root, and the foliage kept well syringed till the wood is mature

The following are some of the best varieties now in cultivation. B. signifios that they belong to the Bigarreau, D. to the May Duke, and M. to the Morello section; K. indicates that they are specially ailapted for culinary purposes; and b., m., and e. show that they are in use at beginning, madle, and end respectively of the month stated:-

,	Archduke, D.m. July.
Early Purple Gean, B	Foyal Duke,
Euty Red Dighrreau, B. . me. June	Joc-o-sot, B. ${ }^{\text {c...........m. July. }}$
Farly Jaboulay, B.e. e. June.	Buttner's yelluw, R.......m. July.
Early Lyons, 13.e. Juue.	Luttner's Black lleart, B...ulu. July.
Eariy Rivers, B............e. June,	hizarrea
Hlack Tartarian, B, \{ \{ er Jupe.	Reine Horteuse, D.m ©. July.
$\left.\begin{array}{l}\text { Likarreau Noir de } \\ \text { schnidt, pi.......... }\end{array}\right\}$ July.	Kentish, M., K. July. Morello, M., K.July-Oct.
Frogmore Early, B.b. July.	Kigarreau Napolkon, F. ..e. July.
Elton, B. b. July.	chesse de Falniuw, D. ..e. July.
Rack Engle, B. b. July.	St Margaret's, E. $\begin{aligned} & \text { e, July, } \\ & \mathrm{b} .\end{aligned}$
Governor Wood, B,b. Jul	
May Duse, D. (on walls) $\left\{\begin{array}{l}\text { e. June } \\ \text { b. July. }\end{array}\right.$	Euttorerenctober, D, к, ..October.

119. The Cranberry.--The American cranberry, Oxycoccus ma-Crazcrocsrpus, grows freely in beds of peat soil or bog earth formed for beris. their reception in any damp sitiation. beds are often prepared avound the edges of a pond by depositing a layer of rubble or stones at the bottom, and orer these a gool thickness of neat or bog earth mixel with sand, oxtending about 6 inches below and aboutis inches above the usual level of the water surface. On this bed the cranherry plants shouth be put in at 2 fert apart, in autumn or spring; spreading in all llacetions, they will som cover tho whole sirface with a deuse mat of traling shoots.

The common craberry, Oxymoceus falustris, a native of Britain, bears fruit which is inferior to that of the American cranbery in size and quality. The plants may te treatel in the same manner, and in sume phaces are very succesfully cultirated. See Cras.BEDEX, Val, vi. J. 545.
150. The (eurrants are anong thr most nseful of small fruits. Cuerad The sel ant the whitecurrant are inmbled as varieties under libes rubrum, the white being a palefinitud ratiety of the rea. Tho hack nurant is the profuce of Rines nigmin. Of both types there ar surest] freatly improved variotios.
Rad and whitecurnants are ready promanted ly cuttings. They sthemed in any well-tnrichent gathen soil, hat thrive best in warm undist situations, whate they whing an almmance of air ; ocasionally thy are trainel gerpendicular!y aganst low walls or fenees. As bushos they aro best fluntel in compratments by themselves, at
 some 8 or 10 inches bonf, They ase somminues traned as standards on simple stems, 3 or 4 forthan, in which form the frut is more acossible. The winter franian ennsints in shortening the young luaring wool on the side. of the Phathes so as to form spurs of an inch or two in length. "Ho loming choots arm left about e inches longe. Somp cuitivatura bellam the berme shoots to about half their lonkth as som no the fruit hagins to colour, which is found to incrase the sia and inprowe the harour of the berres.
'The hhe k currant thrives lest :o a moist derp soil ant shady

 "h atha", and to bmomots: the lamation of gounge wool. If tho

The hollowing are the bust subs of curants for gemeral frem 16n":-

121. The Fig, Ficus Carica, lives to a great age, and along the 6onthern coast of England bears fruit abondantly as a standari; bot in Scotlaod and in many parts of Englanl a south wall is indispensable for its successful cultivation ont of looss.

Fig trees are propagital by cuttings, which should be put into pots, anel placed in a gentle hothed. They may be obeamed moro specdily from lagers, which shonlit consist of two or three years olid dionts. and these, when rooted, will form plants ready to hearfruit the first or second yeat after planting. The best soil for a fir border is a friable loam, not too rich, but well drainel; a challiy subsoil is rongenial to the tree, and, to corrert the teniency to over. luxuriance of growth, the roois shomb be confand within spaces atroundel by a wall enclosing an area of about a square yard Tho sandy sail of Argenteuil, near laris, suits the fig remathahly well: bit the best trees are those which grow in ald quaries, where their roots are free from stagnant water, and where they aro shalterel from cold, while exposed to a very bot sun, which ripens the fruit perfectly. The fig succeds well planted in a pavel court against a buidding with a south aspect.

The fie tree naturally produces two sets of shoots and two crop's of fruit in the season. The first shoots generally sliow young figs in July and Angust, but these in the climate of England vory selifom ripen, and should therefore be rubbed ofl. The late or nillammer shoots likewise put forth frist-buls, which, however, don not develop thenselves till the followiner spring; ame these fermo the on! y crop of figs on which the lrxitish gratener can depemb

The fig tree groorn as a stambard should get very little proning, the effect of cutting being to stimulate the buts to pursh shonts too vigorous for bearing. When grown against a wall, it has been recommended that a single stem should be trained to the licight of a foot. Above this a shont should be trained to the right, and another to the left ; from these princigals two other slibalivisinns shonld be encouraged, and traned 15 inches apart; and along these Aranches, at thistances of about 8 inches, shoots for bearing, as nearly ns possible of equal vigour, should be encouraged. The bearing shoots brolluced along the leading branches should be trained in at full fongth, and in autuman every alternate one should be cut back to rine cye. In the following summer the trained shoots should bear and ripen fruit, and then be ent back in antumn to one eye, while shonts from the bases of those cut back the previnus antumnshouki be trained for succession. In this way every leading branch will ho Jornished alternately with bearing and successional shoots.

When protection is neressary, as it may be in severe winters, though it is too often proviled in excess, sprace branches have been foumit to answer the purpose exceedingly well, owing to the fact What their leaves drop off gradually when the weather becomes miller in spring, and when the trees require less protection and mrire light and air. The principal part requiring protection is the main stem, which is more tender than the young wood.

Foring. - The fig requires nore heat than the vine to bring it inte 'eaf. It may be subjected to a temperature of 50° at niglat, and tron 60° to 65° in the day, and this should afterwwels be in. creased to 60° and 65° by night, aml 70° to 75° by day, or cven higher by sum heat, giring plenty of air at the same time. In this temperature the evaporation from the leaves is very great, and this must be replaced and the wants of the swelling fruit supllien by dinily watering, by syringing the roliage, and by moistening tho foor, this atmospherie moisture being also necessary to keep down the red spieler. When the erop berins to ripen, a moderately dry atmosphere should be maintained, with abunidant ventilation when the weather permits.
l'be fig tree is easily cultivated in pots, and by introducing the plate into heat in shecession the fruting season may be consider. ally extended. The plants shonh lie yotted in turfy ham mixed with charcoal and old mortar rublish, and in summer top. dressings of rotten manure, with mamure water two or threr times a reek, will be benefieial While the fruit is swellng, the pots shonlil be plangel in a hed of fermenting leaves

The following are a few of the best figs; those marlied F. are good foreing sorts, and those marked W. snitatile for walls:-

Agens hrownish.creen, turlionte.

!rown Ischia, F. : chestmit colourch, romblish-furhmata

firanswick, w. : hrownish green, pyiform
Cul di Slpnora Bhanca, in greenishyellow, pyrifurm.
Col di Siznora Seros, inrk chaculate, jyriform.
Witto: pale dingy hrown, is riform.
Girizaly Det, Fo: hrownish-purple, romblish.
Grosse Monstrente te Lipari : pale chestumt, tur himate
racrezia: dull white, rumdish
$\forall \rightarrow g o l$ Largo, $F,:$ hlack, Dongr prifurm.
soyal vineyard: jwmic, 1onse pysiform.
Hhse fach:a, F : Erecnish-gellow, romblish-ohnowa
Thite Mareevles, F. W. : pale green, roumbinhobowne Scefta, wol. tx. p 103.

soil, which readily imbibes, but does not retan, much monsture. The plant is pupporated by cattings, and should be transalanter early in autumn, the trees, like those of the currant, heing rauged in lises or groupal in compartments. The trees should be forned with single stens a foot high; and the suckers, if any spring up
 practice in Sembmil to sut all the ammal nomb; but now the blak currant system of pumberg is more memerally and inlvantagomaly followel. The ground on which the Lushes stand slomke lie linked over once a yoar, lut only slighty, so as not to distul hithe tuote, anm

 die leaves with powdered white hellehome, which seems to he the only retain rentely, as even hand-piothong fails in some sathons Whin the enterpillars are very abumdant, amb the taces are numberbs.

The gooselictry, like the cumant, may be trailued on walls on rspabers, to acelerate the rupening of inerease the size of the fruit The following is a good limited sefection of sots:-

 Fanmy JiownGirl
Wairy Greens-Garly Green Ilairy, Glinton Green, Thmmer
Hary Whres. - White Champhane, brith Venus, white Lion. Trans. Harent, Snowdrop, Jascimatinh, Antwonist White
Shmooth Reds - London (bery harge), IJugh Boy, Small Red Glulfe, Turkes Ke!
Smooh Fellotex - Snitilig Beanty, Leveller, Gipsy Quern. Lealer, Ruger
 Smooth intiles - Whice I Loney
smooh whtes - White buney, White Fig. Careless, Freedon
123. The Mcilur, Mespilus germanica, is a becidunus tree, matue Mopore of the midtle and south of Eubpe, aml fomb in helges and unoms in England. Its fruit is hard, acid, and untr for cathor till it loses its green colour and becomes "hleted," in whels state it acquires all agreeably acid and somen lat astumeche flavout
The medlar is propargated by buhling or Hrafting unat the uhitethorn, which is most suitable if the soll is dyy ant sambly, or on the quince if the soil is moist. It pobluces the hest fruit mith loanty, somewhat moist ground. The tree may he grown as a stamhari aind chiefly requires proning to prevent the braturaes from elossumg and rubbing cach other. The frat shonkl he gathered in Novenber, on a diy day, and laid ont upon sholves in the finit room. It beconta bletied and fit for use in the conrse of two or three wecks.
124. The Velon, Cucumis Melo, is an ammal tropical plant of Meton climbing or trailing habit, extensively endivated in Persia and somo parts of tatia. The glant requires arlificial lant to grow it to per: fection, the rock amb cantalony varicties swecediag with a botiont theat of 70° and an atmospheric temperature of 75°, rising wilh sum heat to 80°, and the Persim varicties rentiring it lottom heat of 75°, gradually increasing to 80°, and an atmmspitutic temper' ture ranging from 75° to 80° when the frout is swellugg, as much sum leat as the pitants can boar being allowed at all times. The rublon grows best in rich turfy loam, somewhat havy, with whe ha hutio well-metted dang, especially that of pigeons or fowls, shombi used, in the proportion of one-fifth mixed in the compont of lump. Melons are grown on hot beds of fermenting manure, when the soit shonhl he about a foot io thichness, of in fits hoamd cother liy hot water or fermenting matter, or in houses heatid lig hot water, i: whicly case the soil bed shoult be 1 an 18 ituches thich. flho feinuenting materials sliunt be well prepuct. and, stace the heat has to be kept up by limings, it is a goot phan in manduce orn or two layers of faggots in bulatige up the ted . mathere of dug and leaves gives a more subdusiblit more latable heat

For bild ordmary purposes Fehmary is eaty "nomgh for sowing the first cron, as welf-flavoured funts cin seately be lobked for hefoso
 haf-monh with a lith loam, the fots beng fhlugen in a luitom
 young phats may mut he hrawn upt The hill or vidge of soll shouh tie ahout afon! in dhickuss, the thest of the surface being altowats made up morly for the smme lesed for the frating bed is mot reaty whon the 1 ncts have neably filled the pors, they zanst be slifted moto a-inch pols, for on wo wecome most they be ablewed ic gne staved or zot-homel. Two or there plants are basally ganted In a mound or ridge of seil phacert in the tomite of eath light, sand the rest of the strface is comereyl ower to a similar depth as soon as tho roots have made theis way themel the monot.

The mote of graning and iraining is simitar ulacther the phinte are grown on a trellis or on the surface uf a lue with this diflerence thation the former case the main skm has to he caried "uto sufficient height to ren h the trellos lurfote it is stapled Nemen the plants are trained on the surfoue of the beds the topes alomh hed pinched off as soon ats the secturd rough leaf is fait) format, tho

of the twn leaves, and they shonid be trained one towards tive front nod the ollor towards the back of the frame, hefore reaching which the points should be finched of and lateval fruit-bearing sloots will then be produced.

The melon being one of those filants which produce distinct male and fomale flowers (diecious), it is newessary to its fertility that both shoult be produced, and that the phlen of the male flower should, either maturally by insect ageney, or artificially by the cultivator's innapulation, be conveyed to the stigma of the female flower ; this setting of the frut is often done by stripping a male flower of its compla, and inverting it in the centre of the froit-beaning flower. After the fruit has set and has grown to the size of an egg, it should be preserved from contact with the soil by placing it on a piece of tile or slate ; or if grown on a trellis by a little swinging wooden shelf, just large enongh to hold it. In cither case the material used shonld be tilted a little to one side, so as to permit water to drain away. liofore the process of ripening commences, the roots should have a stificient suply of moistare, so that none may be required from that time until the fimit is cut.

When the melon is grown in a house there should be a good denth of dminage over the tank or other source of bottom heat, and on this shoulit be placed turfs, rrass side downwards, below the soil, which shond not be less than 15 ami need not be more than 18 inches in thickness. The compost shonld be made moderately firm, and only lialf the bed should tue roale up at first, the rest being sdded na the roots require it. Tle melon may also be grown in large pots, surplied with artificial manure or manure water. The stems nusy bo trained up the trellis in the nsual way, or the rafters of a pine stove may bo utilized for the purpose. If the trellis is constructed in pancls about the width of the lights, it can be taken down and conveniently stowed away when not in use.

The presence of too much moisture either in the atmospleve or in the soil is apt to cause the plants to damp off at the neck, but the cvil, if it appears, may be checked by applying a little fresh-slaked lime round the stem of the plant.

The varictics of melon are continually receiving adilitions which nre more or less permment. A great deal depends on getting tbe varictics true to name, as they are very liable to get crossfertilized by insect agency. Some of the best are-

Scarlet-fteshid.-Scarlet Gem, and Read's Scarlet-fleshed.
White-fleshed. - Culston Liasset Secdimg, and Queen Einma.
Green-jleshed.-Vietory of Lath, Eastnor Castle. and Egyptian.
125. The Mulberry, Moris nigra, is a deciduous trec, with moneccious flowers, and oblong compound fruits, having a rich aromatic flavour and a fine subacid juice. The fruit is in request for the dessert during the months of August and September. It is a mative of Persia, and sueceeds well as a standard in the warmer parts of England, especially in sheltered situations, but in the nortla of England and the less favoured parts of Scotland it requires the nessistance of a wall. Tho standard trees require no otlier proning or training than an oceasional thinning out of the bram hes, and are generally planted on grassy lawns, to prevent the finit being damaged when it lalls.

Tho tree succeels best in a rich, deep, and somewhat moist loam, but grows well in any good garden ground. It is usually propagated rither by cuttings or layers, which latter, if made from the older. branches of the tree, come sooner into braring. Cuttings planted in the spring should consist of well-ripened slooots of the preceding year, with a joint of two-ycar-old wood at their base, or if planted in autumn should lave the shoots well matured, and furnished with a heel of two-year-old wood. The branches nnd even stout limbs are sometimes employed as cuttings instead of the younger shonts, especially when the oljeect is to obtain a bearing tree quickly. The branch should be planted deeply in antumn in good soil, and if necessary supperted in un urright position by a stake. The most common mode of proparation, however, is by layering the joung branches. The mublerry may be grown in pots, and pently forwarded in ma orehard house, and under these conditions the fruit aequires a richness of flavour and a melting chavacter which is unknown in tho fruit ripened ontdoors. If cultivated in this way it requires abundanee of water while the fruit is swelling, and also frequent dressings of artificial fertilizers or loses of hipuid manure.
Nectar-
ine.
Dist.
126. Tho Nectarine is merely a smooth-skinned variety of the peach, and will be included under that heal (see par. 129).
127. The $\Lambda^{r} u t$, Corglins A vellana, or hazel-nut, one of our indi- genous shrubs, is tho parent of the Filberty, Cob Nuts, and other inproved varictics which are met with under cultivation. Theso suceed hest in a rich dry lonm, decply werked, and bhould reccivo from time to time n slight manuring. They are gencrally planted in the slip, but thrive best in on open quarter by themselves. Tho different varictics aro propagated by layers, or mor generally by suckers; or, if required, they may be grafted. The Cosford is a favolfite kind, being a thin-shelled nut, and having a kernel of high Ravour. If either this or the filbert be grafted on amall atocks of the Spanish nut, which grows fast, and does not sead ont suckers, dwathish prolifie trees may be obtained; nod, by pruning the roots in autumn, tha trecs may be kept quite neat and busky.

The county of Fient las long been celebrated for the culture of nuts for the London morket. The young plants am almnst alnays suckers from old bushes, and are planted from 10 to 12 feet apant, being subsequently kept from crowding or sluding each other by pruning. They are suffered to grow without restraint for about three years, and theo, being cut down to within 12 or 18 inches of the ground, they will push out from near the top five or six shoots, which at the winter proning in their second year aro shortened one-third. A hoop of sufficient diameter is then placod within the branches, and the shoots are fastened to it at about equal distances. In the spring of the fourtl year all the laterals ore cut back nearly to the frincipal stems, and from these cut-back laterel: short shoots proceed, on which frnit may be expected in the follow. ing year. Those which have borac fruit are afterwards removed by the knife. The leading sloots are always shoutcued about twothirds. Every bearing twig is deprired of its top, and all suckers are carcfully rooted out.

The nut being a monocions plant, it is necessary in the winter or spring pruning to take care that a sufficiency of the male flowersthose produced in pendulous catkins-are peserved. The femalo flowers, which produce the fruit, are not risible till spring, and appar in the form of plump buds, producing from their apex several ilcep crimson threads, which are the styles to which the pollen from the catlins should be applied.
The best kinds of nuts for garden cultivation are Lambert's Filbert, the Fen and the White Fiberts, the Cosford, the Norwich Irolinc, and Pearson's Prolific.

12s. The Orange, Citrus Atrantinm, lias been usually cultivated in England for the bealuty of the jlaut and the fragrance of its blossoms, rather than for the purpose of affording a supply of edible fruit. The latter can, however, be easily grown in a hot-louse, some of tho fruits thus grown, especially those of the pretty littlo Tangicerine varicty, being snperior in quality to the impinted fruit. The best form of orange house is the span-roofed, with glass on both sides, the beight and other conditions being similar to those recommended for stove plants. The trees may be planted out, a row on each side a central path, in a housc of moderate wilth. The borders must be carefully made, with a drainage botton of from 9 to 12 incles of broken bricks or rubbly stones, and a drain leading to tho exterior. Rough turf with the giassy side downwards should ho laid over the dminage material, and then 18 inches of good turfy loam mixed with gritty sand or fine burnt ballast, to keep it per. meable to water. T'le trees, if intended to be permanent, should be placed 10 to 12 fect aprart. Rottom heat (about 80°) is benefiecial ; but it is questionable if its advantages beneath a bed of soi] nre not more than comerbalanced by the risk of over-dryness, and th:o inconvenience of getting access to the heating pipes in case of repairs becoming necessary. It will generally be found more convenient to grow the plants in pots or tubs, and then bottom lieat con be securel by placing them on or over a series of hot-water pipes kept near to or above the ground level. The pots or tubs should be thorouglijy well drained. The tenperature may be kept at about 50° or 55° in winter, under which treatment the trees will come into bloom in February; the heat must then bo increased to 60° or 65° in the day time, and later on to 80° or 85°. Thronglout the growiag scason the trees should be liberally watered, and thoronghly washed every day with the gaden engine, care Iocing taken not to injuro the young leaves; this will materially assist in keeping dewn insects. The fruit may be expected to ripen from about the middle of Octoler to January; ond if the sorts ore good will bo of execllent quality, When the trees are at rest the soil must not be kept too wet, sinco this will produce a sickly condition, through tho loss of the small feeting roots. The trees require little pruning or training. When a branch appears to bo robbing the rest, or growing ahead of then, it should be shortened back or tied down.

When grown for the production of flowers, which are always in great request, the plants must bo treated in a similar manner to that already described, but may do withont bettom liest.
The favourlte sorts of oranges aro tho Tangierine. a delideluts small-frultet garly varlety; the Mnndarif, which is larger than l'anglerinc; the st Michacl's, which is the most commonly krown : the Naltese hlood, which is a very distinct bort with red flesh; and the Pita or silver orange.
129. The Peach, Amygdalus Persica, or Persica vulgaris, is ono of the most delicious of exotic garden fruits. There are two prineipal races, tho Pcach proper, which has fruits covered with a downy skin, and tho Netarinc, which has frnits covered with a smooth skin. Tho peach and the nectarine would thereforo appear to bo distinet kinds of fruit, and indeed have an appreciablo difference of flavour, but as both peaches med nectarines havo been known to grow on the same branch, nod individuals half-peach half-nectarine have been produced, they must bu regarded as merely varioties on ono kind of fruit. Their theatment, moreover, is the same in every respect.

To perpetunto and multiply tho choicer vavictica, peaches and nectnrines aro tmdded upen plum or almond stecks. F'or dry sitnatinus almond stocks are preferable, but they are not long-lives, whilo for damp or clayey loums it is better to use plums Double-
working is sometimes bencficial; thus an almond budded on a plum stock may be rebuisled with a tender peach, greatly to the advantrge of the latter. The peach border should be composed of turfy mellow loam, such as is suitable for the vinc and the fig; this slould be used in as rough a state as possible, or not broken small and fine. The bottom should slope towards the outer cdge, where a drain should be cut, with an outlet, and on this sloping botton should be laid a thickness of from 9 inches to 12 inches of rough materials, such as broken bricks or mortar rubbish, over which should be placed a layer of rough turf with the grassy side down. wards, and then tho good loamy soil to form the border, which need not be of greater depth than 18 inchps, for the peach tree is most productive when the roots are kept near tho surface. The borders should not be cropped lieavily with culinary vegetables, as deep treneling is very injurions. Sickly and unfruitful trees may often be revived by bringing up their roots within 5 or 6 inehes of the surface. The experience of the last few seasons has, however, been so disastrous that it has been questioned whether it may not be better, in cold soils and bleak situations, to abandon outdoor peach culture, and to eover the walls with a easing of glass, so that the trees may be under shelter during the uncongenial spring weather.
The fruit of the peach is produced on the ripened shoots of the preceling year. If theso be too lnxmimt, they yield nothing but leaves; and if too weak, they are incapable of developing flower buda. To furnish young shoots in sufficient abundance, and of requisite strength, is the great object of peach training and pruning. Trees of slender-growing, twiggs habit naturally fall most readily into the fan form of training, and accordingly this has generally been adopted in the cultere of peaches and nectarines. The old fan form is very nearly that of fig. 82 (p. 245). The young tree is, in many cases, procured when it has been trained for two or three yenrs in the nursery; but it is generally better to commence with a maiden plant, thant is, a plant of the first year after it has been bulded. It is then in ordinary practice headed down to five or six buds, and in the following summer from two to four shoots, according to the vigour of the plant, are trained in, the laterals from which, if any, are thinned out and nailed to the wall. If there are four branches, the two central oves are shortened back at the subsequent winter pruning ao as to produce others, the two lower ones being laid in nearly at full length. In the following season additional shoots are sent forth - and the process is repeated till eight or ten principal limba or m: her branches are obtained, forming, as it were, the frame-work o. the future tree. The branches may be depressed or elevated, so as to check or encourage them, as occasion may arise; and it is bighly advantagcous to keep, them thin, without their becoming in any part deficient of young shoots. Sometimes a more rapid mode of formation is now adopted, the main shoots being from the first laid in nearly at full length, instead of being shortence. The proming for fruit consists in shortening back the laterals which had been nailed in nt the disbudding, or summer pruning, their length depending on their individual vigour and the luxnrinnec of the tree. In well-developed shoots the buds are generally double, or rather triple, a wood bud growing between two fruit buds; the shoot mast be cut back to one of these, or else to a wood bud alone, so that a young shoot may be produced to draw up the sap beyond the fruit, whicli is generally desirable to secure its proper swelling. The pointof this leading shoot issubsequently pinclied off, that it may not draw away too much of the sap. If the fruit sets too abundantly, it must be thinned, first when os large as peas, reducing the clusiers, and then when as large as nuts to distribute the crop equally; the extent of the thinning must depend on the vigour of the tree, but one or two fruits ultimately left to cach square foot of wall is a full averago crop. The final thinning shonld take place after stoning.
The best-placed healthy youns shoot produced from the wool binds at the baso of the bearing branch is to be carcfully preserved and in due time nailed to the wall. In the following winter this will take the place of the branch which has just borne, and is to bo cut ont. If there bo no young shoot below, and the bearing branch is short, the shoot at the point of the latter may sometimes be preserved as a fruit bearer, though if the bearing branch Le long it is better to cut it back for young wood. It is the neglect of thiswhich constitutes the principal fault in carrying out the English fan aystem, as it is nually practised. Screral times during summer the trees ought to

Fio. 87.-Montreuil Fan Training. be regularly examined, and the young shoots respectively topped or thinned out; those that remain are to be nailed to the wall, or braced in with pieces of alender twigs, and the trees ought oceasionally to bo washed with tho garden engine.
The Montrcuil form of training is represented by fig. 87. The prin-
cipal fenture is the auppression of the direct chamel of the sap, nowl the aubstitution of four or more commonly two mother branclies, so laid to the wall that the central angle contains about 90°. Tho other branches are all treated as subordinate nembers. This form is open to the objection that, if the under branch should die, the upper one cannot be brought down into its place.
The form a la Dumoutier (tig. 88), so called from its inventor, is merely a refinement on the Dontreuil method. The formation of

Fro. 83.-Durmoutier's Fan Training.
the tree commences with the inferior limbs and proceeds towards the centre, the branches being lowered from time to time as the tree acquires strength. What is most wortly of notice in this method is the inanagement of the subordinates in the pruning for fruit. When a shoot promises blossom, it is gencrally at some distance from the point of in. sertion into the old wood, and the interncediate space is covered with wood budg. All the latter, there. fore, which are between the old wood a and the blossom c in fig. 89 , except the lowest b, are carefully removed by cbourgconnement. This never fails to produce a shoot d, Fic. 89.-Pruning à la Dumoutier. the growth of which is favoured by destroying the useless spray e above the blossoms, and pinching off the points of those which are necessary to perfect the fruit. A re. placing shoot is thus obtained, to which the whole ia invariably shortened at the end of the ycar.

Mr Seymour's form (fig. 90) spproaches more nearly to the French method than any other praetised in England, but the direct channel of the sap is not suppressed. It will be seen that the bearing shoots are all on the upper sidc of the mother branchcs, and that these bearing shoots are wholly reproduced once a yeer. The one side of the annexed figuro represents the tree after the winter praning, tho other (left hand) side before it has undergone that operation. On the latter side the young shoots will be seen to be in pnirs, and at the winter pruaing the lower one, or that which has borne fiuit, is cut out, nad the other is brought down into its place, and shortened to about 8 or 9 inches, care being taken to cut at a wood bud. At

Fio. 90.-Seymour's Fan Training.
tho summer disbudding thoso buds whici ore best placed and at the same time nearest the base aro left to supply the futuro year'a bearing wood. Some object that the annual excision of the bearing shoots produces a series of rugged and increasingly ugly protuberances at their base and olong the upper surface of the principal branches; while others declare that this mode of training is the most perfect in theory that has been devised. We are inelined, howcver, to prefer the old fan form, which when woll executed is nearest the natmal habit of tho tree, and best adapted to the uncertain climate of Eugland; nooreover, in nll cases, ultra refinement for the sake of appearanco is neither profitnble nor judicious.

For cold and late situations, tho late Thomas Andrew Knight recommended the cncouragement of spurs on the yoong wood, ns such spurs, when close to the wall, generate the best organized and most vigorous blossoms, and gencrally insure a crop of fruit.. They may be produced, by taking care, during the, summer pruning or disbudding, to prescrye a number of the little shoots emitted by the yearly wood, only pinching ofl the minute succulent points. On the spurs thus formed blossom bude will be deceloped early in the following season. This practico is well adapted to cold aituations.

Peach trees require protection, especially at the period of bloscoming, particularly in the aorth of Engiand and in Scotland. Canvas or bunting screeas are most effectual. By applying these carlyoin the seasob, great benefit mav ive derived from retarding the l lossoin till the frosity nights of epring have passed. Wooden and flass copings are also very usitul in warding off frosts

Furcing. -The pruning and training of the trees, in the 1 zach house do oot differ materially from the methods practised out of doors. It may also be stated here that when occasion anses l ceh trees well furnished with buds may be transplanted and foreel inmediately without risking the crop of fruit, a matter of aomo noportance whea, as sometimes hatyens, a tree may accilentally Taid. Io the forcing of peaches fire beat is commonly applied about December or Jaouary ; but it may, where there is a demand, begin 1 month sonner. At first the house should be merely kept closed 3: about 45°, hut tho heat should gradually inerease to 55° by the time the trees are in flower, and to 60° when the fruit is set, after which the house should be kept moist by sprinkling the walls and foths, or hy placiag water troughs on the return pipes, and the uperature should range from 65° by day to 70° or more with in heat. After the fruit has set, the foliage should be refreshed and eleased by the daily use of the syringe or garden cogroe. Wheu the fruit las stoned, that is, as soon as the kernels bave formed, the temperature should be raised to about 60° as a H i imum, and to 70°, with 75° by sum heat, as a maximum. Water r. Ust now be coriously supplied to the borler, and air arlmitted io Frundance. After the end of April hitelo fire heat is required. Vhen the fruit begins to ripun, syranging must be discontinued thll the crop is gathered, alter which the syrioge must be again occa = mally used. If the leaves should bappen to shade the fruit, no " لhy duriag the ripennc procies, but at any tine after the stoniag I riod, they should be geatly turned aside, for, in order that the f:ut may acquire grood colour and flavour, it should be frcely ox1 nsed to light and air wheu ripening; it will bear the direct rays of t^{t} 'e sum, even if thuy should rise to 100°. The trees often suffer f.oru mildew, which is best preveoted by keeping the borders of the peach house clear and sufficiently moist, and the bouse well ventilated.
The following are some of the best peaches and nectarines, arranged in the order of the times of their ripening:Peaches.

Early Featrice.e. July.	\{ e. Aug.
Farly Louisae. July.	b. Serit
Froynore colden.e. July.	Royal George.......... e. Aus
	Eellegarde............... ${ }^{\text {b }}$
Ithec …m. Aug.	Belle baucem. Sequ.
Faihington Rathrife.. ..m. Aug.	Dymuntnı. Sept.
E.arty Silver. m.e. Aug.	Late Admirable.e. Sel
Crawford's Early $\left\{\begin{array}{l}\text { el } \\ i \\ i\end{array}\right.$ Sept.	Desse Tardive. ${ }_{\text {de }}^{\text {e. Sepl. }}$
Girqase Mignogne........ \{ e. Aus.	Walburtog Adruirable.. $\left\{\begin{array}{l}\text { e. Sept. } \\ \text { U. Out. }\end{array}\right.$
	Salway $\left\{\begin{array}{l}\text { e. Ocz } \\ \text { b. Noy }\end{array}\right.$

Nectarines.

100. The Pear has ongratedin part from the widd spectes, fyrus commueis, aod in part from other sjuctes of the gomus, minhung P. sunensis from Chan, P. Achras Tromi Suathera Russia. 1' Sua from Syria, and P' sahenfola from the Coucasus liatay be readily rivel hy sowng the phes of urdanary enlavated or of uildang kinds, these forming what aro known as fite ur pear stocken on shich the choiecr varlethes are mpulted jur merease. For now varmetics tho fluwers should he fertilizerl whe a view to combine, in the seodiangs which result from the monn, the desurable qualates of the parents. The dwarf and pyrmid trees, nore usually dantal in :araless, are obsamed by gratting win the quate stock, the lostugal
 habut, is most suitable for then shalluw sonls, of for those of a celif hamp nature. Some of the finer poars bla mot mate remblily with the 'luince, and in this case double workiog' is rusurtad to, that is to say, a vigorous-growing pear in hrst mraftell on the funce, and then thu choicer foat is grafted on the phar inthoduced as tes ivater fiarent.

Io selecting yonng pear trees for walle or espahera, seme persons prefer phanta one yen old from the graft, lut trees two or three yoars tramed are equally good The trees shouk the planted ammediately before or after the fall of the bot. The watl tre's rempere to be planted from 25 to 30 fect apart when on freo etexks, and frum
 widi, or en quenouille (sos figs. 78, 79), they may stand 8 or 10
fect apart, hut standards in orehards shonld be allowed at least $\mathbf{3 0}$ feet, and dwarf bush trees balf that distance.

In the formation of the trees the same plan may be adopted as has already been described as suitable for the apple (par. 116). For the pear orchard a warm situation is very desirable, with a soil deep, substantial, and thoroughly drained. Any good free loam is suitable, but a calcareous loam is the best. The late Mr Rivers recommends that pear trees worked on the quince should have the stock covered up to its junction with the graft. This is effected by raising up a small mound of rich compost around it, a contrivance which induees the graft to emit roota into the surface soil, and also keens the steck from beeoming hard or bark-bound. The fruit of the pear is produced on spurs, which appear on shooto more that one year oid. The mode most commonly sdopted of training wall pear-trees is the borizortal (see figs. 80, 81). For the slender twigey sorts the fan form is to be preferrod, while for strong growers like Gansel's Berganot, the half-fan or the horizontal is more suitable. In the latter form old trees are apt to acquire an undue projection from the wall, and beeome scragge, to aroid which a portion of the old spurs should be cut out annually.

The summer pruning of established wall or espalier-rail trees consists chichy it the timely displachag or ruhbing off of the superAnous shoots, so that the winter pruning, in horizontal traiuing, is bitle more than aljusting the leading shoots and thinning out the spurs, which should be kept close to the wall, and allowed to retan but iwo or at most three buls. In fan-traioing, the subordinate branches must be regulated, the spurs thinned out, and the young laterals finally established in their places. When horizontal trees have fallen into diaorder, the branchea may be eut back to within 9 inches of the vertical stem and branch, and trained in afresh, or they may be grafted with other sorts, if a rariety of tiods is wanted.

Summer and autumn I'ears should be gathered before they are fully ripe, otherwise they will not in general keep more than a few days. The Jargonelle, as Forsyth rightly advises, should be allowed to rebain on the tree, and be pulled daily as wanted, tho fruit from standard trees thus succeeding the produce of the wall trees. In reference to the Crassane, Mr G. Lindley recommenda gathering the erep at "three different times, the first a fortaight or more before it is nue, the second a week or ten days after that, and the third wheu fully ripe. The first gathering will come into eating latest, and thus the seuson of the fruit may be coasiderably prolonged. It is evident that the same method may be followed nith other sorts which continue only of short time in a mature state.

The varneties of fears are very unverous, while comparatively few sorts ale requmed in any ordinary garden. The followiog is a small selection of good sorts which du well in the climato of Britain, and they aro arranged according to the months when they are commonly in use,-a perind which, however, varies considerably in differeat seasons:-

Dessett Pears.

noyenee d'Éte.	July	Maréchal de Cour.........lst. Nov.
Reurredel Assu	Aug.	Prtrastog Duchesse
Jargutille		d'Angoul
Sumbeht du Conters	Aug., Scpt	Althorp Cram
Whlilunges thal'hretten	Aug, seps.	Thempsog'
keure d'simimbs . .t.	sept.	\#uyshe's Prince Consort..N'ev., D
Malame 1 reyer	Sopr.	Prase Colmar.............Nov. Der
beurre sajerion	Sepr., Oct	Winter Nelis............. Nor.-Fib
Fundatte 1 Antom	. Seph., Oct.	Chanmouttl.............Nov.- $\mathrm{Man}^{\text {a }}$
Raromie do Atelle	fict.	Beurre d Arenbers. Dec., Jah.
Cothte de latny	let.	Glou Morevau 1 lec., Jan.
Lublse Buhne of Jersey	ict.	Huyshe's VictortaIne., Jan.
Srackel	(1).e.	Mumatch.....Vec., Jan.
Jithe Julse.	(1at, Nov	Zephisin Orégoire
tweltre buace	(ere, Sov.	theurre de Junighe Inec.-Feb
	(her, Nov.	Jusetphlne de Malines.... Jan., Feis
thas lieske it Angomenas.	mt, Nov.	Fatter Beurré..........Jabai-Apr
casmela herpanut	"rt, Nuy	Sec phas MeuriaJan.-Apr
Slarie Lrumbe.	Oct, sior.	Nuuvelle tulv
	Kitc,	Pars.
	uv.-Fels.	
maish lun Chretion	Nuv.-Mar.	W

 reyurra for its cultivition a tropmal chuate similar to that oi thn appla West Indies -a moin temperathre of 70° at the coldest and of 83° at the warmest stavon, wath a rauge of about 10° between the night and diy temperature. It also rejures a supply of heat, averaging. about 40°, tu the senl in whill the rones are placed, and honce it is grown in a hot-house, where it cma be supplied with bottom heat,
 task or derng ing leaven, or liy tot water applied either in pipes
 heraroth the flumgag tedy. The herat arraing from violunt fermentar tion 1s, however, greater than the tendur roots cau bear, and if grea: watchfuhess bu not employed, tho habour of many montha may be wasted in n smigle day. Bottom heat should oot exceed 95°, and may Le brought down whon activo growth is not regared to about $7 a^{\circ}$.

It mast be regulated in its application by the amount of light ana of warmith in the als. Dirin: the season when the plants are at rest it should be comparatively low: during their season of aetive frowth it shonld be constlemble; and during their ripeoing season It should bo highest of all.

The top spit of an old loamy pasture, including the turf, and mixed with about one-third the bulk of geod well-rotted dung, forms a suitable compost for the pine-apple. The boil used at Dleudon, where these fruits have been very successfully grown, is a sandy peat or leaf-mould obtained from a high-lymg spot, where hardtronded trees, chiefty beech, have long been growing. The late Mr Fleming, when at Trentham, used a moxture of threo parts turfy maiden loam te one part of peat, these ingredients being mixed tofither and laiu under a wooden platform on whel sheep were fed (which was so constructed that the dung and urine of the sheep fell through), and left there long enough to become well enriched. Other noted cultivators have recommended turfy loant and sheep or deer dung in the proportion of SIX of loan to three of the manure, me of leaf-mould being added. The compost should be prepared a considerable time beforehand, and frequently turned over and aerated; when used, it should be roughly broken with the spade, but not screened. Some cultivators, who do not otherwise enrich the soil, use half-inch bones and soot at the time of potting in tho propertion of an 8 -inch potful of each to a barrowful of fibrous surface soil. The plants when growing freely are benefited by the ase of liquid manure of an ammoniacal ehoracter.

The pine-apple is sometimes propagated by planting the crowns which grow on tbe fruit, but more commenly from the suckers which appear at the base of the stem, these being a lass time in arriving at a fruiting state. When removed from the fruit or stem, the erowns or suckers are trimmed and laid aside till the scar has dried, after which they are potted. This usually takes place during. August or Septemher, as the offsets shonld be allowed to obtain considerable size before they are removed, for the reason that large suckers grow with more vigour and come sooner into fruit thon those of smaller size. They should be placed in 6 -inch or 8 -inch pots, the soil being somewhat lighter then than that used afterwards. They may be slightly shaded for a short period, and in abont eight or twelve days may recejve a little water The old routine of pine-apple culture embraced a perod of three years, but this has been reduced by modern growers to about eighteen months. The more rapid method was first brought into notice by Abererombie. Its chicf fentures are the employment of more mature suckers at the outset, and the acceleration of the growth of the plants afterwards by the application of a hotter and moister atmosphere than formerly, ao as to obtain the growth of two summers in one.

Tho roots should be preserved in a fresh healthy state during winter, so as not to require being cut away, as was formerly done ; and this may be secured by giving very woderate and judieinus waterings, and by keeping tho bottom heat well under control. About the beginning of Biareh, or earlier, the forwardest young plants from suckers are selceted from the stock of succession plants, and the earth and roots examined; they are then put into larger pots in good soil, and plunged in a bed having a genial bottom heat of about 85°. They require to be shaded for a few days, and after they begin to root should recteive moderate waterings. As soon as the roots thicken in the balls of soil, which will be about the beginning of August, they are to be transferred into 10 -inch or 12 -inch pots, in which they will mature their fruit. At each suecessive shift the ball of earth and roots is to be preserved entire. From March onwards the temperature is gradually increased as follows:-In March, 60° to 70° by night, 70° to 80° by day: April 70° to 75° by night, 80° to 85° by day; May 75° to 80° by night, 90° to 95° by day; June 80° to 85° by night, 95° to 100° by day. After the beginning of August the heat is allowed to decline gradually until it arrives nt the winter temperature of 60° While fire heat is used, the nocturaal temperature should not execed 80°, and sufficient moisture must be supplied. To prevent the plants from being drawn, they should bo allowed ample space- 2 feet from puant to plant is not too minch-and be placed as near the glass as passible. In August and September abundauce of air and more copious sup, lies of water are given. To prevent the roots from damping off in winter, wator must be cautiously applied, and the pits should be licated by means of fire heat rather than by feruenting materials. Some gardenera apply this biennial mode of cultivation only to the varrieties of the Queen type, but our best cultivators for tho most part adopt it in its main features for all varieties, and the fruit produced is finer than that grown upon the triennial course. Those, however, who wish to cultivato auch largo and coarse borts as the Providence may possibly find it nocessary to take a longer period for fruiting them.

The perion at which pine-spple plants first show their fruit stema is the must critical in their whole culture. The plant most he of a certain age, or at least of a certain magnitude, before it will start frocly or to good nurpose. In the second year a Queen pine is capable of producing a perfect fruit ; and in the third year the large parictics arrive. at. puberty. The oolid part of the stem is then
ouserved to have increased in bulk, and to have ascended constderably alove the soil. The start is generally required to be made at a particular period, but the fruit atalks do not appear until the pot is filled with roots. It is therefore necessary that the roots abiall have nearly occupred all the new soil by the time the development of the frust is required, and eare shenld be taken that in winter the tender fibres should suffer neither from dreught ner from excessive moisture or heat. After the plants show fruit they are never shifted; but the surface soil may be replaced by some fresh and rich compost. Water is supplied from time to time, but should never be coller than the average temperature of the liouse Whilst the frut is swelling, care must be taken to carry on the growth of the plant with equability and moderation. As the froit approaches maturity, water is gradually withheld, lest the tlavour should be am pared. Pinc-apples should be cut a short time before they obtan complete maturity; they do not kecp sound long after beng cut, and consequently, if they have to be kept over for a alort period the plant, pot and all, should be moved to a dryish moderately cool room

The Hamiltonian system of pine growang was ar one tame moro frequently adopted than now. Instead of the suckers benng detached from their parent stems before fruiting, the base of the old stem was bared of leares and earthed up with rich compost, into which it rooted freely, each sucker thus producing a ripe fruit in from eight to twelve months from the time it was started." When this fruit was cut, the process was repeated till a third succession of fruit and a fourth were obtained, after which the sucker which bore tho last fruit was cut off with 6 or 8 inches of the man stem, and potted so as to furnish another similar progeny of suckers.
The Queen, as a quick-fruiting sort, and the larger Smooth-leaved Cayenne, are the chief favourites among cultivators. It may, however, be useful to give the nunics of a few of the best varieties:-

Spincless-leaved Pine-apple.

Smeoth-leaved Cayenve, fruit large, cylindrical : good in minter.

Spiny-leaved Pine-apples.

Black Jamajca : fruit oval, 4 to 5 th: one of the best for witer ure. Charlotte Rothschild : fruit cylindrical, 7 to 11 it: good in winter. Enville: fruit pyramidal, 6 to 7 ld .
Lady beatrice Lambtoa : ' Iruit pyramidal, 11 \%; good in winter: very julcy Lord Carington: fruit cylindrical, 5 to 7 th; goch in winter
Prince Albert: fruit pyramidal, 6 to 8 tb; begt in sumner and autumn. Queen: fruit cylindrical, 4 to 8 th; the best sort for general purposes. Thoresby Queca: fruit roundish-ovate, 6 to 8 H .
132. The Plum, Prunis domerlica, is considered a native of Plum. England, but many of the best cultivated varieties have been introduced from France. The fruit is not only prized for dessert, but also for culinary purposes.

Plums are propagated chiefly by budding on stocks of the Mussel, Brussels, St Julien, and' Pear plums. The damson, wine sour, and other varietics, planted as standards, are generally increased by suckers. For planting against walls, trees which have been trained for two years in the nursery are preferred by some, but maiden trees ean be very suecessfully introduced, and by a course of liberal treatment, with less hard pruning, may be moro speedily got to a fruiting state. Any good well-drained loamy soil is suitable for plums, that of medium quality as to lightness being deeidedly preferable. Walls with on east or west aspeet are generally allowed to them, the distance between the trees being from 20 to 30 feet. The horizontal mode of training is adopted by many, but the fan or half-fan forme arealse very commonly followed, and where there is autficient height probably the fan system is the best. The shoots ought to be laid in nearly or quite at full length. The froit is produeed on small sjurs on branches at least two years old, and the same apurs contime fruitful for several years. Standard plum trees should be planted 25 feet apart cach way, and dwarts 15 or 20 feet. Such trees require only to have a portion of their wood thinned out oceasionally when they aro goung. The bardy kinds grown in tbis way are very productive.

In favonrable seasons the crops require thinnugg, to reheve the branches from the excessive weight. The unripe fruit, if fully grown and beginning to change colour, is quite fit for cooking. For dessert purposes the truit should be allowed to remain on the tree sa long as it will hang, and should be gathered by the stalk without dis. turbing the bloom. Sueb kindsas Coe's Golden Drop and Ickworth Imperatrice, if gathered dry, wrapped in tisano paper, and land in a dry cool fruit-room, may be kept for months fit for use.
The following is a selection of good retiable varictien of plums. with their timea of ripening:-

Dessert Plums.	
Early Green Gage..........e. July	Woolston Pl
at IIAtivo \{ e. July.	Jeffrgoum. Sepre
a Sativo $\{$ b Aug.	Kirke's.
Rlvers's Farly Apricot.b. Aug,	Hulioge's superb.... . m. Sept
Denniston's Superbm. Aug.	
Oullins Goldevm: Alug. Grcan Gace.............. .. m.e. aug.	Coe's Golden Drop. . e. Seph
3'laughlia's....e. Aug.	Reino Claude de Eavay.. $\left\{\begin{array}{l}\text { e Sept. } \\ \mathrm{b}\end{array}\right.$
Washtivton.... - .sept.	Ickworth Imperatrico in boct.
Angeliza Burdett... ..b. Sept.	Ickworth Imperatrico b Oct
Trantparent Gageb. Bept.	Lato Bivere......... - if Nov

	July.	White Magoum Bonum....Sept.
Early Orleses.	b.m. Aug.	Mitchelson's...............b. Sept.
czar...	.m. Ans.	Pond's Seedligg b.m. Sept.
Sulta	m. Aus.	V Victoria (Aldertou). b.m. Sept.
Pershor	.m.c. Aug.	Crittedden's Damson.......m. Sept.
Orleans	.e. Aug.	Diamondm. Sept.
	e. Aug.	Wine Sour.m. Sept
Prince Engelbert	b. Scpt.	Autumn Compote. e. Sept.
Prince of Wales	e. Aus	sardall's .-....................e. Sept.

Quinca 133. The Quince, Cydonia vulgaris, is but little cultivated in Great Britain, two or three trees planted in the slip or orchard beiog in general found to be sufficient for a fupply of the fruit; in Scotland it seldom approaches maturity, unless favoured by a wall. The fruit has a powertul odour, but in the raw state is austere and astringeot; it, however, makes an agreeable raarmalade, and is often used to gire flavour and poignancy to stewed or baked apples.

The quince prefors a rich light and somewhat moist soil. Tho tree is geoerally propagated by cuttiogs or layers, the former making the best plants, but being longer in growing. It is much used as a dwarfing stock for certain kinds of pears, and for this purpose the young Jlants when bedded out in the quarters should be shortened back to ahout 18 or 20 inches. Those required to form standard fruit-hearing trees should be trained up to a singlo stenn till a height of 5 or 6 feet is attained.

There are three principal varieties of the quince, the Portugal, the appio-shaped, and the pear-shaped. The Portngal is a taller and more vigorous grower than the others, and has larger and finer fruit ; the asple-sllaped, which has roundish fruit, is more productive, and ripens under less favourablo conditions than either of tho others; while the pear-shaped has roundish-pyriform fruit, which ripens later than that of the apple-shaped variety.
134. The Raspberry, Rubus Idaus, which is found wild in Great Britain and in woods throughout Europe and Asiatic Russia, is propagated from suekers, which may be taken off the parent stools in Octoher, and planted in rows 5 or 6 feet apart, and at 3 feet asuader in the rows. lt is the habit of the plant to throw up.from the root every year a number of shoots or canes, which bear fruit the subsequent year, and then decay. In dressing the plants, which is done immediately after the crop is gathered, all these exhansted stems are cat away, and of the young canes only threo or four of the strongest are left, which are shortened about a third. Tho stems, being too weak to stand by themselves, are sometimes connected together by the points in the form of arches, or a stake is driven in midway between the plants, and half the canes are hent one way and half the other both being tied to the stake. Sometimes they are tied upright to stakes fixed to each stool. The best support is, however, obtained by fastening tho points of the shoots to a slicht horizontal rail or bar, placed a foot and a half on the soutl side of the rows, hy which means the bearing shoots are deflected from the perpendicular to the sunny side of the row, and are not shaded by the annual wood. When this mode of training is adopted, the plan of planting 1 foot apart io the row and leaving one or two canes only to each shoot is preferable. The groutd betweea the rows Ahould never be disturbed by digsing; hut an abundant. supply of good manure should be given annully in autumn as a dressing, which ehould be forked in regularly to a depth of 4 or 5 inehe's. All surplas auckers should be got away early in the summer before they have robbed the roots, -five or six, to be reduced to the four best, being reservel to each root. Fresh plantations of raspberries should bo made every six or seven years. 'The double-bearing varieties, which coutinue to fruit during autum, require light soils and warm situations. These should be cut close down in Frbmary, as it is tho atrong young shonts of the current year which bear the lato autummal erops. The other varieties may be made to bear in autumn by cutting the stems half-way down nt an early period in spring; but, as with all other fruits, the llavour of the aspberry is best When it is allowed to ripen at its mumal sorason.

The following are some of the fincr sorts now in cultivation:-

```
Baumforth's Sereling-a large summer-hearing red.
```

Carter's Prolitic-a lirge summer.beurng rel.

Oct oher Relam flae antuma hearime but.
Octuber Yellow-a dine auturna lasming yellow.
I'rineo of Walea-a large sammer beating bed
atel Antwerp-a largo amamerelearbge ryd.
Sugersis Vetorin-a large mutnmi-burnig red.
lentud Antwern-a lirge summer luaring red.
Sweet dellow Antwerp-a large shamel-learing yellow.
Gervice. 13:. 'Thu Service, I'yrus Sorbus or 1. Anmestica, is a Earopean troe which has been regarded as a mative of bingland on the evinenco of a sinnle tree, which has probably been phanten, now existing in tho forest of Wyre. Thumeh not much cultivated, its fruit is estemed Ty sume purgong, and therefore two or three treps may very well he provideal with a place in the orchard, or in a shulternd corner of thas lawn. The tree is suldom productive till it lias arrived at a pundly size and age. Tho fruit has a peraliar acit tlavour, and,
Tike the mudlar, is fil for use only when thoroughly mellowed by
being kept till it has become bletted. There is. a pear-shaped variety, pyriformis, and also ao apple-shaped variety, maliformis, both of which may be propagated by layers, and still better by grafting on seedling plants of their own kind. The fruit is sometimes brought to market in winter.
136. The Strawberry of the garden has been oltained by the Strawcrossing of several species of Fragaria, the larger-fruited sorts from berry. F. giandiflora, chilensis, and virginiada, and the smaller alpines from I. vesca. The alpine varieties should be raised Irom seeds; while the other sorts are continued taue to their kinds by runners. If new varieties are desired, these are obtained by judicious crossing and seeding.

The seeds of the nlpines shouid be saved from the finest froit ripened early in the summer. They should at once be sown, either in a sheltered border outdoors or in pots. The soil should be rich and light, and the seeds very slightly covered by sifting over them some leai-mould or old decomposed cow dung. When the plants appear and have made five or six leaves, they should be transplanted to where they are to remain for bearing. :The seeds sown in pots may be helpict oo by gentle heat, and when the plants ate large enough should be pricked out in fine rich soil, and in June transierred to the open ground for bearing ; they will produce a partial crop in the eutumn, and a full one in the following season. The same treatment may be applied to the choicer seedlings of the larger-fruited sorts from which new varieties are expected.

The runners of established sorts showld be allowed to root in the soil adjoining the plants, which should, therefore, be kept light and fine, and as scon as a few leaves are prodnced on each the secondary runners should bo stopped. When the plants have become wellrooted, they should at once be planted ont. They do best in a rather strong loam, and shoull he kept tolerably noist. The searlet section prefers a rich sandy loam. The ground should be trenched 2 or 3 Icet deep, and supplied with plenty of manure, a good proportion of which should lie just below the roots, 10 or 12 inches from the surface. The plants may be put in on an average about 2 fect apart. Dr Myatt, a well-known strawberry-grower for market, plants in rows 18 inches apart, and the same distance from plant to plent in the rows, but leaves a space of 30 inches for en alley separating groups of three rows, and after the first year the middle row is cleared away. Some of the best growers allow $2 \frac{1}{2}$ feet between the rows, with the plants 2 feet from each other.

A mulching of strawy mavure put between the rows in spring serves to keep the ground noist and the fruit clean, as well as to afford nourishment to the plants. Unless required, the runners ere cut off early, in order to promote the swelliog of the froit. The plants should be watered dming dry weather after the fruit is set, and occasionally till it begins to colour. As soon as the Iruit season is over, the ruoners are again removed, and the ground hoed and raked. The plantation should be renewed every seeond or third year, or less frequently if kept free of runners, if the old leaves are cut away after the fruit has been gathered, and if n good top-dressing of rotten dung or leaf-mould is applied. A top-dressing of loam is beneficiat if applied before the plants begin to grow in spring, but after that period they should not be disturbed during the summer either at root or at top. II the plants produce a larce number of flower-scapes, cach should, if fine large [ruit is desired, have them reduced to about four of the stroogest. The lowest blossoms on the seape will bo found to produce the largest, earliest, and hest fruits. The fruit shonld not be gathered till it is quite ripe, and then, if possible, it should he quite dry, but not heated by the sun. Those intemed for preserving are best taken withont the stalk and the calyx.
Forcing. - The rumers propagatel for forcing ore layered into 3 -inch pots, filted with rich sail, and held firm by a peg or stono. If kept duly watered, they will seon form independent plants. The earlier they are secuned the better. When firmly rooted they are removed and transferred into well-drained b-inch pots, of strong wellenriched loam, the soil being rammed very firmly into the pots, which aro to be set in an open airy place. In severe frosts they should bo covered with dry litter or bracken, but do not necessarily. require to be placed under glass. They are moved into the foreing houses as required. The matn points to be kept in vies in forcing strawberies are, first, to have strong stocky ${ }^{1}$ lants, the leaves of which have grown sturdily from being well expesed to light, and secondly, to grow them on slowly till frnit is set. When they are first introduced into heat, the temperature should not exceed 45° or 60° by hre heat, and nir must ho freely almitted ; should the leaves apear to grow up thin and delicato, less fire heat and moro air must be given, hat an average temperature of 55° by day may be allowel, amb continued whilu the phats are in llower. When the fruit is set the heat may bo gradnally inereased, till at tho ripening periol it stands at 65°, and occasionolly at 75° by sumheat. While the fruit is swelling the plants shonhl never be allowed to get dry, but when it begins to colour no morn water shoula he given than is absolutely requisite to keep the leaves from flagging. The phats should bn removed from the house as aoon as the croll is gathered. 'Ihe furced plants properly hardened make
first-rate outdoor plantations, and if sut out carly in summer, in good ground, will often produce a useful antumnal crop.
The varieties are very dumerous. The following are some of the best and most distiuct of those now in cultivation, those marked * theing specially suitable for forcing:-

Amateur-a brisk-flanoured vartety.

Britieh Queen *-one of the best-flavoured eorts ; requires good cultivation. Dr Hogg hardier forth of Britizh Quegen.
EIton-late, aod valuable for preserviog.
Eochantresa-a fine-fiavaured late variety.
Filbert Plne - -ao excelleot higit-lavoured sore
Frogmore Late Pine-a good late nort.
James Veitch*- a large solid showy variety.
Keens" Seedling "-a finc old eort, of grest mertt for sill purposes.
La Coastante - - en excelleat sort, of sprighty fisvour
La Grosse Sucree "-targe, and of excellent fievour.
Loxford Hall Seedling-one of the beat tate acrta.
Lucas*- a usefut Ane-fievaured veriety.
Myattio Eliza-very high-flavoured, perhaps in this respect uncqualled. Oecar - gaod for a general crop; trevele wetl
Prosident ${ }^{-}-\mathrm{s}$ useful briek-flavoured sort.
Sir Charles Napler - - 8 eapital market fruit, rether acid
81r Rarry-a fovoririte market fruit.
Sir Jaseph Paxton "-an excelleat large high-flevoured aort.
Vicomtesse Héricart de Tbury*-good for all purposes; one of the best.
137. The Vinc, Vitis vinifera, a native of the shores of the Casniad, and a deciduous climbing shrub, is hardy in Britain so far as regards its vegetation, but not hardy enough to bring its fruit to satisfactory maturity, so thet for all practical purpose the vine must be regarded as a tender fruit. Planted agaiost a wall or a building having a aouth aspect, or truined over a sunny roof, such gorts as the Black Cluster, Bleck Prince, Pitmaston White Cluster, Rnyal Muscadine, Swcetwater, \&c., will ripen in the warmest English summers eo as to be very pleasant eating, but in cold summers the fruit is not eatable in the raw state, end can only be converted inte, wine or vinegar. For outdoor culture the long-rod aystem is generally preferred.

When the plant is grown under glass, the vine border should accupy the interier of the house and extend outwards in the front, but it is best made by instalments of 5 or 6 feet as fast as the previous partions become well filled with roots, which may readily be done by packing up a turf wall at the extremity of the portion to be newly made ; an exterior width of 15 feet will be oufficient. Inside borders require frequent and therough waterings. In well-drained lecalitics the border may be partially below the ground level, bnt in damp situations it shoald be made on the surface; in either casa the firin solid bottom should slope outwards toward an efficient drain. A good bottom may be formed by chalk rammed down close. On this should be laid at lesst a foot thick of conrse hard subbly material, a layer of rough turf, grass eide downwards, being spread over it to prevent the compest from werking down. The aoil itself, which should be $2 \frac{f}{2}$ or 3 feet deep, nover less than 2 feet, should consist of five parts rich turfy loam, one part old line rubbish or broken bricks, including a little wood ashes or burnt earth (ballast), one part broken charcoal, and about one part of half-inch bones, the whole being thoroughly mixed, and kept dryish till used.

Young vines raised from eyes are geoerally preferred for planting. The eyes being selected from well-ripened shoots of the previous year are planted about the end of Janusry, eingly, in small pots of light loamy compost, and after etanding in a warm place for a few days hould be plunged in a propagating bed, having a bottom heat of 75°, which should be increased to 85° when they bave praduced several leaves, the atmosphere being kept at ebout the same ternnerature or higher by sun heat during the day, and at about 75° at night. As 600n as roots are freely formed the plants must be shifted into 6-inch pots, and lateron into 12 -inch ones. The shoots are trained upnear the glass, and, with pleaty of heat (top and bottom) aud of water, with air and light, and manure water occasionally, will form firen strong well-ripened canes in the course of the season. To prepare the vine for planting, it should be cut back to within 2 feet of the pot carly in the season, and only 3 or 4 of the eyes at the base dhould be allowed to grow on. The best time for planting is in spring, when tho young ahoots have just started. The vines should the planted inside the house, from 1 to 2 feet from the front wall, the mots being placed an inch deeper in the soil than before, carefully diguntangled and spread outwards from the stem, and covered care. filly and firmly with friable loam, without manure. When the shoots are fairly developed, the two strongest ere to bo selected aod traised in. When foreing is eommenced, the vinery is elaut up for two or three weeks withont fire lieat, the mean ternyerature reaging ahnut 50°. Fire heat must he at first applied very gently; and may range abnut 55° at night, and from 65 to 70° by day, but a fow degrees more way be given them as the buds break and the new shoots appert. When they aro in flower, and onwards during the swolling of the berries, 85° may be taken as is maximum, running no to 80° with sun heat, and the temperatura nay be lowered somewhat when the fruit is ripe. As much ventilation as tle state of the wenther will permit should be given. A moist growing atmosphere is necessary both for the swelling fruit and for maintaining the bealth of the foliage. A due ausouet of noisture may be kept
up by the use of evaporating troughs and by syringing the walle and pathways two or three times a day, but the leaves should not be syringed. When the vines are in flower, and when the fruit is colouriog, the evaporating trougles should bo kejit dry, bat the aridity must not be excessive, lest tho red spider and other lartfng inscets should attack the leaves. In the courso of the season the borders (inside) will require scveral thorough soakings of warm water, -the first when the house is shut up, this beiug repeated when the vines have made young shoots a few inclues long; agais when the vines are in flower, and still egain when the berries aro taking the second swelling after stoning. Outsido borders require watering in very dry summer weather ouly.
There are three principal eystems of pruning vines, termed the lony-rod, the shorl-rod, and tho spur systems, and good crops have been obtained by each of them. It is admitted that larger bunches are generally obtained by the long-rod than by the spur system. The principle of this mode of proning is to train in at considerable length, according to their strength, shoots of the last year's growth for producing ehoots to bear fruit in the present; these rods are afterwards cut away and replaced by young ahoots trained up during the proceding summer; and these are in their turn cut out in the following autumn ofter bearing, and replaced by shoots of that summer's growth. By the short-rod system, short inetead of long rods are retained; they are dealt with in a similar manoer. The spur eystom has, however, become the most general. In this case the vines are usually planted so that one can be trained up under each ralter, or up the middle of the sash, the latter method being preforable. The shoots are cut back to budsclose to the stem, which should be encouraged to form alternately at cyual distances right and left, by removing these buds from the original shoot which aro not conveniently placed. The young shoots from these buds are to be gently brought to a horizontal pusition, by hending them a little at a time, and usually opposite about.the fourth leaf the rudiments of a bunch will be developed. The leaf directly opposite the bunch must in all cases se preserved, and the young sloot is to be topped at one or two joints beyond the incipient fruit; tho latter distance being preferable if there is plenty of room for the foliage to expand; the lateral shoots, which will push out after the topping, mist be again topped above their first or second joints. If the bunehes ars too numerous they must be thinned before the flowers expand, and the berries also niust be properly thinned out and regulated as soon as they are well set, care being taken, in avoiding overcrowding, that the bunehes be not made too thin and loose.

The cultivation of vines in pots is very cormmonly practised with good results, and pot-vines are very useful to force for the earliest crop. The plants ehould be raised from eyes, and grown as atrong as possible in the way already noted, in rich turfy loam mixed with about one-third of horse dung and a little bone dust. The tempera. ture ahould be gradually increased from 60° to 80°, or 90° by eun heat, and a bottom heat a few degrees higher must be maintained during their growth. As the roots require more room, the plants should be shifted from 3 -inch pots into those of 6,12 , or 15 inches in diameter, in any of which larger sizes they may be fruited in the following season, but, to be suceessful in this, the young rad produced muet be thoroughly matured after it has reached its limit of growth.

The sine, both indoors and out, is very subject to the vine-mildew, which appears to the naked eye like a white powder; when this is visible there is no effectual remedy, but if taken at the earliest stage it may be destroyed by dusting the whole plant, stem, leaves, and fruit, with sulplur. An equally destructive cacruy is the vine louse, Phylloxera vastatrix. No certain easily applied cure has yet been discovered, and practically the only sure remedy is to destroy the vines, elear out the old infested sonl, and cleanse the structures thoroughly in every part.

The number of varietics of grapes possessing sonc merit is considerable, but a very few of them will be found sufficiont to supply all the wants of the cultivator. For general jurposes nothing appronehes the Black llamburg (including Frankenthal) in merit Those named below are more or less iu requisition:-

Outdoor Grapes.

Black Cluster-small, roundish-oval, black berices
Hack Fridee-larcish, oval, purphish-black herries
Early Ascot Frontignan-round, nntber-coloured herries: musky favour Early Saumur Frontignan-medunt, round, paleanber berries; musky. Early White Jalvasia (Grove-cnd Sweetwater)-roundish, whilish-gruen berrice.

Suly Frontignata-medium, round, blte- black berries; musky flavour. Miller"a Burgundy (The Milhert-small, roumlisthoval, hack berriea. Royal Muschline (Chasselas de Fontianclsean)-large, rouad, greealsb-
gellow berriea ; oue of the best white grapes, indoors or out.

Indoor Grapes.

Alleante-large, oval, Whe black berries; late, and a gooll keeper. Plack linmhurg-large, roundish-oval, black berries; A 1 in every respect. Black Monukka - medium, alorate oblong, brownish-black, ecedleas erackting herries; very pleasant cnting ; may be grown ns n curiositg. Bucklani sweet water-large, rumplish, pale amber berrice.
Canon Hall Museat-lance, roundish, nmber herries: high musky fisrous. Chasselas lusqué- medium, round, pale amber berries; rich musky flavouk Ductecs of Buccleuch-swall, round, grecnieh-wluto berrice ; musty.

Duke of Bucciench-rery large, ronndish, grecnish-amber herties. Foaters White Seeding-largish, mountishoval, greenish-yedow berries Frankenthal (Victoria Hamburg)-large, roundish-uthate, black berrles. Grizaly Frontiguan-medım, ruumd, wrizzly rel berries; musky. Gros Colman-very larye, roand, black bermis; late, renuires io hang lons Gros Maroc-large, oval, purple-black berries: very flote, late.
Lwly lowne's-largish, rollmish-oval, llack berries; late, a good keeper. Madresflel! Court-larime, oval or oblong, black berries; slightly musky. Mill Iflil lianhurf-very liarge, round or oblate, hammered, blue-hlack. Anscat of Ale candria-large, oval, pale-amber berties; musky flavour. Mugeat Hanliary-large, uval, black berries ; musky davour.
Laisin de Calauro - lurge, round, transpareot white berries; late
frehhann-mplinf, toundish-oval, grecmish-white berries; late.
Vemis Black Muscat-mellium, oval, brownish-black berries; musky
West's st Petec's-larish, ronndisilowat, blue-black berries; late
Whito Frontignan-medinn, ronad, greenishyellow berries; masky.
For the opea wall, the Early Ascot Frontignan, Early White Malvasia, and Royal Muscadiue may be preferred of the white sorts: and July Frontignan and Black Cluster of the blacks. For a greenhouse vinery, Dlack Hambar and Madresthel Conrt, Whack; and Foster's white Seedling, Buckhan sweet Water, and Royal Muscadine, white. For carly forcing. Biack Hamburc aml Huscat Hanhirn, black; Koster's White Suedline Royn Ahocen Frontionan, and Guke of Bucelcach, white For a general millscason crop, Brack farmbira or Franticatha, and Lad Downe b, blek Grizzy Frontig nan, redush; and Mnseat of Alexandria and Raisin de Calabre, white For St Peter's, black; and Museat of Alexandria and Trebbiano, white
133. The Walnut, Juglans regia, is a lofty tree, native of Persiz and Asia Minor. Tho fruit, whilst young and tender, is nuch used for pickling, and when ripe is a farourite artacle of the dessert. The trec succeeds io deep sandy or calcaroous leams, and in stiff loans resting on a gravelly bottom. It requires fee exposure to air and light. It is .propagated by seeds, and occasionally by budding, gralting, or inarching for the perpetuation of special varieties. The trees form their beads naturally, and therefose little pruning is requirod, it being merely necessary to cut off straggling growths, and to prevent the branches from interlacint. The best time for performing this is in the sutumn, just after the fall of the leaf. Plants raised fron the seed seldom become productive till they nre twenty ycars old. The fruit is produced at the extremities of tho shoots of the preceding year; and therefore, in gathering the crop, care should be takeo not to injuro the young wood. In some parts of England the trees are thrabhal with rolls or poles to obtain the nuts, but this is far from being a commendable mode of collecting then.

Besides tho common walnut, there are several varictiescultivated, proticularly the Thin-shelled and the Thetforl or IIighflyer, which last is by tir tho best walnut grown.

Orcharil.

house
trees.
trees treated in this way will bear freely during the foliowing seasoin Whether placed on the floor of the housu. or glayged outdoors, th. pota shoulr stasel on twu bricks rimed a little apart, so that worn: canogt gain manittuuce to the disioing-hole.

The fruit oltaided from trees vell cultivated in potsin an orchite house will compare, as regards size sod quality, with the best frvit ripened on an oped well of in a forciag-house : Lat, when giown mithout fire bat, it is of course but little in abrase cit the outcicor crops. To the amateur thus mudo of culate witl ha found tic present many attractions

VII. Fegetables.

140. Under this head wa inchade thoss secuents which are largety eaten as "vegetables" or as "salacis," wilit the various "herbs" which are used chielly for flarouring or garnishing will be referred to in a supplementary paragrapit. 141. The Apsichcice, Cynara Scolyanas, is a sto:t-growing hardy Artlperennial, cultivitud for the seke of tise immatu:- Iowci-heads. cloke In Fance the wate of the leeves of the involucre anc eaten when in a young sind texüer stite, en poizrack, or with perper, sait, and vinegr: bat the only parts of the flower-heal useí in Enghad aro the base of the leares of the tuvolucre, and the immature foral recentacle called the botiom, freed from the bristy seed-iow: whicb is callod the chote. In old plantations about to be destroyed the cectral leaves are sometimes blanoled and eatea; this elible part, jiko that of the vealy related carioon (onr. 150), is ce!led the chard.
The articheke reouites a deep cool dry soil, well enriched, ard ceoply tronched. It is propagated by partiag the oots in April, tho scts leing plsuted in rows 4 o: 5 feet asunder, an 2 feet anart in the rews. As the younc playis niford a crop whinh suc. cce's that of olu phats, 6 new plautation is made in some gardens cruty year. During summer the articaokes requive little other attention than to be kept clear of weeds. In November the decayed stems and leaves are remored, the ground cicared, and a cono of a foot deep of sifted coal-ashes, or roiten tan, or littery dang, is placed close round the base to defend the stools from frost. In Apri! this is triacn away, the stocks ato exsinined, and two or tbree only of the strongest shoots are permitted to remaiu ; a dressing of mancre is given-well-rotted botbed dung or seaweed-and the gronnd between the rows is forked aver. Tho offects, carefuly removed afford materials for young plantations. The heads are cut whes tearly full grown, before the scales of the involucre open out.
The variettes most estemed in England are the Green or French, which has conical heals, and is considered the highest flavoured; the Gluhe, which has dull parplish'hends, and is well adapted for a general crop; and the lourple, wbich is the earlicst. The Laon is that most widely grown at Paris.
141. The Aspuragus, Asparagus officinelis, is one of the most Aspa. delicate of our esculents, possessing well-marked diurctic properties, ragus and is grown extensirely in private gardens as well ns lor market. The asparagus prefers a loose light deop sandy soil ; thodopth should be 3 feet, the soil being well trenched, and all surplus water got away, A considerable quantity of well-rotted dung or of recent seaweed should bo laid in the bottom of the treach, and another topdressing of maoure should be dug in preparatory to plating or sowing. Nitrate of suda appears to be the bestartificial manure, and salt applied at tho rate of 2 it to the square yand is a good dressius while the plants are growing. The beds should be 3 feet or 5 feet wide, with intervening alleys of 2 feet, the narrower beds taling two rows of plants, the wider ones threo rows. The beds should run east and west, so that the sun's rays may atriko ngainst the side of the bed. In some cases the planta aregrown in equidistant rows 3 to 4 feet afart. Whero tho beds aro made with plants already prepared, either one-year old or twe-yenr old plants may ho used, for which a trench shonld be cut sufficient to atford room for sprending out the roots, the crowns boing all kept at about 2 inches helow the surface. Plauting is best done in May, after the plants lape started into growth. To prevent injury to the roots, it is, however, perhaps tho better plan to sow the sceds in the beds where the plantes are to remain.
The sect should be sown in March in sligbt drills; and it is a goos precaution to sow more than is necessary, and to thim ont towards the end of the first summer, to tho distance of about 0 inches in tho rows. The fround must bo hoed aod kept clear of wecls. Frequently slight crops of lettuce are taken from tho surface of the beds, and of canlilluver from tha spaces between them. Tho asparagus hends should not be cut bufore the third spring, and are not in perfection till the fourth or tifth.

The manuring of asparngus, which can scarcely bo ovordone, should be performed in the end of autuma, when the dead stoms are renoved. When the phates aro in beds, the surface should bo stirrel with n fork; r laver of well-rotted hothed dung should then be laid on, nod the whole covered with n sprinkling of earth from the nlleys. If the plants are grown in rows, the manure is simply dug in between theon ly means of a digging fork, caro being taken unt to injure the roots. These operations nere repented nanumlly, and wo othes culturo is reguired: but it is nomeasary to observo a duo
moderation in reaping the cropl, ss the shoots, when cut too freely, become gradnally smaller. A considerable quantity of gronnd is consejuently required to kuep up a supply. It is a general rule never to gather asparagus ofter jeas have como into seasen. To expericuce the finest thavon of aspararms, it should be caten immediately after baving been gathered; if kept longer thav une day, or set into water, its finer flavobs is altogether lost. I[properly treated, asparagus beds will contioue to bear well for many years.
The asparagusgrown at Argenteuil, near Paris, las acquired mach notoricty fur its large size and cxcellent quality. The French growers plant in trenches, instead of raised beds.

Forcing. -The most common method of forcing nsparagis is to prepare, early in the year, a moterate hotbed of stable litter with a boltom heat of 70°, and to cover it with a common frame. After the heat of fermentation has somewhat subsided, the surface of the bed is covered with a layer of light carth or cahansted tan-bark, and in lis the routs of strong mature plads are closely placed. The crowns of the roots are then covered with 3 to 6 joches of soil. A common three-light frame may holl 500 or 600 , plants, and will alforl a supuly for several weeks. After patating, linings are applied when necessary to keep up the heat, but core nust be taken nol te sorch the roots; air must be occasionally admitted. Where flere are fits heated by loot water or by the tank system, they maj be sitvantageously applied to this parpose. A succession of crops must be maintaiaed by annually sowing or planting new beds. Mr Lindegard, of the Royal Gardens at Copenhagen, recommends the plan of forcing aspatagus on the gromed on which it grows, but the results olitnined in this way are not so satisfactory.
The principal varieties are the Red tuppoll and the Green-topped, of whel there are several reputed sub-varieties, os the liattersea, Gravesend, Giant Colossal, de., whith differ but slightly from each other.
143. The Lean, Faba valgaris, is an anumal plant. The sceds are sown about 4 inches npart, in drills $2 \frac{1}{3}$ feet asonder for the analler and 3 feet for the larger sorts. The soil should be a rather heavy loam, deeply worked and well enrichel. For an carly erep Barshall's Eirly Dwarl Prolific and the Dwarf Crinison-seeded may be sown in November, and pirotected during winter in the same manner as early peas. An enily crop may also be obtained by dib. bling in the secds in November, sheltering by a frame, and in Febraty transplanting them to a warm border. Successional crops of Early Seville or Eirlj Lougrod should be sown in January and Yebruary, and the Longpods or Green Windsor in Mareh, April, and Hay, for a general crop, while for later erops the Dutch Langpod may be sown in Junc or carly in July. All the culture necessary is that the earth be drawa up about the stems. Tho plants are nsually topped when the pods have set, as this not only remaves the black aplides which often scttle tbere, but is also cound to promote the tilling of the pods.

The following are some of the lest sorts:-
Early-Dwar! ©rionsos-seeded, Marshall's Early Dwarf Itolifle, Early Sevilte, Early Lampod
Late- Wimasor, bircen Windsor, Dutch Longpoit
See Bean, vol. iii. p. 460, and Aomicultoae, vol. I. p. 360
144. The Beel, Beta volgaris, is a harty biennial, native of the south of Europe, on the ses-coast. The boiled root is eatern cold, either by itself or as n salad; it is nlso often osed as a pickle The beet prospers in a rich deep soil, well prolverized liy the spade If mamire is recuired, it should be deposited at the bottom of the trench in preparing the ground. The secds should be sown in drills 15 inches asunder, in April or eally in May, and the plants are aflemwards to be thinned to about 8 molhes apart in the lines, bint unt more, as monleratesizel roots are preferable, The plants should grow on till the end of tetoher or later, when a portion showh be tahen up for ose, and the rest lain in in a sheltered ecorner, and covered n] from frost. The roats must not be bruiscit, and the leaves most be twisted off-not clusely cut, as they are then diable to bleed. In the north the erop moy lie whatly taken m^{m} in mathon, and stored in a pit or cellst, begond reach of trost. If it is desired to have fresh roots early, the sredes slomalel be sown at the end of February or begianing of March; and if a succession is repuirel, a fer inore may be sown by the end of Nareh.
The Pellow Bects aro not apprechated at table, and tho white Sugar Reets are not suitable for garden cifture. We shald ony mame a selection of tho red-nesher surts:-Turnhprooted or Figyptian (very early). Red Castelnan dary (the tspe of our hest betta), rineaphle short-top, Xuthers selected, Caricr's Jerfection of Buets, Sulion's buk Reni, lell'y 'ramson or Osborm's select.
The White Deet, Beta Cicla, is cultivated for the leaves, which are used as spinach; hut for this they are a very sorry sulistitute. The midribs and statks of tho leaves are also stewed and eaten as seakale, muter the name of Swiss chard. The culture does not differ materially from that of the red liect, lut more space is required.

See Bert, vol. iii. p. 504, aml Agmeliltuhe, val. i. p. 381 ,
145. The Borcole or Kíle, Bassica olemacea acephala, inclindes several varieties which are amongst the hardiest of our esenlents, and selilon fail to yield a good supply of winter grecns. They requiro well-emriched soil, and suflicient space for full exposure to air ; and they should aiso be sown carly, so as to be well established and hardened befare winter.

Tho main erness shondil be sown uhout the first week of A pril, or, is the north, in the third week of March, and a succession a month later. The Bada kale is sown in May, and jlantel out in September, he a sowing for late spring use may be made in the last week of August, and transplatited towards the end of September. To prevent overcrowding, the plants should be transplanted as soon as they are of sufficicnt size, but if tho ground is not ready to receive then a sufficient uumber should be pricked unt in some open spot. In general the bore vigorous sorts should be planted in rows $2 f$ feet or 3 rect and the stmaller growers 2 feet apart, and 18 inches from plant to plant. In these the heads should befirst ased, only so much of tho heart is is fresh and tender being eal ont for boiliog; side shoots or sprouts are ofterwards produced for a long time in succession, nud may be used so long as they are tender cnough to admit of being gathered by smapping their stalks asunder.
The best of the hurevoles or hates are-Dwarl Green Curled or Scoteh Kale, very lianly, and from its dwarf habit often sheltered by snow; Cub tagers kiale, very hardy, one of the must prolithe amd well thavoured; Purplo Burecole, very hardy. The following are lese vigurous in growth, bit are in eacellent phality:-jcrusalen Kale, Egyptian Kale, Bula Kale, - the lart two very harly

140 The Eroccoli, Brassica oleracea botrytishsparagoides, is sty" losed to have surung from the caulitlower, being, like it, of Jtalian arigin, and dillering chielly in possessing greater hardiness of con stitution. Diller inded states (Gardeners' Dieiomary) that tbo broceolis known in his time were imported from the island of Cyprus.

The broccoli succeeds best in a fresh, loany soil, somerilst firm in texture. For the autumn bloccolis the ground can scarcely le too rich, but the winter and spring sorts, on ground of this charaeter, are apt to become su aucculent and tonder that the plants sulfer from frost even in sheltered situations, while plants less stimulated by manure and growing in the open field may be nearly all soved, even in severe winters. The gain crons of the early sorts, for use in autumn, suchi as the Gapes and Grange's, shond be wow casly in May, and planted oot while young, to prevent them coming ton early into flower; in the dorth they may be sown a fortnight earlies. The later sorts, for use during winter and spring, should be sowa about the middle or end of May, or about ten dass earlier in the noth. The seed beds should be made in fresh light unexhausted soil; and if the season be dry, the ground shonld be well watered before sowing. If the young plants are crowdiog aach other, fluy should be thinged. The ground shonld not be dug betore phanting thero oot, as the firmer it is the better; but a slatlow dritl nay be drawn to nark the lines The Inrger growing sorts may be fut in rows 3 foet apart, and the dants about 212 teet apart in the rows and the smaller-growiog ones at from 2 to 25 fect betweed, and $1 \frac{1}{2}$ to 2 fect in the rows. If the ground is not prepared when young plants are rearly for removal, they sbould be transferred to nureery beds and planted at 3 to 4 inches apart, but the eallier they can l:o got into their permanent places the better.

It is of rourse the young flower-heads of the plant which are caten When these form, they should be shehed from the liglat, by bending or lreaking down an inner leal or two. In some ef tho sorts the leaves naturally enrve over the beads. fo prevent miny to the heads by [rost in severe winters, the piants should be loid in with their heads sloping towards the north, the soil being thrown hack so as to cover their stems, or they may be token uj amp luid in clasely in depetrenches, so that none of the lower bare portion of the stem may be exposed. Some dry fern may also be laid over the tolis.

The sping varieties are extrmely valunble, as they come at s season when the finer vegetables are scarce. They afford a supply from March to May melusive. In all cases great eare should be taken to procure tho seed true, as it is very liable to become deterioratell through crossing by iosect agency.
The following are good typer of broccoli, hat the varietheg are fregucnily changing, in mune at least, the supposed doveltes being often merely E.wid changing, in mune at least. he ou
and pmre stocks of oller kinds:-
Fur autumn and uinter use: Early Purple Cape, Early Whte Cape Grange's, Vete't's Self-jurotecting Autumn, Soow's superb Winter whin Oshorn's' Winter White, huckluses's W'inter

For late urinter ahl spring use: Kuight's Protecting, Coollng's Matehlens, Leaniogtoo, Chapplis Cream, Elfotson's Mammoth, Sutton's Jerfection. Peuzauce, surplo sprouting
Cosir the latest sumply: Cattell's Eelinse, Cater's Champton, Lavder's Coshen, Lato White Frotecting, Biltere bwarf late White
147. The Brussels Sprouts, Brassica olerate buhata gemmifers, Brassem dave lone been cultivated sear Brussels. There ajpears to be mo eprone information as to the plant's origin, Lut, according to the late In Van Mons, it is mentioned in the ycar 1213, in the regulations for holding the markets of lelgium, under the mame of sprutor (sprouts). It is very hardy amd productive, and is much esteched for the table on acconnt of its flavenr and its sightly appearance

The sed should be sown ibout the midule of March, and again in tlie first or second week in $\lambda_{\text {pril for suceession Any goodgracn }}$ goil is suitable. For an canly erep it may be sown in a warn nit jo February, fricked ont and hardened in fimmes, and phated out in a warm sithation in Ayril. The main cropmay be planted in rows:2 seet nsander, the plauts 18 inches apart. They should be get ous
early, so as to b weis esiablisnea and come into use before winter. The head may be cut and used after the best of the little rosettes which forther the stem have been gathered; but, if cut too early, it exposes these rosettes, which are the most delicate portion of the produce, to injury, if the weather be severe.

The earliest sprouts become fit for use in November, and they continue gead, or even improve in quality, till the month of Mareh following. Yan Mons mentions that by successive sowings the sprouts are obtained in Brusselsfor the greater part of the year.

The most reliable crop is perhaps obtained from seed of the 3rdinary varicty imported from Holland; but good English-raised sed, represented by Carter's Perfection, may also be obtaned Jerymer's Giant is a vigorous dwarf kind. We donbt, however the policy of planting dwarf kinds, as the taller ones with longer stems, if sutficiently vigorous, most yield a larger praduce.

In this place may be noted two hybrid sprouts, looth raised by Mr Mclville, at Dalnueny Park, near Edinburgh. They are the Albert Sprouts, a hardy green, long in running to seed, the result of a sross between the savoy and Brussels spronts; and the Dalmeny Bprouts, which grow 6 inches or 8 inches high, with a compactly zabbaged head of moderate size, and a stem thickly set with cabbagelike sprouts, a cross olbtained between the cabbage and Brussels slirenta. Both may be grown in the same way as the borecoles. 148. The Cabbage Brassica oleracea capitata, has suruig from the biennial B. oleracea of the British sea-ceasts. The cabbage requires a weil-manured and well-wrought loamy soil. It shonld have abundant water in sumner, liquid manure being specially beneficial. lound London, wherc it is grown in perfection, the greund for it is dug to the depth of two spades or spits, the lower portion being bronght up to the action of the weather, and rendered available as food for the plants; while, the top-soil, containing the eggs and larve of many insects, being decply buried, the plants are less liable to be attacked by the clab. Farm-yand manure is that mast suitable for the cabbage, hat artifcial manures such as rrane, superphesphate of lime or gypsum, tugether with lime-rubbish, wood-ashes, and marl, may, if refuirel, be applie! with advantage.

The first sowing of cabbage should be made about the beginning of Marcb, and should coosist of Nonpareil or Enfield Market (also known as the Early Battersea) ; these will be really for use in Jnly and Angust, following the autuma-sown creps. Anothersowing of the saue sorts, or of the St John's Day, should be made in the last week of Jlarch or first week of April, and will afford a supply from August tili Normber; and a further crop of such serts as Early York, little Pisic, Atkins's Matchless, or other kinds that heart quick:ly, may be made in Day to supply young-hearted cabbages in the early part of winter. The antumn sowioge which is the most important, aod affords the supply for spring and early summer use, should be matc about the last week in August, in warm localities in the south, and about a fortnight earlier in the north; or, to mect lluctuations of climate, it is as well in both cases to anticipate this sowing by anothor two or threc weeks ear r, planting ont a fortion from each, but the larger namber from that sowing which promise best to stanl withont \quad mnning to scel. The sorts should
 plants will be ready for trinsplanting by the end of Sepitember or early in October, and my be placed in the ground previonsly occupied by the pea or band crop.

The calhagers 品和m late in antumn and in the begioning of winter aro denominated Coleworts (vulg. Cullarils), from a kindred vergetable no longer cultivined. Two soninger are mate, in the minde of June and in July, and the seedings are planted a foot or 15 inches asumber, the rows bing 8 or 10 inthes aprart. The sotts cmployed wre the Rosette and the llardy Gicen

About Lonlon the laree sorts, as Enfill Market, are planted for spring cabbanes 2 fuet ajart each way; but a plant forman earlier sowing is diblded in between every two in the rows, aml an inter. moliate row a font apart is fut in hetween the 1 frmanent rows, these extra flants being lrawn as colrworts in the coursc of the winter. Jhe smaller sorts of eabluge may be filanteal 12 inelies Miart, with 12 cr 15 inches between the rows. 'The large solts should te plantel 2 fect apart, with 21 fuet lutween the rows. The inly collure required is to stir the surfare with the hee to destroy the weods, and to draw un, the seil ream the stems.

Tho Kid G'rhbal", Brassica nlemacea capitata rubra, of which the bed Dutch is the mont commonly grown, is meth usod for pickline. It is aown almott, then chel of July, an! ardin in March or Apnit. The Dwarf liwd and Utrecht Tied are smallew sortw. The" culture is in every roapect tha sime as in the other sorta, bint fhe phants have tos stand until they form lard close hearta.
 acophab costata, in of a listinet type and of excellent quality. The flasy ribe of the linves, cooked like sea-kale, are tho only parts eaton. It is somewhat tembre, noll requires to bo suwn carly in

Little Pixie, Nunpareil, St John's Day. Mid-scason: Enfeld Market (Battersea or Fullam), Rosette Colewort, Whanigstadt. Late' sorts: Bacalan, Handy
Green Colewort, Pomeranian. See CABBace, vol. iv. p. Ci7.
149. The Capsicum is the produce of several suecics of the genus CapsiCapsicum cultivated for the sake of their pods, which in a green cums. state are usel in salads and in pichles, and when ripe are powdered to form cayenne pepper. The pods, cither green or ripe, are also used to make Chili vioegar.

The Annual Cropsicum, Spanish Pepper, or Guinca Pepper, Capsicum annuum, is the sort most commonly grown. The seeds should be sown in a hotbed in February, the young plants heing transferred successively into 3 -jnch, 5 -inch, and 8 -inch pats. They reguire a warm genial atnosphere, and a light rich soil, and should be assisted with liquid manure or such artiticial fertilfzers as Clay's or Jackman's. In the south of England they may ba grown in the open air, on a warm sunny border, if planted out towards the end of June. The fruit ripens in Scptember, and may be kept two or three years in a dry room. The Bird Pepper, C. baccatum, and the Chili, C. frutescens, are bath sub-shrubby plants, requiring stove heat. They should be grown ia peaty soil, should not be overpotted, and should be kept dryish at the roet in winter. The best cayenne pepper is prepared trom C. frutescens, and C. baccatum is much relished by some persons. The Bell Pcpper, C. grossum, and the Large Sweet Spanish, are milder in flavour than the other sorts, and are minch eateu in salads and also with cold moats. Sco Cayenne Pepper, vol. v. p. 280.
150. The Cardoon, Cynard Cardunculus, a perennial from the south Cardoon of Eurape and Earbary, is a near relation of the articheke (par. 141). The edible part, called the chard, is compesed of the blanched and crisp stalks of the inncy leaves. Cardoons are found to prosper on light deep soils. The seed is sown annually about the middle of May, in shallow trenches, like those for celery, and the plants are thianed out to 10 or 12 inches from each other in the lines. In Scotland it is preferable to sow the seed singly in small pots, placing them in a mild temperature, and transplanting them into the trenches after thcy have attained a height of 8 or 10 inches. Water must be copiously supplied in dry weather, both to prevent the formation of Hower stalks and to increasc the succulence of the leaves. In autumn the leaf-stalks are applied close to each other, eud wrapped round with bancls of hay or strnw, only the points being left free. Eanth is then drawn op around then to the height of 15 or 18 inches. Sometimes cardoons are blanched by a more thorough earthing up, in the manner of celery, but in this case the operation must becarried on from the end of summer. During severe Irost tha tops of the leares should be defended with straw or litter. Besides the common and Spanish cardoons, there are the prickly-leaved Tours cardoen, the red-stemmed cardoon, and the l'aris cardoon, all of superior quality, the Paris being the largest and most tender. The common artichoke is also used for the production of chard.
151. The Carrot, Dancus Carota, has been much improved and Carrol. transformed from the wild state; it is probably a uative of tbe scacossts of southern Europe, but is now abundant throughout Eurone and Asiatic liussia. The carrot delights in a deep sundy soil, which shoull be well drained and decply trenched. In regard to the preparation of the ground, one of chu best northern gardeners has said"Trench in autumn; trench deep and lay the manury at the bottom of the trench; in syting rake down, lay on an inch of wool ashes, and dig them lighty in." For the longrooted sorts the soil should be at loast 3 foct deep, hut the Short llorn varieties may be grown in about 6 iuches of groal comprost lad on the top of a less suitable soil. Deat warth may bu usefulty employed in lightening the suil. Good carrots of the harger sorty may be grown in unfavourable soils by making large holes 18 inches decp with n erowbar, and filling them up with samly compost in which the seeds are to bo sown. The main crop is sown at the end of March or beginning of April. After sowing, it is only necessary to thin the plants, and keep them clear of weeds. The boots are taken up in autuma and stored dming winter in a cool shed or cellar.
Foreing.-Fer a supply of young carrots in winter, a hotbed compesed of 3 or 4 fect thick of leares, or of 18 inches of dung, or of 2 feet of dung and leaves mixal, slobld be prepared alout the emb of November or beciming of December, aml covend with a framo and hirghts. The bivd should ho surfaced with 8 or ${ }^{3}$ iuches of light sond, of which Ieafomonll may form a consulderalle proportion, and the seed of Early Short Hom, Buly Nantes, or French Forcing should Je sown in slrills 3 inches aprit, mul covered to the depth of $\frac{1}{2}$ inch. The yome phants should bo thimen to $1 \frac{1}{3}$ inches ruart. The tempenature shonh rante fom 60° to 65°, 28° much light and air being gibm as possille, but the sashes shond be covered at night, especially in frosty weather. For succession sow nenin on a rentle hotbed umier glass carly in Febraty, and follow this hy another sowing on a warm sheltered sonth borider enty in Mareh. The seal bed should be male ap of light rich compest, in a situation well expuscal to the sun. It these quick-growing sorts are preferred, small sturecssinnal sowings shombl be mate in Mny and ngein in Jaly, Janes's Intermediate beiug substituted at the last sowinc. Whero

3 little protection can be given by a frame in winter, some of the Early Short Ilorn may be sown in August for spriug use.
The following are good garden earrots:-Early: Freoch Forciog, Early Nantes, Larly short Horn. Mid-season: James'a Intermediate, Long Blunt Rantes, Main Cruy: Loog Sorrey, Altrincham. See Aoncculture, vul. i. p. Red.
369.
152. The Cauliflower, Brassica oleracea botrytis eaulinora, is soid by our old authors to have been intronluced fiom Cyjrus, where, as wull as on the Mediterancan coasts, it appears to have beeo cultivated fot afes. It is oue of the most delicately flavoured of vegetables, the dease chaster furmed by its incipiont succulent flowerbuds being the adille portion.

The sowing for the lirst or spring crop, to bo in use in May and June, shonll be made from the $15 t h$ to the 25th of Augnst for Englaod, und from the lst to tho 15 thof August for Scotland. In the neightourhood of London the growers athene as nearly as possible to the 2lst day. A sowing to produce heads in July and August takes plase in Eebruary on a slight hotbed. A late spring sowing to produce caulituwers in September or October or later, should be sinale varly in April, aod aouther about the 20th of Day.

The caulitlower succerds best in a rich :oil and sheltered position bint. to protuct the yungeg plants in winter, theyare sometmes pricked sut in a warm sithation at tho fout of a south wall, and io severe weather cover d with hoops ued mats. A bettel metlion is to plant them thickly under a garden frime, securing them from cold by coverings, and giving airin mild weather. For a very early supply, a few sceres of plants may be potted and kept uuder glass during winter, a od platedout in syriog, defended with a hand glass. Sometimos patches of three or four plants on a south border are sheltered by faud-glasses throughoul the winter. It is advantageous to prick ont the spring-sown plauts into some sbeltercd place, before they are finally 2 ranspanted io Atay. The later crop, the transplanting of which may take place at vaious tioes, is ireated like early cals. bages. After planting, all that is Decessury is to hoe the gromud, and draw up the soil about the stems.

It is found that cauliflowers ready for use in Oetober may be kept in perfection over wioter. For this j口rpose they are lifted carefully with the spade, keeping a ball of earth attached to the roots. Sumo of the largo outside leaves are removed, and any points of leaves that inmediately overhang the flower are cut off. They are then placed either in pets or in hutbed [rames, the plants being arrangel elose tozecher, but witbout touching. In riild dry weather the glass frames are drawn off, but they are kept elcose during rain storms; and in severe frost they are thickly curered with mats

The late Mr Bancs of Bicton iaforms us in the Gardeners* Maga zine that his cauliflowers for spriag are sown the first week of October, in pans, in a little hottom heat; aud about the end of the month, or the hegioning of Noveuber, are potted into 3 -inch prots and plonged close to the glass. The plants are kept shifted on in some old melun-bed mould until the begianing of Jannary, when they are shiftel fioally into 7 -inch pots. In the first week io Fubruary the ground is prepared. If wet, a litele of the soil is taken out where each hand-glass is to stand, and replaced with dry dusty rulabisla, in onder to preveat the couliflowers frant getting the disrase of "black legs." Four plants are turned out under each hand glass. If tbe weather proves dry, a liquil manure, consisting of $\& \mathrm{lb}$ of nitrate of soda to 1 hogshead of cow dong water, with the addition of a [ev gallons of hot water, is applied, which causes the flants to grow in March as in May, and moduce fine canliflowers carly in April. Mr liarnes states that by shifting on the plants uatil they are io 12 -inch prots, ame then placing them iu a vinery or peach-heuse, he has had canliflowers early in Marlh.
Sone of the best varictieg of callinowar are-the twinthelelt, wheh, it true, is of exculleut iwality, and the winst pethently ispthis fur antumb; S)wart Erfurt, whicat is vory dwaf anti carly, and suot for summer san early autumbuse: Early Lundin, rather tall, hut with a fine cumpat curd, Le

153. The Celcriac, A pinm gravolens rapacenm. the celeri navet of the French, is a variety of celery in whinh the strmi forms ath irregular knob, which is tho pat uset, wither shend in salads ur cooked. It is a hardy substicute for nether kinds of coltery. The roots grow to 3 tb or 4 to weight. The plants sismble be reared liko those of edery; and, somo time before winter stasio, they slould le taken up and stoved amonost sund in a shed or ceilar.
154. The Celery, Apiun griaveolens, lias been so much improved by cultivation as to have lost its acriel deleterious properties, oud is now a stont sucenlent plant, with a mild and agreeable favomr, and in the fioer varieties with the stalks solid iustead of lollow and pipy. The blanched prortions only should, however, be ustd.

Celery is usually sown at three different times, - on a hatbel in the beginoing of Mareh, and in the open gromed in March, and again in $A_{\text {pril. }}$ The secdlings, when about 2 inches high, aro pricked into rich soil, in which they are alloned to stand till they are 4 or 5 inches high. The first crop is difented hy frames ar
 wiearth adhering to the sorots. Towards the ent of Slay tronches for blanchiog the relerv are irepared $3 \frac{1}{2}$ or fect apart, 15 inches
wide at the bottom, and ahout a foot below the natural icv il of the surface. The soil at the bottom of the trench is to be carefully dug and manured, and a single row of plants placed ia cach trench, Sontetimes, where a large sapuly is required, the trenches are made 6 feet wide, and rows 15 or 18 iaches apart are planted across the treuches. As the plauts advance in growth, earth is laid up about the stalks of the leaves, and this is repeated at the cod of every ten or hifteen days. Maoy delay the earthing-up until the plants have nearly attained their full size, when the operation is performed at once: but it is better to commence the earthing-up when the erop is half-grown, and to eouslete it by adding a hitto more soil at short intervals. Successional crops should be planted out from the 1st of June till the 1st of August. Celery loves a rich light soil, and will Lear to be flooded with water at the root while growing.
The varicties of celery inclutl: some with red stalks and some with white. The latter, as they blanch more perfectly than the red, ase sometinics preferred, but the red varieties blanch wa very delicate fink, and are generally better flasoured. Sume of the best varieties are:- Whates: Early Dwari Solid White (Incumparable White), Wilamis's Aatchless White, Wright's Grove White. Meds: Leicester Red (Major Clarke's Suldy), Ivery a Nunestech, Sulham Prize Puk, Whlians's Matehiess ked Ste Celers, vol. v. p. 200
155. The Chicory or Sucrory, Cichonimm latybus, is much esteemed Chieory by the Frenth as a winter salad, and when blatoched is koown by the aame of Barte de Capucin. When inteaded for wiuter use, it is sown in May or Jupe, commonly in drills, and the plants aro thinoed ont to 4 inches apart. If at first the leaves grow very stroog, they are cut off, gethafs in the midde of August, about an ineh fram the ground, so as to momote the productiou of new leaves, and check the fommation of fluwer-stems. Atuut the beginuing of October the plants are raisted from the border, and all the lage leares cut off; the roots ane also shortened, and they ate then planted perty elosely togethar in boxes filled wath rich light mould, and waterd when needful. When frost comes on, the boxes are protected by any kind of litter or haulin. As the salad is wantrd, they are removed into some flace having amoderately increased temperature, and where there is no light. Each box alfords tro crops of blanchell leaves, and these are reckoned fit for cuttiug when about. 6 inches long.

Aootber mode of obtaining the young leaves of this plant in winter is to sow seeds in a bed of light lich noould, or in boxes in a heat of fiom 55° to 60°, giving a gentle watering as lequired. The leaves will be lit to cut in a fortaight after sowing, and the plaots will atrond a second crop.

In Belgium a varicty of chicory called Willof is much preferred as a salad to the French Barbe de Copacin. The seeds are sownand the plants thinved out like those of the orlinary solt. They are eventually plantes ia light soil, in succession, fiom the end of Oetoler to Febrgary, at the bottom of trencbes a foot or more io depth, aud covered over with fron 2 to 3 feet of hat stable manure. In a month or six weeks, aecorling to the heat applicd, the heads are Git for use, and shonld be cut before they rach the manure. The: phats miglat easily be foreed in frames on a muhl hotbed, or in a mushroom-bouse, in the same way ar sea-kale.

The sorts cultivated are the Common, the Improved, end the Witloef. That glowo for mixing with coffec is a varicty with lager fieshy ronts. See Cbirohy, vol. v. p. 614.

156 . The Chires, Allimm Schonomasum, is a laady perential, Chives found in the North of England nul io Connwail, and guwing in rocky pastures throughout temperate and northen buroue aud Asiatie Russia, and also in the mountain districts of sonthen Eurere. It is cultivated for the sakeof its leaves, which are used in saladsand soups as a substitute for young onions. It will grow in any good soil, and is proprated by doviding the roots into suatll clumps in suring or autumn; these are planted fromas to 12 imhes apart, and soon form large tufts. The leaves should be cut frumently so as to oltain them tomeler and succulent.
157. The Corn-Salad or Lamb's Crituce, Vaterianelta olitoria, is a Cornweely anmual, native of seuthem Furope, lat naturaliacd in com- balad. fieldy in euntral Lurope, aod not unfrequent in Eastan. In France it is used in salads duabug winter and spting as a substitute for letences, lut it is less estremed in lingland. The plant is taisent from sed sown on a bed or border of light rich carth, and slauld be weeded and watered, as occasion requires, till wimber, when it should te groteeted with long litter during severe frest. The largest plants should be drawa for use in sticerssion. Soning may he made every two or three weeks from the leginning of August till Ortober, and agaid in March, if required in the latter part of the spritig. The sorts priceipally grown arm the lamed-leaved and the Italian, which last is sometimes reftrad tu Valerianella eriocarpo.
158. The Cress, or Gardin Cress, Lepalium satioum, is on annoll Cress plaut, native of western Central Asin. It is usel in salads, the young plants being cut am eaten whiko stall in the sced-leaf, form. ing, olong with plants of the white mustart in the same stage of grow th, what is commenly salled "small sala! !" "The seeds should be sown thickly loranluast or in rows in succession every ten or fourben days, aeconding to the domanh. The sorings may be unde in the opran gromm from March till October, the earliest uader hand-ghosses, ath the summot oncs in a cool nooist sirwation: but
during winter they must Le raised on a slight hotbed, ot in shallow boxes or pans placed in any of the ghass-houses where there is a temperature of 60° or 65°

The Golden or Australian Cress is a dwarf, yellowish green, mih. Gavoured sort, which is cht and eaten when a little more adranced ia growth, but while still young and tender. It should be sown at intervals of a month from March onwards, the autumn sowiuge for winter and spring use, being made in a sheltered situation.
The Curled or Normandy Cress is a vory bardy sort, of good navour. In this, which is allowed to grow like parsley, the loaves are pickel for use while young; and, being finely cut and curled, they are well adipued for garnishing. It should be sown thinly in drills, in good soil in the open borders, in March, April, and May, and for winter and spring use at the foot of a somth wall early in September, and about the midalle of Octoher
159. The Cucumber, Cucumis sativa, a tender annual, is cultivaber both for stewing and pickling, but more usually and extensively for salads. Being an annual plant, it is usually increased by seeds, but it may be readily raised from cutines. which shoulh consist of the tops of the leading branches, and should be planter in deep [rots, half-filled with a compost of leat-moull and saud, thre pots beigg then covered with a pane of glass, and plunged $11:$ a brisk heat. To grow these plants successfully throngh the winter, a tropical heat mast be mantained, for the method of dong which aid p. 254. If properly heated hot-water pits or louses cannot be hul, and hotbeds have to be employed, it is better not to attempt very early forcing, but to defer sowing till about the first weck in Fubuaty.
In hotoed culture, the preparation of materials for the seal-bed, which shonid consist of stable dung in a full state of fermentation, should be set about towards the middle of January. The dung should be turned over, well shaken, and mixed ahont three times at intarwis of a few days. The bed should be made up in a sheltered simation open to the sun. The fratae should then be set on, amd the sashes kept elosed till the heat rises to 85° or 80 , when they shonld be tilted to nllow the steam to pass off. In a few days the surface of the bed should be covered with a layer a few inches in thickness of light soil; and as soon as the hent of the bed ranges nonot 70° the sects nuay be sown singly in 3 -inch pots of sifted leaf-mond, with a lump of fibrous turf at tho bottom for drainace, the sced being moderately pressed into the soil, and covered to the elepth of neont half an inch. The heat of the bed should ranso from 75° to 80°. After germination, the plants should be placed within G inches of tho glass. When tho plants have formed two jurine, the growing point should be stopped above the second joint, the-succeding young shoots being stopped ahoro the second or third joint. Subsequeotly three or four of the shoots, as nearly ermalin strength as fossible, should be selected for principaturanches, and the lateras from these should be allowed to fill out the frame and bear fruit; they shonld bo stopped at one or two juints above tha frut, and a!l weak shoots removed, being pinched ofl with the finger amb thmb rather than cut, to avoid loss of eap by blecding. the chenmber is a mondecions plant, and at one time, in order to sceme the swelling of tho fritit, the femate llowers wero carefully fortilized; but it is found that this is not necessary unless seed is reftulet.

The frating bed is to ho made up in the sane way as the seedloul, ouly, ss it is remuiged to lue nore lasting, it is better to mix up tree le wea with the dung. Tha hed may le made up in the first wath in l'clomary, amd should be 4 feet hirgh in fromt, and ds feet at back. The fiame shonh be put on at once, and the liehts or rastues lient elessed till the lieat has rimen to tho surfice. lf iry the stung inar regnire watering to keup up bumentalion; if it is mos. ant how it maty lo fomm mecessary to make holes with at stake in the sides of tho lied to moberate the hont; but muless it rises above $8 J^{3}$ there is no danger of its injamine the mots. A fow ditys heforo

 the ghass. The blants thenselves shoud her remowed to the lrame
 but not wat. λ grool mednam composet may emsist of two marts of turfy lyam, ano of peat, mal one of leaf-mouhl, with tie addition of some clean corse satul; or of two parts farl; friblibloam, two of
 sand. If the loma be of a less fobrons nature, more preat or leat-
 should rume: lion 55° to 80°, and the atmonhem shonlit be kent
 Ena-heat. An abmumes of light is alse costatin), Int in wer Grieht sunshims th thin shating is bentiecial. 'lhe water usent

 be nexicl al

 ont so ato to become wedl established before the dull weather wis int.

In the erse of cultmre in honses or pits, the heat, bottem and ton, is naintained by hot-wnter pijes or tanks, and the bumeles are tiaincd over treilises placed about a foot trom the glass Theplants aust in this case be run up with a single stem, till they reach the upper side of the trellis, when the leader should be stopped in onder to produce the branches mucessary for eovering the alloted space, anil these must nlso be stopmed when fruit-bearing laterals are requred. These last shonld be stopued at one joint heyond the fruit, till it can be secu whether or not a shoot ivill push from the same joint as the fruit, in which case the jout above the fouit is also to be pinched off.
The hurdier varisties of cncumber, especially the short prickly sorts, known as gherkins, and used for pickling, are often glown under hand-glasses, a cavity having beca made in a warm situntion, und filled with hot dung and a small covering of earth. In the southern counties of England, pickling cucumbers are sown in drills in the onen ground. The carth is made fine and level, and at distances of $3 \frac{1}{2}$ feet, in rows 6 feet apsrt, shallow circular hullows are furmed with the hand, a foot wide, and haif nn inch deep in the middle, in each of which, abont the beginning of June, eight or ten seeds are deposited. When the plants appear, they are thinned out to three or four, the reakest or least healthy being rejected, and all the further attention they require is occasional eleaning and watering, according to the state of the weather

Some of the most popmlar varicties of the cucumber are:-
fineless: 「ullisson's Tclegraph, Carter's Champion
Hhite-xpined: Kenyon's Improved, Empress Eugenie, Improved Mancherter l'rize, Latters Victory oi England.
Llack-ligpeti While-spined: Tender aud True, Mamilton's Market Fabite, Blue Gown
I: hackespined: Dr Livingstone, Henderson's A1, Weedon's Dlack Spine.
see Clecymbr, vol ri. if 65
160. The Eyg Plant, Solanum Melorigena, the Aulergne or Egg Drinjal ef the French, is a tender annual, mative of Sunth dometica plant and of the tropical parts of Asia and Africn. In France it is cultivated for the fruits, which are cooked before they are eaten. The seed should be suwn early in February in a wamt pit, where the plants are grown till shifted into 8 -inch or 10 -inch pots, in wellmanured soil. Manure water should be given occasionally whilo the fruit is swelling, about four fruits being sufficient for a plant. The French growers sow them in a brisk heat in December; or early in Jannary, and in March plant them ont four or eight in a hotbed with a bottom heat of from 60° to 68°, the saslies being gradually more widely opened as the season adrances, nutil they may be tuken off by about the end of Mny. The two main branches which are allowed are pinched to imeluce laterals, but when the fruits are set all young shoots are taken off in order to increase their size. Tha best varicty is the Large Purple, which protuces oblong fruit, some. times reaching 6 or 7 inches in length, and 10 or 12 inclies in eir. cumference. The Chinese is also an oblong-fruited sort, with whito fuit and more juicy flesh than some of the other sorts. The fruit of the ordinary formatmost exactly resembles the egor of the domes. tic fowl.
161. The Endire, Cichorium Endivia, is a harly ammal, native Tendive. of the northem provinees of China and other parts of Asia. As in tha case of tho lettuce, the blanchad hearts are used for salals and in sonbs. The man crop shond lie sown about the middle of June. on a sed-bed of light rich soil, and the early erop about the middle of May. The sevis should be seattered sparshy, that the plants may not come up in elnsters. The seedlings should be transulantul into a rich soil in an open situation, at alout a foot apart in rows, whidl for the curled-lemed sorts should be a foot usurder, and for the brond-leaved sorts 15 inches. When the plantshave reathed their maturity, the haves are gathered upam tied ingether a little below the tips, and a few days later about the midde of the phont, and in Lwo or three weeks they ner fond suffementy blanched for use

For winter uso tho sed should be sown about the midtle of July, nme a little additional in August. They should be flamten in tho sume way as the caller erops, lat it is mivisable, as they myroach maturity, to draw the carth puite up about the leaves. At that anason, too, the plants may be alvantaguonsly planted on sloping banks of eath focing somth. They mav the hampled by inworting a frowen pot with the dranage hole elosed, or a common gaten san er 10 or 12 inchas in dianterer, over tho centre of the planta as they Herw flat on the earth. Iater on they may be blanelaed in listes in
 such ns aro proviled for sea-kale. "lhe time occuphed in blanething vaics from ten duge in sunamer to there ueres in winter. A sutli cicut rumatily to allowd a smplly for a weols may be operatud on at one timm

Por protiction during the winter it is a gromb phan to phant the

 Gut leavine it masoverd at afl other times. A more certain nupland [outhan a sululy dusing that season ia, however, cithen (1) take up the latesemsin plants before frost sets in, and to phat them in dry cauth as samp in a frame or to place a Irame over the m where thes grow. The eatly winter erops are sometimes pinnted of
the back of s south wall, and when corercd up for blanching they will endure s considersble smount of cold.

There are two races of eadires, the Curled (Chicorec frisée of tho Freach), with crispy much-cut leaves, sad the Batavian (Scarole of the French), with bread lettuce-like leaves. Some of the faveurite sorts are-

Curled: French Smatl Grcen Curled, carly; Large Green Curicd; Staghorn, for late trops; add Curled Plepus

Balavian: Small Ratavian. Round-lenved Batavian; Lettucc-teaved, early; and Frascr's Broad-leaved Batavian, lor late crops.
162. The Garlic, Allium sstivum, a hardy hulbous perennial, is propagated by separating the cloves of which tho bulbs are composed, and planting then 2 to 3 inches deep in sjring, at a few inches apart, in rows a foot asuader, in a light, rich, and rather dry soil, and in a warm situation. A few short rows will suffice in most cases, and, if required early, a emall patch may also be planted about thie end of October. After the leaves have ripencd, the bulbs may be tsken up, sun-dried, tied in bunches by the stalks, and hung up in a dry siry cool store-room till wanted. Garlic is used for flavouring. 163. The Gourds cultivated in gardens for their eaculent produce are varicties of several species of Cucurbita, the most commonly used being the vegetablegnatrow and the pumphin.

The Vegetable Marron, Cucurbita Pepo var., is the most important of the gourds used as an esculent, and furnishes in good seasons a very large supply for the table. The fruits are best when caten quite young and not over-hoiled, the flesh being then tender, snd the flavour sweet and nutty.

Vegetable marrows require a warm situation and a rich soil free from stagnant moisture. They do well on a rubbish or old-dung hesp, or in a warm border on little hillocks made up with any fermenting material, to give them a slight warmih at startiog. The seeds should be somn in a warm pit in April, and forwarded under glass, but in a very mild heat ; the plants must be slifted into larger puts, and be gradually hardened previous to being planted out, when the mild weather acts in in May or June. The use of handglasses makes it possible to transplant earlier than would otherwise be advisable. The seeds may be sown early in May in pots under a hand-glass, or towards the end of May in the open ground, if hest is not at command. The true vegetable marrow or succade gourd bears fruit of an oblong-elliptical shape, about 9 inches long, pale-greenish while joung, with whitish flosh, and scarcely any indication of ribs; when mature it is of a pale yellow colour. There is a variety which is more oblong, grows to 15 or 18 inches, and has the surface slightly marked by irregular longitudiaal obtuse ribs. The shoots may be allowed to run along the surface of the ground, or they may be trained against a wall or paling, or on trellises. As the gourds cross readily, care is necessary to keop any particular varicty true. Ons of the best vegetable marrows is called Moore's Vegetable Cream.

The Custard Marrow, ons of the Patissons or Crown Gourds, lears s peculiar-looking flattened fruit with scolloped edges, which has a oweeter and less autty flayour than the true marrow.

The Pumpkin, Cucurbita maxima, grows to a very large size, some of the varieties, as tho large yellow or Potiron jaune, sometimes producing fruit over 200 to in weinht. -The flesh of this is yellow, the ripe fruit, in which state only it is used, being of a frale salmony bulf colour exteriorly. It will keep for some months in a dry airy place, and is used in soups or stews, or mashed like potatoes, or baked in pies. There are several varicties of this type. The cultivation of the pumpikin resembles that of tho vegetable marrow, but it requires abundance of space for its spreading vines.

Mauy of the other gourds (of which some are very oramental) produce edible fruits, but as some, potably the orange gourl and the bottle genrd, aro cathartic and deleterious, they sliond mot be adiscriminately eaten.
164. The Fiorscrauish, Cochlearia Armoracia, or Armoracia rusticaus, a liardy perennial, is cultivated for its long roots, or moro properly underground rootstocks, which when scraped into shreds, ir grated and made jnto a delicious sauce, are eaten with reast beef. Its properties are antiscorbutic. The horseradish requires a deep, rich, and rather yuoist sandy loam or alluvial soil, the olyject being to obtain loog straight roots 'One method of uroducing uew plants is to plant the sets, censisting of the crewns of old roots, or of 1 or 2 inch lencths of the reot itself, at the bottom of a trench 21 feet decp, the lower half of the soil being well rnataured ; only a single shoot should be retained, so as to produce one thick vigurous stick. The roots planted in spring are sometimes taken up in the winter following; if left to grow another year they become very much thicker, though less teader. In digging.the roots the soil should be thrown back so as to lay thero bare. Those that spring from the set ate cut off, and it is mauured and left to grew up again the follow. ing year. Before the ground becomes frost-bound, a supply should bo dug up, and otored in domp sand for use during that cuergency. 165. The Jerusalem Artichoke, Helianthus tuberosus, a hardy tuberous perennial, apecies of sunilluwer, derives its epithet Jerusalem from a corruption of the ltalian Girasole, a sunflower, and its mame of Artichols from the resemblanere in favour whit! it a
tubers lear to that of the receptacies or "bettems" of that plant. It is propagated by means of its tubers planted in the manoner of potatoer, in rows 3 or 4 feet asunder, some time in Fcbruary or Alsrch; by the autuma tho new tubers will be $6 t$ for use. As a matter of couvenience, theugh the tubers themselres are hardy enougk te bear the frosts of winter, they may bo dug up abont November, and stored in dryish sand. They should have a well. manuted soil, and thestems should not be allowed to be too crowded, which is in great measure obviated by planting them annually.
166. The Kidney Bean includes what is commonly known as $2 \mathrm{I}_{\text {ie }}$ Kidney French Bean, Plaseolus vulgaris, and the Scarlet Runuer, Pbascolua bean. multilorus, botl very lroductive vegctables of excellent quality.
Th: Common Kidney Bcan or French Bean, Phaseolus vulgaris, is a tender annual, and should be grown in a rich light loamy soil zul a warm sheltered sitmation. The soil should be well enriched with hothed dung. The earliest crop may be sown hy the end of March or beginniug of April. If, however, the ternperature of the soil is below 45°, the beans make but little progress. The main crops slould be got in carly in May ; and a later sowing may be made early in July. The earlier plantings may bo sown in smisll pots, a ad put in frames or houses, until they can be safely planted out-of-doors. The earliest ont-of-doors crop insy be slacltered by means of thatched hurdles, placed sloping on beaners supported by posts. The sceds should be covered 12 or 2 inches deep, the distance between the rows being abont 2 feet, or for the dwarfest surts 18 inches, and that between planta from 4 to 6 inches. The pods may be used as a green vegetable, in which case they should be gathered whilst they are so erisp as to be readily saapped in two when bent; but when the dry seeds are to be used, the pods shnald be allowed to ripen. As the green pods are gathered others will continue to he formed in abuadance; but if old seed-formiog pols are allowed to remain, the formation of young ones will be greatly checked.

Forcing. -The kidncy bean may be easily formarded in pota in a forcing-house, or in prepared soil in a heated pit. The bottom heat sheuld range about 70°, sad the atmospheric temperature should show a ninimum of 60°, aul a maximum of 70°, running up to 80° by sun-heat. The seed should be sowo three or four in a 10 . jach pot, nearly filled with light turfy soil and leaf-mould, or decosuposed cow dung, the stems being earthed up afer the true lecvea are formed; and they must be well syringed and watered daily. To keep down the red spider, the under side of tho leaves should be thoroughly moistened by syringing early in the morning with water at 60°; the houso being then kept shut up till tho air is raised to 75° or 80°, both surfnces will, in consequence of condensation, become thoroughly wetted. When the plsinta ceme into flower, plenty of air must be adinitted. Kiducy beans may thus be obtnined fit for use, in six weeks or two montha from the time of sowing. It may therefore be desirable to sow some secer in August to succeed the crops in tho open ground, and, for succes. sion, in September aud October; for spriag nae sow in January. February, and March. The early dwarf sorts are the best for forcing, such a: Fulmer's Early, Newington Wonder, Osborn'a Forcing. Willians's Jarly Prolitic, Syon IJouse, and Whito Adyancer.

The varietics of French leana being numerous, we here add the uames of seme of the mest desirable for general cultivation:-
Early: White Canterbury, Fulmer's Forcing, Minier's First Ear!y, Oedorn's Forcing, Sir Joseph raxtoo, White Advaderer.
Second Eiarly: Caosdian Woudcr, bears late; Negro Lode nodded, bears

The Scarlet Runner Eean, Phaseolus multiflorus, difiers from the common Freach bean in being a perennial, and in having tuberous rocts, which, it may be stated, are narcotic and poisonous. Themo unay bo preserved through the winter in dryish earth in a frost-proof cellar, for an carly crop the following season. The late Mr Cuthill mentiens having found from experimeut that phants raised from roota come into bearing just one montly earlier than those mised from seal. The seeds of tho rmaner beans should be scwa in an open plot,-the first sowiug in May, another at the lugioning of June, and a third aboat the midne of June. In the London market-gardeos they are sown 8 to 12 iuches apart, in 4 fect rows if the soil is goot. The twining tops are piached or eut off wheu the plants are from 2 to $2 \frac{1}{d}$ feet high, to save the expense of staking. It is better, however, in private gardens to have the rows standing separately, aud to support the plants by stahes 6 or 7 feet high and about a foot apart, the tope of the stakea leing crossed about one-third down. If the weather is dry when tho pods aro forming aloundantly, plenty of topid water should bo supplied to the plants. la training the elhoots to their euplowts, they shouhd be twined from right to left, cootrary to the conrse of the sun, or they will not lay hold.
The ordinary scalet Ronner is mast commonly grow u, hat the 13 an whitefowered variety which lias aloo whito Esede ; this is viry Jmolinc ars of excelient quality, and is now tuuch grow in for market. Another sariety called Faintel Lady, with the flowers red and wlite, is very ornamental, tut not os pruluctive. 'Carter'y Champlon Is a large podded proturtive variety.
187. The Sohl Sidbi, or Turnip Cabbag. Brassica oleracea coulo
rapa, is a bicnnial, the upper part of whose stem swell, mito a mound heshy mass, resembling a turmip, but prolucerd above grounhl. Kwil Rabl is excecdingly tardy, withstanding buth severe frosts and drought. It is not much giown in English gardens, though when used young it forms n good substitute for tumips. The seeds shouth bs sown in May aod June, and the scedlings should be plated shallowly in well-manured ground, 8 or 10 inches apart, in rows 15 inches asunder; and they should be well watered, so as to induce quick growth. The bullus will be fit lor use when they are as large as-not larger than-an carly turnop. The best sorts are Early White Vienna, and Early l'urple Vienoa.
168. Tbe Leck, Allum Porrom, a Lardy bunnial, is said to be a native of Switzerland, but more probably comes from the East. 'Tike leeks, which prefer a light soil, are sown in beds about the mildle of harch, and later for a succession, and in June or July are finuted out 6 inches asunder; and in rows 15 or 18 inches upart. When the weather is moist the plants are dropped upright into the hole male by the dibble, and no more earth than will just cover the filures is altowed to fall in, the hole being left open to encourage the stem to swell out, and blanching is effected gradually by the curth washing into the holc. They are also planted in trencbes liko celery, and earthed up when they have made their growth. 'lle lecks will be fit for use in September, anel will last till the slining
The best sorts are-Eandy Netherlands, for carly use; Large Roven, one of the very lest; , Lundun Flag, and Masselburgh, the latter being repatediy the hardlest; and Carentah, a very large hardy French sort
169. The Lettree, Lactuca sativa, is n hardy annma, highly estermed as a suad plant, while its nilky juice forms the lactucarium of the materia medica. The London market-gardeners make preparation for the first main crop of Cos lettuees in the open ground early io Auginst, a frame being set on a shallow hotbed, and, the stimulus of heat nat being required, this is allowed to subside till the first week io October, when the soil, consisting of leatmould mixed with 2 little samd, is put on 6 or 7 ioches thick, go that the sulface is within $4 \frac{1}{2}$ inches of the sashes. The best time for sowing is fonnd to be about the lith of Octuber. When the sects begia to girminate the sashes aro drawn quite ofl in favourable weathel luring the day, and put on, but tilted, at uight in wet weather. Vory little watering is required, and the aim should be to keep tho plants gently mowing till the days begin to lengthen. In January a mere active growth is encouraged, and in mild winters a eonstilerable extent of the panting out is done, but in private garilens the preferable tine vould bo February. The groand should be light and rich, and well manured below, and the plants pat out at l font apart carh way. In planting at this early seasnn, the dibble, in closingt in tho soil, should be inserted on the south sido of the plant. Fiequent stirring of the ground with the bos greatly encourages the growth of tho planto. A seconth sowing shondil be made about the Eth of November, and a third in Trarnes about the end of Jonuery or beginning of Febraary. In March a snwing may be made in sorao warn sit nation; successional sowing may be male in the open border till Atagust, about the middle of whicb month a crop of Brown Cos and Mardy Hammersmith should be sown, the litter being the most reliable in a serere winter. There phants may be put out early in October on tho sides of ridges ficing the south or at tho front of a sonth wall, beyond tbe reach of apops from the copings, the Hardy Hammersmith being planted 6 or 8 inches apart. Younr letture phants should be thimed before they crowd or draw each other, and transplanted as snon as possiblo ofter two or three tenves are formed. Somo cultivators preter that the summer crops shonld not bo transplanted, but sown where they ara to stanif, the plants being merely thinned oat ; but trans. phnting ehecks tho whning to seed, and makes the most of tho grouml.

Foreing. - For a winter supply by gentlo forcing, the Mardy Hammersmith and Bown Dutch Cabbare lettues, and the Brown Cosnmel Gieen I'aris Cos lettuces, should be sown ahout the middle of Ahgust and in the berinuine of Scutember, in rich light soil, the plants being pricked out 3 inches apart in a prepared bed, as soon as tho first two leaves are folly furmed. Alwat the midille of October the plants should bo taken up carefully with lalls attarlied to the roots, ond shonlil bo phaced in a mild luther of well-grepared dung (nbout 55°) covercel abont 1 foot drep with a compost of sindy peat, leaf-monh, and a litelo well-ducomposmi manure. The Cos nud Brown Dutch varietios shouh be planted absut 9 inehes apart. Give planty of nir when the weather permits, and protect from frost.
"here are two races of thu lettuce, the 'os letonee, with erect ohbng bowls, and the Cabuga lettued, with romml or spreading lemde, -tho fonume gemerally erisp, the latere soft and flably in texture. Some of the lest lettuces for gemeral purfoses of tho two clowses are the following: -

Cua: Whito Jaria Con, leat for summer: Green Parig Cong, hardler than the

 tho nointor well: stananal lark.
170. The Mushroon, Agaricus campestris, is a well-known fun- wash gus of a spechally suvoury chnracter ; it grows wild in Great Britan un upland prastures, and appears to be indigenous to most regions of the giobe. The plant is propagated by spores, the tine black thist seen to be thrown utf when e mature specimen is laid on white paper or a white dish; these give rise to what is known as the "spawn" or mycelinm, which consusts of whitish threads permeating dried dang or similar substances, and which, when phanted in a-propes: medium, runs through the mass, and eventually appears in the form of the mushroom. This spawn may be obtained from old pastures, or decayed mushroon beds, and is purchased from nurserymen in the form of bricks charged with the inycelam, and technically known as mushronm spawn. When once obtained, it may, like leaven, be indefinitely preserved. It may be produced by placing quantities of horse dung saturated with the urine of horses, especially of stud horses, with alternate layers of rich carth, and covering the wholo with straw, to exclude rain and air ; the spawn commonly appears in the heap in about two months afterwards. The droppings of stall-fed horses, or of such as bave been kept on dry food, should be made use of.
The old method of growing mushrooms in ridges out of doors, or on prepared beds either level or sloping from a back wall in sheds or cellars, may generally be adopted with success. The beds are formed of horse droppings which have been slightly fermented and frequently turned, and may be noade 2 or 3 feet broad, and of any length. A layer of dung about 8 or 10 inches thick is tirst deposited, and covered with light dryish earth to the depth of 2 inches; and two similar layers with similar coverings are added, the wholo being madc narrower as it advances in heiglit. When the bed is finished, it is covered with straw to protect it from rain, and also from parching influences. In about teo days, when the mass is milkwarm, the bed will be ready for spawning, which consists of inserting suall pleces of spawn bricks into the sloping sides of the bed, about 0 inches asunder. A layer of fine earth is then placed over the whole, end well beaten down, and the surface is covered with a thick coat of strnw. When the weather is temperate, mushrooms will appear in about a month after the bed has been mede, but at other times a much longer period may elapse. The principal tbings to be attended to ure to preserve a moderate state of moisture and a proper mild degree of warmth; and the treatment must vary accord. ing to the season

Mr Cuthill describes a very simple mode of culture. The rilge is built up of dung os it is brought l'resh from the London stables; in this fermentation soon acts in, and, when the heat of the licd declines to 80°, picces of spawn bricks are inserted, a foot apart, in the sides of the bed, which is then moulded over, 2 inches thick, pressed with the feet, and beaten with the spale, then watered, and beaten again with the spade, and finally smoothed down. The more the aoold is pressed, the finer tho crop, and the more solid the texture of the mushronm.

Theso ordinary ridge beds furnish a good supply towads the end of summer, nod in antumn. To commond a regalar supply, bow. ever, at all, seasons, the use of a mishroom-honse (seo par. ly, p. 226) will be found very convenient. The moterial employed in all cases is the droppings of horses, wheh should be collected fresh, and spread out in thin layers is a dry place, a portion of the short litter being retainel well moistened ly horse urinc. It shonld then be thrown together in ridges and frequently turned, so as to be kept in an incipient state of fermentation, a little dryish friable loam being mixed with it to retain the ammonia given oll by the dung. With this or a mixturo of lorse-dmeg, loam, old mishroom-bed dung, and half-deeayed lenves, the beds are built op in successive layers of alonut 3 mehes thick, each layer being benten firm, until the bed is 9 or 10 inches thick. If the heat exceeds 80°, holes should be made to molerate tho fermentation. The berle are to bo bfawned when the heat moderates, and be sarfare is then covered with a surinkling of warmed lom, whinhafter a few days is made up to a thinliness of 2 inches, mal woll beaten down. The beds made partly of ohe mashromb-hed dung often contain sutlicient spawn tos yiehd a erop, whont the introduction of binck or cako spawn, lut it is alvisable to spawn them in tho regular way. T'bo spawn shonded be introduced un inch or two below tho surface when the hoat has dicliued to about 75°, inded the bed onght never to exmed 80°. The surface is to bo afterwards coverell with hay or hiter. The ntmospheric temperature shonkl range from 60° to 65^{*} till the mushromsapuear, when it may drope a few degrees, but not lower than 55°. If the bets repuire watering, water of about 80° shonh be nsed, ame it is ureferalle to moisten the covering of litter rather than the surfuco of the beds themsolves. It is also benoficial, especially in tho case of partially cxhansted beds, to wnter with a diluto solution of nite. Fur a winter supply the beds should bo made towards the rod of Angist, and the ent of Oetober.
171. Th" Uustard, Simpisalha, or Brassica alla, is n hardy ammal, Mastan used as a small gulad - generally nceompanied by garden eress-whils still in the seal-leaf. 'To kenp un to sulply, the seet shonld be nown
pro work of ten days. The sowinge in the open gromm may bo reme Matal till Oclahar, erolier of hater gecording to the
season. The gromed should be light and rieh. and the satuation warin and sheltered. Sow thickly in rows 6 inches aprt, and slightly cover the seed, pressing the surface smooth with the back of the suade. When gathering the crop, cut the young plants off even with the gromad, or pull them up and cut of the roots, commencing at one end of a row. From October to Dlarch the seeds should be snwn thickly in shallow boxes and placed in a warm house or !rame, with a temperature not below 65°.
172. The Nasturtium, ot Indian Cress, Tropreolum majus, is a perennial climber, native of Peru, but in cultivation treated as a hanly annual. The flowers are sometimes eaten in salads, and are used for garnishing, and the leares and young green fruits are jickled in vinegar as a substitute for capers The plant should have a warm aituation, and the soil should be light and well enriched; cow thinly early in April, either near a fence or wall, which may be uitized for its support, or in an open spot, where it will reguire stakes 6 to 8 feet high. Its flowers are no less ornamental than uselul.
173. The New Zealand Spinach. Tetragonia expansa, is a balfhardy annuel, native of Now Zealand, sometimes used as a sub. stitute for splach dusing the snmmer months, but in every wiby inferior to it. The seeds should be sown in March, on a gentle hotbed, having been previously steeped in water for several hours. The seedlings should be potted, and placed under a frame tull the and of Nsy, and shmuld then be planted out, is light rich snil. The young leaves are those which are gathered for use, a succession being prniluced during summer and antumn.

171 The Onion, Allium Cepa, is a hardy bulbous biennal, which has been cultwated in Britain from taine immemorial, but the matsve couatry of which is unknown. The onion should be grown in an open situation, and on a light, rich, well-worked soil, which bas not been recently manured. The principal crop may be sown at any tums Irom the middle of February to the middle of Narch, if the weather is fine and the ground sufficiently dry. The seed should be sown in shallow drills, 10 inches apart, the ground being made as level and firm as possible, and the plants shond be regularly thinned, hoed, and kept free from weeds. At the final thinning they should be set from 3 to 6 inches apart, the latter distance in very rich soil. About the beginning of September the crop is ripe, which is known by the withering of the leaves; the bulbs are then to be pulled, and exposed on the grouad till well dried, and they are then to be pat away in a store-room or loft, where they may be perfectly secured from frost and damp.

About the end of Angust a crop is sown to sfford a supply of roung onions in the epring months. Those which are not repuired fur the kitchen, if allowed to stand, and if the flower-bud is picked out on its first appearance, and the earth stirred about them, frequently produce bulbs equal in size and quality to the large ones that are imported from the Continent. A crop of very large bulus may also be secured by sowing about the beginning of September, and transplanting early in spring to very rich soil. Another plan is to sow in May oa dry ponr soil, when a cropol small bulbs will be produced; these are to be stored in the usual way, and planted in rich soil about February, on ground made firm by treading, int rows about a foot apart, the bulbs being set near the surface, and about 6 inches asunder. The Whito Spanish and Tripoli are good sorts for this phrpose.

To obtain a crop of bulbs for pickling, secd shonld be sown thackly in March, in ratber poor soil, the seeds being very thinly covered, abd the surface well rolled; these are not to bee thinned, but should be pulled and harvested when ripe. The best sarts for this crop are the Silver-skinned, Early Silver-skinned, Nocera, and Queen

Porcing.-Onions may be forced like mustard and cress if required for winter anlads, the sceds bcing sown thickly in boxes which are to be placed in a warm house or frame. The young ouions are of course pulled while quite small.

The Potato Onion, Allium Cepa aggregatum, is propagated by the lateral bulbs, which it throws ont, under ground, in considerable numbers. This variety is very prolific, and is useful when other surts do not keep well. It is sometimes planted about midwinter, and then ripens in summer, but for use during the spring and early summer it is best plauted in spring. It is also known as tho underground onion, from its habit of producing its bulbs beneath the surface.

The Tree Onion or Egyptian Onion, Allium Cepaproliferum, produces small bulbs instead of flowers, and a few offsets also underground. These small stem bulbs are excellent for pickling.

The Welsh Onion or Ciboule, Alliun fistulosum, is a hardy perennial, native of Siberia. It forms no lulbs, but, on acconnt of its extremo hardiness, is sown in July or early in August, to furnish a reliable supply of young onions for use in salads during the early epring. These bulbless onions are sametimes called Scallions, a name which is also applich to old onions which havestem and leaves but no bulbs.

The following ate among the best varietics of oniona for farious putposes :-

For summer and autumn-Queen; Early White Naples, these two sorts are also excellent for sowing in autumn for spriag ealading. Silver skinned; Tripoli, including Giant Rocea.
For winter- Brown Glohe, including Nagnum Bonum: White Giobe: variety for autumn sowing, attaining a farge size early, ripenuritue whes keeping good till after Christmas; 8trasburg (Deptford); Weathersfield Red: Elood lied, strong-fluroured.

For pickling.-Queea, Early Sitver-skinned, Whtte Nocera, Egyptian.
175. The Orach or Nountain Spinach, Atriplex bortensis, native Orabl of Tartary, is a tall-growing hardy annual, whose leaves, though coarsely flavoured, are used as a substitute for spianch, and to correct the acidity of sorrel. The White and the Green are the most desirable varieties. The plant shoull be grown quickly in nech snil. It may be sown in rows 2 feet a part, and about the sadue distance in the row, about March, and for succession again in June. If needful, water must be freely given, so as to maintain a rapud growth.
176. The Oxalis crenata, Oea of the South Ancricans, is a Oza:n tuberous-rocted half-hardy perenaial, native of Peru. Its tubers are creas.a comparatively small, and somenthat acid; but il they be exposed to the sun from six to ten days, they become sweet and tloury. In the climate of England they can only be grown by staiting then in heat in MIarch, and planting out in June in a light soil and warm situation. They grow freely enough, but few tubers are formed, and these of small size. The fleshy sialks, which have the acid flavour of the lamily, may, however, be used in the satne way as hlubarb for tarts. Tbe leaves may be eaten in salads. It is easuly propagited by cattiags of the stems, or by meaus of sets like the potato.
177. The Oxalis Depyei, a bulbous perenmah, native of Mexico, Oxalia, has scaly bulbs, from which are pruluced Heshy, tapering, white, Deppel semi-transparent roots, about 4 inches in length, and 3 to 4 inches indiameter. They strike duwn into the smil, which should therefore be made light and rich with nbundance of decayed veretable matter. The bulbs should be planted about the end of April, E inches spart, in rows 1 foot asunder, being only just covered with soil, and having a situation with a southern aspect. Tho roots should be dug up before they become alfected by frost, but if protected they will continue to iocrease in size till November. When taken up, the bulbs should be stored in a cool dry place for replanting, and the roots for use. The roots are gently boiled with salt and water, peeled and eaten like asjaragus with melted butter and the yolks of eggs, or served up like salsaly and scorzonera with white sauce
178. The Parsnip, lastinaca sativa, is a hardy bienaial, round in lorsnig. temperate regions. Its long tapering leshy whitish outitious roots liave a pcculiar but agreeable flavour. It succeeds best on a free sandy loam, which shonld be trenched and manured in the previous autumn, the manure being well buried. Tho seed sbould be sown thinly in SLarch, in rows, 18 mehes apart, and finally thinned out to 1 foot apart. The leaves will decay in October or November, when a fortion of the roots may be taken upa and stoped in 'dryish sand for immediate use, the rest being left in the ground, to be taken up as required, but the whole should be removed by February to a dry cool place, or they will begin to grow, The vest sorts are the Jollow. crowned, the Maltese, and the Student.
179. The Pca, Pisum sativum, is a hardy annual, climbing by Pez means of the tendrils of its leaves, and has been cultivated from time immemorial. The seeds or pulse are very nutritious, whether eaten green or ripe, and those of the early crops are estecased as luxuries. The pea prelers a friable calcarcous loarm, deeply worked, and well enriched with good hotbed or farm-yard manure. The early crops regnire a warm sheltered situation, but the later are better grown 0 or 8 leet apart, or more, in the npen yuarters, dwarf crops being introduced between the rows. The dwar! or early sorts may be sown 3 or 4 fect spart. The deep working of the soil is of importance, lest the plants should suffer in hot dry weather from mildew or arrest of growth. The first sowing should be made about the beganing or midule of November, in froat of a south wall, the plants being defended by spruce fir branches or other spray throughout the winter. In Febuary sowings are sometimes madas in flower-pots or boxes, and the yonng plants afterwarls planted out. 'The main crop shond be sown towards the ead of February, and moderate sowings should be male twice a month afterwards, up to the Juginning of July for the nerth, and abont the third week in July for warmer districts. During dry hot weather late peas decive great benefit ron mulching and watering. The latest sowings, at the middle or end of August, shonld consist of the best early sorts, as they are not so long in producing pods as the larger and finer sorta, and by this means the supply may be prolonged till October or November. As they grow up the earth is dranus to the stems, which are also supported by stakes, a practice which in a well-kept garden is always advisable, although it is sain that the early varieties arrive snoner at maturity when recumbedt. \because Wbere space permits, all the taller sorts are best sown in siggle rows at wide intervals of 20 or 30 fect.

Peas prown late in antumn are subject to mildew, to obriate which Mr Knight proposed to dig over the ground in the usual way, and to soak the spaces to te occupied by the rows of peas thoroughly with water, -the earth on each side to be then collected so as to form ridges 7 or 8 iuches hish, these ridees beine well waterdid
and the seed sown on them in single rows. If dry weather at any time set in, water should be supplied profusely once a week.
To produce very early crops the French market-gardeners sow early in Novenber, in tiames, on a border having a good aspect, the seeds being covered very slightly. The young plants are transplanterl into other frames in December, the ground inside being dug ont so as to be 18 or 20 inches below the sashes, and the carth this removed plaed against the outside of the frames. The young plants, when 3 or 4 inches ligh, are planted in patches of three or four, 8 inches asunder, in four longitudinal rows. The sashes are covered at night with straw mats, and onened whencrer the weather is sutficiently mild. Wben 8 or 10 inches high, the stems are inclined towards the back of the frame, a litte earth being drawn to their base, and wheu the plants come into blossom the tops are finched out, above the third or fourth flower, to foree them into bearing. As soon as they begin to pod, the soil may have a gentle watering, whenever sulficiently warmed by the sun, but a too vigerous growth at an earlier period would be detrimental. Thustreated the llants lear pods fit for gathering in the first fortnight in April.

A very convenient means of obtaining an carly crop is to sow in 5 -inch pots, a few sceds in each, the plants to be ultimately planted out on a warm border. Peas may also be obtained eally if gently forced in frames, in the same way as kidney beans, the dwartest varictics being preferable.

For the very early peas the rows should range east and west, but for the main crops north and soath. The average depth of the drills shonll be about 2 ioches for small sorts, and a trifle more for the larger kinds. The drills should be mado wide and fint at bottom, oo that the seeds may be better separated in sowing. The large serts are the better for being sown 3 inches apart. Chopped furze nay be advantageously scattered in the drill before covering in, to check the depredations of mice, and before levelling the surface the coil should be gently trodden down over the seeds.

A gool sclection of sorts may be made from the following :-
Early: Dillistone's Early (Sutton's Ringleader, Carter's First Crop), the ardiest surt; Sungsters Xo. 1, a good form of Early Frame: William 1., fine; Laxton's Alpha, the earliest wrinkled pea; Dickson's First and Best; Maclean's Little Gein, a very lwart wrinkled pea ; Tom Thmob (Reck's Gem), a very dwart romml pea. The last two aro usefui for foreing and for pots. Second Early: Maclean's Alvancer, Standish's Criterion, Laxton's Marvel, Cartor's Telephone, Dr Haclean, Pernier, Canter's Stratarem.
Late: Janes's Irolific, Carter's 1F. F. Wilson, Veitch's Perfection; Ne Plus Ultra, the huest of all late peas, bat at litile delicate in cold wet soils and geasons: Oencral Wyndhara, continues to produce very late; British Queen, Champion of Englani, Laxton's Omega.
Sotato.
180. The Fotato, Solanum tuberosun, is a half-hardy perennial, producintr underground tubers, largely used as an csculent. It thrives best in a rather lioht friable loam ; and in thin sandy aoils the produce, if not heavy, is generally of very good quality. Soils which are naturally wet and heavy, as well as those which are heavily suauured, such as ohl gaven ground, are not suitalle. Indeed it is best, except when there is amplo space, to grow only the earlier kinds in gardens. If the soil is of fair quality, the less manure used upon it the better, unless it be soot or line. Gypsum, bone-dust, suremhosphate of lime, and nitrate of soda may also be used, and wood ashes are indvantageous if the soil contains mach vegetab!e matter.

Potatoes are commonly propnerated liy dividing the tubers, leaving to each segment or "sct" one or two eyes or buds. The " sets" are then planted by the aid of the dibble or spate, in rows at a distance varying from 15 inches to 3 fect, the distance being regulated by the height of the stems, and that batween the sets varying from 6 to 12 inchas, 8 inches being a gool average space for garden crajis, with 2 foet betwea the rows. The sets may be put in 6 iaches decp. The late T. A. Knight suggested the planting of whole tubers or sets, at groater distances apait, by which means, he argucd, a lurger produce would be obleined; lio proposed to leave 4 fuet between tho rows, lut that distance, oxcent with the larger varicties, has been foum to be too great. Though the planting of whole tuluera invteal of the cotsets has heed thas highly recom. mentur, yet ancording to sme experiments node in the garden of tho Hutioultural Socicty at Chiswiok the ent sets yidh a much lietter ret m than whole obes. The fult-sized tubers are, however, preferable to smallor ones, as their larger buls tend to produce stronger shouty. It has alao bren found that the best returns are obtained from sets taken from the pesints of the tubces-not from their base. Mr Thomas lickson of Ehblungh long agn olsorved that the must healdiy and probluctive erop wing to be ubtaned lyy danting unripe tutmers, and proped this wa streventive of the discaise called the "cus," which sometimes attack the young stems, causin" them
 he froulucet. If has also been moted that the sprouting of the eyes of the potate may we accherated if, white still unripe, it is taken up
 'I'He best atds are thow whatined from plants grown in elesated mal oppis sithations, and it is also beneticial to use sets grown on a difforent soil.
'Thu empliekt cropa shouh, if possible, be planted in a light soil wad in a watu siteation, towards the end of Februnty, or as carly us
possible in Jarch. In some cases the tubers for early crops are sprouted on a hotbed, the plants being put out as soon as the leaves can bear exposure. If the young sprouts are about 2 inches long, they may be planted out towards the end of March ; if they are protected young potatoes will he procured in seven or cight weeks. It will improve the crop if, when the stems hare grown a few inches above ground, the carth is drawn up to them, but the operation will delay its maturity for two or three weeks. Mr Knight recommends removing the flowers as they appear, in order to increase the produce. The finc early varicties, bowever, scarcely produce any flowers.

The main crop should be planted by the middle of March, late planting being very undesirable. Those intended for storing should be dug up as soon-as they are fairly ripe, unless they are attacked by the dire disease, in which case they must be taken up as soon as the murain is observed; or if they are then sufficiently leveloped to be worth preserving, bat not fully ripe, the haulms or shaws should be pulled ont, to prevent the vinus passing down them into the tubers; this mny be done without disturbing tho tubers, which can be digg aftervards. Sce Agriculture, vol. i. p. 364.

Forcing. - The hest forcing sorts are the Λ sh-leaf as a kidney, and the Early Market or liector of Woodstock for a round. The earliest crop may be planted in December, and successional oncs in January and February. The mode of cultiration adopted by the London market gardeners is thus in snbstance explained by Mr Cuthill. A long trench, 5 feet wide and 2 feet deep, is filled with hot dung, on which soil to the deptli of 6 incles is put. The sets employed are middle-sized whole patatoes, which are placed close together over the bed, covered with 2 inclees of mould, aprd then heoped and protected with mats and atrav, under which conditions they will sprout in about a month. A bed of the requisite lengtl (sometimes 100 yards) is then prepared of about 2 fect thickness of hot dang, soil is put on to the depth of 8 inches, and the frames set over all. The potatocs are then carefully taken up from the striking bed, all the shoots being removed except the main one, and they are planted 4 inches decp, radisbes being sown thinly over them and covered lightly with mould. When the haulm of the potato has grown to about 6 inches in height, the points are nipped off, in order to fivo the radisles fair play; and, although this mey stop growth for a few days, still the potato erop is always excellent. Alter planting; nothing more is required but to keep up the temperature to about: 70°, adinitting oir when practicable, and giving waier as reguired. The crop is not dug up until it las come to maturity.

Potatoes are also grown largely in hooped beds on a warm border in the open ground. The sets after having been sprouted, as above, are planted out in January in trenehes 2 feet decp filled with hot dung, the sets being planted 5 inches deep, and over all radishes are sown. The ridges are then hooped over, allowing about 2 fect of space in the middle, between the mould and the hoop, and afe covered with mats and straw, but as soon as the radislies come up they are nucovered daily, and cosered again every night as a protection against prossible frosls. This is continued till the potatacs are rcady for digoing'in May.

Potatocs are sometiutes grown in pots in heat, sprouted sets being planted in 11 -inch pots about two-thirds full of soil, and placed near the glass in any of the forcing-houses, where a femperature of from 65° ta 70° is to be maintained. The plants are duly watered and cartbel up as they advance in growth.

Small smplics of young wasy tubers are produced during winter, in boxes placed in a mushroom-house or in a common cellar. If in October old seed tulers are placed in layers, alternately with a mixture of tree leares and light mould, tho young tubers before midwinter will often attain the size and appearance of carly potatoes; they are, however, watery, and possess little flavour.

The varicties of the potato aro very pumerous, and much attention lias been paid during the last few years to the production of new and improved kimds. The following nre named as a limited selection of a few of the standard sorts in the several groups, thoso marked "hoving coluured skins, the rest being white:-
Early-Round Early Market, Rector of Wondstock, Porter's Fxcelsior. - Trimmind lidstock huaty liedfont Prolifle, Dreeser's Chmax Kidicy:
 - Himatitur, Bemuty of Helron.

Main Crop anil Late-Round : Schoolmaster, Regent, "Viear ot Taleham, Vietoria, "Gramyian, "Vermont beauty, Champion. Kidney; Covent Garten Perfetion, Lanstone, Woolstock Kithey, "Trophy, Magnum Bonum, "Lato Anertean Rose, Cattells Eeclipso.
181. The Radish, Raphanus sativus, is a fleslyy-rooted anmual, unknown in the wild state. Some varicties of our wild radish, R. liaphanistrum, however, met with on the Mediterranean coasts, come so bere to it as to suggest that it may possibly bo a cultivated race of the same spreies. It is very popular as a raw salad. Theru

The ratish suceceds in any well-worked not ton henvy gutulon suil, lont requires a wam sheltered situnt ton. The seed is ganerally sown brombast, in leeds a to 5 feet wite, with alleys between, the beds raphiring to be netted over to protent them from hirds. The earliost crou may bo sowa about the midde of December, the seed-beds
being at once covered with litter, which should not be removed till the plants come up, and then only in the daytime, and when there is no frost. If the crop succeeds, which depends on the stato of the weather, it will be in use about tho beginning of March. Aoother sowing may bo made in January, a thind carly in Fobruary, if the season is a favourable one, annl still another towards the end of February, from which time till October a small sowing sbould be malle every fortnight or three weeks in spring, and rather more frequently during summer. About the end of October, and again in Novomber, a late sowing may be made on a gouth border or bank, the plants being protected in severe weather with litter or mats. The winter ralishes, whieh grow to a large size, ahould be sow a in the beginaing of July and in August, in drills from 6 to 9 inches apart, the plata being thinned out to 5 or 6 inches in the row. The roots become fit for use duriag the autuma. For winter uso they should be taken up before gevere frost sets in, and stored io dry saad.

Forcing. - To obtain early radishes a sowing shonld be made about the leginning of Novenber, and coutinued fortnightly till the aiddlo or ead of February; the crop will generally be fit for nse about gix weeks after sowing. Tha seed should be sown in light rich soil, 8 or 9 inches thick. on a maderate hotbed, or in a l $^{\text {it }}$ with a temperature of from- 55° to 65°. Gentle waterings must be given, and air admitted at every farourable opportunity; but the cashes nust be protected at night and in frosty weather with straw mats or other materials. Somo of these crops are often grown with forced potatoes. The best forcing sorts aro Wood's Early Frame, and the Early Rose Globe, Early Dwarf-top Scarlet Turnip, and Early Dwarf-top White Turnip.

Those best suited for general cultivation are the following :-

Spindle-rooted: Lono Scarlet, laeluding the sub-varicley Searlet Shorttop, Early Frame Scarlet, and Wood's Early Frame; Long Scarlet Shori-top, test for geacrat crop.
Turnip-rooted: Early Rose Globe-shaped, the carliest of nll: Early Dwarltop Searlet Turnlp, and Early Dwari-top White Turnip: Earliest Erlurt Searint, and Early White Siort-leaved, hoth very early surts; French Breakfast, otive-ghaped; Red Turnip, and White Turnip, Ior summer crops. Winter sorts: blaek Spanish, White Chiuese, Californian Mammoth
182. The Rampion, Campanula Rapunculus, is a tap-rooted biennial, native or naturalizel in the snutio of England, and found on hanks ond in pastures in central nnd sonthern Eurone, extending to the Cancasus. The white fleahy roots, known as "rampls," are used ras as a salad, or boiled like asparnous." It is but little oultivated in England. The secd, which is very minute, and should bo mixed with sand before sowiog to secure even distribution, is sown in drills 6 to δ inches apart, about the end of Mlay or beginning of Junc, in deeply worked ground, atal in a cool situation, and the young plants are merely to be thinned and kept clear of weeds. Tho roots, which somembat rescmble small radishes, will bo fit for use abont November, and on the approach of frost, if taken np and stored in sand, they will keep fresh and firm till gpring.
188. The Rhularb of gardens is derived froan different species of Rheum, especially R. Rhaponticum and R. undulatum. The parts chiefly ntilized are the fleahy foot-stalks of the leaves, which are much used for preserves, puddings, and tarts, as well as for stev. ing.
Rhubarb requires an open situation and a rich deep soil, which should be well manured, and prepared by deep trenching. To form n plautation, divisions of the old roots, each provided with a bud or crown, should be put in carly in spring, the crown being set about 2 inches below the surface. They should stind 3 to 4 fect apart each way, according to the labit of the varicty. The plarats will afford a supply iu the fullowing spring. $1 t$ is desirable to renew the plantation in the course of four or five years, ahifting to new ground. When gathering the crop, the legh-stalks should be bent downwards, and pulled of sideways, not cut. Tho fower-stems should bo cut off as soon as they inake their appearance, in order to atrengthen the root. Established sorta must be increased by division, as seedlinga do not reproduce the varicty. Rlubarb may, however, be grown from sceds-a flower stemor two being allowed to grow up for the purpose of producirg then. The seeds alould be sown on a slight hotbed in spring, and transplanted out in rows in the month of May, no stalka being gathered from them for the first two jears.

* Forcing. - Rhubarb may be forced in a varicty of ways for early or winter usu; it may have a pot or box sct over the crow o and covered up by warm litter, dung, or leaves like sen-kale; or the roots may be taken up, potted, and set into any forcing-house at work, the crowns being kept in the dark so as to blanch the stalks; or they may be planted closely in long narrow boxes of moderate depth, and set in a mushronm-house or cellar, where there is a considerable temperature. The rhubarb will soon throw up its ataiks, and theae, being partially ctiolated, possess a delicacy and flavour saperior to those gravi in the open air. It is casy, by varying the time of subjecting the boxes to the increased tempera. ture, to kcep up a succession of rhubarb stalks, from the period at which kitchen apples become scarce or begin to toso their flavour, till green groseberrips come into season.

The favourite old sorts of fhulharb were the Tobnisk and cho biturd at

 Byatt's Victoria, the last a large-growng thict-statice kinto the others belur all earlier sorts. Juhnson's St Martin's and Salt's Crimsin l'erleccuind are also favourite kinds ; anl Stott's slonarch grows to a vers harge ssizo.
184. The Rocambolc, Nlinm Scorodoprasum, is a lintly bulbous Tharant peremmal, occurring in a wild state in sandy pastures and waste boto places throughout Europe, but not consmon in the south; io Britain it is fomml chisfly in the north of England and the south of Scothand. The plant is grown for the sake of its.bulths, which are sinalicr and milder than those of garlic, and consist of several cloveschicfly rroduced at tho roots. The closes shoult be planted alrat the end of February or in March, and treated like the gerice or shallot. When rıature, the bulbs should be takem up. dricd, and stored for use.
185. The Salsafy (or Salsify), Tragonogon furitolins, is a handy Surafy biennial, with lang cylindrical fleshy esculent roots, which, when properly cooked, are extremcly delicate and wholesome; it occurs in meadows and pastures in the Mcilitermacan region, and, in Britain, is conlined to tha south of Eingland. "Hler salsidg requires a frce rich deep goil, which showid be trenched in antinn, tho manure used heing placed at two spodes depth froas the sufface. The first crop shouh be sown march, and the main crop iu April, in rows a root from cach other, the phants being afterwards thiancel to 8 inches apart. In November the whitish roots shaul he thlicu up and stored in sand for immediate ase, others being secured in a similar way during intervals of mild weather.
186. The Seroy, Erassica olcracea bullata major, is a near aly of Eavoy the cabtege, but has bullate or blistered leaves; it is more harily, and, excert in very severe soasans, iastead of suffering is ratberwaproved in havour by frost. The savoys come into use in antronn, and cartinue antil the opring. The early crop should be somn in February, the main crop about the midelle of March, and a mozth interywards the latest crop. Tho rowa of the salalier 3orts shouhd bo 15 inches, and those of the larger ones 2 fect, apart.

The bsst sorts of saroys for garden culture are :-
Tours, early and hardy; Ulm, early, but not so harily; Little Fise, ormif, enrly, and good; Dwarl Green Curled, best for a general erop; Golde:", liandsone and excellent. The large Drumhead savoy is more suitable To fichd cutture, unless bult of produce is required.
187. The Scorzonera, Scorzonera lispanica, is a hardy perennial, Socra native of Spaia, but cultivated in gardens for its feshy cyliodri-zoneracal roots, which resemble those of salsafy excejt in buing black out side, and which are used in the same mantuer. They should be treated in every respect like salsafy (par. 185).
188. The Sca-kale, Crambe maritima, is a harly perennial, grom-Sez-nele ing spontaneously along the coasts of England, of Ircland, and of the Scotch lowlands, Blong the western coasts of Furope, and on the Baltic, reappearing on the Black Sca.

Sea-kale prefers a light dry soil, apd when manure is necessary it should consist of sea-weed or well-rotted dung; or a dressing of solt or of nitrate of soda may be given. When it is raised from seeds, they should be sowa in March or April in rowa a foot asunder, tho plants beiag thinned to 6 inches apart. In the following March these should be planted out in trenched well-prepared gromed, is feat asunder, in rows $2 \frac{1}{3}$ to 3 fect apart. The top with the crown hrada should be cut off beforo planting to prevent them from rumming up to seed. In the sfring of the second year the young shocts if blanched will be fit for usc, and thesefore the summer growth sbould in every way be promoted by the use of water and liquid manure. Tolerably blanched stalks may be produced by plunts only nino montha old from the seed, and after two summers seedling plants will bave acquired sudficient strength for general cropiing. The seeds, instead of being sown in rons anil transplanted, inay be deposited in patches of threo or four together, whre they are to remain. In the autuma, after the leaves have heen cleared off, the ground should be forked up, anh Gor 8 inches' depth of leaves or of Fight sand ${ }^{\circ}$ soil laid over the plants, ly either of which means they will be blanched, though not forced. The baached sjronta shauld becut for use whilst they are crisp, compact, and from 3 to 6 inches in length, the atem being cut quite down to tho base.
Ser-kale beds may be made equally well frons cuttings of the roots, the extremitics of the roots, technically called "thorrss," being the parts best adapted for this putimse. They should ko taken up in autumn, cut into leagths of aloat 4 inclies, and laid aside in a heap of sand or carth till suring, when they should be planted ont like the seemings. Cuttings shiculd not be taken from any but rety healthy plants.

Forcing. - Sea.kale unay be forced in the open beds by the nid ot sea-kale pots or covers, which are large enough to eover a lant, contracted a little at top, with a movable lid or cover. In the autumn the stalks are cut over, the decayed leavea remored, the ground loosened about the eyes, and a thim stratum of conl-ashes mixed with salt laid on the surface to keep down enrth-wormas Ove of the carthenware pots or covers, or failing these a large incerted flower-pot, is placed over each plant or cach patch of jiants and
deaves of trees are closely packed round the pots, and raised to about a foot above them. W"hes fermeatation comnences, a thermometer should be occasionally introduced into a few of the pots, to ascertain that the temperature within does not exceed 60° Falir., and the thickness of the leaves is to be regulated accordingly. la a month or siz weeks the shoots will be ready for cutting, and by means of the movable lids they can be exsmined and the shoots gathered without materially disturbing the covering. If the crowna sre thus covered up by about the end of Octoher, the crop may be cat by about the third week of December, and by starting a batch at various times a supply may be kept up till the middle nf Mry.

Strong plants may also be taken up sind planted on hotboda, the eashes being kept covered close ; or they may be set thickly in boxes as recoomended for rhubarb (par. 183), sud placed in any heated otructure, or in the nushroam house; but, to have the shoots crisp and tender as well as blanched, light must be completely excluded. lhesides the cornmon purple-leaved, there is a green-leaved sort, which is said to blsnch better.
Shenut.
189. The Shallo, Allium ascalonicum, is a native of Palestine, and is much lised in cookery for high-flavoured soups and gravies, be-- des which it is excellent when pickled. It is a hardy hulbows perenoial, and is propagated by offisets, which are often planted in September or October, but the principal crop should not be fot in earlier than February or the beginning of Datch. The mixing of aoot with the manure has been recommended as a protection against maggots. In planting, the tops of the bulbs should be kept a little ahare ground, and it is a commendrble plan to drany away the soil wurrounding the bulbs when they have got root-hold. They should not be planted on ground recently manured. They require the same general treat ment as garlic and rocambole, and should be stored in a similar manner. They come to maturity about July or August. There are two sorts-the Common, and the Jorsey or Russian, the latter being much larger and less pungent.
190. The sfiaret, sum sisarnm, is a fleshy-rooted perennial, native of Chine end Japan, the roots of which are boiled, and after wards served up like solsafy. It requires a frec, deep, and mush enriched soil, and is generally raised from seeds, which should be sown In drills a foot apart about the end of March, the bed being well watered in dry weather. The roots will he in use about November, and will continue fiesh througl the winter it carefully stored.
Sorte
191. The Sorrel, Rumex Acetosa, is a hardy peremmial, foumd throughout Europe, in Asintic Russia, and in North America. 'The lesves are used, more so on the Continent than in Britain, in soups, silsds, and sauces. Sorrel grows freely in any good garden soil, and is increased by divilling the roots during the farly part of spring They should be plunted in rows 15 to 18 inches apart. The leaves, when fully grown, nre gathered singly.

Ite common garden sorrel is much superior to the wild plant ; but the Belleville, which is the kind generally cultivated near Paris, is atill better, its leaves being larger and not so acid. The Blistered caved, which has large lenves with s blistered surface, has the ndvantago of being slow in runaing to seed.

The French Sorrcl, Lumex scutatus, is a hardy pereunial, ative of France and Switzerland, with denacly-branched trailing atems. The leaves nre roundish heart-shaped and glacous; they are more acill than those of the common somel.
192. The Spinthe, Spinacia olcracea, is an amual plant, which lias been long cultivated for the sake of its succulent leaves. It ehooll be grown on gooll grouod, well worked and well nimoured ; rind for the gunmer crops abuodant watering will be necessary.

The first sowing of winter spinurh should be made early in Auge:st, and another towanils the end of that month, in some sheltered lut not shaded sitmation, in rows 18 inches apart, - the plants, na they advance, being thinned, and tho ground boed. By the begia. hing of winter the onter leaves will have become fit for use, and if the weather is mild successive gratherings may be obtained up to the begiming of Mny. The Jrickly-secded and the Flnnilers are se best for winter; and thoso should be thinned out enrly in the atumn to about 2 inches npart, and later on to 6 inches. The istincel-ryed is is good sucenlent winter sort, but not quito so L. srdy.

To afford a succersion of summer spinach, the acerla should he wa nhout the middle of February, mud again in Mareh; nfter this riond small quentities should ber sown once a forthisht, as aunmer a innch lasts but a viry short time. They are generally sown in it illow ilrilla botween the lines of pers. If a phot of ground has to be whally oncupicd, the rows ahmhlil be about a foot nimart. The lonndienved is the lest sort for aummer use.
Trontw 193. The Tomato or Love Apple, Lycnpersicum esculentum or Gimanm Leconersicum, is a tember monal from South America, 1. orld esteemed in Fingland as an esenlent, either raw or cookel.

Comatoes were formerly raised from seed sown in gentle heat in Tulnuary or early in March, phtted singly into small pints, shifted on
 end rif Aay, when, if the season was fivomalle, they were planted ont againt a wnll with a south aspect, or in the wamest situation at command. As they grex, they were nailed to the wall, or other-
wise supported. Only the earlier of the fruit ripened out of doors in an average season; and when a fair quantity had set, the plants rere stopped, the secondary branches being also stopned above the froit, and laterals removed gradually. Under these circumstances the fruit began to ripea in August, successively coming to matnrity, at which stace, and wben perfectly dry, it had to be gatbered and hung up or laid on shelves. The partially ripened fruit had to be got in before it was injured by frost, its maturation being completed in s vinery or other heated house, sud, though not acquiring the full flavour, the forwardest of these late fruits thus became usable.

Forcing. -The outdoor treatment remains as above sketched out, but, owing to the precarious natore of the crop in bad seasons, larga quantities are now grown under glass. Br G. T. Biles, of W'ycombe Abbey Gardens, has explained in the Gardeners' Chronicle his mode of culture, of which the following is au abstract:-

To grow it properly, it requires considerable heat and every possible ray of aunshine, as well as a free circulation of dry warm air. The commert should consist of about one-half roagh turfy loam, one-fourth of roadside scrapings, and one-fourth of decompesed manure or horse-droppiogs, moierately rean. For plantiog out, ridge of soil 2 feet wide and 15 inches deep shomd be placed a warm be are mos appre. For pat cur hose
 be quite filled, io order hat surare der go mor manure may be apyed in January, add the planta moved anw 5-1ach pots with roots, when tbey are transerred to he bedsorminiog pors in each case the plants are kept abed a ret noat. On the lass biay be
 surply is obtaned or a considerate parm or or months. The plants are restricted to one man ste, wh alow rad of 6 feet or more, as the position may aumit, sod fron hich all lateraia out removed in an early stage of growth. Top-dressings of rich materials should be applied when the burface soil becomes full of routs; copious supplies of bitmulating maoure-water are aiso necessary, and the iruits shoud be kep perfectly free from damp while they are ripening. For this purpose, if close cootined pita are used, a chiok of air should be kept on ccotinuously.

Tomatoes may also be allowed to run freely over the bock wall of a forcing house, and, if sufficiently fed, will bear fruit abundautly,

Mr Miles observes that these plants, when grown out of doors, are generally placed in an excellent position, but the main point-the enrichment of the soil-is overlooked or not sufficiently attended to. A partion of good soil should be provided for each plant, aud heavy mulchings of suanure should be placed upoo the surface as soon as practicsblo after planting, in order to prevent the soil hecoming dry sud parched. In these cases three er more main shoots are sllowed to each plant, because it often happens that the space will not allow a good run, and so certain amount of growth with foliage is essential to the well-doing of the plents.

The following varieties afford considersblo choice:-

Red-fruited: Early Gem, small, but a coad cropper, and the quickest to riped: Vick"a Critertan, emall and free-bearing, particularly adajted for growing in small pots; Vimorins Iwarf Early, dwar and free.ocaiog ILathaway's Excelbior, one ai the Anegt, a great cropper; Trophy, luge aud very fioe; Conqueror, large and prolinc.
rellow-fruited: Carter'a Green Gage, of a distioct yellow colour, and af fine flavaur.
Smaller-fruited: Cherry Red and Purghley Pet, mund, prolitic, and acreably fisvouren: Dukson'a Qurell of lomatoes, hith pear-bhaped, and Neablt's Vichorid, with plim-Ehaged fruits, both being proilfc aorta.
194. The Turnip, Brassica canpestris Iapa, is a hardy hienniel, Tumb found in coru-ficlds in various parts of Englatd. The ciltivated varieties have bulbiform roots, much estcemed as on esculent.

Turnips should be grown in a rich friable sandy loann, such as will produce mediun-sized roots without much aid from the manure heap, and are better flavoured if grown in fresh suil. - In light dry soils well decomposed hotbed or famyard manure is the best that can be used, but in soils containing an excess of organic matter, bone dust, superphosphste of lime, rood-ashes, or puano, mixed with light soif, and laid in the drills before sowing the seed, aro beneficial by stimulating the young plants 10 get quickly into rough leaf, and thus to grow out of reach of the go-called turnip ly. To get rid of this peat, it has been found bencficial to dust the plants with quicklime, and nlso to draw over the young plants acts smeared with sonse sticky substance like ireacle, by which lnrgo numbers will be caught and destrosed it has heen nlso recommended as n pallintive to sow thich in order to allow for a juercentage of losa from this ond other causes, tuml, ns a preventive, to seatter gas-lime over the surfaco after the soed has been sown. Mr Thompsol (Gartmers' Assatant) also reconmends the following remedy:"In the first place, let a supply of watur be brought close to hand ar say to each end of the puarter : then det one person move stendily along one side of the fiece of ground from one end to the other, delivering the water through a rose as he proceeds. The fleas will jump forward n9 the water appronches them, and a second persou, following the first, will keep them on the hop forward, whilst a thitd will drive them still further, nud so on till the wholo are driven off the grouml."

The frst sowing should be matle on a warm horder with the protection of a finme or mattod hoops, in danuary or Feloruary, the serond on a well-shettered horiler in Mareh, nfter which a gowing buse n month will generally suffice. In May and Juno the plot should be in a cool moderntely shaded position, lest the phanta
should suffer from drought. The principal antumin and winter sowings, which are the most important, should be made about the end of June in the northern districts, and in the beginning of July in warmer districts; a small sowing nay be made at the end of August to come in before the spring-sown crops are ready. If the veather is showery at the time of sowing, the seed speedily germinates, and the young plants should be kept growing quickly by watering with rain or pond water and by curface stimings. The drills for thie earlicst sorts need not be more than 15 inches apart, and the plants may be left moderately thick in the row ; the late cropls should have as least 2 feet between the rows, and be thinned 1012 inches in the row, a frea circulation of air about them being very important in winter. As a provision aguinst prolonged periols of severo weather, it has been recommended to lay the finest roots in row's, covering them well with soil, and leaving intact the whole of the foliage. The very latest sown crops of half-grown roots will prolong the supply until the callest sjering-sown crops are fit for use.

The following are the best sorts of turmps for garden crops:-
Early Durpletop Munich, the earliest and Lest of nll : Early Whute Strap. leaf, very quick growing, and good; Early Snowball, for sunnice use ; Early White stanc, for summer sowing; Orangu Jelly. for summer sowing; Jellow liuland, for winter use; Chirk castle, for winter use. In addition to these, whith have tound roots, there are the Jersey Niset, an excellent outong varlcty, and very hardy, and the Teltow, a small tapering-tooted sort, embfloyed, on nccount of its piquant navour, in ragouts, aud for seasoning. Ihe utter should ho sown in April und July in sandy soit.
195. The Water Cress Nasturtiun officinale, is a hardy perennial, ocrurring wilil in Britain, and also throughout Eurepe and Asiatic linssia, except the extreme north. It is highly prized as a salad, and neeredited with powerful antiscorbutic properties. It may be prophgated from seed, but in forming plentations rooted divisions are usially eroployed. They ahould occupy positions where they can be surplied with water from a spring, as this will be rarely frozen. 'he plant will not grow freely on a muddy hotton: heace this has o be replaced by gravel or chalk. A constant corrent of water is absolutely necessary; and the plants should be disposed in rows rarallel with the courso of the stream. They thrive best in water about If inch in depth; this increases to about 3 inches when the plants liegin to grow, and thereby check the corrent. In summer the tops of the plants must be kept closely cut, and under proper conditiona of water and soil they will yield a gatlering once a weck. In winter the water should be 4 to 5 incbes deep, to obtain which the plants are left, with more head. The time for the renewal of the beds is in May and June, and from September to November, the planting heing dono in suecession; those planted in May are fit to cut by August, and those planted in November are ready to mather in the spring. When collected for sale, the shoots are cut; iot brcken off, the latter plan being injurious. The water eress may also be grown in a shady border of rich light soil, kept conotantly moist; but the surface ahould be covered with a thin lajer of saod to keep the leaves clean. It may be also grown in tubs partially filled with soil which is corered with water, in which case the water should be frequently changed, or in shallow pans set in stands of water. If protected from frost in a brick pit with a hight service of hot-water piping, it may be had in use throngl the winter. To securo this, palis are filled with loany scil in October or November, and planted with the tops of outdnorcresses; in about six wecks thoy will bo frt to cut, and will furnish successional gatherings.
196. The Chinese Yam, Dioscorea Butatns, is a flesly-rooted prennial climber, nativo of Chioa le has annual stems, and deaply panetrating thick cluh-shaped fleshy roots, or rhizomes, full of stareh, which when cooked osquire a mild taste like llat of a retato, but have besides somewhut of a medicinal flarour. Theroots frow 3 feet or upwards in length, and sometimes acquire an weight of more than $1 \frac{1}{2} \mathrm{tb}$. The plant giows freely enough in decp sandy snil, moderately enriched. The sete, consisting of pieces of the ronts, may be planted in March or April, and require no other culture than the staking of the elimbing stema. They should not be lug up before November, the chief increase in their sizo taking place in autumn. They sometimes strike downwards 2 or 3 fect into the soil, and must be carefully dug out, the upper slender part being ieserved for propagation, and the lower fleshy portion caten after having been allowed a few daya to dry.
197. Culinary Herbs. - Besidea the foregoing esculent ond silad plants, there aro several minor herbs used for flavouring and farmishing. For the most purt they am dwaff perennial plants tequiring to be frown on a dry warm koil in an open sunny asject, or amuals for which a warm sheltered border is the most euitable Hlaso; and they may therefore be conreniently grown together in tio some compartinent-an herb garden. Tlie perennials ghould be tiansplanted either cvery year or every accond year.

For winter use the tops of the most useful kinds of herbs ahould be cut when in flower or full lear and quite dry, and sprend out in an airy but shady place so as to part slowly with the moise ture thoy contaio, and at the same time retain their aromatic proferties. When, guite dry they shoukt be jut into dry wide-
as basil, marjoram, mint, sage, anvory, and thyme of the aromatio -class, balm, chamomile, horehound, hyssop, aud rue of tha medicinal class, as well as parsley, may be had throughout the season with almost the full flavour of the fresh herb.
Angelica, Archangelica noffeinalis. - A stout biennial umbellifer; suw in
April, in deep rich soil. The stems and leat-stalks are candied. April, In deep rech soil. The stems and leaf-stalks are candied.
Anise, Pinnplachls Agisum.-A slonder umbeliferone annual; bow io Msy perfection.
Bulin, Melissa officinatis.
October ; dry for winter use.
in March and plantout on - A fragrant labiate anaual; sow in a gentlahest April or Slay ; or in winter sow ull leat (or sow in s warm sheltcred piace hit soll, once a month from Novembar onearion in pats or boxes in rimh igh should be cut when in blosson, and uried slumly for winter use.
Borage, Poraso onficinalis.- A st ont liative Dritish anmusi, Used for gamishiog; sow in March and May in an open place, in good soll.
Burnet, Potcrium Sanguisorta.-A haruy mativejerennial; divide the roots in Oct ober or February. It tastes hee ensmimer
Caraway, carum Carui.-A hardy umbelhferous Licnainl ; saw in April or May to tower the following sammer.
Chamomite. Anthemis nobilis. - A hardy native Lritish composite perenntat of prostrate habit ; dwide the plants 111 autum or spring, planting in rather hour dry soll; the dower-heads shoud be gathered auccessively as they ofen. snit carefuly dried ands stored
Cherenl, Anthrisins Cerafolium. - A hardy anmual umbellifer; sow in Jlarch and saiain in October if required fur spring use.
Coriander Coriagdrum sativutu.-A hardy antulat umbellifer; sow ia March in light loamy soil.

Dill, Anethum graveolens.-A hardy anaual umbellifer; sow th Marclr oo 3 warm border, in tich lipht soil.
or divide the roots at the same seasony peremial urubelliter ; Bow In March, or dwide the roots at the same season
Fochoo, Fumucurnm dnce.-A sumewhat iender kind of fennel, with two ranked leaves, theshy at the base, wheh pat is blanched by eirthing uplike celchy: sow it March and euccessionally is required, io light vety rich
soil. soil.

Morchound, Murrubium valgare.-A hardy native labiate nereanial, best raised annually from seeds sowa early in March, or by selecting self-sowa sutumn seedtingz.
Hyssop, Hyssomps officinalis.-A hardy evergeen suffrullcose labiate plant; sow in March of April, younk wants benk wore ngorans than of der ones; it may alsu be divided in spring

Lavender, Lavadula vera.-An aromatic undershrub of the labinte order, reguring a hght warm dry soil, and increased by cuthugs, or by slins takeu With roots about March or April
Mariguld Calendula onlinals.-A
Mariyold, Calendula ollcinals.-A hardy conposite annual; sow in March, in any garden suil.
Marjoram, Origavum Majorana- - A tender lahiate, usually treated as an ampual, aad known as Knothd Marjoram; ;ow in March in a slight t.eat, and plant nut on a warm sumby horder. The rot Marjoram, Origanum onites
 growne best in dry warm soils: divide and transplant in autumn or spring: a winter supply is provided by cateing the stems, when the phant is in thower snd drying in an airy shally place.
Mint, Meatha viridis-A hardy native labiate perenoial, oftea cslled SpearMint. The running uaderground roots chomld be taken up im February or
Maveh, and replanted in fresh good soit. The yung tups may be obtained March, and, replanted in tresh guod soit. The yunne tups may be obtained
early by forcing; the leafy sterns may also be cut when at the ir full growth in summer, and dried for viloter use. The Peppernint, Mentha fipicrita, is cult ivated like the epesr-mizt, only its runners grow above iusted of benearb the ground, and require planting necordingly.
Parsly, Petroselinum eativum. - A hardy umbelliferous bfennial; sow in Fohruary, again in May, and again in July to have a good supply, a yortinu of the last-sown crop belng profleted by frames or hund likhts, sin sa to be accessible in frosty weather ; it likes a free sott of good qualhty, but not too richly manmred.
 In moist situations, and thest coltivated on a north border, is proparated
freely enought by its runnhys rontugg stems, which should be well established early in autumn.
Rencmary, Romarime omcinalis. - An evergrecu undershrub of the labiate order, juet tender enough to be killed in all but the most sheltered shinations
by the must scvere Eritish winters, but surviving unnjured throukhthose of by the nust scvere Eitish ainters, but surviving uninjured throukh those of
orilinary severity. it requires a hat dry sail and a sheltered situation, and ordinary eeverity. It requires a hight dry soil and a sheltered situations, and is increised by cuttings or rooted blips taken of in spring
Rue, Juta praveoleps.- A harly evergrect rutaceous umbershrub, whith will grow frcely in ondinary garden soil, and is rropagated by cutlings or slipa. or yery freely by beeds, which ripen abondantly.
Sagc, Salvia ottheinntis.- A hardy evergrew undershmb, betonging to the the latter being sumewhat the lardicst; it fy increased hy cat thing up the ontside gtems. Which after the lapse of a ywar may be taien uff 43 routed plants in the fllowing April or May.
Savory, Saturefa hortensis. - A hardy lablato annuat; sow on a warm linrder in aprit, when the phats reach the foworing stage diry a portion for winter is propagated wy cottings takev of in April and Slay, of by divdang the plant numat April.
 transplanted every becond year. If required carlier thas the naturad neason. a root or two may be potted and set in a mbld forcine houso cr huthed.
Tarragun, Artemis!a iracunculus, - A hardy ferennial conpoite glant, Octoler or march ; it shonld be transplanted every year or two. Darragoa miny be had daring the wiuter by putting a root or two early in Deceraber, and placing them in heat.
Thime, 'Thymus vulgaris.- A haridy evergreen undershmb, requiring a toght dry warm soil, and an open hut shattered satuation; it pay bu mised from scets sowil in Apri, and thinned ont: or the ond rotarmad be winter use ia the same way as savory and marjorimn. The Lemon Theme. Thymus citrioutorus, is of a more decumbent hatit, and may he parted aid trsubghtnted In spring in genial weather during the moath if Aprth.
bomnuood, Artemkia Ahsinthium. - A hardy native compesite perennial, Which will grow ith any soll, the is mast aromntic on those whill are dry sown planta nre fenerally to be fomm romblabunt the old ones; If not bo jowduced, they can be providud by sowing the scodid during the summer.

VIII-CALENDAR OF GARDEN OPERATIONS FOR GREAT BRITAIN.'

January.

Riechen Garden. Whecl out maure and composts turing frosty weather: trench vacaut ground ant turned up roughly in autumn. Sow early peas in a cold frame for transplanting. Sow ulon Dilli stone's Early, Alpha, or other first-crop peas, early in the month, and Willian 1. and Adraneor towards the end ; Eanly Setille and Early Longpod beans; aud short-topped radish in two or thred sowines, at a wech's interval, all on a warm horder; also Handy Green and Browa Dutch lettuce in a Irause or on south border Plaot shallots and Ashleaf potatores on a warm border. Protect broccoli as it becomes fit for use, or remove to a dry sled or cullint lettuces and endive, which are best plated in fraucs ; and pursley in frames su ne to be accessible.

Fruit tar en. - 11 lout froit trees in open weather, if not done in entuna, which is the proper seasso, mulching over the roits to protect them from frost, and front drought which may orecor in epring. Prone fruit times in aild weather or in moderate frosts, nailing only in fiue weather. Wash trees infested with insccts, with a misture of soap-suds, black sulphur, and tobacco water, or with Gishurst Compound. Take off grafts, and lay them uside in moist eartb in a shady place

Forcing - Prepare manure for making up hotheds for early curumbers and melons, where pits heated with het water are unt in use; aloo lar Δ ahlesf potatocs. Sow also it heat mustand and cress for sulads, omons for salads, cetery to be pricked out for an ear! crop; add Early Hora carme fuld kidncy-Leans un slight hotbels. Force asparagus, sea-kale, and rhubarb, in hutbeds, in pits, in tho mushroon-honse, or in the open garden by the usn of covers surrounded with warm littr. For pines kecp up a Lotom heat of $s 0^{\circ}$. aod water sparingly; for cucumbers a top heat of 75°; for rines in leaf and tower a temprature ranging from 65° to 75° Lieep forced strawberries with swelling fruit well waterel. Plant vine eyes for propagatiod io a brisk hacat.

Pant Houses.-Give abundance of nir to the greenhense, conserva tory, and alpine frame in mild weather, but ast littie water A supply of roses, kolmics, rbododendrons, \&c., and of hardy flowers and bulbs, as lily of the valley, byacinths, \&ic., should be kept up by forcing.

Flower Garden. - Plat out tubers and bulbs ot border flowers, where necmected in autumb, deterring the finer florists' llowers till next nowth Transplaot herbaceous plants in light soils. if wut done in antumn ; also deciduous trees, shrubs, and hedges. Lity edgings in fioe weather. Sow mignonette, stocks, \&c., in puss bow sweet peas, and a few hardy annuals, on a warm border. Give auriculas and carmations abundauce of air, but keep the roots rather dry, to prevest damping off.

February.

Kitchen Corden.-Sow successiunal crops of Early Seville beans, and Williau I., Advancer, Criterion, anl other peas in the begioniths and end of the arninh ; early ealbages, to follow the last sowing in August; red cabheges and savoys towards the end Sow also Early Hom carrot; Farly Purde-top Munich turnip; onons for a full crop in hght soils, with a tew leeks and some parsley. Sow lettuce
for surccssion, with radishes and Round-leaved spinach, twice in the course of the moath; and swall saleds every fortnight. Plant Jerusalem artichokes, shallots, garlic, horse-radish, and early pintitoes. Transplant for seed, if nut done before, all the brassica tribe, includity cabbage, caulifower, turnip, \&c.; also earrots, unions, bet, celery, endive, lecks, and parsmips. Transplant to the bottom of a suath wall a portion of the peas sown in pots in frames an November and January for the first crop. Sow Brussels sprouts in gentle hoat for an early crop.
Frut Gerrich. - Pime aprirots, Fearbes, nectarines, and pluns, heiore the buls are much swelled; finish pruning apples, pears, chernes, gnowbernes, rurrants, acd ruspberries, hefore the end of the month; alss the aressing of viues. Keep the fruit-room free tron spoided fromt, and shat it close. Cut down the double-bearmg raspbernes to seruic strong autumn-fruitmg shoots. Ifead back stocks preparatory to gratting.

Fincing. - Sow melons and cucumburs on hotheds and in pits. Sow carrots, tarnips, early celery, aliso aubergines or egg-plants, capsicums. tomatocs, and successintal crops of kidney-heans; cautiflower and lirussels sprouts, in gentle beat, to be afterwarls planted wot Plant early potatees ou slight hotbeds. Contme the forcing of asparazus, thubarb, nul sen-kale. Pine-apple plants require little water ; plante in lung.frames especially should be kept fren from damp, shitt the fruiting plants by the midelc of the month, If not dune in Augnst. Commence or cuatinue the forcing of the vanuus chome fruits, as vines, peacbes, higs, ehernes, strawherries, s.c. Pot roots of mint and phace in beat to produce sprigs for onint sauce Bo careful to protect the stems of vines that are outside the foreng-houscs.

Plant Howses. - Let the grecohouse and conservatory have plenty of arr in mild weather. Pot and start tuberous-rooted begunias. Pot yousig plantio of amaryllis, and start the established ones. Put Mants of Tuchsias, petmias, rerhenas, beliotropes, salvias, and other soft-wooded subjocts, into a propagating house to obtaio cuttings, Ar.. for the flower garden. Sow stocks, hahlias. and a ferr tender and halfliardy amuals, on a slight hotbed, or in pots. Propagate cld ronts of dallias by cuttings of the young shoots in a hotbed. Sow petunias in heat, and prick out and barden for hedding out; also glozini,s to be grown on in heat till the flow cring seison.

Fioner, Gurien.-In dry men weather plant dried roots, includ. ing enost of the finer florists' flowers; continue the trasplanting of harmy bicmisid flowers and herbaccous plants. Sow in the last wrek jugnonette, aud hardy annulds, in a warm border, for subsequent transplantiog

Maren.

Kitchen Gardex - Sow main crops of wrinkled martow peas; Longlod and Windsor beans; Nonparcil or St John's day cablages, onions, lecks, Eatly Hurn carrots, parsnips, salsafy, scorzoncra, Brussels spronts, borecoles, lettuces and spinach. In the Leginning and ulso at the cud of the menth sow Early Strap-luaf and Eatly Snowball turnipe, and savoys. In the last formight snw asparigns. cauliflower, chervil, coriander. dill, feonel, finochio, hyssop, marigold, savory; also sta-kale, radishes, celery, celerate, and most of the culinary aromatics, as parsley. Small sulads should be sown

Jancary

tomatoes, erponud pepper planta, \&c. thometh, unless in the extrone Southerts statey, lutbeds should mot be startied before the begmems or iniddlu of Fobruary:

FYRRUAGS

Flower Garden ond Greenhotar --The elirections for Jamary will in the main apply to this mosth, excupt that now sume of the handict ammals may
 entiong may he rome ruther he thrr now than in Jinuary, as the greater ambuut of luht gives mure' atolity to the chuthe
 nod in sectrons whete thete 13 no trint in the grening, it is likelg toy he two

 they will afso do weif y tute o mathth hater
Orapery-7he staperius started list funth at 50^{*} at night may now ho
 must be enken to symbe the twases thornatsly at bast enco a day, and to
 the hot-water pines with sulphers minture. in recommended in danuary
 frum liveweries may be got enguther towards the latter pirit this manth,

 cabsäe,

 for the rel M:M1
 le pruperly commingled.

starch.

Flother Gormen and Gremhouse - The loug days and Irdeht smmbene will now lugin to tell ont the gants umber glass finmine all plants that are visuraus and hemlthy; if the ronts have matted the "balt" if earth they

every ten days. Make up beds for mushrooms with well-prepared dung towards the end of the month. Plintearly potatoes in the first week, and a main crop daring the last fortuight. Jerusalem artichokes, sea-kale, asparagus, and peas raised in frames, may now be planted; also garlic and shallots. Frill crops of cabbages should be planted out; also caulif., wers under hand-glasses. Propagate by slips, or by oarthing up the old stems, the rarious pot-herbs, as cage, aarory, thyme, \&c., and increase mint by dividing the roots.
Fruit Garden.-Finish the pruning of fruit trees before the middle of the month. Protect those coning into blossom. Begin grafting in the third week; dig and dress between the rows of gooseberries, currants, and other fruit trees, if not already donc. Kill wasps assiduonaly, as soon as they appear.

Forcing. - Continua the forcing of melons and cucumbers, and the various fruits. Pot pine-suckers and crowins that have beco kept in tan during winter, repotting those that require large pots, and about the middle of the month shifting them to the succession pit; give a top-dressing to tho fruiting plants, turning the tan, and edding new bark to the pits, to keep up bottom-heat, where that is used. In the vinery and peach-honse, attend to the keeping down of ingects by syringing; and promote the growth of the young shoots, by damping the walls and paths morning and evening. Sow capsicum, egg-plant, and tomato; also in slight heat such tender herbs as basil and marjoram.
Plant Houses.-More water may be given than formerly. Sow seeds of greenhouse and hothouse plants; also tho different sorts of tenderannuals ; pot off these sown last month ; sow cineraria for the earliest hloom; also Chinese primulas. Shift heaths and other hardwooded subjects and stove-plants ; plant tuberoses in pots for forcing. Begin to propagata greenhouse plants by cuttings; also coleuses by cuttings in heat, and chrysanthemums in moderate heat, potting them off as soon as rooted.

Flower Gardcn and Shrubbery.-In the last week, sow hardy ennuals in the borders, with biennials that flower the first season, as also perennials. Plant anemone and ranunculus roots; plant the corms of gladiolus. Transplant from the nursery to their final sites annuals sown in automn, with hiennials and herbaccous plants. Propagate perenaials from root-slips and offsets. Protect tulips, hyacinths, and choice fowers from severe weather. Continue to propagate tho finer aorts of dahlias, hoth by cuttings and by division of the roots. Finish the pruning of all deciduous trees and hedges as soon as poasible. Attend to the dressing of shrubberies; lay turf-edgings, and regulate the surface of gravel walks.

April.

Kiuchen Gärden.-Sow asparagus, sea-kale, Turnip-rooted beet, salaafy, scorzonera, skirtet, carrots, and onions on heavy soils; also marrow peas, Longpod and Windsor beans, turnips, spinach, celery, Enfield Market cabbage, savoys, Brosels sprouts, and German greens, for auccession. Sow broccoli and kidney beans both in tha accond and in the last week, and lettuces and small salads twice or thrice during the month; sow angelica, caraway, also all sweet herbs, if not done last month. Sow vegetable marrow: Plant cauliflower, cabbages, sea-kale, lettuce ; and finish the planting of the main crops of potatoes; divide and replant artichokes. Propagate all sorts of pot-herbs, and attend to the hoeing and
thinning of spinaeh, onions, tomips, \&c. Earth up cabbages, caulifower, peas, heans, and early potatoes. Stake up peas; blanch sea-kalo and rhubarb in the open air, by covering with atraw or leaves.

Fruit Garden.-If vines have been neglected to be proned, rub of the buds that are not wanted; this is safer than priming now. Protect the finer sorts of fruit trees on the walls. The bardier orchard-house fruits should now be moved outdoors under temporary awnings, to give the choicer fruits more space,-the rocts being protected by plunging the pots. Mulch all newly-planted fruit trees, watering abuadantly in dry weather.
Forcing.-Continue the preparation of succession beds and pits for cucumbers and melons. Sow basil in slight beat ; potand push nn tomatoes and capsicuma. Attend to the rousine culture of the pinery, giving water and air when necessary. In the foreing-honses, from the varinble state of the weather, consideratle viglance is required in giving air. Keep down red spider (Acarus) in the moro advanced houses by frequent syringings and a well-moistened atmosphere. Continue the usual operations of disbudding and thiuning of fruit, and take eare to keep up the proper tempcratures.
PlantoHouses.-Still sow tender annuals if reqnired; sow cineralios and primulas. Proceed with all neecesary shiftings. Propagate raro and fine plants by cuttings or grafting; increase bonvardias by cuttings, and grow on for winter floweriag. Pot off tender annuala, and cuttings of half-hardy greenhousa plants pnt io daring February to get them well established for ase in the flower garden.
Flower Garden and, Shrubtery.-Sow main or successional crops of annuals of all sorts-half-hardy annuals in warm borders, or on slight hotbeds. Bienninls and perenniala should be sown before the maiddle of the month. Plant out gladiol, if not done, tigridias, and fine stocks. Finish the transplanting of herbaccous plants by the end of the firat week. Pratect stage auriculea and hyacinths from extremes of every description of weather; and tnlips from boar-frosts and heavy rains. Plant out tender deciduous trees and shru5s raised in pots; plant out tea-reses, mulching the roots. Remove part of the coverings of all tender slirubs and plants in the first week, and the remainder at the end of the month. Form and repair lawns and grass walks, hy laying turf and oowing perenoial grass-seeds; mow the lawns frequently; plant evergreens.

May

Kitchen Garden.-Sow Pinc-apple or Nutting's beet in the first week, small salads every week, radishes and lettaces thries, apinach once a fortnight, carrots and onions for lata draming, kidney beans in the first week and together with scrilet runners in the last fortnight; endive for an carly croy; also peas and Longpod and Windsor beans, cauliflowers, Early York or Little Pixio cab. bages, Brussels sprouts, borecole, broccoli, savoys, Buda kale, and German greens, for late crops. Sow anise and basil on a warm horder; and borage and parsley on open spots. Sow vegetable marrows and hardy cueambers on a warm border in the last week; sow cardoona in trenches, or (in the north) in pats under glass shelter; saw chicary for salading. Plant asparagus. Continue hocing and earthing np the several crops.

Frait farden.-Disbud peaches, nectarines, and other early trees against the walls; also attend to the thinning of fruit. Give oces-

CALENDAR FOR THE UNITED STATES-Continued.

montb may now be shifted, and the propagation of all plants that are likely to be wanted should be coutinued. Lsardier sinds of nonuals may be sown tt is best done in shallow boxes, say 2 inches dees. Lawns can le raked af and mukched with short maoure, or rich garden earth where manure cannot be obtained. Flower beda on light eoils may be dug up so as to forward tho work of the coming busy spring sensou.

Hruit Garden.- In may bcctions, phanting may now he done with safety, provided the soil is light and dry, bat not otherwise. Agan at this senson, Althuugh a tree or plaat will receave no injury when its roota are undisturbed lo the aoil shonld a frost come after planting, the same amound of freezing will and very often doca greally injure the platat if the roots are exposed.
Gropery.-Tho Frapery startid in Jantary will liave eet its frait, which ahould lie thinned by one-third. The temperature may now be farther advanced to 70° at night, with 15° htgher in the daytime. The same preenutions must be used agatnet mildew acd inecets as given in January. Graperiea wanted for sueceesion may be started in February or this montb.

Fegatable Gorden. - I'lis is a busy month. In locslifies where the frost is out of the Eroand, if it is not wet, seeds of the harelfer vegetablea can ba sown. The list of sceds givea for the Southern states io January may now be used at the North, while for mogt of the Southern States tender vege. tables, auch as egopplant, okra, aweet potators, melon, squash, potatoes, tomatoes, de., rany lu aown aad planted. Iotbeds muat now bo nll started. Aparl.
Flowor Gnrden and Greenhouse.-Window nad greenhomze plants require more water and ventilation. Due attention must be paid to shiffing wellronted plants into larger pots; and, it space is desired, many kinds of hardief plants cao be aafely put out in eold irames. Towarils the end of the nionth it may he necessary to slightly shade the glass of the freenhouse. All herbaceons plants and hardy shmiss niay be planted in tho garden. The cover foe of leaves or litter should be taken off halbs and tonder fiants that were covered up for wioter, so that the beds can be lightly forked and ruked. Sow tender annual dower seeds io boxes ioside.

Pruit Garderl-Strawherries that have been covered up with straw of heavea shbuld be rcliaved aronm the plants, leaviog the covering betwece tbem. Kasplerties, grape vine" en that have hapa laj! down, may now be
uncoveres and lied un to atakes or trelliecs, and all new plantationo of theso nad other fritits miny now be made.
 and the beds hoed or dug bightly. Hardier sorts of vegefathe seeds and plants, such as beets, cabhace, canilinower, celery, lettuce, odions, parsley, paranip, pers, potatoos, radishes, spinneh, turnip, *e., shoudd all be sown of planted by the middle of the month if the ooil is dry and warm, aod in all cases, where practicalle, before the ead of the month. It is caseatial, ia sowing seeds cow, that they be well firmed io the soil. Any who expact to get eady cabbage, caulifiower, lettuce, or radiohes, while phatitig or soning is delayed until the time of sowing tomato aud ege plant in May, are sure to be dissppointed of a sull crop.

MAY.
Flmeer Garden and Greenhouse.- Wiodow nnd aree house glank should be in their fluest bloom. Firing may be entirely dispensed with, though care must still be cxerelscd in ycatilating. Lvery precantion must bo used to keen the air moist. "Moss culture "inay be tried, the common ephngnum or moss of the swamps, mixed wath one- iwentieth wits bulk of bonedast, beincu laid as a mulch on the top of the earth of the llower-pota; its effeet is to shich tio nots from thic eun, and at the same time simulato the roote to como to the suriace. ly the end of the wonth all of the planes that are wanted for the summer decoration of the lfower border inay be ganted nut, first loosening a little the ball of earth at the roots. If the wonther ls dry, water frecly after planting. Wlien the greconouse is met to be used durhis tho sunmer monthe, ramellias, araleas, and plants of that characier ahoulif be set out of doors mader partial shade; the nost of the other plasts usually frown in the conservatory or window gardew in winter may be set io the open border. Flower hods shonly he liept well boed and raked, to prevent the prowth of wects next month. Lawas should be mopn, aud tho edginge trimmed. Pelarconmona, mink, minnthly roses, and all the hale hardy-kinds of tlowering pants shembl be pianted carly: bist coletts, heliotrope, and the inore tendre luants should be di Inved until the eod of the mooth. Aunoale that have becn gown in the frecthonse or hothed may he planted oust, and eqeds of stich: sorts as mizmonette, eweet alyssum, phlox Drumimosdih portulaca, dic.. mavhe sown in the leds or borders.
sinnal washings with the engene to keep forn inserts. Pick caterpillars fiont gonseberries anll wall treas on their first appearance. Remove from tasplerrics ald strawberrics all suckers and rumers that are not wanted.

Forciug. - Flant melons and eurumbers, and some basil, on the lothels prepared for vegrtahlea in Febrary, and now freo. Plant ont vegetalde marrows aud fumpins on tung-ridges, under handghases. Sow late crops of cueumbers and melons. Continne the rontine culture of the pinery, shifing these intended for antumu and winter fruiting; give abundance of heat and water, keeping down inserts.

Mhat Hoises. - Turn out hardy plants about the midlle, and the more tumber at the later com of the month. Sow tender ammals for suression, potting amb shifting thuse sown at an earlice perion ;
 weck stonk. \&e, Tor hate crops, l'ot off all moted cuttings. P'ut in entingy of the diflerent ansiathe species which are now fit for that purp"re. lhant out in tich soil Richurtias, to be poted up in аиthan fow llowering.

Flomer remelden. - Sow anmala fur succession in the last week,
 platheg ont mext gear. Propngite finds of which mors stock is raminel, ciller hy cuttings ar dowiling the roots. Mant out

 the manth, masse of the following finnts maty te formed with
 fetunia, bierembergin, salvin, velmon, lumatid, and hadia.
 and fom rainsand wimls. Diemove the covecings from all tender plants in the opera air.

Shrubery. - Trausphant all kinds of evergreens, this month and Suptulne lexing the froper seasons. The rater conilers slould for flanted now and in .Junc, after they lave ronmenced to grow. bocead with the laying down of haws and gravel-walks a and keep the former regulally nuown.

June.

Kitchon Gutden.--Sow kidney beans for succession; also the prinkled marrow peas, and Sevilte Longlod, and Wimlser beans for fite crops. Suw saliuling every ten iliys; abo carrots, onions, and rodiahes for thawing young a and hiteny for salals; sow endive fur a full crop. In the first week sow Eally Munich and Cellow FinLam curnips for succession, and in the thind weet for a fall antumn rrop, Sow starlet and white runner beans for a late erop, and rabbages for colworts. Make up successional mushroum beds rarily in the month. llint full crops of broceali, Prussels sprouts, savoys, Gierman groms, lewk, and rarly cetery, with sucensional erops of calbugh and caulithower. In the first fortnight of the munth, plant hardy cucumbers for fiekling, in a warm lurder, placing hamsflasses over them towards the emb of the monh. Flint out capricoms on a warm heriler (south of Enclanil), also tomators along tho botom of a south wall. Jull and store winter onions, if ripe.

Fruat Gurden. - 'Train and prune the summer shonts of wall and trellizand other traincl trees. Muldh and water fruit trects and strawherries in dry weather, desisting when the fruit hegins to ripen. Nit over cherry trees, bestroy aphites and other insects by
syringing with tobacco water, or by fumigating, or by dusting with tulatico powder.

Forcing- - Proced with planting melons and cucumbers raised from seeds and cuttings, for late crops. Kecp up the necessiny temperatures for the ripening of the various fruits. Continue the rontine operations in the pinery; but, if very large-sized fruit is desirel, remove the suckers from the stem, and apply heat and water in alundance. Shift suekers and suceession phants in the begiming ami milule of the month, as the state of the flants may require. The other forcing-bouses must still bave the necessary heat, but little water and abundance of air must be given to those wherein the fruit is beginning to ripell, and those in which the fruit is past ongint to low constantly under a system of thorough ventilation.

Jhan houses. -These will now be oceupied with tender greenhonse phants and annuals, and the more harly plints from the stove. Shife, repot, aml pronagate all plants that are desirable. Sow fragrant or slony anmals, to flower in pots during winter; and grow an a set of decorative plants for the same object.

Flovor Ciarden, - llant out dahias ame other tender suhjects if risk of frost is pist. Take up bulhs and tuberous routs, and dir them in the shate before removing them to the stove-room, Filt up with annuals and greenhouse plants these beds from which tho bulbs and ronts have been raised, Atter this season, keep always a reserve of ammals in prots, or planted on heds of thin layers of fibrous matter, so as to be readily transplated. Layer earnations and pine pinks in the end of the month. Keep the lawue closily mown.

July.

Kilchen Garden.-Watering will be necessary in eael depart. ment, if the weather is hot anm dry. In the first week, sow peas for the last crop of the scasmo ; also Dutch Longrod beans, and French beans. in the last week, sow Yellow Finlam tumip fer a full winter crof, spinach for an eally winter sumply, and Enfield Maket or l'innisstall cahbage for early summer use. Sow endive, for autumn and winter use, in the heginaing and end of the month; also sucressional crops of lettuce and small salads. Make up successional mushroom beds. Jlant full crops of eelery, ecleriac, cnlive, about the midile and end of the month; late crops of broccoli, canlifower, and enleworts in the last week. Gather and dry medicinal aml pot herbes also propagate these by slips and cuttings.

Fruit Garden.-Contimue the pruning and thainhy of wall and espalier trees, and the destruction of noxious insects. Plant strawberries in pots for forcing next winter, and make new bels out of doors as soon as well-rooted runuers can be ohtrined. Iropagato the dillerent sorts of stone fruit trees, by budding on other trees, or on prepared stocks. Gather fruits of all kinds as they ripen.
forcing. - l'rune melons and cucumbers, giving air and water, and maintaining heat, \&c. Continue the routine treatment in the pinery, but withlohl water when the fruit bewins to ripen; push on the growth of the suckers on old plants, which will materially alvance the fruiting perions. Tha forcine-houses ought to havo abumbance of fresl ait and moisture, along with the necessary heat.

Ilant Houses. - Ventilition will be necessary to kep down exeessive heat ; and attention must be pail to futting, shifting, and pmtting in cuttings, and giving abundance of water to the potted plants, buth indores and out. Sow calccolarias; shift heaths, if

C.1LENHAR FUA THE UNITED STATES-COntinual.

Fruit Garden - The hay or teat mukhing on the strawherry leeds stowlat

JUNE.

Flimer Juty.
Flomer Garden anit Greenhouse.- Whtwing, ventitating and fumfantiag (ot the hate of tuhtweo in uthur forms for dertruthom of aphides) bust bo attemded to. The atmaspluere of the ereenhomse most he kept motist. Watch the flants that hate lieser phalsed ont of dowes, and bee if ally Febuire reo
 and matny ter,

 with diy silphur, sulecting a hall tham day. The folit hasing how liets

 the yruntig fowt.

Beyctuble Girtrion. -The firat ter days of ithis month will yet he thme emough

Avgust
 d'pintmants from the instracthons for duly.

 Thermatal fors

they require it ; cut down pelargoniums past flowering, and plant the cattings.

Flower Garden and Shrubbery.-Take up the remaining tuberons roots, such as anemones, ranunculuses, \&c., by the end of the first week; fill up their places, and any vacaucies that may have oocurred, with anmals or bedding plants from the reserve giound. Repot auriculas, and sow auricula seed in boxes under glass. I'ropagate herbaceous and other plants that have gone oit of flower. by means of euttings and slips, especially those retpired for spring bedding, propagate also the varous smmuer bedhang plants mcreased by cuttings. Increase roses and American shubles, by layering, budding, or cultings, and go on with the layering of curnations end picotecs. Stake and tic up dahhas and strong herbaceous plap.

August.

Kitchen Garden. -Sow winter and spring spinach in the begin. nang and alnut the end of the month. paisley and "min. r ontons, fur $₫$ full crop, in the first week, cabbages about the madde of the noonth, for planting out in spring; caulillower in the first half (Scotland) add in the second half (England) of the month; Harty Haomersmith and Brown Cos lettuce in the tirst and last week: small salads occasiooally; aud Black Spanish radish, lor winter crops. Plant out kales and broceoli for late crops: plant celery (eertbing up the advaceing crops as required), endive for sucecssion, and a few coleworts. Take up shallots, garlic, \&c.

Fruit Garden.-Proceed in training and regulating the sumaner shoots of all fruit trees as directed for the last three months. Net up, in ury weather, gooseberry and currant bushes, to jreserve tho fruit till late in the autumo. Sake new strawberry beds if requirul. Preserve the ripening fruits on the wall and other trees from in. oects, nd destroy wasp nests. Gather lruits as they ripen.
Furcing. - The routine of cultivation in hotheds and pits inny be continued. Sow, and propagate by cuttings, iu the leginning of the month, cucumbers, to bo alterwards grown in lot-water pits, or in boxes in the front of the pine-stove, for a winter crop. Make up musbroont beds for winfer crop. In the pinery roost of the summer fruit will be cut by the middle of the month, when a general ahifting of succession planta will take place; as also a potting of auckers; but these will be strengthened by being allowed to remain ou the old plants until the end of the month. In the forcinghouses, where tho crops are past, part of the sashes may be removed, so as to pernit thorough ventilation.
Plant Houses. - Attend to the propagation of all sorts of green. house plants by cuttings, and to the replacing in the grecnhouse and stoves the more tender species, hy the end of the month in ordinary acesons, but in wet weather in the second week. Sow half-hardy annuals, as Nemophila, Collinsia, Schizanthus, Rhodanthe, \&c., to flower during winter.
Flower Garden and Shrubbery.-Sow in the second and the last week, on a warm border of a light sandy soil, with an cast as. pect, any frec-flowering hardy annuals as Silene pendula, Nenophila, \&c.. for planting in spring : and auricula and primula sceuls in pots and loxes. Propagate all sorts of herbaceons plants by rootel slips : layer chrysanthemunis; take off layers uf carnations, picoters, anif pansies. Plant cuttings of bedding planta, and of bedding pelar-
goniums in boxes for convenience of removal. Layer the tope of chrysantheroums, to oltain dwarf flowering plants. Transilant evergreens in noist weather, about the end of the month; and propagate them by laycrs and cuttings. Pot Neapolitan violets for toring, or plant out on a muld hotbed. Clip box edgings.

September.

Kitchen Garden. - Sow small aulading for late crops; and lettuco and spinach, if not done last month, for spring crops. Pant endire and lettuce at the foot of a south wall to stand the winter; plant ont eabbages from the chati autumn soning. Flant caulitlowers on a warm border in sjaces such as can be protected by hand lights. Thin the water spimeh, when large enough, that it may have sparo to grow If broccoli be too rank or tall to withstand the wiuter. firi and lay nearly up to the neek in the earch, the leady sloping: towards the north. Lift mions, and lay them out to ripco on a dry bolder or gravel-walk Lift gotatocs and store them

Frutbrarden. - Fimsh the summer priming and training Whero the walls are heated, assist the maturing of peaches and nectarines, and the ripening of the young "ood for next year, by fires durng the day Gather and lay up in the frut-roon with care the autumbal sorts of apples and pears. Prepare lorders and stations for from trees during ley weather flant stranberrics for a main crop. Repot orchard house trees. dsproving if Decessary
Furceny - Take care that late nutons and cucumbers be not injured by getting too much water, and too lithe air Sow a fow kidney heans for an early forced erop. In the pinery at once takn of and por all strong suckers not dore last month; the remainder may be taken off at the end of the month, und ylant:d in old tan in a lrame or pit. Expel lamp, add assist the ripening oilate grapes and peaches, with bues during the day Prune canty viucs and peaches.
Plant Houses. - The varions pot plants should now be put in their winter quarters. Kecp up moderate temperaturcs in the stove, and merely repel frosts in the greenhouse, glarding aganst damp, by ventilation and ly the cautious use of water. Fot hyacinths, tulips, and other bults for foreing, asd propagate half-haidy plants by cuttings.
Ftower Garden, sec. - Sow in the beginning of this month all half-hardy anmals required for early flowering; also mignonetto in pots, thinning the plants at an early stage ; the different species of primula; and the secds of such plants as, if sown in spring, seldom como up the satpe suasun, but if sown in Spptember anil October, vegetate readily the succecdiog spring. Put in cuttings of bedding pelargoniums in loxes, which may stand outdoors exposed to the sua, but should be sheltered from excessive rains. Continue the propagation of herbaceous plants, taking off the layers of carnations. picotees, pansics, and chrysanthemuns, by the end of the month : choice carnations and picotees may be potted aud wintered in cold frames if the scason is wet and ungenial. I'lant evergreens: lay and pot in cuttings of most of the hard-wooded sorts of shrubly plants.

October

Kitchen Gavelen. - Sow small salading and ralishes in me first week, and lettuces in frames on a shatlow hothed for planting out in spring. Il the winter prove inild they will be somewhat ealier

C. 1 LE.SD. 1 R FOR THE UNHTED ST.ITES-Contintud.

Tegetable Gurden,-IIne deeply such rops as cabbage, caulifiower, anm celery. The earthing up of celery this month is not to be recommended. Omions in many sections can loe hiuwestenl. The proper condition is when the tope are turning yellow nnd falting down. Tliey nre dima best lyy placing them in a ilry shed in thin layers. Sow spingeh for fall use, but not yet shothe woter crop. hed bup, white glabe, and fellow Aberdan turnibs end io extremo Suuthern Statcs they miny yet be suwa.

SEPTEMBER.

Plomer Gurilen ant Grecnhouso.-The flower bells in the lawn should be at their liest. If ylunted im "sbbon lines" or "t massing," strict attention mast he given to pinchang off the tops, so that the lines ur masses will present ant eren murface. Teniler jlinnts will requile to be put in the greenhonse or housed th smme way towards the end of this mon:ly; hat be carefill to keed then as coul as passithe during the day. Cutting' int bedding plants nay now too mande frely if wimbed for next season, as young cuthags rooted io the fall make: lictter planta for mext suring's ase tlian olid plants, In the caso of such soft-wombed flanis as nelirgoniuris. fuchäias, varbenas, boliotropes. sfe: with roses and plants of a woody bature, lowever. the ohl plants uswally dis best. Thisth hulb, suct) as liyacinthe, thlips, erocos, se., nind minst uf the virleties of lilies, bmy lso planterl. Viofets that are wanted for winter thowerins will now be growing freely, nnt the rimors shonlid be trinnmed off Sow secids of sweet alyssam, candytuft, dalsies. mignoncte, patsiles. de.
Arait Giarden.-Strawhery plonss thot have been layeral in pots nay yet be planted. or la soutliern districts the ordinary gromid layers can he planted. The sooner in the month buth are phantell the better erop they uill givo nest seasol: : antl, as these piants soon make runcers, it will be uecessory to trim themoft. Attend to rispterricon and hackberries as advisud for last month, If they hawe not already becn attemden tc.

Vendable Garden.-If eabinze. zaulilluwer, fibis lettice are wanted to plant in whilf frames, the sech shandal be sown from, a sor the tenth to the twenticth of this month; hat josioment should be were :- for, if sown too early, cabliage and caubilower ale nut torm to sccul. a bo: luest itate for latitnde of New Firk is September 15th. The main crop of spinach or sprouts that is wanted for winker or soribig use shuald be subll ahoue thu sisme dite
earth should be drawn up to celery with a hoe preparatory to earthing up with a spade. Ouions that were mot harvented and drian list mumith must now tie attender to. Turnips of the early or fat sorts may yet lie sown the Hrst week of this month in the Northern States, and iu the suuth from two to four weeks later

October.
Floner farten and Greenhouse. - In northern sections of the l'nitel States. tember plants that are still ontshite shambl be fot unter coser as early as possulie. Itelay using fre heat as long as possille, unlese the miohts beciuno su coll as to chill the plants insiute the house. Rases, caraluons, camellias. azaleas, pelargoniums, and the hatder sorts of plants with ho leetter if placsif in a cold frame or pit unth the nudule of November than they wonth fin an ordinaty greenhouse. Look out for insects fall bulbs of all hinde may la planted. Tako up summer-flowerang bulbs and tuliers. such as dahbian tuberoses, fladioli, cannas, enladiums, tigridias, and dry them ut theroughts. stowing them away afterwaris in some phace free from frost and noistwa durimg winter.
Frat Garten.-Strawheriles that have been grown from poterrown layers may yct he planted in Sonthera States; huep the rumbers trimmed uff. Frait trecs and shrubs mny he set ont: but, if blanting is deferred to the last of the mont?. the grombd around the rocsts shond lie mulalied to the thickiness of : or 4 inches with strow, leaves, or sough manure, as a jublection aganst frost.

Fegctable Garden - Celery will now le in full growth, and will gegnire
 lot may be stured away in trenrines ler winter All segulable roots not desfyned to be left in the ground during the winter shonld be due up. sur is as beets, carrots, parsajps, swuet patatocs, de. The eablage, cambifower. and lettice plants grown from seed anwn list month should be pricked ant in colld irames. If lathec is wanted fur winter use, it nay now lae plantal In the greenlomen or end frame, and will he ready ghr une alout christn.an.
 stowell away in pit, frame, shed, ar ccllar fer a mioneli or two. it may il il
 an! will le fle lur use from Jaumary to Marely. accordini: tu the temneraturo if ehe huuse.
than those sorm next month or in Jabliney. Plant parsley in pots or boxes to protect unicer glass in case very severe weather occurs. Plant cabbages in beds or close rows till wanted in spriag; and cauliflowers in the last week, to receive tho protection of frames, or a sheltered situation. Store potatoes, beet, salsafy, scorzoucra, skirret, carrots, and marsnips, by the ead of the month. Band and earth up eardoons.

Fruif Garden. - Sach fruit trees as have dropped their leaves may be transplantel; this is the best season for transplanting (though with eare it may be done earlier), whether the leaves have fallea or not. Protect fig-trees, if the weather proves frosty, as soon as they have cust their Jcaves. Flant ont raspberries. The orchard-house trees shoald be got under glass before the end of the month. Gather and store all sorts of apples and pears, the longest-keeping 60 rts not before the ead of the month, if the weather be mild.

Fircing.- Maintain the heat in hotbeds and pits by means of frosh dung liniags. Give abondenee of air in mild brizht weather. Dress vines and peaches. Clean and repair the forcing-louses, and overhaul the heating appratus to sea it is in good working condition. Plant chicory or witloef in boxes or on hotbeds for blanching. Sow kilney leans. Make up saceessional winter mashroom beds.

Phent Ifouscs. - Replace all sorts of greeahouse plants. Fill the pite with pots of stocks, mignonctte, and bariy anauals for planting out in spring, along with many of tho hardy sorts of greenhonso phats; the whole ought to be thoroughly ventilated, except in frosty weather. From this time till spring keep saccelent plants almost withoat water. Sow cyelamens. Begin to foreo roses, lyaciatlis, and a few other balbs, for winter and early spring decoration. 「lant hyacinths in glasses for windows,

Flower Garden. - Sow a fow pota of hardy anamals in a frame, or on a sheltered borler, for successional spring use if required. Plant the greater part of the common bordor bulbs as byacinths, nareissi, croenses, and eariy tulips, abont the end of the month, with a few anemones for early floweriag. Transplant strong plants of bienniais and perennials to their final situations; also the select plants used for spring bedling. Proteet alpine plents, stage auricalas, and carnations and pricotecs with glass frames; and half-hardy greenhonse plants, such na fuchsias, \&e., about the end of the month, with coverings of hroom or spruce-fir, preferring the latter. Take ap, dry, anl store dahlias and all tender tubers in the end of the montle ; pot lobeliss and similar lalf-hardy plats from the open borders. 'Transplant all sorts of hardy evergtens and shoubs, especially in dry soils, giviag abuadance of water. Put in cottings of all sorts of cvergreens, \&e. Plant out the lardier sorts of roses.

November.

Fiteden Gerten. -Trench up all vacant ground as soon as cleared of its craps, leaving the surface as rough as possible." Sow Dillistone's Liuly peas and Larly Dwarf Prolific beans, in the second week, for ain canly crop; also in frames for transinanting. frotect conlive, celery, artichoke, and sea-kalc, with stable-litter or fern, or by planting the former in fomes; takn wate califower, enty l, poccoli, and letuces, and place them in sheltered pits or lay them in
an open shed; earth up celery ; manure and dress up asparagau beds.

Fmut Garden.-Plant all sort of fruit trecs in fine weather-the earlier in the moath the better. Protect fig-trees. Commence proning and nailing. Gather and store the latest apples and pears. Examine the fruit room, and remove all decayed fruit.
Forcing.-Keep ap the requisite degree of heat in hotbeds and pits. Cucumbers sad pines, on hotbeds, will require more than ordinary attention, to prevent them damping off troas too much moisture ; heuce the advantage of hot-water beating. Force asparagus, rbabarb, and sea-kale, in the nushroom-boase, in pits, or in the open border under hozes or cases surrounded and covered by well-fermented stable dung and leaves. Sow Early Hora carrot: also kidncy beans and radishes, on hotbeds. In the foreing-houses pruae and train the trees; fork over and dress the borders of such houses as bave not been already done.
Plant-Houses.-The directions for the greenhonse snd conservatory in Janaary apply also to this monti generally. Continue the forciag of roses, hyaciaths, \&e.
Flower Gardicn, sec. - Plant dried tubers of border flowers, but the finer sorts had better he deferred till spring. Plant tulips in the early part of the month. Put in cuttiage of beddiag calceolarias, choosing the shoots that will not run up to flower. Pretect such half-hardy plants as are not already sbeltered. Plant deeiduons trees and ahrubs so long as the weather continues favourable, and before the soil has parted with the solar heat absorbed during sum. mer. Dig zud dress such flower borders and shrubberies os may now be cleared of annuals and tho st "ms of herbaceous plants.

Decembrr.

Fitchen Garden.--Colleat and smother-burn all vegetable refuse, and apply it as a dressing to the gromed. Sow a few peas and beans, in caso of aceident to those sown in November, drawing up the soil towards the stems of those which are above ground as a protection ; earth up celery ; blareh endive with flower-pots; sow radishes in a very sheltered place. Atiend to trenching and digging in dry weather.
Fruit Garden.-Plant all sorts of fruit trees in mild weather. Proced with praving and nailing wall-trees. Examine the fruit: room every week, removing promptly all decaying fruit.

Forcing. - The same degree of attention to botheds and pits will be neeessary as in the last month. Contiane the forcing of asparagus, rhabarb, and sea-kale, in pits and in the mushroom-house. Proceed with the usual roatine of culture commenced last month. Make the necessary preparations to begin forciag carly or suceession erops by the last week of this or the first of next month.
Plont-Hokes, Fromes, de. -Carnations abd picotees in pöts must be Fept rather dry to prevent daorping off. Huatbs and Australian plants raust be very sparingly watered, and kept with only fire heat coough to repel frost.
Flower Gardra, de.-Plant shrubs in open weather. Prune hardy roses and other hardy shrabs. Swcep and roll the lawns, and put in repair the gravel-walks, keeping the surface frequently rolled.
(T. MO.)

Nompmera.

 unexpectelly in Nowemhtur, and many hatis are hat thealiy. In cases

frownd if practicalife, thal, whenever time will permit, do trencting and subsminn: Cabbagn, canhiower, amb lettuce plants that are io frames slionld lu reanlarly vendialed ly lating the sash on warm days, and on tho 1pprand ht viry cold weathcs ond or
 temer that cutbuste sod letewe phants.

Decemarn.

Filouser Cianden and Greenhouse. - Closo attentlon minat he palit to protect ing all tencler plants, for it is not macemmon to lave the care of a whale

 "r to lo mall lod, this wibl have now to lo bind.wed,

 "114h?s of wail.

 thenarly if the sabl whichtle alass cotera was mit frozen hefore the anow foll

Horticulture - Index of Principal Sudjects.

	chalmenes, 965. have. 20 ?
	Hinond, 202.
	Aloc, 262.
	Amaryllis, 265.
	Anauone, 253.
	Annuals, 218.
	Antirl hinum, 263.
	Apple, 202.
	Apricot, 263
	Artichoke, 278; Jerusa$1 \mathrm{~cm}, 2 s 3$.
	Asparngus, 218.
	Auricula, :53.
	Azalca, 262.
	Hean, 279; kluncy. 233
	lleduling plants, 261.
	Heek 272
	Hegoria, 265.
	Bicantals, 243.
	kailers for heathing. 22S.
	Borecote. 279.
	tuatuin licar, 213.
	Leurardia, 26j.
	Eruccoll, 27%.
	Liussela sprouts, 272
	Baddiag, 237.
	Buds development of, 212.
	Crabage, nsu
	C:metus, 265
	Calaulinm, 2 C6.
	Cakrotaria, 2 C2.
	Calundar, gardeniug, 250
	Camellia, 2 ci.
	Ciusicuia, eso.
	Cardeon, 280.
	-Caruation, 854.
	Curoter
	Caulifower, 81.
	Culllec, zslo.

Celery, 281.	Frutts, 208: storc.ruom
Cherry, 270.	or, 227.
Chicory, 281.	Fuchisia, ${ }^{\text {a }}$ 63.
Chilves, 281.	Furnaces, 228
Chrysunthermum. 251.	Gruden, formatiun uf,
Cineraria, 262.	217: Eower, 217:
Colcus, 266.	liniec 268; klicicen,
Composts, 232.	278.
Conscrvatory, 212	Oardener's house, z2u.
Corn-50lad, 281.	Gardening calendar; 230.
Currea, 263.	Garlic, 283. \because
Cranberry, 270.	Garnisling licits, 282.
Cress, 281; Indian. 235 ; water, 282.	Gernatsation. 217. (indioluy, 255.
Crucus, 255.	Glosinia, 266.
Crown huperial, 255.	Gunsucrry. 271.
Cuкиmber, 282.	Gulud, 283.
Cucumber house. E2s.	Grafting, 213, 236.
Culinary lierbs, 252	Grape. 277.
Currant, 270.	Ciscthouse, 22\%.
Cuttings, 237.	Gieentiouse plinis, 2 ct .
Cychancri, 263.	Hazel hul, 27 \%.
Duhliu. 255.	lleat, burtori, 212
Delphinturna 235.	Ilcating apparatus, 227.
Dracernm 266.	
Edglogis, walk. 22a	Herly, hitethen, ess
Ebig plant, 232	Hodly liock, 256.
Endlva 262.	Ilanscradibi, 283.
Erica, 263.	Hint-houses, 281.
Eucharis, 2c6.	Hotses, plant, 221.
Fenelng. 219.	Hyactuth, 206. ,
Ferns, 267.	Ity Lidizatlun, 216.
Fertlizatiun, 215.	Ityrrumetry. 231.
Fig. 271.	huirlesnesty, 233.
Vlavouring lierbs. 283.	Indiun ciess, 235.
Flowers, 247; devclopment of, 21s.	11is, 206 del usalem artlelooke, 283.
Forcing, 215, 246.	Kiale, 279.
Fiames, 205, 226.	Kidncy beano 283.
Frenela bean, 28:3	Kitchen garden, 278
Fruit borders. 268.	Kohl Rabi, 283.

Pelargontum, 263. Pentstemon, 258. Pecentiats, 249. 1'ctuliul. 264. 1 hloz, ens. l'ine-apule, 271 Tinery, 2:3 links, 258.
1'i:x, 228. Ilunting, 214. 232 l'leasure ground, :17 I'IuII, 2is. Pubuselta, 20a 1"0lyanthux, 259. lintato ase l'utcutilta. 252 I'utting, 93\%. Puitiose. 252. firmalia, 264. 110pras.tive. 2.1 (14.ung, 214, 241) runyhin, Eso『リchimm, 259 Qullee. 2ic. 1!adls. 256 1:ampion, 257 lianunculus, 25S l:asibery y. 276 Relemson, 217 lihndodendina, 260 lihubal b. 267 . Luclamias, 26.4. l:1nging, 244.
liuats delehiphicit of. 211: pluning, 24; liuse, 200. Salsaly, 287. Saluia, 264.
Savvy. \% 7 .
Scateb 1 anucr, 283

Scorzoncra. 287.
Sea-kile, 29. Secd, folniation of, 215. scluction, 217.
Sersice, 276.
Siollor, 288. Slubler for piants, 219. Shrubs, 200. Shluct, 2ss. Soil, 217, 232. Sorrel, : js. Syinach, ESS; New Zes. Land, 255; mouncala. 285.

Spoits, 214.
Spur phuning. 243, 2it. Sinc-room, truit, 221 stave phants, 204. Strankery, $2 ; 6$. 20 mato, 288. Turls. 233 Tiaining. 214, 244, 273
 1 Ieces, arlamentad, 200. Tulp. 258.
Turnip. 288. 11 milip-callage, 263. 1 13dxa, 265. V'esetalic matrow, 283
Yegctalles, 278 Vcutilaton, 231.
Vine. 27%.
visciy, 223.
Walks, 219.
Walls, Falden, 220.
Walnus,272. Walnus, 277. Wutcr-ciess, 289. Watering. 212, 240. Watei surjily, 219. Witloct, 961 .
Yam, Chinese, 289.

HOSEA, the son of Beeri, the first in order of the minor
 Usee, and so our Eoglish version in Rom. is. 25) ought rather to be written Hoshea, and is identical with that borne by the last king of Epliraim, and by Joshua in Num. xiii. 16, Deut. xxxii. 44. Of the life of Husea we know nothing beyond what ean be gathered from his prophecies. That he was a citizen of the nortbern kingdom appears from the whole tenor of the book, but most expressly from i. 2 , where "the land," the prophet's land, is the realm of Israel, and vii. 5, where "our king" is the king of Samaria. The date at which Hosea flourished is given in the title, i . l , by the reigning kings of Judah and Israel. He prophesied (1) in the days of Uzziah, Jotham, Alazz, and Mezekiab, kings of Jutah; (2) in the days of Jeroboan the sin of Joash, ling of lsrael. As Jerohoam II. died in the lifetime of Uzziab, these two determinations of the veriod of Hosea's prophetic activity are not strictly coin cident, and a question arises whether both are from the same hand or of equal authority. There is no doult flat the date of Jeroboam H. applies to claps. i. and ii., which were written belore the dounfall of the dynasty of Jehu (i. 4), and while the nation was still enjoging the prosperity that distinguished Jeroboam's reign. On the other hand, it seems equally certain that chaps. iv.-xis. are in their present form a continuous composition dating from the period of anarchy subsequent to that ling's death. Thus it seems natural to supposo, with Ewald and other scholars, that the name of Jeroboam originally stood in a special titlo to chays. i., ii. (or to these along with chap. iiii.), which was afterwards extended to a general heading for the whole book by the insertion of the words "of Uzziab and in the days of." As Hosea himself can bardly be supposed to have thus converted a special title into a general one, the scholars who take this view suppose
further that the date by Judxan reigns was added by a later band, the same perbaps which penned the identical date in the title to Isaiah. On this view the Judean dated merely expresses knowledge on the part of some Hebrew scribe that Llosea was a contemporary of Isaiah. The plausibility of this hypothesis is greatly inereased by the fact that there does not appear to be anything in the book of Hosea that is clearly as late as the reign of Hezckiah. On the contrary, the latter part of the book seems to have been written before the expedition of Tiglath Pileser against Pekah in the days of Ahaz. In that war Gilead and Cialilee wëre conequered and depopulated (2 Kings sv. 29), but llosea repeatedly refers to these districts as still forming an integral part of the kingdon of Israel (v. 1, vi. 8, xii. 11; contrast Micah vii. 14). Assyria is never referred to as a hostile power, but as a dangervens ally; from which same of the golless Epluraimites were realy to seek the help which another party expected from legypt, but which in truth was to be found only in Jehoval (v. 13, wii. 11, viii. 9, xii. 1, xiv. 3). 'I'his picture precisely corresponds with what we read in 2 Kings. .x. of the internal dissensions which rent the northern kingdom after the foll of the house of Jelu, when Menabem called in the Assyrians to help him against those who challenged his pretensions to the throne. Under Peisah of Israel, and Ahaz his contemporary in Judah, the political situation was altogether changed. Israel was in alliance with Daunascus, and Assyria made open war on the allies (2 Kings xui.). This new situation may be said to mark a crisis in the history of Old Testament prophecy, for to it we ore the magnificent series of Isaiah's A ssyrian discourses (Tsa. vii. seq.). But the events which stirred Judzan proplhets so deeply have left no trace in the book in whicb Hosea sums up the record of his teaching. He foresees that captivity and desolntion lie in the future, but even in his last words of
pathetic exhortation he speeke to a nation which looks to Assyria for help and victory (iiv. 3). The received chronolegy of the kings of Judah and Israel is notoriously precarious, and a comparison of the Assyrian monumeuts and eponym lists with the Biblical data makes it probable that the period from the accession of Zachariah, sou of Jeroboam II., to the fall of Samaria must be shortened by as much as tweaty years, and that the interregnum which is commonly supposed to have followed Jeroboam's death mast also be caneelled. This eorrection may be held to remove one difficulty in the title of our book, whieh on the curcent chronology assigns to Hosea some sixty years of prophetic aetivity. On the other hand, most Assyriologists agree that the expedition of Sennacherib, which fell in the fourtenth year of Hezekiah (2 kings xviii. 13), toek place in 70 l b.c. In that case Hezekiah did not come to the throne till aiter the fall of Samaria ($722-719$), whieh the book of Hosea predicts as a future occurrence (eh. siii. 16)--another argument against the authority of the title. There is still, however, a large element of uncertainty in the reconstraction of Hebrew elironology by the aid of the monuments. One date bear. ing on our book may be taken as eertain, riz., the war of Tighth Pileser with Pekah in 734, and, according to our argumeat, Hosea committed his prophecies to writing before that year. ${ }^{1}$ A more exact determination of the date of the book has been sought by comparing viii. 9, 10 , with the statement on the monuments that Tiglath Pileser reeeived tribute fron King Menahem (Minhimmi) of Samaria in 733 b.c. That Minhimmi of the menuments is the Menaliem of the Bible there seems no good reason to doubt, in spite of the objections of Oppert and G. Snith. Bat it eannot be assumed that tribute was paid by him in 738 for the first time. The narrative in 2 Kings $x v .19$ seems to indicate that the relations of Menahem to Assyria legan earlier in his reign, ${ }^{2}$ perhaps not lons after his accession, which may be dated with probability c. 750 b.c.

To sem up, the first part of Hosea's prephetic work, corresponding to chaps i.--iii, lay in the years of external prosperity immediately preceding the catastrophe of the house of Jehu in or near the year 750 . The second part of the book is a summary of prophetic teaching during the subsequent troublous reign of Menahem, and must have been cumpleted before 734 b.c. Apart from the narrative in ehaps i.-iii., to which we alall presently recur, the book throws little or no light on the details of Hosea's life. It appears from ix. 7,8 , that his prophetic work was greatly embarcassed by npposition, "As for the prophet, a fowter's snare is in all his wis's, and enmity in the house of his God." The enmity which had its centre in the sarectuary probably proceeded from the priests (comp. Amus vii), against whase prefligucy and profanation of their oflise nur prophet frequently declaims-perhaps al:o from die degenerate prophetie guilds which had their seats in the holy eities of the nowthern kinglom, and with whom Hosea's elder contemporary Amos so indignantly refuses to be identified (Ahoos vii. i4). In chap), iv. 5 Hosea seems to empprise pricsts and prophets in one condemnation, thus placing limself in direet ontagonism to all the

[^52]leaders of the religious life of bis nation. Under suct circumstances, and amidst the universal dissulution of social order and morality to which every page of his book bears testımony, the praphet was driven to the verge of despair(is. 7), and only the sovereign conviction of Jebovah's infinite love and tender compassiou to His people, evea in their faithlessness and sin, upheld him in the sure hope of the final repentance aod restoration of Israel, whieh tinds such exquisitely pathetic expression in the closing senténees of his prephecy. The hypothesis of Ewald, that be was at last competled by persecution to retire from the northera kingdom, and composed his book in Judea, rests mainly on an improbable exegesis of several passages, and derives no valid support from the fact that the prophet, to whom the ideal unity of all the tribes of Jacob and the legitimato sovereignty of the house of David are cardinal doctrines, follows the house of Judah with constant interest and grewing aequaintance with its internal eondition.

The most interestiag problem of Hosea's history lies in the interpretation of the story of his married life (chaps. i.-iii.). We read in these clapters that God's revelation to Hosea began when in aceordance with a divine evmanand he narried a profigate wife Gomer, the daughter of Diblaim. Tiree children were born in this marriage and received symbolical names, illustrative of the divine purpose towards Israel, whiel are expounded in chap. i. In ehap. ii. the faithlessness of Israel to Jehovah, the long-suffering of God, the noral diseipline of sorrow and tribulation by which He will yet bring baek His erring people and betroth it to Himself for ever in righteousness, love, and trath, are depicted under the figure of the relation of a husband to an erring spoase. The suggestion of this allegory lies in the prophet's marriage with Gemer, but the details are worked out quite independently, and under a rich multiplieity of figures derived from other sources. In the third ehapter we return to the personal experience of the prophet. His faitbless wife had at leagth left him and fallen, under eirennstanees which are not detailed, into a state of misery, from which Hosea, still folluwing her with teader affeetion, zad encouraged by a divine command, brought her baek and restered her to his house, where he kept her in seelusion, and patiently watehed over her fur nany days, yet not readmitting her to the privileges of a wife.

In these experiences the prophet again recognizes a parallel to Jehral's long-suffering love to Israel, and the discipline by whin the people shall be brought back to God through a period in which all their political and relifious institutions are overthrown. Throughout theso ehapters persanal narrative and prophetie allegory ore interwoven with a rapidity of transition very puasling to the modern reader; Lut an unbiassed exegesis can bardly fail to acknewledge that chaps. i. and iii. narrate an aetual pasange in the prophet's life. The namass of the three chihiren are symbolienl, but Isaiah in like manner gave symbolical names to his sons, enabodying promisent puinte in his prophetie teaching (Shear-jashub, Isa. wa. 3, comp. x. 21 : Maher-shalal-hash-baz, viii. 3). And the name of Gomer bath Diblaim is certainly that of an aetunl preson, upon which all the allegorists, from the Targum, Jerome, and Eplirent Syres downwards, have spent their arts ia vain, whereas the true symbolical names in the book are perfectly easy of interpretation. ${ }^{3}$ That the ancient interpreters take the whole narrative as a mere parable is no more than an appliention of their standing rule that everything in the Piblical history is allegoricai which in ite literal sense appears offensive to prepricty (comp. Jerome's proom to the book). But the sapposed offence to propriety

[^53]cems to rest on mistaken exegesis and too narrow a conseption of the way in which the Divine word was comaunicated to the prephets. There is no reasen to suppose that Hosea knowingly married a woman of profligate sharacter. The point of the allegory in i. 2 is plainly infidelity after marriage as a parallel to Isracl's departure from the covenant God, and a profligate wife (אשת זונים) is net the same thing with an open prostitute (in). The marriage was marred by Gomer's infidelity; and the struggle of Hosca's affection fer his wife with this great unhappiness-a struggle inconceivable unless his first leve had been pure and full of trust in the purity of its ebject -furnished him with a new insight into Jchovalh's dealings with Israel. Then ho recognized that the great calamity of his life was Ged's own ordinance and appointed means to communicate to him a deep prephetic lesson. The recognition of a divine command after the faet has its parallel, as Wellhausen observes, in Jeremiah xxsii. 8.

This explanation of the narrative, which is essentially Ewald's, has eommended itself to not a few reeent expositors, as Valeton, Wellhausen, and Nowack. It has the great ad vantage of supplying a psychological key to the conception of Israel or tho land of Israel (i. 2) as the spouse of Jehovah, which dominates these chapters, but in the later part of the book gives way to the personification of the nation as Gou's son. This conception las, indeed, fermal points of eontact with notions previously current, and even with the ideas of Semitie heathenism. On the one hand, it is a standing Hebrew usage to represent the land as mother of its people, while the repreeentation of worshippers as childrem of their god is found in Num. xxi. 29, where the Moabites are called children of Chemosh, and is early and widespread throughout the Semitic field (cf. Trans. Bib. Arch., vi. p. 438 ; Jour. of Phil., ix. p. 82). The combination of these two notions gives at once the eonception of the national deity as husband of the land. On the other band, the designation of Jehovah as Baal, which, in accordanee with the antique view of marriage, means husband as well as lord and owner, was curvent among tho Istaelites in early times (see BaAL), perha;is, indeed, Jown to Hesca's age (ii. 16). Now it is highly probab!e that among the idolatrons Israelites the idea of a marriage between the deity and individual worshippers was actually current and connected with the immorality which Hosea often condemns in the worship of the local Baalim, whom the ignorant people identificd with Jehovah. For we havo a Pumic woman's name, Baal" (Euting, Punische Stcine, pp. 9, 15), and a sirnilar conception existed among the Babylooians (Herod., 1 181, 18?). But Hosea takes the idea of Jehorah as husband,' and gives it an altogether different turn, filliag it with a new and profound meaning, based on the psychical experiences of a deep human affeetion in contest Fith outraged honour and the wilful self-degradation of a spouse. It can hardly be aupposed that all that liss in these chapters is an nbstract study in the psychology of the emotions. It is actual buman experience that gives Hosea the key to divine truth. Aunong those who do not recognize this view of the passage, the controversy between allegory and literalism is carried on chictly upou abstract assumptions. The extremo literalists, of whom Dr Pusey may bo taken as the modero representative in England, will havo it that the divine conmand justified a marriage otherwise highly improper, and that the offensive circumstances magnify the obedience of the prophet. This is to substitute the Seotist and Neo-Platonie notion of God for that of Scripture. On the other hand, the allegorists, who argue that God could not have enjoined on IIs prophet a marriage plainly improper and fitted to destroy his inflnence among tho poople, are unable to slow that what is repulsive in fact is fit subject for a divine allegory. A third school of recent writers, led by Hengstenberg, and resting on a thesis of Jehn Smith, the CamLridge Platonist, will have it that the symbolical action was transocted in what they allow themselves by a contradictio in adjecto to cell an objective vision. This riew has been adopted by lairbairn (Prophcey, ch. v. sec. ii.). The recent Contiaental literature of the controvers's is catalogued by Nowack in lis Commentury, n. xxsvi.

It wus in the expenences of his married life, and in the spiritual lessons opened to him threugh these, that Hosea Girst heard the revealing voice of Jcherah (i. 2). Like Amos (Amos iii. 8), he was called to speak for God by an inward constraining voice, and there is no reason to think that he had any cennexion with the recognized prophetic societies, or ever received such outwad adoption to office as was given to Elisha His positiou in Israel was one of tragie isolation. Amos, when be lad dischared his
mission at betnel, could return to his houre aud to his friends; Hosea was a stranger among his own peeple, and his home was full of sorrow and shanie. Isaiah in the gloomicst days of Judah's deelension had faithful disciples about him, and lnew that there was a believing remnant in the land. Hosea knows no sucl remeant, and there is not a line in his prephecy from which we can conclado that his words ever found an obedient ear. Fer him the present condition of the peeple contained no germ or pledge of future amendment, and he describes the impending judgment, net as a sifting process (Anos iz. 9, 10) in which the wieked perish and the righteous remain, but as the total wreck of the nation which has wholly turned aside from its God. In truth, while the idolatrous feasts of Ephraim still ran their joyous round, while the careless people crowded to the high places, and there in unbridled and licentious mirth flattered themselves that their many sacrifiees eusured the help of their God against all calpuity, the natien was already in the last stage of internal dissoln. tien. To the prophet's eye there was "no truth, nor mercy, nor knowledge of God in the land-nought but swearing, and lying, and killing, and stealing, and adultery; they break out, and blood toucheth blocd" (iv. 1, 2). The root of this cerruption lay in tetal ignorance of Jeheval, whose preeepts were no longer taught by the priests, while in the natienal calf-worship, and in the Iocal high places, this worship was confounded with the service of the Canaanite Baalim. Thus the whole religious constitution of Israel was undermined. And the political state of the realn was in Hosea's eyes not more hopeful. The dynasty of Jehu, still great and powerful when the prophet's labours began, is itself an incorporation of national sin. Founded on the bloedshed of Jezreel, it must fall by God's vengeance, and the state shall fall with it (i. 4, iii. 4). This scontence stands at the head of Hosea's predictions, and throughout the book the civil constitution of Ephraim is represented as equally lawless and godleas with the corrupt religioua establishment. The anarchy that followed on the murder of Zachariah appears to the prophet as tho natural decadence of a realm not feunded on divine orlinance. The natien had rejected Jehovah, the only helper. And now the avenging Assyrian is at hand. Samaria's king slall pass away as foam on the water. Fortress and eity shall fall before the ruthless invader, who spares neither age nor sex, and thistles shall cover the desolate altars of Ephraim. But the ultimate theme of all prophecy is not judgment but redeeming love, and the deepest thought of every Hebrew seer is the sovereignty of Jelovalh's grace in Israel's sin. Hosea could discern no faithful remnant in Epbraim, yet Ephraim in all his corruption is the son of Jehoval, a child aurtured with tender love, a closen people, whose past history declarcs in every cqusode the watchful and patient affection of his father. And that father is God and not man, the Holy One who will not and cannot sacrifice IIf love even to the justost indignation (ehap. xi.). To the prophet who knows this love of Jehowah, who has learned to understand it in the like experience of his own life, the very ruin of the stare of Israel is a step in the lowing guidance which makes the valley of trouble a deor of hope (ii. 15), and the wilderness of tribulation as full of pronise as the desert road from Egypt to Canaan was to Israel of old. Of the manner of Israel's repentance and conversion Ilosea prosents ne clear image, nay, it is plain that on this point he had nothing to tell. The certainty that the people will at length return and seek Nehovah their Gowd and David their king rests, not on any germ of better things in Israel, but on the invincible supremacy of Jehoval's love. And so the two sides oi his prophetie declaration, the passionate denuneiation of Israel's sin and folly, and the not less passionato
tenderness with which be describes the final victory of divine love, are united by no logical bond. The unity is one of foeling only, and the sob of anguish in which many of his apptals to a heedless people seem to end, turns once and again with sidden revulsion into the clear accents of evangelical promise, which in the closiag chapter swell forth in pure and strong cadence out of a heart that has found its rest with God from all the troubles of a stormy life.

Traditions about Hosez. - Beeti, the prophet's fnther, is identified by the Rabbins with Betith (1 Chron. $\nabla .6$), a Renbenite prince carried captive by Tiglath Pileser. This view is already expressed by Jerome, Quast. in Paralip., and doubtless underlies the statement of the Targum to Chronicles that Beèrab was a prophet. For it is a Jewish maxim that when a prophet's father is named, dio too was a prophet, and nceordingly a tradition of R. Simon makes Isn. viii. 19, 20 a prophocy of Eeor* (Kimehi in loc.; Levilicus Rasba, par. j5). According to the usual Cbristian tradition, horsever, llosen was of the tribe of Issachar, and from an unknown town, Belemoth or Belemon (iscudo-Epiphanius, paeudo-Dorotheus, Ephrem Syt., ii. 234 ; Chron, Pasch., Bonn ed., i. 276). Aa the Iradition adds that he died there, and was buried in peace, the sonrce of the story lies probably in some holy plasenshown ns his grape. Tisere are other traditions as to the burial-place of llosea. A Jewish legend in the Shalshelet haqqabala (Carpzov, Introd., pt. iii. ch. vii. § 3) tells that he died in eaptivity at Babylon, and wes carried to Upper Galilee, and buried at $\mathrm{n}_{\mathrm{E}}^{\mathrm{y}}$, that is, Safed (Neubsuter, Giog. du Talmud, p. 227); and the Aribs show tho gravo of Neby 'Osha, east of the Jordan, near Ea-Silt (Badeker's Palestiac, p. 337 ; Burckhardt's Syria, p. 358).

Literadure.-Of the older commentaries on Hoeca which have been fully eatalogued by Rosenmiller in his Siholia, it is sufficient to name, as books still practically nsefnl, Le Mercir's Latin annotations, embodying a translation of the chief rabbinical expositions, and the English commentary of E. Pococke, OAfu:d, 1685, wheh is not aurpassed in learniog and judgnent by any sabsequent work. Among recent expositions the most important are those in Ewald's Propheten, Bd. i. ($21 \mathrm{ed} .$, Gottingen, 1800°; Lag. trans., London, 1876); Hitzig's K'lcine Propheten (3u ed., Leipsie, 1860); Feil's KLine Propheten (Leipsic, 1866 ; Eng. trans., Fdinburgh, 1868); Pusey's Minor Prophets, London, 1 Su0; Reuss's Bible, part ii. (Paris, 1876); the Speater's Commentary, val. vi. (by IIuxtable, London, 1876) ; Heilprin's Historical Potry, vol. ii. (New lork 1880); and the separite publications of Simson (llamburg and Gotha, 1351). Wiasche (Lapsic, 1868), and Nowach (Perlin, 1850). Tho last gives a list of recent Continental commentaries and monographs, to which may be alded liontsma's " Bijlrage" (Thool. Tijdsen. 1875 , p. 66 sq.). The Eaglish commentary of Willians (London, 1850°) is of little impertance ; Schmolter's cominchtary in Lange's R:UClwerk (1872; Eng. trans., 2874) is adapted for homiletical purposes. The theology of Hosea is atly disenssed hy Duhn, Theol. der Prophesen (Bonn, 1875), with whek an wssay by Smem (Stud. u. Krit., 1876) may be alvintoreonsly compared.

Texis auk firsions. -The best edition of the Maseretic text is that with notes by S. Ber (Leitsic, 187?). From the great fac. simile of the Codex Baboylonicuas Jetrogolitanas Hasea and Juel have been suparately published (St Jetersbarg, 1875). The nost recont helps to the use of the VSS. are Neste's nprentix to the
 odition of the Targum from the Col. Reuch. (Leipmic, 1872), Cerian's facsimilo editions of the great Ambrosma MSS of tho Syro-Hexaplar (Milan, 1874) nral Jeshito (1'ars iii., Dilan, 1879), and Field's Mecerpla (vol. ii. 1bi0). An Arabic version directly translated from the Ilebrew was published by Schroetor froma Bodleian codex in Merx's Archiv, 18\%. A convenicat and aceesable edition of the llebrew text of Jlingea, with 'largum nad Rab. binical commentarice, is If. v. Il. Jlardt's repriut (Guttingen, 1775) of 1 L Sterhen's laris text of 1 abio.
(IV. II. S.)

HOSITANGADSD, a Pritinh district in the chief commissionership of the Central Provinces of India, lying between $21^{\circ} 40^{\prime}$ and $24^{\circ} 59^{\prime} \mathrm{N}$. lat. and between $76^{\circ} 38^{\prime} 30^{\prime \prime}$ and $78^{\circ} 45^{\prime} 30^{\prime \prime}$ E. long. It is bounded N. ly the Narbada (Nerbuilda), which separates it from the teritories of Bhopal, Sindlaia, and Holkar; E. ly tho Dudhi river, dividin: it from Narbinghpur ristrice; \mathfrak{S}. by the districta of Western llerar, Letul, and Clahindwara; and W. by Nimar. Honhangathe may be described as a valley of varying Lremith, astending fur 150 miles between the Nelbulda and the Sht Man mumtains. The soil consists chicfly of back hamaltic fulluwiun, often moro than 20 fect deep; but alon: the bank of the Norbudda the fertility of the land compen
sates for the tameness of the scenery. Towards the west, low stony hills and broken ridges cut up the level ground, while the Vindbyás and the Sátparas throw out juttiog spurs and ranges. In this wilder sountry considerabie regions are covered with jungle. On the south the lofty range which shuts in the valley is remarkable in mountain scenery, surpassing in its picturesque irregularity the Vindhyan chain in the north. Many streams take theil rise amid its precipices, then, winding through deep glens. flow across the plain between sandy banks covered with low jungle, till they swell the waters of the mighty Nerbudda Nonc of the streams are of any importance except the Tarri, which is interesting to tho geologist on account ul the many minerals to be found along its course. The houndary rivers, the Nerbudda and Tapti, are the only cunsiderable waters in Hoshangábád. At Chárwá a dense low jungle extends over a large region, but by far the finest timbor is found at Bori and Denwa.
The cenans of 1877 showed a population of 463,625 (Europsans, 86 ; Eurasians, 10 ; shoriginal tribes, 89,029 ; Hindus, 364,679 ; Mahometans, 21,765; Buddhists and Jains, 1132). There and only fonr towns with a population eseceding 5000 , viz, Hoshan. gribud, 11,613; Harda, 9170 ; Seoni, 7579; and Sohígpur, 7552. The total repenue in 1876-77 was 269,842 ; the total cost ol otfieinis and police, $£ 14,733$. There were 11 civil and revenue julges, and 22 magistrates. The namber of police was 582 . There were 94 Governmeat schoola, attended by 4024 pupils.

Of the total area of 4376 square miles only 1442 aro cultivated, and of the portion lying waste 825 are returned as cultivable; 2455 acrea are irrigated entirely by private enterprise. Wheat forms the staple crop of the district ; the other products are inforior grains, cotton, and sugareane. Hoshangábid does a considerable export trade in agricultural prodnce, receiving in return English piece-gooda, apices, eacoa-nuts, salt, and aggar. The extent of mado roada in Hoshangited is returned at 498 miles. The Great Indian Peninsula Railway intersects the whole distriet from east to west, with atations at the princtpal tomen Besides roada and railway, the Nerhudda, with its tributaries, supplics means of communication by water for 150 miles during part of the jear. The district is generally free from violent alternations of tomperature, hot winds are rare, and the nights dnring the sultry weather and rains are always cool. The raiofull is exceedingly variable, ranging between the limits of 40 and 60 inches for the year. The prevailing diseases are fereas and bowed complaints. in 1876 five charitable disipensaries afforded medical relief to 18,206 in-door and out-door palients.

Mistory. - Littlo is known of the history of Hoshangibide prior to the Marhatta invasion. When tho Mughal troops occupied Mandia, the eastern part of the district inhabited ly Conds, whe still retain their posansion, maintained a rude independence. About 1720 Dost Mahammad, the fonder of the Bhepuil family, captured the town of Hoshangibid, and annexid a considerable territory wha it. In 2750 Líjai haghuji Bhonshí of Nigg, ur reduced the country east of Ilandía and south of the Nertudda, except the portion held by Bhopil. In 1795 the rival dymasties of Bhemid and Nágpur came into conflict, and the town nud fort of Ileshangibid were cantured by the Nagpur forecs. In 1802 the Bhopila retrieved their loss. The Nagpur army again besioged the fort, but faled in their athark, and contented thenselves with burning the town. In 1809 Iloshangribd was nomin assailed by a Nispme force, and the Bhopals, finding their commumiations with Bhophal cut off, surrend.red. Overcomo by these disasters, the Bhopils ealled in the Pindharis to their help, and till they were fivally extirpated in 1817 the whole of this fertife region lnecame a prey to ravage and massucre. Under the onder which the British Covernment has restnred, the prosperity of the country is gradually returniug. In 1818 that part of the district heh by Nagnur was ceded under an agrement. In 1514 the region of Harda Handia was made, over by Sindhis in part paynent of the Gwalior contingent, and by the treaty of 1960 becane liritish territory.

IIosmangibide, tho headquatters town of tho above district, $22^{\circ} 45^{\circ} 30^{\prime \prime}$ N. Iat., $77^{\circ} 46^{\circ}$ l. long, is situated on tho south side of the Nerbudda. Pogulation (1877) 11,613. It is supposed to have been founded by lloshang Shath, tho second of tho Ghorl kings of Malwá; but it remmined an insignificant phace till the Bhopal conquest abont 1720 , when a massise stone furt was constructed, with its baso on the river, commanding the Bhopal road. It anatained several sieges, and passed alternately joto the lame of the Bhopal and Nagpur troops. From 1818 it
bas been the residence of the chief Britisk offials in clarge of the district A charch has been buith, and a firsteclaes jail constructeat The town bas a dispeasary and school honses. It is the chief seet of the Englisis piecegrods wade of the district, and hes a brizk trede in cotton, grain, and billa of exchange.
HOSIERY. Under tion name is embraced a wide range of manajactured textiles, which are clussed together more on acconst of their maneser of febricetion than trom simp barity of application or coe The tery, 23 is quite obrions, has its origin in toee or stockicgs; but although stockings coctinae to be oce of the stenples ef bosiare, that department is only one of a bery numerous and diversifed reage of applitutions of the entire iodustry, it baring been officillly stased thas not fewer then 5000 distinct articles are made in the trede All kinds of Losisry proper are rade by the process of aniting, and the indeztry hes principally to dizal with the fabricetion of \&citted underclotbing.
The art of knitting is the youngse of all the imporast textile mandfactures, exd, comperei with the others, its origin is quite modern So certain allazion to the ats occars before the beginaing of the $15: 3$ centro. In 32 Act of Parliament of Henry MII. (1483) knizeed woollea eups are mentioned. It is sceposed that the att was Itst prectised in Scotland, and thance cartied into Enginad, aEd shat caps wera made by tnituing for some period betore the mote difitult fast of stockiog.mating wis attempter. In an Act of Edward VI. (1553) "knitte bose, kritre poticotes, Laitse gloves, and knitte slieves" are ercmersted, and the tride of bosiers is, amoog otbers, iccledel in as Act dased 1563. Spenish sill stockicgs ware worn on rats cocasions by Herry VIII, and the same mack-prized articles are also mentioned io connerion with tie frituobe of Edwasd VI.

The feceliarity of tritting consists in the csa of s single taread for the entirs tervare, and in the formotion"tasemit of a sirgulatly elastic yet strong ard frm looped web。
The process of banil-trituiag is uciversally keorn, and the endless detaily of fince stitctes and loozs whereeg orraméred work can te proceced do not cone witkin the scope of bosiery propes. Whale a reat quastity of the best and mos: comfortable booiery is mait with implements so simple and inerpeestre as soc: knituing wires or ceedile, the manufacturing indastry is cartian or with machiaery of unsurplesed ingearity $30{ }^{4} 4$ complarity. Moreorer, domestic kaitting mebiicss mostly of $A=5$ icen
 these can never je expected to atruin the popalar infocs of the seचing-machine, yet they bare been withiy aiopted.
 mechusically prodses the looped stive in Ecesery, wox invested bytbe Rer. William Lee, a gradusie of Cambridss, ood retive of Woodborocgh, eear Nottingham. The foc-
 tamental principle of the apparates consiats in the subetitutioc of a seperise hooked or barted neecta for the superet and moting
 number of loops are shemered on oce of thure wires as ceedles The metbod oa which the mackice is wortaci will be easily compreberded byaid of tie zecurparying diagran
 needles from a frume with fran in prueas of teitury. It:

and fithin the temisel booss Tre Fanc, it Fin be ob served, is wared or depressal betweer tach pair of resithe,
 loope of unitorm size end the prodee a resula equal
 allowing thin y并ta of shoed metal tetmed sitice to till

 throcgh which the werat firn threiti Ore the

 machanical derices by which Iee petected the cu-plox
 test so ferfoty did

 widaning cs leating out

 sucly
 of the =ation

in a perfect manner should bave been patented in 1816 , while it was not seen in actual use in Nottingham, the capital of the hosiery trade, till 1845. The inventor of the round stocking.frame was no other than Sir Mared. Brunel, who in 1816 patented his machine under the name of the Tricoteur. In Pruncl's apparatns the needles are ixed on the rim of a rotating wheel. The yarn is delivered, the loops formed, the beards of the needles pressed down, and all the other operations performed by means of a series of arms and wheels which act on the circumference of the ring or circle of needles. As the working of such a machine is continuous, and as several sets of wheels and arms may w. re simaltancously around a ring of sufficient dianeter, Erunel's machine was really cepable of doing work with very great rapidity. - He appears not, however, to have retarded his invention as worthy of being pushed into notice, and it was not till 1845 that in an improved form it was brought forward as an originâl invention by Mr Peter Claussen, who, huwever, reaped no profit from his undonbted ingenuity and merit.

Another improvement of very great importance in the bosiery trade was effected through the invention of the tumbler needle, patented by Mr M. Townsend in 1858. The tumbler needle (fig. 2) consists of a stem somewhat balged aear the point. The bulged part contains a groovo in whict there ta hinged a short pin. The pin is so placed that, wheo turnod to the hooked or curved yoint, its own point falls into a spoon-like indent, thus forming a smooth metal loop. When reversed the pin falls into the groove of the stem, making a smooth stalk. In this way, as will be clear from the figure, when the yarn is canght in the curved point of the neenles, the already formed loops in being brought forward to pass off thomeedlea carry forward the binged pin and close the steel loop, over which they pass quite smoothly. The newly. formed loop then pushes over the tumbler pin into its groore, and the hook is once moro ready to seize the yarn as it passes

Fig. 2. along. Tho tumbler needle and tho revolving frame together form the basis of the various domestic machines whah ure now in the market. In machines in which the tamblos needle is adopted the needles themselves move in greoves, cuch being carried forward in succession th the feed of yarn comes oplyusite its position.

The varioties of frame now in use are embraced ander narrow hand-machines, wide hand machines, pewer rotaryframes, and power rund-frames, the first two being exclusively used in the houses of the operatives, while the latter are factory machines driven by steam. "It will be an explanation of sume interest," says tho late Mr Felkin, in a raper before tho British Association (Nottinghan meeting, 1896), "to those who are strangers to the process of theso trades, to state that the hand-knitter of a stocking, if assiduous and clever, will lenit 100 loops a minate, aud that bee on his first machine mode 1000 of worsted, and on his second 1500 loops of silk per minute. The visitor may now see on the round frame, patented by lirumel in 1816, hat since molined and imrroved, without any eflort but to supply yarn, 250,000 loops of the finest textares mate, in varinus colours, per minute, with safcey, -an advance of 2500 fold upon the hand-kniter."

The principle ecntre of the busiory trade of the United Kinglom is Nottingham town and connty; und in LeicesterBhios and Dertyshre tho imbastry is also of importance. It wa romputes loy Mr lickin that the lenglish hosingy

and finishing operations of winding, cutting, mending, seaming, \&c. At that time the industry was largely domestic, frames being hired out to operatives; but the: trade tends steadily towards factories. According to a parliamentary return issued 31 st July 1879 , there were in the United Kingdom 186 bosiery facteries, giving employment to 14,992 persons, 6683 males and 8309 females. Of these, 175 factories were in England, 10 in Scetland, and 1 in Ireland; and centred in Nottingham, Leicester, Lincoln. Ratland, and Derbyshire there were 173 of the establishments employing 13,680 of the oneratives. The exports in 1878, which of course represent only a small proportion of the total ontput, amounted in value to $£ 860,318$. In the United States the industry is conducted on a manufacturing scale in New York State, Massachusetts, New Hampshire, Rhode Island, Vermont, Connecticut, and Maine ; besides which family machines are extensively employed in that country. In Saxony also the trade is an important industrial feature, and there its derelopment bas been strikingly rapid. Thronghout France, Spain, and Italy there are numerous frames at work, and indeed the trade may.be regarded as in some degree commensurate with civilized industrial communities.
(J. PA.)

HOSIUS, or Osius, bishop of Cordova, the friend of Athanasius, and the favourite of Constantine, was born about 256 A.D., most probably at Cordova, altheirgh from a passage in Zosimus it bas sometines been conjectured that he was believed by that writer to be a native of Egypt. Elected to the see of Cordova before the end of the 3d centary, he narrowly escaped martyrdom in the persecution of Maximian (303-305) ; in 305 or 306 be attended the conncil of Illiberis or Elvira, bis name appearing second in the list of those present; and in 313 we tind him already at the court of Constantine, he being expressly mentioned by name in a constitution directed by the emperor to Cecilianus of Carthage in that year. In 323 be was the bearer and not impossibly tho writer of Constantine's letter to bishop Alexander of Alexandria and Arius bis deacon, designed to promote the curse of peace; and, on the failure of the negotiations in Egypt, it was doubtless with the active concurrence of IIosius that the council of Nice was couvened. He certainly took part in its proceedings; according to some Joman Catholic writers he presided, and did so as representing the bishop of Runee, hut botb these statements are made on totally inadequate gronnds. Equaliy donbtful is the assertion that he was the principal author of the Nicene creed : but manifestly he powerfully influenced the judgnicut of the cmperor in favonr of the orthodox party. After a period of retirement in his diocese, Hosius presided in 348 at the fruitless synod of Sardica, which showed itself so hostile to Aranism; and afterwards he spoke and wrote in favour of Athanasios in elteh. 1 way as to bring npon dimself a sentence of banshment to Sirminm (355). From his exile be wrote to Comstantius IF. his only extant composition, a letter not unjustly characterized ly Cillemont as dosplaying gravity, diraty, gentherss, wistom, generosity, and in fact all the qualities of a great soul and a great bishop. Snbjected in contimeal pressure, the old man, whe was nppronehing il Le had not already parsed, has hundredila year, was wein enomeh to sign the Arian formula adopted by the seeome synoi of Sitmium in 357. Shortly afterwards he was permiticd to return to bls dincese, where he died 10359. Apart from some buman tourles of wordliness and laterly of weakness, Ilusios was a consistent and creditable as well as prominent defender of orthedoxy, and as such he is recognized ever: by those who must bitterly resent his apustasy.
Sow Tillenme, Memoires, vol. vii. 300-321 (1700), and Hefele, Sumednengaschichte, vul. i.

HOSPITAL is derived from the Latin hospitalis (adj.), and this again from the ur in hospes, a host or guest. The place in which a guest was received was in Latin hospitium. (bence the French, lospice), but in course of time the adjrative became used as a noun, and the words hospitalis, hospitale, and hospitalia were adopted in the same sense as hospitium, by dropping the nouns domus, cubiculum, or cubicula. In this sense Vitruvius uses hospitalia to mean the chambers where guests were received. The English word haspitab (often reduced to spialal) comes from the old French liospital, now liopital, of which Littré says that it was remade from the Latin many centuries ago, although originally hospitalis had given rise quite regularly to hostel, now hôtel. The three words, hôpital, hospice, and hotel, although from the same source, are used now in very different meanings, the first being usually restricted to establishments for temporary occupation by the sick and hurt, for the purposes of medical and surgical treatment; the second (hospice) to places for permanent occupation by the poor, the infirm, the incurable, or the insans; and the last (hôtel) to dwellings, either public or private, for ordinary occupation. To the last, however, there is ons exception, viz., when the term hotel-Dieu <that is, hotel de Dieu) is applied to the chief hospital or infirmary of a town or city. In English we have no equivalent to hospice, so that the word hospital has been, and is still, used in the double sense, viz., as a place for medical treatment, and also as a retreat or almshouse for the poor, the infirm, \&e. On the other hand the word infirmary, which originslly meant a plsce or room set apart in an estsblishment (such as a monsstery) for the reception of the sick members, and also for those who were through age or infirmity incapacitated from work, is not infrequently employed in the ssme sense as hospital, namely, as a separate establighment for the treatment of the sick.

Although in ancient times there may have been places for the reception of strangers and travellers, it seems at least doubtful if there, was anything of the nsture of a charitable institution for the reception of the sick, such as existed after the introduction of Christianity. The Bethesda of Scripture (Aramaic, from Лיב, a house, and KTVT, charity) was probably no more than a collection of mere sbeds built round the pool to whose waters miraculous healing powers wero attributed. Among the Greeks there seems little evidence of the existence of cstablishments for the sick; ξ gewiv, described by Plato as a place of shelter for travellers, is also explained as a voroконєiov, or hospital, by Suidas; but that lexicographer is a late writer (10 th or 11 th century 4.D.), and tho word voroко μ ciov itself docs not appear to be carlier in use than the 4th century A.D. The word is used by St Jeromo in the 4 th century, and in the Code of Justinian in the 6th, from which it is possiblo Suidas may bave got his definition, although ξ Evodoxciov is distinctly used by Justinian as a shelter for travellers, as indeed its name implies. Even for sick and wounded soldiers but little provision seems to have been made, although we do not know much of the valetudinarium, which appears to have existed in a Roman camp. That the Romans had a medical staff has been shown by the monuments discovered in Great Britain, and tho subject has been carcfully examined by the late Sir James Simpson (Transactions of the Society of Antiquaries of Scolland, Edinburgh Monthly Journal of Medicine, \&c.). Anong the earliest hospitals on record are that said to have bsen founded by Valena in Cæsarea $350-80$ a.d., and the one built at Rome by Fabiola, a Roman lady and fricnd of St Jerome, although like most others of that and even later times both were probably almshouses as well

The origin of our present hoapitals must, however, be looked for in the musastic arrangements for tho care of the
sick and indigent. Every monastery had its injirmaria managed by an injirmarius, in which not only were sick and convalescents trcated, but also tho aged, the blind, the weak, \&c., were housed. ${ }^{1}$ In course of time separate buildings were erected for the purpose, and special revenues, augmented from time totime by benefactions, appropriated for their maintenance. In numerous instances, however, the hospitals were converted into benefices by the priésts, and the scandal had to be dealt with by the authority of general councils, which, like thst of Vienne, forbade the practice. About the earliest distinct record of the building of a hospital in England is in the life of Lanfranc, archbishop of Canterbury, who in 1080 founded two, one for leprosy and one for ordinary diseases. The former is referred to in the Vie de St Thomas le Martyr, a work of the 12th century. The establishments for the sick remained in the hands of the elergy until the Reformation, when some of the monasteries and church property were appropriated and set apart for the use of the sick. Of those the most uoted instances were St Bartholomew's in Smithfield, St Thomas's in the Borough, Bethlehem or Bedlam, Bridewell, and Christ's Hospital, which were long known as the "Five Royal Hospitals." St Bartholomew's was a priory, founded by Rahere, a minstrel, in 1102, and the ancient hospital chapel is still the parish church of St Bartholomew the Less. It was handed over to the citizens of London as a hospital in 1547 ; it escaped the fire of 1666 , and was rebuilt in 1729. St Thomas's was founded by Richard, prior cf Bermondsey, in 1213, surrendered io 1538, and purchased by the mayor and citizens of London in 1551 , and opened for 260 sick. It was incorporated in 1553, rebuilt in 1693, added to in 1732 , removed teniporarily to Surrey Gardens in 1862, and finally transferred to Lambeth, its present site, in 1871. Bethlehem (or Bedlam) was a priory, founded by Simon Fitzmary, in 1247. In 1547 it was handed over by Henry V1II. for the reception of lunatics. It was rebuilt in 1676, and wings wers added in 1733. The present building was constrncted in 1810. Bridewell and Christ's Hospital early ceased to be receptacles for the sick. (For further information regarding charitable institutions ses Englavd, vol. viii. p. 253.)

But the great inorement in hospital building took place in the 18th century, and the following table from Dr Stecle's paper, "On the mortality of Hospitals" (Howard prize essay for 1876), gives a list of the chief institutions founded during that period :-

London.		Irovincla.		1118\%.	
Westmlnster	1719	York	1710	Itu3m.	
Guy's...	1323	Salisbury	1316	Jerris Street	1725
St George's	1733	Cambridge	1819	Steeres: ${ }^{\text {a }}$	1788
London.	1810	Bristol	1335	Serce:'s	1734
Middiesex.	1745	Edinburgh	1736	Neath..	1756
		Windsor	1734	ILouso ot Indusiry	1784
		Aberdeen........	1739		
Sfectal Llospilals		Northampion ...	1743		
		Exeler	1745 1745	Sjecial (torblin).	
Tbenrition Lying.	1749	Nicheastle.....	1751	The Lotunda ?	1845
City of London!	1750	Manchester	1753	Lylnimin	
Lylnk-\n)	1720	Chester...........	175\%	The Lork	1754
Queen Charlotte's	1752	Leeds...............	1767	The Westmore-	1.85
Lying-in) ${ }^{\text {c }}$	1752	Stalford..........	1769	Isnd Locls)	
Small-pox............	1746	Oxford	1770		
Lock, femslo	1745	l.elcester	131		
* masle..........	1747	Norwich	1731	Corts	1780
		lyunifries	1785	Limerlck	1759
		limmingham ...	1778	bclfaste.e......	2797
		Montrose..........	1350		
		Nottingham....	1382		
		Cantcibury	1993		
		Cilascow	1798		
		Dundee...........	1719 1797		

${ }^{1}$ Kiler ordinis Sancti I'ictoris Parisiensis, MS. cap. 10. See Ducsnge's Glossary, s.v. "Infirmaria."

During the present century the increase of hospitals has continued，seren general and many special having been founded in London alone．Dr Steele gives statistica of 27 metropolitan hospitals，baving an aggregate of nearly 6000 beds，and receiving about 46,000 in－patients anoually． This does not take into account the infirmaries attached to the work＇uouses or the metropolitan asylume hospitals． In addition to this probably from ten to twelve times the number of out－patients are treated in the couree of the year．

Hospitals ste usually divided into General and Special．
In General Hospitals cases of all kinds are admitted in some，whilst in others certain classes are excluded．Thus cases of cuntagious zymotic diseass are not adnitted now in many instances，especially in London since the estab－ lishment of the metrepolitan asylums，fever and amall－ pox hospitale．Lying in cases，venereal casea，\＆c．，are also frequently excluded．

Special Hospitals are of various kinds，such as lying－in hospitals，opbthalmic，lock（for venereal diseases），cancer， coneumption，\＆c．，besides fever and small－pox hospitals As the end of the last and begiuniog of this century ferer hogpitals were generally called＂houses of recovery，＂with a view of not alarming the people too much who bad to resort to them．Special bospitals are also aet apart for the treatment of diseases of children．

Besides the various civil hospitals there are also naval end military hospitals for ths cure of aailors and soldiers．

Altheugh Lospitals bave been intended as a blessing and benefit to the poor，they bave teo often provod the reverse， on account of the igoorance，on the part of their adminis－ trators，of the true principles of bealth．So much was this the case formerly that it has been not infrequently debated whether hospitals are or are not gigantic evils；and eveo where it is admitted that they are of value in cases of actual disease，it is still doubtful if they are really of benefit io caess of confinement It may be of use to consider briefly the statistics of mortality at different tumes and in different places．It is very difficuit to compara former death－rates with present or recent if we consider cases io bulk，because previous to the present century it was but little the custom to classify cases，so that a prepeoderance of surgical cases might exist at oue period sid of medical at another，with a correspending variation of the death－rate．Of course in some exceptienal instances we cao point to remarkable dif－ fcrences due te known causes of unbealthiness．Thus in the Hôtel Dieu of Paris，in the last century，a terrible mor－ tality occurred，amounting to 1 in $4 \frac{1}{2}$ ，or 220 per 1000 （＇Fenen）；－and in the British hespitals at Seutari the mor－ tality reached between 400 and 500 per 1000．In beth of those eascs there was inordinate crowding，such as is bardly likely to be met with again．But in dealing with ordinary hospitals there are se many medifying causes that the conmarison，without careful analysis，may be mislead－ ing．Thus Dr Steele has alown that in the last ecntury （1730－1809）the death－rate of St Thomas＇s was 86 per 1000 ，whilst that of Guy＇e was 119 ；but this，as be points out，may bave arisen frem the latter being looked upon as an ayglum for incurables．In 1875 the aleatherates of the general hospitals in London rangel from T：per 1000 in the Rayal Free to 127 in King＇s Cullege ；in the Edinburgh Rinyal Inlifmary it was 92，and in the（alasgow 118．hut it is when we examine the mortality of sperial enses that the most iustructive lessons are to be learned；and tho best for this purpose are surgicial cases and lymgin eases． Fum these wo gather that the montality is pretty genemally ia the ratio of the size of the huspital and the consequent augrecgation of pationts，the crowding towether of pationts in the wards，the deficiency of ventilation，defective sewer－

the details of cleanliness．Thas Sir James Simass sibreo in his paper on＂Hospitalism＂the following statistics of mortality from amputations ：－

On the other hand，amputations in country practice give a death－rate of only 108 per 1000 ．

Comparing the results with the size of the hospital，that is，the aggregation of cases，we find ：－

Deatha par 1000

Large Parisian hospitals，with more than 600

The question of lying－in cases is even more remarkablis Dr Lefort，having collected the atatistics of 888,302 do livered in hospitals，and of 934,781 delivered at homr： shows that in hospitals 35 per 1000 die，and at home $4 \frac{3}{4}$.

Dr Steele gives the statistics of the four great lying．i： bespitals of Loodon，compared with t！e＂extern－maternity．＇ charities of Guy＇s，St Bartbolomew＇s，and St Thomas＇s ：－

			或它	$\begin{aligned} & \text { 등 } \\ & 20.0 \\ & 0.09 \end{aligned}$	－	它高	碳
Deaths per－1 $1000 . .$.	$28 \cdot 2$	157	14.8	13．5	41	$3 \cdot 1$	35

Baron Meydell，chief of the sanitary department of S： Petersburg，has shown that in the largest lying in hospital there，in which 2000 women ars confined in a year，the death－rate is from 30 to 40 per 1000 ；in the second，in wheh about 1000 women per annum are received，only 25 dis； in the third，where 400 are received，only 20 die per 1000 ； in the small detached asyluns of 2 or 3 beds，of whech there are 11 in dillerent parts of the city，giving accom－ modation to 1600 women per annum，or about 155 each， only 9 per 1000 die；whilst amongst those confined in their own homes，including the peorest and most wretched， only 5 per 1000 die（Rapport du Congrès International d＇Mygiène et de Sauvetage，Brnssels， 1876 ，vol．1．p．226）． These numbers correspend with the observations above．

It can also be shown that outbreaks of disease are coin－ cident with individual orererowding，whether the bospital be large or small．Thus the terriblo mortality of the Hoter－ Dieu of Paris in the last century was due as much to actual overcrewdigg as to the enormous agoregation of patients． The extraordinary spectacle was to bo seen there of two or three small－pos patients，or several surgical cases，or some－ times even four parturient women，lying in ono bed．A large propertion of the berls were purposely made for four patients，and six were frequently crowded in．In the Salle St Cbarles and St Autoine there were 139 large beds（in－ tended for four patients each，but often holding six），and 38 small beds for one patient each．Those beds were gene－ rally full，giving under ordinary conditions 558 patients， and in times of pressure 836 ．To this night be added the Sallo St lioch，opening directly from and really forming part of the great warl；this contained 35 large beds and 3 small，－normal mumer of patients 143，with a possible increase to 213．This gives a grand tatal of 701 patients as a normal amount，with a possible increase to 1049.

There was thus collected in one enormons ward a larger number of patients than any hospital in England contained altogether, if we except the Royal Naval Hospital at Haslar. In addition, bowever, to the above inordinate number, there were in the three stories placed above this great ward 1926 patients, which namber might be increased to 2596, - without reckoning the serving staff of the institu-tion;-Or (including the wards on the Pont Doulle) a total an one block of building equal to 3418 , which night be increased to 4320 . The law forbade the hoppital authorithes to refuse admission to any one, and to $17 i 3$ there were 5000 patients in the hospital, which occupied a space of little more than 3 English acres,--giving a tutal gross area of only 30 square feet per head. The gross area per bod of the modern Hötel-Dieu is just ten times thes amount, being 311 square feet, according to M. Tollet ; but even this $1 s$ much too small, 100 equars metres (1076 square feet) being the minmum proposed by Tollet, who estimates the general average per inhabitant of Paris at 430 square feet, whereas that of London is nearly double. We cannot point to any such overcrowding in England as that of the old Hötel-Dieu, but in many cases there has been enough to produce very grave results. The ill effects are aeen in outbreaks of erysipelas, bospital gangrena, and surgical fever among surgical cases, and in puerperal fever in lying-in cases, - whilst in all communicable diseases the danger of spreading is greatly intensified. It was obscrved in 1877 in the General Lying-in Hospital, the year before it was closed for alterations, that when only two or three women were in a ward, puerperal disease rarely showed itself, but that when, in consequence of pressure of applications, five or six were put in, disease generally broke out. Similar results hare been observed elsewhere.

Another great cause of mortality has been inefficient ventilation. If we can scatter our sick population and give them individually plenty of space in their wards, we shall have drne much,-but, if we do not also change the air or Ficiently ofter. we may gtill have evil results with all our ca.e. Formerly no errangements were made for ventilation in hospitals, schools, barracks, churches, or indeed in any buildings whatsoever. An immense deal remains to be degired in this direction atill, but in recent bospitals, at least, more or less efficient means have been introduced, whilst efforts have been made to improve the conditions of the old. The want of fresh air aggravates all diseases, increases the power of infectioo, retards the convalescence, and bastens the death of patients; moreover, it lowers the tone of the healthy, aod is the most potent of all agonts in the propagation of phthisis or destructive Jung disease. The labours of the Royal Cummission of 1857, appointed to inquire into the health of the army, brought out i.. full relief the disastrous effects of want of proper ventilation in the sleeping rooms of our soldiers. It was there shown that the death rate of Her Majesty's Foot Guards was more than 20 per 1000 per annum, 67 per cent. greater than the deatb-rate at the same ages in Manchester, our most unheutthy town, double the general death-rate of England, and nearly three times that of the most healthy country districts. As regards phthisis alone the dcath-rate was 10.8 per 1000 fron $1830-1836$, and $11 \cdot 9$ from 1837 to 1846, or an average of 11.4 per 1000 for the perind, an amount more than the total mortality of the cevil male population of England and Wales at the same arges. In the army generally the proportion was $i-86$. Siluce the esil was recognized steps have been taken to remedy the conditions, particularly in the direction of giving more epace in barrack-rooms, and securing a certain standard of air rewewal. The results are secn in the present death-rate from phthisis, which is reduced to 2.5 per 1000 , about onethird of the old, and nut much above that of the best dis.
tricts in England. It is still, however, too Ligh, as a large number of men are invalided for disease who go to swell the returns of siekness and mortality in civil life. That this is mainly owing to defective air renewal is evident from the fact that in civil life starvation, crowding, and poverty are insufficient to produce the same evil results we havo seen in our army,-because, in all likelihood, the very wretchedness of the dwellings of the poor bas brought about an anount of involuntary air reuewal, which has been their safeguard.

Defective arrangements for the removal of excreta have constituted nnother cause of mortality. Water closets .opening directly out of wards, and sinks, waste.pipes, batbpipes, de., in direct communication with the sewers, bave been the means of introducing sewer puison into hospitals, producing surgical and puerperal diseases, enteric fever, and diphtheria, and agyravating every other foraz of malady.

A want of constant attention to the details of clcanliness has been a fertile source of hosputal disease. Dr B. W. Richardson has traced out in a very instructive way the remarkable immunity of the Jews from epidemic aud other diseases, and has shown that their religious atteution to the details of the periodic cleansing enjoined by the Mosaie law appears to be the main cause of this notable circumstance. An instructive instance of the importance of this point is recorded by Mr W. Cadge, surgeun of the Norwich Infirmary, which institution bad long suffered from surgical diseases, such as erysipelas, pyamia, and the like. These, it was supposed, were mainly due to the age and structural defects of the building, so that it was determined to pull it down and reconstruct it throughout. In the menntime a change of administration took place, and a new matron was introduced, who effected an entire alteration in the arrangements, and in particular insisted on an absolute and unremitting attention to every detail of cleanliness, buth of building, clothing, bedding, and person. The result was an immediate cessation of the dreaded complications which bad so vesed the hospital, and from that time there has been no return of them.

Faulty diet bad alao, doubtless, ita influence on mortality, although its effects would be less easy to trace. One singular feature in the last century was the enormous allowance of beer given to patients in bospital,-from two to three jints being common, and the allowance sometimes reaching half a gallon per diem. The absence of fresh vegetables from the diet, not only of hospitals but also of the populaze at large, probably intreduced a scorbutic taint which may have had some lart in aggravating or modify. ing disease.

Some influence must also be allowed to the indscrimiaate mixture of cases. The evil of this, especially in the more or Icss crowded state of the older hospitals, was recognized even in the last century, and was referred to by Tenno among others. Although the danger is materially lessened when ample space per bed is allowed, it is still unadwisable, not to say unfair, to place contagious cases with obler pattents. The argument has been adranced that by distributing infectious cases there is less danger of concentration of poison than when they are congregated tugether by themselves. With proper hygienic precautions, however, this concentration may be muimized, whilst the isolation of such eases gives the greatest immunity to othera
This question of concentration has been pushed still further, su as to bear against the existence of all hospitals whatsoever, and so far as lying-in Lospitals are concerned we have seen that the objections are well founded. But when we consider the subject in its various aspects it must be admitted that it would be difficult to do without hoopitals in some form or another. It nould bardly bo joos.
sible to afford peopie wu same advantages of treatment, attendance, nursing, and comforts at their own homes, althourg in some cascs the system of home treatment might be advantarenusly substituted, as has been done for so meny jears with so much success in Edinburgh and other torns of Scotland on the dispenzary system. Another most important aspect of the question is the necessity for hospitals as places of instruction for those entering the profession of medicine. Although it would be wrong to subordinate in any serious way the claims of patients of any class to the sequirements of teaching, it must yet be admitted that the only sound way of learning medicine and surgery is by clinical or bedside instruction, and we may therefore reasonably demand that those who owe their treatment and care to public charity should be willing so far to contribute to the general welfare. Now it is clear that in dealing with large classes of students it would hardly be possible to convey proper clinical instruction except in a bospital. For this purpose the provincial hospitals ought to be more largely utilized, in addition to the metropolitan; at present the resources of the former are to a great extent wasted for teaching purposes.

Assuming then the necessity for hospitals, there still remains the question of the kind of hospital that should be constructed or approved of. It is certainly open to doubt whether we should continue to build monumental bospitals, and not rather construct slighter buildings, which may be destroyed and rebuilt from time to time, thus both scattering patients over a wider area and lessening the risk from long accumulation of infective material. This latter has been named tho cottage or hut system of construction. The difficulties attending it are chiefly connected with original expense of site and with the current expenses of nursing and administration. On the other hand, it nay be urged with some reason that with correct hygienic management there is no reason why a large hospital should not be kept, in a healthy condition.
"Ne may now consider the principles of hospital construction.

1. Locality and Sitc.-Hospitals are requircd for the uso of the community in a certain locality, and to be of uso they must be within reach of the centre of population. Formerly the greater difficulty of locomation made it necessary that they should be actually in the midst of towns and citics, and to some extent this continues to prevail. It is at least doubtful if this be the best plan. Fresh and pure air being a prime necessity, as well as a considerable amount of space of actual area in proportion to population, it would ecrtainly appear to bo better to place hospitals as much in the outskirts as is consistent with considerations of uscfulness and convcoience. In short, the best site would be open fields; but, if that bo impracticable, a large space-a "sanitary zone," ns it is called by Tollet-should be kept permanently free between them and surrounding buildinga, certainly never less than double the height of the highest building. The differeace between the expense of purchase of land in n town and in the environs is fencrally considerable;-and this is therefore an additional reason for choosing a suburban locality, Even with existing hospitals it would te in most cases pecuniarily advantageous to dispose of the present building and gite and retain only a receiving house in the town. St Thomas's in Lomlon, the llotel-Dicu in Paris, and the Koyal Jnfirmary in Manchester nre all good examples whero this might have becn carried out. In nonc, hovever, has this been lone, the first two having befn rebuilt, at enornous outlay, in the citics os before, although mat exactly in the same locality, while tle last is atill retained with a few structural alterations. In Edinburph, on the other hand, an open space of a mach more favourable character has been obtained, which, although within tho lunits of the city, is almest rural in character.

As regirds the actual site itself, where circumstances admit of choice, a iry gravelly of sanly soil should he selpeted, in a position where the gronnd wnter is low and but little suliject to llacetuations of level, and where the meang of drainaze are rapalle of being effectually carried ont. There shouh also tee a cheerful sungy aspect, and sme protection from the coldest winds.
2. form of hatheing. - A form of building must he selected whieh anvwers the following nnaditions:-(a) the frecst possible circuation of air ronnl eath ard, with no eut-desac or enclosed
spaces where air can stamate; (b) irec play of sunnught mion each ward during at least some portion of the day; (e) the possibility of isolating any ward, or group of wards, effretually, in case of iufiectious disease breaking out; ((d) the possibility of ventilating cvery ward independently of any other part of the establishment. Thoso conditions can only be fulfilled by one system, viz., a congeries of houses or pavilions, more or less connected with each other b:covered ways, so as to facilitate convenient and economical administration. The older plans of buge blocks of building, arranged in squares or rectangles, enclosing spaces without froo circulation of air, ate obviously oljectionable. Evcu when arranged in single lines or crosses they are not desirable, as the wards either communicate with each other or with common passares or corridors, rendering separation impossible. On this point it may be remarked that some of the buildings of the last century were move wisely constructed than many of those in the first half of the present, and that the ofder buildings have been from time to time spoilt by ignorant additions made in later times. The question next arises - ls it vetter to have pavilions of two or more storics high, of an have single-storiel huts or cottares, scattered more widely? Where land is expensive the former plan is of comse more cconomical, but where land is easily got the latter ought to be aloptal. The pavilions may be arranged in various ways: they may be joincd at one end by a corridor, or may be divided by a central corridor at right angles to them, sc. In fact, the plan is very elastic, and adapts itself to almost any circumstances. A certain distance, not. Jess than twice the height of the pavilions, ought to be preserred betwcen them. By this means free circulation of air a ad plenty of light are securcd, whist scparation or isolation may be at once acconplished if requircl.
3. Fonndations, Buidding Muterials, de.-It is of the first conselpuence that a hospital should be dry; therefore the foundation and walls onght to be constructed so as to prevent the inroads of damp. An imperricus fuandation has the further advantage of preventing emanations from the seil rising up in consequence of the suction force produced by the higher temperature of the interual atmosphere of the building iscelf. There should be free ventilation in the basement, aud the 1 . ing of the whole on arches is a good plan, now gencrally carried out in hot climates. If the pavilions are two or more stories high it is advisable to use fire-proof materias as much as possible, but single-storied buts may be of woot. In any case eflectual means of excluding damp must be employed. The interiors of wards ought to be rendered as non-absorbenit as possible, by lociog covered with impervious coatings, such as glazce tiles (parian, though much used, is apt to crack), silicate paint. soluble glass, or the like. The ceilings ought to be treated in the same way as the walls, or, perhaps better still, they might be made like the deck of a ship, without any lath and plaster, so as to have nothing but the iloor itself between room and room. For the floors themselves various materials have been suggested: in France there is a preference for flags (dalles), but in LEngland wood is more liked; and indeed hard well-fitting wood, such as teak, oak, or pitch-pinc, leaves nothing to be desircd. The surface should be waxed and polished or varnished. Even deal floors can be rendered non-absorbent by waxing, by impregnating them with solid paraffin ha recommended by Dr Langstat, or by painting wit!? soluble glass as suggested by Dr Luther of lhiladelphia.
4. Shupc and Arrangemeat of W'ards.-It is now gencrally agreed that wards should have whelows on at least two opposite sidea, and three main sbapes have been proposed, viz, (a) long wards with windows down each side, and (generally) one at the further end ; (0) wards nearly square, wih windows on three sides; and (c) circular wards, with windows all round. The first (a) is the form usually adopted in pavilions; (b) is recommended by Dr Folsom (Plans for the Jolns Hotins Hosputal); and (c) has been suggested by Mr John Marshah, F.R.S. (Nat. Assoc. for Promotion of Social Scticnce, 1878). Of these (b) sems the least to be commended, and (c) lias not yot been tricd in practice; we may therefore confine our attention to the long or oblong warls. The length is to be determined chiefly by the number of patients to be accoromodated, but the breadth admits of less variation. Fach bed should be a littlo distance, say from 8 inches to 1 foot from the wall, and each bed may be reckoned as $6 \frac{1}{5 e c t}$ long; this gives $7 \frac{1}{2}$ feet on each side. Detwecn the ends of the beds about 10 fect space is necessary, so that 25 or 26 fect of total brealth may be taken as a favourable width. The wards of the Jlerbert Iiospital aro 26 fect; but somo excced this, as, for instance, St Thomas's, London, and the New Royal lufirmary, Edinburgh, 28 ; New llôtel-Dieu, 29 ; and Lariboisière, 30. There seems no neccssity for expeeding 26, but if the breallh he greater there onght to be more window-space, the great dilliculty beiag to get a wide space thoroughly ventilated. There ought to be only two rows of beds, one down each wall, with if prossible a window to each bed, nad nerer less than one to cre:y two beds.
b. Ventilation, Farming, and Lighting.-For ventilation two things aro requir: ${ }^{2},-$ anflicient space and suflicient); frequent change or rehewal of air. Au regardo obann this must nem maille-al
rith reeserenca both to total space and to lateral or floor apace. Unless a minimum of foor sigico be laid down, we shall always be in danger of overcrowding, for cubic space may be supplied vertically with little or no advantage to the occupier. If weallowa minimum distauce of 4 feet between the beds and 10 feet between the ends of the beds, this gives 100 square feet of space per bed ; less than this is undesirable. In severe aorgical cases, fever cases, and tho like, a much larger apsce is required; and in the Edinburgh New Infirmary 150 aquare Iet is allowed. Cubic space must be regulated by the means of ventilation; wa can rarely chaoge the air oftener than three times an hour, and therefore the apace ought to bo at least one-third of the hourly supply. This ought not to bo less than 4000 cubic fect per bed, even in ordinary cases of aickness, and the third of that is 1333 cubic feet of space. With 100 square feet of floor a pace a ward of 13 feet bigh would supply this amount, ind there is but littla to be ganed by rasing the ceiling liigher, ndeed, 12 feet is practically enough. The experiments of Drs Cowles and Wood of Boston (see Report of State Board of Heallh of \#assachuseth for 1879) show that above 12 feet there is little or no movement in the air except towards the outlet ventilator; the space above is therefore of little value as ventilation space. Additional heigint adds also to the cost of construction, increascs the expense of warming, makes cleaning more difficult, and to some extent hampers rentilation. Whatever be the height of wards, the windows must reach to the ceiling, or there must be ventilators in the ceiling or at the top of the side walls. If this be not arranged for a mass of foul air is apt to stagnate near the ceiliog, and aooner or later to be driven down upon the inmates. The reasone for a large and constant renewal of air are of course the immediate remoral and dilution of the organic matter given off by the inmates ; and, as this is greater in quantity and more offensive and dangerous in sickness than in health, the change of air in the former case must be greater than in the latter. Hence in serious cases an amount of air practically unlimited is desirable, - the aim of true ventilation being to approach as near as poasibls to the conditioo of pure external air. Without goiog too muct- into detaila, a few geoeral rules may be laid down :-(1) Fresh air ought if rossible to be brought in at tho lowest part of the ward, warmed if necessary; (2) foul air ought to ba tsken out at the highest part of the ward; ; (3) fresh air ahould reach eaeh patient without passing over the bed of any other; (4) the vitiated air should be removed foom each patient without passing over the bed of any other ; (5) 4000 cubic feet of fresb air per head per hour should be the mininum in ordinary cases of aicknes3, to be increased without limit in screrer cases ; (6) the air should move in no part of a ward at a greater rate than $1 \frac{1}{4}$ feet per second, except at the poiot of entry, where it should not exced 5 feet per second, and at the outlet, where the rate may be somewhat higher; ahout 64 squara inches of inlet and outlet sec. tional area ought to be aupplied per head as a minimum ; (7) every oplortunity ought to be taken of freely flushing the wards with air, by means of open windows, when this can be done with sarety.
Warming is a question of great importance in most climates, especally in auch a climate as ours, where every aystem of ventila. tron must involve either the warming of aome portion of the ineoming air, or the contruving its delivery without too graat lowering of temperature ; at the same time it cannot be too strongly inElsted upon that the tendency is too much in the direction of allowing warm th to supersede freshness of air. There are very few eases of disease (if any) that are not more injured by foul air than ly low temperature; and in the zymotic discases, such as typhus, enteric fever, small- pox, \&c., satisfactory results have been obtained even in winter weather by almost open-air treatment. At the satue time a reasonable warmth is desirabla on all grounds if it can be oltanned without sacrificing purity of stmosphere. For all practical purposes 60° to $63^{\circ} F$. is quite surficiedt, and surgical ond lying-1n enses do well a lower temperatures. Various itans of warring have been recommended, but prolably a conitiation is the best. It is unadvisable to do away altogether with radiant heat, although it is not always possible to supply sufficient warmth with open fireplaces atonc. A portion of the air may be warmed by being passed over a heatmg applaratirs before it enters the ward, by haviing an air chamber round the fire flacenr stove, or by the use of hut-water pipes in the ward itself. In each case, however, the aur must be supplied independently to each ward, so that no genieral system of ventilation is applicable.
The lighting of wards at night will bo most conveniently done by means of gas, in the form of ajet over each bed, with a spucial yentilator to carry off combustion products, as in the Edinburgh New Insirmary.
6. Furniture of Wards. - This sloold be simple, clean, and nonalsorbent; the bedsteads of iron, mattresses hair, laid on spring botoms without s.cking. No curtains should be permitted.
7. Water. - The water-supply ought to be on the constant systern, and plentiful; 50 gallons per head per dicm may be taken as a fair ninimum estimate.
3. Cloasts. Baths, \&cc.-The closets ought to be of tho simplest
conatruction, the pans of earthenware all in one jiece, the foshing arrangements moved by opening the door, -the aupity of wates ample. Each ward shonld have its own closets, lisvatories, \&c., built in small annexes, with a cross-veatilated vestibulc separatine them from the ward. All the pipes ahould be disconnected froria the drains, the closets by interceptiog traps, tha aink and wasto pipes by being made to pour their contents over trapped gratings. Tha soil pipes should be ventilated, and placed outside the walls, protected as may be necessary from frost. Each ward should havo a movable bath which can be wheeled to the patient'a bedside.
9. Each ward should have atteched to it a room for the nurse from-which ahe can look in.s the ward, a amall kitchen for any apecial cooking that may be required, a room for the physician or aurgeon, and generally a room with one or two separate beds. Nu cooking ahould be done in the wards, nor ought washing, ainog, of drying of linen to be allowed there.
10. Nursing. - The errangements for nursing the sick have greatly improved in recent times, although contruversy atill goes on as to the best method of carrying it out. Iu arranging for the nuraing in a hospital both efficiency and econony have to be considered. Miss Nightingale recommends large wards of 32 beds each, as at the. Herbert Hospital, on the ground that one bead-nurse is aufficieat for auch a number by day and one nurse by night. In the Edinburgh New Infirmary the wards are not so large, the medical being arranged for 21, and the aurgical for 14 patients. Circumstances must to a large extent determine the arrangement, but it seems desirable on the whola that the work of a nurse should be confined to a single ward at a tima if possible. Tha duties of purses ought also to be distinctly confined to attendance on the sick, apd no menial work, such as scrubbing floora and the like, ahould be demanded of them; a proper staff of servants onght to be employed for such purposes. It ia also desirable that a separato pavilion for lodging the nurses should be set apert, and that fair and reasonable time for rest and recreation should be allowed. Some discrission has taken place as to the adrisatility of placing the aursing of a hospital in the hands of a aisterhood or suparate corporation. It will, however, be admitted that the best plan is for the nursing staff of each hospital to bo special and undre oue head within the establighment itself, even although it may be connected with some main institution outside. The nursing must of course be carried on in accerdance with the directions and treatment of the physicians and surgeons.
11. The kitchen, laundry, diapensary, and other offices must be in a separate pavilion or pavilions, away from the wards, but within convenient acceas.
12. A separate pavilion for isolation of infections cases is desirable. This may be a wooden hut, or in some cases even a tent ; either is probably preferable to a permanent block of building.
13. A Disinfecting Chanber ought to be provided, where heat can be applied to clothes and bedding, for the destruction both of vermin and of the germs of disease. It is advisable to expose all bedding and clothing to its influence after each occasion of wear. Although this may entail additional expense from deterioration of fabric, it is worth the outlay to secure immunity from disease. This phan is rigidly followed at the Royal South Hants lofirmary a: Southampton.
14. It is of great importance that the wards should be periodically empticd, and kept unoccupied for not less than one month in each year, and longer if possible. During such period thorough cleans. ing and flusling with air could be carricd out, so as to prevent any conturuous deposit of organic matter.

Up to quite lately hospital accommodation was ec..fined to the larger towns, but the desirability of having it moro accesstble in smaller towns and villages has made itsclif more and more felt. Accordiugly in many placea coltay, hospituls have been established with advantage. One great. advantage of the pavilion system is that the prineiples of its construction and arrangements aro equally applicable to large and small establishments, so that we may cilber look upon a large hospital as an extension of a cottage hospitul, or upon a small one as a section of a pavilion one. The importance of increased accommodation for the reception of infectious cases is now very generally acknowledged. as shown not only by the establishment of tho Metropolitan Asylums Hospitals, but also of others in various parta of the country. In some instances they have apparently been the means of arresting the spread of disease and protecting the locality from cpidenics

Paying IIospituls, I'ay-11ards, Provident Diencnsaries.The general oljeet for which hospitals have becn establishe 1 may be stated to we the gratuiteus merlical and surgic:treatment of the indigent sick. Many abuses have, boz.

9 ver, crept in, anc larce rumberw wersons yearly receive medical treatmont gatuitously who are quite able to pay for it. The numbers have been stated at one in four in Londus and one in two in Liverpuol of the entire population. To obviate this evil the establishment of paying institutiods has been much recommended. There is a large class above the very poor who are but ill able to afford the most skilled attendance and oursing at their own bomes, which in most cases do not supply the accommodation necessary for sickness. It is not desirable, nor is it always their own wish, that those persous should be objects of charity, and the establishment of hosputals and dispensartes at which they could contribute something towards the expense of their treatment and attendance would meet the difficulty to some extent. Numerous arrangements of the find are to be found on the contment of Europe, in America, and in the British colomes. Attempts bave recently been made to introduce the system into England, and it is highly desirable that it should be accomplished, if it can be done with Gairness to all concerned.

Admunistration. - In the civil hospitals of Britain this is usually carried on by a bolly of gevernors, who are either specially appointed or are benefactors of the institution. From them an executive committee is chosen, or the executive power may be vested in a single official, of ten the treasurer. A secretary or superintendent is usually charged with the financial and general management of the affarrs of the dospital, whilst an apothecary superintends the pharmaceutic department. The treatment of the sick is of course entirely in the bands of the physicians and surgeons, whose appointments are for the most part honorary, in the sense of beug unjeaid, and under whem resident medical officers act. The medical staff onght always to be represented on the gevernmg body as a means of preventing unnecessary fructur. The appuntment scems desirable in ezery bosartal al a santary officer, whose duty it should ho to waich and supervise the carrying out of every detail of ventilation, warming, cleanliness, disinfection, \&c.

On the Coutunent fueputals are more directly under state control, and their arratgement is therefore consuderably modified.

Namal and Mlitary Mospitals.-These are provided in all civilized countries for the care of the sailors and soldiers of the stave. The two great English hospitals of Greenwich and Chelsea were fuluded as asylums for disabled and superannuated sailors and solliers, but the former is nor given up for that purpose, although a part is appropriated as a hospital for sick nerchant seameu of all nations Tbe cbief naval hospitals are these of Haslar, Plymouth, ood Chatham. Ilaslar is the largest hosputal in the sountry', baving been originally intended for 2000 sick, and even now, with increased allowance of space per bed, accommodating 1500 patients. There are also hospitals in most of tho princifal naval stations abroad, sueh as Malta, Jamaica, Ilalifax, Hong Kong, \&c. The principal inilitary Lospitals are the Reyal Victuria Hosputal at Netley (the mralic'mg boental of the army and the locality of the amoy molicial school), the llerbert Hospital at Wholwhe, the Cambridge Ilospital at Aldershott, and numerous others at the promeipal stations. The cubic Eprace allotted by regulation 181200 cubre feet at home r.and 1500 to 2000 cubic feet in the tropics per bed. I'ormerly overy regment of cavalry and infantry and each Fittery or troop of artillery had its own hospital, but this I lan is now given up, and station hosputals with a fixed siall are bonng arranged at the chef centres of milhtary districts In hoth the army and tho bavy tho regulations place the ndmmestration nod commanel of hospitals an the bumbe of the respecture medien departments; it tho nrmy this is an vet only partially carrical out, but it has becia
accomplished in the nary with the adrantage of both efficiency and ecfnomy. In time of war general hospituls are established at the base of operations, whilst ficld hospitals move with the troops as the campango progressas,

In France there have long been hospitale established for the nary, such as these at Rochefort, Toulon, Brest, \&c., as well as schools of instruction for medical officers. The chef military hospital is the Val de Grâce at Paris furmerly a convent; it is there that the medical schunl for the army is located. Large hospitals are also established 10 all the great stations. Great attention to military hos. pitads is also paid in Germany, Anstria, and other countr.ce of Europe. In most of them the administration is in the hands of the medical department, except in France, whers the intendance still Lolds the rems, much to the disadvan. tage of efficiency and good working.

In the United States of America the army is small and chetly employed on frontier duties, so that the hospitals are all what are called post hospitals, and as a rule are wooden huts or temporary structures, built to last ten years, and to bold 12 to 24 beds. There are, however, two permanent hospitals, one for cadets at West Point, and the other, the Barnes Hospital, at the Soldier's Home near Washington. All the arrangements are under the army medical department. The navy and the mercantile marine were long annalgaunated in America, so tar as hospital arrangements welut. The Marme Hospital Service was formed in 1798, and the navy was not separated from it until 1811, although it was not for some years after that spectal naval hospitals were built. In connexion with the marine hospital scrvice, hospitals lave been established at a great number of ports, both sea, river, and laks. Up to 1870 each of these hospitals had its own organization, but since that time a regular scrvice has been established under a supervising surgeon-general. A tax of 40 cents a month is levied for the service npon all seamen or members whatsoever of a ship's company. One of the finest hospitals 1s the Mercantile Marine Hospital at Chicago, a pavilion building of several stories, and of considerable architectural pretensions. But in America, as in Europe, the tcudency has latterly bcea to abandun such monumental hospitals, and to construct single-storied pavilions on the hut or "barrack" principle,- the word barrack beng employed in this sense as equivalent to the Ftench hraque, a wooden but. Accordingly the new marine hospital at San Franciaco has been thus constructed, three one-storied pavilions of Calforntan redwood radiating from the outside of a curved corridor, from the ends and inner centre of which project the administrative blocks. The cost 19 about $£ 120$ (8600) per bed, whereas the average cost of the older ones was fully seven times that amount, with the drawback that in coursc of time they became extremely unhealtby, and showed all the evils of hospitalism.
A brtef notice may be addel here of the history of hospital construction m recent times, particularly with reference to the pavilion systen. It is to France that we mest look for the commencement of that gystem, although it has been carried out with even greater buccess in other countices. Its ongin may be traced to the discus. soons which urose from time to tume as to the advisability of recon. structing the Ilôtel-Dicu al Pars. Solong ago as the 17 th contury, Desgodets, architect to Lous XIV., presenied a pinn for recoustruct. ing the hospital in "rayona." Bui it was after the fire that took place in 1372 that the question was taken up with real interest. In 1773 it was proposed to transfer the hospital to tho plain of Grenelle, and in 177 m M. Fett proposed a radiating building of four stories at the base of the hall of Belleville (probably at no grest distrnce from the existurg hosputal of Menilnontant). M. le Roi prusented a plan for a horputal at Chaillot, cousititing of long singlentory parihols, arranged altersately, with the roof open at intervals, - each patient to bo screened of ly partitions. Pimally, tho econmittec of the Acadétio des Sciences reported fnyourably in 1788 on a propusnl of M. Poyet'a to construct a hospital on the lle des Cygney (between Grenello and Passy), consisting of isolated lavilions radiating from a oentral roturda, the hospitio is Lohi s(ico
patients, - paci: paviliou to be 115 feet long, by 24 hiroad and 24 to 15 high, to contam $3 i$ to 36 patients, and to liave wiodows to the reiling. These proportions would give 77 to 80 square fect of floor space, $6 \$$ to $6\{$ feet of wall space, and 1080 to 1200 cubic fect of iotal space, au immense advance upon then existing arrangenicuts. The Revolution put a stop to those projects, and half a century elapsed beforc a pavilion building, as now understood, was actually sonstructed. Cornously enough, revolution again stepped to to arrest the movement, for the hrsi building of the kind, the Jlomtal Lous-Philippe, was begun in the last ycars of that monarch's resph, and suspended in consequence of the revolution of February 1848. Sorre years later, in 1854, it was completed and rean. su Laribmsiere. from the same of the teatfactress whose muriñence helped to breng it to a successtul conclusion. The buridiag is oblong enerosing a spaco in the centre, the front (south erd) cousalang the achumistration. and the opposite (north) end the ciapel, kitchens, dic. from the twe audes the pavilion wards jut out. The builoing is on tne whole not n good one, the distance betwees the pavilions is coly hall what is required, wad the wardyare fectientity overcrowded. Eifistunneelv must of the defects, wity, come ndditimal ones, have been reandureal in the new: Hôtel. Dhec The oew hospital at Membinurtant, ith the north-east of Paris, is also a pavilion one, dulfering somewhat in detail, but of great size, each fravilion having aumerous stories. The military hospital ar Vincennea is a pood upecimen of tacciera construction A small experimental pavilion, built on the suggestions of Dr Taraier in the garden of the Maternute in Paris, merits notice It consists of two stories, each centaining four wards for one parturient woman each. The kitchen, ofice, \&c., are in the centre, but the ouly access to each ward is by the verandah dircct from the open air. The walls, floors, and eeil. ings are non-absorbent, and there is a space of 56 cubic enctres, or nearly 2000 cubic feet for each inmate. The chief objection is that there are no means of ventilation except by the door or window :otherwise the plan is excellent. This plan of making each ward open directly frou, the open air was proposed by the late Sir James Simpson, as a means of improving the sanitary state of existing old bospitals. The plans of M. Tollet ought not to be passed untroticed. In addition to the ordmary principles of pavilion construction, he insista upon the ogival or Gothic form of architeeture, which he thinks was adopted in the Niddle dges as much for samtary as for architectural reasons.

In England the question of hoopital improvement slept until the diststers at Scutari. in 1854-55, roused the atteation of the Goverameat and the public to the necessities of the case, atad the report of the Army Sanitary Cominission and of the Barrack and Hospital Comnintee, and Mias Nightingale's Notes on Hospituls, led the way in advocating hospital reform. Unfortnoately just Lefore this movenuent the plaps of Netley Hospital were made, and the build. ing begun on tlie corndor system. Efforts were made to arrest its logress, but unhappily, without effect, and the country which has $[\cdots 1$ the van in sanitary science has as its chiof military hospital a luilding far from satisfuctory. The first pavilion hospital m Lingland was the Blackburu Infirmary, buila rather viore than tweoty years ago. The pavilions are there at right angles to a centre corridor, and are alternate : a smimilararrangement is lollowed out nt the Children's Hosputs! at Peddebury, near Manchester. St Thomas's at Weatruinater Bridge consists of a row of parallel pavilions muitel by a corridor at one eod. A plan practually identical was yroposed for a new hospita! at Valetta (Malta), Lut this building, thougl: Frequicntly referred to in books, has hever been constiocted. The Herbert Hospital at Woolwieli consists of parallel pavilions jutting out from the sides of a centre corrdur ot right angles; although it is now nearly twenty years old, it is stil? one of the best exauples of a pavilion hospital. The latest pavilion hospital is the New Koyal Intirnary at Edinburgh, to which reference has olrcady been made. Every care scems to lave lieen bestowed on its coastruction aud arrangement; the space allowed per head is ample and the site excellent.

In Germany the Fnedrelishan Hospital at Berlin in noe of the best specmane of a paviloon buildiag. The pavilions are 160 feet apart, six two-storned ant four one-storicd, with isolation warile and the necessary ailmumstuatuve buldiags. The hut hospital erected during the late war at Tempelhof ncar the same city was a good example of how the pavihon system may he iadefinitely extended. the huts being placed in échelon io wide zigzag lincs.
In Ameriea preat nutention has been paid to the question of hospitals, especeally siuce its implortance was so roughly thrust upon the conntry's notice in the great civil war of 1861-64. Duridg that time notnerous plans were tried, and among others the old plan of Petit, Puyet, \&c., naruedy, radiating pavilons from a circular or oval centre, which contained the offices and adsuiciatration. ?his plan was found not to be a good one as it interfered with both lightiog and ventilation. The edrliws American hospital of any kize was tr: Pennsylvaoian Hospitat of Philadelpina, which was begun in 1755, under the auspices of Dr Thoraas Boad and Beujamin Fravklin, and finished in 1805 . It was also io Philadelphia that the first pavilinn hospital of a permanent character was
erected, the corner stone beiog hid in 1860 ; in it the pavilions are parallel, two stories besides basement and attics. The space allowed is ample, but the wards are too wide, nearly 31 feet. In New York there is a Jarge amonnt of hospital acconmmodation-about 6000 beds, or aloout 1 in 1500 of the population. The New York Hospital new pavilions give 112 sifuare iect of floor space and 1800 cubue feet of total space. The Roosevelt Ilospital has sonewhat the same diruensions, hut with a much greater spaca for surgical patients. Oue pecularity of arrangement in that building is that the closets are not at the end of the wards as usual, but in the centre, grouped round a central shaft which extends through all the staries, cellar and basement. In this the water and steam pipes are placed, as also the foul lineo shafts; the closcts are cleaned by a steam jet. Thes plan does not seem very cosamendable. The Massachusetts Geaeral Hospital at Boaton is the oldest io Amenca, except the Pennsylvania Hospital. Since 1872 four new pavilions bave been built oa peculiar jlans. two are square, one containing one large ward for 20 paticnts, and the other divided into small rooms of 2 beds cach, giving each about 97 feet of floor space and 1500 to 1850 feet of total space ; the other two are oblong, divided into rows of siugle roons, with a dividing corridor, something like an arrangement of prison cells. The floor space is alout the same, with less height. The Johns Hopkins Hospltal at Baltinnre will be memorable for the care bestowed upod the consideration of its plans. The oue fimally adopted is of the favihoo principle, seattered over a wide space of grond.

Brbliograjhy-Beck manu, IHstors of Inventions (for ancient history of hosphals). Rapport des Comenissionaires charges par t'Academie de b'exomen du proje' dun noutel Hotel Diers Paris. 17 iog. Tetion, Me'norre sur les hopntaux, Paris, 1788 and 181G. Ibeits. Observations gendiales sur tes Hopacaux. 1788 ; Howard. An Accomet of Prisons and Lazzaretios in Europe, ling and 1791; - Bizard. Sugnestions for the Improvement of llospidats 1796, Princte, Diseases of - Armies, 1744: Brocklesby. Medical and EEconomatal ULservations, $1758-63$: Blane, Medico.Chirurgical Transartions, val 1v: Jackson. Aranngement of /hoso putals, 1803 ; Bulangall, Obseltattons on the Sute and Consirnction of llospitats, Edin. 185l: Ruberton, Papers on Defects of Comstruction and lintilation of llospitals, Manchester, 1856. G3: Parkes, Renhoi llospltat in the Dardonelles, London, 1857: Oppert. Die Emrachsung von Krankenhauserg, Beritn, 185 s , and Jospitals. Jafirinarks. and Dispensaries. Lo:ndon, 1867 . Antiken, "On Sne and Constructlon of Hospitals." Brit and For Afed Char Lerier iskio. Krport of the doyal Conmisguis on the Heath of the Army. lest. Repurt of the lariack and Hospital Cominittee, 1861 , Reporl of he Darrack and Huspital Commitiee
 Etude critigue sus la reconstmerion de Hhitrd-Dreu. letirs and Les Hofdaur. 1\$66: Niphtingale. Nores on Hosmizals. Gallon. The /lerbert Mosptal. Wowtuch. 186's, and construction of Mospmats. Leeds, 1869. Report of Cummmate un Cubic Space in Metr. Workhouse Intrmmics letiz. Wambig, Cutrage Mospitals, Londoa, 1867: P'arkes, Aranual of Prarfrat /lighenc. $3 t h$ cuntion. lsis. Swete, Handy Bout of Coltage Hospitais. 1sg9. Nightimkale. Notes on Lying in institutions, 1871: Simpsun, Hosputism. 18:3: Beckman. Centerary Audress, Vew Jord Hosptiat, lsil: Erichsen. Hogutaitsm 16i4: Buchonan. English Hosptals in thear Santary Aspect. 18:5: Ptans for the Johns Hopkms Huspial. Balinmore. JS75: F. de Chaunont. "On Ventilation sud Cubic Sjace." Lavcet. 1866. and Edin. Aled. Journ." 1867 . "The Theory of Ventilation," Froc. Koy Soc., 1875-76. three Reports on St Mays IInsputul. Paddington, ISts, Reports on the Heabert and Illises Hospitais, Army Afed Reports, 1864, sind Report oo the Norwict Infimary, $18: 8$: Morin. Afanaal du Chanjuge ef de ta Ventzation, Paris, 1869; Wylie, Hospuals. their History, Urigth, and Construction. Now toik, 1877 ; Durdet. The Cuitage Hospital. Lond. 1877 . and faging Hospuats and Pay- W'ards throughout the Wortd, lkit: Paikes and F. de Chaumont. Reporis on Nygiene in the Army Medical Neports: ld. Army Medical Kegulations; Id. Navad Medical Niegularions, and Annual sfedtca! Reports, passim. Longmure, on Gart-Shot fryurtes (for matitary nospalas, 1877: Reparta of the Stute Board of Health, Masenchasetts. Nadciblle, fipoli on the Manchester Royal Intimary, and Repori all lle Norwicli luhmany: Galton. fieport on the Norwich Infirmary; Roth and Lex. Handhuch der Miril Cesundhesf:splege. 1872-77. Lnnestaff. Hospriat flyyuene. Lond. 1872; Sieele, Hospitat Moriatity, 1877. Tait. Hospural dorvahiy. 1s77. Tollel. Sur les logements collectifs. Paris. 1878; "Account of Edinburgh Royal lufirmay, Secesmatr, October 29 i8is: Reporis on the Neir York Ifospital (1877). Upicning of Rliode Ialand Hlosphal (18681, New Pavilion Wards of Preaby.
 ilospital (1sí!). Si Luke's Huspitai. New Yoik (18G0). Nasaachuseits Gencral Hospial: Wgotworilh. Reports of USA. Marine llospital Serilce, Hospitals and Hospisal Construction. and Keport on the Ilygiene ol the US Ammy Waslington. 1875: F II Brown, " Hospltul Cubstruction.- 10 Buck i hyprene and /ubhc hcalth (1639).
(F. De C.)

HOSPITIUM. The power the Greeks poisessed of travelling safely among other Greek states depended on the feeling which made hespitality a matter of religion, and looked on strangers as under the protection of Zeus Xenios. A saranger was receired and prolected during his slay Vinlation of the duties of bospitality was likely to provoke the wrath of the gods; but it does not appear that anything beyond this religious sanction existed to guard the rights of a traveller. There is, however, no ground for the common statement that a stranger was ipso facto considered as an enemy. In truth be was a guest. The roads were all sacred; be who passed over them was the guest of the land; be found along their courses statues of the tutelary deity of the ruad, generally Hermes; and the offerings of food, de., te frunt of toere be was at liberty to appropriate. Hence the word iphatov was used in the sense of a lucky find. (See Curtius, "Griech. Wegebau," Berlin Abhaudl., 1854.) When the guest parted from his host he was
often presentea writu gifts ($\mathfrak{\xi} \dot{\sim} \times a$), and sometimes a die (áatpáyalos) was broken between them. Esch then took a part, a family connexion was establisbed, and the broken die served as a symbol of recognition; thus the members of each family found in the other hosts and protectors in case of need. As the foreigner was not recognized by the law of the state in which he travelled, be could appear in a court of justice only through his host. Si nilar customs seem to have existed among the Italian races. In Rome there was a tie recognized by tho law between bost and guest, almost as strong as that which connected patron and client. Jupiter Huspitalis watched over the jus hospitii. As in Greece the connexion often became liereditary; and a tessera hospitalis was broken between the parties.

Besudes this private connexion there was a custom according to which a state appornted among the citizens of another state one man called $\pi \rho o \delta \in v o s$ to protect any of their citizens travelling in his country. Soncetimes an individual cane forward voluntarily tu perform these duties on behalf of another state ($\dot{\theta} \theta \in \lambda o \pi \rho o \xi_{\epsilon}$ vos). Many eases occur where such an office was bereditary; thus the family of Callias at Athens were proxenoi of the Spartans. We find the office mentioned in a Curcyraan inseription dating probably from the 7 th century b.c., and it continued to grow mare important and frequent stroughout Greek history. There is nu proof that any direct emolument was ever attached to the office, while the expense and trouble entailed by it must often have been very great. Probably the honours which it brought with it were sufficient recompense. These consisted partly in the general respect and esteem paid to a proxenos, and partly in many more substantial honuurs conferred by spacial decrec of the state whose representative he was,
 and sometimes full citizenship. Public hospitiun seems also to have existed among the Italian races; but the circumstances of their listory prevented it from becoming so important as in Grecec.

HOTCH-POT (or Iotci-potch, Hodge-podge), in law, is the namo given to a rule of equity whereby a person, anterested along with others in a common fund, and having dready received something in the same interest, is required io surrender what bas been so acquired ioto the common Cund, on pain of being excluded from the distribution. The following is an old example given in Coke on Littleton: -" If a man seized of 30 aeres of land in fee bath issue moly two daughters, and hegives with one of them 10 acres in marriage to the man that marries her, and dies seized of the other 20 ; now she that is thus married, to gain ber share of tho rest of the land, must put her part giveu in marriage into hutch-pot; i.e., she must refuse to take the profits thereef, and eause her land to be so mingled with the uther that an equal division of the wiole may be made between her and her sister, as if none had been given to ber; and thus for her 10 acres she shall have 15 , or otherwise the sister will have the 20." In the common law this seems to have beon the only instance in which the rule was applied, and the reacen assigned for it is that, inasmuch as daughters succeeding to lands take together as coparceners and not by primogeniture, the pulicy of the law is that the land in such cases should be erqually divided The law of hoteh. put applea unly to lands descending in feesimple. The same principlo is noticed by Blackstone as applying in the customs of York and London to persomal property. It is also expressly cuarted in the Statute of Distributions (s) that two chid of the intestate, except his heir-at-law, who shall have any estate in land ly the settement of the intestate, or who shall be alvanced by the iutestate an his life time liy necumary portion equal to the distributive
shares of the other children, shail participate with them in the surplus; but if the estate so given to such child by way of advancement be not equivalent to their shares, then such part of the surplus as will make it equal shall be allotted to him. It bas been decided that this provision applies only to advancements by futhers, on the ground that the rule was founded on the custom of London, which never affected a widow's personal estate. The heir-at-law is not required to bring any land which the has by descent or otherwise from the deceased into hotch-pot, but advancements made to bim out of che personal pruperty must be brought in. The same principle is tu be found in the collutio bonorum of the Roman law : emancipated children, in order to share the inheritance of their father with the children unemancipated, were required to bring their property into the common fund. It is also found in the law of Scotland. "It seemeth," says Littleton, "that this word hotch-pot is in English a pudding ; for in a pudding is not commonly put one thing alone, but one thing with other things together."
hotho, Hennten Gustav, was born at Berlin in 1802, and died in his native city on Christnas day 1873. He made a name for himself in Germany as an bistorian rather than as a critic of art. Yet he reraained second to Lis contemporary Waagen in experieuce, grasp of subject matter, and subtlety of eye. Nor bad be the good fortune which accompanied Waagen through life to find patrons. and friends in all countries of Eurupe. No one could have fureseen that Hotho would nne day be an authority on art. During boyhood he was affected for two years with blindness consequent on an attack of measles. But recovering. his sight be studied so hard as to take his degree at Berlin in 1826. A year of travel spent in visiting Paris, London, and the Low Countries determined his vocation. He came home delighted with the treasures which be had scen, worked laboriously for a ligher examination, and passed as "docent" in wsthetics and art history. In 1829 ho was made professur at the university of Berlin. In 1833 Waagen accepted him as assistant in the museum of the Prussian eapital ; and in 1858 , after the death of Schorn, he was promoted to the directorship of the printroum. This was Hotho's last step in life. When Waagen died he had bopes of succeeding him, but these hopes were disappointed, not because in this walk Hotho was unfitted for the duties be was ambitious of performing, but probably because his experience was not considered sufficiently extensive. During a lung and busy life, in which his titne was divided between literature and official duties, Hotho's anbition had always been to master the history of the schools of Germany and the Netherlands. Accerdingly. what be published was generally confined to thase countries. In 1842-43 he gave to the world his account of German and Flemish painting. From 1853 to 1858 he revised and published anew a part of this work, which he called "the school of Hubert van Eyck, with his German precursors and contemporaries.". His attempt later on to write a histury of Christian painting overtaslied his strength, and was far from finished when the last sickness fell on him. Tothu's name will be hononrably remembered as that of an amiable and industrions man, earnest from tho first in his effort to throw light on an obscure and recondite subject. Ilis training unfortunately confined him toone section of the field in which art history is comprised, and his comparative ignorance of Italion painting was the cause why he did not elimb the last step to which Waagen had been able to ascend.

HotMan or Hottoman, Françots (1521-1590), oneof the most learnedof French civilians, and a brilliant publicist, was born at laris in 1521, of a family which had come, in the days of his grandfather, from Silesai. Ilis father a
counsellor of the parliament of Paris, naturally hoped to see his eldest son his successor, and gave him a legal education at Orlenns. After three years' study he was made a doctor of laws, and immediately began to practise at the Paris bar. But the quibbles of pleading soon disgusted him, and to his father's annoyance he turned to the calmer study of jurisprudence. At the age of twenty two he was named public lecturer with Baudouin at Paris, and at once gained high repute. The fortitude of Anne Dubourg under torture roused his latent enthusiasm for the Reformed opinions; he st once gave uphis career, and went in 1547 to Lyons, the outpost of Gr zevan theology, and thence to Geneva and Lausanne. At Lausanne he became professor of belles-lettres and history, and married a French refugee from Orleans; in 1550 we find him in high repnte as a teacher at Strasburg, where he lectured for several years to large crowds of students. In 1560, in the beginning of the civil troubles, he attached himself to Antony of Navarre, and was trusted with delicate missions from the Huguennt chiefs to German princes; he even at one time carried credentials from Catherine de' Medici, and his speech at the Frankfurt diet, which is extant, is "a model of eloquence and political shrewdness." After a while we find him professor at Valence, expounding the civil law with such suceess as to restore the failing credit of that university. Three years later he succeeded Cujas at Bourges; but the civil war drove him to Orleans for refuge, whence he was sent down to Blois to negatiate the peace of 1568 . He returmed to Bourges only to encounter another outbreak of war and another flight, this time to Sancerre, where in the tedium of the obstinate siege ho composed his Consolatio, a striking work drawn from the Bible and St Augustine. The peace of 1570 restored him onee more; but the St Bartholomew drove him away again ; and with wife and family he fled to Geneva, turning bis back for ever on his country. As he went he shot at Cbarles IX. a Parthian shaft in bis celebrated Franco-Gallia, a treatise much censured by Catholics and Huguenots alike. It breathed the true spirit of research and of Huguenot independence and even republieanism; for it boldly appealed, in the very citadel of hereditary succession, from wights of blood to popular election, and declared tlrat the French monarchy rested on that foundation; the use soon made of the book by the Jesuits in their panphlet war ogainst Henry IV. added to its unpopularity. At Geneva Hotman was appointer professor of Roman law, and taught in peace for six years; in 1579, however, the threatening approach of the duke of Savoy frightenerl him away to Basel. Thence the plague sent him to Montbeliard in 1582, where he lost his faithful wife. After making trial of Genera onee more, he again in 1589 Iled to Basel, where he died in 1590 , and was buried in the catherlral.
Hntman was a man of onfeigned piety, ner were his firm and lofty ndeas on religion ever shaken; the purity of his home-life, hisdevotion to wife and lamily, his courageous cudurance of poverty and trouble, made him one of the finer characters of his age. Ilis very timidity and restlessness were hut the results of a parent's anxicty for the safety of his chitusen ; the infinate horrors of unhridled war filled hum with fears' for them. It was his quick intelligence and passionate temperament that innde him a wanderer, and even lail him open to the suspicion of cowardice. As an author, if not original, he certainly was net Scaliger's "vulgare ingenium," "llis criticism is sound and acute, his learning beyond question scholarly and legnl, his Lat:mity adnsirable, even efoquent; he is one of tha bust writers of his sge; and'it is not to be urged severcly against him that he chented himself with that snare of elever and necdy men; aleliemy, and sought to achieve the cransmutation of metals.
Ilis chicl warks were-t he Andi. Tribonien (1567), a treatiso to show that French maventil not be based on Justininn; the Pranco-Gallia (1573), with tho fim. phets in its defenco; his Contwoersia pubut el nepotis (liss); his Brutum Fiut.
 on lawe on history, politice, or clansjeal scholarship. These pro mostly forgotten ; out in theit day they placed Franels flomman in the these pro mostly forgotiten, and accomplished authors of France. A collection of his letters was publighed at Amsterdasu in 1700 .

HOT SPRINGS, a post village in Hot Dprings comity, Arkansas, United States, is situated on a tributary of the Washita river, 55 miles S .W. of Little Roek. It is much resorted to by strangers on account of its hot springs, which are about sixty in number, and together h : ve a daily flow of about 500,000 gallons. They vary in temperature from 93° to 150° Fahr., and their beneficial effects depend chiefly upon external application. The principal diseases in which they are eflieacious are affections of the skin, malarial fever, and rheumatism. The number of persons who make use of them is about 20,000 annually, The town is well supplied with hotels and churebes. ;The population, which in 1870 was 1276, was 5179 in 1880.

HOTTENTOTS was the generic namo given by Europeans to the native tribes inbabiting the sonthern extremity of Africa. Some early writers termed them Hodmadods or Hoduandods, and others Hut-uots and Ottentots-all corruptions of the same word. The common denomination adopted by themselves was Kboi-Khoin (men of men), or Quæ Qure, K wekhena, t'Kuhkeub, the forms varying accurding to the several dialects.
f' These aborigines, totally distinct as they were in their primitive state from all other Afriean races, have been generally regarded as the most ancient inhabitants of the land. A little more than two centuries ago they were a numerous people, whose nomadic tribes or clans and families were spread over the territory now distinguished as the Cape Colony ; and tradition, as well as the evidence afforded by names of places and surviving peeuliạrities of manners and language, points to their having in prebistnric times extended much further to the north-westward and eastward, where they have been supplanted by the Kaffre or Negro tribes. The freedom, seeurity, and protection enjoyed by the Hottentots since the Cape of Good Hope became a portion of the British empire have in no small degree arrested the process of extermination of the race which was rapidly proceeding at the close of last century. When Sir John Barrow. described their condition in-1798, he estimated their numbers at about 15,000 sonds. In 1806 the official return gave a population of 9784 males and 10,642 females. In 1524 they had increased to 31,000 . At the census of 1865 they numbered 81,589; and the census of 1875 gave the IIottentat population within tho Cape Colony at 98,561 . In the returns for the last-mentioned periods, however, the designation "Hottentot" has no doubt embraced many persons of mixed race. It is only at the mission stations or in their vicinity that any genuine descendants of the early tribes are now to be net with. Beyond the colonial borders, however, they are numerically strong. Dr Theophilus IIabn gives the following as an approximate statement of their numbers (amounting in all to nearly 17,000) in Great Namaqualand and Damaraland :-Pure Namaquas-Geikous, or Red Nation, 2500 ; Topnaars, 750 ; Kharo-oas, 300 ; K hogeis, 100 ; Ogeis, or Great Deaths, 800 ; Khau-goas, or Young Red Nation, 1000 ; Habobes, or Velschoendragers, $1800 ;$ Karagei-Khois, 800 ; Gauinus, or Pondlezwarts, 2000 ; Gumungu, or Lowlanders, 200. Namaqua IIotentots of Ocrlacms-Eicha-ais, or Afrikamers, 800 ; K゙owisis, 5500 ; Amas, 2000; Khauas, 700 ; Gei-Khanas, or Gobabis people, 600.

The pure Namaquas claim to be the aboriginal tribes, while the "Oerlam" are tho new comers, or those who migrated across the Orange river from the southern part of Cape colony. The latter tribes and many of the formes may be said to be in a semi-civilized state, and have in a great measure adopted the customs, habits, Lunguage, and pursuits of the colonists. Some are in good circumstances, rich in waggons, horses, cattlo, and sheep; while others
retain all the improrident, idle, nomadic habits of the aborigines.

The primitive character of the Hottentot or Khoi-Khoin has been greatly changed by their forced migrations, and their gradual adoption of the habits of civilized life. The best information as to their original manners and customs Ls therefore to be obtained from the descriptions given of them by the older writers. The observations of Kolben, who was a resident at the Cape in the early part of last century, are by far the most complete; and, although doubts have been thrown upon some of his statements, yet travellers and missionaries who have resided among the tribes in Great Namaqualand confirm and endorse the greater part of them.

All authorities agree in representing the natural disposition of the Hottentots as mild, placable, and ingenuous. Mutual affection was the greatest of their virtues. They beld in contempt the man who could eat, driuk, or smoke alone. They were hospitable to strangers; indeed, their munificence often left them scarcely anything for themselves. Another characteristic was indolence. While not deficient in talents or capacity, they seemed to lack the energy to call them into action. They did not, howerer, disdain to look after their cattle. Hunting they pursued for pleasure as well as sustebance, aod when once arnused they were nimble and active, as well as bold and ardent. In personal appearance they were of a medium height, the females rather smaller than the men. Their bodies were slender but well proportioned, with small hands and feet. ,Their skin was of a leathery brown colour; their face oval, with prominent projecting cheekbones; eyes dark chestnut or black and wide apart; nose broad and thick and flat at the root; chin pointed, and mouth large, with thick turned-up lips. Their woolly hair grew in short thick curly tufts on their head, and the beard very scanty. The women, especially as they advanced in years, had flabby breasta hanging. down low; abnormal developments of fat were somewhat common among them; and cases occurred of extraordinary elongation of the labia minora and of the proputium clitoridis. ${ }^{1}$

The dress of the mea was very simple. A cloak or kaross, varying according to the fashion of the tribe, was usually thrown across the shoulders and a smaller one across the loins. Those of the chiefs or captains were usually of tiger or wild-cat skins, those of the commonalty of shecp skins. They wore the cloaks all the year round, turning the hairy side inward in winter and outward in sumnser; they slept in them at night, and when they died they were ioterred in them. They had suspended around their neeks little bags or pouches, containing their knives, their pipes and tobaceo or laccha (Cannabis, or hemp), and an amulet of burnt wood. On their arms were rings of ivory. When they drove their herds to pasture they wore sandals on their fect, and some of them carried a jackal's tail fastened on a stick to wipe their face with when heated and drive away the flies. The women also wore karosses, a lesser under a greater, fashioned much like those of the men, but with the addition of a little apron, to which were appended their ornaments. In a leather bag suspended round their neek they earried daily, whether at howe or abroad, some vietuals, together with their daceha, tubaces, and pipe. They also wore an ormamented skin eap on their heads, armlets of iron or eupper on their arms, strings of beads rourd their wrints, and round their legra thongy of ox dide sonctimes covering half the leg or more.

They losed to hesmener theor bodies and their dreas with

[^54]greasy substances. The wealthy Hottentots were very lavish in the matter of butter and fat, the use of which was the grand distinction between rich and poor. Theg also perfumed themselves with the powdered leavea of a shrub called by them bucchu (Diosma crenata). An ointment formed of soot and grease and the powder of buc:ju was held in very high estimation.

The sites of their villages or kraals were usually on green meadow grounds. They never entirely exhausted the grass or herbage, but kept moving at intervals from one spot to another. The buts or tents, which they could strike, carry, or pitch where they chose, were ranged in circles, the area of which raried with the pastoral wealth of the community. The small cattle were placed inside the circle, and the larger cattle outside. In the centre of the buts a hole served for a fire-place, around which the members of the family were fond of squatting upon their haunches while they passed the tobacco pipe from one to another. On each side of the hearth small excavations an inch or two deep were made in the ground, and thereon mats were spread upen which the men, women, and children rolled up in their karosses lay duwn and slept. Their household effects consisted only of some earthen vessels for cookery, tortoise shells for spoons and dishes, and calabashes, bamboos, and skins for holding milk and butter. The weapons for bunting or warfare-the assegai, the bow and poisoned arrows, the shicld, and the kerrie (a stick with a large knob at one end)-were also part of the furniture. Women were held in high repute: the most sacred oath a Khoi-Khoi conld take was to swear by his sister or mother; yet the fomales ate apart from the men, and did all the work of tho kraal Their usual food consisted of milk, the flesh of the buffalo, hippopotamus, antelope, or other game, and edible roots and bulbs or wild fruits. Cows' milk was commonly drunk by both sexes, but ewes' milk only by the women, and when cows' milk was scarce the women were obliged to keep to ewes' milk or water. Neats were eaten cither roasted or boiled, but for the most part balf raw, without salt, spices, or bread. Some meats they carefully abstained from, such as swinc's flesh Hares and rabbits wery forbidden to the men, but not to the women; while the pure blood of beasts and the flesh of the mole were forbidden to the women, but not to the men.

Their social pleasures consisted in feasting, smoking, dancing, and singing. Erery signal crent of life, and every change of abode and condition was celebrated with a feast. On the formation of a new kraal an arbour was constructed in the centre, and the women and children adorned and perfumed it with Bowers and branches of trees and odoriferous herbs. The fattened ox was killed and cooked, and the men partook of it in the arhour, while the women sitting apart regaled thenselves with broth. Upon such occasions they indulged in no other intoxication than what arose from their smoking tobacco or daccha.

Ciremmeision, which is common to the Kantre tribes, was unknown to them, but wheu a youth entered upon manhood a particular cercmuny was performed. One of the elders or ofliciating priests, using. a knife of sharp quartz, made incisions on the young man's body, and afterwards besprinkled the same with urine. When a man for tho first time distinguished himself by killing an elephant, lippopotamns, or rhinoceros, similar marks wore mado on his body, and were regarded as insitmia of honour. There was no purclase of wives, but in every case of marriage the consent of the parents had to be first obtained. If his proposals were accepted, the suitor accompanied by all his livadred drove two or three fat oxen to the house from which he was to take his destined bride. There her assembled relations received them with kindly greetings an 1 caresses: the oxer were then immediately slain, ani
every one participated in the bridal feast. The nuptial ceremony was coacluded by the priest besprinkling the happy pair. Among the colonial Hottentots these ancient usages bave long been set aside; but they are still continued amoug sonte of the surviving tribes north of the Orange river. Polygamy was practised, but not to any great extent. Divorce was much more common. Family names wera perpetuated in a peculiar ranner-the sons took the family name of the mother, while the daughters took that of the father. Thus if the father's and mother's names were respectively Hagub and Daimūs, the sons would be called, according to their age, Daimūb geib (big one), Daimūb! naga mab (of lower standing), and Daiinüb ! Kham (younger) ; and the daughters, Hagu-geis (eldest), Hagu ! nagamas (second), and Hagu \ddagger Khams (younger). The children were very respectful to their parents, by whom they were kindly and affectionately treated. Yet the superannuated or aged iather or mother was sometimes exposed and left to dị. Namaquas say this was done by very poor people if they had no food for their parents. But even when there was food enough, aged persons, especially romen, who werc believed to be possessed of the evil spirit or devil were placed in an enclosure of bushes with some meat and water, intended to be their last nourisbment.
The Hottentots had neither warlike nor pastoral 6ongs, and their musical instruments were but few and simple. One named the "gorah" was formed by stretching a piece of the twisted entrails of a sheep along a thin hollow stick about three feet in length in the manner of a bow and string. At one end there was a piece of quill fixed into the stick, to which the mouth was applied, and the tones were produced by inspiration and respiration. Another, the "ramkee," was constructed on the zame principle us a guitar, with three or four strings stretched over a piece of hollow wood. The "rommel.pot" was a kind of drum. Reeds several feet long were likewise made use of as flutes. ${ }^{1}$

The system of government was patriarchal. Each tribe had its hereditary "khi-khoi" or "gao-ao" or chief, and each kraal or encampment its captain. These met in council whencver any great matters affecting the privileges of the people bad to be decided. They had no salary, but their persons were beld in great reverence, and they were instailcd in office with solemnities and feasting. In certain tribes the hiod part of every bullock which was slaughtered was sent to the chief, and, this he distributed among the males of the rillage. He also collected sufficient milk at the door of his but to deal out amongst the poor. A part of every animal taken in bunting was exacted by the chief, even though it was in a state of putrefaction when brought to him.

The captains assisted by the men of each kraal attended to the settlement of disputes regarding property and to the trial of criminals. A murderer was beaten or stoned to death; but if one escaped and was at large for a whole year, he was allowed to go unpunished. Adultery seldom occurred; if any one found parties in the act and kilizd them he was no murderer, but on the contrary received praise for his deed. Women found offend-

[^55]ing were burnt. Theft, especially catile-stealing, was severely punished. ${ }^{2}$

The religious ideas of the Hottentots were very obscure. Vaillant says they bad "neither priests nor temples, nor iduls, nor ceremonials, nor any traces of the notion of a deity." Kolben, Tachart, and others, bowever, assure ws that they believed in an invisible deity or "Great Captain," whom they namcd Tik-guoa (Tsu-goab), a good man who did them no harm, and of whom therefore they nee. not be afraid. They also spoke of other captains of less power, and of a black captain named Gauna, who was the spirit of evil. The moon was a secondary divinity, supposed to have the disposal of the weather ; and on eacli occasion of the appearance of the crescent moon in the sky they assembled from night till morning, dancing, clapping hands, aud singing their bymus. ${ }^{3}$ Schmidt, the first missionary to the Hottentots, says they also celebrated the anniversary of the appearance of the Pleiades abuve the eastra borizon. Habn states that at the present day the Topnaars of Sandwich Harbour and of the ! Khumab mountaius worship a being whom they name Tusib, the rain god. He also reports that be heard an old Namaque saying, "The stars are the couls of the deceased," and mentions a form of imprecation, "Thou happy one, may misfortune fall on thee from the star of my grandfather."

Their notion of the supreme being and their relations to a life her cafter also took the form of aucestor-worship. The deifie u ero was named Heitsi-Eibib; and of him endless stories are told. The one most generally accepted is that he was a notable warrior of great physical strcagth, who once ruled the Khoi-Khoin, and that in a desperate struggle with one of his enemies, whom be finally overcame, he received a wound in the knee, from which event he got the name of "the wounded knee." He was held in ligh repute for extraordinary powers during life, and after death be continued to be invoked as one who could still relieve and protect.' According to the tradition still preserved among the Namaquas, Heitsi-Eibib came from the east. Therefore they make the doors of their huts towards the east, and those who possess waggons and carts put their vehicles alongside the mat-bouse with the front turned towards the east. All the graves are in true west easterly direction, so that the face of the deceased looks towards the east. The spirit of Heitsi-Eibib is supposed to exist in the old burial places, and, whenever a heathen Hottentot passes them, he throws stones on the spot as an offering, at the same time invoking the ejpirit's blessing and protection. Hahn asserts that there are many proofs which justify the con. clusion that, to the minds of the Khoi-Khoin, Ileitsi-Eibib and Tau goab (the supreme being) were identical. Both were higher powers who took great care of nien. Both were believed to have died and rison again. They killed the bad beings and restored peace on earth; they prumised mea immortality, understood the secretz of nature, and could foretcll the future. The Heitsi-Eibega ere to be found all over South Africa. ${ }^{4}$

Various ceremonies were practised to ward of the evil infuence of ghosts and spectres, and charnis were freely

[^56]employed. ${ }^{1}$ "were was also a belief that in every tountam there was a s-ake, and that as long as the snake remained there water would continue to flow, but that if the snake was killed or left the fountain it would cease. Offerings were sometimes made to the spirit of the fountain. Like all people sunk in barbarism, the Hottentots had great faith in witch-doctors, or sorcerers. When called to a sickbed, these ordered the palient to lie on his back, and then rinched, cuffed, and beal him all over until they expelled the illness. After that they produced a bone, small srake, frog, or other object which they pretended to have estracted from the patient's body. If the treatment did not prove eficacions, the person was declared bexitched begond the poster of any one to curo him. Sometimes a joint of a finger was cut off from the idea that the disease would thereby pass amay. If death occurrid, the corpse was interred on the day of deccase., It was wrapt in skins, and placed in the ground in the same position it once occupied in the mother's womb. Dealt was generally regarded in a very stoical manner.
Ranguage
The Hottentot language was regarded by the early travellers and colonists as an uncouth and berbarous tongue. The Partuguese called the native manner of speaking stammering ; and the Dutch eompared it to the "gobbling of a turkey-cock." These phonetic characteristics arose from the common use of "clicks," - sounds producel by applying the tongue to the teeth or to varions parts of the gams or roof of the mouth, end saddenly jerking it back. Three-fourths of the syllabic elements of the language begin with these clicks, and combined with them are several hard and decp gatturals and oasal accompaniments. The difficily o European Was in acquiring on accurate pronunciation is not so much in producing the clicking sound siagly as in following it immediately with another letter or syllable. The four recognized elicks,**ith the symbols renerally adopted to denote them, are as follows:Dental = 1 ; palatal - II ; lateml $-\|$; cerebral \Rightarrow !. According to Tindall, one of the best grommarians of the language, the dental click (simitar to a sonnd of surprise or iadignation) is prodoced by pressing the top of the tongue against the upper front teeth, nnd then suddenly and forcibly withdrawing it. The palatal click (like the crack of a whip) is produced by pressing the tongle with as fiat a surface as possible against the termination of the palate at the gums, so.that the top of the tongue tovelies the upper froot teeth and tho back of the tongue lies towards tbe palate, and theo forcibly withdrawing the tongue. The cerebral click (compored to the popping of the cork of a bottle of champagne) is produced by curling up the tip of the tengue agaiost the roof of the palate, and mithdrawing it suddenly and forcibly. The lateral click (similar to the sound used in stimulating a horsa to action) is articulated by covering with the tongue the whole of the palate and producing the sound as far back as possible; Euronean learners imitate it by placing the tongue ngainst the side tecth and then withdrawing it. The easiest Hotentot clicks, the dental and cerebral, havo been adopted by tho Katfres; and it is a atriking circumstance, in evidence of the past Hottentot inflience upon tha Kiffre langnages, that the clicking decreases amongst these tribes almost in proportion to their distance from the former llotentot domain.

The lagnage io its grammatical structure is beantifnl and regular. Dr Bleck describus it as hering the distinctive features of the suthix-pronominal order or higher fesm of languages, in abich the pronouns are identical with and borrowed from the terivative auffixes of the nouns. Tho words are mostly monna;plables, olways ending, with two cxceptions, in o rosel or nasal aomd. Among tho enosonants neither l, f, nor v are found. Thero nre wo g 's, g tal and g guttaral, and n deeper guttural k. liphthongs nhound. There is 110 article, but the delinite or indefinitus sanse of a mun is dutormined by the gender. In tho fullest known dialect (that spoken by the Namajua) nouns aro formed with eight different sullixes, which in nouns designating fersons distingrish masc. sing. ($\cdot()$, mase. plur. (- Re $)$, masc. dand (hhar), f(m. sing. ($-s$), fem. fhr. (ℓ (i), com. sing. ($-i$), com. phur. (-u), com rluat (ra). The niljectivo is either prefixed to a nom or referrol to it by a suffixed jronoun. This grammatical division of the noms necording to gender led to the elassification of the
I If a Khoi-khoi went out hunting hin wifo kindled a fire, and assinhondy watched by it to keep it alive; if tho fire should be extinguished her hasbars] woukl not be lueky. If sho din not mako a fire, she went to tho water and kept on thrownge it about on the aponnd, believing that therchy her himshand would be successful in petting ganle. Charms, consisting of lioneq, iurnt wond, and roots of
 the neck.
angrage as " sex-denoting," thus muspesting if not idenitilyng its relationship, in original stmucture, with the North-African species of the same family, such as the Ceptic and Old Egyntian, Galla, Berberic, Houssa, Ethiopic, and others.

There are four dialectical rarieties of the language, each win well-marked characteristics :-the Nama dialect, spoken by the Namaqua as well as by the Hau-Koin or Hill Damaras, a supposed Bantus or negro people who in somo past period were conquered and enslavod by the Namaquas; tho Kora dialect, spoken by the Korannas, or Koraquas, dwelling about the middle and-upper part of the Orange, Vaal, and Modder Rivers; the Eastern dialect, apoken by the Gona or Gonaquas on the borders of Kaffreland and the Canc dialeot, now no longer spoken but preserved in the records of early voyagers and settlers. Of these dialeets the Nama is the purest. It is described in three grammars:- Wallmann's (1857) and Hahn's in German, and Tindall's (1571) in English, the last being the best; and the four Gospels, with a large amount of missionary literature, bave been published in it. This dialnct is commonly spoken hy a native population of not less than 100,000 souls south and north of the Oragge river, and in parts of Damaraland (or Mereroland) and the Kaokoveld.

The vocabulary is not limited merely to the expression of the rude conceptions that are characteristic of primitive races. It possesses such words as koi, human being; hhoi-si, kindly or friendly ; koi-si-b, philanthropist; hhoi-si-s, humanity ; \#F $c i$, to think; \#t ei-s, thought; ano, eternal; amo-si-b, cternity; tsa, to feel; tsa-b, feeling, seatiment; tsa-kha, to condole; ama, true; ama-b, the truth; $a \pi u$, sacred; anu-si-b, holiness; csu, pretty; anu-xa, jull of beauty.
EA considerable mass of floating traditionary literature-fables, Folklore myths, and legeads-exists amongst the Khoi-Khoin,-a fact which was first made known by Sir James Alexander, who in his journeyinta through Great Namaqualand in 1835 jotted down the stories told him around the camp fire by bis Hottentot followers. Since theo missionaries and officials stationed in the country have made collections of them, and the result has been an unlooked for mine of literary lore among a astion whose mental qualifications it was customary to regard as of a very low grade. These Hottentot talcs generally have mach of the cbaracter of fables; some nre in many points identical with nortbern nursery tales, and suggeative of Europenn origin or of contact with the whito man; but tho majority bear evidence of being true native products. Bleck's Rcynard the For in South Africa (1864) contains in translation of a legend written down from the lips of the Namaqnas hy the Rev. G. Krönlein, which is regarded as an excellent apecimen of the national style. Another legend relating to the moon and the hare conreys the idea of an early concention of the hope of immortality. It is found in ranious rersirns, and, like many other storics, occurs in Busbman as well as in liottento: nythology.

The supposed alfinity of tho Hottentet with the North African Ethoe nations was first guessed at by the Rep. Dr Maffat from the resent- Eaphiow blance between the language of the Namaquars and that of some relationa slaves in the maket of Cairs. This rdationship mas afterwards suggested by the Rev. Dr Jomes Adamson, of Cape Town, from the identity of the signs of gender in Namaqua nad Coptic, and the appearance of persons of the Hottentot form and colour, with their grease and sibilo dye, amoag the representations on Nubian tombs. Then came br Bleck's phiblogical researches, showing that the Hottentot language from the sexmal gender of its nouns was one of the very extensive "sex-denoting" family which ha spread itsclf over North Africa, Enrope, and Inrt of Asia, and that it morcover surpassed all the others in a futhful preservation of the primitive type. This association of the langarge of the people of South Africa with that of their northern cousins promised to solve tho problem of their pedigree and aneestry, for it at once suggestod and iminhied early misrations of Hottentot and Bushmen from their primal home, aud the intrasion upon them at somo time or other of tho Bantu or negmid tibes, whe promably came from the west and drove the llottuntots on the castern sille of Africa southwand hefore them. But the assumed kinship of the Onl Egyptions and Hottentots has been disputed hy other eminent nathorities, such as Yon Gabelentz, Pott, Fr. Miller, nud Hahn, who have pronouncel against it on cthnological and philolngical grounds. Hahn stoutly maintaias that the Hottentots and Bushmen are bat divisions of a single race-" the children of the same mother"-who formed the primeval inhabitanta of tho whole of South Africa as far as the Zambezi. ${ }^{2}$

The earliest necounts which we hnvo of the Hoticntots occur in "iliswor. the narratives of Vasco da Gama's first voyage to India round tho Cafe in 1.197. They are described as small, of a brownish.yello. comphexion, and an ugly arpearance; they freely bartered their shear, but would not part with their cattle, on which tho womon

2 See the linguistic part of Dr Fr. Müher's work on tho reientifio results of the Novara expedition, aod Hahn's contributions on the Ilottentots in the Procemings of the Geostaphical Sorinty (Drearlf,1, 1869) and in Cloint (1870), and his Sprache ther Nama (Lejpsic, 18701

Forde with pack saddles. In 1509 the Portuguese viecroy, Francisco d'Almarda, count of Abrantes, met his death in a dispute with these natives ; and down to the early part of the 17th century thero was an idea that they were eannibals. Better knowledge was obtained after the Dutch East India Company took possession of the Cape in 1652. Aceording to the accounts given by the early Dutch governors the Hottentots received the Europeans in a friendly mammer. The Dutch upon their first settlement were not chargeable with cruelty or oppression to the natives. 'Their primary intention when they erected a fort and took possession of Table Valley was merely to secure supplies of water, cattle, and other hesh provisions for their passing flects; and the only mode in which they could accomplish this object was by maintaining friendly relations with the aborigines. These relations continued nutil "659, when a collision occurrecs which led to some bloodslied
To prevent disputes about pasturage and eattle forays in the future, ena of Van Riebeck's successors purchased in 1072, at the cost of goods about $£ 10$ value, from two of the Hettentot chiefs, who clained to be hereditary sovereigns, all the country from the Cape peniasuln to Saldanha Bay, -but on the condition that, where the colonists did not occupy the arable lands or pastures, the natives might erect their krails and pasture their cattle freely,
During the years which followed, the European popmation, not. withstanding renewed hostulities in 1676 and 1677, consulerably iacreascl, aod the settlement enlargel its boumaries, while the nativea ejected from their former pastures retured upun their neighbours, and waged war among themselves. Sinnltaneonsly with the tribal disintegration and impoverishment which ensued, the occurrence of aew and infectious diseases mude sad havoe; and, while the tide of European occupation was grsdually advaneing inland from the south, a sumilar movement by the negro watrior tribes who hava received the common appellation of Kafires was taking placa in the east, with the result that about the middle amd the end of tha last century the former inhabitants of the iand were but occupants on sulferauce. Straggling remnanty still mantuined their independence, living in small kranls or societies, but the mass of them voluntarily took service with the colonists as herdsmen, while others becane hangers-on about the company's posts and grazing-farms, or roamed about the country. In 1788^{7} the Dutch Government passed a law subjecting thesa wnoderers to certain restrictions. They were required to have a residence, and were forbidden to change their place of abode without "passes " or certificates from the authorities or their masters. Another provision gave their enuployers the right to tha services of their children non eight to eighteen years of age, if born on their estates. At the sanue time corporal punishment and conhiscation of property were threatened against any colonist convicted of ill-treating Hottentots, or of forcibly separating them from their wives and children. The effect of these measures of restraiut was to plaer the Hottentots in more immediate dependence upon the farmers, or to conpel thein to migrate to the northward beyond the colonial border Those who chose the latter alternative had to encounter the hostility of their old foes, the Bushmea, who were widely siread over the plans irom the Nieuwveld and Soceuwberg mountains to the Olangs iver. The culomists also, pressiog forward to those teritories. ame in contact with these aboriginal Ishmaelites - their cattle atd sheep, guarded only by a Hottentot berdsman, offering the strougest remptation to the Bushman $\&$ Reprisals fillowed, and the position becime so desperate that the extermination of the Bushmen appared to the Government the only safe alternative. "Commandoes" or milhtary expeditions were sent ont against them, and they wera hunted down like wild beasts. Within a period of stx years, it as said, upwarls of 3000 were either killed or taken. In conseynence af cettain meusures of restraint and conciliation insisted on by the anthoritics at a later period, the Boers rose in rebellion, and a state of anarelly ensued, which was prevalent when the British Government took possession of the Cape in 1795 . No sooner was the English standard raised in the comntry thau the Hottentota aban. lund their Cormer masters and joined the British troops, a step wheh helped to bring about the prompt aubnnssion of the Boer insurgents. Tranquillity being thus restored, the llottentots, lear. mg to return to their Dutch masters on the withdrawal of the British troops, requested the Government to make some provision for them. This petition and appeal being neglected, many joined their barbarian neighbours, the Kaffres, and togother with them fell sudlenly upon the colonists all aloog the border and even as far westward os the district of George. It was not till 1800 that they were ultimately prevailed upon to deliver up their arms. The English governor of that day, General Francis Dundas, showed an earnest desire to do justice to the Hottentots. Such as were dispnsed. to enlist werc enbodied in a militia corpo named the Cape Regiment, afters ards known as the Cnpe Mounted Riffes.

The llottentots were not rescued from their state of servitude, or released from the restraints and disabilitios imposed upon them by the Dutch authorities until long after the British rule had been permanently established in South Africa. A proclamation issucit in 1309 gase them a greater degrec of sccurity in their contracts of
service with the colonists; and subsequent regulations provided for the better protection of their persons ind property. Put with the exception of those individuals who found asyluns in the missionary institutions of the Moravian Brethren and of the L.ondon Missionary Society, or who served in the Cape regiment, they were still in the service of the farmers, subject to indenturesbip and to rigorons control in moving from place to place. At length in 1828 the representations of English fhulanthropists prevoled; i law was promulgated eluectually enmancipating the Hottentots and all free Icrsons of eoluur from compulsery service and all other disabilities, and declaring them "to be in the most full and ample manner entitied to all and every right, benefit, and privilege to which any other British aubjects within the colony were entitled ${ }^{-\prime}$
Following upon the the Government adopted a measure allotting certain lands for the use of Hottentot families. A tract known os the Kat River Valley, from which the Kallite chief Macomo hall been expelled for his aggressions against the colony, was set apart for them. It was divided ioto locations, ulon which villages were lad out, each fanily receiving a number of acres as their allotment for cultivation, and the pasturage being reserved for commonage. Numbers of Hottentots soon niade their appearance and sctied on the spet. Some were fossessed of a quantity of live stock, which they had carncd in the service of the farmers, or at the misslon stations; but most of them owned no property. Those who had cattle assisted ther peorer friends and relatives; those who had nether food nor friends lived upon "veldh:ost," i.e., the wild ronts and bulbs dug out of the ground until the laud they had planted returned thern a harvest. Within a few years they surmonnted their first ditficulties, and their progress and prosperity delighted the friends of the coloured nuee. Three or four years afterwards, however, they suffered a good deal from Kaffre aggressions, and in 1835 had to bear the brunt of the war, being exposed to the most determmed attacks of the followers of Macomo and Tyali. They had scarcely recovered from the disnsters then intlicted, when the ontbreak of 1846 occurred, and all their able-bodied nuen had again to leave their homes and join the military encampments. Whin allowed to return to their locatious, they found, like many other froatier inhabitants, the result of alf their former labours destroyed; their houses had to be rebuilt, therr lands to be cultivated, and their families to be fed. From this time a spirit of dissatisfaction erept in amongst them. They complained that while doing burgher duty they had not received the same treatment as others who were serving in defence of the colony, that they got no conpensation for the losses they had sustained, and that they were in varions ways made to feel they were a wronged and injured races The location of a disloyal Kaffye, named Hemnanus, with a number of disorderly followers in their nejghbourhood, served to corrupt and estrange the feelings of many, and a secret combieation was formed "ith the Kathes to take up anns to sweep the Europeans away and establish a hlettentot republic. In 1851 about 900 of them broke ont into relellion, and thenr numbers were increased by desetters from the Hottentet regiment of C'ape Mounted Rifles, and by several Hottentots in the service of the frontier farmers. A small body, however, remained loyal, and with the missionaries and the local mugistrates withstood the rebels nntul militaly aid came to their relief. The Kat River populntion have since had a long geried of peace and good government, and are now as loyal and harpy as any subjects of the cromn.
(w. J. N.)
hottinger, Johann Hemrtce (1620-1667), a Swiss philologist and cheologian, was born at Zurich, 10th March 1620 . He studied at Gihent, Groningen, and Leyden, and after visiting England was in 1642 appointed professor of church history in his native town. To the duties of that chair those of Hebrew at the Carolinum were added in 1643, and in 1653 he was appointed ordinary professor of logic, rbetoric, and theolngy. Nothwithstanding this plurality of offices be found time to publish a mumber of pamplets, chictly on the original text of the Old Testa. ment, which gained bim such a reputation as an Criental scholar that the elector palatine in 1655 appointed bin professor of Oriental languages and liblical criticism at Heidelberg. In 1661 be, Lowever, again returned to Zurich, where in 1662 he was chosen principal of the university. In 1667 he accepted an invitation to become professor in the university of Locyden; lut on the journey thither he was drowned along with three of his children by the upsetting of a boat while crosing the river Limmath.
Hottinger was the anthor of a variety of learned theological works. the principal of which are H istorice reclesiastice, 9 vols., 1651-6": Thesaurus milologicus scu clavis Scriptura, originally published is 1649 ; Elymologicon orientale, sitc Lrxicon harmonicum heptaglotlon, 1601. If also wrote a llebrew and a Chaldee granmar.

HOUBRAKEN, I ACODUS (1698-17S0), Dutch engraver, was born at Dort, December 25, 1698. All that his fatleer, Aroold llauluaken, bequeathed to bim was a fine constitu. tion and a pure love for work. In 1707 lie came to reside at Amsterdam, where for years be bad to struggle inces. zantly against difliculties. He commenced the art of ongraviog by studying the works of Cornclis Cort, Suydernoef, Edelinck, and the Visschers. He devoted himself almost entrely to portraiture, and as his reputation becane known in and beyond the boundary of bis country he soud founl himself with coromissions more than the could conveniontly execute. Seeking happiness in the bosom of his family, and being temperate in bis labits, he lived to an allvanced age, and the work exceuted the hast year of has life staows no failug of his power in the uss of the burin. Among his best wurks are scenes from the cumaly of De (hudehte Solijndeugd, executed in his evelitueth ycar, after Cornclis Troost, who was called by bis countrymeo the Dutch Hogarth, with, however, very sinall citle to sucis a distinction. Houbrakea died on the 14 h of Novenber 1780, having nearly completed his cighty-seend year.
Tipe A. Ver Hnll, Jawhus Howbraken of son Fuvre Armhem. 1875. whete 120 engraved works are fully described

HOUDON, Jfan Avtoine (1740-1898), was the inust distunguisbed sculptor produced by France in the latter half of the l8th century. He was born at Versailles in 1710 , and at the age of nineteen, having learnt all that be could from Michel Ange Slodtz and ligalle, Houdon carned off the prix de Rome and Ieft France for Italy, were be spent the next ten years of his life. His brilliant talent, which seems to bave been formed by the influence of that aorld of statues with which Louis XIV. peopled tho gardens of Versailles rather than by the lessons of his masters, delighted Clement XIV., who, on eecing the St Bruno executed by Moudon for the chureh of Si Maria "crgit Angeli, said "he would speak, were it not that the rules of bis order impose silence." In Italy llondon had lived in the presence nf that second Renaissance with which the name of Winckelmam is for ever associated, and the direct and simple treatment of the Morpheus which he sent to the Saloo of 1771 bore witness to its influence. This work procured him his "agregation" to the Academy of Printing and Sculpture, of which he was made a full member Ir. 1775. between these dates Hondon had not been idle; busts of Catharine II., Diderot, and Prince Galitzin wero remarked at the Salon of 1773 , and at that of 1775 he froblucen, not only his Morpheus in marlle, but busta of Turgot, Glack, and Sophic Arnoula, together with bis *ell-kaown marble relief, "Grive suspendue par les metes." He took also an active part in the leaching of the academy, and executed for the instruction of has pupils the celebrated Feorche still in use. To every Salun Hoodon was a chicf contributer; must of tho leading men of the day were his sutters; his busts of F'Alembert, I'rince Ilemry of Prussia, Gerbier, Buffon (fur Cuthariac of Cussia), aml Mirabeas are amongst the most remarkable portraits of modern thes ; nul in 1778, when tho news of linussean's acath reached him, Homben fonted at ouce for lirmenomille, and there look a cast of the deal man's face, from which he prodneel elie eramd
 daped statue of Voltaire, mow in the vestitale of the Theitre franesis, was exbithited at the Salon of 1781 , to whirh Hambon also sent at statwe of Iar:hal de Pourville, romuissmend by tho king aml the Dima executed for ('athrerine 11. 'This work was refused; the jury alleged that a statue of I biana demanded drapery; withont impers', they said, the golless herame a "smivante de Verms," anil not even the proud ami frank chastity of the attitude nal
expression could save the Dhatia ol Hundurn (at braze repro duction of which is now in the Louvre) from insult. Whether Mouden felt annoyance at thas fully does aut appear; but three years later be very readily accepted an invitation to go to America, there to carry out a statue of Wastiogton. With Franklin, whose bust he had recently executed, Houdon left France in 1785 , and, staying sume time with Washington at Philadelphia, be modelled the bust, with which he decided to go back to Paris, there to complete the statue destined for the assembly hall of the State of Virginia. After bis return to this native country Huadon esecuted for the king of Prussia, as a companion to a statue of Summer, La Frileuse, a naif embodinent of sbivering cold, which is one of his best as well as one of his best-known warks. The Revolution interrupted the busy How of commasstons, and Houden tuok up a ballffurgoten project for a statue of St Scholastica, which had loug been put on one side in a corner of his studio. He was immediately denounced to the coarention, and his life wis only saved by his instant and ingenious adaptation of St Scholastica into an embodiment of Philusozhy Conder Napoleon, Iloudoa received littic omployment; be was, buweser, comimissioned to execute the colossal relicfs litended for the decoration of the columo of the " Grand Army" at Boulogne (but which ultimately found a different lestination); he also priduced a statue of Cicero for the senate, and various busts, amnogst which may be cited those of Marshal Ney, of Joscphine, and of Napoleon bim. self, by whom lluadon was rewarded with the legion of honour. After the fall of the first empire Moudon suddenly aged; he lost his memory, and slept away the closing years of his life. He died at Paris in 1825.

The most striking characteristic of his work is the life by wheh it is animated, and which is the result of marvellous skill in executhon and keenness in observation. He was, in all be dad, great. Hhs bust of Voltaire is deservelily one of the most famous in the whole range of molern sculpture, aud his genal reading of Rous-scau-a splendial yot brute rirility tempered with the gift of tears -is a masterpiere of msight into character. But Houdon's power was no less triumphant 10 remtering the beauly of youth and the beanty of beautiful women His. Dtina proved that he conld pene. trata the seeret of an uteal of noble momanhood; his heads of young grats have been compard with the gracerul children of has contemporary Grenzo, but the minocent candour of Hudon's work is entirely free from the self conscousness which disturts the tharto of La Cruche Cassce nud her companions Firiglly, llondon canunt be claimed, like Greuze, as representing the pophlar tendencies of the society to which he belonged: fol, whereas Greuze, lihe most men, hore tho stamp of his time on all he dut, Houdon was one of thase rare spmets whe, doing the wark of their own tme, set their own seal thereto.

HOUND. The foxhound, barrier, and beagle are now the only representatives of whatever varieties of bounds existed previously in England. The staghound phen $^{n+1}$ is practically extinet, no pack of them baving been kepe since 1525. When the Deron and Somerset estahlishment was broken up and the pack sold With the exceptom of Lord Wolverton's black St lluberts, all bounds now used for starghnting are singly those of the foxhound breed entere to deer instead of to fos. Most packs of staghonds ar, componed of bounds of the orhnary size, but it is saill than the present master of the Devon and Somerset (l8s0) uses mone umder 25 taches, and exchales bithes altogether.

The modern Eaghsh foshound is nbout as near per-tos. foction as he can well be, amd bis cacellence is all the bomms mure womderful that loss than 200 years ago there does not seem to have been in existence any homb hewing ? tesemblane to him; for, uatil fos hunting by lownds kep for that especial purbose was instituted, there could hav been no reason to bred foshomads. Aecorting to did writers on hunting subjocts, there appear to have heet. amongst other varieties, the slow, plodhing, Ernthern home. with a areat square bead and wondrons mowers of woking
on a scent, and the lighter northern hound; and as all animals improve under the care and guidance of man, until they assume the character of a distinet breed, it is clear that such has been the case with foxhounds, the earlier breeders of which did their part towards the attainment of perfection, by breeding with much care and judgment from the best specimens at their disposal. Older breeders were satisfied if the result of their crossings gossessed good noses, and were up to the standard of beauty of those days; but the time eame, in the days of the great Sleynell, when pace had to be added to the list of foshound pirties, c.ring to the use of better bred horses in the hunting field, and at the present day the development of pace without sacrificing nose is one of the greatest diffisulties a breeder has to contend with.

The mastership of a pack of foxhounds is an undertaking of great responsibility. In the artiele Hunting mention is made of the difficulties which beset a master when be takes the field; but after all, the greatest exercise of judgment is called for in relation to the kenuels, for upon the master, in conjunction to a greater or less extent with the huutsman or kennel huntsman, rests the responsibility of selecting suitable sires and dams for the young hounds he intends to brced; of drafting such hounds as it is thought desirable to part with owing to their being over or under sized, or possessed of come failing ; and of obtaining drafts from other establishments. Mere than one opinion zxists as to what is the proper size for a foxhound, but some of the greatest autherities having expressed their convietion that from 21 to 22 inches for bitches and from 23 to 24 inches for dogs is the proper standard, ia master could hardly do wrong in adopting it. A hound's head should not be too large, ner, on the other hand, should it be too narrow, or else, like the greyhound, he will possess speed, butbe deficient in uuse. There was much truth in Mr Wsrde's remark, who, un overhearing a stranger finding fault with his hounds for baving sueh large beadz, said, "Their knowledge boxes (as he called them) are large, but size has this advantage, that when they once put their noses down to the ground they cannot get their heads up again." The neck should be ueither too short nur throaty; that is to say, there should be no dewlap. The shoulder should slope like that of the borse, and there should be plenty of muscle in the arm. Below she knee a hound should be quite straight, and the distauce should be short between the knee and the foot, whi-h must be short and round like a cat's foot. So, too, wish the hind Kegs; specd and strength alike call for great inngth from the bip to the hock, and as little as possible from the hoek to the foot; the haunches or gaskins should be wide and well furnished with muscle. A flat-sided hound should be drafted at onee, as he is sure to be a bad xinded une; so should one that stands over at the knee when looked at sideways. How to combine all the good points in one hound requires no little judgment, but appearance is not all that must be thought of ; the breeder must Lave an eye to nose, pace, etoutness, and the avoidance of certain faults in the field. In order to produce a goodlouking puppy, dams and sires, perfect enough as regards mako und sliape, are often selected before they have taken the field long enuugh to have their good or bad points developed. Three years is quite early enough to begin to breed from any hound, nale or female, and hy that time it will be pretty well known what are the hunting capabilities of each. Out of every litter of whelps it may be hecessary to destroy some, - four or five are quite cuough for a mother to rear,-but a dive:sity of opinion exists amongst huntsmen as to whieb should be kept. As the points of a very young puppy cannot be seen, the selection is really one of colour; some men prefer light colours, others dark; the majority are in favour of the Istter, light-coloured hounds
and horses being popularly supposed to have weak constitutions and uncertain tempers.

When the puppies are three or four days old the dew. claws. should be scvered rith a small and sharp pair of seissors, and after another day or two it is usual to crit ofif about an ineh of the tail. Rounding is the last operatiou that foxbounds are subjected to, and generally takes plaee as soon as the puppy has quite recovered from the distemper; it consists in cutting off the ends of the ears so that they may nut be torn in geing through cover. When about ten or twelve weeks old puppies are sent out to walk, and are not again received at the kennel till the beginning of the following April, soon after which date the distemper may be luoked for. At this crisis the great aim should be to keep the body in a healthy condition, and not to fecd hounds too highly, whey and porridge only being given. After the return from walks, the buntsman and whips should give the young entry plents of gentle exercise; at first in the couples; and nothing more need be done in the way of training until about eight or nine weeks before cubbing begins, when the young hounds, who should hitherto have been exercised by themselves, should be put into the company of some older ones, and the exercise should be gradually extended until they can keep up for 2 or 3 miles with a horse going at balf speed. The first day or two of culb-hunting is certain to be a somewhat unsatisfactory performance; the young entry are sure to run riot : it connot be helped at first, but they will soon learn bette: mannera under the watchful eyes of the huntsman and whips, and io company of the old hounds, about a dozen of the latter being taken out with twice that number of young ones. The sponer the puppies taste blood the better; it will help to tesch them to stick to their proper game. Huntsmen therefore make every effort to bring a brace of cubs to hand the first day they go out, but this thirst after blood should not be indulged to any great extent afterwards, or the stoek of foxes in the conntry may be much impaired, and sport thereby diminished. Tbere is perhaps nothing counected with hunting of more importance, and, it may be added, of greater interest, than good kennel management First of all it is shown in the formation of a level pack; for where things are done properly it is not enough to get together a lot of bounds that are good in themselves, they must also be, as nearly as possible, of one size. Then again, they must all be equally fast-to use a common expression, a sheet should cover them when running. Lastly, they must be free from certsin faults, such as muteness, babbling, aud skirting. A mute hound is a terrible nuisance. A fus is found and goes away unper. ceived; some time afterwards news is brought to the huntgman that a single hound bas been seen running bard a mile from cover. This is our mute friend, which got on to the line by himself and gave no notice to anybody. But a young hound that is reticent with his tongue should not be too hastily set down as mute; he may have been flogged for proclaiming a scent, under the mistaken idea that he was running riot, and if so it would have the effect of checking his music. "Dabbling" consists in a hound being toe free with bis tongue: after a fox has been found, the babbler announces the fact for tho next ten minutes, and repoats his refrain whenever the least opportunity presents itself. A hound may give tongue too much without bengg an absolute babbler, but a moisy bound is pretty sure to become a babbler, and when he is so he should be drafted at once. A "skirter" is a hound that will not run with the pack, but is always taking a lino of his own; like the babbler he should have every chance, but, if gentle as well as severe measures fail in effecting a reclamation, he too must be sent away. It goes without saying that where good kennel management exiats, the honnds will be well
disciplined, buth in and out of the keuriel. To the uninitiated, a visit to the kennel at feeding time is an interesting sight, notwithstanding the semeiwhat pungent smoll of pudding and boiled borse. The hounds, as hungry as the proverblal hunter, stand anxiously awaiting the order to fall to, yet not daring to move until the order is given; and when the huntsman thinks a hound bas eaten sufficient, the mere calling out of his name is suffieient to make him return to the benches, in spite of a desiro for a more prolonged stay at the trough. An extraordinary instance of discipline in the field is related by Colonel Cook in his work Observations on Fox-hunting, p. 202. With hounds as with horses, control over them will be best obtained by kindness: the popular idea is that huntsmen, whips, and feeders never set about their respective duties unless armed witt a formidable whip to be used on all possible occasions; but happily this is an entire mistake.

Feetung:

The feeding of a pack of hounds is a matter calling for the exercise of great care and judgment, and cannot bo properly carried out unless the establishment cujey the services of a thoroughly trustworthy feeder. His duty is to cook the food, and to keep the utensils clean and the kennel sweet and wholesome. Hounds' food comprises beth animal and vegetable substances. Objections bave pometimes been made to admitting the fermer into the kennel fare at all, on the ground that it is likely to impair the powers of scent, but the exception docs not scem to be well-founded, becauso wild dogs, as also welves and foxes, aro carnivorous animals and live by the use of their seenting powers; in moderation flesh is a necessity. Wheatmeal and barleymeal are eschewed, coarse oatmeal a twelvementh old being the only thing fit to feed hounds with. The meal is boiled in a large irou boiler (a smaller one of the same metal being reserved for boiling the flesh), and during the cooking tho feeder must be on the wateh lest any of it stick to the bottom of the beiler. When suffieiently cooked it is turned out into coolers. On meat being given it is cut into small pieces and stirred into tho pudding. In the summer young cabbages, given once every four days, form a wholesome food, and are vastly superior to potatoes, swedes, or any other root. Nith proper diet, an oceasional alterative, and plenty of exereise, hounds should seldom or never require to bo plastered ever with ointment in consequence of skin irritasions. The benehes should be littered with gool dry wheat-straw, which should he taken out of the kennel and shaken up every meming when the hounds are at exereise. Great clearliness is indispensable; the matural odour of a kennel is none of the sweetest, and if homuls are kept in the midst of dirt their pewers of scent will speedily deteriomate.
The harrier ake the foxhound is a very different animal from what he was one hundrel years ago. Then there were several sorts used in harehunting first came the old gouthern hound, used principally in heavy countries; the second varicly was a somewhat faster dog, with a sharp nose and pointed ears, and was lest adapted for an open country; thirdly, a rougher-conted bound; and lastly, tho oh fashioned blue mottled harrier, fomm in the Weald of Sussex and some parts of Kenc. The tirst and last of the above list are said tr have been endowed with wonterful 6eenting powers, and we are tohl that when these hounds were in use a ran of six hours after a lare was no uncommon ocenrence; lat they were so blow that the same anthrity thats us that they fatisued "the healloy funt man very litele," It is probate that the susuex bate mottled homm was the result of the first attempt to impowe the old smathom bomm, and to whan a speries baticulaty suitable for hare hanting, bat since thon almat all the traves of the wh hamiar have disameared, nutil at tho mesent time the mulem harrier i ithto mere
than a dwarf foxhouna. When pursued by the oidfashioned harrier, the hare had time to indulge in all those wiles in which our forefathers delighted, and of which they wrote at length in the hunting treatises of their time; but with the taste of the day in favour of pace, and with the modern harrier, the "curious and lasting spert" of old has been put an end to, and now the hare must, if the scent be moderately good, simply get away as far and as fast as pessible. Tho late Sir Jehn Dashwood King, of West Wyeombe Park, Bucks, is said to have been the breeder to Whom the sportsman is indebted for the present race of larriers. His pack did net exceed 18 inches io height. The parent stuck was a small foxhound from the duke of Grafton's kennel, named Tyrant, whese blood, form, ano character wero apparent throughout; and ao highly was the pack thought of that Lord Sondes, of Rockingbam Castle, gave 700 guineas for it.

The beagle (see DOC) is used in hunting the hare, but Beagles from its diminutive size it is not pessessed of great pace; it is therefore generally followed on foot, but it is a good plan to have one person on horseback, in order that the pack may be stopped if they get away from the field and make for a cover.

Tho real otter hound bears a strong resemblance to olter the old southern hound. The head is heavier than that houtde of the foxhound, and the eyes are deeply set as in a blood heund. The coat 's rough and somewhat wiry, but it should be thick: I'he otter heund is net very common, foxhounds being often used for otter bunting; but the Carlisle pack is of the true breed.

The remarks already made on kennel management apply, for the most part, in the cases of hounds other than foxhounds; all varieties need the same cleanliness and attention. The different game for whieh the hounds are entered of course necessitate some trivial adaptation from the course pursued in foxheuad kennels, but apeaking generally the management is the same.
(E. D. B.)

HOUNSLOW, a Lownabip, formerly a market-town, in the parishes of Isleworth and Heston, county of Midillesex, Eagland, is situated ca the great western coach roal, and on a branch of the Londou and South-Western Railway, 9 miles from Hyde Park Corner. In the Demesday survey Hounslow is mentioned as Honeslove and I/undeslave. It consists chiefly of one street about a mile in length. In the 17 th century it numbered about 120 houses, principally alchouses and inns. Irevious to the opening of the railway nearly 500 conches passed threugh the town daily. Ol late years it has considerably recovered from the depression caused by the opening of the railway, and a number of fine villas have been erected in the neighbourhood. A priory of friars of the lloly Trinity was founded at Heunslow in 1996, and existed till the dissolution of the monasteries. The priory chapel was used as a elurcly till 1830, when it was demolished, and the present ehurch in the later style of English architecture erected. Anather chureh in the Early linglish style was ercetel in 1874, and a town-hall in 1857. The surrounding country is flat and mointeresting, and to the west of the town there was at one time aas extensive heath, which, aecording to the survey of 1546 , had an area of 4293 aeres. It is the site of Roman and old Pritish camps, ind in later history was the seene of several important military rendezoms. For many years the hoath was a favourite resort of highwaymen, the carcases of whom used to be exposed on gibbets nlong the ruad. According to an Act passeal in the 531 of Cearge lll., the heath has been enclosed, and it is now nearly all cultivated. In 1793 laree eavalry baracks were erected "prom it, aml it also affords a site of extensive powder mills. Whe promhation of the tonvolhip in 1861 was 5760 , and in 157 it had increased to 9291.

HOUSE-FLY. Athough extremely abundant in individual representatives, by habit specially attached to mankind, of widely extended range (Nortin American and Abyssinian exponents are absolutely identical with Eurepean), familiar from the earliest times, engrafted upon the literature of all nations by proverbial and poetical allusions, and of later years affording material Ior much scientific microscopical investigation, -the dipterous species known to naturalists as Musca domestica apparently has twe peculiarities opposed to these premises:-one, that its lack of salient external features would puzzle any but a profound dipterulogist to define its specific attributes with absolute certainty; the other, that its earlier life history and transtormations remained practically unknown (at all events to ordinary readers) up to the year 1873 . It is scarcely within the province of this work to diagnose species; the instinets of the majority of readers will probably direct them at once to the right insect, which may be roughly deseribed as a quarter of an inch long, black, bairy, with a reddish uval vertical spet aud golden orbits, three grey longitudinal bands on the thorax, an interrupted yellowish band at the base of the abdomen, which has lateral and apical golden spots, and the base of the wings yellowishwhite. But not only allied species are liable to be confused with the bouse-fly; representatives of other genera, such as Anthomyin, Tachina, and Stomoxys, are often mistaken for it', and a puncture from the slarp beak of the lather fly das often caused a wrong charge ol blood-sucking to be brought against the subject of this notice, which has a short llestry bilobed tongue incapable of penetrating the skin, thouglı provided with a terminal framewerk of tracheal tubes, actiog like a rasp, by using which it often annoys us in the heat of summer. As regards the second point, Linnxus, who first oamed the fy, left its transfermations undescribed; De Geer in 1776, and Boucbe in 1834, describer the larva aod pupa, and correctly defined their habilat; but it has been reserved for Dr A. S. Packard, jun., the well-known American entomologist and bielegist, to make in therough investigation of their whele economy, whicin he has published in the Proceedings of the Boston Suciety of Natural History, vol. xvi. (for 1873-74), pp. 136-150, pl. iii.

The mioute dull chalky white eggs (usually about 120 in mumher), elongate oval and cylindrical in shape, are laid by the parent fly in erevices of fresh minure in or about stables,-beat, ond especially moisture, being required for their development. The larve are hatched in twenty four hours, and pass through three stages, averag. ing from five to seven days in all; in the second of its stages, the larva has been obscrved to increase by one-third of its lenesth in twenty-four honrs. They resemble those of the well.known incat fly, Calliphora vomitoria, but aro smaller, longer; more slender, trans. parent, sinooth, and shining, and regularly conical. The prop-len at the apex is also murh smaller, and cannot be seen from above when the larva is in motion. They cat the decaying parts of the manuro, leaving the bits of hay and strav. I'he puparium, or pupacase, is a quarter of an inch long, cylindrical, and dark brown, closely resembling that of Stomoxys calcitrane, from which it chiefly differs in the larger and squarer anal spiracles and the smonther apex. The enclosed pupia is of the usial type of tho ayclorbaphous Diptera, and is roadily distinguishable from that of Stomozys by its broad spatulate labium ond curved maxillary palpi; it rests in the case with the bard framework of the jaws of the old larva skin noxt the rentral sido; and when the fly pashes its way oat, after remaining from five to seven daya as a pupa, the upper end of the caso aplits off just behind tho suture between tho thorax and abdomen. The term "pupa" is here used in a general sense, since intermediate stages of devolopment (variously called "pseudo-nymph" or "semi-pupa") in that conditien occur in the Muscula, as In Hymenoptcra, Colcontcra, \&c.

On leaving the pupn-case, the fly runs about with its wings soft, small, and bogry, pressed to the siile of the borly, m: is in the pupr. It is pale, with the colours not get, and the membranous portion of its forehead constantly distends with air as the fly moves, being connected with the trachear. From Mr Lowne's oluservations oll the onatomy of the blow-fly, this organ is evi.
dently ctuployed for pushing uncy bece cnu of the plinitum when the pupa slips out of its case.
The whole period of evolution being thus from ten to fourteen days only, and the number of eggs laid by each female fly so muner. ous, it will be rendily seen that any slight personal inconveuience to man, as produced by the habits of the jerfeet iosect, are much more than compensated for by the unceasiug labours of its larva as seavengers; the benefit being the more direct as the work is invariably done elose to haman habitations. The workings of tho law of nature, by which on excess of inerease in any one species is cliecked, are consplicuously shown in the case of this insect. Not only do the ordinary parasites of its own class (some Hymenopiternus, and iu one recorded instance Coleopterous) attack it in its callier stages, but certain common birdq are particnlarly addici. 1 to it in the perfect state (in which also a Chelifer, a minute European representativo of the scorpions, nas also been fourd parasitically attached to it). The vegetable world also supplies some lethal agents in the shape of fungi (notably Empusa muscos), individuals destroyed by which are constantly to be seca in autumn anable to move, and distended or ruptured by tho expansion of the internal growth, the white spores of which are finally to bo observed scattered round their victim.

Trivial as the huusc.lly may appear even to entomologists, it is to be noted that recent observations by the German biologist Weissman on its development liave resulted in his discovery of its possessing "imaginal dises" in the carly larval state-a structure deemed of sufficient value to suggest a new division of the whole Insceta into "Discota" and "Adiscota."

HOUSELEEK, Sempervivum, a genus of omamental evergreen plants belonging to the natural order Crassiulacece. About 30 species are known in gardens, sunte of which are hardy perennial herbs, ai.. grow well in dry or rocky situations; the others are evergreen sbrubs or undershrubs, fit only for cultivation in the greenheuse or conservatory. The gelus Sempervivum is distinguished from the nearly allied Sedum by baving about 12 petals, and by the glands at the base of the ovary being laciniated if present. The common houseleck, S. tectorum, L. (Germ. Ifawwurael; Fr. Joubcrbe), is often met with in Britain on rocis of cuthouses and wall tops, but is not a native. Originally it was indigenous in the Alps, but it is now widely disjersed in Europe, and has been introduced into America. The leaves are thick, fleshy, and suceulent, and are arranged in the form of n rosctle lying close to the soil. The plant propagates itself by offsets on all sides, so that it forms after a time a dease cushion or aggregation of rosettes. The flowering stem, which is of rather rare occurrence, is about a foot bigh, reddish, cylindrical, and succulent, and terminates in a level-topped cyme, reflexed at the circumference, of reddish flowers, which bloom from June to September. The houseleek las been known variously as the Mouselick, Homewort, Great Houseleek, Scdum majus, and Crassulia major ciltera, Srdum acre, L., heing styled the Least Houseleck. In Gernany it is sometimes called Donterhrant, from being supposed to protecl the house on which it grows from thunder. The leaves are said to contain malic acid in considerable quantity, and are reckoned by herbalists to possess cooling and astringent properties. The leaves, freshly bruised; are applied to hemorthoids, hoils, wens, and corns, and the expressed juice is used as a remedy for inflammation of the eyes and freckles, and especially for thrush (aphthx) in children, also for stings and burns, erysipelas and herpes. Internally houselcek is used as a conling remedy in dysentery and fluxes. The yulang leaves have alse been eaten as salad, like Purfulacter. S. glutinosum, Ait., and S. Unlsamiferum, Webb, matives respectively of Marleira and the Canary Islands, contain a very viscous substance in large quantity, and are used for the preparation of bird-lime ; fishermen in Madeira, after dipping their nets in an alkaline solution, rub them with this substance, rendering them as tough as ieather. S. noutomum, L., ivdigenous in Central Europo, according to Gıelin, causes violent purgiog ; S. arboream, L., rò pé a ádílwov of Dioscorides, $^{\text {a }}$ is employed in Cyprus, the East, and nerthern Africa as
an externat remedy for malignant ulcers, inflammations, and buns, and internally for mncous discbarges.
Sce Britten and Holland, Victronary of Plant Names, pp. 265-271; Fristedt, Joannis Franckenii Butanologia, P. 60 ; Rosedhal, Flan. farum Diaphoricarkm, p. 526 .
hc ussa, Hevsa, haussa, or Mausa, an impertant people of the westera Sondan, forming a main element in the population of the country between 12° and $13^{\circ} \mathrm{N}$. lat., from the Niger in the soutb-west to Borau in the east. By Barth they are identified with the Atarantians of Herodotus; and it is certain that at a comparatively early date they attained great political power. The seven original states of Biram, Daura, Gobir, Kave, Rane, Katsena, and Zegzeg, furmed a great confederation or empire, which extended its autherity over many of the neighbouring countries, and retained its pre-eainence till the begrning of the 19th century, when the Pulle (Fellata or Fulbe) rose upon its roins. Physically the Houssa may be considered as the most typical of all the oegro peoples: they are strongly and somewhat heavily built, and even where there has been a considerable intermisture of Barber or Pullo blood, their racial persistence is very marked. In intelleciual qualaties they bold the very foremost rank among the negroes; they are excellent agricultnrists, and, almast unaided by forcign inflnence, they bave developed a variety of industries, such as the making of cloth, mats, leather, and glass, as well as a rery extensive trade. Ia Sierra Leone and the Gold Coast territery the Houssa form the backbone of the military police, and under Captain Glover, who was the first to eorel them under the British flag, they did good service in the Ashantee campaigns.

The Honssa or Afnn language ranks as one of the richest and mest cultivated in Africa; and it is not only the dominant vernacular througheut a large part of the Soudan, but serves as the meaus of communication in a great many places throughout the region to the south and west of tho Lower Niger. At Idda, says Bishop Crowther (Proc. Roy. Geng. Suc., 1877), we found Houssa becoming more generally spoken by the inhabitants, and at Igbegbi it is one of the prevailing languages of the mixed pepnlation of that town. From Lagos, Badagry, and Porto Nove, and upwards to the Niger, wherever Mahometans are fonnd, Iloussa is spoken by them; through it the Koran is explaned in the mosques throughont Yoruba. According to Dr Bakie (OLservations on the Hausa and Fulfulde, printed for private circulation, Lend. 1861) there are two master dalects-the Daura or eastern, and the Gabir or western. Of these the latter is the more original, the other the more refined. The Katsena form is very pare, and closely resembles the Gobir; that of Kane is extremely corrupt, though nut so much so as that of Zariya or Zozari. As an example of the richness of the vocabulary, Dr Crowther mentions that there are eight names for different parts of the day from cockerow till after sunset.
See El Hage Abd Salam Shabeeny, Account of Timbuctoo and Haasse Territories, 1820; Norri9, Dialogues and part of the New Testament inthe English, Arabic, JIaussa, ant Eomulanguages, 1853 ; Koclle, Pelygtoltre Africena, 1854; Barth, Travels in Aurth and Con. tral Afrera, wol. ii., London, 1857, and Central-Afrikianische Fobabularitn, Gothn, 1862 and 1866 ; Schon, firammar of the thatasa Lath-
 Dictiomery of the Ihatag Letegump, 1877. Schem has also prextuced Howsen translations of Gen. (1558), Matt. (1857), and Luke (1858).

HOUSTON, a city of the United States, capital of Ilanis county, Texas, and the next city in the State to Galveston as retgards both peplation and commereial enterprise, is situated on the loft bank of Buffile bayou at the licad of navigation, and at the junction of several railways, 50 miles north-west of (ialvestom. "l'he loym is crossed at Ilouston L_{y} severall bridenes. Mrist of the streets are shaded by fine overtues of trees, and the principal of them are traversed dy tranway cary. 'llow chicf baildinge are th:o city-hall
and market-bouse, completed in 1874, at a cost of 400,000 dollars, the masonic temple of the graod lodge of Texas, and the hotels, the largest of which is the finest io the State. The city is well supplied with schoels and churches, and has two large public libraries. It is the priacfpal railway centre of the State, and the depot of an extensive and rich agricultural region, besides being the seat of important and varied manufactures. The recent deepening of the bayou so as to make it navigable for vessels drawing 9 feet of water bas considerably increased the shipping trade, which is chiefly in lumber. The town possesses iren and brass fonoderies, railway machine shops, planing-mills, factorics for cars, waggons, and agricultural implements, sheet-iron and tin works, a large flour-mill, beef-packing establishments, and manufactures of cotton, soap, Portland cement, and boae dust. In the neighbourhood there are extensive ourseries. The annual fair of the State of Texas is held at Houston. The city, which was vamed after Samuel Houston, noticed below, was settled in 1836, and in 1837 it was for a sbort time the capital of the State. In 1870 the pepulation was 4382 , aud in 1880 it had increased to 17,000.

HOUSTON, Samoel (1793-1863), an American general and statesman, was bora near Lexington, Virginia, 2 d March 1793. On the death of bis father, a soldier of the revolution, in 1807, be removed with his mother to the frootier, aad settliag in Blount county, Tennessee, was soon oa familiar terms with the Cherokee Iodians. For a while he acted as clerk to a trader, and thea as village scbeolmaster; but in 1813 , after a resideaco of mearly three years among the Indians, he joined the United States army. He served with Jackson in the war against Great Britaio, and at the peace of 1515 had risen from the ranks to a lieutenancy. Although conscieus of his snccess, and prond of having won Jackson's friendship by his bravery, he thea resigned his commission and turned to the study and practice of law at Nashville. In LS23 Tennessce retarmed him to congress, a ad four years later he was elected gevernor of the State. He married in January 1829, and in the April fullowing, without assigning any reason, he anddenly abandeocd bis home and his office, and took up Lis residcace omong the Cherokecs, by whom be was formally adepted as a member of their nation. Returning to Washingten, be successfully pleaded their cause against the Gevernment agents who had wronged them. In 1832 he settled in Texas, and was soon after elected a member of the convention called for the purpose of framiog a constitution for that State, then io difficulties with the Mexican Goveroment. On March 2, 1836, Texas declared its independence, and, on the 2d of April following, won it on the ficld of San Jacinte, where Houston, who bad been appointed commander-in-chief of the Texas forces, with a body of 783 raw troops, defeated 1600 Mexican veterans led by Santa Amma. On the recognition of the independ. cnce of 'l'exas, Houston was elected president of the new republic, and re-elected in 1841; and, when Texas was admitted to the Union in 1845 , he was returned as one of its two representatives to the senate. There he distinguished himself as a zealous friend of the Indians, opposing the Kansas and Nebraska bill io a mernorabie sueech (3d Mareh 1854), and voting against the lecompton censtitution of Kansas. Ilis decided opposition to secession obliged him in 1861 to retire from the oflice of gevernor of Texas, which he had beld from 1859. He died at Iluntersville. Texas, 25 th July 1863. The here of San Jaciato was above all things an ablo soldier, wary, intrepid, and resolute: Uut be alse posseased as a legislutor the qualitios of rare foresight, oevl discrimination, and fearless candour.

See his life (New York, 1855), his teliers to the Fople (1Ssa and S. L. Kapp's History of America (New York, 18\%5).

TuUwAEKr, UEか.. Barı_o.n (1533-1598), Flemish poet, was the most prominent of the rhctoricians of his day. He held the title of "Counsellor and Master in Ordinary of the Exchequer to the Dukedon of Brabant." As a patriot and a friend of the prince of Orange he played a prominent part in the revolution of the Low Conntrics against Spain, and when the prince entered Brussels victorionsly, September 23, 1577 , Honwaert met him in pomp at the head of the two chambers of rhetoric, the "Book" and the "Garland of Mary.". He died at Esuesels, March 11, 1599.
His existing works are of an allegorical and highly fantastic rder, and prove him to bave been a disciple of Mattlys de Castelyn. He wrote the Commerce of Amorosity (Den Handel der Amourcnsneyt), consisting of four plays or moralities is verse, namely, LEneas and Dido, Narcissus and Echo, Bfars iznd i'enus, and Lexnier and Hera. His other principa! poem ts a didactic epic on the vanity of human love, Pegasiles Pleyn, of den Lusthof der shechden. These and other laborious und esemplary pieces gained him the titla of the "Homer of Brabant " frum his contemporarics. Houwaert prided himself on the introduction of classical and mytholorical names into bis poems, but be bad little or uothing of the antique spirit.

HOVEDON, Roger of, an old English chronicler, was in all probability born at Howden, in the East Riding of Yorkshirs, and was possibly a member of a family which had taken ite name from the place. The date neither of his birth nor his death is known, and the first notice we have of him is as being seut in 1174 by Heary II., on whom he was in attendance in France, to endeavour to induce the lords of Galloway to withdraw from their allegiance to the king of Seotland. He appears to have been recommended to the notice of Henry from his knowledge of law, and to have occupied a place in his huusehold. It has been conjectured, but without much evidence, that bo was a atudant of Oxford ; and the ascription to him of a volume of lectures is also without ground to support it. From the ioterest manifested in his history regarding the dispute between Archbishop Roger of York and Bishop Hugh of Durbam in regard to synodal fees, it has been supposed that he himself held for soms time the living of Howden, but this is likewiae wholly devoid of direct corroboration. In 1175 he was employed by Henrv in the delicate mission of inducing the monastie houses to send deputations to Woodatock for the purpose of choosing their rulers. In 1189, the last year of Henry's raign, he was appointed a justice itinarant for the forests in Northumberland, Cumberlaod, and Yorkshira ; and it ia probable that after Henry'a death he retired to Howden, since from the number of his refereaces to Yorkshirs disputes it is evident that he must have beeu living in that connty during the time that he compiled the latter portion of bis Cbronicle. As the Chronicle closes abruptly in 1201, it is probable that he did not live loug beyond that date.
The work of Roger oi Hovedon, which cammences with the close of tha Chrunicle of Bede in 732, is divided by Professor Stubbs into four parts:-the lat ending with 1148, and cansisting chiefly of the Historia post Bedum, with a few alterations and additions; the 2 d andiug with 1169, based principally, on the Melrose Chrmiele, and from 1163 composed mainly of the A Beckett letters contamed in the collection made by John of Salisbury and Alan of Tewk esbury; the 3 ending with 1192, and vartually a condensation of Benedict's Chrohicle, with the occasional addhtion of unimportant details and se veral variations, many of which are inaccurate and of such a kind as to show that he wrote from memory; the 4th coding in 1201 , and evidently a narrative of coutemporary events. The work of Roger of llovedon was cited in 1291 by Edward 1., when claiming the lordship of Scotland, ns one of the authorities in regard to the homage donc by the carlier kings to his ancestors. The independ. ent value of the wark belongs almost wholly to the last portion, although various dacuments of interfgt to be found nowlicre else are incorporated in the 24 and" 3 d jortious.

The Chrenicle was firgt printed in 1896 in Sir Menry Saville's collection of the Scrppores post Bedzm, and was reprinted at Frankfort in 1601. A transidion of it by I. F. Riley, B.A., appeared in 18s2, and forms part of Bohn's Antiquarian thrary: and it has been putlished in 4 vols., $1863-71$, in the series of the Iuater of the ilolls, under the editorship of Profegsor Stubte, whose preface con-

howard, hemri. Sce Surney, Earl of.
HOWARD, Joun ($1726-1790$), "" the philantbropist," was born in 1:20, most probably on September 2, and at Enfield, where bis father, a moderately wealthy recirobl London merchant, had a country house. His childhood was spent at Cardington near Woburn, Bedfordshire, where his father had a small estate; for seven years be was under the tuition of the Rev. Jobn Worsley of Hertford (anthor of a Latin grammar and of a new translation of the New Testament) ; and be was alterwards placed for a short time at a private academy in Londun under Mr John Eancs, F.R.S At the close of a very imperfect school education he was apprenticed by his father at a considerable premium to a firm of grocers in the city; but on the death of the elder Howard in September 1i42, by which be inhortted considerable property, be bought up bis indenture and devoted more than a year to foreign travel, during which ha acquired some knowledge of French. Never constitutionally strong, he on his return to England settled in lodgings at Stoke Newington as a confirmed valetudnarian, his days being spent for the most part in hypochondriac ideness (for little impurtance can be attached to what have sometimes been called his studies in medicine and metcoro$\log y$). Having been nursed through an acute illness by an attentive landlady, a widow of some fifty-three years of age, he felt that he could offer no adequate return short of marriage for her motherly kindness, and they were united accordingly in 1752. Left a widower in less than threa years, Howard broke up his establishmeot at Stoke Newington in 1755, and resolved to go abroad, the recent. occurrence of the carthquake at Lisbon attracting him to Portugal. The ship, however, in which he sailed was so unfortunate as to be taken by a Freneh privateer, by whom both crew and passengers were carried to Brest, where they were treated with great liarshness and almost starved. At Morlaix and at Carhaix Howard had further opportunities of observing the treatment to which prisoners of war were usually at that time subjected; and when permitted on parole to return to England to. negotiate an exchange for himself, he not only accomplished his personal object, but also successiully represented the case of those who had been his fellow-captives. Abandoning for the time his Lisbon scheme, he now retired to his property at Cardington, where he continued to interest bimself in meteorological observation, for some slight notes on which he obtained publication in the Transactions of the Royal Society, of which he bad been admitted a member in 1756 . After his marriage (April 1758) to Henrictta, eldest daughter of Edward Leeds of Croston, Cambridgeshire, he continued to live a secluded life, partly at Cardington and partly on another property which he had purchased at Watcombe, llampehire. In both places be distinguished himself as a kind landlord, and at Cardington especially be displayed a lighly enlight. ened philanthropy in his efforts to raise the condition of the poor by the constraction of model cottages and by the erection of setools. In March 1765 bis home was again desolated by the sudden and unexpected death of his wife, a few days after she had given birth to a son, her first and only child; and soon Howard's drooping lacalch and spirits imperatively demanded a change of air and scene. After visiting Bath and London, he in the spang of 1768 crossed to Holland; and another briel stay at Cardington was followed by a prolonged tour in France, Switzerland, and Italy as far as to Naples, whence he returucd in 1760 by Germany and the lline. llaving resumed bis former course of life at Cardington, he was in 1773 named high sherifif of loedford, an othice which, although as a nonconformist he was unable to take the usual tests, he resolve? to accepit. The characteristic work of his life may he sain! to have now lecen" When the assizes were bold he did
not content himself with sitting out the trals in olen cours: ; his inquisitiveness and his benevolence alike impelled li:m to visit the jail to which the prisoners had been condemnet. Howard found it, like all the prisons of the time, wretchedly defective in all its arrangementa; but what chicfly astonished and shocked him was an almost incredible abuse arising out of the circumstance that neither the jailer nor his subordinates were salaried officers, but were dependent for their livelibnod on fees which they rigorously exacted from the [misnuers themselves. He iound it to be a fact that some w' om the juries had declared not guilty, others in whom the grand jury had not found even such appearance of guilt as wuuld warrant a trial, others whose prosecutors had failed to appar, were frequently detaioed in prison for months aiter they had ceased to be in the position of accused parties, until they should have paid the fees of jail delivery. (See Intreduction to The State of the Prisons in Eingland and IV^{\prime} les.) His prompt application to the justices of the county for a anlary to the jailer in lien oi his fees was met by a demand for a precedent for charging the connty with such an expense. This he undertook to fiod if such a thing existed. He went accordingly from county to county until his journey had extended to every town in England which contained a prison, but the object of hia aearch eluded iaquiry. He could find no precedent for charging the county with the wages of its servaots, but he did find so many abuscs in prison management which imagination had never conceived, and so many sufferings of which the general public knew notingg, and of which the law took no account, that be determined to devote to the exposure of those wrongs and the reform of those abuses whatever time and money might bo needful. The task cost him a fortune, and the best remaining years of his life. The subject of prison reform, indeed, had not previously been wholly absent from. the public mind. As early as the year 1728 the Huase of Commons had appointed a committee to inquire into the state of Newgate, the Marshalsea, and other London prisons, where abuses had come to light which had caused the house to order the arrest of several governors of jails, who were tried for high misdemeanours (see Reports of the Committee Appointed to Inquire into the State of the Gaols, 1729). Nuch moro recently Popham, member for Taunton, had ferced the unwilling lerislature at least to discuss the propricty of paying fixer salaries to jailers out of the county rates ; but in February 1773 the bill after passing the second reading had been withdrawn with a view to its being again brought lorward in an amended form. The way had thus been prepared for a fricndly reception to anything Howard might have to say as the result of his investigations; and at the close of his first rapid survey of the English prisons he was, through the infuenoe of the supperters of Popliam's bill, cited to appear before a committee of the whole house in March 1774. Aiter bis report lad been received and lie himself examined upon it, it was moved and carried, on the honse resuming, "that John lloward, Esq., be called to the bar, and that Mr Speaker do acquaint him that the House are very seosible of the humanity and zeal which have led him to visit the sevenal jails of this kingdom, and to commanicate to the house the interesting observations which he has made on that subject." Almost immediately an Act was passed which provided for the liberation, free of afl charges, of every prisoner against whom tho grand fry failed to find a truc bill, giving the jailer a sum from t ie coanty rate in lien of the abolished fers. This was fiflowed in June hy another requiring justices of the peace in see that the walls and ceilings of all prisons within their phisdiction were seraped and whitewashed once a year at bait; that tho rooms were reandaly cleanci mad rentiated; the infumace were provided for the sick, and ponper care
taken to get them medical aarao, .wat the naked should be clotied; that underground dungeons should be used as little as could be; and generally that such courses should Le taken as would tend to restore and preserve the health of the prisouers. It was highly characteristic of the man that, having caused the provisions of the new legislation to be printed at his own private cost in large type, he sent a copy to every jailer and warder in the kingdom, determined that no one should be able to plead ignorance of the law is detected in the violation of its provisions. He then set out upon a new tour of inspection, from which, however, he was brought home by the approach of a general election in September 1774. Siding with those who objected to thu American policy of the Govcrument, he had conscnted t c stand as one of the anti-ministerial candidates for Bedford. although, howerer, he was returned by a narrow majority along with his iriend Whitbread, be was unseated after a serutiny on account of the alleged disqurlification of some of those voters who had supported him. He was thus left. entircly free for the vigorous prosecution of the special task which he had assigned himself; and he began to luve thoughts of publishing the immense nass of facts which he had so industriously collected, and which was still so rapidly accumulating. But after a tour which had extended to Scothand and Ireland, it occurred to bim before going into print that his notes would be much enhanced in utility if supplemented with the regulations and arrangements of the more important Continental prisons. In April 1775, accordingly, he set out upon an cxtended tour through France, the Low Countries, and Germany. At Paris he was at first denied access to the prisons; but by recoursc to an old and almost obsolete law of 1717, according to which any person wishing to distribute nlms to the prisoners was to be armitted and allowed to dispense his charity with his own hand, he succeeded in inspecting the Bicetre, the Force l'Eveque, and most of the other places of confinement, the only important exception being the Bastille. With regard to this last, however, be succceded in obtaining pussession of a suppressed pamphlet, which be afterwards translated and published in English, to the unconcealed chagriv of the French authorities. At Ghent he examined with special interest tho great Maison de Force, then recently erected; its distinctive features-useful labour, in the profits of which the prisoners had a share, and complete separation of the inmates by night-drew from him the exclamation that it was a " noble institution." At Amsterdam, as in Hollaud generally, he was much struck with the comparative absence of crime, a phenomenon which ho attributed to the industrial and reformatory treatment there adopted. In Germany bo found little that was useful and much that was repulsive; in Hanover and Osnabrick, under the rule of a British sovereign, he even found traces of torture. Returning to England in outumn with his copions notes, ho determined, before finally reducing therm to order and sending them to press, to undertako another tour of England. This lasted for scven months (November 1775 to Nay 1776), and yielded results so importam by way of correction and supplement that he resolved to give his Continental experienco the bencfit of a similar revision. On this oceasion he extended his tour to several of the Swiss cantons. At last in 1737 appeared The State of the Prisons in England and Wales, with Prliminary Observa. tions, and an dicount of some Forcign Irrisons (Wirrington). It met with a very fuvourable reccption, althongh its author was fully justified in his statement in tho prefaco that as the junmers were not undertaken for the traveller's amusement, so the results of then were not pmblished for general entertainment. It consists principally of a mass of minute statistical details, somewhat pedanticall $/$ accumulated nm: very umettodically arranged ; its mos. important section
-that relating to "proposed improvements in the structure and management of prisons"-constituting less than a tenth part of the whulc. One portion of his subject, indeed, that relating to the ships used for transpertation of cunvicts, -had boen to some extent taken out of his hand by the bissing in 1776 of the Act authorizing the hulk system; Lut even in this connexion the appearance of his work was highly opportune. Folluwing within a few years the publication of Beccaria's work On Crimes and P'uaishments, it called public attontion to the practical question of the treatment of criminals in a manner which compelled tho aloption of remedial or at least of palliative measures, although the full difliculty and delicacy of the problem liad not as yet been thoroughly appreciated. Onc of the must immediate rosults was that Sir W. Blackstone and Mr Filen were requested to draft a bill for the establishment of penitentiary houses, where by means of solitary imprisonment, accompanierl by well-regulated labour and religious instruction, the object of reforming the criminal and innring lim to habits of industry might be successlully pursued. New buildingy were manifestly gecessary in order that the provisions of such an Act might be carried into effect; and as no oue secmed to know how to set about their construction, Howard volunteered to go abroad again and collect 1,hns and other information. On this errand (April 1778) he tirst went to Amsterdan, and carefully examined the "spinliouses" and "rasp-houses" for which that city was famous; aes: ise traversed Prussia, Saxony, Bohemia, Austria, and Etaly, everywhere inspecting prisons, hospitals, and workluuses, aod carefully recording the merits and defects of each. In the course of this tour he was received with marked consideration and respect at more than one court ; but the personal incilent of greatest consequence was one which befel him on a voyage along the Tuscan coast. A salden and violent storm had compelled the master of the small vessel in which be had taken a passage for Leghorn to seek the shelter of lard; cold, wet, and exhausted, pissongers and crew reachod a little island harbour, but only to find that through fear of the plague (they loving sailed from a pert supposed to be infected) a landing was zofused them. Driven back again upon the storm, they were carried by its viulence to the coast of Algeria, where a similar experieace was eucountered, pormission to enter tho harbours there also being peremptorily denied. It was this occurrence which first directed Howard's attention to the subject which eogrossed bis attention in after years, and in the investigation of which he ultimately lost his life. Leghorn at last reached, he hastened northwards throngh Lombardy, Franco, and Flanders, arriving in England in 1779. The information he had obtained having been placed at the service of the Kouse of Commons, a bill was introdaced and passed for buildieg two penitentiary houses in Midnllesex, Surrey, Kent, or Essex (as might be afterwards determined), and Howard was appointed first supervisor (19 Gea. IIL. cap. 74). The scheme, however, did not proceed without friction teo tryiog for bis patience; amb after much tine had been lost in interninable discussions with his colleagues as to the sites of the proposed buildings, lis in January 1781 wrote to Lord Bathurst resigning Lus post befure anything practical lad been achieved. Ia 1780 be had publishod a quarto volume of 220 pages as an appondix (the first) to his State of Prisons; about the sme time alsu to caused to be printed his translation of the suppressed Freach pamphlet on the Dastille; but on obtaining release from his employments at home his passion fur accumulating statistics urged him to now and moro extended Cuntinental tours, as far as to Denmark, Swedon, and Russia in 1781, and to Spain and Portugal in 1783. The results of these journeys (which wore full of curious and mumantic:cridents) wera euludiod in 1781 in a sement
appendis, with the punncaton of which his direct labours in comnexiou with the subject of prison reform may be said to have censed. The five remaining years of his lifo were chiefly devoted to researches on a different though engnate subject, that of the means which ought to be used for prevention of the plague, and for guarding against the propagation of contagious distempers in general. Having at the suggestion of bis medical friends provided bimself with a list of queries to be put to the physicians in attendance at the lazarctos he propused to visit, he in November 1785 sailed for Holland, and thence travelling through France inspected the groat lazaretto at Marscilles, though with cousiderable difficulty, owing to the unfriendliness of the authoritics. He next passed tbrough llorence, Rome, and Naples to Malta, whence he sailcd by Zante to Smyrna, where his reputed medical skill opened all the prisons and hospitals to his inspection, and where l:o bad ample opportunities of studying the plague in its must fatal form. He thon went to Constantinople, where the fame of his skill had preceded him, and where sume further fortunato practice greatly added to his prestige. Declining the hospitalities of the British ambassador, however, he devoted himself entirely to the care of the neglected poor, and persistently forced his way into infected caravanserais and pest-houses whither physician and dragoman alike decliuenl to follow hin. At length his researches seemed to ho complete; and with a great accumulation of papers anil memoranda, he was preparing to return homewards by Vienna, when it occurred to his scrupulous mind that he still lacked one essential qualification for practically dealing with the matter which he had taken in hand; ho had not as yet had any personal experience of yuarantine discipline. Altering his plans accordingly, he returned to Sniyrna, and, deliberately choosing a foul ship, twok a passage to Venice that he might there undergo the usual confidement. A protracted voyage of sixty days, during which an attack by pirates gave Howard an opportunity of manifesting in a new form that personal bravery which was onc of his characteristics, was followed by a weary term of cunfinement, which enabled him to gain, though at the cost of considerable bardship and suffering, the experience ho liad desired. White imprisuned in the Venctian lazaretto he received two picces of intelligence which from very oprosite cnuses gave him acute pain. One was the announcement of a proposal that a statne should be erceted commemorative of lis services in the cause of humanity; tu llowarl as "a private man with sone peculiarities," desiruas tu retire into obscurity and silence, it presented atsolf as a "hasty and disagreeable measure," "is distressing attiar." Tho other was the information that his only son, a youth of twenty-two years of age, after a conrse of flagrant misconduct, had lost his reason and had been put under restraint. Returning hastily by lrieste and Vienna (whore he lind a long and singular interviow with the elnperor Joseph 11.), he reached England in Fobruary 1787 . Ilis first care related to his domestic concerns; after these bad been put intusuch order as they adenitted, be set out upon another journ'y of inspection of the 1 risons of the United Kinglom, at the same time busying himself in preparing for the press the results of his recent twor. The somewhat rambling work contanining them was published in February 1789 at Wiarrington, inder the title An Accome of the Principul Latertlos in Evrope: with verruns Papers relative to the Plague, logether with further Olservations on some Foreign Prisons and Mospilals, and additional Rematio on the present state of those in Grical liritain aml Yrelund. In the conclusion (p. 235) ho commited with somo solemnity the result of hia past 'abuurs to his country, and announced his intention of =un visiting liussia. Toplice. and sume other countries,
and of exteading mis tour in the East, adding these words, "I an not insensiblu of the dangers that must attend such a journey. Trusting, however, in the protection of that kind providence which has hitherto preserved me, I calmiy and cheerfully commit mysclf to the dispusal of unerrms wisdom. Should it please God to cu: '" iy life an the prosecution of this design, let not my conduct be uricandidiy imputed to rashness or enthusiasm, but to a serious, deliberate conviction that I am pursuing the path of duty, and to a sincore desire of being made an instrument of more extensive usefuluess to my fellow-cratures than could be expectel in the narrower circle of a retired life." The excention of the purpose be had tous expressed was delayed for some time by the necessity for making special arrangements with regard to his private affairs in consequence oi the confirmed insanity of his son; but early in July 1780 he finally cnibarked in what proved to be his last journey. Travelling overland from Amsterdan by Hanover, Berlin, Kunigsberg, and [iga to St Petersburg and Moscow, and bu sunthwards, and visiting in passing the military hospitals that lay on his route, he reached Cherson in Novenber. In the hospitals of this place and of the immediate neigh. hourhnul he found more than enough to occupy his attention white he awaited the means of transit to Constantinople. T'uwards the end of the year his medical advice was asked in the case of a young lady who was suffering under the camp fever then prevalent, and in attending ber he bimself took the disease, which terminated fatally on January 20, 1790. " Give me no monument," he had sad, " but lay me quietly in the earth; place a sundial over my grave, and let me be forgotten;" but a life like his had made such a burial even in a furcign land impossible, and his remains were followed, respectfully and sorrowfully, by many thousands to the grave, where they now lie near the village of Dauphigny on the road to St Nicolas. A statue by Dacon with a suitable inscription was afterwards erected to his memory in St Paul's, London.

In personal appearance Hnward is described as baving been short, thin, and sallow, -unprepossessing apart from the attraction of a penctratiog cye and a benevolent smile. "There was an anmation in his manner and a quickness in biz gait which corresponded with the activity of his mental powers. In his address he was dignified, kind, and conlescending, always adapting himself to the persons with whum be conversed; as free from a cringing servility amongst his superiors in station as he was from arrorancy towards those of lower rank" (Field). In point of intel. lectual ability he cannot be said to bave been possessed of more than the ordinary endowments; nor had education done all that was possible for the development of those which be had. That he was of a deeply religrious tempera. ment is abundantly shown by the meagre remains we have of his letters and diarics; while the greater part of his life shows that his enthusiasm of humanity was the unusual yet mormal outcome of the sincerest picty. His benevolent impulses were sustained by a rare degree of energy and letermimation, while they were guided by a remarkable Iclicacy of tact and an equally remarkable vigour of prac. tical common sense. It would be idle to speculate how far Illoward's work could have been done when it was, and as it was, by a man differently endowad. Doubtless the reforas which he inaugurated were reforms urgently called for by the spirit and enlightenment of his age; but this fiset mather enhances than diminishes the inyerishable glory which belongs to him of having been the furment to give un articulate voice to that demand. "In the seale of moral desert the lathours of the legishotor and the writer are as far beluw his as cath is helow heaven. His kingdom was of at better world; Le died a martyr after living an apmethe " (lentham).

See Auccilotes of the Life arul Cha, ucter of Jonn Howard, written by a Gentlenan (1790); Aikin, Vewe of the Character and Putlic Screves of the late John Howerd: Mentoirs, by Baldwin Brown (18181, Taylor (1836), Hopworth Dixon (1849), Field (1850), and Stoughton (1853) ; and Correspondence of John Howard, with briof Momorr cund Ancedotes (1855).

HOWE, John (1630-1700), one of the greatest of the later Puritan divines, was born May 17, 1630, at Lougl. borough, Leicestersbire, of which parish his father was minister. When hardly five years old he was removed to Ireland by his father, who, unable to support the ecclesi. astical policy of Archbishop Laud, had been ejected from nis inving. On the outbreak of the Irish rebellion in 154 : , iLe exiles returned to England; and, fixing bis abode in Latershire, the elder Howe conducted in person the sturies oi bis son, who in his seventeenth jear (May 19, IEti) antered Cbrist's Cullege, Cambridge, as a sizar, and in the following year took his degree of L.A. During his residence in this university be made the acquaintance of Cudwarth, More, and Smith, from intercourse with whom, doubtiess, as Calamy suggests, as well as from direct acquaintance with the Dialogues themselves, his mind received that " Platonic tinge" which is so perceptible in lus writings. Immediatcly after graduation at Cambridge, he remved to Osford, where be took the same degree in the following year, and, after becoming a fellow of Magdalen College, proceeded M.A. in 1652. On leaving Oxford in that year he returned to his father's retreat in Lancashire, and received ordination at Winwick from the hands of Mr Herle, the minister of the parish, who was assisted by the ministers of the neighbouring chapelries. Sometime afterwards "an unexpected couduct of divine providence" bore him to Great Torrington in Devonshire, where be spent some years as pastor. It was there that he preached those discourses which at a later period took shape in his treatises on The Blessedness of the Righteous and on Delighting in God. There also it was that he married the daughter of "his inver friend" Mr George Hughes. In the beginning of 1657 a journey te. Londun accidentally brought Howe under the notice of Cromwell, who, struck by his appearance and preaching, made him his domestic chaplain. In this prominent position, which he bad accepted with very great reluctance, bis conduct as the almoner and confidential adviscr of the Trotector was such as to win the praises of even the bitterest enemics of his party. Without overlooking the due claims of the Puritans, be omitted no opportunity u ! helping pious and learnerl men of other clenominations, Ward (afterwards bishop of Excter) and Thomas Fullet having been among the number of those who profited by Howe's kindness, and who were not ashamed subsequently to express their gratitude für $i t$. On the deposition of Richard Cromwell, IIowe returned to Great Torrington, where, like all who had played a conspicuous part under the Commonwealth, be soon after the Restoration found himself an objeet of suspicion and batred; in 1662 the passing of the Act of Uniformity drove him from his parish. For several years lie now led a wandering and uncertain life, preaching in secret as occasion offered to handfuls of trusted hearers. More than once his liberty was in imminent peril; aud it is alleged by Calamy, though on donbtful grounds, that for two months in 1665 he was imprisoned in the isle of St Nicholas in Plymouth Sound. Impelled by the demands of pressing want, he in 1668 published the treatise entitled The Btessedness of the Righteous; tho reputation which he had acquired by it procurcd for him in 1669 an invitation from Lord Massarene of Antrim Castlo, Ireland, to become his domestic chaplain. At Antrim, where he was soon joined by his family, he acenrdingly spent six years of quiet, duriug which he freguontly preached in public, with the approval of the bisbop of the dioeses, and also found time
to produce the most eloquent of his shorter treatises, The Wentity of Man as Mortal, and On Delightung in Gort; there two he planned the largest (and also in some respect the greatast) of his works, The Living Temple. In the beginning of 1676 he accepted an invitation to become pastur of a nonconformist congregation in Silver Street, London; and in the same year he publisbed the first part of The Living Temple, entitled Concerning Cod's Existence and His C'onversableness with Man: Against Atheism or the Epicurean Deism. In 1677 appeared his tractate On the Reconcileableness of God's Prescience of the Sins of Men with the IVisdom and Sincerity of IIis Counsels, E'chortations, and whatsoever ateans He uses to prevent them, whieb was attached from varions quarters, and bad Andrew Marvel for one of its defenders. His work On Thoughtiutness fo: the Morrow followed in 1681 ; those on Self-Dedication and Union among Protestants in 1682 ; and that on The Redemer's Tears uept over Lost Souls in 1684. During the earlier years that followed his settlement in London Howe had enjoyed comparative freedom from annoyance on the ground of his noneonformity, and had been on intimate terms with many who already were or who afterwards became eminent in the Established Church, such as Stillingfleet, Tillotson, Sharp, and Kidder ; but the greater severity whicb began to be manifested in 1681, and which continued to be shown during the following years, so interfered with his liberty that in 1655 he gladly accepted the invitation of Pli'ip Lonl Wharton to travel abroad with him. The tour sxtended over the greater part of a year. In 1656, matters still seeming hopectess in England, he determined to settle for a time at Utrech, where he officiated along with Mead and others in the Englisb chapel, and also read privately with English students at the university. Among bis friends there mas Burnet, the future bishop of Salishury, by whose influence he obtained several confidential interviews with the prince of Orange. In 1687 Howe availed himself of the publication by James II. of the declaration for liberty of conscience to return to England, and in the following year be beaded the procession of nonconformist minsters who went to congratulate William on bis accession to the English throne. The remainder of his life, so far as recorded, was extremely unevenful. In '1693 be published tbree admirable discourses On the Carnality of Retigious Contention, suggested by the disputes aud divisions that had so abundantly oecurred among the nonconformists as soon as liberty of dortrine ant worship had been granted. In 1694 and 1695 be published various treatises on the subject of the Trinity, the principal being A Calm and Solemn Inquiry conccrning the Possibdity of a Trimity in the Godhead. The sccond part of The Living Temple, entitled Aaimadversions on spunosa and a French Wriser pretending to confute him, with a reeapitulatim. of the former part and an account of the destitution and restitution of God's Temple among Men, appeared in 1702. About this time be appears to have fallen into shattered henlth, but he was able in 1705 to give to the work a discourse On Patience in the Erpectation if Future Elessedness, which proved to be his last work. He died in London on April 2, 1706.

Though excelled by Daxter as a pulput orator, and by Owen in exegetical-ingenuity and in almost every departnent of theologital learning. Howe compares farourably with either is a sagacious and profond thinker, whilo be was much more successful in combining relpgious carimestness and fervurr of conviction with large-hearted tolerance and culured breadth of view. His style, moreover, though the altogether free from the lite ary faults which may almost lie calted characteristic of Puritanism, has often a stately yet graceful flow which the modern reader will look for in rain in most of Howe's theological contempararies. The works published in lis befetime, ineluding a numier oi esrmons and other ocrasiomal fiecess besides those specified above, were collected atoto 2 vols. ful. in 1304, and again reprinted in 3 vols. 8wo. in 1848. A conplete edition of the H\%ole Works, including much posthumons and aditional mater, allueared with a Memoir in 8 roly, in 1822; this
was reprinted in 1 vol. in 1838. The Acnours of Howe by Calitmy, orgimally published in 1724 , have been more than once reprinted, and form the basis of The Life and Character of Howe, wevth ans Analysis of his ${ }^{1}$ 'rithas, by Henyy Rugers (1836; new ed., 15631
howe, Ricuard LIowe, Eafl (1725-1799), Enclish admiral, was born in 1725. By his father Emanuel Serope Howe, second Viscount Howe in the Irish peerage, he was descended from an old family, several members of which attained distinction in war or in politics; and his mother was the daughter of Baron Kielmanserere, master of the horse to George I. when elector of Hanover. Leaving Eton at the age of fourteen, Howe entered the navy as midshipman on board the "Severn," which then formed one of a squadron under Anson destined for an expedition against Span in the Pacifie. Nothing is recorded as to the manner in. which be conducted bimself in the actions in which the squadron engaged, but be at any rate succeeded in winning the approval of his commander, and in his twentieth year was made licutenant. Shertly after this be was appeinted to the command of a sloop-of-war, the " Baltimore," in which with the aid of the "Greybound" frigate, commanded by Captain Noel, he signalized hinself by defeating off the coast of Scothand two F'rench vessels, of greatly superior metal to his own, which were carrying supplies and reinforements to the Pretender. On bis arrival in England Le found that previous to this action he had been raised to the rank of postcaptain, and be served in this capacity on the coast of Guinea and on the Jamaica station. In 1748 be returned to England, and after spending three years cbiefly in tho study of naval tactics, he was in 1751 appointed to the "Glory," of 44 guns, and emploged on the coast of Africa. In May 1752 be was commissioned to the "Dolphin" frigate, in which he was employed for some years in ${ }^{14}$ rotectiug the trade in the vicinity of Gibraltar. Shortly after his return to England be was appointed in 1755 to the "Dunkirk," and joined the squadron of Admiral Boseawen, bound for America. In the course of the soyage thitber Howe took a prominent part in eapturmg iwo French men-of-war, the "Aleide" and the "Lys." "This action was virtually the commencement of the seven years' war with France, in the course of which Howe in command of a small squadron succeeded in capturing from the French the island of Chaussé, and, after obtaining a commission to the " Magnanime;" distinguished hiniself in the attacks made on the Isle of Aix, St Malo, and Cherbourg, manifested conspicuous courage and readiness of rocource at the disaster of St Cas, and in the aetion with the French fleet under De Conflans disabled two of the enemy's ships. Shortly before the close of the war Howe had married, and by the death of his brother Viscount I Iowe had inherited the family titles and estates. From 1758 till 1782 he represented Dartmouth in parliament; in the latter jear he was ratsed to the British peerage as Viscount Howe. In 1763 he received a seat at the boarl of admiralty, and in J une 1705 he was appointed to the inaportant office of treasurer of the navy, which le retained till August 1750. In Octolicr of this latter year he was made rearadmiral of the blue, and nominated commander in chicf of the feet intended to he employed in the Mediterranean in view of a probatle rupture with Spain, which, howeser, did not take place. In 1735 he was promoted rear-admiral of the white, andwal the following year he received the command of the squadron despatched to America, but owing to the insufficiency of his force he achicued no exploit of importance. After his return to England he was in September 1752 appomintel to the command of the Chamel heet, and ordered to proceed to the relief of Gibraltar, then besieged by the eombined hand and sea iorces of France and Spain, when after cucceeding in supplying the ghtison wilta stures and proviainme
te engaged at long ranges the united Heet whiten numberad 44 sail to his 34 , and caused them to retreat to Cadiz. In January 1783 Howe surcecded Keppel as first lord of the admiralty, an office which.be resigned in the following April, but again accepted under the litt ministry, holding it till July 1788 . In July 1787 he was made admiral of the white, and shortly afterwards was raised to an earldom. In 1790 be was appointed to the command of a flect intended to operate against the Spaniards, but peace was concluded befure any action teok place. Oo the commencement of the war with France after the Revolution he obtained the chief command in the Channel, and on the 1 st of June 1794 gained a great victory over the French fleet off Ushant, dismasting ten of the enemy's ships and taking eeven, one of which, the "Veageur," sank as slie was being towed away. On the 9 th Λ ugust of the same year he resumed the command of the Channel fleet, but in none of his cruiscs was he fortunate enough to meet any of the enemy's ressels; and during the greater part of 1795 and 1796 ill health compelled him to remain on shore. In May 1797 he resigned his command. In the same year he was appointed with full powers to trest with the mutiveers in the British fleet at Portsmouth and Spithead, and completely succeeded, through the confidence they had in the friendliness of his intentions, and by the firm and iudicious measures he adopted, in eradicating the causes of discontent. During the latter years of his life Lord Howe suffered much from ill health; and he dicd under a violent attack of gout, August 5, 1799. A splendid monument was erected to Howe in St Paul's Cathedral.

Lord Howe is entitled to the exceptional praise of never laving failed to bear himself with credit and success in ony of his enterpreses. The qualities in which he excelled were coolness, firmness, sea. manship, end caution -an excess of tho latter virtue, however, tending brerhaps on some occasions to diminish the lustre and completeness of his victories. He introduced a new and thorough system of naval tactics, evolutions, and oignats, and bestowed carefut and minute attention on all the details of the service. In person he was tall and well-proportioned. His countenance was strongly marked, somewhat harsh in expression except when softened by his genial smile, and dark in complexion-although the sobriquet of Black Dick by which he was known in tho navy was not due to this cireomstance, but to a mezzotinto portrait of himself which hung in his cabin. The henevolent friendliness of his dispusition secured him the strong affection and confidence os well as respect of his seamen, while no professional jealousy prevented him from doing full justice to the achievements of his officers.
HOWELL, James (594.1666), a voluminaus English author, best known by his collection of letters (Epistole lloEliance) and bis Instructions for Forreine Travell, which, in Mr Arber's phrase, form our first handbook for the Coatinent. Howell, as he was proul to acknowledge, was a Welshman; he was bord probably at Abernent in Carmarthenshire, where his father was ninister. From the free grammar school at Hereford he proceeded to Jesus College, Uxford, in 1610, and there be tonk his degree of B.A. in 1613. About 1617 we lind him bolding the post of steward in Sir Robert Mansell's glass-works in Broad Street, and in the following ycar he was commissioncd to gu obroad to procure tho services of some high-class workuce. It was not till 1622 that he returned home, having visited Holland, France, Spain, and Italy; and these three or four years of foreign expericnce made a lasting impression on bis character and hils eoreer. Not long after his return ho was despatehed to Spain in eompany with loord Digby's ambassy to try and settle a dispute about the unlawful seizure of an English vessel; but though lie remained till the end of 1624 he was obliged to retarn withont sucecss: the Spmaiards, irritated at the breaking off of the famous mateb, were in no muol for concessions. Fer some time Howell hald no stable enployment, hat at length, in 1626 , be went to Y'ork as secretary to Lord Scroop, lord president of the north, and fur a geasou he appears to have been

Wonderiuily fortunate. In 1627 he was elected M.P. for Richmond; in 1 G52 he was sent as orator with the embassy of the earl of Leicester to Denmark; and in 1642 the king appointed him one of the elerks of the privy council. On suspicion of royalist leanings be was committed to the Eleet prison by the Parliament in 1643 , and, though he professed himself most bumbly submissive to its authority, be was allowed to languish in confinement till 1648 . He had acquired cunsiderable fame by his allegorical $\Delta \in v \delta p o \lambda o y i a$, published in 1640, and his Instructions for Forreine 7'ravel!, 1642 ; and now he was driven te maintain himself by his pen. He celited and supplemented Cotgrave's Freuch sod Eoglish dictionary, eompiled Lexicon Z'etraglotton, or an English, Frenct, ltalzan, and Spanish Dictionary (London, 1660), translated vatious works from Italian aud Spanish, and wrote a life of Louis XIII. Io 1660 he presented a petition for confirmation in the place of clerk of the privy eouncil; and, though this was not granted him, the post of historiographer royal was created for his benefit. In 1661 be made application for the oftice of tutor in foreign langueges tu the infanta Catheriae of Bragaaza, and in the folluwing year published an English Grammar translated into Spanish. He died in 1660, baving rcalized to the last his favourite motto, "Senesco non segnesco." Howell had no small ability aud learning; and sll his writings are imbued with a certain aimplicity and quaintacss. Hia elaborate allegories, Discourses of Trees and the like, are now dead to the root; bis linguistic labours, though of worth in their tine, are a hundred times superseded; but his Letters (10 th ed., 1737) are still almost models of their kind, and bis Instructions, with their subtle obscrsations and pithy parallels, are well worthy of their place in Mr Arber's series (London, 1869).

HOWITT, William (1795-1879), a popular writer and poet, was born in 1795 at Heanor, Derbyshire, where the Howitts had long been settled. His mother and father being members of the Society of Friends, William was brought up, with his brothers, in the faith of that seet, and educated at the local achools of the society. What he thus learned was supplemented by studies in natural science end modern literature and languages; and his leisure, spent in the woods and by the brook, fustered that love of nature which brightened every page he wrote and won his readers' sympathy. A poem, published in 1814 , on the Influence of Nature and I'vetry on National Spirit, was, so far as we know, his first printed work. He marricd in 1823 a Quaker lady, Mary Botham of Uttoxeter, who as poctess and prose-writer occupies a place in literature no less distinguished than her husband's. The first joint boek appeared in the jear of their marriage under the title, The Forest Minstrel, and other loems. After a pedestrisn excursion to Scotland, they took up their residence at Nottingham, Howitt engaging in the business of an apnthecary. In 1824 le printed A l'oet's I'houghts at the Interment of Lord Byron. We now find that both he and his wife had become known by their contributions, chiedly in rustic verse, to The Literary Souvenir, The Amulet, and other serial volumes of the day; these were collectively issucd with additions in 1827 as The Desolation of L'yam (foumted on the plague), The Emigrant, and other l'oems. In 1831 Howitt produced a work of the class specially bis own, The look of the Seasons, or the Calendar of Nature, in which he drew a picture, from his own observations, of the apprarances of mother earth in tho garden, in the field, and by the stream during each of the twelve months. Of quite a different character was A I'opular IIstory of Priestcraft (1833), which ren through several cditions, and grined him the favour of the active Liherals of his time, and the office of alderman of Notting. ham. It was followed, in 1835, by a cognate work in 2 vuls., cutitled, Pantikia, or Traditime of the most Δ ncien

Times. Haring removed in 1837 to Esher, to be near the literary circles of the metropolis, Howitt there wrote in succession The Rural Life of England, 2 vols., 1538 ; Colnnization and Christianity, 1838 ; The Boy's Country Book, 1839 ; and the first series (afterwards extended) of Visits to Remarkable Places, Old IIulls, Battlefields, and Scines illustrative of striking passages in English History and Poetry, 1S40-42, in which he recorded impressions derised on the spot, and pictured each place with its in-Labitants-freed, as he says, from the heaviness of the ratiquarian rubbish piled upon them. Visiting Heidelberg in 1840, primarily fur the education of their children, the Howitts remained in Germany two sears, studying their neighbours, and busying their pens in descriptions of their aew aurroundings. In 184l Ilowitt produced The Student Life of Germany, under the pscudonym of "Dr Cornelius," including trenslations of aome of the most popular German songs. The next year he published The Rural and Domestic Life of Germany, with characteristic Sketches of its Cities and Scenery; in the year following a translation of Clamisso's Wonderful History of Peter Schlemihl; and in 1844 The Life of Jack of the Mill, a version of Holthaus's IFanderings of a Journeyman Tailor, and German Erperienres, addressed to the English, a satire on the aocial life of Germany. In 1845 appeared Life in Datecarlia, translnted Irom the Swedish of Miss Bremer, The Renounced Treasure, and Johuny Darbyshire. The Aristocracy of Eugland, a Gistory of the English People, a political sketch, appcared in 1846, at the heginning of which year Howitt became connected with the management and proprietorship of The People's Journal, n weekly paper. A disagreement leading to his withdrawal be atarted in 1847 a rival called Howitt's fournal, but this was continued through three or four volumes only, though The Peuple's Journal was nuerged in it. In 1847 Howitt had translated Enaemoser's History of Magic, and written an original work entitled Homes ard Haunts of the most eminent British Poets, 2 vols., which was succeeded by The Hall and the Hamlet, or Scenes and Characters of Country Life, and very speedily by Stories of English and l'oreign Life (Bohn's Hlustrated Library), in which Mrs Howitt assisted. Then appeared The YearBook of the Country, or the Field, the Forest, and the Fireside, and in 1851 a threc-volume novel called Madam Dorrington of the Dene.

Under the associated names of husband and wife an interesting work was brought out in 1852, The Literature and'Romance of Northern Europe: constituting a complete History of the Literature of Sweden, Denmark, Norway, and Iceland, in 2 vols. In June of that year Howitt, with two sons and some friends, set sail for Australia, where be spent two of the most trying years of his life, working in the gold diggings, and visiting Melbourne, Sydney, and other torns. Some account of the novel situations in whirh he was himself placed is given in A Boy's Adventures in the Wilds of Australia (1851). Shertly afterwards he returned to the suburbs of London, on this occasion to Highgate, and narrated more olaborately bis experiences in Land, Labour, and Gold; or Two Years in l'utoria, with lisits to Sydn'y and Fan Diemen's Land, 2 vols., 1855, a work which speedily became popular, the condition of the Australian colonics being then almost totally unknown in England. A further account of Australian life was given in 18.57 in Tallangetta, the Squatter's IIome, 3 vols. The year before Ilowitt had commenced The Illustrated Hisfory of Eugland for Messrs Cassell, the sixth and last volume of which appeared in 1861. While this work was in pro. gress he wrote jn 1859 A Country Book of A musements, and, in connexion with Mrs Mall and others, The Loy's Mirthelay Book, and in IS 60 The Man of the P'aple, 3 vols. From 1861 to 18 C 4 Mr and Mrs Mowitt wore monerical on

The Ruined Abbeys and Castles of Great Brilain, issuing, before its cosmpletion, The Wye, its liuined Abbeys aid Castles (1863); and the same year Howitt printed a series of Letters on Transportation, and the Cruelies Practised under the Game Laws, and a work of great research, The IIistory of the Supernatural in all Agcs and Nations, and in ull Churches, Christian and Pagan, demonstrating a Universal Faith, 2 vols. To a man with the mental development of Howitt the miraculuus became at all times an absorbing speculation; and he adds to these pages "his own conclusions from a practical examioation of the higher phenomena through a course of seven years." "If," he reasons, "you crush the supernatural you must crush the universe." Other works from Howitt's prolific pen were Sargent's Peculiar (1864); The History of Discovery in Australia, \&c., 2 vols., 1865; The Ruined Abbeys of the Border (1865), and of Yorkshire (1865), jointly with his wife; Woodburn Grange, a story of English country life, 3 vols., 1867 ; The Northern Heights of London, an antiquarian and topogtaphical description of Hampstead, Highgate, \&c., 1869; The Mad Wor-Planet, and other Poems, 1871; The Religion of Rome, 1873. Suffering from bronchitis, Howitt had now made Rome his winter residence, passing the aummer in Tyrol. He died at Rome on the 3 d of March 1879.

HOWRAH, the largest and most important town in the district of Hooghly, Bengal, and the headquarters of the magisterial district of Howrah, is situated on the rigbt bank of the Hooghly river, opposite Calcutta, and forms a suburb of that city. Since 1785 it has risen from a small village to a town, with a magistrate, subordinate judge, \&e., of its own. The total area of Howrah and suburbs within municipal limits is 11.05 square miles; the population in 1872 numbered 97,784 , of whom 54,098 were males and 43,686 females (Hindus, 79,335; Mabometans, 16,611; Christians, 1484 ; others, 354). The municipal iocome io 1871-72 was £13,994. The town is lighted with gas; it contains several large and important dockyards, and is also the Bengal terminus of the East Indian Railway. Mills and manufactorics of various aorts are rapidly developing. Communication with Calcutta is carried on by means of ferry stcaniers, and by a massive pontoon bridge, which was opened for traffic in 1874 . Howrah is a suburban residence for many people who have their places of businces in Calcutta. Sibpur, one of the suburbs of Howrab, situated opposite Fort-William, a small village at the commencement of the century, is now a flourishing little town. To the south of Sibpur are the Royal Butanical Gardens and the Bishop's Cullege.

HOXTER (Latin, IIuxaria), a town of Prussia, eapital of a circle in the governaiment district of Minden, province of Westphalia, is situated on the Weser at its confluence with the Grube and the Schelpe, and on a branch line of the Westphalian Cailway, 21 miles S.W. of IIolzminden. It is the scat of a provincial office and of a cirele court, and possesses an Evargelical and a Catbolic chureh, a synagogue, a gymmasium, a bulding-school, and n hospital. The Weser is crossed by a stone bridge about 500 feet in length, erected in 1833 . On the Drumsberg adjuining the town there is an old watch-tower said to be the remains of a fortress built by Bruno, brother of Wittekind. Near Hiaxter is the castle, formenly the Denedictine monastery, of Corvey (sec Corvey). The prineipal manatactures of the town are linen; cotton, cement, and gam, and there is also a considerable shipping trade. The population in 1855 was 5645.

Hoxter in the time of Charlomagne was a vilia regin, and was the seene of a battle thetween ham and the Sasong. Under lhe protection of the monastery of Corvey, foumbed in Slf, it gradually increased in propurity. Whinately it asserent its inderendeace

Thirty Years' War, being captured four several times. After the Trace of Westphalia it was united to Brunswick; in 1802 it was transferred to Orange-Nassau, and in 1800^{7} to Westphalia, after the disniemberment of which in $181 f$ it came into the possession of Prussia.

HOYLE, Edmund or Edmond (1672-1769), the first systematizer of the laws of whist, and author of a book on games, was born in 1672. His parentage and place of birth are unknown, and few details of his life are recorded. For some time be was resident in London, and partially supported himself by giving instruction in the game of whist. For the nse of bis pupils be drew up a Short Treatise on the game, which after circulating for some time in manuscript was printed by hirn and entered at Stationers' Hall in November 1742. The laws of Hoyle continued to be regarded as authoritative until 1864 , since which time they have been gradually superseded by the new rules adopted by tho Arlington and Portland clubs in that year. Ho also published rules for various other games, and his book on games, which includes the Short Treatise, has passed into many editions. The weight of his authority is indicated by the phrase "according to Hoyle," which, doultless first applied with reference to whist, has gained currency as a general proverb. Hoyle died at Cavendish Square, London, August 29, 1769.

HRABANUS MaURUS MaGNENTIUS (776-856), arcbbistop of Mainz, and one of the most prominent teachers and writers of the Carolingian age, was born of noble parents at Mainz about the year 776. Less correct forms of his name are Rabanus and Rbabanus. At a very early age he was sent to Fulda, where be continued until, on attaining the canonical age, be received deacon's orders (801); in the following year, at the instance of Ratgar bis superior, he went along with Haimon (afterwards of Halberstadt) to complete his studies at Tours under Aleuin, who in recognition of his diligence and parity gave lim the surname of Maurus, after St Msur the favourite discip!o of Benedict. Returning after the lapse of two years to Fulda, he was entrusted with the principal charge of the sehool, which under his direction rose into a state of great efficiency for that age, and sent forth such pupils as Walafrid Strabo, Servatus Lupus of Ferrières, and Otfrid of Weisscnburg. At this periud it is most probable that his Excerptio from the grammar of Priscian, long so popular as a textbook during the Midulo Ages, was compiled. In 814 he was ordaindl a priest ; but shortly afterwards, apparently on account of disngreemeut with Ratgar, he was compellcd to withdraw for a time from Fulda. This "banishruent" is understood to bave occasioned the pilgrimage to Palestine to which he alludes in his commentary on Joshua. Returning to Fulda on tho election of a new abbot (Eigil) in 817, he himself five years afterwards (822) became superior The duties of this office be discharged with efficiency and success until 842, when, in order tu sccuro greater leisure for litcrature and for devotion, lie resigned and retired to the neighbouring cloister of St Peter's. In 847 he was again constrained to enter pablic life ly his eloction to suceced Otgar in the archbishinprice of Mainz, which see ho occipicif for upwards of eight years. Tho principal incidents of histurical interest belonsing to this periud of his lifo were those which aroso uut of his relations to Gottschalk; they may be remarded as thoroughty typical of that cruel intulerance which be sharod with all his contemporaries, and also of that ardent zeal which was peculiar to himself; int they hardly do justice to the spritit of kindly benevolence which in less trying circumstances to was ever realy to dis. play. He died at Wiukel on the Rhine, Felruary 4, 856. Hh in frequently referred to as Sit Rabame, hut incorrectly.
Ilis welluminous works, ranay of which remain wnpublished, con.

 Kings, Chromicles, Judith, Listlier, Cantictus, I'roverbe, Wislom,

E'celesiasticus, Jeremiah, Lamentations, Ezekiel, Maccabees, Matthew, the Epistles of St Paul, including Hebrews) ; and various-treatises relating to doctrinal and practical subjects, including more than oue series of Homilies. Perhars the most inportant is that De Insititutione Clcricorum, in three books, by which he did much to bring into prominence the siews of Augustine and Gregry the Great as to the trainiog which was requisite for a right discharge of the clerical function; the most popular has been-a comparatively worthless tract De Laudibus Sancta Crucis. Among the others may be men. tioned that De Universo Librixxii., sive Etymologiarum Opus, a kind of dictionary or encyelopxdia, designed as a help towards the historical and mystical interpretation of Scripture, the De Sacris Ordinibus, the De Disciplina Eeclesiastica, and the Martyrologizm. All of them are characterized by erudition (he knew even some Greek and Hebrew) rather than by origivality of thought. The poems art of sungularly little interest or value, except as including one form of the "Veni Creator." In the anuals of German philology a special interest attaches to the Glossaria Latino-Theodisca. A commentary. Super Porphyrium, printed by Cousin in 1836 among the Ousrages inétits d'Abelard, and assigned both by that editor and by Haureau to Hrabanus Maurus is now generally believed to have been the worts of a disciple.

The frat nominally complete editlon of the works of frabanus Maurus was that of Colvener (Colome, 6 rols. (ol., 1627). The Opera Omma form vols. cvii.-cxil. of Migne's Patrologice Cursus Completus. The De C'niverso 18 the sobject of Compendium der Naturneissinschaften an der Schule zu F'ulda im IX. Jahrhunder (Bellin, 1850). Maurus is the subject of monographs by Schwarz (De Rhabane Snace primo Germanice preceptore, 1811), Kunstmann (Historische 3fonographte uber Hrabanus sagmentius Maurus, 1841), Spengler (Leben des hei., Rhabanus Maurus, 1856), and Köhler (Rhabunus Haurus u. die Schale zu Fulda, 1870). Lies by his disciple Fiubolphas and by Joannes Trithemius are printed in the Cologne edition of the Opera. See thso Pertz, Bfonum. Germ, Iist, vols. 1. and 14., and Bahr, Gesch. d. romischen Literatur in Karoling. Zetalher, 1540.

HROSVITHA (f squently Roswitha, and properly Hrotsurt), early medixval dramatist and chronicler, occupies a very notable position in the history of modern European literaturc. Her endeavours formed part of the literary activity by which the age of the emperor Otto the Great sought to emulate that of Charles the Great. The famous nun of Gandersheim has occasionally been confounded with her namcsake, a learned abbess of the same convent, who must have died at least balf a century carlier. The younger Hrosvitha was born in all probability about the year 935 ; and, if the statement be correct that she sang the praises of the three Ottos, she must have lived to near the close of the century. Some time beforo the year 959 she entered the Benedictine nunuery of Gandershcim, a foundation which was confined to ladies of German birth, and was highly favoured by the Sazon dymasty. 'In 959 Gerbergh, daughter of Duk Henry of Bavaria, and therefore niece of the emperor Otto I., was consecrated abbess of Gandersheim, and the earliet literary efforts of the youtliful Hrosvitha (whose own cunnexion with the royal family appears to be an unauthenti cated tradition) were cncouraged by the still more youthful abbess, and by a nuu of the name of Richarda.

The literary works of IIrosvitha, all of which were as a matter of cuurse in Latin, divido themselves into threc groups. Of these the first and least important comprises cight narrative religious poems, in leonine hexameters or distichs. Their sulyeets are the Nativity of tho Virgin (from the apocrypual gospel of St Jomes, tho brother of our Lord), the Ascension, and a scries of legends of saints (Gandolph, Pelagius, Theophilus, Basil, Denis, Agnes). Like these narrative poems, the dramas to which above all IIrosvitha owes her famo secm to lave beea designod for reading aloud or recitation by sisters of the convent For though there are indications that the idea of thoi, representation was at least present to the mind of the authoress, tho fact of such a representation appears to be an unwarrantable assumption. The comedies of lirosvitha aro six in number, being doubthess in this respect also intende. to recall their nominal motel, the comedies of Terenco. They were dovised on the simple priuciple that tho world, the flesh, and the devil should not have all the good plays to themselves. Tho exporiment upon which tho young Cbristian dramatist ventured was accordingly, althougl not absulntely novel, andacious eacugh. In form tha
dramas of "the strong voice of Gandersheim," as Hrosvitha (possibly alluding to a supposed etymology of her name) zalls herself, are by no means Terentian. They are written in prose, with an element of sometbing like rbythm, and an occasional admixture of rhyme. In their themes, and in the treatment of these, thcy aro what they were intended to bo, the direct opposites of the lightsome adapter of Menander. They are founded upon legends of the saints, selected with a view to a glorification of religion in its supremest efforts and most transcendental aspects. The emperer Constantme's daughter, for example, Constantia, gives her hand in marriage to Gallicanus, just beforo be starts on a Seythian campaign, though she has already taken a vow of perpetual mandenhood. In the hour of battle he is bimself converted, and, baving on bis return like his virgin bride chosen the more blessed unmarried state, dies as a Christian martyr in exils. The three boly maidens Agape, Cbioma, and Irene are preserver by a humorous miracle from the evil designs of Dulcitius, to offer up their pure lives as a sacrifice under Diocletian's persecutions. Callimachus, who has Romen-like carried his earthly passion for the saintly Drusiana into her tomb, and among its horrors bas met witli bis own death, is by the mediation of St John raised with her from the dead to a Christian life. All these thewes are treated with both spirit and skill, often with instiactive knowledge of dramatic effect -oiten with genuine touches of pathos and undeniable felicities of expression. In Dulcitius there is also an element of comedy, or rather of farce. How far Hroswitha's comedies were ao isolated phenomenon of their age in Germany must remain undecided; in the general history of the drama they form the visible bridge between the few earlier attempts at utilizing the forms of the classical drama for Christian purposes and the miracle plays. They are in any case the productions of genius; nor has Hrosvitha nussed the usual tribute of the supposition that Shakespeare bas borrowed from her writings.

The third and last group of the writiogs of Hrosvitha is that of her versified historical chronicles. At the request of the abbess Gerberga she composed ber Carmen de Gestis Oduonis, an epic attempting in some degree to follow the great Roman model. It was completed by the year 968 , and presented by the authoress to both the old emperor and his son (then already crowned as) Otto II. This poem so closely adheres to the materials supplied to the authoress by members of the imperial family that, notwithstanding its courtly omissions, it is regarded as an historical authority. Unfortunately only balf of it remains; the part treating of the period from 953 to 962 is lost with the exception of a few iragments, and the period from 962 to 967 is summarized only. Subsequently, in a poem (of 837 bexameters) De Primordiis Cunobii Gandersheimensis, Mrosvitha narrated the beginnings of ber own convent, and its history up to the year 919.

The Munich MS., which contains all the works cnumerated above except the Chronicle of Gandersheim, was edited by the great V iemma humanist Celtes in 1501, and re-edited by the learned 1f. L. Scluratteisch in 1707. The comedics bavo beeu translatel into German by Bendixen (Lübeck, 1858), and into French by A. Mannin (tharis, 1845), whose introduction gives a full account of tho uuthoress and her works. A copious analysis of these plays will bo foum in Klein, Geschichee des Dramas, iii. 665-754. Gustav Freytag is the auther of a treatise De Rosuitha poctria (Breslan, 1839); and at the beginning of Cohn's Shakspecare in Gurmany, Shakespearean marallels are suggested to certain passages in Uresvitha's dramas. Her two historical chronicles were edited by Perts among the Monumenta Garmanice (rol iv.); for an appreciation of themt see Wattenbach, Ocschichtsqucllen, 214-216, and Gissehrech, Deussche Kaiserscit, i. 780, who mentions a German translation by Pfund. There is a complete edition of the works of IIrosvitha by K. A. Barack (Nuremberg, 1858). J. Aschbach (1867) attempted to prove that Celtes hall forged the productions which he published under the name of IIrosvitha, but to was refited ty R. Kopke (Berliu, 1869.
llUANCAVELICA, or Guancabelica, the chief town of a department of same name, Peru, is situated io a deep ravine, of an arerage width of one mile, at about 12,400 feet above sea level, and 160 miles south-east of Lima. It is well and regularly built, the houses being of stone, while several stone bridges span the stream that flows through the town. Huancavelica was founded in 1572 as a mining town by the viceroy Fraucisco de Toledo, and mining has continued to be the principal emplogment of the inhalitants. Close by is the famous quicksilver mine of Santa Bariara, with its subterranean San Rosario church, cut out of the cinnabar Population in $1876,3937$.

IIUANUCO, or Guanuco, the chicf town of the Peruvian department of the same name, is situated on the left bank of the river Huallaga near its junction with the Higueras, in a beautiful valley nearly 6000 feet above sealevel, and 180 miles north-west of Lina. The streets ale laid out regularly, but the houses are mean-looking. As nearly every house is surrounded by a garden the limits of the town embrace a large area. Swectmeats for the Liona market are almost the only manufacture, most of the imhabitants being engaged in mining and farming. lluanuco was founded in 1539 by Gomez Alvarado, and was shortly aftervards raised to a bishopric. In 1812 during an insurrection of the Indians of Panao it was plundered. The population in 1876 was 5263 .

HUARAZ, chicf town of the Peruvian department of Ancachs, and of a district to which it gives its nane, is situated on the left bank of the river Santa, in a fertile valley of the Andes, about 190 miles N.N.W. of Lima. There is some export trade in cattle, wheat, sugar, and fruit; and in the vicinity considerable quantitics of gold, silver, and copper are mined. A state railway 172 miles long, of which 82 miles are completed, is designed to conuect Huaraz with Chimbote on the coast. Near the town there are ruins in the sceond or Cyelopean st gle of Inca architecture, sufficiently like the remains at Tiahuanca to allow us to assign Iluaraz as the northern limit of the prehistoric Incarial empire, of which Tiahuanca was the sonthern boundary. Population in 1876,4851 .

IlUBER, Françors (1750-1831), an emment Swiss naturalist, especially distinguished by the originality aod reach of his rescarches into the life history of the honey-bee, was born at Geneva, July 2, 1750 . He belonged to a family which had already made its mark io the literary and scien. tific world: his great-aunt, Narie Huber (1695-1753), was known as a voluminous writer on religious and theological subjects, and as the translator and cpitomizer of The Sypectaion (Redaction du Spectateur Anglais à ce qu'il renferme de meilleur, Amst., 3 vols. 1753) ; and his father Jean Iluber (1721-1786), who had served for many years as a soldier, was a prominent member of the coteric at Ferney, listin. guishing bimself both by the rare skill with which le could reproduce the likeness of Voltaire by clipping paper and by other unpromising devices, and ly the publication of a valuable series of Observations sur le rol des oiseaur (ieneva, 1784). From an early age François Huber displayed is dangerous ardour for study; and be mas on! y fittees y-ars old when he began, in consequenco of his i!l juared assiduity, to suffer from an affection of the eyes shach gradually resulter in totar blindness. Happily at nuce for his comiort and his fame he had secured the affection of Marie Aiméc Lullin. Having patiently waited till she was legally of age, she married the lusband of her choice, and ministered to bis wants till her death with such unceasing devotion that it was only, lie said, wheu he lost br that he really felt ho was blind. For many years her efforts were scconded by Françis Ihurnens, a servant, whom Huber had inspired with somelhing of his own lose of nature. Tho recults of the investigations which were conducted by this
happily assorted trio, at once surprised and delighted the world. So skilfully did the blind man devise his experiments, and so carefully did his assistants conduct and register their observations, that the work Nourelles Obsertations sur les abeilles (Geneva, 1792; Paris, 1796 ; new ed., Paris, 1814; English transtation, Edinburgh, 1806 and 1821) laid the foundation of all our scieutific knowledge of the subject. Huber assisted Senebier in bis Neem sur linfluenre de l'air, dec., dans la gernination (Geneva, 1800) ; and we also have from his pen." Mém. sur lorigine de la cire" (Bibliollèque Britanuique, tome xxp.), a "Lettre : M. Pictet sur certains dangers que courent les abilles" (Bib. Brit., xxvii.), and "Nouvelles observ. rel. au sphinx Atropos" (Bib. Brit, xxvii.). He died at the age of eighty-one, December 22, 1831. De Candolle gave his name to a genus of Brazilian trees-Huberia laurina. Pierre Hober (1777-1840) followed in his father's footsteps. Lis best known work is Recherches sur les mours des fourmis indigènes (Gencva and Paris, 1810; bew ed., Geoeva, 1861), but he also coatributed papers on various entomological subjects to several scientific periodicals.

See the account of Françis Huber by De Candolle in Bibl. Universelle, 1832; and the notice of Pierre in Dill. Univ., $1866 ;$ also Haag, La France Protestante.
hUBER, Johany (1830-1879), a philosophical and theological writer whose name is intimately censected in Germany, and indeed throughout Europe, with the Old Catholic and uther recent movements towards freedom and enlightenment, was born in very humble circumstances, on August 18, 1830, at Munich, where, originally destived for the priesthood, he early began the study of theology. By the writings of Spinoza and Oken, however, he was strongly drawn to philosophical pursuits, aad it was in philosophy that he "habilitated" (1854), and ultimately became professor (extraordinarius in 1859 and ordinarius in 1864). Along with Düllioger and others be attracted a large amount of public attention $i n 1869$ by the challenge to the Ultramontane promoters of the Vatican council in the treatise Der Papsl u. der Koncil, which appeared under the pseudonym of "Janus," and also in 1870 by a series of letters (" Römische Pricfe"), which were published in the Allgemeine Zeitung. The nature of the onmerous controversies in which he bocame involved both before and after this main episorte of his life may bo gathered from the subjoined list of his published writings. He died suddenly of beart discase at Munich on March 20, 1879.

His treatise Ueber dic Willmsfreikrit (1858) was followed in 1859 by Dhe Thilosophie dir kirchenvater, whech was promptly placed by the floman anthoritic , "pon the Index, onil which led to the prohibition of all Catholic students fromattending his lectures: Johanues Siotus Grigena, 1861; ldee der Vnstorblichkert, 1864: Studicn, 1865 ; Ier I'roltetaricr: zur Orientirung in ter sorialen Frage, 1865; Der Jesmitemorden nach Vorfassung u. Doktrin, Wissenschaftu. Geschichte. 1473; Dier Pessimismus, 1876 ; Die Porschung nath der Materie, 1487 ; Zur lhidnsmhic der Astronomic. 1873, Das Gedarhunss, 1sis. He also quhlished anverse criticisms on Darwin, Strauss.
 1才, and on Hic Frederiten dier franswischen Kirche, 1871: and - vulano nf kileine Schrofen. 1871

HUBERM" (Husaubert or Hequbracht, "the Brightwittel"), St, lishop of Libege, was son of Fertrand, duke of Finionce, and ledel a prominent phace in the court of the Prankish king Thootmic, and efterwards in that of Pippin of Iterital. THe was passionately fund of the chase, luat with the death of his wife Floribane all his tasto for monlonernjoymenterlisappered, and following the commsels of hia frient amel teacher, Jishop, Lambert of Mastricht, ho retired to the monastery of Stavelot, whewe he afterwarels malurlook a pilerimoge to líme, on wemsion of which de was hy pupe Sersus I. Ippeinterl bishop of 'longern. In
 leiege, to whacememory ho erectet a cathelral in the latter
city. His death occurred in 727 , and in 825 his remains (which, it is alleged, suffered ou decay for many years) were removed to a Benedictive cloister in the Ardennes, which thencoforth bore his name, and ultimately became a considerable resort of pilgrims. St Hubert's day is November 3, but the date and circumstances of his canonization are not stated. His conversion, represented as laving been brought about, while he was bunting oo Gond Friday, hy a miraculous appearance of a stag bearing between his horns a beaming cross or crucifix, bas frequently been made the suhject of artistic treatment. He is the patren of hunters, and is also invoked in cases of hydreplebia and demoniac possession. Several orders of knighthood have been under his protection; among these may be mentioned the Bavarian, the Bohemian, and that of the electorate of Cologne.

See Jameson, Sacred and Legendary Art; Fėtis, Légende de Saint Hubcrl, précedee d'une preface bubliographique et d'une introduction histgrique, 1846; Des Granges, Fie de Saint Hubert, 1872; Heggen, Des heiligen Hubertus Leben u. Wirken, 1875.

HUBLI, a town in Dharwar district, Bombay, $15^{\circ} 20^{\prime}$ N. lat., $75^{\circ} 12^{\prime}$ E. long, situated 13 miles south east of Dhárwar, on the main road from Poona to Harihar; it is 230 miles south-east from Poona, 142 miles from Bellári (Beltary), 90 miles from Kárwár, and 97 miles from Kumpta (Coompta). Population (1872) 37,961. Situated on the main lines of communication to Harihar, Karwar, and Kumpta, the town has become the centre of the cotton trade of the sonthern Marhatta country. Besides raw cotton and silk fabrics, a general trade in cepper vessels, grain, salt, and other commodities is conducted on a largo scale. Ifubli was formerly the seat of an English factery, which in 1673, with the rest of the town, was plundered by Sivaji, thu Marhattí leader.

IIUC, Evariste Régis (1813-1860), a celebrated French missionary-traveller, was born at Toulonse, lat August 1813. In bis twenty-fourth year he entered the congregntion of the Lazarists at Paris, and shortly after receivin's holy orders in 1839 set forth fired by missionary zeal for China. At Macao he spent some eightees months io the Lazarist seminary preparing himself uader the instruction of Perboyre for the regular work of a missionary in the interior. Having at last aequired a sufficient command of the Chincse tongue, and modified his personal appearance in accordance with Chinese taste, be started from Canton clad is the flowing costume of the natires, with his skin dyed yellow, and wearing the incvitable queue. He at first superintended a Christian mission in the southere provinces, ond then passing to Peking, where he perfected his knowledge of the language, eventually settled in the Valley of Black Waters or He Shuy, a little to the nerth of the capital, and just within the berders of Mongolia. There, beyond the Great Wall, a large but seatterel population of untive Christians had found a refuge from the persccutions of Kia-King, to be united half a century later in a vast but varre apostolic vicariato. The assiduity with which Huc devoted himself to the study of the dialects and customs of the Tartars, for whom at the cost of much labour he translated variona religions works, was an admirable preparation for undertaking in 184, at the instigation of the vicar apostolic of Mongolia, an expedition whose olyect was to dissipate the ohscurity which hung over the conntry and halsits of the Tibetans. September of that year foond the missionary at Tolon-noor oecupical with the fimal arrangements for his journw, aml shortly afterwaris, accompanied by his fellow-Lazarist, Joseph Gabet, and a young d'ibetan priest who had cmbraced Cliristianity, he set out. To eseape attention tho lithle party assumed the dress of lamas ar priests. Crossing: the Jomag lorat Shagan-Kforen, they nedanced into the terrible sandy tract known as the
steppes of the Ortoos, Aiter suntering dreadtully rom want of water and fuel they entered Kansu, having recrassed the flooded Heang-he, but it was not till Janaary 1845 that they reached Tang-Kiuul on the Boundary, Ratber than encounter alone the horrors of a fon months' journey to Lbassa they resolved to wait for eight months till the arrival of a Tibetan embassy on its return frony Peking. Under an intelhgent teacher they mearmbile studied the Tibetan langaage and Budduist literature, and during three months of their stay they resided in the famous Kounboum Lamasery, which was reported to aecemmodate 4000 persons. Towards the end of September they joined the returning embassy, which comprised 2000 anen and 3700 animals. Crossing the desarts of Koko-nur, they pussed the great lake of that name, with its island of contemplative lamas, and, ascending with difficulty and bardship the tortuous snow-covered mountans of Cbuga and Buylen-Bharat, they at last entered Lhassa on the 29th January list6. Favourably received by the regent, they openced a little chapel, and were in a fair way to establish a a important mission, when the Cbinese ambassador interfered and bad the twu missionaries consoyed back to ('anton, where they arrised in October of the same year. lor nearly three years Hac remaised at Canton, but M. Gabet, returning to Europe, proceeded thence to Rio de Janeire, and died there shortly afterwards. Hac returned :o Europe in shattered health in 1852, visiting India, Egypt, and Palestine on his way, and, after a prolonged residence ." Paris, died 31st March 1860. His writings comprise, vesides numerous letters and memoirs in the Amoles de la Propagateon de la Foi, the famous Souvenirs d'un Voyage duns la Tartarte le Thibet, et la Chine pendant les années 1s44-46 (2 vol Par., 1850 ; Eng. transl. by W. Hazlitt, 1R51, abbrewated by M. Jones, Lond., 1867); its supplenunt, crowned by the Academy, entitled L'Empire Chinois (2 rols., Par., 1854 ; Eng. transl., Lond., 1859) ; and an elaberate histarical work, Le Cleistianisme en Chine, \&e. (4 vels., Par., 1857-58; Eng. transk, Lond., 1857-58). These works are writted ir a lucid, racy, picturesque style, which bas secured for them an uanaual degree of popalarity. The narratire of one of the most remarkable feats of modera travel, the Souvenirs contain passages of so singular a character as in the absence of corroborative testimony to stir up a feeling of incredulity. That Huc was suspected unjustly has been amply prored by the later research of Bushnell, David, Prejevalski, Michthofen, and Colonel Montgomerie's "Pundits." But although his credibility ban been firmily established, end although in his heroic enterprio. he gathered a vast amount of novel and carrous iaformation, the fact remaies that Huc was by no :neans a practical geugrapher, and that the recerd of has travels loses greatly io value from the want of precise screatific data
see. Dor intormanom specully - intug to the whote subject, the athe Lhespolin y Massion di. JWbet de 1855 a 1870. Vordun, 1872 ; and "Account of the Pumitt s Jumrney in Great Tibet," withe Royal Grographecal Socacty's Jouernal for 1877.

HUCBALD (also called Hugbaldus and llubaldus) Nas bern in or about 840 , if we may believe the statement of his brographers to the effect that he died in 930 , aged 90. Of his life little is known ; not even the place of his birth can be ascerteined, but be was no doubt a Frenchman or a Lelgian. It is certain that he stadied at the convent of St Amand in Frencl Flanders, where his uncle Nilo vecupied an impertant position. Hucbald made rapid progress in ine acquirement of various sciences and arts, including that of music, and at an carly age compesed a hymn in bonour of St Andrew, which met with such suceess ns to excite the jealousy of his ancle. It is said that Hucbald in cossequence was compelled to leave St Amand,
and started an independent schoel of music and other arrs at Nevers. In 860, however, we find him at St Germain d'Auserre, bent upou completing bis studics, and in 872 Le is back again at St Amand as the successor in the head mastership of the convent school of his uncle, to whom ho tad been reonciled in the meantime. Between 883 and 900 Hucbald went on seseral missions of reforming and reconstructing varions sebeo's of masic, including that of Rheims, but in the latter year he returned to St Amand, where he remained to the day of his death (Jnne 25, 930, or, aecerding to other chroniclers, June 20, 932), and where his most impartant, works on music were written. Of the character of these works and of the reforms and improvements adrocated by them it is nut easy to give a correct idea; nut even their number is sufficiently certain, for some treatises have beon attributed to Huebald which are obvously not his, and others of which the authership is at least doubtful. His largest and most authentic work is the Enchiridion Musice, published wath other writings of minor importance io the first volume of Gerber's Scriptores ecclesiastici, aud centaining a complete system of musical seience as well as instructions regarding notation. Iluctald as a musical theorist may be called a precursor of Guido d'Arezzo, to whose hexachord systern his tetracherd, that is, the use of four instead of seven letters, ferms a kind of basis. His seales are founded on strietly Greek principles, and cannot be said to mark a decided step in adrance; neither is his system of notation mach superiur to the earlier ones, although here also he ceems in a manner to foreshadow Guido's use of the lines and spaces of the staff from which the modern method took its rise. Of great importance is the 13 th chapter of the Enchiridion, which treats of the diaphooy or organum,-ia other words of singing in parts. Amongst other prescriptions it is curieus to find the rule which recommends the use of parallel filths and fourths, so strictly prohibited by later theorists, while, on tho other hand, consecutive thirds, particularly euphonious to the modern ear, are excluded by Hucbald.

A good account of the monk of St Amand and his system will be found in Coussemaker's Aremorre sur Huctald, Paris, 1841; Hawkins (History, vol. ı. p. 153) also gires a short notice of Hucbald, and mentions two epitaphs witten u has bonour by contemporaries.

HUCHTENBURG. Twe brothers of this ame practised the art of painting in the second balf of the 17th century. Beth were natives of Haarlem. Jacob, the clder, of whom very little is kuewn, studiod under Berghem, and went early to Italy, where be died young about 1667 . Itas pictures are probably confounded with these of his brether. In Copenhagen, where alone they are catalogued, t'icy illustrate the style of a Dutchman who tra:afers Buch m's cattle and floeks to Italian landseapes and market-flaces.

Jehn ran Huchtenburg (1646-1733), born at Harlem it is said in 1646, was first taught by Thumas Wyk, and afterwards induced to visit the chief cities of Italy, where, penetrating as far as liome, le met and dwelt with has brother Jacob. After the death of the latter be wandered homewards, taking Paris on his way, and served under Van der Meulen, then employed in illustrating for Louis XIV. the campaign of 1667-68 in the Low Countries. In 1670 be settled at Haarlem, where he married, practised, and kept a dealer's shop. Ilis side had now merged into an imatation of Thilip Wourernans and Fin der Meulen, which could nut fail to produce pretty pictures of hunts and robber camps, the faculty of lainting horses and men in action and varied ceress being the chief peint of atrac. tion. Later on Huchtenburg veatared on cavalry skimishes and engagements of regular truans generally, and these were admared by Prince Engone ald William IIL., who gave tho panter sit:mgs, and commissiuned hitn to throw apun cansas the chief incidents of the battles they
fought unon the continent of Europe. When he died at amsierdem in 1733 , luchtenburg had done much by his pictures and prints to make Prince Eugene, King William, and llariborough popular. Though clever in depicting a mêlée or a skirmish of dragoons, he remained second to Philip Wouvermans in accuracy of drawing, and inferior to Van der Meulen in the production of landscapes. But nevertheless ho was a clever and spirited master, with great facility of hand and considerable natural powers of observation.
T'ho earliest date on his pictores is 1674 , when he executed the Stag-linnt in the Museum of Berlin, and the Fight with Robbers in the Lichtenstelu collection at Vienna. A Skirmish at Fleurus (1690) in the Brussels gallery seems but the precursor of larger and more fowetful works, such as the Siege of Namur (1695) in the Belvedere at Vicma, where William Ill. is seen in the foreground aceompanical by Max Emmanuel, tho Bavarian elector. Three years beforc, Huchtenburg had had sittings from Prince Eugene (Hague miscum) and William III. (Amsterdan Trippenhuis). After 1696 ho regularly scrved as conrt painter to Prince Eugene, and we have at Turin (gallery) a series of eleven canvases all of the same size depicting the various battles of the great hero, commencing with the fight of Zentha against the Turks in 1fi97, and concluling with the capture of Belgrade in 1717. Had the duke of Marlborough been fond of art he would doubtless have possessed miny works of ourartist. All that remains at Blenheim, however, is a conple of sketches of battles, which were probably sent to Churchill by his great contemporary. The pictures of Huchtenburg ure not very numerous now in public galleries. There is one in the National Gallery, London, another at the Louvre. But Copenhagen has four, Dresden six, Gothatwo, and Munich has the well-known composition of Tallart tiken Prisoner at Blenheim in 1704.
.HUDDERSFIELD, a municipal and parliamentary borough and market-town of England, in the West Riding of Yorkshire, is beautifully situated on the slope of a hill in the valley of the Colne, a tributary of the Calder, 15 miles south of Bradford, and $16 \frac{1}{2}$ south-west of Leeds. It is surrounded by a network of railways, and is connected with the extensive canal system of Lancashire and Yorkshire. The town is built principally of stone, and has uadergene within late years very extensive improvements, in regard to both ite external appearance and its sanitary arrangaments. The older purtions of the town, where the etreets were mean-looking and oarrow, have almost disappeared, making way for handsome, spacious, and wellpaved thoroughfares, whilst many, of the business premises possess considerable architecturel merit. Among the churches deserving special mention are 'St Peter's, the parish church, in the Pcrpeadicular style, rebuilt in 1837 at a cost of $£ 10,000$, posscssing chancel, nave, aisles, transept, and tower with peal of ten bells; Trioity Church, erected in 1819 at a cost of $£ 12,000$, in the Pointed style, with an cmbattled tower at the west end; St Paul's, built by tho parliamentary commissioners in 1831, in the Early English style, with a tower surmounted by a light spire ; St Thomas's, in the Transition Early English style, completed in 1859 at a cost of $\mathscr{E} 10,000$. Of the numerous Nonconformist places of vorship, Ramsden Street (Bongregational), Qucen Strect nad luxton Road (Westéyan), and Brunswick Strcet (Free Methodist) chapela are remarkable for their capacity, whilst IFigh Strect (Nuw Cunnexion Methodist), New North Road (Baptlst), aud LIghfiehd and Iidlhouse (Congregational) have considerablo architectural beanty. The principal other buililings, in addition to the many fine warchonses, are the Cloth-Hall, ercetert by Sir Thomas Ramsden in $: 758$, and extemled in 1780, -a circular two-storicd brick building, having a diameter of 80 yard, now fallen almost into dianse; the Armoury, erectert as on riding. echool, hut now the headquarters of tho ritle volumeers, and also neal for enncerta and large [ublie methes: thic Fichuria 11 all, a capacions buiddag rerently erected by the
 it the drecian style, ariginally naed for lectures and public
mectings, afterwards converted inw a useaure, and burai almost to the ground February 15, 1880; the Gymnesium Hall, erected in 1847, capable of accommodating 10 ro persons, and transformed into public baths in 1879 ; the lufirmary, erected in 1831, a large and elogant stone edifice of the Doric order with wings and a portico, tho latter supported by four fluted columns, a large ward and meajcated baths being added later; the General Railway Station. in the Grecian style, erected in 1848, having in front a handsome statae of Sir Robert Peel; the Hnddersfield College, in the Baronial style, established in 1838 for soa? of gentlemen and tradesmen; the Collegiate School, in the Gothic style, erected in 1839 ; the Huddersfield Club; the Borough Club; the Masonic Hall (1838) ; the Corporation offices, in the Classic style (1877); the Town-Hell, also in the Clessic style, but much richer (1S80); the Guardians' offices (1880) ; the Ramsden Estate buildings, a handsome and extensive block of the mixed Italian order; the Chamber of Commerce; and a remarkably fine oew market hall, in the Gothic style, with a clock-tower and spire $10 f$ feet in height, founded in 1878 , and opencd in 1850

an of Iluddersfieh.
The cost of the building was $£ 28,000$, end the sum paid by the corporation to Sir J W. Mamsden, Bart., for the market-rights and site, was $£ 25,790$, in addition to $\mathfrak{£} 15,273$ for the site and rights of the cattle-market. A public cemetcry, off New North Road, the property of the corporation, with nortuary chapcls for Churchuen and Nonconformusts, was completed in 1855; and the cometery at Almondbury was taken over by the corporation in 1868. The extensive gas works are the property of the corporatica as are also the water-rorks, which atford an ample supply of excellent water, the rescrvoirs being capable of storing $900,000,000$ gallons. The cost has been over $£ 750,000$. A pubhe park of 21 acres, called the licaumont Park, is the gift of Mr M. F. Beaumont; the lirst sod was cut on May 89, 1880. There aro fourteen bandsome board schools, crectel at a cost of about $£ 120,000$, twenty-one national schools, and one lioman Catholic school. 'Thes primeipa' public socictics are the mednanics' institution, the hilding for whech, a large ellfice in the Italian style, was opened ia 1861, and tho mechanics' institntes at Lindicy and Lockwool, ench possessing landsome buildings. Iluadersfold is a phace of considerable antipuity, being mentioned in Domestuy, and is sumosed ly some to derive its anme from

Oder or Hudard, a Saxon chief; but its importance dates from the establishment of the woollen manufacture within the last century. It is the prineipal seat of the faney woollen trade in England ; and it exceeds every other place in the variety of its mannfacture of this class of textile fabries, which ineludes doeskins, angelas, tweeds, worsted coatings and trouserings, Ulster eloths, mohairs, cashmeres, sealskins, faņey dress skirtings, kerseys, woullon cords, quiltings, a few broad eloths, and a large number of union materials. It also possesses silk and cotton spinning mills, iron foundries, engineering works for steam-engines, steamengine boilers, and the machinery used io the various manufactures, chemical works, clye-houses, lead-piping and s':nitary tube manufactories, and three organ factories. Handloom weaving is carried on in the surrounding villages, but to a nuch less extent than formerly. A market for woollen goods is held weekly. Coal is abundant in the vicinity. There is a sulphurous spa in the Loekwood ward, with warm, cold, vapour, and shower baths. At Almondbury, ? miles distant from the centre of the town, there was at one time a Saxon fortress, and by some writers the Roman station Cambodunum, mentioned by Antonine, is believed to bave been situated there; recent excavations, however, have proved almost conclusively that at Slack, just outside the oppesite boundary of the horough, was the real Cambodunum. Kirklees park, 3 nules from Huddersfield, is popularly supposed tio have been the burial-place of Robin Houd. Since 1832 Huddersfield bas returned one nember to parliament, and it beeame a municipal boreugh in 1868, with 12 wards, and a town council of 56 meobers. The area of the town was greatly inereased at the time of its incorporation. The area of the parliamentary borough is 10,998 acres, and that of the nunicipal berough 10,498 aeres. The population of the parliamentary borough in 1861 was 34,877 ; and in 1871 , owing ehicty to the increased area, it was 74,358 . The population of the municipal borough in 1880 was estimated at $81,7 \mathrm{~s} 0$.

HUDSON, a eity of the United States of America, capital of Columbia county, New York, is situated on the left bank of the Hudson river at the lead of navigation, and on the Hudsen and Boston and Hudson River Railwnys, 114 miles north of New York eity. It stands on the ridge of a picturesque elevation called Prospect Hill, which after rising abruptly 60 feet from the river, slopes gradually to an elevation of 500 feet. The bigh river bank projects into the river in the form of a beld promentery, affording a delightful promenade, and having on either side a fine biy with depti of water sufficient for the largest ships. The wharres are situated at the foot of the promontery and along the margin of these bays. The city is for the most part regularly built, with streets crossing each other at right angles, and a public square situated immediately abuve the wharves. Works to supply the eity with water have lately been constructed at a cost of 250,000 dollars. The principal buildings are the courthonse, coustructed of marble and limestone and surmounted by a dome, the city ball aud post-nffice, and the academy. The city is also well supplied with other schools, and possesses three public libraries. Hudson st one timo vied ns a trading port with New York, and, although both its West India trade and its whale fishing have now been abandonen, it still earries on an importaut river trade, and has regular steam communication with New York and Albauy. It also possesses large iron smelting works, a stove-foundry, a tannery, a flour-mill, brewerics, iren-foundries, and factories for pianos, carriages, paper, car wheels, and steam fire-engines. Hudson was settled in 1784, being then known as Claverack Landing. It became a city in 1785 . The papulation, which in 1870 was 8615 , was 8669 in 1880.

HUDSON RIVER, of North River, one of the largest and noblest rivers of the United States, and tho prineipal river of the State of New York, is formed by the confluence of two small-streams which rise in the Adirondack nountains in Essex county. Abont the middle of Warren county the river is joined by another of nearly equal size, the Sehroon, which also has its riss in Essex county. After receiving the Sneondaga river 10 miles further sonth, the Hudson flows irregularly i:s an easterly direction to Sandy. Hill, after which it keels a very straight course almost \& ae south until it falls into New York Bay. At Troy it rieeives the Mohawk, whoso volume of water is grenter th:n its own, and at Kingstun the Wallkill, but its other tributaries, though numerous, ans unimportant. Its total length is about 300 miles, and thes length of its course from Sandy Hill 190 miles. At Glen․ Falls, near Sandy Hill, it rankes a precipitous descer t of 50 feet, whence there are various rapids of different velocities until it reacles Troy. It is tidal nearly up to Troy, and the fall from Albany, 6 miles below Tros, to the mouth of the river, a distance of 145 miles, is only 5 leet. By means of a leck and dam it is navigable to Waterford, a sbort distance above Troy, but large steamers do not proceed further up than Hudson, 29 miles below Albany, and 116 from the mouth of the river. A short distance below Albany the navigation has been obstructed by shifting sands, the point at which the difficulties are most formidable being the "overslangh" at Castleten, but sxtensive operations have been for some time carried on in_{1} order to effect a permanent remedy for the obstructions. The breadth of the river at Albany is about 300 yards, and thence to Haverstraw, distant 34 miles from New York, it varies frem 300 yards to 900 yards. From Haverstraw to Piermont it expands into Tappan Bay, with a length of 12 miles and a breadth of from 4 to 5 , after which it narrows to a breadth of between 1 and 2 miles. The scenery of the river is for the most part varied and beantiful, generally picturesque, and in many places in the highest degree striking and magnificent. In the upper part the views though not tame are a little monotonous, the gently sloping bills, with the variegated colours of wood and cultivated land and the occasional occurrence of a town or village, repeating one another without any marked feature to break their regularity. Below Troy, for a considerable distance, the number of islands renders much care in navigation necessary. Thirty miles from Troy noble views begin to be obtained of the Catskill mountains, towering up on the west bank, the nearest eminence at the distance of about 7 miles. Fortysix miles below Catskill is the large and flourishing city of Poughkeepsie, and 14 miles further down the prosperous city of Newburgh, a short distance below which, at the favourite summer resort of Cornwall Landing, the river enters the Highlands, passing between a series of bills whose frequently precipitous sides rise often abruptly from tho water's edge. The views in this part of the river are of a character in some respects unparalleled, and at several points they have an impressiveness and surprising grandeur rarely equalled. Tho distance through which the river traverses this mountain scencry is abont 16 miles, and about 10 miles sfter $i t$ is entered West Point is reached, a favourite laoding placa of tourists, the seat of the United States military scademy, and historically interesting on account of lurt Putnam, ncw in ruins, built during the war of American independence, nt which time a chain was stretehed across the river to prevent the passage of Pritish ships. After passing the pretty town of Peekskill the siver widens into Haverstraw Bay, at the extremity of which is the headland of Crotou Point. Below is the wider expanse of Talpan Bay, upon which stands Tarryom, famous both bistorically and frite
its connozon mith fustingion Irving, whose cottage of Sunnyside is in the vicinity. At Piermont, where the bay cads, the range named the Palisades rises picturesquely from the water to the height of hetween 300 and 500 feet, exteading along the west bank for about 20 miles, the left bank being level and dotted with hamlets and villas. At the mouth of the river on the west bank are Hoboken and Jersey city, and on the east bank New York city.

By the Erie canal the river is connected with Lake Erie, by the Champlain canal with Lake Champlain, and by the Delaware canal with the Delamare river; and its commercial importance as a means of traffic is not excelled by that of any other river in the world. It was on the Hudson that Fulton, the inventor of steam navigation, made his first successful expermment. The Hudson River Railway skirts the east bank of the river from New York to Troy, whence it bends eastward on its way to Lake Champlan. On the west bank a railway is to run from Jersey City to Newburg, and branch lines from various centres touch both banks at several points. The Hudson bas some valuable fisheries, the priacipal fish being bass, shad, and sturgeon. The attempts to stock it with salmon have not been very successtul. Thongh Verrazzani io 1524 proceeded up the river Hudson a short distance in a boat, the first to demonstrate its extent and importance was Henry Hudson, from whom it derives its name. He sailed above the mouth of the Mohawk in September 1609.

HUDSON, George (1800-1871), the "railway king," was born in York in 1800, wss a successful linen draper in that city, and subsequently became the leading representative of the railway mania of 1845-46. Elected chairman of the North Midland Company, he was for three years the ruling spirit of speculation and as the arbiter of capital held the key of untald treasures. All classes delighted to honour him, and, as if a colossal fortune were an insufficient reward for his public services, the richest men in England presented bim with a tribute of $£ 20,000$. Deputy-lientenant for Durham, and thrice lord mayor of York, he was returued in the Couservative interest for Sunderland in 1845 , the evtat beng judged of such public interest that the news was conveyed to London by a special train, which travelled part of the way at the rate of 75 miles an hour. Full of rewards and honours, he was suddenly ruined by the disclosure of the Eastern Railway frauds. Sunderland clung to her generous representative fill 1859, but on the bursting of the bubble he had lost infuence and fertune at a single stroke. His later life was chietly spent on the Continent, where he benefited little by a display of unabated euergy and coterprise. Sonie frionds gave him a small annuity a short time before his death, which took place in London, 14 th December 1871. llis name has long been used to poiat the meral of vaunting ambition und unstabte fortune. The "big swollen gambler," as Carlyle calls him in ooe of the Latter Itay Pemphtets, was savagely and excessively reprobated by the world which had blindly believed in hisgolden prophecies. He certainly ruined scrip holders, and disturbed the great centres of industry; but he bad an honest faith in lus own schemes, and, while he begrgarel himself in their promotion. lio succeeded in overcoming tho prowerful handed interest which deliyed the adeptan of railways in Eagland long after the dato of their regular introducton into America.

IIUDSON, !HNEY, a distimguished English mavightor, of whose personal histury before April 19, 1607, or after Iture 21, 1f11, absolutely nothing is known, and whose well-earned fame rests entirely on four viryages which were all unsuccossful as regarded their immednat" object, the discuvery of a commerrial passare to China uther and shorter thim that by the Cape of Cimal Hope. The first of these, ill ducat of new trade and the passage to China by the

North Pore, was macu ior the Muscory Company, with ten men and a boy, in the little "Hopewell" of 60 tons that had so succossfully braved the dangers of Frobisher's last royage twenty-nine years before. Sailing from the Thames on April 19, 1607, Hudson first ceasted the east side of Greenland, and thence hugging the Arctic ice-barrier, pro ceeded to the "north-east of Newland" to near $82^{\circ} \mathrm{N}$. lat. He then turned back to seek, according to his chart, the passage round the north of Greenland into Davis Straits to make trial of Lumley's lnlet, or "the furious overfall"; but, baving traced the ice barrier from $78 \frac{1}{2}^{\circ}$ to 80°, he on July 27 became convinced that by this way there io no passoge, and on August 15 be returned to the Thames. Molineux's chort, oublished by Hakluyt about 1600, was Hudson's blind güde in this voynge, and the polar map of 1611 by Pontanus illustrates weil what he attempted, and the valuable results both negative and positive which he reached. He investigated the trade prospects at Cherrie Island, aod recommended his patrons to seek higher game in Newland; hence be may be called the father of the Euglish whalefisheries at Spitzbergen.

Next year Hudson was a second time sent by the Muscovy Company " to open the passage to Chioa by the north-east between Newland and Nova Zemla;" this voyage lasted from April 22 to August 26, 1608. From June 12 to June 29, he raked the Barrentz Sea between $75^{\circ} 30^{\prime}$ N.W. and $71^{\circ} 15^{\circ}$ S.E. on the Goose coast of Nova Zemla, meeting with muci ice and no great encouragement for trade, and deleting Willooghby Island from bis chart. On July 6, " voide of hepe of $=$ יorth-east passage (except by the Waygrats, for which I was ac: fitted to try or prove), I therefore resolved to use all meanas I couid to sayle to the north-west" (still harping on Lumley's Ialet and "the furious overfall"). The failure of this second attempt eatisned the Muscovy Company, which thenceforward directed all its entrgies to the prafitable Spitzbergen trade.

In the Autumn of 1608 Hudson "had a call" to Amsterdam, where he s6w Plancius, who gave him Way. mouth's journals, and Houdins, who supplied him with translations of certain Dutch papers. After some vacillating negetiations he finally undertook for the Dutch East Iudia Company his important third veygge to find the passage to China "by the east or the west." With a mixed crew of cighteen or twenty men he left the Texel in the "Half-Moou" on April 5, and by May 5 was in the Barrentz Sea, and soon afterwards among the ice near Costin Sareh in Nova Zemla, where be had been the year befere. Some of his men becoming disheartened and mutiuous (it is now supposed that he had arrived two or three months toe early), be soon lost hope of effecting anything by that route, and submitted to his men, as alternative proposals, either to go to Lumley's Inlet and follow up Waymouth's light, or to make for North Virginia and seek the passage io about 40° lat., according to tho letter and map sent him by his friend Captain John Smith. The latter plan was adopted, and on May 14 Hudson set lis face towards tho Chesapeake and China. Ile toucbed at Stromo for water, and on June 15 off Newforndland in about 48° hat. the " llalf-Moon" "spent overboord her foremast." "this accident compelted him to put into Sagadaboe ($44^{\circ} 1^{\prime}$ Jat.), where on July 18 a mast was procured, sone communication with the Indians was had, and an unnecessary battle fought, in which the ship's two "stone murderers" were employed. Sailing again on July 25, he was ofl Cape Cod on August 6 , and on tho 9 th ($38^{\circ} 39$ ' lat.) " went with low sail because we were in on muknown sca." On Angust 18 they made Smith's Islands, 6 or 7 miles nortls of the entrance to the Chesapeako. On August 28, hegimning the survey where Smith left off at $37^{\circ} 36^{\circ}$ according to his map, he consted north to Saud; Hook, passing the " nverfnll " of the Delaware with scarcely

2ny notice, probably because a western inlet there would azve taken bim in amid Smith's surveys. On September 3 , in $40^{\circ} 30^{\prime}$, be entered the fine bay now known by the name of New York. After having gone 150 miles up what is now the Hudson river, treating with the Indians, surveying the country, and trying the stream above tide water, he became satisfied that this course did not lead to the South Sea or China, a conclusion in barmony with that of Cbamplain, who the same summer had been makiug his way south through Lake Champlain and Lake St Sacremeut to the South Sex. The two esplorers by opposite routes approached within 20 leagues of each other. On October 4 the "HalfMoon" weighed for the Texel, and on November 7 putin to Dartmouth, where she was selzed by the Englisb Goverament and the crew detained. The vogage bad fallen short of Hudson's expectations, but it served many purposes perbaps as important tu the world. Anong other results it exploded Hsklugt's myth, which from the publication of Lok's map in 1582 to the 3d charter of Virginia in May 1609 he had lost no opportunity of prumulgatiug, that near 40° lat. there was a narrow isthmus, formed by the sea of Verrazano, like that of Tehuantepee or Pagama.
Hudson'a three failures served ouly to increase men's confidence in the existence of a passage by the north-west. for the discovery of which a new and strong joint-stock company was accordingly forazed. The command was given to Hudson, who on April 10, 1610, saled in the "Discoverie" of 70 tons, the ship that took Waymouth in 1602 in the same direction. How he penetrated through the long straits, discovered the great bay that bears his name, at once his monument and bis grave, bor he and his men wintered in its aouthera extremity, how in comiag north in the next aummer, near the east coast, half way back to the straits, he, his son, and seven of hus men, in a muting, were put into a aballop and cut adrift on Midsummer day 1611 , is told in many buoks. The ringleaders and balf the crew perished miserably, but the "Discoverie" was finally brought home to London. No more tidings were received of Hudson, but no one doubted the complete success of his voyage. A grander company was incorporated in 1612, under Prince Henry, to complete the exploration of the passage, and to find the lost discoverer and his companions. Sir Thomas Butler was the commander io 1612, and the " Discoverie" was again the chosen ship. In 1613 the vogage was repeated by Gibbons, and once more in 1614 by Baffin ; and the bay was thoroughly explored with the results which havo long beeu nniversally familinr.

Sea Denry Iudson, the Nivigator (Hakluyt Society, 1860)

HUDSON'S BAY COMPANY is a joint-stock associadion formed for the purpose of importing into Great Britain the furs and skins which it obtaina, chie日f by barter, from the Indians of British North America The trading forts of the company are dotted over the immense region (excluding Canada Proper and Alaska) which is bounded E. and W. by the Atlantic and Pacific Oceans, and N. and S. by the Arctic Ocean and the United States. From these forts the furs are despatched by boat or canoe to York Fort on IIudson's Bay, whence they are shipped to England to be sold by auction.

In the year 16\%0 Clarles II. granted a charter to Prince Rupert and seventeen other noblemen and gentienen, ineorporating them as the "Governor and Company of Adventurers of England trading into lludson's lay," and securing to them "the sole trade asd' commerce of all those seas, straits, bays, rivers, lakes, creeks, and sounds, in whatsocyer latitude they shall be, that lie within the entrance of the straits commonly called IIudson's Straits, together with all the lands and territorics upon the countries, coasts, and cenfines of the geas, bays, tic., aforesaid, that are not already acinally possessed by orgranted to any of our subjeets, or fossessect the subjects of any other Christian prioce or state." Besides the com. plete lordship and entire legislative, judicial, and exceutive power within these rague limits (which the company finally agreed to
accerit as meaning all lands watered by sucams flowing into Hud. son's Bay") the corporation receired also the right to "the whoie and entire trade and trallic to and from all havens, bayn, erecks, rivers, lakes, and seas ioto which they shall hand entrauce or passag. by water or land out of the territories, limuts, or places aforesaid.' The first setulements in the country thus granter, which was to bo known as Rupert's Land, were made on James's Bay and at Churehbill and llayes rivers; but it was long hefore there was any advance into the intcrior, for in 1749 , when an unsuccessful attempt was made in parliamedt to deprive the company of its charter on the plea of "Don-user," it had only some four or five forts on tho coast, with about 120 regular employés. Although the commercial success of the enterprise was from the first inmonse, great losses, armountiog before 1700 to $£ 215,514$, werc inflicted on the company by the French, who aent several military expeditiona against tho forts. After the eession of Canada to Great Britain in 1763 , uumDers of fur-traders spread over that country, and inin the northwestern parts of the contiuent, and began even to eneroach on the Hudson's Bay Company's territories. These iddividual speculators Gnally combined into the North-West Fur Company of Montreal of which Washington Irving has given an intercsting description in his Astoria. The fierce competition which at once aprang up between the compadies was marked by features which sufficieotly demodstrate the adrantages of a monopoly in commercisl dealinga with sarages, even although it is the maoifest interest of the monopolista to retard the advance of civilizstion towards their huntiog grounds. The Jodians were demoralized, body and soul, by the abundance of ardeot spirits with which the rival traders sought to attract them to themselres; the supply of furs threatened soon to be exhausted by the indiscriminate slaughter, even during the breeding season, of boih wale and female animals; the worst pas. sions of hoth whites and Indians pere infamed to theirfiercest, and costly destruction of human life and property was the result (see Red River Sertlement) At last, in 1821 , the companies, mutually exhausted, amaigamated, obtaining a licence to hold for 21 years the monopoly of trade in the vast regions lying to the west and north.west of the nlder company's grant. ln 1835 Hudson's Bay Company acquired the sole rights for itself, and olvained a new licence, alsofur 21 years. On the expliry of this, it was not renewed. and since 1859 the district has been open to all, the Hudson's Bay Compady having no special advantages beyond its tricd and splendid organization. The liceaces to trada did not of ceure affect the original possessions of the cempany. These it retained till 1869 , When they were transferred to the British Gorernment for $\mathfrak{2} 300,000$; in 1870 they were incorporated with the Dominion of Canacia. The company, which now trades entirely as a prirate corporation, still retuias one-twentieth of the entire grant, together with valuable blocks of land reund the various forts; and these possessioos will douhtless, as the country becomes opened up and colonized, yiele a considerable revenue at snme finture time.
For further information see the Report of the Seleet Parlamentary Committeo In 1857: The Hudson's Bay Territories and 'Vancouver's Istand by R. M. Martin. 1819: An Examination of the Charter and Proceedings of the Hudson's Bay Com. pany, dc, by J. E. Fitzgerald, 1849; Notes of a Trenty-fite Jears Serrice in tho and The Bita North Land, lsi 3 , both by Coptain W. F. Buller.
hUE, or Hue-foo (variously called Quang-due, Pier-thea-thien, and Sav Huek), the capital of the kingdom of Anam, is situated in a province of its own name, on the left bank of the Truing-Tién or Hué river, which falls into the Chinese Sea about 8 miles furtber down in $16^{\circ} 34^{\prime} 28^{\prime \prime}$ N. lat. and $107^{\circ} 38^{\prime} 39^{\prime \prime} \mathrm{E}$. long. The surrounding country is a flat alluvial plain, traversed by streams and canals, nnd largely occupied by extensive rice-fields; to the south-west, at a distance of nbout 3 or 4 miles, rise the Ai-van bills, of which Hondun has a beight of 1445 feet. The centre of Hué is formed by the citadel, which was built in the reign of Gialong (d. 1820) after the $1^{\text {lans }}$ of the F^{F} rench colonel Olivier. It is 7323 fcet square, has six equal bastions on each side, and is surrounded by ditches about 120 feet in widhh, but not more than 5 or 6 feet in depth. Within are the royal residence, the houses of the ministers, the treasury; the arsenal, the barracks, \&e., -the royal residence, or Thank Noi, having a special encincture of its own, measuring about 2290 feet each way. The inner town or citadel has a population of 30,000 , inclusive of the garrison, and there are nearly as many in the suburbs and marketvillages within a radius of $2 \frac{1}{2}$ niles. The suburb of MangSa (i.e., Fish Mouth) at the north-cast corner of the eitadel is the centre of the local trafic, and the neighbouring part of the river serves as an inner harbour. At the villago Thanh Phuec, about 2 miles below the town, arr the winter
quarters for the Anameso thect, and in its vicinity is a shipbuilding yard and docks. On the landward slope of the sand-dune rhich lies between the sea and the lagoon at the river mouth stretches the village of Thuân, with about 1400 inhabitants, and serving as a sort of port to the capital. During the rainy season, October to January, the level of the Truong. Tièn rises about 3 feet, and all the plain is laid under water. No European residents are permitted at Ifué, except the members of the French legation, who have been allowed to erect consular buildings on the right bank ef the river, there 1180 feet wide, directly opposite the r tadel.
See J. Roy. Geogr. Soc., 1849 ; M. Dutreuil de Rhins, "Notice E rg. sur la riviere de Hus," in Eull. Soc. Giogr. de Paris, 1878.

HUELVA, ons of the eight provinces into which f idalucia has since 1833 been divided, is bounded on the
by Badajoz, on the E. by Seville, on the S. and S.W. by the Atlantic, and on the W. by Portugal, and has an area of 4122 square miles. With the exception of its eouth-east angle, where the province merges into the flat waste lands bnown as Las Marismas of the Guadalquivir, Huelva presenta throughout its entire extent an agreeably varied surface, being traversed in a eouth-westerly direction by the western spurs of the Sierra Morena. The principal strenms are the Odiel and the Tiuto, which both fall into the Atlantic by navigable rias or estuaries ; the Malagon, the Chanza, the Murtiga, which belong to the Guadiana system, and the Huelva, belonging to that of the Guadalquivir, also take their rise in this province. Iron pyrites and manganese occur in the Sierra in considerable quantities; among many important mines, which are at present inactive, may be mentioned Lagunazo, Carpio, Lapilla, San Miguel, Monterubio, Satiel, Coronada, San Telmo, Cueva de la Mora, and Toya. Those of Rio Tisto, situated to the north-east of Valverde del Camino, and near the source of the river Tinto, are ascertained to havo been known to the Phoenicians and Romans. Thes are at present wrought by an Anglo-German company; in 1876 the output amounted to 329,305 tons ; the number of men employed approached 5000 . The mines of Tharsis and Calañas, and of Buitron and Poderosa, are of corresponding importance. Saline and other mineral springs are also of frequent occurrence in the province. The soil possesses great fertility, and produces excellent pasturage; amang the exports are included, besides corkwood and esparto, oranges, grapes, figs, oil, end wine. The only railways at present in the province aro those constructed for mineral traffic between Rio Tinto mines and Huclva (52 miles), between Tharsis and Huelva (30 miles), and between Buitron and Poderosa and San Juan del Puerto at the head of the Tinto estuary (44 miles) ; but a line from IIuelva to Seville is at present in course of construction. The towns of chicf interest and importance in the province are, besides TIuelva the capital, Ayemonte, Aracena, Palverde, La Palma, Niebla, and Moguer, with Palos its harbour. The population in 1877 was 210,641.

Huelva, the capital of the above province, is situated on tho western shore of the triangular peninsula formed by the estuaries of the Odiel and Tinto, 53 miles weet by eouth of Seville. Its streets are wide and well built, and among the public edifices may be mentioned two parish charches, nn Academia Onubense, two hospitals, and a theatre. The town has a considerablo consting trade in the produce of tho province, and thero is a limited manufacture of esparto floor mattings ; others of the inhabitants find employment in the sardiae, tunny, and bonito fisheries of the neighbourlood. The chief sourco of the growing [rosperity of luclva, however, is in connexion with the extensive exportation of ore from the Tharsis and Rio Tinto mines. The total quantity of pyrites shipped amounted in 1872 to 261,373 tons, and in 1876 had risen to 442,201
tons (value $£ 552,505$). The caportatica of maneanese, howerer, which in 1868 amounted to 41,000 tons, did not in 1876 exceed 6972 tons (value $£ 41,813$); 7178 tons of precipitate of corper were valued at $£ 279,956$. For the accommodation of the Rio Tinto mineral traffic there is a fine pier 2682 feet long, $65 \frac{1}{2}$ feet wide, and 438 feet above the level of the river at bigh-water, at which vessels of 2000 tons can be moored and loaded with ease. In 1876 the total number of vessels entering the port was 1409 , with a tońnage of 278,594 ; of these 512 were British, with a tonnage of 237,610 . The total imports amounted to $£ 315,856$; from Great Britain, $£ 149,939$. Total ex. ports $£ 918,506$; to Great Britaio, $£ \$ 33.968$. Population 13,174 (1877).
Huelva is usually identified with the Onnba Estuaria of 2 . my; the Onoba or Onuba of Strabo, Mela, and the numismatists, de. scribed in the Antonine Itinerary as situated on the estuary of the river Linzia, on the road from the mouth of the Anas to Aurusta Emerita. There still exist vestiges of a Roman aqueduct, which, however, are fast disappearing. the town is allcged to have been founded by the Phcuicians; the name Welba or Wuelba is dne to the Moors.

HUESCA, one of the three provinces into which the old northern Spanish kingdom of Aragon was divided iu 1833, is bounded on the N. by France, E. by Lerida, S. and S.W. by Saragossa, and W. and N.W. by Navarre. The total area is 7530 square miles. The surface is mountainous, especially in the north, which is occupied by the lofty offshoots of tho Pyrenees, which there reach in Monte Perdido (Mout Perdu) the beight of 11,430 feet. The chief river is the Cinca; but the want of natural streams has in some measure been mads up for by a systen of irrigation. Mineral springs are numerous throughout the province. The climate varies much eccording to the region; in the north cold winds from the snow-capped Pyrenees prevail, while in the south the warm summers are often unhealthy from the bumidity of the atmosphere. The leading industry of Huesca is agriculture, although only a limited proportion of the soil is under cultivation. There is good summer pasturage on the mountains, where cattle, sheep, and swine are reared. The mountains are ricbly clothed with forests of pine, beech, oak, and fir, and the southern regions produce abundant crops of cereals, vines, mulberries, and numerous kinds of fruits and vegetables. The mineral resources include argentiferous lead, copper, iron, and cobalt, with limestone, millstone, gypsum, granite, and slate. The mining industry was formerly much more important, but the difficulties of transport caused by the absence of good roads have much findered the development of this and other resources of the province. Huesca exports timber, cereala, wine, oil, and some cattle, and imports iron, flax, and colonial and forcign goode. The manufactures, which are unimportant, include brandy, wine, soap, linen, woollens, baize, and common crockery. The population in 1877 was 252,165 .

Muesca, chief tom of the above province, and the seat of a bishop, is pleasantly situated on an cminence commanding an extensive viewover the surrounding fertile plain. It stands near the right bank of the Isaela, 35 miles north-oast of Saragossa. The town bears many traces of its autiquity. The streets in the older part are narrow and crooked, though cleart, and many of the houses witness by their size and style to the former magnificence, and by their neglected and ruincd aspect to the present decay of the place. The newer streets are wide, and the houses have sono claims to regularity. There are several squares and plazas, in one of which rises the imposing Gothic cathedral, begun in 1400 and finished in 1515 , and enrictred with fine carving. In the same flaza is the o!d palace of tho kings of Aragon, formerly given up for the use of the now closed Sertorio (the univer. sity). so named in menory of a school for the sons of untive
chiefs, founded at Huesca by Sertorius in 77 b.c. (Plut., Sert. 15). Among the uther prominent buildings are the intercstiug parish churches (San Pedro, San Martin, and San Juan), the archiepiscopal palace, the town-house, and various benevolent and religious houses. Huesca manufactures cloth, pottery, bricks, and leather. Its chief trade is in expurting fruit and cereals, and in importing linen, cloth, silk, hardware, and culonial produce. The population in 1877 was 7760.
Huesca is a very ancient town. Strabo (iii. 161, where some eilitors read Ileosca) describes it as a town of the Ilergetes, and the scene of Sertorius's death; while Pliny places the Oscenses in regio Vescitanut. Platarch (loc. cil.) calìs it a large city. Julins Casar names it Vencelora; and the name by which Augnstus knew It, Urbs victrix Osca, was stamped on its coins, and is still preserved on its arms. It fell under Saracen rule; but in 1090 Pedro I. of Aragon regained it, after winning the decisive batule of Alcolzz, as the termination of the two years siege.

HUESCAR, chief town of a judicial district in the Spanish province of Almeria, is situated in a plain, surrounded by mountains on three sides, about 91 miles northeast of Granada. The town occupies a large area in proportion to the number of its houses, and although the older streets are narrow and tortuous, the newer quarters have wide and regular streets. Among the chief buildings are the court-house and the adjoining prison, the hospital, the foundling hospital, and three schools. There are two parish churches, dating respectively from 1498 and 1504 . About three miles to the east are the ruins of Huescar la Vieja, a Carthaginian foundation. Pottery, woollen and hempen cloth, linen, and baize are manufactured at Huescar. There are also oil and flour mills. The export trade is not extensive. The population in 1870 was 5106 .
huet, Pierre Daniel ($1630-1721$), bishop of Avranches, is the last of those encyclopædic and massive acholars of whom'France produced so many. He left no successor to his omnivorous learning, prodigious memory, and indomitable energy. He was born at Caen of a family formerly Huguenot. He lost both father and mother while still a child, and was brought up by bis aunt, wife of the mathematician Gilles Mace, to whom he owed his respect for science. He says himself that the ardour of study did not possess him in earnest until in early manhood he was reading the Géographie Sucrëe of Bochart, and suddenly became intoxicated with the desire of becoming a scholar. It may be remarked that a youth who was not already studious would hardly be reading such a book. Howerer, the statement means that he began about that time to study not in earnest only but with passion and fury. In Hebrew alone so great was bis industry that be read through the Old Testament in the original no less than four-and-twenty times during his life. • At the age of tweaty he had already achicved a reputation as one of the most promisiag scholars of the time. He went at the age of twenty-one to Paris, where he formed a friendship with Gabriel Naudé, conservator of the Mazarin liorary. In the fullowins year Bochart, being invited by Queen Christina to her court at Stockholm, took his friend Huct with him. This journcy, in which be saw Leyden, Amsterdam, and Copenbagen, es well as Stockholm, resulted chiefly in the discovery of some fragments of Origen's Commentary on St Mattheu, which gave Huet the idea of editing Origen. On bis return to France he assisted at the foundation of the academy of Caen, and shortly afterwards quarrelled with his friend Bochart, who accused him of having suppressed a line in Origen in the Eucharistic contruversy. Shortly afterwards be removed to Paris, where he entered into close rclatious with Chapelain. At this time arose the famous dispute of Aocients and Moderns. Huct took the side of the Ancients against Charles Perrault aud Desmarets. Among his frionis at this perion wer Corrart and Pelis-
son. His taste for mathematics led him to the study of astronomy, and in 1672 be founded the Acadeuy of Science at Caen. He next turned bis attention to anatomy, and, beiug himself shurtsighted, devoted his inquiries mainly to the question of vision and the formation of the eye. In this pursuit he made more than 800 dissections. He then learned all that was then to be learned in chemistry, and wrote a Latin poem on salt. All this time he was no mere book-worm or recluse, but was haunting the salons of Mlle. de Scudéry and the studios of painters; nor did.his scientiñe rescarches interfere with his classical studies, for during this time be was discussing with Bochart the origin of certain medals, and was learning Syriac and Arabic under the Jesuit Parvilliers. Nor did he neglect the lighter walks of letters. He translated the pastorals of Lougus, wrote a tale called Diune de Castro, and defended in a treatise en the origin of romance the reading of fiction. Then, being appointed assistant tutor to the Dauphin, he edited with the assistance of Anne Lefevre, afterwards Madanc Dacicr, the well-known edition of the classics al usum Delhhini. He also continued tn work ypon bis edition of Oligen, and issued one of his greatest works, the Demonstration Evangelique. It was at the age of forty-six that be took orders, a step which be had conteniplated for some years. Two years later the king gave bini the abbey of Annay; witere he wrote his Questions d'dunay, sur l'acrord de la For et de la Ruison, bis Critique de la Philusaphie de Descartes, bis Memoires pour servir à l'Histaire du Cartessunisme, his dis. sertation on the site of the terrestrial paradise, and his discussion with Boileau on the Sublime. In 1685 he was made bishop of Soissons, but after waiting for installation for four years he took the bishopric of Avranches instead. He exchanged the cares of bis bishopric for what be thought would be the easier chair of the Alluey of Fontenay, but there be was vexed with continual law suits. At length he retired to the Jesuits' House in the Rue Saint Antoine at Paris, where he ended bis days, in 1721, amidst incessant labours inaintained to the end, at the age of ninety-onc. His great library and manuscripts, after being bequeathed to the Jesuits, were bought by the ling for the royal library.

It is impossible here to enter upon an estumate of the place in philosophy, literature, and scholarship now occupied by this remarkable and omnivorous student. It has been disputed whether a writer who could so strenuonsly advocate the claim of philosophy could have teen at the same time an orthodor believer. Perhaps like many other men Huet separated bis creed from his philosuphy, and whilc he argued on Descartes forgot that he was a bishop. In the Iluctiana will be found the most ready materials for arriving at an idea of his predigious labours, exact memory, and wide scholarship. His own autobiography, found in his Commentarius de rebus ad eum pertinentibus, w translated into English by Dr Aiken in 1726. It remains to be said that he owed the preservation of his facultik to extreme old age, and perbaps the prolongation of his life, to the rigid observance of a sparc diet which be began at the age of forty, dining moderatcly, and taking no other aupper than a little bouillon.

HUFELAND, Chisistopy Wilhela ($1762-1836$), a distinguisbed physician and writer on medical subjects, was born at Langensalza, 12th August 1762. His early education was carried on at Wcimar, where his father held the effice of court physician to the grand duchess. In 1780 he entered the miversity at Jena, and in the following year proceeded to Güttingen, where in 1783 he graduated in the faculty of modicine. After assisting his father for some years at Weimar, he was called in 1793 to the chair of medicine at Jena, receiving at the same time the dignities of conrt physician and councillur at Weimar. In 1703 he
was placed at the bead of the medical college and generally of state miedical affairs in Berlin, with the title of pricy conracillor. He filled the chair of pathology and therapeatics in the uerversity of Berlin, founded in 1809, and in 1810 became councillur of state. He died at Berlin in 1836 .
Hufeland is celebrated as the most eminent practical physician of his time in Germany, and as the author of numerous works display. ing extensive reading and cultivated and critical faculty. The most widely known of his many writings is the treatise entitled Makrobiotik, oder die Kunst dos menschhiche Leter zu verlängern, 1736 Of his practical works, all of the kind which casnot long retain their pace in the literature of special scierre, the System of P- ucteal Medicine ("System der praktischen Heilkunde," 3 vols., 1828) is the most elaborata. By medical writers Hufeland's services in promoting and elevating the study of the art of medicine are highly extolled. His autobiegrayhy was published in 1863 Sketcbes of his life and labours appeared shortly after his death by Angustin aud Stourdza, 1837.

HUFELAND, Gottlieb (1760-1817), a distinguished writer oa political economy and law, was born at Dantzic on 19th October 1760. He was educated at the gymnasium of his native town, and completed his university studies at Leipsic and Göttingea. He graduated at Jena, and in 1788 was there appointed to an extraordinary professorship. Five years later he was made ordinay professer. His lectures on natural law, io which he developed with great acuteness and skill the formal principles of the Kantian theory of legislation, attracted a large audience, and contri. buted to raise to its height the fame of the university of Jena, then unusually rich in able teachers. In 1803 , nfter the secession of many of his colleagues from Jena, Hufeland accepted a call to Wuraburg, from which, after but a brief tenure of a professorial cbair, he proceeded to Landshut From 1808 to 1812 be acted as burgomaster in bis native town of Dantzic. Returning to Landshut, he lived there till 1816, when be was iovited to Halle, where Le died in February 1817.

Hafeland's works on the theory of legislation-Essay upon the Findninental Theorem of Nalural Law ("Versull uber die Grund. satz Natnrrechts," 1785), Handbook of S'atural Law ("Lebrbuch des Naturrechts," 1790), Institutes of Positive Law ("Institutionen des (csammen positivea Rechts, "1798), and History and Systcm of German Positive Law (" Lehrbuch der Geschichte und Encyelu. padic aller in Deutschland geltenden positiven Kechte," 1790)ure distinguished by precision of statement aod clearness of deduc. tion. They form on the whole tha best commentory upon Kant's Recheslehre, the pineiples of which they carry out in detail, and npply to the discussion of positive laws. In political economy Hufeland's chief work is tha New Foundation of National Economy (" Neue Grundlegung der Steatswirthschaftskunst," 2 vols, 1807 and 1813), the second volume of which has the apecial title, Theory of Moury and Circulation (' Lehre vom Gelde und Gelifumbaule") The principles of this work are for the most part thase of the Wcalth of Nations, which were thea beginning to be accepted and developed in Germany; but both in his treatment of fundamental ootions, such as economic good and value, and in details, auch os the theory of meney. Hufeland's treatment has a certain originality Two points in particular seem deserving of notico. Hufeland was the first among Gerntan cconomists to point cut the profit of tho entreprencur as n distinct species of revenua with lawy peculiar to itself H_{0} also teterls towards, though he does not explicitly stata, tho vies that rent is a general tem applicable to all payments resultung from dufferences of degree anong proluctive forces of the same order Thus the surermor gan of a spectally gifted workman or specially skilled employer is in time assmilated th the payment for a watural agency of nere than the mimimun efliciency. Seestinsther, Geschechte der Natomal. fonomik in Dcutschland, Ip 654-66?
huG, Johasin legnhard (1765-1846), Roman Cathoac thedogian aud Biblical chitic, was born at Constance, where his father was a locksmith, on June I, 1765. After passing through the gymaasium of his native town, he proceeded in 1783 to the university of Freiburg, where he t.aname a pupil in the seminnry for the training of priests, ranl very early distinguished himself in the departments of chasinal and Oriontal philology as weil as of liblical exugesis and criticism. In 1757 he became superintyudent
of studics in the seminary, and he continued to hold this appointment until the breaking up of the establishment io 1790. In the following year be was called to the Freiburg chair of Oriental languages and Old Testament exegesis; to the duties of this post were added in 1793 those of the professorship of New Testament exegesis. Steadily declining calls to Dreslau, Tübingen, and (repeatedly) to Bonn, Hug continued to labour at his post in Freiburg for upwards of thirty years, varying the monotony of bis work only by an occasional literary tour to Munich, Paris, or ltaly. In 1827 be resigned soene of bis prefessorial work, but continued in active duty until in the autuinn of 1845 be was seized with a painful illiness, which proved fatal on Blarch 11 of the following year.

Hug's earliest publication was the frst instalment or "heft" of his Einlcitung; in it he argued with much acuteness agamst Eichhern in favour of the "burrowing hyputhess" of the origin of the synortical gospels, maintaining the puiority of Matthew, the present Greck text having been the original His subspquent worky were dissertations on the origin of alphabetical writhng (Die Erfindung der Buchstabenschrift, 1801), on the antiquity ol the Cudes Vaticantes (1810), and on ancinnt mythology (Leber den Mythus der alton Volker, 1812) ; a new interjretation of the Sung of Sulomem (Das hohe Licd in einer noch unversuchten Dcutung, 1813), to the cffeet that the lover represents king Hezekiah, uhile by his beloved is intended the remnant left in 1srael after the depurtation of the ten tribes; and treatises on the indissoluble character of the marrimonial bond (De Conjugii Christiani vinculo indissolutili comnentatio excgetica, 1816) and on the Alexandrian version of the Pentateuch (1818). His Einleitung in die Schriften des Nenen Testaments, undoubtedly his most important work, was completed in 1808 (fourth Gurman edition, 1847 ; English translations by Wait, Loulon, 1827 ; and by Fosdick, New York; French partial translation by Cellerier, Geueva, 1823). It is specially valuable in the portion relating to the history of the text (which up to the mildle of the 3d century he holds to have been current only in a кowht tкסoots, of which recensions were aftcrwards mada by Hesychius, on Egyptian bishop, by Lucian of Antiech, and by Orngen) and in its discussion of the nncient versions. The author's intelligence and acuteness are more completely hampered by doctrinal presurpositions when he comes to treat questions relating to the listory of the individnal books of the New Testament canon From 1839 to his ileath Ilug was a regular and important contributor to the Freaburyer Zeilschrift far Kathol. Theolagic.

HUGH, St, of Avalon (c. 1135-1200), bishop of Lincoln, was born of a noble family at Avalon, near Puntcharra in Burgundy, about 1135 At the age of eight bo entered along with his widowed father the neighbouring priory of canods regular at Villarbenoit, where be was ordained deacon at nineteen. Appointed not long after prior of a dependent cell, Hogh was attracted f111m that position by the holy reputation of the monks of the Gramle Chartreuse, whose bouse be finally entered despite an oath to the contrary which be had givea his superior. There he remained about ten years, receiving priest's orders, and rising to the important office of procurater, which brought him into cuntact with the outer world. The wide reputation for energy and tact which Klugh speedily attamed fenctrated to the ears of ITenry Il of England, and Induced that monarch to request the procurater's assistance in establishing at Witham in Somersetshire the first English Carthusian monastery. Hugh reluctantly cousented to go to England, where in a short time he succeeded in overcoming every olstacle, nud in erecting and organizitg the convent, of which be was appointed first prior. He speedily becane prime favourite with Henry, who in 1186 procured his election to the see of Libcoln. Forcerl serely against his will to accept this responitle jost, llogh nevertheless set himself netively and pionsly to discharge its important functions, ultheugh at least once a year he retired to live for a short period as a simple monk at Witham. He took litile to do with pelitical matters, maintaning as one of his chief principles that a churchman should hohl no secular ofice. A sturdy uphotder of what he believel to be right, he let neither royal ner ecelesiastical influence interfero with his conduct, but fearlessly resisted whatever seemed to
him an infringenent of the rights of his church or diocese. But with all bis bluff firmoess Hugh had a calm judgment and a ready tact, which almost invariably left him a better friend than before of those whom he opposed; and the astute Henry, the impetuous Richard, and the cunning John, so different in other points, agreed in respecting the bishop of Lincoln. St Hugh's manners were a little apt to be boisterous at times, and his early monastic discipline had left him.rigid and harsh; but, though an ascetic to bimself, "so that his whole life was a continued martyrdom," he was distinguished by a broad kiudliness to others, so that even the Jews of Lincoln wept at his funeral. He bad great skill in taming birds, and for some years lad a pet swan, which occupies a prominent place in all histories and representations of the saint. - In 1200 Bishop Hugk revisited his native country and his first convents, and on the return journey was seized with an illness, of which he died at London, on November 16, 1200. Twenty years later he was canonized.
The chief life of St Hugh is the Magna Vita S. Hugonis (MS. In the Bolleian Library), written. by Adam, the saint's private chaplain, of which a number of abridgments have been made at various dates. A Afetrical Life of St liugh of Avalon is preserved in two MSS. in the British Museum and the Bodleian Library. Both thesa Lives have been edited by the Rev. J. E. Dimock. The best modern acurce for information as to St Hugh and his time is Canon Perry'a Life of St Hugh of Avalon, \&e., 1879.

HUGH of St Cher, Hugo (Ugo) de S. Caro or Carensis (c. 1200-1263), a learned compiler of the 13 th century, was born at St Cher, a suburb of Vienne, Dauphiné, about the year 1200, became a student of theology and canon law in Paris, and in 1224 entered the Dominican cloister of St Jacob there (whence he is sometimes designated as Hugo de S. Jacobo). After having taught theology for upwards of twenty years, in the course of which his learning was frequently appealed to by those in authority for the solution of difficult questions, he was in 1245 created cardinal of St Sabina by Pope Innocent IV He died at Orvicto in $\mathbf{2} 263$.
His principal works are Correctorium Biblice, a revised text of the Vulgate, prepared about 1236, hitherto unprinted, but forming the basis of tha Correctorium Biblia Sorbonicum; Postilla in universa Biblia jutla quadruplicem sensum, first printed in 1487 (Basel) and often ainca, as for example at Cologne in 1621 (8 vols. fol.) ; Spccilum Ecclesice, a manual for the priesthood (ed. prin., Lyons, 1554); and Sacromum Bibliorum Concordantic, in the preparation of which he was assisted by the members of tha community to which he belonged, henca it is sometimes known as Concordantice S. Jacobi (Lyons, 1540; Basel, 1543). See Hist. Litt. de la France, vol. xix.

HUGH of St Victor, Hugo a S. Victore, sometimes also known as Hugh of Paris (c. 1097-1141), was born, prebably in the neighbourhood of Ypres, about 1097, and is known to have received his early education in the cloister of Hamersleben near Halherstadt; in 1115 he removed for the further advancement of his studies to the abbey of St Victor, which bad recently been founded by William of Champeaux, the preceptor of Abelard, in the neighbourhood of Paris. There the remainder of his life was spent in teaching or in studious retirement. He died in 1141.

The worka of Ilugh of St Victor, who was the intimate friend of St Bernard, share all tha learning, acuteness, and mysticism of the theolngieal school which then sought to neutralize the opinions and the influence of Abelard. Of chief importance are-Institutioncs Monastica, including the treatises De arco morali, De arca mystica, and De ranitate mundi; Dc Sacramentis Fidei, on the mysterics of the faith, nend thus a completo exposition of Catholic theology; and $D C$ Eruditione Düdascalice, in six books, which earned for its compiler the title of magister or clidascalus. It forms a sort of encyclopredia of the sciences as then understood, viewed of course mercly in their subordination to theology. In his treatment of Biblical introduction, the sharpness with which ho separatos the apocryphal from the cannnical hooks has been noticed; but in doing so it is important nlso to recollect that he seems to place on a par with the Nuw Testament the canons, the decretals, and the writings of tho fathers. An Augustinian in spirit and in language, so as to deserve the titles Alter Augustinus and Lingua Augustini. by
which he is frequently designated, Hugo was still more eminently the disciple of Ansclm and Abelard; he, howaver, had a strongly marked individuality of his nwn, which appears in his somewhat fully elabornted theory of knowing and being. All the knowable he assigns to one or other of three spheres, that of intelligence, that of science, and that of logic. That of intelligence embraces both theory and practice. Under theory fall to be classed theology, mathematics (arithmetic, music, geometry, astronomy), and physies ; practice is equivalent to ethics. Science has to do with the practical arts and industries, while logic embraces grammar, rhetoric, and dialectic. In correspondence to the trichotomous division of man, as made up of body, sonl, and spirit, he speaks of a threefold eye; that of the body, that of reason, and that of contemplation. The last of these, by which God is diseerned, has becn totally destroyed by sin; the second has been much impaired. Faith now takes the place of contemplation; but by oratio and operatio it can attain to real convictions and genuine love. 12.8 doctrine of the Trinity he illustrates by tha analogy of the human personality as spirit, wisdom, and love. The collected works bave been printed at laris in 1528, at Venice in 1588, at Mainz and Cologne in 1617, and at Rouen in 1648. They oecupy three volunics (175-177) in Migne's Patrologice Cursus Completus. Sce Hist. Litt' de la France, vol. xii. ; Liebner, H. v. S. V'ictor, (1832); Görres, Die christliche Mystit; and other works bearing on this genera: subject.

HUGUENOTS, The. The word Huguenot first appears in France about the middle of the 16 th century, and there is historical proof that it was imported from Geneva, whers it had existed for some time as a political nickname in a form which connects it directly with the German-Swiss Eidgenossen, oath-comrades, confederates. In France it was used as a term of reproach for those who aimed at a reform of religion according to the pattern dis. played by Calvin in his famous Institutio Christianrs Religionis. The name attached itself to the Keformers when, having shaken off all connexion with Latheranism, they were beginning to organize themselves both as a church and as a political body. The Lutheran ideas, which had carly come into northern France by way of Metz and Meaux, had for a short time seemed likely to prevail at the court of Francis I., where the king's love of culture welcomed whatever came from the land of the learned; the genius of Eras. mus, or the sharp satire of Hutten, or Luther's weighty tractates, all seemed to him at first to be so many protests against the derznese of a monkish past; the bymns of Marot, the bright poetry of Margaret of Valois, the king's sister, harmonized not ill with the desire for a humanist reform which prevailed at the French court. But when the destructive enthusiasm of the artisans who embraced the new opinions, breaking out in attacks on the art-treasures of the churches, alienated the royal moderates, the simpler and more marked theology of the "Sacramentarians" of Geneva quietly replaced the Lutheranism of the first Reformers; and by the middle of the 16 th century tho new Huguenots were an unpopular party, drawing their inspiration from Calvin, and bitterly disliked by the court and the bulk of the people of France. The persceutions, varicd by protection, of the reign of Francis I. had given place to a vehement desire to crush tho rising beresy; the character of Henry II. and his chief adrisers led them towards a thorough persecution.

Influenced by these reprcssive mcasures, and taugbt by Calvin's book and his frequent Ietters, the French Reformers now began to organizo their infant churches. Ifitherto they had been content to meet in quict, to sing Marot's psalms, to listen to carnest prayer and practienl discourse in some lowly chamber, deferring questions as to church government; now their ecelosiasfical system began to develop itself. In 1555 the first Protestant French chureh was established at Paris, and alnost immediately there sprang up fifteen commmities, the largest being at Mcaux, Poitiers, and Augers, each haring its pastor; elderg, and deacons, each ruling itself, and recognizing $n n$ comnsun bond of union save that of charity and suffering. V These were the heroic days of the Huguenot movement in

France, each little charch striving only to fulfil the simplest ineal of Christian faith and practice, heppiest when least observed, parest when least developed Three influences had hitherto acted on French religious feeling :-that of the Latherans, that of the ancient Vaudois churches of southeastern France, represented by Faber, and lastly that of Calvin of Noyon, the Pieard exile settled at Geneva. Now a fourth element came in : resistance had elicited organization, organization demanded leadership; and, unhappily for France and the Huguenots, the morement fell too much into the bands of seeular ebiefs, great lords who used it for their orn political aud selfish purposes.

In 1559 the churehes of the Hugnenots met in a first synod at Paris, eleren sending representatives. This body drew up a confession of faith, which bears throughout the mark of Calvin's band, in its serupuleus orthodosy, strong statements as to God's election of some to eternal ife, and carefal definitions of the anture and structure of the charch; the syrod also issued a sehemo of diseipline to which the churehes were all to conform. No chureh should take lordship over any other (a church being a single community under one pastor). Each "colloque" or synod should have a freely-elected president; every pastor should come to the colloque, bringing each at least one elder or deacon from his church; this body was to meet at least twice a year; new pastors were to be appeinted by it to vacant churehes, on presentation by the elders and deacons; minute rales were laid down for church discipline; it wis ordered that provincial synods should be held in eachprovince, and finally that there should be from time to time a general or aatiocal synod of represeatatives of the whole body.

Two years later the civil war broke oft (see France, vol. ix. pp. 560-564), and lasted over thirty gears., At the beginning of this period we have some data as to the Huguenot otrength : Beza tells us that in 1558 there were 400,000 of them; a list presented by Condé to Catherine de' Medici is said to have contained the names of 2150 (some eay 2500) churches; and it is probable that the number of their open adherents had increased rapidly. John Correro, Venetinn envoy in 1569 , says that only one-thirtieth of the common folls, but one-third of the nobles, were Huguenots, for the strength of the movement had undeubtedly come to lie in the noblesse. The list of the Huguenot churchos given by Haag (La France Protestante, vol. i, "Pieces justificatires," Nu. xviii p. 52) provides us with data as to their distribution in France. The two centres were Languedoc in the south, and the Orleanais in the middle of the country; and a line drawn north-weat to aonth-east through a point halfway between Paris aud Orleans would nearly give the nerthern limit of Huguenot success. Normandy, tianks to the Caitillon influence, bad many chnrehes; in Orleans and Burgundy thes ware well represented. In Guyenne and throughout western France they had numerous communities The little indenement principality of Béarn, through the influence of Jeanne d'Albret, Heury IV.'s mother, was entirely llugnenoh. On the other hand, though thero were sonie churehes io the fle de France and Champarne, they bad littlo hoht thero; and Pieardy was from tho lirst profoundly hostile to them, whilo Paris became the headquarters of the Catholic League. Their churches sprang up with wonderful (uickness at this time; thus we see that alt the 76 congregations in Languedoe named by IIaag were established between 1558 and 1502. All wero ehnracterized ly a like aptilude for organization; their constitution, simple nud populo", is a proof that under better auspiecs tho French people might havo well cxercised the privileges of constitutional liberty: the Kiguenota bad n popular representation and frepernt leliberativo assemblics. Between 1559 and 1598 they
held fifteen general chureh synods, and from 1573 to 1622 many pulitical assemblies, in which all yuestions bearing on the interests of the "cause" were debated and decideu.

The subordination of the religious to the political interests of the Hugnenots became inevitable after the massacre of St Bartholomew's day, 1572 ; while at the same time theis organization assumed a more decidedly republican tone. The horror theg felt at the violent action of Charles IX. seemed to free them from all allegiance to him; they looked to England and Germany for help, to Switzerland and the United Provinces for eucouragement and political example. They at once drew up an independent co:ntitition, democratic and federative, framed chielly after tho Swiss pattera. Like all other attempts at a republican form of geverament, it bad an aristocratic and a democratic side, the latter for the time seeming to be tho stronger. For the centre of their power was now passiog from the aristoeracy to the burghers, from country ehateaux to provincial towns. In the towns the only distinction recognized was that of pastor and elders, and these might be, and mostly $\boldsymbol{\text { were, men of the people, chosen by the }}$ people. The great nobles who sided with them, the "Polituque" princes, like Alençan or Damville-Montmorency, winked for a time at this new "state within the state," the germ of that Huguenot organization which later on hampered Richelieu's path. Their system was based on the towns in their hands. In. each an independent government was elected by popular suffrage, and was composed of a mayor, θ council of twenty-four, and an elective chamber of seventy. five eitizens, making upin all a huadred rulers. This body was a court of justice, with some amount of sovereignty. Thus, the twenty-four with the magor had contrel over war, police, and "things of highest importance," though without the seventy-five they conld neither pass nor abregate laws, as to coin, taxation, truces, or terms of peace. The mayers and privy councils of the confederate towns were charged with the election of a general, a kind of Roman dictator, who was to bave both a council to advise bim and also fire lieutenants to help and succeed him, if need were. Lastly, provision was made for a strict moral discipline.

Soon after this the Huguenots established a system of " generalities" or distriets, each with its own local estates, and over theso provineial councils and a states-general, thus materially strengthening their independent organization. This system continued throughout the League. wars (1574-1589), during which the religious movement was controlled by a knot of celfish political leaders, and in the courso of which their peint of view completely changed: for, whilo in the beginning they had passionately called for popalar institutions and the convocation of the atates-general of France, in the end they became the followers of Henry of Navarre, as beir to tho French crown, representative throughout of the anti-pepular temper of the Boarbon house. Under him the discontented Huguenots again roorganized themselves into niae great circles, over oach of which was a council of from five to soven members, clected by delegates from tho churehes, and haviag the duty of laying their independent taxation, of levying, cominanding, and paying their own troops. There wha also a genoral assembly for all the circles (after the pattern of tho United Provinees) sitting in three estatespasters, nobles, burghers; tho whole polity being representative as an aristocratic republic. This goneral assembly sat frequently, sent embassies to foroign powers, sometiucs aeting as an independent body politic.
The diseontent of tho Huguenots at last extorted from JIcnry 1 V . the famous edict of Nantes (2d May 1598), a docmment whiel in the main only reproduced the mors favourable of the earlier edicts. Its provisions were at least as helpful for Cathulies as fur l'rotestants; it was always
heing so morlified as to show ress and less favour to the Chlvimsts, who were little satisfiel with it. They had dreamed of dominance, had hopel for equality, and were now put ofl with tolerance. For whatere Henry IV. might feel about their faith, he was determined, as be once told Sully, "to reluce to nothing the Hugnenot faction," to destroy their political independence, and by closing up the eivil strife to secure the solid establishment of the central momarchy. The edict allows public exercise of the Huguenot faith in the houses of nubles and gentry, and in a few momed towns: it gave the sectaries full civil rights, and made them eligible to all civil ollices, in several parliaments mixed chambers were established ; the cdueation of their children was left in their own hands.

We fand that about 1.590 the IILugnenots lad exercise of their worship in alout 3500 chateaus, and in about 200 towns or bourgs, chiclly in the sonth and west. In most parts of the morth, except Paris and round Rouen and Anuiens, they had one place for worship in each bailhage or sénéchanssec. In 1593 we have a list of about 150 plaees granted by llenry IV to the Huguenots for their safety, the chicf groups heing in the generalitics of Bordeanx and Montpellier, and in Poiton; these were cither free towns, like La Ruchelle, Nimes, Montanban, or towns belonging to private gentlemen, or towas lyelonging to tho king, which had fallen into Haguenot bands during tho wars.

Throughout the next quarter of a century we trace ther history in a sorics of ontbursts, indicating noble mpatience and Calvinistic dissatisfaction. The siege and fall of In Rochellic (1627-1628) brought this period to an end. During this time their number secms to lave increased; at the accession of Lontis XIIF. they had about 500 churches : in 1622 and 1628 we have lists of 688 ; in 1637 no less than 720 are enumerated, though of these 49 were either vacant or suspended. Richelien and Mazarm treated them with statesman-like prudence; their synods were discouraged, their grumblings ceased, they grew in prety and purity as tho political arena was closed to them, and the noble houses one by one descred them. This was the time of their material prosperity, and of their important contribution to the welfare of France whach Louns XIV, so rudely cast away.

As that king got hold of his power, the tranguillity of the Hugnenots waned. In 1657 they were forbitiden to bold colloquies, lest perclance they should take to polities; in 1659 they were practically told to bold no more synodz. Shon the contt went further - conversions were undertaken. Wherever a pastor could the bribed, won over, or got rid of, his "temple" was at once torn down, the Huguenot worship became almost impossi. Io in towns, and lagered on in a few castlos, whereby it feil still more under the royal displeasure. As lis conscience erew morbid, under Madame de Maintenon's direction, Louis XIV berame more earer to expate his own crimes by pumshang the heretics. Between 1657 and 1685 520 churehes were rooted up; Anquetil declares that 200 hat been destroyed before 1685. All through this period, while thousands yielded to oppression or bribery, thonsands also thed the land; the emigration began in 1666 and went on for lifty years. It is probable that in 1660 there were over two inillions of llugnenots, the best and thriftiest citizens in the land ; it is sail, thourd no figures can be trusted, that in all fully a usillion of Frencb subjects csaped from ther inhospitable Patherbind. At last in 1685, thukine that the Ituguenots were as good as suppressed, Louns Xis revolied the edict of Nantes (sce Frasce, wol. ix. p. 579). The revocation was the sentenec of civil death on all hagnenet ; it erusbed more than half the commercial and mannfacturme industry of the kinglom. It is said that at the time of it there
were 1000 Hugnenot pastors; of these over 600 escaped from Fronee, 100 were slain or sent to the galleys, tho remainder conformed or disappeared.
The war of 1689 called attention away from the persecuted remanat of the 11 ngucnots, and they bad a breathing space in Langucduc, the Cevennes, and Dauphiné; but directly the peace of liyswick was signed, repression began ogain, and consequently, when the Spanish succession war commenced, the Huguchots of the "Desert," that is, of the country about Nimes, bruke out after endless provocations into ogen nar, which lasted two years, and for a while defied all the efforts of the comrt. Marstal Villars was at last sent down, and ly mingled gentleness and severity he botb secured the sulmission of the gallant Cavalier, the chief leader of the Hignenots, and the Jefeat of the more determined of the mountancers. Throughout the rest of the century the down-trodden Protestantism of Franco was kept alive chictly by the exertions of Antune Court, the apostle of the Desert, who uever lost fanth in the cause, and who reorganzel the dying churches, breathing into them fresh life. Though under the mfluence of oppession and excitement, the Huguenot story is here and theres disfigured by fanatical outbursts of the "prophets" and "prophetesses," still on the whole the nccount of their endurance is among the most remarkable and heroic records of religions history.

After the mterference of Voltaire in behalf of Calas, their sufferings came almost to an ond ; the general change of opimon, the stealy reakemng of the Catholies, the indolence or gool nature of the soverelgn, forbado the scandals of the past, until at last in 1787 , under Necker'? influence, Louis XYI. signed a memorable edict which restored. aiter 102 years' deprivation, their civil status to the Huguenots. The liceolution of 1789 carried justice a stage further, among the natay titles of the Revolution to the gratitude of posterity nume is more marked than tho complete restoration of the non-Catholic elements of Frencb soelety to thoir rights. From that moment to the present time the descendants of the Hugnenots have ball peace.

There are now about half a million Calmmists in France; by the census of 1872 they mumbered 167,531 souls, of whom about 100,000 were in the north, and the rest mostly in their old quarters in tho south; in the Gard, the ancient Desert, nearly a quaste: of the whole body still abide. Of late years the Protestant Church in France bas shown a tendeacy to division into two garties, that of the more ngid Calvinstic opimions, and that of a more liberal and less onthodox thoology. In etther case they form a group of layal citizens, on whom Firench politicians now Luok with favour. The did requach that "the Muguenots are all republrans" has at hast turned to their eredt.

The persecutions wheh checked all whotesome developments at home, whether relighons, htemay, or conmercial, were favourable tothen growth abroad, and we consequenty find that in hetray and artistic excellence the lloguenots have taken their full share. Them first attentum was naturally callal to theology, in whech the names of Culv in and Farel, Beza, Daille, the Dretincounts, the learncd S . Desmarets, Jortur, P. Iurien, Labadie the mystic, the leecleres, the great Tebraist Mercher, Mestuezat the preacher, the old hero Daplessis Mornay, Salmasius, I. Saurin, hirst of Protcstant cratore, and a crowd of lesser mon testify to ther activity in this hamel. Ad to the the dictionary of Payle, the works of the [asnages, Morin the Orientalst, Tithon, the Dacler, Btienne Dult, hamus, Le Fére of Staples, above all Scaliger, as leaders ut learming; in bistory, Bènoft, Bongars, lalma tayet, Ilnbert Languet, Deronde, and layn- 'heyras, and with them the politicat writer llotama. Of lawyers they chaim Baudonin, Cujas. Coras, Doneau, Hérault, and Godefroy, famod os the mes:
learned of jurisconsults. In science they nave the Cuviers, Desmaizeaux, Dubois the chemist, Paré, father ou modern surgery, Papin, herald of the steam-engine, the physician Joubert, L'Ecluse the botanist, and the Hubers. In art they lay claim to Crispin, J. Cousia, Pallissy, Simon the engraver, the Picarts, and Goujon the architect. Their poets are Marot and Margaret of Valois. The general effect of this activity is hard to gauge: from Amsterdam and Berlin, Genera and London, issued sermon, political pamphlet, controversial polemie; but these efforts had no settled audience, they failed to win the ear of France The same is true of their religious herolsm; though it seemed to be exactly what was wanted to strengthen the national claracter, the confessors were scattered, tike the Jerrs, among the nations, and ceased to affect the progress of their fatherland. In the Revolution we can see traces of their meatal and morsl activity; it may be that their day of induence is dot yet over. For their history is a standing marvel, illustrating the abiding power of strong religious convictions, narrow in theory, pure in practice; they have stood as much ill-usage as has befallen any branch of Christ's church. It remains for their descendants to show to France that their creed goes well with freedom and adrance,-that the religious instinct, so deeply implanted in man, is a true friend of orderly and rational nationsl life. Religion which does not abuse its porer, a freedom from divided allegiances, an aptitude for constitutional institutions, and an intelligent belief in the sovereignty of the people-these are the elements which the Huguenots of today can briag to the service of the republic uader which they dwell safely, noae making them afraid.

Authorities.-Calvin, Institutio Christiance Religionis, and Lettres, ed. J. Bonnet, 1854; Haag, France Protestante, 1846; Meaux, Luthes religieuses au XVI. siecte, 1879; Arquez, Assembles's politiques des Reformes, 1859; E. Hugues, Ristanration de Protestantiome en France, 1875; Mignet, Etablissement . . . du Calvinisme à Genever; G. de Felice, Hist. des Protestants on France; E. Renoit, Hist. de c'Edit de Nantes; C. Coquerel, Eglises du'Disert'; A. Court, Troubles des Cevennes; Bonnemère, Hist. des Camisards; Guizot, Hist. de France, 1872; Merle d'Aubigné, Refformation au XVI. siecle; Professor H. M. Beird, History of the Rise of the Huguenots, 2 vols, 1880 .
(G. W. K.)

HULL, or Kingston-upon-Hell, a municipal ond parliamentary borough, and one of the priacipal seaport towns of England, ie, though a county ia itself, locally within the East Riding of Yorkshire, situated in $53^{\circ} 44$ N. lat. and $0^{\circ} 10^{\prime} \mathrm{W}$. loag., on the west eide of the Hull, where it discharges into the estuary of the Humber, 20 miles from the German Ocean at Spurn Head. - By rail it is $41 \frac{1}{2}$ miles east-south-east of York Brach lines of the NorthEastern Railway connect it with the principal towns in the East Riding; and by means of the steam ferry across the Ifumber to New Holland it has communication with the Great Northern and the Maschester, Sheffield, and Lincolnshire Reilways. The town stands on a level plain so low as to render embankments necessary to protect it from innndation, and the flatness of the surrounding country as far as the eye can reach is unbroken by anything that ean be properly termed an elevation. The older portion of the town, which is completely cnclosed between tho docks on the north and west and the Hull and Humber on the east and south, was originally very densely inhabited, and its streets were narrow and irregular, but in this respect it bas lately undergone great improvenents. The strects in the modern quarter are apacious and regular, and the villas of the weallhier classes occupy the suburbs. A pier fronting the Humber affords a pleasant promenade. To the north of the town there is a public park presented in 1860 by Z. C. Pearson, then mayor of Hull. It is 27 acres in cztost, is tastefully laid out, and contains foll-sizcd marble statues of her Mejesty the Queca and of the late Priace Consort. \triangle botanic garden about 40 acres in es-
rent was opened in 1880. There is a large public cemetery, which possesses separate chapels for churchmen aud dissenters. The town is supplied with rater from springs about 4 miles distant, two condensing engines of 60 horse power each being employed in pumpiag it.

The principal public buildiags are the town-hall in Lowgate; completed in 1866 in the Italian Renaissance stylc, having a very richly adorned façade, with a central dome 135 feet in height resting on eight arches, and containing a clock and bell ; the exchange in the same street, completed elso in 1866, in a less ornate form of the Italian style, containing a hall 70 feet long by 40 feet wide, and the offices of the Hull chamber of commerce and the Hull guardian society for the protection of trade; the corn exchange in High Street, a plain building with a great hall 157 feet long by 36 feet wide; the custom-house in Whitefriargate; Trinity House, a handseme brick building in the Tuscan style, erected in 1753 by the guild of Trinity House, originally: established in I 369 ; Charterhouse, rebuilt in 1645, belonging to a foundation for the eupport "of the feeble and old," which was established by Sir Michael de la Pole in 1384; the dock offices, an elaborste building in the Italisn style; the royal institution, a large and beautiful edifice in the Roman Corinthian style, opened by Prince Alhert in 1854, possessing a museum, a library of 40,000 volumes, and accommodation for the meetings of the literary and philosophical society; the new general postoffice, in the modern Italian style, opened is 1877 ; the prison, constructed on the new model priaciple, opened in 1869; the music-hall, in the Renaissance style; the theatre royal, opened in 1873, a stuccoed structure with a handsome Corinthian front; the publio baths and washhouses, in the Tudor style, completed in 1850 at a cost of $£ 12,000$. The only church of special interest or architectural merit is that of Holy Triaity, on the west side of the market-place, a cruciform edifice in the Horal Gothic style, originally founded at the end of the 13 th ceatury, but of various dates, and lately completely restored at a cost of over $£ 30,000$, having an estreme length of 272 feet, the breadth of the nare being 72 feet and that of the chancel 70 feet. It possesses a very fine west window, filled with stained glass in 1862 at a cost of $£ 1000$, and is surmounted at the intersection of the nave and transept by a noble tower, with finely dccorated pinaacles, rising from the point of intersection to the beight of 140 feet.: St Mary's church in Lowgate, in the Perpendicular style, was originally founded in the beginning of tho 144h century, but has been nearly all rebuilt since that period, the tower being erected in 1606, and the whole building restored in 1863-65 at a cost of $£ 10,000$. The principal educational establishments are the gremmar school, founded in lis6; the Hull and Esst Riding collego, a proprietary school for sons of gentlemen ; the Trinity Houso marine school, founded in 1716; Cogan's charity school fnr girls, founded in 1763; national, British, Catholic, Wesleyan, and school board schools; a ragged and industrial schoot ; and the Humber industrial school ship "Southampton." Among the other institutions for ministering to the intellectual wants of the community are the school of science and art, the litcrary and philosophical society, tho royal institution, tho mechanics: institution, the llull church institnte and library, the young people's Christian and literary institute, the Cathelic institute, tho Lyceum library aud reading-room, and the literary c'ub. The charitics and benevolent foundatioas aro nurnerous, and, in addlition to Charterhouso and Trinity Hov so, alrcady mestioned, include tho infirmary, founded in 1782, and extended by the oddition of two wings in 1840, and of detached fever wards in 1874; the IIull aud sculcoates dispensary, founded in 1814; the
hospital for sick children, opened in 1873; the nomoeppa aute dispensary; the blind institute; the borough lunatie asylum, crected in. 1849, with accommodation for 160 patients; the Hull workhouse, the Sculcoates union workhouse, the seamen's and general orphan asylum ; the sailors' home, opened in 1860; the ssilors' orphan home and school, erected in 1863; Gregg' hospital, founded in 1416, Lister's in 1641, and Crowle's in 1661.
, Hull ranks as the third port of the United Kingdon, being surpassed in the value of its exports and imports by London and Liverpoal only. The original barbour occu. pied that part of the river Hull which faced the old town, but in 1774 an Act was passed for forming a dock oo the site of the old fortifications, having its
entrance at the upper end of the old hsrbour. This dock, known for some time as the Old dock, is 1703 feet long and 254 feet broad, snd its area is 10 acres... In 1809 the Humber dock at the sonth end of the town was opened; it is 914 feet long and 342 feet broad, and its area is 7 acres. These two docks were connected by a third, opened in 1829, at first named the Junction dock, its length being 645 feet and a breadth of 238 feet; its area is 6 acres. After a visit paid to Hull by the Queen and Prince Albert in 1854, the name of the Old doek was cbanged to the Queen's duek, and that of the Junetion dock to the Prince's dock The Railway dock, opened in 1846, extends to 3 acies. ${ }^{1}$ In 1850 the Victoria dock was opened, on the east side of the river Hull, with entrances from it and the

Plan of Hull.

Humber, and occupied an area of about $12 \frac{1}{2}$ acres. In 1863 this dock was extended $7 \frac{1}{2}$ acres eastward. In eonnexion with this dock was a timber pond of $9 \frac{1}{2}$ acres, subsequently enlarged to 14 aeres, and a new one of 11 acres was about the same date constructed near it. The Albert doek, opened by the prince of Wales in July. 1869, occupies an area of $24 \frac{1}{2}$ aeres, and has a length of 3370 feet, with a breadth at the eastern end of 480 feet, and at the western end of 200 feet. To the west of it an additional dock of 6 aeres wbs opened in Msy 1880 . A capacious graving dock, 460 feet long, which is entered from the last-mentioned dock is now (1880) in course of construction. Another dock of 24 acres, to the west of the new West dock, has been commenced. Rails in connexion with the North-Eastern Railway are laid along the quays of the docks. In 1880 an Act was obtained for a railway from Hull to Barnsley, snd a dock in connexion with it. The shipping trade of Hull is cliefly with the Baltic forts, Denmark, Norway, Germany, and Holland; but it has also regular stcam com-
munication with the otber principal ports of Europe, as well as with the United States, the Black Sca, Esypt, se. In 1878 the number of ships that entered was 4996, with a tonnage of $1,750,977$, and tho number that eleared 4802 , with a tonnage of $1,788,214$. For the five years ending 1878 the average number of ships that entered was 4987 , with a tonnage of $1,742,120$, while $4 \leq 5 \pi$ cleared, with a tonnage of $1,726,151$.

The value of imports of foreign and colonial merchandise in 1878 was $£ 17,849,197$, and the average value for the five years $1874-78$ was $\mathfrak{E} 18,038,263$. The value of exports of produce of the United Kingdon in 1878 was $£ 19,109,797$, and the average value for the five years was $£ 21,267,391$. Hnll is one of the priacipal shipping ports for the manufactures of Yorkshire and Lancashire, and imports large quantities of grain from Russia, Prussia, America, and the British colonies, and of timber from Norway and Sweden. The import of cattle is very large, and a commodinas cattle depüt las been constructed. The decp-sea fishing 4
extensivety prosecuted, and, in addition to sereral small steamers, employs about 450 boats, with 2500 hands. Whale-fishing, once an important industry, is new discontinued.

The staple industry of Hull is seed-crushing for oil and cake making. It possesses extensive engineering works and foundries, large iron shiphuilding yards, rope-yards, sail-lofts, tanneries, breweries, flax and cotton mills, chemienl works, and manufactures of blue and black lead, paints, colours, and varnishes, Portland and Roman cement, phosphate of lime, tubacco, starel, paper, soap, furniture, and organs.

The population of the parliamentary borough, which was 84,690 in 1851, had in 1871 reached 123,408 . The population of the municipal borough in 1861 was 97,661 , aud in 1871 it had increased to 121,892 . The area of the municipal borough is 3635 acres, and of the parliamentary 4447 acres.

History. - Hull originated in the two neally contiguous villages of Mytou and Wrke, the latter of which was a considerable port not long after the Sorman Conquest. For some period the unated rillage was known as Myton-Wyke, but even before the reign of Elward I. it is also oceasionally mentioned os Hull. In 1298 Ellward I., on returning from the battle of Dunbar, happened to pay it a risit, when, struck with its alvantages as a commercial port, he purchased it from the abbot of Meaux, with the purpose of fortify. ing it. He created the town amanor of itself, bestowed upon it the name of Kingston-upon-Hull, and issued a proclamation offeriog to all who settled in it special advantages. In 1299 it received a royal charter constituting it 3 free borough. About the same time the improvements on its harbour were completed, and from this period Its inelease in prosperity was rapid and uninterrupted. In 1316 a regular ferry was established between Hull and Barton in Lincoln. shire, and a fes years later the town was fortifed with walls and ditches. Much of the carly prosperity of the town was due to the enterprise of the farnous mercbants, the De la Poles, who were high in favour with suceessive monarehs, and the head of which house was in 1355 created earl of Suffolk. Such was the importance of the towa In the reign of Elward III, that in 1353 it supplied for the armament apainst frauce 16 ships and 456 seamen, the quota of London being 25 ships and 662 seamen, and that: of Newcastle 17 ships and 314 seanch. In the reign of Richard 11. the fortresses were repaired and a strong castle was erected on the east side of the river llull. By Henry VI. additional charters were granted, erecting the town and liberties into a county in itself, under the designation of "The Town and County of the 'town of kingston-upon-Hull," constitutiag it a corpomate town, and appointing, instead of a mayor and bailifs, for lts government a mayor, sherift, and adermen. In the Wars of the Roses it stremousty maintained the eause of Lancaster; and so zealous was it in its loyalty that after the borough funds were exhausted nulditional money was raised by the sale of the materials of the market cross. In the 15 th, 16 th, and 17 th ceaturies it sulfered greatly from the flagroe, and in 1527 aod 1549 muelt damage was caused by inundations. During the insurreetion in 1536 called the l'ikerimage of Grace, originated by the dissolution of tho monasteries, Hull was seized by the insurgents, but, after the dispersion of the main body at Donsister, the ringleaders in the town were acired by the magistrates and executed. During the secood rebellion in Yorkshire in 1537 the town was taken possession of by the insurgents headed by Sir liobert Constable, and hell for a month, but the loyal inhabitants, surprising them in the middle of the night. compelled them to surrenter; many of them were exceuted, and the boty of Sir Tobut Constable was hung in chains over the leverley gate. Ia 540 Hull was vicited by Henry Villi, who, after a careful murvey of the town and neighbonthood, gave directions for the crees tion of a castle and other tortifications, for the cutting of a canal fiom Nealime to Hull in order to provide "additions of fresh water," nal for the improvement of Suftolk palace, originally erceted by the De la loles, but since then aequired by the crown. Daring the purliamentary war the poseession of Hull was an object of ambition to both parties on account of it importance asad depot for arms and military stores. In 16.42 the governor, Sir John hotham, refused to almit Chantes 1 . into the town. In 1643 and 16 h it susLained two long sioges and many vigorons attarks by the royalists.
In 1534 lhall was male the see of a sultragan bithon, hat the affice was abolished on the death of Elward II. Wy the s3ll of Etward l. the town returnal burgesses to parliament. The priviloge was afterwaris for some time in abyanco till the 1 who of Filwad 11 .. since which getion it has acturued swo memhers.

Anonge the cminme matises of that, besides the be la lodes, aro Andrew Mavell, Willinm Mason the fricnd of Gray the pot, Willam Willeforce. and Mam. Genelal Jertonet Thompson.

The rincipal historics of IHull are those of Gent, 1705. reprinted 1859 Hulley, lise: Tickell, 1003: Frost, 1827: and Sheahan. LE6t. Sce also Sy muns s highs.strect, Mul, some years shac, and Liographical sketehes inter. spersed wih hrsorich Ang Selechons from Local Hislory, 1572, and Shelchcs of hull Authors, 1813.

HULS, a tewn of Prussia, in the cirele of Kempen, and government district of Düsseldorf, is situated at the terminus of a branch railway line to Crefeld and Düsseldorf, 4 miles north of Crefeld and 17 north-west of Duisseldorf. It possesses manufactures of damask and velvet, and in the neighbourhood ironstone is obtained. The population in 1875 was 6096.

HULSE, John (170S-1789), founder of the Hulsean lectureship at the university of Cambridge, was born at Middlewich, in Cheshire, in 1708. Entering St John's Cullege, Cambridge, he graduated in I728, and on taking holy orders was presented to a small country curacy. His father having died in 1753, Hulse succeeded to his estates in Cheshire, where, owing to feeble health, he lived in retirement till his death in 1789. . He bequeathed his estates to Canibridge University for the purpose of maintaining two scholars at St John's College, of founding a prize for a dissertation, and of instituting the offices of Christian advocate and of Christian preacher or Hulsean lecturer. By a statute in 1860 the Hulsean professorship of divinity was substituted for the office of Christion ndrocate, and the lecturesbip was considerably modified. The first course of lectures under the benefaction was delivered in 18:0. In 1830 the number of annual lectures or sermons was reduced from twenty to eight; subsequently they were restricted to four. The annual ralue of the Hulse endowment is betreen $£ 800$ and $£ 900$, of which eight-tenths go to the professer of divinity and one tenth to the prize and lectureship respectively.

HUMBLE-BEE, a name applied by phonetic instinct under various inflexions (sueh as "Bumble-bee" in England provincially, and "Hummel" in Germany) to the large bees of the genus Bombus (which, like the French "Dourdon," is probably alsu suggested by the noise made by these insects). They belong to the social section of the great family A pidce, of which the common hive-bee is the type, and, like that well-known insect, live in colonies composed of the two sexes and neuters. Instead of a single female (or queen), however, many are found in one nest; and the workers do not hibernate. The female also differs from the queen hive-bee in having dense fringes of hairs on the pollen-plates of the hind legs, and a widened base to the hind tarsi, a structure necessitated by ber having to werk single-handed at the commeneement of the season, as the workers and males do not survive the winter. Early in the spring these large hibernated females may be observed on the wing, each becoming the founder of n fresh colony, in which the neuters are first produced. There are two kinds of females, the smaller one only preducing male eggs, but not surviving the winter. The number of individuals in a colony varies with the different species, nod as a rule is least in these building their nest above ground. In one very common subterranean species, fombus terrestris, as many as 107 males, 56 females, and 180 workers have been found in one nest. There is censiderable difference between the males, females, and neuters; the last two differ, however, but little except in size, wherens the males often exbibit a very varying coloration, and have structuml leculiarities, such as an additional segment to the abdomen, longer autenme and tongue, no pollen-basket, de. They have also no sting, whereas both female and worker are armed like the hive-bee. Great difficulty exists in referring these three constituents to their proper species, owing to indivicual variation, alteration with age, and the diltieulty ol veeing all the members of a colony at the same time; so that naturalists are not by any means agreed as to the specifie
status of many of them, and the synonymy is very complicated. The nests are not constructed after the symmetrical fashion of those of the hive-bee, but consist of a collection of oval brownieh cells, at first few in number, but receiving additions and extenciens as the brood iucreases, and accompanied by cells containing pollen and honey. The workers assist in rearing the larvx, and in disengaging the individuals from their pupal integuments as they reach the perfect state; and d has been noticed that this met?morphosis is accelerated by a kind of incubation. The nests are made under bushes, in banks, \&c., sometimes as much as 5 feet from the surface. A well-known one is made by the "Moss-carder" humble-bee, Bombus muscorum, which has often been observed collecting the natural material for its dome, working in line. As usual with provident or social animals, these interesting insects are subject to encroachment by parasites of various kinds; most noteworthy among which are some species (there are three or four in England) of the closely allied genus Apathus (or Psithyrus), superficially resembling exactly the true humblebees, but with no pollen-collecting apparatus, and no workers. They cxist apparently on friendly terms with their hosts, whose stores are at times materially preyed upon by the larve of Volucella, a genus of Diptera or twowinged fies also resembling humble-bees. Various beetles, such as Antherophagus, Cryptophagus, Leptizus, \&c., and the larve of Tinea pellionella, a small moth, also occur in their nests.
As regards distribution, the Bombi are found in Europe, America (North and South), Africe, India, China, and Java, but not in Australasia, where, iadeed, it has eren been attempted to introduce some species for the purpose of fertilizing the introdaced clover, for which the atructure of the native insects is apparently insufficient. It is, however, in the northern zone that they flourish best, their hardy nature enabling them to exist in the Arctic regions, as far as man has penetrated; and the numerous additions continually being made to the list of known species from the Caucasus, the Amur district, Turkistan, Arizona, \&c., point, not only to a wide geographical range, but to a large adaptation to some useful end. The experiments of Darwin, Müller, and others show how important a part is played by humble-bees, in the economy of nature as plant fertilizers; and, though perhaps not exhibiting such highly-developed instincts as the hive-bee, they possess sufficient reasoning power to enable them, by perforating the base of the calyz of certain flowers, to obtain otherwise inaccessible honey.

HUMBOLDT, Friedrich Heinrich Alexayder, Baron

 voì (1769-1859), a distinguished naturalist and traveller, was born at Eerlin, September 14, 1769. His father, who was a major in the Prussian urmy, belonged to a Pomeranian family of consideration, and was rewarded for his services during the Seven Years' War with the post of royal chamberlain. He married in 1766 Maria Elizabeth von Colomb, widow of Baron von Hollwede, and had by her two sons, of whom the younger is the subject of this notice. The childhood of Alexinder von Humboldt was not a promising one, as regards either bealth or intellect. His characteristic tastes, however, soon displayed themselves ; and from his faucy for collecting and labelling plapts, shells, aud insects he received the playful title of "the little' apothecary." The care of his education, on the unexpected death of his tather in 1779 , devolved upon his mother, who discharged the trust with constancy and judgment. Destined for a political carcer, he studied finance during six months at the university of Frankfort-on-the-Oder ; and a year later, April 25, 1789, he matriculated at Göttingen, then erminent for the lectures of Heyne and Blumeubach. His vast and varied powers were by this time fully deycloped; andduring the vacation of 1780 be gave a fair earnest of his future performances in a ecientific excursion up the Rhise, and in the treatise thencs issuing, Mineralogische Beobachtungen über einige Basalle am Rhein (Brunswick, 1790). His native passion for distant travel was confirmed by the friendship formed by him at Göttingen with George Forster, Heyne's son-in-law, the distinguished companion of Cook's second royage. Henceforth his studies, which his rare combination of parts enabled him to render at once multifarious, rapid, nind profound, were directed with estraurdiuary insight aud perseverance to the purpose of preparing himself for his distinctive calling as a scientific explorer. With this view he studicd conmerce and foreign languages at Hamburg, geology at Freiberg under Werver, anatomy at Jena under Loder, astronomy.and the use of scientific instruments under Zach and Köhler. His resesrches into tiue vegetation of the mines of Freiberg led to the publica. tion in 1793 of his Florce Frilergensis Specimen ; and the results of a prolonged course of experiments on the phenomena of muscular irritability, then recently discovered by Galvani, were contained in his Versuche über die gereizte Muskel- und Nervenfaser (Berlin, 1797), enriched in the French translation with notes by Blumenbach.
In 1794 he was admitted to the intimacy of the famous Weimar coterie, and contributed (June 1795) to Schiller's new periodical, Die Horen, a philosophicel allegory entitled Die Lebenskraft, oder der. rhodische Genius. In the summer of 1790 be paid a flying visit to. England in company with Forster. In 1792 and 1797 he was in Vienos; in 1795 he made a geological and botanical tour through Switzerland and Italy. He had obtained in the meantime official employment, having been appointed assessor of mines at Berlin, February 29, 1792. Although the service of the state was consistently regarded by him but as an apprentice. ship to the service of science, he fulfilled its duties with such conspicuous ability that he not only rapidly rose to the highest post in his department, but was besides entrusted with several important diplomatic missions. The death of his mother, November 19, 1796, eet him free to follow the bent of his genius, and, finally severing his official connexions, he waited for an opportunity of executing his long-cherished schemes of travel. On the postponement of Captain Baudin's proposed voyage of circumanigation, which be had been officially invited to accompany, he left Paris for Marseilles with Bonpland, the designated botanist of the frustrated expedition, boping to join Bonaparte in Egypt. The means of transport, however, were not forthcoming, and the two travellers eventually found their way to Madrid, where the unexpected patronage of the minister d'Urquijo determined them to make Spanish America the scene of their explorations.
Armed with poweriul recommendations, they sailed in the "Pizarro" from Corunna, June 5, 1799, stopped six days at Tcneriffe for the ascent of. the Peak, and landed, July 16, at Cumana. There Humboldt observcd, on the, night of the 12-13th of November, that remarkable meteorshower which forms the starting-point of our acquaintance .with the periodicity of the phenomenon; thence he procceded wita Bonpland to Caracas; and in Fobruary 1800 he left the coast for the purpose of exploring the course of the Orinoco. This trip, which lasted four months, and covercd 1725 miles of wild and uninhabited country, had the important result of establishing the existence of a communication between the water-systems of the Orinaco and Amazon, and of determining the exact position of the bifurcation. On the 24th of November the two frieuds set sail for Cuba, und after a stay of some months regained the mainland at Cartagena. Ascending the swollen stream of the Magdalena, and crossing the frozen ridecs of the Cordilleras. ther rearhed

Quito after a tedisus and difficult journey, January 6, 1802. Their stay there was sigaaiized by the ascent of Pichiocha and Chimboraze, aed terminated in an expedition to the sources of the Amazon en route for Lima. At Callao Humboldt observed the transit of Mercury on November 9, and studied the fertilizing properties of guano, the introduction of which iato Europe was mainly due to his writings. A tempestuous sea-voyage brought them to the shores of Mexico, and after a year's residence in that province, followed by a short visit to the United States, they set sail for Europe from the mouth of the Delaware, and landed at Bordeaux, August 3, 1804.

Humboldt may justly be regarded as having in this memorable expedition laid the fourdation of the sciences of physical geography and meteorology in their larger bearings. By his delineation (in 1817) of "isothermal lines," be at once suggested the idea aad devised the means of comparing the climatic conditious of various countries. He first investigated the rate of decreaso in mean temperature with increase of elevation above the sea-level, and afforded, by his investigations into the origin of tropical storns, the earliest clue to the detection of the more complicated law governing atmospheric disturbances in higher latitudes; while his essay on the geography of plants was based on the then novel ides of studying the distribution of organic life as affected by varyiog physical conditions. His discovery of the decrease in intensity of the earth's magnetic force from the poles to the equator was communicated to the Paris Institute in a memoir read by him, December 7, 1804, and its importance was attested by the speedy emergence of rival claims. His services to geology were mainly based on his attontive study of the volcanoes of the New World. He showed that they fell naturally iato linear groups, presumbly corresponding with vast subterranean fissures; and by his demonstration of the igneous origin of rocks hitherto held to be of aqueous formation, he contributed largely to the spread of juster views than those then prevailing.
The reduction into form and publication of the encyciopædic mass of materials-scientific, political, and archæo-logical-collected by him during his abseace from Europe was now Humboldt's most urgent desire. After a short trip to Italy with Gay-Lussac for tho purpose of investigatiog the law of magnetic declination, and a sojourn of two yoars and a half in his native city, be finally, in the spring of 1808, settled in Paris with the view of securing the scientific co-operation required for bringing lis great work through the press. This colossal task, which he at first hoped would bave occupied but two gears, eventually cost him twenty-one, and even then remained incomplete. With tho exception of Napoleon Ronaparte, he was now the most famous man io Europe. A chorus of apllause greeted him from cerery sido. Academics, both native and foreign, were eager to eurol him among their members. Frederick William III. of Prussia conferred upon bim the honnur, without exacting the duties, attached to the post of rryal chamberlain, together with a pension of 2500 thalers, afterwards doubled. Ho refused the appointment of Prussian minister of public instruction in 1810. In 1814 ho accompanied the allied sovercigns to London. Thrco years later ho was summoned by tho king of Prussia to attend him at the congress of Aix la-Chapelle. Again in the autumn of 1822 he nccompanied the sanse monarch to the congress of Yerona, proceeded thence with the royal party to lome and Naples, and retnened to Paris io the spring of 1823 .

Tho French capitad he lad loug regarded as his true homo. There ho found, not only scientific sympathy, but the encial atimulus which his vigurous and healthy mind uagerly craved. He was equally in his cloment as the linn
of the sulons and as the savant of the institute and the, observatory. Thus, when at last the received from his: sovereiga a summons to join his court at Berlin, be obeyed indeed, but with deep and lasting regret. The provincislism of his native city was odions to him. He never ceased to rail against the bigotry without religion, æsthoticiem without culture, and philosophy without common sense, which he fourd dominant on the banks of the Spree. The unremitting benefits and sincere attachment of two well-meaning princes secured indeed bis gratitude, but could not appease bis discontent. At first be sought relicf from the "nebulous atmosphere" of his new abode by frequent visits to Paris ; out as years advanced his excursions were reduced to accompanying the monotonous "oscillations" of the court between Potsdana and Berlin. On the 12th of May 1827 he settled permanently in the Prussian capital, where his first efforts were directed towsrds the furtherance of the science of terrestrial magnetism. For many years it had been one of his favourite schemes to secure, by means of simultaneous observations at distant points, a thorough iuvestigation of the nature and law of "magnetic storms"-a term invented by him to designate abnormal disturbances of the earth's magnetism. The meeting at Berlin, September 18, 1828, of a newly-formed scientific association, of which he was elected president, gave him the opportunity of setting on foot an extensive systen of research in combination with his diligent personal observations. His appeal to the Russian Government in 1829 led to the establishment of a line of magnetic and meteorological stations across northern Asia; while his letter to the duke of Sussex, then (April 1836) president of the Royal Society, secured for the undertaking the wide basis of the British dominions. Thus that scientific conspiracy of nations which is one of the noblest fruits of modern civilization was by his exertions first successfully orgaized.

In 1811, and again io 1818, projects of Asiatic explora. tion were proposed to Humboldt, frst by the Russian, and afterwards by the Prassian Government; but on each occasion untoward circumstances iaterposed, and it was not until he had eatered upon his sixtieth year that he resumed his early rôie of a traveller in the interests of science. Between May aud November 1829 be, together with his chosen associstes Gustav Rose and Ehrenberg, traversed the wide expanse of the Russian empire from the Neva to the Yenesci, accomplishing io tweaty-five weeks a distance of 9614 miles. The journey, however, though cartied out with all the advantages afforded by the immediate patronage of the Russian Goverament, was too rapid to be profitable. Its most important fruits were the correction of the prevalent cxaggcrated estimate of the height of the Central-Asian itatean, and the discovery of dismonds ia tho gold-washings of tho Ural-a result which Hunboldt's Brazilian experiences enabled him to predict, and by predicting to secure.

Between 1830 and 1848 Humboldt was frequently employcd in diplomatic missions to tho court of Louis Philippe, with whom ho olways maintrined the most cordial personal relatione. The death of his brother, Wilhelm von Itumboldt, who expired in his arms, April 8, 1836 , saddened the later ycars of his life. In losing him, Alexander lamented that ho had "lost lialf himself." The accession of the crown princo as Frederick William IV., on the death of his father, in June 1840, arded to rather than detracted from lis court favnur. Indeed, tho new king's craving for his society became at times so importunate as to leave him only sume honirs smatchicd from sleep for tho prosecution of his literary lalmours.

It is not often that a man prestpones to his seventy-sixth year, and then successfully esccutes, the crowning task of
his life. Tet this was Humboldt's case. The first two volumes of the Kosmos were "published, and in the main composed, between the years 1845 and 1847. The idea of a werk which should convey, not only a graphic description, but an imaginative conception of the physical world-which should support gcneralization by details, and dignify details by generalization, had floated before his mind for upwards of half a century. It first took dcfinite shape in a set of lectures delivered by him before the university of Berlin in the winter of 1827-28. These lectures formed, as his latest biographer expresses it, "the cartoon for the great fresco of the Kosmos." The scope of this remarkable work may be brietly dcscribed as the representation of the unity amid the complexity of nature. In it the large and vague idenls of the 18tin are sought to be combined with the exact scientific requirements of the 19 th century. And, in spite of ineritable shortcemings, the attempt was in ar cminent degree successful. Nevertheless, the general effect of the hook is rendered to some extent ansatisfactory by its tendency to substitufe the indefnite for the infinite, sud thus to ignore, while it does not deny, the existence of a power outside and beyond those of nature. A certain heaviness of style, too, and laberious picturesqueness of treatment make-it more imposing than attractive to the general reader. Its supreme and abiding value, however, consists in its faithful reflexion of the mind of a great man. No higher culogium can be passed on Alexander von Humboldt than that, iu attempting, and not unworthily attempting, to portray the universe, he succeeded still more perfectly in portraying his own comprehens ve intelligence.
The last deeade of his long life-his "improbable" years, as he was accustomed to call them- was deveted to the continuation of this work, of which the third and fourth velumes were published in 1850-58, and a fragment of a fifth appeared posthumously in 1862. In these he sought to fill up what was wanting of detail as to individual branches of scieace in the swecping survey contained in the first volume. Notwithstanding their high separate value, it must be admitted that, from an artistic peint of view, these additions were deformities. The characteristic iden of the work, so far as such a gigantic idea admitted of literary incorporation, was completely developed in its opening portions, and the attempt to convert it into a scientific encyclopædia was in truth to nullify its generating metive. Humbeldt's remarkable industry and accuracy were never more conspicuous than in the erection of this latest trophy to his genius. Ner did lie rely entirely on bis own labours. He owed much of what he accomplished to his rare power of assimilating the thoughts and arailing himsclf of the co-operation of others. He was net more ready to incur than to acknowledge obligations. The notes to Kosmos orerflow with laudatory citations, which were, indeed, the current coin in which be discharged his intellectual debts.
On the 24th of Felruary 1857 Humboldt was attacked with a slight apoplectic stroke, which, however, passed away witheut leaving any porceptible trace. It was not until the winter of $1858-59$ that his strength began to decline, and on the ensuing 6th of May he tranquilly expircd, wanting but six menths of completing lis ninetieth year. The henours which had been showered on him during life followed him after death. Itis remains, previously to being interred in the family resting-place at Tegel, were conveyed in state through the strects of Berlin, and received by the prince-regent with uncovered head at the deur of the cathedral. The first centenary of his birth was celebrated September 14, 1869, with equal euthusiasm. in the New as in the Old World; and the numereus nionutoents crccted in his honour, and newly:explored regions
called by his name, bear witness to the umrersal difiusion of his fame and popularity.

Humboldt was never married, and seems to have been at all times more secial than domestic in his tastes. To his brother's family he was, however, much attaclied ; and in bis later years the somewhat arbitrary sway of an old and faithful servant held him in more than niatrimonal bondage. By a singular example of weakness, he esccuted, four years before his desth, a deed of gift transferring to this man Seifert the absolutc possession of his entire property. It is right to add that ne undue advantage appears to bare been taken of this cxtraordinary concession. Of the qualities of his beart it is less easy to speak than of those of his head. The clue to his inner life might probably bo frund in a certain cgotism of self-culture which influenced his uffections as well as regulated his studies. His attachments, however, once furmed, were sincere and lasting. He made innumerable friends; and it does not stand on recerd.that he ever lost one. His benevelence was throughout his life active and disinterested. His early zeal for the improvement of the condition of the miners in Galicia and Franconia, his consistent detestation of slavery, his earnest patronage of rising men of science, bear witness to the large humanity which formed the ground-work of his character. The faults of his old age bare been brought into undue prominence by the injudicinus publication of his letters to Yarnhagen von Ense. The chief of these was his habit of smooth speaking, almost amounting to (lattery, which formed a painful contrast with the caustic sarcasm of his confidential utterances. His vanity, at all times conspicuous, was tempered by his sense of humour, mad was so fraukly avored as to invite sympathy rather than provoke ridicule. After every deduction has been made, he yet stands before us as a celossal figure, not uncorthy to take his place beside Goethe as the represen: tative of the scientific side of the culture of his country.

The best biography of Mlumbollt is that of Professor Karl Bruhns (3 vols., 8 vo, Leipsic, 18i2), excellently translated into English by the Misses Lassell, with the omission, however, of the exhaustive bibliographical notice and scientific summary contained in tho original. The Voyuge aux rigions equmoriales du Nouveau Continent, fait 1799-1504, par Alixandre dc Humboldt d A ime Lonpland. (Paris, 1807, \&c.), cousisted of thirty folio and quarto volumes, and comprised a considerable number of subordinate but important works. Among these may be enumerated wiue des Coritilleres al monuinents des pruples indigènes de l'Amérique, 2 vols., folio, 1810 ; Examén critique de l'histoire de la géogrophie du Nourcau Contincmt, 1814-34; Allas geographique ct physiquedu royaume de la Nourcile Espagne, 1811; Essai polilique sur. le royazone de la Nouvelle Espagne, 1811; Essai sur la geographic des plantes, 1805 (now very rare); and Relation historique, 1814-25, an untinished narrative of his travels, including the Essai politiques sur l'fle de Cuba. The Nova genera et specicsplantarum (7 vols folio, 1815-25), containng descriptions of above 4500 species of plants collected by Humboldt and Bonpland, was mainly compiled by C. S. Konth; Oltmanns assisted in preparing the Recieil d"obscrations "astronomiques, 1808; Cusier, Latreille, Valenciennes, and Guy-Lussac co-operated in the Recueil d'observations de zoologie et d'anatomic comparte. 1805-33. Humboldt's Ansichten der Natur (Stuttgart and Tubingen, 1803) went through three cditions in his lifetime, and was translated into nearly every European language. The results of his Asintic journey were published in Fragments de giotogic et de climatologic nsiatiques, (2 vols. $8 \mathrm{vo}, 1831$), and in Asie centrale (3 vols. Svo, 1843)-an culargement of the earlier work. The memoirs and papers read by him before scieutifie societies, orcontributed by him to scientific periodicals, are too numerous for specification.

Since his death considerable portions of his correspondence havo been made public. The first of these, in order boht of time and d importance, is his Brife an Varnhagen von Ense, I.cipsic, 1860. This was followed in rapid succession by Priffuechel mit einem jungen Fresnde (Friedrich Althaus), Berlin, 1801 ; Briffuechsel mit Meimrich Berghaus, 3 vols., J ma, 1563 ; Currespondance sciontríique ct litterairc, 2 vols., Paris, 1865-69; Lultres a Marc-Aug. Pictel, pub. lishol in Le Globe, tome vii., Gencva, 1865 ; Briefe an Bunser. Lecipsie, 1869 ; Briffe en seinen Brader Wilhelm, Stuttgart, 1880 ; besides some other collections of less note. An octavo edition al Humboldt's principal works was published in Paris by Th. Morgand, 1804-66.

HUMBOLDT, Karl Wileelm von (1767-1835), the elder brother of the more celebrated Alexander von Humboldt, was born at Potsdam, on the 22d of Jnne 1767. After being educated at Berlin, Göttingen, and Jena, in the last of which places he formed a close and lifelong friendship with Schiller, he married Friulein von Dacherode, a lady of birth and fortune, and in 1802 was appointed by the Prussian Government first resident and then minister plenipotentiary at Fome. While there he pnblished a poem cotitled Rone, which was reprinted in 1824. This was not, however, the first of his literary productions; his critical essay on Gocthe's Hermann and Dorothea, published in 1800, had already placed him in the first rank of autborities on æsthetics, and, together with his family connexions, had much to do with his appointment at Rome; while in the years 1795 and 1797 he had bronght ont translations of several of the odes of Pindar, which were held in high estcem. On quitting his post at Rome he was made councillor of state and minister of public instruction. He soon, bowever, retired to his estate at Tegel, near Berlin, but was recalled and sent as ambassador to Vienna in 1812 during the exciting period which witnessed the closing struggles of the French empire. In the following year, as Prussian plenipotentiary at the congress of Prague, he was mainly instrmmental in inducing Anstria to unito with Prussia and Russia against France; in 1815 he was one of the sigatories of the capitulation of Paris, and the same year was occopied in drawing up the treaty between Prussia and Saxony, by which the territory of the former was largely increased at the expense of the lattcr. The next year he was at Frankfort settling' the future condition of Germeny, bnt was summoned to London in the midst of his work, and in 1818 had to attend the congress at Aix-la-Chapelle. The reactionary policy of the Prussian Geverninent made him resign his office of privy councillor and give up political life in 1819; and from that time formard he dovoted himself solely to literature and study.
During the busiest portion of his palitical career, however, he had found timo for literary work. Thus in 1816 he Lad published a translation of the Agamennon of Fschylus, and in 1817 corrections and additions to Adelung's Mithrilates, that famous collection of specimens of the various languages and dialects of the world. Among these additions that on the Basfue language is the longest and most important, Easque haring for some time specially attracte? his attention. In faet, Wilhelm von Humboldt may be said to have been the first who brought Basque befure the noticu of European philologists, and made a scientific study of it possiblo. In order to gain a practical knowledge of the langugge and complete his investigations into it, he visited the basquo comntry itself, the result of bis visit being the valuable "Researches into the Early Inhabitants of Spain by the help of the Basque language" (Priufung der Untersuchungen üher die Urhewoher IIIspaniens vernittclst der vasikischen Symache), pnblished in 1821. In this work he endeavoured to show, by an exanination of geographical mames, that a race or races speaking dialects allied to modern Fasque once extenfel threugh tho whele of Spain, the southern coast of Franee, and the Balcaric Jslands, and sugrested that these peophe, whom he identificd with the Iberians of classical writers, hat come from Northern Africa, where tho nane of Berber still porhaps perpetuates their old desienation. Auother work on what has sonctimes been termed the metaphysies of language appeared from his pen in 1828 , under the title of Uiber den Duatis; but the great work of his life, on the ancient Kawi languago of Java, was unfortunately interrupted by his death on the 8th of April I835. The imperfect fragment was odited by his brother and Dr

Busclumann in 1836, and contains the remarkable introduction on "The Heterogeneity of Langmage and its Inftuence on the Intellectual Development of Mankind " (Licter die Verschiedenheit des menschlichen Sprachboules und ihven Einfluss auf die geistige Entwichelung des Menschengeschlechits), which has been since edited and defonded against SteintLal's criticisms by Professor Pott (\because vols., 1876). Thís essay, which bas been called the text-book of the philosophy of speech, first cleasly laid down that the character and structure of a language expresses the inner life and knowledge of its speakers, and that languages must differ from one another in the same way and to the same degree as those who use them. Sonads do not become words until a meaning has been put into them, and this meaning embodies the thougat of a community. What Humboldt terms the inner form of a language is just that mode of denoting the relations between the parts of a sentence which reflecty the manner in which a particular body of men regards the world about them. It is the task of the morphology of speech te distinguish the varians ways in which languages differ from each other as regards their inner form, and to classify and arrange them accordingly. Other linguistic publications of Homboldt, which hat appeared in the Transactions of the Berlin Academy, tho Journal of the Royal Asiatic Society, or elsowhere, wera republished by his brother in the seven rolumes of Wilheln von Humboldt's Gesammelte Werke (1841-52). Theso volumes also contain poems, essays on resthetical subjects, and other creations of his prolific mind Perbape, however, the most generally interesting of his works, outside those which deal with language, is his correspondence with Schiller, published in 1830. Both poet and philosopher come before us in it in fheir most genial mood. For, though Humboldt was primarily a philosepher, be was s. philosopher rendered practical by his knowledge of statesmanship and wide experience of life, and endowed with keen sympathies, warm imagination, and active interest in the method of scientific inquiry.
(А. н. s.)

HUME, David (1711-1766), the most subtle metaphysiciau and one of the greatest listorians and political economists of Great Dritain, was born at Edinburgh, on the 26th April (O.S.) 1711. His fatler, Joseph Ifume or Home, a scion of the noble honse of Home of Douglas, was owner of a small estate in Berwickshire, on the hanks of the Whitaddor, called, from the spring rising in front of the dwelling-house, Ninewells. David was the youngest. of a family of three, two sons and a daughter, whe after the early death of the father were bronglit up with greal care and devotion by their moilter, the daughter of Sir David lalconer, president of the college of justice. She survived till 1749, long enough to sce sceurely established the foundations of the literary fame of the younger son, for whose powers she scems at one time to lave entertainca no great respect. "Our Davie," she is reported to have said, perhaps with reference to what scemed his folly in rejecting more lucrative profossions than that of literature, "Our Davie's a fine good-natured crater, but uncoummon wako mindel."
Of LIame's carly education littlo is known beyend what ho has himsclf stated in his Litie. He appears to have entered the (Greck classes of the university of Edinhurgh in 1723, and, he tells us, "passel throngh the ordinary coursc of education with success." It is uncertain how long he remained at the university, though a passage in the remarkatle letter first printed by Mr Burton fixes this with comparative definiteness. ${ }^{1}$ "As our college education in Scothand, extending little further than the languages, cads commonly when we are about fourteen or fifteen
was after that left to my own choice in my reading." We nay conclude, then, that about the year 1726 Hume rcturned to Ninewells with a fair knowlodge of Latin, slight acqueintance rith Greek, and literary tastes decidedly inelining to "books of reasoning and philosophy, and to poetry and the polite authors." He has nowhere given ony indications of an explicit character with regard to his reading, or to the works which contributed most in forming his own opinions; and in his writings, save where the subject is of an historical kind, litarary references are conapienous by their rarity. Yet it seems possible from what we know of the sources open to him, of his own preferenecs, of the problems with which he first busied himself, and of the general current of bis speculations regarding them, to infer with some exactness the cóurse of his studies. It is to ba neted that at a verg early peried of his life the dominant passion had deelared itself. The love of literature for its own sake wes combined with the keen overmastering desire for a literary reputation. At an unusually early age he had determincd for himself bis future course, and no inducement was strong cnough to make him swerve from it. His temperament, on the whele placid and even phlegmatic, readily inclined him to seek as his mode of life the golden mean, equally removed from such esternal influenees as conld distractor disturb contemplative repose. He practised what he taught and learned of the Stoic rules, and was concerned only to obtain such external fortune as would place him above the necessity of wasting his powers on temporary and transient objeets. His prudence was as remarkable as his moderation; and his life, on the whole, may be regarded as one of the mest perfect and successfu! instances of constant devotion to literary aims. While he was thus fortunate in choosiag early and maturely the object towards which all his industry was to be directed, he was no loss fortunate in the selection of the epecial form of literary work to which he was to devote himself. It is clear that his inclinations at a very early age led him towards the enslysis of human nature, from which all his later writings take their origin. Speculation upon the nature and certainty of knowledge, whether in its abstract form, that of mere psychology, or io its more concrete applicatiens, as in theology, seems to have been the carliest oceupation of his thought; and in this speeulation we canoot doubt he was directed largely by the writings of Cicero and Seneca though the main factor was unquestionably the grest English works which had begun to exert their influence at the time. While we trace the matter of Hume's later reflexions to Locke, Berkeley, and Butler, we must not ovcrlook the great part in his mental development which is due to the seeptical or academical writings of the earlier thinkers. The philosophical treatises of Cicero were familiar to Hurse, whose writings have a colouring undeniably dus to this source. The form in which be cast some of the most important of his apeenlations is an imitation, more or less conscious, of these ancient models.
We see Hume, then, in the years during which the influences that meuld.a man's character and carcer are most actively at work, resolutely devoting himself to a life of literature, possessed by the most intensa ambition for literary fame, and busying bimself with reflexion upon those problems of "philosopisy and critics" in which, as he found, "nothing was yet established." • His means were slender, "and it was necessary for him, even in view of his primary object, to endeavour after independence. The first choice of a professien, that of law, made for him by his relatives, who thought it suited to his "studious habits, sobriety, and industry," proved unsuccessful. Although his intellect was aente and practical, yet at this period ho was so entirely devoted to the mere subtle and speculative problema that law conld present nothing beyond a barren
waste of technical jorgon. While his friends thought "he was poring over Voet and Vinnius, Cicero and Virgil were tha authors ha was secretly devouring." The intensity of his studies, the agitation due to the novelty of the ideas which began to crowd upen him as he tried to carry eut systematically the frst prineiples of human knowledge which he learned from Locke and Berkeley, combined to throw him for a timo into a state of physical exhaustion and lassitude. His health was gradually restored by more csreful regimen; but, as we learn frem the curious diagnosis he made of his own state, the rigour requisite for protracted and connected speculation seemed to have vanished. "I have collected," he writes, the "rude materials for many volumes; but in reducing these to words, when one minst bring the idea he comprehended in gross nearer to him, so as to contcmplate its minutest parts, end keep it steadily in his eye, 80 as to copy these parts in order, this I -found impracticable for me, nor were my spirits equal to so severe an employment." In these circumstances be determined to try the effeet of complete change of scene and occupation. "I resolved to seek out a more active life, and, though I could not quit my pretensions to learning but with my last breath, to lay them aside for some time, in order the morro effectually to resume them." The effectual remedy which commended itself to him was the trial of a mercantile life, and early in 1734 he set out for Bristol, armed with recemmendations to some eminent merchants. A residence of a fem months was suffieient to convince him that in this attempt at least he had not hit the mark. He feund "the scene wholly unsuitable" to him, and about the middle of the year 1734 set out for France, resolved to spend some years in quiet study and retirement. He visited Paris, resided for a time at Rheims, and then settled at La Fleche, famons in the history of philosophy as the school of Descartes. His bealth seems to have been perfectly restored; and during the three years of his stay in France his speculations were worked into systematic form in the Treatise of Human Nature. In the autumn of 1737 hs wsa in Loodon negotiating with publishers and printers regarding the appearaoce of bis great work, and carefully pruning and polishing it in preparation for the judgnents of the learned. In January 1739 there appeared the first and secönd volumes of the Treatise of IIuman Nature, being an Attempt to Introduce the Experimental Method of Reasomng into Moral Subjects, containing book'i., Of the Understandiny, and book ii., Of the Passions. The third volome, containing book iii., Of Morals, was published in the fellowing year. Few phrases are better known than the laconic sentence in which Hume, looking back on his awn life, tells the tale of his first venturc. "Never literary attempt was more unfortunate; it fell dead.bom from the press, without reaching such distinction as cren to excite a murmur ameng the zealets." "But," he adds, "being naturally of a eheerful and sanguine temper, I very soon reeovered the blow, and prosecutcd with great ardour my studies in the country." This brief netice, bowever, is net sufficient to explain the full significance of the event for Hume's own life. The work undoubtedly failed to do what its author expected from it ; cven the notiec, otherwiso net unsatisfaetory, which it obtained in tha History of the Worlis of the Learnell, theo the principal critical journal, did not in the least Eppreciate tha true bearing of the Treatise on the current philosophical and theological discussions. Hune, who had been living in abstractions, to whom the disputes of tho time had presented themsclves in their real nature as fundsmental differences of philosophical analysis, naturally expected that the world would see with as great elearness as he dil the connexion between the concrete protlems agitating contemporary thought and the abstract principles on which their solution depended. Accurdingly be louked fur
the intensest opposition, and expected that, if his principles were received, the greatest of revolutions, a change in general conceptions of things, would ensue. Apart from all considerations of personal reputation, which undoubtedly had no small influence on him, be was, therefore, on the eve of the publication of bis work, with justice perturbed "at the nearness and greatuess of the event." It is true that in the Treatise there is little or no direct reference to the theological questions which were then prolific in the production of literature, and probably this omission contributed towards the first failure of the work; but Hume, as before said, is insariably chary of his references, and one cannot doubt that be ras himself fully alive to the fact that in his philosophic analysis the matters in debate in the theological world had been reduced to their purest essence, had been brought back to first principles. Overlooking, then, the obrious fact that nothing is less common than systematic thinking, that the greater pertion of opinion rests on the aecidents of training and surroundings rather than on clearly perceived aod ratioually tested grounds, he anticipated an inmediate and vehement onslagght on his work. His disappointment ras great in proportion to the height of his expectations; and though he never entirely relinquished his metaphysical speculations, though all that is of value in bis later writings depends on the acute analysis of human nature to which he was from the first attracted, one cannet but regret that his high powers were henceforth withdrawn for the most part from the coasideration of the fouadations of belief, and expended on its practical applications. In later years be was accustomed to explain his want of success as due to the immature style of his early thoughts and exposition, to the rashuess of a young innovator in an old and well-established prevince of literature. "So vast aa under" taking, planned before I was one-and-twenty, and composed before twenty-Sive, must wecessarily be very defective." The disclaimer of the Treatise in the preface to the Inquiry concerning IIuman Understanding is well kawn. But all this has tittle foundation beyond the persorat irritation of an auther at his own failure to attract such attedtion as he deems his due. None of the principles of the Treatise are given up in the later writings, and no addition was made to them. Nor can the superier polish of the more mature productions overbalance the freshness and concentrated vigour of the more youthful work. Hume is at his best in the Treatise; and it is curieus to thiak what might have been the position of British philosophy at the close of the 18 th century had the success of his first attempt encouraged him to continue with equal zeal and uadivided attentiva his carly metaphysical speculations.

After the publication of the Treatise Mume retired to his brother's house at Ninewells and carried on his studies, mainly in the direction of politics and political economy, adding to this, hewever, a wide if not exact reading in classical literature. In 1741 he published the first volume of his Essays, which had a considerable and immediate success. A second edition was called for in the fullowing year, in which also a second volume was published. It is interesting to learn from one of Hume's letters that Butler, to whom he had sent a copy of his Treatise, but with whom he had failed to make personal nequaintance, warmly commeended the Essays te all his friends. The philosephical relation between Putler and Mume is one of the curious points in history. So far as analysis of knowledge is conserned both ere in thorough harmony, and llume's seeptical conclusions regarding belief in matters of fact are the foundations on which Butler's defence of religion rests. atler, hewever, appears to retain, alongside of his destrucTe theory of knowledge, confidence in the rational [roofs ar the existence of (lod, and certainly meintains what may be vagucly described as an a priori view of conscicace. It
is probable that, though Butler never worked out the system of his belief, his theological principles will be found to rest ultimately on ethical grounds. Hume had the greatest respect for the author of the Analogy, ranks bim with Locke and Berkeley as the originators of the experimental method in moral science, and in his specially theelogical essays, auch as that on P'articular Providence and a Future State, has Butler's viems specifically in mind. See Butler

The success of the Essays, though hardly great enough to satisfy the author's semewhat exorbitant cravings, was a great eacouragement to Hume. He began to hope that his earlier and hearier work, if recast and lightened, might share the fortunes of its successor ; and at intervals thronghout the next four years he occupied himself in reducing its fundamental principles into a more succinct form, andi in giving to them all the literary grace at his command. Meantine be cootinued to look about for some post which might secure hio the modest independence be desired. In 1744 we find litu, in anticipation of a vacancy in the chair of moral philesephy at Edinhurgh unirersity, moving his friends to do him good ofiices with the electors; and though, as he tell us, "the accusation of heresy, deism, scepticism, or theism, \&c., \&c., was started " agajnst bim, it had no effect, "being bore down by the contrary authority of all the goed people in tomn." To his great mertification, however, he thought he could discover that Hutcheson and Leechman, with whom be had been on terma of friendly correspendence, were giving the reight of their opinion against the propriety of electing him to suck a post. The after history of these negotiations is obscure. Hume in all probability perceived that fortune was against him, and accepted in 1745 a very anomalous post, that of tutor or guardian or keeper to the marquis of Annandale, 3 harmless literary lunatic. Although the salary paid during the year Hume spent in this capacity "made a considerable accession" to his fortune, the position was unmistakably false and painful. The letters relating to this episode of his life, first printed by Dr Thomas Murray, I841 (see Burton's Life, i. ch. v.), are not pleasant reading ; and the close of the connexion between Hume and his pupil left the philosopher under the neccssity of instituting an action for recovery of arrears due to him. The details of the affair are not sufficiently clear to cnable a modern judge to assign either admiration or blame to IIume's tenacityio the matter of his rights.

In 1746 Hume accepted the office of secretary to General St Clair, and was a spectator of the ill-fated expedition to France in the autumo of that year. His adnirable account of the transaction has been priuted by Mr Burton. After a brief sojourn at Ninewells, doubtless occupied in preparing for publication his Philosophical Essays (afterwards entitled An Inquiry concerning Iumen Understanding). Hume was again associated with General St Clair, and in 1748 accompanied him as secretary in tho embassy to Vicuna and Turin. The notes of this journey are written in a light and amusing style, showing Hume's usual kecnness of sight in some directions and his almost equal blindness in others. During bis absence from England, early in the year 1748, the Philosophical Essays were published ; but, to his great disappointment, the first reception of the work was little more favourable than that accorded to the unfertunato Treatise. "On my return from Italy," he writes, "I had the mortification to find all England io a ferment on account of Dr Middleton's Free Inquiry, while my performance was entirely overlooked aud neglected." T'e the later cditions of the work Inme prepared an " Advertiscment" refcring to the Trealise, and desiring that the Essays "may alone bo regarded as containing his philosophical sentiments and principles." Not a few mode:n critics have accepted this disclaimer as of.real valne, hut
in fact it tras no significance; and Ilume has himself in a striking letter to Gilbert Elliett indicated the true relation of the two works. "I believe the Philosophical Essitys contain everything of consequence relating to tho underatanding which you would meet with in the Treatise, and I give you my advice against reading the latter. By shortening and simplifying the questions, I really render them much more complete. Adelo dun meinne. The philosophical principlos are the same in both." The Essays are undoubtedly written with more maturity and skill than the Treatise; they contain in more detail application of the priaciples to concrete problems, such as miracles, providence, immortality; but the cutire emission of the discussion forming part ii: of the first book of the Treatise, and the great cumpression of part iv., are real defects which must always render the Trealise the more important work in the history of philosophy.
In 1749 Hame returned to England, enriched with "near a thousand puunds." Two years be spent at Ninewells, and then in 1751 removed to Edinburgb, where for the mest part he resided during the next twelve years of his life. Thesc years are the richest so far as literary production is concerned. In 1751 be published his Political Discourses, which had a grent and 'well-deserved success. In the same year apyeared the recast of the third book of the Treatise, called Inquiry concerning the Princindes of Mforals, of which he says that "of all his writings, philosophical, literary, or historical, it is incomparably the best." At this time also we hear of the Dialogues conceriuing Vatural Religion, a work which Hume was prevailed on net to publish, but which he touched and retouched with the greatest care, and evidently regarded with the greatest favour. The work itself, left by Hume with instructions that it should be published, did not appear till 1779.

In 1751 Hunie was again unsuccesstat in the attempt to gain a professor's chair. A candidate unknown to fame then or afterwards was appointed to the chair of logic at Clasgow. In the following year be received the first public preferment that bad ever fallen to his lot, the librarianship of the Advocates' Library in Edinhurgh, small in emoluments, but rich in opportunity for literary work. His delight was great. In his phayful style he writes to Dr Clephane, "I have been ready to burst with vanity and self.conceit this week past, and, being obliged from decorum to keep a strict watch over myself and cleeck all emphasis of that kind, I really begin to find my hoalth injured by it." The usual objections had been raised to his election without avail; but, "what is more estraordinary, the cry of religion cuuld not hinder the ladies frum being violently my partisans, and I owe my success in a great measure to their solicitations. One has broke off all commerce with ber lover because he vcted against me ; and W. Lock hart, in a speech to the faculty, said that there was no walking the strects, nor even enjoying one's own fireside, on accuunt of their importunato zeal. The town bays that even his bed was not safe for him, though his wife was consin-german to ny antagonist."
Tho only work published at this time which requires aomewhat special nutice is the set of essays called Political Discourses. In theso Hunce shows greater aptitude for economical inquiries, and makes greater advances in political economy, than any previous writer. Although only a few of the many subjects of discoussion are touched upon, the general principles of tho science are firmly expressed and illustrated with clearness that leaves nothing to be desired. The fundamental theorem, "cverything in the world is purchased by labour, and our pissions are the only causes of labour," on which Siuith aftervards construeted his more elaborate systeru, is
used as the key to resolve the ditnculties regarding tho advantages of foreign trade, the causes of the eflux and influx of bullion, the general range of prices in a country, the influence of eredit on prices and on trade, the connezion of interest, profits, and the general conditions of industry, and the mast ecouveical mudes of levying taxes. In many respects the analysis of the complex pbenemena of commerce is more sound and thorough than that given in the Wealth of Wuttions, for Hume never forgets that the ultimatc causcs of our ecenomic movements are the "custums and manners" of the people, and always finds his solution by reierring to the efementary factors of industry. It is curivos that on the publication of the Wealth of Dutions Ilume indicated to Smith that be diffored from him regarding the influence of rent on prices, the point from which the later advances of English political economy lave taken their start. It is also remarkable that Hume had formed a much sounder judgment than Saith on the merits of the French Economists. In short, the main errers of the Wcalth of Nutions are to be found in the deviations from the principles of the Pulitical Discourses.

In 1753 Hume was fairly settled in Edinburgh, enjoying the dignity and delights of householding, and preparing. for lis new attempt in literature, the History of England. ${ }^{1}$ He had decided to begin the Ilistory, not with Henry VIf., as Adanı Smith recommended, but with James I., considering that the political differences and parties of his time touk their origin from that period, and that then, as he -thought, "the misrepresentations of faction began chiefly" to take place." On the whole his attitude in respect to disputed pelitical principles seems not to have been at firsi consciously unfair. "I am sensible," he rrites to Clephane, "that the history of the twe first Stuarts will be most agreeable to the Tories, that of the two last to the Whigs; but we must endeavour to be above any regard either to Whigs or Tories." As for the gualities necessary to secure sliccess as a writer on bistory, be felt that he possessed them in a high degree; and, though ncither his ideal of an historian nor his equifment for the task of historical research would now ajpear adequate, in both be was nuch in adrance of his contemperaries and predecessors. Naturally, then, he was "sanguine in his expectations of the success of his work." "But," bc writes in the well-known passag of his Life, "miserable was ny disappointment. I was assailed by one cry of reproach, disapprobation, and even detestation; \because what was still mure mortifying, the book seemed to sink into oblivion. Mr Millar tuld me that in

[^57]a treivemonth he sold only ferty-five cepies of it." This account must be accepted with great qualification. It expresses Hume's feelings rather than the real facts. In Ediaburgh, as we learn from one of his letters, the book succeeded well, no fewer than 450 copies being disposed of in fivo weeks. Nor is there anything in Hume's corre. spendence to show that the failure of the book was so complete as he declared it to have been. Within a very few years the sale of the History was sufficient to gain fer the author a larger revenue than had ever before been knowa in his country to flow from literature, and to place bins in comparative allaence. At the same time the bitterness of Hume's feelings and their effect are of importance ia his life. It is from the publication of the History that we date the extraordinary virulence of his hatred towards everything Englich, towards society in Londun, Whig priaciples, Whig ministers, and the pubhe generally' He was convinced that to be a Scotchman and a Tory was to be an object of contempt and hatred to all Englishmen; and that on the whele there was a coaspiracy to suppress and destroy everything that was Scotch. ${ }^{3}$. As a consequence of these strong feelings, the remainder of the History became little better than a party pamphlet, written with a definite bias and a definita aim. The eecend volume, pablished in 17556 , carrying on the narrative to the Revolution, was better received than the first ; but Hume then resolved to work backwards, and to show from a survey of the Tudor period that his Tory notions were groonded upon the history of the constitution. In 1759 this protion of the work appeared, and in 1761 the work was completed by the bistory of the pre-Tudor periods. The aumerous editions of the various portions,-for, despite Hume's wrath and grumbliags, the book was a -great litersry success,-gave him an opportunity of careful revision, which he employed to remove from it: all the " villainups seditious Whig strokes," and "plaguy prejudices of Whiggism" that he could detect lurking in it. In other words, he bent all his efforts towards making his History more of a party work than it had originally been, and in his effort b_{e} was entirely successful. It has been the bnsiness of subsequent historians to correct his misrepresentatiens so far as they referred to the period of which he had fair knowledge, and to supersedo his eccounts of those periods which bis iasufficient knowledge disabled him from treating in a manner worthy of him. The early portion of his Hivtory may be regarded as now of little or no valae. The sources at Hume's commaed wore few, and he did not even use them all. None the less, the History has a distinct place in the literature of Eagland. It was tho first attempt at a really cemprehensive and thoughtful

1"If a man have tho misfortuxe, io the formet place (i.e., London), to ettach himself to letters, oven if he succecds, I know dot with whom he is to live nor how ho is to pass his time in a suitable society. The little company thero that is worth convelsing with are cold end unsocisble, or aro warmed only by faction and cabol; so that a mad who plays no part in publie nffairs becomes altogether insignificant ; ond, if be is not rich, he becomes oved contemptible. Hence that mation are fast relapslag into tho doepest stupidity and ignorance. "-Burton, ii. 2e8. "There are fine doings in Americh 0 ' how 1 loag to seo Amerioa aod the East Indies revoited, totally and finally--tho revenue reduced to half-public credit fully diseredited by bankruptcy, - the third of London in ruins, and the raseally mob subdued."-Jb., ii. 417. ${ }^{4}$ Our governmont has become a chimen, and is too perfect, io point of liberty, for so rudo a benat as an Englishman, who is a man, a had animal too, corrupted by above a century of licentionsness. "- $I b$., 1i. 434.
${ }^{2}$ "The rage and prejudico of 1 arties frighten me; ant abovo all, this, rage againgt tho Scots, which is so dishonourablo nand indeed so tnfamous to the Engligh nation. Wo hear that it increases every day without the least appenrace of provncation on our part. It has freTuantly marlo mo resolve dever in my lifo to set foot on English grouml." -Burton, 1i. 265 ; cf. ii. 148, 233. Perhaps our knowledge of John. son's sentimonts regarding the Seoteh in general, and of his expressions regarling Humo out Smith in particular, may lesgen our surprise ut , this vobomonce.
treatment of bistoric facts, the first to introduce the social aad literary aspects of a oatiea's life as of importance only secoad to its pelitical fertunes, and the first historical writing in an animated yet refined and polished style. It has received from later writers its due meed of praise and blame. ${ }^{3}$

While the History was in process of publication, Hume did not entirely neglect his other liaes of activity. In 1757 appeared Four Dissertations: The Natural History of Religion, Of the P'assions, Of Trayedy, Of the Standard of Taste. Of these the dissertation on the passions is a very subtle piece of psschology, containing the essence of the second boek of the Treatise. It is remarkable that Hume does net appear to have been acquainted with Spiaeza's aualysis of the affections. The last two essays are contributiens of ae greal importance to æsthetics, a department of plilusephy in which Hume was not strong. The Nutural History of Religion is a powerful centribution to the deistic controvessy; but, as in the case of Hume's earlier mert, its significance was at the time overlooked. It is an attempt to carry the war direetly into a prevince bitherto allowed to remain at peace, the theory of the general development of religious ideas. Dersts, though raising doubts regsraing the historic aarratives of the Christian faith, had never disputed the general fact that belief in one God was natural and primitive. Hume endeaveurs to show that polytheism was the earhest as well as the most natural ferm of religious belief, and that theism or deism is the product of reflexion upon experience, thus reducing the validity of the historical argument to that of the theeretical proofs.

In 1763 be accompanied Lord Hertford to Paris, deiag the duties of secretary to the eabassy, with the prospect of the appointment to that post. He was everywhere received "with the mest extraordinary honours"; in fact, he was "lionized." The society of Paris was peculiarly ready to receive a great philosopher and historian, especially if he were known to be an avowed antagenist of religion. Hume basked in the sunshine of his pepularity; but at the same time he made some valuable friendships, especially with D'Alembert and Turgot, the latter of whom admired sincerely and profited much by Hume's economical essays. In 1766 he left Paris and returned to-Edinburgh; but in the following year (1767) he accepted the pest of undersecretary to General Convas, and spent two years in London. He settled finally in Edinburgh ia 1769, having aow through his pensio. and otherwise the handsome fortune of $£ 1000$ n year. The solitary incident of note in this pertod of his life is the ridiculous quarrel with Rousseau, an episode still amusing, and throwing auch light upon the strange cheracter of the great seritimentalist. Hume certanly did bis utmost to secure for Roussean a confertable retreat in England, but his usually sound judgment seems at first to have beea quite at fault with regard to his protégé. That is surcly an amusing likeness which Hume discovered between Roussean and Socrates; and it is interesting to note the conflict between bis precenceived opinion

[^58]aod that which detached circumstances gave bim occasion to form. He finds "Rousseau a very modest, mild, wellbred, gentle-spirited, and warm-hearted man as ever I knew in my life," and thinks he "could lise with him all his life in mutual friendship and esteem." At the same time be canout avoid remarking that Rousseau "is a great humorist" (i.e., full of caprices); that though " he intends seriously to draw his own picture in its true colours nobody koows himself less;" that he would be unhappy in solitude, "as be has, indeed, been always io all situations." The quarrel which all the acquaintances of the two philosophers bad predicted soon came, and no language bad expressions strong eaough for Rousseau's hatred and distruat of his protector. Hume, it must bo admitted, came well out of the business, and had the sagacity to conclude that, after all, his admired friend was little better than a madman.

In 1769 Hume settled in Ediuburgh, and in one of his most delightful letters he gives an animated description of the domestic economy of his later years. ${ }^{1}$ The house alluded to as that to which he was about to remove was built under his own directions at the corner of what is now called St David Street ; and we may picture it to ourselves as beiog, during the closiog period of Hume's life, the centre of the most lively and cultivated society of Edinourgh. The gay and cheerfal temper of the philusupher, his unfailing equanimity, and the eolid goodness of bis beart had made him many frieads, even among those r:ho dissented most from his religious views. The resolute strength with which be pushed specculation to its limits was combined with a perfect gentleness of disposition and an amiability that endeared hin to all who had the pleasure of knowing him. He was eingularly free from jealousy, and no feature of his character is more attractive than the uofailing cordiality with which be welcomed the literary successes of those whu might bare been thought his rivals. To Robertson and Smith, his personal friends, he is open and uarestrained in his praise and commendation; and his good services were ever exerted io their cause. To opponents of whose merits be was convinced, to Campbell and Reid, ha was cordial and generous. His respect for his omn profession led him alwass to encourage those who had engaged their fortuves in the perilous hazard of literary auccess, and to extead to them his good offices. For Blackwell and for Smollett, in thcir misfortanes, he exerted himself to the utmost. Nor was he without his recompense, During the closing decade of his life he was the acknowledged patriarch of literature ; the veneration and respect of Lia frieuds, for his character no less than for his abilities, were unbounded. The "gaiety of his temper," says Adnm Smith, "so agreeable in society, and which is so often accompanied with frivolous and superficial qualities, was in him certainly atteoded with the most severo opplication, the most extensive learning, the greatest depth of thought, and a capacity in every respect tho most comprebensive. Upon the thole, I bave always considered him, both in his lifetime and sioce bis death, es approaching as nearly

[^59]to the idea of a perfectly wise and virtuous man as perhaps the nature of human frailty will permit."

In the spring of 1775 Hume was struck with a tedions and harassing though oot painful illness. A visit to Bath seemed at first to have produced good effects, but on the return journey northwards more alarming symptoms developed themselves, his strength rapidly sank, and, little more than a month after he had reached Edinburgh, lie died (25th August 1776).

No notice of liume would he complete without the sketch of his character drawn by lis own hand:-"To conclule historically with my own character, 1 ann, or rather was (for that is the style I must now use in speaking of myself, whieli emboldens me the more to speak my sentiments), -l was, I say, a man of mild dispositions, of command of temper, of an open, social, and cheerful humour, capabla of attachment, but little susceptible of enmity, and of great moderation in all my passions. Even my love of literafy fame, my ruling prission, never soured my temper, notwithstanding my frequent disappointments. Ny company wns not unacceptable to tha youog and careless, as well as to the studious and literary; and as I took a particular pleasure in the conppany of modest romen, 1 had Do reason to be displcased with the reception I met with from them. In n word, though most men anywise cminent have found reason to complain of calumpy, I never was touched, or even nttacked, by her Laleful tooth; and, though I wantonly exposed myself to the rage of both civil and religious factions, they seem to be disarmed on my behalf of their wonted fury. My friends never hard occasion to vindicate any one circumstance of my character nad conduct; not but that the zealots, we may well suppose, would have beenglad to invent and propagate any story to my disadvantage, but they conld never find any which they thought would wear the face of probability. I cannot say there is no vanity in making this funeral oration of myself, but I hopa it is not a misplaced one; and this is a matter of fact which is easily clcaased and ascertained." The mora his life has become known, the more confideace wa place in this admirable estimate.
The philosophical writings of Hume, which mark a distinct cpoch in theederelopinent of modern thought, can here be considered in two only of tha many nspects in which they present thenselves as of the highest interest in the bistorian of philosophy. In the Treatiso of Human Nature, which is in crery respect the nost completa exposition of Hume's philosophical conception, we have the first thorough-goiug nttempt to apply the fundamental prineiples of Locke"s empirical psychology to the construction of a theary of knomledge, and, as a naturat consequence, the fust systematic criticismof the chief metaphysical notions from this point of view. Hume, in that work, holds the salue relation to Locke and Berkeley as tha late J.. S. Mill held with his System of Logic to Hartjey and James Mitlé* In certain of the later writings, pre-emincntly in the Draloguesion Natural Rcligion, Humo brings the results of his sleculative criticism to bear upon the problems of current theolagical discussion, and gives in their regard as previously with respect to general philosophy the final word of the emprical theory in its cerlier form. The interesting parallel between Hume and J. S. Mill in this second feature will not be overlooked.

In the first instance, then, Hume's philosophical work is to bé regarded as the attempt to supply for empirieisal in psychology a cousistent, that is, a logically developed theory of knowledge. In Locke, indeed, sueh theory is not wasting, but, of all the many in consistencies in the Essay on tha firuman Undicrtanding, none is more apparent or more significant than the complete want of harbiony between the view of knowledge developed iu the fourth book and the psychological principles laid down in the carlier part of the work. Though Locke, doubtless, drew no distinction between the problems of psychology and of theory of kiowledge, yet the discussion of the various forms of coguitiongiven in the fourth book of the Essay seens to be based on grounds quite distinct from and in many respiceta inconsistent with the fundamental psychological principta of hia work. The perception of relations, which, according to him, is the essence of cognition, the demonstrative character which ha thinks attaches to our infereuce of God's existenee, the intuitive knowledge of self, are doctrines incapable of being brought into harmony with the view of mind and ite development which is the keynote of his general theory. To some extent Berkeley removed this radical in. cousistency, Lut in his philosophical work it may be said with safcty there are two distinct aspects, and white it holds of Lovke on tha one hand, it stretches forward to Kantianism on the other. Nor in Berkeley are theso divergent features ever united into one harmonious whole. It was left for II ume to approsch the theory of howvledga with full corsciousdess from the lisychological point of view, and to work out the final consequences of that view 80 far as cog. nition is concerned. The terns which be employs in describing the nim and scope of his work nre not those which we should now employ, but the declaration, in tho introduction to the Treatise, that the science of buman nature nius: bo treated accordine to the
experimental metliod, is in fact equivalent to the statement of the principle implied in Locke's Essay, that the problems of psychology and of thcory of knowledge are identical. And this vidw is the char. acteristic of what we may call the English school of philosophy.

Ia order to make perfectly clear the full significance of the principle which Hume applied to the solution of the chief philosonhical questions, it is neeessary to render somewhat more precise and complete the statement of the psychological view which lies at the foundation of the empirical theory, aud to distinguish from it the problem of the theory of knowledgre upon which it was brought to bear. Without entering into details, which it is the less necessary to do becaose the subject has been recently discussed with great fulness in works readily accessible, it may be said that for Locke as for Hume the problem of psychology was the exact description of the contents of the individual mind, and the determination of the coaditions of the origin and development of conscious experience in the individual mind. And the aoswer to the problem which was furnisbed by Lecke is in effect that with wbich Hnne started. The conscions experience of the individual is the result of interaction between the individual mind and the universe of things. It is evident that this solution presupposes a peculiar conception of the general relation between the mind and things which iu itself refuires justification, and which, oo far at least as the empirical theory wits developed by Locke and his successors, could not be obtained from psychological analysis. Either we havea richt to the assmmption contained in the conception of the individual mind as stancliug ia relation to things, in which case the grounds of the assumption mast be sourht elsewhere than in the rezults of this reciprocal relation, or we have no right to the assumption, in which case refer. ence to the reciprocal relation can hardly be accepted as yielding ady solution of the psychological problem. But in any case, -and, as we shall gee, Hume endeavours so to state his psychological premises as to conceal the assumption made openly by Locke,-it is apparent that this psychological solution does not contain the answer to the wider and radically distinct problem of the theory of knowledga. For here we hava to consider how the individun in. telligence comes to koow any fact whatgoever, and who is meant by tha cognition of a fact. With Locke, Hunte professes to regard this problem as virtually covered or answered by the fundamental psychological theorem; but the superior clearnegs of his reply enables us to mark with perfect precigion the aature of the difficulty inherent in the attempt to regard the two as itentical. For purposes of psychological analysis the conscious experience of the individund mind is taken as giveafact, to be known, i.e., observed, discriminated, classified, and explained in the same way in which any one special portion of experience is treated. Now if tbis mode of treatmont be accepted as the only possible method, and its results assumed to be conclusive as regards the problem of knowledge the fundanental peculiarity of cognition is overlooked. In all cog. nition, strictly so-called, there is inrolved a certain synthesis or relation of narts of a characteristic nature, and if we attempt to discuss this synthesis as though it were in itself but one of the facts forming the mutter of knowledge, we arc driven to regard this relation as being of the quite external kind discovered by observation among matters of knowledge. The difficulty of reconciling the two views is that which gives rise to much of the obscurity in Locke's trentment of the tincory of knowledge; in Hume the effort to identify them, and to explan the synthesis which is essential to cognition as merely the accidental result of extermal relations among the elements of conscious experience, appears with the utmost clear. ness, and gives the keynote of all his philosopheal work. The final perplexity, concealed by various forms of expression, cames forward at the close of the Treatisc as aloselutely unsolved, and leads llume, as will be pointed out, to a truly remaikable confession of the weaknesa of his own system

While, then, the general iden of a theory of knowledge ne based njon pejchological analysis is the grommerot of the Trentise, it is a prarticular conseguence of this idea that fumishes to Hume the chatncteristie critcrion applied by him to all philosoplicen questons. If the relations involved in the faet of cornition are only those disenverable by ohsurvation of any particular portion of known expritence, then such relations are quite extronal amb centingent. The only necesgary relation whech ran be disenvered in a given fact of experinece is that of non-contradiction; the thing must be what it iq , and cannot be conceived as luving qualities contradictory of its nature. The miversal test, therfon", uf any supposed philosophn. cal principle, sueing that such pramipus are lant experssions of relations amone facta, is the possiblity or impossibility of imachm. ing its contradictory. All our knowidge is lint the shm of our conseious caperience, anl is consequenty material fur inarimation. "Let us fix ourattantion out of muselves as mucla as possible; led us chase our imagination to the heavens or to the utemot limits of the uriverse; we never really alfance a step begond ourselves, nor cran eonceive any kind of existence, but thoso perceptions which have appeared in that narrow compass. This in the miverse of the inagimation, nor hate ro nuy itea but what is there producel" (VForks. od. of 1854 , i. 23.cf. i. 107).

The course of Home's work follews immediately from his fundi= mental primeiple, and the several divisions of the treatise, se fur as the theoretical portions are concerbed, are but its logical consequences. The first part of the first book contains a brief statement of the contents of mind, a description of all that observation can discover in conscious experience. The second prart deals with those judgments which rest upon the formal elements of expierience, space and time. The third part discusses the priaciple of real connexion among the elements of experience, the relation. of cause and effect. The fourth part is virtually a consideration of the ultimate sigmficance of this conscious experience, of the place it is supposed to occupy in the universo of existence, in other words, of the relations between the conscicus experience of an individual mind as disclosed to observation and the supposed realitues of self and ex. ternal things.
In the first part Hume gives his own statement of the pisychological foundations of his theory. Yiewng the contents of minlas matter of experieace, he can discover among them only one distine. tion, a distinction expressed by the terms impressions and ideas. Ideas are secondary in nature, copies of data supplied we know not whence. All that appears in couscions experience as primary, as alising from some unknown cause, aod therefore relatively as original, llume designates by the term impression, and claims to imply by such term ao theory whitsoever as to the origin of this portion of experience. There is simply the fact of conseious experience, arising we know not how. Aloseover, if we remain faithful to the fundanental conception of the contents of mind as being merely matters of experience, it is evident in the first place that as impressions are stictly individual, ideas also nust be strictly narticular, and in the second place that the faculties of combining, discriminating, alistracting, and judging, which Locke had adnitted, are merely expressions for particular modes of having mental experience, ie., sre modifications of conceving (cf. i. $128 \mathrm{\pi}$., 137, 192). Thus at a single stroke Hume removes all the philosophical discussions that had centred round the problem of abstract ideas and the nature of judgraent. It is merely by accidental concomitance, which on the subjectiva side is custom, that one fact, a word, sign, symbol, or type comes to stand for a series of resembling facts, while the comparison of perceptions, with resultiug consciousacss of their te. semblance or difference, is in itself a siugle, isolated perception (sue i. $37,38,100$).

Such, in substance, is Hume's restatement of Locke's empirical view. Conscious experience consists of isolated states, cach of whicla is as a fact and is related to others in a quite external fashion. It remains to be seen how knowledge can be explained from such a basis; but, before procceding to sketch Hume's answer to this question, it is necessary to draw attention, first, to tho peculaar device invariably resorted to by him when any exception to his general principle that ideas ore secondary copies of impressions prescuts itself, and, secondly, to the nature of the substitute oficred by him for that perception of rclations or synthesis which cven in Lacke's confused statements had appeared as the essence of cognition. Whenever Hume finuls it impossible to recognize in an idea the mere copy of a partieular impression, lie introduces the phrase "manner of conceiving." Thus gencral or abstract idens are merely conies of a particular inpression concenved in a particular manner. Tbe icleas of space and time, as will presently be pointed out, are copies of impuessons conceived in a particular manner. The idea of necessary comexion is merely the reproduction of an impressten which the mind fecls itself compelled to conceive in a particular manner. Such a fashion of disguising difficulties points, not only to an inrensistency in Jume's theory ns statell by himself, Lut to the intial crror upon which it praceeds; for theso perplexities ara but the consequences of the doctrino that cognition is to be explained from what can be discovered by observation among the facts of experrence, and observation can discover none hut external relatons. These external relations are, in fact, what Hume deseribes as the matural bonds of connexion among ideas, and, regarled subjectirely as principles of association among facts of menta! experience, they form the substitute lie offers for the synthesis inplued in knowledge These pinciples of association detemnine the imagmation to combine ideas in vatious modes, ond by this mechanicnl combination llame, for a time, endeavoured to explain whint are otherwise called judgments of relation. It was impossille, howerer, for hin to earry ont this view consistently. The only comhnation which, even in apnearance, conhe be explaned satisfactorily by its means was the formation of n complex iden out of simpler parts, but it is nbsurd to describe the iulea of a relation among facta na a complex inlea; nud, ns such relations have no basis in inpressions, llume is fimally duven to a confession of the absolute impossiblity of explaining them. Sueh confersion, however, is only reached after n vigorous effort hal been made to remder some necount of knowledge by the experimental method.

The psychologisal conception, then, on the basis of whiclillumo proceeds to discuss the theury of knowledge, is that of conscious experience os containing merely the suecession of isolnted impresshons and their fainter copics, iceas, and as bound together by
merely natural or external links of connexion, the principles of associstion among idcas. The foundations of cognition must be discovered by obser ration or adalysis of experience so conceived. Hurce wavers somewhat in his division of the various kinds of cognition, laying stress now unon me now apon another of the points in which mainly they liffer from one another. Nor is it of the first importance, save with the view of criticizing his own consistency, that we should adopt any of the divisions implied in his exposition. For practical purnoses we may regard the most important discussions in the Treatise as falling under two heads. In the first piace there are certain principles of cognition which appear to rest upou and to express relations of the universal elcments in conscious experience, viz., apace and time. The propositions of mathematics aeemr to be independent of this or that apecial fsct of experience, and to remain unchanged even when the concrete master of experience saries. They are formsl. In the second place, cognition, in any real sense of that term, implies connexion for the individual mind between the present fact of experience and other facts, whether past or future. It appears to involve, therefore, soine real relation among the portions of experience, on the basis of which relation jadgments and inferences as to matters of fact can be shown to reat. The theoreticsl question is conseguently that of the nature of the sopposed relation, and of the certainty of judgments and inferences restiog or it.
Hume's well-known distinction between relations of ideas and matters of fect corresponds fairly to this separation of the formal and resl problems in the theory of cognition, although that distinction is in itself inadequste and not fully representative of Hame's own concluasona.
With regsid, then, to the first prollem, the formal element in knowledge, Hame has to cnasider geveral questions, distinct in nature sod hardly discriminsted by him with aufficient precision. For a complete treatment of thie portion of the theory of k nowledge, there require to be taken into consideration at least the following points : (a) the exsct pature and significsnce of the spsce and time relationa in ont expenence, (b) the mode in which the primary dsta, facts or priociples, of mathematical cognition are obtained, (c) the nature, extent, snd certainty of such data, in themselves and with reference to the concrete material of experience, (d) the principie of inference from the data, however obtained. Not all of these pornts are discussed by Hume with the same foloess, and with regard to somie of them it is dificult to atate his conclusions. It will be of service, bowever, to sttempt a summary of his treatment under these several heads, -the more so as almost all expositions of his philosophy are entirely defective in the sccount given of thas essential portion. The brief statement in the Inquary, §iv., $1 s$ of no value, and indeed is almost unintelligible uniess taken in refereace to the full discussion contained in part ii of the Treatise.
The aatare of apace and time as elements in conscious experience is considered by Home in relation to a special problem, that of their supposed infinite dirisibility. Evidently opon his new of conseious expenence, of the world of imagination, such infinite divisubility must he a fiction. The ultimate elenuents of expenence must be real units, capsble of being represented or imagined in isolation. Whence thea do these units arise 1 or, if we pat the problem as it sas necessary Hume should pat it to himself, in what orders or elasses of impressions do we find the elements of spuce and tuae ' Beyond all question Hume, in endeavouring to answer this problem, is brought face to face with one of the difficulties inher. ent in his couception of conscioos experience. For he has to give nome explanation of the eature of apace and time which shell identify these with impressions, and at the same time is compelled to recognize the fact that they are not ideatical with any siagio impressinn or set of impressiong. Putting aside, then, the various obscurities of terminology, such as the distinction between the objects known, viz., "points" or several mentai states, atd the impressions themselves, which disguse the full significance of has conclusion, we find Hume reluced to the following as his theory of space and time. Certrin impressions, the seusations of sight and touch, $h_{n v o}$ in themselves the elcment of space, for these impregaions (Hutne akilfully transfers big statement to the points) have a certan order or mode of arrangement. This modo of arrangement or unsener of disposition is common to coloured points and tangible points, and, considered separately, is the impression from which our idea of epace is taken. All impressions and all jdeas aro received, or form parts of a mental experience only when rcceived, in a certain order, the order of succession. 'this manner of presenting themselves is the inpression from which the idea of time takes its rise.

It is almost guperfuous to remark, frst, that Thume heredeliber ately gives up his fundauncutal princijle that ideas are but thr fainter copies ni impressions, for it can never be maintained that order of disposition is an impression, ond, secondly, that he fails to offer any explanation of the mode in which coexistence nad succession are possible elements of cognition in a conscious experience mado op of isolsted presentations and representations. For the consia: teacy of his theory, however, it was indispensable that he ohoulid
insist npon the resl, i.e., presentative charscter of the ultimate unita of space and time.

How then are the primary dsta of mathematical cognition to be derived from on cxperience containiag space and tine relations in the manner just stated? it is important to notice that Humc, in regard to this problem, distinctly separates geometry from algebra and arithmotic, z.e., he views extensive quantity as being cognized differently from number. With regard to geometry, he holds emphaticaliy that it is an emprical docunne, a seience founded on observation of conerete facts. The rough appearances of physical facts, their outlines, eurfaces, and so on, are the dsta of observation, and only by a method of approximation do we gradually come ncor to such propositions as are laid down in pure geometry. He definitely repudintes a view of ten ascribed to him, and certainly advanced by many fater empiricists, that the data of genmetry are hypothetical. The idens of perfect lines, figurea, and surfaces liave not, according to him, any existence. (See Works, i. 66, 69, 73, 97, and iv. 180.) It is inpossible to give any consistent account of his doctrine re. garding number. He hohls, apnareatly, that the foundation of all the scieuce of number ts the fact that each element of conscious experience is preseated as a uitit, and sidds that we are capable of considering any fact or collection of facts as a unit. This manner of conceiving is sbsolutely general and distinet, snd accordingly afforda the possibility of an sll-comprehensive sind perlect science, the acience of discrete quentity (See Works, i. 97.)

In respect to the third point, the nature, extent, snd certainty of the elementary propositions of mathematical science, Hume's utterances are far from clear. The principle with which he starts and from which follows his well known distinction between relstions of ideas and matters of fact, a distinction which Kant appears to hava thonght identical with his distinction between analytieal and synthetical judgments, is compsratively simpie. The adoas of the quantitative aspects of phenomena are exact representations of these rapects or quantitstive ampressions, cousequently, whatever is found true by counderation of the ideas may le asperted regarding the real impressions. No question arises regarding the existence of the fact represented by the idea, and in so far, at least, mathemastucal judgments may be desuribed as hypothetical. For they simpily assert what will be found true in any conscious experience containing coexasting impressioua of senge (specitically, of sight and touch), and in its nature successive. That the propositions are hypothetical in this fashion does not imply any distinction between the abstract truth of the ideal judgments and the imperfect correspondence of concrete material with these abstrsct relations. Such distinction $1 s$ quite foreign to Hume, and can only be ascribed to hum froman entire misconceptiou of his view regarding the ideas of apace and time. (For an example of anch misconception, which is almost universal, aee Riehl, Dcr philosophische Kruicismus, i 96, 97.)

From this point onwards Home's treatment becomes exceedingly confused. The identical relation between the ideas of apace and tine and the impressions corresponding to them upparently leads him to regard judgments of continuous and diserete quantity as standing on tho same footing, while the ideal character of the data gives a certain colonr to his inexsct statements regerding the extent and truth of the judgments founded on them. The emphatio utterances in the Inquiry (iv. 30, 186), and even at the beginming of the relative section in the Treatise (i. 95), mey be cited in illustration. But in both works these ntterances are qualified in such a manner as to enable us to perceive the real bearings of his doctrine, and to pronounce at once that it differs widely from that commonly ascribed to him. "It is from the ides of a triangle that we discover the relntion of equality which its threo angles bear to two right oues; and this relation is invariable, so long as our tidea remains the same" (i. 85). If taken in isolation this nsssage mught appear sufficient justificetion for Kant's view that, accurdiug to llame, geometrical judgments sre annlytical sad therefore perfect But it is to be recollected that, according to Home, an iden is actualiy a representation or individual pictare, not a notion or even a schema, and that he never claima to be able to extract the prodicate of a geonetrical judgment by anulysis of the sabject. The propicrties of thia individual subject, the idea of the triangle, are, sccord ing tn him, discorered by observation, and as observation, whether scinal or ideal, nevcr presents us with more than tho rough us gencral appearinces of geometrical quantitics, the relations so dis. covered have only approsimate exacturss. "Ask amathematician what he means when he pronounces two quantities to be equal, and he must say that the idca of cquality is onc of those which cannot be defincd, nud that it is sulficient to flace two cqual qualitics before any one in order to suggest it. Now this is an appeal to the generai appearances of oljects to the imagination or senses" (iv. 180). "Though it (i.e., geometry) much excels, both iu universabity and exnctness, the loose judgments of the senses and imngination, yet [it] nevernttainsa perfect precision and exactness" (i. 2 .is any exnetitude attaching to the conclusions of geometrical veasoning arises from the comparative simplicity of the data for the primaly judgacuts.

Suffar, then, as geometry is concerned. Hume's opinion is perfectly icsinite. It is g a experimental or observational science, founded on primary or immediate judgments (in his phraseology, percepizons), of relation between facts of intuition; its conclusions ars hypothetical only in eo far as they do not imply the existence at the moment of correspending rea experience; and its propositions have no exact truth. With respect to arithmetic and nlgebra, tha sciance oi nombers, he expresses an equally definite opinion, but unforturately it is quita impossible to state in any satisfactory fasbion the grounds for it or even ite full bearing. He nowhere explains the origin of the notions of unity and number, but merely asserts that through their means we can have absolutely exact arithmetical proInsitions (Forks, i. 97, 98). Upon the nature of the reasoning by Thich in mathematical scianco we pass from data to conclusions, Ifume gives no explicit statamont. If we were to saj that on his view the essential ahep must be the eatablishment of identities or equiFalerces, wo ahould probably be doing justice to his doctrine of numerical reasoning, butahould have eotne diffculty in showing the Epplication of the method to geometrical reasoning. For in the latter case we possesa, according to Hume, no standard of equivalence other than that suppliad by immediate observation, and cou. kequently transitiou from ono premise to enother by way of reason. in \% must be, in geometrical asatters, a purely verbal process.
Taken as a whole, tha theory is perhaps the only consistent derelopment frem the psychological pranciple with which Hume Lad started, and its incompleteness, even incoherence, points to the grarest defects of that principle. Hume has not offered even a plausible explanation of the mode by which it becomes possible for a consciousness made up of implated momentary impressions and ideas to be aware of coexistence and number, or auccession. The relations of ideas are accepted as facts of inmediate observation, as bein themselves perceptions or individual elements of conscious ezporience, and to all appearance they are regarded by Hume as being in a sense analytical, because the formal criterion of identity is applicable to them. It is applicable, bowever, not because the ondicate is contained in the subject, but bocause, auch judgments of relation being thought as immediate facte of conscious experience, the anpposition of their nonexistencs is a contradiction in terms. The ambiguity in bis criterion, however, geems entiroly to have escaped Hume's attertion.

Asomewhat detailed consideration of Fume's doctrine with regard to mathematical science has been given for the reason that this por. tion of his theory has been very generally overlooked or misinter. preted. It does not asem neceesary to endesvour to follow his mimate examianation of the principla of resl cognition with the same fulness. It will probably be sufficient to indicate the problem as conceived by Hame, and the relation of the mathod be adopts for solving it to the fundmental doctrins of his theory of knowledge.

Real cognition, as Hume points out, implies transition from the present iupression or feeling to something connectod with it. As this thing can only bo an impression or perception, and is not itself present, it is represented by its copy or idea Now the snpreme, all-compretensive lisix of connexion between present feeling or inpression and either pest or foture erperience is that of cqusation. The iden in quastion is, therefore, the idos of something connacted with the present impression as its cause or cfiect. But this is explicitly the iden of the said thing as having had or es about to have existence, - in other words, bolief in the cxistence of some matter of fact. What, for a conscious expericace so constituted ns Hume will admit, is the precise significance of such belief in real existence?

Clearly the real existence of a fact is not demonstrable. For whatever is may be conceived not to be. "No negation of n fact can involve a contradiction." Existence of any fact, not preseut as a perception, can culy be provad by mrguments from cause or effect. But as each porcoption is in consciousnoss only as a contingeat fact, which might not be or might be other than it is, we must edmit that the miod can conceive no necessary relations or connexions among the eoveral pertions of its experinace.

If, therefore, a present perception leads us to assert the existence of nome other, this can ouly ho interpreted as meaning that in some natural, i.e., prychological, manner the iden of this other perception is excited, and that the idea is viewed by the mind in oome poculiar fashion. The astural link of connoxion Ifume finds in the similarities presented by experienco. Ono fact or perception is discovered by oxporicace to bo uniformly or gencrally nccompanied ly another, and its occurrace therefore naturally oxcites the idea of that other. But when au idea is so roused up loy a present intpression, and when this idea, beinge a consequence of memory, has in itelf e certain vivacity or liveliness, wo regard it with a jeculiar indefiable feeling, and in this freling consista the immense differ. ence between mere imagiation nad belicf. 'The mind is led easily and rapilly from the present inapression to the idens of impressions found by experionce to be the usual accompaniments of the present fact. Theense end rupidity of the necutaltransition is the sole ground for the surproasd nocessity of the cass a connexion between portions of exparience. Fo mistake the subjective trausition rosting upor riditum or past exjerieuce for an objective connexion independent
of special feelings. All reasoning about matters of fact is therefore a species of feeling, and belongs to the sensitive rather than to the cogitative side of eur nature.

Whilo it is evident that soms such conclusien must follow fron. the attempt to regard the coguitive consciousuess as made up of disconnected feelings, it is equally clear, not only thst the result is self.contradictory, but that it involves certain assumptions not in any way deducible from the fundamental view with which Hune starts. For in the problems of real cognition he is brought face. to face with tha characteristic feature of knowledge, distinction of self from mntters kuown, and reference of transitory states to permes. nent objects or relations. Deferring his criticism of the significance of Eelf and object, Hume yet makes use of both to aid his explana. tion of the belief attaching to reality. . The reference of an ides te past experience has no meaning, unless we assume an identity in the object referred to. For a past impression is purely transitory, and, as Hume occasionally points out, can have noconnexion of fact with tha present conscionsness. His exposition bas thus a certain plausibility, which would not belong to it had the final view of the permanent olject been already given.

The Gual problem of Hune's theory of knowlodge, the discnssion of the real signiticance of the two fuctors of cognition, self and external thinge, is handled in the Treatise with great fulness and dialectical subtlety.

As in the case of the previous problem, it is unnecessary to follow the steps of basalysis, which are, for the most part, attempts to substitute qualities of feeling for the relations of thought which appear to be involved. The results follow with the utmost ease from his originnl postulate. If there is nothing in conscious experience save what observation can disclose, whils each act of obserration in itself an isolated feeling (an impression or idea), it is mavifest that a permanent identical thing can never be an object of experience. Whatever permanence or identity is escribed to ap impression or idea is the result of association, is one of those "propensities to feign". which nre due to natural connexions among ideas. We regard as successive-presentatious of one thing the resembling feelings which are experienced in succession. Identity, then, whether of self or object, there is nono, and the supposition of objects, distinct from inipressions, is but in further consequence of our "propensity to feign." Hume's explanation of the belief in external things by refereuca to nssociation is well deserving of careful study and of coniparison with the more recent analysis of the same problem by J. S. Slill.

At the close of his presentation of the ampirical theory of cog. nition, Hune gives one of those comprehensiva reviews of ito sig. nificauce and its dificulties which mark the rare acuteness of the intellect. He has done what wes prasible to manufacture cagnition out of the isolated, dusconnected states of mental experienca Ho kas endearoured to contemplate conscious experience ab extra, as itself an objoct of experience, and to elmit nothing which wis not capable of being presented in the fashion of en inmediate fact of experience. And as the result of the whole he has to confess that his laboriously constracted theory of cogaition is but a rope of sond, that no ingenuity can conjure coberence into slements assumed from the outset as incoherent, that theattempt to regard cogaition of a fact as being merely one isolnted state leads to hopeless confusion. The passage in which, with the utmost frankness, he expresses his opinion of the mum totel of has specalative analysts is so remarkable, both in reference to bis onn work and in reference to later davelopments of philosophy. that it is well to guote it 10 full. In the Appendix to the Trealue begives a brief resume of what ho clearly recognized to be the erur in his theory, the explanation of bellef, a cognitiou which involves the relation among themselves of the purta of experience, aud then goes on to say:" If gerceptinos aro distinct existences, they fom n whole only by being connected together But no convexions among distinet existences are cucr discoverable by bumau understanding Weonly fiel n convexion or determination of the thought th press from one object to another, It follows, thercfure, that the thonghe alone feels personal ideatity, when, reflecting on the tram of past percep. tions that compose a mind, the bun of thens ore felt to be connected together nud natumally introdnco enoh other.

However extraordinary this conclusion may seem, it need not surprise us. Modem philosophers seem inchued to think that personal identity arises from consciousness, and conscionsness is nothing but a reflected thought or perception. The present philasobhy, therefore, has a promising aspect. But all my hopes vanish when I cosua to explain the priuciples that unite our suecessive perceptions in our hought or coneciousness. I cannot discover any theory which gives me satisfaction on this head.
" In shert, there ave two principles which I cannot render con. sistent, nor 18 it in my power to renoupece either of thens; viz., that all our distinct perceptions are distinet cxistences, and that the wind never perceves any real connexion among distinct cuistences. Did onr perceptions either inhers in something simplo or indi. vidanl, or did the mind prerceive nomo real connexion among them, there would be no difliculty i-3 the case" (ii 1 551).

The closing seatences of this passage may be regarded as pointion to the very cssence of the Kantian attempt at solution of the problem of knowledge. Hume sees distinctly that if conscious expericace be taken as containing only isolated states, no progress in explanation of cognition is possible, and that the only hope of further development is to be looked for in a radical change in our mode of conceiving experience. The work of the critical philosophy is the introduction of this new mode of regarding experieace, a mode wbich, in the technical language of philosophers, bas received the title of eranscerdental as opposed to the psychological method followed by Locke and Home. It is because kant alone perceived the full aignificance of the change required in order to mect the difficulties of the empirical theory that we regard his system as the only sequel to that of IIume. The writers of the Scottisb school, Reid in particular, did undoubtedly indicate some of the weaknesses in Humo'a fundanental conception, and their attempts to show that the isolated ferling carnot be takeo as the ultimata and primary uot of cognitive experience are efforts in the right direction. But the question of knowledge was never generalized by then, and their reply to Hume, therefore, remaius partial and inadequate, white its effect is weakened by the uncritical assumption of pinciples which is'a characteristic fcature of their writings.

The results of Hume's theoretical analysis are applied by bim to the problens of practical philosophy and religion. For the first of these the reader is reierred to the article Ethics, where Hume's views are placed in relation ta those of his predecessors in the same ficld of inquiry. His position, as regards the second, is very notoworthy. As before said, his metaphysic contains in abstracto tho principles which were at that tima being employed, uvcritically, alike by the deists and by their antagonists. There can be no doubt that Hume has continually in mind the the $b l o g i c a l$ queations then current, and that he was fully amare of the mode in which his sualysis of knowledge nught be apylied to them. A few of the less important of his criticisms, auch as the argument on miracles, became then and have since remained public property and matter of general discussion. But the full significance of his work on the theological side was not at tha time perceived, and justice bas barely becn done to the admirable manner in which he has reduced tha theological disputes of the century to their ultinatcelements. The inportadec of the Dialogues on Natural Religion, as a cootribution to the critucism of theological ideas and methods, can bardly be overestimated. A brief suryey of its contedts will be rufficient to show its general nature and its relations to such works as Clarke's D_{c} monstration and Butler's Analogy. ,The Dialognes introduce three interlocutors, Dernea, Cleanthes, and Philo, who represent three distinct orders of theological opinion. Tho first is the type of a certain a proori view, then regarded as the safest bulwark against infidelity; of which the main tevets were that the being of God was capable of a prior proof, and that, owing to the finitude of our facultics, the attributes and modes of operation of deity were abso. lutely incomprehensible. The sccond is the typical deist of Locke's school, improved as regards his philosophy, and holding that the only possitile proof of God's existence was a posteriori, from design, and that such proof was, on the whole, sufficient. The thrd is the type of completed empiricism or seepticism, holding that no argu. ment, etther from reason or expericace, cautranscend experience, and conscquently that no proof of God's existence is at all possible. Tho views of the first and second are played off against onc aoother, and criticized by the third with great literary skill and effect. Cleanthes, who maintains that the doctrine of the incomprcliensibility of God is hardly distinguiahable from atheisn, is compelled by the arguments of Philo to reduce to a minimum the conclusion capablo of being inferred from experience as regards tbe existence of God. For Philo lays stress upon the weokness of the analogical argument, poins out that the demand for an ultimate cause is no nore satisfied by thought than by nature itself, shows that the argument from design cannot warrant the inference of a perfect or inlinite or tren of a single deity, and fually, carrying out his princeples to the full extent, maintains that, as we have no exjerience of the origin of the world, Do argument from experience call carry us to its origin, and that the apparent marks of design in the structure of animals are only results from the conditions of their actual existence. So faras argument from dature is concerned, a total suspersion of judgneent is our only reesonable resource. Nor docs the a priori arguncent in any of its forms fare hetuer, for reason can oever demonstrate a matter of fact, and, unless wc know that the world had a beginning in time, we cannot inaist that it must have lad a cause. Demen. who is willing to five up his abstract proof, brings forward tho ordinary theological topic, man's conscionsness of his own imperfection, misery, and dependent condition. Nature is throughout corrupt and polluted, but "the present evil phenoneloa are tectified in other perions aml in snme future period of existence." Such a view satishics ucither of hisinterlocutors;' Cleanthes, pointiug out that from a nature thoroughly cvil we can never piovo the existence of an infinitely powerful and bepevolent Creator, hazards the conjoc. ture that the deity, thongh all-benevolent, is not all-powerful. Philo. however, pushing his pribciples to their full consequences.
shows that unicss we assumed (or knew) beforehand that the system of nature was the work of a benevolent but limited deity, wa certainly could not, from the facts of nature, infer the benevolence of its creater. Cleanthes's view is, thercfore, an hypothesis, and in no scdse an inference.
The Dialogues ought here to conclude. There is, however, appended one of those perplexing atatements of personal opiaion (for Hume declares Cleanthes to be his mouthpiece) not uncomnon among writers of this period. Cleanthes and Philo come to an agreement, in admitting a certain illogical force in the a posteriori argument, or, at least, in expressidg a convction as to God's existence, which may not perhaprs be altogether dovoid of foundation. Tha precise value of such a declaration must be matter of conjecture. Probahly the true statement of Mume's attitude regarding the problem is the somewhat melancloly utteranco with which the Dialogues close.
It is apluarent, even from the brief summary just given, that the importance of Hume in the history of philosophy consists in tho vigour and logical exactness with which he develops a particular nietaphysical view luconsis:encies, no doubt, are to be detected in his system, but they arise from the limitations of the view itself, and not, as in the case of Locke and Berkeley, from imperfect grasp of the principle, and endearour to unite with it others radically incompatible. In Hune's theory of knowledge we have the fidal expression of what may be called psychological individualism or atonisu, while his ethics and doctrine of religion are but the logical consequences of this theory. So far as metaphysic is concerned, Hume has given the final word of the empirical school, and all additions, whether from the specifically psychological side or from the general history of human culture, are subordinate in character, and affect in no way the nature of his results. It is no exaggeration to aay that the more recent English school of philosophy, Tepresented by J. S. Mill, has made in theory do advance beyond Hume. In the logic of Mill, c.q, we find much of a special character that has no counterpatt in hume, much that is introdnced ab extra, from general constderations of scientific procedure, but, so far as the groundwork is conceraed, the System of Logic is a mere reproduction of Hune's doctrine of koowledge. Such a statement does not detract from the merits of the Logic or even fromits originality, for it is remarkable how slight seems to have been the acquaiutance of Mill with the works of his greatest predeccessor, but it does imply that, so far as solution of the philosuphical problem is concerned, no adranie has been made beyond the position of Hume. The sama remark, indeed, may be applied to the fow cflorts of the later empirical writers in the region of usetaphysics or theology. It is impossible for any reader of Mill's remarkable posthumous cssay on theisn to avoll the reflexion that in substance the trearment is ilentical whth that of the Dralogues on Natural Religion, whilo on the whole the superiority in critical force muat be assigned to the cirlter work. All this merely shows how fully the conclusion one would naturnlly draw from Hune's writings has beca borne out by the listory of Íater thouglt. From lis position, and on his lines, $^{\text {a }}$ no further advance was possible. For a new trealment of philosophi. cal problems a thorough revision of those premises, the adoption of new ground, was requisite. So far as one can sec, the only aystems of thought which havo endeavoured or are endeavouring in a com. rrehensive fashon to take up anew the work of philosophy ate, on the one hand, the Kantian, with its extensive developments, and, on the other, that of scientific naturaiism, which latter, though weak in its metaphysic, is yet penetrated with a truly philosophical spirit
The ehije woik for hume'a hite is that of Mr J H Bonon, LUe and Corectpondeuce of David Jume. 2 sols., 1846 of his collected wrllags. the standard ethtion
has been till ecenly that of 1826 (repilnted 1854), In t vols. The uestedution. conhas been tilligecenty that of 1826 (repilnted i854), In t vols. The best edilion, conInining in addilion to philosophical Intioducijons, mush bibliographical mallen
is that of Is74. In t vols. by T G Gieen and T . H Gioso. Of wotks upon biume, is that of Is74. In + rols. by T G Gieen and T. H Gioso. Of wosks upon tiume,
the numelons skelches And essars being omilted, the following are the most the numelons skelches and essays being omilted, the following are the most
important:-jodl. Leden und Plitusophie Daud /fume's, 18i2; E. Ptelderer, Em-important:-Jodi, Leben und Plitosophet Dawd fume's, $18 i 2$; E, Pftelderer, Em.

 in tis phalosephical iclation to Locke and Berkeley); Spheker, Kant, $/ / u m$, und lieviciey, 1sis. Compayre. La Phalosophe de fomid Hume. isi3. A. Mcinong.
 Fhe Ethik David H/ume"t th threr peschtehefimen Steliong.15:5 (the most thorough exposition of Hume's utilutarianism): T 17 Duxlcy, Jiume, $18: 9$ (a clear repro
 listonical treatment Mr Leglie Stephen's Englak Though th the Eighteenth Century, vol. 1., 1876, contains tho best account of Ilumes theological position. Mast works on tho kentian phllosophy contan sections epectally on Itume. Tha licaroente in the genetol histosies of philosoplyy cunnot be fronounced satls
factory.
(R. AD.)

HUME, Joserf (1777-1855), an eminent political reformer, was born in January 1577, of humble parents, at Mentrose, Scotland. After completing bis course of medical study at the university of Edinburgh be sailed in 1797 for India, where he was attached as surgeon to a regiment ; and his knowledge of the native tongues and his capacity for business threw open to bim the lucrative offices of interpreter and comnissary-general. On the
eve of Lord Lake's Nahratta war in 1803 his chemical knowledge enabled bin to reader a signal service to the administratiou by making available a large quantity of gunpowder which damp had spoiled. In 1808, on the restoration of peace, he resigned all his civil appointments, and returned home in, the prime of life, and in the posses. sion of a well-earned fortune. His first care on arriving in England was to study thoroughly the country and its resources, for which purpose be made various journeys, to soe the actual state of the people and the practical operation of the laws. In 1812 he took his seat for the borough of Weymouth and Melcombe-Regis; but be was soon obliged to resign it, when it was discovered by his Tory patron that he had had the audacity to talk of reform: Six fears elapsed before he again entered the House, and during that interval he had made the acquaintance and imbibed the doctrines of James Mill and the philosophical reformers of the school of Bentham. He bad joined bis efferts to those of Mr Place, of Westminister, and other philanthropists, to relieve and improve the condition of the working classes, labouring especially to establish schools for them on the Lancastcrian system, and promoting the formation of savings banks. In 1818, soon after his marriage with Miss Burnley, the daughter of an East India director, be was returned to parliament as member for the Aberdeen burghs. He was afterwards successively elected for Middlesex (1830), Kilkenny (1837), and for the Montrose burghs (1842), in the service of which constituency he died. From the date of his re-entering the House Hume began, unaided and alone, that course of reform in which he persevered to his death. He became the self-elected guardian of the public purse, withstanding every abuse of the public money, by challenging and bringing to a direct vote every single item of public expenditure. The difficulties Hume encountered in the course of his effurts to reduce the enermous burden of tasation under which the country greaned were aggravated by the confused state of the public accounts. But no obstacle deunted or discouraged him in bis enlightened efforts as the pioneer of commercial, financial, and parliameotary reform. Other labours with which bis name is connected deserve to be recorded. He unravelled the Orange Lodge conspiracy, the ravoifications of which spread over England, Scotland, and the colooies, and the object of which was to make the duke of Cumberland king in place of William IV. He carried on a successful warfare against the old combibation laws thut hampered workmen and favoured masters; he brought about the repeal of the laws prohibiting the export of machincry and of the Act preventing workmen from going abread. He constantly protested agaiust Gogging in the army, the impressment of sailors, and imprison. ment for debt. He teok up the question of lighthouses and harbours; in the foumer he secured greater efficiency, in the lattor he prevented useless expenditure. At first deapised and ridiculed, afterwards dreaded for his tenacity of purpose, he ended by gaining the respect of friends and of focs, and the confidence of the wholo nation. The breadth of his action, his ainglencss of ain, his perfect independence of all party or personal considerations, and an almost heroic carnestness and sclf denial in carrying wht his views, were the secrets of his intluence. Himself as incorruptible as Aristiles, he marle it a special duly to lunt out and expose political corruption under whatever guise it lurked, and the whole army of phace-hmuters and jubbers found is lim their most indefatigablo and inexor. rible foc. There were many abler, but there was no more uscful member in the llouse during the greater portion of Lis Jarliamentary carcer. He dicd February 20, 185.5

was bern in Stockholm about the year 1642. His father, Captain Johan Erichsson, and his mother died in his infancy; in 1656 he was entered as a student of the university of Upsala, at the expense of his patron, Admiral Wrangel, whose sons he afterwards conducted through Germany, Italy, France, England, and Holland, and back to Sweden in the autumn of 1668 . He returned to Upsala, received a professorship, and took the pseudonym of Lucidor, which he eniployed until his death. He staycd but one jear at Upsala, and in the winter of 1669 settled again in Stockholm. There one of his poems gave offence to the Gevernment, and be was baoished from the city for a year and a day. After his retura be lized by his pen, writing odes add epithalamia for the rich burghers. He boasted that he would "live like a poet," that is to say, with but slight regard for the cooventions of society. He was murdered on the night of Angust 13, 1674, in a cellar at Stockholm, by a drunken soldier, Lieutenant Arvid Storm, with whum be was quarrelling. The body of the poet was carried out into the street; but he only said, "I ame stabbed," and died. Storm was condemned to death for the murder, but was helped by bis mother to escape. The stories, so long repented, of Lacider's romantic intrigue with a lady of high rank, and his assassination in her aros, must be relegated to the domain of fable.
Lucidor's perms were not collected until after his death, when they were published in a volume ralled Flowers of Helicut. He wrote verses, not nerely io Swedish, Lnt also in Latin, Frencl. German, English, Italian, and Dutch. His style is deeply tinged with, the prevalent fashion for conceit and tasteless ingeivity, but be possesses foyce and passion; and be is certaiuly the most important Swedish writer between Stjernhjelm and Dahlstjema. The best edition of his works is that published in 1876 by J. Linck, who has dedicated a great deal of time and care to the investigation of the life of Humerus.

HUMLIIATI, a religious order founded at Milan carly in the r2th century by certain noblemen of Lombardy, who having been carried captive into Germany, had regained their freedom by their "bumility," did not, according to Helyot in hia Ordres Mfonastiques, take the nonastic vows till 1134, when they were induced to do so by St Beroard. In 1164 their ranks were recruited by other Milanese noblemen who had been similarly carried into Germany by Frederick Barbarossa. About 1151 the order was brought. uader the rale of St Beaedict, and in 1200 it was approved by Innocent III. Confirmed and privileged by succeeding popes, the Humiliati began te be corrupted by their popularity and prosperity, until, after a futile at tempt to reform the order, Pius V. finally suppressed it in 1571 At that date they had ninety-four houses under thear jurisdiction. The wives of the original founders instituted a female order of Ihembiata, also called, from a promment carly member, the Siuns of Blassom, which, cxempted fom Pius's bull of guppression, still bas representatives in Italy.

HUMMEL, Jomann Nemmuk (17T8-183i). a celebrated composer and pianist, whs born Norcmber 14, 1758, at l'resaburg, in llungary, and recelved has first artistic traning from his father, hmself a musirian in a humble wry. In 1785 the latter recesved an appointment as conductor of the orehestra at the theatre of Sclikanciler, the friem of Mozart and the libettist of the . 1 hoguc Flute. It was in this way that young Ilummel becone actpuainted whth the great composer, who took a great fancy to him, and even invited him to his house for a considerable period. During two years Hummel received the invaluallo instruc: tions of Morart, after which he sct ont with his father on. an artistic tour through Cermany, Fingland, and other countrics, his clever playing wiming for the hoy tho admiration of nomateurs. After lits retum to Vienna lie completed his studics under Albrechisherger, the celcbrator contrabuntist, amblaydn, and for a number of ycas devoted himself exclusively to composition. For cight.
vears (1803-1811) he beld the appuintment of orchestral conductor to Prince Eszterhazy, previously occupied by Haydu. It was not till 1816 that he again appeared in public as a pianist, his success being quite extraurdiuary. His gift of improvisation at the piano was especially sdmired, but his larger compnsitions also ware bighly appreciated, and for a time Hummel was considered one ot the leading musicians of au age in which Recthoven was in the zenith of his power. In Prussia, whith be visited in 1822, the ovations offered to him were unprecedented, and ather countries-France in 1825 and 1829, Belginm in 1826, and England in 1830 and 1833 -added further laurels to his crown. He died in 1837 at Wcimar, where for a long time he had been the musical conductor of tie court theatre. His compositions are very numerous, and comprise almost every branch of music. He wrote amongst other things several operas, both tragic and comic, and two grand masses (0 p. 80 and 111). Intinitely more important are his compositions for the pianoforte (his two concerti in A minor and B minor, and the sonata in F sharp miour), and his chamber music (the celebrated septet, and several trios, \&c.). His experience as a plager and teacher of the pianoforte was embodied in bis Great Pianoforte School (Vienna), and the excellence of his method is further proved hy such pupils as Henselt and Ferdinand Hiller. Both as a cumposer and as a pianist Hummel continued the traditions of the earlier Vienneso school of Mozart and Haydn ; his style in both capacities was marked by purity and correctness rather than by passion and imagination. In his compositions there is much that is now antiquated; but to deny him all merit wuuld bo as uncritical as were his contemporaries in the opposite direction when they mentioned him in the same breath with Becthoven.

HUMMING-BIRD, a name in use for more than two centuries, and possibly ever since English explorers first, knew of the beautiful little aoimals to which, from the sound occasionally made by the rapid vibrations of their wings, it is applied. Among books that are ordinarily in naturalists' hands, the name seems to be first found in the Musceum Tradescantianum, published in 1656, but it therein occurs (p. 3) so as to suggest its having already been accepted and commonly understond; and its earlicst use, as yet discovered, is said to be by Thomas Morton in the Neio English Canaan, prinied in 1632-a rare work reproduced by Peter Force in his Historical Tracts (vol. ii., Washington, 1838). Thevet, in his Singularitez de la France antarctique (Antwerp, 1558, fol. 92), has been more than once cited as the earliest author to mention Humming. birds, which be did under the name of Gouambuch: but it is quite certain that Oviedo, whose Inystoria general de las Indias was published at Tuledo in 1525, preceded him by more than thirty years, with an account of the "paxaro mosquito" of IIispaniola, of which island "the first chronicher of the lndies" was governor." This name, though now apparently disused in Spanish, must have been current about that time, for we find Gesner in 1555 (De avium natura, iii. p. 629) translating it literally into Latin as Passer muscatus, owing, as he says, his knowledge of the bird to Cardan, the celcbrated mathenatician, astruloger, and physician, from whom we learn (Comment.

[^60]in Ptolem. de, astr. juliciis, Basel, 1554, p. 472) that, on his return to Milan from professiunally atiending Archbishop LIamilton at Edinburgh, he visited Gesner at Zurich, abuut the end of the ycar 1552.2 The name still survives in the French Oiseuu-mouche; but the ordinary Spanisb appellation is, and long bas been, Tominejo, frum tomin, signifying a weight equal to the third part of an adarme or diachm, and used metapborically for anything very small. Ilmming-hirds, hawever, are called by a varicty of other namés, many of them derived from American languages, such as 'Guamumbi, Ourissia, and Colibri, to say nuthing of uthers bestowed upon them (chiefly from some peculiarity of habit) by Europeans, like Pacatures, Chuparosa, and Froufrou. Barrere, in 5745 , conceiving that Humming. birds were allied to the Wren, the Truchilus, ${ }^{3}$ in patt, of Pliny, applied that ame in a generic sense (Ormith. Spec. novum, pp. 47, 48) to both. Taking the Lint thus afforded, Linncus very soon after went further, and, excluding the Wrens, founded his genus I'rochilus for the reception of such Hunming birds as were known to him. The unfurtunate act of the great oumenclatur cannot be set aside; and, since his time, ornithologists with but few exceptions have followed his example, so that now-a-chys Humming-birds are universally recognized as forming the Fabily Trochilida.

The relations of the Trochilide to uther birds were for a long while very imperfectly understood. Nitzsch first drew attention to their agreement in many essential characters with the Swifts, Cypselietce, and placed the two Families in one group, which he called. Macrochires, from the great length of their manual bones, or those forming the extremity of the wing. The name was perbaps not very happily chosen, for it is not the distal portion that is so much out of ordinary proportion to the size of the bird, but the proximal and median portions, that in both Families are curiously dwarfed. Still the manus, in comparison with the other parts of the wing, is so long that the term Macrochires is not wholly inaccurate. The affirity of the Trochio lidae and Cypselidia, once pointed ont, became obvious to every careful and unprejudiced investigator, and there are probably few systematists now living who refuse to admit its validity. More than this, it is confirmed by an examination of uther ostenlogical cliaracters. The "lines," as a boat-builder would say, upon which the skeleton of each form is constructed are precisely similar, only that whereas the bill is very short and the head wide in the Swifts, in the Humoing birds the head is barrow and the bill longthe latter developed to an extraordinary degree in some of the Trochilide, rendering then the longest-billed birds known. ${ }^{4}$ Prufessor Hnxley considers these two Families,

[^61]together with the Goatsuckers (Caprinulgidce), to form the division Cypselomorghe-one of the two into which be has separated bis larger group Egithognathee. However, the most noticeable portion of the Humming-bird's skeleton is the sternum, which in proportion to the size of the bird is enormously developed both longitudinally and vertically, its deep keel and posterior protraction affording abundant space for the powerful muscles which drive the wings in their rapid vibrations as the little creature poises itself over the flowers where it finds its food. ${ }^{1}$

So far as is known, all llumming-birds possess a protrn. sible tongue, in conformation peculiar among the class Aves, though to some extent similar to that member in the Woodpeckers (Picide)"-the "horns" of the hyoid apparatus upon which it is seated being greatly elongated, passing round and over the back part of the head, near the top of which they meet, and thence procecd formard, lodged in a broad and deep groove, till they terminate in front of the eyes. But, unlike the tongue of the Woodpeckers, that of the Humming-birds consists of two cylindrical tubes, tapering towards the point, and forming two sbeaths which contain the extensile portion, and are capable of separation, thereby facilitating the extraction of honey from the nectaries of flowers, and with it, what is of far greater importance for the bird's sustenance, the small insects that have been attracted to feed upon the boney. ${ }^{3}$ These, on the tongue being withdrawn into the bill, are caught by the mandibles (furnished in the males of many species with fine, horny, sawlike teeth ${ }^{4}$), and swallowed in the usual way. The stomach is small, moderately muscular, and with the inner coat slightly hardened. There seem to be no caech. The trachea is zemarkably short, the bronchi beginning high up on the throat, snd song-museles are wholly wanting, as in all other Cypselomorphas. ${ }^{5}$

Humming-birds,' as is well known, comprehend the smallest members of the class A ves. The largest among them measures no more than 8 inches and a half, ${ }^{6}$ and the least 2 inches and three-eighths in length, for it is now admitted generally that Sloane monst have been in error when he described (Foyafe, ii. p. 308) the "Least Humming-bird of Jamaica" as "ahout 1 ! inch long from the end of the bill to that of the tail"-unless, indeed, he meant the proximal end of each, an interpretation, however, 1 hat will not save Edwards and Latham from the charge of careless misstatement, when they declare that they had received such a bird from that island. Next to their generally small size, the best known characteristic of the Trochilide is the wonderful brilliancy of the plumage of nearly all their forms, in which respect
${ }^{1}$ This is especially the case with the smatler species of the group, lor the larger, thousth shooting with equal celerity from flace to place, seen to flap their wings with comparatively slow but aot less powerful strokes. The differeaco was especially ohacrved with reapect to the largest of all llumning-Lirds, Patagona gagas, by Mr Darwia.
${ }^{2}$ The rescmblance, so far as it exists, must be merely the result of analogical function, and certanly mucates no affinty betwern the famihes.
${ }^{3}$ It is probathe that in varions members of tho Trochilider the structure of the tongue, and other partacorrelated therewilh, will le found subject to eeveral and perhaps romiderathe molafications, as is the case in varrous members of the Froulor. At preswht there are somecly half a dozen spectes of 11 umangebreds of whoch it can be sund that any part of there anatomy is kloown.
+These are especially coservatle in Rhamphotun norvius and Androdon equatornalis.
${ }^{5}$. Mr Gosse (Birds of Jamaied, P. 1301says that Jfellimuge minima, the srnallest surecies of the Framily, has "a real song" -but the liko is orit recorled of any other.
-There are several species in which the tail is wery much "longated, sucb na the vell-knowa Aithurus polymus of Jamaica, num the remarkalje Lodiligesin mirchiles of Chachapoyas in Pern, which last was until lately only known from a umque specimen (his, 1850, f. 152); but "trochilidists" in giving there measurenents do not take ;heso extraordinary developueuts into account.
they are surpassed by no other birds, and are only equalled; by a few, as, for instance, by the Nectariniida, or Sunbirds of the tropical parts of the Old World, in popular estimation so often confounded with them, and even by some nistaken naturalists thought to be their allies.

The aumber of species of Humming-birds now knowa to cxist considerably exceeds 400 ; and, though none depart very widely from what a morphologist would deen the typical structure of tha Fanily, the amount of modif ation, within certain limits, presented by the various forms is surprisiog and even bewilderiag to the un. inituated. But the features that are ortinarily closen by systematic oraithologists in drawing up their schemes of classification are found by the "trochilidists," or specialstadents of the Trochilida, insufficient for the purpose of arranging these birds in groups, and. . haracters on which genera can be founded have to be sought iu the syyle and coloratio of plumage, as well as in the form and proportions of those parts which are most generally deemed sufficient to furnish them. Looking to the large oumber of species to be taken into account, eonvenience has demanded what science would withhold, and the genera established by the ornithologists of a preced. ing geveration heve been broken up by their successors into nultitudinous sections-the more adventurous making from 150 to 180 of such groups, the modest being content with 120 or thereabouts, but the last digaifying each of them by the title of genus. $1 t$ is of course obvious that these small divisions cannot be here considered in detail, nor would much advantage accrue by giving statistics from the works of the latest trochilidists, Messrs Gould, ${ }^{7}$ Mulsant, ${ }^{8}$ and Elliot. ${ }^{3}$ It would be as unprofitable here to trace the sucecssive steps by which the original genus Trochilus of Linneus, or the twe genera Polytmus and Mellisuga of Brisson, have been split into others, or have been added to, by modern writers, for not one of these professes to hare arrived at any hinal, but oaly a provisional, arrangement ; it seems, however, expedient to notice the fact that some of the authors of the last century ${ }^{10}$ supposed themselves to have scen the way to dividing what we now know as the Family Trochitide into two groups, the distiaction between which was that in the one the bill wis arched and in the other straight, siace that differeace has been insisted on in many works. This was especially the view tnken by Brisson and Buffon, who termed the birds having the arched bill "Colibris," and those having it straight "Oiseaux-mouches." The distinction wholly breaks down, not merely because there are Trochilide which possess almost every gradation of decurvation of the bill, but some which have the bill upturned after the manner of that strange bird the Avocet, ${ }^{1 /}$ while it may be remarked that several of the species placed by those authorities among the "Colibris" are not Hummiag-birds at all.
The extracrdinarily brilliant plumage which most of the Trechilidec exhibit has been already mentioned, and in deseribing it orusthologists have been compelled to adopt the vocabulary of the jewellerinorler to give an idea of the índescribable radiance that so eften breaks forth from some part or other of the investments of these feathered gems. In all save a few of other birds, the most inaginative writer secs gleams wheh he may adequatcly designate metalic, from their resemblayce to burnished gold, bronze, copper, or stecl, but such similitudes wholly fial when he has to do with the Trochilide, nod there is hardly éprecous stone-ruby, amathyst, sapphire, emerald, or topaz-the name of which.may not fitly, aod witheut any exaggeration, be employed in regard to Humnoing-birds. In some cascs this radiance beams from the brow, in somo it glows from the thront, in others it shincs from the tail-coverts, in others it sparkles from tho tup only of elongated feathers that crest the head or surround tho neck as with a frill, white again in others it may appear as a lummeus streak across the check or nurnculars. The feathers that cover the upper parts of the hody very frequently have a metallic lustre of golden-green, which in other birds would be thought sulficently beantifnl, but ia the Trochilidax its sheen is overpowered by the nlmost dazzhag splendour that radintes from the sjuts where Nature's lapidary has sct her jewels. The flight feathers are almost invariably dusky - the rapinty of their movenent would, berhaps, renter any display of colour inetiective; while, on the contrary, the leathers of the tail, which, as the bird hovers over its foodbearing thowers, is almost niwnys expanded, and is therefore comparatwely motionless, oftenexhibit arich translucency, ns of stainedglass, but iralesceut in a manaer that no stained glass ever is-cmmamon jnerging into crimson, crimsen changing to purple, purple to violet.

7 A Monograph of the Trachilith or /Iemming.birds, 5 vols. imp.

 fol. London, 1861 (with Intraduction in 8 mo).${ }^{8} / 1$ stoire naurelle des Oiscarar-Mouches ou Cotibris, 4 vols. with suplement, imp. 4to, Lyon-Genéve-Rale, 1874-77.

los Silerne must be excepted, especially as he was rebuked by Butfon for doing what we now deem right.
"For exmaple A vaceltule recurvirostris of Gusana and A. curyptera of Colombia.
ana so to incligo sd botte-green. But this part of tho Hummingbird is subjec: tojuite as much modification in form as in colour, though always cosisting of ten rectrices. It may be nearly square, or at least but $\S g h t l y$ rounded, or wedge-shapell with the middlo quills prolonged eyond the rest; or, again. it may be decply forked, sometimes by thovergrowth of one ormore of the intermediate pairs, but most generay by the development of the outer pair. In the last case the latel feathers may be cither broadly webbed to their tip, or acuminatcor again, in some forms, may lessen to the filiform shaft, and suddciy enlarge into a terminal spatulation as in the forms known as Racquet-tails." The wings do not offer so much variation; still lere are a few groups in which diversitics oecur that reqoire note. The prionaries are invariably ten in number, the outermost bng the loogest, except in the single instance of Aithurus, wherep is shorter than the next. The group koown as "Sabre-wings," or prisiog the genera Cumpylopter'us, Eupetomena, and Sphenoproces pregeat a most curious sexual peculiarity, for while the femaie fs oothing remarkable in the form of the wing, in tho male the shaf o two or three of the outer primaties is dilated proxinally, and bord near the midille in a manner almost unique among birds. Thefet again, dimimutive as they are, are very diversified in foram. In most the tarsus is bare, but in some groups, as Erionemis, it islothed with tofts of the most delicate down, sometimes black, snetimes buff, but more often of a snowy whiteocss. In sumthe toes are weak, nearly equal in length, and fornished with smo rounded mails; in others they are larocely developed, and aune. with long and sharp claws.

Apart from tee rell-known brilliancy of plumage, of which enough has been ens said, many IIumming-birds display a large amount of ornamatition in the addition to their attire of crests of various shape an size, elongated ear-tufts, projecting neek-frills, and pendant bads-forked or forming a single point. But it would be imposse here to dwell on a tenth of these beautiful modifieations, ea dif which as it comes to our knowledge excitcs fresh surprise antx emplifies the ancient adage-maxime miranda in minimis Nalch It must be remarked, however, that there are certain forms wh possess little or no brilliant colouring at all, lut, as most trop i birds go, are very soberly clad. These are known to trochilit. s as "Hermits," and by Mr Gould have been separated as a Sfamily vader the name of Ihaethornithine, though Mr Elliotyis he cannot find any characters to distinguish it from the Trochliz proper. But sight is not the only sense that is affected by lluling-birds. The large species known as Iterophanes emminchi s a strong musky odour, very similar to that given otif by the lrels, though, so far as appears to be known, that is the only ovol them that possesses this property. ${ }^{2}$

All well-inform jeople are aware that tho Trochilides are a Family peculiar therica and its islands, but one of the commonest of commontrurs is the belicf that Humming-birds are found in Africa and Indi-) say nothing even of England. In the first two cases the mistelarises from confounding them with some of the brightly-colou Sun-birds (Nectarinizdes), to which British colonists or residencie apt to apply the better-known namo; but in the last it can be v due to the want of nereeption which disables the observer frctistinguishing between a bird and an inseet -the object seen bei 1 Hawk-Dfoth (Macroglossa), whose mode of feeding and rapid at certainly bears some resemblance to that of the Trochilidie, athence one of the species (M. stellarum) is very gencrally callethe "Humming-bird Hawk-Moth." But thongh confined to tlyew Worla the Trochilida pervade almost every part of it. In tsouth Eustephanus galcritus has been seen fitting about the fuch of Tierra del Fuego in as snow-storm, and in the north-west Sel.jorres rufus in summer visits the ribesblossomis of Sitka, whil the aorth-east Trochilus coletbris charms the vision of Canadian tht poises itself over the althan-bushes in their gardens, and exso its rangre at least so far as lat. $57^{\circ} \mathrm{N}$. Nor 18 the distributior c . Humming-birds limited to a horizontal direction only, it rises g ertically. Oreotrochilus chimborazo and o. pichinchalive on the mountains whence each takes its trivial name, but just beneath i ine of perpetual snow, at an elevation of some 16,000 feet, dwellels a world of almost constant hail, sleet, and rain, and feeding clip insects which resort to the indigenous flowering plants, while 11 peaks, only infertor to these in beight, are no less frequented lit peaks, only infertor to these in height, produce some of the splendid of tho Family-the genera Cometes, Diphlogana, antiaumasture, whose very names indicato the glories of their beart'. The comparatively gigantic Palayona inlabits the west coast couth America, while the isolated rocks of Juan Fernandez not o ifford a home to the E'ustephanus before mentioned, but also to "sther species of tho same gonus which ere not found elsuwhere Birns, vol. iii. p. 745). The slopes
1 The specitie name of a spenf chrysolampis. commonly writen by many
witers moschituk, would lead ei bollef that is was a mistake for moschatus whicrs moschitus, would lead et bellef that it was a mistake for moschatus, i.e." musky," bat in trath it it ates with thelr carelessness, for though they
quite Linneces as their authoi! iey can never havo referced to his works, or quate Linneces as therr authon ey can never havo referred to his works, or ankuardly, it is truc, Latjol in emendation bo needed, muscarus, after Gesacr's exampla is undoubto defermble.
of the Northern Andes and the hill country of Colonibta Mmish perhaps the greatest nu:nber of forms, and some of the most beantiful, bot leaving that great jange, we part company with the largest and most gorgeonsly armyed species, and their number dwintles as we: approuch the eastern coast. Still there are many brilliant Hums* ming-lirds common enough in the Prazils, Guiana, and Veneznela. Tho Chrysolanyis mosquitues is perhaps the most plentiful. Thonsands of its skins are annually sent to Europe to be used in the manulacture of ornaments, its rich ruby-and-topaz glow rendering it one of the most beantiful oljects imaginable. In the darkes: depths of the Brazilian furests dwell the russet-elothed brotherhwod of the genus Phaethornis-the " lifermits"; but the great wouled basin of the Amazons seems to be particularly unfavourable to the Trochilidu, and from Pari to Ega there are scarcely a dozen species to be met with. There is no island of the Antilles but is inhabited by one or more Humming-birds, and there are somo very remarkalile singularities of geographical distribution to be found (see brepo, vol. iii. 1. 749). Northwards from Panamer, the highlawds present many genera, whose wames it would be useless here to insert, few or none of which are found in South America-thougll that must unquestionably be decmed the metropolis of the Family, and adranciug towards Mexico the ammbers gradually fall off. Eleven species have been enrolled among tlie fauna of the United States, but some on slender evidence, while others only just cross the frontier line.

Fig. 1,-Mcllisuga minima on nest, natural size. (After Gosso.)
But little room is left to speak of the habitg of Humming-birds, whieh is lethaps of the less consequence sioce the sulject, as remards most of the sirecies which in life have come under the observation of ornithologists, has been so ably trented by writers like Waterson, Wilson, and Audubon, to say nothing of Mr Gosse, Mr Wallace, Mr Bates, and some others, while, whatever novelty further insestigation may supply, it is ecrtain tbat at present we laek information that will exphain the origin or the function of the many modificationa of exterail strueture of which mention has been male. But there is no one appreciative of the beauties of nature who will not recall to memory with delight the time when a live Humming bird first met his gaze. The suddenness of the apparition, even when expeeted, and its brief duration, are alone enough to fix the flutteriag vision on the mind's eye. The wings of the birt, if hying, are mly visible as a thin grey film, bonded above and below by fine llack threads, in form of a St Andrew's cross, - the effect on the observer's retina of the instantaneous reversal of the motion of the win? at each beat-the strokes being so rapid as to leave no more distinet image. Consequently an adequate representation of the bird on the wing cannot be produced by the draughtsman. Ilummingetrins show to the greatestadrantage when engaged in contest with anot:her, for rival cocks fight fiereely, and, as may be expeeted, it is then thint their plumage flashes with the most glowing tints. But these are quite invisible to the ordinory spectator execpt when very neas at hand, tbough doubtless etlicient enough for their object, whellier that be to inllame thoir mate or to irritate or dauat their opponeath, or something that we cannot compass. Humming-birds, huwe ver, will also often sit still for a while, chiefly in an exposed position, on a dearl twig, ocensionally darting into the air, cither to catch a passing insect or to encounter an adversary; and so pugacious unt

They that they will frequently attack birds many times bigger than themselves, without, as would seem, any provocation.
The food of Humming birds consists mainly of insects, mostly gathered in the manner already described from the flowers they isit; bat, according to Mr Wallace, thero are many species which he has never seen so occupied, and the "Hermits" especially seem to live almost entirely upon the insects which are found on the lower surface of leares, over which they will closely pass their bill, balancing themselves the while vertically in the air. The same excellent obeerver also remarks that even among the common flower-freguenting epecies be has found the alimentary canal entirely filled with insects, and very rarely a trace of houcy. It is this fact doubtless that has kindered alnost all attempts at keeping them in confinement for any length of time-nearly every one making the experiment having fed his captives only with syrup, which is wholly insuffient as sustenance, and seeing therefore the wretched creatures gradually sink into inanition and dio of hunger.

Tha beautiful nests of Hunming-birds, than which the work of fairies could not he conceived more delicata, are to be seeu in most mnseums, and will be found on examination to be very solidly and tenaionsly tuilt, though the materials are generally of the slighteot -cotton-Fóol or soma vegetabla down and spilers" wels. They valy greatly in form and ornamentatiou-for it would seem that the portions of lichen which frequently bestud them are affixed to their exterior with that olject, though probably concealment was the

Fic. 2.-Phachornis curynome, and Lest. (After Goud.) origimal intention. They are mostly cup-shaped, and the singular fact is on record (Zool. Joumal, v. i. 1) that in one instance as the young grev in size the walls were heightened by the parents, until at last the nest was more than twice as big as when the eggs were lail and hatehed. Some species, hawever, suspend their nests from the stem or tendril of a climbing plant, and more than one caso has been knewn in, which it has been attached to a hanging repe. These pensile nests are sail to have been found leaded on one side with a smalt stone or bits of earth to ensure their snfe balame, though how the compensatury process is applied no one can saty, Other specica, and especially thoso belonging to tho "llemit" fromp, weave a frail structure round the side of a drooping palm-leaf. The egas aro newreme than two in number, quite white, and havfog both enis neaily equal. The solicatude for lier ollspring dis. played ly the mother is not exceeded by that of any other biris, font it seems doubtfal whether the mato takes any interest in tho broorl.
(A. N.)

HUNDRED, in Enchond, is an ancient territorial division intermediate betreen the parish or township and the county; Such anbordinate districts were also. known in different parts of tho county as wapentakes, wherds, sund sometimes shires, The name urapentake, which seems to navo a dis. tinct reference to the military side of the crganization. is generally connected with the Danish occupation, ast is asid to be found only in the Anglian districts, - Vorkshire, Lincolushire, Nottipghamshire, De.byuhire, Jutlandshire,
and Leicestershire. In some parts of Eitand a further intermediate division is to be found betref, tae hundred aud the county: Thus in Yorkshire we hins the trithing, or as it is now called the riding, in Incolnshire the soke, the lathe in Kent, and the rape-i Sussex. The origin of these divisions is generally seribcd to the creative genius of Alfred, who, accordingto the pupular theory, divided the country inte countiesthe county into bundreds, and the ,hundreds into tithingsir towns. The esact opposite woald appear to have beenle real process, the larger division being formed by the ayregation of the smaller groups. The significance of the une hundred is a question of some difficulty. The simplestheory is the old one that the bundred denoted first the grup of a hundred families into which the community was vided, and then the district occupied by the group, jus as the titling represents ten families and the distric which the ten families occupy. Aoother view is thathe hundred is a term of measurement ooly, denoting a andred hides of land. Or again, it has been supposed o be the distriet from which the complement of one hurred warriors was furnished to the host. The huadred as g:oup of persons is a well-known feature of the constitutinof the German tribes, e.g., as described by Tacitus, the:s teni ex singulis pagis who formed the army, and the cent explebe comites who acted as assessurs to the chiefe. Tr hundred as a fercitorial division in later times is equa: common. The real connexion between them is a marr of conjecture. "It is very probable that the colonists o3ritain arranged themselves in bundreds of warriors; it isot probable that the country was carved into equal dicicts. Tbe only conclusion that seems reasonable is the under the name of geographical hundreds we bave the riously-sized pagi or distriets in which the humdred wiors settled, the bonndaries of these being determinedy other causes ${ }^{n}$ (Stubbs's Constitutional Mistory, vol. i As a territorial division, the bundred like the shire ancle parish had its appropriate moot or court, of which tlords, the priest, aud four representatives of the parish re nembers, and in which a specially selected body of welve appears to have been charged with active judic functions. The two leading features of the English contution-representation and trial by jury-thus apman germ at least in the old constitution of the hiundrecins

The hundred is now for most olm queient purposes an obsolete division. The hundred c_{ng}, were for the most part extinguishled by a section in the donnty Courts Act, 1867, which enacts that no action ${ }^{\text {di }}$, ean be brought in a county court shall thenceforth ie bught in a hundred court, or other inferior court, not le 'g a court of record. The court of record for the hundre sifesalford is an example of the survival of this aneient jur \int_{6} zoz it
Yerhaps the mast impertant os as surviving duties of the hundred is its liability to mak teat damages necasioned by rinters. The 7 and 8 Gco . $\mathrm{I}_{\text {ale }}$ off1 consolidates and amends tho laws relating to ren. ${ }^{\text {alsol }}$ gainst the hundred. The prineipal section evacts tha hre church, house, or other building or section shall bingmionsly pulled down or destroyed, the hundred or oth nt tiriet in the nature of a hundred by whatever mipue it ${ }^{\text {oth }}$, , denomiaated shall be liable to yield full compensaticnas'se persons damnified, provided sueli 1 icrsou, or his serd anving charge of the property, appcar betore a justieceroco peaee within seven days sfter the eommission of the ${ }_{c}^{d} \mathrm{e}$, to givo information. Actions of this kind must be maneed within threo months after the offence. Ther cand 18 Vict. e. 104 (Merelant Shipping Act) gives ${ }^{-}$tsamo remedy in tho case of a wrecked ship if plunderida riotons assemblage, the hundred in or nearest to $w_{i y}^{r i f}$ the offenee was committell being made liable
-
-

$$
1
$$

H UNGARY

1. Geograpay and Statistics.

Plate II. Plate 1 l .
Position

HUNGARY (Hung., Magyarország; Ger., Ungarn; Fr., Hongrie; It., Ongaria), the second factor of the and . x dual Austrian-Hungarian monarchy, is an extensive country -xlent in the south-eastern portion of Central Europe, lying bet ween $44^{\circ} 10^{\prime}$ and $49^{\circ} 35^{\prime} \mathrm{N}$. lat. and between $14^{\circ} 25^{\prime}$ and $26^{\circ} 25^{\prime}$ E. long. It thus covers about 5 degrees of latitude aod 12 of longitude, and contains an area of 124,234 square miles, or mora than half of the whols AustrianHungarian realm, being larger than the United Kiogdom of Great Britain and Ireland by about 3000 square miles.

The kingdom of Hungary in its widest extent, or the "Realm of the Crowa of St Stephen," comprises Hungary Proper, with the former grand principality of Transylvania, the town and district of Fiume. Croatia and Slavonia, and the Military Frontier. Dalmatia, which beth from its geographical position and from historical associations ought also to form part of Hungery, sends its representatives to the Austrian Reichsrath.

In the article Austria (vol iii. pp. 115-141) the Austrian-Hungarian monarchy has already been treated of us a whole, and under the heading Crcitia and Slavonia (rol. vi. pp. 5yl-592) will be found füther special ioformation with reference to that province (see also Fiome, vol. ix. p. 273). In the present article we shall therefore treat geoerally of the lands beloaging to the Hungarian cromn, and more particularly of the "mother country;" or Huogary Proper and Transylvania.
Arngary The province of Hungary Proper and Transylvania, now Proper united ander one administ:ation, and sometimes officially at 9 led simply "Hungary," lies betweed $44^{\circ} 30^{\circ}$ and comprises an area of 108,263 Evglish square miles. It is bounded on the N. by Moravia, Silesia, and Galicia ; on the E by Bukowina and Moldavia; oo the S. by Wallachia, Servia, and Croatia and Slavonia; and on the W. by Styria, Lower Austria, and Moravia. The narrow strip of country known as the Military Frontier, which stretches as a border line betmeen' Bosnia and Servia and the south of Creatia aod Slavona, prior to $18 i 3$ extended heyond the limits of that proviace, through Huagary Proper to Tranaylvania. The wholo Militnry Frontier thus constituted formerly a joint crown land, consisting of the fresent Croatian-Slavonian frontier, and the so-called Servian-Banat frontier, new incorporated iato the province of Hungary Proper and Transylvana Tha political clanges introdaced between 1868 and $18 \mathbf{1 8}$ will be considered below.
Falural With the exception of the short extent of seaboard on
beand the Adriatic belonging to the Hungarian Littorale, the
ates ILungarian moarchy is entirely surrounded by other countries. Its natural loundaries are for the most part well defined : on the N.W. and N. it is separated from Dioravia, Silcsia, and Galicia by the Carpathian mountains ; no the E. and S.E. the Eastern Carpathians furm a natural barrier betweea Transylvacia and Moldavia and Wallachia; on the S. it is bounded by the Danube, Save, and Unna, which aeparate it from Servia and Bosnia; on the S.W. t.y Dalmatia and the Adriatic; and on the W., where its natural boundaries are not so clearly marked, by

Caraiola, Styria, and Lower Austria. From the rirct Lajta or Leitha, which, like the March, forms a portiou of the boundary of the last-mentioned province, origiaate tha terms Cisleithan and Tracsleithan, aometimes applied to the collective proviaces of Austria and of Hungary respectively.

The mountains of Hungary belong to the two great Mons. European systems, the Carpathians and the Alps. The tains former estend in a semicircular form over the north and east of the monarchy, enclosing the whols of the left basin of the Daaube from Dévény near Pozsony (Pressburg) to Orsova, while spurs of the Styrian Alps traverse the country in the west; to these latter belong also the Bakony and Vertes ranges. The Central Carpathians consist of several groups, among which the Tatra mountains form the most imposing mass, having an average elevation of about 6000 feet, and attaining at some points an altitt do of over 8000 feet. To the south of these are the varic ss ranges of the Hungarian Ore-Mouatains or Erzgebirge (Lipto, Zolyom, Bars, Hoat), and the midland chains which connect the Carpathians with the Styrian Alps. The Eastern Carpathiuns and Transy|vanian highlands cover the greater part of 'Trasisylvania, and the eastern portion of the old ServianBanat ; the Fogaras is the highest group, eome crests of which, as, for instance, the Negoj, Bucsesd, and Vurfu Ourla, attain an elevation of between 8000 and 9000 feet. The low westera mountains of Hungary which traverse Croatia and Slavonia belong to the Julian Alps. Taking a general survey, it will be observed that the greatest elevations are in the north of Hungary Proper, in the east and south of Transylvania, and in the easteru portion of the Báaat Io the Nurthern Cirpathians large plateaus are 'not unfrequent, but in Transylvania the Alpins character predominates. The eides of the Carpathians are generally covered with forests to a considerable height, and on some favourable slopes barley, oats, wheat, and ryo are cultivated. The mountainous lands in the gouth-west of the Hungarian monarchy are in elevation much inferior to those in the north and east, but their greater proxinity to the sea and their frequently bare and rugged character cause them to have a considerable influence both on the , climate and commercial relations of the country.

The great Carpat: an and Alpine mountain aystems Plé enclose two extensir plains, the smaller of which, called the "Little Hungariai, Alföld" or "Pressburg Basio," covers an area of about 600 C square miles, and lies to the west of the Bakony and Matra ranges, which separate it from tha "Pest Basin" or "Great Hungarian Alfold" This is the largest sain in Europe, and comprises an area of about 37,000 sfuare miles, with an average elevation of from 300 to 350 feet above the level of the sea. The Pest Basin estends over the greater portion of central and southern Hangary, and ia traversed by the Theiss ond its numcrous tributaries. This immense tract of low land, thougb in some parts covered with barrea wastes of sand, alternating with marshes, presents in gencral a very rich and producture sail. The monotonous aspect of the Alfuld is in summer time varied by the déli-báb, or Fata Morganu.

The gectlogical constitution of the mountaios of Hungary Geoogs. is on the whole similar to that of the Alps. ${ }^{1}$ The central axis is in some places composed of granite, on which crystalline schists are superposed; in other placea the rocka are of Mesozoic age, and associated wilh Tertiary beds. Whist

[^62]the Palzozoic formations are or comparatively rare occurrence, the Mesozoic attain a very censiderable develupinent. These latter in part crop out at the base of the granite and schistose mountain masses, or themselves are the nucleus of more extensive raages. In seme neighbourlioods independent monatain groups are forped Ly Tertiary strata. Alluvial formatious constitute the general external crust out of which the mountains arise. Recent fermations on the banks of risers, mere especially in the south at the junction of the Danube, Theiss, Temes, Drave, and Save, are mainly confiued to the tracts subject to the inundations of the same, but are here aud there, as in the neighbourhood of Pest, Totis, Esztergem (Gran), and some parts of the Great Alföld, represented by accumulations of driftsand; and in other places, as for iustance on the left bank of the lake of Totis, and at Szomod in Komárom county, there are depesits of calcareons tufa.

Curens.

The numerous caverns deserve a passing notice. One of them, the Aggtelek cave, in the county of Gomerr, is abon't 50 feet in breadth by 16 in height, and extends in its recesses for a length of several thousand feet. In it various fessil mammalian remains have beea found. The Fonacza cave, in the county of Bihar, has also yielded fossils. No less remarkable are the Okue, Yodi, and Deményfalva caverns in the county of Lipto, the Veteravi in the Banat, and the ice cave at Dobsina in Gömör county. Of tha many interesting caverns in Transylvania the most remarlable are the sulphureens Büdös in the couuty of Háromszêk, the Almás to the south of Udvarhely, and the breok. traversed rocky caverns of Cbetate-Boli, Pestere, and Ponor in the southern mountains of Hunyad couoty.

8tvers.

Nature has amply provided the greater part of Hungary with beth rivers and springa, but some trachytic and limestone mountainous districts show a marked deficiency in this respect. The Matra group, eg., is poorly supplied, while the outliers of the Vertes meuutains towards the Danube are almost entirely wanting in streams, and have but few water gources. A relative scarcity in running waters prevails io the whole regien between the Darube and the Drave. The greatest proportionate deficiency, however, is observable in the arenaceous region between the Danube and Theiss, where for the mest part only periodical floeds oecur. This, hewever, is far from being the case in the north and cast of the kidgdom, where the rivers and streama are numerous. The misfortone is that the rivers of Hungary nearly all fiow either mediately or imnnediately to the Danube, and are therefore net available in any other direction as a means of external communication, and even within the conntry can imly serve to a limited extent as water-ways.' Thus the Theiss, the greateat wholly native river, is at the present time service. able for regular atcam navigatien only as far as Szolnok, while the Maros caunet be navigated except at certnin geasons and fur a pertion of its, eourse ; the Drave and the Save, in like manser, are enly partly available fer stean vessels. But although the length of p ; rman ent water-way
Iluograry might be much increased by means of camals a id other improvements, the Danube must still remain the ouly river commmieation with forcign countries, cither by way of Anstria or the Black Sea, on account of the insurmountable obstarles to comnecting the small extent of llungarian scalmard with the regrons threugh which the Pamule flows. This river, which is navigatle during the whole of its course through Hungry, enters the monarely at ledeny near lressburb, and leaves it at Orsova on the Turkish frontier, receiving numerous tributaries in its course, among which are, on the right, the Jaab, Drave, and Save, and, on the left, Waag, Nientra, Gran, Eipel, Theiss, Temes, and Czetra. The breadth of the banule is about 900 fect near its entrance, 1400 at galapest. 1800
at Földvár, and 3500 near Pétervárad (Petcrwardenn). Among the extensive islands formed by branches of the Danube are the Great Schitt and the Csepel in its upper course. The Theiss, the greatest tributary of the Danube, rises in the nortl-east, in the county of Miramares, and tlowing first in a corth-westerly and afterwards in a southerly direction ultimately joins the main river near Tittel, drainiag in its course the Great Hungarian Plain. Amengst the many affuents of the Theiss are (r.) the Bodrog, Saji, anti Zagyva, and (l.) the Szames, Köros, and the Marus, which last, after traversing Transylvania and eastern Hungary, joins the Theiss at Szeged. The Save, rising in Carnieh, winds through Creatia, is fed by the Unna and Kulpa, and falls into the Danube at Belgrade. It will be observe苟hat the whole river system of Hungary belongs to the Danube or the Theiss, -the Peprad, which rans through the county of Szepes (Zips), alone having a northerly course, and floming to the Dunajec, an affluent of the Vistula. The senth-western or Traus-Danubian division of Hungary Proper. although comparatively meagre in water-courses, includes the twe principal lakes.

The Balatod or Platten-See, the largest lake, not only in Lakes Hungary, but in the whole of the Anstrian-Hungarian and dominioas, lies betweca the counties of Veszprém, Somagy, marsine and Zala, is about 47 miles io length by 3 to 9 in breadth, and with the surrounding marshes occupies an area of about 400 square miles. It is supplied by the river Zala, 31 small streams, and 9 springs, while ite surplus waters are carried oft by the Sio. Phenomena peculiar to the Balaton lake are, that it sometimes becomes violently agitated without any apparent cause, and that in seasons rof severe cold the ice on its surface occasienally bursto with a loud repert. It is navigable for steamers, and abounds in fish. The Fertö or Neusiedler See lies in tha counties of Moson and Sopron, and with the Hansig marsh covers an area of some 130 square miles; it is about 23 miles io length by 6 to 8 in breadth, is very shallow, and its waters are strongly impreguated with salt and soda. In 1865 the bed became almost dry, but since 1970 it has filled again. The other lowhand lakes, as, fer instance, the Palics near Szabadka (Maria-Theresiepel) and the Velencze in the county of Fehér, are much smaller. Morasses and peols are generally frequent in the vicinity of the Danube aod Theiss. The most extensive marshy region is the Sarret, which cevers a considerable portiou of the counties of Jasz-Kun-Srolnok, Bekes, and Bihar. The Ecsedi Lap in the couaty of Szatmar is now for the most part drained; and the Alibnaár and Llancse marshes in the county of Terontal will also be soon laid dry. Man; thousands of ncres of marsh land have already becn reclaimed in Hungary, and hydranlic operations bid fair to still further reduce the extent of the marshy districts. In the deep bellows between the peaks of the Carpathians are to be found the curious mountain lakes called "eycs of the sea;" of these there are at least thirty-eight in the Tatra alone.

The canals of Hungary are still far from sufficient for Canas the wants of the country, although lately nany imprevements have been iutroduced, and cuormous cultiugs made in certain places to relieve the rivers from geriodical overflow. The most impertant canal is the Ferencz or "Francis," which traverses the county of Bacs. It is seme 70 niles in length, and shortens very considerably the passage between the Theiss and the Danube. A branch of this canal called Uj Csatorm, or "New Chamel," extends from Kis-Sztapar, n few miles below Zombor, to Ujvidek opposite P'eterwardein. The Bega caual runs from Nagy. Decskerel, in the county of Torontal, to beyond T'enessar, hut is not navigable throughout. Among other canals are the Versecz in the comuty of Temes; the Berzave
in the county of Torontal ; the Sio, which connects the Balaton with the Danube ; the Kapos or Zichy in the counties of Somogy, Baranya, and Tolna ; and the Sárviz or Nádor, which runs through the countics of Fehér and Tolna.
On the Adriatic, at the northern extremity of the short lino of sea-const known as the "Hungarian Littorale," lies the port of Fiuse ($q \cdot v$.), which is the only direct outlet by sea for the produce of Hungary. Its commanding position at the head of the Gulf of Quarnero, and spacious new barbour worls, as also its immediate contexions with both the Austrian and Hungarian railway systems, render it epecially advantageeus as a commercial port. As shipping stations, Buecari, Porturć, Sclec, Novi, Zengg, Cirquenizza, San Giorgio, Stinizza, Jablanac, and Carlopago are of comparative insignificance. The whole of the short Hungarian seaboard is mountainous, and subject to viólent winds.
Cumate. The climate of Hungary, owing to the physieal configuration of the country, varies considerably. If we except Transylvania, L hree separate zones are roughly distinguishable :-the "highland," comprising the counties in the vicinity of the Northern and Eastern Carpathians, where the winters are very severe and continue for half the year; the "intermediate" zone, embracing the tract of country stretching northwards from the Drave and Mur, with the Little Hungarian Plain, and the region of the Upper Alföld, extending from Budapest ta Nyiregybaza and Sárospatak; and the "great lowland" zone, including the main portion of the Great Hungarian Plain, and the region of the lower Danube, where the heat during the summer months is almost tropical. In Transylvanin the climate bears the estreme characteristics peculiar to mountainous countries interspersed with valleys; whilst that of the south-western Croatian and Frontier districts bordering on the Adriatic is modified by the neighbourhood of the sea. The minimum of the tenperature is attained in January and the maximum in Joly. At Buda, which, if we exclude Transylvauia, is near the ceutre of the kingdom, the mean average temperature (1862-77) in January is $31^{\circ} 0^{\prime}$ and in July $71^{\circ} 7^{\prime}$; at Kolozsvár (Klausenburg) in the same months it is $32^{\circ} 7^{\prime}$ and $65^{\circ} 9^{\prime}$ respectively. The rainfall in Hungary is small in comparison will that of Austria. At Budi, where the number of rainy days is $122,{ }^{1}$ the rainfall is about ' $21 \frac{1}{2}$ inches, whist in the two Hungarian phains generally the rainy days are estimated not to exceed 96 amually. In the vicinity of the Carpathians, bowever, rain is very prevalent, amounting to between 30 and 40 inches. In these regions the greatest fall is during the summer, though in some years the eutuan showers are heavier. Itail storms are of frequent oecurrence in the Carpathians. On the plains rain rarely falls during the heats of summer; and, generally speaking, the showers though violent are of hat short duration, whilst the moisture is quickly evaporated owing to the aridity of the atmosphere. The vast sandy wastes mainly contribute to the dryness of the wiads on the Great Hungarian Alföld. Occasionally, as in the ycar 1863, the whole country snffers much from drought ; but, on the other hand, disastrous floods not unfrequently ocenr, particularly in the spring, when the beds of the rivers and streams are inadefuate to contain the inereased volume of water caused by the rapid melting of the snows on the Carpathians. The low.lying arable and pasture lands in the vicinity of the Theiss and Maros are thus sometimes submerged for weeks, and in Mareh 1879 the town of Szeged, situateri at the point of junction

[^63]of these two rivers, was alnost completely destroyed. In December of the same year the counties of Arad and Bilar were extensively inundated by the Maros and the Körös. In 1838 the city of Pest, and in February 1876 several localities on the Danube, suffered disastrously fron the sudden rising of that river. The average annual number of suow showers is estimated at 23 for the two Hungarian plains, 44 for Transylvania, 50 for the northern, and 30 to 35 for the western and south-western portions of the monarchy In 1866-67, and again in 1872-73, ebolera was very rife; of the 447,571 persons who were attacked by the epidemic in the latter case, 189,017 , or over 42 per cent., died. Never. theless Hungary camot, on the whole, be regarded as an unbealthy country, excepting in the marshy traets, where intermittent fever and diphthcria sometimes exhibit great virulence.
The whole of Hungary, lut more especially llungary Proper, caii \boldsymbol{P} osa boast of the great varicty and number of its natural productions This is attributable partly to its geographical position, but cliefly to the varied nature of its surface and clinate. The fettility of the soil, if we except the mountainous and sandy regions, is renarkablo. The vegetable products includo almost every description of grain, especially wheat and maize, besides Turkish pepicr rape. seed, hentp and flax, beans, potatoes, and root crops. Fruits of various descriptions, and more particularly melons and stone fruits, are abundant. In the southern districts almonds, figs, rice, and olives are grown. Amongst the forcst and other trees are the oak, which yields large quartities of galls, the beccll, fir, pine, ash, and alder, also the chestnut, walnut, and filbert. The vinc is cultivated over the greater part of Hungary, the chief grape-growing districts being those of the Hegyalja (Tokay), Soppon, and Ruszt, Ménes, Szerémség, Szekszárd, Sonly (Schomlay), Béllye and Villiny, ${ }^{1}$ Balaton, Nessmely, Visonta, Eger (Erlau), and Buda. Next to France, Hungary is the greatest wine-producing country in Europe, and the quality of some of the vintages, especially that of Tokay, is unsurpassed. A great quantity of tobacco is also grown, but it is wholly noonopolized by the crown. In Hungary Proper and in Croatia and Slavonia there are many species of indigenous plants, which are urrepresented in Transylvenia. Besies 12 species pecoliar to the former grani-.-riopcipality, 14 occur ouly there and in Sincria.
The faina of Hingary includes abont 14,000 species. The horned Fanna cattle are amongst the finest in Europe; aud large berds of swina are reared in the oak forests. In 1870 the total number of cattle (includiug 73,243 bulfalores) was estimated at $5,279,193$, and of swine at $4,443,279$. Of shcel,, the breed of which is now greatly improved, the number amoninted to 15,076,997; of horses there were $2,155,819$, asses 30,480 , muls 3,266 , and goats 572,951 The will animals are bears, wolves, foxes, lymes, wild cats, bad gcrs, utters, mantens, stoats, and weasels. Anong he rodeuts then are hares, mamots, beavers, squirrels, rats, and mice, - the last in enormous swarms. Of the larger gane the chamois and deer are specially noticeable. Among the birds arc the vulture, cagle, $\mathrm{F}_{3} 1 \mathrm{con}$, buzzard, kite, lark, nightingale, heron, stork, and bustard. Donestic aud wild fowl are gencrally abundant. The rivers and lakes yield enornous quantities of fish, and lecelles also arc plentiful The Theiss, ouce better suppliced with fish than any other tiver it Earone, has for many years fallen off in its productiveness. The cultare of the silk worm is chiefly carried on in the south-in ${ }^{\prime}$ Military Frontier, and in Croatia and Slavonia. The principal t rearing localities are in the countics of Gonnor, Szepes, and गlosony, the Military Frontier, ond the former Saxon districts of Transyl. vania. In i 870 the number of beo-hives was estimated at 617,407 .
The chicf mincral products arc coal, nitro, sulphur, alum, soda, Minerals saltpetre, をyrsum, porcelain-cath, pipe-clay, asy,halt, petroleum, martle, and ores of gold, silver, nereury (coplyer, iron, lead, zinc, antimony, cobalt, and nrsenic. The opals of Sáros are famons, and precious stones of various descriptions (calcedony, garne:, jacinht, ametlyst, carnelian, agate, roch-crystals, de.)' are met with in several localities. Amber necars at Magara in Sacpes county. GohI and silver are found elichy in the districts of Selnccz (Scllemnity), Kërnuiez (kremnitz), Xagy binya, Szonulhok. Oraviča, Alruduanya, nud Zalatua. The average yearly yicld of gold is equal in value to alhent $£ 219,000$, and that of silver to some i178,600. The sand of some of the civers, as for instance the Maros, Szamos, Küris, and Aranyos, is auriferous. Iron is exten. sively produced in the cunnties of Gümür, Zolyom, Liptó, Szepes, Siros, Barson, Thnm, Alaui., Szatmair, Pilhar, and Krassó; coal in the ncighbounhood of leesvirad, Oravicza, Silgos-Tarjan, and of

[^64]the river Sil．There are fine marble quarries at Piszke and the neighbouring Almás in the counties of Esztergom and Komarrom， aa also at various places in the counties of Baranya，Veszprem， Abaúj，Szepes，and Liptó．The largest salt－mines are at honaszek， Sugatag，and Szlatius in the connty of Maramaros，in Hun－ gary Proper，and at Vizakna，Parajd，Torda，Deésakna，and Maros ujvar in Transylvania．In 1877 the value of the salt produced was $12,369,599$ florins，of other minerals $18,787,757$ Horin1s．The peatly worth of the whole mining produce of the Hungarian realm is eatimated at over $£ 3,000,000$ ，of which，however，the amount ettributable to Croatia and Slavooia ia comparatively small．There ars вeveral huadred cold and 64 warm mineral aprings in Hungary Proner and in Croatia and Slavonia，whilst a relatively greater namber are met with in Transplyania of warm springs the most famous aro those of Buda，Mehadia，Eger（Erlau），Nayyvirad （Grosswardein）．Sztubnya，Szliöç，Harkảny，Pösteny，Krapina， and Teplitz．Among the cold mineral springs the more worthy of note are those of Suliguly，Borszék，Bartfa，Czigelka，Szulin，Parid， Korituicza，and Szalatnya；the Buda keseril viz（bitter water）is also much prized，and largely exported．

The general agricultural division of the soil is shown approxi－ mately in the following table，adapted from Keleti＇s Magyarorsadg Statistikaja：－

	Funcary Proper and Tranayl． redia	Flume．	$\begin{gathered} \text { Croalls } \\ \text { and } \\ \text { Slavonia. } \end{gathered}$	Mitliary Frontier．	Total for the Hungariao Realm．
Arable	Eng．Acres． 23，865，703	${ }_{116}^{\text {E．A }}$	E．Actea． 1，868，509	E．Acres． 1，213，464	$\begin{gathered} \text { Eng. Acres. } \\ 26,047,892 \end{gathered}$
Meadows	9，147，793	956	607，935	465，012	10，221，694
Vineyards＇	837， 576	1074	128.558	32.112	999，423
Pastures	10，157．418	1813	800，24	935，357	11，595． 832
Foresta	19，449．849	635	2，210，738	1，373，347	23，034，407
Reedy tracto	381.783		8，200		389.983
Total of prodactive eon	63，840，062	4.517	5，324，230	4．020．292	73．199，931
Earres lands ．．．．．．．．．．．．．	5，021，384	259	473，449	922，950	6，417，042
Total．．．．	68，881，448	4956	8，796，729	4，943，242	79，606，273

Adminis．Sisce the year 1867 the administrative and political divisions of

T3．198 a03 political divisions the lands belonging to the Hungarian crown bave been in great measure remodelled In 1868 Transylvania was definitively re－ united to Hungary Proper，and the town and district of Fiame declared autonomove．In 1873 the Servian－Banat or Eastern Mili－ tary Frontier was incorporated with Hungary Proper．In 1876 the whole adrainistrative subdivision of Hungary into counties，dis－ tricts，and sees was revised，and for the sake of naiformity one general aystem of counties was introduced，except for the Croatian－ Slavonian Military Frontier，which is divided into border districta． The total number of subdivisions amounts to 80 ，of which 65 appartain to Ilungary Proper and Transylvania， 1 to Fiume and distret， 8 to Croatia and Slavonin，and 6 to the Croatian－Siavonian Militery Frontier．Hungary Proper，accordiag to ancient uasge， Is generally divided into four great dívisions or circles，and Tran． sylvania has since 1878 bean regarded as the fifth．Neither numerically nor according to territorial extent are the present 65 counties distributed equally among their respective circles，which must be regarded ns geographical rather than political divisiona，for they are not recognized in tho judicial，fiscal，military，postal， and adminisirative relations of the country．${ }^{2}$ The circles are－

Cis．Danubia（north and east of the Danube），coutaining 13 courtios：Pest－Pilis－Solt－Kis－Kun，Bács－Bodrog，Nógrid，Hont， Fisztergom，Bars，Zólyoun，Lijtó，Arva，Thurócz，Trenesén，Nyitra， pozsony．

Trans－Danubia（aouth and west of the Daqube）， 11 counties． Moson，Sopron，Gyor，Komärom，Fehér，－Veszprem，Vas，Zalla， Somory，Baranya，Tolaz
Cis－Tisia ${ }^{3}$（north and west of the Theiss）， 11 counties：Szeles， Commor and Kis－Hont，Heves，Jibz－Nagy－KuidSzolnok，Borsolt， Turna，Abuaj，Saros，Zemplén，Ung，Bereg．

Trans－Tisia（gouth aut east of the Theiss）， 15 countics： Maramaros，Ugocsz，Szatnár，Sziligy，Szaboles，Hajhú，Bilar， Lèkés，Cannád，Carngrid，Arad，Torontál，Temeq，Krasso，Szurény
Trans－Kírilyhago，or Transylvania， 15 comaties：Alsó－Fcher， Beaztercye－Nasacod，Brassio，Csik，I＇naras，Híromszik，IInnyad， Kis－Kukullo，Kolozs，Maros．Torla，Nagy－Kukullo，Szeben，Szolnok－ Doboka，Torda－Aranyos，Uilvarlecly．

In the folluwing list of divisions the foreign forma of the names of towne are given which are most frenurntly mat with in tho Geruan nnd Englishe press．Not leing recognized offici－ ally，these aro fulling into disuse in Mumgary．

[^65]Political and Adminsstative Divisions．

No．	Coluty．	County Tewa．	
		Ofllicid Name．	Forelgn Equivalent．
	Gungary and Transylvania．		
1	Pozsony	Pazsony	Pressburg
2	Nyitra	Nyitra	Neatra
3	Trencsén	Trencsén	Trencsia
4	Árra	a lsó－Kubin	
5	Llpt 6	Llpto－Szent－Miklos．	
6	Thurbez	Thurocz－Szent－3lation	
$\stackrel{7}{8}$	Zolyou	Beszterczebátics	Nensohl
8	Bars	A ranyosmarót	
9	Folit	Ipolysag	
10	Notral	Buiassa－Gyarmat	
11	Esztergon	Esztrigon	Gran
12	Komároln	Komatom	Komorn
13	Györ	Gyür	Rasb
14	Moson	Magyar－Orár	Ungrisch－Altenbarg
1.5	goiron	Sopron	Ocdenburg
16	\checkmark Vas	Szombatheip	Stera－am－Anger
17	7， 7 ¢	Zalu－Egerszeg	
18	Veszprém	Veszprém	Veszprim
19	Feher	Szekesfeheirar	Stuhweissenbarg
20	Somngy	Kaposvar	
21	Tolna	Szegszard	
22	Raranya	Péca	Fdofkirchea
23	Bacs liodrog	Zombor	Pest or Pesth and
$24\{$	$\left.\begin{array}{l} \text { Pest-Pilis-Solt-K:e- } \\ \text { Kun } \end{array}\right\}$	Budapest	Ofen or Buda（lyrtor to 1873）
25	Csongrad	Szeged	Szegediz
$26\{$	J氏uz－Nagy－Eun－ Szolnos	Szolants	
27	Heves	Eger	Eriag
23	Borsod	Miskolez	
29	Gütmòr and Kis－Hont	Rima Szombat	Gross－Steffelsdorf
30	Szepts	Löcse	Leatscina
31	Toma	Torna	
32	Abauj	Kassa	Kaschas
33	Saros	Eprorjcs	Eperies
84	Zempién	Sstoralja－Ujbely	
35	Ung	Ungrár	
38	Bereg	Beregazasz	
37	Míramaros	Szlget	
38	Ugorba	Nagy－Szöllos	
39	Szatmár	Nagy－Károly	
40	Sziligy	Zdah	
41	Bihar	Nagy－Várad	Grosswardelo
42	Suaboles	Nylregyhaza	
43	Hajdr	Debreczin	Debreczin
4	Békés	Gyula	
45	Csanád	Mako	
46	Arad	Arad	
47	Torontal	Nagy－Becskerek	
48	Temes	Temesvar	
49	K rassd	Loros	
51	Szörény	Karinsebes	Dlemrict
82	Alsó Feher	Nagy－Enyed	Drarick
53	Torda－Aranyos	Torda	
54	Kolozs	Kolozsiár	Kinusenburg
35	Szolnok－Doboka	Deés，	
56	Resztercze Naszód	Beszerercze	Blstilez
57	Maros－Tonda	Maros－Yaxarthely	
58	Csik	Csik－Szereds	
59	Udrarhelv	Szekuly－Udrashely	
60	Kis－Kükdlı	Eizsebetvatos	Elizabethatadt
61		Segesvar Nagy－Szebea	Sehä sbarg Hermaniliadt
63	Fogeras	Fogiras	Hermanilsiad
64	Brasé	Bressó	Kronstadt
65	Hialoraszến	Sepsi－Szent－Gybugy	
$66\{$	$\left.\begin{array}{l}\text { Fiume（town and } \\ \text { dlstrici）}\end{array}\right\}$	Flame	
	Croalia and Sturonta．		
67	Finmo	Flume	
cs	Varrab	7．igrab	Agram
193	S＂arave	Yarasd	Warastir
70	K ${ }^{\text {ciplos }}$	Körois	Kreuz
71	Petovar	Belotar	
72	Fonspra	Pizsega	
73	V心がくて	Fazink	Esscg
74	Szerém	Vusovir	
	Croalian．Sharomion Prontier Distriets．		
75	Mitroncz	Minoviez	
78	Vinknvezo	Vinkoveze	
77	Grudisha	UJ－Grallinh	Neu－Gradisk ${ }_{\text {a }}$
78	Petinja	Petrloja	
79	Ogulin	Orulln	
80	Guscples	Goszaics	

The pronulation of Iluagary comprises a freat variety of races，Fepale differing in ingunge sad religion，although uniteal under one tiun common sovereignty．At the census of 1870 the whole population， civil and military（exclusive of children under the nge of six）， nnounted to $15,509,455$ ，whila the total civil population was 15，417，327；of these 7，653，560 were males and 7，763，767 females， the ages of 185 males and 196 females being given as over 100 ycars．

On the ocension of the new political divisiona that took place in 1873，is fresh census was taken of Croatin and slavonia and twa

Military Fruutier. This accoupts for a slight discrepancy with the sbove number of the civil population in the total of the following table (from MM. Ballagi and Kirily), in which the population is arranged according to the new administrative divisions:-

Population.
Hungary Proper and Transylvania
13,561,245
Fiume and district
Croatia and Slavonia
17,884
Military Fronticr.
,150,025

$15,426,249$

According to the Magyar Statistikai Eviönyv (Budapest, 1879), the number of birtha in Hungary Proper and Transylvania during the year 1876 was 623,849 , viz., 320,470 boya and 303,379 girls; of these 23,060 boys and 21,889 girls were illegitimata. The number of deaths in that year was 478,684 , of whom 250,698 wera malea and 227,986 females. The number of marriages was 135,011 . At the census of 1870 there were in the whole Hungarian monarchy 180 cities and large towas, 769 rural towns, 16,376 villages, and $2,450,219$ houses. Budapest, ${ }^{2}$ the capital, contained $270 ; 476$ inhabitants, Szeged 70,179, and Szabadka (Maria-Theresiope!) $56,323$. Four towns centained between 40,000 and 50,000 inkabitants, 9 batween 30,000 and 40,000 , and 21 between 20,000 and 30,000 . Zagráb (Agram), the capital of Croatia and Slavonia, had 19, 357 inhabitata.

As regards nationality the Magyar or pure Hungarian race is the most numerously represented in the kingdom, amounting, accordtng to Dr Konek (see Schwicker, Statistik des Königreiches Ungarn, 1877), to $6,176,612$, or 40 per cent. of the whole civil pepulation. The Magyar element is chiefly confined to Hungary Proper and Transylvania, only about 15,000 Magyars residing in Croatia and Slavonia. - The German population amounta to $1,898,202$ (12.3 jer cent.), for the most part settled io the western and north-western counties of Hungary Proper, bordering on Δ ustria, also in the county of Szepes in the north, in the former Binat, and in the Saron counties of Transylvania. The Roumanians, estimated at 2,608,120 (16.9 per cent.), are mostly resident in Transylvauia and the counties immediately abutting on it. The Slovaks amount to $1,835,334$ ($11 \cdot 9$ per cent.), and the Ruthens to 469,420 (3 per cent.), the former chielly located in the north and north-west and the latter in the north-east of Hungary Proper. The aggregate number of Croats and Serbs is $2,380,985$ ($15 \cdot 5$ per ceat.), ehiefly confined to Croatia and Slavenia and the Dilitary Frontier, where they form 97 per cent. of the population, to the former Servian-Banát, and the sauthern counties of Hungary Proper. The other nationalities, comprising Armenians, Greeks, Bulgarians, Macedo-Wallacbians, Abbanians, French, and Italians, are net largely represented, their total number being estimated at only 48,654 (about 0.3 per cent.); the Italians are, however, to be met with in conaiderahle nuobera at Fiume and in its vicinity. In the above statistics the Jews scattered over the country, and amounting altogether to rather more than half a million, have been reckoned with the various nationalities where they happen to be settled. ${ }^{3}$ The Gipsies, classel partly as Magyara partly as Roumanians, and roughly estimated at 145,000 , have their colonies iu various parts of the monarchy, but more particularly in Transylvanin, aad in tho county of Gömor in Hungary Proper. On the whole the Magyar element may be said to predominate in 27 of the 65 (ncw) counties appertaining to the mother country, the German or Mayryr Cerman in 6 , the Reumanian in 13, the Slovakian in 9, the Servian in 1 , and the Ruthenian in 3. In 6 countips of llungary l'roper no one special natiouality cen be said to have the absolute majoity.
Rellgion. The total number of the various confessions for the whole population (civil and military) has been computed thus:-

The Roman Cathohea are in overwhelming majority in 32 counties, the adherents of the Greek (Eastern) Church in 11, tho Greek Catholics in 10, and the Lutherans in 5 . Further the Greek (hientalists have a majority in 6 counties, the Calvinists in 5, the Joman Catholics in 4, the Luthe, ans in 2, and the Greek Cathelies in

[^66]1 county. The Reman Catholio Chareh has 4 archbishops: Eisteí. gom (Gran), Kalocsa, Eger (Erlau), and Zagoảb. (Agrant), a ud 17. real diocesan bishops; to the latter must be added, noreover; tha chief abbot of Panaonhalma, who likewise enjoys cpiscopalrightis The primate is the archbishop of Esztergom, who also bears tho title of prince, ond whose special privilege it is to crowu the sovereigas of Hungary. The Greek Catholic Church, which is in cons nexion with the Romish communion, owns besides the archbishop of Eszterfom the archbishop of Gyulafeliervar (Carlsburg), or ather Balasfalva (i.e., "Blasiusvile"), and 6 bishops. The Armenian Catholic Church is partly under the jurisdiction of the Rorman Catholic bishop of I'ransylvania, and partly under that of tho. Roman Catholic archbishop of Kalocsa. The Greek (Esstern) Church in llungary is subject to the authority of the metiopolitan of Carlowitz and the archbisliop of Nagyszeben (Hermannstadt); under the former are the bishops of Bács, Buda, Temesvar, Versecz, and Pakracz, and under the latter the bishops of Arad and Karansebes. The two great Protestant communitica are divided into eceleaiastical districts, five for each; the heads of these distriets bear the title of superintendeats. The Unitarians, chiefly resident in Transylvania, are under the authority of a Lishop, whose seg is Klausenburg. The Jewish communities are comprised in ecclesiastical districts the head direction being ac Budapest. At the commencement 1870 there were 19,858 clerics of various creeds in Hungary.

Since the ycar I867 great improvements have been effected in Edu.3the ellucational system of Hungary, especially in IInngary Proper tio and Transylvania. Before that year public insuluction was in the hands of the ecclesiastics of the varions confessions, and the publio schools had in consequence more or less of a denominational character. One of the first cares of the new responsible miaistry of 1867 was to provide for the education of all clifilren not attending the then exigting scholastic establishmenta, by the introduction of supplementary non-denominational seheols. By a law passed in 1868 the Covernment made it compulso.y on children of both aexes between the ages of 6 and 12 to attend school, and it moreover rcquired that children from 12 to 15 should attend the "repetition schools." The educational system of Croatia and Slavonia is autonomous, being under the independent direction of the CrostianSlavonian provincial government.
The various educational establishments may be divided into four classes :-common, middle, high, and special schools. In $18 i 7$ Hungary Proper and I'ransylvania had 15,486 belonging to the firstmentioned class; of these 13,755 were private or denominational, and 1731 communal ond state schools. These figures show a total increase of 2341 since the ycur 1865 , when the number was only 13,145. It is estimated that at the end of 1877 there was one school for every 870 inhabitasts. In that year the number of children between the ages of six and fifteen who came under the education act amounted to $2,127,950$, and of these $1,559,636$ or 73 per cent. attended; whereas in 1869 t'e $^{\text {'ce }}$ percentage of day scholars barely reached 48 , showing an increase of 25 per cent. in the cuurse of cight years. In 187 there was already an attendance of $1,497,144$, or nearly 70 per cent. The number of children who attended schoul in Croatia and Slavonia, with the Military Fronticr, at that date was 73,635, making a general total for the whole of Hungary for tho year 1874 of $1,570,779$. On account of tho varicty of languages end races prevailing in many parts of Hungary, the edncation in numerous schools has to be conducted in two, and in several instances even in three languages. Uut of 15,486 scheols ${ }^{4}$ in Ilungary Proper and Transylvania in 1877 Hungaian was used ia 7024, German in 1141, Rountanian in 2733, Slovakian 1n 1901, Serviaa in 259, Croatian in 70, Ruthenian in 491, two languages in 1692, and thice in 135. The aggregate number of teachers in the above schools was 20,717.
The midile schools consist of the gymnasin, real-schools, and similar institutions. In 187 there weic in llungary Proner and Transylvania 146 gymmsia, with 1734 teachers and 26,273 pupils; in 1877 the gymaasia had increased to 149 , the teachers to 1814 , and the pupils to 31,455 . In 1871 thure were 32 ral-sehools, with 387 teachers and 7743 pupils; in 1877 there were 20^{3} such sehools, with 353 teachers and 66 ± 7 pupils. The above results arllad together give an aggregate, for the year 1877 , of 175 schools, 2197 teachers, and 38,102 pupils. With the omission of a few of n specially sectarian, technical, or private character, the total number of middle sehoolg at that time in the whole llungarian monarely (including Croatia and Slavonia and the Military Frontier) wis, as nearly as can be computed, abont 205, with some 2450 teachers, and 42,000 pupils. In the mother country thate were also 51 training seminaries ${ }^{6}$ for masters (2553 scholars), end 14 for mistresset (1199 scholars); of these 65 establisliments, 16 of the former and 6 of the lather kind were state, and tho remaining 43 confessional, viz., 26 Loman Catholic, 3 Greck Liastern Chureh, 4 Lutheran, 9 Colvinist,

4 Of the childich wholeft thene schools io 1877, the percentane of those whe conlil both read and write was sis, of thase who could only uculd is.
conlin both read and write was sh, of thase who could only we.td is. formmion. the total number of teal schoslw jerfect and imperfeet, in formation.

and 1 Jewish. The number of commercial schools was 84 , with 129 masters and 1114 pupils.
The tigh schools comprise the uaiversities of Budapest, Eolozsvar (Klameaburg), and Zagrab (Agram), the Joseph-Polytechnic, the theological institutes, the law academies, \&c. The Budapest university (founded at Tyruau in 1635) has fonr faenlties, - theology, jurisprudence, medicine, and philosophy. In the year 1877 the number of professors smounted to 166 , and that of students to 2929 (in 1878 to 180 and 3117 respectively). The nuiversity of Kolozarair was founded in 1872, and is similar in its organization to that of Budapest, excenting that it has a faculty for mathematics and oatural science, but none for theology. The number of professors in 1877 was 64, and that of students 391 . Zagrib nniversity was founded in 1859 , but was not in active operation till 1874, and was even then incomplete in its formation. It has three facnlties,jurisprudence, theology, aad philosophy. The Joseph-Polytechoic, ranking as a bigh school at Budapest sinco I871, had in 187% as many as 56 professorg with 800 students. The number of theological institutions in Huagary Proper and Transylvania at that date was 45, with 284 professors and 1534 novices; 25 of these institutions were Roman Catholic, 4 Greek Catholic, 3 Greek Eastern Church, 7 Lutheran, 5 Calvipistic, and 1 Unitarian. There were, morpover, 12 law academies, with 115 professors and 1087 gradents. In 1878 there were 125 professors and 1043 pupils. In Croatia and Slavonia there were 5 theological institutes (4 Roman Catholic and I Greek Eastern Church), with about 30 professors and some 200 stndents. The special schools are for particular branches of science and art. Ameng these are the school of design at Budapest; the music acadeny (founded 1875); several establishments for teaching miniog, at Selmecz (Schemnitz), Nagyíg, Felsö-Banya; farmiog and agriculture, at Magyar-Ovár (Altenburg), Keszthely, Kolozsvár, Debreczen ; and the mavagement of forcsts, at Selmecz; also inatitutce for the blind, deaf, and dumb, sad for lanaties at Vácz (Waitzen), Budapest, and Pozsony; and schools for veterinary surgery, obstetrics, \&c. There are, moreover, military seminaries at Budayest, Kassa (Kaschan), Déva, Köszeg (Güns), Fehértemplom, and Zirgráh, and a naval echool at Fiurne.

The HIungarian academy of sciences is the supremo representative of the national culture. First constituted with royal sanction in 1830, the acalemy in 1879 consisted of 321 (224 home and 97 foreign) menbers, arranged in 3 classes Next follow the Kisfaludy (compriaing in 1879 only 50 homa and 15 foreign members) and Petëf societies of Budapest, the royal meteorolorical institute, and the medical and physical (natoral science), historical, archeological, geological, geographical (founded 1872), and philological (1875) gocieties. To thesemust be added the Roman Catholic "St Stepben"s union," the "Protestant union," the Zagrib "South Slavonian D.cademy" (fouvded I861), and the varions Transylvanian and provincial learoed societies.

As the industrial products snd commerce of Hungary have been already described in the article Austria (vol. iii. p. 110-121), we need only add hera a few remarks as to the chief localities of certain trades and manufactures
The princijal machine factories, foundrics, bell and type works, and works for iroo and other metallic waros are at Pest, Budi, Tennesvár, Jesicza, Diósgyor, and Sopron (Oedenburg). Boat-building is carried on at the chief towas on the great rivers, especially at Szeged, Arad, Buds, Komárom (Koluorn), and Györ (Rasb); steam-veseds are constructed at Buda and Finme. The glass manufacture, mostly carried on in the billy disteicts, is not ret fully developed, and the articles are of an inferior quality. The best manufactories of stoneware and earthenware are those of Caikvèr, Pées (Fünflkirchen), Rimaszombet, Murány, Päpa, Kószeg(Gúys), Jglo, Kórmöczbinya, Zägráb, and Krafina; of porcelain the most important is that of llerems. Debreczen, Papa, Sclmeczbanya, and Szigetvir are famed for theor clay pipes. The preparation of chamical stuffs is curied on chiefly at lest, Nagyszombat (Tyrnau), Pozsony (Pressburg), Nagyszeben(Jermanastadt), and Ujmoldeva; whilst Debreczen and Szeged are noted for their soap and candles. Oil factorims are numerons, especially in Plangary Proper and Transylvania; the chief oil millg and refining houses are at lest, New l'est, Rákospaloti, Sackesfchirvár (Stuhlweisscnburg), Gyor, Pozsony, Kassa (Kaschau), Temesvir, Brassó, (Kronghadt, and Cserveoka, wlich last has forty mills. The maunfacture of ailk stuffs ia still undeveloped, but there are spinneries at Nagyczonk, IIidjn, Sopron, and Filtorony, also in the lbanat, and in various parts of Trangylvonia and of the frontier districts. filax is mostly homespun, and coafined to the commoner kinds of linen. There are factories for weollen yarn at I3rassó, Nagyszobon, nud Gurano, and for woollen stufs at Sosonez ond Szakolcar. Coarso cloth is mado in many farts of the kinglom. Jeather is fre]nat d at Kassa, t'ozsony, Ihazsnyó (liosenau), Kormend, Tumesvir, Kicsmaik, ant bulajust. P’aper ia mnde at Diósgyör, Nezsider (Neusidell), Jermaracz, Salabos, and Fiume. Perwerics aro ehicfly to ba found in the noighburhood of the large towns, which contain a safed population, as the Magyars are dimkers of wine ind spirifs
To the ahove must ten now atded the "Rabbincrachuic." opened October 4.

rather than of beer; the-breweries of Kobanya near Pest are the most extensive. The taste for beer is said to ba increasing, although the total number of breweries in Hongary has since 1860 been stcadily falling, and many of the smaller establishments no longer exist, or have been absorbed. A considerable quantity of beer is, moreover, imported from Bohemia and the neighbourhood of Vienna. The largest sugar-works are those of Surany, Moson (Wieselburg), Szent-Miklos, and Edeleny. The most important tobacce factories are those of Pest, Kassa, Debreczen, and Fiume.

As regards the number of factories exact data are not forthcomiog. It appears, however, that in 1874 there were in the whole kingdom altogether 82,570 spirit distilleries, of which 991 wera substantial factories and 81,579 rural stills. The breweries in activity at that date amoonted to 24%, of which 211 were in the mother country, and 36 in Croatia aod Slavonia. There were, besides, 20 sugar refineries, and abont 30,000 four-mills of various descriptions, of, which nearly 25,000 were in Hungary Proper a ad Transylvania. In fact the preparation of flonr, which is, inoreover, largely exported to Geronany and Switzerland, is one of the most im. portant indnstries of Hungary.

According to a report of M. de Hienonimy, under secretary of Commn. state in tha Hungarian ministry of public Forks, the length of nicstion Hoogarian railways in operation in the year 1867 was only 1875 Eoglish miles. The length of railways constructed from that date to the year 1876 anounted to 2675 miles, and thua at the begioning of 1877 there were 4050 miles of railray in operation in Hungary. By the early part of 1879 the total length was about 7000 kilometres or 4480 miles. There are also some 18,000 miles of highways (good and bad), and more than 2500 miles of navigable river and cansl communication. Tha imports (including those from Austria) may beroughly estimated at $£ 45,000,000$, and the exports at $£ 35,000,000$. There is also a considerable transit trade carried on between Austria and the western stateg and the regions of the lower Danube, estimated at $£ 8,500,000$ yearly. The number of freighted vessels that arrived at the perts of the Hügarian Littorale in 1876 was 3594 , the number that left 3362 ; of the former 909 , and of the latter 926 were ateamers.

Besides the several branches of the "Austrian-Huogarian Bank" Banky at Budapest, Kassa (Kaschitu); Debrecied, and Temesvar, Hnngary possesses about 120 industrial, commercial, and credit books. There ara, moreover, 12 chambers of commerce and industry at Budapest, Pozsony (Pressburg), Kassa, Sopron (Oedenburg), Debreczen, Temesvár, Arad, Kolozsvír (ǩlausenburg), Brassó (Kronstadt), Fiume, Zagrah (Agram), aud Eszék. The number of saviogs banks is about 310 ; of other associations, such as loan societies, popular, mutual, and alliance banks, \&c., the aggregate is over 200 . In the year Post1876 the number of post-office orders issued amounted to $1,832,757$. office. The total number of telegraphic messages sent, received, or transmitted was $6,462,335$. The aggregate of postal missives was $112,851,516$; of these $46,617,106$ were prepaid and $1,452,233$ not prepaid letters; $4,5 \$ 1,027$ wera registered, aod $13,954,354$ official letters; $9,016,232$ were post-cards; $28,876,062$ were articles per newspaper, $1,364,499$ per pattern, and $6,990,012$ per book post.

The form of government in Hungary is that of a constitutionsl Goveru mourchy. The sovereign power is at present vested in the houge of raent. Hapsburg-Lorraine, whose descendanta succeed by right of prino. geniture in the male line. By virtue of the Pragmatic Sanction, females may also reignin the event of there heing no male successor. The king is the guardian of the laws, and the head of thosarmy and of the executive. His power is limited by parliament, which conaists of an upper and in lower house, and must be summoned yearly and elected triennially. The upler house comprises 407 members, viz., 3 princes of the reigoing house, 81 Roman and Greck Catholic prelates, II atandard-bearers, 67 . lord-licuteannts of counties, 3 dukes, 219 counts, 81 baroan, and 2 deputies for Croatia and Slavonia. The lower house, dected by the eligible tax-payers, censists of 416 members, of whom 403 represent Hungary Proper and Transylvania (includiag also Fiume), and 43 Croatia and Slavonia and the Military Frentier. The langunge used in the house is the Magyar, but the representatives of Crostia ond Slavonia may use their nativa lancuage. The executive is vested in a president of the cabinet and the following ministries:-court; fidance; interior; religion and edueation; justice; public works; agricultare, inlustry, and commerce; honevil (home-defeace); and a miniatry for Croatia and Slavonia. For mutters relating to itw special provincial administration, Creatia and Slavonia has at Zagrab (Agram) its owa govemment, at the head of which is the bao, whe is momi. nated by the king. The departments are three,-interior and finance, religion and education, and justice. (For the relations of the kinglom of llungary to the joint Austrian- Jinngarian monarchy, and for the dulegations, comparative revenue and cxjunliture, joint army, se., see Austsid, vol. iii. pp. 122, 123.)
The judieial power is indenendent of the administrative, the func- Justicetions of the minister of justice being to see that the laws are properly npplied. The suprome courts of justice, as also these of encond instance for Huegary l'roper and Transylvania and Fiume, are at Budapest. There isalse a secondury court of appeal at Daros-

Vasárhely in Transylvania. The number of royal courts of justice in the mother country (ineluding also Fiume) in 1877 was 66, and there were 375 circuit courts. Of the 23,035 criminals condemned in 1877, 13,237 or $57 \cdot 47$ per eent. were completely illiterate, 1193 or $5 \cdot 18$ per cent. were able to read, 8314 or $36 \cdot 10$ per cent. could both read and write, and 289 or 1.25 per cent. wero persons of superior cducation. As to the punishments awarded, 34 persons were condenined to death (of whom only 3 were executed), 18 were sentenced to prison with liard labour for life, 124 to from 10 to 20 years' imprisonment, 272 to from 5 to 10 years, 2537 to from 1 to 5 years, and 19,053 to less than a year's imprisonment.

As regards the financial position of the kingdom, owing to the rast sums spent on state railwiys, the Fiume harbour works, and other large undertakings, the annual defieit rapidly inereased until 1874, but from that date until 1878 it fell from about 33 to 21 million florins, the budget for the latter year giving a revenue of $219,846,016$ and an expenditure of $240,967,435$ florins.

The national colours are red, white, and green The only order is that of St Stephen.

Crown and Arms of the Realm of St Steplen.
The sheid contains four quarters:-1, aznre, thrce leopards' heads crowned or, for Da/matia; 2, chequy, argent and gules, for Croapia; 3 , azore, on a fess wevy gules, cotised argent, a marten corrant proper, in chicf an estoile of six points or (Mars), fer Stavonia; 4. ceupé : the chlef azure, a demi- eagle issuant sable (Hungarian nalien), in chief [a sun er, and] moon argent (Szekier nation); The base or, seven towera (Slebenburgen) embattled four and three gules, over all a fesse gules, for Transylranit. in base ente, a double-headed cagla rising centourne, for Fiume. On an eseutcheea of pretence, barry of elpht, argent and gules, impaling, geies, en a iriple mount vert, out of n crown or, a patriarchal cress orgeet, for Hungriy Pioper; the bars argent representing eniblematleally the nanebe, Thelss. Drave, and Save; the triple mount, the Tatra, Fira, ind Mara. The whole is surmeuted in clice hy clic Hungatan crown, with two genil or angel supporters. The lower part of the crown is a circlet Inlold with jewels and angel supporters. The lower part of the crown is a circlet inlold with jewels and forming the middle portion of the arch or upper part of the crown, which is surcounted by a slenting crose
Bibliographical Sources,-K. Ballagl aod P. Kifaly, A Nngyar Dirodalom Irirasa (Budapest, 1877-73), complled with apecial reference to the new county divisions of 1876: AVogyar' Stafistitai Evtönyv: Statistasches Jahrouch, 1874.77 (Budapest, 1875-79), Issued by the Iunparlan Royal Statistical Iureau; K. Kclet1 and L. Beöthy, Magyarország Statistikdia: Statistique do la Hongrie, published if. Iungarlan and French, for the Internatienal Congress ot Budapest in 1876 ; in Kungarian and rench, for the internatienal Congress st Budapest in S . K . S. Konek. Bayyar Birodalom siatisztiat kezikonye (Budapest, 1870) i J, R Literarische Berichte aus Unijavn (Budapest, 1877-79, vol, Lil); : Ad K. Keleth, Hazänk és nepe (Peok 1871 and 1973), and Uebersicht der Bevotkerung des Siants. orbietes der ungarischen Krone (Feat. 1871). A good natlve map fer the new sdnuludstratlve ilivisiens of 18 i6 is that of J. Mishock A Magyar torona orszigainak adozinnzzalisi beozzto of (Budapest, 1977). Fork the physical features the Uebero
 leaves littlo to be dealred Fer bibliostaphy of A.
 Oesterreich-Unjarn (Vicena, 1815).

II. History.

The south-western portion of Hungary, as formed by the Danabe, belonged to the Roman province of Pannonia; the south-eastern portion, as formed by the Theiss (Ptol. iii. $8, \S 4$), to that of Dacia; the tract of country lying between these two rivers was inhabited by the Jazyges. As carly as 274 a.d. Dacia was abandoned by the Romans to the Gotbs. In 376 the Huns crossed the Don, and, having overrun the intervening country, about 380 established themselves in Pannonia, where under Attila their power was so vastly extended that in 432 the authority of the Romans entirely ceased. After the death of Attila (453) the greater part of the country fell into tho hands of the Ostrogoths and Gepidx. These yielded in their turn to the Longobardi, who in $526-548$ gained possession of the 'rhole of Pannonia . When the latter removed to Italy
in 568 , the A vars entered, but they were reduced to subjection by Charlemagne in 791-796.

The history of Hungary mally begins with the appearanco of the Magyars in Europe about the year 884: It is generally admitted that they were a branch of the Turanian stock, and deseendants of the ancient Seythians; certain affinities of language show them to be related to the Lapur, Esths, and Finns. They are believed to bave wandered from the Ural mountains to the region of the midale Volga, and thence to have migrated westward orer the Dniéper and the Bug. At the time of their crossing the Carpathians about 889 , under the lead of Almos, they were divided into seven tribes, united by a compact which guaranteed justice and equality among their members. At the death of Almos in 889, the chiefs oi the tribes elected his son Arpata successor. His followers orerran the whole of Hungary and Transylvania, extending their conquests beyond the ancient provinee of Pannonia. From the time of the conquest to the year 1000, Hungary was ruled by dukes, the regal titlo being first assumed by Vaik (Stephen). The follọwing table gives the dates of accession of the Arpad dynasty, which ruled over Hungary for upwards of four centuries:-

Ladislaus I., the Saint... 1077
Coloman the Learned 1095
Stephen II. 111
Bela II. 1131
Geyza II. 1141
Stephen III. 1161
Ladislaus II. and Stephen 1162
IV. (usumpers)....
Stephen lII. (asain) 1162
Bela IlI. 1173
Enieric 1196
Lardislaus III. 1204
Andrew II. 1205
Bela IV. 1255
Stephen V. 1270
Ladislaus IV. 1272
Andrew lII. 1290

The following ruled from the extinction of the nativo dynasty to the commencement of the Hapshurg period :-

Wenceslans (nsurper) 130	Ula	
Otho (usurper).............. 1305	John Hunyady (Guber- ${ }^{\text {¢ }}$	
Charles Robert (of Anjou) 1308	nator)..........	
Louis I., the Great 1342	Ladislaus V. (Posthu	
Maria....................... 1382	us).	
Charles II. 1385	Mathias	145 s
Marin and Sigismond 1386	vinus)	
Albert of Austria........... 1437	Uladislaus II.	
Elizabeth 1439	Loui	

Under Zoltín and Taksony the Hungarians made various expeditions beyond the limits of their own country, spreaning terror and devastation through Europe. They were ultimately checked, however, by the emperor Henry I., near Merseburg, in 933, and afterwards by Otho the Great at the Lech (955). These defeats caused the Hungarians to turn their attention to the consolidation of their power witbin their own territory. Geyza, who sueceeded Taksony in 972 , married a Christian prineess, and also furthered tho introduction of Christianity by entrusting the education of his son Vaik to Adalbert, bishop of Prague. On succeediog his father, Vaik applied for and received the titlo of "apostolic king" from the hands of Pope Sylrester. II., and was crowned in the year 1000 under the name of Stephen. This monareh, known as "St Stephen of Hungary'," laid the foundation of many existing institutions. Ife subs. divided the land into counties, and provided it with an eceled siastical organization, establishing bishoprics, and founding churehes, chapels, convents, and sehools. Having elevated the bishops to the highest posts of trust and power in tho state, he fored the people to pay tithes to the clergy. Ho also created a national council, consisting of the lords temporal and spiritual, and of the knights or lower nobility,
from which assembly the subsequent diets originated. Stephen dying in 1038, and leaving no leir, the queen Gisela contrived to gain the throne for her nephew Peter, but a portion of the nobles declared for Aba, who was of Arpadian blood. In the wars which ensued both prinees perished, when Andrew I., who was nearly related to Stephen I., succeeded to the throne in 1047, but he was ultimately foreed to yield it to his brother Béla I. The next monarelh's reign that offers anything worthy of notice is that of Ladislaus I., whose religions zeal gained him the appellation of "Saint," and who was distinguished on account of his conquest of Croatia (1089) and part of Galicia (1093), and for bis victeries over the Cumans (1086-89), the invaders of Transylvania and the neighbouring districts. His nephew Coloman, a brave and talented monarch, guarded the country against the depredations of the hests of crusaders who passed through it during bis reign. He also wrested Dilmatia from the Venetians (1102), and annesed it to the Hungarian kingdom. Coloman died in 1114, leaving the throne to his youthful son Stephen II., who soon entangled himself in warfare with neighbouring princes. The reign of his successor Bela II. (1131-41), like that of the other kings of the 12th century, presents few features of interest. That of Andrew II. (1205-35) is relebrated on account of the "Golden Bull," or Hungarian Magoa Charta, extorted from the king by the nolles in the year 1222, nfter bis return from a crusade forced upon him ty tho pape. The Golden Bull guaranteed that the states ehould be convoked annually, that no noble was to be arrested without being first tried and legally condemned, that the property of the nobility should be exempt from dues, that foreign service was to be rewarded, that appointments to the lighost offices should be under the control of the diet. It also contained numerous other clauses granting certain freedoms, privileges, and exemp. tions to the nobility and the clergy, and included a proviso of the right of armed resistance to tyrannical measures on tho part of the crown. This charter was duly sworn to by aubscquent kings of Hungra, but the article relating to tho right of appeal to arms was abrogated in 1687Λ $f \in \mathbb{y}$ years after the aecession of Dela IV., son of Andrew IL, the Mongolsinvaded and devastated the whole country, massarring great numbers of the pupulation (1241-1\%). Léla did all in lis power, by the introduction of Cerman culonists, to retricve the disasters inflicted by the invasion ; but his wars with Austria and Styria, and the revolts of his son Stephon, were prejudicial to tho restoration of order. He, however, successfully repelled a second Mongul invasion in 1261. The reigns of the nest two monarchs, Stcphen V. (1270-72) and Ladislaus IV. (1272-90), are nuticeable chicfly for the wars on behalf of Rudolf of Austria against Otokar of Dolemia. Ladislaus is said to have been murdered in 1290 amidst violent commo. tions eaused by his Cumanian annours. His successor Amidew IIl., the last king of the Arphed dynasty, after a fhort but disturbed reign, died in 1301, leaving no issue.

On the death of Andrew III. the royal dignity became an oiject of competition. One party cheted Wenceslans, son of the king of Bohemia and loland (1301-5), and after him Ohtho of Bavaria ($1305-8$), both connected with the Arpalian huse. lope Boniface Vill, mud the bistops shecessfully espoused the canse of Charles Rulert of Anjon, nephesw of the king of Naples, and related to the extinet dynasty through his mother, a daughter of Stephen V. Inder Chanles anil his sun Lounis, which latter in 1370 succeded Casimir III. on the throne of Poland, Hungary mate great progress both at home and abroad. During the reign of Louis it became the most formidable state in Europe Among many other territuries he cunqueted

Muldavia (1352) and Bulgaria (1365); he also greatly extended and developed the royal prerogatives in his own kingdom. Upon the death of Louis (1382), the states raised to the throne his daughter Maria, who, after the assassination of the pretender Charles 1I.' (1386), reigned conjointly with her consort Sigismond of Brandenburg, son of the emperor Charles IV. In the early part of tiis reign the Turks under the sultan Bajazet infested some of the Hungarian provinces, and at length in 1396 utterly defeated Sigismond at Nicopolis, obliging him to fiy the kinglom. During his absence a party beaded by the palatine Gara raised the standard of rebellion, and upon bis return deprived him of his liberty. Scarcely was he released when he met with a rival in Uladislaus, king of Poland, who bad married Hedwig, second daugliter of Louis. Elected emperor (1411), and afterwards king of Bohemia (1419), Sigismond, instead of providing for the safety of the country, employed bis time in persecuting the Hussites. He eaded bis long and troublous reign 9th December 1437, and was succeeded by his sun-in-law Albert, archduke of Austria.

The year I439 witaessed the sudden death of Albert; his widow, however, was soon delivered of a son, Ladislaus Postlumus. The states invited Uladislaus of Poland to the throne, and thus considerable dissensions existed until the death of the queen in 1442, when the party of Uladislaus secured his accession. At the commencement of his reign the Turks were several times defeated by John Hunyady (Corvinus), and they were at length forced to conclude a truce for ten years. The Hungarians, having almost immediately broken faith with the Turks, and taken the field against them, were completely routed at Varns on the 10th November 1444. In this battle Uladislang met his end, whilst Hunyady escaped with a few followers. Anrid the troubles which ensurd the states proclaimed Hunyady "governor of Hungary" pending the absence of Ladislans Posthumus, whom the emperor Frederick III. refused to deliver to the Hungarians to be acknowledged king. After the release and recognition ${ }^{1}$ of Ladislaus in 1452, Hunyady resigned the office of governor, and was numinated generalissimo by the king.

After the fall of Constantinople in 1453, Mohammed II. made preparations for the conquest of Hungary, and in 1456 appeared before Belgrade with an army of 150,000 men. This ferce was, however, utterly routed on July 21, 1456, by the combined Hungarian, Italian, and Spanish troops, in all about 70,000 men, under the command of Joln Hunyady and the monk John Capistran. Soon after this victory, which resulted in the Turbs raising the siege, Hunyady succumbed to dysentery aggravated by excessive fatigue, leaving behind him two sons, Ladislaus and Mathias. The former was exccuted by order of Ladislaus Posthumus, whilo the latter, after that monarch's death in November 1457, being supprorted by a strong party under the leadership of his uncle Michacl Sziligyi, was elevated to tho royal dignity on tho 2dth January 1458 , under the titlo of Nathias I . The emperor Frederick, having disputed his right to the throne, and assumed the reval title hinself, was forced by Matthias to surrenter all claims to the llungrian dominions, and to conclude a prace in July 1463. During the next few years Matthias was employed in reorganizing the military system and rupelling the Thrks. 1lo after this turned his arms aguinst Podichrad, king of Bohemia (1468), ostensibly for the purpose of defending the Catholies aganst the ILussites. Being victorious in these campaigns, Matthias in May l4Cs caused dimself to be proclaimed king of Dohemia and Morava at Omutz Meanwhile tho 'lurks, taking odvan-

[^67]tage of the absence of the king, maae incurstoas tato the southera provinces of Hungary. This aisfertune created a party against Matthias, who, haviug returned to Hungary and restored order, marched against the Ottoman ferces, and totally defeated them in a sanguinary battle on the plains of Kenyérmezö in Transylvania (13th Novenber 1479). After the death of Mohammed IL.in 1481, Matthias renewed hostilities with the emperor Frederick, aud having taken Vienna (1485), made it the seat of Lis government. Matthias was not only an able and warlike monarch, but a patron of letters, ${ }^{1}$ and administercd his kingdom with impartiality, subduing the rebellious nobles, and restoring order, law, and prosperity.
At the death of Matthias, 6th April 1490, there were several pretenders to the thione, anong them John Corvinus, a natural son of the late kiag, the emperor Frederick, and his son Maximilian. But the states disallowed their claims, and declared for Uladislaus of Bohemia, whose weak reign is marked chiefly by the insurrection of the peasantry in Transylvania, under Dózsa, whick was suppressed with great bloodshed in 1514, as also fer the collection made by Verböczy of the common laws of the realm, entitled "Tripartitum Opus Juris Consuetudinarii Inclyti Regni Hungariz," which code was aanctioned by the kiag and the diet in 1514. Under this menarch and his soo Louis II., who succeeded him, the power of Hungary rapidly declined, and it was at leagth utterly overthrown by the Turks uader Soliman the Magaificent. This powerful ruler, having captured Belgrade and Pcterwardein, advanced at the head of 200,000 men into the interior of the country, and annihilated the Hungarian army at the battle of Mohâcs, 29th August 1526. In the carnage several prelates aad the lower of the Uungarian nobility were destroyed, and Louis himself perished in his glight. The Ottomans, after pillaging Buda and spreading devastation over the whole country, took their departure with many thousands of captives.

After the catastrophe at Mohács and death of Louis in 1526, a portion of the nobles declared for John Zápolya, Waywode of Transylvania, who was accordingly crowned at Székesfehérvár (Stuhlweissenburg). Maria, the widow of Louis, immediately summoned a diet of the nobility of the western counties at Pozsony (Pressburg), who pronounced the election of Zápolya illegal, and proclaimed the queen's blother, Ferdinand of Austria, king of Hungary (16th December 1526). In the following August Ferdinand, haviag proceeded to Hungary, was again proclaimed king at Buda; he was afterwards crowued at Székesfehérvír, 5 th November 1527. With this monarch the Hapsburg period commences, the sovereign rulcrs of Austria after him succeeding to the title of the Hungarian crowa. The following is a list of the kings of Hungary, and of the more prominent of the princes who ruled over Transylvazia to the end of the 17 th ceutury:-

Hung	Francis
Ferdinand I. (rival John)	Ferdinand V.
Zipolya)................ ${ }^{15}$	Francis Joseph (crowned
$\left.\begin{array}{c}\text { Maximihan (rival Sigis- } \\ \text { mond Zápolya)......... }\end{array}\right\} \mathbf{1 5 6 4}$	1867)...................
Rudolph I. 1577	Transylvania.
Mathias II......... 1608	Stepnen Báthori 157
Ferlinand 11. 1619	Stephen Bocskay 160
Ferdinand III............... 1637	Gabriel Bathori 1608
Leopold I. 1657	Gabriel Bethlen 1613
Joseph I. 1705	George Rakóczy 1. 1631
Charlea 111. 1711	George Rákóczy 11.......... 1643
Maria Theresa 1740	Iohn Kıcmény -............ 1661
Joseph II.................... 1780	Michat Apaffi I............ 1661
Leopold II. 1790	Michacl 1 pafi II. 1690

[^68]John Zípolya, belng compelled to retire before the Hars superior forces of Ferdinand, took refuge for a time in huls Poland, whenec he sought the assistance of Soliman II. lynasLs: The sultan listened to his request, and in 1529 cenducted a large arany into Hungary, took Buda by storm (3d September), reinstated Zápolya, and drove the Λ ustrians before him to Vienna. Failing to take that city, Soliman in October retraced his steps, and after garrisening Buda with 'Turkish troops returned in triumph to Cosstantineple. After several years of desultory warfare between John and Ferdinand, their rival claims were ultimately settled by a treaty concluded at Nagywirad (Grosswardein) on the $25: 4$ February 1538. By this treaty it was stipulated that John was to retain the title of hing, together with Transyl vania and the eastern portion of Hungary then in his possession, whitst Ferdinand was to hold the remainder, with the proviso the John's male descendants were to surrender all clams to the regal dignity. John having died on the 21 st July 1540, his infant son Sigismond was cruwned by the adherents of his fathor, aud he was subsequently confirmed in his title to Transylvania by Soliman. This sultan, however, retained a great portion of Hungary in his own possession, and even placed a pasha as regent at Buda; he, moreover, compelled Ferdinand to pay him an annual tribute of 30,000 ducats. Ferdinand, having caused his son Maximilian to be crowned as his successor in 1563, died on the 25th July of the following year. When Masimilian succeeded to the throne, he found himself obliged to continue the war with the yougg Zápolya, whose cause was espoused by Soliman. In 1560 the sultan, advancing at the hcad of a large foree, was arrested at the small fortress of Sziget by Nicholas Zrinyi, who with a garrison of 3000 men for four weeks heroically defied the whole power of the besiegets. ${ }^{\text {. }}$ Soliman himself died shortly before the final assault on the citadel, which was overpowered only after the destruction of a large part of bis army. In the year 1570 Zápolya concluded peace with Maximilian, and on his death in the following year Stephen Bathgri, with the consent of the sultan Selim, was elected prince of Transylvania. Maximiliaa, having in 1573 secured the succession of his son Rudolph to the throne of Hungary, died on the 12th October 1576.
By this the Reformation bad made considerable progress in Hungary, more especially among the bigher classes, but with Rudolph the perseeution of the Protestants commenced. In Transylvania, however, they met with a protector in Stephen Bathori, from 157 C to 1586 distinguished as king of Poland. In 1604 the Protestants of Hungary, having raised the standard of freedem under Stephon Bucskay, defeated the generals of Rudolph in several engagements, and on the $23 d$ June 1606 they fored hims to conclude peace at Vienna, thus securing to thenselves for a time their religious liberties. In 1608 Rudolph resigned the kingdom to his brother Matthias, who during his short reign showed great toleration towards the adherents of the Reformed crceds. He dicd 30th March 1619, leaviag the crown to his cousin Ferdinand II., the here of the "Thirty Years' War." The accession of this monarch was signalized by the insurrection of the Protestants of Bohcmia, and the renewal of persecutions in llungary, fomeated by the Jesnit prelate Peter Pízmín. But the victories of the Trausylvanian prince Bethlen (Zâbor (Gabriel Dethlen) over the imperialist troops forced Ferdinand to conclude tho treaty of Nikolsburg, 31st Dccember 1621. By this compact the privileges of the Protestants wore declared inviolate,

[^69]and Bethlen's claim to the principality of Transylvanaia and seven counties of Hungary Proper was established. The infriggement of this treaty on the part of Ferdinand brought about a renewal of hostilities, which resulted in a second peace, concluded at Pozsony (Pressburg) in 1626. After the death of Bethlen in 1629, the Jesuits succeeded in training over aeveral powerful families to the Roman Church, and the religious persecutions were renewed by Ferdinand III., who succeeded bis father in 1637. The Transylvanians had elected George Rákóezy as their prince, who pruclaimed himself the proteetor of Protestantism and of Hungarian liberty. Having drawo up a statement of grievances-those of the Protestants. in particular-be laid the documeat before Ferdinand, who, however, paid no attention to it. Rakoczy thereupon collected troops and gained several successes over the imperialists (1644), and in the next year formed a leagne with the Swedes. This coalition brought Ferdinand into desperate straits, and he therefore soon eatered into a treaty of peace with Rakoczy at Linz (16th December 1645). By this treaty, confirmed at the diet held in 1647, Rakoczy was formally recognized as the legitimate prince of Transylvania. He died the year afterwards (1648), and was succeeded by his son George II. Râkoizy. The year 1657 pitnessed the death of Ferdinand III., who was suceeeded by bis second son Leopold I. ${ }^{1}$
During the long reign of this monareh, so injurious to the cause of Hungarian liberty, IIungary was the theatre of intestine wars, insurrections, and the most tragic events. Shortly after bis accession, Leopold beeame involved in war with the Turks, who had created Michael Apaffi prince of Transylvania in the place of his orra partisan John Kemény. The 'Turks, although at first successful, were ultimately defeated by the imperialists at St Gotthard, 1st August 1664. This victory enabled Leopold to conclude a basty and disadvantageous peace at Vasvar (10th August) with the infidels, and to direct his whole encrgics against the Protestants. The irritation consequent upon this barsh treatment resulted in a conspiracy, ${ }^{2}$ which was organized by the Croatian ban Pcter Zrinyi, Count Frangepan, Francis Rákoezy, and the chief justice Nadasdi, and had for its object the separation of Ilungary from the house of Hapsburg. The plot having been diseovered, the leaders were surprised, conveyed to Vienna, and, with the exception of liakiczy, executed (30th April 1671). Although an amnesty was proclaimed on the 6th of June of the same year, Leopold ia February 1673 appointed a bigoted Catholic, John Caspar Ambringen, governor-general of the kingdom, and made every effort to extirpate tho Protestant religion. The oppression becoming at last intolerable, the Protestants again rose in arms under Michael Teleki and Emerie Tükülyi (1678), and were subsequently supported by the grand vizier Kara Mustapha, who in 1683 marelied straight to Vienna with a large force. The valour of Sobieski, king of Puland, delivered the city (12th September 1683), and saved Austria from the threatened destruction. In 1686 Buda was taken from the Turks by Charles of Lorraine, and these troublesome fues were at length driven out of most of the provinees and towns of Ilung:iry where they had been aettled for about a century and a balf. Tho glory of these aclievements was, however, tarnished by the emperor's reveugeful treatmeat of the Mongarians, hundreds of whom, on suspicion of complicity with the enemy, were put to death upon the scaffold crected in the market-place of Eperies by order of General Caraffa, which remained standing from March

[^70]I687 till the end of the year. Leopold at length grauted a general amnesty, but obliged the diet to declare the tbrone hereditary in the house of Austria, and to abrogate the clause of the Golden Bull which allowed the right of armed resistance to tyrany (3list Octuber 1687). The victories of Prince Eugene, which eompleted the conquests over the Turks, resulted in the peace of Carlowitz, January 26, 1699, by which the Porte abandoned Hungary and Trassylvania to the emperor. On the 5th May 1705 Leopold died, and was succeeded by his eldest son Joseph I. In the year 1703 Francis Rakoczy II. headed a new revolution, which lasted till May 1711, when peace was coneluded at Szatmar by Karoly, the chief of the Hungarian generals. The emperor Joseph I. died on the 17th April of the game year, and was succeeded by lis brother the archduke Charles. From this time until 1848 no open rupture occurred between Hungary and her Hapsiburg rulers.

By the treaty of Passarowitz, coneluded 21st July 1718, Temesvár, the last of the Turkisb possessions, reverted to Hungary. In 1722 Charles received the adhesion of the diet to the Pragmatic Sanction, which seeured the right of successivu to the throne in the female line. At the instigation of Russia hostilities were renewed against the Turks, but Prince Eugene being now dead, and no other leader of eniel ability appearing in his place, the Austrians were subjected to a series of disgraceful defeats. These misfortunes were consummated by the bumiliating treaty of Belgrade (18th September 1739), in accordance with which the emperor mas forced to cede the fortress of Belgrade, with Scrvia and Austrian Wallachia. On the 20th October of the following year Charlea died, leaving the throne to hisdoughter Naria Theresa. Her claims to the imperial dignity were almost immediately called in question by Prussia, Saxony, Framee, and Bavaria, and her hereditary dominions were invaded by hostile troops. Maria in deapair fled to Puzsony (Pressburg); and summoned the Hungarian dict. Appearing before that assembly on the 11 th September 1741, with ber infant son Joseph in her arms, she appealed in Latin to the magnanimity and loyal spirit of the nobles. The result of her address was the unanimous declaration on their part: "Moriamur pro 'rege nostro' Maria Theresa." Nor was this aa empty burst of enthusiasm, for the "insurrectio" or general rise of the nation was proelaimed, and a large army collected, and Hungarian blood was profusely shed in support of her cause. Maria repaid the devotion of her subjects by the zeal which she showed for their welfare, and the salutary changes whieh she effected in the eountry. Transylvania was raised into a grand principality (1765), and the town and district of Fiume declared a corpus separatum of tho IIungarian crown (23d April 1779). Maria Theresa also created an IIungarian guard, established several schools, and enlarged tho university at Nagyszombat (Tyrnan), which in 1777 was transferred to luda, and seven years later to Pest. But her efforts to ameliorate the condition of the peasantry, and the reforms which she introduced under the name of the Urbarium (1765), which determined the rights of the tenant serfs in relation to the landowners, are among the chief merits of her reign. Sho died on the 29th November 1780, and was succoeded by her son Josepli II.

This philosophic monareh was wholly carried amay by his zeal for reforms, which were both subversivo of tho constitution and opposed to the will of tho nation. He refused to be crowned in IIungncy, and thas avoided the obligations of tho usual coronation oath. In defiance of ancient custom le carried the crown of St Stephen to Vienna, dispensed altorether with the use of diets, and governed the country autocratically by decrees. He issued
a general edict of toleration in rengious matters (Uctoder 1781), but forced upon the people heavy taxes and foreign officials; he moreover enjoined the exclusive use of the German language in the schools, courts of justice, and public administration. The general discontent at these measures was beightened by the unfavourable issue of the war against Turkey; and Joseph, shortly before his death (1790), found himself compelled to revoke nearly all his edicts, and promise redress to his irritated subjects. His brother and successor, Leopold II., appeased the Flungarians by more definitely confrming the rights and liberties of the nation than any of his predececors. After a reign of only two gears Leupold died, and was succeeded by his eldest son Francis I. (1792). This monarch duly swore to maintain the laws and constrtution of Hungary, but his efforts were eventually directed'wholly agaiust them. During the continuance of his war with France he repeatedly convoked the states, only, bowever, for the purpose of obtaining supplies of men and money to carty on the struggle. Through the whele of this crisis the Hungarians faithfully supported the Austrian cause, and disdainfully rejected the offers of Napoleon in his proclamation of the 15 th May 1809, calling upon them to rise for national independence. But at the end of the great war the Hungarian nation received little gratitude for its devotion. Francis for several years discontinued the holding of the diet, and acted in direct violation of the constitution by levying troops and increasing the taxation to more than double. The opposition which these arbitrary measures provoked in the counties at length obliged him in 1825 to convene the states, and thus appease the wide. spread dissatisfaction.

To the holding of this diet, io which Count Stephen Széchenyi initiated the use of the Magyar instead of the accustomed Latin tongue, may be traced not only a reaction in favour of the native language, but also the commencement of the reform movement. The spirit of nationality was fully aroused, and liberal sentiments were diffused over the whole kingdom, notwitbstauding the active opposition of the Viennese court influenced by Metternich, in the reigns of buth Francis and his successor Ferdinand (1835). The diets of 1832,1839 , and 1843 passed several measures of reform, emengst which the most important were those demanding the official use of the Magyar language, the equality of the various Christian confessions, and the rights of the peasantry and of the non-ennobled citizens. Amongst the leaders of the liberal party the magnates were Count Louis Batthyannyi and Barnns Nichulas Wesselényi and Joseph Eötrös, and the deputies Deâk, Klauzâl, Fáy, Beöthy; Balogh, Szemere, and Louis Kossuth. In the hope of intimidating the adranced liberals, the Viennese court in 1839 imprisoned Wesselenyi and Kossuth, but they were released in 1840 owing to the amnesty then proclaimed for political offenders. The publication of the Pesti Hirlap (Pest Gazette) was commenced in 1841 by Kossuth as the organ of the liberal party. This paper, the leading articles of which were written io a spirit directly oppased to the policy of the Government, gained an immense circulation, and considerably influenced the public mind. A pamphlet styled A Kelet Népe (The People of the East), written by Széchenyi in order to cuunteract the schemes of Kossuth, only served to add to the importance of the Pesti Hirlap. The conservative jourmal Pilig((Light) was conducted by Count Aurel Desscwffy, who from 1833 antil his death in 1842 was the leader of the conservative party.
Meapwhlle intellectanl nod material improwment ingice rapid progress, especially in the Hummana caj:ind Numerous works, fitcrary and political, were pulbishosl. the former due to the cacouragement oflered by the Hungaran, ncademy and the Eis.
crement prevaifing throughout the country. Ciuvs reany it now avowedy political were establisled in most of the principal towne. Stcan navigation of the Dannbe, the Budapest suspensiou bridge (commenced May 1840), and other improvements of the means of internal communication, which had received their first inepulse froan Count Szeechenyi, were rapidly procceded with. In order to encourace native trade and industry, long obstructed by toll and enstom duties, Kossuth called into existence the Vedegylet (Protection Union), the members of which pledged theaselves to ahstain from the use of Austrian manufuctures until the tarill should be reformed. This association soon overs pread the country, and effected Austrian trade so seriously that some manufacturers had to transport their factories into Hungary in order to save themselves from ruin. The establishment of this association, the liberal measures of the late dicts, and the unanimity of national feeling in Hungary Prper ond'Iransylvania embarrassed the Government of Vicuma, which could recion only on the support of tho Conservatives, whose numbers and moral influence were comparatively small. Metternich therefore determined to annihilate the muncipal indenendence of the coumtics, in whose assemblies lay the real strength of the Libelals, by the eppointalent of "admin. istrators" paid by the court to fili the places of all ahsent lordlieutenants. This measure raised the political excitenient of the nation to the highest pitch. The Literals, were soon divided into two parties, the so-calited "municigalists," wath Kossuth at their head, who urged the reaffrniation of the county institutions, and the "centrulists," led by Szalay aod Eotros, who insisted upon che nomination of a responsille mimstry. On the aproach of tha elections for the diet of 1847 these iwo parties ngreed uron a common course of action. In November the diet was sumnoned, when Kossuth appeared as a candidate for the couoty of Pest, and after a warm contest was elected. On the 12 th November the diet was opened at Pozsony (Pressburg) by Ferdinand V. in person, who by addressing the asscmbled states in the Magyar language instead of latin produced a very favourable impression. The first net of the diet was the unaninious election of a suecessor to the late pulatine Joseph in the person of his son the arelduke Stepliea. Thus far all was weli, but the address to the throne contaniog elauses, inserted by Kossuth's party, deprecatory of urconstio tutional meesures by the Government, after passi ig the lower was rejected by the upper house, by which means the royal speech was practically 1 goored. At the commeacement of the year 1848 an Act was curried through both houses, ordaining the exclusive use of the Magyar language in all branches of the administration, in legal documents, and in the sclools and colleges. Certain provisions were, however, made respecting Croatin and Slavonia.
Upon tho news of the French revolution the diet was porer. Eventa fully impressed, ond the Liberals assumed a more determined atti- of 184 a tude. On the proposal of Kossuth it ras unanimonsly resolved to send a deputation to Vienna demauding from the Government a responsible ministry, the alslition of all feudal burdens, the equalization of taxes, the extension of the framehise, freedom of the press, complete religious toleration, and several other measures of reform. On the 16 ch of March the nddress was presented to Ferdinand, who, by reason of the troubled state of his Italian ןrovinces and the revolutionary aspect of Vieme, was compelled to yield his assent. The palatine archduke Stephen was nominated viceroy in Hungary, and Comit Louis Bathyiayi entrusted with the formation of a ministry. The intitation of the Viennese Govermment at this enforeed complianco with the Hungtrian demends was inereased by the choice of Kossuth es nimister of finanee. On the 11 th April Ferdinand repared to Pozsony (l'ressburg), and the diet was closed with a Miggar speech from the throne.
But the Anstrian Govermment, although compelled to abandon for the present its position of open and direct hostility to the national will of the Hungarinns, wris determined hy other means to prevent the new reforms from being cartied out. T'he plan edopted was that of secretly encouraging the southem non-Magyar dationalitles to assent their independence, and oplose by force of erms the consolidation of tho new constitution. Cronta end Slavonia anll the Bianat refused to subuit to the Hungarian rule, and demanded selpatate rights mis? autonomous administration ; while in 'l'ansy':minin, the diet of which had proclaimed its reunion sith Hustary Proper, tha Wrilachs and Saxons rose in arms agriast the Nagjars. Tha whole of the south and south-west of the country was soon in a stnte of revolt, and a war of races was carried on with indeseribable fury. Representations to the court of Vienna remainel virtually unheeded, the enpleror contenting himself with bypocritical proclamations neaiust the rebels, and with placing at the disposal of the Hungarina ministry a few regiments of soldiers, whose officers were disaffected to the II Iungarian enuse.
It now became evident that the llungarians, in order to retain therr national existence, nust rely cuitircly upon their own resonrces, and make an immediaty and vigorous effort, noore capecinlly as Jellachich, the newly-appointed ban of Croatia, was making preparations to march upon Fest. Ferdinand, who still
professed his determination to defend tne integrity of the Hungarian monarchy, convoked the diet for the 5th of July, when it was opened by the palatine Stephen, as viceroy. At the suggestion of Kossuth a lewy of 200,000 men and ample supplies for the purposes of ational defence rere unanimously voted; but to these incasures Ferdinand withheld his assent. On the 6 th of September a deputation of a hundred members arrived at Vienna in order to urge ypon the emperor the necessity of taking immediate and deciaive steps to oppose the Croatian invasion. On the 9 th of Scptember they were admitted to an audience, but, receiving only

Revola-
Stor. iree rosue answer, they stranghtwa returned to Pest. Mo abor tive result of the deputation, and an official report that Jellachich liad crossed the Drave, were announced to the diet on the 11th Scptember, and brought matters to a crisis. A few days later the palatine archduke Stephen, who at the demand of the diet had set out for the camp, but failed in his efforts at mediation, fled to Austria. The emperor thereupon nominated Count Lamberg royal commissioner and conmander-in-chief of all the military forces in IIuncary (September 25), but the diet prononnced hia appointment illegal and invalid, and he was murlered on the Budapest bridge of boats by the infuriated populace (September 28). The Batthyinyi miniatry now resigned, and a committce of national defence was formed under the presidency of Kossuth. On the 29th September, Jellachich, who had advanced to within 25 miles of Buda, was deleated at Velencze, whence he fled towards Vienna during a three days' armistice that was granted to him by General Móga. Ferdinand now declared openty against the Hungarians, nnoulled the decrees of the dict, and nominated Jellachich goneralissimo of the forces to be employed for the reduction of Aungary. While the Anstrian Govermment, still further exascrated at the march of a Hungarian force to Schwechat. (30th Ictober), was prepariog for a general inrasion, tho Huagarian liet hastily oquipped a large army to resist it. In the meantime a Iow Austrian ministry was formed at Vienna, and on the 2d December Ferdinand was induced to reaiga the imperial throne. He was succeeded by his nephew archduke Francis Joseph, son of Francis Charles, the heireapparent, who refused to accept the crown. The Hungarian diet, however, protested against this dyaastic change as unconstitutional.

Revolutlonary war (184849).

On the 15 th of December the main body of the Austrian army under Priace Windischgritz began to eross the western frontier of Hungary near Bruck on the Leitha, while the Hungarian army of the Upper Danube, commanded by Görgei, who had succeeded Nloga, retreated in the direction of Moson (Wicselburg). On the 18th December the second Austrian army corps occupied Pozsony (Prossburg), which the Huggarian troops had evacuatcd, and upon the same day Jellachich, who commanded the first army corps, oceuhicd Moson, compelling Gergei to withdraw towards Gyor (Raab). Upon the occuration of this town by the Austrians, on the 27th December, Gorgei renoved to Bibolna, where he hoped to effect a Juaction with [ercze], who had been ordered to reinforce him. But Perczel being overtaken and defeated at Móor on tho 29th December hy the troops of the ban. was obliged to beat a hasty retreat towards Székesfehervir (Stuhbveissenburg). Theso reverses having rendere lindapest insecure, the liet and the committee of national defence on the lat January 1849 transferred their seat to Debreczen, ant on the night of the the nad 5th the Huagarian troops marched out of the canital, which on the following day was taken possession of by Windischgritz. Ferczel, who hat gathered togethor the remains oI his corps at Dulaquest, followed the Goverament by way of Szolnok, while Gorgei made a flank morement to the nocth, and led his corps by a circuitons route through the Carpathians to join the army on the 'lheiss. Windiachgratz, minlful of Schwechat, and, regard. ing the llungrians as rebels, hand refuaed to listen to a deputation headed hy Coust Batthyinyi making proposals of peaec, and Bathyanyi himself was arrested. While the Austrian generals wore makiag this rapid progress in Ilungary Proper, the Polish general lhem had suceeded in orgnazing a large force in Transylvania, by means of which he reduced the refractory Wallachs to Rubjection, aud drove the Austrinns ont of the principality, which hail ben forcel to submit to Goneml I'uchner.

In thu dect now held at Debreezen liossuth declared that the מation was on the verge of destruction, and coult only be saved by extrandinary measmres, But the inactivity of Wiudischeratz, who, instond of hostening onwards to the Theiss, remained for several woks at Pest, gave the committre of national lefence time to concontrate its forces, procure war material, and make other provisiona firs a flotermmet resistance. On the 12 th of Februnry Gorgei arrivel $\frac{1}{} \mathrm{~K}$ wata (Kaschan), and the two llungarian armirs conld row fut in enncert. Mernwhile the national cayse usule little profiristh in the sonth, a great portion of which was in the hands of the unoms. On the 14th Pehrmary the fortress of liszank in Stavonia wha lins to the lluamrians; that of lipotvir (Lcopoldstalt) in the nowh, tial alrealy fallen on the ad of the same montl.

At lometh the main borly of the Austrians under Wimdigchgritz nlvanemit, and attuckent tho IItmearians under the l'olish general Uembinsif on the 26th and afth February at Kipolaa. The
battle, though obstinately contested, proved indecisive, and the Hungarians were obliged to retire beyond the Theiss in order t t recruit their forces. A few daya later, however, an Hungaran corps, withdrawn from the lower Danube, and commanded by Damjanics, routed the Austrians under Grammont at Szolnow (5th March). Meanshile the Russians, coming to the aid of the Austrians, had penetrated into Transylvania and occupied Nayyszeben (Hermannstadt) and Brassó (Kronstadt), but the Hungarians under Bern regained these fortresses on the 11 th and 20 th March, and drove the Russians into Wallachia.

By the middle of March an army of 120,000 men, provided with excellent generala and ample artillery, was concentrated on the Theisa. Towarda the end of the month the Hungarians crosscd the river at various points, and advanced on the road to Pest, under the command of Gorgei, Damjanics, Aulich, Klapka, and others, Gnyon having been nominated to the commandership of Komarom (Komora), the relief of which was the ultimate object of the campaign. The leadership of the IIungarian forces had meanwhile passed from Dembinski to Vetter, on acconnt of whose ill-health it was provisionally tranaferred on the 31at March to Görgei. From this time the Austrians had to endure a rapid succession of defeats, -at Hatran (April 2), Tápió-Bicske (April 4), Isaszeg (April 6), Gödöllö (April 7), and Vácz or Waitzen (April 10). In consequence of these reverses Windischgrätz was recalled, and the chief command of the Austrian troops was given to Baron Welden (April 12). In order to prevent the refief of Komárom, Welden opposed the advance of Görgei with a force under Wohlgemuth, which was, however, defeated by Damjanics on the 19th April at Napy-Sarló, so that on the 22 d the relief of the fortress of Komarom was effected upon the left bank of the Danube, Guyon having previously succeeded in passing through the bostile lines. The subsequent rout of the besieging forces at Uj-Szony on the 26 th April completed the diacomfitare of the Anstrians, and forced them to fly to the frontier. The ban Jellachich meanwhile retreated to Croatia, and nearly the whole country was once more in the hands of the Hungarians.

In the midst of these victories Kossuth proposed in the diet at Debreczen the dethroncment of the Hapyburg dynasty, and upon the 14th April an act to that effect waa almost nnanimously passed, althongh afterwards unfavourably received by Görgei and a large portion of the army. The chief provocation to the passing of this extreme and, as it eventually proved, nofortunate measure was the promulgation of the new constitution on the 4 th March by the emperor Francis Joseph, which made a tabula rasa of all the timehonoured lawa, rights, and privileges of Hungary. The substance of the declaration of independence was as follows: "That the house of Hapsburg, having violated the integrity of the kingdom, treacherously levied war against the nation, and called in the aid of a foreign power to sccomplish its aims, has trampled under foot all the treaties that united it to Fuagary, and is thereforo declared for ever excluded from the Huagarian throne." The form of government was to be settled afterwards by the diet, but in the meantime Kossuth was nominated governor, the committec of national defeace was dissolved, and a new responsible ministry formed under the presidency of Szemere.

It is generally admitted that, had the Hungarians followed up their victories by an immediate march npon Yicona, they would have been able to force the Austrian Goveroment to terms, and thus have warded ofl the Russian invasion, the preparations for which were now being conducted upon an enormons scale. Instead, however, of acting on the offensive across the Austring frontier, tho Hungarian commander-in-chief, Görgei, after a few days delay at Fomiromr, made a retrograde movement towarls the Hungarina capital. On the 4 th May he arrived before Budia, which was still in the possession of the Austrians, but it was in vain that he summoned the commander Heatzi to surrender. On the I5th began the regular bombardment of the fortress, and on the 21st it was taken by assault. On the 5th of June $\mathcal{K} 0$ sauth made his entry into Jest, and the diet having adjourned its sittings at Debreczen, the Government returned to the capital. Every proparation was now set on foot for a desperate defence against the combined armies of Russia and Austria, which by the middle of the month had com. pleted their armagements, and had begun to invade the enuntry at various points. Princo Taskewitch advanced from Galicia at the head of the main body of tho Russian army, consisting of over 100,000 men, while Haynau crossed the western frontior with an Austrian Force of 60,000 , aupported by a Russian divisiou of 12,000 under Paniutin. On the Drave and tho Styrian frontier Nugent commanaled 12,000, and near Fszekk was Jellachich with 25,000 men. In Transylvania the combined Austrian and Russian forces under Puchner and Liidera amounted to 60,000; so that, including the garrisons of the fortresses in their hands, the allied forces werc in all not less than 275,000 men with 600 guna. The whele available forcea of ltumgry alid not amount to nore than half this number, the army of the Upper Danube under Gorgei being 50,000 , that of Ierczel nad Vecsey in the south 30,000 , the army of the north under Dembinski 12,000; while there were about 32,000 men under

Bem in Tranaylvanis, and a few thousands under bozinczy in the county of Maramaros. On the 19th of June the Russian corps under Lüders burst through the Red Tower Pass into Transylvania, and, having defuated the Hungarians, took the fertress of Nasy-Szeben, whilst in the following month Brassé in like manaer surrendered to the Anstrians. Jellachich was, however, defeated on the 14th. July at Hegyes, and forced to retire from tho Bicska, In tha meantime Haynan's operations on the Danube met with gencral success, while the Rassian main army advanced over Eperies and Kassa into the interior of tho country. These disasters to the Hangarian cause were aggravated by the want of unanimity between the Hungarian commandcr-in-chief and the Government, which, being again obliged to leave Pest, transferred its seat to Szeged (July 11). After various sanguinary engagements with the invading forces in the vicinity of Komarom, Gergei on the night of the 12 th July left the fortress under the charge of Elapka. Oo the 15th and 17 th Gergei encountered the Russians at Vácz, and proceeded thence over Vad. kcrt, Losencz, and Rimaszorabat, where on the 21st the Russian offers of trice were refused. Görgei, closely followed, finally crossed the Theiss on tha 28th July near Tokay, whence he proceeded in the direction of Nagyvarad (Grosswardein) by routes to the east of Debreczen. There on the 2d August bis first army corps under Nagy Sander was defeated by the troops of Paskewitch. The Government had meanwhile removed to Arad, which fortress, having previously surrendered to the Hongarians, was mada the last point of general concentration. In Transylvanis the army of Bem had been overpowered on the 31st July at Segesvar (Schässborg) ; and ir Ilungary Proper Dembinski retreated first to Szeged and Sroreg, whence he was repulsed on the 5th August by Haynau, and afterwards to Temesrár. There on the 9 th he sutfered an overwhelming defeat. Upon the news of this catastrophe reaching Arad on the night of the 10th to 11th, Gorgei, who had already arrired thers on the 9 th by forced marches from Nagyvarad, indaced Kossuth and the few ministera who were with him to lay down their authority, end upon the IIth received from them the auprome civil and military command. On the evening of the same day, after the departure of Kossath for Lages, the ncw dictater, believing further reaistance hopeless, communicated with the Rcssian general Rudiger, offering to aurreader at discretion. Tha sally of Klapka from Komarom, and his aignal victory over the besieging Austrian army (August 3), were onknown at Arad. On Augast 13 Gërgei ourrendered bis army, consisting of some 24,000 men with 140 guns, to Ritidiger at Szöllos near Vilagos; on the 16 th Kazinczy followed with his troops, and on the 17 th Damjanics gave up the fortress of Arad, and on the 5th September a similar fiste befell Peterwardein.

A few thousand men followed Bem and Guyon to Torkey, whither Kossuth and the late ministers Szemere, Casimir Botthyányi, and Mesciros, and the military leaders Dembinaki, Vetter, Ferczel, Kneity, and Wysocki also eacaped. On the 2 d to 5 th October Komérom capitulated on honearable terma, Geaeral Elapka having refused to surrender antil an ammesty and free passports had been granted by tha Austriana. On the 6th October Aulich, Damjanics, Dessewfy, Kiss, Kuézich, Lahner, Lazár, Leiningen, Nagy: Sándor, Pöltenberg, Schweidel, Török, and Vicaey met their end at Arad. On the same day Connt Lonis Batthyanyi, and subsoquently Prince Woronieczki, Baron Joszenak, Csinyi, Perényi, and uthers sulfered at Pest. By a decree of IIaynana, to whom the Russians had delivered np the prisoners of war, all efficers below the rank of a general, if not consigned to prison, were preased as privates icto the Austrian service. The Hungarian commander-inchief Görgoi, however, was pardoncd, and interned at Klagenfurt in Caricilia.
IInogary now lay entirely prostrate, and was treated as a conquered country. The Russians retreated to the nerth and east, leariog the Austrians with their commander Heynau, whe arailed himself of the aummary powers conficred on him by the state of aiego to inflict the greatest cruelties on the ranquished people. Many of the Ilungarian nobility were condemned to long terms of inprisonment; the estates of the richer patriots were confiscated; and numerous Austrian and Bohemian officials were thrust upon the exhausted country. A rigoreus censorship of the press was at the some time enforced. At longth, in July 1850, Jaynan was removed from the chicf anthority. A milder regine was inangurated by the archduke Albrecht, who arrivel at Pest on the 1 1th Octoher 1851 as the ncw civil and military governor. But it was only after the visit of the emperer to Hungary (5th June to 14 th August 1852) that the military courts were closed. The whole country, now redoced to a province of the Austrian empire, was flaced under the direct contrel of the central Goveriment at Vienna On the lat May 1853 the new orgaoization nas carricd inte elfect, and the Austrian civil code made applicable to Hungary. On the 8th September the Hungarian insignia of royalty, which hat disappeared from Arad at the time of kicssulh's ficht, were discovered in the ncighbonrhdod of Orsoia; they were conveyed on the 19th to Vienna, fut were efterwards trar ferred to bmia. On the 17 th April 1854 the state of aiega was sbolishch, and on tho 12th July 1856 an amnesty was proclaimed. On the 4:!? May cl
the fullowing year the emperor visiled Hangary, and on the 9th of the same month granted the restoration of their confiscated estates to late pelitical offanders. In August be commeaced a second progresa through his Hangarian dominions, and availec hinself of the oppertunity to express his sentiments of consideration for the people.

Indeed, from this time (1857) both the emperor and the Govern. ment of Vienoa seemed desirous of making the Ilungarions forget the troubles of 1848 and 1849 by concessions to the national will, whilst the encouragement given to improvements in the means of consmusication, and to the new projects for the regnation of the Theiss, as also the schemes for the colonization of sparsely populated districts, ara well werthy of notice. Duriog the ycar the railways from Szeged to Temesvar and from Szolnok to Debreczen ware opened. By an impcrial decree issued at the ead of 1858 agricultural colonists, if of ona nationality and creed, were allowed to s° ttle in various parts of Hoggary, with special exemptions from taxation. By a ministerial order of the Sth August 1859 the language used in the ligher schools was for the future to be regulated according to circumstances of nationality, tha predominance of German being thereby abolished. On the 21st of the same month the absolutist minister Bach was dismissed, in consequence of the ill-success of the Italian war, which was attributed to his ill. adrised policy against the various nationalities of the realm. The so-called "Protestant patent" of September lst, which ostensibly granted the commanes the frce administration ol their own educational and religious matters, was, however, the cause of much dissatisfaction, and more than 2,800,000 Protestants petitioned for its withdrawal, In April 1860 the archduke Albrccht was at his own desire remeved from the civil and military gevernorship of Hongary, and the master of the ordnance, Benedek, a native Magyar, was appointed in his stead. The Hungarian members in the Reichsrath, apecially aummoned for the purpose of finding a defnite form of aettlement for the whole empire, now put formard clajons for the antonemy of their country, and by an imperial diploma of the 20 ib October their wishes were partly met. Benedek was remored from tha general governership of the kingdom, whilst the Hongarian conrt chancellery res restored, aod Baron Vay nominated chan celler. At tha same time the curia regia (supreme court of jadi. cature) and the county assemblies were reinstitated, and the Magyar recegnized as the official language. Furthermere, the emperer on the 27th December granted the reannexation of the Temesrár Bánát to Hungary Proper. In the following Fetruary it was decreed that their former censtitutions should be restored to Hungary, Transy!vania, and Croatia and Slavonia, and on the Cth of April the diet met at Buda, afterwards removing to Pest. But as the address aent to Vienna in Juae demanded the follest antonomy for Hangary, and the Hangarians refuaed to ficlif their claims, in spita of the emperer's declared iaability to accede, the diet was dissolred by imperial decree on the 22d August. Mean while a new Hungarian coort elanceller had been appointed in the person of Connt Forgach. Stringent measures viere taken by the Government of Vicnaa to countcract the organized passive resistance of the counties, and in many places the payment of the tases was enforecd by military aid. On the 27th October the holding of all public county meetings was forbidden, and administraters or coadjuters were in many counties thrust anen the lerd-lieutenants, Who were forced to submit to the authority of the newly-appointed Government superintendent Count Palfy de Erdod. On the ISth Nevember 1862 a general amnesty was granted to these who were implicated by their lostility to the late Government measurcs. In the summer of 1863 Ilungary suffered from a serere famioe, but the Reichsrath roted 20 million florins to alleviate the dis tress. On the 22d April 1864 Count Forgach was replaced by Count Arminius -Zichy, who, on account of his unpepularity, was on the 26th Juac 1865 removed for Coant George Majlath, a Conservative. In a risit to Budapest on the 6th to 9th June 1865, the eraperor declared his rillingness to do justice to the censtitutional demands of the llungarians, as far as was consistent with the integrity of the empire. Ou the 1 Sth July Count Palffy de Erdod was replaced by Baren Sennyey, one of the leaders of tho old Cooservative party: On the 1 ith December the diet was opencd by the emperor in person, whe assented to the prisciple of self-goveroment for Hungary, and agreed to recognize the Fragmatic Sanction as the basis of a settlement of the questions involved. The dict, howerer, demanded also an ackoowledpment of the continuity of the constitutional rights of 1848. After the outbreak of the war between Austria and l'russia the diet was prorogued (26th June 18(6). Upon its reopening on the 19th Noverober an imperial rescript was regd io which the emperor acquiesced in the Inogarian demands for constitutional self-government, and fromised to alr point a responsible ministry. The resilt of the "compromiso" effected by Baroo lieust hetween the Ausirian Govemment and the committee, headed by Deak, enjwwered hy the Hungarian diet, was the dualistic aystem of the Austrian-ilungarian monarchy, as fina" y sanceioned ot the 18 th : braxy : 967. This arrangernent secr ed to llunga : le restoration of the coostitutiona', legal, and adu zistrati-e istiacmy of 1828 , rhile the anpreme comenand
and direction of the army were assigned to the einperor-king. A responsible ministry, including Barons Wenckheim and Eotrös, Count Miibo, Melcbior Lónyay, and others, was formed on the 20tb February 1867, under the presidency of Count Andrissy. On the 8th of the following June the emperor and empress were crowned Ling and queen of Huagary at Budapest, and a complete pardon was proclaimed to all political offenders both at home and abread.
The recodciliation of the Magyars with the Hapsburg dynasty being thus complete, both parties sought to throw a veil over the past by mutual concessions. Transylvania was incorporated with Hungary Proper, and a joint commercial contract was entered upon between Hu.gary and Austria. In like manner foreign affairs and joint finance were assigned to "common ministries." On the 8th of August 1868 tbe Hungarian house of representatives accepted the dual Gorernmeat military scheme, by which the standing army remained under the direction of the inperial ministry of war. The Honved (home defence) army obtained its own special organization and commander-in-chief. The long-existing misunderstanding between Hungary and Croatia was at length settled by the agreement concluded in September, wbich placed the relations of Croatia to the Hungarian crown on a more equable footing than hitherto. After the passing of various other measures of reform, including the emsncipation of the Jews, a compulsory education act, and a special sct (Norember 29) for the consolidation of all nationalities uader the cromn of St Stephen, the session of the Hungarian diet was closed on the 10th December 1868. In the elections for the next session (1369-72) the Deik party, mhich had taken the lead in the previous diet, were returned by a large majority, and in the new diet, opened April 23, 1869, the policy of conciliation still prevailed. The ninistry from time to time underwent certain modifications, owing to the aeath of Baron Eötvos, the minister of education (February 1871), the appointment of Count Lonyay (Say 1870) to the imperial ministry of finance, and h1s subsequent nomination to the presidency of the Hungarian conucil in the place of Count Andrássy, who in November 1871 succeeded Beust as foreign minister of Austria-Hungary. Meanwhile the finances of Hungary were becoming rapidly embarrassed owing to the repated contraction since 1867 of enormous loans for otate railways and costly public works. The elections of 1872 were, however, apain favoumble to the Deak faction. At the end of November Lonyay retired from the presidency of the ministry, and on the 1st December was succeeded by Szling, who in March 1873 obtained the consent of the diet to some additional taxes. In Auguat the Bfilitary Frontier districta were placed under civil jurisdiction, the eastern portion or the Servian-Banat frontier being incorporated with Hungary Proper. The new cabinet was not more fortunate than that which had preceded it in a solutioo of the finaocial question, and in March 1874 made room for a conlition ministry under Bitto, mith Ghyczy as finance minister. Upon its resignation in February 1875, in censcquence of the refusal of the house to grant further taxation, a strong liberal combination was formed by Tisze from members of the left and of the formar Deak party. The ner ministry, under the presidency of Wenckheim (3d Jarch), was supported by an overrihelming majority in the elections for the new session (1875-78). On the 16th October Tisza, minister of the interior, was nominated president, and the Ginancial difficulty was met by an advance in the income tax, and a fresh loan. The death of Deak on the 29th Jenuary 1878 cust a gloom over the whole country. For some time previously he had withdrawn from the fiald of politics, where less moderate but more distinctly Magyarizing tendencies now prevailed. By its resolatiuns of the 2 th nal 27 th March 1876 the diet deprived of their former priviley"s the so-calied "Saxon" sees and distriots in Transylvania. from these new counties were formed on the oystem adopted for the rest of Hungary, nod were placed under the general administration. The number of royal frec towns in Hungnry was, morenver, mach reduced, especimily in the Tranaylvanian circlc. The insurractionary state of the Slavic provinces of Turkey excited the apprehensions of the Magyara with regard to the Siav raccs of southern Ilungary, and aroused a strong feeling of sympathy for the Porte. This was still rurther inereased by tho attitule of Russia, and the cordiality towards the Magrars evinced by the aulean Ablul Hamid 11., who in 1877 presented the unisursity of Budapcat with a portion of the remains of the library of Muthias Corvinus. During the course of the war between Turkey and kussa tho Magyars were with difficulty restraind from open manifratations in favour of the former and againat the latter power. Nevertheleas, after tho conclusion of peace, Ilungary hat, in conformity with the requirements of Art. XYV. of the Perlin Treaty (July 1888), to furnish her quota of troras for the accupation of Boqoia nad the Herzegovina, a task effectel only with a comsiderabie loas of men, and an additions' burden on the stato finances. The dint having been closed by the king on the 30th Jume, then now elentions wese held at the time the struggle for the oscupation of Rosnia was progressing. The popular excitemint in llungary Proper was wery grant, puith on account of tho lasefs auffered by tho llunaran troopy and the instruction by a violont thandersterm
of the town of Miskolcz. On the 3d October Széll, minister of finsace, resigned office; other ministers also tendered their resig. pations, but were induced to retain their posts for a time. In the elections the majority of votes bad fallen to the Liberal or Government party. On the 20th October the Hungarian parliament was opened, and st the begianing of. December the reconstruction of the ministry was completed, the only new members being, for finance Ceunt Szapary, and for corumerce Baron Kemedy. On the 14th a sum of $20,000,000$ forins was granted for the occupation expenses of the following yesr.

Early in the spring of 1879 the attention of all parties was for a time distracted from political matters by the disastrous inuadation of Szeged. . At the beganing of May the friendly relations of the non-Magyar mationalities of Hangary, and more particularly of the Roumanians of Transylvsnia, towards the Magyars seemed to bo endangered by the passing of the amended education bill ordering the state language to be taught in all the non-Hagyar primary schools. The new law, as affecting many nationalities, is likely to have $3 n$ inportant bearing on the future of Hungary. The urgent necessity for more extended river embankments and a better systern of dykes and dredging in the water-coursed levels of the midland Trans-Tisian counties became more than ever apparent in De. cember, when inundations of the triple Korös and the Maros submerged many villages, farms, and pasturages, devastated large portions of Nagyvarad (Grosswardein), Arad, and other low-lyng communes, and rendered thousands of persons homeless. In March 1850 a loam of $40,0 n 0,000$ florins was raised for the purgoses of regulating the Theiss and the MLaros, sod of rebuilding.aud securing the town of Szeged.

Bibliography.-Besłdes the great historlcal worka in the native lanmuage, by Szalay, Jíszay, Szildgyl. Count Teleki, and Michael Horvalh, Doliced under Literatcaa below, aid the useful summary by Gideon Ladanyi, Magyarorszag Torienclme (Debreczen, 1867), we mention for those who are unacquainted with Hungarian-Engel, Geschichre des ungrischen Reichs (V'ienoa. 1813-14, (b vols): Fessler, Qewhichte der Ungarn urd ahrer Landsasten (3d ed., Leipsle, 1867-68, 5 vols.): Mallath, Geschichie der Mogyaren (2d. ed., Ratisbou, 1852-53, 5 vols.); the Germen edition of Szalay, by Wogerer (Pest 18i0-75, 3 rolg.): Horvaih, Kurrgefasste Geschichle Ungarna (Pest, 1863. 2 vols.) and Fürfundruanzig Jahre aus der Geschithe Ungairs, 1823-48 (Leipsle, 1867, 2 vols.), butb tranalated Irom the Hungarlan: and Rogge, Oestateich von Vildgos bis zu Gegmenart (Leipsic 1872-73, 3 vols.). To thesy may be added-E. Szabad, Hungary Past and Present (EdInburgh, 1854); E. L. Godkla, History of Hungary and the Jfagyars (London, 1353); Sayous, Histoiri Gendrale des Hongrons (Parts 1876, 2 vols.), and Histone dis Hongrons et de leur litterature poritiqu- de 1100 a 1815 (Parig, 1872). For the revolutionary perlod see Gent. Gobrgel, $\mathcal{M y}$ Ltce ana Acts in Hungary (London, 1852, 2 vols.), and GenL. Klapka, Afemory (London. 1850, 2 vols.), buth translated from the Gelman; and szemere. Mungary from 1848 to 1860 (London. 1860). See also A. J Patterson, The Mongary, therr Country and Institutrons (London, 1869, 2 vols.), and the anooymous Francis Deat, a Sfemoir (London, 1550).

III. Language.

The Magyar or native Hungarinn language is of Asiatic origin, belonging to the northern or Ural-Altaic (Finnc-Tataric) division of the Turaman Family, and forming along with the UgroOstiakian and Vogul dinlects the Ugric branch of that family. The atfinity existing between the Magyar and the Finnic lianguages, first noticed by John Amos Comenjus (Komensky) in the middfe of the 17 th century, ${ }^{1}$ and later by Olav Rudbeck ${ }^{3}$, Leibnitz ${ }^{3}$, Strahlenberg,* Eccard, Sajnovics ${ }^{3}$, and others, has been proved "grammatically" by Samuel Gyarmathi, in his work entitled Affititas linguce Hun. garica mum linguis Finnica originis grammatice demonstrata (Göttingen, 1799). The Uralian travels of Anthony Reguly (184345), and the philological labours of Psul Hunfalvy end Joseph Budenz, mey be said to have established it as an almost incontrovertible faet. The chief points of resemblance to Turco-Tntario nnd Mongolic dialects have been specially treated by Arminius Vámbéry (1870) and Gabriel Bailint (1877), the well-known recent travellcrs in Central Asis. Körösi-Csoma for many years zealously but unsuccessfully sought after traces of the origin of the nation and the language in Tibet. His grammar and dictionary of Tibetan, publighed by the Asiatic Socicty in 1834, have, however, earued for him a lasting name. The theory of Faul Reregsziszi that the Magyar is relsted to many of the so-called "Oriental" langunges ${ }^{6}$ has now fer supporters.
Although for nearly a thousand years established in Enrope snd 6nbjected to Aryan influcnces, the Magjar language has yet retaincd ita essential Turanian features, and the etymology and syntax still prescrvo these as their chief characteristics. The grammatical forms are cepressed, as in Turkish, by means of affixes modulated according to tho high or low vowel power of tho root or chief syllables of the word with which they are connected,-the former being represented
${ }^{3}$ Sec Hunfalvy's "Die ungarieche Sprachwlsenschaft," Liferarische Dericht aus Rngarn, limispest, 1887 . pp, 80-87.

* Specimen usus linguar Qolhicie in rriendis atque dllwstrandis oserurissimis quibusdam Sacrip Seriplura locis; nddra analogna linguie Gorhica curn Sinica nemon Finnica cum Ungurica, Upand, 1717.
- Ilunfalvy, p 81.
- Demonipratio ldioma Cngarorum et Lapponumi idem esse, Copenhagen and Tyman. 1770.
 Leljefc, 1736.
by $e, \delta, 8, \pi i, \pi$, the latler by a, d, o, b, u, u; the sounds ϵ, i, i are regarded as neutral. Since the number of consonants exeeeds that of the Latin alphabet which represents them, the following combinations, forming singla articulations, and inseparable as consonants, ars used to make np the deficiency:-cs,c,gy,ly, $\pi y, s z, t y, z s$, and in a few words $d z s$. Among the striking peculiarities ol the language are the definite and indefinits forma of the active verb, e.g., litum, "I see" (definite, viz., "him," "her," "the man," \&c.), litok, "I see" (indefinite) ; the insertion of the causative, frequeniative, dimintive, and potential syllables after the root of the verb, s.g., ver, "he beats"; verel, "he causes to beat"; veregct, "he beats repeatedly"; verint," he beats a little"; verhet, "he can beat"; the mode of expressing possession by the tenses of the irregular verb lerni, "to bo" (viz., van, "is"; vannak, "are"; voll, "wns"; lesz," will be." \&c.), with the object and its possessive affixes, e.g., weken vanuck konyvein, literally, "to me are books-ny " =" I have books"; neki volt könyve, "to him was book-his" " "he had " book." Other characteristic features are the use of the singn. lar substantive after anmerals, and adjectives of quantity, c.g., keit onber, literaliy, "two man"; sok szo, "nany word," \&c.; the fosition of the Christian name and title after the family name, e.g., Olmosy Karoly tandr ur, "Mr Professor Charles Olmosy "; and the possessive forms of the nonna, which are varied according to the aumber and person of the possessor and the number of the object in the following way : collam, "my pen"; tollaim, "my pens"; sollad, "thy pen"; tollaid, "thy pena"; tollunk, "our pen"; ollaink, "our pens," \&c. But, although presenting no auxiliary verb " to have," no primitive possessive pronouns, no gender nor sen scparate pronominal forms and terminations for the distinction of the sexes, and (suffixed syllables or postpositions being used "istead) hardly any true declension for nbjective terma, the Magyar far surpasses avery Teutonic, Slavonic, Italic, and other lindoEuropean or Aryan language in the wealth of its verbal formations, is also in the power of harmonizing and assimilating the determinatives to tha roots. Logical in its derivatives and in its grammatical structure, the Magyar language is, moreover, copious in idiomatic expressipns, rich in its store of words, and almost musical in its harmonious intonation. It is, therefore, admirably adapted ior both literary and rhetorical purposes.

The first Hungarian grammar known is the Grammatica Hun-garo-Latina of John Erdösi alias Sylvester Pannonius, printed at Sirvir-Ujsziget in 1539. Among the grammatical works of recent date are the posthumous treatises of Nicholas Revai (Pest, 1809); the Magyar nyelonesater of Samuel Gyarmathi, published at Klau. senburg in 1794 ; and the various grammars for the use of Germans, by J. Farkas (9th ed., Vienna, 1816), Mailath (2d ed., Pest, 1832), Kis (Vienna, 1834), Márton (8th ed., Vienna, 1836), Manrice Ballagi or (in German) Bloch (5th elu., Pest, 1869), Topler (Pest, 1854), Riedl (Vienna, 1858), Schnster (Pest, 1866), Charles Ballagi (Pest, 1868), Reméle (Pest and Vienna, 1869), Roder (Budapest, 1875), Fiilirer (Budapest, 1878), and Ney (20th ed., Budapest, [879). One of the best modern grammars for the French is that of C. E. Da Ujfalvy (Paris, 1876). Two Ilungarian grammars have also appeared in English by S. Wésey (London, 1852), and J. Csink (London, 1853).

The earliest lexicon is that of Gabriel (Dizsér) Pesti alias Pestinus Pannonins, Nomenclatura sex linguarum, Latine, Itolica, Gallica, Bohemice, Ungarice, et Germaniec (Vienna, 1538), which was acveral times reprinted. The Vocabula Iungarica of Bernar. dino Baldi (1583), the original MS. of which is in tha Biblioteca Nazionale at Naples, contains 2899 Huagarian words with render, inga in Latin or lialian. ' In the Dictionarium undecin linguarum of Calepinus (Basel, 1590) are found also Polish, Hungarian, and English words and phrases. This work continued to be reissued until 1682. The Lexicon Latino-Hungaricun of Albert Molnar first appeared at Nuremberg in 1604, and with the aldition of Greck was reprinted till 1708. Of modern Hangarian dictionariea the best is that of the Academy of Sciences, containing 110,784 articles in 6 vola. by Czuczor and Fogarasi (Pest, 1862-74). The next best native dictionary is that of Manrice Ballagi, A Magyar nyclv teljes sutotara, (Pest, 1868-73). In addition to the above may be mentioned the work of Kresznerics, where the words are arrangel according to the roots (Buda, I831-32); the Etymologisches Worlerbuch ..aus chinesischen Wurzeln, of Podhorszky (Paris, 1877); the Magyar-ugor bsszchusonlits szoldr (Magyar-Ugrian Comparativo Dictionary) of Budenz (Budapest, 1872, \&cc.); and that of new words, with German and Latin equivalents, by Kunoss (Test, 1843). Other and more general dietionaries for German scholara are those of Marton (Lexicon trilingue Latino- Tuagarico-Germanicum, Vienna, 1818-23), A, F. Richter (Vicnna, 1836), E. Farkas (Pekt, 1848-51), Fogarasi (4th ed., Pest, 1860), Loos (Pest, 1869), and M. Ballagi (Budapest, 3d ed. 1872-74). There are, moreover, Hungarian. French dictionarieg by Kisg and Karidy (Pest and Leipsic, 1844-48) and Babos and Molé (Pest, 1865), and English-Hungarian dictionarics by Dallos (Pest, 1860) and Bizonfy (Budapest, 1878).

[^71]The comparatively restricted and unobtrusive character of tha Magyar or native Hongarian literature is partly owing to the fact that there are so many other languages current in Hungary, but it is chiefly to be attributed to the almost exclusive recognition, through many centuries, of Latin as the vehicle of cultured thought. Tho Ronish ecclesiasties who settlei in Hungary during the 11 thecntury, and who found tbeir way into the chicf oflices of the state, were mainly instrumental in establishing Latiu as the predominant language of the court, the higher schools, and public worship, and of eventually irtroducing it into the administration. Having thas become the tongue of the educated and privilerged classes, Latin continued to monopolize the chief fields of literature until the revival of the native language at the close of the 18 th century.

Amonest the earlicst Latin works that claim attention are the Early "Chronicle" (Gesta Hungarorum). by the "anonymous notary" of Latin King Béla, probably Béla ll. (see Podhradezky, ${ }^{2}$ Leda kivedly né telen chroiegyzoje, Buda, 1861, p. 48), which describes the early ages of Hun- nicles garian history, and may be assigned to the middle of the 12 th ecntury; the Carmen Miserabile of Logerius; the Liber Cronicorwm of Simon Kezai, belonging to the end of the 13 th century, the socalled "Chronicon Biddense," Cronica Hungarorum, pritited at Buda in 1473 (Eichhorn, Geschichte der Litteratur, ii. 319); and the Chronicon Rernom Hungaricarum of John Thurúczi. ${ }^{3}$ An extraordinarystimulus was given to hiterary enterprise by king Mathias Corvinus, who attracted hoth foreign and native scholars to his court. Forcmost amongst the Italiang was Antonio Bonfini, whose work, Rerum Hungaricarum Decades IV., comprising Hungarian history from the earliest times to the death of King Natthias, was published with a continuation by Sambucus (Basel, 1568). 4 Marzio Galeoti , the king's chief librariau, wrote an historical acconnt of his reigu. The most distinguished of the ative scholars was John Cesiyge alias Janus Pannonins, who composed Latin epigrams, panegyrics, and cpic poems. The best edition of his worka was published by Count S. Teleki at Utrecht in 1784.
As thers are no traces of literary productious in the native or Magyar Magyar dialect before the 12th century, the carly condition of the literalangunge is concealed from the philologist. It is, however, known ture. that the Hungarians had their own martial songe, and that their Earliestprinces kept lyre and lute players who sang festal odes in praise of relics. the national heroes. In the 11th century Christian teachers jutroduced the use of the Roman letters, but the employment of the Latin Arpadias language was not formally decreed until 1114 (sea Bowring, Poctry period of the Magyars, Introd. xix.). It appears, moreover, that up to that (1000date publie business was transacted in Huagariau, for the decrees 1301). of King Coloman the Learred (1095- I114) were translated from that language into Latin. A mong the literary relies of the I2th ceotnry are the "Latiatuc" or Halntti Bcsued fuperal discourse and prayer iu Hungarian, to which Dubrevtei in his Regi Magyet Nyclvernlekek assigns as a probable date the year 1171 (others, however, 1182 or 1183). From the Margil-Legcnda, or "Legend of St Margaret," composed in the early part of the 14th century, ${ }^{3}$ it is evident that from iime to time thie native language contirued to be employed as a means of religious edification. Under the kiogs of Anjon. the house of Anjou, the Magyar became tbe language of the court. SigisThat it was used also in oflicial documents and ordinanecs is shown mond by copies of formnlaries of oatbs, the import of which proves period beyond a doubt that the originals belonged to the reigns of Lonis (13011. and Sigismond; by a statute of the town of Sajó-St-Peter (1403) 1437). relatiag to the wine trade ; by the testament of Kazzai-karacson (1413); and by other relics of this period published by Dobrentei in vol. ii. of the R. M. Nyclvemlekich. To the carly part of the 15 th century may be assigncd also the legends of "St Francia" and of "St Ursula," and possibly the ariginal of the Euck Pannónia megrételéröl, an historical "Song about the Conquest of Pannonia." But not natil tha dawn of the Neformation did Magyar begin in any sense to replace Latin for literary purposes. Tho jeriod placed by Ilnngarian autbors between 1437 and 1530 warks the first development of Magyar literature.

About the year 1437 two Hussite monka named Tamás and Jagelide Balint (i.e., Thomas and Valentioc) adapted from older sourcea a Matthas large portion of the Bible for the use of the Ilungarian refugces in or pro Moldavia. To these monks the first extant Magyar rersion of part Reforof the Scripturea (the Vicnna or Révar CQdix ${ }^{6}$) is directly assigoed mation
${ }^{2}$ So also Jámbor (A Gagyar frod. Törs., Pcat, 1864, p. 104). Kürnyel, Imre, (1437and ethers incline to the belice that it was Bela 1. , and that consequeully the 1530). "nnonymous netary" belonga rather to the 1 lith than to the 12th century.
2 An example of this werk, printed on vellum in Gothic letcr (Augsburg, 1488), and formeriy belongling to the libtary of Mathilaa Corvinus, king of Hungary, miay be eeen In the Bitish. Muscum. Of the three firat-mentiened chronleles Hungarian trushations by Charks Szabó appeared at Budapeqt in 1860, 1861, and LS62.
'Both this and the later edlefons of Frankfort (1381), Celogne (1630), and
Presaturg (1744) are repiesented in the Britis' Moseum. - The only eopy exiseme at the present time appeara to have been tranarrbeil at the becinning of the lath century. Roth this ard the Jfulotit bestd (Pray Collex) are preserved in the Nsitional Muscumat Bodapeat
${ }^{6}$ Thly collex motainv hath. According to Toldy, it is conped fivem an carler one of the lith centary.
by Dobrentei, bat the exact aate either of this copy or ot the original translation cannot now he ascertained. With approximate certainty may be ascribed also to Tamás and Balint the original of the atill extant transcript, by George Nemeti, of the Four Gospels, the Jiszay or Munich Codex (fioished at Tatros in Mollaria in 1466). Amongst other important codices are the Jorddinszky Codex (1516-19), gu incomplete copy of the tradslation of the Bible made by Ladislaus Batori, who died about 1456 ; and the Döbrentei or Gyulafchertir Corler (1508), containing a version of the Psalter, Sodg of Solomon. and the liturgical cpistles and gospels, copied by Bartholomew llalabori from an earlier tranalation (Környei, A Magyar nemzeti irodalomturtenet raílata, 1861, p. 30). Other relics belonging to this period are the oath which John Hunyady took when elected governor of Hudgary (1446) ; a few verses aung by the childred of Pest at the coronation of his son Matthias (1458); the Siralonench Buth Janos veszedelmén (Elegy upon John Both), written by a certain "Gregori," as the initial letters of the verses show, and during the reign of the above-mentioned monarch ; and the Emlekdal Mályás diraly haluluira (Memorial Song on the Death of King Matthias, 1490). To these may be added tho rhapsody ${ }^{2}$ on the taking of "Szabács" (1476); the K'utalin-Leyenda, a metrical "Legend of St Catherine of Alexandria," extending to over 4000 lines; and the Feddöenck (Upbrailing Song), by Fradcis Apathi.

Pefor:
mation
period
(1530-
in the next literary period (1530-1606) several translations of the Scriptures are recorded. Among these there are-versions of the Epistles of St Paul, by Benedict Korajati (Cracow, 1533) ; of the Four Gospels, by Gabriel (Mizsér) Pesti (Vienoa; 1536); of the Nev Testament, by John Erdosi (Ujsziget, 1541 ; 2d ed., Vienoa, 1574 ${ }^{2}$), and by Thomas Félegybazi (1586); and the translations of the Bible, by Caspar Ileltai (Klauseabury, 1551-65), and by Caspar Karoli (Vizsoly, pear Göncz, 1589-90). The last, considered the best, was corrected and re-edited by Alhert Molnar at Hanan in 1608. ${ }^{3}$ Heltai published also (1571) a translation, improved from that by Blasius Veres (1565), of the T'ripartitum of Verboczy, and Chronika (1575) adapted from the Decades of Bonfini. Karidi in 1569 brought to light the earliest national drama, Balasi Heryhert. Among the native poets, mostly mere rhyming chroniclers of the 16 th century, were Csabadi, Tinodi, Nagy-Bäczai, Bogaiti, Ilósvay, Istvánfi, Gorgei, Temesvári, and Valkai. Of these the best and most prolifte writer was Tinódi. Székcly wrote in prose, with yerse introluction, n "Chronicle of the World" under the title of Cronica ez vilégnac yeles dolgairol (Cracow, 1559). Csiktornya and Kákony imitated the ancieut elassical poets, and Erdoai introduced the hexnmeter. Andrew Farkas and the homilist Peter Melias (Juhisz) attempted didactic verse ; and Batizi bosied himself with sacred song and Biblical bistory. Daring the latter part of the 16 th century and the beginning of the 17 th two poeta of a higher order appeared in Valentine Balassa, the earlieat Magyar lyrical writer, and his contenuporary John Rimsy, whose poems are of a contemplative and pleasing character.
The melancholy state of the country consogaent upon the persecutions of Rudolph I., Perdinnon II., and Leopold I., as also the ontiniar cacroze binent of Germanizing influences under the Hans. burga, rere unfavourable to the development of the national literature during the aext literary period, dating from the Peace of Vienua (1606) to that of Szatuár (1711). A few names weto, however, distingashed in theology, philology, and poetry. In 1626 a Hunfarian version of the Vulgate was poblished at Vienua by the Jeanit George Fildi, "and another complete tranalation of the Scriptures, the oo.called Komaromi Liblia (Komorn Bible) was made in 1685 by the Protestant George Csipkes, though it was not published till 1717 at Leyden, twenty-nine years after his death. ${ }^{5}$ On behalf of the Catholies the Jesuit Peter l'azman, aventually primate, Nicholas Eszterhityy, Simbir, Balisfi, and others were the authora of varions works of a polemical nature. Especially famous was the Ifodaxgus, kalauz of Iuzmin, which first appeared at Pozsony (l'ressburg) in 1613. Among the Protestants who exerted themselves in theological and controversial writines were Németi, Alvinczy, Alexander Felvinczy, Mártoufalvi, and Melotai, who was attached to the court of Bethlen Githor. Telkihinyai wrote on "English Puritanism" (1654). Tlw Calvin. ist Albert Moluir, already mentioned, was more especially remark: able for his philological than for his theological labours. Párispápai compilad an llangarian-Iatin Dictionary, Lictionarium magyar es deile nytwen (Liocse, 1708), and Apáczai-Csere, a Magyar Eneyclopadiu(U'trecht, 1653). John Szalirdi, Paul Lisznyai, Gregory Petho, John kienceny, and Benjamin Sailigy i, which last, however, wrote in Latin, were the authors of various historical works. In polite literature the beroic poem Zrinyidsz (1651), descriptive of the fall of Sriget, by Nichotas Zrinyi, grandson of the defender of that fortreas, marks a how erain Hangirian petry. Of a far inferior character was the monofunons Muhicsi vesierlelem (Disaster of Mohics), in 13 cantos,

1 Firat matle known ly Coloman Thaly (1871) from alscorery by MM. Fi Nagy and I) Véphlyu in the archives of the Calereiy famtly, In tho county of Ung Fore of the muly seven jerfect coptes extant of tho Vlensa (107.1) edition to the firleno Musume litrary

- A copry, with ithe uutak phot the cultor, is in tho Brltah Museum,
- A copy is in the lisitsats Mascums library.
- There are Inu copice of Lhis editlon ta the Drliah Muscum Herary.
prodaced two years afterwards at Vienna by baron Liszti 'l'he lyric aud epic poems of Stephen Gyöngyösi, who sang the deeds of Maria Széchy, the heroine of Murany, Muranyi Venus (Kassa, 1064), are samples rather of a general improvement in the style than of the purity of the language. As a didactic aud elegiae poet Stephen Kohari is much esteemed, though his pocms are of a very serious and contemplative turn. More fluent but not less gloomy are the sacred lyrics of Nyéki-Veres first published in $\mathbf{1 6 3 6}$ under the Latin title of Tintinnabrlun Tripuliantiun. The songs and proverbs of Peter Beniczky, who lived in the early part of the 17ih century; are not without merit, and lave been several times reprinted. We may here mention that, from the appearance of the first extant printed Magyar work ${ }^{6}$ at Cracow in 1531 to the end of the period we have just been treating of, more than 1800 publications in the native language are known. ${ }^{\text {? }}$

The period comprised between the peace of Szatmar (1711) and Periodo the year 1772 is far more barren in literary resulta that even that decline which preceded it. The exhaustion of the nation from its protracted (1711civil and foreign wars, the extinction of the court of the Transyl- 1772). vanian princes where the native language had been cherisked, and the prevalent ase of Latin in the achools, puhlic transactions, and county courta, ell combined to hriag about a complete neglect of the Magyar ladguage and literature. Among the few prose writers of distinction were Audirew Spangir, whose "Hungarian Bookstore," Magyar Könyotir (Kassa, 1738), is said to be the earliest work of the kind in the Magyar dialect; George Bairinyi, who translated the New Testament (Laube 1754) ; the hissorians Michael Cserei and Matthew Bèl, wbich last, however, wrote chiefls in Latin; and Peter Bod, who besides bis theological treatises con piled a history of Hungarian literature onder the title deagyar Atheruas (Szeben, 1766). But the most celebrated writer of thi period was the Jesuit Francis Faludi, the translator, throogh the Italian, of William Darrell'e works. On account of the elessic purity of his atyle in prose Faludi was known as the "Magyar Cicero." Not only es a philosophic and didactic writer, but also as a lyric and dramatic poet he enrpassed all his contemporaries. Another pleasing Iyric poet of this period was Ladislans A made, the nsturalness and gevuine sentiment of whose lightly running verses are euggestive of the love songs of Italian authors of considera!: merit are also the sacred lyrical melodies of Panl Radai in dis Lelíri hodolds (Spiritual Homage) puhlished at Debreczen in 1715. Among the didactic poets may be mentioned Lewis Nagy, Georgs Kálmár, John Illey, and Paul Bertalanfi, especielly noted for hi rhymed " Life of St Stephen, first Hungarian king," Dicearseges Sz Letvain elsö magyar kiralynak elete (Yienda, 1751).
The remaining three literary periods atand in apecial relationship to one another, and are sometinjes regarded as the same. The first two, marking respectively the progress of the "Regeneration of the Native Literature" (1772-1807) and the "Revival of the Language " (1807-1830), were introductory to and preparatory for the third or "Academy" period, which dates from the year 1830, and comprises the results of the native language and liternture in the highest state of cultivation.

In consequence of the general neglect of the Magyar languthe Regene during the reigna of Maria Theresta and her successor Joseph Il., ation the more important prose productions of the latter part of the 18 th of 1.0 century, as for instance the historica! works of George Pray, Stephen literaKatona, John Eagel, and Ignatius Fessler, were written either in ture Latin or in Germas. The reaction in favour of the native literature $(17)^{2}-$ manifested itself at first ehielly in the creation of various schools of 1807 poetry. Foremost among these stood tho so-called "French" school, fonaded by George Besseojei, tho author of several dramatic pieces, and of an imitation of Pope'a "Essay on Man," uuler the title of $A z$ embernek probaja (Vienan, 1772). Dessenyei introduced the uso of rhymed alexandrines in place of the monotonous Zrioian measure. Other friters of the same school were Laurence Orczy and Abraham Barceay, whose works have a striking resemblance to each other, and were published together by licvai (1789). The eonge and elegies of the short-lived I'aul Anyos, edited hy Baesán, i in 1798, show great depth of feeling. Versifiers and :udapters from tho Freseh appeared also in Counts Adam and Joseplı Teleki, Alexander Búróczi, aud Joseph Peezeli, known also as the translator of Young's "Night Thoughta." The chinf representatives of tha strictly "elassical" school, which adopted the ancient Greek and Latin authors as its models, were llavil Buróti Sznlós, Nichohs Révai, Joseph Rajnis, and Benedict V'irug. Among the most noteworthy works of Baroti are the $[j$ mertike vett kulomb wersek (Kassa, 1777), comprisiug hexameter virses, llonatinn odea, distiches, epistles, and cpigrnms; the H'araseti Majorsiog (Kassa, 17i980), nu hexameter rersion of Vinsere's Prodium rusticum; and an abridged version of "Paradise I nst," contained in tho Kölemenycs munkaji (Komarom, 1802). liaróti, moreover. publighed (181013) a translation of Virgil's .Encill and Brlogus. Of Baróti's

- Tho rarltest, atyled "Souk no the Telsenpery of the rght hand of tho IHoly

 nu: ('vosin fur 1879, Bd, LS. Hoft 2, D. 1:33-134.
purdy lingustie works the ceys koown are fis (ortogrannin ex two 1792) or "Sinall Lexicon" of rare Hungarian wonls. As a philo!ogist Baróti was far surpassed by Rexai, whose linguistic labours have already been alluded to (see above, Languagr:) ; but as a poet the may be considered superior to Rajnis, translator of Virgil's Bucolics and Georgics, and author of the Magyar Helikonra veretö kulauz (Guide to the Magyar Helieon, 1781). Tho "classical" school reached its highest state of culture under Virág, whose poetical worke, eonsisting chiefly of Heratian odes and epistles, on account of the perfection of their style, obtained for him the name of the " Magyar Horace." The Poetai Munkai (l"octical Works) of Virág were published at Pest in 1799, and again in 1822. Of his prose works the most important is the Magyar Szdzadoh or "Prag. matic History of Hungary " (Buda, 1808 and 1816). Vályi-Nagy, the first Magyar translator of Homer, belengs rather to the " pepuiar" than the "classical" echool. His translation of the lliad eppeared at Sirospatak in 1821. The establishment of the "Eationa" " or "popular" school is attributable chiefly to Andrew Dugonies though his earliest warks, Troja veszedelme (1774) and Ulysses (1780), indicate a classical bias. His national remances, however, and especially Etelka (Pozsony, 1787) and Az arany pereczek (Pest and Pozsony, 1790), attracted public attention, and were soon adapted for the stage. The most valuabla of his productions is his cellection of "Hungarian Proverbs and Famous Sayiogs," which appeared in 1820 at Szeged, under the title of Magyar peltabcszidek es jeles monddsok. The most noteworthy follower of Dugonics was Adam Horvath, author of the epic poems Hunnioisz (Gyor, 1787) and Rudolphidez (Vienna, 1817). Joseph Gradányi's tripartite work Falusi notarizs (Villege Notary), published between 1790 and 1796, as also his Ronto Pal és gr. Benyowseky türténetcik (Adventures of Paul Rontó and Count Benyowski), are humorous and readable, but careless in atyle. As writers of didactic poetry may hementioned John Endrëdy, Caspar Göbël, Joseph Takács, and Barbara Moloar, the earliest distinguished Magyar poetess.
Of a more general character, and combining the merits of the above schools, are the works of the authors who constituted the socelled " Debreczen Cluss," which boasts the names of the naturalist ad philologist John Foldi, eompiler of a considerable part of the Doireczeni magyar grammatica; Nichael Fazekas, author of Ludas Matyi (Vienna, 1817), an epic poen, in 4 cantos; and Joseph Kovacs. Other preeursors of the modern school were the poet and philologist Francis Verseghy, whose works extend to nearly forty volumes; the gifted didactic prose writer, Joseph liarraan; the metrical rhymster, Gideon Raday; the lyric poets, Szentjóbi Szabó, John Bacsanyi, and the short-lived Gabriel Dayka, whose posthumous "Verses" were published in 1813 by Kaziaczy. Still more celebrated were Michael Csokonai and Alexander Kisfaludy. The former is one of the most original and genial of poets, his style somewhat resembling that of Petöf. The best edition of Csokonai's works was puhlished by Toldy (Pest, 184\%). The first volume of Alexander Kisfaludy's Himfy, a series of short lyrics of a descriptive and reflective nature, appeared at Buda in 1801, uader the title of Kesergö sacrelenn (Unhappy Love), and was received with such applause as but few books have ever met with; nor was the suceess of the second volume Boldog szerelem (Happy Love), which appeared in 1807, inferior. The Regek, or "Tales of the Past," were published at Buda from 1807 to 1808 , and still further increased Kisfaludy's fame ; but in his dramatic works he was not equally successful. Journalistic literature in the native language begins with the Magyar Hirmondo (Harbiager) started by Matthias Ratb at Pozsony io 1780. Among the magazines the most important was the Magyar Muscum, establisbed at Kassa (Kasehau) in 1788 by Baróti, Kazinezy, and Bacsinyi. Tbe Orpheus (1790) was the apccial work of Kazinczy, snd the Urania (1794) of Karman and of Pajor.
devival Closely connected with the preceding period is that of the "Revival of the Language" (1807-1830), with which the name of Francis Kazinezy is especially associated. To hin it was left to
(1.0. perfect that work of restoration begun by Baróti aad amplified by Revai. Poctry and belles lettres atill continued to occnpy the ehief Flace in the native literature, but under Kazioczy and bis itmmediato followers Berzsenyi, Kölcsey, Fáy, and others, a correctness of stylo and excellence of taste hitherto unknowa soon became apparent. Kazinczy, in his efforts to aceommodate the national language to the denands of an improved civilization, a vailed himself of the treasures of European literature, but thereby incurred the opprosition of these who were prejudiced by a too biased fceling of nationality. The opininas of his enemics were'ventilated in a lampoon styled Mondolat. His bellelettristic works, or Szep Literatura (Pest, 1814-16), extend to 0 vols, , consisting in great part of translations. 1I is Ercicti Mukioi (Original Works), in 5 vols., appeared at Pest in 1836-45, umiler tha joint editorship of Bajza and Toldy. Danicl Berzsenyi, whose odes nre anong the finest in the IIngarian language, was the corresponient of Kazincry, and like hinn a victim of theattacks of the Monlolat. Put the fervent patriotism, elevated style, and glowing diction of Berasenyi eoon caused him to be recognized as a truly natioaal baril. A toofrequent allusion to Greek mythological names is a defect
somermss anscrvaite in his writuigs His collective works were nublisbeá at Buda by Dëbrentei in 1842. Those of Jolın Fis, the Itiend of Berzsenyi, cover a wide range of subjects, and comprise, hesides original peetry, many translations from the Greek, latin, French, German, and English, among which last may be mentioned renderings from Blair, Pope, and Thonson, and notably bis transe lation, published at Vienna in 1791, of Lowth's "Choice of Hercules." Tho stylo of Kis is unaffected and easy. As a sonnct writer none stands higher than Paul Szemere, koown alse for his rendering of Körner's drama Zrinyi (1818), and bis contributions to the Elet es Litcratura (Life and Literature). The articles of Franeis Kolcsey in the same periodieal are among tbe finest spceimens of Hungarian esthetical criticism. The lyaic poems of Kalcsey can hardly bo surnassed, whilst his oratioas, and markedly the Emlèh beszed Kazinczy felett (Commemorative Speech on Kazinczy), exhibit not only his own powers, List the singular exeellence of the Nagyar language as an oratorical medium. Andrev Fiy, sometinles styled the "Hlungarian Esop," was an industrious writer in almost every branch of literature during both this and the following neriod, but is now chicfly remembered for his Ercdeti Mesét (1)riginal Fables). Tho dramatic works of Charles Kisfaludy, brother of Alexander, won him enthusiastio recognition as a regenerator of the drama. His plays, moreover, bear a distinetive national character, the suhjects of most of them referring to the golden era of the country. Llis gennine simplicity as a lyrical writer is shown by the fact that several of his shorter pieces have passed into popular song. As the earliest Magyarizer of Servian folk-song, Michael Vitkovics did valuable serrice. Not without interest to Englishmen is the nanee of Gabriel Dotrentei, the translator of Shakespeare's "Mucbeth," represented at Pozsony in 1825, and of Sterne's "Letters from Yorick to Eliza," Yorich is Eliza levelei (Pest, 1828). But his chief merit in the eyes of his fellew-countrymen were his editorship of the Kolozsvar Erdelyi Muzcum (1814-18, vol.*x.), and his laborious compilation of the Régi Magyar Nyclecmlékek (Memorials of the Magyar Language), which werks are among the most important contributions to tho literary blstory of the nation. An bistetical poem of a somerhat philosephical nature was produced in 1814 Dy Andreas Horvath under the title of Zirez cmlékezele (Reminiscence of, Zircz) ; but his Arpad, in 12 books, finished in 1830, and published at Pest in the following year, is a great national epic. Anteng other poets of this period were Alois Szentraiklóssy, George Gaal, Emil Buczy, Joseph Szisz, Ladislaus Toth, and Joseph Katona, anthor of the muchextolled historieal drama Bunk Eín.' Izidore Guzmics, the translator of Theocritus into Magyar hexameters, is chiefly noted for his prose writings on ecclesiastical and philosephical subjects. As anthors of special works on pbilesophy, we find Samuel Köteles, John Imre, Joseph Raszek, Daniel Ercsci, and Panl Sárvári ; as a theologian and Hebraist John Somossy ; as an histerian and philologist Stephen Horvith, who endeavoured to trace the Magyar descent from the earliest historic times; as writers on jurisprudence Alexander Kövy and Paul Szlemenics. (For an acconnt of the historian George Fejér, the laborions compiler of the Codex Diplomati. cus, sce Fejer, vol. ix. pp. 64, 65.)

The establishment of the Hungarian Academy of Sciences ${ }^{2}$ (17 t November 1830) marks the commencement of a new jeriod, i the first eighteen years of which gigantic exertions were made 8 regards the literary and intellectual life of the nation. The language, nursed by the academy, devcleped rapidly, and showed its capacity for giving expression to almost every form of scientitic knowledge. ${ }^{3}$ By offering rewards for the best original dramatic productions, the acsdemy provided that the aational theatre should not suffer from a lack of elassical dramas. During the earlier furt of its existence the Hungarian academy devoted itsclf mainly to the seientifie development of the language and philological research. Since its roorganization in 1860 the academy has, however, paid equal attention to the varions departnonts of history, archaology, national economy, and the physical sciences. The encouragement of polite literature was more especially the object of the Iisfaludy Socicty, founded in $1836 .{ }^{4}$

1 The subject is simllar to that of Gillparzer's tragedy, Ein treuw Dimer scines Hevrn
2 It was fonnded in 1825 through the genrroxity of Count Széhenti, wion deroted his whole Income for one year (60, no thorms) to the puspose. It wre
supported by conmbutions ine earlicr fublications of tha acmemy were the Tudomanydar (Trensury of Sciences, 1834-A1), with its suppiement Literafura; the Kulfolde (Trensury nolen Thealces) : the Mapyar nyelt rends:cre (System of the Huo. carian (ancuace 1846 ; 2d cd. $18[7$); varlols dlctionarlis of acientate, mathe-
 maticat pose
 rcgutire regle and the "Anmuls"

Among its earlier productiona were the Nemzeti hönyrfir (Nationul library) published 1943-47, and continuct In 1832 under the tite L'rabb Aemzetidomytiar a tepository of warks by celchrats authors: the kulfoldi hegeaytar (Treasury of froverbs, folk-50ngs, tradtions, nnd faties. Of the many later publications of of froverbs, Kisfality socicty tisa most lmportant as recards Enghish Jiterature in tho Studspere Mindin Minhai (Complete Works of Shakespeare), in 19 vols (18ft-78)

Polite literature had received a great impuse in the preceding period ($1807-30$), but after the formation of the academy and the Kisfalady society it advanced with accelerated speed towards the point attaiued by other nations. Foremost among epic poets, though not equally successful as a dramatist, was Michael Vörösmarty, who, belonging also to the close of the last period, combines great power of imagination with elegance of language. His listorical tragedy Salamon Kiraly (King Solomon, 1821), though deucient in drainatic force, attracted considerable attention. As fine apecimens of epic poetry the Zalan futdsa (Flight of Zalan, 1824) and Cserhalom. (1826) are unrivalled. His lyrical poems are exquisita both in taste and styla; hia Szozat (Appeal) is the Magyar national anthem. Vorösmarty is also celebrated as the translator of Shakespeare's'. Julins Cæsar " and " Eing Lear." Generally less varied and romantic, though easier in style, are the heroic poems Augsburgi ütkäzt (Battle of Augsburg) and Aradi gyüles (Diet of Arad) of Gregory Czuczor, who was, moreover, very telicitous as an epigrammatist. Martin Debreczeni was chiefly famed for his hiori csata (Battle of Eicff), published at Pest in 1854 after his death by Count Emeric Mikó. The laborious John Garay in his Sient Laselo chows considerable ability as an epic poet, but his greatest merit was rather as a romancist and ballud writer, as shown by the "Pen Skatches" or Tollrajzok (1845), snd his legendary series Arpódok (1847). Joseph Bajza was a lyricist of a somewhat melancholy cast, but his Borenek (Wine Song), Sohajtös (Sigh), Ebresztö (Awakening), and Apotheosis are much admired. He is known further as the translator of F. C. Dahlmann's Geschichte der englischen Revolution. As generally able writers of lyrical poetry during the earlier part of this period may be mentioned among others Francis Császar, Joseph Székics, and Andrew Kunoss,-also Lewis Szakál and Alexander Vachoit, whose songs and romsuces are of an artless and stmple character, and the sacred lyricist Béla Tárbányi. As an original but rather heavy lyric and didactic poet we may mention Peter Vajdu, who was, moreover, the translator of Bulwer's "Night and Moraing." Of a more distinctly national tendency are the lyrics of John Erizal and John Erdélyi, but the reputation of the latter was more especially due to his collections of folk-lore wade on behalf of the Kisfaludy society. More popular than any of the preceding, and well-known in England through Sir Joha Bowring's translation, are the charming lyrics of Alexunder Petofi, the "Burns" of Hungary. His poems, embodylng as they do the national genius, have passed into the very life of the people; particularly is he happy in the pieces descriptive of rural life. In his verse "Folk-tales," Néjregek (1846), and "Ballads," Regek (1852), may Michael Tompa, another popular poet, be regarded as sometimes hardly less felicitous. The most diversely gifted Magyar singer, however, is John Arany, whose talents have been displayed, not only in ballads and lyrical effusions, but in almost every branch of poctry except the dramatic. Especially fumous is the Toldi trilogy, of which the first part Toldi, in 12 cantos, reluting to the youth of the hero, was published at Pest in 1847; the third part, Toldi Esteje (Toldi's Eve), describing his fall and death, in 1854; and the middle part, Toldi Sierclme (Toldi's Love), in 1879. The Nagnidai criganyok (Eida Gipeies), a fine hamorous epic poem in 4 cantos, appeared in 1852. A collective editiou of Arany'a poctical works was yublished at Pest and Vicnna in 1867.

Among recent lyricist who have attracted attention are the following :-Coloman Tuth, who is also the author of several epic and dramatic pieces; John Vajua, whose K'isebb Kóltemények (Minor Yoems), piblished by the Kisfaludy society in 1872, are partly written in tbo mode of Heine, and are of a pleasing but malancholy character; Joseph Levay, bown also as the translator of Shakespeare's Titas Andronious, Taming of the Shrew, und Henry $I V_{\text {: }}$; and Paul Gyulai, who, not only as a faultless lyric and epic poet, but as au impartial critical writer, is highly esteemed, and whose Romhanyi is justly prized as one of the best Magyar poems that has appeared in modern times. Te the above may be added the names of Charles Berecz, Joseph Zalar, Samuel Nyilas, Joseph Vida, Lewis Tolnai, the sentimental Ladislans Szelestey, and the talented painter Zoltán Balogh, whose romuntic poem Alpari was pablishad in 1871 by the Kisfaludy soniety. The lyrics of Anthony Varaly $(1875,1877)$ are somewhat dull and uncqual in tone; tooth lie and Baron lvor Kaaa, anthor of Az itelet nopja (Day of Judgment, 1876), have ehown skill rather in the art of dramatic verse. The poems of Count Geza Zichy and Victor Dalmady, those of the latter publisbed at Budapest in 1876, are mastly written on subjects of a domestic anture, but are conceived in a patriotic ejpirit. Emil Abranyi mopots a rather romantie style, lut his Nagypenteh (Good Friday) is on excellent descriptive sketch. Alexander Endrody, suthor of 2'ucsö dulok (Crieket Songs, 1876), is a glowing writer,
to which a mopplementary, vel. Shakspere Pabdia (18s0), contaning a critical account of the iffe and walting of Shakespenre, bas been ndileal by frotessor A. circurse. Tianslatluns from Mollere, Racine, Cumelle, Calueron, and Moreto

 rationc, and translations and origimal plecen, both In fuetey and proste.

with great power of conception, but his metaphors, following tamaly one upon the other, become often confnsed. Joseph Kiss in 1876 brought out a few lyric and epic peems of considerable merit. The Mcsêk of Augnstus Greguss (1878), a collection of verse "Fables," belonging to the school of Gay, partake more of a didactic than lyrical nature. This feature is neticeable also in the Koltemenyck (1873) of Ladislaus Torkos, and the Modern Mesek (1874) of Ladislaus Névy. "An energetic satirical peet has recently appeared in Lewis Bartók.

As one of the latest remarkable productions of Magyar poetry, we mast not omit to draw attention to the Sulamon (1878) of Charles Szasz, which peem was rewarded with the prize of the academy. The subject, taken from the age of Hungarian chivalry, is artistically worked out from medixval legends, and gives an excellent description of the times of St Ladislans of Hungury. Charles Szasz is generally better known as a metrical translator than as au original poet. He is the Mogyarizer of Shakespeare's Anthony and Cleo patra, Othello, Macbeth, Henry VIII., Winter's Tale, Romeo and Julict, and Tempest, as also of some of the best pieces of Burns, Moore, Byron, Shelley, Milton, Béranger, Lamartine, Victor Hugo, Goethe, and others. A translator from Byron and Pope appeared also in Maurice Lukacs. ${ }^{\text {a }}$

Meanwhile dramatic literature has found many chsmpions, of whom the most energetic is the late Edward Szigligeti, proprie Joseph Szathmáry, who has enriched the Hungarian stage with more than a hund red pieces. Of these the most popular are comedies and serio-comic national dramas. His recently prodnced tragedy Bela $I V$. is ulso mach admired. A less prolific but nore classical writet appeared in Charles Obernyik, whose Georgc Brankovics is, next to Fatona's Bank Bin, one of the best historical tragedies in the lan guage. Several of the already mentioned lyric and epic yoets were, as we have shown in the case of Vorösmarty, oceasional writers also for the druma. To these we may add the gifted but unfortunate Sigismund Czakó, Lewis Dobsa, Joseph Szigeti, Ignatius Nagy, Joseph Szenvey (a trauslator from Schiller), Joscph Gaal, Charles Hago, Lawrcnce Toth (the Magyarizer of the School for Scandal), Emeric Vuhot, Alois Degré (equally famous as a novelist), Stephen Toldy, and Lewis Dóczi, author of the popular prize drama Csok (Tha Eiss). Az ember tragoediaja (The Tragedy of Man), by Emeric Bladách (1881), is a dramatic poem of a philosophical and contcmplative character, and is not intended for the stage. Among the latest most saccessful dramatic pieces may be mentioned the Falu rossa (Village Scamp) of the late Edward Toth (1875), which represents the life of the Hungarian peasantry, and shows both poetic sentiment and dramatic skill; A szerclem harcia (Combat of Love), by Count Géza Zichy ; Iskariot (1876) and the prize tragedy Tamora (18:9), by Anthony Virady; Janas (1877), by Gregery Csiky ; and the dramatized romunce Siep Mikhal (Handsome Michal), by Maurice Júkai (1877). The principal merit of this nuthor's drama Milton (1876) consists in its brilliance of Janguage. The Szerelem iskoldja (School of Love), by Eugene Rakosy, although in some parts exquisitely worded, did not meet witl the applanse accorded to his Ripacsos Pista Dolmatyya (1874). The Grof Dor* mandi Kalman (Count Coloman Dormándi) of Bẻla Bercsényi (1877) is a social tragedy of the French school. Among the most recent writers of comedy we single out Arpàd Berczik for his A házasitok (The Matchmakers) ; lnantius Súlyovsky for his Nơi diplomatia (Female Diplomacy) ; and the above-mentioncd Gregory Csiky for his Ellenallhatatlan (The Irresistible), produced on the stage in 1878. As jopular plays the Sarga csitio (Bay Foal) and A piros bugycllaris (The Red Purse) by Francis Csepreghy, have their own apecial merit, and were often rcpresented in 1878 and 1879 at Budapest and elsewhere.

Origimal romance writing, whinh may be said to have commenced with Dugomics nad Kirman at the close of the 18th, and to have

2 Bestucs the watoug transintors from the Engllsh, fas for Instance Willam Gybrl, Augustus Greguss, Lailislaus Armys, Sigismond ìcs, Stephen Fejes, ond Eygene Rakosy, who, like those already lachdentaty mentloned, have assisted in Ethe Kisfatuly society's verston of Shakespeare'a complete work", metricnl transthe Kisfahdy society sersion of from forelinganguage have, durine the last few years, becn successfully
 Chales bérczy, Julus rireguss. Lewis Duezi. Lélo Fithil. Emerle Gaspar, and

 pulithed at pest in 18 f. Fathine rendeldegs by Lewis Sceterenyl. Thenduro Lehoczky, end Michacl Fincleky of the popalar portry of tho Slayke nitenalites appeafed vols. I and in. of the 1 arat tifp rotesze hira (Treasury of the Country s ropular smeg, commenced hi 18to, thacr the nusphers of be kisfatuy Rocloty. In wh. in. Koumnalan rok-snngs have been Macyamzed by Gcorpo
 (Budapent 1877). The kissik (zambor, 18:3) is a transintion by Eugene rove ovis frona the Servinn of Jovin Jowanovits. Both the tast-menuonct wolk ary interesting from an erhiographlal point of vew. Gerslong row the kugha
 by Paut Gyulat. We may here note that for forejgers macquaintel sith humb garinn there are, hesides several apecial cersions of lucon and of Arnay.

found a representative in Francis Verseghy at the keginning of tha [9th century, was afterwards ravived by Fay in his Belicky hóz (1832), nad by tha contributors to certaio literary magazioes, especially the Aurora, an almanack conducted by Charles Kisfaludy, 1821-30, and continued by Joseph Bajza to 1837. Almost simul. tancously with the rise of the Kisfaludy society, works of fiction assumed a more vigorous tone, and began to present just clainas for literary recognition. Far from adopting the levity of style too often observabla in Franch romances, the Magyar novels, although enlipened by touches of humour, have generally rather a scrious hisvorical or pelitical bearing. Especially is this the case with Nicholas Jósika's Abafi (1836), A csohek Magyarorszdgon (The Bohemians in II ungary), and Az utolso Batori (The Last of the Báthoris), published in 1847. In thase, as in many other of the romances of Josika, a Ligh moral standard is aimed at. Tha sama may be said of Baron Ji.seph Eotvöa's Karthausi (1839), and Falu Jegyzoje (Village Notary), published in 1845, and translated into English (1850) by O. Wenckstern (see Eörvös, vol. viii. p. 455). The Arviakónyv or "loundation Book," edited by Eötvö̀s, 1839-41, is a collection of narratives and poems by the most celebrated authors of the time. Of tha novels produced by Baron Sigismond Kemeny tha Gyulai PUL (1847), in 5 vols., ie, from its historical character, the most important. His Ferj \& nö (Husband and Wife)-appcared io 1853 (latest cd., 1878), the Rajongok (Fanatics), in 4 vols., in 1858-59. The graphic descriptions of Hungarian life in the middla and lower classes by Lewis Kuthy won for him temporary renown; but his style, thongh fowery, is careless. Another pepular writer of great originality was Joseph Radakovics alias Vas-Gereben. ronances of Baron Frederick Podmaniczky are simpler, and rather of a narrative than colloquial character. The fertile writer Paul Kovárs excels mora particularly in humorous narration. Fáy's siogular powers in this direction were well shown by his Javor orvos \&s Balator Ambrus swolgaja (Doctor Jaivor and his servant Ambrose Bakator), brought out at Pest in 1855. The Beszelyek (Tales) of Ladislaus Beöthy were produced in the same year, his Pusztók: fia (Son of tho Pusztas) in 1857. Pleasing humor sketches are contained also in Ignatius Nagy's Beszelyct (1843) and "Caricatures" or Torskpels (1844); in Caspar Bernát's Frasko Répek (1847-50) ; in Gustavus Lauka's Videk, and his A jo regi vildg (Tha Guod Old World), published respectively in 1857 and 1863 ; and in Alexander Balảzs's Beszélyei (1855) and Tüßhördarabok (1865). Among authorg of other historical or hurnorous romances and tales which have alpeared from time to tima are Francia Márton alias Lewis Abonyi, Joscph Gaal, Paul Gyulai, William Györi, Lazarus Horvath, the short-lived Joseph Irinyi, translator of "Uncle Tom's Cabin," Francis Ney, Albert Palffy, Alexander Vachott and his brother Emeric (Vahot), Charles Szathmáry, Desider Margittay, Victor Vajda, Joseph Bodon, Atala Kisfaludy, John Krátky, and the several writers whose bames and latest works are noticed at the end of this paragraph. But by far the most prolific and tolented novelist that Mungary can boast of is Maurice Jókai, whose power of imagination and brilliancy of style, no less than his truc representations of liungarian lifa and character, hava earned for him a European reputation. His earlier romances, published before the revolution of 1848 , are chicfly of a social or political tendency. Of his more rccent productions the best known are Egy magyar nabob (A Magyar Nabob), with its coatinuation Kárpalhy Zoltin, published in 1353 and 1854 respectively; Szerelem bolondjai (The Fools of Love, 1867) ; Az uj foldesur (The New Landlord), translated into English by A. J. Patterson (1868) ; Fekcte gyematriok (Black Diamonds, 1870); A jovö szaizad regenye (The Romance of the Coming Century, 1873); Az elct homédiasai (The Comedians of Life, 1876); the historical romance Szep Mikhal (1876) already referred to ; and his justly admired and viyidiy interesting work Eyy $a \approx$ istcre. (God is One, 1877). The events of the last-inentioned novel, in which the Unitarians play an iniportant part, are supposed to take place between tha years 1848 and 1859, and tho scenes are laid partly in Transylvania, partly in Italy. lo his a nevecten edr (Nameless Castle, 1878), the author conoects an epoch of Frencl hiatory with Hungarian, nod gives an account of tho Hungarian army employed ao unsuccessfully against Napoleon in 1809: Rab Raby (Captive Raby), produced in 1879, is a tale of the times of Joseph 11. Defects occasionally observable io Jóki's works me want of uoity, consistency, and probability. Of the novels produced by other authors since 1870, we may mention- A lol az cmber kesdutik, (Where tha Man Begins), by Edward Kavassy (1571), in which he severely lashes the idling Magyar nobility ; $A \approx$ en ismere ©scion (My Acquaintances), by Lewis Tolnai (1871); and Anotol, by Stephen Toldy (1872); the versificd romances Deli bibok höse (Hero of the Fata Morgana), generally ascribed to Ladislaus Arany, but anonymonsly published, A szerelem höse (IIcro of lave), by John Vajrla (1873), and Taldlkozdsok (Rencounters) by the same (1877), and A Tïndéröv (The Fairy Zone), by John Bulla (1876), all four interesting as specimens of narrative poctry; Ḱdozdy Bela (1875), a tale of Hungarian provincial life, by Zoltán Beöthy, a pleasing writer who possesses a fund of humour, and appears to follow tha best English models; Eelith tortérete (History of EJith) be Joscplh

Prent (1876) ; Nyomomisig istoldja (Sewool of Misery), by tha prolific author Aroold Vértesi (1878); Titholl szerclem (Secret Love), by Cornelius Abranyi (1879), a social-political roolance of some merit; and Uj idök, avult emberck (Dlodern Times, Blen of the Pust), by L. Vèka (1879). In the Itthon (At Home), by Alois Degre (1877), the tale is nade tha medinm for a satirical attack upon official corruption aud Hungarian national vanity; and in the Almok álmodöja (Dreamer of Drcams), by Juhn Ásbóth (1878), other national detects are aimed at. A rosz szomszid (The Bad Neighbour), by Charles Vadnay (1878), is a felicitous representation of the nower of love. The $A=$ utulso Bebek (The Last of the Bebeks), by the late Charles Pitery, is a work rich in poetic invention, but mearre in histolical blatter. The reverse is the case with the Lajos pap (Priest Lewis), by Charles Vajkay (1879), tho scena of which is placed at Pest, in the beginning of the 14 th ceatury. In this romace the interest of the narrative is weakened by a superabundance of historical and archzological detail.

As regards works of a scientific character, the Magyars until recently were confessedly behind hand as compared with many other European nations. Indeed, before the foundation of the Hungarian academy in 1830, but few such woiks claiming general recognition had been published in tha native language. Even in 1847 astronomy, physics, loyic, and other subjects of the kind had to bo tanght iu several of the lycenms through the medium of Latin. Tie violent political commotions of the next few years allowed but little opportunity for the prosecution of serious studics; the subsequent quieter state of the country, aod gradual re-cstablishment of the language as a means of education, were, however, more favourable to the development of sciedtific knowledge.

In the department of philosophy, besides several writers of dissertations bearing an imitative, didactic, or polemical character, Hungary can boast a few authors of independent and origioal thought. Or these one of the most notabla is Cyril Horvath, whose treatises published in the organs of the acadeny display a rare freedon and comprehensiveness of imagioation. John Hetényi and Gustavus Szontagh must be rather regarded as adopters and developers of the ethical teaching of Samuel Köteles in the previous period. Hyacinth Rónay in his Mutatuany (Represeotation) and Jellemisme (Characteristics) endeavoured to populariza psychological studies. The philosophical labours of the already mentioned John Erdélyi and of Augustus Greguss won for them well-deserved recognition, the latter especially being famous for his esthetical productioos, in which he appears to follow out the priticiples of Vischer. The Tanulmanyok (Studies) of Greguss were brought out at Pest in 1872. The reputation of John Szilasy, Joln Varga, Fidelius Becily, and Francis Ney arose rather from their works bearing on the subject of education than from their contributions to philosophy.

Tha labours of Steplen Horvath in the peeceding period had prepared the way for future workers in the field of historical literature. Specially mevitorious among these are Michael Horvath, Ladislaus Szalay, Paul Jászay, and Count Joseph Taleki. The Magyarok törtencte (History of the Magyars), io 4 vols., first published at Páps (1842-46), and afterwards in 6 vols. at Pest (1860-63), and in 8 vols. (1871-73), is the most fammus of Dichael Horvath's numerous historical productions. Ladislans Szalay's Magyarorszig történcto (History of Hungary), vols. i.-iv. (Lcipsic, 1852-54), vols. v.-vi. (Pest, 1856-61), second edition, i.-v. (1861-66), is a most comprohensiva work, showing moro particularly the progress of Hurgarian legislative devclopment in past times. His stylc is elevated and concige, but somewhat diffeult. Magyar listory is indelted io Panl daszay for his careful working out of certain special periods, as, for instance, in his A Magyar nemzet napjai a legregibe ílotol az arany bullaig (Days of the Hungarian nation from the earliest timcs to the date of tho Golden Bull). Count Joseph Teleki is famed chiefly for his Hunyadiak hora Magyarorszagon (The limes of the llunyadys in Hungary), vols. i.-vi. (l'est, 1852-63), x.-xii. (185357), the result of thirty years' labour and research. In particular departments of historical literature we find George lartal, author of Conntentariorum . . libri $\mathrm{K}^{\prime} V_{\text {., ton. }}$ i.-iii. (Pozsony, 1847), John Czech, Gustanus Wenczel, Froderick l'esty, and l'ail Salemenics, as writers on legal history; Joseph Rajza, who in 1845 conmenced a "History of the World," Alcxander Szilagyi, some of whose works, like those of Ladislaus Köviry, hear on the past of 'l'ansylvania, others on the Jungarian revolution of $1848-49$; Charles Lanyi and John Paucr, authors of treatises on lioman Catholic ecclesiastical history; John Szombathi, Emeric Révesz, and Balogh, writers on Protestant church history; William Fraknói, biographer of Cardinal Pizmin, nad historian of the IIungarian diets; mod Anthony Gevay, Aaron Szilidi, Joseph Podhradezky, Clarles Szabo, John Jerncy, and Francis Suamon, who have investigated and elucilated many sprecial historical subjects. For the mediaval history of Hungary the Mcifynshori diplomatikat emlekeh (Diplomatic Memorials of the Time of Nathias Corvinus), issued by the neademy under the joint editorslip of l wao Nagy and Baron Albert Nyáry, allorls intercsting material. As a masterly production based on extensive investigation, we note tha Wesselény Fercnez . . . összeesküvLse ('l'he Secret Plot of Fraucis W'csselényi,

Pe4 71. by Julius Pauler (1876). Among the many historians of Tagey liturature Francis Toldy alias Schedel holds the foremost lace. As compilers of useful manuals may be mentioned also Joseph Szvorényi, Zoltan Beöthy, Alexander Imre, Paul Jómbor, Ladishaus Névy, John Kornyei, and Joserh Szinnyei, junior. For philolorieal and etboographical research into the origin and growth of the lansuage none excels Paul Hunfalvy. He is, moreorer, the warn adrucate of the theary of its Ugrio-Finnic origin, as established by the late Uralian traveller Anthony Reguly, the result of whose libours Hunfalry published in 1864, under the title A Vogul follés nep (The Vogul Land and People). Between 1862 and 180 n valuable philological studies bearing on the same subject were published by Joseph Budenz in the Nyelvtudomanyi Kozlemenyek (Philological Treasactions). This periodical, issued by the academy, has during the last decade (1870-S0) contained also comparative studies, by Armioins Vimbéry and Gabriel Bilint, of the Magyar, Turkish-Tatar, and Mongoliai dialects.

As compilers sad authors of works in various scientific branches allied to history, may be particularly mentioned-in statistics and geography, Alexius Fenyes, Emeric Palngyay, Alexander Konek, John Hunfaloy, Charles Galgóczy, Charles Keleti, Leo Beöthy, Joseph Korusi, Charles Ballagi, and Paul Kirily, and, as regards Transylrania, Ladislaus Kövary; in travel, Arminius Vambéry, 1 gatius Gollziher, Ladislaus Magyar, John Xantus, John Jeraey, Count Andríssy, Ladislaus Podmanicziky, Paul Hunfalry; in astronomy, Nicholas Konkoly ; is archæology, Bishop Arnold Ipolyi, Florian Rómer, Emeric Henszlmann, John Érdy, Baron Albert Nyary, Francis Pulszky, and Francis Eiss; in Hungarian mythology, Bishop Ipolyi, Anthony Csengery, and Arpád Kerékgyáró ; in pamismatics, John Erdy and Jacob Rupp; and in jurisprudence, Aurrstus Karwassy, Theodore Pauler, Gustavas Wenczel, Emeric Csacakó, John Fogarasi, and Ignatius Frank. Since 1867 great activity has been displayed in history and its allied branches, owing to the direct encouragement given by the Hungarian Historical Society, and by the historical, archeological, and statistical committeea of the academy.

Notwithstauding the exertions of Paul Bugat to arouse an interest in the natural sciences by the establishment in 1841 of the "Hungarian Royal Nstural Science Associstion," no general sctivity was manifested in this department of knowledge, во far ss the native literature was concerned, until 1880, when the academy organized a special committee for the advancement of mathematical and uatural science. ${ }^{2}$ The principal contributors to tho "Transactions " of this section of the academy have been-for anatomy and physiology, Coloman Balogh, Eugene Jendrassik, Joseph Lenhossek, and Lewis Thanhoffer; for zoology, John Frivaldszky, John Kriesch, and Theodore M8rgó ; for botany, Frederick Hazslinszay, Iperis Jnranyi, snd Jalius Elein ; for mineralogy and geology, Joseph Szabo, Max Hantken, Joseph Kremner, Anthony Koch, and Charies Iloffmann; for physics, Baron Lorando EatFös, Coloman Szily, noh Joseph Sztoczek; for chemistry, Charles Thae and Vincent Wartha; formeteorology, Guido Schenzl. As good text-books, for which the so-called "Ladies" Prize" was amarded by the academy, we may meation the Ternedsertan (Physics) and Termeszellani foldrajz (Physical Geography) of Julius Greguss.

Almast simultapeously with the formation of the above-mentioned committee of the academy, tho "Natural Science Associstion"

The cranslator of Macsulay:

${ }^{2}$ See, however. S. Szlnnyeland Son's Bibliotheca Hunparica hisioriat naturalis et matheseos, 1192:1875 (Budapest, 1878), whero the oumber of Magyar works bearing on tho naturnd aclencts and mathematica printed from tho earilest dato to the end of $15 i^{\circ}$ is atated to to 381 I , of which 106 are teferred to perforticals.
showed signs of renewed snimation, sad soon sdvanced with repid strides in the same direction, but with a more popular aim than the academy. This may be seen from the fact that between 1868 and 1578 the number of its members increased from some 600 to 8 bout 5000. Since 1872 , in addition to its regular argans, it has issued Hungarian translations of several popular scientific English works, as, for instance, Darwin's Origin of Species; Huxley's Lessons in Physiology; Lubbock's-Prehistoric Times; Proctor's Other Worlds than Ours; Tyndall's Heat as a Jlode of Motion, \&c. Versions have also been made of Cotta's Geologic der Gcgenuurt and Helmaholtz's Populare Forlesungen. As important original monographs we note-Áz árapily a Fiumei obolben (Ebb sad Flow in the Gulf of Fiume), by Emil Stahlberger (1874); Magyarorsadg pokfaundja (The Arachaida of Hungary), by Otto Hermann (1876-7S); Magyarorszag raskurei es vastermenyei (The Iron Ores and Iron Products of Hungary), by Anthony Kerpely (1577); Magyarors:a nevezeteselb dohanyfajainak chemiai

- megvizsgákisa (Chemical Examination of the most famous Tobaccos of Hungary), by Dr Thomas Kosutany (1877).
lo order to give 8 geaeral idea of the dominent position that the native Hungarian literature has obtained during the last balf century, we conclude our sketch with a few statistics of the number of books and periodicals issued from the press at barious dates since the foundation of the academy. la the year 1831 there were 184 Magyar works published ; in 1853 there were 336 ; this namber in 1874 increased to 946 ; in 1877 to 1067 ; 8nd in 1878 sad 1879 to 1312 and 1154 respectively. In 1879 thera sppeared slso 111 German works, and 185 in other non-Maryar languages. In 1830 the uumber of Magyar periodicals was 10 ; in 1848-49 it increased to 80 , but fell in 1850 to 9 . 10 1867, after the restoration of the Hungarian constitution, the number mas again 80 , sud increased so rapidly during the next twelre gears that by 1879 it reached 324, and has in the present year (1880) risen to 368 . There are now, moreover, 197 newspapers and journals of all kinds in the nonMagyar langunges, viz., 114 Gernan, 61 Slavonic, 16 Roumanian, 4 Italian, and 2 Hebrew; so that there are at this date sltogether 505 periodicals published in Hungary.

If we take a retrospective glance at the depressed state of the native language and literature as it was a century ago, when the first Magyar newspaper was published at Pozsony, list January $1780,{ }^{3}$ and contrast its commanding position now, -or if we consider that, though constantly surrounded and pressed by foreign and antagonistic elements, the native language and literature have not only not been overpowered, but hare even gained the mastery, - re cannot fail to admire the determined perseverance of the champions of Magyar literature, and believe that the state langrage is destined to be s common sud eaduring bond of union between the barious ationalities comprised under the crown of St Stephen.
Bibliography. - The best suthorltics on 3acyar literature are:-F. Foidy, - 1 Magyar nemzeti irctalom törtèncle a legregibb idotröl a jelenkorig (Pest, 1sct-65: $3 \mathrm{ect}, 1 \mathrm{sis}$): S Imre, A Magyar irodalom is nyelv rörid törterele (Debreczen 1865: 4th ed., 1SiS); J. Szvorényl, Mazyar irodaimy ssemefrények (Pest, 1867), and A Mfagyar irodaini tanulmanyob kèsionyue (Fest, 1stis): P. Jśmber, a Majur irodalom torleaete (Pest, 1804); J. Kömyel, A Jagtar nemzeti irodalomtütenet réslata (Pest, 1861; 3d ed, 1874); A. Lonkly, A. Uagyar irodalom ismertetese

 meny (2 vols, Pest, 1856-58); and tho-literary histories of Lo Névy, z. Beüthy and B. Erödi, One of the mest useful monographs on "Macyar luttravy listery Writing" ts that af J. Szinnyel, jonlor, A Magyar Irodaloniórtenet-Irus asnier

${ }^{3}$ A Latin perthacal, Intended only for transmission sbroad, and styled 3 . German perlodical was itst pubilshed la Hungary about 1731 .

Tanex.

Academy of sefences 366, 871, 377, 390. A griculture, $36 t$ Armay, Joion, 3:8 Arms 367.
Arpid dyoesty 86°
Bants, 85

velgrata 968
I:rm, Gencral, 372.
fraby emdles and vor4, 150, 375, 376
 Currala, $3 \mathrm{C}_{2}$.
Carlunitz, pesco of. 270. Carrmes, 562. ('harlca 111., 3:0
 " (7anylcal" actrool 37G Climato, 343 .
Communteation, 366 . Corvinua (Honyady), 36 , Coontles and county towas 304.

Crovi, 367.
Defk, Francis 372 Debrecten dlet, 372 Demblakl, General, 872 Dictlonarlce, 3 is. Didactle poetry, 376-379. Division wiminlatration 3et ; goneral, 361 Drama, 376-378 Fiducation, 365. Eple poetry, 3i6-373. Fauna 363. Fcrainard 1., 369: 11. 369 : 【11, 370: V.4 $3: \mathrm{L}$
Fiction, 378, 373.
Firma, 863 .
Francls 1., 371.
Framela Joseph, 3:2-374
"Frepels" schoal, 376. Gcoarajhy and atatistles, 36il 3f7.
Gcology, 361. "Golded Bull," 36*

Gijrgel, Geocral, 872, 373. Government, 066 .
Grammars, 875.
Tayaburg dynasty, 369
IItstorlinna $3: 9$
Ilstory. 367-324. Itunyady, Juna, 363. Inderendence, decloratlon of, 372. Jellerlisch, Generni, 372. 1ókal, Maurlce, 379. Joscph I., 3 30; 11., 320. tournala 377. 390.
turisprudence writors
on, 377. 380
Tuntlec, 366.
Kipolna batlle of, 872.
Kazinczy, Francis, 977
Kenyérmezid, battlo of, 369.

Elafaludy, Alext, 377 : Char, 377.
Klsfalody Soclety, 360 , 321, 377.

Klapka, General. 37:, $3: 3$ Kolescy, Francls, 3 : Kürësi-Coman 3:4.
Kosulh, 371-373.
Ladistaus I . 36is : V., 36s takes, 362.
Laguage, 3:4, 375
Lconold 1. 370: 11. 3:1 Linz, treaty of, 3%. Lterature, 375-380. Louis I., the Great, 368 . Lywe poctry, 376-378 Magyar loograge, 374 377.

Magyar llterature, bls torinng of, 380; re generatlod of, 376. Manufactures, 666 Marin and Sigismond 364.

Marin Theresn 270
Mathana 1., 363 ; IL, 369. Maxdinllian, 369. Sthltary Fruotice 3CL

BInerais 363.
lohecs battlo of. S6. Mountoins, 361 .
"National" school, 377. Nikolsburg, treaty of 360.

Pasarawitz,trcatyof.30. fiszminn, Peter, íco 3īg Petioh, Alcxnndor, $3 i 8$. Philologleal authory 370 377. 280.

Philosepliy, walers on 377, 379.
Flains, 361 .
Jolitteal Itterature, $3: 1$ 1'opulation, 364. rost-nllec, 360. Races, 36\%.
Reguly, Anthony, 374 Tebhiorn. 3 gis. licvolutionary war, 372. itwers 3tiz.
Rudolph l., 363. St Gotthord, batie of, 370.

Scicntific Ilterature, 379 $3 \Sigma \pi$.
Seaports, 36a.
Servian-Bátiat, 351.
Shakespeare, tranalatos of, 3:7, 3:8.
Stephen I., 307, 368 Szatmair, tresty of, 370 Szechenyt, 271, 377. Selget, Riche of, 30° Uhendslaus 1., S6S: IL. 369.

Unirervitics 36.
Varna, baltle of, 3es.
Vclencze, batle of, 372 Verblezy, lans of. 369 376.

V"lenna, peace of, 302.
Vhagos, surtender nt, 373 Vino produce, 343, 364. \because irüsmarty, Michucl, 378 Wesselényt, 870.
Windlschgtitiz, 372.
26polya, John, 363.

HUNS. The authentic history of the Huns in Enrope practically begins sbout the year 372 A.d., ${ }^{1}$ when under a leader named Balamir (or, according to 80 me MSS., Balamber) they began a westward movement from their settlements in the steppes lying to the north of the Caspian. After crushing, or compelling the allianee of, various nations unknown to fame (Alpilzuri, Alcidzuri, Himari, Tuncarsi, Buisci), they at length reached the Alani, a powerful nation which had its seat between the Volga sid the Don ; these alsu, after a struggle, they defeated and finally enlisted in their serviee. They then proeeeded, after a short interval, in 374 to invade the empire of the Ostrogoths (Grenthungi), rited over by the aged Ermanarie, or Hermanric, who died (perlaps by bis own hand) while the critical attack was still impending. Under bis son Hunimund a section of his subjects promply made a humiliating peace; under Witbemir (Winithar), however, who succeeded him in the larger part of his deminions, an arnued resistanee was organized; but it resulted only in repeated defcat, and finslly in the death of the king. The representatives of his son Witheric put an end to the coutlict by nccepting the condition of rassalage. Balamir now directed bis victorious ${ }^{\circ}$ arms still further westward agaiust that portion of the Visigothic nation (or Tervingi) which acknowledged tho nuthority of Athanaric. The latter entrenched himself on the frontier which bad separater him from the Ostrogoths, behind the "Greutung-rampart" and the Dnicster; but notwithstanding all Lis precautions be was surprised by the enemg, who forded the river in the aight, fell suddenly upon his camp, and compelled him to abandon his position. Athauaric next attempted to establisb himself in the territory between the Pruth and the Danube, snd with this object set sbout beightening the old Roman wall which Trajan had erected in north-eastern Dacia; before his fortifications, however, were complete, the Huns were again upon him, aud without a battle he was forced to retreat to the Dannbe. The remainder of the Visigoths, under Alavivas and Fritigern, now began to scek and ultimately were successful in obtaining (376) the permission of the emperor Valens to settle in Thrace ; Athanaric mesuwhile took refuge in Transylvania, thus sbaadoaing the field without any serions struggle to the irresistible Huns. For more than fitty ycars the lieman world was undisturbed by any aggressive act on the part of the new invaders, who contented themselves with overpowering various other tribes which lived to the north of the Daonbe. In some instances, in fact. the IIuns actually lent their aid to the Romans against third parties; thus in 404-5 certaio Hannic tribes, under a chief or king named Uldin, sssisted Honorius in the struggle with Radagsisus (Ratigar) aud his Ostrogoths, and took a prominent part in the decisive battle which was fought in the neighbourhood of Florence. Once indeed, in 409. they are said to have crossed the Danube and invarded Bulgaria under perhaps the samo chief (Uldis), but extensivo descrtions soon compelled a retreat. About the year $4: 32$, a notoworthy Hunnic king, Ruas or Rugulas, is mentioned, who made himself of sueb importance that he received from Theodosins II. an annual stipend or tribute of 350 pounds of guld ($£ 14,000$), slong with the rauk of Roman generat:

[^72]Quarrels soon arose, partly out of the circumstance that the Romans bad sought to make alliances with certain Danubian tribes which Ruas chose to regard as properly subject to bimself, partly also because some of the undoubted subjects of the Hun had sought and found refnge on Roman territory; and Thevilosius, in reply to an indignant and insulting message which he had received about this cause of dispute, was preparing to send off a spccial embassy when tidings arrived that Ruas was dead, and that be had been sueceeded in bis kingdom by Attila and Bleda, the two suns of bis brother Mundzak (433). Shortly aiterwards the treaty of Margus. (not far from the modera Belgrade), where both sides negotiated on Lorseback, was ratified. By its stipulations the yearly stipendium or tribute payable to Attila by the Romans was doabled; the fugitives were to bo surrendered, or a fine of $£ S$ to be pald for each of those who should be missing; free unarkets, open to Hun and Roman alike, were to be instituted; and any tribe with which Attila might be at any tine at war Was thercby to be held as excluded from allance with Rome. For eight years afterwards there was peace so far as the Romans were concerned; and during this period probably it was that the IInns procteded to the extensive conquests to which the contemporary historian Prisrus so vaguely allodes in the werds:-" He (Attila) tras made the whole of Scythia his own, be has laid the lioman empire uader tribute, aud he thinks of rencwing his attacks upon Persia. The road to that eastern kingdom is not antrodden by the Huns; already they have marched fifteen days from a certain lake, and have ravaged Mcdia." They also appear before the end of this interval to have pushed westward as far as to the Rhone, and to bave come into condlict with the Bargundians. Overt acts of hestility, Lowever, occurred against the Eastern crmpire when the tuwn of Margus (by the treachery of its bishop) was scized aud sacked (441), and against the Western when Siruxium was invested and taken. In 445 Bleda died, and two years nifterwards Attila, now sole ruler, undertook one of his most important expeditions against the Eastern empire ; on this occasion he pushed sunthwards as far as Thermopyla, Gallipoli, and the walls of Constantinople; peace was cheaply purchased by tripling the yearly tribute (which accordingly now stood at 2100 painils of goll, or $£ 84,000$ sterling) and by the payment of a heary indennity besides. In 448 again occurred various dijhmatic negotiatioos. and espeeially the embassy of Maxmm, of which many curious details have been recorded by Puscus his companion. Then followed, in 451, that westward movement across the Ribine which was only arrested at last, with terrible slaughter, on the Chalamman phans (according to coummon belief, in the melyhbuthood of the modern Chalons, but wore protably at a pomt some fifty miles to the south-east, near Moy-su-Seme). The following ycar (452), that of the Italian campaign, was marked by such events os the sack if Aquileia, the destraction of the cities of Venctio, annl fimally, on the banks of the Mincio. that hastomal intervew with P'ope Leo I. which resulted in the return of Attila to Fanoonia, where in 453 he died (see Atrila). Almost inmediately afterwards, the empire ho had amassed rather than consolidated fell to pieces. His too mmerous sons began to quarrel about their inheritance, while Ardaric, the king of the Gcpidx, was placing himself at the head of a gencral revolt of the dependent nations. The inevitable struggle came to a crisis near the river Netad in Pannonia, in a battlo in which 30,000 of the Iluns and their confederates, including Ellak, Attila's eldest son, were slain. The mation, thus broken, rapidly dispersed; one horde settled under Roman protection in Little Seythia (the Dobradscla), others in Dacia Ripensis (on the confors of Servia and

Bulgaria) or on the southera borders of Yannonia. The main body, however, appear to have resumed the position on the steppes of the river Ural which they had left less than a century before; soon afterwards they reappear in history as the Bulgari (see Zeuss, Die Deutschen, \&Ec., p. 7 I0), divided inte two sections, the Kuturguri and the less formidable Uturguri, who for morethan seventy years (485-557) were a constant source of annoyance and daager to the Eastern empire, uatil they themselves fell under the rising power of the Avars. Abeut the year 630 they succeeded in regaining their independeuce, ander the leadership of a chief named Krobat, or more properly Kubrat, a person of great consequence, whe made a treaty with the emperor Herachius. After his death his deminions, according to Theophanes (who wrete about 800 A.D.), were divided amoug his five sons, of whom the eldest, Batbaias, remained with his own people near the Mretis, while the third, Asperuch, cressed the Daaube. At a later period the first of these divisions came into close relations with the Khazars on the Velga, and their territory is spoken of as Great Bulgaria; fer a brief account of the Danubian or "White" Bulgarians the article Bulgaria and the works there referred to may be consulted.

We have no adequate philelogical data for conclusively determining the ethnolegical position of the ancient Huns; and, in the attempt to selve the problem by other means, the student is at all peints much hampered by the ragueness and inaccuracy with which designations, apparently ethnolegical, are applied by ancient writers. Since the publication of the IIistoire Générale des Huns, des Turce, des Mongols, et des autres Tartares Occidentaux of De Guignes (1756-58), it has been usual to identify the first mentioned with the Heungnoo or Hinagnu, a people who, abont the end of the 3 d ceotury B.c., according to the Chinese annals, constituted a powerful empire extending from the Great Wall of China to the Caspian, but who, gra dually falling into a state of anarchy, ultimately succunbed to the artacks of their enemies towards the close of the 1st Christian century. Their subsequent histery is very obscure; but it appears that one scction of them fled westward and settled in the neighbourboed of the Ural river, and the extremely tempting hypothesis of De Guignes is that these were the direct anecstors of the Huns, whe three ceaturics afterwards hegan, under Balamir, to excrcise so formidable an intluence on the allairs of Europe. If so, then the Muns in all probability belonged to the Turkish branch of the great Turanian race.

Aceording to the totally distinct line of investigation followed by Rocsler, howerer, the Bulgarians, and thecefore tho Huns whese descendants they were, are to be regarded as of Finnic origia (sce Romänische Stulien, p. 231 sqq.). It has only to be added that by mediaval writers, both Byzantine and Western, the word Hm is used much as the word Seythian was usell by the ancients, with the utmost generality. No very close connexion can be made out between tho Huns and the Magyars (Oïrppot, Ugri, Wengri, Ungri, Uugări, Hungari), whe first became prominent abuut the 9 th century and whe were undoubtedly limns.

Litcrature.-Tho contemporsty authorities upon the subject of the lluas luring tho period of their greatest necundency in Burope are the fragments of tho eight books of the rhetomichan l'tiscus, Coneerning byzentiun and the Oceurrences connectid with fllity, with tho writings of Ammianans Marcellimus the lioman soldicr, and of Jorlanis the Gothic bishop. The aceount of tho llums given by the last-mamel must always be real in the light of the fret that as a Goth lom could lardly avoid giving asomewhat exag geratex pictore of tho great military power in the presenco of which his own pooplo had boen able to show so littlo resistanco. The truth of the somewhat elaborate sketch of the Hans by Anmianus hus semotimes beon doubtel, but careful oxamination tends rather to extahlinh its claim to bs regarded as trustworthy. After alluling t_{1}, their portentons ugliness fof which, howovor, the only features hespectfics aro the round shoulders and the scarred beardless cheeks),
he proceeds to mention some of the habits which in his opinion stamp them as surpassing all other barbarians in rudeness of life. Treir food, ia addition to such roots as they are able to fad, cuDsists of the halt-raw flesh of any sort of animal, prepared for use by being carried for some time between their persons and tha backs of the bardy little horses which are their alnost inseparable coinpanions. Houses they have none; aod their clothiog, which is made partly of ligea and partly of the skias of field mice sewed together, continues to be wora until it falls to pieces. Their weapons are javelins or spears tipped with bone, and (for close combat) tho sword and lasso. In warfare they seldom fight in raak, the method of attack they prefer being to throw the enemy into confusion by repeated onset made in loose array. They are wholly without religion or sense of moral obligation. For later information we are dependent on the writers of the Byzantine history (see Stritter, Memorice populonm olim ad Danubium, Poutum Euxinum, Paludem Maotidem, Caucasum, \&c., incolentium, ex scriptoribus Byanutinis cruluc ac digeste, 1771-79, and the edition of the fragasents of Meaander Protector, published io the Bonn collection). For Chinese notices beariog or supposed to bear on the subject of the Huas, De Guigoes, Visdelon, and De Mailla rentain our chicf anthorities; to these should be added M. Staoislas Julien's series of papers on the Thukia in the 6th series of the Journal Asiatique, and Mr Wylie's trabslations trom the Hungannals in the Journal of the Anthropological Institute. Other matèvials on the general subject will be found in the admirable notes to Le Beau's History of the Byantine Empire, and in the editions of the Arolenian historians by St Martin, Lagglois, and Brosset. See also the History of Georgia by the last of these authors; the Chronicle of Nestor, which is made available to Western studests in the edition of ML. Paris; the works of Zeuss, Pallinann, and Roesler already cited; Thierry, Histoire d' Altila et de ses Successeurs, 1864; Sayous, Les Origines ct l'Epoque Paienne de l'Histoire des Hongrois, 1874; Jirecek, Gesch. der' Eulgaren, 1877; Hodgkin, Ilaly and her Invaders, vol. ii., 1880 ; Kruse's edition of Al Behihri, with notes; the Account of the Khazars by M. Harkavy; that of the Ephthalitce or White Huns, by M. Vivien St Martin; and a series of papers by Mr Howorth "Oa the Westerly Drifting of Nomades," published in the Journal of the Anthropological Institute.
hunt, James Henry Leigit (1784-I859), one of the mest delightiul of English essayists and miscellaneous writers, aud especially remarkable for his connexion with the most eminent literatiof his time, was born at Seuthgate, October 19, 1784. His father, the son of a West Indian clergyman, had settled as a lawyer in Philadelphia, and his mother was the daughter of a merchant of that city. Having embraced the logalist side, Leigh Huat's father was compelled to fly to England, where he teok orders, and nequired some reputation as a pepular preacher, but want of steadiness, want of orthodosy, and want of interest conspired to prevent his obtaining any preferment. Leigh Hunt was edueated at Christ's IIospital, of which school as it existed in his time he has left a lively account in his autobiography. An impediment in bis speech, afterwards remeved, prevented his being sent to the university. "Fer some time after I left school," he says, "I did nothing but visit my school-fellots, haunt the boek stalls, and write verses " These latter were published in 1802 under the title of Juvcnilia, and, although the mere literary exercises of a clever boy, contributed to iutreduce him inte literary and theatrieal socicty. He legan to write for the newspapere, publishonl a rolume of theatrical criticisms in 1807, and in 1808 quitted the Wir Office, where he bad for some time filleda a situation as "clerk, to assume the editership of the Examiner newspaper, a speculation of his brother Jolm The new journal soen acquired a bichl reputation for independenee, both in politic.t and literary criticism. It was Perrhaps the only newspmer of the time which owed ne allegiance to any political prarty, but assailed whalever secmed amiss, "Froma princijle of taste," as Kicats happily expressed it. Tho taste of the attack itself, indeed, was not always unexceptionable ; and ouc upon the princo regent, unsecmly and imprudent witheut doubt, but the chicf sting of whech lay in its substantial truth, occasioned (1813) a prosecution and a sentenco of bwo ycars' imprisonment in the Surrey jail. The effict was naturally to make Ilunt a hero fer tho time being, and to give a political
direction to the career of a man of letters. The position was an essentially false one, and led to an entire misunderstanding of Leigh Hunt's cbaracter and aptitudes alike on the part of his friends and his antagonists. For the time he was exceedingly popular; the cheerfulaess and gaiety with which he bore his imprisonment, and his amusing devices to mitigate its severity, attracted general attention and sympathy, and brunght him visits from Byron, Moore, Bronglam, and others, whose acquaintance eserted much influence on his future destiny. In 1816 he made a permanent mark in English literature by the publication of his Story of Rimini. There is perhaps no other instance of a poem shert of the highest excellence having produced so important and durable an effect in modifying the accepted standards of literary composition. The secret of Hunt's success consists less in superiority of genius than of taste. His refined critical perception had detected the superiority of Chaucer's versification, as adapted to the present state of our language by Dryden, over the sententious epigrammatic couplet of Pope which had superseded it. By a simple retu:n to the old manner he etiected for Euglish peetry in the comparatively restricted domain of metrical art what Wordsworth had already effected in the demain of nature ; his is an achievement of the same class, though net of the same calibre. His poem is also a triumph in the art of poetical narrative, abonuds with verbal felicities, aal is pervaded througheut by a fice, cheerful, and animated spirit, notwithstanding the tragic nature of the subject. It has been remarked that it dues not contain one hackaeyed or conventional rihyme. Other characteristic traits are less commendable, and the writer's occasional fippancy and faniliarity, aot seldom degenerating into the ludicreus, made him a marls for ridicule and parody on the part of his opponents, whose avimosity, however, was rather political than literary. These faults were still more conspicuous in other pieces published by him about this date. Ere Youg, however, Keats's "Lamia" and Shelley's "Julian and Madualo" manifested the deliverance which he had wrouglit for English narrative poctry. Both these illustrious men belonged to the circle gathered around lim at Hampstead, which also included Haslitt, Lamb, Procter, Haydon, Corden Charke, Dilke, Conlson, Reynolds, and in general almost all the rising young men of letters of Liberal sympathics. He had now for somo years been married to Marianne Kent, who seems to have been sincerely attached to him, but was not in every respect a desirable partner. His own affairs were by this time in the ntmost confusion, and he was only saved from ruin by the romantic generosity of Shelley. In return he was lavish of sympathy to Shelley at the time of the latter's domestic distresses, and defended him with spirit in the Examiner, although he does not appear to have at this date appreciated bis genius with either the discernment or the wirmth of his generous adversary, Professor Wilson. Keats he welcomed with enthusiasm, and aided to the uttermost, though lieats seems to have subsequently felt that Munt's example as a poet had been in sume respects detrimental to him. After Shelley's departure for Italy (1818) Leigh Hunt's affairs became still more embarrassed, and the prospects of political reform less and less satisfactory. His health and his wife's failed, and he was obliged to discontinue his charming series of essays eutitled the Indicator, having, he says, "almost died over the last numbers." These circumstances induced him to listen to a proposal, which seems to have originated with Shelley, that he slould proceed to Italy and join Shelley and Byren in the establishment of a periodical work in which Liberal opinions should be advocated with more freedom than was possible nt home. The project was injudicious from every point of view; it would have done little for Hont or the Liberal cause
at the best, and depended entirely upon tue eo-operation of Byron, the most capricious of allies, and the most parsimonious of paymasters. Byron's principal motive for acceding to it appears to liave been the expectation of acguiring influence over the Examiner, and he was excecdingly murtified on discovering when too late that Hunt had parted, or was considered to have parted, with his interest in the journal. Leigh Hunt left England for Italy in November 1821, but storm, sickness, and misadventure retarded his arrival nntil June 1822, a rate of progress which Peacock apprepriately compares to the navigation of Ulysses.

Hunt's arrival in Italy was alnost immediately follewed by the tragic death of Shelley, which destroyed every prospect of snccess for the Lileral. IIunt was now virtually a dependant upon Byron, whose least amiable qualities were called furth by the relation of patron to an unsym. pathctic dependant, burdened with a large and troublesome family, and who was moreover incessantly wounded in the most sensitive part by the representations of his friends that he was losing caste by the connexion. The Liberal lived through four quarterly numbers, containing contributions no less memerable than Byron's "Vision of Judgnieut" and Shelley's translations from Foust; but it produced little effect on the whole, and in 1823 Byron sailed for Greece, leaving his coadjuter at Genoa to slift for himself. The Italian climate and mauners, however, were entirely to Hunt's taste, and he protracted his residence until 1825 , producing in the int crim his matchless translation of Redi's Bacco in Toscana, and the religious work subsequently published under the title of The Religion of the Heart. In 1825 an unfortnnate litigation with his brother brought him back to England, and in 1827 he committed the greatest mistake of his life by the publication of his Lord Byron and his Contemporaries. The work is of considerable value as a corrective of merely idealized estimates of Lord Byron. But such a corrective should not have come from one who had lain under obligations to Byren, hawever trifing, or however they might seem to be cancelled by subsequent unkinduess. Leigh Hunt should also have considered that the praterials for his estimate of Byron were chiefly afforded by a residence uader Byron's own roof. Apart from its obvious impropriety, the pullication in itself is in general petty and carping. IIunt's attitude tewards Byron is always that of the inferior; in proportion, therefore, as l lyron is made to look small, Hunt appears still smaller. The book's reception was even more unfavourable thanits deserts. Eritish manliness and British cant were fer unce equally shocked, and the author especially writhed under the withering satire of Moore. For many years ensning, the history of Hunt's life is that of a painful struggle with poverty and sickness. He worked unremittingly, but one effurt fuiled after another. T'wo periodical ventures, the Titller and the London Sourual, were discontinued for want of subscribers, although in the latter Leigh Hunt had able coaljutors, and it contained sume of liis best writing. His editorship of the Monthly Repository, in which he succeeded W. J. Jor, was also unsnccessful. The adventitious circumstances which had for a time made the fortune of the Examiner no longer existed, and Hunt's strong and weak points, his refinement and his affectations, were alike unsuited to the general body of readers. Sir liatph Esher, a romance of Charles the Second's period, was more successful, and Captain Sword and Captain Pen, a spirited contrast between the victories of peace and the victorics of war, deserves to be ranked among his best poems. In 1840 his circumstances were improved by the successful representation of his Legend of Florence, a play of great merit, althongh it has not maintained itself upon the stage. Lover's Amazements, a
comedy, was acted several years afterwards; and other plays are extant in MS. The pretty narrative poem of The Palfrey was published in 1842; and about this time Sic began to write for the Edinburgh Review. In 1844 be was further benefited by the generosity of Mrs Shelley and her son, the present baronet, who, on succeeding to the family estates, scitled an annuity of $£ 120$ upon him; and in 1847 Lord Jobn Russell procured bim a civil list pension of £20 nugmented leisure of these latter years were risible in the orcduction of some charming volumes. Foremost among tbese are the companion books, Imagination and Fancy and Fit and Humour. In these Leigh Hunt shors himself as within a certain range the most refioed, appreciative, and felicitous of critics. Homer and Milton may be upon the whole beyond his reach, though even here he is great in the detection of minor and unapprebended beauties; with Spenser and the old English dramatists he is perfectly at bome, and his subtle and discriminatiog criticism upon them, as well as upon his own great contemporaries, is contioually bringing to light beauties unsuspected by the reader, ns they were probably undesigned by the writer. Hia companion volume on the pastoral poetry of Sicily, quaintly entitled A Jar of Honey from Mount Hybla, is almost cqually delightful. The Town and Men, Women, and Looks are partly made up from former material. The Old Court Suburb is an ancedotic sketch of Kensiogton, where le long resided before his final removal to Hammersmith. In 1850 he published his autobiography, a naive and accurate piece of self-portraiture, full of affectations, bat on that very account frec from the affectation of unreality. It is more cbary of portraits of contemporaries than might have been expected, but contains very detailed accounts of aome of the most interesting periods of the anthor's life, his education at Christ's Hospital, his imprisonment, and his residence in Italy. In 1855 his narrative poems, origiual and translated, were collected uader the title of Stories in Verse, with an intereating preface. He died at Putney, on August 28, 1859.

The character of Leigh Hunt is not easj to delineate, not from any difficulty of recugoizing or harmonizing its leading features, but from that of depicting the less admirable traits in a manoer consisteot with the affection and respect to which it is entitled on the whole. His virtucs were charming rather than imposing or brilliant; he had no vices, but very many foibles. His great misfortune was that these foibles were for the moat part of an undig. nificd sort, and, though it may seem o paradox, that they were so harmless, and on so miniature a acale. Leigh :Aunt's affectation, for example, is not comparable to Iyron's, or his egotism to Wordsworth's, and therefore its very pettiness excites a seasation of the ludicrous which the colossal self-consciousness of his contemporaries does not produce. The very siucerity of his nature is detrimental to him; the whole man accma to bo revealed in cverything he ever wrote, aud henco the most beautiful productions of his pen appear in a manner tainted by his really very pardunablo weaknesses. Somo of these, such as his belplessuess in moncy matters, and his facility in accepting the obligations which bo would bave delighted to confer, were unfortunately of a nature to involvo him in painful and bumiliating embarrassments, which acem to havo been apgravated by the mismanagement of those aroued him. The notoriety of these things has deprived bim of much of the honour due to bim for his fortiturle under the severest calarities, for his unremitting literary industry under th.o enost discouraging circumstances, and for his uncompromising independence as a journalist and an author. It wes his misfortune to be involved in politics, for which Le hat little vocation, and which cubroiled him with
mauy with whum he would otherwise have been on good terms. "Though I was a politician," he says himself, "I bad scarcely a political work in my library. Speasers and Arabian Tales filled up the shelves." He was in fact as thorough a man of letters as ever existed, and most of kis failings were more or less incidental to that character. But it is not every consummate mon of letters of whom it can be unhesitatingly affirmed that he was brave, just, and pious.

Leigh Hunt's character as an author was the counterpart of his character as a man. In some respects his literary position is unique. Few men have effected so much by mere exquisiteness of taste in the absence of high creative power; fewer still, so richly endowed with taste, have so frequently and conspicuously betrayed the want of it. As Wordsworth could never see where simplicity of poetic diction lapsed into mere prose, so Hunt was incapable of discovering where familiarity became tlippancy. While Wordsworth, however, is at worst wearisome, Hunt is sometimes positively offensive to fastidious readers. This observation principally refers to bis poetry, which, in spite of sucl: vexatious fiaws, nevertheless possesses a brightness, animation, artistic symmetry, and metrical harmony, which lift the author out of the rank of minor poets, particularly when the influence of his example upon his contemporaries is taken into account. He excelled especially in Darrative poetry, of which, upon a small scale, there are probably no better examples in our language than "Abou bea Adhem" and "Solomon's Fing." He possessed every qualification for a translator, and it is to be regretted that his performances in that department are not more numerous and sustained. As an appreciative critic, whether literary or dramatic, he is bardly equalled; his guidance is as safe as it is genial. The no less important rocation of a censor was uacongedial to bis gentle nature, and was rarely essayed by him.
The principal anthorities for Leigh Hunt's life are his Autobiography, published in 1850, and reprinted since his death with additions and corractions, and the two volumes of his Correspondence, published with a connecting thread of biography by his son in 1862. The references to him in the writings and biographies of his contemporaries are innumerable. A full bibliography of his works, with excellent remarks, has been published by Mr Alexander lreland.

IIUNT, William Henry (1790-1864), water-colour painter, was born near Long Acre, London, March 2S, 1790. Overcoming the usual pareatai objections, he was apprenticed about 1805 to Jobn Varley, the laadscape-painter, with whom he remained fire or six years, exhibiting three oil pictures at the Royal Academy in 1807. He was early connected with the suciety of painters io water-colour, of which body, then in a transition state, he was elected associate in 1824, and full member in 1527. To its exhibitions he was until the year of his death ne of the most prolific contributors. Many ycars of Hunt's uneventful and industrious life were passed at llastings. He died of apoplexy, February 10, 1864.

Hunt was one of the creators of the English school of water-colour paidting. His subjects, especially those of his later life, are extremely simple; but, by the delicacy, humour, and fine power of their treatment, they take rank accond to works of the highest art only. Considered technically, his works exhibit all the resources of the water-colour painter's craft, from the purest transparent tinting to the boldest use of body-colaur, rough paper, and scmping for texturo. His sense of colour is perhaps as trua as that of nny English artist. "lle was," says Ruskin, "take him for all in all, tho finest painter of still life that ever existed." Several fine and characteristic cxamples of Ifunt's work, as the Boy and Goat, Brown Study, and Plums, Primiroses. and lirds' Nests, aro in the water-colour gallerice at South liensington.

HUNTER, Join (1728-1793),-as phssiologist and surgeen combined, uarivalled in the snnals of medicine, born February 13, ${ }^{2}$ 1728, at Long Calderwood, in the parish of East Kilbride, LanarksLire, was the youngest of the ten children of John and Agaes Huater. His father, who died October $30,1741,{ }^{2}$ aged 78 , was descended Irom the old Ayrshire family of Hunter of Hunterston, and his mother was the daughter of a Mr Paul, tressurer of Glasgow. Hunter is said to bave made but littlo progress at school, being averse to its restraints and pursuits, and fond of couotry amusements. When seventeen years old be repaired to Glasgow, where be for a short time assisted lis brother-in-law, Mr Buchanan, a cabinetmaker, who had iavolved himself in pecuniary difficulties. Being desirous at length of some settled occupation, he obtained from his brother William permission to aid, under Mr Symonds, in making dissections in his anatomical school, theu the most celebrated in London, intendingo should he be unsuccessful there, to enter the army. Ho arrived accordingly in the metropolis in September 1748, about a fortnight before the commencement of his brother's autumnal coursse of lectures. After succeeding beyond expectation with the dissection of the museles of an arm, he was entrusted with a similar part injected, and from the excellence of his second essay Dr Hunter predicted that he would become a good anatomist. Seeminglr John Huater had bitherto received no instruction in preparation for the special course of life upoo which be Lad entered. His brother, with whom he was now intimately associated, was one of the most brilliant exponents of mecical science, and enjoyed the society of the best cultured men of the age; but that it was through this circumstance that, as stated by R. A. Stafford, " he was taught to think," and that his mind, as has been surmised, had previous to his coming to London been "idle, hcedless, and aimless," can bardly be concluded in the face of what the future revealed of the practical and iuquiring turn and the originality of his mental disposition. Rather we may nssume, with B. B. Cooper, ${ }^{4}$ that Hunter was naturally gifted with powers of mind which rendered him to sone estent iadependent of the training required by less estraordinary intellects. Dr J. Ridge, ${ }^{5}$ speaking of Huater's permitted truancy from the grammar schonl, . :gues that early tuition and attaiaments, at least of the kind imparted, being incousistent with a natural education of the seases, are not favourable to the production of extracrdinary genius. Hunter's power of estimating what was worth doing, snd what could be done, is by Dr Mosnn ${ }^{0}$ ascribed io part to his being "a man who bad a free gouth, not over-taught, nor over-strained;" and, if it be true tbst "the esrly part of life, the achool.time, bas long beeu spent, snd is spent, in pursuits which minister but little to the culture of the mind, or to the communieation and reception of knowledge uscful to any class of society in proportion to the time consumed," ${ }^{7}$ it is pessible that his dislike to scholastic esercises may have served to protect Hunter from influences apposed to that very endowment which made him preeminent as a teacher, bamely, the power of perceiving the relation of numerous individual facts as illustrations of general priaciples.

[^73]Hard-working, and ungularly patient and skilfui in dissection, Hunter had by bis second wiater in London acquired sufficient anatonical knowledge to be entrusted with the charge of bis brother's practical class, with the members of which, as also with the re-urrection men, ho was a universal favourite. In the summer months of 1749-50, at Chelsea Military Hospital, he attended the leetures and operations of Cheselden, on whose retirement in the following year he became a surgeon's pupil at St Bartholumew's, where Pott was one of the senior surgeons. In the summer of 1752 he visited Scotland. . Home and, following him, Ottley stato that llunter begao in 1754 to assist his brother as his partuer in lecturing ; sccording, however, to the European Maguaine for 1782, the office of lecturer was offered to Huater by his brother in 1758, but declined by him on account of the "insuperable emberrass. ments aod objections" which he felt to speaking in public. In 1754 he became a surgeon's pupil at St George's Hospital, where he was appointed housesurgeon in $1756 .{ }^{9}$ During the period of bis connesion with Dr Hunter's school he, in addition to other labours, solved the problem of the descent of the testis in the foetus, traced the ramifications of the nasal and olfactory nerves within the nose, experimentally tested the question whether veins could act as absorbents, studied the formation of pus, and the nature of the placental circulation, and with his brother earned the chief merit of practically proving the function and importance of the lymphatics in the animal economy. On June 5, 1755, ${ }^{9}$ he was induced to enter as a gentleman commoner at St Mary's Hall, Osford, but his true instincts would not peroit him, to use his own expression, "to stuff Latin and Greek at the university" Some three and thirty years later be thus significantly wrote of an opponent:-"Jesse Foot accuses me of not understanding the dead languages; but I could teach him that on the dead body which he never knew io any language dead or living." ${ }^{10}$ Doubtless, however, linguistic studies would have served to correct in him what was perhaps a natural defect-a difficulty in the presentation of abstract ideas which was not wholly attributable to the novelty of his doctrines.
An attack of inflammation of tho longs in the spring of 1759, apparently caused by overwork, having produced symptoms threateaiag consumption, by which the promising medical career of his hrother James had been cut short, Hunter, with a view to residence abroad for a scason, obtained from Mr Adair in October 1760 the appointment of staffsurgeon in Hodgson and Keppel's expedition to Belleisle. With this he sailed io 1761 . In the following year he served with the English forces on the frontier of Portugal. Whilst with the army be acquired the estensivo knowledge of gunshot wounds embodied in his iuportant treatise on that subject, published in 1794, in which, smougst other matters of moment, he insists on the rejection of the indiscriminate practice of diatiag with the knife fullowed almost universally by surgeons of his time. When not engaged in the active duties of his profession, he occupied himself with physiological and other scientific researches. Thas, in 1761, of Belleisle, the conditions of

[^74]the coagulation of the blood were among the subjects of his inquiries. ${ }^{1}$ Later, on land, he continued the study of human anatomy, and arranged his notes and memoranda oo inflammation; he also ascertained by experiment that digestion does not take place in snakes and lizards during hibernation, and observed that enforeed vigorous movement at that season proves fatal to such animals, the waste so oceasioned not being compensated, whence be drew the inference that, in the diminution of the power of a part attendant on martification, resort to stimulants which increase action without giving real strength is inadvisable. ${ }^{2}$ A MS. catalogue by Hunter, probably written soon after his return from Portugal, shows that he had already made a collection of abeut two hundred speeimens of natural and morbid structures.

On arriving in England early in 1763, Hunter, having retired from the army on half-pay, took a house in Golden Square, and commenced the career of a London surgeon. Most of the metropolitan practice at the time was held by Fott, C. ITawkins, Sharpe, Warner, Adair, and Tomkins; and Hunter sought to eke out his at first slender income by teaching praetical anatomy and operative surgery to a private class. His leisure was devoted to the study of comparative anatomy, to procure subjeets for which be obtained the refusal of animals dying in the Tower menagerie and in various travelling zoological collections. In condexion with his rupture of a tendo Achillis, ${ }^{3}$ in 1767, he performed on dogs several experiments whieh, with the illustrations in his museum of the rennion of such struetures aiter division, laid the fonadation of the modern practice of cutting through tendons for the relief of distorted and cootracted joints. In the same year he was nade a fellow of the Royal Society. His first centribution to the Philosophical Transactions, with the exception of a supplemeat to a paper by J. Ellis in the volume for 1766 , was an essay on post-mortem digestion of the stomach, written at the request of Sir J. Pringle, and read June 18, 1772, in which he first eorreetly explained that phenomenon as a result of the action of the gastric juice. ${ }^{4}$ Hunter, on December 9, 1768, was elected a surgeon to St George's Inspital, and, soon aiter, a member of the Corporation of Surgeons. He now bogan to take house-pupils. Among these were Edward Jenner, who came to him in 1770, and mutil the time of Hunter's death corresponded with him on the most intimato aml affectionate terms, W. Guy, Kingston, 1)r l'hysick of Philarlelphia, and Everard Home, his brother-in-law. Mr Lynn and Sir A. Carlisle, though not iumates of his houso, were frequent visitors there. Uis pupils at

[^75]${ }^{2}$ Ste Alams, Mennirs, [1p. 32, 33. Cf. Hunter's Treatise on the Ifinod, P. 8, nurl Works, ed. Palmet, i. 604.-On the employment of Ilanter's term" incrensel action" with rospect to inflanimation, seo I'upt, Lect. on Surg. I'ath., Bd od., P. 321 sq7.
${ }^{3}$ According to Ifunter, as quoted in Pralmer's edition of his lecturos, p. 437, the accilent was "after lancing, nad after a violent fit of the cramp:" Clift, bowover, who says he probably nover danced, believel that he met with tho accilent "in getting up from the dissecting tablo after being cranuped by long sitting " (sco W. Lawrenco, Hurt. Orat., 1834, p. 64).
4Tho sulijects aud dates of his subsequent mapers in the Trans. eftions, tho titles of which give little notino of the richaess of their crintents, no as follows:-Tho torpolo, 1773; airereceptacles in hirdq, and tho Giltaroo trout, 177 f; the Gymnotus chetricus, and tho pronluction of heat by animals and vegetables (suphlemented in 1777), 375 ; the recovery of people apparently drowned, 1776 ; the free mation, 1779 ; the communication of smandpox to the fethes in utcro, ami the recurtence of nalo phomage in olil bea pheasunts, 1780 ; tho organ of hearing in fillos, 1782 ; tho anatomy of n "new matino sumal" sescribel by IIome, 1785 ; the specific identity of the wolf, j wkil, and dog (supplernented in 1789), the effect onf fetility of extilfurion of ono ovarium, and tha stracture and ecommin of whates, 1787; olservationg on bees, 1793; and some cemakable eaves in Ibayreuth and fossil bones foumb therein, I794. With these may be in luted n paper by llomse, from mateinls supphed by Huter, on certan ligny oxcresconces of tho Lumata baty.

St George's included Aberncthy, Cline, James Earle, and Astley Cooper. From the high reputation in their profession which these one and all attained, some estimate may be formed of the weight and value of Hunter's personal influence and teaching. In 1770 he settled in Jermyn Street, in the house which his brother William had previously occopied; and in July 1771 he married Anne, the eldest daughter of Mr Robert Home, surgeon to Burgoyne's regiment of light-horse. ${ }^{5}$

From 1772 till his death Hunter resided during autumn at a house built by him at Earl's Court, Brompton, where most of his biological researches were carricd on. There he kept for the purpese of study and experiment the fishes, lizards, blackbirds, hedgehogs, and other animals sent him from time to time by Jenuer, tame pheasants aod partridges, at least one eagle, toads, silkworms, and many more creatures obtained from every quarter of the globe. Bees he had under observation in bis conservatory for upwards of twenty years; hornets and wasps were also diligently studied by him. On two occasions his life was in risk from his pets-once in wrestliog with a young bull, and again when he fearlessly took back to their dens two leopards which had broken loose among his dogs. Choosing intuitively the only true method of philosophical discovery, Hunter, ever cautious of confounding fact and hypothesis, besenght of nature the truth through the medium of manifold experiments and observations. "He had never read Bacon," says Babington, "but his mode of studying nature was as strictly Baconian as if be bad." ${ }^{\text {o }}$ To Jenner, who had offered a conjectural explanation of a phenomenon, be writes, August 2, 1775: "I think your solution is just; but why think? why not try the exferiment? Repeat all the experiments npen a bedgeheg ${ }^{7}$ as soon as you receive this, and they will give yon the solution." Terhaps no man busily engaged in professional practice has ever cooducted so many physiological and pathological investigations in the animal world as Hunter ; and get it was with him an axiem "that experiments should not be often repeated which tend morely to establish a principle already known and admitted, but that the next step should be the application of that principle to useful purposes" ("Avim. Qicon.," Wrorks, iv. 86). During fifteen years he kept a flock of geese simply in order to acquaint himself with the development of birds in egge, with reference to which he remarked-"It would almost appear that this mode of propagation was intended for investigation." In bis toxicological and other researches, in which his ex. porience bad led him to believe that the effects of noxieus druge are nearly similar in the brnto creation and in man, ho had already, in 1780, as be states, "poisened some thousands of animals." 8

By inserting shot at definite distances in the leg-bones of young pigs, and also by feeding them with maduler, by which all fresh osseous' depesits are tinged, ${ }^{9}$ Hunter obtained evidence that benes incrase in size, not by the intercalation of new amongst olel particles, as had been

[^76]imagined by Duhamel, but by means of additions to thcir extremities and circumference, excess of calcareous tissue being removed by the absorbents. S.ome of his most extraordinary experiments were to illostrate the relation of strength of censtitution to sex. He exchanged the spurs of a young cock and a young pullet, and found that on the former the transplanted structure grew to af fair size, on the latter but little; whereas a spur from one leg of a cock traesforred to its comb, a part well supplied with blood, grew more than twice as fast as that left on the other leg. Another experimeat of his, which required many trials for success, was the engrafting of a human incisor on the comb of a cock. ${ }^{1}$ The 'ziting of parts of different animals when brought into coatact he attributed to the production of adhesive instead of suppurative inflammation, owing to their possession of "the simple liviag principle." ${ }^{2}$ The effects of harit upon structure were illustrated by Hunter's obgervation that in a sea-gull which he had brought to feed on barley the muscular parietes of the gizzard became greatly thickened. A similar phenomenon was noticed by him in the case of other carniverous birds fed on a vegetable diet.
It was io $\mathbf{1 7 7 2}$ that Hunter, in order effectually to gauge the extent of his own knowledge, and also to correctly express his views, which had been repeatedly misstated or ascribed to others, commeaced his lectures on the theary and practice of surgery, at first delivered free to his pupils and a few friends, but subsequent to 1774 on the usual. terms, four guineas. Though Patt, iadeed, had perceived that the only true system of surgery is that which most closely accords with the curstive efforts of nature, a rational pathology can hardly be said to have had at this time any existence; and it wss generally assumed that a knowledge of sinstomy alone was a dufficient fouadation for the study of aurgery. Hunter, unlike his contemporaries, to most of whem his philosophic habit of thought was a mystery, and whose books contained little else than relations of cases, aud modes of treatment, sought the reason for each phenomenon that came under bis notice. The priaciples of sargery, he maintained, sre not less necessary to be understood than the principles of other sciences; unless, indeed, the surgeon should wish to resemble "the Chinese philoEopher whose knortedge consisted only in facts." In that case the science must remain unimproved until fresh lacts arise. Too much atteation, he remarked, canno be paid to facts; yet a multitude of facts overcrord the memory without adrantage if they do not lead us to establish principles, by an acquaintance with which we learn the causes of diseases. Hunter's course, which latterly comprised eighty-six lectures, delivered on alternate evenings between the hours of seven and eight, lasted from October to April. Some teachers of bis time were content to dismiss the subjects of anatomy and surgery ia a course of only six weeks' duration. The task of lecturiog is said to have been to Hunter so formidable that at the commencement of each course he was obliged to tske half a drachm of lsudanum. His class was usually small, and never exceeded thirty. Among ite members at various times were Aberacthy, Carlisle, Chevalier, Cline, Coleman, Astley Cooper, Heme, Lynn, and Macartaey. Hunter was deficient in the gifts of a good extempore epeaker, being in this respect a remarkable contrast to his brother William; and he read his lectures, seldom raising his eyes from the manuscript. His manner with his auditory is stated to

[^77]hare been embarrassed and awnward, or, as Adams puts it (Obs. on Morbid Pois., p. 272), "frequently ungraceful," and his language always unaderned; but that his "expres. sions for the explaining of his new theories rendered his lectures often unintelligible"' is scarcely evident in his pupils' notes still extant. His own and others' errors and fallacies were expesed with equal freedom ia his teaching. Occasionally be would tell his pupils." You had better not write down that observation, for very likely I shall think differently nest year;" and once to a question of Coleman's be replied, "Never ask me that I hare said or what I have written; but, if you will ask me what my present opinions are, I will tell you." He was always much gratified when, in the conversations that he encouraged his hearers to hold with him at the end of his lectures, ho found that what he said was understood and appreciated.
In January ;776 Hunter was appointed surgeon-extraordinary to the king. He commenced in the same year his Croonisa lectures on muscular motion, continued annually, except in 1777, till 1782: they were aever published by him, being in his opinion too incomplete. In 1778 appeared the second part of his Tieatise on the Naturnl History of the Euman Teeth, the first part of which was published in $\mathbf{1 7 7 1}$. It was in the waste of the deutal alveoli and of the fangs of shedding teeth that in 1754-55, as he tells us, he received his first hint of the use of the absorbents. Abervethy (Phys. Lect., p 196) relates that Huater, being once asked how he could suppose it possible for absorbents to do such things as he attributed to them, replied,."Nay, I know not, unless they possess powers similar to those which a caterpillar exerts when feeding on a leaf." Hunter in 1780 read before the Royal Society a paper in which he laid claim to have been the first to make out the ature of the utero-placental circulation. His brother William, who had five years previously described the same in his Anatomy of the Gravid Uterus, thereupon wrote to the Saciety sttributing to himself this honour. John Hunter in a rejoinder to his brother's letter, dated Febraary 17, 1780, reiterated his former statement, viz, that his discovery, on the ereaing of the day in 1754 that he had made it in a specimen injected by a Dr Mackenzie, had been communicated by him to Dr Hunter. Thus arose an estrangement between the two Hunters, which continaed until the time of William's last illness, whea his brother obtained permission to risit him.
In 1783 Hunter was elected a member of the Royal Society of Medicine and of the Royal Academy of Surgery at Paris, and took part in the formation of "A Society for the Improvement of Medical and Chirurgical Kı owledgc." ${ }^{s}$ It appears from a letter by Hunter that in thr latter part of 1783 he, with Jeaner, bad the subject of coloar-blindness under consideration. As in that year the lease of his premises in Jermyn Street was to expire, be purchased the twenty-four jears' leasehold of two houses, t bue on the east side of Leicester Square, the ather in Castle Street, with intervening ground. Bctweea the houses he built in 1783-85, at an expense of above $£ 3000$, a muscum for his anatomical and other collectiens. These by 1782 had cost tim $£ 10,000$, and contained preparations of numerous specimens presented by Sir Joseph Banks, the IIonourable C. Grerille, and Mr Walsh. The new ciifice consisted of a hall 52 feet long by 28 feet wide, and lighted from the top, with a gallery all round, and haring beneath it a lecture

[^78]theatre, and a room used subsequently for the meetings of the Lycaum Medicum, a society instituted by Hunter and Fordyce. In April 1785 Hunter's collections were removed into it under the superintendence of Home and Bell, ${ }^{1}$ and another assistant, Andre. Among the foreiguers of distinction that inspected the muscum, which was now slown by Hunter twice a jear, -in October to medical men, and in. May to other visitors,-were Blumenbach, Camper, Poli, and Scarpa. In the acquisition of subjects for his varied t.ological inrestigations and of specimens for his museum, espense was a matter of small moment with Huater. Thus at one time he endearoured, at his own cost, to ohtain information respecting the Cetacea by sending out a surgeon to the North in a Greenland whaler. He is said, moreover, to have given, in June 1783, no less than $£ 500$ for the body of O'Brien, or Byrne, the Irish giant, whose skeleton, 7 feet 7 inches high, is so conspicuons an object in the museum of the College of Surgeons of London. ${ }^{2}$

Hunter, who in the spring of 1769-72 had suffered from gout, in spring 1773 from spasm apparently in the pyloric region, accompanied by failure of the heart's action (Ottley, Life, p. 44), and in 1777 from vertigo with symptoms of angina pectoris, had in 1783 another atteck of the last mentioned complaint, to which be was henceforward subject when under anxigty or excitement of mind.

In May 1785,3 chiefly to oblige Sharp the engraver, Hunter consented to have kis portrait taken by Sir Joshua Reynolds. He proved a bad sitter, and Reynolds mado but littlo satisfactory progress, till one day Hunter, whilg resting his somewhat upraised head on his left hand, fell into a profound reverie-one of those waking dreams, seemingly, which in his lectures he has oo well described, when "the body loses the conscionsness of its own existence."4 The painter had now before him the man he would fain depict, and, turning his canvas upside down, he sketched out the admirable portrait which, since most skilfully restored by Mr H. Farrar, is in the possession of the Royal College of Surgeons. A copy of the same, by Jackson, acquired from Lady Bell, is to be seen at the National Portrait Gallery in Sonth Kensington. St Mary's Hall, Oxford, also possesses a copy. Sharp's engraving of the original, published in 1788 , is one of the finest of his productions. The volumes seen in Reynolds's picture are a portion of the uupublished records of anatomical researches left by Hunter at his death, which, with other manuscripts, Sir Everard Home in 1812 removed from his musaum, and cventually, in order, it has been supposed, to keep secret the source of many of his papers in the Philosophical Transactions, and of facts mentioned in his lectures, committed to the flames. ${ }^{5}$

[^79]Among tine subjects of Hunter's physiological investigations in 1785 was the mede of growth of decr's antlers. As he possessed the privilege of making experiments on the deer in Richmond Yark, he in July of that year had a buck there caught and thrown, and tied one of its extermal carotid arteries. He observed that the antler which obtained its blood supply therefrom, then lialf-grown, became in consequence cold to the tonch. Hunter debated with himself whether it would be shed in due time, or be longer retained than ordinarily. To his sururise be feund, on re-examining the antler a week or two later, when the wound around the ligatured artery was healed, that it had regained its warmtb, and was still increasing in size. Had, then, his operation been in sonie way defective? 'To determine this question, the buck was killed and scnt to Leicester Fields. On examination Hunter ascertained that the external carotid had been duly tied, but that certain small branches of the artery above and below the ligature had enlarged, and by their anastomoses had restored the blood supply of the growing part. Thus it was evident that under "the stimulus of necessity," to use a phrase of the experimenter, the smaller arterial channels are capable of rapid increase in dimensions to perform the offices of the larger. ${ }^{6}$ It happened that, in the ensuing December, there lay in on of the wards of St George's Hospital a patient of Hunter's, admitted for popliteal aneurism. The disease must soon prove fatal unless by some means arrested. Should the eurgeon, following the usual and commonly fatal methci of treatment, cut down upon the tumonr, and, after tying the artery above and below it, evacuate its contents? Or should he adopt the procedure, deemed by Pott generally advisable, of amputating the limb above it? It was Hunter's aim in his practice, even if he could not dispense with the necessity, at least to diminish the severity of operations, which he considered were an acknow ledgment of the imperfection of the art of healing, and compared to "the acts of the armed sarage, who attempts to get that by force which a civilized man would get oy stratagem.' Since, he argued, the experiment with the buck had shown that collateral vessers are capable of continuing the circulation when passage through a main trunk is arrested, why should he not, in his ancurism case, leaving the abserbents to deal with the contents of the tumour, tie the artery in the sound parts, where it is tied in amputation, and preserve the limb 7 Acting upon this idea, be ligatured his patient's femoral artery in the lower part of its course in the thigh, in the fibrous sheath exclosing the space sinco known as "Hunter's canal." 7 The leg was found, some hours after the operation, to have acquired a temperature cren abovo the normal. ${ }^{8}$ At the end of January 1786, that is, in six wecks' time, the paticnt was well enongh to be able to leave the bospital. Thus it was that liunter inaugurated an operation which has been the means of preserving to hundreds life with integrity of limb-an operation which, as tho Italian Assalini, who sow it first [יerformed, testifies, "excited the greatest wonder,

[^80]and awakened the atteacion of all he EL, zeons an Lurope "
Early in 1786 Fiumer published jis 2reatuse on the Yenereal Disease, which, like some of his previous writings, was printed in his own house. Without the aid of the buoksellers, 1000 copies of it were sold within a twelvemouth. Although certain views therein exprossed with regard to the relationship of syphilis have been proved erroneuus, the work is a valuable compendium of observations of cases and modes of treatment (cf. Hilton, Hunt, Orat., p. 40). Towards the end of the year appeared his Observations on certain parts of the Animal Economy, Fihich, besides the more important of his contributions to the Philosophical Trarsactions, contains nine papers on various eubjects. By ths death of Mr Middleton in 1786, Hunter becane deputy surgeon-general to the army; his, appointment as surgeon-general and as inspector-general of hospitnls fullowed in 1790, on the death of Mr Adair. In 1787 lie received the Royal Society's Copley medal as n testimony to the importance of bis discoveries in natural history, and was also elected a member of the American Philosophical Society. On account of the increase in his practice and his impaired health, be now obtained the services of Home as his nssistant at St George's Hospital. The death of Pott in December 1788 secured to Hunter the undisputed title of the first surgeon in England. He resigned to Home, in 1792, the delivery of bis surgical leetures, in order to devote himself more fully to the completion of his Treatise on the Blood, Inflammatzon, and Gunshot Wounds, which was published by, his executors in 1794 : In this, his masterpiece, the application of physiology to practice is especially noticeable. Certain experimonts described in the first part, pp. 62-64, whirli demonstrate that arterialization of the blood in respiration takes place by a process of diffusion of "pure air" or " vital nur" (i.e.; oxygen) through membrane, were made so early as the summer of 1755 .

IIunter in 1792 announced to his collengues at St Gearge's, who, he considered, neglected the proper instruction of the students under their clarge, his intention no longer to divide with them the fees which be receivol for his hospital pupils. Against this innovation, howover, the governors of the hospital deeided in \$arch 1793. Subsequently, by a committee of their appointing, a code of rules respecting pupils was promulgated, one clause of which, probably directed against an occasional practice of Hunter's, sipulated that no person should be admitted as a student of the hospital without certificates that he had boen educated for the medical profession. In the antumn two young Scotehmen, ignorant of the new rule, came up to town and applied to Hunter for admission as his pupils at St George's." Hunter explained to them how he was situated, but promised to advance their request at the next bnard meeting at the hospital on the 16 th Octuber. On that day, having finished a difficult piece of dissection, he went down to breakfost in excellent spirits and in his usual health. After making a professional eall, ho attended the board mecting. There the interruption of his remarks in belalf of his applicants by a flat contradiction from a colleague brought on one of the old spas. modic heart attacks; he ceased spoaking, and retired into an adjoining room only in time to fall lifeless inte the nrms of Dr Robertson, one of the hospital plysiciaus. After an hour had been spent in vain attempts to restore animation, his body was conveyed to his louse in a sedan chair. ${ }^{1}$ Thus, in his sixty-fifth year, and in the height of

[^81]"o menar activity, diect 8 ohn Hunler, "uhose range of thought nature ulone could fill," and to whom, as to but few amnge all mankind, had been given wisdom to interpret the dark sayings of hature. His remains were inlerred privatoly on Octobar 22, 1793, in the vaults of St Martin's in the Fields. Thence, on March 28, 1859, through the instrumentality of Mr Frank Buckland, they were removed to Abbot Islip's chapel in Westminster Abley, to be finally deposited in the grave in the north aisle of the nave, cluse to the resting-place of Ben Jouson.

Hunter was of about medium height, strongly built, and highshoutdered and short-necked. He had an open countemance, and large features, eyes light-blue or grey, ejebrows prominent, and hair reddisl-ycllew in youth, later white, and worn curlal behind; and he dressed plainly and neatly. He rose at or bufore six, dis. seeted till pine (his breakfast hour), reccived fatients from half. yast nine till twelve, at lcust during the latter part of his life. and saw his outdoor and hosyital pratients till about four, when he dinel, taking, according to Home, as at other meals in the twenty years preceding his death, no wine. After dinner he slept an hour; he then superintended experiments, read or prepared his lectures, and made, usually by means of an amanuensis, recorls of the day's dissections. "I never could understand," says Clift, " how Mr Hunter oltained rest: when I left him at midnight, it was with a lamp fresh trimmed for further study, and with the usual appointnent to micet him again at six in the morning." Mr H. Leigh 'Thomas recorls ${ }^{2}$ that, on his first arrival in London, hawing by desire called on Hunter at five o'elock in the morning, he found bim already busily engiged in the dissection of insects. Rigidly ceonomical of time, Hunter was always at work, and always he hat in view some fresh enterprise. He was once heard by Adams to express regret that men must die at all. To his museum be gave a very laree share of his attention, being farful lest the ordering of it should be incomplete at his denth, and knowing of none who could continue his work for him. "When I an deat," said he one day to Dr Garthshorc, " you will not soon meet with another John llunter." At the time of his death he had anatomizel ceitainly over 500 different species or aninals, sone of them repeatedly, and had mate numereus dissections of plants. The manuscript works by him appropriated and destroyed by llome, among which were his eighty-six surgical lectures, all in full, are stated to lave been "literally a cartlo:1" 1 ; and many pages of his records were written by Clift under his directions "at least half a dozen times over, with corrections and transpositions almost withont em."
'lo Hunter, as he himself observal, to think was a delight. His mind was framed for systematic investigation, and hence perkaps, arose the fatigue which, more particularly during the last ten years of his life, the desultery conversation of a mixel conjany would oceasion him." "My mind is like a bee-live," was a remalk of lis to Abernethy, "a simile which struek me," says that writer, "on aceeunt of its correctness; for, in the midst of buzz amit apparent confusion, there was great order, regularity of structure, and abundant food, collected with inecssint inlustry from the choicest stnres of nature." 4 Hunter was generally, though cheerfully, taciturn, and many a morning's labour with Clift was passed with searecly a word of discourse. When, however, lee spoke-as while resting limaself, and standing upricht from his dissection after stooping for hours as if nailed to the object under investigation-he evinced beth sherewdness and wit. In conversation his werds were well chosen, and his remarks often wonderfuly forcible aud pointed; and, when so disposed, he conld put things in a very ludicrens point of view. He articulated slowly, and in consultation gave his opinion much as if lecturing, the enunciation of his not seldem novel dectrines. being preficed by some instroductory illustration or history. A strancer to artifiee end flattery, and open and unecremonious or even blunt in speech, he readily communieatel what he knew and thought, and thise did not always inspire others with a higher opiaion of their personal consequence. "We are but beginning to learn our profession," he would tell his friends; and he was wont to say that he was conscious of no peculiar talent, but that, if he had rromoted professional knowledge, it secmed to himn to have arisen chiefly fom his disposition to distrust opinions, and to examine every sulject for himself. What views of his he confilently oflered for aceeptance were such as he helieved to have a solid foundation in facts; and the blind enunciation by his feliow-practitioners of time-honoured crrers vexed
surdenly taken ill, yesterday, in the Council-room of St Gcorge's Hospital. After receiving the assistance which eould be afforded by two I'hysicians and a Surgeon, he was temoved in a close elhair to his honse, in Leiester Fielles, where he expired alnut two o'elock." Examination of the heart revealed disuase involving the pericardium, emincardum, and arterres, tl e eorouary arterics in particular showing ossifie change.
${ }^{3}$ Home, Lifc, p. lxv.
Jhunt. Oral., 1827, 1. 5.
' Jhunt. Orat., 1819, D. 48.
fas :bend. which was naturally susceptible, and was rendered the more so by cxcess of excrtion, with repeatedly the additional strain of bodily discase. "I know, 1 know," said he to Aberncthy, "I in but a jigmy in knowlelge, yet I feel as a grant when compared with these men." The charges that his language was irequently coarse, and that swearing was with him a habit, as with many of his contemporaries and successors, have been indignantly rebutted by Clift." Leigh 'Thamas descibes the impressing left by his lirst e:rly morning interview with Hunter as "a misiglel feeling of profound respect, surprise, and admiration;" and by his assistants, pupils, and all with whom he had livel on intimate terius, he was both lored and venerated. His temper, Home states, was very warm and impatient, and when irritated not easily soothed. The basty but not altogether illogical outburst of his anger when refased the postmortem examination of a child, the victin of soue obseure malady, in the words "Then, sir, I heartily bope that yourself and all your famify, may all your friends, may dic of the samo disease, and that no one may be able to afford any assistance," is in amusiug contrast with the acknowledged beneroleneo of his character. To the kind. ness of his dibposition, his foudness for aninals, his aversion to operations, his thourhtful and self-sacriticing attention to his paticots, and especially his zeal to help forward struggling practi-; tioners and others in any ment abundantly testify. "Every man," said he, "should be en economist, for if he has ever more money than his mants require he can assist the poor." In a letter of his, introducing a patient to his brother Willian, we read: "He has no mouey, and you have plenty, so that you are well met." Pecuniary means he ralued ne further than they enabled lim to promote his researehes; and to the poor, to non-beneficed clergymen, professional authors, and artists his services wero rendered without remuneration. His yearly income in 1763-74 was never $£ 1000$; it exceeded that sum in 1 irs, for several years before his death wis $£ 5000$, and at the time of that event had reached above $£ 6000$. All his earnings not required for domestic expenses were, during the last ten years of his life, deroted to the improvement of his muscum ; and his property, this excepted, was found on his decease to be barely sulficieut to pay his debts. By his contemporaries generally Hunter was tes peeted as a master of the nrt and science of anatony, nod as a cautions aud trustworthy if not an elegant or very dexterons operator. Few, however, perceived the drift of his biological researches. Althourlh it was admitted, eren by Foot, ${ }^{2}$ that the idea after which his mique museum had beca formed-namely, that of morpholory as the only true basis of a systematic zoological classilication-was entifoly his own, yet bis iuvestigations into the structure of the lower orders of animals were regarded as, after all, works of uaprofitialie curiosity. One surgeon, of no inconsiderable repute, is said to have ventured the remark that Mr Hunter's preparations were "jast as valuable as so mauy jig's pettitoes $;{ }^{\prime 3}$ and the president of the linyal Society, Sir Josedh Banks, writing in 1796, plainly oxpressed his disbelief as to the zollection being "nn object of inpertanee to the gencril study of natuma listory, or indeed to any franch of seience except to that of melicine." It was "without the shliare of sympathy or encouragement of nuprobation, without collateral assistanee," "and careless of achicring fame-for he held that "no man ever was a grat man who wanted to be one "-that Honter lakoured to perfect lis designs, and established the science of cumprative anntomy, and priveiples which, however neglected in lis lifu-time, becane the ground-work of all medical study and tea hing.

In areorlance with tho directions given by Munter in his wiil, his collection was offerd for purchase to the lbritish Government. But the grime minister, Mr litt, on leing asked to consider the matter, exclamed: "What! buy preparations! Why, I have not monry eunugh to purehase gunpowder." IIe, however, consented to the lestowal of a prostion of the king's honnty for a couple of yents on Mrs 11 unter and her two surviving chililren. In 1796 Loud Aurklan! undertook to urge upoa the Government the advisalility of acpuiring the collectim, and on June 13, 1799, parliament voted sta, 000 for this purpose. Its custolianship, after refusal by the Cullege of 1'hysichans, was manimonsly accepted by the Corporation of surgeons on the terms proposed. These were in brief-that tho colluction be open four hours in the fercroon, two days every week, for the inspection and consultation of the fillows of the College of I'lysicians, the anembers of the Company of Surgeons, and persons prenerly mitrobucel by them, a catalonke of the pmarations and an oflicint to explain it being at those times always at hand ; that a couse of not less than twenty four lectures ${ }^{5}$ on romprative anationy (and other suldjects illustrated by the colletion le given every year ly sone munner of the Compary; and that the preprations be kept in gronl priservation at the expense of the Corporation, nul he sulypet to the sapmintendence of a luard of sixtern tristies. ${ }^{6}$ The fulfilunent of these conditions was rendered possible hy the reccipt of fees

[^82]for examinations and diplomas, under the charter by which, in 1800. the Corpration was constituted the Royal College of Surgeons. A board of curators was in that year appointed by the council of the college to provide for the management of the museman and the picparation of catalogues. In 1806 the collection was placed in temporary quanters in Lincoln's Inn Fields, and the sum of $£ 15,000$ Wis voted by parliament for the erection of a proper and commodious building for its preservation and exteusion. This was followed ly a graat of $£ 12,500$ in 1807 . The collection was rearoved in 1812 to the new museum, and opened to visiters in 1813. The greater part of the present edifice was built in 1835 , at an expense to the college of alout $£ 40,000$; and the combined Haterian and collegiate colloctions, having been rearranged in what are now termed the western and middle museums, were in 1836 made :u cessible to the puilic. The erection of the easteru museum in 185 , on premisw in Portugal Street bought in 1847 for $£ 16,000$, cost $£ £ 5,(000$, of whic! parliament grauted $£ 15,000$; it was opened in 1855 .

Huater's collection was estimated to contaiu 13,682 specimens. viz, in the physiological department, 3745 in spirit, 965 osteolegical, 617 diy, 1968 zoological--tots 7295 ; and in the pathological, 1084 in spirit, 625 dry (ineluding bones), 536 calculi and concretions, 218 monsters and malformations, and 215 microseop ic -total 2678 ; and 3709 fossils. Since its acquisition by the rollige, it has been greatly increased, notably by presentations from sir William Blizard (1811) and Sir S. L. Hammiek (1851), and hy purchase of specimens in the possession of Sir A. Lever (1806), Mesers Joslua Brookes (1828), Heaviside (1829), Langstaff, South (1835), Howship, Taunton (1841), Liston (1842), nod Walker (1843), Sir Astley Copper (1543), and Dr Baruard Davis (Jan. 1880): The histolorical collection, of which the 215 Huaterian specimens are the nucleus, is the resalt chiefly of the labours of Professor Quekett, and purchases fiom Dr Tweedy Tudd, Mr Nasmyth, and Professor Lenhossek, ani coutained in July 1880 upwards of 12,000 specimens. The libray, the formation of whin comaienced in 1801 , consisted in July 1880 of 37,663 yols., comprising 14,882 separate works, and 39,021 tracts, pamphlets, cssays, theses, and reports.? Mr William Clift, whom, on February 14, 1792, Huater received into his house to train as an assistant in his musenm, ${ }^{\theta}$ had the exclusive charge of the collection from the date of its ownsr's death to that of its firehase by the state. During this period, with tiro gallons of spinit meted out occasionally, aud the pittance of 7 s . a week for his own support out of the limited fands at the disposal of Huater's executors, he contriced to maintain the whole in good condition. Ile was conservator of the muscum, as stated on the pedestal of his bust there, fron 1800 to 1849. From 1825 to 1832 he was assistel by his son, William Home Clift. Professor Richand Owen held the office of assistant-conservator in 1832-35, and of conservator in 1836-55, and Professor J. T. Quekett that of assistantconservator in 1843-51, and of conservator from 1852 till his death in 1861, when he was succeeded by Professor William IIenry Flower.
The scope of Hunter's labours may be defined as the explication of the rarions phases of lify exhibited in organized .etructures, both animal and regetable, from the simplest to the most highly differeutiated. By him, therefore, comparative anatomy was employed, not io subservience to the classification of living forms, as by Cuvier, but as a means of gainug insight into the principle animatiog and producing these foims, by virtue of which be rerceived that, bow. ever differeat in form and faculty, they wero all allied to himself 10 what docs life consist? is a question whieh in his writings hir frequently coasiders, and which seems to have been ever prisent in lis mind. Life, he taught, was a principle iudependent of strarture, ${ }^{2}$ nost tenacinusly held by the least highly orgauized locings but capable of readier destraction as a whole, as, c.g., by deprivatiou of heat or by lan, in young than in oll naimals. In life he beheld an agency working nuder the control of law, and exercising ito fuactions in warious modes and degrees. Ho perceived if, as Abernetliy oliserves, to be "a great chemist," a power capable of manufacturing a variety of substancers into one kind of cerserally distributed mutriment, and of furnisling frors this a still greatio variety of dissimilar substances. Like havicy, who terms it tha anima reyetiva, he regarled it as a principle of self-peservation, which keeps the boly fiom dissolution. Lffo is shown, said he, in renovation and action ; but, although facilitated in its warking ly mechanical causes, it cun oxist without action, as in an egg new-lail or undergoing incubation. It is not simply a regulator of temperature ; it is a priaciple which resists cold, conferring on the struc. tures which it endows the capracity of passing some degrees below the freezing-point of ordinary inaminato matter without suffering congelatim. Henter found, in short, that there exists in animals a latent heat of life, set free in the process of death (sce Treatisc on

[^83]ine Blood, p. 80). Thus he observed that sap if removed from trees froze at 32° Falr., but within them might be fluid even at 15°; that a living snail placed in a freezing mixtore acquired first a tempera. turo of 28°, and afterwards of 32° cre it froze; and that, whereas a dead egg congealed immediately at 32°, a living egg did so only when its temperature had risen to that point after a previons fall to 291°. The idea that the fluid and semifluid as well as the solid constitnents of the body contain the vital principle diffused through them he forned in 1755-6, when, in making drawings illustrative of the changoa that tako place in the incubated egg, he noted specially that aeither the white nor the yolk undergocs putrefaction. The blood be, with Harvey, considered to possess a vitality of its own, more or lcss jodependent of that of the animal in which it circulates. Life, he held, is preserved by the compound of the living body and the source of its solid constitucnts, the living blood. It is to the susceptibility of the latter to be converted into living organized tissue that tho union of severed structures by the first intention is due. He even inclined to the belicf that the chyle has life, and he cousidered that food becomes "animalized" in digestion. Coagnlation of the blood he compared to the contraction of muscles, and believed to be an operation of life distinct frou chemical coagulation, adducing in support of his opition the fact that, in aminals killed by lightning, by violent blows on the stomach, or by the exhaustion of hanting, it does not take place. "Breathing," said Hunter, "scems to sender life to the blood, and the blood continues it in every part of the body." ${ }^{1}$ Life, lie beld, coull be regarded as a fire, or something similar, and might for distinction's sake be called "animal fire." Of this the process of respiration might afford a constant supply, the fixed life supplied to the body in the food being set frep and rendered active in the lungs, whilst the air carried oft that principle which eacloses and retains the animal firo. ${ }^{2}$ The living principlo, said Hunter, is coeval with the cxistence of animal or vegetable matter itself, and may long exist without sensation. The priaciple upon which depends the power of sensation regulates all our external actions, as the principle of lifo docs our internal, and the two act mutually on cach other in consequence of changes produced in the brain. Something (tho "materia vitre diffusa") similar to the components of the brain (the " materia vite coacervata ") may be supposed to be diffused through the boly and even contained in the blood; between these a communication is kept up by the nerves (the "chordx iuternuncie"). ${ }^{3}$ Neither a material nor a chemical theory of life, however, formed a part of Hunter's creed. "Mero composition of matter," he remarked, "does not give life; for the dead body has all the composition it evor had; life is a property we do not understand ; we can only sce the necessary leading steps to "ards it." 4 As from life only, said he in one of his lectures, we ca sain an idea of death, so from death only we gain an idea of life. Life, being an agency leading to, but not consisting of, any modification of, matter, "cither is something suncradded to mattcr, or clse consists in a yeculiar arrangement ot certain fine particles of matter, which being thus disposed acquire the properties of life." As a bar of iron may gain magnetic virtuo by being placed for a time in a special position, so perhaps the particles of matter arranged and long continued in a certain posture eventually gain the power of life. "l enquired of Mr Ituuter," writes one of his purils, "if this did not make for the Exploded Doctrino of Equivocal Generation; he told me perhaps it did, and that as to Equivocal Generation all we c $\mathrm{c}^{\text {d }}$ have was negative Proofs of its not taking Place. He did not deny that Equivocal Generation happened; there were neither positive proofs for nor against its taking place.'
To exemplify the differences botween organic and inorganic growth, Hlunter made and employed in his lectures a collection of crystallized specimens of minerals, or, as he termed them, "matural or native fossils." Of fossils, designated by him "extraneons fossils," becanso extrancous respecting the rocks in which they occur, ho recognizod the true nature, and ho arranged them according to a sysicm agreeing with that adopted for recent organisms. The study of fossils enabled him to apply his knowledge of tho relations of the phenomena of life to conditions, as exhibited in times present, to the elucidation of the history of the carth in geological epochs. Ho ol-crved the non-occurrence of fossils in granite, but with his customary scientific caution and insight could perccive no reason for supposing it to be the original matter of tho globe, prior to regetable or animal, or that its formation was different from that of other rocks. In wator he recognized tho chiof agent in producing terrestrial changes (ef. Tratise on the Blood, p. 15, note); but tho popular notion that tho Noachian deluge might account for the inarine organisms discovered on land he pointed out was untenable. From the divorsity of the situations in which many fossils and allied living struetures are found, he was led to infer that at various periouls not only repeated oscillations of the level of tho land,

[^84]lasting thousands of centuries, but also great crimane vamnuons, perhaps dne to a change in the ecliptic, had taken place in geolo. gical times. Hunter considered that very few fossils of those that resemble recent forms are illentical with them. He conceived that the latter might be varieties, but that if they are really dif. ferent species, then "we nust suppose that a new creatiou must have taken place." It would appar, therefore, that the origin of species in variation had not struck himn as possible. That ho believed varieties to have resulted from the inluence of changes in the conditions of iife in times past is shown by a somewhat ouscure passage in his "Introduction to Natural History" (Essays and Observations, i. 4), in which lie remarks, "But, Ithink, we have reason to suppose that there was a period of time in which cuery species of natural production was the same, thero being then no variety in any species," and adds that "civilization has made variaties in nany species, which are the domesticated." Molern discoverics and doctrines as to the succession of life in time aro again forestadowed by him in the observation in his introduction to the description of drawings relative to incubation (quoted in Pref. to Cal of Plys. Ser., i. p. iv., 1833) that :-

If we were capable of following the progress of Inercase of the oumber of the parts of the most perfect animal as they thast formed in succession, itum tho very Arst, to its state of full perfectlon, we slould probably bo able to compare it with some one of the incomplete anmals themsctves, of every order of animals In the creation, being at no stage difluent from soose of those inferior oudcrs; or, in otber words, if we were to tuke a scries of anhuals from the moro imperfect to the perfect, we should probably hind an imperfect onimal corzesponding with some stage of the most puifect."
In pathological pheaomena Hunter discerned the resalts of the perturbation of those laws of life by which the healthy organism subsists. With lim pathology was a science of vital dynamics. He afforded principles bearing not ou single complaints only, but on the effects of injury and disease in general. To attempt to set forth what in Hunter's tenching was now to pathology. and systematic surgery, or was readered so by his noodc of treatment, would be well-nigh to present an epitome of all that he wrote on those subjects. "When we make a discovery in pathology," says Adams, writing in 1818, "we only learn what we have overluoked in his writings or forgotten in his lecturcs." Surgery, which only in 1745 had formally ceased to bo associated with "t the ant and mystery of barbers," be raised to the rank of a scientific profession. 1 is doctrines were, necessarily, not those of his age: while lesser minds around him were still dim with the mists of the igoorance and dogmatism of times past, his lofty intellect was illunined by the dawn of a distant day.

See, besides the atove quoted publications, $A n$ Appeal to the present Parliament.... on the subject of the late J. Munter's Museum, 1795 , Sir C. Cull, A eases of ihe Urethra, 1830 ; The president of the Royal College of Surgenns of England, Adduess to the Commitlee for the E゙rection of a Squatue of Hunter, Lond. March 29, 1839; Profestor Owen, "Sketch of Hunter's Scientine Claracter and
 Palmer, vol, iv., 1837, and in Essays ahd Observations: , hu invalunble catalncues of the Hunterian Collection issucd by the Royal College of Surmcons: and numerous Hunterina Orations. In the Journal of a Voraje to Vfw Sourh iof hat by John White, is a paper containing directions for preserving auhmals, priated by John White, is a paper containing directions for pleserving auhmals, primted
 jerbua and the camel's stomach. Notes of his lectures on surfery, edited by J . jerbus and the camels stomach. Notes of his lectlues on surfel'y, edited by J. Ilunter's Observations and Rofecfions on Geology, intended to serve as un inmodontions to the cataloguo of his eollection of extranedus dussils, was publisineti in JS59, and his Afemoranda on Vegetation in 1860.
(F.11, B.)

HUNTER, Willam (171S-1783), a celebrated Physiologist and physician, and the first great teacher of anatomy in England, was born May 23, 1718, at East Kilbride, Lanark. He was the seventh child of his parents, and an elder brother of John Hunter, the distinguished surgeon. When fourteen years of age lie was sent to tho university of Glasgow, where he studied for five years. He bad originally been intended for the church, but, scruptes concerning subseription arising in his mind, he followed the advice of his friend William Cullen (see Cullex, vol. vi. p. 694), and resolved to devote himselit to physic. During $1737-40$ he resided with Cullen at liamilton, and then, with a view to increasing bis medieal knowledge before settling in partnership with bis friend, he spent the winter of $1740-$ 41 at Edinburgh, aud thence went to London. There Dr James Douglas, an amatomist and obstetrician of some note, to whom be had been recommended, engaged his serrices as a tutor to his son, and as a dissector, and assisted him to enter as a surgeon's pupil at St George's Hospital, and to procure the instuction of the anatomist Dr Nicholls. Dr Douglas died in April 1742, but llunter still continued to live with his family. In 1746 Hunter undertook iu place of Mr Samucl Sharpe the delivery, for a societ.
aval practitioners, or a semes or tectures on operanve surgery, and so satisfactorily did he acquit limself of his task that be was requested to include anatomy in his course. It was not long before he attained considerable fane as a lecturer; for not only was his oratorical ability great, but los ditiered from his contemporarias in the fulness and thoroughucs of his teaching, and in the care which be took to provide for his bearers the best possible practical illustrations of his discourses. We read that the syllabus of Mr Nourse, published iu 1748, "totam rem anatomicam complectens," comprised only twenty-three lectures, exclugive of a short and defective "Syllabus Chirurgicus," and that at "une of the most reputable courses of anatomy in Europe," which Hunter bad himself atteoded, the professor was obliged to demonstrate all the parts of the body, escept the nerves and ressels (shown in a fatus) and the bones, on a single dead subject, and for the explanation of the operations of surgery used a dor!' Io 1747 Hunter became a inember of the Corporation of Surgeons. In the course of a tour through Holland to Paris with his pupil J. Douglas in 1728, he visited Albinus at Leyden, and inspected with admiration his injected preparations. By degrees Honter renounced surgical for obstetric practice, in which be exceljed. Ha was appointed a surgeon-accoucheur at the Middlesex Hospital in 1748, and at tha British Lying-in Huspital in tha year following. The degree of M.D. was conferred apon him by the university of Glasgow, October 24, 1750. About the same time he left his old abode at Mrs Douglas's, and settled as a physician io Jermyn Street. He became a licentiate of the College of Physicians, September 30, 1756. In 1762 he was consulted by Queen Charlotte, and in 1764 was made physician-extraordinary to ber Majesty.

On the departura of his brother John for the army, Hunter engaged as an assistant Mr William Hewson, whom he subsequently admitted to partnership in bis lectures. licerson was succeeded in 1770 by Mr Crujkstank. Hunter became in 1767 a fellow of the Royal Society; in 1703 a follow of tha Society of Antiquaries, and third proficior of anatomy to the lioyal Acudemy of Aits; and in 1780 and 1782 respectively an associate of the Royal Mchical Soniety and of the Royal Academy of Sciences of Paris, During the closing ten ycars of his life his bealth falled greatly. JTis last lecture, at the conclasion of which be fantel, was given, coutrary to the remonstrances of friends, only a few days before lis death, which took place March 30, 1783. He was buried in the rector's vault at St James's, l'iccarlilly.

Ilanter land in 1765 requested of the Hon. Mr Grenville the grant of a plot of ground on which he might establish "a muscum in London for the improvement of anatomy, surgery, and physic" (see "Papers" at cud of bis Tum Introhectory Lecteres, 1784), and bad offered to exjend on its erection C 7000 , and to endow in perpetuity a professurship of anatomy in connesion with it. IIs applieation receiving no recognition, he after many months abandoned his schene, nud built himself a house, with lecture and dissecting-ronma, in Great Windmill Street, whither lie removed in $\mathbf{1 7 7 0}$. In one fure apartacot in this house was accommodated his collcetion, comprising anatomical and pathological Incparations, ancient coins and mednd. mincrals, shells, and corals. Ifis natumal histury specimens were in part a purchase, for $£ 1200$, of the excenturs of his frient Dr Juhn Fothermill (see wa!. ir. (13. 475). Hunter's whole collection, together with his func library of Greek and Latin classics, and an culowment of ISOMO, hy his will became, after the lapse of twenty yeare, the fromerty of the university of Cilashow. Ilis patermal ustate if I onf Calderwool was left to his botherinhw, lo daces liallie, by whom, as soon as the will
was provea, 16 tis mace over to Joun Hunte. Hunier was never marned, and was a man of frugal habits. Like his brother John, he was an early riser, and a man of untiring industry. He is described as being in his lectures, which were of two bours' duration, "both simple and profound, minuta in demonstration, and yet the reverse of dry and tedions;" and his mode of introducing anecdotal illustrations of bis copic was most happy. Lecturing was to him a pleasure, and, notwithstaoding his wany professional distractiuns, he regular!y contimued it, because, as he said, ha "conceived that a man may do infinitely more good to the public by teaching his art than by practising it" (see "Memorial " appended to Introd. Lect., p. 120).

Munter was the author of several contributions to the Mfdical Obscruations and Enquirics and the Philosophical Transactions. In his paper on the structure of cartilages and joints, published in the latter in 1743, he anticipated what Bichat sixty years aftcrwards wrote concerning the structure and arrangement of the synovial membrancs. His Medical Commentaries (pt. i., 1762, supplemented 1764) contains, among other like matter, details of his disputes with the Munres as to who first had successfully performed the injection of the tubuli tcstis (in which, however, both he and they had been forestalled by Haller in 1745), and as to who had discovered the true office of the lymphatics (of. Anatomy, vol. i. p. 815), and also a discussiou on the question whether he or Pott ought to be considered the earhest to have elucidated the nature of hernia congenito, which, as a matter of fact, had bcen previously explained by Haller. In the Commentories is exhibited Hunter'a one weakness-an inordinate love of controversy. His impatience of contradiction he aversed to be a characteristic of anatomists, in whom be once jocularly condoned it, on the plea that "the passive sulmission of dead bodies" rendered the crossing of their will the less bearable. His great work, The Anatomy of the Gravid Uterus, exhibiled in Figures, fol. (see Anatomy, vol. i. p. 816), was published in 1774 . His posthumous works are Two Introductory Lectures, 1784, and Anatontical Deserintion of the Hunan Gravid Uterus, 1794, which was re-edited by Dr Rigby in 1843 .
See Gent, Mag., 114. pt. 1, p. 364, 1783; S. F. Simmons, An Account of the Life of $\begin{aligned} & \text { flunter, } 1783 \text {; Adams's and ottiey's Lives of } J \text {. Hunteri Sir B. C Brodie, }\end{aligned}$ Mnneman Oration, 1837: W. Munk, The Roll of the Royal college of Physterans of Londun, $11.205,1888$; and the preceding anticle.

HUNTING. The circomstances which render necessary the habitual pursuit of nild animals, either as a means of subsistence or for self-defence, generally accompany a phasa of human progress distinctly inferior to the pastornl and agricultural stages; resorted to as a recreation, on the other land, the practice of the chase in most cases indicates a considerable degree of civilization, and sometimes intimately bceomes the almust distinctive employment of tha classes which are possessed of most leisure and wealth. It is only in some of its latter aspects, viz., as a "sport," pursued on fixed rules and priveiples, that hunting requires notice here.

The iuformation we posscss as to the field sperts of the ancients is in many directions extremely fragmentary. With rcgard to the ancient Egyptinns, bowever, we learn that the huntsmen constituted an entire subdivision of the ircat second caste; they either followed the chase on their own accoant, or acted as the attendants of the chiefs in their hunting excursions, taking charge of the dogs, and securing and bringing home the gane. The game was sought in tho epen deserts which border on both sides the valley of the Nile: but (by the wealthy) sometimes is, enelosed spaces into which the animals had been driven, of in preserves. Bosides the noose and the net, the arrow, the dart, and the hunting pole or venabulum were frequently cmployed. The nnimals chicfly hunted were the gazclle, iber, orys, star, wild ox, wild sheep, hare, and porcupue; also the ostrich for its phumes, and tho fox, jackal, wolf, layena, nuld lempard for their skins, or ns enemics of the farm-yard. The lion was occasionally trained as a hamt ing animal instcat of the dog. The sportsman nulpears occasionally at least, in the later petions, to have gone te coverin hischariot or on ? meschack; nreording to Wibkinson, when the dogs thew of in a level plain of great extent, is
was even usual for him "to remain in bis chariot, and, urging his horses to their full speed, endeavour to turn or intercept them as they doubled, discharging a vell-cirected errow whenever iney came within its range." ${ }^{1}$. The partiality ior the chase w!ich the ancient Egyptians manifested was atared by the Assyrians and Babylonians, as is shown by the frequency with which huntiog scenes are found depicted on the walls of their temples and palaces, and also by the alleged fact that even their dresses and furniture were ornamented with similar subjects. ${ }^{2}$ The game pursued iocluded the lion, the wild ass, the gazelle, and the hare, and the implements chiefly employed seem to bave been the javelm and the bow. There are indications that hawkiag was a!so knuwn. The Assyrian kings also maintained magntricent parks, or "paradises," in which game of every kitai was enclused; and perhaps it was from them that the Persian sovereigas borrowed the practice mentioned both by Jenophon in the Cyropadia, and by Curtius. According to Hewdutus. Cyius devoted the revenue of four great towns to meet the expenses of his hunting estallishments. The circumstances under which the death of the son of Crresus is by the same writer (i. 34-45) related to have occurred incidentally show in what high estimation the recreation of hunting was held in Lydia. In Palestine game hos always been plontiful, and the Biblical indications that it ras much sought and duly appreciated are numerous. As means of capture, nets, traps, suares, and pitfalls are most frequently alluded to; but the arrow (Isa. vii. 24), the spear, and the dart (Job xli. 26-29) are also mentioned. There is no evidence that the use of the dog (Jos., Ant., iv. 8, 10, notwithstanding) or of the horse in lunting was known among the Jews during the period covered by the Old Testnment history; Herod, however, was a keen and successful spertsman, and is recorded by Josephus ($B . J .$, i. 21, 13, compare Ant., xv. 7, 7 ; xvi. 10 , 3) to have killed no fewer than forty head of game (boar, wild ass, decr) in one day. The sporting tastes of the ancient Greeks, as may be gathered from nany references in Homer (IL., ix. 53S-545; Od., ix. 120; xvii. 295, 316; xix. 429 sq.), had developed themselves at a sery carly leriod; they frst found adequate literary expression in the work of Xenophon entitled Cynegeticus, ${ }^{3}$ which expounds his principles and embodies bis experience in his favourite art of hunting. The treatise chiefly deals with the capture of the hare; in the author's day the arproved method was to find the hare in ber form by the use of dogs; when found she was etther driven into nets previously set in her rons, or else run dorn in the open. Boar-hunting is also described; it was effected by nets into which the animal was pursued, and in which when fairly entangled he was speared, The stag, according to the sawe work, was taken by means of a kind of wooden trap ($\pi 0 \delta o \sigma \pi \rho \alpha \beta \eta$) which attached itself to the foot. Lions, leopards, lyaxes, panthers, and bears are also specially mentioned among the large game; sometimes they were taken in pitfalls, sometines speared by mounted horsemen. As a writer on field sports Xenophon was followed by Arrian, who in his Cynegeticus, in avowed dependence on his predecessor, seeks to supplement such deficiencies in the earlier treatise as arose from its nuthor's unacquaintance with the dogs of Gaul and the horees of Scyihia and Libya. Four books of Cynegetica, ertending to about 2100 hexameters, by Oppian hare also been prescrved; the last of these is incomplete, and it is probable that a fifth at one time existed. The poem contains some gond descriptive passages, as well as some very

[^85]curious iodications of the state of zoological knowledge in the author's time. Hunting scenes are frequently represented in encient works of art, especially the boar-hunt, and also that of the hare. In Lominn literature allusions to the pleasures of the chaso (wilil ass, boar, bare, fallow deer, being specially mentioned as favourite game) are not wanting (Virg., Georg., iii. 409-413; Ecl., jii. 75 ; Hor., Od., i. 1, 25-2S); it scems to have been viewed, however, with less favour as an occupation for gentlemen, and to Lave been chiofly left to inferiors and professionals. The immenge vivaria or theriotropheia, in which various wild animals, such as boars, stags, and roe.deer, were kept in a state of semi-domestication, were developments which arose at a comparatively late period; as also were the venationes in the circus, although these are mentioned as having been knuwn as early as 186 b.c. The bald and meagre poen of Gratius Faliscus on hunting (Cynegetica) is modelled upon Xenopbon's prose work; a still extant fragment (315 lines) of a similar poem with the same title, of much hater date, by Nemesianus, seems to have at one time formed the introduction to an extended wark corresjonding to tliat of Oppian. That the Iomans lad burrowed sonic things int the art of tunting from the Gauls may be inferred from the name canis gallinas (Spanish galyo) for a greyhound, which is to be met with both in Ovid and Martial ; also in the vords (caris) vertragus and seguesius, both of Celtio origin. ${ }^{4}$ According to Strabo (p. 200) the Britons also bred dogs well adapted for hunting purposes. The addiction of the Franks in later centurics to the chase is evidenced by the frequency with which not only the laity but also the clergy were warned by provincial councils against expendiog so much of their time and money on lounds, hawks, and falcons; and we have similar proof with regard to the habits of other Teutonic nations subsequeat to the introduction of Christianity. ${ }^{5}$ Originallyamong the northern nations sport was open to every one ${ }^{6}$ cxcept to slaves, who wore not permitted to bear arms; the growth of the idea of game-preserving was a gradual one, and kept pace with the development of feudalism. For its ultimate develapment in Britain see Fonest Law, where also the distinction hetween beasts of forest or venery, beasts of chinse, and beasts and fowls of rarreu is explained. Sce also Game Laws.

The English word "hunt" (from henten, "to capture," and thus nearly equivalent to "chasc," whith is the doublct of the verb "to catch"; compare Ital. caccia, Fr. chasse) has come specially to be applicd to the pursuit of the stag, bare, and fox, especially of the last-named, with horse, hound, and horn, as distinguished from other modes of capturing game. It thus corresponds to the French chasse au courre, as distinguished from chasse au tir, à l'oiseau \&c., and to the German Hetzagd as distinguished from Dirsch. The origin of the sport in Britain does not admit of being historically traced. Doubtless the carly inhabitonts shared to a large extent in the habits of the other Celtic peoples; the fact that at least they lept good hunting diags is sunched for, as we have seen, by Strabo; and an interesting illostration of the manner in which these were used is given in the inscription quoted by Orelli (n. 1603)-"Silvano Invicto Sacrum-obaprumeximixforma eantum, guem multi anteccssores prowari non potuerunt." When the period of Alfred the Great is rached, we have it on the authority of Asserius, his biographer, that before be was twelve years of age he "was a most expert and

[^86]active hunter, aun excened in all the branches of that noble art, to which be applicd with incessant labour and acaazing success." ${ }^{1}$ Of his grandson Athelstan it is related by William of Malmesbury that after the victury of Bruasnburgh be imposed upoo the vanquished king of Wales a yearly tribute, which ocluded a certain aumber of " hawks aod sharp-scented dogs fit for bunting wild beasts." Ac. cording to the same autherity, one of the greatest delights of Edward the Confessor was "to follow a pack of swift bounds in pursuit of game, and to cheer them with bis voice." It was under the Anglo-Saxon kings that the disciaction between the bigher and lower chase frist came to be made, -the former being expressly for the king or those on whom be had bestowed the pleasure of ebaring in it, while only the latter was alluwed to the proprietors of the land. To the reiga of Cout belong the "Constitutiones de Foresta," accordiog to which four thanes were appointed in every province for tho administration of justice io all matters connected with the forosts; uader them were four inferior thanes to whom was committed immediate care of the vert and venisoo. ${ }^{2}$ The severity of the forest laws which prevailed during the Norman period is sufficieut evideace of the sporting ardour of Wifliam and his successors. The Conqueror himself, we are told by his conteruporaries, "Ioved the high game as if he were their father ;" and the panalty for the unautherized slaughter of a hart or hind was loss of buth eyes.

Stag Hunting- - Although at an early peried stag bunting was a favourite recreation with royalty, it is difficult to say, when the royal buekhounds were first established. -It seems prebabio that in the reign of Henry VIll. the regal pack was kenneiled at Swinley, where, in the reign of Cbarles II. (1684), a deer was found that went away to Lord Petre's seat in Essex; only five got to the end of this 70 milcs' run, one being the king's brother, the duke of York. George III. was a great stag bunter, and met the reyal pack as often as possible.
The Doven and Somerset staghounds are the only pack in England that now parsue the wild red deer. In his interesting work, The C'luse of the Wild Red Deer, Mir Cellyns says that the earlicst record of a pack of stagbounds in the Exnoor district is in 1598, when Hugh Polland, Qucen Elizabeth's ranger, kept one at Simonsbath. The succealing rangers of Exmeor forest kept up the pack until nearly 200 years aro, the beunds subsequently passing into the possession of Mr Wafter of Stevenstonc, an ancestor of the Rulle family. Successive masters continued the sport until 1825, when the fine parck, deseended grohably from the blood bound crossed with the olf sonthern hound, was oold in London. It is difficult to imagine how the dispersion of such a park conld bave ceme about in such a eporting comutry, hut in 1827 the Jate Sir Arthur Chichester got a pack together, and the conntry has been bunted ever since, the prescnt manster being Mr Fenwick Bissett. Stag hunting begins on the 12th of August, and ende on the 8 th of October; there is then a cessation until the end of the month, when the bounds are unkembetled for hind huating, which cuntinucs up to Christmas; it begins arain alout Ladyday, and hasts till the 10th of May. The modo of bunting with the lhevin and Somerset bounds is bricfly this:-the whereabuents of a warrantable stag is erommunicated to the master by that important functionary the linrbourer ; two comple of stenly loounds called tufters are then thrown into cover, and, having

[^87]singled out a warrautable deer, follow him until he id forced to make for the open, when the budy of the pack are laid on. Very olten two ur three hours elapse befure the stag breaks, but a run over the wild country fully atones for the delay. With all other packs of staghounds, except one in the Now Forest, which hunts falluw deer, the quarry is the carted deer; the animal is turued out from a vehicle resembling a prison van in appearance, and the hounds are laid an after a quarter of an hour's law.

Fox: Hutung.-It is only within compratively recent fox times that the fox bas come to be considered as an animal rinting of the higher chase. Willian Twici, indecd, whe was Luntsman-in-chief to Edward 11., and who wrote in Nurman French a treatise on hunting, which still exists in an English translation, mentions the for as a beast of vencry, but obviously as an altogether inferiur object of sport Strutt alse gives an engraving, assigned by him to thi Ifth century, in which three bunters, one of whem blows a bore, are represented as uncartbing a fox, which is pursued by a siggle hound. The precise date of the establisbment of the first pack of buunds kept entirely for fox bunting cannot be accutately fixed. In the work of "Nimrod" (C. J. Apperley), entitleil The Chuse, there is (p. 4) an extract from a letter from Lord Arundel, dated February 1833, io which the writer says that his ancestor, Lord Arundel, kept a pack of foxhounds between 1690 and 1700 , and that they remained in the family till 1782, when they ware sold to the celebrated Hugh Meynell, of Quurndon Hall, Leicestersbire. Lord Wilton again, in his Sports and Pursuits of the English, says that "about the year 1750 hounds began to be eatered solely to fox." The Field of November 6, 1875, p. 512, contains an engraving of a bunting-born then in the possession of the Jate master of the Cheshire hounds, and ulon the hern is the iuscription:-"Themas Boothby, Fisq., Tooley Park, Leicester. With this bern be bunted the first pack of foxhounds then in England tifty-five years. Dorn 1677. Died 1752. Now the property of "lhomas d'Avenant, Esq., ccunty Salop, his grandsen." These extracts do not finally decide the point, because both If r Poothby's and Lord Arundel's hounds may have hunted other game besides for, just as in Elward IV's tin. there were "fox dogs" though not kept exclusively for fox. On the whole, it is proballe that Lord Wilton's surmise is nut far from cerrect. Since fox bunting first commericed, bowever, the system of the sport has been much changed. In our grandfathers' time the boumds thet early, and found the fox hy the drag, that 1 , by the Iine be tuok to bis kemel on his return from a foraging expedition. Hunting the drag was doubtless a great test of nose, hut many good rums must bave lieen Jost therely, for the fox must often lave fienrd the hounds upwini, and have moved off before they could get on grood terms with him. At the present day, the woodtinds are neither so large ner so numerous as they formerly werc, while there nre many more gorse covers; therefore, instead o! bunting the drag up to it, a much quicker way of getting to work is to find a fox in bis lommel; and, the hour of
eting being later, the fox is and likely to be gorged with
rod, aud so umable to take care of himself at the pace at which the molern foxhonmed travels.
On hunting days it is the master's duty to sny what The covers are to be drawn, and to reguest the field to take n, masher such prsitions as will cmable the fox to bave fair play. Tho managenent of the field requires considerable limeness, but the very strong language ono sometimes bears is better avoiled. Where a professional huntsman is em ployed, he is respmsible for the actual bunting, und the luss he is interfered with by the master or anybody elsis the hetter. 'Ilhe country should be hunted fairly throug!
out its length and breadtu, not only for the sake of the subscribers living in the different districts, but with a view to sport. Woodlands of greater or less exteut are to be found even in countries denominated open, and these places are generally atrongholds for foxes, and should be regularly rattled throughout the acason; if this be neglected, the fores, instead of breaking quickls, will ring about the cover all day, and, what is worse, many small covers will be drawn blaak by reason of their inhabitants seeking the quietude of the wood. The frequent hunting of woodlands, thougb conducive in the long run to spert, is not popular with the fieid. It is on the whole a matter for congratulation that most packs of hounds are now carried on by subscription. Little by little the expense attending a pack of bounds bas increased until it has now assumed large proportions: the hounds must be of the best blood; at least five horscs per buntiog day (exclusive of the master's) must be allowed for the hunt servants; no makeshifts for kennel or stable will be tolerated; and the hunt gervants must be men of known character. Under these circumstances, a master uadertaking to keep bounds at his own expense incurs great cost for the benefit of uthers, or else. being judged by the atandard of great establishmenta, lays himself open tẹ a charge of only half doing what he has put his hand to. If huntug is as popular as it is supposed to be, it is for every reasoa allvisable that those who derive amusement from it should contribute something towards the general expenses. In establish.ments conducted upon a liberal scale, the anoual cost will anount to about $£ 620$ a year for each day in the week that the pack hunts, thus, a three days a week pack will cost about $£ 1860$ per annum, a four days a week pack $£ 2480$, and so on; but absolute efficieacy cannot be maintained much onder $£ 520$ per day.

The author of the Diary of a Huntsman says that, to be perfect, "a huntsman should possess the following qualifications-health, memory, decision, temper, patience, a good ear, soice, and sight, courago and spirits, perseverance and activity; and with these he will make a slow pack quick." Should the master be his own luntsman, be will save about $£ 300$ a year, but he should unite as many as possible of the above list of virtues to those he $1 s$ possessed of in his capacity of master. The position of a huntsman is a peculiar one; be is the servant of the naster, yet the latter must to a certain extent make a confidant of him, as in cases of breeding, drawing the bounds for a day'a bunting, and other matters. A huntszan must be fond of bis calling, or he will not be eoergetic in the pursuit of it; be must also be a bold horseman,--if a good one so much the better, - for nothing is more annoying to the master and the neld than to see a huntsman refuse to cast bis hounds ia an obviously probable direction, because the doing so would necessitate jumping an ugly fence. Observation and decision are also indispensable. When hounds check, the proper conrse to pursue is very often suggested by some triffing iacident which occurred perhaps ten minutes before, and which was noticed at the time without any particular weight being attached to it; for instance, some rooks might bave been hovering on the left or right of the line the hounds wera running; or again, some hound that can be depended on diverges for a moment from the rest of the pack. The huntsman remembers this when the cleck takes place, and tries in that direction, often with success. When once a check occurs, decision ahould be shown in acting promptly; right or wrong, the huntsman must do snmethine, and must bave a reason for what he does. Authorities are not wanting who reckon youth as one of a luntsman's qualities; but huntsmen, like hunters, are not at their best until balf word out. There is so much to learn in the
nature of the fox, su many isolated cases must have been observed in order to deduce a principle from them, that a young man cannot possibly have the experience necessary to show the best sport, and our bunting records tell of men who bave continued to ride boldly and to show no signs of age when fifty years old.

The methor of hunting a pack of hounda varies somewhat in different countries. One of the moat. accepted canons is that the buntsman sbould not interfere with his hounds more than is necessary. So long as bounds can hunt, it is best to let them do so, for if their heada are once got up by halloong and lifting, they will not ao readily settle down again; while hounds that are in the habit of being liited and galloped off to a distant point whenever a check occurs, will generally look for assistance, and will make but littie use of their own noses on cold scenting days. Sume countries are naturally bad-scenting ones, and, in order to kill a fox in them, houads funst be lifted more than mothers.
Huntsmen are often much abusea, when drawing a large cover, for not goong away with the first fox. There is a difference of opinion whether, if bouads are running one fos in cover, they slould be stopped and put on the line of one that has gone away. Something will depend upon whether the cover was well worked during cub bunting or not, and whether foxes are plentiful or scaroe, but after the lst of February the rule ahould be to go amay with the first for that breake, or the hounds may get on a visen.
The whipper-in, to be a success, must be content to The suppress himself for the public good. When a "good whipper. thing " occurs, and the buntsman is going as bard as he in can, and many of the field harder than they like, the whip, or, if two be kept, the säcond whip, should wait in corer and come on with the tail bounds. A good whip can do more in the furtherance of sport than any huntsman; in the interest, therefore, of fos hunting, thera must be no rivalry, or rather no manifestation of it, between the buntsman and the whip. A noisy fellow is an aboimination ; and the whip should carefully avoid rating a bound after seeing that his voice is entirely disregarded. If needs be a hound must be flogged and that soundly, but he should never be struck without knowing what it is, for ; thus, it is of no use, twenty minutes after a bound bas ceased to run riot, to get alongside of him, bellow out his name, and then fog him; to warrant the use of the lash, be must be caught flagrante delicto, and must pay no heed to rating. Where, bowever, hounds have been properly entered and treated, they will require but little chastisement. Oñ approaching a cover. one whip stould go on in adrance and station himself or the lee side of it , where he may often aee a fos steal away as soon as the hounds are thrown in. Although some packs hiave only one whip, a second is very desirable, especially before Christmas, and in countries where there is much woodland. One whip can then go into cover and keep near the buntsman in readiness to obey any directions he may give, and the other is free to see to other matters.

The carth-stopper is an important functionary in coun- The tries where there are many earths, for if he neglects his earthbusiness blank days will probably result with anneying fre-stopper. quency. When properly carricd out, earth-stopping consists in a man going rouad and stopping all the earths in the district to be hunted over during the day, so that when foses return from finding their food, which they do some hours before it is light, they shall find their own door barred against them. This involves the carth-stopper being astir alortly after 2 A.M., not the most pleasant hour of the twenty-four on a winter's day. If he gets to work late, he atops all the foxes in instead of out; and, when the cover is drawn, no one can understand how the fox which bas been seen about for the last fortnight cannot bo
found at the moment when his presence is particularly －fesired．

Cab hanting earried out on a proper principle is one of the secrets of a successful seasun．To the man who cares for hunting，as distinct from riding，September and October are not the least enjoyable months of the whole hunting season．As soon as the young entry have recovered from the operation of＂rounding，＂arrangements for cub bunting begin．The hounds must lave first of all walking，then troting and fast exercise，so that their feet may bo hardened，and all superfluous fat worked off by the last week in August．So far as the hounds are concerned，the object of cub hunting is to teach them their duty；it is a dress relearsal of the November business．In company with a certain proportion of old hounds，the youndsters learn to stick to the scent of a fox，in spite of the fondness they have aequired for that of a hare，from running about when at walk．When cubbing begins，a start is made at 4 or 5 A．m．，and then the system is adopted of tracking the cub by his drag．A cortain amount of blood is of course indispensable for hounds，but it should never be forgotten that a fos cub of seven or eight months old，though tnlerably cunaing，is not so very strong；the buntsman should not therefore be over－eager in bringing to hand every cub he can find．It would be a more in the right direction if noses were not to be counted until the first of Nuvember．
ilare
banting．
Hare hunting，which mast not be confounded with Coursing（q．u），is an excellent school both for men and for horses．It is attended with the adrantages of being cheaper than any other kind，and of nut needing so large an area of country．Hare hunting requires considerable ekill；Beckford even goes so far as to say－＂There is more of true hunting with barriers than with any other description of hounds．．．．．．．In the first place，a bare， when found，generally describes a circle in her course which natarally brings ber upon her foil，which is the greatest trial for hounds．Secondly，the scent of the hare is weaker than that of any other animal we hunt，and，unlike sume， it is always the worse the vearer she is to ler end．＂ Hare hunting is essentially a quiet amusement ；no halloo－ ing at hounds nor whip erackiag should be permitted； nor should the ficld make any noise when a hare is found， for，being a timid animal，sho might be headed into the lounds＇mouths．Capital exercise and much useful know－ ledge are to be derived by running with a pack of Leagles． There are the same difficulties to be contended with as in hutuing with the ordinary harrier，and a very few days＇ runaing will teach the youthful sportsman that he cannot run at tho same pace over sound ground and over a decp ploughed feld，op bill and down，or along and across furrows．

Ofter henting，which is less practised now than formerly， begins just as all other hunting is drawing to a close． When the waterside is reached an attempt is mado to hit upon the track by which the otter passed to his＂couch，＂ which is generally a bote communicating with the river， intur which the otter often dives on first hearing the hounds． When the otter＂vents＂ur comes to the surface to breathe， lis muzzle only appears above water，and when he is viewed or traced by the mud ho stirs up，or by air bubbles，the hounds are laid on．Notwithstanding tho strong secut of the otter，he often escapes the bounds，and then a east has to be made．When be is viewed an attempt is made to spear dim by any of the fieh who may bo within distance；if their specars miss，the owners mast wade to recover them． Should the otter be transfixed by a spear，the person who threw it groes into the water and raises the gatme over his Icall on the sprear＇s point．If instead of being speared，ho is eanght by the honnds，he is soon worried to death by
them，though frequently not before he has inficted some severe wounds on one or more of the pack．

Quitting the United Kingdom，we find that the elephant，other hyzna，liunting leopard，and a small species of panther kinds of known as the ounce，are not only objects of chase，but are thenselves trained to assist in the capture of other ani－ mals．The elephant has been found of great service in lion and tiger hunting，his size affording comparative safety to the hunters seated on his back．The byæa，which re－ sembles a dog in many particulars，is said to be as tractable， when properly trained，and to be of much use in the pur－ suit of game．The hunting leopard or cheetah and the ounce are used in hunting a species of antelope．They have hoods put over their heads，and are taken in a small waggon ioto the field；when the deer is seen the hoor is taken off and the animal starts in pursuit， followed by the lunter；when the game is secured the bood is again put on．In India field sports are largely indulged in，owing partly to natural facilities，and partly to the taste for hunting characteristic of the English resident there．Tigers are sometimes caught in traps，and sometimes shot in the jungle from the back of an elephant； they seek to coneeal themselves，and very rarely conmence hustilities against mankind，but when severely wounded and brought to bay they fight courageously．Hunting the wild hog，or＂pig sticking，＂as it is often termed，is a favourite sport in India ；the ground is walked over by beaters，and when a hog is roused the two mounted huntsmen nearest to him start in pursuit，and endeavour to spear him．The riding requires judgrent and very good nerves：hollows， ravines，and cracks in the ground caused by the sun are numerous，and，as they are hidden by the tall grass，the horse cannot avoid them；it is said that ne horse can run down a hog in less than a mile，even over the hest ground， while over a rough country the distance travelled amounts to three or four．The rider＇s ain is to blow the hng sufficiently before getting within spearing distance－for the charge of an untired hog is a dangerous affair；but whea near a thick cover the sportsman must try to spear him at all hazards，or make up his mind to loso him．Tho proper management of the spear requires considerable practice． Besides the above mentioued animals，the fox，jackal，wolf， hyæna，buffalo，and four－homed antelope are also objects of the chase．

Australia was formerly the scene of a great deal of kan－ garoo hunting，but that animal is now couparatively scarce．

In Africa there is plenty of higgame hunting，the list including the clephant，lion，giraffe，hippopotamus，antelopes of various kinds，leopard，hyema，buffalo，jackal，and ostrich． Of theso tho larger and more dangerous animals are killed as opportunity offers，but the jackal is Lunted by Enylish scttlers like a fox．Ostrich hanting is somowhat peculiar ； tho bird is pursued by men on horscback，and，thuugh over the ground it is swifter than a horse，it generally runs in a large circle，so that the riders，by describing a smaller circlo and relicving one another，are onabled to keep tolerably near to it ，and so to ride it down．

In North Anerica tho bison，an animal sometimes when full grown weighing as much as I42 stone，is pursued by the natives on horscback and then shot．The mooso is chased towards a ravine or a snowdrift，and when be begins to flounder in tho snow he is shot at by the hunters．The red deer is now hunted with staghounds apon the English prin－ ciple．Soulh America afforls hunting after the puma，tapir， and with bull，the lasso being the usual means of capture．
In liussia，bears，wolves，nond wild boars are bunted． Wolves are fonnd in Germany，where they are not ouly lunted by properly trained wolf－hounds，but are killed hy any avaituble means．
France officrs facilities for hunting the wolf，wild boar
hustingdon \& CAMBRIDGE

and deer, but the sport, though fullowed up with a considarable amount of enthusiasm, is not carried out in a araner strictly in accordance with Englisb ideas. The meak point in French hunting is that the huntsmen do nat seem to possess a particularly accurate knowledge of the habits and characteristics of the animal they pursue. Then again their system of kenael management is not what it might be. To show spert in the vast forests, the hounds sheuld be in good health and well-trained, and there should be plenty of them. Of late years, howerer, more atteutien has been paid to hound breeding and kennel management, and with enceuraging results.
(E. в. в.)

Plite ill

 England, situated between $52^{\circ} 9^{\prime}$ and $52^{\circ} 35^{\prime}$ N. lat. and $0^{\circ} 3^{\prime} \mathrm{E}$. and $0^{\circ} 30^{\circ} \mathrm{W}$. long., and bounded on the N. and W. by Northampton, S. by Bedford, and E. by Cambridge. Its extreme breadth is at the middle, from which it narrows gradually and irreguhrly towards its north and suuth ends. Its extreme length from north to south is about 30 miles, and its extreme breadth from east to mest about 23 miles. The area extends to 229,505 imperial acres, or 358 square miles. Among English counties it is the smallest, with the exception of Middleser and Rutland ; and Rutland is the only English comntv it surpasses in pepulation.The surface of the county is low, and, with the exception of the Fen district, pleasantly undulating. For the most part it is bare of trees. A low ridge of hills enters the county from the south near Potton, and ruas in a northward direction until it terminates in the Onse valley near Huntingdon; and a brauch of the Cambridgeshire hills enters the south-east part of the countr, and from Huntingdon runs north-west to Wansford. The nerth-eastern part of the connty, comprising 50,000 acres, or one-fifth of its whole extent, belongs to the great "Fen" district extending throughout the counties of Canibridge, Lincoln, Northan ip ton, Norfelk, and Suffolk. The principal rivers are the Ouso and Nen. The Ouse from Bedferdshire skirts the borders of the connty. near St Neets, and after flowing north to Huntingdon takes an easterly direction past S_{t} Ires into Cambridgeshire on its way to the Wash. It is narigable for barges as far as Bedford, and in the fen district constitutes a means of transport for the agricultural produce of the ceunty. The Nen, which is also navigable, skirts the nerthern berler, and quitting it at Peterburaugh enters the Wash below Wisbeach, in Cambridecshire. Various cots and drains which join the Nen and Ouse are also made use of fer navigation.

Geology, Soil, and Agriculture-Geolegically Hunt ingdonshire belongs to what is known as the Oolite systern. The low round biils in the south-eastenn 1 art of the county are composed of irousand. They contain a band of enprolites, and there is a strip of greensand on the south-eastern border. The central and larger part of the connty displays the Oxford clay, which lies between the middle and luwer 'olite. It reaches a depth of nearly 100 feet, and passes nder the Fens. The Fens are composed of fine mud, sposited formerly by the sea, intermixed with beds of yeat, in which are frequently found the remains of animals, irequenters of the old forest, such as the clk, the red-deer, the bear, the beaver, and the wolf. The liills on the burder of Northampton are of the stonebrash or forest marble. The Oolite formation is rery fossiliferons. Large masses of fnssil woorl converted into jet or iron pyrites are found in the Oxford clay. Glacier or beulder clay containiag chalk and flint deposits is met mith in nearly every part of the county. The soil is generally fertile, and coltivation is of an advanced kind. In the fen district the soil is of a blue penty nature, resting on a subseil of white marly clay. After being drained and mised with clay it
is rery preductive, but much damage $1 s$ often dene to the crops by the prevalence of frost and fogs. In the fen districts a four-years' systen of cropping-green-crops, barley, seed-clovers, and wheat-is the most cammon. The "Meres" of Whittlesea, Ramsey, and Ugg, at one time much resorted to by sportsmen for their wildfowl and fish, have now been drained, and, not withstanding the expensiveness of the process, such is the fertility of their beds that the outlay was speedily more than repaid. The Oxford clar, which estends to an area of 120,000 acres, is of very varions soils according as the Oolite rocks crop to the surface. The greater part is under cultivation, and moch improvement has lately been offected by drainage; on aceount of the tenacity of the clay the drains often require to io placed rery close. Much of the soil is, however, undrained and uncultivated, and, though partly used for pasturage, must on the whole be regarded as mere waste land. On the drained pasturage a large number of cattle are fed. Iu this distriet the system of eropping varies considerably, but a modifeation of the four-course shift is the nost conmon-fallow sown sometimes with winter tares, turnips, mangold, or mastard; barley; beaus where tares were sown on the fallow, and clover where green crops were sown; wheat. A six-jears' course of fallow, barley, seed-clovers, wheat, beans, and wheat is, however, nut ancommen, especially on the best soils. The third district, cemprising the gravel of the Onse valley, embraces an area of 50,000 acres. On the banks of the Ouse it consists of fine black loam deposited by the overfow of the river, and its meadows form very rich pasture grounds. The upland district is under arable colture, and is generally cultivated in a four-course system of whear, green crop", barley, and seed-clover. Market-gardening is prosecuted; and willows are largely grown in the fen district. The farms vary in size from 200 to 500 acres, ranging chiefly between 200 and 300 . The farm-houses are generally of an inferier kiud, and the farm-buildings are often quite inadequate for the shelter and accommodation of the stock. The labourers generally live in villages and bamlets, in cattages of the most miserable descriptien, having mostly mud walls; but many cottages of a better class have been built within the last fer years. The county is well supphied with turnpike roads; and the parish and occupation roads, formerly in a bad state of repair, have been latciy much improved. The must modern improvements in farm implements are in general use.

According to the agricultural returns for 1879 the tutal area of arable land was 209,610 acies, of which 98,633 were under carn crop, 21,931 under green crop, 17,121 under rotation grasses, 60,484 premanent pasture, and 73,531 fallow. The area under woods was 20,714 acres. Wheat, which in 1879 eropperl 43,129 aeres, is muel more largely grown than any other graia, and occurs twice in the six-years' slift system in use on the better lands Tarley (27,118 acres) is the more frequent corn crop in the four-years' shift system,-only 10,247 acres being under oats. The quality of barley on many soils is lem and inferior, and unsuitable for malting purpnses. Deans and pease occupied 5948 and 6929 respectively. Mangold (3430 acres) and cabbage and similar green crops (9863 acres) are ehiedy used for the feeding, of sheep. Under turnips there were only 3778 acres, and under potatoes $30 \leqslant 3$. The number of cattle in 1579 was 27,358 , or an average of 13 to every 100 aeres under cultivation, as compared with 16.9 for England and 21.0 for the United Kingdou. Of these the number of cuws and heifers in milk or in calf was 7536. Though Stilton in Huntingdon gives its name to a celebrated beese, that variety is now made exclusively in the counties of Lincoln and Leicester; and dairy farm. ing is net now much followed. The milk is now chiefly
used for rearing calves. Large numbers of cattle are fattened in the field or the fold-yard, and are sold when rising three years old. They are mostly of the shorthorn breed, large numbers of Irish shorthorns being wintered in the fens. Where there are no upiand pastures the farmer usually purchases cattle in the autumn and sells them in the spring. The number of horses in 1879 was 11.057 , or an average of 4.2 to every 100 acres under cultivation, ss compared with 45 for England and $4 \cdot 1$ for the United Kingdom. Of these the number used solely for agricultural purposes was 7583. Most of the farmers breed cart horses, and the large farmers often rear weight-carrying hunters. The number of sheep in 1879 was 157,790 , or an average of $75 \cdot 3$ to every 100 acres under cultivation, as compared with the same sperage for England and 68.0 for the United Kingdom. Great improvement in the breed has lately taken place, Leicesters and Lincolns being most common; they usually sttain great weights at an early age. Lambs are occasionally sold at weaning time, but more frequently they are kept through the winter on the grass lands, being fed also on mangolds and other roots, with an addition of cake and corn. The number of pigs in 1879 was 10,990 , or an nverage of 9.5 to every 100 acres under cultivation, as compared with 7.2 for England and 6.7 for the United Kingdom. . They include Berkshire, Suffolk, and Neapolitan breeds, and a number of crosses. Many after baving gleaned the stubbles are fattened on whey and various preparations of inferior barley; but breeding is also extensively practised.

According to the owners of lands return for 1873 the land was divided among 3903 proprietors, holding land the gross annual value of which was $£ 444,820$. Of the owiers $45^{\frac{2}{3}}$ per cent. possessed less than I acre, and the nverage value all orer was $£ 1,19 \mathrm{~s} .4 \frac{3}{4} \mathrm{~d}$. per acre. There wore 13 proprietors holding upwards of 3000 acres, viz., Edward Fellowes, 15,629; Duke of Manchester, 13,835; Williåm Wells, 5792 ; Merquis of Huntly, 5711; Hon. G. W. Fitzwilliam, 5202; Lord Chesham, 3787 ; Earl of Carysfort, 3654 ; Ecclesiastical Commissioners, 3559 ; Culonel Duncombe, 3407; W. Duberley, 3224; Earl of Sandwich, 3219 ; G. D. Newton, 3200 ; Richard H. IIussey, 3135.

Manufactures and Trade.-Agriculture is the principal industry, and none of the manufactures are extensive, the chief being paper and parchment. Madder is obtained in cousiderable quantities, and in nearly cvery part of the shire liae burning is carricd on. Lacc-making is practised by the female peasantry; and the other industries, which are not prosecuted beyond what is nccessary to meet local wants, are printing, iron-founding, tanning, currying, brick and tile making, malting, and brewing.

Ratiways. - The middlo of the county is traversed from south to north by the Great Northern, which enters it at St Noots and passes by IIuntingdon to Petcrborough. A branch from tho Midland enters the middle of the county from Northampton, and passes by Craftham to Huntingdon, where it is joined by a branch which passes by St Ires to the Great Eastern in Cambridgeshire. From St Ives there is a branch to Wisbeach in Cambridgeshire, and another has been constructed to Stilton. On the Great Northern there is a branch from IIolme to Ramsey.
1 Administration.-IIuntingdonshire comprises four "hundreds." For parliamentary purposes it is an undivided constituency returning two members; and it contain no [:mliancutary borough, that of IIuntingdon, formed of It unting (4213) and Codmanchester (2363), and returning one member. Fart. of the represented city of Peterburough is also in the county: The principal other towns are Ramsey (2378), St Itcs (3291), St Ncuts (3200), and

Kimbolton (1509). The county has one court of querter sessions. It is included in the south-eastern circuit, sad circuit courts are held at Huntingdon. It forms part of the shrievalty of Cambridge, and ecclesiastically is in the diocese of Ely.

Pcp lation.-The population in 1841 amounted to 58,543 , in 1851 to 64,183 , in 1861 to 64,250 , and in 1871 to 63.708 (31,381 males and 32,327 females). The increase in thirty years from 1841 has been 8.8 per cent, and since 1801 it bas been 69.5 per cent.
History and Antiquities.-Previous to the Roman invasion Huntingdonshire, like the other Fen counties, was inhahited by the British tribe the lceni, originally of Celtic origin, but considerably intermixed from Teutonic sources, although the Belge in all probability did not subdue the country as far north as Huntingden. During the Roman occupation it was included in the Roman province of Flavia Cosariensis. Two Roman stations are supposed to have been situated in the connty, Durolipons (Godmanchester) and Durobriver at Water Newton on the Nen. The Roman road Via Devana from Camb:idge joined Ermine Street at Godmanchester, Ermine Street passing north-west by Water Newton into Northampton. Under the name of Huntandunscyre, Huntingdon forned part of the kingdom of East Anglia, afterwards joined to Mercia. Shortly before the Conquest the earldom of Huntingdon was held by Swend, who, on receiving the earldom of Nortbampton, granted it to his son Waltheof, who married a niece of Willian the Conqueror ; and, on Waltheof's execution for high treason, it passed to a Norman soldier, Simon de St Liz, who married a daughter of Waltheof. On the death of St Liz, David, afterwards king of Scotland, married bis widow, and inherited the earldom in her right, but on account of the subsequent feuds betweeu the English and Scottish monarchs the earldon frequently exchanged hands between the heirs of St Liz and the heirs of David. It is at present borne by a branch of tho Hastiugs family. A great part of the county was held hy the monks, who erected two great abbeys at Ramsey and at Sawrry-St Judith, and priories at Huntingdon,St Ives, St Neots, and Hinching. brook. Of these buildings all that now remains is tho richly deco. rated ruined gateway of the abbey of Ramsey, and a dorebouse, a barn, and a few unimportant fragments at St Ires. There were two aucient castles at Huntingdon and Eimboltun ; the one at the latter place, now the seat of the Montagues, dukes of Manchester, was the residence of Catherine of Aragon after hicr dirorce from Heary VIII. Another mansion of interest is Hiachingbrook House, the ancient seat of the Cromwell family. Among the old churehes may be mentioned Alwalton, Conington, Hartford, Leighton Bromswold, and Mamsey, which contain remains of Roman architecture ; Buckden, Elton, Godmanchester, and St Neots, which contain good specimens of the Perpendieular: Chesterton, Holywell, Sawtry, Upton, and Wooton, which are partly Early Euglish. The only events of historical iniprortance connected with the shire are the capture of the castle of Hunting don by the Royalists under Charles 1. in 1645, and the rout at St Neots of one hinndred horso under the command of the duke of Euckingham and the earl of Holland by the Par. liamentary soldiers, who took the carl of Holland prisouer.

Huntingdon, a municipal and parlinmentary borough of England, capital of the abore county, is situsted on the left bank of tho Ouse, and on three rsilway lines, 59 miles north of London, 15 miles north-west of Cambridge, and 19 miles south of Peterborough. It consists principally of one street about a mile in length, from which small streets branch off at various points. By a fine bridge erected in the 13 th century it is connected with the municipal borough of Godmanchester, which, consisting principally of cottages, forms practically one of its suburbs, and is included in tho parliamentary borough of Huntingdon. In IIuntingdon there are two old churches-All Saints, probably dating originally from the time of the Normans, but re-crected in the time of Henry VIII., and St Mary's. probably occupying the site of the old priory, but rebuilt in the Gothic style after the fall of the old buidding in I 005 , and restored in 1876. The church of Godmanchester, of the date 1625 , is also a fino structure in the late Perpendicular, with a tower and spire. At the grammar achool of Ihuntingrlon, founled in 1000 by David, king of Scotland, hut pulled duwn in 1877 for the erection of a new building, Oliver Cromweil received his education. Among the othel schools are Walden's school for 64 boys, and a national achool. There are also in Godmanchester a grammar achool
and a mational school. The principal other buildings of Huntingdon are the connty jall, completed in 1827 ; the miiitis barracks, erected in 1852 ; the town and county hospital, erected in 1853; the corn exchange; the townball; whese ground theor is used for the courts of justice; and tho rooms of the literary and scientific institution. T'he house in which Oliver Cromwell was burn is still standing. Of the three old monestic foundations furmerly belonging to the town there aro now no renaing. The industries of Huntingdon and Godmu.chester are very much alike. "Hey possess iron-foundries, breweries, tileworks, and oil and flour mills. The area of the parlismentary borough of Huntingdon is 6086 acres, the municipal boroughs of Godmanchester and Huntingdon occupying 4970 acres and 1116 acres respectively. In 1871 the population of the parliamentary borough wes 6006, that of the muricip ${ }^{3}$ b boroughs of Godmanchester and Huntingdon being respectively 2363 and 4243 .

Huntingdon existed in the time of the Saxons under the name of Huntantun, and in the Numan survey it is mentioned as Hunters. dune. The castle erected at it by Edward the Elder in 919, and ufterwarls cularged by David, kiog of Scotland, was demolished by the orders of Heary II. In 1645 the town was plundered by the Hoyalists under Charles I The origin of the town was doubtless closely comnected with that of Godmanchester, which oceuried the stic of the Roman station Durolipons, and at which a castle is said tu havo been founded by Gormund chence the name of the town, furmerly Gormunchester), a Danish chief in the reigo of Alfred the Great. Huntingdon was first incorporated in 1206 and Godmanchester in 1605 Froun an early period Huntingdon returned two melobers to parliament ; but the Reform Act of 1867 reduced the representation to one mernber.
huntingdon, Selina, Countess of (1707-1791), leader of a sect of Calvinistic methodists, known as the Countess of Huntingdon's Connexion, was the daughter of Washington Shirley, second Earl Ferrers. She was born at Stautun Harold, a mansion near Ashby-de-la-Zouch in Leicestersbire, August 24, 1707, end in her twenty-first year was married to Theophilus, ninth earl of Huutingdon. The religious intluence of her busband's sisters, and a dangerous illness soon after ber marriage, tended to deepen the serious impressions which the young countcss had experienced from childhood; and on the death of her lustiand in 1746, coming under the influence of the religious revival in which Wesley and Whitfield were at that tine conspicuous, she resolved to join these preachers in actively furthering their aims. In 1748 she gave Whitfield a srarf as her chaplain, and in that capacity he frequently preached in Ler town house to the most fasbionable audiences, in which sometimes such men as Chesterfield, Walpole, and Bolingbroke were found. Reducing her personal expenditure, and disregerding the sneers of lier aristocratic acquaintances, Ledy Huntiugdon spent her ntople means in building chapele in different parts of England, and appointed ministers to officiate in them, unler the impression that as a peeress she liad a right to employ as many chaplains as she would. In 1768 she converted the old mansion of Treveces, neer Telgarth, in South Wales, into a theological seminary for training young ninisters for the Cunnexion; and this, which abe aade her chief resilence, she coutinued to eupport alone till her death. Up to 1779 Lady Huntingdon and her chaplains continued members of the Church of Englend, but in that year the probibition of her chapleins by the consistorial court from preachiag in the Pantheon, a large building in London rented for the purpose by the countess, compelled her in order to evade the injunction to take shelter under the Toleration Act. This reluctant atep, which placed her legally among dissenters, had the effect of severing from the Connexion several emineut and useful members. Till her death in London, June 17, 1791, Lady lluntingdun ${ }^{\circ}$ continued te exercise an active, and even autocratic, super-
intendence over her chapels and chaplains, and maintained her leading position as well by her genuine earuest piety and force of cbaracter as by her high social station and generous liberality. lier chapels and college were beyucalbed to trostes; and in 1792 the latter was renoved to Cheshunt, in Hertfordshire, where it has since fluurished. Several congregations of the Connexion have become nominally as well as virtually Congregational chapels; while, eveu by those which retain the original name, the Congregational polity is practically adopted.
The Iife of the Countess of Ifuntingdon was publishad at London, in 2 vols., in 1844 ; The Coronet and the Cross, or Memorials if Selina, Countcss of Huntingdon, by A. H. New, appeared in 1857

HUPFELD, Hermann (1796-1866), an eminent Orien-talist-and Biblical commentator and critic, was born March 31, 1796, at Marburg, where he studied philosojliy and theology from 1813 to 1817 ; in 1819 be became a teacher in the gymnasium at Hanau, but in 1822 he resigned that appointinent. After studying for some time under Gesenius at Halle, be in 1824 "babilitated" in philosophy at that university, and in the following year he was appointed professor extraordinarius of theology at Marburg. There be received the ordinary jprofessorship of Oriental languages and of theology in 1827 and 1830 respectively; thirteen years later be removed as successor of Gesenius to Halle. In 1865 he was accused by some theologians of the Hengstenberg school, before the minaister of public worship, of heving taught exegesis in a sense inconsistent with the. recognized cbaracter of the Old Testanent as a divine revelation. From this charge, however, he successfully vindicated himself, the entire theological faculty, including J. Müller and Tholuck, bearing testimony to his essential orthodosy. He died at Halle April 24, 1866.

His earliest works in the deparment of Semitic philology (Excreitationes AEthiopicee, 1825, and De emendanda ratione lexicographia Semitica, 1827) were followed by the frst part (1841), mainly historical and critical, of an Ausführliche Hebraische Grammatik, which he did not liva to complete, and by e "program " on the early history of Hebrew grammar among the Jews (De rei grammatices apud Juldoos iniliis antiquissimisque scrip. toribus, 1846). His principal contrihution to Biblical literatura, a valuable though nresuic exegetical and eritical Ueberselzung u. Auslegung der Psalmen, began to arpear in 1855, and was completed in 1861 (2d ed. by Rielım, 1867-1871). Other writings ere L'ber Beyriff u. Mcthode der soyenannten biblischen Einleitung (:844), De primitiva et vera festorum anud Hebraros ratione (1851-1864); Die Quellen der Gevesis von neuem untersucht (1853), in which lie dissects that book into an origioal writing, or "Urschrift," by the older Elolist, and the contributions by the younger $\mathbf{E}^{\prime \prime}$-hist and bo the Jehovist respeetively, the work of tha "redactor" havang leen comparatively tritling ; Die heutige theosophische u. mythologische Theologie u. Schrifterklarung (1861); und vaious contributions to the Studien u. Kritiken, to the Jourmal of the Deatsche Morgenlandische Gesellschaft, and to the Neue Evangclische Kirchenzeitung. Sce Riehm, Hermann IHupfcld (1S67).
hURD, Richand (1720-1808), bishop of Winchester, was born at Congreve, in the parish of Peukridge, Statfordshire, where bis father was a farmer, on Januury 13,1720 Ho received his carly education at the grammar school on Brewood, in his native county, and nade such progress in bie studies that in October 1733 he was admitted a siza of Ermmanuel College, Oxford; he did not bogin residence, however, till a year or two afterwards. In 1739 he took the degrec of B.A., and in 1742 he was ordained deacun, and for a short time had charge of the parish of lieymereton, between Thetford end Norwich; but, having in the acme year proceeded M.A. and been clected fellow of his college, he returned to Cambridge carly in 1743. Whide residing there le was ordained pricst in 1744, and in 1748 be publisbed his licmarks on a late Dook, entillecl an Enquiry into the Rejection of the Christian Miractes by the Meuthen, by Irilliam IVeston, D.D., 1716. This controversial treatise, which was characterized by considerable learning and
ingenaity, was followed in 1749 by an editinn of the Ars Puelica of Horace (Q. Horatii Flacci Epistola ad Pisones, with an English Commentary and Notes), which, as Gibbon has remarked, fully proved the title of its anthor to "the great but prostituted name of critic," and may still be read with interest, less, however, as ao exposition of the original than as coataining "s more valuable and better digested collection of criticisms than Horace ever wrote or intended to write." In 1750 Hurd was, through the recommendation of his friend Warburtun, nppointed one of the preachers at Whitehall; and in 1751 he published Q. Horatii Flacci Epssl, ad Augustum, with an English Commentary and Notes, justly held by Gibban to be superior in merit to the aditioa of the Ars Poetica.
In 1756 he accepted the college living of Thurcaston, Leicestershire, in the studious retirement of which ho wrote and published a volume of Dissertations ("On the Province of the Drams," "On Poetical Imitation," and "On the Marks of Imitation," 1757), and anotler entitled Moral and Political Dialogues ("On Sincerity in the Commerce of the World," "On Retirement," "On the Age of Queen Elizabeth," and "On the Constitution of the Euglish Government," 1759). The latter has proved the most popular of his writings, and was cliefly instrumental in procuring for him at a later period of his life the rogal favour. In 1766 be was appointed preacher of Lincoln's Inn, and in 1767 he became archdeanon of Gloucester; his elevation to the see of Lichfield and Coventry fullowed io 1774, and in 1776 he was selected to be preceptor of the prince uf Wales and the duke of York. In 1781 he was translated to Woreester, and in 1783, on the death of Dr Cornmallis, he was pressed to accept the primacy, but declined it as "e charge not suited to lis temper and talents, and much to heary for lim to sustain, especially in these times." He died May 28, 1808.

Besides various sermons, charges, and nther comprositions of a more or less occasional character, Hurd puhbshed, in addition to the wiorks already mentioned, a phascrtation on the Delicacy of Friendshap (1755), a severe attack on Jortin, by whom Warburton had been assailed. Letters on Chzvalry and Romance (1762); Dhs. arration on the Idca of Universal Fontry (1762) ; Dialogues on Forrign Travel (1764); and Discours. by way of Prcface to the Quarto edutron of Bisiop Warburton's W"orky, containing some Account of the Life, IVritings, and Churacter of the Author (1794). Rcmarks on Hume's Datural Hishory of Religzon (1757), a controversial tract winich caused considerable uritation to that philosopher, was the joint production of Hurit and Warbarton. The collected warks of Hurl appeared in anclition of 8 vols. 8 vo, 111611 ; his Membirs by kilivert, were published in 1860 .
ifurdwar. See Hardwar.
huron, Lake. See St lawrence
hurrut. See flarar.
husband and Wife, Law relating to. For the modes in which the relation of hushand and wife may be constituted and dissolved, see Marbiaoe and Divorce. The present article will deal noly with the effect of marrage on the legal position of the spouses. The persan chefly alfected is the wife, who probably in sll politu cal systems becomes sulject, in consequence of marriage, to some kind of disability. The most favourable eystem scarcely leaves her as free as an unmarried woman; and tho minst unfavourable subjects her absolutely to the authrity of her hushand. In modern times the effect of manriagn on property is perbaps the raost mportant of its consequences, and on this point the laws of different states show wide diversty of principles.

The history of Roman law exhibita a transition from an extreme theory to its opposite. The posstion of the wife in the earliest Rnman houschold was refulated by the kaw of Manus Shefell under the "hand "of her hustand,lecame one of hus family, along with lus sons and daughters, astural or adopted. and his slaves. T'le dominion which,
so far as the children was concerned, was known as the patria potestas, was, with reference to the wife, called the manus. The subject members of the family, whether wite or children, had, broadly speaking, no rights of therr own; all were merged in the potestas of the husband and father If this institution implied the complete subjection of the wife to the husband, it also implied a much cleser bond of union between them than we find in the later Ruman law. The wife wss at least a member of the family, and on her husband's death she succeeded, like the childsen, to freedom and a share of the ioheritance. Manus, however, was not essentisl to a legal marriage; its restruints wero riksome and unpopular, and in course of time it absoiutely ceased to exist, leaving no equiralent protection of tho stability of family life. The later Roman marriage left the spouses comparatively indepeudent of each other. The bond was easily dissolved, und while it lasted was loose and easy. The distance between the two modes of marriage may be estimsted by the fact that. while under the furmer the wife was one of the husoand's immediate heirs, under the latter she was called to the inheritance only after his kith and kin bad been exbausted, snd only in preference to the treasury. It seems doubtful how far she had, during the continuance of marriage, a legal right to enforce aliment from her busband, although if he neglecter her she had the unsatisfactory remedy of an easy divorce. The law in fact preferred to leave the parties to arrange their mutual rights and obligations by private contracts. Hence tho importance of the Law of Settlements (Dotes). The Dos snd the Donatzo aute nuptas were settlements by or on behalf of the busband or wife, during the continunuce of the marringe, and the law seems to have looked with some jealousy on gifts made by one to the other in any less formal way, as possibly tainter with undue influence. During the marriage the husband had the administration of the property, and its destination afterwards might depend on the nature of the settlement and the conduct of the parties.

The manus of the Roman law appears to be only one instance of an institution common to all primitive societies, and suitable only to society in a primitive state. On the continent of Europe after many centuries, during which local usages were brought under the influence of principles derived from the Roman law, a theory of marriage becon:e established, the leading feature of which is the community of goots between husband nad wife. Descrihing the principie as it prevails in France, Story (Confict of Laus. § 130) says-"This community or nuptial partnorship (iu the absence of any special contract) generally extends to all the movable property of the husband and wife, and to the friits, income, and revenue thereof

It extends also to all immorable property of the husband und wifo ece. quired during the mariage, but not to suct immovable property as either possessed at the time nf the marriage, or which came to them afterwards by title of successinn or by gift. The property thus acquired by this nuptin! partnership is liable to tho delits of the parties existing at the time of the marriage; to the dehts contracted by the hushand during the cofumunity, or by the wife during the community with the consent of the lusband; and to debte contracted for the maintenance of the family. . . . The busband alone is entitled to alminister the property of the community, and he may alien, sell, or mortgage it without the concurrence of the wife." But he cannot dispose by will of more than his sharo of the common property, nor can he part with it gratuitonsly inter vivos. The community is dissolved by death (natural or civil), divoree, separation of body, or separation of property. On separavion of body or nt property the wife is entitled to the full control of her moviable property, but cannot alien ber immovable pro-
perty without her husband's consent, or legal authority. On the death of either party the property is divided in equal moities between the survivor and the beirs of the deceased.

Lav of Englund.-The English conmon law bas as usnal followed its own course in dealing with this subject, and in no departnent are its rules more entirely insular and independent. The text writers all assume two fundrmental principles, which between them establish a system of rights totally unlike that we have just described. Husband and wife are said to be one person in the eye of the law-unica persona, quia caro una at sanguis unus. Hence a man cannot grant or give anything to his wife, because she is himself, and if there are any compacts betreen them before marriage they are dissolved by the union of persons. Hence, too, the old rule of haw, now greatly modified, that husband and wife could not be allowed to give evidence agaiust each other, in any trial, civil or eriminal. The unity, however, is one-sided only; it is the wife who is merged in the husband, not the husband in the wife. And when the theory does not apply, the disabilities of "coverture" suspend the active exercise of the wife's legal faculties. The old technical phraseology describes husband and wife as baron and jemme; the rights of the husband are baronial rights. From one point of view the wife is merged in the husband, from another she is as one of his ressals. A curious example is the immunity of the wife in certain cases from punishment for crime comnitted in the presence and on the presumed ceercion of the husband. "So great a favourite," says Blackstone, "is the female ses of the laws of England."
The application of these principles with reference to the property of the wife, and her capacity to contract, may now be hrielly traced.
The freehold premerty of the wife becomes rested in the lusband and herself during the coverture, and he bas the 1:anagement and the profits. If the wife bas been in astual prossession at any time duriog the marriage of an estate of inheritance, and if there has been a chilio of the marriage capable of iuheriting, then the busband becomes entitled on his wife's death to hold the estate for his own life as tenant by the curtcsy of Singland (curialitas).' Beyond this, however, the husband's rights do not extend, and the mife's heir at last succeels to the inberitance. The wife cannet part with her real estate without the conenrrence of the busband ; and eren so she must be examined spart irom her husbond, to ascertain whetier she freely and voluntarily consents to the deed.
With regard to persoial property, it passes absolutely at common law to the hasband. Specitice things in the pessession of the wife (choves in pessession) becume the property of the husband at onee; thlingz not in possession, but due and reco erable from others (eloses in action), may be recoverea by the busband. A chose in action not reduced into actual possession, when the marriage is dissolved by death, reverts to the wife if she is the survivor; if the husband survires, he can obtain possession by taking out letters of administration. A chose in action is to le distiuguished from a specifie thing which, although the property of tho wife, is for the time being in the hands of another. In the latter ease the preperty is in the wife, and passes at once to the husband ; in the former the wife has a mere jus in personam, which the hnsizand may enforee if he chooses, but which is still capable of reverting to the wife if the husband dies without enforcing it.

The chattcls real of the wife (i.e., personal property, dependent on, and partaking of, the nature of reality, such as

[^88]leascholds) pass to the husband, subject to the wife's right of survivorship, unless barred by the husband by some act done cluring his life. A disposition by will does not bar the mjfe's interest ; but any disposition inter rivos by the busband will be valid and effective.

The courts of equity, however, greatly modified the relas of the common law by the introduction of the wife's separate estate, i.e., property settled to the wife for her separate use, independently of her husband. The principla scems to have been originally admitted in a case of actual separation, when a foud was given for the maintenanc: of the wife while living apart from her husband. Anel the conditions under which separate estate may be enjoyed have taken the const of chancery many generations to develop. No particular form of words is necessary to create a separate estate, and the intervention of trustecs, though common, is net necessary. A clear intention to deprive the husband of his common law rights will be sufficient to do so. In such a case a married woman is catitied to deal with her property as if she was unnarried, although the earlier decisions were in favour of requiring her binding engagements to be in writing or under seal. Dut it is now held that sny engagements, clearly made with reference so the separate estate, will bind that estate, exactly as if the woman bad been a ferme sole. Connecterl with the doctrine of separate use is the equitable contrivance of restruint on centicipation, whereby property may be so settled to the separate use of a married woman that she cannot, during coverture, alienate it or anticipate the income. No such restraint is recognized in the case of a man or of a femme sole, and it depende entirely on the separate estate ; and the seprate estate has its existence only during coverture, so that a woman to whom such an estate is given may dispose of it so long as she is unmarried, but becomes bound by the restraint as soon as she is married. In yet another way the court of chancery interferel to protect the interests of married women. When a Lisband sought the aid of that court to get possession of his rife's choses in action, he was required to make a prowision for her and ber chilifren cut of the fund sought to be recovered. This is called the wife's ograty to a settement, and is said to be based on the original maxim of chancery jurispradence, that "he vilo secks equity must do equity." Two other prcperts: inturests of mivor importance are recognized. Thie wife's pin-money is a yearly allowance settlel on her before merriage for the prechase of chothes and ornaments suibible to her husband's station, but it is not an absolute gift to the separate use of the wife; and a wife survivigg her thishad cannot claim for more than ore year's arrens of pin-money. Parapternclia are jewis and other ornaments given to the wife for the purpose of 1 cinis worn by her, but not as her separate properly. The husband may dispose of then ly act inter vians but not by will, unless the will emfers other benefits on tio wife, in which case she must cleet between the will and the : phernalia.

The eorresponding interest of the wife in the 1 roperty of the husbind is much more neagre and illusory. Besides a general right to maintensuce at her husband's expenee, she las at common low a right to douce in her hutband's lands, and to a pars ratiombilis (third) of his jersonal estate, if he dies intestate. The former, which originally was a solid provision for widows, has ly the ingenuity of conveyancers, ns well as by positive enact ment, been reduced to very slender dimensions. It may be destroyed by a mere declaration to that effect on the part of the budand, as well as ly his conveyance of the land or by his will.

The cominon practice of regulating the rights of husband, wife, and childen by marriage settements obviates the haredships of the common law-nt least for the wumen (a)
the wealthier classes. The legislature by the Married Women's Property Acts of 1870 and 1834 has introduced changes, the beuefit of which will probably be most keenly felt among the poor. The chief provisions aro shortly these:-(1) the earoings of a married woman in ao uccupation carried on by her apart from her busband are to be held as property aeltled to her separate usc, independeat of her husband, and ber investmenta of auch earninge are similarly protected; (2) when a woman, married after the passing of tho Act, becomes eatitled during marriage to personal property as next of kin, or to anysum not exceeding $£ 200$ under a deed or will, auch property aball belong to her for her separato use; where real property descends to her as heiress of an inteststo, the rents and profits thereof shall belong to her for her eeparate use; (3) in respect of property thus declared to be her "separste estate," she may sue in ber own name; on the other hand, her husband is not liable for debts contracted by her before marriage, except to the esteat to which be has received property in her right. Married women having aeparate estatea are made linble for the maintenance of their husbanda who msy become chargeable to any union or parish, and of their chiliren.

A-married woman cannot make any contract binding on herself except as to separale estate. She can only bind her husband as his agent, but from the relation of the parties the fact of agency ia easily implied. The atrongest case is that of a wife whose husband unjuatifinbly refuses to maintain her ; in that case she is his agent, in the sense that he is bound by her contracts for necessaries supplied to ber. By the Act of 1870 she can insure her own or her husband's life for ber separate ues.

Law of Scolland.-Ths law of Scotland on thia head differs less from English lav than the usa of a very different terminology would lead us to suppose. The phrase communio bonorum bas been enployed to express the interest which the spouses have in tha movable property of botb, but its use has been severely censured Wy a high antbority as essentially inaccurate and misleading. Mr Patrick Fraser, in bis elaborste and valuable treatise on Husband and Wife, cuntenda that there is no real community of gooda, and no partaership of societas batween the spouses. The wife's movsable property, with certain exceptions, and subject to apecial agreemaents, becomes as absolutely the property of the husband as it does in English law. The notion of a communio is, however faroured by tha peculiar rights of the wife and children on the dissolution of the marriage. Previaus to the Act 18 \& 19 Vict. c. 23 the law atood as follows. The fund formcd by the movable property of both spouses may he dealt with by the hushad as be pleases during hfe; it ia increased by bis aequisitions and diminished by ris debts. The respective abares contibuted by busband snd wife return on the dissolution of the marriage to them or their representilives if the marriago be dissolved within a year and a day, and without a living child. Otherviss the division is into two or three shares, according as children are existing or not at the dissolution of the mirriags. Oa the death of the husband, his chilhen take onethird (legitwn), the widow takes one-third (jus relicter), and tho remaining one-third (the dead's part) goes aecording to his will or to his next of kia. If there bo no children; the jus relicte and the dean's par are each one-half. If tho wife die before the husband, lier representatives, whether children or not, are crediters for the value of her share. The statute above-mentionel, however, enacts that " 'there a wife shnll predecease her husband, tho next of kin, excenters, or other representatives of sach wife, whether testate or inteatate, shall have no right to any ahare for goods in communion; nor ahall any legacy or bequest, or testamentary disposition thereof by such wife, affect or attach to the aaid goorls or nuypportion thereof.' It nlso nbolishes the rule by which tho shares levert if the marringe dous not subsist for a year and n day. Two later Aets apply to scotland the principles of the Finglish Marricd Women's l'roןerty Acts. '['hesware tho A ct 40 \& 41 Vict. e. 29 . which protects tho carminges, de. of wives, nod lisuits the huobned's liability for antenaptial leloth of the wife, and the Act 43844 Vict. c . 26 , which enables a woman to contract for a policy of assurance for hor separate use.

A vife's horable property does not pass to the hasband on mandan, but he acquires a right to the alministration nut profits. His cuurtesy, an in kugligh law, is also terognized. On the other
 heritable estate, unleess sho has accepted a ronventional provision.

Ameriean Liew, -lu the Americanstates, the revolt nguinst the sommon lisw thwry of husband and wile las becu caribed furthar
tban in England, and legislation tends in the direction of absolute equality between the sexes. "What are familiarly known as tha Married Women's Acts," says a receat writer, "the product of American legislation duriog the last quaster of a centmry, aim to secura to the wife the independent control of her own property, and the right to contract, sue, and be sued without her husband, under reasomable conditions" (Schouler's Law of Domestic Relations). Each State has, however, taken its own way and selected its own time for introducing modifications of the existing law, so that the legislation on this subject is now exceedingly complicated and diffcult. Sehouler (op. cit., p. 212) gives an sccount of the general result in the different States, from which the following is condensed : - In Maine, a liberal rught in marred women of holding property independently of husband's control, wheh the wife may, however, relax by written iostrument authorizug her husband to manage it; in New Hampshire, the right to bold from strangers, and from her lusband (not in fraud of ereditors), and to keep earnings when deserted ; in Vermont, similar result effected by the Chancery Courts without special legislation; in Massachusetts, a liberal right to acquire separate jroperty ; in Rhode Island, property exenopt from husband'a debts, but bis control recognized; in Connecticut, somewhat limited recognition of separate estate; in New York, the most liberal provisions as to property held before or acquired after marriage -a complete emancipation frem marital dominion; a similar policy in the laws of New Jerssy, Pennsylvania, and Maryland, effected in the last case by the courts rather than by statute ; in Ohio, general exemption of wife's estate from her husband's debts; in Indiada, a peculiar policy, on the community system, wife's powers of transfer limited; lllinois, Wisconsin, Minnesota, and Kansss fullow closely the legislation of Massachnsetts; in lowa, limited recognition of wife's eatate; in California, conımonity of goods recogmized after the Sjranish system, formerly prevalent there, -so in Nevada; in Oregon, wifa's property exeapt from husband's debts ; in Nebrsska, liberal rights recognized in married women ; in Missouri, wife's property in land mors particnlarly exempt from husband's dehts; in Kentucky, peculiar restraint on husband's marital rights; in Tennessce, wife's property protected, but hei right to control not recognized; in Arkansas a liberal poliey pravails. The Southero States have been later in taking up this movement, but it is considered likely that they will follow the rest. The peculisr system of 1Iomestead Laws in the Southern and Western States (described in naticle Homestead) conatitutes an inalienable provision for the wife and family of the householder.
(E. R.)

HUSCH, Huser, or Hust, chief town of the Roumanian province of Falciu, Moldavia, is situated ou the right bank of the Proth, about 40 miles south-east of Jassy. It is the geat of the district courls of justice, and of a bisbop of the Greek Church. It possesses a cathedral and a normal schoul, and carrics on an active trade in tobacco. The population in 1870 was estimated at 18,000 . At Husch was signed in 1711 the tresty of the Pruth, between Russia and Turkey, which freed the army of Peter the Great from a position of great danger.

HUSLIAARPUR, a British district in the licutenant. governorship of the Punjab, India, lying between $30^{\circ} 58^{\circ}$ and $32^{\circ} 5^{\prime} \mathrm{N}$. Jat. and between $75^{\circ} 31^{\prime}$ and $76^{\circ} 41^{\prime} 15^{\prime \prime}$ E. long. It forms the central district of the Jalandhar division, and is bommed N.E. by the district of Kingra and the native state of Nalagarh, N. and N.W. by the river Bias, S W. by Jalandhar, and S. by the river Satlaj (Sutlej) and Ambila (Umballa) district.

Tho district of Mushiarpur falls into two nearly equal portions of hill and plain country. Its eastern face consista of the westward slope of the Kingra Mountains; parallel with that ridgo, a line of lower lieights traverses the district from south to north, while between the two chains stretches a valley of uneven width, known as the Jaswán Dín. Its upper porion is crossed by the Soan torrent, while the Sutlej sweeps into its lower end by a break in the hills, and flows in a sontherly direction till it turns the flunk of the centril range, and debouches weatwards upon the phains. This western phain consists of alluvial formation, with a general westerly shope owing to the dejosit of silt from the mountain torrents in the submontano tract. Tho Bins has a fringe of lowland, open to morlerate but not excessivo inundations, and considered very fertic. A considerablo area is covered by Government. woollands, miter the care of the forest depertment.

The census of 1868 was taken over an area of 2086 square milcs, and showed a total population of 938,890 (males, 504,393 ; fernales, 434,497). Of these, the Hindus numbered 415,471; Mahometans, 317,967; Sikhs, 79,417 ; and "others," 126,035. The district coutained aine municipalities in $1875-76$, uamely, -Hushiairpur (see below), Urmar Tanda (13,970), Mukeriản (5116), Dasuya (8677), Aaandpur (6405), Hariina (7802), Garhdiwála (3874), Una (4908), and Miani (Mceanee) (7942). The total inperial revenue in 1872-73 was $£ 148,708$; the local revenuc for expenditure on works of public utility, $£ 14,856$. Fifteen civil and revenue judges excreised jurisdiction in the district. There were 321 schools, with 7066 pupils, recoiving $£ 2291$ from the public fisnds.

The cultivated area in 1868 amounted to 751,707 acres, out of an assessed total of $1,335,2 \mathrm{f5}$. Rice is largely grown, owing to the an indance of marshy flats along the banks of the Bias. The other prolucts are wheat, barley, gram, tobacco, jodr, maize, moth, mash, cotton, and sugar-cane. The state of agricultural knowledge is very thackward, and implements are of the simplest description. Only 17,836 acres are under irrigation, chielly from an old canal in the northern corner. The trade of He hhiarpur is confined to its raw material, including grain, sugar, hemp, saflower, fibres, tobacco, undigo, und cotton; of these, sugar forms by far the most important commercial item. The manufactures are of no importance. Several religious fairs are he!d, at Anandpur, Mukerián, and Achintpurni, all of which attract an enormous conconrse of people. The Jalandhar and Kangra road forms the chief route; and good roads connect Hushiarpur and other centres with the neighbouring towns. The district, owing to its proximity to the hills, possesses a comparatively cool and humid climate. Malarious fever, choleta, and bowel complaints are the prevailing illnesses. The annual rainfall in 1871-72 was 32.6 inches. There ars five charitable dispensaries.
The country around Hushiarpur formed part of the Katech kingdom of Jalandhar. The state was eventually broken up, and the present district was divided between the rajás of Ditârpur and Jaswán. They retained undisturbed possession of their territories until 1759, when the rising Sikh chieftains commenced a series of encroachments upon the hill tracts." In 1815 the aggressive mahárajáa, Ranjit Sinh, forced the ruler of Jaswán to resign his territories in exchange for an estate on feudal tenure; three years later the rajá of Ditarpur met with similar treatment. By the close of the year 1818 the whole country from the Sutlej to the Bias had come under the Government of Lahore, and after the first Sikh war in 1846 passed into the bands of the English Government. The deposed rajas of Ditírpur and Jaswán received cash pensions from the new rulers, but expressed bitter disappointment at not being restored to their former sovereign position. Accordingly the outbreak of the Mooltnn war, and the revolt of Catuar Sinh in 1848 , found the disaffected chieftains ready for rebellion. They organized a revolt, but the two raja is and the other ringleaders were captured, and their estates confiscated.

Husmikrur, municipal town and administrative headquarters of the above district, is situated on the bank of a broad sandy torrent. The population in 1868 numbered 13,022, comprising 6350 Hindus, 6002 Mabometans, 119 Sikhs, 62 Christians, and 489 "others." The town was founded, according to tradition, about the early part of the 14th century. In 1809 it was occupied by Ranjit Simh. The mahárijáa and his successors maintained a consilerable cantonment one mile south-east of the town, and the British Goverament kept it up for several years after the annexation. Floods often cause much damage, to guard against which an embankment was raised in 1852 . The civil station" contains ine district court-house and treasury, sessions-houss, tahsil and police offices, dispensary, staging bungalow, and sarái. Both station and town are plentifully wonded, and enioy good sanitary reputation. There is a trade in grain, sugar, and tobacco.

HUSKiSSON, Wiltiam (1770-1830), statesman and financier, was descended from an old Staffordshire fanily of tioderate fortune, and was born at Birch Moreton, Worcestarshire, March 11, 1770. Having been placed is his fourtennth year under the charge of bis uncle Dr Gem. physician to the English embas:7 at Faris, he passed nis
early years amidst a political fermontation which ied him to take a deep and absorbing interest in politics. But though he approved of the French Revolution, his sympathies were with the more moderate party, and he became a menber of the "club of 1789 ," instituted to support the new form of constitutional monarchy in opposition to the anarchical attempts of the Jacobins. Even at this early period be displayed his mastery of the priuciples of finance by a Discours delivcred in August 1790 before this society, in regard to the issue of assignats hy the Government. The Discours gained him considerable reputation, but as it failed in its purpose he withdrew from the society. In January 1793 he was appointed by Mr Dundas to an office created with a view to direct the execution of the Aliens Act ; and in the disclarge of his delicate duties he manifested such ability that in 1795 he was appointed under secretary in the colonial department. In the following year he entered parliament as member for Morpeth, but for a considerable period he took scarcely any part in the debates. On the retirement of Pitt in 1801 he resigned office, and after contesting Dover unsuccessfully he withdrew for a time into prisate life. Having in 1804 been chosen to represent Liskeard, he was on the restoration of the Pitt ministry appointed secretary of the treasury, holding office till the dissolution of the ministry after the death of Pitt in January 1806. After being elected for Harwich in 1807, he accepted the same office under the duke of Portland, but be withdrew from the ministry along with Canning in 1809. In the following ycar be puhlished a pamphlet on the currency system, which confirmed his reputation as the ablest financier of his time; but his freetrade principles did not accord with those of his party. When in 1814 he re-entered the public service, it was only as chief commissioner of woods and forests, but his influence was from this time rery great in the commercial and financial legislation of the country. He-took a prominent ${ }^{\text {art }}$ in the corn-law debates of 1814 and 1815 ; and in 1819 he presented a memorandum to Lord Liverpool edvocating a large reduction in the unfunded debt, and explaining a method for the resunnption of cash paynuents, which was embodied in the Act passed the same year. In the following year he was named a member of the committee appointed to inquire into the causes of the agricultural distress then prevailing in the country, and the proposed relaxation of the corn laws embodied in the report was understood to have been chiefly due to his strenuous advocacy. In 1823 he was appointed president of the board of trade and treasurer of the nary, and shortly afterwards he received a seat in the cabinet. In the same year be was returned for Liverpool, having from 1812 represented Chichester. Among the more important legislative cbanges with which he was principally connected were a reforn of the Navigation Acts, admitting other nations to a full equality and reciprocity of shipping duties; the repeal of the labour laws; the introduction of a new sinking fund ; the reduction of the dutics on manufactures and on the importation of foreign goods, and the repeal of the quarantine duties. In accordance with his suggestion Canming in 1827 introduced a measuro on the corn laws proposing the adoption of a sliding scale to regulate the amount of duty. The hill passed the llouse of Commons, but a misapprchension between Huskisson and the duke of Wellington led to tho duke proposing an anendment, the success of which caused tho alondonment of the measure by the Government. After the dcath of Canning in the same year Huskisson accepted the secretaryship of the colonies under Lord Godericil, an offico which he continued to hold in the new cabinet formed by the duke of Wellington in the following year. From the beginning the cabiuct was rent by :ntirmal disputes, and, after succeeding with great
difficulty in inducing the cabinet to agree to a compro mise on the corn laws, Huskisson finally resigned office in Nay 1829 on account of a ditferenee with his colleagues in regard to the disfranchisement of East Retford. On the I5th September of the following year be was accidentally killed by a locomotive engine while present at the opening of the Liverpool and Manehester Railway.

HUSS, Juhs (1369-1415), the Bohemian reformer and maityr, wis born at Hussineez, a market village at the foot of the Bohmerwald, and not far from the Bavarian frontier, most probably in I369, and, aecording to some accounts, on July 6. His parents appear to have been well-to-do Czechs of the peasant class. Of his early life uothing is recorded except that, notwithstanding the early loss of his father, Le obtained a good elementary education, first at Hussinecz, and afterwards at the neighbonring town of Prachatiez. At, or only a very little beyond, the usual age he eatered the recently (1348) founded university of Prague, where he becane bachelor of arts in 1393, bachelur of theology in 1394, and master of arts in 1396 . In 1398 he was chosen by the Buhemiao "nation" of the university to an evaminership for the backelor's degree; in the same year he began to lecture also, and there is reason to believe that the poilosplbical writings of Wickliffe, with which be had bern for aome years acquainted, were his test-books. In O twher $1+01$ lie was made dean of the philosophical faculty, and for the balf-yearly period from October 1402 to April 1403 be held the office of rectar of the university. Ia 1402 also he was made rector or curate (capellarius) of the Bethlehem Cbapel, which had in 1391 been erected and endowed by some zealuus citizens of Prague for the purpose of providing good popular preaching in the Bohemian tongue. This appoiotmeut, which, so far as the aims of the pions founders were concerned, proved a siogularly suecessful one, had a deep infuence oa the already vigornus religions life of Husa himself; and one of the effects of the enrocst and independent study of Scripture ioto which it soon led him was a profound conviction of the great value not on'y of the philosophical but also of the theological writiugs of Wiakliffe.

This newly-lormed sympatby vith the English reformer did not, however, in the first instance at least, involve IIuss in paiy consciuns opposition to the cstablisbed doctrines uf Catenlicism, or in any direct cunflict with the anthorities of the chnoch; and for scveral years he continued to act in full accorl with his archbishop (Sbyajek, or Sbynko, of Lasenvurgy. Thus in I 405 he, along with other two masters, was commiosioned to examino into certain reputed miracles eit Wilenaek, near Wittenberg, which had caused that church to be made a resurt of pilgrims from all parts of Europe. The reanlt of their roport was that all pilgrimage thither from the province of Johumia was prohibited by the urchbishop on pain of excommanication, white lluss, with the full Eatution of his sumpion, gave to the wold his first publiobed
 Which he declamed 10 no measured terms apathst forged marapes and coclesiastical orted, uging Christians at the Bamo time to desist from looking for sensille signa of Christ's presence, but rather to seck 1 lim in llis combung word. Sore than once also Iluss, along with his friend Sitanislaus of Zmam, was mpminted to he synol preacher, and in this capacity he delivered at the provincial cunncils of Bohemia many faithful admonitions. As carly as May 28,1103 , it is true, there bad been belif a miversity disputation abont the now thoctrines of Wickliffe, which hat resulted in the condemmation of certain propositions presumed to be his;

[^89]five years later (May 20, 1408) this decision had been refined into a declaration that these, forty-five in number, were not to be taught in any heretical, erroneous, or offensive sense. But it was only slowly that the growing sympathy of Huss with Wickliffe unfavourably affeeted his relations with his colleagues in the priesthood. In 1408, however, the clergy of the city and archiepiscopal diocese of Prague laid before the arebbishop a formal complaint against Huss, arising out of strung expressions with regard to clerieal abuses of which he nad made use in bis public discourses; and the result was that, having first been deprived of his appointment as synodal preacher, he was, after a vain attempt to defend bimself in writing, publiely forbiddea the exereise of any priestly function throughont the dioeese. Simultaneously with these proceedings in Bohemia, iniernational negotiations had been going on which had for their oljeet the removal of the long-continued papal schism, and it bad in the interval become appareat that a satisfactory golution of the difficulties iuvolved conld only be secured if, as seemed not impossible, the supporters of the rival popes, Benediet XIII. and Gregory XII., eould be induced, in view of the approaching council of Pisa, to pledge themselves to a strict neutrality. With this end King Wenceslans of Bohenia bad requested the co-operation of the archbishop aod his clergy, and also the support of the university, in both instanees unsuecessfinly, although in the case of the latter the Bohemian "nation," with Huss at its head, bad only been overborne by the rotes of the Havarians, Sazons, and Poles. There followed an expression of nationalist and particularistic as opposed to ultramontane and also to German feeling, which undoubtedly was of supreme importance for the whole of the subsequent career of Huss. In compliance with this feeling a royal edict (January 18, 1409) was issued, by which, in alleged conformity with Paris usage, and with the oriyinal charter of the maversity, the Bohemian "nation" received three votes, while only one was allotted to the other three "mations" combined; whereupon all the foreigners, to the number of several thousands, almost immediately withdrew from Prague, an wocurrence which led to the formation shortly afterwarde of the university of Leipsic.

It was a dangerons triumph for Huss; for his popularity at court and in the general community bad been sconred only at the price of clerieal antipathy everywhere and of much Germen ill-will. Among the hirst results of the changed order of things were on the one hand the election of Huss (October 1409) to be again rector of the university, lut on the other hand the appointment by the arehbishon of an inquisiter to inquire into clarges of heretical teaching and inflammatory preaching which hat been bronght aganst him. He had spoken distcspectfully of the church, it was satd, had even binted that Antichrint might be found to be in Rome, hat fomented in his praching the quarrel between Bohemians. and Gernams, and hal, notwithstanding all that hat passed, contimmed to speak of Wickliffe as both a pion. man and an ortbudos teacher. The direet result of :l. investigation is not known, but it is impossible to disconnan from it the promulgation by Pope Alexander V., on Decembed 20, 1109, of a bull which ordered the aljuration of at Wickliffite heresies and the surrender of all his books, white at the same time-a measure specially levelled at the pulpit of lethlehem Chapel-all preathing was jrehibited except in localities which had been by long usage set apurt for that use. This decree, as soon as it was published in Prague (Harch 9, I410), led to much popular agitation, and provoked an appeal hy Huss to the pope's better informed judfoment; the archbishop, however, resolutely iasisted on carrying out his instructions, and in the following July caused to be publicly bumed, in the conrtyard of his own
wate, upwards of 200 volumns of the writings of Wickliffe, slite he pronounced solemn scatence of excommunication aganst Huss and certain of his friencis, who had in the meantime again protested and appealed to the new pope (John XXIII.). Again the populace rose on behalf of their cero, who, in his turn, strong in the conscientious conviction that "in the things whieh pertain to salvation God is to be obeyed rather than man," contmued atinterruptedly to preach in the Bethlehem Clapel, and in the university began publicly to defend the so-called beretical treatises of Wiekliffe, while from king and queen, nobles and burghers, a petition was sent to Rome praying that the condemuation and prohibition in the bull of Alexander V. might be quashed. Negetuations were earried or for some months, but in vain; in Mareb 1411 the ban was anew pronounced upon Huss as a disobedienc soo of the churct, while the magistrates and councillors of Prague who had favoured inim were threatened with a similar penalty in case of their giving him a contumacious support. Ultimately the whole city, whieh continued to harbour him, was laid under interdict; yet he went on preaching, and masses were celebrated as usual, so that at the date of Arehbishop Sbynko's death in September 1411, it seemed as if the utmost efforts of eeclesiastical authority had resulted in absolute failure.

The struggle, however, entered on a new phase with the appearance at Prague in May 1412 of the papal emissary charged with the proelamation of the papal bulls by whieh a religious war was decreed against the excommunieated King Ladislaus of Naples, and indulgenee was promised to all who should take part in it, on terms similar to those which had been enjoyed by the earlier erusaders to the Holy Land. By bis bold and thorough-going opposition to this mode of proeedure against Ladislaus, and still more by his doetrine that indnigence could neser be sold without simony, and could not be lawfully granted by the ehareh except on condition of genaine contrition and repentance, Huss at last isolated himself, not only from the arehicpiseopal party under Alhik of Unitsehow, but also from the theological faculty of the university, and especinlly from such men as Stanislaus of zuaim and Stephen Paletz, who mentil then had been his chief supporters. A pepular demonstration, in which the papal bulls had been paraded through the streets with circumstances of jeenliar ignominy and inally burnt, led to intervention by Weneeslaus on bebalf of puble order, thres young men, for hafig openly asserted the uniawntmess of the papal indulgence after silence thad been enjoined, Were senteneed to death (June 1412), the exeommunication against Huss was renewed, and the interdict again had on all plaees which sbould give him shelter, -a measure which now began to be more strictly regarded by the clergy, so that in the following December he had no alternative but to yield to the express wish of the king by temporarily withdrasing from Prague. A prosincial synod, beld at the instance of Wenceshas in February 1413, broke up, without having rached any practical result ; and the lobours of a commission anpointed shortly afterwards were equally unsuceessiul in the attempt to bring abont a recomeiliation between IIuss and his adversarics. The so-called beretic meanwhile spent his time partly at Kozibradek, scme 45 miles sunth of Praguc, and partly at Krakowitz in the immediate neighbourhool of the eapital, sometimes varying the monotony of his life with an oceasional course of open-air preaching, but finding his chief employment in maintainiog with his numerous friends that copious correspondence of which some precions fragments still are extant, and in the composition of the largest and most exhaustive of all his printed works, the De Ecclesia, which subsequently furnished most of the naterial for the capital ebarges brought against him.

During the year 1413 the arraugements for the meeting of a general council at Constance were agreed upon between Sigismund and Pope John XXIII. The objeets origimally contemplated had been the restoration of the unity of the clurch and its reform in head and members: bnt so great had beeome the rrominence of Bohemian affairs that to these also a Grist puce in the programme of the approaching cccumenical assembly inyured to be assigned, and for their satisfactory seitlement the presence of Hass was obviously nceessary. His attendance was accerdingly requested, and the invatation was willmgly accepted as giving him a long. wisted-for opportunty buth of phblicly vindicating himself from charges whech be celt to be grtevons and of loyally making eontession fur Clust. He set out from Bohemia on Oetober $1 \cdot 1, \mathrm{i}+\mathrm{I}$, wut. butrever, untal be bad carefully ordered all his private aftiairs, whth a presentiment, winch he did not conceal, that in all probakility be was going to bis death. The jutury, which appears to lave been undertaken with the usual passport, and noder the protection of several powertul Bobeman friends (Johu of Chlum, Wenceslaus of Duba, Ilenry of Chlum) who accompanied him, was a very prosperous one, and at almost all the balting places he was received with a consideration and enthusiastic sympathy which be had hardly expected to meet with anywhere in Germany. On Norember 3 be arrived at Constance, and took up quarters in the houso which is still pointed out (Paulsgassc, 328); shortly afterwards there was put into his hands the famous imperial "safe conduct," the promise of which bad been one of his inducements to quit the comparative security he had enjoyed in Bohemia. Of this safe conduet, the formal words of which have often been quoted, it would be absurd to say that it was intended to guarantee its holder against the infiction of due punishment should he be convicted by existing law of any erme; but there can be no doubt that both the letter and the spirit of it were scandalously violated, when on November 28 linss was arbitrarily seized and throwa into prison before any aceusation whatever had been formulated. Sigismund bimself never sought to delerd this act, which was not done with his consent or autbority; the only excnse he ever alieged for baring tolerated it was that otherwise in all hikelibuod the council would bave been broken up. On December 4 the 1'0je apponted a commission of three bishops tu investigate the easo against the licretic, and to procure witnesses; to the demand of Huss that he might be permitted to cmplop an agent in his defence a favourable answer was at first given, but afterwards even this concession to the forus of justice was denien. While the commisxion was engaged in the prosecution of its anquirjes, the flight of lope John XXIII. took place on March 20, an cvent which furnisbed a pretext for the remural of lhuss from the Dominican convent to a more sectre and more severe place of confinement uader the charge of the bihop of Constance at Gottlithen on the Rhinc. Un llay 4 the temper of the counct on the ductrimal questions in dispute was for the first time fully revealed in its umamone condemation of Wickhtic, espeeially of the so-called "forty five articles" as erroneous, herctical, revolutionary. It was not, however, until jnne 5 that the case of Huss himself came up for hearing ; the meeting, which was an exceptionally full one, took place in the refectory of the lranciscan eloister. dutograph eopies of has work De Licclesia, and of the coutroversal tracts which he had written against Paletz and Stanislaus of Znaim, having been laid before him and duly acknowledged, the extracted propositions on which the prosceution based their charge of heresy were read; but as soon as :.-aceused began to analyse them and to enter upon his defenee, he was assailed by violent outeries, nmidst which it uas inpossible for him to be heard, so that ho
was compelled to bring his speech to an abrupt close, which he did rith the calm remark; "In such a eouncil as this I tiad expected to find more propriety, piety, and order." It was found necessary to adjoura the sitting uatil Juue 7 , on which occasion the outward decencies were better observed, partly no doubt from the circumstance that the emperor was preseot in person. . The propositions which had been extracted from *..e De Ecclesia were again brought up, and the relations between Wickliffe and Huss were discuased, the object of the prosecution being to fasteu upon the latter the charge of having entirely adopted the dactrinal syetem of the former, iacluding especially a denial of the doctrine of transubstantistion. The sceused defended bimself by repudiating the charge of having absandoned the Catholic doctriue, while ot the same time he gave expresaion to his hearty admiration and respect for the memory of Wickliffe. Beiag next asked to make an unqualified submission to the council, he expressed himself as unable to do eo, while at the eame time stating his willingness in all humility to amend his teaching wherever i^{+}had been shown to be false. With this the proceedings of the day were brought to a elose. On June 8 the propositions extracted from the De Ecclesia were once more taken up with some fuluess of detail; some of these he repudiated as incorrectly given, others he defended; but when asked to make a general recantation he steadfastly declined on the ground that to do so would be a dishonest sdmission of previolis guilt. Among the propositions be could heartily abjure was that relating to transubstantiation; among those he felt coastrained unfiachiugly to maintain was one which had given great offeace, to the efleet that Christ, not Peter, is the head of the eburch to whom ultimate appeal must be made. The council, however, ahowed itself inaccessible to all bis arguments and explanations, and its final resolution, as announced by D'Ailly, was threefold:-firat, that Huss should humbly deelare that he had erred in all the articles eited against him; eecondly, that he should promise on oath neither to bold nor teach them in the future; thirdly, that he should publicly recant them. Ou his decliaing to mako this submission he was removed from the bar, and it was obvious that the ead conld not be far off. The emperer himself gave it as his opinion that it had beeu clearly proved by many witnesses that the accused had tauglit mauy pernicious beresies, and that even ahould ho recant he ought never to be allowed to preach or teach again or to return to Bohemia, but that ahould he refuse reeantation there was ne remedy but the atake. During the next four weeks no effort wis spared to elake the determination of Huss; but the spirit of the martyr rose within him as be saw his end approaching, and he steadiastly refused to swerve from the path which conscience had once made clear. "I write this," says he, in a letter to his friends at Prague, " in prison aad in chains, expecting tomorrow to receive sentence of death, full of hope in God that I ahall not swerve from tho truth, nor abjure errors imputed to me by false witnesses." The sentence ho expected was pronounced on July 6 in the proseace of the emperor and a fall sitting of tho council; once and again he uttemped to remonstrate, but in vain, and finatly lie betonk hanself to silent prayer. After he hal undergone the ceremony of alegradation with all the childish formatities which are usual on such vecasions, his soul was furmally consigned by all those [" sent tu the devil, while he himeelf with clasperl hands aral unhited ifes reverently committel it to Christ. IIo was thes handel over to the secular arm, and immediately led of to the place of excentim, tho emaneil meanwhite proce colng theonernerly with the rest of it husiness for the day. Many touching ineidents recorded in the histnies make mrnifust the mukness, fortitule, and even cheerfu!
ness with which he went to his dreadiul death. After he had been tied to the stake and the faggets had been plled, he was for the last time urged to recant, but his ouly reply was:-"God is my witness that I have never taught or preached that which false witnesses have testified agaiast me. He knows that the great object of all my preaching and writing was to convert men from sia. In the truth of that gospel which bitherto I have writtea, taught, and preached, I now joyfully die." The fire was then kindled, and hia voice as it audibly prayed in the words of the "Kyrie Eleisou" was soon stifled in the omoke. When the flames bad done their office, the ashes that were let's and even the soil on which they lay were carefully rewoved and thrown iato the Rhiae.

Nat many words are peeded to convey a tolerably adequate estimate of the character and work of the " $\mu \mathrm{ale}$ thin man in meau attire," who in sickness and poverty thus completed the forty-sixth year of a busy life at the stake. Huss was much less remarkable for the amount of his mental eadowments and acqurements than for the candour with which he formed his convictions, the tenseity with which he held them, the unselfish enthusiasm witb which he spoke them. 'He cannot be said to have added a single new item to the intellectual wealth of the world, but his contribution to its moral capital was imnense. It might not be easy to formulate very precisely the doctrines for which he died, and certainly mone of them, as, for example, that regarding the church, were such as many Protestants even would regard as uuguarded and difficult to harmonize with the maintenance of external church order; but his is uadeubtedly the honour of having been the chief intermediary ia handing on from Wickliffe to Lutber the torch which kindled the Reformation, and of having been one of the bravest of the martyrs who have dicd in the cause of honesty and freedom, of progress and of growth towards the light.
The works of Huss aro usnally classed under four heads:- the dogmatical and polemical, the homiletical, the exegetical: and the epistolary. Of those belonging to the first category, the earliest. wis that De Oinni Sanguine Christi Glorificato, already referred to ; others, besides the De Ecclesia, are a Quastio de Indulgentiis, relating to the bull of Pope John XXIII. against Ladislaus, Responsio ad Seripta N. S. Paletz, Respunsio ad Scripta M. S. de Znoyma, anl a Refudation of the Writing of the Eight Doctors of Prague. The sermons include several discourses relating to Antichrist. It is worthy of note, in connexion with these, that by means of them and his other pulic tenehing Huss exercised a considerable influeace, not only on the religious life of his time, hut on the literary development of has ontive tongue. Il is exegetieal writings include A History of Jesus Christ according to the Four Gospels, A IIfstory of the Passion, An Erposition of 1 Cor. i -vii., Commentaries on the epistles of Iames, I'eter, John, and Jule, and an Enarratio on Psalns ex-exviii The Lellers are arrangel in two series, one of which, numbering fifteen, relates to the period of his exile under the interdict, while the other, filty-six in all, bedangs to the time when he lived in Constance. The Le Ecclesia was printed by Ulrich von liutten as early as $\mathbf{1 5 0 0}$, others of the controversial writings by Otto Brunufels in 1524; and Lutherwrote an interesting preface to Eprstola Cuadam publislied in 1537. The earliest eollected edition of the Latm works was that of Nuremberg (Histovia el Montmenta Joh. Wuss atque Hicron Pragensis), pub. lished in 1558 in 2 vols. folio; thas was reprinted with a consurr. nble quantity of new matter in 1715 The Boheman works haw recently been cdited by Ki. J. Eitben (3 vols., I'rague, 1866).
On huse the hest and mose easlly necresible informalton for the Englash

HUSSITES. The aibitrary arrest and imprisonment of Huss at Constance in November 1415 created a very painful impression among all classes in Moravia and Buhemia, and called forth angry remonstraaces as soon as it was known. While the nobles resorted to diplomacy, the masses rioted and in many instauces attacked the clergy. The excitement was immensely inteusified by the tidings of bis death, which was freely characterized as a judicial murder; several priests were put to death by the infuriated populace, who cherished the memory of Huss as that of a patriot and a saiat ; and the archbishop hinself, after having been beset in his own palace, with difficulty saved his life by flight. Public feelong found its first organized expression iu a diet which was lastily summoued to meet at Praguo early in September; there a solemn protest, ultimately sigaed by $4 \overline{5} 2$ magnates and barons, was drawn up, in which the personal character of Huss as man, teacher, preacher, and author was warmly upheld, and the freedom of Bohemia and Moravia from error and heresy was as energetically asserted. Three days later the nobles who had signed this document formed themselves into a league, beaded by two Bohemian barons and one from Moravia, by which they bound themselves to protect liberty of preaching on their estates, and to yield obedience to bishop or pope only in so far as might be in accordance with Scripture and the will of God. Matters of dispute were to he subjected to the arbitration of the rector and doctors in theology of the university of Prague. Soon afterwards a counter league was formed for the support of the council nod curia; and civil war appeared to be imminent. The tension was further increased by the arrival of the bishop of Leitomischl, long the enemy of FIuss, as legate from the council for the extirpation of heresy; and by the pressure of the interdict under which the city of Prague continued to lie. In February 1416 the 452 nobles who had signed the protest in favour of Huss wero aummoned to appear belore the council, while the anti-Hussite league was encouraged to prepare for a crusade; and the burning of Jerome of Prague in the following May still further revealed the prevailing disposition of Catholic Christendom. Owiog to the slowness, however, with which matters moved at Constance, it was not until February 1418 that the new pope, Martin V. (Otto di Colonna), was able to issue various bulls and briefs, in which be laid all obstinate Hussites under the ban, and called upon all the ecelcsiastical and civil authorities to proceed against them The council also, abortly before its dissolution, drew up twenty four articles for withdrawing the Bulicmians from the prevailing heresy, bidding King Wenccslaus protect the rights of the Romish Church in his dominion, restore the banished clergy to their benefices, repress tho lIussite preaching and hymn singing, dissolve the llussite associations, and take the ringleaders into custody. To this policy the king alter much vacillation began to give effect early in $\mathbf{L 4 1 9}$, and forthwith the more prominent Hussites withdrew from court; among these wgre Nicolaus of Pistna, au able statesman, and the famous John Zizka, a practised soldier, who placed themselves at the head of the malcontents. By the end of the year the war, though it is usually reckoned from 1420, may be said to have begun. It divides itself into two perieds-tho defensive, which lasted from 1420 to 1125 , and the offensive, which began with Procopius's invasion of Germany in 1427, and lasted until the commencement of negotiations with the council of Basel in 1431. The struggle had not proceered very far, however, before it became nanifest that the IIussite party was itself alaroly divided in views ond aims. All were agreed in warm and tender reverence for the memory of liuss, the evangeheal preacher and the faithful servant of Christ;
equally uaanimous were they in hulding the distinctivo doctrine of the supreme authority of Holy Scripture, and in urging the reformation of the church. But all were not prepared to go equally far in the amount of reform they proposed. While the more radical section rejected such doctrines as those of purgatory and of the mediation of saints, held that priests in mortal sin could validly administer no sacrament, disapproved of penances, images, relies, mass in a forengn tongue, maintained the right of the pious laity, even of women, to preach, and regarded every building as in itself at least suitable for acts of divine warship, the more moderate or conservative section formulated their much simpler programme in the famous four articles of Prague (July lão). These were-(1) frea preaching of the wurd of God throughout the kingdom of Buhemas ; (3) the administration of the eucharist to all believers not in mortal sin, under both species according to the institution of Clirist; (3) deprivation of the clergy of the sccular lordshep they had assumed and of the secular property they had acquired to their own injury and to the prejudice of the cuvil power ; (4) prohibition and repression of all mortal sios and public scandals. The supporters of these articles, who were led by Baron Czenko of Wartenberg, and bad in thesr number such men as Jakob von Mics, were strong in the town and university of Prague, aod occasionally received the namo of the Iraguers, but ultimately came to be wore generally known as Calistines (frum "calix") or Utraquists (from their chains to receive the communion "sub utraque specie"). The more radical party, from having taken up their headquarters at a strongholr which had been fortified by Zizka and called Mount Tabor, some 65 miles snuthwards of Prague, received the name of Taborites. Whatever differences, however, may have separated the Hussites, all were united in offering resistance to the efforts made by Sigismund to crush them; and at Deutschbrod in 1422, at Aussig in 1426, and fiaally at Taus (August 14, 1431), they inflicted signal defeate on his troops. Negotiations beguin in 1431 with the council of Basel reached a termination only in November 1433, when the so-called "Compactata" or articles of agreement were signed by which the Calixtines were satisfied, communion under both species being granted to all who desired it, although the other concessions in the direction of the four articles of Prague were made in a nomewhat illusory manner. The Taborites, or "Orphans" (as the followers of Zizka were sometimes called after his death in 1424), failed, however, to find in the Compactata all that they required, and they speedily took the ficld again in a campuign which terminated disastrously for them at Hrib near Bö́tmischbrod on May 30, 1434. Io this battle both Procopins and his brother perished; and soon afterwards the Taborites were compelled to surrender all the fortresses to which they bad betaken themselves. Thenceforward they rapilly disappeared as a political party, although as a religious body they can be traced to about the middle of the ceritury, when they gradually became merged in the so-called Moravians, or United Brethren of Bohemia. The Calixtines obtained from Sigismund in 1436 the formal recognition of the Compactata, which from that time had the force of law. Satisfied with this somewhat ampiy achicvement (which, however, was jealously guardud agains: the hostile attack of Fius 11. in 1462), they graluclly sulsided iatu an incrt conformity, so as to be but little distingenished from the Cathulics around them. At tue time of the Reformation sume returned to the Roman Chureb, while the rest attuched thenselves either to the Lutheran or to the Reformed creed, and Hussitism as a distinct form of Chisistian profession became extinct.

Se Cochlons, Mist. IHussitarum (1549); Palacky, Trinandiche Recitraige zur Ciesch. d. Husidondrames (15i2-74).
(J. S. LL.)

HUSUS1, a tomn in the Prussian provinee of Schleswig. Holstein, situated in a fertile district about $2 \frac{1}{2}$ miles inlani from the German Occan, on the canalized Ifusumer Au, which forms its harbour and readsteal. It is a station on the braoch railway from Turning which joins the main line at Jubek; and it has eteam comsmumatiou with the North Frisian Islands (Nordstrand, Pellwurm, Fohr, Sylt) and with England. Besides the old ducal palace and park, it possesses tro court-houses and a gymnasum, and its pullic endowments are reckoned at $£ 100,000$. There is a considerable lucal trade, gram and cattle are exported; and the oyster-beds in the oeghbourhood yieid during the season about 60,000 oysters daily The population of the town in 1875 was $5 \cdot 65$. Husum is first mentronel? in 1252, and its first church was bult in 1431. Wisby rights (see rol xi. p. 449) mere granted it in 1582, ant in 1608 it was raised to the raok of a town by Duke Adolphus, who was also the builder of the eastle. Husum is the burthplace of Forchbammer the archeologist, Furchianimer the mineralogist, and Theodor Storm the proct.

HUSZT, a market-town in the county of Mamamaros, Hungary, is situated at the contluence of the Nagy $4 g$ with the Theiss, and about midway on the line of railu ay from Szatmár-Németi to Máramaros-Sziget, $48^{\circ} 10^{\prime} \mathrm{N}$. lat., $23^{\circ} 18^{\prime} \mathrm{E}$. long. At Huszt there are Calvinist, Romar Catholic, and Ohl United Greek churches, royal law courts and other Government offices. On an elevated and picturesque position near the town are the ruins of an old fortress. In tho neighbourhood of Husat fiax and cereals are largely grown, and many of the inhabitants find employ:aent in fishing. The population in 1870 was 6113, consisting for the most part of Magyars and Ruthenians.

HUTCHESON, Francis (1094-1746), an eminent writer on mental and moral philosophy, was born on the 8 th of August 1604. His birchplace was probably the townland of !rumalig, in the prish of Saintfield and county of Down, Irchad.' Though the fanily hat sprung from Ayrshare in Scatland, both his father and grandiather were unnisters of dissenting congregations in the not th of Ireland. Xoung Hutcheson was educated partly by his grandfather, partly at an academy, where he is stated by his bographer, Dr Lecchman, to have been tanght "the ordinary scholastic philosophy which was in vogue in those days." In the year 1710, at the age of sixteen, he eotered the university of Claggow, where he spent the next six years of his life, at arst in the oudy of philosophy, classics, and general literaturo, and afterwards in the study o. theology. On quitting the university, he reimred to the north of Ireland, received a licence to prench, and was just on the point of settlug down as the mimster of a small disseating cougregatuon, when it was suggested to him by some gentlemen luvig in the neighbourboed of Dublin to start a private academy in that citg. At Dubliu his literary necemplishmonts soon made him generally linown, and he appears to have rapilly formed the acquatanace of the more notahle parsons, hay and ceelesiastical, who then resided in the metropolis of Ireland. Among these is apecially to be noted Archbishop Kuge, author of the well-known work De Origine drati, who, to his great homour, steadily resisted all attempta to prosecute llatahesom in the archbishop's court for keeping a schom withut having previously sub. scribed to the ecclestiantical canams and ohmined the episcopal lienece. Ifutcheson's witions with the clerey of the Establishod Church, especially with the archbishops of Armagh and Duhlin, Bunlter and kings seem to have heen of the most cordial description; and "the inelimation of his
friends to serve hum, the sthames proposed to him for obtaining prometion," \&c., of which his bioumher speaks, probably refer to some offers of preferment, on condition of his accepting episcopal ordmation. These offers, however, of whatever nature they anght be, were unavailing; "neither the love of riches nor of the elegance and grandear of buman life prevailed so far in his breast as to make him offer the least violence to his inward sentiments."

While residing in Dublin, Hutcheson published anony. mously the four essays by which he still remains best known, namely, the Inquiry concerning Beauty, Order, Ifarmony, Design, and the Inquiry concerning Moral Good and Evil, in 1725, aod the Essay on the Nature and Conduct of the Passions and Affections, and Illustrations upon the Moral Sense, in 1728. The original title of the former work (which reached a second edition in the next year) wasAn Inquiry into the Original of our Ideas of Beauty and Virtue in two Treatises, in winich the Principles of the late Earl of Shaftesbury are explained and defended against the Author of the Fable of the Becs, and the Ideas of Moral Good and Evil are established, according to the Sentiments of the Ancient Moralists, uith an attempt to introduce a IIathematical Calculation on subjects of Morality. The alterations and additions made in the second edition of these Essays were published in a separate form in 1726. To the period of his Dublio residence are also tu be referred the "Thoughts on Laughter" (a criticism of Hobbes) and the "Observations on the Fable of the Dees," being in all six letters contributed to Hibernicus' Letlers, a periodical whieh appeared io Dublin, $1725-27$ (2d ed., 1734). At the end of the same period occurred the controverss in the columns of the London Joumal with Mr Gilbert Burnet (probably the second son of Dr Gilbert Burnet, bishop of Salisbury), on the "True Foundation of Virtue or Moral Coordness." All these letters were collected in one volume, and published by Fonlis, Glasgow, 1772.

Fif 1 -29 Hutcheson was clected as the successor of his old master, Gerschom Carnichael, to the chair of moral $1^{\text {hiliosophy in the unirersity of Glasgow. It is curions that }}$ up to thistime both his essays and letters had all been ptiblished anonemously, thongh ther uuthorship appears to have been parfectly wall known In 1730 he entered on the duties of his office, dotivering an imagural lecture
 The promet. "t being delisered from the mascellateous dratgery of schonl work, and of securing increased lesure for the passuit of his faronrite studies, oecasions an almost boisterons outburs of joy - " haborosissimis, mihi, atque molestissimis negotir implisto, exigua admodum crant ad bonas literas aut mer*em colendam utia, non levi igitur latitia commovelar curn alam matrem Acadcunam me, smon olim alunnum, is biturtatem asseruisse audiveram." And yct the wores on whild llatcheson's reputation was io rest had atready been publahec.

The rest of Hutcheson's hife down to his death in 174 Q , was manly spent in the assilunus performance of the duties of his professorship, imeluding, of course, the prepara. tion of lectures for las classes The reputation as a teacher attractal many young mern, be longing to dissenting familes, from linglandand lreland, and he appars to have enjosed a well-deserved pophlarity amotg both his pupils and his colleagnes. Thoterh somewhat yutick-tempered, he was remarkalle for his warn feclings and gewerous impelses. "1Ie was all benevolonceand affection," says Dr Lecchman; "none who saw him could doubt of it ; his air and countenance bespoke it. It was to such a degree his prevailing temper that it gave a tincture to his writings, which were pernajs as much dietated by his heart as his head; and if there was any need of an apology for the stress that in his I schense seems to be laid upon the frieally und public afiec-
tions, the prevalance of them in his own temper womld at least form an amiable ove."

In addition to the works already named, the following were published during Hutcheson's lifetime:-a pamphlet entitled Considerations on Patronage, addressed to the Gentlemen of Scotland, 173.5 ; Philosophiee Moralis Institutio Compendiaria, Ethices et Jurisprudentice Naturalis Elementa continens, Lib. III., Glasgow, Foulis, 1742 ; Metaphysuca Synopsis Ontologram et Pneumatologiam complectens, Glasgow, Foulis, 1742 . The last work was published anonymously.

After his death, his son, Francis Hutcheson, M.D., pablished in two volumes, quarto, what is much the langest, though by no means the most interesting, of his works, A System of Moral Philosophy, in Three Books, London, 1755. To this is prefised a life of the author, by Dr William Leechman, professor of divinity in the university of Glasgow The only remaining work that we are able to assign to Hutcheson is a small treatise on Logic, which, according to his biographer, was "nut designed for the poblic ege," but which was published by Foulis at Glasgow in 1764. This compendium, toget her with the Compendium of Metaphysucs, was republished at Strasburg in 1772.

Of all these works, however, those alone wu which Hnit. cheson's philusophical reputation rests are the four essays, and perhaps the letters, all published during his residence in Dublin. To the alore distanctive features of has philosophical system, so far as they may be gathered from these and his other works, we now proceed to draw attention. In the publication of the first two essays, Hutcheson acted quite rightly in connecting his name on the title-page with that of Shaftesbury. There are no two names, perhaps, in the history of English moral philosophy, which stand in a closer connexion. . The analogy drawn between beruty and rirtue, the functions assigned to the moral sease, the position that the benevolent feelings form an original and irreducible part of our nature, and the anhesitating adoption of the prociple that the test of virtuons action is its tendency to promoto the gencral welfare, or good of the while, are at once obvious and fucdamental points of agrecment between the two authers.

According to Iluteheson, man has a variety of senses, internal as well as external, reflex as well as direct, the general definition of is sense being "a any determmation of our miods to receive ideas inde. pendently on our will, and to have perceptions of pleasure and Juin" (Essay on the Nature and Conduet of the Fassions, sect. 1). He docs not attempt to gre an exhaustive enumeration of these "senses." but, in varmus parts of his worke, he specifies, besides the five externa! senses commonly recognized (which, he rightly hints, raight be added tol,-(1) conschousness, by which each man has a perception of himself and of all that asoing on in lis own mind ("Sensus quidarn mteruus, all: conscrentia, cujus ope nota sunt ea onmia, quie in mente geruntur bace aomem se novit quisulue, auque sensmu labet," Mreotho syan. biars i. cap. 2) ; (2) the sense of beanty (sonnctimes called specifically "an internal sense"); (3) a public sense, or sensus communs, "a determination to be pleased with the happtness of oplers and to be uneasy at their misery ; " (4) the moral sense, or "moral sense of beauty insactions and affections, by which we perceive vartue or vice, in ourselves or others;" (5) a aeriso of bonour, or praise and blame, "which makes the aplrolation or gratitude of others the necessary occasion of pleasure, and their dislike, condemnation, or resentment of injuries done ly us the aceasion of that uneasy sensation called slame "; (6) a sense of the ridiculous. It is plain, as the author confesses, that there may bo "other perceptions, distince from all these classes," and, in fact, there scerns to be no limit to the number of "senses" in which a psychological division of this kind might result
Of these "senses" that which plays the inost important part in Hutcheson's etbical system is the "moral sense." It is this which pronounces immediately on the character of actions and alfections, approving of those which are virtuons, and disarproving of those which are vicious. "His prireipal design," he says in the preface to the two first treatises, "is to show thit human nature was not left quite iodiferent in the affair of virtue, to form to itsclf boserrations concerning the adrantage or disadrantage of actions, ad accoruingly to regulato its conluet. The seakness of reason, and the avocations arising from tho infirmity and 12-10 0^{*}
necessines or our namine are so great that very few men could ever have formed those long deductions of reason, which show some actions to be in the whole advantageous to the ageot, and their contraries pernicious. The Author of nature has much better furaished us for a virtuous conduct than onr moralists aeem to imagine, by almost as quick aod powerful anstructions as we have for the preservation of our bodies. He has made virtue a lovely form, to excite our pursuit of it, and has given us strong affections to be the aprings of each virtuous action." Passing over the appeal to final causes involved in this and similar passages, as well as the assumption that the " moral sense" bas had no growth or history, but was "implaoted" in man exastly in the condition in which it is now to be found a mong the more civilized races, an assumption common to the systems of both Hutcheson and Butler, it may be remarked that the enployment of the term "sense" to designate the approving or disapliroviog facalty bas a tendeacy to obscure the real nature of the process which goes on in an act of moral spprobation of dis. approbation. For, as is so clearly established by Hume, this act really consists of two parts :-one as act of deliberation, more or lese prolonged, resulting in an intellectual judgment; the other a reflex feeling, probably instantancous, of either satisfaction or repugnance, -of salisfaction at acmods of a certern class which we denominate as good or virtuous, of dissatusfaction or repugnsace at actions of another elass which we denominate as bad or vicious. By the intellectual part of this process we refer the action or habit to a certain claes, and iovest it with certain characteristics; but no sooner is the intallectual process comyleted than there is excited in us a fecling similar to that which myriads of actions and habits of the sane class, or deemed to be of the same class, hare excited io us on former occasions. Now, supposing the latter part of this process to be instintaoeous, uniform, and exempt from error, the former certainly is not. All mankiod mas, apart from their selfish interestr, approve of that which is virtuous or inakes for the gereral good, bot surely they entertain the most widely divergent opinious, and, if left to their own judgment, would frequently arrive at dinectly opposite conclusions as to the nature of the particuler actions and habits which fall under this class. This distinction is undoubtedly recognized by Hutcheson, as it could bardly fail to ba, ia bis analysis of the mental process rreceding moral action, nor does he invariably ignore it, even when treating of the moral approlation or disapprobation which is subsequent on action. Witne $3 s$ the tollow. ing passages :-" Men have reason given thers, to judre of the tendencies of their actions, that they may not stupialy follow the frat appearance of public good; but it is still some appeazance of good which they pursue" (Inquiry concerning Maral Guad ard IF: il, sect. 4). "All exciting reasons presurpose instincts and affectas ; and the justitying presuppose a moral sense"? (Illustrations uroort the Moral Scnsc, sect. 1). "When we say one is olliged to añ action, whe either mean-(1) that the action is mecessary to obtain happiness to the agent, or to avoid misery ; or (2) that every spectator, or he himself upon reflexion, must approve his action, and disapprove his omittiog it, if he cousiders fully all its circumstances. The former meaning of the word obligation presupposes selfish affecious, and the sense of private happiness; the latter meaning inclades the moral sense" (Bid.). Notwithstanding these passaces, however, it remains true that Hutcheson, both by the phrases which he emrioys to designate the moral faculty, and by the lancuage in which he ordinarily deseribes the process of moral approhation, has done much to farnur that loose and popular view of morality which, ignoring the difficulties that often atiend our moral decisinns, and the aecessity of deliberation and refexion, emcourages has! resolves and unpremeditated judgments. The term "moral innse" (whoh, it may be noticed, had already been cmpleyed by Shafteshary. not only, as Dr Whewell appears to motimate in the majein, but also in the text of bis Enquiry), if mariably courles with the term " moral julgment," would be open to iittle oljaction; lat, taken alone, as designating the complex proces of monal ap polation, it is liable to lead not only to serwos misaprehension but to crave practical errors. For, if each man's decisions are sololy the result of animmediate intuition of the moral arnse, why be at any pans to test, correct, or revew thrm? Dr why alucate a foculty whose decisions are infallible? The expression lar, in fact, the fant of most metnphorical terms: it leals to an exaggeration of the truth which it is intended to suggest.

Iht though Hutcheson usually describes the moral faculty as acting instinctively and immediately, he does net, like Butler, confound the moral faculty with the moral standarl. The t st or criterson of right action is with Ilutcheson, na with itaftesbury, its tendeney to promote the general welfare of rasakint. "In comparing the moral qualities of actions, in crder to rpmbete our elec. tion among varims actions proposed, or to fim which of them has the greatest moral excelicricy, we are lul by our moral sense of virtue to judge thous-that, in equal degracs if happosess expected to frocect from the action, the sirtue is in proportion to the number of perions to whom the happiness shall extuad fand here the dipety or moral impornance of fremon may conluensate numbers), ard, in equal numbers, the virtue is as the quantity of the bapri-
mess or batural good ; or that the virtue is in a compound ratio of the quantity of good aad number of eajopers. In the same manner, the moral eril, or rice, is as the degree of misery and number of sufferers: so that that action is best which procures the greatest happiness for the greatest oumbers, and that worst which, in like manner, occasiods misery" (Iaquiry concerning Morol Good aud Evil, sect." 3). What was subsequently called the utilitariun standard is here unhesitatingly adopted by Hateheson; and it is curious to potice that he actually employs the very plisase which became so celebrated in the mouth of Bentham, though afterwards reduced by that writer to the more simmle expression "greatest bappiness."

The adoption of an external standard, requiring much care and refexion in its application, ought to have led Hutcheson to see that the moral faculty, by which the standard was to be applied, is by no means so simple and instinctive as be imagined it to be, and that, consequeatly, these two narts of his system are to reality in. consistent.

As connected with Hutcreson's virtual adoption of the utilitarian standard, may be noticed a kiad of moral algebra, proposed for the parpase of "computing the morality of aetions." This calculus occurs in the Inquiry concerning Moral Good and Evil, sect. 3.

The most distinctive of Hutcheson's ethical doctrines, still remaining to be noticed, is what lias been called the "benevolent theory" of morals. Hobbes had maintained that all our actions, boreres disguised uader apparent sympathy, have their roots in self-love. IIutcheson not only maiotains that beaevolence is the sole and direct source of many of our actioas, but, by a not unnatnral recoil from the repellent doctrine of Hobbes, that it is the oaly source of those actions of which, on reflexion, we approve. "If pe examine all the actions which are acconnted amiable anywhere, and inquire into the grounds upon which they are approved, we shall find that, in the opiaion of the person wboapproves them, they alpays appear as benevolent, or flowing from love of others and a stady of their happiness, whether the approver be ode of the persons. beloved or profited or not ; so that all those kind affections which incline us to make others happs, and all aetions supposed to flow from such alfec. tions, appear marally good, if, while they are benevolent toward some persons, they be not pernicious to others. Nor shall we find anything amiable in aty action whatsocver, where there is no benerolence imagined ; nor in any disposition, or eapacity, which is not anpposed applicable to and designed for benevoleat purposes" (Inquiry concerning Moral Good and Enil, sect. 3). Consisteutly with this position, actions which flow from self-love only are pronounced to be mamelly indifferent: "The actions which flow solely from self-love, and yet evideuce no wast of benevolence, baving no hurfful effects upon others, seem perfectly indifferent is a moral sense, and neither raise the love or hatred of the observer " (Ibid.). But sarely, by the common conseat of civilized men, prudence, temperance, cleanliness, industry, self-resject, and in general, the " personal virtues," as they are called, are regarded, and rightly regarded, as fitting objects of moral alprobation. This consideration could hardly escape any author, however wedded to his owo system, and Hutcheson attempts to extricate himself from the lifficulty by laying down the position that a man may justly regurd himself as a part of the rational system, and may thus "Le, in part, an olject of his own benevolence" (llid.), 一a curious aluse of terns, which really concedes the question at issue. Moreover, he acknowlelges tbat, though self-love does not merit approhation, neither, except in its extreme forms, does it merit condemna. tion. "We do not positively condemn those as evil who will not eacrifice their private interest to the advancement of the positive good of others, unless the private interest be very small, and the public good sery great" (Illustrations upon the Moral Sense, sect. 6). The satisfaction of the dictates of self-love, too, is one of the very cenditions of the preservation of society. "Self-love is really as necessary to the good of the whole as benevolence, -as that attrac. tion which causes the cohesion of the parts is as necessary to the ragular state of the whole as gravitation" (Inquiry concerning Aloral Good and Evil, aect 17). To press home the inconsistencics iovolved in these various statements pould be a superfneus task.

Ilutcheson's benevolent view of human nature is illustrated also by his denying that malevolence is an original principle in the conetitution of man "Perhaps our nature is not capable of desiring tho misery of any being calmly, fartime than it may be necessary to the arfety of the innecent : we may lime. [irthap, that there is no quality in any object wheh wonld excite in us pure disinterested makee, or calm desse of misery for its own sake: "On the Nature and Conduct of the Ficisoons, soct. 3). Aganst this position of Hutcheson, propouded also by lsutler (Serm. ix.), it might he objected that, evon amongst very young children, we often find a wigular and prenorions love of ernelty. This is, vadoubtedly, one of the most curions faciu in moral prychology, but it may perhapa the accounterl for liy supposing it to uriginate in a combination of morbid curioaity with an equally morbid love of power.

The vexed question of liberty and necesaity appears tu be carcfinly aroided in llutcheson's drofessedly ethical works. But, in the

Synopsis Mctaphysico, ine teuches on it in no less than three places, briefly stating both sides of the question, but evidently inelining to that which he designates as the opioion of the Stons in opposition to what he designates as the opinion of the Peripateties, This is substantially the same as the doctrine propounded by Hobbea and Locke (to the latter of whom Hutcheson refers in a note), namely, that our will is determined by motives in conjnuction with our general character and habit of mind; and that the only true liberty is the liberty of acting as we will, not the liberty of willing as we will. Though, however, his leaning is clear, he carefully avoids dognatizing, ind speaks of the difficulty as "ardua questio," "questio vexatissima, qua doctorum et piorum ingenia semper torserat, atque de qua utrinque frustra ad sansum enjusque internum provocatur," earnestly deprccating the angry controversies and bitter dissensions to which the speculations on this subipet had given rise

If our limits allowed us sufficient space, it would bo easy to trace the influence of Hutcheson's ethical theories on the systems of Hune and Adam Smith. The proluidence given by these writers to the analysis of moral action and moral approbation, with the attempt to discrimipate the respective provinces of the reasen and the emotieas in these processes, is undoubtedly due to the influence of Hutcheson. To a stuly of the writings of Shaftesbury and Hutcheson we might, probably, in large measure, attribute the unequivocal adoption of the utilitarian standard by Hume, and, if this be the case, the name of Hutcheson connects itself, through Hume, with the names of Priestley, Paley, and Bentham. Butler's Sermons appeared in 1726, the year after the publication of Hutcheson's two tirse essags, and the parallelism between the "conscience" of the one witer and the "moral sense" of the other is, at least, worthy of remark.
In the sphere of mental philosophy avd logic, Hutcheson's contributions are by no means so important or original as in that of moral rililosophy. In the former sabject, the influence of Locke is apnarent throughout. All the main outlines of Locke's philosophy seem, at first sight, to he accepted as a matter of course. Thus, in stating his theory of the moral sense, Hutcheson is peculiarly careful to repradiate the doctrine of indate ideas (see, for instance, Inquiry concerning Moral Good and Eril, sect. 1 ad fin., and sect. 4; and compare Synopsis Metaphysicie, pars i. cap. 2). At the same time, it may be noticed that he shows more discrimination than does Locke in distingushing between the two uses of this expression, and between the lecitimate and illegitinate form of the doctrine (Sym. Metaph. pars i. eap. 2). All our ideas are, as by Locke, referred to external or interanl sense, or, in other words, to sensation and reflexion (see, for instance, Sym. Metaph., pars i. cap. 1; Logice Compend., pars. i. cap. 1;System of Moral Philosophy, book i. ch. 1). It is, however, a most important modification of Locke's doctriae, and one which conaects Hutcheson's mental philosophy with that of Red, when he states that the ideas of extension, figure, motion, and rest " are more properly ileas accompanying the sensatiens of sight nud tonch than the sensations of either of these senses;" that the idea of self accompanies every thought; and that the ideas of num. ber, duration, and existence accompany every other idea whatsoever (see Essay on the Nature and Conduct of the Passions, sect. i. art. 1, Syn. Metoph., pars i. cap. 1, pars ii cap. 1; Hamilton on Red, p. 124, note). Other important points in whiclı Hutcheson follows the lead of Locke are his deprechation of the importance of the so-called laws of thought, his distinction between the primary and gecondary qualitics of bodies, the position that we cannot know the inmost essences of things ("intimx rerom nature sive cssentix"), though they excite rarious ideas in us, snd the assmption that external things are known only through the medium of ideas (Syn. Metaph., pars i. cap. 1), thongh, at the same time, we are assured of the existence of an external world corresponding to these ideas. Ilutcheson attempts to uecount for our assurance of the reality of an external world by referring it to a natural instinct ("Idearum plorimas ad res externas, tanyuam earundem imagines aut repro. sentationes, referre cogimar ab irsa natura," Sym. Mctaph., pars i. erp. 1). Of the correspendence or similitude between our idcas of the primary qualities of things and the things thenselves God alone carn be assigued as the cause. This similitude has been etfacted by llim through a law of nature. "Heec primaqualitsrum primariarum preceptio, sive mentis actio quadam alve passio dicatur; non alia aimilitudinis aut convenientix inter ejusnodi idens et res ipses causa assignari posse videtur, quam ipse Dens, qui certa nature lege how efficit, ut notiones, quar rehus jrasentibus excitantur, aint ipsis similes, aut saltem earum habitudines, si non veras quautitates, depingant" (pars ii, cap. 1). Locke had repeatedly atated that "the primary qualities of bodies are resemblances of them, and their purterns do really exist in the lodies themselves" (see, for instance, Essay, bk. ii. ch. 8, sect. 15), and he also speaks of God "annexing" certain ideas to certain notions of bodies (rbid., sect. 13, and elsewberc); but nowhere, we believe, docs he propound e theory so precise and definito as chat here propounded by fintel:son, which reminds us at least as much of the sneculations. \boldsymbol{o}^{5}. Malehranche as of those of loeke.

Amonget the more important doints in which Mutchesan dis a
from Locke is his acconnt of the i.lea of personal identity, which he appears to have regarded as made known to us directly by conscious. ness. "Mentem auam eandem manere, sibi conscius cst quisque, repctentia illa, sive perceptione interua, certissima, ast ineffabili, qua novit suam meatem a mente quavis alia omaino diversan esse" (Syn. Metaph., pars. i. cap. R). The distinction between body and mind, "corpus" or "materia" and "res cogitans," is more emphatically accentuated by Hutcheson than by Locke. Generally, be apeaks as if we had a direct consciousnesa of miud as distinct from body (eee, for instance, Syn. Mctaph., pars ii. cap. 3), though, in the poothumous work on Moral Philosophy, he expressly states that we know mind as we know body "by qualities inmediately jer. caivad though the substance of both be uuknown "(bk. i. ch. 1). The distinction between perception proper and sensation proper, which occurs by implication though it is not explicitly worked out (seo Hamilton'a Lectures on Metaphysics, Lect. 21: Hamiltoa's edition of Dugald Stewart's Works, vol. v. p. 420), the imperfection of tho ordinary division of the external senses into five classes, the limitation of consciousness to a apecial mental faculty (severely criticized in Sir W. Hamilton'a Lectures on Metaphysics, Lect. xii.), and tha dispoaition to refer on disputed queations of philosophy not so much to formal arguments as to the testimony of consciousness and our natural iustincts ("ad gravissima quedam in philosophia dogmata amplectenda, non argumeatis aut ratiocinationibus, ex rerum perspecta nstura petitis, sed potiua eensa quadam interno, usu, atque nature impulsu quodam ant instinctu ducimur," pars ii. cap. 3) are also amongst the points in which Hutcheson auppleminted or departed from the philosophy of Locke. The last point can hardly, fail to suggest to our readers the "commion-sense philosophy" of Reid, and here it may be remarked that the interest attaching to Hutcheson's paychological and metaphysical views consists very largely in the intermediate pesition which they occupy between the syetem of Locke and that of Rcid and the later Scottish achool. If we confine ourselves to merely enumerating detached questions, he perhaps atands uearer to Locke, but in the gaveral opirit of his philosophy he seems to approach more closely to his Scottish successors.

The ahort Compendium of Logic, which is more original than auch worka usually are, is chieffy remarkable for the large proportion of psychological matter which it contains. In these parts of the book Hutcheson maialy follows Locke. The technicalities of the subject are passed lightly over, and the book is aminently readable. It may be specially noticed that he distinguishes between the mental result and its verbal expression [idea-term; judgment-proposition], that he constantly enploys the word "idea," and that he defines logical truth as " convenientia signorum cum rebus significatis" (or "propositionia convcaientia cum rebus ipsis," Syn. Metaph., pars i. cap. 3), thus implicitly repudiating a merely formal view of logic.

Huscheson may claim to have been one of the earliest modern priters on esthetics. His speculationa on this subject are contained in the Inquiry concerning Beauty, Order, Harmony, and Design, the first of the two treatises published in 1725. He maiutains that we are endowed with a special sense by which we perceive beauty, harmony, and proportion. This is a reflex sanaa, because it presupposes the action of the external aeneea of aight and bearing. It may be called an internal aspae, bath in order to distinguish its perceptions from the mere perceptions of aight and hearing, and becanse "in some other affairs, where our external aenses are not much concarned, wa discern a sort of beauty, very like, in many respects, to that observed in aeasibla objects, and accompanied with like pleasura" (Inquiry, \&c., aect. 1). The latter Jeason leada him to call attention to tha beauty percaivad in universal trutha, in the operations of genaral causes, and in moral priaciplea and actiona. Thus, the analogy between beanty and virtue, which was ao favourite a topic with Sbaftesbury, becomes also prominent in the writings of Hutcheson. Scattered up and down the treatise, there are many Important and interesting observationa which our limits privent us from noticing. But to the atudent of mental philosophy it may be apecially intereating to remark that Hutcheson both applics the principle of association to explan our ideas of beauty and also aets fimita to its application, iosiating on there being "a natural jower of perception or sensa of beauty in objects, antecedent to all custom, cducation, or exampla" (see Inquiry, \&c., вects. 6,7; IIamilton'a Lechurcs on Metaphysics, Lect. 44 ad fin).
Hutcheson's writings gave rise, as thoy could hardly fail to do, to mach controversy among those who were interested in ethical apeculstione." To bay nothing of minor opponents, auch as "Philaretus" (Dr Gilbert Burnet, already alluded to), Dr John Balguy, author of two tructs on The Foundation of Moral Goodiness, and Dr John Taylor of Norwich, a Prasbyterian ninister of cowsider. able repatatiou in his time, the essays appear to have suggesterl, by antugoinsm, at least two works which hold a permanent place in the litcrature of Eng'ish ethics. One of thesc is Butler's Dissertation on the Naturc of Virtue, which is, throughout, a criticism of the maiu positions maintained by Iluteheson. The other is an answer of a fir more complete and systematic eharacter, Dr Richard Price's
Ireatise of Moral Good and Evil. which first appeared in 2757 . In
this work, the autler maintains, in opposition to Hutcheson, that actions are in themselves right or wrong (au ambiguous expression, Which he is not suffeciently careful to explain), that right aud wrogg are simple ideas iucaprable of analysis, and that these ideas are perceived immadiately by the understanding. Price's work is remark. able for the close similarity between many of the ideas and even expressions containedin it and thoso which subsequently became so celebrated in the speculatious of Kant. We thus see that, not only by its direct but also by its mdirect influcnce, through the replies rhich it called forth, the aystem of llutcheison, or at least the system of Hutcheson combined with that of Shafteshury, may be regarded as having contributed, in very large measure, to the formation and development of some of the most important of the modern achools of athics.

The original edtions of Hutchrson's various works have beeo already menof the Inquiry into the Orioinol of otir liteas of Beauty and second edthon (1726) os most of his other works, paseed through val heas editions. Of the System of Mforal Phicosophy, however, published after liut cheson's denth, there is, wa believo, one editioa only. Notices of Hutcheson occur in mosi histories, both of general philosophy and of moial philosophy, as for unstacce, lo part vi. of A Jam Sophy's Theory of Moral Sentiments; Mackintobi's Progress of Ethical Philosophy: Cousin, Cours a Histoire de la Phitosophaze Morale du, XI'Thieme Stecte; and Morat Science: Dr Noah Porter's Appendix to the English: Bala's Mentaf and Droral science: Dr Noah Porter's Appendix to the English tranglation of
Ueberweg'a History of Philosophy: Mr Lestio Stephen's Thought in the Eighteenth Century, \&c. Or Dr Leechnan's Biagrapy of English soo we luave already apokea. Professor Veftch gives an interesting account of bis protessorial work in Glasgow, sind, vol. U. pp. 209-211.

HUTCHINSON, Jonn (1616-1664), a Puritan soldier, son of Sir Thomas Hutchinson, was born at Nottingham in September 1616. After completing bis education at Cambridge University he entered Lincoln's Inn, but soon became tired both of the study of law and the amusements of London, and was meditating travel on the Continent when be accidentally made the acquaintance of Lucy, daughter of Sir Allan Apsley, whom he married in 1638. After his marriage he returned to Owthorpe, where the study of divinity and politics gradually led to a change of his sentiments in regard to the diepute between the parliament and the king. At first he did not find a clear call to join the Parliamentary army, bnt the efforts of the Royalists to seize him as a disaffected person soon dissipated his neutrality, and, becoming governor of Nottingham, he with great firmness and courage held tho town and castle agaiust internal treachery and external attacks till the triumph of the parliamentary cause. Having been chosen to represent Nottingham in the new parliament, be became a member of the high court of justice for the trial of the king, and gave his vote for his exccution, but, disapproving of the subsequent political conduct of Cromwell, he took no further part in politics during the lifetime of the Protector. After the Restoration be became member for the county of Nottingham, and he was included in the Act of Amuesty pass.l in favour of certain of the regicides. Subsequently, however, he was arrested upon suspicion of being concerned in a treasonable conspiracy; and after an imprisonment of ten months in the Tower of London, and of one month in Sandown Castle, Kent, he died 11th September 1664. The life of Colonel Hntchinson is now ouly of interest from the manner in which it is narrated in the Menvoirs written by his wife, and first published in 1806, a work not only valuable for the picture which it gives of the time in which be lived, but for the simple beauty of its style, and the naivete with which the writer records ber sentiments and opinions, and details the incidents of her private life.

HUTCHINSON, Joun (1674-1737), the anthor of Moses's Principia and other works in which the so-called Hutchinsonian system is cxpounded, was born at Spennithorne, Yorkshire, in 1674, and after receiving an adequate elementary cducation ticre, served as steward in several familics of position, latterly in that of the duke of Somerset, who ultimately obtained for him the post of riding purveyor to the master of the horse, a sincecure worth about $£ 200$ a ycar. In this employment he became acquainted witk Dr Woodward, physician to the duke, and anthor of a work entitled The Natural History of the Earth, to whom be
entrusied a targe number of foasils of his own cellecting, alons witic a mass of mannscript notes, for arrangement and pobicention. A misunderstanding as to the manner in which these should be dealt with was the immediate oceasion of the publication by Hutchinsen in 1724 of Moses's Principia, part i., in which Woodward's Natural History was bitterly ridiculed, his conduct with regard to the mineralogical specimens not obscurely characterized, and a refotation of the Newionian doctrine of gravitation seriously attempted. It was followed by part ii . in 1727, and by various other works published at frequent intervals. Hatchinson died in 1733. A complete edition of all the publications of this auther, along with his posthumous pieces, edited by Rebert. Spearman and Julius Bate, appeared in 1748 (12 vols.) ; an Abstract of these followed in 1753 ; and a Supplement, with Life by Spearman prefixed, in 1765.
Although the crude ideas of Hutchnson at the time of thein tirst promulgation were successîul, by their seeming devoutness, tn commending themselves to some of the pions but dim-sighted and overtimid souls of that period, who had taken alermat the atheistic conclusions they believed to be deducille from the Newtonian doctrines, they are now too uninfluential, as well as too glaringly inconsistent with the universally recognized principles of physics and philology, to call for any detailed amalysis. Their nature may be alnost suficiently pathered from the titles of some of the works in which they aro set forth, such as Moses's Principia, Part I.; of the Invisible Parts of Mutler, of Motion, of Visible Forms, and of their Dissolution and Reformation: Moses's Principia, Part II.; of the Circulation of the Heavens; of the Cazse of the Motion and Corres of the Earth. Moon, dic.; of the Religion, Philosophy, and Emblems of the Ireathens before Moses urit, arul of the Jews afler; in Confirmation of the Natural History of the Bithe; Moses's Sine Principio, tepresented by Names, Words, Types. Emblems: wath an introsuition to show the Nature of the Fall, of Paradise, ard of the Body and Soul; The Confusion of Tongues and Trintty of the Gentiles (being an accoune of the origin of Idolatry) ; Poncr Essential and Afechanical, or what proer belongs to Gai aved zhat to his creatitres, in which the design of Sir I. Nevton aid Dr Samuel Clarle is luid open: Glory or Grarizy, wherein the Objects and Articles of the Cheritian Failh are ceitibutd: The Fezigion of Sutan, or athtichriot Delinuated. Eisbop Horno of Norwich, it may be mentioned, was during some of his earlier years an avosed Hutchinsenian: and Jones of Naylard continued to be so to the end of b:a life.

HUTCHINSON, Thomas (1711-1780), governor of the province of Massachusetta, son of a wealthy merchant of Bosion, rias born there Seutember 9, 1711. The san, being unsnccossful in commerce, atadied iaw, and adopted it es his profession. He was representative of Boston in the general court for ten gears, and was theee times chosen speairar. From 1749 to 1766 he was a connsellor, in 1752 he was appointed judge of probate, from 1758 to 1771 he was lieutenant-governor, and in 1760 he became chief justice. In 1743 ho carried a measure to substitnte goly and silver for the paper currency, which had depreciated onte-eigith in valuc. During the Stamp det riots of 1765 his house was ascked by the mob; and by his eubsequent support of the general policy of the lisitish Covernment be incurred increasing unpopularity. In 1067 he laid claim to a seat in the council on the gromud of beingt licutenantgovernor, but on account of hia political viens his clams were sot uside. On his appointment to the governorship of Massachusetta in 1769, he used every method to support the measures which the mother comitry songht to enfores gegainet the colonsts; and in December 1873, on account of his refusal to permit the reshipment of teas on whicla a duty had been laid by the Gorecmment, sceeral of the inhabitants of Boston emptied the tea into the bay. In January 1774 IIntelinson asked leave to resign his office, and in June he sailed to lingland, where he spent the remainder of his life. As the result of oflicial ingeiry into his conduct while governor of Massachncetts, he was re sareded with a pension. Ho dical at Brounton in June 1780.

Hutchinson was the anthor of the following works:-A Brief Statement of the Claim of the Coioniss, 1764; Collection of Original Papers relative to the History of the Colony of Massachusets Bay, 1769; History of the Colony of Massachusetis Bay from $162 s$ to 1750 , 2 vols, London, 1765-67; History of Massachusetts from 1749 to 1774, published posthumously in 1820.

HUTTEN, Uleice von (14SS-1523), is one of these men who, like Erasmus or Pirckheimer, form the bridge between Humanists and Reformers. He lived with both, sympathized with both, though he died before the Reformation had time fully to develop itself. His life may be divided into four parts:-his youth and cloister-life (14881504); his wanderings in pursuit of knowledge (15041515); his strife with Ulich of Würtemburg (1515-1519); and bis connexion with the Reformation (1519-1523). Each of these periods had its orn special antagonism, which coloured Hutten's career: in the first, his horror of dull monaatic routine; in the aecond, the ill-treatment he met with at Greifawald ; in the third, the crime of Duke Ulrich; in the fourth, his disgust with Rome and with Erasmus. He was born April 21, 1488, at the castle of Steckelberg, near Fulda, in Frauconia, the eldest sen of a poor and not undistinguished knightly family. As he was maen of atatare and sickly bis father destined him for the cloister, and he was seat to the Benedictine house at Fulda; the thirst for learning there seized on him, and in 1504 be Hed from the monastic life, and won his freedom with tho sacrifice of his worldly prospects, and at the cost of incurring his father's undying anger. From the Fulda cloister he went first to Cologne, next to Erfurt, and then to Frank-fort-on-the-Oder on the opening in 1506 of the new university of that town; there in that year he appears to haro grauuated in philosophy. When, however, the schelastic perty displaced the Humanists, he wandered forth again; in 1508 we find him e ehipwrecked bergar on the Pomeranian coast. In 1509 the university of Greifswald weicomeat him; "Ulricus Huttenus poeta clericus Herbipolensis gratis intitulatus quin spoliatus omnibus bonis" is the honourable record on the brooks of this his second Alma Mster. Here too the friends who at first received him so kindly became his focs; the sensitive ill-regulated youth, who took the liberties of genius, wearied his burgher patrons; they could not brook the poet's airs and vanity, and iill-timed assertions of bis higher rank. Wherefore he left Greifswald, and as he went was robbed of clothes and boeks, his only bngeage, by the servants of his late frieuds; in the dead of winter, balf starved, frozen, penniless, he reached Rostock. Here again the Humanists, who were throughont full of charity and aympathy towards the luckless foung gabolar, reccived him gladly, and ander their pretection he wrote against his Greifswald patrons, thus begmning the long list of his satires and ficre attacks on personal or public focs. Rostack could not hold him long; he wandered on to Wittenberg and Leipsic, and thence to Vienna, where he hoped to catch the emperor Maximilian's fovour by an elsberate national poem on the war with Venice. But neither Maximiliau nor the university of Vienna would lift hand for him, and he passed into Italy, that holy land of Humanist enthusiasm, where, at Pavia. he sojourned throughont 1511 and part of 1512 . In the latter year his studies were rudely iaterrupted loy war ; in the siege of Pavia by papal troops and Swiss, he was ghondured by both sides, and escaped sick and pennitess to Jologna; on his recovery lie even took scrvice as a private soldier in the emperor's army.

This dark period lasted no long time; in 1514 be was again in Germany, where, thanks to his poctic gifts and the fricndship of Witelwolf von Stein, he won the favour of the elector of Mains, Archaishor Albert of Brsnadenburg. Here high dreams of a learned career rose on him; Mainz sboud be made the metropolis of a grand Lumanist move-
ment, the centre of good style and literary form. This golden drean was scattered by the murder in 1515 of his cousin Johu of lIutten by Ulrich, duke of Wiartemburg. This outrage changed the whole course of Hutten's life; satire, chicf refuge of the weak, became his weapon; with one hand he took his part in the famons Epistole Obscurorum I"irorum, and witu the other launehed seathing letters, eloquent Ciceronian orations, or biting satires against the vluke. Though the emperor was too lazy and indifferent to smite a great prince, ho condescended to bestow on Ilutten the inexpensive honour of a laureate crownin 1517 ; as the I', 1 tells us with pheased pride, the wreath was woven by Wu bands of fair Constantia, Courad Peutinger's daughter. As recognized poet laureate of Germany, llutten, who had Leen to ltaly, again attached himself to the electoral court at Mainz; and be was there when in 1518 bis truc friend Pirckheimer wrote, urging him to abandou the court and dedicate binself to letters. We have the poet's long reply, in an epistle on bis " way of life," an amusing mixture of earnestness and vanity, self-satisfaction and satire; he tells his friend that bis career is just begun, that he has bad twelve years of wandering, and will now enjoy himself a while in patriotic literary work; that he has by no means deserted the humaner studies, but carries with him a little library of standard books. Pirckheimer in his burgher life may have ease and even luxury; he, a knight of the empire, how can he condescend to obscurity? He must abide where he can sline. And so, dazzed by his dream of an intellectual reform, Hutten chose the path which presently led him to bis ruin.

In 1519 be issued in one volume his attacks on Duke Ulrich, and then, drawing sword, took part in the private war which overtbrew that prince; in this affair be becane intinate with Franz von Sickingen, the champion of the kuightly order (Ritterstand). Henecforth Hutten takes part in the Lutheran movement, white he becomes mixed up in the attempt of the " Ritterstand" to recover its position, and to assert itself as the militia of the empire against the independence of the German princes. It was soon after this time that he discovered at Fulda a copy of the mani: festo of the emperor Henry IV. against Hildebrand, and published it with comments as an attack on the papal claims over Germany. He hoped thereby to interest the new emperor Charles V., and the higher orders in the empire, in behalf of German liberties; but the appeal failed. What Luther had achicved by speaking to cities and common folk in Lomely phrase, because be touched heart and conseience, that the far finer weapons of IIutten failed to effect, beause he tried to touch the more cultivated sympathies and dormant patriotisw of princes and bishops, nobles and knights. And so be at onee gainol an undying name in the republic of letters and rumed his own career. lle showed that the artificial verse-maling of the Humanists could be connected with the new outhurst of gennine German proetry. The Minnesinger was gone ; the new national singer, a Luther or a Hans Sachs, was heralted by the stirring lines of Hutten's pen. These form a distinet eprocis in the history of German national literature; they have in them a splendid natural swing and ring, strong and patrictic, thougla unfortunately addressed to kuight and hudsknecht rather than to the German people.

The peet's high dream of a knightly national regeneration had a rude awakening. The attack on the papaey, and Inther's rast and sudden popularity, frightened Jilector Albert, who dismissed Mutten from bis court. Moping for imperial favour, he betook bimself to Cbarles V.; but that cold young prince, who cared little for IIumanists, and was not a German, would bave none of him. So lie returned to his friends, and they rejoiced greatly to see hisu still alive; for Pope Leo X. bad ordered litm to be
arrested and sent to Home, and assassins dogged his steps. He now attached himself more closely to Franz von Sickingen and the knight!, movement. This also cane to a disastrons end in the capture of the Ebernbers, and Sickingen's dearh; the higher nobles had triumphed; the archbishops avenged themselves on Lutheranism as interpreted by the knightly order. With Sickingen Hutten aleo finally fell. He tled to Basel, where Erasmus refused to see the sick hero, both for fear of his loathsome diseases, and also beeause the beggared knight was sure to borrow money from him. A paper war consequently broke out between the two Humanists, which embittered llatten's last days, and stained the memury of Erasmus. From Basel Ulrieh dragbed his limbs to Mulhausen; and when the vengeance of Erasmus drove him thence, he went to Zurich. There the large heart of Zwingli releomed him; he helped him with money, and found tim a quict refuge with the pastor of the little isle of Linam on the Zurich Lake. There the frail and worn-out poet, writing swift satire to the end, fell a vietim to bis infirmities, and died (29th August 1523) at the age of thirty-five. He left behind him some debts due to compassionate friends; be did not even own a single book, and all his goods amounted to the elothes on his back, a bundle of letters, and that valiant pen which had fought so many a sharp battle, and had won for the poor knight-errant a sure place in the annals of literature.

Ulrich von Hutten is one of those men of genius at whom propriety is shocked, and whom the mean-spirited avoid. Yet through his short and buffeted life he was befriended, with wonderful charity and patience, by the chief leaders of the Humanist movement. For, in spite of his irritable vanity, his immoral life and habits, his odious diseases, his painful restlessness, Hutten had much in him that strong men could love. He passionately loved the truth, and was ever open to all good influences. He was a patriet, whose soul yearned for what was high, and soared to ideal schemes and a grand utopian restoration of his country. In spite of all, his was a frank and noble nature; his faults chiefly the faults of genius ill-controlled, and of a life cast in the eventful changes of an age of novelty. A swarm of writ. ings issued from bis pen; at first the smooth elegance of his Latin prose and verse seemed strangely to miss his real charaeter; be was the Cicero and Ovid of Ciermany before be became its Lueian.
His chief works were his Ars 2ersificendi (1511); the Nemo, (1518); a work on the Borbus Gallicus (1519); tho volume of Steckelberg complaints against Duke Ulrith (including his lout C'ectonian Orations, his Lellers, and the Plulurismus) also in 1519 ; the Fidisinus (1500) ; and the eontroversy with Erasmus at the rul of his life. Besicles these were many admiralle poems in I atin amil German. It will never be known with certainty how far llutten was the parent of the celebrated Eyistola Obseurorum I'romem, that fimous sative on monastic ighnrance as represented by the theohorraus of Colorne with which the friends of heuchlin defended him. At first tho eloister-world, not discerning its irony, weleomed the work as a defence of their position; thongh their eyes wore soon opened by the favour with which the lemeld worbd recuival it. The Eyistole were eagerly bought up; the first part (d] letters) apueared at the end of 1515 ; fanly in 1516 there way a second edition; later in 1510 a third, with an apmenlix of seven letters; in 1517 appenred the sccond patt (62 Jetters), to which a fresh appemdix of cight letters was subjomed soon after. Jutten, in Jetter abliressed to liobent Crocus, denied that he was the author, and is folloued by Bayle in: his Dietionary; but there is no doubt as to his direct connexion with the book. Erasums was of opinion that there were three authors, of whom Crotus Juhianus was tho nriginator of the ibea, and IIutten a chief contributor. D. F. Stranss, who dedicates to the subject a chapeter of his ndmirable work on Ifutten, conclules that be had mo share in the first part, but that his land is clearly visible in the second part, which ho at ributes in the main to him. To him is whe the more serious and severe tone of that bitter portion of the satire.

Hor a complete catalogie of the writings of IIntten, see Böcking's Inaisx Bibliographicus IHutfenianus (1858). The best bingraphy (theugh it is also somewlat of a political framhicts is that of

Struass (Cirich von Hutien, 1357; 2d ed., 1871 ; English transla. tion by Sturge, 1874), with which may be compared the monographs by Potton (accompanying his translation in French of the Jorbus Gallicus, 1855), Mohnicke, Wragenseil, Von Brunnow, Burck, and Gohring. See also Panzer (Chrich won Hulten in literarischer Finsicht, 1798); and K. Hagen ("Ulrich von Hutten in politiacher Beziehung" in his Zur poluischen, Frachickle Deutschliznds, 1324).
(G. W. K.)

Hutton, Cearles (1737-1823), the youngest son of Henry and Eleanor Hutton, was born at Neweastle.onTryac, August 14, 1737. His father was an underviewer in the coal-works in the neighbourhood, and died in June 1742; but his mother's second busband, Franeis Fraim, proved kiod to the boy, and, in consequence of a slight eceident to the elbow joint of his right arm, sent him to selool while his brothers worked in the pits. The most of nis education he received in a school at Jesmond, kept by Ifr Ivison, a elergyman of the chureh of Eugland. There is reason to believe, on the evidence of two pay-bills, that for a short time in 1755 and 1756 Hutton worked in Old Long Benton colliery ; at any rate, on Irison's promotion to a living, Huttou succeeded to the Jesmond sehool, Fheuce, in consequeace of inereasing pupils, he removed to Stote's Hall While he taught during the day at Siote's Eisid, ha stadied mathematics in the evening at a sehool in Neweastle. In $1 ; 60$ be married, and began the work of tuition on a larger scale in Newcastle, where he had among his paoils John Scott, afterwards Lord Eldon, chaneellor of Ergtand. In 1764 be published his first work, The Schoolmasterz Guide, or a Complete System of Practical Ariliznetic, which in 1770 was followed by his Treatise on Mensuration bath in Theoryand Practice. In 1772 appearad a tract on The Principles of Bridyes, suggested by the destruction of Newcastle bridge by a high flood on 17th November 1771. On a vaeaney occurring in the professorship of mathematies at the Royal Military Academy, Woolwich, in 1773, Hutton became a candidate, and after 1 severe competitive contest was appointed to the post. He was made a fellow of the Royal Society in 1irit, and at their request drew up an account of the calculations to determine the mean density aud mass of the earth made by him from the measurements taken in 1774-76 at Sehiehallion in Pertbshire. This aecount appeared in the Philosophical Transactions for 177s, was aiterwarls reprinted in the second volume of his Tracts on Wathematical and Philosophical Subjects, and procured for Hutton the degree of LL.D. from the university of Elinburgh. He wes elected foreign secretary to the Rogal Society in 1779, but his resignation in 1783 was brought about by tho Iresident Sir Joseph Banks, whose behaviour to the nathematical seetion of the soeicty was somerhat high-handed (see Kippis's Observations on the late Contests in the Royal Society, London, 1784). After his Tables of the Iroducts and Powers of N^{\prime} umbers, 1781, and his Mathicnatical Tables, 1785, he issued, for tho use of the Royal Military Academy, in 1787 Elenconts of Conic Scrtions, and in 1798 his Course of Mathematics. The last, at the time it appearel, was mueh superior in mode of treatment to any existiug work on the subject, and in suececding editions the author incorparated many new discoverics and mothods. The two volumes of his Mathematical azd Philosophical Dictionary, a most raluable contribution to scientific biography, were pmblished in 1795, and the four volumes of hecreations in Arothomatios aud Nutural l'hilosophy, mostly a translation from the French, in 1803. One of the most lalurious of his works was the nlridgment, in ennjunction with Drs Shaw and Prarson, of the Philusophical Transactions. This madertaking, tho mathematical and scientilic parts of whieh fild to Ihatun's share, was completed in 1800 , and Sillou? eighteen volmenes quarto. Huttur's lung-continued eor:rexion (it oxtended over fifty-six years) with the matho-
matical periodlcals of his time, whether as contributor or editer, deserves a word of notice. His name first appears in the Ladies' Diary (a poetical and mathematical almanac which was begun in 1704, lasted on till 1871, and whieb "eontributed more to the study and improvement of mathematics than half the books professedly written on the subject") in the year 1764 ; tea years later be was appointed editor of the almanae, a post which he retained till 1817. Previous to his editorship of the Diary, he had begun a small periodieal, Miscellanea Mathematica, which extended only to thirteen numbers ; subsequently to it, he published in five volumes The Diarian Miscellany, whicb consisted of all the useful and entertaining parts of the Diary down to 1773, with many additional solutions and improvements. On the resignation, owing to failing health, of bis professorship in 1807, he was allowed a pension of $£ 500$ a year. He died on 27 th January 1823.
all the biographical notices of Hutton are unanimous in describing him as one of the most skilful of teachers, and the most amiable of men. His modesty and simplicity were as remarkable as his intellectual gifts. To his friends and pupils he exhibited a warmth of personal affection that attached both to hin in a very rare degree. It was also with him a sacred duty to seek out the noor and unbefriended studeut of science, and promote and otherxise assist him to the hest of his power.

HUTTON, Janes (1726-1797), oue of the great iounders of geological seience, was born in Eainburgh on 3d June 1726. Educated at the high school and uaiversity of his מative city, he aequired white still a student a passionate lore of seientifie inquiry. It had been decided that he should pursue a professional eareer, and he was accordingly apprenticed to a lawyer. But as instead of copying law papers he was sometimes found amusing bis fellow-clerks with chenieal experiments, his employer with mucli sagaeity advised that a more congenial profession than the law should be chosen for him. The young apprentice, released from his engagement, ehuse medicine as the pursuit nearest akin to his favourito study of chemistry. He studied for three years at Edinburgh, and completed his medical edueation by an attendance of bearly two years at the medieal elasses in Paris, returuing by the Low Countries, and taking his degree of doctor of medieine at Leyden in 1749. At the end of that year he eame baek to Eugland, only to find, howerer, that though he had qualified himself to practise as a medieal nan there secmed hardly auy opening for him. In the summer of the ensuing year he definitively abandoned the idea of following out the medieal profession, and, haring inherited a small property in Berwickshire from his father, resolved to devote himself to agricul-ure. With th= zeal and thoroughness ebaracteristie of his disposition, he then went to Norfolk to learn the practical work of farming. Thereafter he extended his experienee by a tour in IIolland, Belgium, and the nerth of France. During thess years ho began to study the surface of the earth, looking into every pit, diteh, or river-bed that he saw, and gradually shaping in bis mind the problen to which he afterwards devoted his energics. In the summer of 1754 he established himsolf on his own farm in Berwickshire, where he resided for fourteen years, and where he introduced the most improvel forms of husbendry. As the farm was brought into exceltent order, and as its managencont, becoming moro easy, grew less interesting, he was finally induced to let it, and establish himelf for the rest of his life in Edinburgh. This took place about the ycar 1768.

From this period until his death in 1797 be lived unmarrich with bis three sisters. Surrounded ly congenial literary and scientific friends, he devoted himself to those researches which have had so important an influence upon
the progress of science. . At that time geology in any preper sense of the term did not exist. Mineralegy, however, had made considerable pregress. Hutton's taste fer chemistry naturally led him inte mineralegy. But he had conceived larger ideas than were entertained by the mineralogists of his day. He desired te trace back the origin ef the varieus minerals and roeks, and thus to arrive at seme clear understanding of the histery of the earth. For many years he centiaued to poader over the subject, making during that time many excursions to different parts of the country to obtain materials for his researches, or to test the hypetheses he had been led to form. At last, in the spring of the year 1785, he communicated his views to the recently establishiod Reyal Seciety of Ediaburgh in a paper entitled Theory of the Earth, or an Investigation of the Laws Observable in the Composition, Dissolution, and Restoration of Land upon the Globe. In this remarkable werk the doctrine is ex. pennded that geolegy is net cosmogeny, but must confine itself to the study of the materials of the earth; that everywhere evidence may be seen that the present rocks of the earth's surface bave been fermed out of the waste of older recks; that these materials having been laid dewn under the sea were there consolidated under great pressurc, and were subsequently disrupted and apheaved by the expansive power of subterranean heat; that during these cenvulsiens veins and masses of molten reck were injected inte the rents of the dislocated strata; that every pertion of the upraised land, as seen ar expesed to the atmosphere, is subjeet to decay; and that this decay must tend to arlvance until the whele of the land has been worn away and laid down on the sea-Hoer, whence future apheavals will onee mere raise the conselidated sediments inte now land. In seme of these broad and bold generalizations Hutten was anticipated by the Italian geelogists; but to him belengs the credit of having first perceived their mutual relatiens, and combined them in a lumineus coherent theery everywhere based upon observatien.

It was not merely the groued beneath us to which Hutton directed his attention. He had long studied the changes of the atmesphere. The same velume in which his Theory of the Earth appeared ceatained alse a Theory of Rain, which was read te the Royal Society of Edinburgh in February 1781. He contended that the ameunt of meis. ture which the air can retain in solution increases with angmentation of tempcrature, and therefere that on the mixture of two masses of air of different temperatures a portion of the meisture must be cendensed and appear in visible form. He investigated the data available in his time regarding rainfall and climate in different regiens of the glebe, and came to the cenclusion that the rainfall is everywhere rcgulated by the humidity of the air en the one band, and the causes which premote mixtures of differeat aerial currents in the higher atmosphere on the other.

The vigour and versatility of his genius may be nnderstood from the varicty of works which, during his thirty years' residence is Edinburgh, he gave to the world. In the year 1792 he published a quarto volume entitled Dissertations on different Subjects in Natural Philosophy, 11 which he discussed the nature of matter, fluidity, coLesion, light, heat, and clectrieity. Some of these sulbjects ware further illustrated by him in papers read before the Royal Sncicty of Edinburgh. He did not restrain himself within the domain of physics, but beldly marcled into that of metaphysics, publishing three quarto volumes with the title An Investigation of the Principles of Fnowledge, and of the Progress of Reason-from Sense to Science and Philo:sophy. In this work he develops the idea that the external werld, as conceived by us, is the ereation of cur ewn minds influenced by impressioes from withent, that there is no resemblance between our picture of the outer werld and the
reality, yet that the impressions produced upon our minde, being eenstant and consistent, become as mach rcalitics to us as if they precisely rescmbled things actually existing, and thereforc thant our noral conduct must remain the sam:o as if our ideas perfectly correspended to the canses producing them. His clasing years were deveted to the extension and republicatiom of his Theory of the Earth, of which twe velumes oetave appeared in 1795. A third veluane, necessary to complete the werk, was left by him in manuscript, and is referred to by his biographer Playfair, but seems to have disappeared. No sooner had this task been performed than he set to werk to collect and systematize his numerens writings on husbandry, which he prepesed te publish under the title ef Elcments of Llgriculture. He had nearly completed this labeur when an incurable disease breught his active career to a close on 26th March 1797:

It is by bis Theory of the Farth that Hutton will be remembered with reverence wh o geology continues to be cultivated. The author's style, I owever, being somewhat heavy and obscure, the book dil not attract duri'g his lifetime so much attention as it deserved. Happily for science Hutton numbered among his friends John l'tayfair, professor of mathematics in the university of Edinhurgh, whose enthusiasu for the spread of IIutton's doctrine was combined with a rare gift of graceful and luminons exposition. Five years after Hutton's death he published a volume, lllustrations of the Kuthonian Theory of the Earth, in which he gave an admirable summary of that theory, with numerous additional illustratious and arguments. This work is justly regarded as one of the classical contritutions to geological literature. To its influence much of the sound progress of liritish geology must be ascribed. In the year 1805 a biographical account of Intton, written by Playtair, was publishcel in vol. v. of the Transactions of the Royal Society of Edinburgh.
(A. GE.)

IIUY, in Flemish IIory, a town of Belgium, at the head of an arrendissement in the province of Liege, situated in the mest remantic pertien of the Meuse valley near the cenflueace of the Hoyoux, on the railway between Liégo and Namur, and about 20 miles west of the forner city. It lies en beth banks of the river, and the twe portions are united by a bridge abont 460 feet long. Of best note ameng the buildings are the tewn-honse, the courtheuse, the hespital, and the cellegiate church of Netre Dame, which is an excellent specimen of Gethic architecture, dating originally from the 14th century, but restered in the ceurse of the 16 th and the 19th. The citadel ef Huy is now demelished. It was a pewerful fertress, censtructed between 1817 and 1822 en the site of the elder castle dismantled by the Dutch in 1718. Part of the works were excavated in the solid rock, and the whole building leoked down en the valley of the Meuse with picturesque defiance. Of the industrial activity of the town the most impertant results are paper, tin-plate, zinc, iren, carthenware, and brandy; and iren, zinc, and ceal are extensively wrought in the vicinity. The pepulation in 1876 was 11,774.
Huy, in modern Latin Hooium, Hogum, Huyum, nud Huunn, oxistel at lenst as early as the 7 th century, and according to somo authorities it was founded in 148 by the cmperor Antoninus. Coins of Charles the Simple are extant with the legend in yico Hoio. The older namo of the district in which it is situated was tho Condroz, or territory of the Condrosii. Under tho princcbishops of Lizige Huy was a prosperous phace, and it pasessed no fewer than fifteen churcles, as well as a number of monasterics, for a population of ahout 5000. It was in ono of its suburbs that the aldey of Neufmoustier was founded by Peter tho lle emit, who died and was huried within its preeinets (1115). Part of tho cioisters are still standing ; and a monument was erected iu 1858 ly M. Godin, the owner of the grounds, to mark tho site of the hermit's tomb. Huy was captured hy the Dutch in 1595, and in 1693 it was takea and burnch by tho French. The Diteh were in possession from 1702 till 1718 , when they restored the town to the cmperor. See Gorissen's edition of Melard, Hist. de he ville et due chatcan do. Huy, Iluy, 1839.
hUYGENS, Curistian (1629-1695), mathematician, mechanician, astrenomer, and physicist. was hom at the Hague, April 14, 1629 . 1Fe waz the second son of Constantin Huygens, noticed below. Frem his father Cluistiann
recered the rudiments of his clucation, which was continued at Leyden under Vinuius aud Schooten, and completed in the juridical school of Bredn. His mathematical bent, however, soon diverted him from his legal studies, and the pcrusal of some of his earliest theorems enabled Descartes to predict his future greatness. In 1640 he accompanied the mission of Henry, count of Nassau, to Denmark, and in 1651 entered the lists of science as an assailant of the unsound system of quadratures adopted by Gregory of St Vincent. This first essay (Exetasis quadrature circuli, Leyden, 1651) was quickly succeeded by his Thermemata de quadratura hyperboles, ellipsis, et circuli; while, in a treatise entitled De circuli magnitudine inventa, he made, threc years later, the clnsest approximation hitherto obtained to the ratio of the circumference to the diameter of a circle.

But another class of subjects was about to engage his attention. The improvement of the telescope was then justly regarded as a sine qua non for the advancement of astronomical knowlodge. Owing, bnwever, to the difticultics interposed by spherical and chromatic aberration, little progress had been inade in that direction when, in 1655 , Huygens, working with his brother Constantin, hit upon a new method of grinding and polishing lenses. The immediate results of the clearer definition obtained were the detection of a satellite to Saturn (the sisth in order of distance from its primary), and the resolution into their true form of the abnormal appendages to thac planet. Each discovery in turn was, according to the prevailing custom, announced to the learned world under the veil of an anagram-removed; in the ceses of the first, by the publication, early in 1656, of the little tract De Saturni luna observatio nova; but retained, as regards the second, until 1659, when in the Systema Saturnium the varying appearances of the so-called "triple planet" were clearly explained as the phases of a ring inclined at an angle of 20° to the ecliptic. His application of the pendulum to regulate the movement of clocks was another fruit of his astronomical labours, springing, as it did, from his experience of the need for an exact measure of time in observing the heavens. The invention dates from 1656 ; the Morologium, containing a description of the requisite mechanism, was published in the fullowing year, and on the 16th of June 1657 Huygens presented his ferst "pendulum-clock" to the states-general.

IIis reputation now became cosmopolitan. As carly as 16.55 the university of Angers had distinguished him with an honorary degrec of doctor of laws. In]663, on tho oceasion of his second risit to England, he was elected a fellow of the Royal Society, and imparted to that body in January 1669 a clear and concise statement of the laws governing the collision of elnstic bodies. Although these conclusions were arrived at indenendently, and, as it would seem, several years previous to their publication, they were in great measure anticipated by the communications on the same subject of Wallis and Wren, made respectively in November and December 1668.

IIaygens had hefore this time fixed his"abode in France. In 1665 Colbert made to him on behalf of Louis XTV. an offer too tempting to be refused, and between the following year and 1681 his residenco in the philosophic seclusion of the Bibliotheque du Roi was only interrupted by two short visits tn his native country. Ifis magmem opus dates from this period. The Itomlagiem. Oscilluterim, published with a dedication to bis royal patron in 1073, containel original disorveries sufficient to have furnished materials for half a dozen striking disquisitions. His solution of the celebrated problem of the "centre of nscillation" formed in itsolf an important event in the history of mechanics. Assuming as an axion that the centre of gravito of any num-
ber of interdependent bodies cannot rise ligher than the point from which it fell, be arrived, by anticipating in the particular case the general principle of the conservation or vis viva, at corrcet although not strictly demonstrated conclusiuns. His treatment of the subject is especially notevorthy as being the first successful attempt to deal with the dynamics of a system. The determination of the true relation between the length of a pendulum and the time of its oscillation; the invention of the theory of evolutes; the discovery, hence ensuing, that the cyelnid is its own evolute, and is strictly isnchronous; the ingenious although practicalls inoperative idea of correcting the "circular error" of the pendulum by applying cycloidal cheeks to clockswere all contained in this romarkable treatise. The theorems on the composition of forces in circular motion with which it coocluded formed the true prelude to the Principia, and would alone suffice to establish the claim of Huygens to the highest rank among mechanical inventors.

In 1681 he fally severed his French connexions, and rcturned to Holland. The harsher measures which about that time began to be adupted towards his co-religionists in France are usually assigned as the motive of this step. He now devoted himself during six years to the production of lenses of enormous focal distance, which, mounted on high poles, and connected with the eye-piece by means of a cord, formed what were called "nerial telescopes." Three of his object-glasses, of-respectively $1.23,180$, and 210 feet focal length, are still ia the possession of the Royal Society. He also succceded in constructing an almost perfectly achromatic eye-piece, still known by his name. But his resenrches in physical optics constitute his chief title-deed to immortality. Alt:-ough Hooke first proposed the wave theory of light, Huygens gave reality to the cenception, establishing it on a foundation so sure that it has never since been shaken. His powerful scientific imagioation enabled him to perceive that an undulation may be broken up into an indefinite number of parts, each of which is the origin of a partial wave, and that the aggregate effect of all these partial waves will reconstitute the primary wave nt any subsequent stage of its progress. This resolution of the main undulation is the well-known "Principle of Huygens," and by its means he was enabled to prove the fundamental laws of opties, and to assign the correct construction for the direction of the extraordinary ray in uniaxial crystals. These inveatigations, together with his discovery ot tho "wonderful phenomenon" of polarization, are revorded in his Trate de la Lamière, published at Leyden in 3690 , but composed $\ln 1678$. In the appended treatise Sur la Cause de la Petsanteur, he rejected gravitation as a universal quality of matter, although admitting the Newtonian theory of the planetary revolutions. From his views on centrifugal force he deduced the ohlate figure of the enrth, estimating its compression, however. at little more than one-hale its actual nmount.

LInygens was never marrid. ILe diel at the Hague, June 8,1695 , bequeathing his manuseripts to the university of Leyden, and his considerable property to the sons of his younger brotber. In character lo was as estimable as he was brilliant in intelleet. Athough, like most men of strong originative power, he assimilated with difficulty the ideas of nthers, his tardiness sprang rather from inability to depart from the track of his own methods than from reluctance to acknowledge the merits of his competitors.

In ablition to the works nlvealy mentombl, his Cosmothemosa spuculation concerning the imhabitants of the plamets-was priated mosthumbisly at the lagie in 1693, and appered ulmost simultanconsly in an English transiation. A volume whtitled Opera lusthuma, 1,yid n, 17 (A3, containet his "Dioptriea," ir which the ratio bot ween the respective foral heryths of olyect-glass and eye.ghass is given as the measure of nagnifying power, together with the shorter cssays Dc cilris figurendis, De curona et parluciis, \&c. An carly tract Do
ratiocinio in litdo alece, printed in 1657 with Selrootens sercila. times Sathematicx, is notable as one of the first formal treatises on the theory of probabilities; nor should his investigations of the propertics of the cissoid, logarithmic, and catenary Le left unnoticed. His insention of the spiral watelospring was explained in the Journal des Savants, February 25, $16 \overline{5}$. An edition of his works was published by 'S Gravesande, of which two quasto rolunus opprared under the heading opera raria, Leyden, 1iot, and two supplementary ones entitled Opera reliqua, Anstemdam, 12.28. His scientific correspondence, edited from nanascripts preserved at Ley. den by P. J. Uytenbroek, was published with the title Christiaui Hugcnii aliorungue seculi JVII. virorma celdrium Excreitationcs Mathenatice of Philosophite, The Hague, 1833.
(A. M. C.)
huygens, Sir Constantion or Constaxtin (159G1687), Dutch poet and diplomatist, was born at the Hague on the 4th of September 1596. His father, Christiaan Huygens, pas secretary to the state council, and a man of great political importance. At the baptism of the child, the city of Breda was one of his spousors, and the famous admiral Justinus van Nassau the other. From his earliest childhood he was trained in every polite accomplishment, and before he was seven he could speak F'rench with fluency. He was taught latin by Jolaunes Dedelus, and soon became a master of classic versification. As he grew up, be developed not only estraordinary intelleciual gifts but great physical bezuty and strength, and was one of the most accomplished abletes and gymnasts of his age, his skill in playing the lute and in the arts of painting and engraving attracted general attention before he began to develop his genius as a writer. In 1616 he proceeded, with his elder brother, to the university of Leyden. Ho stayed there only one year, and in 1618 proceeded to London with the Euglish ambassadur Carleton; he re-- mained in London for snme montlis, a ad then went to Oxford, where be studied for some time in the Bodleian I,ilisary, and to Woodstock, Windsor, and Canbridge ; he was intruduced at the English court, and played the lute before James I. The most interesting feature of this risil was the intimacy which sprang up between the young Dutch poet and the famous Dr Donne, for whose genius Huygens preserved through life an unbounded adniration. He returned to Holland in company with the English contingeat of the synod of Dorl, and in 1620 he proceeded to Venice in the diplomatic service of his cuantry; on his scturn he nearly lost his life by a foollhardy exploit, nanely, the scaling of the topmost spire of Strasburg eathedral. In 1621 he published one of his most weighty and popular puems, his Batava Tempe, and in the same year he proceeded again to London, as secretary to the ambassador, Wijngacrdan, but returned in three nonths. Ilis third diplomatic visit to England lasted longer, from the 5 h of December 1621 to the lst of March 1623 . During his absence, his volume of satires, Costelick . Mal, dedicatcd to Jacob Cats, appeared at the Hague. In the autumn of 1622 he was knighted by James I. ITe pablished a large volume of miscellianeons poens in 1625 under the title of Otiorum litri sex; and in the same year he vas apprinted private secretary to the stadhulder. In 1627 Iluygens married Suzanna van Baerle, and the young conple settled in a handsome house in the best part of the Hagne ; four sons and a daughter were born to them. In 1630 Huygens was called to a seat in the privy council, and he continued to exercise political power with wisdon and vigour for many years, under the title of the lord of Zuylichem. In 1631 he conpleted his long-talked-of version oL the poems of Dornc. In 1637 he had the misforlume to lose his admirable wife, and he immediately began to celebrate the virtues and pleasures of their marricd life in the remarkable didactic poom called Dagnerck, which was not pullished till long afterwards. From 1639 to 1641 he occupied lhimself by building a maguificent house aud garden outside the Hague, and by celcbrating their beauties in a poem
entuled Ifofuijck, which saw the light in 165 f. In 1617 he wrote his beantiful poem oi Ongentroost or "Eye Consolation," to gratify his blind friend Iucretia van Trollo. Ile made his solitary effort in the dramatic line in 1659 when he brought unt his comedy oI Trimuje C. relis, which deals, in rather broad humour, with the adventures of the wife of a ship's captainat Zaandam. In 1658 he rearranged his poems, and issued then with many additions, under the titlo of Com Flocers. ' He pruphosed to the Govermment that the present highway from the Hague to the sea at Scheveningen should be constructed, and during his absence on a diplomatic mission to the French conrt in 1666 the road was made as a compliment to the venerable statesman, who expressed his gratitude in a descriptive poens entitled Zerstruet. Huygens edited his poems for the last time in 167.2, and died in his ninety-first year, on the 28th of March 1687. His second son, Christian, the eminent astronomer, is noticed above.

Constantijn Huygens is the most hrilliant figure in Dutch literary histony. Other statesmen surpassed lim in political intluence, and at heast two other potts surparsed liin in the value and oliginality of their nritings. But his figure was more dignifed and splendid, his talents were more varid, and his general acconplishments more remarkable than those of any other person of lis age, the greatest age in the history of the Nelledands. Huygens is the grand seiynear of the republic, the tyle of aistocratic oligatchy, the jewel and omanemt of Duteh libenty. When we consider his imposing character and the positive value of his writings, we may well he surprised that he las not fonnd a nodern editor. It is a diomace to Dutch scholarship that no complete collection of the writings of Huygens exists. His autobiogaphy, De vilu moyria semones, did not see the light until 1827, and his remarkable poem, Cluysucrch, was not printel until 1842. As a proct Muygens shows a fincr sense of form than any other Dutch writer; the langnage, in his hands, become's as flexible as Italian. Mis epistes and lighter pieces, in particular, display lis metical ease and facility to perfection.
(E. W. G.)

HUYSMANS. Four painters of his family matriculated in the Autwerp guild in the lith century. Cornelis the elder, apprenticed in 1633, passed for a mastership in 1636, and remained obsenre. Jacob, apprenticed to Frans Wouters in 1650 , wandered to Eugland towards the close of the reign of Charles 11., and competed with Lely as a fashionable portrait painter. He executed a portrait of the queen, Catherine of Braganza, unw in the national portrait gallery, and Horace Walyole assigns to him the likeness of Lady Bellasys, now cataloguec at Hampton Court as a work of Lely. His portrait of Izaak Walton in the Nitional Gallery shows a disposition to imitate the styles of Rabens and Van Dyke. According to most accounts he died in Londun in 1690. Jan Baptist Huysn:ans, born at Antwerp in 1654, matriculated in 1676-75, and died there in 1715-16. He was younger brother to Cornelis Ihuysmans the second, who was iorn at Antwerp in 1648 , and cudacated by Gespar de Wit and Jacol van Artois. Of Jan Daphist little or nothing has been preserved, except that he registered numerons apyrenices at Antweyl, and painted a landscape dated 1607 now in the Brussels muscum. But for the signature critics would assign this piece to his brother. Cornelis the second is the only master of the name of Huysmans whose talent was largely acknowledged. He chanced to receive lessons from two artikls, one of whom was familiar with the Roman art of the Poussins, whilst the other inherited the scenic style of the school of Rubens. He combined the two in a rich, highly coloured, and usually effective style, which, however, was not free from monotony. Seldom attempting anything but woodside views with fancy tackgrounds, half Italian, hall Flemish, he minted with great facility, and left numerous examples behind. At tha outset of his career he fractised at Malines, where bo married in 1682, and there too he cntered into sone business connexion with Vian der Menlen, fur whom he painted soma backernunds. In 1706 he wilhdrew to Autwerp.
whore he resided till 171%, returning then to Malines, where he died on the 1st of June 1727.
Though most of his pictures were composed for cabinets rather than charches, he sometimes emulated VanArteis in the production of largo sacred pieces, and for many years hia Christ on the Road to Emmaus adorned the cheir of Notre Dame of Malines. In the Eallery of Nantes, where three of his small landscapes are preserved. tbere hangs as Investment of Luxembourg, by Van der Meulen, of which he is known to have laid in the background. The two nstionsl galleries of London and Edinburgh contain each one example of his skill. Blonheim, too, and other private galleries in England, possess one or more of his pictures. But most of his works are on the Continent,-four a-piece in the Lenvre, Augsburg, and Stuttgart; three a-piece in Berlin, Brunswick, Cologae, and Munich; two in Cassel and St Petersburg; one at Antwerp, Bras. sels, Carlsruhe, Copenhagen, Dresden, and Hanever.

HUYSUM, Jan tan (1682-1749), was born at Amsterdam in 1682, and died in his native city on the 8th of February 1749. He was the son of Justus van Huysum, whose practice remaned entirely local, but whe is said to have been expeditious in decorating doorways, screens, and vases. A picture by this artist is still preserved in the gallery of Brunswick, representing Orpheus and the Beasts in a wooded landscape, and here we have some explanation of his con's fondness for landseapes of a conventional and Arcadian kind; for Jan van Huysum, though skilled as a painter of still life, believed bimself to possess the genius of a landscape painter. Half his pictures in public galleries are landscapes, views of imaginary lakes and harbours with impossibio ruins and classic edifices, and woods of tall and motionless trees, - the whole very glossy and smooth, and entirely lifeless. The earliest dated work of this kind is that of 1717, in the Louvre, a grove with maidens culling flowers near a tomb, ruins of a portico, and a distant palace on the shores of a lake bounded by mountains. In the picture market these landscapes are worth comparatively little, whilst the master's fruit and fower pieces are all the more appreciated, and good examples readily fetch from $£ 800$ to $£ 900$. It is doubtful whether any artist in this peculiar walk of art ever surpassed Van Huysum in representiog fruit and flowors. It has been said that his fruit has no savour and his flowers have no perfume,-in other words, that they are hard aad artificial,--but this is scarcely true. In substance fruit and flower are delicate and finislied imitations of nature in its more subtle varieties of matter. The froit has an incomparable blusb of down, the flowers have a perfect delicacy of tissue. Van Huysum too shows supreme art in relieving flowers of various colours against each other, and of ten against a light and transparent baickground. Ho is always bright, sometimes even gaudy. Great taste end much grace and elegance are apparent in the arrangement of bouquets and fruit in vases adorned with bas relicfs or in baskets on marble tables. Thero is exquisite and faultless finish evcrywhere. But what Van Hnysum has not is the breadth, the bold effectiveness, nad the depth of theught of De Heem from whom he descends through Abrabam Mignon.

Soma of the fuest of Van IInysum's fruit and thower picces have bear in English provate collections - these of 1723 m the earl of Ellesmere's gallery, others of 1730-32 in the cellections of Hope and Ashburton. Onc of the best examples is now in tho National Gallery (1730-37), which came from Mr Wells of kedleaf and Abraham Darby. No public museum has finer and more numerons specinens than the Louvre, wheh boasts of four landscapes and six panels with atill life, then come Berlin and Amsturdan ${ }_{\text {with }}$ four fruit and Hower pieces; then St l'etersburg, Munich, Hanover, Drexdon. Tho Hagle, Brunswick. Vienaa, Carlsruhe, and Copenhagen.
hwen ThSang (Hiouen Thsang, Hiwen T'sang) is tha most eminent repregentative of a remarkable and valuable branch of Chinese literature, knewn during tho list balf century, chactly through the lahours of Continental echolsra. It comsists of the narratives of Chincse Iuddlises vibo travelled to India, whilst their religion flourished
there, with the view of visiting the sites consecrated by the bistory of Sakya Muni, of studying at the great conveats which then existed in India, and of collecting books, reliques, and other sacred objects. In short, their objects and their narratives bear a strong analogy to the objects and narratives of the many pilgrimages to Palestiue in the same and later ages which bave come down to us in ecclesiastical collections.

The impertance of these writings as throwing light on the geography and history of India and adjoining countries, during a very dark period, is great, and they have been the sabject of elaborate commentaries by students in onr own day, some of the chief of which will be noted at the end of this article. Several Chinese memoirs of this kind appear to have perished; aad especially to be regretted is a great collection of the works of travellers to India, religinus aad secular, in sixty books, with forty more of maps and illustratious, published at the expense of the emperor KaoT'song of the T'ang dynasty, 666 A.D., with a preface from the imperial hand. We will mention the clerical travellers of this description who are known to us by name.

1. Shitao-an (died 385) wrote a work on his travels to the "vestern lands" (an expression applying often to 1ndia), which is supposed to be lost. 2. Fa-hian travelled to lndis in 399, and returned by sea in 414. His work, calied Fo-nue.Ki, or Memoirs on the Buddhet Jeutms, has been translated by Abel-Remusat and Landresse, and agan into English by the her. S. Beale; Mr Laidlay of Calcutta also published a trauslation from the French, wilh interesting notes. 3. Hwai Seng and Sung- Fun, monks, travelled to India to collect books snd reliques, $515-521$. Their short narrative has been translated by the late Karl Fried. Nemmann, and also by Mr Beale (along with Fa-hian). 4. Hucn T'sing, tho subject of this notice. In relation to bis travels thero are two Chinese works, beth of which have been translated with an inmense rpilianee of labeur and learning by M. Stanislas Julien, viz., (a) the Ta-T'ang-Si-Fu-Ki, or Menoirs on Western Countres issued by the T"ang Dynasty, which was compiled under the travcller's own supervision, by order of the great emperor Tai-T"sung; and (b) a Biography of Hwen $T^{\prime \prime}$ sang by two of his contemporaries. 5. The Itinerary of Fifty-six Religious Truvellers, conpled and published under imperial nuthority, 730 . 6. The llinerary of $\mathrm{K}^{2} 2$ - Nie, who travelled (964-976) at-the head of a large body of monks to collect books, \&c. Neither of the last two has been translated.

Hwen T'sang was bern in the district of Kien-Shi, near Honan-Fu, about 605, a period at which Buddhism appears to have had a yowerfol influcace upon a large body of ${ }^{\circ}$ cducated Chinese. From childhood grave and studions, ho was taken in charge by an elder brother who bad adopted the menastic lite, 10 a convent at the royal city of Loyang in Houan. Hwen T"sang soun followed his brother's. example. For some ycars he travelled over Chima, toaching and learning, and eventually settled for a timo at the capital Chang-ngan (now Si-ngn-fu in Sbensi), where his. fame for learning became great. The desire which be cotertained to visit India, in order to penetrate all the doctrines of the Buddhist philosophy, and to perfect the collections of lndan books which existed in Chian, grow irresistible, and on August 629 he started upon his colitary journey, eluding with difliculty the strict prohbition which was in furce against crossing the frontier.

The "master of the law," as his biographers call hin. plunged alono into the terrible desert of the Gobi, ther: known as the Sha-ho or "Sand Rwer," between Kwa-chan and lgu (now llami or Kamil). At long intervals he found holp from the small garrisons of the towers that dotted the desert track. Very striking is the description, like that given six centuries later by Marco Polo, of the gitasi-supernatural horrors that beset tho lonely traveller in the wilder-ness-th.s visions of nraties and hamers; and the manner in which they are dissipated singularly recalls passages in Imynan's Pilarim's Progres. After great suffering 11 wen 'l"saut reached Ign, the seat of a Turkish principality, and pursmed his way along the southorn foot of the T'ion-shan, which he crossed by a clacier pass (vividly described) is.
the longitude of Lake Issikul. In the valley of the Talas river he encounters the great khan of the Turks on a hunt10g party, -a rencontre which it is interesting to compare with the visit of Zeraarchus to the great than Dizabulus, sixty years before, in the same region. Passing by the present Tashkend, and by Samarkand, then inhabitcd by fire worshippers, be reaclied the basin of the Upper Osus, which had recently been the seat of the powerful dominion of the Haiathelah, Eplthalites, or Whits Huns, known in earlier days to the Greeks as Tochari, and to Hwen T'sang (by the same name) as Tuholo or 'Tukhāra. His account of the many small states into which the Tukhara empire had broken up is of great interest, as many of them are identical in nante and topography with the high valley states and districts on the Upper Osus, which are at this day the object of so much geographical and political interest.

Passing by Bamian, where be speaks of the great idols still so famous, bo crosses Hindu-Kush, and descends the valley of the Cabul river to Nagarahara, the site of which, still known as Nagara, adjoining Jaláaábad, has recently been explored by Mr W. Sinpson. Travelling thence to Pesháwar (Purushapúra), the capital of Gandhára, he made a digression, through the now-inaccessible valley of Swat snd the Dard states, to the Upper Indus, returning to Peshawar, and then crnssing the Iodus (Sintu) into the decayed kingdon of Taxila (Ta-cha-silo, Tskshasilit), then subject to Kashmir. In the latter valley he spent two whole years (631-633), studying in the conveuts, and visitiag the many monuments of bis faith. We cannot follow his further travels in detail, and can ouly mention some- of the chief points in his devious route. Such are Mathura (Moc'ulo), whence he turned north to Thannesar and the upper Jumas and Ganges, returning south down the valley of the latter to Kanyaknbja or Kanauj, then one of the grest capitals of India. The pilgrim next entered oo a circuit of the most famous sites of Buddhist and of sacient Indisn history, such as Ayodhyá, Prayaga (Allahhi. bid), Káusámbhí, Srávasti, Kapilarestu tho birthplace of Sákya, Kusinagsra his death place, Pátalipútra (Patoa, the Palibothra of the Greeks), Gayá, Rajagriha, and Nalanda, the most fsmous and learned monastery and college in India, adorned by the gifts of successive kings, of the splendour of which he gives a vivid description, and of which traces have recently been recovered. There he again spent nearly two years in mastering Sanskrit and the depths of Buddbist philosophy. Again, proceediog down the banks of the Ganges, he diverged east ward to Kámarúps (Assam), sad then passed by the great port of Támralipti (Tomlúk, the misplaced Tanalitio of Ptolemy), and through Orissa to Kanclipara (Conjeveram), about 640. Thence he went northward across the Carnatic and Mabáráshtra to Barakacheva (Baroch of our day, Barygaza of the Greeks). After this he visited Malwa, Kach'b, Surashtra (peninsular Guzerst, Syrastrene of the Greeks), Siadb, Multín, and Ghazni, whence he rejnined his former course in the basin of the Cabul river.
This time, however, becrosses Pamir, of which he giresa remarkableaccount, and passes by Kashgsr, Khotan (Kustana), and the vicinity of Lop (Navepa) across the desert to Kwachsu, whence he had mado his venturous and loncly plunge into the waste fifteen ycirs before. He carricd with him great collections of books, precious inages, aud reliques, and was received (April 645) with pubtic and imperial enthusiasm. The enperor Tai T'sung desired him to cormnit his journey to writing, and also that he should abandon the eremitic rule and serve the state. This last he declined, and devoted himself to the compilation of his narrative and the translation of the books he bad brought with him from Iadia The former was completed 648 A.t. In 664

Hwen T'sang died in a convent et Chang-agan. Some things in the history of his last days, and ia the indications of beatitude recorded, strongly recall the parallel history of the saints of the Roman calcudar. But on the other hand wo find the Chinese saint, on the approsch of death, causing onc of his disciples to frame a catslogue of his good works, of the books that he had translated or caused to be transcribed, of the sacred pictures executed at his cost, of the alms that he bad given, of the liviog creatures that he had ransomed from death. "When Kia-shang had ended writing this list, the master ordered him to resd it aloud. After hearing it the devotecs clasped their hands, and showered their felicitations on him." Thus the " rell-done, good and faithful," comes from the servant himself in self-applause.

The book of the biography, by the disciples Hrae-li and Yen.t'song, as rendered with judicious omissions by Stan. Julien, is exceedingly intercsting; its Chinese style receives. high praise from the translator, who says he has often had to regret his inability to reproduce its grace, elegance, and vivacity. We cannot here give any idea of the uscs which the accnunts of Hwen 'T'sang have served in illustrating geography mud history, but must refer to the appended list of works.
Fo-Koue-Ki, trad. du Chinois, par Abel-Rémusat, resu et complete par Elaproth et Landresse, Paris, 1836 ; Hf. de he $V_{\text {cic }} d \theta$ Hionen-Thsang, \&c., trad. du Chinois par Stamslas Julita, Paris, 1853: Ménoires sur les Contrés Occidentales. . trad. du Chinois en Frangais (par le muênee), 2 vols., Paris, 1857-58; Mimoire Analytiquc, \&e., attached to the last work, by L. Vivien de St Martin; "Attempt to identify some of the Yhacea mentioned in the Itinerary of Hiuan Thsang," by Major Wm. Anderson, C.B., in Journ. As. Soc. Bengal, sit., pt. 2, F. 1183 (the enunciation of a singuiarly perverse theory); "Verification of the Itinerary of H wan Thsang," \&c., by Capt. Alex. Cunningban, Dengal Engineers, ibid, xvii. pt. 1, P. 475; Travels of Fah-hian and Sung-Yan, Buddhist Pilgrims, \&c., by Sam. Deal, 1869; The -Aucient Geoography of India, by Major-Gen, Alex. Cunningham, R.E., 1871 ; "Notes on Hwen Thsung's Account of the Princiralities of Tokharistan,", by Col. H. Yule, C.B., in Joum liog. As. Soc., new ser., vol. vi. p. 82; "On Hiquen Thsang's Journey from 「atna to Pallabhi," by James Fergusson, D.C.L., ibid., p. 213.
(H. Y.)

HYACINTH, slso called Jacintin, one of the most popular of garden Howers, "supreme anongst the thowers of spring." It is no new favourite, having beon in cultivation prior to 1597 , at which date Gerard records the existence of six varieties, which are not indicated as particularly rare or novel. Res in 1676 mentions severul single and double varieties na being then in English gardens, and Justice in 1754 describes upwards of fifty siugle flowered varieties, and nearly one hundred double-fiowcred ones, as a selection of the best from the catalogucs of two then celebrated Dutch growers. One of the Dutch sorts, callcd La Reine de Femues, a single white, is said to have produced from thirty-four to thirty cight flowers in a spike, and on its first appeatance to have suld for 50 guilders a bulb; while ono called Overwinnaar or Conqueror, a double blue, sold at first for 100 guilders, Cloria Mundi for 500 guilders, and Koning Seloman for 600 guilders. Several sorts are at that date mentioned as, blooming well in waterglasses Justice relates that he himself raised several very valuable double flowered kinds from seeds, which many of the serta he describes are noted for producing freely.
The original of the cultivated hyacisth, Iyacinthus orientalis, is by comparibon an insignilicant plant, bcaring on a spike only a fcw small narrow-lobed washy blue fowers. So great has becu the improvement effected by tho florists, and chiefly by tho Dutch, that the modere hyscinth would scarcely be recognized as the derecedant of the type above referred to, the spikes bcing long and denser compused of a large number of lowers; the spikes produced by struag bulbs not unfrequently measura 6 or 7 inches in length and from 7 to 9 inches in circumfereace, with the flowers closelv siet on from botem to top. Of lat

Years much improvement has been effected in the size of the individual flowera and the breadth of their recurving lobes, as well as in securing iacreased brilliancy and depth of colour.

The peculiarities of the seil and climate of Hollind are 90 very favourable to their production that Dutch florists have made a specialty of the growth of those and other bulbous-rooted flowers. An area of 125 acres is devoted to the gromth of hyacinths in the vicinity of Haarlem, and is estimated to bring in a revenue of nearly $£ 30,000$. Some notion of the rast number imported iuto England aonually may be formed from the fact that, for the supply of flowering plants to Covent Garden, one market grower alone produces from 60,000 to 70,000 in pots under gless, their blooming period being accelerated by artificial heat, and eatending from Christmas onwards until they bloom oeturally in the open ground.

In the spring flower garden few plants make a more effective display than the byacinth. Dotted in clumps in the flower borders, and arranged io masses of well-contrasted colours in beds io the flower garden, there are oo Howers which impart during their season-March aud April-a gayer tone to the parterre. The bulbs are rarely grown a second time, either for indoor or outdoor culture, though with care they might be utilized for the latter purpose ; and bence the eoormous numbers which are procured each recurring year from Holland.

The first hyacinths were single-flowered, but towards the close of the 17 th century double-flowered oncs began to appear, and till a recent period these bulbs were the most esteemed. At the present time, however, the siogleflowered sorts are in the ascendant, as they produce more regular and symmetrical spikes of blossom, the flowers being closely set and more or less borizontal in direction, while most of the double sorts have the bells distant and dependent, so that the spike is loose and by comparison ineffective. For pot culture, and for growth in water-glasses especially, the single-flowered sorts are greatly to be preferred. Few if any of the original kinds are now in cultivation, a succession of new and improved varieties haviog been raised, the domand for which is regulated in some respects by fashion. At the present day nur nurserymen offer in their annual catalogues of select sorts between two and three hundred distinct varictics.

The carlicst of all the hyacinths, and one which is very valuable for forcing into flower in minter, is called the white Roman hyaciath. It is small-dowered, but very aweet, and, if potted in September or Oetuber, as soon as the bulbs can bo plocured after importation, may easily be had ia blossom by Clristmas, when white nowers are so much sought after. Of course this is clone with the nid of a forcing-house, but a very high tenperature is not required. The best soil for put hyacinths is made up of two parts turfy loam, one part decayed leaf-moule, and one part well-decomposed cow dung, with sand cnotgh to make it porons, and with suflicicnt drainage.

The name of hyacinth is applied to several other plants having bulbous roots. The Cape hyacinth is Seilla cormmdosa; the grape byacinth, Museari botryoides; the tassel leyacinth, Muscari comnsum, and the feathered hyacinth, Afuscari comosum monstrosum; the starch hyacinth, Muscuri racemosum; the star hyacintl, Scilla umana; the Iily hyacinth, Scille Liliohyacinthes; the hyacinth of Peru, Sculle peraviana; the wild hyacinth or lluc-bell, Hypecinthes non scriptus; the wild liyacinth of America, Comassiu esculenta; the Missonri hyacintl,, Mesperoscordum Luctoum; aul the native hyacinth of 'Tasmania, Thelymitra medice.

HYACINTIIUS, a mythological figure connected with the 1 lyacintlia, a festival celebrated by the Spartans in bunour of Apollo of Amycla, whose primitive image, stand-
ing on a throne, is described by Pausanias (iii. 19, 4). Tbo legeod attached to the festival is to the effect that Hyaclnthus, a beautiful youth beloved by the god, was accidentally killed by him with a discus. From his bloed sprang a darkcoloured flower called after him hyacinth, on whose petais is the mord aiai, alas. The myth, like that of Linus (v. Brugsch, Die Adonis-Klage und das Linos-Lied), is one of the many popular representations of the bedutiful spring vegetation slain by the but sun of summer (which is here and in many other legends denoted by the symbol of a discus). The sister of Hyacinthus is folyboea, the much nourishing fertility of the rich Amyelxan valley; while his brother is Cynottas, the risiug of the dog (the hot) star. But with the death of the spring is united the idea of its certain resuscitation io a new jear; like Dionysus, the hero is not merely dead but elerated to hearen. The festival took place on the three hottest days of summer, 7 th to 10 th of the month Hecatombeus (which was called in Sieily Eyacinthius), and its rites were a mixture of mourning and rejoicing (Athen., iv. 17).

EYADES, five stars forming the head of the larger constellation, the Bull. Their rising along with the suo marks the opening of the rainy season, hence their name Hyades -the Rainy. As mythological figures they were said to be daughters of Atlas, who as a reward for some pious act were trauslated to heaven. The nature of the deed is variously stated: sometimes it is their long-continued grief for their brother Hyas, who was slain by a snake (ar boar or lion) ; at other times it is their having acted as nurses of Dionysus Hyes. In the latter ease they are counted as nymphs of Nysa. When their charge was threatened by Lycurgus they fled with him to Thetis or to Ino in Thebes. They are also described as nymphs of Dodoan, whe acted as nurses of the infant Zeus. In any case their character as clouds and rain-givers is obvious. Their number is sometimes giren as two, also as three, especially in Attica, which leads Brunn to see them io the pediment of the Parthenon in the figures usually spoken of as "The Fates."

HYAENA (IIycuide), a family of digitigrade carnivorous mammals, approachiog the Felicle or cats in the character of the dentition, while rescmbling the Fiverridas or civets in the possession of a glandular pouch beneath the anus, and therefore usually classed as a transition group between these two families. It comprises a single genus (IIyona), and three species, which resemble each other and differ from all other carnirores in having both pairs of feet with four tocs cach. They are further characterized by the greater length of their fore legs as compared with those behind, by their well-developed although non-retractile claws, by their prickly cat-liko tongue, and by the enormous streogth of their jaws and teeth, which eoables them to breals open the harlest bones, and to retain what they havo scized with the most uncelaxing grip.
'The Striped Iymna (IIyrome striate) is the most widely distributed and best known form, being found thronghout India, I'ersia, Asia Mhor, and the northern half of Africa, while, if the strand wolf (llyma villosa) of the Cape celonists is only a varicty of this speries, as many naturalists suppose, its range will be thereloy extended to the southern extremity of the African continent. It resembles a wolf in size, and is of a greyish-brown colour, marked with indistinet longitudimal stripes of a darker lue, while the legs are transversely striped as in the zebra. The hairs on its body are long, especially on the ridge of the neek and hack, where they form a distinct mane, which is contimuel along the tail. The hyena is nocturnal in its habits, preferring by day the gloom of eaves and ruins, or of the burrows which it occasionally forms, but coning forth at suoset to make night hideous with its uncarthly howling, which, when tho.
animal is excited, changes into what has been compared to demoniac laughter, and hence the name of "langhing hyana," by which it is also known. The foor of those creatures consists clriefly of carrion, and they thus perform a highly useful serviee in hot conntrics by devouring the remains of dead animals whieh might otherwise pollute the air. Soravenous, bowever, are they that even the bodies of the buried dead are not safe from their attaeks, their powerful claws enabling them to gain access to the newly interred bodies in the Eastern cemeteries, which they are said liabitually to frequent. They also feed on the flesh of animals, which they hunt in paeks. When driven by honger they have thus been frequently known to enter villages by night and to carry off such domestic animals as they might chance to find. Bruce, the Afriean traveller, states that everywhere in Abyssinia they were a plague. "Gondar," he says, "was full of them from the time it turned dark till the dawn. In short, the byena was the plague of our lives, the terror of our night walks, the destruction of our mules and asses, whiel abore all others are his favourite food." Although, in proportion to its size, possessing probably the most powerful teeth and jaws in the whole mammalian series, the pusillanimity of the hyena is such as to prevent its attacking animals greatly inferior to itself in strength. The

Fio. 1. - Striped Ityena.
Arab, for this reason, holds it in contempt ; and, when ho condescends to hunt the hyman, he does not waste his ammunition upon it, but runs it down with dogs. It has usually been regarded as ontameable; this, however, is not the case, for when properly treated in eaptivity, it has been known to exhibit the greatest doeility and attachment to its keepers; and Colonel Sykes states that in certain distriets of Central India where those creatures abomd they are as susceptible of domestication as ordinary dorgs.

The Spotted IIyena (IIfena crocutet) takes the hace of the striped species in the sonthern balf of the African continent, to which it is confined. It resembles the nther in size, but difiers from it considerably in appearance, the stripes of the one being replaced by dark brown spots on a yellowish ground in the other, while in the "ther-wolf," as this species is ealled at the Cope, the mane is much less distinct. According to Schrseinfurth, who met with it in the beart of Africa, it is a maeh mure powerind and saverge aryimal than the northern form. Aithong averso to hunting living prey, it takes to the chase when carnon is not to be had, and the same travelier was on ouc occasion startled by a spotted hyma which darted past him, like lightning. in pursuit of an antelope. At the Cape it was formerly very common, and oceasionally committed great havoe among the cattle, while it did not hesitate to enter the liaffre dwellings at nigbr and earry off the child siecping by
its mother's slde. By persistent trapping and shooting, its numbers have now been considerably reduced, with the result, however, of making it, like the hippopotamus of the satue regions, exceedingly wary, so that it is not readily caught in any trap with which it has had an oppertunity of becoming acquainted. Like the northern species, the

Fig. 2.-Spotted Hyena.
spotted hyena has been tamed, and has uceasionally been trained to take the place of the dog. Its skin exhibits a considerable variety of colour and marking, and Schweinfurth found many skins in use anong the Niaraniams of Central Africa, in the form of aprors. The brown byana (Iyyenc rija) is also a native of South Afriea.

Although hymas are now confined to the warmer retions of the Old World, their fossil remains show that they had a much more northerly range during Tertiary times. Abundaut remains of a larger species than any now liviug have been found in the caves of England, France, and Germa:y: This species, known as the care byena (Iyyena spelira), is supposed to have been most nearly allied to the spotied lymena of South Africa, but does not appear to have extended farther south than the middle of Enrope. Remains which have been doubtfully identified as bedonging to the striped species have also been found in the south of France, and others in Sicily and Algeria, umbonbtedly belonging to the spotted form of Suuth \triangle frica, which must thus lave had a much mere nerthenly extension in Tertiary times. No remains of the hyana are known to oceler in the New World.

HYBLA is the name of sereral eities in Sicily. A Sicilian goddess was named IIybhea (laus. v. 23. 6); honce doubtless the name was so common. The ITybla of which we lienr most was funled by the Megarians, obont 11 .
 Fer some time it was a flourishing eity; a century after its foundation it foumded in its turn the colory of Selimas. Put about the year 481 bec, it was comita? destroyed !y Celon, tyrant of Syraense. The mass. in the inhabitanto were sold as shares: the richer were transporied to Syracuse and there admitted as citizens. Among these was Puicharmus of Cos, who had been Ironght ny in Megiara. Durines the Athenian expelition to Sicily, Lamachas urged that they should oecery the deserted site. It must therefore have bal a fine harbenr, whence wa mas consider that it probably lay lesile the modern eitro of igosta. A suall settlement seems aficrwards to have grown up on the site. An ohler city ealled IHyha, belunging to the native Siculi, lay not far off on the sumblern slote of Mount Etna, near the river Symathas. It is mentioned in the history of the Second Punic War ; and in the time of Cicero (Vem., iii. 43) it was a dourishing place. It is esceedingly difficult to
separats the history of these two cities; and no doubt the aucient writers themselves often de not clearly distinguish between them. The Hyblean honey, which was produced on the hills beside them, is often celebrated by the Latin poets. There wis a third city of the same name on the road from Syracuse to Agrigentum.

HYPRIDISM. The Latin word hybride, or hilrida, a bybrid or mongrel, is commonly derived from the Greek i β pis, an insult or outrage, with special reference to lust; beoce an outrage on nature, a mongrel.

As a general rule animals or plants belonging to distinet species are not able, when crossed with each other, to produce offspring. There are, however, innumerable exceptions to this rule; and hybridism is the word- employed to denote these exceptions. It is an abstract term which signifes the more or less fertile crossing of distinct species. In scientifie usage, the term "hybrid" is exclusively reserved to denote the result of a fertile cross between two distinet species, while the term "mongrel" is the oue which is as exclusively reserved to denete the result of a fertile cross between two varicties of the same species.

Until recently the interest attaching to hybridism was almost entirely of a practieal nature, and arose from the fact, which is of considerable importauce in borticulture, that hybrids are often found to present characters somewhat different from those of cither parent species. But of late years the subject has acquired a high degree of seientific iuterest in relation to the theory of deseent. On this account it has been so earefully and thoroughly treated by Mr Darwin that a brief exposition of its main facts and prineiples must necessarily be little merethan acondensation of his already closely packed material.

Looking first to the general facts and principles of hybridism, apart from their bearing upon the theory of descent, the following may be regarded as the most im-portant:-

1. The laws governing the pruluction of hybrids are identical, or nearly identical, in the animal and vegetable kingdoms
2. The sterility which so generully attends the crossing of two specific forms is to be distinguished as of two kinds, which, although often ennfounded by naturalists, are in reality quite distinet. For the sterility may obtain between the two parent species when first crossed, or it may tirst assert itself in their hybrid progeny. In the latter case the hybrids, although possibly produced witheut any appearance of infertility on the part of their parent species, nevertheless prove more or less infertile among themselves, and also with members of either parent species.
3. The degree of both kinds of infertility varies in the case of different species, and in that of their hybrid progeny, from absolate sterility up to completo fertility. Thas, to take the case of plants, "when pollen from a plant of one family is placed od the stigma of a plant of a distinct family, it exerts no more influence than so much inorganic dust. Fron this absolute zero of fertility, the pollen of different species, applied to tho stigma of some one species of the same genus, yields a perfect gradation in the number of seeds produced, up to nearly complete, or even quite complete, fertility; so, In hybrids themselves, thero aro some which never have produced, and probahly never would produce, even with the pollon of the pure parents, a single fertilo seed; bint in seme of these cases a first trace of fertility may be detected, by the polten of one of the pure parent suecies causing tha Hower of the hybrid to wither arlier than it otherwise would lave done ; and the early withering of the flower is well known to be a sign of incipiont fertilization. From this extreme degree of sterility we have sulf. fertilized hylirits procheing a sheater and ereater number of seeds up to werfert fertility."
4. Alchongh there is, as a ruie, a certain paralleism, there is no fixed relation between the deeree of sturins: manifested by the parent species when erussed and that which is manifested by their hybrid progeny. There are many cases in which two pure species ean be crossed with unusmal facility, while the resulting hybrids are remarkably sterile; and, contrariwise, there are speeies which can only be crossed with extreme difficulty, though the hybrids, when produced, are very fertile. Even within the limits of the same genus, these two opposite cases may occur.
5. When two species are reciproeally crossea, z.e., male A with female B, and male B with female A, the degree of sterility often differs greatly in the two cases. The sterility of the resulting bybrids uay differ likewise.
6. The degree of sterility of first crosses and of hybrids runs, to a certain extent, parallel with the systenatic affinity of the forms which are united. "For species belonging to distinct genera can rarely, and these belong. ing to distinct families can never, be crossed. The parallelism, however, is far from complete; for a multitude of closely allied species will not unite, or unite with extreme difficulty, whilst other epecies, widely different from each other, can be erossed with perfeet facility. Ner does the difficulty depend on ordinary constitutional differenees; for annual and perennial plants, deciduous and evergreen trees, plants flowering at different seasons, inhabiting different stations, and naturally living under the most opposite elimates, can often be crossed with ease. The dificulty or facility apparently depends exelusively on the sexual constitation of the species which are crossed. or on their sexual elective affinity."

Such being the principal facts of hybridism, we may next consider the relation which they bear to the theory of descent. It is obvious that the mest important point of contact between the former and the latter censists in this -that, although hybridism is occasionally possible as an exception to the general infertility of species inter se, it is only, as it were, a partial exception; for, even when produced, the hybrid pregeny almost invariably manifest some greater or less degree of sterility, and this not only when crussed among themselves, but cven when erossed with either of their parent speeles. The main facts of hybridism thus at first sight seem to suppert the time-honoured doctrine that there are placed between all species the barriers of nutual sterility, for the purpose of preventing any admixture of specific qualitics by heredity, and se for the purpose of maintaining the immutability of speeific types. And the apparent support whieh this doctrine thus receives from the main faets of hybridism is still further strengthened when these facts are contrasted with those which are supplied by the breeding of our domestic "varicties." For, in the latter case, and as an almost invariable rule, neither the organisms when erossed nor their resulting progeny show any indications of sterility, althongh the two parent varicties may differ from ono another even more widely than do many natural species which are wholly. infertile when crossed. This very general distinetion between natural species and domostie varieties has appeared to many competent persons in the present generation so profound and significant that they deem it to be in itself sufficient to discredit, if not to negative. the whole theorv of tho transmutation of sperics.

Now, when this distinction is thus pasited as anobijecuen to the theory of descent, we must first of all remember that this theory does nut require the possibility of the commingling of specific types; it reruires, indeed, that specific types should not lee immutibly fixed, lut it dees net require that the causes of their mutation should depend upon their mutual crossing. "The whole diticulty, therefore, which
the "theory of descent has here to meet is to expluin why it is that natural species are feneed about, as it were, with the mysterious barriers of sterility, while no such sceming care appears to have been taken in the case of our domestic breeds-even though in the latter case artificial selection by the breeders may bave produced nore visible difference between the two parent races than that which natural selection is supposed to have produced between two natural species.

In answer to this difficulty, the most important consideration to begin with is one that is very generally lost sight of. The consideration is that mutual sterility between urgavic forms has been constituted by naturalists the chief criterion of specific distinction, and therefore it is merely to argue.in a circle to maintain that specific distinction is of some transcendental nature because it is so invariably associated with this mutual sterility. If it were not for the fact of their mutual sterility, this and that species would probably not have been classified as such; and therefore it is now scarcely to be considered a matter of any great significance that all species present more or less of the peculiarity in virtue of which they are recognized as species. Or, otherwise stated, on the supposition that species have had a derivative origin, whenever the modification of a specific type bas proceeded sufficiently far to induce sterility with allied types, the modified type is, for this reason, classified as a distinct species; otherwise, upon the supposition, the species could scarcely have become separated out as a distinct type. The argument which points to such sterility as evidence against this supposition is, therefore, oo far inconclusive.

The case, however, ought not in fairmess to be stated quite so strongly as this $;$ for mutual sterility, although the ehief, is not the only criterion of specific distinction. In forming their classifications, naturalists endeavour as much as possible to have regard to organisms in the totality of their structures and functions. It may therefore still be maintained that, although the above consideration as to mutual sterility being selected as the chief criterion of apecificdistioction greatlymitigates the force of the argument that natural species differ from artificial breeds in being more or less sterile with one another, still this consideration does not altogether destroy that argument. For, on the one hand, it is not mutual sterility alone which is taken as a test of specific distinction; and, on the other hand, it generally so happens that the other qualities distinctive of any given species do not differ more widely frem those which are distinctive of allied species than is the case with many of our domestic breeds. It therefore still remains a aigoificant circumstance that, along with the differences distinctive of natural species, there almost invariably goes the protective attribute of mutual sterility; while the possibly greater differences distinctive of our domestic breeds are unaccompanied by any such protective attribute. But, again, this mere refined objection can be met and astisfactorily excluded by the general consideration that "as species rarely or never become modificd in one character, without being at the same time moditied in many, and as systematic affinity includes all visible rescmblances and dissimilarities, any difference in sexual constitution between two species would naturally stand in more or less close relation with their systematic position."

But we are net cenfined to this general consideration alone. There are several other general considerations which tend still further to mitigate the diffieulty, and there are several particular facts which together prove that the alleged distinction between natural species and domestic varicties is one, not of kind, but of degrec. We shall, therefore, next proceed to state these general considerations t..l varticular facts.

Upon the theory of deseent, mutual sterility berween specific types is nuthing more than the expression of some certain amount of modification having taken place in the reproductive system of a changing form, which up to that time, and but for the fact of this modification, would have been classified by naturalists as a mere varisty. Now the causes which act upon the reproductive system, both of animals and plants, and whether in the direction of sterility or prolificness, are at present hupelessly obscure. IVo cannot, therefore, expect to distinguish the causes wlich in the case of any given species have determined sterility. Nor is it necessary, for the meeting of the present difficulty, that this should be done; it is enough for this purpose to show that the causes which thus act upon the reproductive system are much too indistinct to admit of any argument being raised upon them. And this it is most easy to show; for it is not tuo much to say that the reproductive system is, generally speaking, of all parts of an urganism the most delicately susceptible to slight changes in the conditions of life. Mr Darwin has adduced a vast array of facts on this head in his Variation of Animals and Plants under. Domestication. 'As a result of this dclicacy, there arises an apparent capriciousuess in the ways and degrees in which the reproductive system is affected by slight clanges in the conditions of life, by too close interbreeding, by grafting, and by many other causes. Thus, for example, the infuences of domestication produce more or less sterility in numberless species of wild animals and plants, while in other speciesand this, as we shall presently see, is a matter of great importance in the present connexion-such influences are favourable to fertility. Now if we suppose, as in censistency we must suppose, that throughout the course of evolution the reproductive system has always been characterized by a sensitiveness to slight changes similar to that which we now observe, and if we remember that, in any case where these slight changes were sufficient to cause mutual sterility between the modified descendants of a common progenitor, a distinction of species must necessarily have arisen,-we shall cease to regard the present sterility of species inter se as anything more than what might be expected a priori, supposing the theory of descent with gradual modification to be true.

As eridence of the apparent capriciousness with which sterility may be manifested, owing to the slight and imperceptible causes on which it depends, special allusion must here be made to a highly remarkable and significant fact that has been brought to light by the direct experiments of Mr Darrio. .. The following is his account of these experiments:-
"Several plants belonging to distinct orders present two forms, which exist in about equal numbers, and which differ in no respect except in their reproductive organs,-one form having 2 long listil with short stamenc, the other a short pistil with long stamens; both with differently-sized pollen grains. With trimorphic plants there are three forms likewise diffeting in the length of their pistils and stamens, in the size and colour of the pollen grains, and in some other respects; and, as in each of the three forms there are two sets of stamens, there are altogether sis sets of stamens and three kinds of pistils. These organs are so propmitioned in length to each other that, in any two of the forms, half the stamens in each stand on a level with the stigma of the third form. Now I have stown, and the result has been confirned by other observers, that in order to obtain full fertility with other plants, it is necessary that the stigma of the one form should bee 'ertilized by prollen taken from the stamens of corresponding height 13 the other form. So that with dimerphic species two unions, which may be called legitimate, are fully fertile, and two which may be called illegitimate are more or less infertile. With trimorphic species six unions are legitimate of fully fertile, and twelve nre illegitimate or more or less infertile. The infertility which may be observed in various dinorphic and trimorphic plants when they are illegitimately fertilized, that is, by pollen taken from stamens not corresponding in height with the pistil, differs nuch in degree up to absolute and utter sterility, 一 just in the same manarer as occurs in crossing distinct syecies."

In this case we appear to have actual evidence of different atages of increasing sterility in transith, and this even within the limits of the same natnral species. And if eren such evidence as this can be resisted, there still remains one very important fact, which direetly affects the whole ailoged distioction between the sterility of natural species end the fertility of domestic breeds. This faet is that plants bzlonging to scveral species of the genns Passiflora have besn amply proved, not ouly to be completely fertile with plants belonging to other species, but even to be as complately infertile with plants belonging to their own. Thus fruit could not be obtained from P. alata and P. racemosa except by reciprocally fertilizing them with each other's pollen; and similar fasts have been observed by several experimentalists with regard to four or five other species of this genus. The fullest details on the subject are those given by Mr Scott in the Journal of the Limnean Soriety, vol viii. p. 168. Plants belonging to three species of the genus, viz., P racemosa, cerulea, and alata, flowered for many years in Ediaburgh, but, thongh repeatedly fertilized by Mr Scott and others with their own pollen, never produced sec. But when mutually crossed in various rays they all produced seed. After quoting this case Mr Darwin edds :-
"faturninh to P. alota, I have received (1866) some interesting details from Afr Robinson Muaro. Three plants, including one in Engiand, have already been mentioned which were inveterately self-3terife, and Dir Munto informs ine of several others which, after repeated trials during many years, have been found in the same predicament. At some other places, however, this species fruits readily when ferthlized with its owo pollen. At Taymonth Castle there is a plant which was formerly grafted by Mr Donaldson on a distiont species, name unknown, and ever since the operation it has produced fruit in abuadance by ita own rallen, so that this small and unnatural change in the state of this plant has restared its selffertility. Some of the seedlings from the l'aymouth Castle plant were found to be not only sterile mith their own pallen, but with each other's pollen and with the pollen of distinct species. Pollen from the Taymouth plant failed to fertilize certain plants of the sane species, but was successful on one plant in the Edinburgh Lotanie Gardens. Siedlings were raised from this latter maion, end some of their flowers were fertilized by Mr Mano with thoir own pollen; hut thry were fount to be as self-impotent as the mother plaot hal always fruvel, cxcept when fertilized by tho graited Taymouth plant, and except, as we shall see, when fertifizell by her own secuinga. Yet Mr Munro fertilized cifhteen flowors on the self-imniont motiuer plant with pollen from these her own self-inunteat sedelings, and oblained, remarkable as the fact is, eighten fine carisules full of excellent seed. I have met with no case in regirs to flants which shows so well as this of P. akide on what small and mysterious causes complete fertility or complate sterility de mals.

These cases in thég genus Paseiflork, although so highly remarkable, are oot whoils unique. There is not, indeeri, any other ease of a natural species, the nembers of which are only fertile with members of another species; but thero are several eases of netural species, the inembers of which are self-impotent, though frecly fertilo either with other plants of the eame species, or with plants of different though allied species. This may perhaps be regarded as a transitional stage between tho ordinary condition of plants and the extrandinary condition that obtains anong species of the genus Petsighint. It necurs in individual plante of certain specios of $L_{\text {old }}$ lia and Yel lusicum, and amune several genera of orchids. Tho cases of the latter are particularly remarkable, inasmuch as Fritz Müller found from manerous oxperimenta, not only that indivilual phats belonging to the geveral species were not fertilized by their own pollen, white freely so ly pollen taken from distinct species, and even from distinet genera, but that the phant's own polten was positively delecterinus to its stigma, and acted as a [wison to tho destruction of the flow ro.
So much, then, fur the facts which go to prove on what slight constitutional dillerences sterility may devem, and the eonsequent probatility there is that it sheuld senerally
be found to accompany a change of organization which is sufficiently great to be regarded by naturalists as a specific distinction. But the pleading must not end here. For there still remains to bo adduced the fact, already mentioned as one of the general facts of hybridism, that "the degree of both kinds of fertility varies in the case of different species, and in that of their hybrid progeny, from absolute sterility up to complete fertility." As a matter of fact, the distinction between natnral species and domestic varieties, upen which the whole discussion has bitherto proceeded, is in itself uatenable; the infertility of natural species when erossed, although mithont question the general rule, is nevertheless not the invariable rule. We need not point to the highly anomalous case of Passitiora recently mentioned in another connesion, and probably to be explained as the result of cultivation; for we appear to have sufficient evidence without it. It is true that a great deal of negative evidence has bcen published upon this point by very competent experimentalists; but it seems impossible to resist the positive evidence of the Hon. and Rev. W. Herbert, whose distinguished succeas in bybridizing Mr Darwin attributes to "great herticultural skill, and to his having hot-houses at his command." Of his many results, which from being of a positive kind can scarcely be suspected of inaccurdey, it will he enough to quote the following:-"Every avule in a pod of Crinum capense fertitized by C. revolutum produced a plant, which I never saw to occur in a casc of its natural fecundation." Thus, as Mr Darwin in alluding to this case remarks, "we have perfect, or even more than commonly perfect, fertility in a first cross between two distinet species."

So far, then, as one side of the question before us is concerned, or that relnting to the mutual infertility of matural -species, enongh has been said to show that it presents no real dificinity to the theory of descent. Indeed, in view of all that has now been said, tho diffienty, as Mr Darwin has observed, is not so much to acconnt for the sterility of uatural species, as it is to account for the continued, or even increased, fertility of our donestie varieties. Turning, therefore, to this other side of the question, we have to remember that the very same sensitiveness of the reproductive system, which in some cases leads to infertility under a change in the conditions of life, in other cases leads to inereased fertility under an opparently similar change in the conditions of life. Thus it is that donestication produces such apparently capricious results with regari to fertility-indueing all degrees of infertility in some wild epecies, while not at all impairing, or even increasing, fertility in others. Conseriacenty, when the question is as to why our domestic varieties do not become sterile inter se when se many natural specics bavo become so, the answer is that the mere fact of their domestication proves that their wild or parent stocks must have becn some of those species whese reprohuctive systons were not highly sensitive to changes in their combition of life, and therefore species which "might he expectal to produce varieties little thahle to have their reproductive systems injurionsly affectal by the aet of erossing with utber varietics which had originated in a like manner.". Thud, on the inherently neeessary view that our domestic varictics have all procecded from speeics which were not easily atfiected in the direction of sterility, we are not surprised that under variation their veproluctive systems should continue to manifest a high degree of tolerance. 'To this must le added that dmmestication, if it does not produce sterility, seems well calsulated to increase fertility. For if the causes inducing sterility (whatever they may ley are absent, ample and rugular nutrition, cunbined with innumerable lesser berefits attending domestication, may well be supposea to favour ferility. And, as a matter of fact, according to [allias, there is a.
great deal of evidence to indicate that prolunged domestication has a tendency to eliminate sterility; so that wild spocies which when first domesticated intercross with difficulty, become in tine able to intercross with facility. Such, for instance, appears to have been the case with the dog; for on the one hand all the domestic varieties of this mimal are now frecly fortile among themselves, and, on the other hand, there is independent evidence that these varieties have sprung from more than one natural species. Again, mention must not be omitted of the important fact that, although in the case of none of our varieties of domesticated animals is there any evidence of mutual ster:lity, yet among our rarieties of domesticated plants a few cases have been observed of complete mutual sterility, which is in every way analogous to that which occurs between natural species. Thus, Gärtner observed this to be the case with certain varieties of maize and Verbascum, J $\boldsymbol{J} \boldsymbol{l}$ renter with one kind of tubacco, and other experimentalists with sundry varietics of gourd and melon. And here, let it be observed, we have the exact couuterpart that evolutionists would desire to the experiments of Herbert above mentioued; for while he was able to break down the general distinction between natural species and domestic varieties on the side of proving perfect fertility between certain natural species, these experimentalists have brokeu down the distioction on the side of proving perfect sterility between certain of our domestic varieties. Thercfore, we nay conclude that this side of the question, or that as to the fertility of our domestic varieties, presents as harmless an aspect towards the theory of desecnt as we have already seen to be presented by the other side of the question, or that as to the sterility of natural species.

Fimally, there are two complementary considerations to he adduced, which nay now be stated together. One is that the general principles of hybridism, as briefiy stated at the beginning of this article, are really far from indicative of having been institated with any design of simply preventing species from intercrossi.g.g. For. upon the view that they were so instituted, scarcely any one of them admits of a ratiomal explanation. Thus, upon this riew, no reason can be assigned why the degree of sterility should be so extre:aely variable in different species, when it must be supposed equally important that all species should be kept distinct; nor can it be said. why the degree of steriiity should wary even among individuals of the same species. Neither cau it be said why some species should cross with facility, and yet produce sterile hybrids, while other species cross with difficulty, and yet produce fertile hybrids. Why should species living in countries remote from one another, and thercfore not able in a state of nature to come together, nevertheless prove as sterile inter se as species inlabiting the same country! Why, again, should there often be so great a difference in the result oi a reciprocal cross between two species? Or why, indeed, should the production of bybrids have been permitted at all? As Mr Darwin observes, "to grant to species the special power of producing bybrids, and then to stop their further propagation by different degrees of sterility, not strictly relatal to the facility of the first union between thcir parents, seems a strange arrangement."
The other and complementary consideration which has to be mentioned is that, on the counter supposition of all these general principles of lybridism being "simply incidental," or deplendent on unknown differences in the reproductive systems of species,-on this supprosition we meet with sundry differences between wild species and domestic varietics which are fully analogous to their differcnce of fertility, and which yet cannot reasonably be supposed to selve any transcendental purpose. Thus, again to quote selve any trans
"Some allied species of trees canuot be grafted ou cach otherall varjeties can be so grafted. Some allied animals are affected in a very differcnt manner by the same poison, lut with varieties mo such case until recently was known, but now it has been proved that immunity hom certain poisons stands in some cases in comelation with the colour of the hair. The period of gestation generally differs much with distinct species, but with varictics until lately no such difference had been observed. The time required for the germination of seeds differs in an aualogous manner, and 1 am not aware that any difference in this respect has as yet been detected with varieties. IIere we have varions physiological differenecs, and no doubt others could be added, betweenone species and another of the same genus, which do not occur, or oceur with extreme arity, in the case of varieties; and these differences are alluroutly wholly or in chief part incidental on other constitutional differences, just in the same manner as the sterility of crossed species is incidental on differences confined to the sexual system. Why, then, should these latter differences, however serviceable they may indirectly be in keeping the inhabitants of the same country distinct, be thought of such paramount impertance in comparison with other incidental and functional differences? No sufficion answer to this question can be given.'

Upon the whole, theeffore, it may be concluded that tha difficulty which the facts of hybridism seem at first sight to raise against the theory of descent may be explained in harmony with the main requirements of that theory.

Animal Hybrids.-A few words may here be added with special reference to animal hybrids. As a general statement it may be said that hybrids, not only between specific but generic forms, are more easily produced in the case of animals than in that of plants. The hybrids, however, when produced are, as a general rule, more sterile. Indeed, it is doubtful whether there is any single instance of a perfectly fertile hybrid haring emanated from a cross between two animal species. Mr Dazwin, however, says"I have reason to believe that the lybrids from Cervulus vaginalis and Reevesii, and from Phesiunus colchicus with P. torquatus, are perfectly fertile." Also M. Quatrefages states that the hybrid progeny of two moths (Eombyx cynthia and B. arrindia) showed themselves to be fertile inter se fur eight generations. The hare and ralbit are said occasionally to breed together, and their offspring to be highly fertile when crossed with either parent apecies. Lastly, Mr Darwin observes :-
"The hybrids from the common and Chinese gecse (A. cyonoides) specics which are so different that they have sonetines heen ranked in distinct genera, have often bred in this comntry with cither yure parent, and in several instances inter se. This was effectel hy Mr Eyton, who zaised two hytrids from the same parents, but from different hatches; and from these two birds he ratied no less than tight hybids (gandchildren of the pure gece) from one nest. In ludia, however, these cross-bred gecse must be far more fertile; fon 1 and assured by two cminently capslle judges, namely, Mr Blyth and Captain Hutton, that whole flocks of these crossed gecse are keyt in various parts of the country; and, as they are kept for Irofit where neither purc parent-species exists, they must certanly be highly or perfecily fertile."
It is somewhat remarkable that hitherto direct experiments on the hybridization of animals have heen so few in number as compared with those on the hybrilization of plants. This is the more to be recretted, vecause, as already observed, animals appar to display a somowhat greater aptitude for hybridizing than plants, aud consequently furnish better material for ascertaning the furthest limits of systematic affinity within which a cross may prove fertilc. But here direct experiments are wanting, and all we can say with certainty is that in avimals, as in $\mathrm{p}^{\text {lants, }}$ no authentic instance is on recurd of proceny resulting from a union of two individuals separated from one another by more than a gencric distinction.

[^90]Graf-Bybridism. - The only other subject of importance that falls ander the present headiog, is toat whicli has been apprepriately called "graft-hybrilism." It is well koown that, when two varieties or allied species are grafted together, each retains its distinctive characters. But to tha generul, if net amwersal, rule there are on recond several alleged exceptious, in which either the scion is esid to hare partakea of the qualities of the stock, the stock of the ecion, or each to have affected the other. Supposing any of these influences to have been exerted, the resulting product wauld deserve to be called a graft-bybrid. It is clearly a matter of great interest to ascertaio whether such formation of hybrids by gralting is really possible; for, if even one instaoce of such fermation could bo raequivocally proved, it would show that sexual and asexual reproduction are essentialiy ideatical.

The cases of alleged graft-hybridism are exceedingly few, consIdering the enormons number of grafts that are made every year by horticulturists, and have been so made fer centuries. Of these cases the most celebrated are tbose of Adara's lahurnum (Cytisus Adami) and the bizzarria orange. Adam"a laburnum is now flourishing in namerous places throughout Europe, all the trees baving been raised as cuttings from the original graft, which was made by inserting a bud of the purpla laburmun mite a atock of the yellow. M. Adsm, whe made the graft, has left on record that from it there aprang tre exiating hybrid. There can be no question es to the truly hyhrid character of the latter-ali the peculiarities of both parent species being often blended in the sama raceme, flower, or even petal; but until the experiment ohall have been successfully repeated, thero must always remain a streng suspicion thet, betwithstanding the assertion and doubtless tha belief of M. Adam, the hybrid arose ns a cress in the ordinary way of seminal repraduction. Similarly, the bizzaria orange, which is unquestionably a hybrid between the bitter orange and the citron,- -since it presents the remarks.ble spectacle of these two different fruits blended into one,-is atated by the gardener who first succeeded in producing it to have arisen as a graft-hybrid; but here again a eimilar doubt, similarly due to the need of corroboration, attaches to the statement. And the same remark applies to the still more wonderful case of the se-called trifacial orange, which blends three distinet kiads of fruit in one, and which is said to have been produced by artifcially splitting and uniting the seeds taken from the three distinct apecies, the fraits of which now occur bleaded in the triple hybrid.

The other instances of alleged graft-hybridisra are too numerons to be hers noticed in detall; they refer to jessamine, ssh, hazel, vime, hyacinth, potato, beet, and rose. Of these the cases of the vine, beet, sad rose are the strongest as evidence of graft-hybridization, from the fact that some of them were prodnced as the result of careful experiments made by very competent experimentalists. On the whole, the results of some of theso experiments, although 80 few in number, must be regarded as making out a strong case in favour of the passiblity of graft-bybridism. For it must alwaya ba remambered that in experiments of this kind, negative evidence, however groat in amount, may be logically dissipated by a siagla positive result.

History and Literature-From timo immemorial the leading facta of hybridism have been known in the case of the horse and the ass. The knowledge of corresjonding facts as occurring in the vegotable kingdom neceasarily dates from a tume subsequent to that at which the sexual functions of plants became known, i.e., towards the end of the 17 the century. The earliest recorded observation of a hybrid plast is one ly Gmelin: the next is that of Thomas Fairchild, who at the zecond decade of the 18 th century Troduced tho cross wheh is still grown in gardene under the name of "Fairchild's Sweet William." Later on in that century Linnæus made a number nf experimenta on the crase fertilization of plants, mad produced various hybrids, tut it was reserved for the laborious investigations of Kolreuter, towards the end of that century (1751-1799), to found and largely to buidd the cxistang structure of pur seientific knowledge upon this subyect. To ham ibso belong the credat of first discovering the part playef by iusirts in the fertilization of flomera. He published mont of his resulta at the $S t$ Petersburg Academy of Sciences. Next in order of ture desprve mention the works of Graf Iavola (Discorsa dalla Irrilabilita d'al. cuni Fiori nuovemente seoperta, 1764), and of Conral Springel (Dis entdectete Sohaimniss der Notur ins Beet und in dir Defruchung der Elumen, 1793\%. The latter work is full of interstiog choservations on the cumexion betwem the strueture of Howers and the visutating of incorts. Next wo rome to the celebated loortirulturist, Thomas Andrew knight, who from 1787 for a number of years de-
 to the imprevemant of fruit tram and vegetables by crossing. In
 Noc. During the tirat quater of tho present century the only names that in the prosent monexion eall for rucntion ne those of J. F. Sinith (Flort Firlannter, 1 Bom) Villars (Fo. Coll. Bot.,

alrcady mentioned, there were two other English eaperimenta..sts at work, whose names deserve to be placed in the first rank among those which are associated with this subject. These are Sweet, who published an important work on Geraniacea, and Herbert, whose work on Amaryllidece, together with sundry publicatious in the Joumal of the Horticultural Society, very materially advanced both the facts and the theory of hybridism. "We say "theory," because it was in these publications that Herbert carried on bis celebrated controversy with Kinght regarding tha alleged aterility of hybrids. In 1828 there was puhblished a prize essay by Wiegmann on a thesis which was set several years before by the Berlin Academy of Sciences, and which embodied the question whether bybrid plants are necessarily sterile. We next cone, in the second quarter of the present century, to the laborious researches of Gaitner, the number of whose experiments in hybridizing has certainly not been surpassed, and probably has not been equalled, by that of any other expermentalist. His principal work is Versuche und Beobachoungent uber die Bastarderzeugung im Pflanzenreiche. Is connexinn with this period we may also mention the names of Braun, Waliroth, Zuccarini, Meser, Ziz, Kech, Schiede, Lasch, Keichenbach, A. P. de Candolle, Wiamer, Hernschuh, and Nageli. In 1854 a research of value was published by Klotzsch (Verhandl. Kgl. Preuss. Akad. Berlint, and othera later by Regel, Gedron, and Jordon. In 1860 a prize was offered by the French Academy of Sciences for the best essas on bybrilism, with special reference to three peints, - the fertility or sterility of hybrids, the cause of their sterility, and the constancy of type magifested by fertila hybrids. In 1865 this prize was anarded jointly to Naudin aud Godron, the latter name being identified with researches upon the character of hybrids which deserve to be cousidered among the most im. portant of the present century. The next work of note appeared in 1865, by Max Wichura, on Die Bastardbefruchtung in Pflan. acnreich, sc. Ho combined, in one complex hybrid, six different species of Salia; confirmed, io oppesition te Godros, the dactrine of kolrenter, Herbert, Gartner, sad Naudin, that a hybrid is best fertilized by its own pellen; and found, in oppesition to Naudia, that the progeny of hybrid willows retaios its hybrid character. In 1865-6 Nageli published his important observations on naturatly produced hybrids (Sitzungsber. AFad. München, Mrath. Phys.). The bighly important experiments of Darwin on dimorphic and trimorphic plants have been alrendy nlluded to. Those who within still more recent years have contributed to the literature of hybridiam are Caspary, Mendel, Seden, Dominy, Kellermann, Fr. Schultz, Timbal-Lagrave, Grenier, As Karner, Wirtgen, Michalet, Ritschl, ljékhans, P. Ascheraon, R. von Uechtritz, J. Schmalhausen, C. Haussknecht, V. vón Berbis, Kuntze, Henniger, and W. O. Focke. The last-named author has just published an elatorate and valuable work on hybridism in plants (Die Pfhenzen-Mivchlinge, Berlin, 1881), giving a tabular series of all the known vegetable hybrids, and treating the entire auhject in a very comprehensive manner.

On the subject of anmal hybrids thera is virtually no literature, abve acattered records of fertile crosses among aundry species coufined in parions menageries; and these are without interest as bearing on any of the principles of hybridism.
(G. J. R.)

HYDE, a township of England in the parish of Stockport, Cheshire, is sitnated near the river Tamo and the Peak Forest canal, and on the Midland, and the Manchester, Sheffield, and Lincolushire hailways, $7 \frac{1}{2}$ miles east from Manchester and 6 north east from Stockport. It is under the gevernment of a local board, and a county court is held there every Weducsday. St George's church, in the Perpendicular style, was erected in 1832, and St Thomas, in the Early Englidh, was erected in 1868 . The principal other public luildings are the mechames' institute, the temperanco hall, and the courthouse The town owes its importance to the cotton manufacture, and pissoeses weaving factories, spinning-mills, print-works, iron-foundries, and machineworks. There are exteusive enal-mines in the vicinity. The old family of Hyde, to which the line of earls of Clarendon belony d, held possession of the township as oarly as the reiga of John, but it was a mere village untll the establishment of tho cutton manufacture at tho begin. ning of tho present contury. The population of the town ship in 1861 was 13,722 , unl in 1871 it was 14,223 .
llYDl', Voward, Farl of Clarehdon. Sce Clabendon
HYDE, Thomas (1636-1503), a distinguished Orientalist. was hom at Millingsloy, neur Bridgnorth, in Shroushirs, June 20, 1636. He inherited lis tasto for linguistio shudies, and roccived his first lessons in some of tho dinstern tongara, from his fallier, who was roctor of the farinb. in
his aixteenth year Hyde entercd King's College, Cambridge, where, under Wheelock, professor of Arabic, he made sucth rapid progress in the Oriental languages that, after only one year of residence, he was invited to London to assist Brian Walton in his edition of the Polyglot Bible. Besides correcting the Arabic, Persic, and Syriac texts for that work, Hyde transcribed into Persic characters the Persian translation of the Pentateuch, which had been printed in Hebrew letters at Constantinople in 1546. To this work, which Archbishop Ussher had thought well-aigh impossible aven for a native of Persia, Hyde appended the Latin version which accompanies it in the Polyglot. Having saccessfully accomplished these difficult tasks amidst the flattering acknowledgments of the most learned men of the day, Hyde entered Queen's College, Oxford, in 1658, where he was chosen Hebrew reader; and in 1659, in consideratien of his singular erudition in Oriental tongues, he was admitted to the degree of M.A. In the same year he was appointed under-keeper of the Bodleian library, and in 1665 he became librarian-in-chief. Next year he was collated to a prebend at Salisbury, and in 1673 to the archdeaconry of Gloucester, receiving the degree of D.D. shortly afterwards. In 1691 the death of Pocock opaned up to Hyde the Laudian professorship of Arabic; and in 1697, on the deprivation of Altham, he succeeded to the regius chair of Hebrew and a canonry of Christ Charch. Under Charles II., James II., and William III., Hyde discharged the duties of Eastern interpreter to the conrt. Worn out by his unremitting labours, he resigned his librarianship in 1701 , and died at Oxford, February 18, 1703. Hyde was an excellent classical scholar, and there was hardly an Eastern tongue accessible to foreigners with which his wide erudition had not made him familiar. He had even acquired Chivese, while his mritings are the best testimony to his mastery of Turkish, Arabic, Syriac, Persic, Hebrew, and Malay. His books are still valuable; and, although later investigations and additional authorities have partially superseded and corrected his conclusions, he still deserves respect as one of the first scholars to direct attention to the vast treasures of Oriental antiquity.

In his chicf work, Historia Religionis velenum Persarum, 1700, Hyde made tbe first attempt to correct from Orientai sources the crrors of the Greek and Roinan historians who had described the religion of the ancient Persians, but throngh ignorance of the ancient language of Persia he has been often misled by Mabometan anthorities. His ether writings and translations comprise Tabulo Longitudinum el Latitudinum Stellarum fixarum ex observatione principis Ulugh Beighi, 1665, to which his notes have given ad. ditional value; Quatuor Evangelia at Acta Apostolorum lingua Malaica, caracteribus Europais, 1677; Epistola de Mensuris et Ponderibus Serum sive Sinensium, 1688, appencled to Bernard's De Mensuris et Ponderibus antiquis; Abrahain Peritsol Jtinera Mundt, 1691 ; and De Ludis Orientalibus Libri JI.,1694. With the exeeption of the Hisioria Religionis, which was republisbed by Hunt and Costand in 1760, the writings of Hyde, including some unpub. lished MSS., were collected and printed by Dr Gregory Sbarpe in 1767 under the title Symagma Dissertationum quas olim Thomas Hyde scparatim cdidit. Thero is a life of the author prefixed. Hyde also published a catalogre of the Boaleian Library ir 1674.
HYDER ALI, or Haidar 'Aly, (c. 1702-1782), the Mahometan aoldier-adventurer who, followed by his son Tippoo, became the most formidablo Asiatic rival the English have ever had in India, was the great grandson of a fakir or wandering ascetic of Islam, who had foumd his Way from the Punjab to Kivlburga in the eonth, and the second son of the Arab wife of a maik or chief constable at Budikote, near Colar, in Mysore, and was born about the beginniag of the 18 th contury. The elder brother who, like bimself, was carly turned out into the world to seck his own fortune, hecame a naik, and ultimately rose to command a brigade in the Mysoro arms, whilo Hyder, wino never losrned to read or write, passcal the fret forty-smon
ycars of his life aimlcssly in sport aud sensuality, sometimes, bowever, actug as the agent of his brother, and meanwhile acquiring a useful familiarnty with the tacties of the French when at the height of their reputation under Dupleix. He is said to have induced his brother to employ a Parsee to purchase artalery and small arms from the Bombay Government, and to enrol sume thirty sailors of different European nations as gunners, and is thus credited with having been "the first Indian who formed'a corps of sepoys armed with firelocks and bayonets, and who had a train of artillery served by Europeans." At the siege of Deonhully (1749) Hyder's services attracted the attention of Nunjeraj, the minister of the maharajah of Mysore. and he at once received an independent command; within the next twelve years his energy and ability bad made him completely master of minister and maharajah alike, and in everything but in Dame he was ruler of the kingdom. In $1 ; 63$ the conquest of Canara gave him possession of the treasures of Bednore, which he resolved to make tha most splendid capital in India, under his own name, thenceforth changed from Hyder Naik into Hyder Ali Khan Bahadoor; and in 1765 he retrieved previous defeat at the hands of the Marbattas by the destruction of the Nairs or military caste of the Malabar coast, and the conquest of Calicut. Hyder Ali now began to occupy the serious attention of the Madras Government, which in 1766 eatered into an agreement with the nizam io hold the district known as the Northern Circars from him, and to furnish him with troops to be used against the common foe.. But hardly had this alliance been formed when a new and secret arrangement was come to between the two Indian powers, the result of which was that Colonel Smith's small force was met with a united army of 50,000 men and 100 guns. British dash and sepoy fidelity, bowever, prevailed, first in the battle of Cbsngama (September 3, 1767), and again still more remarkably in that of Trinomalce, which lasted two days; and the aizam's own capital of Hyderabad was threatened by Colonel Peach's expedition sent frem Bengal. On the loss of his recently made fleet and forts on the western coast, Hyder Ali now began to make overtures for peace; on the rejection of these, bringing all his resources sod strategy inte play, he forced Colonel Smith to raise the siege of Baogalore, and brought his army within five miles of Madras. The result was the treaty of April 1769, providing for the mutual restitution of all conquests, and for mutual aid and alliance in defensive war; it was followed by a commercial treaty in 1770 with the authorities of Bombay. Under thesc arrangements Hyder Ali, when defeated by the Marhattas in 1752 , claimed Enclish assistance, but in vain; this breach of faith stung him to fury, and thenceforward he and his son did not cease to thirst for vengesnce. His time came when in 1778 the English, on the declaration of war, resolved to drive the French out. of lidia. The capture of Mahe on the coast of Malabar in 1779, followed by the annexation of lands belonging to a dependant of his own, gave him the needed pretext. Again master of all that the Marhattas had taken from him, and with empire extended to the kistnt, he now summoned the Freuch to his assistance, and, descending through the Chamgama pass anid burning villages, reached Conjeveram, only forty-five miles from Madras, unopposed. Not till the smoke was seen from St Thomas's Mownt, where Sir Ifector Munro commanded some 5200 troops, was any mosement made; then, however, the l'ritish general sought to effect a junction with a smaller, boly under Colonel Ballie recalled from Guntoor. The incapacity of these olfiecers, notwithstanding the splendid courage of their men, resulted in the total loss of Paillie's force of 2800 (September 10, 1780). Hastings, again appealed to, sent from Donga? Sir Eyre Coote, who, though repulsed at Chillumorum, defeated Hyder thrice
anceessively in the buthes of Porto Nuro, l'ulhinet, and Shelinger, whele Tippoo was forced to raise the siege of Wa:dewarh, ara Tilore was provisionet. On the arival of Lord Mecentney as guvermor of Madras, the English fleet captured Negopatho., wot Trincumalce from the Dutch, and forced Hyder Ali to confess that he could never ruin a porer which had such command of the sea. He was directing his attention to the rest coast, where he sought the assistance of the French Heet, when his death took place suddenly at Chittore in December 1782.

For the personal character and administratiou of Hyder Ali see the History of Hyder Naik, written by Meer Hussein Ali Khan Sirmani (translated from the Persian by Colonel Milcs, and pablished by the Committee of the Oitental Translation Fund), and the curious work written by M. Le Maitre de La Tour, commandant of his artillery (Histoife d'Eaydcr-Alli hhan, Paris, 1783). For the whole life and times see Wilks, Historical Shetches of the South of Inlice, 1810-17; Aitchison's Treatics, vol. v. (2d ed., 1876); and Pearson, Memoirs nf Schucarte, 1834.

HYDERABAD, or Hamarabid ("the Territory of the Nizám"), an extensive realm of Southern India. This territory, inclusive of the Hyderabed Assigned Districts, known as Berar, lies between $15^{\circ} 10^{\prime}$ to $21^{\circ} 41^{\prime} \mathrm{N}$. lat., end $74^{\circ} 40^{\prime}$ to $81^{\circ} 31^{\prime}$ E. long., and is 475 miles in length from south-west to north-east, and nbout the same distance in breadth. The area of Berar is 17,728 square miles, and of the Nizam's Territories 80,000 square miles,- the total area of the whole state being about 98,000 square miles. It is bounded N. and N.E. by the Central Provinces, and S. and S.E. Ly territory enbject to the presideney of Madras, and W. by territory subject to the presidency of Dombay. The Country of the Nizam presents much variety of surface and feature. In some parts it is mountainous, wooded, and picturesque, in others flat rad undulating. The champaign lands are of all deseriptions, ineluding many rich and fertile plains, much good lind not yet brought under cultivation, and numerous tiacts two stcrile ever to lue cultivated. The geological furmations ase on a large scole: in the nurth-west the fomations ara volcanic, consisting principally of trap, bat i:1 some parts of basalt; in the middle, southeiri, and south-wastern parts the conntry is orerlaid with geneisaic formations. In the valley of the Wardha there gia corafictds, the quality of the coul is inferior, but food chough for railwy purposes. Quarries of excellent limestone are worked for a considerable distance along the line of the Nizam's State linilway. The territory is well watered, rivers being mumerous, and tinks or artificial picecs of water very abmadant. The principal tivers are-the Goduari, with its tributaries the Dudna, the Munjira, and Iranhita; the Wardha, with its tributaries the Pengange
 githadra. Many other streams (considerable rivers during the amsal periodical rains) aro discharged into these main charnels of dramage. The climate nay be considered in goneral gond; and as thero are no ard, bure deserts, the iot wimls are less felt. In the ricinity uf Ifyderabad eity, the amual mean temperature in the shade is $81^{\circ} \mathrm{F}$., nud the annual rainfall is estimatod at 28 to 32 inches.

The soil is in general fertite, though in some puts it ronsists of rhilhe, a red and pritty mouli, little fitted for paproses of agriculbure. A low juoglo spriags up in any gromel left uncultivated cem for a year or two, and in proens of fisw is palivenel ly the growth of momoron trees. The primipal anpo an tiro, what, maiz, jomer, bifora, righ, oilspeds of varions kints, fruits and gaden Mremes in groat raticty, cotion, indigo, sugureme, anll tulaceo. Silk, the material knoma as t uscer, the produce of o wiht species of worm, is utilizel ony large scale, Lat, suitathe for use as a resin or dye, gums, and oils are found in great ynutitics. Mides, raw and thand, arearticies of some importanco in commerce. Thochilf mat fur drean-bred horsers, adapted for melitary or eneral purposes, is at a far at Malegion in the Pedur distrut. There is also a horse hazanr near the capital, which is resorted to by mecrelants from almost every marter of Asia.

The principal expats are cotton, oil-seeds, country etothe, hides, anctal ware, and agriculturel mreduce; the imports are salt, grain,
 tures of the coustry that be meniomet the rinamental ware of Bedar, the gold embroidered cloths of Aurangibad, Galbargn, and other towns, and the excellent maper of different kinds which is inade by the inhahitants of Kaghazpur, near the fortress of Doulattbed. Several ralway lines pass throngh the state. The line connecting Bombay with Madras traverses the sonth-western part; the Great Indim Peniasula Rainay runs the lina as far as Ratehur, where it is joined by the Madras Mailway ; and from Wadi the Nizane's State Railway branches off to Hylerabad and Sacunder. abaal. The three principal roads in the state all pass throurh Huderabad city:
No census of the population has beon attempted in Hyderabad territory, with the exception of Rerar or the Assigued Districts. But the pppulation in the Nizam's Territory has been estimatod at $9,000,000$ persous. In the differeat parts of tho territory the Marathi, the kamarese, and the Telogu langages are snoken. The Marhattós are most numerous in the west. The Nusilmans are chiefly to be met with in the capital, and everywhere in the service of Government. In addition thera is a large adnixture of Parsis, Sikhs, Arabs, Rohillas, aborigines, and others. The revenue of tho Nizion's Territories, including Berer, may be stated in round numbers at $40,000,000$ rupees (say $£ 4,000,000$), including receipts from all sources, About two-thirds of the above large sunis collected by the nizim's own Goverament from tracts under British rule. 'The remaining one-third is realized by British officers, mincipally from Berar. The uative Goverument has a mint situated at Hyclerabad, and a currency of its own., It issues a rupec, -namely, the hali sicea, or "rupee of the period."
History. - The fortunes of the family of the uizan were founded by Kamrouddin Asaf Jah, a distinguisled sollier of the emperor Aurangzeb, who in 1713 was appointad Nizám-ul-Mulk (Regulator of the State) and Sulahdar of the Decenn, but eventually threv off the control of the Delhi court. Asaf Jah died in 1748, and the right of aecession to his pover and authority was contested by his descendants. The clamants most favomed were two ; the one, Nair Jang, in son of the deceased ruler, secured the support of the Englisin, the other Muzaflar Jang, a granlson, was supported by the French. After a bricf period of contest Muzafar Jnag became the misoner of his rival, who, however, som ferished ly the hands of some of his followers, and Muzathar Jany was proclamed subablar of the Deccan. He, tou, soon perishel in a fray with some Pathen chiefs, so the seat of power was now unoccupici. 'Two brothers of Nasir Jang now chamel the dignity, biat the contest was averted by the subhen death of Ginazi-ud-din, the elder bether. The English and Freneh costanued a stuggle for power and infinence in the Decean, but the litter mad to withinaw fora the suppert of Salabat Jane, through the danger theatening their own poss"ssions from the victorics gained by Clise. In 1061 this work pince was dethroned ly his youger hrother Nizim Ali, whonfterwads puthim to death. In 1605 lie ravaged the carnatic, inut retirel on the appreach of a British foree. Still the fritish Government was anxious to be on better terms with lim, patly from a desite to motain his comumence to their reten. tion of a mastime district known as the Nurthern Cirars, which they now occopich. In 1760 a traty was concluded by which, or condition of a gift of the Cirars, the British Goverament agreed to support the niziln, who on his part engaged to assist the British with lis trooph. In 1790 , on the braking out of a war with Thproo, son of Ilyder Ali Khan, a treaty of oflemsive amd defensive alliance was comeluded letween the nizin, tho beshwa, and the British Guvemment. Tippoo purchased peace (1742) at the price of hali his domimions, and he nizim hat no reason to he dissatisfed with his share of the spoil. On the fall of seringanamant the dath of Tippos Sultan, the nizim participated largely in the division of territory, under the traty of 1703, mat his share was merased on the peshwa's withdrawal from the treaty. In 1800 the sulsidiny
 mayment for its mantenatec was commaten for a ession of temono This torritary is known to the present time muler the sithe of the Combl Districts. By the traty of 1883 the nizins still retainet! :! a full use of the snlssidiary force and contingent, but was releasel forsm the unlimited obligation of service in time of war ; aml the contingent ceaserl to be part of the nisim's army, and heame an anx:liary force kint np by the liritish covernuent for the miam's use. In 1857, when the mutiny hat hoken ont, the state of llymeral nod tho nizan's foninions becance criticat; and an attork, which was requlsul, was mate uqn the residency. 'The llyderabad contiagent displayed its loyithe in tho find agamst the relats. In 1860 a fresh treaty wha mate ly wheh the territorial acquisitions of the mizim Mese insmed, a feht of 50 lakhes of ruices was cancellen, und assignal distrios in berar, making up a gross rovenue of $3,200,000$ rupees (say enab,000), were taken In trast by the British Goveroment. the nizan is the principal Mulometan ruler in Intin, mal is entitled to a salute of treaty. one guts.

Hrderabad, the chief city and capital of the above state, is situated in $17^{\circ} \Omega I^{\prime} 45^{\prime \prime}$ N. lat. and $78^{\circ} 30^{\circ} 10^{\prime \prime} \mathrm{E}$. long., on the river Musi, and stands at a beight of about 1700 feet above sea level. No eensus of the population has been taken, but it has been estimuted at 200,000. The scenery around Ifyderabad is wild and picturesque, the country being hilly and dotted aith numorous granite peaks aad isolated rocks. Approacked from the west, the appearance of the city is very striking,-the palace, the mosques, and the magnificent pile of buildings erected for the British residency towering above the outer wail. A large lake, a few miles south of Hyderabad, covering an area of 10,000 acres, supplics the town with water. 'tha palace of the nizam, the mosques, and the Eritish residency are the principal buildings. The palace has no pretensions to splendour, but is of considerable size. Hyderabad is a great Mahometan stronghold, and contains several mosfues. The Jamá Masjid or "cathedral" mosque, so called after the one at Mecea from which it is designed, is lange, and is crowned by minarets of an extraorainary leigit. In the eavirons of Hyderabal there are many fine gardens with gergeous pavilions; that of tha nizarn's minister has long been celebrated for its beauty. One of the monst interesting places is the college, or Char Dizinar (so calied from its four minarets), built upon four grand arches at which the fonr principal streets, of the chty ment. Above are sevelal spries of rooms, and formerly evth etory fas deroted to a scieuce. On the nerth side of the Husi : an extensive suburb known as the liegatm or "Princess" bazaar. The British restencer is in this quarter, and cemmonieation between it and the palace of the nizim is matataned by a time bridge. The residency is a very handsome building, and is ramarkable as daving lieen raised cntirely by native workmen. It stands in ormmental pleasure grounds onciosed by a wall with two gateways. The stairease is the hendsomest in India, uach step being a single block of the finest granite. The priacipal private residence in the city is the palace of the Bigre Dari, or "Twelve Doors," which is now occuricd by the ministor of the nizam, Sir Sutar Jang.
 hammad Keli, a lescendant of Sultin Kull Kutib Shen, the founder of tho dynasty at Colcomba in 15t2. Whammad knii removel the seat of gowinment on account of its want of water and consequent whealthiness, and brilt a new city on the banks of the Tima river, 7 miles frow his former eaptal. Ho colhed it Bhaersoguen, "Fortunate City," from his favourite mistress. Bhagnati; 保 after her death he named it ifyderabal. The ?nctury of Gotennta and of HIyderabad aiter 1559 are Rhmost identical. Soon after ectaiolishios himself in his new menopolis, Buhammat lieli rarrien on an aggressive war with the nembouming Lindu ritis. He ex. tended his conquusts south of the kistna river; the strong fortress of Gandikota was captured ; and the town of Cudeanah war sumbel. His troops penetrated to the frontices of Jiencal, and Mhammad Kolidefeted the ribio of Orissiand subjuzated the Northers ('ivars. In 1603 an ambassador from the hing of l'ersia arrived aitho soly studded crown and other magnificent gifts. Whea he seturimi six years afterwards, he was nccompanied by an officer of tho court of Iyfrabal, tratingreturn present.s. In ith11 Muhamatatalidied, aitw a most prosperons reign of thirty-four years. The priucipal memorials of this monarch are the falace and gardons of Mahi Mahil, tho Muhammali gardens, the pelace of Nabat (bhat, und the Jami Masjict or "cathedral "mosque. Doring his reigat nearly ft,000,000 was expendel on public works. and fot, 000 was dis. tributed every year among the poor.
Muhammad Kali was succeeded by has son, Sultan Almuhah Katab Sháh. Mir fumli, the prime minister, whose son hat invulved him in a dispute with the colrt, finding himself mathe to obtain fawoll from lis own sovereitg, determinel to throw himsolf on the protection of the Mughal emperor. Shah Jahan, aprousing his canse, isined a mandate to Ablullah to uedress the complaints of his minister; but Ahdulhalı was so incensed that he sequestratelt Mir Jumbe's property, nal commitat his son to prison. Shih Jahán now despatchel Aurangreb, his son, to carry his demamls into eflect by force of arms. Ablultah Kutab Sháh wny preparing an entertainment for Anriagzeb's reception, when be sudeniy ad. vanced as an cuemy, and took the king socomulelels by shimis?
that he had only time the the the fill-fort of torconda, whilst Hydetabad fell into the hauds of the Marhals, and was plundered and half buened before the troops could be brought into order. Abdullah did al! in lis power to negotiate reasonable terms, but tho Mughala were incsorable, and he was at last forced to accent the sevare couditions imposed on him.
Ah lullah died in 1672, and was succeeded by his son-in-law Abú Husiin, who in his youth had been notorious for dissipated habits. Ife foll entitely under the infuccee of a Marhatti Eraliman, namod Madhuma Fasth, who became his prime minister. During this riga Aurangzeb again marched upon the city. The king Glout himself in the fort of Golconda, and Hyderabad was again leftopen to plumer. Madbinas l'anth vas killed in a popular tumult, and the king accented such trrus as he could obtain. A payment of £2,000, 000 sterling in money and jewels vas demanded. In 1687 Ausangath formally declared war nyainst Abu thazain. The king bravely defended the furt of Golconda, bot lost it by trachery, and was sent a caitive to Daulatabid, where he resided until his death. Ald Husain was a very poprular monarch, and many anecdotes of his virtue are still current in the Deceam. Aurangzeb immediately fook possession of all the tervitories of Bijapur and Golconda, but his occupation oras little mone than military.

No eveut of any importance occurred at Π_{j} delahad until 1707, the year of Aumugzeb's death, wheu a digpute for the crown took plice. Ilis son, Prace Muazim, was victorious, and ascended the throue as Bahidur Shih. After be made a tuce with the Marhat:ís, afiairs in the Iecean remained quict wind the end of bis reyg, in 1712 . His death was foliowed by siruggles amongst his Song. A battle ensued ; Aziur-ush-Shán was slaia, aud Jalandhar Shah rumained master of the thone. Arnerg thusin he could not ges into his power was Farinh S Siyyar, the only son of Azim-ushShin; but the cause of this prince was eaporas 1 iny tie governor of Eohar, Sayyid Ifusain Ali. The rivals met near Ara; and on the lat January 1 f13 Faisukh Siyyar oscentet the hrone, and conforrel dignities upon all his adherents. Anoory these was ChinKilich Khan, to whon was given the title of rizath-ul-Mulk Asaf Jih, and Soyvid Husiin Ali sas appointed vicervy of the Decean. In 1719 Hnsain Ali and Sayjd Abdulah thin, his hrother, advanced upon Lethi, and sson their troops tock jossession of the ruyal citadel and patece. Farrukh Sbjyar whe denosed, and two months iater f 1:* to death. The Saysi is now (1719) selected Muhamand Sheh, who was the leat emperor that sst on the Peacocik throue of shih manim. In 1720 Huzain Ali was assassemated. and at the end of the year Aluallah Kbin was defonerg and tasen prisoner by Muhsmani 8hah; bat toc pozer of thas menarch was

 sigued his post. ard su: iIf to tial lecras, a proceding wnourtity to a decharation of ivioperdace. The eranesor senc orders to Hobariz, the locai govenor of thedembad to arnctre the goverament of the critre Decca3. A...i was for tel to come to oftr war, and sumn mained a decisive victury ouer Mohariz, who losi his life in the batio', fought in Outwer if2i. The then fixet his resivence at Hydadoh, and becarie edomater of au ind perdent kiaglom, now mind over ne hinderechiana, wo derive from him the tilio of the Nizinss of Haverigel otate.
 the cemmissionersip of Sia, Ingia, lying hetween $24^{\circ} 13^{\prime}$ and $23^{\circ} 15^{\prime} \mathrm{N}$. let, and octreen $67^{\circ} 51^{\prime}$ and $69^{\circ} 22^{\prime} \mathrm{E}$. long, witi: an area n! 0053 square milcs. It is bounded N. by Kairpur siate, E. by Thar and Fárkar political supcrintendence, S by the earne tract and the tiver Kori, and W. by the river Iudus and Karuehi distriet. The district is a vast alluvia! phain, 216 miles logg and 48 lroad. Fertiic alonig the coursc of the Indus, it de. gencrates toward3 the east into sandy maties, slarsely populeted, and defyitig cultivation. The monotony is relieved by the fringe of forest which marks the corase of the river, and by the avenues of trees that hime the intigation: chamols which branch eastward from this straats. The south of the district has a special foature in its harge :atural water-courses (called dinoras) and hasin lite shatuws (vihures), which retain the rains for a lung time. A limestone range called the Ginga and the deasant frequency of gardan lands break the monotonous landseape. The soil, wherever irrigated, is rery fertile. Very few species of the large wild animals are found; among birds, the bustard alone is remarkable. Venomous reptiles abound. The ILaius sapphies a large varicty of fisti, one of which. the pala, is peculiar to the river.

Of the total area of the district about one-half is uncultivable; 2,300,000 acres are cultivable though not cultivated, and 566,800 ero under irrigation. Agriculture is eotirely dependent upon artificial irngation, and is looked upon as a lottery, in which the cultivator stakes a certaio amouot of labour and seed, and takea his chance of setting a return If the water rises either too high or not high enough, he loses bis crop. There are 31 canals, fifty of which are main channels, and tap the Indus direct; the romainder aro comnecting branches. The principal rols are wheat, batley, oil-seeds, pulses, vegetables, joir, bajra, hl, wee, cotton, sugar-cane, chana, hemp, tobacco, water-melons, and tahge. The manulactures of the district mantain the excellence for which they bave been famous from early times, asmely, that lor lacquesed work, gold and sitver embroidery. striped and Urilliant cloths known as stistis ant rhesus, nod glazed pottery The manufacture of catpets, gilk thread, and gold and silver ornaments is carred on to a large extent; salt also is produced io such quantities as to allow of a consuderable exportation. The total number of fairs is 33 , and the avorage atterdance about 5000. The roads of the district extend t. 1925 miles in length, of which 263 are metalled, trodged, and riurked with milestones. The ferries number 68, the oar at GaduEatdar ($2 \frac{1}{3}$ miles from Hyderabad) is a steam ferry councrting Izyderabul with Kotri, on Sind Railway. There are lo trwellels bun; ;alows, 16 dharmsalds, 4 dispensames, a chwi and pohce hosputal, a convict hospital, and a charitable dispensary.

Cunshlerable variations of climate are found within the district. lat the gorth, the hot seasod of April and May is follonsed by two montas of floods, the rest of the year bemg cind and dry. In the ceutral divisions, the cold season succeeds the hot without any in. terveaing inundations to graduate the transition, and the change occurs sometimes with such suddenness that, tu quote a local say. ing, "sunstroke and frost-bite are possible in one and the sanis day" In the south the tampelature is more equable throughout the year, $60^{\circ} \mathrm{F}$. and $100^{\circ} \mathrm{F}$ representing the patiemes. The rant. fall is very moderate; a ad the distnct is healthy as sompared wht other parts of India.

Tho population is divided as follows - Mahometans, 560,349 ; Hindus, 118,652 ; other creedsami tnbes, $44, \$ 82$ - - intal. $723,883$. Of the Mahometans 373.705, or more than three.hiftha, are Sinds. More important, howfrer, as regards social status and personal character, are the Pathuns, foum chiefly about Hylerabad and Upper Siad; they anmber ooly 15.515 preons. As regards occu. pat'on, the Hindus of the distict may be called the shopkeeping clas, the Hahometans the artisan and agricultural
The chief revenue and nragnstemal authonty is vested in a col. lector and magistrati. He is assisted by the four deputy collectots of Hála, Tando Muhammad Khan, Naushaluro, aud Hyderabod enluks, of which the district is composed The prlice force is under the charge of a European distract superintendent, and comprises a total of 876 men, with. 4 inspectors and 19 chmef constabies. The average land revenne for 6 years ($1868-74$) was ± 111.655, drug revenue (1873-74), 55304 : receipts from the farnung of lignorshops ($1873-74$), £9640, inperial revenue (1874). £144,944; local revenue (1874), $£ 12,434$: forests yield an ammal rewome of $£ 11,216$ The Goverument boys' schools nunbered 55 un 1874, with 3227 pupils; the girls schooly 12, with 3 tig pupuls. These higures 12 . clude the returns for the hiph, normal, congmerng, and Anglovernachlar schools in II yderabad city:

The loonl history of Hydrabad distriet is an mixeld up with that of the province that littlo conld be said of it acparately which will not more properly find a place under the hasiory of sind Tha battles of Xinai (Maranel amd Dabo, wheh drobled the fate of Sind in favurr of the Bratish. were fonght whlarn is limits.

IIYDERABAD, the chief town of the above district, in $25^{\circ} 23^{\circ} 5^{\prime \prime} \mathrm{N}$ lat and $68^{\circ} 24^{\circ} 51^{\prime \prime} \mathrm{E}$. loms, larl in $185^{\circ} \mathrm{s}$ a popuation of 35.272, of whom 13.n65 were Malienctisns, (6,88! Elindus. 367 Christlans, and 495] "wfhers." The monempal area is about 15 square miles Upon the site of the present fort is supposed to have stond the ancient town of Nerankot. which in the sth century submetted to Nuhammad Kasim Sukifi [ts situatron near the apex of tion dulta of tlio Intus bad commendel itself te invarders and conquerory of still earlier date It is identificd phih Patala, a towo which has been cunnected with a prehistoric Scythian migration into Inlm (c. 625 B.c. 3). Aloxander the Gieat founded or refounded a city called Pataln in or near the samo place, 325 b e, nud left in it 3 military settlement. The best archoologwal anthorities reard the morlern Hyderabad as the representative of this Patala of the Greeks. In 1768 tho present city whs foumided by (thulam Shath Kallinra, and it remained tho chiof iown of the province until 1843 , when, after the
battle of Meeanee, it was surreadered to the British, and the capital transferred to Kurracheo (Karácbi). The city is built on the most northerly bills of the Ganga range, a site of great natural strength. In the fort, which covers an arca of 36 acres, are the arsenal of the province, transferred hither from Kurrachee in 1861, and the resideaces of the ex-mirs of Sind. Hyderabad is the centre of all the provincial communications-road, telegraphic, pestal. Fron the earliest times its manulactures-ornamented silks, silyer and gold work, and lacquered ware-have been the chief of the prorince, and in recent times bave gamed prizes at the industral exhibitions of Europe. The chief puthic institutions and buildings are the jail, Government schoole, post-office, municipal markets, cout houses, corl and pelice hospital, charitable dispensary, library, travellers' bungalow, and lunatic asylum. The barracksoccupted by atillery and infantry, European and nativeare built in twelve blocks, with hospitals, bazaar, \&c., to the north-west of the city. The only noteworthy antiquities are the tombs of the Kabhora and Talpur mirs.

HIDlid (the name is also found as Sidra, Nidra, Idero, de., and the ancient furm was Hydrea), an island of Greece, lying about 4 miles of the south east coast of Argolis in the Pelopunnesus, and forming along with the neigbburing island of Dhoke the Bay of Hydra. The lengtb of the main axis of the island, which runs from southwest to nerth-east, is about 11 miles, and the area is about 21 square miles; but it is little better than a rocky and treeless ridge with bardly a patch or two of arable soil. There was little exaggeration in the reply made by Antonios Kriezes to the queen of Greece: "The island produces prickly pears in abundance, splendid sea captains, and excellent prome ministers." The highest point, Mount Ere, so called (according to Miacules) from the Albanian word for wind, has an elevation of 1958 feet. The next in importance is known as the Prophet Elias, from the large convent of that anme on its summit. It was there that the patriot Theodorus Colocotronis was imprisened, and a large pine tree is still called after him. The fact that in furmer times the island was richly clad with woods is indicated by the name still employed by the Turks, Tchamlazn. the place of phes; but it is only iu some favoured spots that a few trees are now to be found. Tradition also has it that it was once a rell-watered island (hence the designatom Hydrea), but the inhahitants are now wholly dependent on the rain supty, and they have sometimes had to bring water from the mainland. Thus lack of fountains is probably to be ascribed in part to the effect of earthquakes, which ne net infrequent; that of 1769 continued for six whole days. Ilydra, the disef tewa, is built near the middle of the northern coast, on a very irregular site, conststing of three hitts and the tatorvening ravmes. From the sea its white and handshat houses present a preturesque and noble appearatice, and its streets thongh narrow are clean and attractive liesdes the principal harbour. round which the town is balt, there are three othel ports on the nortb const-iluadrahi, Molo, Panagh, but none of them is sutficiently sheltered. Amost all the pepulaten of the island is collected in tha chiet town, which is the seat of a inishop, and has a local court, numerous churches, and a high school. Cotton and silk weaving, tamning, and shipbulding are carried on, nid there is in fairly active trade. The pepulation in $18: 7$ was 6811.

Ilydra was of no tmportance in anciont times The only fact in its history is that the people of Ilemione (a city on the neighbouring mainland now known by the common namo of hiaspri) surendered it to Naman relugees, and that from these the people of Troezen receivel it in trust. If alparars to be coniphetely ignored by the Byzantine chromelers. In 1580 it waschosen as " 10 fuge by a boty of Albanians from Kokkinyns in Trazama! and nther emigratis luthured in 1690. I628. I635. 1640 . dic A1 lite close of the 17 Lb
century the 11 ydriotes took pilt in the reviving commeree of the Peloponnesus; and in course of time they exterded their range. About $1 / 16$ they began to build saklaria (of from 10 to 15 tons burden), and to visit the jslamds of the A.gean; not long after they introduced the latinadika ($40-50$ tons), and saileal as far as Alexandria, Constantinople, Trieste, and Vence; and by and hy they ventured to Franes antl even Ametica. Froni the gialim thale of South Russia more evperally they derived gre.t wealh. In 1813 there were about 22,000 people in the island, and of these 10,000 were seafarels. At the time of the outbreak of the war of Breek indepeolence the total population was 28,190 , of whoni 16,460 were natives and the rest formigners. One of them chitiof families, the Konduriuti, was worth $£ 2,000,000$. Into the struggle the Hydriotes flung themselves with rare enthusiasm and devotion, and the final deliverance of Grece was mainly due to the service remuered by their fleets.

See Pouqueville. Voy. de la Grece, vol. vi. ; Antonios Miaonles,

 Athens, 1874; G. D. Kriezes, Iotopia ons vךбou ropas, Patias, 1860.

HYDRANGEA, a popular fiower much in request for the decoration of conservatories during the late summer season, many thousands being annually produced for the London market. The plaut to which the name is most commonly applied is the Hydrungea Horterisia, a low - leciduous shrub, producing rather large nval strongly veined leaves in opposite pairs along the stem. It is terminated by a massive globular corymbose head of fluwers, which remain a long peried in an ornamental condition. The normal colour of the flowers, the majurity of which have neither stamens nor pistil, is pink; but by the influence of sundry agents in the soil, such as alum or iron, they becorie clanged to blue. The part of the inforesceace whit ${ }^{2}$ appears to be the flower is an exaggerated expansion of -hy calyx-leaves, the other parts being generally abortive. The perfect flowers are mall, rarely produced in the species abuve referrerl te, but well illustrated by others, in which they occupy the inner parts of the corymb, the larger showy meuter tlowers being produced at the circumference. A pure white variety, named TLomas Hogg, has been recently intreduced, and is a very desirable plant.

There are upwards of thirty species, found chiefly in Japan, in the mountains of India, and in North America, and many of them are familiar in gardens. H. Hortensia is the most useful for decoration, as the head of flowers lasts long in a fresh state, and by the aid of forcing can belad fur a considerable period for the ormamentatiun of the greenhouse and conservatory. 'Their natural flowering season is towards the end of the summer, but they may be had earlier by means of foreing. H. japoneca is another fine conservatory plant. with feliage and habit much resembling the last. named, but this has flat corymbs of flowers, the central ones swall and perfect, and the outer ones only enlarged and neuter. This also produces pink or blue flowers under the induence of different soils.

The Japanese specics of hydrangea are sufficiently hardy to grow in any tolerally favourable situation, but except in tho most sheltered localities they scldom bossom to any degree of perfection in the open air, the head of blossom dependiag on the uninjured development of a well-ripened terminal bud, and this growth being frequently affected by hate spring frosts. They are much more useful for potcillture indoors, and shauld be reared from cuttings of shoots having the terminal bud plump and promincut, put in during su...uner, these developing a single head of flowers the succecding summer. Somewhat larger plants may be had by nipping out the terminal lond and inducing three or four shoots to start in its place, and these, being steadily developed and well ripenerl, should each yicld its influrescence in the following summer, that is, when two years ald. Large plants crown in tubs and vases are fine suljects for large conservatorics. and may be used for decorating
terrace walks and similar places during summer, being housel in winter, and started under glass in spring.

The Indian and Aruerican sprecies, especially the later, are quite linsly, and sotue of them are extremely effective. The tinest of these by far is the Hydrangea paniculata gractlifure, the branched intluescence of which is under tavourable circumstances a yard or more in length, and consists of large spreading masses of crowded white neuter flowers which completely cunceal the few inconspicmus fertile ones. The plant attains a height of ε to 10 feet, and when in flower late in summer and in autumn is a very attractive object in the shrublery.
HyDRAULICS. See Hydromechasics.
HYDROCEPHALLS (iEwp, water, nçady, the head), a term in medicine applied to two diflerent furms of disease of the brain, buth of which are attended with the effusion of fluid into its cavities. They are namod respectively Acute and Chronic Hydroce, hialus. They have different pathological associations, and have no necessary connexion with each other.
Acoue Hydrocephalus is the term still largely emilnyed to describe the disease now known to physicians as tubercular cerebral meningitis, that is, inflammation of the membranes of the brain liruduced by the presence of tubercle. This disease is most commen in children under ten years of age, but is by to means limited to that period of life, and may affect adults. The ser.finleus or tubercular constitution is an impertant factor in this malady, which is admitted to be one of strongly deeditary tendeocy; yet unquestionably there are many instances in which no such taint con be traced. In numerous cases it is manifestly connected with bad bygienic conditions, with insufficient or improper feeding, or with over exercise of the mental powers, all of which will doubtless more readily exert their influence where an inherited liatility exists, and the same may be said regarding its occasional occurrence as o., of the after consequences of certain of the diseases of childhood, especially measles and hooping-cough.
Acute bydroceptalus is usually described as passing through certain stages; but it must be observed, as regards at least its carlier manifestations, that, so far from being well defined, they are often exceedingly vague, and render this disease in an especial manner liable to escape detection for a length of time, or to be confounded with others to which at its commencement it bears an acknowledged resemblance, sucb, for instance, as typhoil fever or gastro. intestinal derangements. Nevertheless, there are certain typical features characterizing the discase in each of its stages which it is important to describe, as iu many instances these present themselves with greater or less distinctness.

The premonitory symptoms of acute hydrocephalus are mostly such as relate to the gencral nutrition. A falling off in flesh and failure of strength are often ousersed for a considerable time before the characteristic Ihe:mmena of the disease appear. The patient, if a chith, becones listless and easily fatigued, loses appetite, and is restless at night. There is beadache after exertion, and the temper often undergocs a marked change, the child becoming unusuatly peevish and irritable. These symptoms may persist during many weeks; but on the other hand such premonitory indications may be entirely wanting, and the disease be' developed to all appearance quite sumbenly.
The onset is in must instances markal by the occurrence of vemiting, often serere, but sometimes only slight, and there is in general obstinate constipation. In not a few cases the first symptoms are convulsions, which, however, may in this carly stage subsille, and remain absent. or reappear at a later period. Headache is one of the nust constant of the carlier symptems, and is generally intense :mill accomnenicd with sharjer parosyoms, which cause the
pathat to scream, with a pecalar and efractenstic cry. Thera is great intelerance of light and sound, and geperat nervous senaitivedeas. Fever is present to a greater or less extent, the samperature ranging from 100° to 103° Fabr.; yet the puise is not quiclened in rroportion, being us: the contrary rather slow, but eabibiting a teadency to irregularity, and lisbla to become rapid on slight exertion. The breathing, too, is somewat irregular. Symptoms of this character, constituting the stage of cacitement, continue for a period rarying from one to two weeks, when they are sueceeded by the stage of depression. There is now a marked chaoge in the symptoms, which is apt to lead to the belief that a favourable turn has taken place. The patient becomes quieter and inclines to sleey, but it will be found on eareful watching that this quietness is but a condition of apathy or partial stupor jnto whieh the child has sunk. The romiting has now eeased, and there is less fever; the pulse is slower, and shows e still greater tendency to irregularity then before, while the breathing is of markedy unequal charceter, being rapid and shallow at one time, and long drawn out end sinking amay at another. There is madifestly little euffering, elthough the pecuiiar cry may etill be uttered, and the patient lies prostrate, ocecsionally rolling the bead uneasily apon the pillow, or picking at the bedelcthes or at bis face with his fingers. He does not ask for fonu, but roadily spallows what is ofered. The countenance is vile, but is apt to fusla up ealdenty for a time. The eyes present important alterations, the pupils being cilated or onaqual, aod searcely regponding to light. There may le doable vision, or partial or complete klindness. Squinting iacommon in this stage, and there may also be drooping of an eyclid, due to paralysiz of the part, ant ono or raore limbs may ve likewise faralyzed.

To this sueceeds the thirct of firal stage, in whick certain of the formar symptome recur, while othere become intensified. There is geverally a return of the fever, the temperature rising ametimes to a very high degree. The pube becomes feeble, rapid, and excecdingly irregular, aj is also tha cese with the ireating. Coma is profound, but yet the fatient nay still be got to swallow nourisamont, though not so readily as beiore. Convulsions ate apt to occur, while paralysis, more or lesz exteasive, effect 3 portions of tho budy or groups of muscles. The pupils are now widely dated, snd there is ceucraly complete bindness and oftru deafress. In thes condition the patientes strengt? undiggoes rami? sucline, and the boly beconies marbediy enweiated. Deata takes [lace cither suchemby in a fit, or more gradually from exhaustion. Shaty brfors the fatal event it is not uneommon for the fationt, who, it moy bo for many days previouly, lay in a state of prefunat bingur, to awaise up, ask for fornd, and talk tw those around but the hopes wheh mey thus bo rated are quickly tispolted by tine enting in of the symptoms of rephit simzing.
 suncwhet, hat in general dewh takes phace within thas viecka from tho onret of tho symptoms. Tho diseaso may Lo raild to ha almost invariably fatal, jet it most bu admitted that ersea presenting all the principal sympurns of acuto bydrucephatas da necasionally recover, though sueh inatures are mudoultally very rare. Indeed, the condition uf the hrain in thas disense, as revealed on matat mortoms examinatims, faniers its fatal elaracter in mow way smprising. The peruliar iumation eallet tuberele is found depanited in tha membranes of the brain, more partienlarly at ita lase. The irritation get up as a ronsequence of this is accompmiel with the eftusion of tuid invo the arachoid and ventricles, which liy its pressure tends to prodnce sultening and dostruction of the brain substance, a ad heme
to abolish its fuactions. In many instances the brtin is found to be redeced to a state of eomplete disorgzaization

Besides this condition of the brain, there exists in most eases deposition of tubercle elsewhere, as in the lunge ano atdominal glands, and this may have given eridence of its presence even before the head symptoms bad appeared. This is especiaily the ease in adulth, in whom acute hydroceptalus is more apt to arise as a complication in the course of pulmonary or other disease of tubercular origin than in tie manner in whieb it occurs in childrent as above deseribed.

With respect to treatment, littlo can be stated of an encnuraging nature. Still it must be voserved that mueh may be done in the way of prevention of this disease, and, in its earlier stages, ever in the may of cure. It is nost important in families where the history indicates a tuberculous or serofulous tendency, and particularly where zeute hydrocephalus has alroady oceurred, that every effort should be nsed to fortify the system and avoid the causes already alluded to as favouring the develonment of the disease during that period in which ebildren are liable to euffer from it. With this view mholesome food, marm elothing, cleanliness, regularity, and the svoidance of orerexerion, piysical aud.mental, are of the utinost consequence.

Although there is but little that can be dons when :he disease bas fut in, yet tho timely lige of remedies nay mitigate and even oceasionally remene the symptans. The severe beadache may often be ralieved by the apliantion of cne or two leches to the temples, ard by the fremuent use of eold water or ice andied to the lead. The ircatment by Llistering the sealpand atminivering mercu:s: iormerly so mucht practised, is now acknowledged to be of no rea! efficacy; and on the whale the maintenence of the patient's strengtis by light nourshment and the wee of sedotives to cumpose the nerrous sestem are the mea-ures most likely to be cttended with sucerss. The bromitio, witi which nay be combined the iodide of potassimm, is the medicinal agent of most value for this parpose. Should convulsions uceur thev are Lest treated hy chioral or chlarofurb.

Chromis Mydrocematus is a chitevent dum or discase from that last descritod, both as regards its pathulogy and its effects. It consists in an cfiusion of fluid into tla sorms covitits (arachoid and ventricles) of the frain, not frecnied by tuberenious deposit or acate infammatiod, Lut atparently depending on ehromic intamatory chen eqe aftecting the rembranea, and is to be regarded as a kind of dropsy. The disease is frequently congental, and its presence in the fotus is ath to be a souree of difterly in pariwition. It is, howerer, more commonly deveniped in the course of the fiest six monthe of life; but it ucemionaliy anisos in mier childem, or even in adults, as in the wellknnwa inefance d! Ifen Swift, who died from this disease.

C"aronis hydroeep halus affects mostly children who bear evilence of e errofuious, ricketty, or othersise delieato consetintion. The chiof syroptoms ubeerved aro the eratual increase in size of the upper part of the head ent if a] proportian to tho free or the rest of the bo Corurimif at an age when as yet the sevarato lewas coin stituting the skull havo not becomo welded, this enlari mont may fo on to a very considerabie extent in all dirte tions, but chicfly in tha transaerse and antero-posterior diancters, tho rpaces betwees tho bones becoming mese ant more expanded, though whimately, should the chilt survire, assitication takes piace. In a well-smarked case tho deformity is very atrikiag. The upper part of the forchear projects almormally, and the orbital phates of the fromal bone being inelited forwarls givo a downwad direction to the eyes, which have also peenliar rolline tanveracts. The face is emall, ant this, with the enlarest
head, gives a remarkably aged expression to the child. There is generally defective development in other respects, the body being ill nourished, the bones thin, the bair scanty and fine, and the teeth earious or absent.

As illustrating the extent to which this disease may proceed, it may be mentioned that the average circumference of the adult head is about 22 iniches, while in the child it is of course considerably less. In chronic hydrocephalus the head of an infant three months old bas been known to measure 29 inches; and in the well-known case of the man Cardinal, who died in Guy's Hospital, the bead measured 33 inches. In the museum of the faculty of medicine in Paris there is a hydrocephalic skull measuring 39 inches. In aggravated cases the head cannot be supported by the neck, and the patient has to keep in the recumbent posture. The expansibility of the skull prevents destructive pressure on the brain, yet this organ is materially affected by the presence of the fiuid. The cerebral ventricles are widely distended, and the convolutions fiattened, while occasionally the fluid escapes into the eavity of the cranium, which it fills, pressing down the brain to the base of the skull. As a consequence of such changes, the functions of the brain are iaterfered with, and in general the mental cendition of the patient is impaired to a greater or less extent. The child is dull and listless, irritable, and sometimes imbecile. The special senses become affected as the disease advaaces, especially vision, and sight is often lost, as is also hearing. Towards the close paralysis is apt to occur. Hydrocephalic children rarely live long, generally dying from the malady in a few years, or suecumbing to some of the diserders of childhood, which they are little sblo to resist. Nevertheloss there have been many instances of persons with this disease reaching maturity, and cven living to old age. It must 3 lso be borne in mind that there are grades of this affection, and that children may present many of the symptoms of it in a comparatively slight degree, and yet recover, the head ceasing to expand, and becoming firmly ossified.

Various methods of treatment have been employed in this disease, but the results are seldom satisfactory. Cempression of the bead by bandages, and the administration of mereury with the view of promoting absorption of the fluid, are now little resorted to. Tapping tho fluid from time to tims through oae of the spaces between the broes, drawing off a lithlo, and thereafter employing geatle pressure, has been tried, but seldom with permanent benefit. Oit the whole, the plan of treatnent which aims at maintaining the patient's nutrition by appropriate feod and tonics, is at once the most rational and successful, provided it he resorted to in time to admit of the arrest of the progress of the symptoms.
(J. o. А.)

HYDROGEN (from $\tilde{\delta} \dot{\omega} \rho$, water, and γ cováco, to generate) is a chenical element which is the free stato occurs in voleanie gases, but exists for the most part in combination with oxygen as water. As its elemental characteristics and the chief compounds of liydrogen lave already been Ilescribed in tho article Cmemistry, vol. v. pp. ${ }^{478,483,}$ 491, 499, 544 , \&e., it is here only necessary to refer to tho liquefaction of gaseons hydrogen. ${ }^{1}$

At the close of 1877 and in the beginning of 1878 , not only hydrogen, but all the so-ealled permanent gases, were reduced to the liquid state, an achievement the more remarkable as it was the result of the simultaneous but entirely independent labours of two distinguished Ihysicists, M. Cailletet of Chatillon-sur-Seine and M. Pietet of Genera. The experiments of the former, who elearly demonstrated the possibility of liquefying acetylene, carbonic oxide, hydrogen, methane, nitrie oxide, nitrogen,

[^91]and oxygen, are described in detail in the Annales de Chimie te de Physique, scr. 5, vol. xv. p. 132; those of M. Pietet, who operated only upon oxygen and hylregen, are detailed in the same joural, ser. 5, vol, xiii. p. 145. The instrumental meaus employed by them were yery different, as will be evident from the following deseription.
M. Cailletet's apparatus is represented in the annexed sketch (fig. 1). The gas under experiment is contained in a stout glass tube of narrow bore of the lorm shown in fig. 2 .

Fig. 1.-Cailletet's Apparatus for Liquefaction of Gases.
To fill this tube with gas, hoth ends being open, a globule of mereury is first introdnced at the lower curved extremity; the tube is then placed in a nearly horizontal position, the curved extremity is connceted with the holder coutaining the gas, or with the apparatus in which the gas is being evolved, by means of caoutchoue tubing. and a curcent of the pure dry gas is passed throngh the tube until the air is entirely expelled; this being effected, the point orposite to the curved extronity is scaled in the blowpipe llame; the tube is then brought into a vertical position, so that the globule of mercury closes the lower ertremity, the caoutchouc tube is withdrawn, and the tube AA thus filled is screwed into its place in the cylinder 13 . The lower part of the cylinder contains mereury, the upler part water. The pressure is exerted by foreing a phanger into a massive stecl eylinder filted with water by means of the screw and wheel seen on the left in fig. 1 , the water being forced from this eylinder through the fine coiled tube into the upper part of the eylinder in which the glass tube is fixed; by rapidly turning the whecl scen on the right of the figure, a value may be opened, allowing of the escupe of the water, and thus the pres. sure on the gas may be suddenly withulrawn. The pressure to which the gas is sulmitted is measured by means of either of the manometers seen on the right. The gas may be
 cooled by surrounding the tube A with liquil sulphur dioxide, curbon dioxide, or nitrous oxide, and the deposition of ice on the outside of the eylinder containing the refrigerating liquil is prevented by covering it with a glass cylinder or bell jar, under whieh is placed some desiceating naterial. Py strongly compressing a gas in this apparatus, and then suddenly relieving it frow pressure, an enormous reduction in its temperature is cffectel, owing to the sudden expansion of the gas, and it is under these circumstances that liquefaction takes place in cases where pressure alone is ineffective. On submitting hydrogen to a pressurc of nearly 300 atmospheres, and then suddenly withdrawing the pressure, M. Cailletet observed the formation of a fine mist in the interior of the tube; the experiments of Andrews and his own previous observations had shown that this result afforded incontestable proof of the presence of liquid, if not of solid, particles.

The general disposition of M. Pictet's apparatus is seen in fig. 3., It is of a much more complex character, but permits of the experiment being made on a comparatively very large scale. The condensation of the gas is effected in a copper tube of arrrow bore,

Fio. 3. - Pictet's Apparatus for Liquefaction of Gases.
connected at the onc end with a manometer capable of iudicating pressures up to 800 atmospheres, aod with a fine steel stop-cock, and at the other with a very strong wroughriroo vessel in which
the hydrogen is generated by heatiog a perfectly dry mixture of potassium formate with poiassium hydroxide; these two substances enter into reaction in accordance with the equation HCOOK + $\mathrm{HOK}=\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2}$, the hydrogeo beiog evolved in a perfeetly regular manner when the temperature is maintained at 295°. The dimensions of the condensation tube are-ioterlal diameter -001 metre, externul diameter 015 metre, leogth $4 \cdot 16$ metres; and the retort has a capacity of 1659 cubic centimetres. The charge introduced consisted of 500 grammes potassiam hydroxide and 1251 grammes potassium formate. The condensation tube is surrounded with a wider tube containing condensed carbon dioxide or nitrous oxide; these tubes are caclosed in the lower bor seen in the shetch. The upper box contaios a tubular arrangement in which carbon dioxide or nitroue exide from the gasholder is reduced to the liquid state. The pumps are sucb os are used in ice-makiog maehines, one of each pair being nn exhausting, the other a condensing pamp; one pair of these purops is employed in coudensing and volatilizing the sulphur dioxide, and the other io condensing and volatiliziog the carben dioxide or nitrous oxide, Figs. 4 and 5 ahow the appa. ratus in vertical section and in plan.

Io working the apparatus, in the first place liquid sulphur dioxide from the reservoir seen between the first pair of pumps is charged into the outer tube of the condeoser in the upper box, and is caused rapidly to evaporate by the action of the exhaustiog pump in conaexion with the tube, while the other pump serves to recondense it in the reservoir, which is a kiod of tubular boiler provided with a cold water circulation. The temperature of the liquid sulphar dioxide is thus reduced to $-65^{\circ} \mathrm{C}$. ; on allowing the carbon dioxide or

7
Fro 4. -Vertieal Sectino of Pietet's Apparatus.
nitrous oxide to enter the inner tube of the condenser thus cooled, it begins to liquofy under a pressure of abont 4 atmospheres, nod the condensation of the whole of the gas ia effected at a pressure of from 4 to 7 atmospheres, the temperature of the liquid sulpbur dioxide fuctuating between $-65^{\circ} \mathrm{inh}-50^{\circ}$. The liquid carbon dioxide

(or nitrous oxide) thus obtained is theu allowed to pass into the tube surrounding the coodeosation tube, and hy the action of the aecond exhausting pump it is caused to evaporate so quickly that it aolidifies. Ihe temperature may thus be reduced to -120° or cven- -140°. - In describing his first experiment with hydrogno with this nppas. ratus, M. Pictet states that the pressure, having risen gradually during about 40 minutes, became stationary at about 650 atmospheres; on then openiog the stop-cock, the orifics being illumi. nated by a powerful electric light, in opayue jet of a highly charneterintic steel-blue tiot was seen to issue forth. At the same moment, a sharp hissing noise like that produced on plunging a red. lot bar of iron into water was heard, aud simultaucously a highly.
splueres, the pressure fell to 320 atmospheres, then slowly ase to :330 atmospheres, and remained coustime for several minutes; on now opening the stop-coek again, a jot issued of extremely short duration, accomfund with the violent projection of solid purtieles, but than mothing eseaped athough the pressure was 31 fatmospheres, an indication that the hydrogen had solfithed in the interior of the tube. - On ceasine to
characteristic ratling noise on the gromand, recalling the smmal of smatl seod filling. Mobcover, the jot was not continuent in wh the cave of oxygan, but intermattent, ench projection of mattor berne: athomed with the peruliar rustling noise alhaded to; in fald, ombmis tos the great reduction in temperatire, due to the sublemb whaldeatmen of the lignin, partions beman solidified in the tahe. Onthoner the

nspirate from the inbe surromding the condensation tube, aud thas allowing the temperature of the later to rise somewhat, diseharge took piabee with increasing frepuency, until after about a quarter of mant the prosure fell to zero.
l'istet thus shocemble in liquefying and solidifying lydrogen on Thmut. 10th, 1858, Cailletut haviog demonstrated its liquifaction an hecimba 30 h jreviously.

H Y D R OMECHANICS

Historical Introduction. ${ }^{1}$

TIHE word Hydromechanics is derived from the Greek $\dot{i} \delta \rho \sigma-\mu \eta \chi^{\alpha} u \kappa \alpha$, meaning the mechanics of water and flinids in general The science is divided into three bracches:-Hydrostatics, which deals with the equilibrium of lluids; Hydrodynamics, which deals with the mathematical theory of the motion of fluids, neglecting the viscosity; and Hydraulics, in which the motion of water in pipes and canals is considered, and hydrodynamical questions of practical application are investigated.

The science of hydromechanics was cultivated with less success among the ancients than any other branch of mechanical philosophy. When the human mind bad made considerable progress in the other departments of physical science, the doctrine of fluids had not begun to occupy the attention of philosophers; and, if we except a few propositions on the pressure and equilibrium of water, hydromechanics must be regarded as a modern science, which owes its existence and improrement to these great men who adorned the 17 th and 18 th centuries.

Those general principles of hydrostatics which are to this day employed as the foundation of that part of the acience were first given by Archimedes in his work Π I $\rho \stackrel{1}{\mathrm{i}}$
 B.C., and were afterwards applied to cxpericients by Marinus Ghetaldus in his Promotus Archimedes (1603). Archimedes maintaived that each particle of a fluid mass, when in equilibrium, is equally pressed in every direction; and he inquired into the conditions according to which a solid body floating in a fluid should assume and preserve a position of equilibrium. We are also indebted to him for that ingenious hydrostatic precess by which the purity of the precious metals can be ascertained, and for the acrew engine which goes by his name.
In the Greek school at Alexandria, which flourished under the auspices of the Ptolemies, the first attempts were made at the construction of bydrauiic machinery. About 120 в.c. the fountain of compression, the siphon, and the forcing pump were invented by Ctesibius and Hero; and, though these machines operated by the pressure of the air, yet their inventors had no distinct notions of the preliminary branches of pncumatical science. The aiphon is a aimplo instrument; but the forcing pump is a complicated aod abstruse invention, which could scarcely have beca cxpected iu the infancy of hydraulics. It was probably suggested to Ctesibius by the Egyptian Wheel or Aoria, which was common at that time, and which was a lind of chain pump, consisting of a number of earthen pots carricd reund by a wheel. In some of these machines the pots harsa valve, in the bottom which enables them to descead without much resistance, and diminishes greatly the load upon the wheel; and, if we suppose that this valve was introduced so carly as the time of Ctesibius, it is not dificult to perceive how such a machine might have led that philosopher to the invention of the forcing pump.

Natwithstanding these inventions of the Alexandrian achool, its attention docs nut geem to have been dirceted to the motion of Guids. The first attempt to investigate this sabject was made by Sestus Julius Frontions, inspector of the public fountaius at Rome in the reign3 of Nerva and Trajan ; and we may justly suppose that his work, entitled De Aqueductibus Urbis Roma Commentasius, contains ali the hydraulic knorledge of the ancients. After describing

[^92]the nine ${ }^{2}$ great lioman aqueducts, to which he himeelf added five more, and mentioning the dates of their erection, he considers the methods which were at that time employed for ascertaining the quantity of water discharged from ajutages, and the mode of distributing the waters of an aqueduct or a fountain. He justly remarke that the flow of water from an orifice depended not only on the magnitude of the orifice itself, but also on the height of the water in the reservoir; and tbat a pipe emploged to carry off a portion of water from an aqueduct should, as circumstances required, have a position more or less inclined to the origioal direction of the current. But as he was unacquainted with the true law of the velocities of running water as depending upon the depth of the orifice, we can scarcely be surprised at the want of precision which appears in his results.

It has generally been supposed that the Romana wero ignorant of the art of conducting and raising water by means of pipes; but it can acarcely be doubted, from the statement of Pliny and otler authors, not only that they were acquainted with the hydrostatical privciple, but that they actually used leaden pipes for the purpose. Pliny asserts that water will always rise to the height of its source, and he also adds that, in order to raise water up to an eminence, leaden pipes must be employed. ${ }^{5}$

Castelli and Torricelli, two of the disciples of Galileo, Castelli applied the discoveries of their master to the science of hydrodynamics. In 1628 Castelli published a small work, Della Misura clelf acque correnti, in which he gave a very satisfactory explanation of several phenomena in the motion of fluids in rivers and canals. But be committed a great paralogism in supposing the velocity of the water proportional to the depth of the orifice below the surface of the vessel. Torricelli, observing that in a jet where the water Torrirushed through a small ajutage it rose to vearly the same eelli. height with the reservoir from which it was supplied, inagined that it ought to move with the same velocity as if it had fallen through that beight by the force of gravity. And bence he deduced this beautiful and important proposition, that the velocities of fluids are ns the equare root of the head, allowing for the resistance of the air and the friction of the orifice. This theorem was published in 1643, at the end of his treatise De Motu gratium Projcctorum. It was afterwards confirmed by the experiments of Raphael Magiotti on the quantitics of water discharged from different ajutages under different pressures; and, though it is true only in small orifices, it gave a new turn to the science of hydraulics.

After the death of the celebrated Pascal, who discovered Pascal. the pressure of the atmosphere, a treatisc on the equilibrium of fluids (Sur l'Equilibre des Liqueurs) was found among

[^93]his manuscripts, and was given to the public in 1663 . In the hands of Paseal hydrustatics assumed the dignity of a science. The laws of the equilibrium of thids were demonstrated in the most perspicuous and simple manner, and amply confirmed by esperiments. The discovery of Torricelli, it may be supposed, would have incited Pascal to the study of hydraalics. But as he has not treated this subject in the work mentioned, it was probably composed before that discovery had been made public.
Marivta. The theorem of Torricelli was employed by many anceeed. ing writers, lut particularly by the celebrated Mariotte, whose labours in thas department of physics deserve to be recordel. His Trazté du Mouvement des Eaux, which was published after his death in the year 1686, is founded on a great variety of well-conducted experiments on the motion of fluids, performed at Versailles and Chantilly. In the discussion of some points he has committed considerable mistakes. Others he has treated very superficially, and in none of his experiments does he seem to have attended to the diminution of efflux arising from the contraction of the fluid venn, when the orifice is merely a perforation in a thin plate, but he appears to bare been the first who attempted to ascribe the discrepancy between theory and experiment to the retardation of the water's velocity arising from frictiou. His contemporary Guglielmini, who was inspector of the rivers and canals in the Milanese, had ascribed this diminution of velocity io rivers to transverse motions arising from inequalities in their bottom. But as Mariotte observed similar obstructions even in glass pipes, where no transverse currents could exist, the cause assigned by Guglielmini scemed destitute of foundation. The French philosopher, therefore, regarded these obstructions as the effects of friction. He supposes that the filaments of water which graze along the sides of the pipe lose a portion of their velucity; that the contiguous filaments, having on this account a greater velocity, rub upon the former, aud suffer a diminution of their celerity; and that the other filaments are affected with similar retardations propertional to their distance from the axis of the pipe. In this way the modium velocity of the curreat may be diminished, and consequently the quantity of water discharged in a given time must, from the effects of friction, be cousiderably less than that which is computed from theory. Guglichmini was the first who attended to the motion of water in rivera and open camals (La Misura dell' acque correnti). Embracing the theorem of Torricelli, which had been confirmed by repeated experments, Guglielmmi concluded that each particte in the perpendicular section of a current has a tendency to move with the same velocity as if it issued from an urifice at the same depth from the surface. The consequaces dedusible from this theory of rumnng waters are in every respect repugnant to experience, and it is really surprising that it shomblave been so lastily adopted by succeedng writers. Curlielmini limself was sufficiently sensihte that his prabablic theory was contrary to fact, and endeavoned to reconcile them by supposing the motion of rivers to be obstructed by transverse currenta arising from irregularities in their hed. The solution of this dilliculty, as given ly Mariote, was more satisfactory, and was afterwards adopted by Cuglichmini, whe mantained also that the viscosity of water had a considerable slare in retarding its motion.
Nopton. The effects of friction and viscosity in diminiahing the velocity of running water were notieed in the frinempa of Sir Isaae Newton, who threw marh light upen several branches of hydromechanics. At a tume when the Carte*gian system of vortices universally prevated, thas great man found it weeessary to investigale that absurd hypothesis, innd in the course of his investigatinus he showed that the 'yelocity of any stratum of the vortex is an arithometical
mean between the velocities of the strata which encloso it; and from this it evidently follows that the velocity of a filament of water moring in a pipe is an arithmetical mean between the velocities of the filaments which surround it. Taking advantage of these results, it was afterwards shown by Pitot that the retardations arising from friction are inversely as the diameters of the pipes in which the flaid moves. The attention of Newton was also directed to the discharge of water from onlices in the bottom of vessels. He supposed a cylindrical vessel full of water to be perforated in its bottom with a small hole by which the water escaped, and the vessel to be supplied with water an such a manner that it always remaned full at the same height. He then supposed this cylindrical column of water to be divided into two parts, - the first, which he calls the "cataract," being an hyperbolond generated by the revolotion of an hyperbola of the fith degree around the axis of the cylinder which should pass through the orifice, and the secoud the remander of the water m the cylindrical vessel. He considered the horizontal strata of this hyperbolod as always in motion, while the remainder of the water was in a state of rest, and imagined that there was a kind of cataract in the midde of the tuid. When the results of this theory were conipared with the fuantity of water actually discharged, Newten concluded that the velocity with which the water issued from the oritice anas equal to that which a falling body would receive by descendiner through half the height of water in the reservoir. This conclusion, however, is absolutely irrecnncilable with the known fact that jets of water rise nearly to the same height as their reservors, and Newton seems to bave been aware of this objection. In the second edition of his Princzuer accordingly, which appeared in 1714, he reconsidered his theory. He had discovered a enntraction in the ven of hand (vena contracta) which issued from the orifice, and lound thar, at the distance of about a diameter of the aperture, the section of the vein was contracted in the subduplicate ratio of two to one. He regarded, therefore, the section of the contracted vein as the true orifice from which the discharge of water ought to be derluced, and the velocity of the ethuent water as due to the whole height of water in the reservoir; and by this means bis theory becamemnre conformable to the results ofesperience. This theory, however, is still liahle to serious objections. The formation of a cataract is by no means agreeable tothe laws of hydrostatics, for when a vessel is emptied by the efflux of water through an orifice in its bottom, all the particles of the thid durect thenselves towa dhes orifice, and therefore no part of 11 can be considered as im a state of repose.

The subject of the oscillation of waves, one of the mose difficult in the science of hydrodymamics. was first. the vestigated by Newton In the furty-fourth proposition of the second book of his Proneym, he has furmshed as with a mothod of ascortainng the velocity of the waves of the sea, by observing the time in which they rise and faii. If the two vertical branches of a sipdion, which communtcate by means of a horizontal brand, are filled with a fluid of known density, the two lluid columns, when in a state of rest, will be in equilibrum and their surfaces horizontal. But if the one column is raised above the level of the other, aml left to itself, it will descend below that level, and raiso the other column above it, and, after a few oscillations, they will return to a state of repose. Newton necupied himself in determmong the duration of these uscillations, or the length of a pendulum isoctronons to their duration; and he found, by u simple process of reasoning, that, allowing for the effeets of friction, the length of a synchromus pendulum is equal to one-half of the lengti of tho siphon, that is, of the two verticul branches and the
hurizontas onc, and henee he deiuced the isuchronism of these oacillations. Frum this Newton concluded that the relocity of waves formed on the surface of water, eithcr by the wind or by a body thrown inte it, was in the subduplicate ratio of their size. When their velocity, therefore, is measured, which can be easily doue, the size of the waves will be determiced by means of a pendulum which oscillates in the time that a wave takes to rise and fall.

Such was the state of hydrodynamics in 1738, when Da:niel Bernoulli published his Ilydrodynamica, sive de Viribus et Motibus Fluidorum Commentarii. The germ of Daniel Bernoulli's theory was first published in his memoir entitled Theoria Nova de Mota Aquarum per Caiales quocunque fluentes, which he had communicated to the Academy of St Petersburg as early as 1726. His theory of the motion of fluids was fcunded on two suppositions, which appeared to him conformable to experience. He supposed that the surface of a fluid, contained in a ressel which is emptying itself by an orifice, remains always horizontal; and, if the fuid mass is conceived.to be divided into an infinita aumber of herizontal strata of the same bulk, that these atrata remain contiguous to each other, and that all their points descend vertically, with velocities inverscly proportional to their breadth, or to the horizontal sections of the reservoir. In order to determine tha motion of each stratum, he emplayed the principle of the conservatio virium vivarum, and obtained very elegant solutions. In the opinion of the Abbe Bnssut, his work was one of the fincst productions of mathematical genius. The uncertainty of the principle emploged by Daniel Berboulli, which has never been demonstrated in a general manncr, deprived his results of that confidence which they would otherwise have deserved, and rendered it desirable to have a theory more certain, and depending solcly on the fundamental laws of mechanics. Machaurin and John Bernoulli, who were of this opinion, resolved the problem by mere direct methods, the one in his Fluxions, published in 1742, and the other in his Hydraulica nunc primum detecta, et demonstrata directe ex fundamentis pure mechanicis, which forms the fourth volume of his works. The method employed by Maclaurin has been thought not sufficiently rigorcus; and that of John Bernoulli is, in the apinion of Lagrange, defective in perspicuity and precision.
Daten. The theory of Daniel Bernoulli was oppnsed also by the celebrated D'Alembert. When gencraliziug James Bernoulli's theory of pendulums he discovered a principle of dyaminics во simple and general that it reduced the haws of the motions of bodies to that of their equilibriam. He applied this principle to the motion of fuids, and gave a specimen of its application at the end of his Dynamics in 1743. It was more fully devcloped in his I'raité des Fluides, which was published in 1744, where he has resclved, in the most simple and elegant manner, all the problems which rclate to the equilibrium and mation of fuids. He makes use of the very same suppositions as Daniel Bernoulli, though his calculus is established in a very different manner. He considers, at every instant, the nctual motion of a stratum as composed of a motion which it had in the preceding instant and of a motion which it has lost. The laws of equilibrium between the motions lost furnish him with equations which represent the metion of the fluid. Although the science of hydrodynamics had then made considcrable progress, yet it was chiefly founded on hypothesis. It remained a desideratum to express by equations the motion of a particle of the fluid in any assigned direction. These equations were found by D'Alembert from two principhes,-that a rectangular canal, taken in a mass of fuid in equilibrium, is itself in equilibrium ; and that a portion of the fluid, in passing from one place to another, preserves the same volume when the fluid is incompressibic.
or dilares itself according to a given law when the thuid is elastic. His very ingenious method was published in 1752, in his Essai sur la Restistance des Fluides. It was brought to perfection in his Opuscules Hathématiqucs, and was adopted by Euler.

Before the time of D'Alecobert, it was the great object of philosephers to submit the motion of fluids to general formulæ, independent of nll hypathesis. Their attempts, howerer, were altogether fruitless; for the method of flusions, which produced such impertant changes in the physical sciences, was but a feeble ausiliary in the scienco of hydraulics. For the resolution of the questions conceraing the motion of fuids, we are indebted to the method of partial differences, a new calculus, with which Euler enriched the sciences. This great discovery was first applied to the motion of water by D'Alembert, and enabled both him and Euler to represent the theory of fluids in fermulæ restricted by no particular hypothesis.

The most successful labourer in the scienca of hydro- Datase dynamics was the Chevalier Dubuat, engineer ic crdinary to the king of France. Following in the steps of the Abbe Bossut (Nouvelles expériences sur la resistance des fuides, 1777), he prosecuted the inquiries of that philosopher with uncommon ingenuity; and in the year 1786 he published, in two volumes, his Principes dHydraulique, which cuntains a satisfactery theory of the motion of fluids, fcunded solely upon e.:pcriments. Dubuat considered that if water were a perfect fluid, and the channels in which it flowed infinitely smooth, its motion would be continually nccelerated, like that of bodies descending in an inclined plane. But as the motiou of rivers is not continually accelerated, and soon arrives at a state of uniformity, it is evident that the viscosity of the water, and the friction of the channel in which it descends, must equal the accelerating force. Dubuat therefore assumes it as a proposition of fundamental importance that, when water flows in any channel or bed, the accelerating force which obliges it to move is equal to the sum of all the resistances which it meets with, whether they arise from its own viscosity or from the friction of its bed. This principle was employed by Dubuat in the first edition of his work, which appeared in 1779, but the theory contained in that edition was founded on the experiments of others. He soun saw, however, that a theory so new, and lcading to results so different from the ordinary theory, should be founded on new experiments more direct than the former, and be was employed in the performance of these from 1780 to $1 i s 3$. The experiments of Bossui having been made only on pipes of a moderate declivity, Dubuat found it necessary to supply this defect. He used declivitics of every kind, and made his experiments upon channels from a line and a hale in diameter to seven or cight square toises.

The theory of running water was grcatly advanced by frourthe researches of Preny. From a collection of the best experiments by Couplet, Bossut, and Dubuat he sclected cighty-two (fifty-one on the velocity of watcr in conduit pipes, and thirty-one on its relocity in open canals); and, discussing these on physical and mechanical principles, he succecded in drawing up general formula, which afford a simple exy rssion for the velocity of manng water.

Eytelwein of Berlin poblished, in 1801, a valuable com- fyela pendium of Ilydraulics, entitled Ilandluch der Meckanik wisn. und der Iydreulik, which contains an account of many new nod valuable experiments made by himself. He inrestigates the subject of the discharge of water by com: pound pipes, the motions of jets, and their impulses against plane and oblique surfaces; and he shows theo retically that a water wheel will havo its effect a maxi mum when its circumference meves with half the veloeity of the stream.

Msilet A series of interesting hydraulic experiments was made and at Rome in 1809 by Mallet and Vici. They found that a pipe whose gange was five ounces French measure (or 0.03059 French kilolitres) furnished one-seventh more water than five pipes of one ounce, an effect arising from the velocity being diminished by friction in the ratio of the perimeters of the orifices as compared with their areas.
Gachetue. Institute a riemoir containing the results of experiments which be had made on the spouting of fluids, and the discharge of ressels. The objects he had in view were to measure the contracted part of a fluid vein, to examine the phenomena attendant on additional tubes, and to investigate and describe the figure of the fluid vein, and the results which take place when different forms of orifices are employed. Hachette showed in the second part of his memoir that greater or lesser volumes of water will be discharged in tho same time through tubes of different figures, the apertures in all having the same dimensions. He also gave several remarkable results respecting other fluids issuing out of orifices into air or a vacuum.
Investi-
gations as to waves. of wave Bidour Jon Sed experiments on waves, which are described in the Eliinburgh Transactions, vol. xiv., and in the British Association Report for 1837. The mathematical theory has been worked out by Green, Stokes, Rankine, and other mathematicians, but still offers an interesting field for the investigator. Stokes's Report of the British Associntion for 1846 on Recent Researches in Hydrodynamics gives an account of the suljeet as it existed at that date.
Bitlone. 1826 Bidone, besides his experiments on waves, made a series on the velocity of running water at the bydraulic establishment of the university of Turin, and he publishod an account of them in 1829. After giving a deseffiption of his apparatus and method of experimenting, he gives the figures obtained from fluid veins, sections of which were taken at different distances from the orifice.
Poncciet.
In the year 1827 Poncelct published a Mémoire sur les Rones Hydrauliques à Aubes Courbes, containing his experiments on the undershot wheel with eurved palettes, which he had invented in the year 1824. The best undershot previous to the introduction of the Poncelet wheel never developel more than 0.25 of the work of the water, whereas this utilized 0.60 of that work, which is nearly equivalent to the maximum effect of the breast wheei. The principle on which the Poneelet whecl acts, and that Which makes it utilize so much of the work of the water, is that tho water is received by tho curved tloats without any shack, and is discharged finally with a small veloeity. This undershot wheel is nuch used in France.
Fonr.
neyroń
Previons to the year 1897, the wheels required in the mills and manufactories of Germany and France wero gorerally those which worked with the axis horizontal, or the tub an ispoon wheels with the axis vertical ; but in that year a young mechanician nitmed Fourneyron introduced a whee working with the axis vertical, yet wholly different from tho latter kind. Fonmeyron showed that in existing wheels with a vertical axis the water left the whee with consiterable velucity in tho threction of the motion of the wheel, ant thus carried away and wasted much of the energy of tho foll. liy the introduction of a series of fixed guale blales, which gave the water initially a backward velocity of rotation, the water left the whel with a much smaller velocity of alischarge. He thus invented the first complete turbine, a kiul of water motor which has largely superseded

[^94]the more cumbrous water wheels previnusly in use Shortly after the invention was made public, Fuurneyro was awarded the prize of 6000 francs which was offered by the Society for the Encouragement of National Industry.

The most extensive experiments on the discharge of water keecre from orifices are those made under the direction of the in wis French Government by Poncelet and Lesbros (Experiences got $^{\boldsymbol{t}}$ icns, Hydrauliques, Paris, 1851). Boileau (Traité de la mesure des eaux courantes) has discussed these results and added experiments of his own. Bornemann has re-examined all these results with great care, and has been able to express in formula the variation of the coefficients of discharge in different conditions (Civilingenieur, 1880). Very valuable experiments leading to a modification of the usual formula for the diseharge over weirs were made by Mr J. B. Francis (Lowell IIydraulic Experiments, Eoston, Mass., 1855). Wiesbach also has made many experimental investigations of the discharge of fluids.

The friction of water investigated originally by Coulomb at slow speeds has been moasured for higher speeds by Mr W. Froude, whose researches have very great value in the theory of ship resistance (Rcport of Brit. Assoc., 1869).

The flow of air and steam from orifices has been measured by many experimenters from Young to Saint Venant. Mr Napier in some interesting experiments first pointed out that when the ratio of the pressures on the two sides of an orifice exceeded a certain linit the measured discharge was: very different from that calculated by the accepted formule. Since then numerous experiments have been made, and the theory of the flow of clastic fluids has been discussed in numerous memoirs. The valuable investigations of Fliegner (Civilingenieur, 1878) deserve special mention.

A most valuable investigation of the flow of water in pipes and channels has been carried out with exceptional accuracy and on a very large scale by the late M. Darcy, and continned by his successor the late M. Bazin, at the expense of the French Goverument (Rechercles IIydrou liques, Paris, 1866). The measurement of the flow in river:a has been extensively carried out, especially by Germar. engineers. Harlacher's Beitrüge zur Hydrographie de" Köngreiches Bölmen contains execedingly valuable measure ments of this kind, and a comparison of the experimentas results with all the formulie of flow which have been proposed. Messrs Lumplareys and Abbott's gaugings of the Mississippi for the Unitcd States Government, Mr Gordon':gaugings of the Irrawaddi, and Captain Cunningham's experiments on the Ganges Canal may be referred to an having materially advanced bydraulic seience.

The first adequate theory of turbines is that of Poncele: in the Comptes Rendus de l'Academie de Paris, 1838. Fiedtenbacher's Thomie und Ban der Tubinen und Ventilatoren (Mamnhein, 1844) is the first complete treatise on the subject. Girard's turbine, which was of an entircly new type, was disenssed in Le Génie ioulustriclle, 1856-1857. and lately by Fink (Civilingenicur, 1880). Importan: experiments on turbines were made by lraneis (Loucln Mydraubie Erperiments, Boston, Mass., 1855).

General I'rinctrevs.

Ifydromednanes is the science of the equilibrium and motion of duids, botla clastic and noneclastic. A thuid is defined to be a substance which yichls continually to the slightest tangential stross; and, conscquently, when the fluid has como to rest, the stress across any surface in the thide must be normal to the surface.

Tho stress considerel in hydromechanics is alvays a pressure, as fluids are in gencral capable of sustaining ouly a slightiension without dispuption (see Capidiary Acrios). The intensity of the pressure is measured, as in the suldject of chasticity, by the number of units of forco per unit of area.

If an area a be pushed by P units of Force, then the mean pressure p over the area a is $\frac{1}{a}$; or, if p be varimble, then at any point $p=\operatorname{lt} \frac{p}{a}, a$ being any small area enclosing the point at which p is required, and P the number of units of torce with which a is puslied.

The pressure across any surface being normal to the surface, it follows from the general equations of ioteraal stress (see Elasticity) that at a point the pressure is the same in all directions about the point. This may be proved imependently by considering the equilibrium of a tetrahedron ABCD . Let p, p^{\prime} be the pressures on the faccs $A B C, B C D$, and resolve the furces parallel to the edge $A D$; the face $A B C$ will be pushed by a furee $p \times$ area $A B C$, and the face $B C D$ will be pushed by a force $p^{\prime} \times$ area $B C D$; and the projections uf the areas $\Lambda B C, \angle C D$ on a planc perpendicular to AD beng equal, it follows that $\gamma=\eta^{\prime}$.

If forces act throughont the fluid so that the pressure varies from one point to another, we must suppese the tetrabedron taken indefinitely small, and then the impressed forces, depending on the volume, may be negleeted in comparison with the forces acting on the faces, which depend on the surface of the tetrahedron.

When fluids such as exist in nature aro ith motion, the atresses across any surfaces are no longer normal, but tangential stresses are called ioto play, the intensities of which depend upon the relative motion of the parts of the Huid; thuse tangential stresses are said to be duc to the viscosity of the fluid.

The differeoce between a solid and a lluid is that in a solid the tangential stress must exceed a certain ameunt before permanent sliearing takes place, otherwise the stress being removed the solid rerains its shape; in a fluid the slightest tangential stress produccs a permanent deformation, and if continued long enough will cause a cumplete change of form, however great the viscosity of the fluid may be. ${ }^{1}$ But little progress has been made in the theory of the motion of viscous fluids, those eases which have been worked out mostly falling under the head of the practical subject of hydrulics. In the theuretical subject of hydrodynamics tho motion el the so-called perjetet tuids only is considered, -fluids in which no viscosity is supposed to exist, and in whicin theretore the pressure at a point is the same in all directions

Fluids are divided ints two classes, incompressible fluids called liquids, and compressible lluids called gases. The ao-called incompressibie !luids are in reality compressible, but the compressibility being small is neglected in ordinary problems.
The compression of o sulstanco is defned to bo the ratio of the diminution of the rolume to tho original volume; and the compressilitity is deffed to be the ratio of the compression to the pressure producing it. The elasticity or resilience of volume is the ratio of the pressure to the compression produced, and is thercfore the reciprocal of the compressibility. Fluids, from the definition, possess only elasticity of volume; au elastic solid possesses in addition an elasticity of figure, called also the riyitity.

A table of the elasticities and compressibilitics of liquids is given in Everett's Units and I'hysical Constants, expressed in C. G. S. units; for instance, at δ° C. the clasticity of water is 2.08×10^{10}, and the compressibility per atmosphere is 4.81×10^{-3}. The elasticity of water is also proved to exist, and can be determined from the velocity of sound in water; for inetance, in water of density unity, the velocity is the square root of tho clasticity, and there-

[^95]fore 144,000 centimetres $p e r$ second, which agreea clusely with the velocity determined by experiment.

Compressible fluids or gases are assumed to obey tho two gaseuus laws.

The first gaseous law, discovered by. Boyle, and generally called Boyle's law, asserts that the pressure of a given quantity of a gas at a given temperature varies inverscly as the volume, or directly as the density.

The clensity is defined to be the number of units of mass in the unit of volume, and the specific volume is the volume of the unit of mass. Hence Boyle's law asserts that the pressure of a gas at a given temperature varies as the density, or inversely as the specific volume.

Dalton generalized Boyle's law. for a mixture of gases by enunciating the law that the pressure of a mixture of gases is the sum of the scparate pressurcs each gas would have if it existed alone in the containing vesscl.

If we suppose all the gases the same, we are led to Boyic's law, since, if a granme of air in a centimetre cube produces a certain pressure, then two grammes will produce double the prossure, threc grammes trcble the pressure, and so on; hence the pressure varies as the density. This method of exbibiting Boyle's law is duc to Rankine (Maxwell, Heat, p. 27).

The second gaseous law was discovered by Charles, but it generally goes by Gay-Lussac's name. - It asserts that under constant pressure the volume of a given quantity of every gas increases by about $\frac{1}{2 / 3}$ of its volume at $0^{\circ} \mathrm{C}$. for a rise of temperature of $1^{\circ} \mathrm{C}$. Therefore, if v be the volumie at $\tau^{\circ} \mathrm{C}$. and v_{0} the volume at $\cdot 0^{\circ} \mathrm{C}$., then

$$
\frac{v}{v_{0}}=1+\frac{\tau}{273}=\frac{273+\tau}{273} .
$$

If we reckon temperature from $-273^{\circ} \mathrm{C}$., and put $273+\tau=t$, then t is called the absolute temperature, and $-273^{\circ} \mathrm{C}$. is called the absolute zero; and the-second gaseous law asserts that at a constant pressure the volume of a given quantity of gas is preportional to the absolute temperature.
Conabined with Boyle's law, this leads to the result that $j v \in c t,=\mathrm{R} t$ suppose,
where p is the pressure, v the specifie volume, and t the absolute tempcrature ; also, if ρ denote the density,

$$
\rho=\frac{1}{v}, \text { and } \eta=R \rho t .
$$

To determine the numerical value of $\frac{p v}{i}=R$, in C.G.S. units, sup-
pese at $80^{\circ} \mathrm{C}$. a centimetre cube of air is 001 of a gramme, the height of the barometer being 76 centimetres, and the numerical value of g to be 981 ; then

$$
\begin{gathered}
p=981 \times 1342 \times 76=10^{6} \text { very ucarly } \\
t=273+80=353 \\
v=1 . \\
\therefore \mathrm{R}=\frac{10^{6}}{353}=2833 .
\end{gathered}
$$

If the temperature is kept constant, then, an increment of pressure $d p$ producing a compression $-\frac{d v}{v}$, the clasticity of volume

$$
-v \frac{d p}{d v}{ }^{\prime}=\rho \frac{d p}{d \rho}=p ;
$$

and thercfere at a constant temperature the elasticity is equal to the pressure.
Professor Maxwell (Heat, p. 171) has proved from first principles that the ratio of the elasticity of volume when no heat escapes is to the elasticity at constant temperature as the spocilic heat at constant pressurc to the specific heat at constant volume.
Consequently if γ denotus the matio of the specific heat at constant pressure to the specific heat at constant volume, and if the pas be compressed and no heat allowed to eseape, then

$$
\begin{gathered}
-v \frac{d p}{d v}=\gamma p \\
\frac{d p}{p}+\gamma \frac{d v}{v}=0 \\
2 v v^{\gamma}=\text { ounstant }
\end{gathered}
$$

or
or

Consequently, if p, p^{\prime} be tho pressures, v, v^{v} the specific volumes, ρ, ρ^{\prime} the densitics, and t, t^{\prime} the absolute temperatures at two dilferent atates of a gas, when to heat has been aliowed to escape, tien

$$
\frac{p}{p_{1}}=\left(\frac{v^{\prime}}{v}\right)^{\gamma}=\left(\frac{\rho}{\rho^{\prime}}\right)^{\gamma}=\left(\frac{t}{t^{\prime}}\right)^{\frac{\gamma}{\gamma-1}} ;
$$

since

$$
{\underset{\sim}{p}}_{p^{\prime}}^{v}=\frac{\ell}{\ell^{\prime}}
$$

The ralue of γ for ai: is about 1 ' 4 ; for instance, the relocity of oound is $\sqrt{\frac{\overline{d p}}{d \rho}}=\sqrt{\gamma \frac{p}{\rho}}$; and, for dry airat $\tau^{\circ} \mathrm{C}$.

$$
\underline{p}=7.8276 \times 10^{8}\left(1+\frac{r}{2 \pi 3}\right) ;
$$

and tnererore the velocity of sound in centhuctres per second

$$
=33240 \vee\left(1 \div \frac{\tau}{273}\right)=33240+60 t \text {, bearly. }
$$

We have defined the density of a substance to be the number of units of mass in the unit of volume ; for instance, with Fnglish units the density is the number of ponnds in a enbic foot, and the density of water rould be 625 , a cubie foot of water being 1000 oz . But the densities of substances are generally tabulated relatively to water, and the old-fashioned name for the density relative to water was specific gravity. With Freuch un.'s of the centimetre and the gramme, a centimetre cube of water being a gramme, the density of water is unity.

PART I-HYDROSTATICS.

Hydrostatics is the science of the equilibrium of fluids. When a fluid has come to rest there can be no tangential stress, and consequently the stress across any surface is formal to the surface, and therefore the same in all directions about a point. We shall begio with a few elementary propositions about the equilibrium of liquids like water under gravity, and afterwards proceed to the consideration of the equilibrium of any fluid under any forces.

- Prop. 1. The pressure is the same at all points io a horizontal plane of a liquid at rest under gravity.

For, taking any two points in the same horizontal plane, and jolning them, and describing about the joining line as asis an indehuitely thin cylinder, then, since the weight and the pressures on the sides of the cylinder aro normal to the axis of the cylinder, resolving parallel to the axis of the cylinder, the pressures on the ends must be equal for equilibrum, and must therctore be of cqual intensity.

Corollary. - It follows that the free surface must be a horizontal plano, supposing the pressure unform over it. and gravity to act in parallel vertical linea.

That the free surface is a plane is verified experimentally by tho fact that objects are seen by reflexion at the surface undisturbed as in a plane mirror; and that it is a horizontal plade is verified by the fact that a plumb line and its inage by rellexion at the surface always appear in the same straight line.
1 Prop. II. The pressure at any point of a liquid at rest under gravity is proportional to the depth.

For, let P (hg. 1) be any point at a depth $\mathrm{AP}=z$ in the liquid, and about AP as axis describe a cylinder, of sectional area a suppose. Then, considering the equilibrium of the liquid in this cylinder, and resolving vertically, the pressure, p suppose, at P acting over the area a must balance the weight of the liquid in the cyliader, neglecting the atmospheric presiure, and therefore

$$
\begin{array}{cc}
& p a=\rho z a, \\
o r & p=\rho z
\end{array}
$$

p denotiog the weight of the liquid per unit of volume.
In practical hydrostatics the gravitation measure of forecs is employed, and p the pressuro is generally estimated in to per square fach, and then, an inch being the unit of length, z is given in inches, and p is the number of pounds to a cubic meh of the liquid consibtred.

Thus with watcr, toking i eusie pot of water

Fig. 1. to be 62.1 th

$$
p=\frac{02 \cdot 4}{1725}=0.036 \times 2 .
$$

If, however, e be measured in feet and p in lb per stuare ineh,

$$
p=\frac{624}{114}=-0.433 \times z
$$

Conschaternly the heat of ench foot of water moduces a pressue of C 433 H to the square inch.
With the French metrie system of units, a centimetre cule of water is one gramme, and therefore with the centimetre as the unit of longth and gramme as unit of weight, using gravitation units of force, $p=1$, and $p=z$.
Eren if the point C considered (fie. 2) should not he vertically below, the actual free saffece, it still follows that the messure al

C is proportional to the depth below the free surface. For the pressure at C is equal to the pressure at D in the same horizontal plane, and this is proportional to the depth DE, that is, to the depth CF.

If the atmospheric pressure be taken into account, then

$$
p=z+\rho z,
$$

and generally, at different depths z and z^{\prime}

$$
p-p^{\prime}=\rho\left(z-z^{\prime}\right) ;
$$

or the difference of the pressures at any tro points of a liquid at rest under gravity is proportional to the difference of the depths.

Fig. 2.

Corollary.-It follows from this that a liqua rises to the same level in a scries of communicating vessels (fig. 3), since the fluid must bave oue horizontal plane as the free surface.

Fig. 3.
If liquids of different aensities ρ and ρ^{\prime} be poured in to the two branches of a hent tube, the beights of the free surfaces above tho plane of separation will be inversely as the densities. For the pressure at the level of the common aurface being constant, and in one caso due to a height h of liquid of density ρ and in the other case to a height h^{\prime} of liquid of density ρ^{\prime}, therefore

$$
\rho^{h}=\rho^{\prime} h^{\prime},
$$

or $\quad h: h^{\prime}=\rho^{\prime}: \rho$.
The barometer (fig. 4) is in reality an instrument of this character, for a column of mereury, of density σ and height h suppose, supports a eohmin of air, which is of density r suppose, and, if homogencous, would reach to a height H. Ilence the pressure at tho level of the common surface

$$
p=\sigma h=\rho I I,
$$

estimated in gravitation measuro.
If the tube AB shouk not he ex. actly vertical, then h must he taken to denote the vertical distance between the level of the mercury at !' and Q, which becomes ditlicult to estimate at sca when the ship is rolling.

When h is observel the temperature must also be ohserved; fir at the same pressure the cocflicient of linear expansion of h is the coeflicint of cubical
 expansion of merenry. Fir, if the density of mercury were halvel. thin height h would be dubled, and so on in any proportion.;

II is called the pressure beight. (Everett, Units and Physical Constants). For dry air at $0^{\circ} \mathrm{C}$.,

$\mathrm{H}=7.988 \times 10^{5}$ centimetrcs.

Prop. III. To find the pressure on the bottom of a vessel of any form containing liquid, the bottom of the vessel being supposed n horizoutal planc.

The pressume at any point of the base being the same and duo to the depth below the free surface, whatever be the shape of the sules of the vessel, as in hig. 5 , it follows that the pressure oo the base $A B$ is equal to the weight of the liquid contained in an inagin. ary cyliader, traced out by vertical lines round the base $A B$ reaching to the suisface.

In orler to illustrate this, let there be four vessels A, B, C, D (fig. 6), lanving bottoms all of tho same area, and closed by plates E, F, G, H, of the same weight. Let the plates also be kept in their places by means of strings passing over pulleys and supporting equal weights $w, w^{\prime}, w^{\prime \prime}, w .{ }^{\prime \prime \prime}$. The weights will measure the vertical forces acting on the plates, $i . e .$, the bases of the vessels. It will be found that water must be poured into each ressel to the same height to cause the plates to descend. The same will be the case whatever be the sliapes of the vessels, and the extreme cascs of a very largo base acted upon by the pressure of water in a very con-

Fig. 5.
tracted vessel, and of a very smiall area kept closed by a very small weight when the vessel is very much enlarged above, constitute what osed to be called the hydrostatic paradox. Another kind of hydro.

Fig. 6
static paradox is the hydraulic press, where water, pumped in with amall exertion by a forciog pump of which the plunger is of small diameter, causes a second planger of very much greater dianneter to rise and produce a very great pressure.

Prop. IV. (Archimedes's Principle). -The resultant pressurc of a Anid on a body immersed in it acts vertically upwards through the centre of gravity, and is equal to the weight of the displaced liquil.

For, suppose the body removed and its place filled up with iluid as it would be at rest, and imagine for elearness this fluid solidified.
The fluid pressures which act unon this solidified fluid are the same The fluid pressures which act upon this solidified fluid are the same as before, and since the tluid is in equilibrium under its own weight
and the fluid pressurea, the resultaat of the fluid pressures must be a single vertical force equal to the weight of tho displaced liguid, and acting upwards tbrough the centre of gravity of the displaced liquid.

Corollary.-If a body float at rest in fluid, the weimlt of the body must be equal to the weight of the displaced flinid, and the C.G.s of the body and displaced dnid must be in the same vertical line. For instance, the weight of water displaced by a ship is equal to tho weigbt of the whole ship, masts, rigeing and all. When a balloon ia at rest in the air, the weight of the balloon is equal to the weight of air displaced.

Archimedea's principle is employed to determine the densities of hodles ; for, if w be the weight of a body weighed in a balance in nir strietly speaking in racuo), and if w° be its apparent weight When immerscd in water, tbea $n-w$, the resultant upward pres. sura of the water, is equal to the weight of water displaced, and the donsity relativo to water is thereforo

$$
\frac{w}{w-w^{\prime}}
$$

In very aecurate reighings the weight of air displaced must be $12-1: 7$
taken into account, the real weight of a body being its apparent weight in air plus the weight of air displaced. Thus, if in air a poond of lead and a pound of feathers balance in a pail' of seales, if placed under a receiver and the air cxhausted the feathers wowla preponderate.
The deasities of liquids and solids are also deteriained by hydrometers, for a description of which consult the article Hydrometrr.

The numerical measure of the density of a substance being the quotient of the number of units of mass (or weight) by the nember of auits of volunc, it follows that in a mixture of fluids the deasity of the mixturo is the quatient of the number of units of mass in the component fluids by the volume of the mixture.

The volume of the mixture will in general be the sum of the rolumes of the component Heids, except in some cases where the fluids combine chemically with each other. If equal volumes of the component iluids be taken, the density of the mixture will therefore be the arithmetical mean of the densities of the component fluids; but if cqual weights be taken, the density of the mixture will be the harmosical mean of the densities of the component fluids, no change of volume being supposed to take place.

Prop. V. To find the resultant vertiral and horizontal pressurcs on one side of a portion of a sufocc iommersed in fluid at rest under gravity.
The resultant vertical pressure is the weight of the superincumbeut flaid contained by vertical lines drawn round the bouoding curve of the surface to the free surface. If, however, the free surface does not extend over the surface, we must suppose it made to do so by filling up the empty space with tlaid. The line of action of the resultant vertical pressure passes through the centre of gravity of this superincumbent fluid.

The resultant horizontal pressure in any direction is equal to the resultant pressure on the plane area traced out on a plane perpendicular to the given horizoatal direction by horizontal lines drawn through the bounding line of the surface in the given direction: this plane area is called the orthogonal projection of the surface on a plane perpendicular to the given direetion. For, resolving in the giveo direction the weight of the enclosed liquid and the pressures on the eylindrieal surface traced out by the horizontal lines acting in a direction at right angles, the horizontal components of the pressures ou the ends balauce, which proves the proposition. The line of action of this horizontal pressure passes through the centre of pressure of the plane area (vide "Centre of Pressure").
If a plane area be immersed in homogeneous liquid at rest under gravity, the resultant force acting on one side of the area will be the product of the area and the pressure at the centre of gravity of the area.

For, $d \mathrm{~A}$ denoting an element of the area, and z its derth, the resultant pressure

$$
=\int \rho, f,=p=A,
$$

which proves the proposition.

Gencral Equations of Equilibrium of any Fluid at rest under any. Forccs.

If we take any arbitrary origin O, and thee rectaggular nacs ol reference $0 x, 0 y, O z$, then, if p be the pressure, o the thensity, and X, Y, Z the components of the impressed force per mith of mass at the point $x y$, the equilibrium of the thin in aly; closch sumfacS reguires, resolving pardlel to the ax is of x,

$$
\iint l_{p} \mathrm{l} \mathrm{~S}=\iiint_{\rho} \mathrm{X} \cdot l x d y d z
$$

the integrations extending respectively over the sulface and Whrongh the volume of the space S, and l, m, ne denoting the dircetion-cosines of the ontward drawa normanl at the surface element d.

But by Green's transformation

$$
\iint l p d S=\iiint \frac{d p}{d x} d x d y d z
$$

and thercfore

$$
\iiint \frac{d p}{d x} d x d y d z=\iiint p \mathbb{N} d x d y d z
$$

lealing to the differential relation

$$
\begin{gathered}
\frac{d p}{d x}-\rho X . \\
\text { Similaily, } \quad \frac{d p}{d y}=\rho Y, \frac{d p}{d z}-\rho \mathrm{Z} .
\end{gathered}
$$

The three equations of equilibrium obtainel by taking moments ahout the axis will be found to be satislied illenticall!.

Heace the space variation of the pressure in any direction is equal to the resolved forco per unit of volanse in that direction. Tho resultant force is therefore in tho direction of the gratest spaco variation of the pressure, that is, normal to the surface of equal pressure; and the liaes of Corce munt therefore be capable of being. cut orthogoally by a system of surfaces, which will be the surfaces of equal pressure.

If we neglect changes of temperature, then, the deusity at any foint being a function of the jressure, it follows that surtaces of equal fressure are also surfaces of equal icnsity, and therefore $\frac{1}{p} \frac{d p}{d x}$, $\frac{1}{\rho} \frac{l p}{\sqrt{2} y}, \frac{1}{\rho} \frac{d p}{d z}$ are the patial differcutial cocflicicuts with respect to x, y, z of some function P of x, y, z such that $\mathrm{P}=\int \frac{d y}{\rho}$; and therefure also X, Y, Z nust be the partial differential coetficients of some function - V, called the potential, such that the force in any direction is rate of dimmution of V in that diaection, and the conditions of equilibrium $\frac{1}{\rho} \frac{d p}{d x}=\mathrm{X}$, sc., are equivalent to

$$
\frac{d \mathrm{P}}{d x}+\frac{d \mathrm{~V}}{d x}=0, \frac{d \mathrm{P}}{d y}+\frac{d \mathrm{~V}}{d y}=0, \frac{d \mathrm{P}}{d z}+\frac{d \mathrm{~V}}{d z}=0 ;
$$

01

$$
P+V=\text { constant }
$$

If the temperature be variable, then the surfaces of equal pressure and density need not be coincident; but, since the pressure is a finction of the density and teniperature only, it follows that the surfaces of equal temjerature and of equal density must intersect in chirves which lie on surfaces of equal pressurc.

As an example of the use of the general equations, take the sumblest case of a homogencous lipuid at rest under gravity; then, tle axis of z being directed vertically downwards, the equations become

$$
\frac{1}{\rho} \frac{d p}{d x}=0, \frac{1}{\rho} \frac{d p}{d y}=0, \frac{1}{\rho} \frac{d p}{d z}=g
$$

nn! $!$ therefore $\eta=\pi+g \rho z=$ bento the pressure at the level of the origil.

We are here employing a new unit of fore-the ahsolnte unitwhich is defined as the force which causes unit neceletation in the unit of mass. With the same units of length, time, and mass, the gravitation unit of force is g times the absolute unit of forec ; for isstance, in the equations $p=\rho z$, and $p=g \rho z$, the p in the first cquation is measured in gravitation units of force per unit of area, and in the second equation in absolute units of fore per unit of area.
Agaid, suppose the density to vary as any power of the tepth, and IUL
then

$$
\begin{gathered}
\rho=\mu i^{n} ; \\
\frac{d y}{d i z}=g \rho=g \mu z^{n} ;
\end{gathered}
$$

$$
p=m+\frac{g \mu}{n+1} z^{n+1}
$$

If the fluid be elastic, and the temperaturo uniform, $p=k \rho$, and

$$
\frac{1}{\rho} \frac{d p}{d z}=\frac{k}{p} \frac{d p}{d z}=g ;
$$

and integrating.

$$
\begin{aligned}
& \log \frac{p}{z z}=\frac{g z}{k} \\
& p==c^{\frac{g z}{k}} \\
& \rho=\frac{\pi}{k} c^{\frac{\sigma z}{i}}
\end{aligned}
$$

Conseruently, as we go up in the air, if tho temperature be uniform, as the herghts fucrease in arithmetical progression, the pressures ond deusities diminish in geometrical progiessiun.

If Il demote the pressure height, then

$$
\begin{gathered}
\mu=k-\rho=g \rho \mathrm{II} \\
\mathrm{H}=\frac{k}{g}
\end{gathered}
$$

aul therctore
aud if p_{1}, p_{3} denote the [ressures at levels z_{1}, z_{2}, thon

$$
\begin{aligned}
\frac{p_{1}}{p_{2}} & =c^{r_{1}-z_{2}} \\
z_{1}-z_{3} & =11 \log \frac{p_{1}}{p_{2}} \\
& =11 \times 2.3026 \log 10 \frac{p_{1}}{p_{1}}
\end{aligned}
$$

I'ir try air at $0^{\circ} \mathrm{C}$. , taking $1 I=26,000$ foet,

$$
z_{1}-z_{2}-60,000 \log _{10} \frac{p_{1}}{p_{0}} \text { ncarly, }
$$

-(Maxwell, Heat, clapt, xiv.)

The Figure of the Earth.

Suppose n fluid mass arrangerl under the gravitation of its parts it concentric spberieal strata, the density inereasing towards the cenere for stahitity of expiliturim, and plofing the demsity at a

without relative motion of its parts about an axis, and to be slightly disturbed in coosequence of the rotation'from the spberical arrangenent of the strata, we can gail: an idea of the figure of the earth on the hypothesis of origioal tluidity.

If ω be the angular velocity, we must suppose a disturbing function, whose potential is $\frac{1}{2} \omega^{-1} r^{2} \sin ^{2} \theta$, added to the gravitation potential, θ being the angular distance from the axis of revolution and of figure. Denoting the zooal surface barmonic of the second degree $\frac{3}{2} \mu^{2}-\frac{1}{3}$, where $\mu=\cos \theta$, by Q_{s}, the disturbing function may be written

$$
\frac{1}{3} \omega^{2} r^{2}\left(1-Q_{i}\right) ;
$$

and we shall assume in consequence that the disturbance of each stratum from the spherical form is also a zonal harmonic of the second degree, so that when disturbed the equation of a stratum will be

$$
r=k\left(1-\frac{9}{3} \in Q_{3}\right) ;
$$

and ϵ, which is the ratio of the difference of the equatorial and polar arcs to the mean axis, is called the ellipticity of the stratum.
The gravitation potential of a homogencous spheroid of density p_{r} and bounded by

$$
\boldsymbol{r}=k\left(1-\frac{2}{3} \in \dot{Q}_{2}\right)
$$

is the same as that of a homogeneous sphere of radius k and density ρ, and of a distribution of matter on the sphere of radius k-* surface density $-\frac{8}{3} k \in Q_{2} \rho$, neglecting ϵ^{2}.

Therelore, for an ioternal point the potential is

$$
2 \pi \rho k^{2}-\frac{0}{3} \pi \rho r^{2}-\frac{\mathrm{R}}{\frac{1}{5}} \pi \rho \varepsilon r^{2} Q_{2}
$$

and for an external point the potential is

$$
\frac{4}{3} \pi \rho \frac{h^{3}}{r}-\frac{5}{13} \pi \rho \frac{h^{-5} \epsilon}{r^{3}} \mathrm{Q}_{2}
$$

Therefore, for the sliell of density ρ, enclosed by the stratu-:

$$
r=k\left(1-\frac{9}{3} \epsilon Q_{2}\right)
$$

and the consccutize stratum, the potential $d \mathrm{U}$

$$
=4 \pi \rho k d k-\frac{\mathrm{R}}{10} \pi \rho \frac{2 \epsilon}{d k^{2}} \mathrm{Q}_{2} \alpha k
$$

for an internal point, and

$$
=4 \pi \rho \frac{h^{3}}{\gamma}-{ }_{25}{ }^{9} \pi \rho \frac{d}{d h^{2}}\left(l^{5} \epsilon\right) \frac{1}{r^{3}} Q_{2} d k
$$

for an cxternal point ; ind, therefore, for aay point in the intermos of the whole mass on the stratum

$$
r=h\left(1-\frac{2}{3} \epsilon \mathrm{Q}_{2}\right)
$$

MI denoting the mass enclosed by the stratum of mean radius k_{s}, and K being the sncan radius of the extelior stratum. Neglecting",

$$
\begin{aligned}
& \mathbf{U} \stackrel{1}{1} 4 \pi \int_{k}^{\mathrm{K}} k\left(k-1_{1}^{\mathrm{a}} \pi k^{2} \mathrm{Q}_{2} \int_{k}^{\mathrm{K}} \rho \frac{d \epsilon}{d k} d k\right. \\
& +\frac{\mathrm{M}}{h^{\prime}}\left(1+\frac{2}{3} \in \mathrm{Q}_{2}\right)-{ }_{1}^{9} 5^{\pi} \mathrm{Q}_{2} \int_{0}^{k} \rho \frac{d}{d k}\left(k^{5} \epsilon\right) d k
\end{aligned}
$$

The equation of equilibrium is, sunce the force in any directio. is the rate of "ercase of the g'avitation potential,

$$
\int \frac{d_{p} p}{\rho}-\mathrm{U}-\xi \omega^{2} r^{2}\left(1-Q_{g}\right)=\text { constant } ;
$$

nul, supposing surfaces of equal pressure to be also surfaces of equar density, we must have to our order of approximation

$$
U+f \omega^{2} h^{2}\left(1-Q_{2}\right)=\text { constant }
$$

over a surface of cqual density, or, equating to zero the coefficico* of Q_{2},

$$
\frac{M \epsilon}{\hat{k}}-i \pi h^{2} \int_{k}^{K} \rho \frac{d \epsilon}{d k^{2}} d k-\frac{\pi}{h^{3}} \int_{0}^{k} \rho \frac{d}{d k^{2}}\left(h^{5} \epsilon\right) d h+\frac{1}{2} \omega^{9} h^{8}=0
$$

Dividiug by h^{2}, and differentiating with respect to k, ω^{2} disappearn. aud we obtain

$$
h^{3} \frac{d . M E}{d k^{2}}-3 k^{2} M \varepsilon-4 \pi \rho h^{3} \epsilon+4 \pi \int_{0}^{k} \rho \frac{d}{d l^{2}}\left(k^{5}\right) d k=0 ;
$$

and, differentiating ngain with respect to k,
or

$$
\begin{gathered}
h^{s^{2}} \frac{\mathrm{M}_{\epsilon}}{d k^{3}}-6 \mathrm{~N}_{\epsilon}-4 \pi k^{-5} \epsilon \frac{d \rho}{d k^{2}}-0 \\
h^{3} \frac{d^{2} \cdot \mathrm{M}_{\epsilon}}{d k^{2}}-\left(0+\frac{4 \pi k^{4}}{\mathrm{M}} \frac{d \rho}{d k^{2}}\right) \mathrm{M}_{\epsilon}=0
\end{gathered}
$$

a differentinl equation of the second order to determino Me, and. therefore f, provided we know what function ρ and thirefore M is of l.

I'roperly speaking, from the clasticities of the substanoca of the various strata we should know the relation lictween the pressure and the density, and then from the comditions of equilibrian of tho struta when umbistarbed and in this spherial shape we could de. termine what fanctiou ρ is of $\dot{\alpha}$,-the pressure sod deusity at os
stratum with our approximations being the same in the undisturbed abll disturbed atates; and therefore

$$
\frac{I}{\rho} \frac{d p}{d h}=-\frac{M}{h^{2}}
$$

Laplace, on the assumption that the cubiual elasticity is double the pressure, and theretore the pressure proportional to the syuare of the density, has integrated the ditierential equation for the ellipicity, - his assumption anounting to putting

$$
\frac{4 \pi h^{2}}{M l} \frac{d \rho}{d h}=-q^{2}, \text { a constant. }
$$

Sore generally, to make the equation for the ellipticity integrable, we may put

$$
\frac{4 \pi l^{4}}{\mathrm{D}} \frac{d \rho}{d \dot{R}^{2}}=\binom{k}{\dot{u}}^{n}
$$

Where a and n are constants, the negative sign being taken because $\frac{d p}{d}$ is wegative for atability. This assumption reduces the difierential dis
equations for p, M. and Me to equations reducible to Bessel's dillerential equation, and therefore ρ, M, and \in can be expressed by Bessei's funtions.

Laplace's assumption amounts to putting $n=2$, and then the Bessel's fanctons which occul are of the order $\frac{1}{2}$, , and $\frac{5}{8}$.

Then $p=\sigma \frac{\sin q \mathcal{L}}{\partial \bar{R}}$. Where σ is the density at the centre of the easth, and thereforo

$$
\left.\mathrm{M}=\frac{4 \pi \cdot T}{q^{3}} i \sin q k-q k \cos q k\right\rangle
$$

where $a-q K$, and the value of q must be determined from the condition that the mean deasity of the earth is twice the density at the surface.

> Centre of Pressurc.

When a plane ares is exposed to fluid pressure on one side, the resnltant force experinaced by the area is a anugh: force permenticular to the area, the stim of a!: the serarato phessures, and acts through a delinite point called the centre of pressure.
ti p be the pressure at the pcint $x y$, the axes beltig taken in the plate of the drea, theu the resultant force

$$
R=\iint p d r d y
$$

and if $\bar{x}, \overline{4}$ denote the coordmates of the centre of pressiate,

$$
\bar{x}=\frac{\iint x p d x d y}{\iint_{p} p d x d y} \quad \bar{y}=\frac{\iint u p d r d y}{\iint \rho_{p} \overline{d x} d y}
$$

The centre of pressure is therefore the C.G. of the plane area, supposed a lamma of variable density p if p is unnform, the centre of pressure is ubviously the C.t of the area.

For a humogencous liguid at rest under Fravity, p is proportional to the depth below the surface, that is, proportional to the perpenWealar distances from the line of intersection of thi pline of the area with the free surface, of tive inguid. If the eguation of this line be

$$
\begin{gathered}
2: \cos a+y \sin a-p=0 . \\
x=\frac{f(i f p-x \cos a-y \sin a) d x d y}{f \int(p-x \cos a-y \sin a) d x d y} \\
\ddot{y}=\frac{j u(p-x \cos a-y \sin a) d x d y}{f(p-x \cos a-y \sin a) d x d y}
\end{gathered}
$$

Ilien

If the origin be takell at the rentre of gravity of the area, and if the axes be the principal axes of the area, then

$$
\begin{gathered}
\iint d x d y-\Lambda, \text { the arcs, } \\
\iint x d x d y-0, \iint y d x d y=0, \iint x y d x d y=0 \\
\iint y^{2} d x d y-\Lambda a^{2}, \iint x^{3} d x d y=\Lambda l^{2}:
\end{gathered}
$$

a and b being the semi-axes of the momental cllipse of the area.
Tincreforo

$$
\bar{x}=-\frac{\pi^{2}}{p}-\cos a, \bar{y}=-\frac{b^{2}}{p} \sin a ;
$$

and therclore the centre of ponsure is the antipoic of the lane of
intersection with the free surface, with respect to the momental ellipse.

The centre of pressuse of a rectangrilar area, with a side in the free surfice, is at $\frac{8}{3}$ of the depth of the lower side; of a triangle with vertex in the free surface and base borizontal is ${ }_{3}$ of the depth of the base; of a triangle with base in the surface is $\frac{1}{2}$ the depth of the vertex.

Metacentre.

We have found from Archimedes's principle the coustrons of equilibrium of a floating body, and we must now examine whether the equilibrum is stable or unstable.

Let ACB (fig. 7) represent the cross section of a floating body, like a ship, and let G be the C.G. of the body, and H that of the liquid displaced, supposed homoreneons. Let the vody be turned through a small angle in the plane of the paper, whose circular measure is e, so that the volume of liquid displaced remains the same. Then, if W denote the weight of the body, and therefore also of the linnid displaced, the resultant force due to the liquid on the body in the displaced position is a vertical force W acting vertically upwards through H^{\prime}, the new C.G. of the displaced liquid.
In order that the volume displaced may remain umaltered, it is necessary that the line of intersection of the two planes of flotation $A B$ and DE should pass through the C. G of the area of the curve of flotation. For did denoting an clement of the area A of flotation, and x its distance from the line of intersection of the planes $A B$ and DE, the clement of volunie traced out by $d A$ when the body is displaced being oxda, we must bave

$$
\begin{aligned}
& \int \theta x d A=0, \\
& \int x d A=0
\end{aligned}
$$

or
which proves that the line of intersection of the planes of $A B$ and DE passes through the C.G. of the area of flatation.
'The force W acting upwards through 11 ' is therefore equivalent to an equal force W acting upwards through H , and a conple, due to the moment of the weight of AOD upwards and BOE downwards. the moment of which is therefore, in gravitation units,

$$
\rho \int \theta x^{2} d \mathrm{~A}=\rho \theta \mathrm{A} k^{2},
$$

k denoting the radins of gyration of the area A about the line whose projection on the plane is 0 .

Since $H H$ is the arc of a curve, such that the tangent at \mathbf{H} is

Fig. 7
parallel to $A B$, therefore III' is ultimately a strajght line perpiendicular to GFl, and
or

$$
\begin{array}{r}
\text { W. } \mathrm{HH} \mathrm{H}^{\prime}=\rho \theta A h^{2}, \\
H I \mathrm{I}^{\prime}=\theta \frac{\rho A h^{2}}{W}=\theta \frac{A k^{2}}{\mathrm{~V}}
\end{array}
$$

If V he the volume of liquid displaced.
If 11 ' M be drawn vertically upwards to meet HG in M , then M ia ultimately the centre of curvature of the locus of L in the lody. and is called the metacentre, aml

$$
\mathrm{I} M=\mathrm{It} \frac{\mathrm{II} \mathrm{H}^{\prime}}{\theta}-\frac{A h^{2}}{\mathrm{~V}} .
$$

If M lies above G, the fluin pressure tends to restore the hody to its pasition of equilibriam, and the cquilibrium is therefore stable ; bint if M lics below C the equilibrium is unstable.
Gemerally we see that, if planes he drawn cutting off constant volumes from a solid, the prineipal ranli of curvature of the locus of 1 , the centre of gravity of the volume cut off, will be $\frac{A k_{1}{ }^{2}}{V}$ and $\frac{A h^{2}}{V}$, whare V is the valmme cut off, A the area of the cutting plane
intercepted by the surfaces, and k_{1}, k_{2} the principal radii of gyration of this arca about the centre of gravity of the area. The vertical through H^{\prime} will intersect IIG only wheu the plane of displacement Is a plane of symmetry, that is, if it is perpendicular to k_{1} or k_{2}.

Generally for finite displacements in a plane the locus of MI will be the evolute of the curve which is the intersection of the plane with the locus of FI .
The surface the locus of H is called the surface of buoyancy, and tho surface which is the envelope of the planes of flotation is called the surface of Hotation.
If r_{1}, r_{2} be the [rincipal ralii of curvature of the surface of buoyney, thes

$$
r_{1}=\frac{A r_{2}}{V}=\frac{I_{1}}{V} ; r_{2}=\frac{A k_{2}^{2}}{V}=\frac{1_{3}}{V} .
$$

If R_{1}, R_{2} be the prineipal radii of gyration of the surface of llotation, Dons. E. Leclert has proved that

$$
\mathrm{R}_{\mathrm{I}}=\frac{d \mathrm{I}_{1}}{d \mathrm{~V}}=r_{1}+\frac{\dot{\mathrm{V}} d r_{1}}{d V}, \mathrm{R}_{2}=\frac{d \mathrm{l}_{3}}{d \mathrm{~V}}=r_{2}+\frac{\mathrm{V} d r_{2}}{d} \cdot{ }^{1}
$$

For small oscillations, if we suppose the liquid pressure the same ea if the liquid were at rest, the body oscillates as if the surface of buoyancy moved upon a horizontal plane.

Fig. 8.
Next, auppose a body completely immersed in heterncencons liguin, which must for equilibrima be arranged in horizontal strata of equal density, and supprose $\rho \sigma f(z)$ the density of the liquil at any depth $z ;$ let G be the contre uf pravity of the body and II that of the liguid dispaced (fig. 8). When the body is in equilibrium, we must have G and $I I$ in the same vertical line, and

$$
\iiint \rho d x i l y d z=W
$$

the weight of tho liquid displacel, using gravitation units of force again.

Supjose tho axes of coordinates fixed in the body, and tako GM
 nhout the axis $O y$, nimb let $1 I^{\prime}$ be the ecntre of gravity of the dispheal liguid in the new josition. The demsity of the liguid displaced at a proint P, whose coordinatea are x, y, z, is now

$$
\begin{aligned}
f(N 1) & =f(z \cos \theta+x \sin 0) \\
& =f(z+x \theta) \\
& =f(z)+\theta \cos (z),
\end{aligned}
$$

neglectiog θ^{2}; aud, to the sime order of approximation,

$$
\begin{aligned}
& \text { MII }=\frac{\iiint x\left\{f(z)+0 x f^{\prime}(z)\right\}^{\prime}(1 x d y l z}{W} \\
& -0 \frac{\iiint_{2}^{2} f(z) d x d y d z}{\mathrm{~W}},
\end{aligned}
$$

[^96]
since

$\iiint x f(z) d x d y d z=0$,

H lying in the axis of z.
If the vertical through H^{\prime} meet Oz in M, M is called the meta. centre, aud is the centre of curvatute of the locus of H , and

$$
{ }^{\prime} \mathrm{H} \mathrm{I}=\frac{\mathrm{H} \mathrm{I}^{\prime \prime}}{\theta}=\frac{\iiint x^{2} f^{\prime}(z) d x d y d z}{\mathrm{~W}}=\frac{\int \mathrm{A} i^{2} \frac{d \rho}{d z} d z}{\mathrm{~W}}
$$

if $\mathrm{A} k^{2}$ denote the moment of inertia of a horizontal plane section of the body at a depth z, ahout the line of interscetion with the plane of $y z$.

We have here supposed that H^{\prime} lies in the plane of $2=$; but $t h$ is will only be true for two directions of displacement.
In general for any displacement, if \bar{x}, \bar{y}, z be the coordinates of 11 ',

$$
\bar{y}=\frac{\iiint y\left\{f(z)+\theta x f^{\prime}(z)\right\} d x d y d z}{W}=\theta \frac{\iiint x u f^{\prime}(z) d x d y d z}{W}
$$

and therefore $\vec{y}=0$, only when the axis of y is a principal axis of tho hody, supposed of density $\frac{d \rho}{d z}$.

When ρ is discontinuous, as in the case of the lody floating in homogeneons fluid, then the integral $\int A \hbar^{2} d \rho$ will lave a tcrm $A h^{2} \rho$, due to the discontinuity at the surface, and the rest of the integral will vanish, because $\frac{d \rho}{d z}=0$.

For a body floating wholly immersed in two lijuids, the upper of uniform density ρ^{\prime} and the lower of uniform density ρ,

$$
H M I=\frac{\left(\rho-\rho^{\prime}\right) A k^{2}}{W}
$$

T'cnsion of Flexible Surfaccs exposed to Pressure.

In hydrostaties it is usual to determine the circumferential and longitudinal tension produced in a thin circular cylinder, due to uniform internal pressure, and also to determine the tension of a spherical surface, like a soap-bubble, due to the excess of the internal pressure over the atmospheric pressure.

Let r be the internal radius of the cylinder, e the thickness (supposed sinall), p the internal pressure, and t, t^{\prime} the circumferential and longitudinal tension per unit of area caused by the pressure ρ.

If we supyose the cylinder divided into two halves by a diametral. pline, and consider the equilibrium of unit length of cither liall under the resultant of the thicl messure over the half-cylinder and the tensions at the ends of the diameters, the resultant of the tensious must balance the resultant of the flibid pressures, which is tho resultant pressure on the diametral plane, since the resultant of the uniform pressure on a closed surface is acro. Therefore

$$
2 t c=2 p r:
$$

or

$$
\frac{t}{p}=\frac{r}{c}
$$

To determinc the longitudinal tension t, consider that the resultant pressure on the end of the cylinder, which is $p . \pi r^{2}$, is balaneed by the resultant of the temsions round a circumferential scam, which is $t^{\prime} c .2 \pi r$; aud therefore

$$
\begin{aligned}
& 2 \pi t^{\prime} c r=\pi l^{n^{2}} ; \\
& \frac{t^{\prime}}{r}=\frac{1}{2} \frac{r}{c} ;
\end{aligned}
$$

and thereforo
$t^{\prime}=\frac{1}{1} t$.
Thus in a boiler, half an inch thick, and 3 feet in diameter. a pressure of 150 th to the square inch makes $t=5400, t^{\prime}=2700$.
For a sphere of internal radius r, and small thickness c, sullmsing it divided by a diametral phane, then the reablenat tension tommi the circumference, $t e .2 \pi r$, must batace the resultant fhid juessure $p \pi r^{2}$, supposing p the cacess of the internat over the eatemal pres. sure; and therefore
or

$$
2 \pi l: r=\pi P^{\prime 2}
$$

$$
\frac{t}{p^{r}}=1 \frac{r}{i}
$$

In the experiment with the Maghlolng hemispleres, where two loenispheres were joinal by an aidetight joint and the nur say half oxhmashas, then, with a prium and inell as units, $p=7 \cdot 5$ supposing 15 the atinosphacric pressure a amb if the dinmeter of th: hemispineres be a Fect, then $r=18$; and tho force required to separate tho hemispleres would be

$$
\pi \times 18^{2} \times 75=7634 \mathrm{ll}
$$

The tension of fexilile surfaces is cousidered more fully in the article Capillaky Aetion.

PART II.-HYDRODYNAMICS.

In considering the motion of fluids we shall suppose them non-riscous, so that whatever be the slate of motion, the stress across any section is normal to the section, and therefore the stress is a pressure and the same in all directions about a point, as in Hydrostatics.

Two methods are cmployed in hydrodynamics, called the Eulerian and Lagrangian, although both are due to Euler ; in the Eulerian we fix our attention on particular points of - [ace, and obserye the changes of pressure, density, and velocity which take place there, and in the Lagrangian we fullow a particle of fluid and observe its changes. The first may be called the statistical and the second the historical method, according to Prof. J. C. Maswell. The Eulerian method is generally employed except where the fluid has a moving boundary.

The Eulerian Form of the Equations of Motion.

The first equation to be established is the equation of contunuity, which expresses the fact that the increase of matter inside a fixed surface is due to the flow of fluid across the surface into the interior, supposing there are no hypothetical sources or sinks in the interior of the surface.

Lemma. - The quantity of fluid, estinated in units of mass, whic! flows across a plane area in a given time is equal to the product of the area, the density, the time, and the resolved part of the velocity perprendicular to the aren.
For if q be the

For if q be the Fig. 9.
velocity, the quantity of fluid which fows across the area A in the time l will form an oblique cylinder of length $q l_{\text {, with }}$ its generating lines in the direction of motion (fig. 9). If θ denote the angle between the normall to the area and the velocity, the mass of the cylinder

$$
-A \rho \notin \cos \theta_{1}
$$

which is thercfore the flux across the area A in the time t.
Geneally, if S denote any fixed surface, M the mass of the fluit inside it, avel θ the angle which the normal drawn outwards at any point of the surface makes with the relocity q st that point, then $\frac{d M}{d t}=$ rate of iacrease of quantity of fluid inside the surface por unit of time

> - flox across the surface per unit of tine
$=-\int \rho q \cos \theta d S$;
cr

$$
\begin{equation*}
\frac{d M}{d!}+\int \rho q \cos \theta d S=0 \tag{1}
\end{equation*}
$$

the integral equation of continuity.
In the Eulerian cquations of motion u, v, w are taken to denote the components of the velocity q parallel to the coordinate axes at the point $x y z$ at the time $t ; u, v, w$ are thercfore functions of x, y, z, l the independent variables, and d is used to denote partial differentiation with respect to these four independent variables.
To transfer the integral equation into the differential equation of continuity, we require Green's transformatiod, amely,

$$
\iiint\left(\frac{d \xi}{d x}+\frac{d \eta}{d y}+\frac{d \zeta}{d z}\right) d x d y d z=\iint(!\xi+m \eta+n \zeta d S
$$

or, individually,

$$
\begin{gathered}
\iiint \frac{d \xi}{d x} d x d y d z=\iint \backslash \xi d \mathrm{~S}, \iiint \frac{d \eta}{d y} d x d y d z=\iint m \eta d \mathrm{~S} \\
\iiint \frac{d \zeta}{d z} d x d y d z=\iint n \xi u \mathrm{~S} ;
\end{gathered}
$$

where the integrations extend respectively through the volume and over the surface of a closed space S; l, m, n denote the directioncosines of the outward dramn normal at the surfaca eleneut $d \mathrm{~S}$, anit ξ, η, ζ are continuous functions of x, y, z.

The integral cquation of continuity may now be written

$$
\iiint \frac{d \rho}{d t} d x d x d y+\iint(l p u c+m \rho v+n \rho w) d \mathrm{~S}=0
$$

-which by Green's transformation becomes

$$
\iiint\left(\frac{d \rho}{d t}+\frac{d \rho u}{d c}+\frac{d \rho v}{d y}+\frac{d \rho \rho o}{d z}\right) d x i y d z=0
$$

leading to the differential cquation of continuity

$$
\begin{equation*}
\frac{d \rho}{d l}+\frac{d \rho u}{d x}+\frac{d \rho v}{d y}+\frac{d \rho w}{d z}=0 \ldots \tag{2}
\end{equation*}
$$

It is customary to establish the differential equation of oontunuity immediately by considering the fluid which enters and leaves an infinitesimal parallelepiped, whose cdges are $d x, d y, d z$, in the time $d \ell$, but this requires us io suppose in succession each of the elements $d x, d y, d z$, though infinitesinala, to be infinite compared with the other two, and with the infnitesimal elenuent of time $d t$; this violation of the principles of the differential calculus is avoided by establishing the equation in its integral forns first.

Wa shall establish the equations of motion in a similar way by considering the rate of increase of momentum in a fixed direction of the fluid inside the surface, and equating it to the momenturn generated by the forces acting throughont the space S and by the pressures acting at the surface S.
Taking the fired direction parallel to the axis of x, the rate of increase of momentum in that direction per unit of time, due to the fluid which crosses the surface, is

$$
\iint\left(i_{p} u^{2}+m p u v+n p u w\right) d \mathrm{~S},
$$

which by Green's transformation

$$
=\iiint\left(\frac{d_{p} u^{2}}{d x}+\frac{d \rho \rho u v}{d y}+\frac{d \rho u w}{d z}\right) d x d y d z ;
$$

and, adding this to the rate of increase of momediun per unit of time of the fluid inside the surface

$$
\iiint \frac{d \rho u}{d t} d x d y d z
$$

we obtain, as the total rate of increase of momenturn per unit of time of the fuid which fills the space S,

$$
\iiint\left(\frac{d \rho u}{d l}+\frac{d \rho u^{2}}{d x}+\frac{d \rho u v}{d y}+\frac{d \rho u w}{d z}\right) d x d y d s
$$

in the direction of the axis of x.
The rate of generation of momentum in thia direction by the forces of componeuts X, Y, Z per unit of mass in tha interior is

$$
\iiint_{\rho} \mathrm{X} d x d y d z,
$$

and by the pressures at the surface is

$$
-\int l p d \mathrm{~S}
$$

which by Green's transformation is equal to

$$
-\iiint \frac{d p}{d x} d x d y d z
$$

and therefore

$$
\begin{gathered}
\iiint\left(\frac{d \rho u}{d t}+\frac{d \rho u^{2}}{d x}+\frac{d \rho u v}{d y}+\frac{d \rho u w}{d z}\right) d x d y d z \\
=\iiint\left(\rho \mathbb{I}-\frac{d p}{d x}\right) d y d x d z
\end{gathered}
$$

leadiog to the differential equation of motion

$$
\begin{equation*}
\frac{d \rho u}{d l}+\frac{d \rho u^{2}}{d x}+\frac{d \rho u v}{d y}+\frac{d \rho u w}{d z}=\rho \mathrm{X}-\frac{d p}{d x} \tag{3}
\end{equation*}
$$

with tro similar equations in y and z.
These equations may be slightly simplified; for

$$
\begin{aligned}
& \frac{d \rho u}{d t}+\frac{d \rho u^{2}}{d x}+\frac{d \rho u v}{d y}+\frac{d \rho u w}{d z} \\
& =\rho\left(\frac{d u}{d \iota}+u \frac{d u}{d x}+v \frac{d u}{d y}+w \frac{d u}{d z}\right) \\
& +u\left(\frac{d \rho}{d \iota}+\frac{d \rho u}{d x}+\frac{d \rho v}{d y}+\frac{d \rho w}{d z}\right)
\end{aligned}
$$

which reduces to the first line, the second line vanishing in consequence of the equation of continuity ; and therefore the equations of motion may be witten

$$
\begin{equation*}
\frac{d u}{d u}+u \frac{d u}{d x}+v \frac{d u}{d y}+w \frac{d u}{d z}=X-\frac{1}{\rho} \frac{d p}{d x} \tag{4}
\end{equation*}
$$

with the two similar equations

$$
\begin{align*}
& \frac{d v}{d t}+u \frac{d v}{d x}+d \frac{d v}{d y}+u \frac{d v}{d w}=\mathrm{Y}-\frac{1}{\rho} \frac{d p}{d y} \tag{5}\\
& \frac{d w}{d t}+u \frac{d w}{d x}+v \frac{d v}{d y}+w \frac{d w}{d z}=\mathrm{Z}-\frac{1}{\rho} \frac{d p}{d z} \tag{6}
\end{align*}
$$

As a rule these cyuations are establishal immediately by deler. mining the componont accelcrations of the fluid partiele whirln is at $x y z a t$ the instant of time t considered, and saying that thesu
accelerations reversed, combined with the impressed forces per unit of mass, will form a system in cquilibrium according to D'Alembert's principle.

To determine the component accelerations, suppose F any function of x, y, z, t, and determine the rate of change of F per unit of time for a moving particle; denoting this change by $\frac{D F}{d t}$, we have

$$
\frac{\mathrm{DF}}{d t}=\mathrm{lt} \frac{\mathrm{~F}(x+u \delta t, y+v \delta t, z+u \cdot \delta t, t+\delta t)-\mathrm{F}(x, y, z, t)}{\delta t}
$$

$$
=\frac{d \mathrm{~F}}{d l}+u \frac{d \mathrm{~F}}{d x}+v \frac{d \mathrm{~F}}{d y}+w \frac{d \mathrm{~F}}{d z},
$$

so that

$$
\frac{\mathrm{D}}{d t}=\frac{d}{d l}+u \frac{d}{d x}+v \frac{d}{d y}+w \frac{\dot{a}}{d s} .
$$

$\frac{D}{d t}$ is called particle differentiation, because we follow the rate of change of the particle as it leaves the point $x y z$; but $\frac{d \mathrm{~F}}{d^{\prime}}, \frac{d \mathrm{~F}}{d x}$, $\frac{d F}{d y}, \frac{d F}{d z}$ are the rates of change of F at the time t at the point
xyz, fixed in space. Consequently the component accelerations parallel to the axes of coordinates of a particle of tuid are

$$
\begin{aligned}
& \frac{d u}{d t}+u \frac{d u}{d x}+v \frac{d u}{d y}+w \frac{d u}{d z} \\
& \frac{d v}{d t}+u \frac{d v}{d x}+v \frac{d v}{d y}+w \frac{d v}{d z} \\
& \frac{d w}{d t}+u \frac{d v}{d x}+v \frac{d w}{d y}+w \frac{d w}{d z}
\end{aligned}
$$

leading to the equations of motion last established.
If $\mathrm{F}(x, y, z, t)=0$ be the equation of a surface containing always the same particles of fluid, it follows from the preceding that
or

$$
\begin{gather*}
\frac{\mathrm{DF}}{d t}=0, \\
\frac{d \mathrm{~F}}{d \delta}+u \frac{d \mathrm{~F}}{d x}+v \frac{d \mathrm{~F}}{d y}+w \frac{d \mathrm{~F}}{d z}=0 . \tag{7}
\end{gather*}
$$

This is called the differential equation of the bounding surface, as particles of fluid once in the bonnding surface always remain in it.
To integrate the equations of motion (4), (5), and (6), suppose the impressed forees due to a potential V, such that the foree in any direction is the rate of diminution of V in that direction, then

$$
\mathrm{X}=-\frac{d \mathrm{~V}}{d x}, \quad \mathrm{Y}=-\frac{d \mathrm{~V}}{d y}, \quad \mathrm{Z}=-\frac{d \mathrm{~V}}{d z}
$$

and putting

$$
\frac{d w}{d y}-\frac{d v}{d z}=2 \xi, \quad \frac{d u}{d z}-\frac{d w}{d x}=2 \eta, \frac{d v}{d x}-\frac{d u}{d y}=2 \zeta,
$$

the cquations may be written

$$
\begin{align*}
& \frac{d u}{d t}-2 v \zeta+2 w \eta+\frac{d \mathrm{R}}{d x}=0 \tag{8}\\
& \frac{d v}{d t}-2 u \xi+2 u \zeta+\frac{d \mathrm{R}}{d y}=0 \tag{9}\\
& \frac{d w}{d t}-2 u \eta+2 v \xi+\frac{d \mathrm{R}}{d z}=0 \tag{10}
\end{align*}
$$

where

$$
\mathrm{R}=\int \frac{d p}{\rho}+\mathrm{V}+\frac{1}{2} q^{2}
$$

and $q^{2}=u^{2}+v^{2}+w^{2}$ (Lamb, Motion of Fluids, Appendix D; also Proc. London Math. Socirty, yol. ix.).
A strcam line is defucd to be the actual path of a partiele, and a line of flow to be a line such that the tangent at every point is in the direction of the velocity at the point ; the stream lines and lines of flow aro coincident only when the motion is steady; and when the motion is irrotational, the lines of flow are orthogomal to the surfaces obtained by uquating the velocity function to a constant.

A worke line is definel to bo a line whose targent at any point is in the direction of the resultant ω of the component angular $v e l o c i t i e s ~ \xi, \eta, \delta$ at that point ; and ω is enlled the spin (Cliflord, Kinomatic).
ξ, η, ζ are ealled tho components of molecular rotation (or spin) at $x y z$, for a reason to be explained aftewards; and when they vanish the motion is aid to be irrotational, and a function ϕ exists, called the velocity function, such that

$$
u=\frac{d \phi}{d x}, v=\frac{d \phi}{d y}, x=\frac{d \phi}{d z}
$$

and, gencrally, the veloeity in any direction is then the space variation of ϕ.

When tho motion is irrotational, equations. (8), (9), and (10) bces:no

$$
\frac{d^{2} \phi}{d x d t}+\frac{d \mathrm{R}}{d c}=0, \frac{d^{2} \phi}{d y d l}+\frac{d \mathrm{R}}{d y}=0, \frac{d^{2} \phi}{d=d t}+\frac{d /}{d z}=0
$$

and therefore

$$
\frac{d \phi}{d t}+\mathrm{R}=\mathrm{H}
$$

or

$$
\int \frac{d p}{\rho}+\mathrm{V}+\frac{\mathrm{I}}{2} q^{2}+\frac{d \phi}{d t}=\mathrm{H}
$$

a constant throughout the fluid, which may, however, be a function of the time.

If, however, the motion be steady, that is, if the velocity at any point of space does not change with the time, then

$$
\frac{d u}{d t}=0, \quad \frac{d v}{d t}=0, \quad \frac{d w}{d t}=0 .
$$

and the equations become

$$
\begin{gathered}
\frac{d \mathrm{R}}{d x}-2 v \zeta+2 w \eta=0 \\
\frac{d \mathrm{R}}{d y}-2 w \xi+2 u \zeta=0 \\
\frac{d \mathrm{R}}{d z}-2 u \eta+2 v \xi=0 \\
u \frac{d \mathrm{R}}{d x}+v \frac{d \mathrm{R}}{d y}+w \frac{d \mathrm{R}}{d z}=0 \\
\xi \frac{d \mathrm{R}}{d x}+\eta \frac{d \mathrm{R}}{d y}+\zeta \frac{d \mathrm{R}}{d z}=0
\end{gathered}
$$

so that
and therefore the surface R, $=$ constant, contains both stream lines and vortex lines; and therefore

$$
\begin{equation*}
\int \frac{d p}{\rho}+V+\frac{1}{2} q^{2}=\text { constant } \tag{11}
\end{equation*}
$$

along a streara line, and along a vortex line; and if the motion is irrotational, the constant is the same for all the space filled with the fluid; for then

$$
\frac{d \mathrm{R}}{d x}=0, \quad \frac{d \mathrm{R}}{d y}=0, \quad \frac{d \mathrm{R}}{d z}=0
$$

Taking the ax's of x for an instant in the direction of the normal to the surface $R=$ constant, then $u=0$ and $\xi=0$, and (8), (9), and (10), if the motion is steady, reduce to $\frac{d \mathrm{R}}{d n}=2 \iota \zeta-2\langle; \eta=2 q \omega \sin \theta$, where θ is the angle between the stream and the vortex line.

It is sornctimes convenient to use movivg axes of coordinates in Hydrodynamics, and the equations of motion then become

$$
\begin{gathered}
\frac{d u}{d t}-\tau \omega_{3}+u \omega_{2}+\left(u+y \omega_{3}-z \omega_{2}\right) \frac{d u}{d x}+\left(v+z \omega_{1}-x \omega_{3}\right) \frac{d^{\prime} u}{d u} \\
+\left(w+x \omega_{2}-y \omega_{2}\right) \frac{d u}{d z}=\mathrm{X}-\frac{1}{\rho} \frac{d p}{d x}
\end{gathered}
$$

with two similar equations; $\omega_{0}, \omega_{2}, \omega_{3}$ denoting the component angular velocitics of the moving axes, and u, v, w tho compunents of the velocity of the fluid in space at the point $x y=$ at the tame t parallel to the axcs.

For if q denote the component velocity of the partiele rys at the time t in a direction fixed in suace whose direction-cosines are l, m, n, then

$$
q=l u+m v+n v ;
$$

and in the infinitesimal element of time $d l$ the coordinates of the particle will have become
$x+\left(u+y \omega_{3}-z \omega_{2}\right) d t, y+\left(v+z \omega_{1}-x \omega_{3}\right) d t, z+\left(w+x \omega_{2}-y \omega_{1}\right) d t$,
so that

$$
\frac{D q}{d l}=\frac{d l}{d l} u+\frac{d m}{d l} v+\frac{d u}{d l} w
$$

$+\left\{\left\{\frac{d u}{d t}+\left(u+y \omega_{3}-z \omega_{2}\right) \frac{d u}{d x}+\left(v+z \omega_{1}-x \omega_{3}\right) \frac{d u}{d y}+\left(w+x \omega_{2}-y \omega_{1}\right) \frac{d u}{d z}\right\}\right.$
$+m\left\{\frac{d v}{d t}+\left(u+y \omega_{3}-z \omega_{2}\right) \frac{d v}{d x}+\left(v \div z \omega_{1}-x \omega_{3}\right) \frac{d v}{d y}+\left(w+x \omega_{2}-y \omega_{1}, \frac{d}{d i}\right\}\right.$
$+n\left\{\frac{d w}{d t}+\left\{u+y \omega_{3}-z \omega_{2}\right) \frac{d w}{d x}+\left(v+z \omega_{1}-x \omega_{3}\right) \frac{d w}{d y}+\left(w+z \omega_{2}-y w_{1}\right) \frac{d v}{d z}\right\}$.
But, since l, m, n arc the direction-cosines of a line fixed in space.

$$
\begin{aligned}
& \frac{d l}{d t}=m \omega_{3}-n \omega_{2}, \quad \frac{d m}{d t}=\eta \omega_{1}-l \omega_{3}, \quad \frac{d n}{d l}=l \omega_{3}-m \omega_{1} ; \\
& \frac{D \eta}{d l} \omega_{l}\left\{\frac{d u}{d t}-v \omega_{3}+w \omega_{2}+\left(u+y \omega_{3}-z \omega_{2}\right) \frac{d u}{d x}+\left(v+z \omega_{1}-x \omega_{3}\right)_{d!/}^{d / u}\right. \\
& \left.+\left(u+x \omega_{z}-y \omega_{1}\right) \frac{d u}{d z}\right\} \\
& +m\left\{\frac{r l v}{d t}-w \omega_{1}+u \omega_{3}+\left(u+y \omega_{3}-z \omega_{2}\right) \frac{d v}{d, x}+\left(v+z \omega_{1}-x \omega_{x}\right)^{d n}\right. \\
& \left.+\left(w+x \omega_{9}-y \omega_{3}\right) \frac{d v}{d z}\right\} \\
& +n\left\{\frac{d w}{d t}-u \omega_{3}+v \omega_{2}+\left(u+y \omega_{3}-z \omega_{2}\right) \frac{d \eta \prime}{d x}+\left(v+z \omega_{1}-x \omega_{3} \frac{(l w}{d u}\right.\right. \\
& \left.+\left(w+x \omega_{j}-y \omega_{1}\right) \frac{d u}{d z}\right\} \\
& =l\left(\mathrm{X}-\frac{1}{\rho} \frac{d p}{d x}\right)+m\left(\mathrm{Y}-\frac{1}{\rho} \frac{d p}{d y}\right)+n\left(Z-\frac{1}{\rho} \frac{d p}{d z}\right)
\end{aligned}
$$

for all values of l, m, u, loading to the equations of motion.s

As an example of the use of ınoving axes in Lydrodynamics, conaider the liquid filling the ellipsoidal case

$$
\frac{x^{2}}{a^{3}}+\frac{y^{3}}{b^{3}}+\frac{z^{3}}{c^{2}}=1
$$

and first suppose the liquid to be frozen, and to have component angular velocities ξ, η, ζ about the axes, then

$$
u=-y \zeta+i \eta, v=-2 \xi+x \zeta, w=-x \eta+y \xi .
$$

If tho liquid now be suddenly melted, and additional componert angular velocities $\Omega_{1}, \Omega_{2}, \Omega_{3}$ communicated to the ellipsoid about tho axes, then (vide infra)

$$
\begin{aligned}
& u=-y \zeta+z \eta+\frac{c^{2}-a^{2}}{c^{2}+c^{2}} \Omega_{2} z+\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \Omega_{3} y \\
& 0=-2 \xi+x \zeta+\frac{a^{2}-b^{2}}{a^{2}+\frac{b^{2}}{2}} \Omega_{3} x+\frac{b^{2}-c^{2}}{b^{2}+c^{2}} \Omega_{1} z \\
& a=-x \eta+y \xi+\frac{b^{2}-c^{2}}{b^{2}+c^{2}} \Omega_{1} y+\frac{c^{2}-a^{3}}{c^{2}+a^{2}} \Omega_{3} x ;
\end{aligned}
$$

and if U, V, W denote the component velocities of tho liguid relative to the axes,

$$
\begin{aligned}
& \mathrm{U}=u+y \omega_{3}-\Sigma \omega_{2}=\frac{2 t^{2}}{a^{2}+b^{2}} \Omega_{3} y-\frac{2 a^{3}}{c^{2}+a^{2}} \Omega_{2} z_{1} \\
& \mathrm{~V}=v+z \omega_{1}-x \omega_{3}=\frac{2 b^{2}}{b^{2}+c^{2}} \Omega_{1} z-\frac{2 b^{2}}{a^{2}+b^{2}} \Omega_{3} x, \\
& \mathrm{~W}=w+x \omega_{2}-y / \omega_{1}=\frac{2 c^{2}}{c^{2}+a^{2}} \Omega_{2} x-\frac{2 c^{2}}{b^{2}+c^{2}} \Omega_{1} y, \\
& \text { Bince } \quad \omega_{1}=\Omega_{1}+\xi_{2} \omega_{1}=\Omega_{4}+\eta, \omega_{3}=\Omega_{3}+\zeta,
\end{aligned}
$$

$\omega_{1}, \omega_{2}, \omega_{3}$ being the component angular velocities of the axes.
We see that

$$
U \frac{2}{w}+V \frac{y}{b^{2}}+w \frac{z}{c^{2}}=0
$$

en that a liquid particle always remains on a similar ellipsond.
The hydrodynmical elpations with noving axes, taking into account the motual gravitation of the liquid, are

$$
\begin{align*}
& \frac{1}{\rho} \frac{d y}{d x}+\mathrm{A} x+\frac{d u}{d l}-v \omega_{3}+w \omega_{2}+\mathrm{U} \frac{d u}{d x}+\mathrm{V} \frac{d u}{d y}+\mathrm{W} \frac{d u}{d z}=0 \tag{1}\\
& \frac{1}{\rho} \frac{d p}{d y}+\mathrm{B} y+\frac{d v}{d t}-v \omega_{1}+u \omega_{3}+\mathrm{U} \frac{d v}{d x}+\mathrm{V} \frac{d v}{d y}+\mathrm{W} \frac{d v}{d z}=0 \tag{2}\\
& \frac{1}{\rho} \frac{d \mu}{d z}+\mathrm{C} z+\frac{d w}{d l}-v \omega_{2}+v \omega_{1}+\mathrm{U} \frac{d v}{d x}+\mathrm{V} \frac{d v}{d y}+\mathrm{W} \frac{d w}{d z}=0 \tag{3}
\end{align*}
$$

Thero

$$
\begin{aligned}
& A=\frac{3}{2} M \int_{0}^{\infty} \frac{d \lambda}{\left(b^{2}+\lambda\right) \mathrm{L}^{2}}, \\
& \mathrm{~B}=\frac{\pi}{2} M \int_{0}^{\infty} \frac{d \lambda}{\left(b^{2}+\lambda\right) \mathrm{l}^{1}}, \\
& \mathrm{C}=\frac{\pi}{2} M \int_{0}^{\infty} \frac{d \lambda}{\left(c^{2}+\lambda\right) \mathrm{l}^{2}},
\end{aligned}
$$

and

$$
\Gamma^{2}=\left(a^{2}+\lambda\right)\left(\delta^{2}+\lambda\right)\left(c^{2}+\lambda\right) .
$$

With the above values of u, v, w, U, V, W, the hydrodynamical cquations are of the lorm

$$
\begin{aligned}
& \frac{\mathrm{I}}{\rho} \frac{d p}{d x}+\mathrm{A} x+a x+h y+g z=0 \\
& \frac{\mathrm{l}}{\rho} \frac{d p}{d y}+\mathrm{B} y+h x+\beta y+f z=0 \\
& \frac{\mathrm{~J}}{\rho} \frac{d p}{d x}+\mathrm{C} z+g x+f y+\gamma z=0
\end{aligned}
$$

The component accelerations in space of the liquid particle at $x y z$ parallel to the axes are thernfore

$$
a x+h y+g z, h x+\beta y+f z, g x+f y+\gamma ;
$$

and by the dynamical equations the ratea of change of angular momentum about the coordinate axea are zero, and thereforo

$$
\{(g x+f y+\gamma z) y-(h x+\beta y+f z) z\}=0
$$

ot

$$
\left(y^{2}-z^{2}\right)=0
$$

or

$$
\begin{array}{r}
f\left(b^{2}-c^{2}\right)=0 ; \\
f=0 ;
\end{array}
$$

and thercfors
and similarly g and h vanish.
Therefuro the hydrodynamical equations become

$$
\begin{aligned}
& \frac{1}{\rho} \frac{d p}{d x}+(A+\alpha) x=0 \\
& \frac{1}{\rho} \frac{d p}{d y}+(B+\beta) y=0 \\
& \frac{1}{p} \frac{d p}{d z}+(C+\gamma) z=0
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha=\frac{4 c^{2}\left(c^{2}-a^{2}\right)}{\left(a^{2}+c^{2}\right)^{2}} \Omega_{3}^{2}-\left(\frac{c^{2}-a^{2}}{c^{2}+a^{2}} \Omega_{2}-\eta\right)^{2} \\
&-\frac{4 b^{2}\left(a^{2}-b^{2}\right.}{\left(a^{2}+b^{2}\right)^{2}} \Omega_{3}^{2}-\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \Omega_{3}+\zeta\right)^{2}, \\
& \beta=\frac{4 a^{2}\left(a^{2}-b^{2}\right)}{\left(a^{2}+b^{2}\right)^{2}} \Omega_{3}^{2}-\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \Omega_{3}-\zeta\right)^{2} \\
& \frac{4 c^{2}\left(b^{2}-c^{2}\right)}{\left(b^{2}+c^{2}\right)^{2}} \Omega_{1}^{2}-\left(\frac{b^{2}-c^{2}}{b^{2}+c^{2}} \Omega_{1}+\xi\right)^{2}, \\
& \gamma= \frac{4 b^{2}\left(b^{2}-c^{2}\right)}{\left(b^{2}+c^{2}\right)^{2}} \Omega_{1}^{2}-\left(\frac{b^{2}-c^{2}}{b^{2}+c^{2}} \Omega_{1}-\xi\right)^{2} \\
&- \frac{4 a^{2}\left(c^{2}-a^{2}\right)}{\left(c^{2}+a^{2}\right)^{2}} \Omega_{2}^{2}-\left(\frac{c^{2}-a^{2}}{c^{2}+a^{2}} \Omega_{3}+\eta\right)^{2}
\end{aligned}
$$

Therefore, integrating,
if $\frac{p}{\rho}+\frac{1}{3}\left\{(\mathrm{~A}+\alpha) c^{2}+(\mathrm{B}+\beta) y^{2}+(\mathrm{C}+\gamma) z^{2}\right\}=$ constant;
and therefore the surfaces of equal pressure are the șimilar and co-axial quadrics

$$
(A+\alpha) x^{2}+(B+\beta) y^{2}+(C+\gamma) z^{2}=\text { constant }
$$

If we can make a, β, γ constant, aud $\left.(A+a) a^{2}=(B+\beta) b^{2}=C+\gamma\right) a^{2}$, the surfaces of equal pressure are similar to the external case, which can therefore be removed without affecting the motion.

This is the case when tho axis of revolntion is a principal axis; and, supposing it the axis of z, then

$$
\Omega_{1}=0, \Omega_{2}=0, \xi=0, \eta=0 .
$$

If in addition we put $\Omega_{3}=0$, or $\omega_{3}=\zeta$, we obtain the solution of the farticular case considered by Jacobi, of a liquid ellipsoid of thrce unequal axes, rotating about its least axis in relative equilibrium ; or, putting $a=b$, we obtain Maclaurin's solution of the equilibrium of a rotating spheroid (Cam. Phil. Soc. Proc., iii.).

Eyuation (1I) is called Dermoulli's equation, and for homogeneous liquids under gravity is a very useful principle in hydraulies; the efpation may be established from first principles by considering the encrgy which enters and leaves a certain portion of a tube of flow. (Lamb, Motion of Fluids, p. 23).

If homogeneous liquid be drawn off from a vessel, so large that the motion of the free surface may be neglected, then Bernoulli's equation becomes, P being the atmospheric pressure and h the height of the free surface,

$$
\frac{p}{\rho}+g z+b g^{2}=\frac{\dot{P}}{\rho}+g h
$$

and in parlicular, for a jet issuing into tho atmosphere, where $p=P$, $\frac{1}{2} q^{2}=g(h-z) ;$
or the velocity is due to the depth below the free surface. This is Torricelli's theorem (Dc Mou gravium Projectorum, 1643).

If we suppose fluid to escape according to this law.from a large closed vessel in which the pressure is p where the motion is insensible, and neglect the variations of velocity due to variations of level. p being sulficiently great, then

$$
\left.\frac{1}{2} q^{2}=\frac{p-P}{\rho} ; \text { or } q=\sqrt{2} \frac{p-P}{\rho}\right)
$$

If A be the sectional area of the jet (at the rena contracta), the quantity of tluid which escapes per unit of time is

$$
A \rho \rho=A \sqrt{\{ }\{\rho(p-P)\}
$$

the momentum per unit of time is

$$
\Lambda \rho q^{2}=2 A(p-\mathrm{P}):
$$

and the energy per unit of time is

$$
A_{\rho} \eta^{3}=A\left(p-P^{\prime}\right)^{2} \sqrt{\frac{2}{\rho}}
$$

Suppose, for instance, two cqual pipes leading one from the steans sjace and the other from the water space of a steam boiler at a pressure p, and snppose Torricelli's theoren to hold for the rate of eflux of the steam and witer, thers, if o denote tho density of steam,-1 and ρ tho density of water,
(I) $\quad \frac{\text { Tho velocity of steam jet }}{\text { Tho velocity of water jet }}=\sqrt{\frac{p}{\sigma}}$,
(2) The quantity of stcam jet $\Rightarrow \sqrt{\frac{\sigma}{\rho}}$, *The mornentum of steám jet $=1$,
3) The momentum of water jet $=$
(4) $\frac{\text { The eneray of steam jet }}{\text { The energy of water jet }}=\sqrt{\frac{\rho}{\sigma}}$

- For instance, with steam at 8 atmospheres, or 120 to to thed equare inch,

$$
\sqrt{\frac{\rho}{\sigma}}=15 \text { nearly }
$$

-(Rankine, Sleam Engine, appendix).

These principies assumed enable us to gire a general explanation of tha working of Gillard's injector. For, if the steam jet and water jet be directed at each other, with a small interval between, the superior euergy and equal momentum of the steam jet will overcome the water jet, and the steam will llow back into the boiler. But the steam jet, without losing its momentum, is capable of being mixed with water to such an extent as to become a condensed water jet, moving with the velocity of the water jet, and still entering the boiler, a valve preventing the reversal of the motion. Consequently, the amount of water carried into the boiler pet unit of time will theoretically ba at most the differeace between the quantities which would escape by the water and the steam jets, and therefore

$$
=\Lambda \sqrt{ }(p-P)(\sqrt{2 \rho}-\sqrt{2 \sigma}) ;
$$

and the elficiency of the injector, that is, the ratio of the water pumped in to the quantity of stcam ased, will be

$$
\sqrt{\frac{\rho}{\sigma}}-1,
$$

the efficiency of a pump being $\frac{p}{\sigma}$.
With C.G.S. units, and a pressure of 8 atmospheres, for instance,

$$
p-\mathrm{P}=7 \times 10^{8} \text { rery nearly, } \sqrt{\frac{\rho}{\sigma}}=15, \text { and } \rho=1 .
$$

Therefore, if the diameter of the nozzles of the injector be d centimetres, the delivery in grammes per sccond

$$
\begin{aligned}
& =\frac{1}{4} \pi d^{2} \sqrt{14} \cdot 10^{3}\left(1-\sqrt{\frac{1}{\gamma^{5}}}\right) \\
& =2180 d^{2} ;
\end{aligned}
$$

aod since 1 gallon is 4541 cubic centimetres, the delivery in gallons per minute

$$
\begin{aligned}
& =\frac{2180 \times 60}{4541} d^{2} \\
& -28.78 d^{2} \text { nearly? }
\end{aligned}
$$

The Lagrangian Form of the Equalions

Here the independent varinbles which defioe a particlo are the tima. ℓ, and a, b, c, the initial values of the coordinates x, y, z of a partiele of fluid (or else functions of the initial coordinates, but it is beat to consider a, b, c as the initial coordinates themselves).

Here x, y, z do not refer to a fixed point in space, but are the variabla coordinates of a fluid particle, and are functions of a, b, c, t, the iodepeodent variables; and consequently

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}, w=\frac{d z}{d t} ;
$$

and the component accelerations of the fluid particle are

$$
\frac{d u}{d \ell}, \frac{d v}{d \ell}, \frac{d w}{d \ell}
$$

Cousequently the equations of motion, assuming the existence of the potentiel V, and puttion $P=\int \frac{d p}{p}$, end $P+V=Q$, ar

$$
\frac{d Q}{d x}+\frac{d u}{d t}=0, \quad \frac{d Q}{d y}+\frac{d v}{d t}=0, \frac{d Q}{d z}+\frac{d n}{d t}=0 ;
$$

or multiplying by $\frac{d x}{d a}, \frac{d y}{d a}, \frac{d z}{d a}$, and adding,

$$
\begin{equation*}
\frac{d Q}{d a}+\frac{d u}{d l} \frac{d x}{d a}+\frac{d v}{d t} \frac{d y}{d a}+\frac{d w}{d t} \frac{d z}{d a}=0 \tag{1}
\end{equation*}
$$

with two similar equations

$$
\begin{align*}
& \frac{d Q}{d b}+\frac{d u}{d l} \frac{d x}{d b}+\frac{d v}{d t} \frac{d y}{d b}+\frac{d w}{d l} \frac{d z}{d b}=0 \tag{2}\\
& \frac{d Q}{d c}+\frac{d u}{d l} \frac{d x}{d c}+\frac{d v}{d l} \frac{d y}{d c}+\frac{d w}{d l} \frac{d z}{d c}=0 \tag{3}
\end{align*}
$$

Since the clementary parallelepiped whose edges were initially $d a$, $d b$, de, becomes straincd into a parallepiped of volumu

$$
\frac{d(x, y, z)}{d(a, b, c)} d a d b d c
$$

thercfore the equation of continuity is .

$$
\rho \frac{d(x, y, z)}{d(\varepsilon, b, c)}=\rho_{0}
$$

or, if the fuid be a homogencous liquil,

$$
\frac{d(x, y, z)}{d(d, u, c)}=1
$$

When a, b, c are not the coorlinates of n point actually occupied by the fluid particle, this equation of contimity must be replaced by

$$
\frac{d}{d t}\left\{p_{d\left(\frac{d(x, y, v)}{d(a, b, c)}\right\}=0}\right.
$$

Cauchy's Integrals of Layrange's Equalions.
Elimioating Q by differentiation between (2) and (3)
$\frac{d^{2} u}{d t d b} \frac{d x}{d c}-\frac{d^{2} u}{d t d c} \frac{d x}{d b}+\frac{d^{2} v}{d t d b} \frac{d y}{d c}-\frac{d^{2} v}{d d c} \frac{d y}{d b}+\frac{d^{2} w}{d l d b} \frac{d z}{d c}-\frac{d^{2} w}{d t d c} \frac{d z}{d b}=0 ;$
and integrating with respect to t,
$\frac{d u}{d b} \frac{d x}{d c}-\frac{d u}{d c} \frac{d x}{d b}+\frac{d v}{d b} \frac{d y}{d c}-\frac{d v}{d c} \frac{d y}{d b}+\frac{d w}{d b} \frac{d z}{d c}-\frac{d w}{d c} \frac{d z}{d b}=\frac{d w_{0}}{d b}-\frac{d v_{0}}{d c}$,
u_{0}, v_{0}, w_{0} being the initial values of u, v, w, and a, b, c the initial values of x, y, z. Now

$$
\frac{d u}{d a}=\frac{d u}{d x} \frac{d x}{d a}+\frac{d u}{d y} \frac{d y}{d a}+\frac{d u}{d z}: \frac{d z}{d a},
$$

and therefore
$\left(\frac{d w}{d y}-\frac{d v}{d z}\right) \frac{d(y, z)}{d(b, c)}+\left(\frac{d u}{d z}-\frac{d w}{d x}\right) \frac{d(z, x)}{d(b, c)}+\left(\frac{d v}{d x}-\frac{d u}{d y}\right) \frac{d(x, y)}{d(b, c)}=\frac{d w w_{0}}{a_{0} b}-\frac{d v_{\mathrm{e}}}{d \dot{d r}}:$
or putting

$$
\begin{gathered}
\frac{d w}{d y}-\frac{d v}{d z}=2 \xi, \frac{d u}{d z}-\frac{d w}{d x}=2 \dot{\eta}, \frac{d v}{d x}-\frac{d u}{d y}=2 C, \\
\frac{d(y, z)}{d(b, c)}+\eta \frac{d(z, x)}{d(b, c)}+\zeta \frac{d(x, y)}{d(\dot{b}, c)}=\xi_{0} ;
\end{gathered}
$$

with tro similar equations

$$
\begin{aligned}
& \frac{d(y, z)}{d(\mathrm{c}, a)}+\eta \frac{d(z, x)}{d(\mathrm{c}, a)}+\zeta \frac{d(x, y)}{d(c, a)}=\eta_{0}, \\
& \xi \frac{d(y, z)}{d(a, b)}+\eta \frac{d(z, x)}{d(a, b)}+\zeta \frac{d(x, y)}{d(a, b)}=\zeta_{0},
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\mathrm{J} \xi=\xi_{0} \frac{d x}{d a}+\eta_{0} \frac{d x}{d b}+\zeta_{0} \frac{d x}{d c}, \\
\mathrm{~J}_{\eta}=\xi_{0} \frac{d y}{d a}+\eta_{0} \frac{d y}{d b}+\zeta_{0} \frac{d y}{d c}, \\
\mathrm{~J} \zeta=\xi_{0} \frac{d z}{d a}+\eta_{0} \frac{d z}{d b}+\zeta_{0} \frac{d z}{d c}, \\
\mathrm{~J}=\frac{d(x, y, z)}{d(a, b, c)} ;
\end{gathered}
$$

where
or, eince $J=\underline{p_{0}}$, therefore

$$
\begin{align*}
& \left.\frac{\xi}{\rho}=\frac{\xi_{0}}{p_{0}} \cdot \frac{d x}{d i}+\frac{\eta_{0}}{p_{0}} \frac{d x}{d b}+\frac{\zeta_{0}}{\rho_{0}} \frac{d x}{d c} \cdot \cdots()_{1}\right) \\
& \frac{\eta}{\rho}=\frac{\xi_{0}}{\rho_{0}} \frac{d y}{d i c}+\frac{\eta_{0}}{\rho_{0}} \frac{d y}{d b}+\frac{\zeta_{0}}{\rho_{0}} \frac{d y}{d c} . \tag{5}\\
& \frac{\zeta}{\rho}=\frac{\xi_{0}}{\rho_{0}} \frac{d z}{d a}+\frac{\eta_{0}}{\rho_{0}} \frac{d z}{d b}+\frac{\zeta_{0}}{\rho_{0}} \frac{d z}{d c} \tag{6}
\end{align*}
$$

Consequently if ξ, η, ζ are crec zero they are alrays zero, and then

$$
u=\frac{d \phi}{d x}, v=\frac{d \phi}{d y}, w=\frac{d \phi}{d z},
$$

and a velocity function ϕ exists.
For instance, if metion be gencrated from rest in a non-viscous fluid uader forces due to a potential, a velocity function always exists, ead the discovery of this velocity function for different cases is one of the chief problems to bo aolved io hydradynamice.
a good axample of the use of the Lagrangien equations of motion is given by the state of wave motion ia deep water invented bRankine; lie puts

$$
\begin{aligned}
& x=\alpha+c^{-\frac{\beta}{c}} \sin \left(\omega t+\frac{a}{c}\right), \\
& y=\beta+c^{-\frac{\beta}{c}} \cos \left(\omega t+\frac{a}{c}\right) ;
\end{aligned}
$$

and thereforo the ceerdioates of a particle are given in terme of 1 and a and β.
But a and β are not the initial coordinates of a particle; for putting $t=0$, then the coordinates are

$$
\begin{aligned}
& a=\alpha+c^{-\frac{\beta}{c}} \text { sia } \frac{a}{c} \\
& b=\beta+c^{-\frac{\beta}{c}} \cos \frac{a}{c} \\
& \frac{d(x, y)}{d(\alpha, \beta)}=1-a^{-2 \frac{\beta}{c}} \\
& \frac{d(a, b)}{d(a, \beta)}=1-a^{-2 \frac{\rho}{c}}
\end{aligned}
$$

Theretore
and
therefore
and the countion of continuity is satisficd.

Cauchy'a integrals reduce to the single equation

$$
\begin{aligned}
& \zeta \frac{d(x, y)}{d(n, b)}=\zeta_{0}, \\
& \text { or } \\
& \zeta=\zeta_{0}, \\
& \text { where } \\
& 2 \zeta_{0}=\frac{d v_{0}}{d a}-\frac{d u_{0}}{d b}, \\
& \text { and therefore } \\
& 2 \zeta_{0} \frac{d(a, b)}{d(a, \beta)}=\frac{d\left(v_{0}, b\right)}{d(a, \beta)}-\frac{d\left(u_{0}, r\right)}{d(\beta, a)} \\
& \text { Now } \\
& u=\frac{d x}{d t}=c \omega c^{-\frac{\beta}{c}} \cos \left(\omega t+\frac{a}{c}\right) \text {. } \\
& \frac{d y}{d t}=-c a \cdot e^{-\frac{\beta}{c}} \sin \left(\omega \ell+\frac{a}{c}\right) ; \\
& \text { thercion } \quad u_{0}=c \omega e^{-\frac{\beta}{c}} \cos \frac{a}{c}, v_{u}=-c \omega c^{-\frac{\beta}{c}} \sin \frac{a}{c} \text {; } \\
& \text { *nd } \\
& 2 \S_{0} \frac{d(a, b)}{d(a, \beta)}=2 \omega c^{-\frac{\beta}{c}}, \\
& \text { therefore }
\end{aligned}
$$

ande the motion cannot therefore have been generated from rest by astural forees; the fluid must have been created with the proper sllount of apin at cvery point.

$$
\text { We have } \begin{aligned}
\frac{d u}{d t} & =-c \omega^{2} e^{-\frac{\beta}{c}} \sin \left(\omega t+\frac{c}{c}\right) \\
\frac{d v}{d t} & =-c \omega^{2} e^{-\frac{\beta}{r}} \cos \left(\omega t+\frac{\alpha}{c}\right)
\end{aligned}
$$

rut therefore the dynamical equations (1) and (2) become

$$
\begin{aligned}
& \frac{d Q}{d \alpha}-c \omega^{2} e^{-\frac{\beta}{c}} \sin \left(\omega t+\frac{\alpha}{c}\right)=0 \\
& \frac{d Q}{d \beta}-c \omega^{2} e^{-\frac{\beta}{c}} \cos \left(\omega t+\frac{\alpha}{c}\right)+c \omega^{2} e^{-2 \frac{\beta}{c}}=0:
\end{aligned}
$$

ard therefore the integral of these two equations is

$$
Q+c^{2} \omega^{2} \varepsilon^{-\frac{\beta}{c}} \cos \left(\omega t+\frac{a}{c}\right)-\frac{1}{2} c^{2} \omega^{2} c^{-2 \frac{\beta}{c}}=1 I, \text { a constant }
$$

Now

$$
\begin{aligned}
Q & =\int \frac{d p}{\rho}+V,=\frac{p}{\rho}-g y \\
= & \frac{p}{\rho}-g B-g c e^{-\frac{\beta}{c}} \cos \left(\omega t+\frac{a}{c}\right)
\end{aligned}
$$

and therefore

$$
\frac{p}{p}-g B+c\left(c \omega^{2}-g\right) e^{-\frac{B}{c}} \cos \left(\omega t+\frac{a}{c}\right)-\frac{1}{2} c^{2} \omega^{2} c^{-2 \frac{\beta}{c}}=H
$$

A free surface is possible if

$$
c \omega^{7}=g,
$$

ahl then $\quad \frac{p}{\rho}=g B+\frac{1}{2} c^{2} w^{2} \varepsilon^{-2 \stackrel{\beta}{c}}+11$.
and the pressure at a particle is constant.
The wave lengtl $\lambda=2 \pi c$; and the velocity of propagatiou

$$
c \omega=\sqrt{g c} \cdots \sqrt{\frac{g \lambda}{2 \pi}}
$$

The aurfaces of eq̧al pressurc are trochoids, obtained by rolling - circle of radius c on the under gide of a line nt a depth $\beta-c$, the distance of the corried poiot from the cedte beiog $c e^{-\frac{\beta}{c}}$

Irrotational Motion.

If liquid originally at rest be contaided in a singly conuected apiace, then forces due to a aingly. ralued function V are not capablo of setting upany motion in the liquid, and any motion must be due to the motion of the bounding surface.

For, ϕ denoting the velocity fupction, by Green's theorem the kiaetic edergy

$$
\begin{gathered}
T=f p / \iint\left\{\left(\frac{d \phi}{d x}\right)^{2}+\left(\frac{d \phi}{d y}\right)^{2}+\left(\frac{d \phi}{d z}\right)^{2}\right\} d x d y d z \\
t p / \int \phi \frac{d \phi}{d x} d S
\end{gathered}
$$

and therefore, if $\frac{\alpha \phi}{d n}=0$, then $\mathrm{T}=0$, and thererore

$$
\left(\frac{d \phi}{d x}\right)^{2}+\left(\frac{d \phi}{d y}\right)^{2}+\left(\frac{d \phi}{d z}\right)^{2}=0
$$

$$
\text { or } \frac{d \phi}{d x}=0, \frac{d \phi}{d y}=0, \frac{d \phi}{d z}=0
$$

If we suppose, the actual motion at any instant to have been instantancously generated from rest by the application of proper im. pulses at the bounding surface, then, since no natural forces can act impulsively throughout the liquid, the equations of impulse are

$$
\frac{1}{\rho} \frac{d \pi}{d x}=-u, \frac{1}{\rho} \frac{d w}{d y}=-v, \frac{1}{\rho} \frac{d च}{d z}=-w_{1}
$$

$=$ denoting the impulsive pressure at any point of the liquid; and therefore, if ϕ denote the velocity function, we can put

$$
\phi=-\frac{\square}{\rho}
$$

Since the work done by an impulse is the product of the impulse into half the sum of the initial and final velocities, we sec how it is that the kinetic energy of the liquid

$$
\begin{aligned}
& =\frac{1}{2} \iint=\frac{d \phi}{d n} d \mathrm{~S} \\
& =\frac{1}{2} \rho / \int \phi \frac{d \phi}{d n} d \mathrm{~S}
\end{aligned}
$$

Also the kinetic energy aequired thus due to the velocity function ϕ will be less than the kinctic energy of any other motion, wholls or partially rotational, but satisfying the equation of continuity, and the condition at the boundary that the normal velocity of the liquid is the normal velocity of the boundary.

For, if u_{1}, v_{1}, w_{1} be the velocities at any point of this dew motion. and T_{1} the whole kinetic energy,

$$
\begin{aligned}
& \mathrm{T}_{1}-\mathrm{T}=\frac{1}{2} p \iint\left(u_{1}^{2}-u^{2}+v_{1}^{2} v^{2}+w_{1}^{2} \quad u^{2}\right) d x d y d z \\
& -\frac{1}{2} p / \iint\left\{\left(u_{1}-u\right)^{2}+\left(v_{1}-v\right)^{2}+\left(w_{1}-w\right)^{2}\right\} d x d y d z \\
& +p / \iint\left\{u\left(u_{1}-u\right)+v\left(v_{1}-v\right)+w\left(w_{1}-w\right)\right\} d x d y d z \\
& =\iiint\left\{u\left(u_{1}-u_{j}+v\left(v_{1}-v\right)+u\left(w_{1}-w\right)\right\} d x d y d z\right. \\
& =\iint\left\{\frac{d \phi}{d x}\left(u_{1}-u\right)+\frac{d \phi}{d y}\left(v_{1}-v\right)+\frac{a \phi}{d z}\left(x_{1}-w\right)\right\} d x d y r d z \\
& =\iint \phi\left\{l\left(u_{1}-u\right)+m\left(v_{1}-v\right)+n\left(w_{1}-w\right)\right\} d \mathrm{~S} \\
& =\iint \phi\left\{\frac{d}{d x}\left(u_{1}-u\right)+\frac{d}{d y}\left(v_{1}-v\right)+\frac{d}{d z}\left(w_{1}-w\right)\right\} d x d y d z \\
& =0 .
\end{aligned}
$$

Bat

Then $\mathbf{T}_{1}-\mathbf{T}=\frac{1}{2} \rho \iiint\left\{\left(u_{1}-u\right)^{2}+\left(v_{1}-v\right)^{2}+\left(w_{1}-w\right)^{2}\right\} d x d y d x$, a positive quantity ; and therefore $\mathrm{T}_{\mathbf{1}}$ is always greater than T , a theorm due to Sir W. Thomson. If, however, ϕ be maltiplyvalued, and the space occupied by the liquid multiply-connectod, we can have circulation existing in the different circuits of the space even when the bounding surface is at rest, and the motion may still be differeatially irrotational, and any motion of the bounding aurface will not affect these circulations. For instance, we may havo $\phi=\frac{m}{2 \pi} \tan ^{-1} \frac{y}{x}$, and the liquid circulatiog in any ring-shaped surface, whose axis of figure is the axis of z.
To find the kinctic energy of a liquid in a multiply-connected spaco, the motion being differentially irrotational, but circulations existiog in the circuits, the space occupied by the liquid must be rendered neyclic by barriers, which may be supposed to be membranes, moring with the velocity of the liquid; and theo, if k be the cyclic comstant of the value of ϕ in any circuit, we must suppose the value of ϕ on one side of the nembrane to excced tho value of ϕ on the other side by k, so that the integral $\iint \phi \frac{d \phi}{d x} d \mathrm{~S}$ over the membrane must be replaced ly $k \iint \frac{d \phi}{d n} d S$; so that to the term $\frac{1}{2} \rho / \int \phi \frac{d \phi}{d n}$ over the outside surfaco must be added a number of terms of the form $\frac{1}{2} \rho k \iint \frac{d \phi}{d n} d S$, to express the enargy due to the circulation in the circuits; and the condition of continuity shows that $\iint \frac{l \phi}{d n} d S$ over ono of these membranes which ronder a cirenit acyelic is inderydent of the form of the membrane.

On Flow, Circulation, and Vortex Motion
The line integral of the tangential velocity $\int\left(u \frac{d x}{d s}+\frac{d y}{d s}+w \frac{d z}{d s}\right) d s$ or $\int(u d x+v d y+u d z)$, from one point to anuther of a curve, is called the fow along the curve from the initial to the final point; and, if the curve be closed, the line integral ronnd the chrve is called the circulation in the curve.
If a velocity function ϕ exist, then the flow $=f l \phi=\phi_{2}-\phi_{2}$, where ϕ_{1} and ϕ_{2} are the initial and final values of ϕ; and therefore the flow is independent of the curve for all mutually reconcilable curves; and the circulation in any closed curve, capable of being reduced to a polat without leaving space for which ϕ is simglevalued, is zero.
If through every point of a small closed curve the vortex lines be drawn, a tube is obtained and the fluid contaned is called a vortex: flament.

By analogy with the spin of a rigid body the component spin of the fluid in any plane at any point is defined as the circulation round any infinitesimal area io the plane enclosing the point divided by turice the area. For in a rigid body, rotating about the axis of x with angular velocity ξ suppose, the circulation round a curve in the plane of $y z$ is.

$$
\int \omega\left(x \frac{d y}{d s}-y \frac{d x}{d s}\right) d s
$$

$-\infty$ times t wice the area of the curve.
Now if, in the fluid at the point $x y z$, we take the circulation sound the elementary area dydz, it is equal to

$$
\begin{gathered}
v d y+\left(w+\frac{d v}{d y} d y\right) d z-\left(v+\frac{d v}{d z}\right) d z-v d z \\
=\left(\frac{d w}{d y}-\frac{d v}{d z}\right) d y d z
\end{gathered}
$$

and therefore the component spin io the plane $y z$ is $\frac{1}{2}\left(\frac{d v}{d y}-\frac{d v}{d z}\right)$, which wo have denoted by ξ. Similarly the component spins in the planes of and and $x y$ are $\frac{1}{2}\left(\frac{d u}{d z}-\frac{d w}{d x}\right)=\eta$ and $\frac{1}{2}\left(\frac{d v}{d x}-\frac{d u}{d y}\right)=\zeta$ respectively.
Since the circulation round any triangolar area is the sum of the circulations round the projections of the aren on the coordinate planes, the composition of the component spins ξ, η, ζ is aecording to the vector law. Hence in any infinitesimal part of the fluid the circulation is zero roand every omall plane curve parsing through a certain line, the resultant $i x$ is of spin of ξ, η, δ at that poirt of the fluid. Consequently the circulation round any closed curvo drawn on the enrface of a vortex filament is zero; and there. fore, if at any tro points of a vortex flament we draw the cross sections $A B C, A^{\prime} B^{\prime} C^{\prime}$, joined by the line A^{\prime}, then, since the flow io $A A^{\prime}$ in the complete circuit $A B C A A^{\prime} B^{\prime} C^{\prime} A^{\prime} A$ is taken in opposito directions, the resultant flow in AA^{\prime} ranishes, and therefore the circulations in $A B C, \Lambda^{\prime} B^{\prime} C^{\prime}$, estimated in the same divection, are equal. This is expressed by saying that, at all points of a vortex flament, ωa is constant, where a is the sectional area of the filument, and ω the spin (CLIford, Kincmatie, Book iii.).
So far the theorems ahont vortox motion are kinematical ; but, introducing Euler's equation of motion

$$
\frac{\mathrm{D} u}{d t}+\frac{d \mathrm{Q}}{d x}=0, \frac{\mathrm{D} v}{d t}+\frac{d \mathrm{Q}}{d y}=0, \frac{\mathrm{D} w}{d l}+\frac{d \mathrm{Q}}{d z}=0
$$

where

$$
\mathrm{Q}=\int \frac{d p}{\rho}+\mathrm{V}
$$

theo

$$
\frac{D}{d l}(u d x+v d y+u d z
$$

$$
\begin{aligned}
& -u \frac{\mathrm{D} d x}{d l}+v \frac{\mathrm{D} d y}{d l}+w \frac{\mathrm{D} d z}{d l}+\frac{\mathrm{D} u}{d l} d x+\frac{\mathrm{D} v}{d \iota} d y+\frac{\mathrm{D} u}{d l} d z \\
& -u d u+v l l v+w d w-\frac{l \mathrm{Q}}{d x} d x-\frac{d \mathrm{Q}}{d y} d y-\frac{d \mathrm{Q}}{d z} d z \\
& -\frac{1}{2} d q^{2}-d \mathrm{Q} ;
\end{aligned}
$$

and thercfore, by integration round a closed curve,

$$
\frac{\mathrm{D}}{d \vec{l}} \int(u d x+v d y+w(l z)=0
$$

and therefore the circulation in nuy circuit composed of the samo fluid particles is constant, and, if the inotion is differentially irrotational, is zero round nll reconcilable paths.
The circulation round any small blano curve passing through the axis of epin at any point being nlwnys zero, it followe conversoly that a vortex filament is always complosed of the ame lluid particles; and, aince the circnlation round any cross section is constant for different tinnes, it follows from the previous kinematical proposi-
tions that aw is constant for all the time, aud the same at all points of a vortex filament.

Protessor Clifford (Proc. London Mathematical:Suciety, vol. ix.) has given a simple quaternion proof of the theorem-To determine the velcoity at any point of a buid, when the spin is given.

If σ denote the velucity and ω the spin at any point, then

$$
2 \omega=V \nabla \sigma ;
$$

also, if k denote the cubical expunsion,

$$
k=-\mathrm{S} \nabla \sigma .
$$

Hence the quaternion q or $-\hbar+2 \omega$ is simpty $\nabla \sigma$; consequently the problem to be solved is to determine σ trom the equation
q being given.
$q=\nabla \sigma$.
Operating by ∇,

$$
\nabla \eta=\nabla^{2} \sigma ;
$$

therefore σ is the potential of ∇q; and therefore

$$
\sigma_{a}=d \pi \sqrt{\frac{\nabla q_{b} d r_{b}}{\mathrm{D}_{a b}}}
$$

where σ_{a} means the value of σ at the point $a, d r_{b}$ means an element of volunie at the foint b_{j} and D_{ab} the distance between the points a, b.

Returning to Euler's equatious of motion,

$$
\frac{d u}{d t}+u \frac{d u}{d x}+v \frac{d u}{d y}+w \frac{d u}{d z}+\frac{d Q}{d x}=0
$$

and eliminating Q,.

$$
\frac{\mathrm{D} \xi}{d \ell}-\xi \frac{d u}{d c}-\eta \frac{d v}{d x}-\zeta \frac{d w}{d x}+\xi\left(\frac{d u}{d x}+\frac{d v}{d y}+\frac{d v}{d z}\right)=a ;
$$

and, since by the equation of continuity
therefore

$$
\frac{1}{\rho} \frac{\mathrm{D} \rho}{d t}+\frac{d u}{d x}+\frac{d v}{d y}+\frac{d w}{d z}=0
$$

and similarly

$$
\begin{aligned}
& \frac{\mathrm{D}}{d l}\left(\frac{\xi}{\rho}\right)=\frac{\xi}{\rho} \frac{d u}{d x}+\frac{\eta}{\rho} \frac{d v}{d x}+\frac{\zeta}{\rho} \frac{d w}{d x} ; \\
& \frac{\mathrm{D}}{d l}\left(\frac{\eta}{\rho}\right)=\frac{\xi}{\rho} \frac{d u}{d y}+\frac{\eta}{\rho} \frac{d v}{d y}+\frac{\zeta}{\rho} \frac{d v}{d y} \\
& \frac{\mathrm{D}}{d l}\left(\frac{\zeta}{\rho}\right)=\frac{\xi}{\rho} \frac{d u}{d z}+\frac{\eta}{\rho} \frac{d v}{d z}+\frac{\zeta}{\rho} \frac{d^{2} v}{d^{\prime} z}
\end{aligned}
$$

These equations, fret given by Professor Stokes for homogeneous. liquid, were generalized for any fluid by Professor Nnnsnn, Messenger of Mathematics, 1873. They may also be ohtained immediately by. the differeutiation of Cauchy's integrals (4), (5), and (6), given above.

Mane Fortex Motion.

When a series of straight vertical vortices (called columnar vortices by Sir W. Thomson) are present in homogeacous liquid. bounded by two horizontal planes, we can determine the motion of any vortex by supposing it due to the remaining vortices.

A single vortex will remain at rest, and cause a velocity at any point perpendicular to the glane through the point and tho vortex inverscly as the distance from the vortex.

If m denote the strength of the vortex, i.c., the cirenlntion in any circuit euclosing the vortex ouce, then the velocity at a distance r from the vortex will be $\frac{m}{2 \pi r}$, and the current function ψ will be $\frac{m}{2 \pi} \log r$, and tho velocity function ϕ will be $\frac{m}{2 \pi} \theta$, whore θ is the ongle between any fixcd plane and the plane through the vortex and tho point.

The surface of equal pressure under grnvity will bo of the form

$$
\left(x^{2}+y^{2}\right)(z-a)=\frac{n^{2}}{4 \pi^{2} g}
$$

the $n x i s$ of the vortox being the axis of z.
When there are more than ono vortex present, each vortex moving with the velocity duo to the other vortices will describo the curve whose cquation is

$$
\Sigma \frac{\cdots \pi}{2 \pi} \log r=\text { constant }
$$

whero m is the strength of ne of tho remnining vortices, and r the distnnce between it and the vortex whose motion is considered: this equation may also be written

$\pi r^{m}=$ constunt .

When the liquid is bounded by a vertien cylindrical surface, the motion of a vortex may he determined as due to a series of vortices considered us imatges of the original vortex, and 80 arranged es to
make the velocity actoss the boundary $2 c i o$ at every loint of the bonndals:

When the boundaries are plane surfares, the images are the optical images by reflexion of the original vortex, considered as positive or negative, according as formed by an even or odd number of reflexiuns.

Thus the curve described by a vortex inside the angle bounderl by the planes $\theta= \pm \frac{\pi}{9,2}$ is the Cotes"s spiral
$r \cos n \theta=C$,
and iasude the space bounted by the phanes $x=0, x=a, y=0, y=b$ is.
where

$$
\cot ^{2} \operatorname{arn}\left(k \frac{x}{a}, k\right)+\cot ^{2} \operatorname{ain}\left(k^{\prime} \frac{y}{b}, k^{\prime}\right)=\text { constant }
$$

(Quarterly Jounnal of Maticmatics, vol. xv .).
A single vortex of strength m in a circular cylinder of radius a at a distance c from the centre will muve with tha velocity due to an image of strength $-m$ at a distance $\frac{\alpha^{3}}{6}$ from the centre, end therefore describe a circle of madius c with velocity

$$
\frac{n_{2}}{2 \pi} \frac{a}{\frac{a^{2}}{c}-r}=\frac{m}{2 \pi} \frac{c}{a^{4}-c^{2}},
$$

and therefore ia the perivic time $\frac{4 \pi^{2}}{m}\left(n^{2}-c^{\circ}\right)$.
A single circular vortex in infinite fluid will move with a certain velocity in the direction of its sxis ("Vortex Motion," Trans, R.S.E., 1869 : "Vortex Motion," IIesuholtz, Crelle, 1858); and, if another" equal circular vortex be projected coaxially after the first, tho motion of the first must be componnded with that due to the second. Consequently the first vortex will dilate and move slower till the second vortex passes through it, when it will contract and move faster till it passes through the second, and so on. This can be verified experimentally with smoke rings projected from the same circular hole, or with half vortex rings, formed on the surface of water by drawing a semi-circular blade a short diatance through the water.

Tho motion of a vortex ring projected perpendicularly against a plano boundary will be determined by compounding it with the motion dat to an equal and opposite vortex ring, its optieal image in the wall. The vortex ring will therefore spread out and move more slowly in the direction of its axis as it approaches the wall ; at the samo time the molecular rotation, being inversely propor: tional to the cross section of the vortex, will be seen to increase.

Planc Motion of Lizuids.

When the velocity of the fluid is always parallel to a fixed plane, wo take this plane as tho plane of $x y$, and then $w=0$, and u and v are functions of x and y, and the stream lines are plane curves.

Cunsidering only the cases where the fluid is incompressible, the equation of contiulity becomes

$$
\frac{d u}{d x}+\frac{d v}{d y}
$$

and therefore 2 function ψ exista, called the stream fuaction, such that

$$
u=-\frac{d \psi}{d y}, \quad v=\frac{d \psi}{d x} ;
$$

and $\psi=$ constant is the equation of a line of flow.
The opin at any boint

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{d v}{d x}-\frac{d u}{d y}\right) \\
&- \frac{1}{2}\left(\frac{d^{2} \psi}{d x^{2}}+\frac{d d^{2} \psi}{d y^{2}}\right)
\end{aligned}
$$

If the motion is irrotational, then $\zeta=0$, and a velocity function ϕ exista such that

$$
\begin{aligned}
& u=\frac{d \phi}{d x}=-\frac{d \psi}{d y}, \\
& v=\frac{d \phi}{d y}=+\frac{d \psi}{d x} ;
\end{aligned}
$$

therefore ψ and ϕ are ecnjugate functions of x and y, and

$$
\psi+i \phi=\lambda x+i y\rangle .
$$

By assigning partieular values to this fenction, ifelmboltz and Kirchhoff have discovered the solution of various problents of dis. continuous plane liquid motion, an account of which is given in Lamb's Motion of Pluids.
The kinstic energy of the liquid boundel by two planes perpendicular to the axis of z nt anit distance is

$$
\begin{aligned}
& T=\frac{1}{2} \rho \iint\left\{\left(\frac{d \phi}{d c}\right)^{2}+\left(\frac{d \phi}{d y}\right)^{2}\right\} d x d y \\
& =\frac{1}{2} \rho \iint\left\{\left(\frac{d \psi}{d e}\right)^{2}+\left(\frac{d \psi}{d y}\right)^{2}\right\} d x d y \\
& =\frac{1}{2} \rho \int \phi \frac{d \phi}{d n} d s=\frac{1}{2} \rho \int \psi \frac{d \psi}{d n} d s,
\end{aligned}
$$

When $\frac{d \phi}{d x}, \frac{d \psi}{d n}$ are the rates of change of ϕ and ψ in the direction of the outward drawn normal to the bounding curve at the element ds.

Since

$$
\frac{d \psi}{d u}=\frac{d \phi}{d s}, \frac{d \phi}{d u}=-\frac{d \psi}{d s},
$$

therefore

$$
T=-\frac{1}{2} p \int \varphi l \psi=\frac{1}{2} p /
$$

Wo can interchange ϕ and ψ, and make ϕ the stream function and ψ the velocity function; thas from any given irrotational motion in two dinacnsions another may be derived by turning the velocity through a right angle without altering its magnitude.

For instance, if the axis of z bo a live source of delivery n, then, aince the flow across any cylinder of ralius r is m, the velocity must. be $\frac{m}{2 \pi r}$; and therefore

$$
\varphi=\frac{m}{2 \pi} \log r, \text { and } \psi=\frac{m}{2 \pi} \theta ;
$$

Whero θ is the angle mado by a plane through the axis of z aad the point with a fixed plane.
Jf the values of ϕ aad ψ be interchanged, we obtain a vortex round the axis of z, of strength m.
Plaue Motion in a Liquid due to the Motion of Rigid Cylinders perpendicular to their Axes.
Suppose a rigid cylindrical surface moving in the direction of the axis of x with velocty V, and other fixed rigid eylindrieal surfaces to bo present in the liquic, whieh is supposed for simplicity to bo bounded also by two dixed planes perpendicular to the axis of z at unit distance foom each other, the generating lines of the cylin: ders being supposed parallel to the axis of z; then at all points of the buundary of the moving surfaco

$$
\begin{aligned}
\frac{d \psi}{d s} & =\text { normal velocity of fluid } \\
& =\text { velocity of boundary normal to itselई } \\
& =V \frac{d y}{d s} ;
\end{aligned}
$$

and therefore $\psi=-\mathrm{V} y+$ coustant; and at all ppints of the fixed surfaces $\frac{d \psi}{d s}=0$, and therefore $\psi=$ eonstant.
We must therefore discover a function ψ which satisfics the equation

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{d^{2} \psi}{d y^{2}}=0,
$$

and is equal to a constant round a fixed boundary, ond equal ta $-V^{y} y+$ constant round a moving boundary, moving with velocity V in the direction of the axis of x; and ϕ, the coajugate function, can then easily be written down.

Ex. 1. The moving cylinder a circular cyliader of radius a, and the fixed eylinder a cincular cylinder of radius b, both having the axis of as axis. Then
and therefore

$$
=-\mathrm{V} \frac{a^{2}}{l^{2}-a^{2}}\left(\frac{b^{2}}{r}-r\right) \sin \theta .
$$

$$
\phi=-\mathrm{V} \frac{a^{2}}{l^{2}-a^{2}}\left(\frac{l^{2}}{r}+r\right) \cos \theta .
$$

If ϕ^{\prime} denote the velocity function of liquid filliag the cylinder $r=a$,

$$
\phi^{\prime}=V r \cos \theta
$$

aud therefore, when $r=a$,

$$
\frac{\phi}{\phi^{\prime}}=-\frac{b^{2}+a^{2}}{b^{2}-a^{2}}
$$

In determining the kivetie enorgy of the liquid iatermediate to the cylinders, $\frac{d \phi}{d r}=0$ when $r=b$; and when $r=a, \frac{d \phi}{d r}=\frac{d \phi^{\prime}}{d r}$; and therefore tho kinetic energy of the liquid intermediato to the cylina ders is $\frac{b^{2}+a^{3}}{b^{2}-a^{2}}$ of the kinetie energy of the liquid filling the cylinder
$r=a$. Consequently, if the eylinder $r=a$ be moved, the iocrtia to be overcowe will be its own :astia, together with the inertia of, a
mass of a liquid $\frac{b^{2}+a^{2}}{b^{2}-a^{2}}$ times the volume of the cylinder; this is called the effective inertia of the cylinder.
In particular, if $b=\infty$, the effective idertia is the mass of the yylinder, increased by a mass of liquid of equal volume with the cylinder; and then

$$
\frac{a^{2}}{r} \sin \theta, \rho=-\mathrm{V} \frac{a^{2}}{-\cos \theta,}
$$

so that

$$
\psi+i \phi=\frac{V a^{2}}{i(x+i y)}
$$

Ex. 2. The moving cylinder an elliptic cylinder, and the fixed cylinder a confocal olliptiscylinder.

Using elliptic coordinates ξ, η, such that c cosh $\eta, c \sinh \eta$ are the semi-axes of the confocal ellipse, $c \cos \xi, c \sin \xi$ of the confocal byberbola passing through a point, $2 c$ being the distance between the foci; then $x=c \cosh \eta \cos \xi, y=c \sinh \eta \sin \xi$; and if $\eta=\alpha$ is the equastion of the moving ellipse, $\eta=\boldsymbol{\beta}$ of the fixed ellipse, then

$$
\psi=-V c \sinh a \frac{\sinh (\beta-\eta)}{\sinh (\beta-a)} \sin \xi
$$

satisfes the conditions that

$$
\begin{equation*}
\frac{d^{2} \psi}{d \xi^{2}}+\frac{d^{3} \psi}{d n^{2}}=0 . \tag{i}
\end{equation*}
$$

(ii) $\quad \psi=-V c \sinh a \sin \xi=-V y$, mbed $\eta=a$,
(iii)

$$
\psi=0, \text { a.her } n=3 \text {. }
$$

Therefore the conjugate function

$$
\phi=V_{c} \operatorname{einh} a \frac{\cosh (\beta-\eta)}{\sinh (\beta-a)} \cos \xi
$$

oo tbat

$$
\psi+i \varphi=V c \frac{\sinh a}{\sinh (\beta-a)} \cos (\xi+i \eta-i \beta) .
$$

If ϕ^{\prime} denote the velooity function of the liquid filling the elliptic cylinder $\eta-a$, thea

$$
\phi^{\prime}-V x=V c \cosh \eta \cos ; ;
$$

and round the ellipge $\eta=a$,

$$
\frac{\phi}{\phi^{\prime}}=\frac{\tanh a}{\tanh (\beta-a)}
$$

while $\frac{d \phi}{d n}$ is the same for each, and $\frac{d \phi}{d n}$ vanishes when $\eta=B$; theretore the kinetic energy of the liquid between $\eta=a$ and $\eta=B$ is $\frac{\tanh a}{\tanh (\beta-a)}$ of the kinetic cnergy of the liguid foside $\eta=a$. which is

$$
\frac{f}{2} \pi_{\rho} V^{2} c^{2} \sinh a \cdot \operatorname{cosin} a
$$

Hence the mass of the cylinder $\eta=a$ must be increased by $\frac{\tanh a}{\tanh (\beta-a)}$ times the mass of an equal volume of liquid to give the effective inertia for motion in the direction of the major axis, the space between the cylinder $\eta=a$ and a fixed cylinder $n=\beta$ being filled with liquid

Similarly for motion parallel to the minor axis,

$$
\begin{aligned}
& \psi-V c \cosh a \frac{\sinh (\beta-\eta)}{\sinh (\beta-a)} \cos \xi . \\
& \phi-V c \cosh a \frac{\cosh (\beta-\eta)}{\sinh (\beta-a)} \sin \xi
\end{aligned}
$$

(Quarterly Journal of Mathematics, vol. xvi).
Ex. 3. When the moving and fixed cylinders are any two oircular cylladers, not co-axial, the limiting points are taken ts the foci of reference; and, supposing $2 e$ the digtanco betwee them, and 6 , \cap the dipolar system of coordinates, we bave

$$
x=c \frac{\sinh \eta}{\cosh \eta-\cos \xi}, y=c \frac{\sin \xi}{\cosh \eta-\cos \xi}
$$

and thea

$$
\begin{gathered}
\eta=\frac{1}{2} \log \frac{(x+c)^{2}+y^{2}}{(x-c)^{2}+y^{2}} \\
\epsilon-\tan -1 \frac{y}{x-c}-\tan ^{-1} \frac{y}{x+c}
\end{gathered}
$$

of that $\xi=$ constant is the equation of a circle passing through the two limiting points, and $n=$ constant is the equation of en orthoganal circle.

If $\eta=a$ be the moving cylinder, thering in the direction of the axis of x (the lino of centres) with velocity V, aod if $\eta=\beta$ be the fixed cylinder, wo must maka

$$
\psi=-V c \frac{\sinh a}{\cos h a-\cos f}+\text { constant }
$$

when $\eta=\alpha ; \psi=0$ when $n-\beta$; and $\frac{d^{2} \psi \psi}{d \xi^{2}}+\frac{d^{2} \psi}{d \eta^{2}}=0$ in the intervoning space. ${ }^{1}$

[^97]Now, expanding,

$$
\frac{\sinh a}{\cosh a-\cos \xi}=1+2 \sum_{n=1}^{n=\infty} e^{n a} \cos n \xi \text {, }
$$

and thercfore

$$
\psi=-2 V c \sum_{n=1}^{n=\infty} e^{-n a} \frac{\sinh n(\eta-\beta)}{\sinh \pi(\alpha-\beta)} \cos n \xi,
$$

and

$$
p=2 \mathrm{~V} c \Sigma e^{-n a} \frac{\cosh n(\eta-\beta)}{\sinh n(\alpha-\beta)} \sin n \xi
$$

Similarly for a velocity v of the cylinder $\eta=a$ perpendicular to the line of centres, the cylinder $\eta=\beta$ being fixed,

$$
\begin{aligned}
& \psi=2 V c \sum e^{-n a} \frac{\operatorname{sish}}{\sinh \frac{n(\eta-\beta)}{n(\alpha-\beta)} \sin n \xi .} \\
& \phi=2 V^{\prime} c \sum^{-n a} \frac{\cosh n(\eta-\beta)}{\sinh n(\alpha-\beta)} \cos n \xi
\end{aligned}
$$

Next, suppose a riged cylindrical suriace to be rotatiog about the axis of z with angular velocity ω; we must bave $-\frac{d \psi}{d s}=$ velocity of boundary normal to itself

$$
=-\alpha x \frac{d x}{d s}-\omega y \frac{d y}{d s} .
$$

and therefore $\psi=\frac{1}{8} \omega\left(x^{2}+y^{2}\right)+$ constant, at all points of the moving boundary, and $\psi=$ constant, at all points of a fised cylindrical boundary.
Ex. 4. Take the two elliptic cylinders of Ex 2, and suppose the cylinder $\eta=a$ to be rotating with angular velocity ω, and the cylinder $\eta=\beta$ to be fised; since
if we put

$$
x^{3}+y^{2}=\frac{1}{8} c^{2}(\cosh 2 \eta+\cos 2 \xi)
$$

$$
\psi=\| \omega c^{2} \frac{\sinh 2(\beta-\eta)}{\sinh 2(\beta-\alpha)} \cos 2 \xi
$$

then (i) when

$$
\eta=a \quad \psi=\int \omega \omega^{2} \cos 2 \xi
$$

$$
=\frac{1}{3} u\left(x^{2}+y^{2}\right)+\text { constant } ;
$$

(ii) when
$\eta=\beta, \psi=0$;
(iii)
$\frac{d^{2} \psi}{d \xi^{3}}+\frac{d^{2} \psi}{d \eta^{2}}=0 ;$
and theretore \downarrow satishes the required coaditions.
Then

$$
\phi=-\frac{1}{2} \omega c^{2} \frac{\cosh 2(\beta-\eta)}{\sinh 2(\beta-a)} \sin 2 \xi,
$$

and from the value of the kinetic encrgy of the intermediate liquid the instantaneous value of the effective moment of inertia can be it ferred.

If the cylinder $a=\beta$ be slso rotating with angular relucity ω_{1} the cylinders will remaio confocal, and the values of ψ and p will not clange ; then

$$
\begin{aligned}
\psi & =\left\{\omega c^{2} \frac{\sinh 2\{\eta-a)+\sinh 2(\beta-\eta)}{\sinh 2(\beta-a)} \cos 2 \xi\right. \\
& =\left\{\omega c^{2} \frac{\cosh (2 \eta-a-\beta)}{\cosh (\beta-a)} \cos 2 \xi\right. \\
\psi & =j \omega c^{2} \frac{\sinh (2 \eta-a-\beta)}{\cosh (B-a)} \sin 2 \xi
\end{aligned}
$$

and
To find the kinetic erergy of the hquid, since

$$
\begin{aligned}
& \int \phi \frac{d \phi}{d n} d s=-\int \phi \frac{d \psi}{d s} d s \\
=-\int \phi \frac{d \psi}{d \xi} d \xi & =\int \theta \frac{d \varphi}{d \eta} d \xi
\end{aligned}
$$

therefore

$$
T=6 \rho / \Phi \frac{d \hat{\varphi}}{d \eta} d \xi ;
$$

and whea

$$
\eta=a_{i} \text { and } \eta=\beta
$$

$$
\phi \frac{d \phi}{d \eta}=\left\{\omega^{2} c^{4} \tan / s(\beta-a) \sin 22 ;\right.
$$

thercforo

$$
\begin{aligned}
\mathrm{T} & =\left\{\rho \omega^{2} c^{4} \tanh (\beta-a) \int_{0}^{2 \pi} \sin 2\{d \xi\right. \\
& =\left\{\pi \rho \omega^{2} C^{2} \tanh (\beta-a) ;\right.
\end{aligned}
$$

and, if k denote the effectire ralius of gyration of the liquid.
$T=\lambda \pi \rho \omega^{2} c^{2} k^{2}(\sin h \beta \cosh \beta-\sinh a \cosh a) ;$
therefors

$$
\begin{aligned}
\alpha^{2} & =\left\{c^{2} \frac{\tanh (\beta-a)}{\sinh \beta \cosh \beta-\sinh } \ldots \operatorname{sa}\right. \\
& =\int c^{4} \frac{a b_{1}-a_{1} b}{\left(a a_{1}-b b_{1}\right)\left(a_{1} b_{1}-a b\right)},
\end{aligned}
$$

Where a_{1}, b_{1} aro the scmi-axes of the ellipse $\eta=\beta$, and a_{0}, b of the ellipse $\eta=a$.
Ex. 5. Suppose a sector, bounded by $r=a$ and $\theta= \pm a$, retating about the wis with analar volocity a , we must put

$$
\psi=\frac{1}{2} \omega r^{2} \frac{\cos }{\cos } \frac{2 \theta}{2 \alpha}+\sum_{n=0}^{n=\infty} \Lambda_{2 n+1}\left(\frac{r}{a}\right)^{(2 n+1) \frac{\pi}{2 a}} \cos (2 n+1) \frac{\pi v}{2 \alpha}
$$

which satisfics tho conditions $\nabla^{2} \psi=0$, and $\psi=1 \omega r^{2}$ when $\theta= \pm a$; in order that $\psi=\frac{1}{2} \mathrm{~m} r^{2}$ when $r=\alpha$, we nust have

$$
\sum_{n=0}^{n=\infty} \Lambda_{2 n+t} \cos (2 u+1) \frac{\pi \theta}{2 a}=\frac{1}{2} \omega a^{2}\left(1-\frac{\cos 2 \theta}{\cos 2 \alpha}\right)
$$

nud therefore, by Fouricr's theorem,

$$
A_{2 n+1}-\omega a^{2}(-1)^{n+1}\left\{\frac{1}{(2 n+1) \pi-4 a}-\frac{2}{(2 n+1) \pi}+\frac{1}{(2 n+1) \pi+4 a}\right\}
$$

When all the cylinders present rotate, as if rigilly connceted, about the axis of z with angular veloevty ω at any instant, then $\psi=\frac{1}{2} \omega\left(x^{2}+y^{2}\right)+$ constant round the boundary of every cylinder ; and if we put $\chi=\psi-\frac{3}{2} \omega\left(x^{2}+y^{2}\right)$, then x is the stream function of the relative motion, relative to the cylinders, and satisfies the condilions $\frac{d^{2} x}{d x^{3}}+\frac{d^{2} x}{d y^{3}}=-2 \omega$ at every poiot of the liquid, and $x=$ con. atant round the boundaries.

Since χ invalves ω as a factor, wbich is a fuuction of ℓ only, it follows that $\frac{\chi}{a}=$ constant is the equation of a stream line of the rela. tive motion, and any alteration in ω does not affect the shape of the relative stream lines, the liquid being frictionless, and the motion generated from rest.

En 6. Put

$$
x=-\omega \frac{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}}{\frac{1}{a^{2}}+\frac{1}{b^{3}}}
$$

then

$$
\frac{d^{2} x}{d x^{2}}+\frac{d^{2} x}{d y^{3}}=-2 \omega
$$

and the rolative stream hines are similar ellipses,

Then

$$
\begin{aligned}
& =x+\frac{1}{2} \omega\left(x^{2}+y^{2}\right) \\
& \frac{1}{2} \omega \frac{a^{2}-b^{2}}{a^{2}+b^{2}}\left(x^{2}-y^{2}\right) \\
& \phi=\infty \frac{a^{2}-b^{2}}{a^{2}+b^{2}} 2 y,
\end{aligned}
$$

and therefore
for the motion between two similar elliptic cylinders, rotating with angular velocity ω.

The velocity of any liquid particle is $\frac{a^{2}-b^{2}}{a^{2}+\frac{b^{2}}{2}}$ of what it would be if rigidly connected to the cylinders; hence the effective radius of gyration of the liquid is $\frac{a^{2}-\frac{b^{2}}{a^{2}+} \bar{b}^{2}}{\text { of the radius of gyration of the }}$ homogenous rigid body occupying the spacc.

Ex. 7. Put
$\dot{x}=-\frac{1}{a^{2}+b^{2}}\left\{\sqrt{ } 2\left(x^{2}-y^{2}\right)+x^{2}+y^{2}-a^{2}\right\}\left\{\sqrt{ } 2\left(x^{2}-y^{2}\right)-x^{2}-y^{2}+b^{2}\right\} ;$
then $\nabla^{2} x=-2 \omega$, and $x=0$, when

$$
\begin{aligned}
& \sqrt{2\left(x^{2}-y^{2}\right)+x^{2}+y^{2}-a^{2}=0} \\
& \sqrt{2} 2\left(x^{2}-y^{2}\right)-x^{2}-y^{2}+b^{2}=0
\end{aligned}
$$

which mey thercfore be taken as boundarics of the liquid. This problem is due to Mr Ferrers

Again put

$$
x=\frac{1}{2} \frac{\omega}{a^{2}+b^{2}}\left\{2 x(x-y)-a^{2}\right\} \quad\left\{^{2} y(x+y)-b^{2}\right\} ;
$$

then $\nabla^{2} x=-2 \omega$, and the hyperbolas

$$
2 x(x-y)-a^{2}-0,2 y(x+y)-0=0
$$

may be takeu as bomdaries, but these hyperbolas are only the provious ones turncd through a quarter of a right angle.
Ex. 8. When the liquid fills a rectangular crilinder bounded by
$x= \pm a$, and $y= \pm b$ the conditions
and

$$
\frac{d^{2} x}{d x^{2}}+\frac{d^{2} x}{d y^{2}}=-2 \omega
$$

$$
\begin{aligned}
& u=-\frac{d x}{d y}=0 \text { when } x= \pm a \\
& v=\frac{d x}{d x}=0 \text { when } y= \pm b
\end{aligned}
$$

are satisfied by putting

$$
\begin{aligned}
& \frac{d u}{d y}=-\frac{d^{\prime} x}{d y^{2}}=\frac{4 \omega}{\pi} \tan ^{-1} \frac{k \operatorname{cn}\left(\mathrm{~K} \frac{x}{a}, k\right)}{k^{\prime} \operatorname{cn}\left(\mathrm{K}^{\prime} \frac{y}{b}, h^{\prime}\right)} \\
& \frac{d o}{d x}=\frac{d^{3} x}{d x^{3}}=-\frac{4 \omega}{\pi} \tan ^{-1} \frac{h^{\prime} \operatorname{cn}\left(\mathrm{K}^{\prime} \frac{y}{b}, k^{\prime}\right)}{k \operatorname{cn}\left(k \frac{2}{a}, k^{\prime}\right)}
\end{aligned}
$$

where $\quad \frac{k}{\mathrm{~K}^{\prime}}=\frac{a}{b}$
(Quartorly Journal of INethematics, vol. xv.).

$$
\begin{aligned}
& \text { In }\left\{a c t, i f \psi=\omega \frac{16}{\pi^{i}} a^{2} \sum_{i=1}^{i=\infty}(-1) \frac{\cosh (2 i+1) \frac{\pi y}{2 \pi} \cos (2 i+1) \frac{\pi \pi}{2 \pi}}{(\underline{\pi} i+1)^{3} \cosh (2 i+1) \frac{\pi}{2} \cdot}\right. \\
& +\omega \frac{16}{\pi^{-3}} b^{2} \sum_{i=0}^{t=\infty}(-1)^{\prime} \frac{\cosh (2 i+1) \frac{\pi x}{2 b} \cos (2 i+1) \frac{\pi y}{2 b}}{(2 i+1)^{7} \cos 1(2 i+1) \frac{\pi t}{}}
\end{aligned}
$$

then \quad (1) $\frac{d^{2} \psi}{d x^{2}}+\frac{d^{2} \psi}{d y^{2}}=0$;

$$
\begin{array}{ll}
\text { (2) } \psi=\frac{1}{2} \omega\left(b^{2}-y^{2}\right) & \text { when } x= \pm a ; \\
\text { (3) } \psi=\frac{5}{2} \omega\left(a^{2}-x^{2}\right) & \text { when } y= \pm b ;
\end{array}
$$

and therefore ψ satisfies the required conditions, and is thesefoce the value of ψ requirel.

Ex. 9. Consider liquid filline the interior of a cylinder, whom cross scetion is an cquilateral triangle of altitude h, und let a, β, r denote the perpendicular distances of a poiut in the interior hor the sides. If we put

$$
\chi=2 \omega \frac{a B \gamma}{h}
$$

then

$$
\frac{d^{2} x}{d x^{2}}+\frac{d^{2} x}{d y^{2}}=-2 \omega
$$

and x is the stream function of the relative notion, suphosing the cylinder rotating with angular velocity ω.
Therefore the cubic $\alpha \beta \gamma=$ constant is the equation of the $\rho^{m} l_{1}$ of a liquid particle relative to the eylinder, when it is moved io any mamner; and alsu for the cylinder bounded by $a \beta \gamma=c_{1}$ and $\alpha \beta \gamma=c_{3}{ }^{1}$
We have supposed the liquid motion to have been generated from rest by the motion of the moving cylinders, but we might also have supposed the liquid to have been of infinite cxtent, aurl strcaming past the cylinders as fixed obstacles; in that case, the stream function of the ruative motion $\chi \Rightarrow \psi+V y$, and x satisfies the relations

$$
\frac{d^{2} x}{d x^{2}}+\frac{d^{2} x}{d y^{2}}=0
$$

and $\chi=$ constant, the equation of a stream line, and thercfore also of a boundary; also at infinity

$$
\frac{d x}{d x}=0, \frac{d \chi}{d y}=\mathrm{V}
$$

For instance, if in liquid, movirg with velocity $-V$ parallel to the axis of x, the fixed circular cyliader $r=a$ be introduced, then

$$
\begin{aligned}
x & =-V \frac{a^{2}}{r} \operatorname{sio} \theta+V y \\
& \Rightarrow V\left(r-\frac{a^{2}}{r}\right) \sin \theta
\end{aligned}
$$

If the elliptic eylinder $\eta=a$ be introduced, then, since $\beta=\infty$.

$$
\begin{aligned}
x & =V y-V c \sinh a \frac{\sinh \eta-\cosh \eta}{\sinh a-\cosh a} \sin \xi \\
& =V c \sinh \eta \sin \xi-V c \operatorname{sioh} a e^{-\eta+a} \sin \xi \\
& -V c c^{a} \sinh (\eta-a) \sin \xi \\
& =V(a+b) \sinh (\eta-a) \sin \xi
\end{aligned}
$$

If the axis of z be horizontal, and the liquid supposed of infinte cxtent, and origioally at rest, ihen a circular cylader of density a, projected in any manner perpendicular to its length, will deseribe a barabola with vertical acceleration $\frac{\sigma-\rho}{\sigma+\rho} g$.

If, bowever, previously to projection, a yortex exist in the liquid. co-axial with the cylinder and of strength m, then any motion of the cylinder will not affect the circulation of tho liquid round the eylinder due to the vortex, and inequalities of pressure round the cylinder will arise from the vortex motion.
Lord liayleigh lans shown (Messemper of Mathematies, vol. vii.) that, if no forecs act, the cylinder will deseribe a circle in tho same direction as the circulation of the vortex in the periodic time $\frac{\pi}{\omega} \frac{\sigma+\rho}{\rho}$, where the cirenfation of the vortex is $2 \pi a^{2} \omega$, a hing the $\underset{\boldsymbol{\omega}}{\boldsymbol{\omega}} \stackrel{\rho}{\boldsymbol{\rho}} \mathrm{p}$,

If the axis of the cylinder le horizontal, ant the influcnce of the boundaries of the liquid neglecten, then the eylinder will descrihe a trochoid, and for a particular velocity of propection can be made to describe a horizontal straight line (Messenger of Mothematies, rol. ix. 1. 113).

[^98]
On the Motion of a Solid through a Liquid.

If we take an origin O , and axes $\mathrm{O}, \mathrm{O} y, \mathrm{O}=$ fixed in the boly, then, if $u, k, w, p,{ }^{*} q, r$ denote the compouent linear and aogular velocties of the body at auy instant, the velocity function

$$
\phi=u \psi_{1}+2 \psi_{3}+w \psi_{3}+p \chi_{1}+q x_{2}+7 \chi_{3}
$$

where the ψ 's and x 's are functions of $x, y,=$, depending only upon thie shape of the body.

To determine ψ_{1}, we may snppose the velocity u only to exist, aud thus ψ_{1} must satisfy the conditions-
(i) $\nabla^{2} \psi_{1}=0$;
(ii) $\frac{d \psi_{1}}{d n}=l_{1}$, the cosine of the angle between the normal to the surface and the axis of x, at the surfare of the moving body;
(iii) $\frac{d \psi_{1}}{d r}=0$, over a fixed surface

Similarly for ψ_{2} and ψ_{3}.
Todetermine χ_{1}, we may suppose the velocity p only to exist, and fand then, l, m, n being the direction-cosines of the hormal to the surface, X_{1} satisfies the conditions-
(i) $\nabla^{2} x_{1}=0$;
(ii) $\frac{d_{X_{1}}}{d n}=n y-m z$ at the surfuce of the moring borly'
(iii) $\frac{d X_{1}}{d n}=0$ at a fixed surface.

Simiarly for x_{2} and x_{3}.
For a cavity flled with liquich in the interine of a movang ludy, since the liquid moves as if solid when the moving berly has a motion of translation only, therefore

$$
\psi_{1}=\approx, \psi_{2}=y, \psi_{3}=z .
$$

The only cases practically solved are those where the boumling amfaces are similar or confocal surfaces of the second degree
Ex. 1. Consider the space between the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{i^{2}}=1$ aud a similar and similarly sitnated ellipsoid rigidly connectul with It ; then obviously $x_{1}=\frac{b^{2}-c^{2}}{b^{2}+c^{2}} y z$, as for plane motion; and therefore

$$
\phi=u x+v y+u z+p \frac{b^{2}-c^{2}}{b^{2}+c^{2}} y z+\eta \frac{c^{2}-a^{2}}{c^{2}+a^{2}} z x+r \frac{a^{2}-b^{2}}{b^{2}+b^{2}} z y
$$

The liquid filling this space will behave therefore likי a louly of equal mass, and of $p^{\text {rincipal radii of gyratiou } \frac{b^{2}-c^{2}}{b^{2}+c^{2}}, \frac{c^{2}-u^{3}}{c^{2}+u^{2}} \cdot \frac{u^{2}-b^{2}}{u^{2}+b^{2}}}$ of tho radii of gyration if the liquid were solidified.

Hx. 2. Consider the liquid filling the space betucen the fllopmint
and

$$
\begin{align*}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{1}\\
& \frac{x^{2}}{a_{1}^{2}}+\frac{y^{2}}{b_{1}^{2}}+\frac{z^{2}}{c_{1}^{2}}=1 \tag{2}
\end{align*}
$$

the ellipsoids being confocal, such thst

$$
a_{2}^{2}=u^{2}+\lambda_{1}, l_{1}^{2}=b^{2}+\lambda_{1}, c_{2}^{2}=c^{2}+\lambda_{1} .
$$

where $\quad P^{2}=\left(a^{2}+\lambda\right)\left(l^{2}+\lambda\right)\left(c^{2}+\lambda\right)$.
and $\quad \frac{x^{2}}{a^{3}+\lambda}+\frac{y^{2}}{b^{2}}+\lambda+\frac{z^{2}}{c^{2}+\lambda}=1$
so that $a^{2}+\lambda, b^{2}+\lambda, c^{2}+\lambda$ are the squares of the semi-axia of the confucal ellipsoid possing through $x y$:. Then

$$
A+B+C=\frac{2}{l^{3}}
$$

3lan, if p be the length of tho perpendicular from the centre on the tangent place to (3),

$$
p^{2}=\left(a^{2}+\lambda\right) c^{2}+\left(b^{2}+\lambda\right) m^{2}+\left(c^{2}+\lambda\right) u^{2}
$$

and therefore

$$
\frac{d \lambda}{d p}-2 p=\frac{d \lambda}{d x}
$$

Suppose the ellipsoid (1) moving with velocity u, and ine allymond (2) fixed, then ψ_{1} can be made to satisio the regpured con. ditions by potting

$$
\psi_{1}-\mathrm{M} x+\mathrm{N} \Lambda x
$$

where M and N are constants.

$$
\text { For } \quad \nabla^{2} \psi_{1}=0
$$

and

$$
\begin{aligned}
& \frac{d \psi_{1}}{d n}=\mathrm{N}_{d i n}^{d n}+\mathrm{N} \Lambda_{\frac{d r}{d n}}^{d n} \mathrm{~N} \frac{d \Lambda}{d n} x \\
& \mathrm{Ml}+\mathrm{NAl}-\frac{2 p x}{\left(a^{2}+\lambda\right) \mathrm{I}} \mathrm{~N} \\
& -\left(M+N A-2 \frac{N}{1^{2}}\right) l
\end{aligned}
$$

Consequeutly, when $\lambda=0$, we must have
and when $\lambda=\lambda_{1}$,

$$
\mathrm{M}-\mathrm{N}\left(\mathrm{l}_{\mathrm{u}}+\mathrm{C}_{0}\right)=1
$$

$\quad \mathrm{M}-\mathrm{N}\left(\mathrm{B}_{1}+\mathrm{C}_{1}\right)=0$,
where A_{n}, P_{0}, C_{0} are the values of λ, \bar{B}, C, when $\lambda=0$, and A, B_{1}, C_{1} when $\lambda=\lambda_{1}$

Hence
and

$$
\begin{aligned}
& N=-\frac{1}{\mathrm{~B}_{u}+\mathrm{C}_{0}-\mathrm{B}_{1}-\mathrm{C}_{1}} \\
& \mathrm{M}=-\frac{\mathrm{B}_{1}+\mathrm{C}_{1}}{\mathrm{~B}_{11}+\mathrm{C}_{0}-\mathrm{B}_{1}-\mathrm{C}_{1}}
\end{aligned}
$$

$$
\psi=-\frac{A+B_{1}+C_{1}}{B_{u}+C_{0}-B_{1}-C_{1}} x
$$

Similaly

$$
\begin{aligned}
& \psi_{2}=-\frac{A_{1}+B+C_{1}}{U_{0}+A_{0}-C_{1}-\Lambda_{1}} \\
& \psi_{3}=-\frac{A_{1}+B_{1}+C}{A_{0}+B_{0}-A_{1}-B_{1}}=
\end{aligned}
$$

If the inner ellipsoid had bern fixed and tho outer moved, wo should have had

$$
\begin{aligned}
& \psi_{1}=\frac{\Lambda+\Gamma_{1}+C_{0}}{B_{0}+C_{0}-B_{1}-C_{1}} x \\
& \psi_{2}=-A_{0}+B+C_{0} \\
& C_{0}+A_{0}-C_{1}-A_{1} \\
& \psi_{3}=\frac{A_{0}+B_{0}+C}{A_{0}+B_{0}-A_{1}-\bar{B}_{1}}=
\end{aligned}
$$

Next suppose the outer ellipsoil fixed, and the inner to thave the angular velacity μ; then x_{1} can be made to satisfy the requiaed cunalitions ly [utting'

$$
x_{1}=M_{y z}+N(B-C)!/ z
$$

where Al amd N are constants.
For then $\nabla^{2} X_{1}=0$, and

$$
\frac{d X_{1}}{d}=\{N+N(B-C)\}\left(\frac{d!}{d u}=+y \frac{d z}{d u}\right)+\mathrm{N}\left(\frac{d B}{d u}-\frac{d \mathrm{C}}{d u}\right) y z
$$

$$
\begin{aligned}
&=\left\{M+N(B-C)\left\{\left(\frac{p y}{b^{2}}+\lambda+y \frac{m z}{c^{2}+\lambda}\right)-N\left(\frac{1}{b^{2}+\lambda}-\frac{1}{c^{2}+\lambda}\right) \frac{2 p y / 2}{\mathrm{P}}\right.\right. \\
&= {\left[\{D+N(B-C)\}\left(\frac{1}{b^{2}+\lambda}+\frac{1}{c^{2}+\lambda}\right)\right.} \\
&\left.-N(A+B+C)\left(\frac{1}{b^{2}+\lambda}-\frac{1}{c^{2}+\lambda}\right)\right] n y z
\end{aligned}
$$

which when $\lambda=0$ must

$$
=n y-m z=\frac{m s}{c^{2}} y-\frac{p!}{b^{2}}:=\left(\frac{1}{c^{2}}-\frac{1}{b^{2}}\right) m y=,
$$

aml whin $\lambda=\lambda_{1}$ must $=0$.
'llembere A and N nust be determined from the equations

$$
\begin{gathered}
\left\{M+N\left(B_{u}-C_{u}\right)\left\{\left(\frac{1}{b^{3}}+\frac{1}{c^{2}}\right)-N\left(A_{0}+B_{0}+U_{u}\right)\left(\frac{1}{b^{2}}-\frac{1}{A^{2}}\right)\right.\right. \\
\cdot \frac{1}{e^{2}}-\frac{1}{b^{2}}
\end{gathered}
$$

and

$$
\left\{M+N\left(B_{1}-C_{1}\right)\right\}\left(\frac{1}{b_{1}^{2}}+\frac{1}{c_{1}^{2}}\right)-N\left(A_{1}+B_{1}+C_{1}\right)\left(\frac{1}{U_{1}^{2}}-\frac{1}{c_{1}^{2}}\right)=0
$$

Smilatly x_{2} and x_{3} can be detrmined, and also x_{1}, x_{2}, and x_{2} when the inner ellipuid is liaed and the onter moved with given anmular volucities.

When the outer ellipsoid is mefinitely great, then $\Lambda_{2}, B_{1}, C_{2}$ aro zero, as also is M. Then

$$
N=\frac{\frac{1}{c^{2}}-\frac{1}{b^{2}}}{\left(B_{0}-C_{0}\right)\left(\frac{1}{b^{2}}+\frac{1}{e^{2}}\right)-\left(A_{0}+B_{0}+C_{0}\right)\left(\frac{1}{b^{2}}-\frac{1}{c^{2}}\right)}
$$

anl

$$
x_{1}=N\left(B-C^{\prime}\right) y=
$$

To find the eflietive inemfin of the inner ellipsaid, when the outer ellipsond is fixet, amd liste for motion parallel to the axis of x, when $\lambda=\lambda_{1}, \frac{d \psi_{1}}{d n}=0$; hat when $\lambda=0, \frac{d \psi_{1}}{d n}=l$, and the ψ_{1} for tho liquid in the interxpace is $-\frac{A_{0}}{B_{n}+B_{0}-B_{1}+C_{1}-C_{8}}$ of the ψ_{1} for the linuid filling the inner rllipsoil ; and hence, since the kinetic energy
 the interspuce is $\frac{A_{0}+B_{1}+C_{1}}{B_{1}+C_{0}-B_{1}-C_{1}}$ of the liquid filling tho iuterior ellipsent for moniom jurathy to lhe axis of r, and therefore the

$$
\text { inprbc } \begin{gathered}
A_{0}+B_{1}+C_{1} \\
B_{0}+C_{0}-B_{1}-C_{1}
\end{gathered}
$$

ajith similar expressions for the ellective inertia panallel to the axes of y ancl \approx.

If the outer ellipsoid be indefinitely large, then the effective inertia of the liquid farallel to the axis of x (since $\lambda_{1}=l_{1}=C_{1}=0$)

$$
=3_{3}^{4} \pi \rho a b c \frac{A_{0}}{B_{0}+C_{0}}
$$

which, io the case of the sphere, is half the ellective inertia of the liguid insile the sphere, since in the splere $A_{0}=B_{0}=C_{0}$.

For a rotation abont the axis of x of the inuer ellipsoid, it follows in the same way that the effective inertia of the liquid in the interspace is to the cffective incrtia of the liquid filling the inner ellipsoid in the ratio of the x 's of the two motions, which, surposing the outer ellipsoid indefinitely large,

$$
\left.\begin{array}{c}
\left(\frac{1}{c^{2}}-\frac{1}{b^{2}}\right)\left(\mathrm{B}_{0}-C_{0}\right) \\
\left(\frac{1}{c^{2}}+\frac{1}{l^{2}}\right)\left(B_{0}-C_{0}\right)-\left(A_{0}+B_{0}+C_{0}\right)\left(\frac{1}{l^{2}}-\frac{1}{c^{2}}\right)
\end{array}{\stackrel{l}{2}+c^{2}}_{b^{2}-c^{2}}^{\left(B_{0}-C_{0}\right)\left(b^{2}+c^{2}\right)+\left(A_{0}+B_{0}+C_{0}\right)\left(b^{2}-c^{2}\right)}\right)
$$

And therefore the eflicetive monent of inertia of the liypid about the axis of x

$$
=r^{*} s \rho a b c \frac{\left(B_{0}-C_{0}\right)\left(b^{2}-c^{2}\right)^{2}}{\left(B_{0}-\left(_{0}^{1}\right)\left(b^{2}+c^{2}\right)+\left(A_{0}+B_{0}+C_{0}\right)\left(b^{2}-c^{2}\right)\right.},
$$

with similar expressions for the effective moment of ivertia aboue Che other axes.

Ex. 3. In the case of two spheres and the liquid between, the \&'s are all zero, and, if the splieres be instantaticously concentric,

$$
\begin{aligned}
\psi_{1} & =\frac{a^{3}}{a^{3}-a_{1}^{3}}\left\{x+\frac{a_{1}{ }^{2} x}{2\left(x^{2}+y^{2}+z^{2} j\right.}\right\} \\
& =\frac{a^{3}}{a^{3}-}\left(r+\frac{a_{1}^{3}}{2 r^{3}}\right) \prime
\end{aligned}
$$

arposing a the radius of the moving, and a_{1} that of the fixed zphere.

This is a particnlar case of the confocal ellipsoids, when $a=b=c$. For then

$$
\psi_{1}=-\frac{A}{2\left(\bar{A}_{0}-2 A_{1}\right.} r
$$

nnd

$$
A=\int_{\frac{x}{d \lambda}}^{\left(a^{2}+\lambda\right)^{i}}=\frac{1}{3} \frac{1}{\left(a^{2}+\lambda\right)^{\frac{3}{2}}}=\frac{2}{3 r^{3}}
$$

Therefore

$$
\psi_{1}=-\frac{\frac{1}{r^{3}}+\frac{2}{a_{1}^{3}}}{?\left(\frac{1}{a^{3}}-\frac{1}{a_{1}^{3}}\right)} x=\frac{a^{3}}{a^{3}-\overline{a_{1}^{3}}}\left(x+\frac{a_{1}^{3} x}{2 r^{3}}\right)
$$

When the spheres are not concentic, expressions for the effective Inertias have been obtained by the method of images by M. W. M. Hicks (Philosophical Transactions, 1850).

The image of a source at P of strength μ outside a sphere is a source idside the splere of strength $\frac{a \mu}{O P^{2}}$ at a distadee $\frac{a^{2}}{O D^{2}}$ from the centro, a being the radius of the sjhere, and a line sink reaching from tho image to the centre of lise strength $-\frac{\mu}{a}$; this combination will be found to produce do flow across the surface of the aphere.

Again for a source P of strength μ inside the sphere, the images will be a source of strength $\frac{a_{\mu}}{O T}$ at the inverse point of P, that is, at a distance $\frac{a^{3}}{\overline{O P}}$ from the centre, and a line siute $-\frac{\mu}{a}$ thence to infioity.
lo order that there should be no fow across the splierical boundary, another sink of equal strength must existioside the aphliere, and the infinite parts of the line situks will then cancel.

Thedetermioation of the ψ 'a and χ 's is a kinematical problem, as Jet solved only for the cascs wo have meationed, and the discovery of the anlution of fresb problerns is at present edgaging the attention of mat hematicians.

But suplosing them determined for the motion of a looly through Jiquid, then T, the kinetie energy of the borly and the liquid, will Le a quadratic function of u, v, w, p, q, r; so that we may rit

$$
\begin{gathered}
2 T=c_{11} u^{2}+c_{22} v^{2}+c_{33} u^{2}+c_{46} p^{2}+c_{33} \eta^{2}+c_{66} r^{2} \\
12 c_{23} v w+\ldots+2 c_{56} r+\ldots+2 c_{14} u r+\ldots
\end{gathered}
$$

in all tweoty-one terms ; ond. in order to dotermioc the es. we may
suppose all the velocities except one or two to vanish, aod then wo sucthat

$$
c_{11}=\Omega+p / \iint \psi_{1} r S_{1}
$$

wheres is the ?ass of the luenly,

$$
c_{a 1}=I+\rho \iint x_{1}(u y-u \cdot) d i S
$$

where A is the moment of inctia of the boily shout the axis of x; these are obtained by sulprosing all to vanishi except u or β

If we suppose all to vanish excent v and w, we find
ant

$$
\psi=\psi_{3} v+\psi_{3} u
$$

$$
\begin{aligned}
2 \Gamma & =p \iint \frac{d \phi_{1}}{d n} d S+M\left(c^{2}+u^{2}\right\} \\
& =c_{4 c^{2} v^{2}}+c_{33^{\prime}} v^{n}+\rho v u / \int\left(\psi_{2}^{d \psi_{3}}+\psi_{3} \frac{d \psi_{2}}{d n}\right) d S
\end{aligned}
$$

or

$$
\begin{aligned}
c_{23} & =1 \rho \iint\left(\psi+\frac{d \psi_{3}}{d n}+\psi_{s} \frac{d \psi}{d u}\right) d \mathrm{~S} \\
& =\rho \iint \psi_{4} \frac{d \psi_{3}}{d n} d \mathrm{~S}=\rho \iiint_{s} \frac{d \psi}{d n} d \mathrm{~S} \\
& =\rho \iint \psi_{2} n d S=\rho \iint_{3} m u(S
\end{aligned}
$$

Similarly the other coctlicients may be detumined (liirchloff, Vorlesungen über Mathcmatische I'lysik, 1. 240).

Io particular cases of symmetry, the cocilicients of the protucts of u, v, w, p, q, r can be made to vanish by a proper choice of axes; and in the case of the ellipsoid, the only case for which the coefficients have as get been determined,

$$
=\mathrm{M}+4 \pi \rho a l c \frac{A_{0}}{\mathrm{~K}_{0}+\mathrm{l}_{0}}
$$

$$
c_{11}-\lambda+i_{s}^{\prime} \pi \rho a b c \frac{\left(\mathrm{~B}_{1}-C_{0}\right)\left(b^{n}-c^{2}\right)^{2}}{\left(B_{0}-C_{0}\right)\left(b^{2}+c^{2}\right)+\left(A_{0}+\dot{B}_{0}+\left(C_{0}\right)\left(l^{2}-c^{2}\right)\right.}
$$

While c_{2}, \ldots vanish, the origin O beine at the centre of the ellipsoid, and the axes of the ellipsoid its priocijal axes.

In the case of a sphere of nean density σ, projected in infidito liquid of density p, and subjeet to gravity, the sphere will descritor a parabola, with vertical acceleration $\frac{\sigma-\rho}{\sigma+\frac{1}{2} \rho} g$.
Having expiessed T nowas a

Having expressed T nowas a qualratic function of u, s_{1}, x, p, g, r; the coefficients being fuuctions of the shape but indepeudent of the position and orientation of the body, the Hamiltonian equations of motion lead to the efuations

$$
\begin{gathered}
-\frac{d}{d t}\left(\frac{d \mathrm{~T}}{d u t}\right)-r \frac{d \mathrm{~T}}{d v}+q \frac{d \mathrm{~T}}{d \omega}=\mathrm{X} \\
\frac{d}{d t}\left(\frac{d \mathrm{~T}}{d p}\right)-r \cdot \frac{d \mathrm{C}}{d!}+\eta \frac{d \mathrm{~T}}{d r}-x \frac{d \mathrm{C}}{d v}+\varepsilon \frac{d \mathrm{~T}}{d \omega}=\mathrm{L}
\end{gathered}
$$

For if P denote the resultant linear impulse in the direction. fixed in space, whose direction-cosines are l, m, n, theu

$$
\mathrm{\Gamma}=\frac{n \mathrm{~T}}{d u}+m \frac{d \mathrm{~T}}{d v}+n \frac{d \mathrm{~T}}{d w}
$$

and, differentiating with respect to the time, since

$$
\begin{aligned}
& \frac{d l}{d l}=m r-n q, \frac{d m}{d t}=n p-r l, \frac{d n}{d t}=l q-m p \\
& \frac{d \mathrm{P}}{d t}=l\left\{\frac{d}{d t}\left(\frac{d \mathrm{~T}}{d u}\right)-r \frac{d \mathrm{~T}}{d v}+q \frac{d \mathrm{~T}}{d w}\right\} \\
&+m\left\{\frac{d}{d t}\left(\frac{d \mathrm{~T}}{d v}\right)-p \frac{d \Gamma}{d w}+r \frac{d \mathrm{~T}}{d u}\right\} \\
&+n\left\{\frac{d}{d t}\left(\frac{d \mathrm{~T}}{d w}\right)-q \frac{d \mathrm{~T}}{d u}+n \frac{d \mathrm{~T}}{d v}\right\} \\
&=l \mathrm{X}+m \mathrm{l}+n Z
\end{aligned}
$$

for all values of $l, m, 72$.
Again, taking a fixed origif, and supposing 0 the impulsive conple about a straight line through the origin fxed in spaos whase direction-cosioes are l, n, n :

$$
\begin{aligned}
\mathrm{G} & =l\left(\frac{d T}{d p}+y \frac{d \mathrm{~T}}{d w}-2 \frac{d \mathrm{~T}}{d v}\right) \\
& +m\left(\frac{d T}{d T}+z \frac{d T}{d u}-2 \frac{d \mathrm{~T}}{d w}\right) \\
& +n\left(\frac{d T}{d T}+x^{d T}-y^{d v}\left(\frac{d T}{d u}\right)\right.
\end{aligned}
$$

where. $r, y_{0}=$ are the coordimates of the centre of the body

Diferentiating with respect to the tine, and supposing afterwards that the centre of the body and the fixed arigin are coincident, then, $\operatorname{since} \frac{d x}{d t}=u, \quad \frac{d y}{d t}=v, \quad \frac{d z}{d t}=u$, but $x=0, y=0, z=0$,

$$
\begin{aligned}
\frac{d \mathrm{G}}{d l} & =l\left\{\frac{d}{d t}\left(\frac{d \mathrm{~T}}{d p}\right)-r \frac{d \mathrm{~T}}{d q}+q \frac{d \mathrm{~T}}{d r}-w \frac{w \mathrm{~T}}{d v}+v \frac{d \mathrm{~T}}{d w}\right\} \\
& +m\left\{\frac{d}{d t}\left(\frac{d \mathrm{~T}}{d q}\right)-p \frac{d \mathrm{~T}}{d r}+r \frac{d \mathrm{~T}}{d p}-u \frac{d \mathrm{~T}}{d w}+w \frac{\mathrm{~T}}{d u}\right\} \\
& +n\left\{\frac{l}{d t}\left(\frac{d \mathrm{~T}}{d r}\right)-q \frac{d \mathrm{~T}}{d p}+p \frac{d \mathrm{~T}}{d q}-v \frac{d \mathrm{~T}}{d u}+u \frac{d \mathrm{~T}}{d v}\right\} \\
& =l \mathrm{~L}+n \mathrm{I}+n \mathrm{~N},
\end{aligned}
$$

for all values of l, m, n.
If no external forces act, then three integrals of the equations of motion are
(1) $T=$ constant;
(2) $\left(\frac{d \mathrm{~T}}{d u}\right)^{2}+\left(\frac{d \mathrm{~T}}{d v}\right)^{2}+\left(\frac{d \mathrm{~T}}{d w}\right)^{2} \Rightarrow$ constant ;
(3) $\frac{d \mathrm{~T}}{d u} \frac{d \mathrm{~T}}{d p}+\frac{d \mathrm{~T}}{d v} \frac{d \mathrm{~T}}{d q}+\frac{d \mathrm{~T}}{d w} \frac{d \mathrm{~T}}{d r}=$ constant ;
expressing the fact that the energy is constant, and also the force and couple coastituents of the resultent impulse.

For a body like an ellipsoid, msiog single suffixes,

$$
T=\frac{1}{3}\left(c_{1} u^{2}+c_{2} v^{2}+c_{3} u^{2}+c_{4} p^{2}+c_{5} 7^{2}+c_{6} r^{2}\right) ;
$$

and the iotegration of the equations of motion under no forces leads to hyperelliptic and doublo θ functions (Weber, Mathematische Annaben, vol. xiv.).
The equations of motion hecome

$$
\begin{align*}
& c_{1} \frac{d u}{d l}-c_{2} v r+c_{3} w q=0 \tag{1}\\
& c_{2} \frac{d v}{d l}-c_{3} w p+c_{1} u r=0 . \tag{2}\\
& c_{3} \frac{d v}{d t}-c_{1} u q+c_{2} v p=0 \tag{3}\\
& c_{4} \frac{d p}{d l}-\left(c_{5}-c_{6}\right) q r-\left(c_{2}-o_{9}\right) v w=0 \tag{4}\\
& c_{5} \frac{d q}{d t}-\left(c_{6}-c_{9}\right) r y-\left(c_{3}-c_{1}\right) 2 u u=0 \tag{5}\\
& c_{5} \frac{d r}{d t}-\left(c_{5}-c_{5}\right) p q-\left(c_{1}-c_{2}\right) \tau v v=0 \tag{6}
\end{align*}
$$

Muitiplying the equations by u, τ, w, p, q, r, and adding,

$$
\begin{equation*}
c_{1} 3 \frac{d u}{d t}+c_{2} v \frac{d v}{d t}+c_{3} w \frac{d w}{d b}+c_{4} p \frac{d p}{d t}+c_{5} q \frac{d q}{d t}+c_{6} r \frac{d r}{d t}=0 \tag{7}
\end{equation*}
$$

or $\frac{1}{2}\left(c_{1} u^{2}+c_{9} v^{2}+c_{3} w^{2}+c_{4} v^{2}+c_{9} q^{2}+c_{6} r^{2}\right)=\mathrm{T}$, a constant
Hultiply (1) by $c_{1} u$, (2) by $c_{2} D_{2}$ and (8) hy $c_{3} w$, and add ; then

$$
c_{1}^{2} u \frac{d u}{d t}+c_{2}^{2} 2 \frac{d v}{d t}+c_{3}^{2} w \frac{d w}{d t}=0
$$

and

$$
\begin{equation*}
c_{1}^{2} u^{2}+c_{2}^{2} v^{2}+c_{3}^{2} w^{2}=F^{2} \tag{8}
\end{equation*}
$$

F heigg a constant, the resultant linear impulse of the motion
Again, multiplying the equations (1 to b) by $c_{4} p, c_{8} q, c_{6} r, c_{1} u$, $c_{3} v, c_{3} w_{3}$ addiog und tategrating,

$$
\begin{equation*}
c_{\mathrm{T}} c_{3} u p+c_{2} c_{6} v q+c_{8} c_{8} w r=\mathbf{G}, a \text { constant } \tag{0}
\end{equation*}
$$

Equations (4), (5), (6) show that the body is acted upon by eomponeat conples about the priacipal axes ($c_{2}-c_{3}$) $w, w_{1}\left(c_{3}-c_{1}\right)$ ru, $\left(c_{2}-c_{2}\right) u u_{\text {, }}$ the principal moments of inertia being supposed to be c_{4}, c_{5}, c_{8}.
If the borly be of revolution, $c_{1}-r_{\text {r }}$ and $c_{4}-c_{5}$, the motion can he expressed by elliptic functions. For ennation (6) shows that r is coastant, and equation (3) becomes

$$
\begin{align*}
& \left.c_{y}^{2}\left(\frac{d w}{d l}\right)^{2}=c_{1}^{2}(u q-\imath p)^{2}-c_{1}^{2}:\left(u^{2}+n^{2}\right)\left(y^{2}+o^{2}\right\}-(u p+n)^{2}\right\} \\
= & \frac{1}{c_{4}}\left(\mathrm{~F}^{2}-c_{3}^{2} w^{2}\right)\left\{2^{2} T-\frac{\mathrm{F}^{2}}{r_{1}}-c_{1} r^{2}-\frac{c_{1}}{r_{1}}\left(c_{1}-c_{3}\right) u^{2}\right\}-\frac{\left(\mathrm{O}-c_{3} r_{4} w^{\prime}\right)^{2}}{r_{4}^{2}} \tag{10}
\end{align*}
$$

a biquadratic function of u, and therefore w is an rlliptio function of ℓ, tho time.

Put $u=3 \cos f, v=-9 \sin f$; than from (1) and (2)

$$
c_{1} s^{2} \frac{d f}{d l}=c_{1}\left(\dot{u} v-v(\dot{u})-c_{1} r s^{2}-c_{3}\left(u p+v^{v} q\right) w\right.
$$

er

$$
\frac{d f}{d t}-r-c_{c_{1}} c_{1} \frac{\eta}{u^{2}+v^{2}} u
$$

a mational function of 1 : and thememery is expressmat in termanf We time liy ellintic iutharady of the thirl kimd.

Aganh, put $p=\sigma \cos g, q=-\sigma$ siv y; then from (4) and (5)

$$
c_{4} \sigma^{2} \frac{d g}{d l}=c_{4}(\dot{p} q-p \dot{q})=\left(c_{4}-c_{6}\right) \sigma^{2} r+\left(c_{3}-c_{3}\right)(u p+v q) \imath v ;
$$

or

$$
\frac{d g}{d t}=\left(1-\frac{c_{6}}{c_{4}}\right) r+\frac{c_{1}-c_{3}}{c_{4}} \frac{u p+\varepsilon q}{p^{2}+q^{2}} w
$$

a rational tunction of w; and thetefore g is expressed in terms on the time by elliptic integrals of the third kind.

In a state of steady notion, w is constant, and $\frac{d f}{d l}=\frac{d g}{d l}$; also $u p+v q=s \sigma$; and therefore

$$
\frac{c_{6}}{c_{4}} \frac{r}{w}=\frac{c_{3}}{c_{1}}, \frac{\sigma}{s}+\frac{c_{1}-c_{3}}{c_{4}} \frac{s}{\sigma} ;
$$

and we must therefore have

$$
\frac{r^{2}}{2 \sigma^{2}}>4 \frac{c_{3}}{c_{1}}\left(c_{1}-c_{3}\right) \frac{c_{4}}{c_{8}^{2}}
$$

for the foots of this quadratic in $s: \sigma$ to be real.
If we employ the Lagrangian coordinates $x, y, z, \theta, \phi, \psi$, and take $O Z$ in the direction of the resultant linear impulae F, then

Fig. 10.
(fig. 10) the eye being supposed at O the centre of the sphere, $c_{1} u=$ component momentum in direction $O A=-F \sin \theta \cos \phi$. $\begin{array}{llll}c_{1} v= & \because & O B=F \sin \theta \sin \phi,\end{array}$ $c_{3} w=\quad, \quad, \quad \mathrm{OC=F} \cos \theta$;
and therefore equation (10) gires $\cos \theta$ as an elliptic function of t. Since

$$
\begin{aligned}
& p=\sin \phi \dot{\theta}-\sin \theta \cos \phi \psi \\
& q=\cos \phi \theta+\sin \theta \sin \phi \psi
\end{aligned}
$$

cquation (9) becomes .

$$
\because_{4} \sin { }^{2} \theta \psi+c_{6} 7^{2} \cos \theta=\mathrm{G} . \cdot \cdot=. \cdot(11):
$$

or

$$
\begin{gathered}
\frac{d \psi}{d l}=\frac{\mathrm{G}-c_{6} r \cos \theta}{c_{4} \sin { }^{2} \theta} \\
-\frac{1}{2} \frac{\mathrm{G}-c_{6} r}{c_{4}} \frac{1}{1-\cos \theta}+\frac{1}{2} \frac{G+c_{6} r}{c_{4}} \frac{1}{1+\cos \theta}
\end{gathered}
$$

and therefore ψ will cousist of elliptic integrals of tho third kinal.
Equations (4), (5), (6) show that the body is acted upen at every instant by a couple whose axis is OE, of magnitude

$$
\cdot \frac{c_{3}}{c_{1}}\left(c_{1}-c_{3}\right) w^{2} \tan \theta
$$

c. being supposed to ho the equatorinl moment of inertio of the body.

If OT bo the direction of motion of O. then OT lies iu the plane 70C, amd

$$
\tan \cot =\frac{c_{3}}{c_{1}} \tan \theta
$$

We may determine the stealy motion from elementary reasoninf: for if OC ho the axis of the resultant angular momentum (olso lying in the plane $Z O(')$ making an mugle β with $O C$, and if μ bo the conatont valuo of ψ, then
$G_{\mu} \sin (\theta-\beta)$-impressed couple

$$
-\frac{c_{3}}{c_{1}}\left(c_{3}-c_{3}\right) u^{2} \text { tan } 0 .
$$

But $\quad G \cos \beta=c_{4} \gamma_{1}, \sin \beta=-c_{4} p$
and

$$
\gamma^{\prime \prime}=-\mu \sin \theta ;
$$

therefore

$$
\tan \theta=\frac{c_{H} \mu}{c_{H^{r}} r} \sin \theta ;
$$

nom if γ be the angle made by the axis of inatantadeons rotatir with OC. tna ro. $\frac{\mu}{-1}$ sin θ.

GYDRODYNAMICS.J

Therefuro

$$
\begin{aligned}
G \mu \sin (\theta-\theta) & =c_{6} r \mu \frac{\sin (\theta-\beta)}{\cos \beta} \\
& =c_{6} r \mu(\sin \theta-\cos \theta \tan \beta) \\
& =c_{8} r \mu \sin \theta-c_{4} \mu^{2} \sin \theta \cos \theta \\
& =\frac{c_{3}}{c_{1}}\left(c_{1}-c_{3}\right) \omega^{3} \tan \theta ;
\end{aligned}
$$

and dropping the factor $\sin \theta$,

$$
c_{4} \cos \theta \mu^{3}-c_{6} r \mu+\frac{c_{3}}{c_{1}}\left(c_{1}-c_{3}\right) \frac{v v^{2}}{\cos \theta}=0
$$

a qualratic equation in μ, the condition for steady motion.
The least admissible value of r in order that the roots should be real is given by

$$
\begin{aligned}
c_{6}^{2} r^{2}= & 4 \frac{c_{3}}{c_{1}}\left(c_{1}-c_{3}\right) c_{4} w^{9} \\
r^{2} & =4 \frac{c_{3}}{c_{1}}\left(r_{1}-c_{3}\right) \frac{c_{4}}{c_{6}{ }^{2}} w^{2}
\end{aligned}
$$

In an oblate solid of revolution $c_{1}-c_{3}$ is negative, and the roots of the quadratic io μ are always real for all values of r ln a prolate solid $c_{1}-c_{3}$ is positive, and a certain spin r is required to keep the motion stable

An interesting application is to determine the proper amount of rifliog of a guo the following table has been calculated, from the formula given below. by Captain J. P. Cundill, R.A., and the results appear to agree very fairly with what is observed in practice

Table calculated for Stability of Rotation of Projectiles

		Minimum twist at muzzle of gun requi-ite to give stability of rotation $=1$ tum in n callores.			
	Vatue of $a-r$.	Cast-iron com mon shell Caxity $=$ sths val of silell. Deasity ariron $=i 207$	Palliser shell Carity =hth vol. of she 1 Density $=8000$	Solid ateel bullet. Density $=8000$	Solid lead and tin bullets of similar compasition to M.-H. bullets Density $=109$.
20	49418	Value of n 6387	Value of n. 7108	Value of n $72 \cdot 21$	Volue of n $84 \cdot 29$
21	52032	5981	6659	6756	78.98
22	54431	5631	В267	$63 \cdot 67$	74.32
23	56643	5319	5919	6014	70.20
24	58679	5041	5610	5700	$66 \cdot 53$
25	60561	4791	53.32	$54 \cdot 17$	$63 \cdot 24$
26	62315	4565	5081	5162	$60 \cdot 26$
1: 27	63938	4361	4853	49.30	$57 \cdot 55$
28	65454	4174	4645	4719	55.09
29	66368	4002	4454	$45 \cdot 25$	52.72
30	68192	3845	42.79	43.47	50.74
$3 \cdot 1$	69434	3699	4116	41.82	48.82
$3 \cdot 2$	70598	3564	3! 66	4030	47.04
33	71693	3439	$38 \cdot 27$	3884	45.38
31	72724	3322	3697	3756	$43 \cdot 84$
35	-3697	3213	35%	3633	$42 \cdot 40$
36	74615	3111	3462	3517	4105
37	75483	3015	3355	3409	3979
38	76303	2925	3255	3307	3861
39	77082	2840	3161	3211	3748
. 10	77820	2760	3072	3121	3643

Suppose the rifling at the muzale makes one turn in n calibres, Fod $2 a$ is the calibre and β the angle of the rifling; then

$$
\left.\tan \beta=\frac{\pi}{n}=\frac{a r}{\nu}=2 \sqrt{c_{1}} \frac{c_{3}}{c_{1}}\left(c_{1}-c_{3}\right) \frac{c_{4}}{c_{8}{ }^{7}}\right\}
$$

If $\mathrm{W}=$ reight of shiot, and W oweight of air displaced, then

$$
\begin{aligned}
& c_{1}=W+W a_{1} c_{3}=W+W{ }^{\prime}=W \\
& a_{4}=W k_{1}^{2}+W k_{1}^{\prime} a^{2}, c_{0}=W k^{2}
\end{aligned}
$$

where k_{1}, k ars the radii of gyration of the shot abont an equatorial diameter and the axis, and k_{i}^{\prime} of the air displiaced, supposed rigidified, about an equatorial axis; and then $\alpha, \gamma, \alpha^{\prime}$ will be certain quan. tities depending only upon the external shape of the projectile. brpposing the surrounding medium frictionless, and incompressible

When, as in practice, the fraction \bar{W} is so small that its squaro may be neglected.

$$
\begin{aligned}
& \tan ^{2} B=\frac{\pi^{2}}{n^{2}}=4 \frac{c_{3}}{c_{1}}\left(c_{1}-c_{3}\right) \frac{a^{2} c_{4}}{c_{6}^{2}} \\
& =4 \frac{W+W ' \gamma}{W+W} W_{a}^{\prime}(a-\gamma) a^{2} \frac{W k_{1}^{2}+W^{\prime} k_{1}^{\prime 2} a}{W^{2} /-a} \\
& -4 \frac{W^{*}}{W}(a-v) \frac{a^{2} j_{1}^{3}}{d_{i}} \frac{1+\frac{W^{\prime \prime}}{W^{\prime}}}{1+\frac{W^{\prime}}{W}}\left(1+\frac{W^{\prime}}{W} \frac{k^{\prime}{ }^{\prime 2}}{k_{1}{ }^{2}} a^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =4 \frac{W^{\prime \prime}}{W}(\alpha-\gamma) \frac{a^{2} K_{1}^{2}}{h^{4}} \\
& + \text { higher powers of } \frac{W^{\prime}}{W} \text { which are neglected. }
\end{aligned}
$$

The only body for whieln a, γ, and a^{\prime} have as get beco determined is the ellipsoid; and in the ease of a prolate spheroid of semi axes a and c,
vhere

$$
\begin{aligned}
& a^{\prime}= \frac{a=\frac{A}{A+C} \cdot \gamma=\frac{C}{2 A}}{(C-A)\left(c^{2}-a^{2}\right)^{2}} \\
&\left\{(C-A)\left(c^{2}-a^{2}\right)+(2 A+C)\left(c^{2}+a^{2}\right\}\right\}\left(c^{2}+a^{2}\right) \\
& A=\int_{0}^{\infty} \frac{d \lambda}{\left(a^{2}+\lambda\right)^{2}\left(c^{2}+\lambda\right)^{2}} \\
&=\frac{c}{a^{2}\left(c^{2}-a^{2}\right)}-\frac{1}{2\left(c^{2}-a^{2}\right)^{9}} \log \cdot \frac{c+\sqrt{ }\left(c^{2}-a^{2}\right)}{c-\sqrt{\left(c^{2}-a^{2}\right)}} \\
& C=\int_{0}^{\infty} \frac{d \lambda}{\left(a^{2}+\lambda\right)\left(c^{2}+\lambda\right)^{2}} . \\
&=\frac{1}{\left(c^{2}-a^{2}\right)^{4}} \log _{a} \frac{c+\sqrt{\left(c^{2}-a^{2}\right)}}{c-\sqrt{\left(c^{3}-a^{2}\right)}}-\frac{2}{c\left(c^{2}-a^{2}\right)} .
\end{aligned}
$$

where
and therefore $2 \mathrm{~A}+\mathrm{C}=\frac{2}{a^{2} c}$

Wave Motion in Liquids

First consider plade waves propagated in the direction of the axis of x in liquid of depth h, the undisturbed surface being takencas the plane of $x y$ and the axis of z drawn vertically upwards
The equation of contiuuity, supposing a velocity fupetion 0 to exist, being

$$
\frac{d^{2} \phi}{d x^{2}}+\frac{d^{2} \phi}{d z^{3}}=0
$$

we must first seek a solntion of this eqnatıon, 10 volving a perindic term of the form $\sin (m x-n t)$, where $m=\frac{2 \pi}{\lambda}, n=\frac{2 \pi V^{3}}{\lambda}, \lambda$ being the wave length and V the velocity of propagation of the waves

If we put $\phi=f(z) \sin (m x-n \ell)$, then

$$
\frac{d^{2} f}{d z^{2}}-m^{2} f=0
$$

the solution of which, under the condition that $\frac{d \rho}{d z}=0$ when $z \Rightarrow-h$, is
and therefore

$$
f(z)=A \cosh m(z+h)
$$

$\phi=\mathrm{A} \cosh m(z+h) \sin (n x-n t)$
We must now endeavour to make the free surface a surface of equal pressure, and in order to do this we nrust suppose A small enough for its square to be neglected; and therefore the square of the velocity is to be neglected too.

The dynamical equation then becomes

$$
\frac{p}{\rho}+g z+\frac{d \phi}{d t}=\mathrm{H}, \text { a constant } ;
$$

and at the surface where $2=0, \frac{D p}{d l}=0$. and $\frac{d z}{d l}$ may be put $=\frac{d \phi}{\square}$ therefore $g \frac{d \phi}{d z}+\frac{d^{2} \phi}{d t^{2}}=0$, when $z=0$.

Therefore

> Amg $\sinh m h-n^{2} A \cosh m h=0$
> $n^{2}=m g \tanh m h$
> $V^{2}=\frac{g \lambda}{2 \pi} \tanh \frac{2 \pi h}{\lambda}$
or
or
If the depth h be very great compared with tho wave leagth A. then neglecting the square of $\frac{\lambda}{h}$,

$$
V^{2}=\frac{g \lambda}{2 \pi}
$$

If the depth h he very small compared with the wave leagth $\lambda_{\text {, }}$ then, peglecting the square of $\frac{h}{\lambda}$

$$
\hat{V}^{\prime}=g h .
$$

Next consider the more genersl case of wave motion propagated in. the direction of the axis of x at the common surface $z=0$ of two liquids, the lower of density f and bounded below by the flxed plane $s=-h$, and the upper of density ρ ' and bounded by the fixed plane $z=h$, and suppose U and U the mean velocities of currents in the liquids making ang es a and a^{*} with the axis of x; snjpose in addition there is a surface tension T nt the common curface of the liouids.

Denoting the relocity fuactions by ϕ ood ϕ^{\prime},
$\phi=\mathrm{U} \cos a \cdot x+\mathrm{U} \sin a \cdot y+\mathrm{A} \cosh m(z+h) \cos (m x-n t)$
$\psi^{\prime}=\mathrm{U}^{\prime}$ cos $a^{\prime}, x+\mathrm{U}^{\prime} \sin a^{\prime} \cdot y+\mathrm{A}^{\prime} \cosh m\left(=-h^{\prime}\right) \cos (m x-n t)$;
then ϕ and ϕ^{\prime} satisfy the equations of continaity, and the conditions that $\frac{d \phi}{d z}=0$ when $z=-h$, and $\frac{d \phi^{\prime}}{d z}=0$ when $z=h$.
Supposiog the equation of the moving surface of separation to be $z=b \sin (m x-n t)$, thea the direction of notion of each liquid, relative to the moving surface of separation, must be a taagent to the surlace, and therefore, when $z=0$,

$$
\frac{\frac{d \phi}{d s}}{\frac{d \phi}{d x}-\mathrm{V}}=\frac{\frac{d \phi^{\prime}}{d z}}{\frac{d \phi}{d s}-\mathrm{V}}=\frac{d z}{d x}
$$

or, neglecting A^{2} and A^{2},

$$
\frac{A \sinh m h}{U \operatorname{U}^{\prime} \cos a-V}=\frac{-A^{\prime} \sinh m h}{U^{\prime} \cos a^{\prime}-V}=b
$$

dividing out ty the common factor $m \cos (n x-n /)$, and therefore $\phi=\mathrm{U} \cos a \cdot x+\mathrm{U} \sin a \cdot y+(\mathrm{U} \cos a-V) b \frac{\cosh }{\sin } \frac{m(z+h)}{m h} \cos (m x-n t)$,
$\phi^{\prime} \infty U^{\prime} \cos a^{\prime} \cdot x+U^{\prime} \sin a^{\prime} \cdot y-\left(U^{\prime} \cos a^{\prime}-V_{1}, \cosh m\left(z-h^{\prime}\right) \cos (m x-n t)\right.$.
The dynamical equations are

$$
\begin{aligned}
& p+g \rho z+\rho \frac{d p}{d l}+\frac{1}{3} \rho q^{2}=11 \\
& p^{\prime}+g \rho^{\prime} z+\rho^{\prime} \frac{d \phi^{\prime}}{d t}+\frac{1}{z} \rho^{\prime} q^{2}=11^{\prime}
\end{aligned}
$$

aod at the surface of separation, where $z=0$, we must have

$$
p-p^{\prime}=-\mathrm{T} \frac{d^{2} z}{d x^{2}}=m^{2} \mathrm{~T} b \sin (m x-n t)
$$

$=\mathrm{B}-\mathrm{H}^{\prime}-y\left(\rho-\rho^{\prime}\right) b \sin (m x-n l)$
$-p(U \cdot \cos a-V) \operatorname{coth} m k \quad n t \sin (m x-n t)$
$-\dot{\rho}^{\prime}\left(\mathrm{U}^{\prime} \cos a^{\prime}-V\right) \operatorname{coth} m h^{\prime} \cdot n b \sin (m x-n h)$
$-\frac{1}{2} \rho\{U \cos a-(U \cos a-V) \operatorname{coth} m h \quad m b \sin (m x-n t)\}^{2}$
$-\frac{1}{2} \rho U^{2} \sin ^{2} a-\frac{1}{2} \rho\left(U \cos a-V^{2}\right)^{2} b^{2} \cos ^{2}(m x-n l)$
$+\frac{1}{2} \rho^{\prime}\left\{\mathrm{U}^{\prime} \cos a^{\prime}+\left(\mathrm{U}^{*} \cos a^{\prime}-V^{\prime}\right) \operatorname{coth} m h^{\prime} m b \sin (m x-n t)\right\}^{2}$
$+\frac{1}{3} \rho^{\prime} U^{\prime 2} \sin ^{2} a^{\prime}+\frac{1}{2} \rho^{\prime}\left(U^{\prime} \cos a^{\prime}-Y^{\prime}\right)^{2} m^{2} b^{2} \cos ^{2}(m x-n!)$;
and atglectiog b^{2} and equatiog to zero the coeffictent of $\sin (m x-n t)$, $m^{2} \mathrm{~T}+g\left(\rho-\rho^{\prime}\right)-(\mathrm{U} \cos a-V)(m \mathrm{U} \cos a-n) \rho \operatorname{coth} m h$ $-\left(\mathrm{U}^{\prime} \cos a^{\prime}-V\right)\left(m \mathrm{U}^{\prime} \cos a^{\prime}-n\right) \rho^{\prime} \operatorname{coth} m h^{\prime}=0$,
which, rince $\frac{n}{n}=V$, reduces to

$$
m^{2} \mathrm{~T}+g\left(p-p^{\prime}\right)-m\left(\mathrm{U} \cos \alpha-\mathrm{V}^{\prime}\right)^{2} p \operatorname{coth} m h
$$

$$
-m\left(U^{\prime} \cos a^{\prime}-V\right)^{2} o^{\prime} \operatorname{coth} m h^{\prime}=0
$$

or, aince $m=\frac{2 \pi}{\lambda}$,
$\frac{4 \pi^{3}}{\lambda^{2}} \mathrm{~T}=\frac{2 \pi}{\lambda}\left\{(\mathrm{U} \cos a-\mathrm{V})^{2} \rho \operatorname{coth} \frac{2 \pi h}{\lambda}+\left(\mathrm{U} \cdot \cos a^{\prime}-V\right)^{2} \rho^{\prime} \operatorname{coth} \frac{2 \pi h^{\prime}}{}\right.$

$$
-q\left(p-\rho^{\circ}\right)=0
$$

If $U=0, U^{\prime}=0, p^{\prime}=0$, we finl

$$
\left.V^{\prime 2}=\left(\frac{g \lambda}{2 \pi}+\frac{2 \pi T}{\lambda \rho}\right) \tan \right\rfloor \frac{2 \pi h}{\lambda}
$$

as at first, if $\mathrm{T}=0$.
A discussion of the different eases that can arise is given by Lord Rayleithan his finuers mithe " lastatulity of Jets" published in the frocedinys of the Romal Suciety and of the Lomidun Wathe. matical Saciety ; also in araper ly Sir W' Thomsou w the Ihat. Sheg., 1871

In the lastomentioned paper an interesting application of the above equations is mate to descmine the ry'les produced by wint blowing over the surlace of still water.

Put $\quad \mathrm{U}=0, h-\infty, h^{\prime}=\infty$;
then $\quad n^{2} \Gamma+g\left(\rho-\rho^{\prime}\right)-m V^{\prime 2} \rho-m\left(\mathrm{U}^{\prime}-\boldsymbol{V}^{\prime}\right)^{2} \rho=0$.
If W hee the velocity of propugation of waves of the same length witla no winl. then

$$
\begin{aligned}
& \quad v\left(\rho-p^{\prime}\right)-m W^{\prime \prime}\left(\rho+\rho^{\prime}\right)=0: \\
& W^{2}=\frac{q}{m} \frac{\rho-p^{\prime}}{\rho+\rho^{\prime}}+\frac{m^{\prime \prime}}{p^{\prime}+p^{\prime}}
\end{aligned}
$$

or
tho minimum valuo of which fir dillirent vahes of m is given by
amb then

$$
\begin{gathered}
W^{2}=2 \sqrt{ }(g T) \frac{\sqrt{ }\left(p-\rho^{\prime}\right)}{\rho+\rho^{\prime}} \\
n_{l}=-\frac{\prime}{\prime}(\rho-\rho)
\end{gathered}
$$

P:st
abd therefore $\quad V=\frac{\rho}{\rho+\rho^{\prime}} U^{\prime} \pm \sqrt{ }\left\{W^{\prime 2}-\frac{\rho \rho^{\prime}}{\left(\rho+\rho^{\prime}\right)^{2}} U^{\prime 2}\right\}$;
fiving the velocities of propagation of waves whth and against tha wind.

The least value of $\mathrm{U}^{\prime 2}$ is less than $\frac{\left(\rho+\rho^{*}\right)^{2}}{n \rho^{*}}$ tunes the least value of W^{2}, and is therefore

$$
2 \vee(g T) \frac{p+p}{p p^{\prime}} V^{\prime}\left(\rho-p^{\prime}\right)
$$

If the wind be blowing with a veloctty greater than this ammmum value of U ', the surlace of the water as a plane let el sutlace becomes unstable, and ripples are produced.
With C. G S. Homts, $g=981, T^{\prime}=81, \rho=1, \rho^{\prime}=0012759$, and then the minmom value of U^{*} is abont 664 , eymualent to aluma if 8 miles an hour. Thas velucity is ot conse much preater thas what is reyured to rufthe the suiface of water in reality. the discrepancy benge due to the viscosity of the anr

In the ease of stamling waves in a erreular tank,
ondmates $r, \theta_{2}=$ hemg used, where

$$
x=r \cos \theta_{1} \quad y=r \sin \theta
$$

the elpuation of continaty becomes

$$
\frac{d^{2} \phi}{d r^{2}}+\frac{1}{r} \frac{d \phi}{d r}+\frac{1}{r^{2}} \frac{d^{2} \phi}{d \theta^{2}}+\frac{d^{2} \phi}{d r^{2}}=r
$$

If the liquid be of depth h, we must put

$$
\phi=\phi_{1} \cosh k(z+h) \cos 2 \pi n t
$$

where n is the number of uscallations per second, and then

$$
\frac{d^{2} \phi_{1}}{d r^{2}}+\frac{1}{r} \frac{d \phi_{1}}{d r}+\frac{1}{r^{2}}-\frac{-1 l^{2} \phi_{1}}{d \theta^{2}}+k^{2} \phi_{1}=0
$$

If we put $\phi_{1}=\psi \cos m \theta$, then

$$
\frac{d^{2} \psi}{d r^{2}}+\frac{!}{r^{2}} \frac{d \psi}{d r}+\left(h^{2}-\frac{m^{2}}{r^{2}}\right) \psi=0
$$

Bessel's differential equation ; and thetcture

$$
\psi=\Lambda \mathrm{J}_{m}(k \cdot r)
$$

and $\phi=A J_{m}(k r) \cos m \theta \cosh k(z+h) \cos 2 \pi n t$
and k must he determonel fiom the condition that

$$
\frac{d \phi}{d r}=0, \text { when } r=a ;
$$

or
At the frec surface

$$
\operatorname{Sin}(k a)=0
$$

$$
g \frac{d \phi}{d z}+\frac{d^{2} \phi}{d l^{2}}=0
$$

or
$g k$ sull $k h-4 \pi^{2} \mu^{2} \cosh k h=0$,

$$
n^{n}=\frac{a k}{4 \pi^{2}} \text { tanh } k h
$$

For circular warcs, $m=0$, and the roots of $J_{0}(k a)=0$, are

$$
k a=3832,7016,10133,13 \cdot 323, \ldots
$$

(Rayleigh, Souml, p. 274).
When the tank is limsted by the radial phanc $\theta=0$, then the slowest oscillation couresponds to $m=\frac{1}{2}$, and then

$$
J_{1}(k r)=\frac{\sin k r}{\sqrt{\prime} r r}
$$

and

$$
J_{i}(k \cdot a)=\sqrt{\frac{\pi}{a}}\left(\cos h a-\frac{\sin k a}{k a}\right)=0 .
$$

gives

$$
\tan k a=k a
$$

and therefore $k \cdot$
$-1 \quad 1303$
(Raylugh, Smond, p 2791
When the tank is wombled ly the radial planes $\theta=6.0-0 \pi$, ll. 0 slowest oscillation comesponds to $m=3$, a ud then

$$
J_{\frac{3}{2}}(h r)=-\frac{1}{\sqrt{h r}}\left(\frac{\sin h r}{h r}-\cos h r\right)
$$

and the equation $J^{\prime}\left(h^{\prime} \alpha\right)=0$ leals to

$$
\tan h u t=\frac{3 h a}{2 h^{2} 4^{2}-3}
$$

For the discussion of the free nseillations ot an ocean of uniform depth, covering a central muldens, mather the gravitation of the parts, and the surfue lasion at this tree surface, consult lambis
 ccedengs of the Lomion dinhematicol Sarimty.
The foripagathon of plame waves of longitudinal displamenent in air, and her motes pronturel by open med closed pipes, have been con-

Whern the air is limulid by special surfaces, the pablilem of the
 Lundun Diathomatume Simentw. 1572.

PART III.-HYDRAULICS.

I. THE DATA OF IIYDRIULICS.
[C'nits.-Except where other units are given, the units throughone this article are fect, pounds, puuds fer sif ft. , tect per second.]

1. Properties of Fluils. - The fluids to which the laws of practical hydraulics relate are substances the parts of which possess very great mobilty, or which oller a very amall resistance to disturtion imblependently of inertia. Under the general heading Hydromectancs a fluid is defined to be a substance which yrelds contimally to the slightest tangential stress, and Lence in a llout at rest there cian bo no taggential stress. But, further, in thuids such as water, air, steam, \&c., to which the present division of the article relates, the tangential stresses that are called iutuaction between contiguuas portions during distortion or change of Ggure are always small cumpared with the reight, inertia, pressure, de., which pruduce the wisible motions it is the ubject of hydraulics to estumate. On the other hamd, while a flad passes easily from one form to anotber, it opposes constderable resistance to change of volume.

It is easily deduced from the absence or smallness of the tangentral stress that contiguous portions of fluid act on each other with a pressure which is exactly or very nearly normal to the interface which separates them. The stress must be a pressure, not a tension, or the parts would separate. Further, at any point in a fluid the pressure in all directions must be the same; or, in olher words, the pressure on any small elcment of surface is independent of the orientatiou of the surface.
2. Fluids are divided into liquids, or incompressible fluids, and gases, or compressible fluids. Very great changes of pressure clange the volume of liquids only by a small amount, and if the pressare on them is reduced to zero they do not sensibly dilate. In gases or compressible fuids the volanse alters sensibly for small changes of pressure, and if the pressure is indefinitely diminishel they dilate without limat.

In ordinary 11 ydraulics, liquids are treated as absolutely inceropressible. In dealing with gases the changes of volume which accompany changes of pressure must be taken into account.
3. Viscous fluids are those io which clange of form under a continued stress proceeds gradually and increases indefintely. A very viscous fluid opposes great resistance to change of form in a shorl time, and yet may be deformal considerably by a small slress acting for a long period. A bluck of pitch is mure easily splintered than indented by a hammer, but under the action of the mero weight of its parts acting for a long enough time it flattens ont and Hows like a liquid.

All actual fluids are viscous. They oppose a resistance to the relative motion of their parts. This resistance diminishes with the velocity of the relative motion, and becomes zero io a fluid the parts of which are relalively at rest. When the relative motion of difierent parts of a iluid is small, the viscosity may be neglected without introducing important errors. On the other hant, where there is considerable relative motion, the viscosity may be conected to have an inlluence too great to be neglected.

Mcasurement of Viscosity. Coefficient of V'iscosily. -Suppuse the jlane $a b$, fig. 11 , of area ω, to move with the velocaty V rdatwrly to the surface ad and taralled to it. J.et the space betwern be lilled with liquid. The layers of liquil in contact with ab and cd alluce to them. The interinetiato layers adl olferinat an equal resistance to shearing or distortion, the rectangle of nlaid aberf will tako the form of the parallelogram $a^{\prime} b$ ed. Further, the resistance to the motion of ab may be expressed in the form

$$
\begin{equation*}
R=\kappa \omega V \tag{I}
\end{equation*}
$$

where k is a corfficient the nature of which remains to be determinel.

If we suplose the himpl betreen ao and $c d$ divided into lasers as shown in tio. 12 , it will be clear that the stress F acts, at each divid-
lagy lace, fow wards m the direction of molion if we consider the "pper layer, backwards if we coa. sider the lower layer. Now suppuss the original thickuess ol the layer Tamereasent to $n T^{\prime}$, if the bouml. ing plane 10 its new fosition lias the velocity 3 V , Itiesheal. ing it each dividus iace will be exacily the same as belore, and the resistance most therefore be the samc. Hedce, $\Gamma=\boldsymbol{x}^{*} \boldsymbol{w}^{(n)}$) . (2). lut equations (1) and (2) may both be expressed in une equation if κ aml κ^{\prime} ale replaced by a

Fig. 11.

Fig. 12
Ho 12
Putin
Puiting $\kappa=\underset{T}{\mu}, \kappa^{\prime}=\frac{\mu}{\mu^{\prime} \mathrm{l}^{\prime}}$

$$
\mathrm{R}=\mu \omega \frac{\mathrm{V}}{\mathrm{~T}}
$$

or, for an iadehnitely thin layer,

$$
\begin{equation*}
\mathrm{R}=\mu \omega \frac{d \mathrm{~V}}{d t} \tag{3}
\end{equation*}
$$

an expression first proposed by Navier. The coefticient μ istermed the coefficient of riscusity.

Accerding to Maxwell, the value of μ for air at 0° Falir. in pounds, when the velocities are expressed in leet per second, is $\mu=0.0000000256\left(46 \mathrm{I}^{\circ}+\theta\right) ;$
that is, the coefficient of viscosity is proportional to the absolute temperature and iude iendent of the pressure.
The value of μ for water at 77° Fahr. is, according to Helmholtz and Piotrowski,

$$
\mu=0.00000191
$$

the units being the same as before. For water μ decreases rapidly whitherease of temperature.
4. When a flud flows in a very regular manner, as for instance when it flows in a capillary tube, the velocities vary gradually at any moment from one point of the fluid to a neighbouring point. The layer adjacent to the sides of the tube adheres to it and is at rest. The laycrs more interiur than this slide on each other. But the resistance developed by these regular movements is rery small. If in large pipes and open clannels there were a similar reguIarity of movement, tho neighbouring filaments would acquire, especially near the sides, very great relative velocities. Boussincsq Las shown that the central flament in a semicircular canal of 1 metre radius, and inclined at a slope of only 0.0001 , would have a velocity of 157 metres per second, the layer next the boundary remaining at rest. Put before sucb a difference of velocity ean arise, the motion of the fluid becomes much more complicated. Volumes of llind are detached continually from the boundaries, and, revalving, form edlies traversing the fluid in all directions, and sliding with finite relative velocities against those surrounding them. 'lhese slidings develop resistances, incomparably greater than the visceus resistance due to movencuts varying continuously from point to point. The merements which produce the phenomena commouly ascribed to 0uid friction must be regarded as rapidly or even suddenly varying from one point to another. The intermal resistances to the motion of the Luid do not depend
'Journal de . V. Kimurtle. t. xiii., 18hs: .Hémoires de l'Acaderive

in the general relucities of translation at different points $y f$ the fluid (or what M. Boussinesq terms the mean local velocties), but rather on the intensity at each point of the eddying agitation. The problems of bydraulics are therefore much more complicated than problems in which a regular motion of the luid is assumed, hindered by the viscosity of the tuid.

Ralation of Presstre, Density, and Tempebatere of Liqcids.

5. Density of Hater. - Water at ordioary temperature and pres. sore contains 62 4to per cubic foot, or 1000 tilogrammes per cubic metre. The density or weight per upit of rolume will be designated by G. River and spring water is not sensibly deaser than pure water, being at most 1-100000th hearier Sea-water may be taken ct 64 to per cuhic foot.
©. Compressibility of Liquids.-The most accurate experiments st:ow that liquids are sensibly compressed by very great pressures, ard that up to a pressure of 65 atmospheres, or about 1000 to per square inch, the compression is proportional to the pressure. The chief results of experiment are give in the following table. Let V_{1}, be the volume of a liquid in cubie feet under a pressure p_{1} it pier sfuare foot, and Γ_{g} its volume under a pressure p_{2}. Then the cubical compression is

$$
\frac{V_{2}-V_{1}}{V_{1}},
$$

and the ratio of the increase of pressure $p_{2}-p_{1}$ to the cubical comnression is sensibly constant. That is, $\frac{\left(p_{2}-p_{1}\right) V_{1}}{V_{2}-V_{1}}$ is constant. This constant is termed the elasticity of volume, and is denoted by if (Thomson). With the notation of the differential caleulus,

$$
k=\frac{d p}{-\frac{d \mathrm{~V}}{\mathrm{~V}}}=-\mathrm{V} \frac{d p}{d \mathrm{~V}}
$$

Elusticity of Volume of Liguids.

	Canton.	Oerstedt.	Colladon and Scurm.	Regnault.
Water...	45,990,000	45,900,000	42,660,000	44,090,000
Sua water	52,900,000	..		
Blercury ...	705,300,000	...	626,100,000	604,300,000
Alcohol.....	$44,090,000$ $32,060,000$		23,100,000	

According to the experiments of Grassi, the compressibility of water diminishes as the temperature increases, while that of ether, atcohol, and chloroform is inereased.
7. Cluange of Volume and Density of Water with Change of Tem-pcrature.-Although the change of volume of water with change of temperature is so small that it may generally he veglected in ordinary liydraulic calculations, yet it should be noted that there is a change of volume which should be allowed for in very exact calentations. The values of p in the following short table, which gives data enough for hydraulic purposes, are taken from Professor Everett's System of Units.

Density of Water at injerent Temperatures

Temperature		$\begin{gathered} \text { D } \\ \text { Dersaty of } \\ \text { Water. } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Geight } \\ \text { of ice. ft. } \\ \text { in to. } \end{array}$	Temperiature		Density of Wuter.	Weightwigit of lc.f1. is 15 .
Cent.	Fahr			Cent.	Fuht		
0	32.0	$\cdot 909884$	62.417	20	68.0	998272	62316
1	33.8	- 999811	62420	20	71.6	-997839	C2 283
2	$35 \cdot 6$.900982	$62 \cdot 123$	2.4	$75 \cdot 2$	1997380	(62 261
3	$37 \cdot 4$	1.000004	$62 \cdot 424$	26	78.5	096879	62 229
4	39.2	$1 \cdot 000013$	$62 \cdot 425$	28	82.1	596344	(i2.19 ${ }^{\text {a }}$
5	41.0	1 1000t03	62.424	30	86	6045778	62.161
6	12:8	-095983	$62 \cdot 423$	35	95	94469	62093
7	416	-199946	+i2.121	40	104	9023\%	61.9 .47
8	$4{ }^{18} 4$	-993893	62.118	15	113	-99038	61.823
9	$48 \cdot 2$	-999837	$62 \cdot 414$	50	122	-98821	61688
10	500	-949760	$62 \cdot 409$	55	131	98853	61540
11	51.8	993165	c2.403	60	140	- 48839	61.387
12	536	909512	62.397	65	149	-94075	$61 \cdot 282$
13	55.4	9464143	t2:389	70	158	-07795	(6) 048
14	572	-080312	62.381	75	167	. 07498	60863
15	590	-094173	62373	80	176	-97195	60674
18	60.8	999015	6: 36:	85	185	-96880	60.477
17	$62 \cdot 8$	- 908564	623 \% ${ }^{\text {a }}$	90	194	-965.7	LiO 275
18	64.4	-9484607	62:311	100	212	- 95886	89844
19	66^{2}	99817:3					

The weight per cubic foot bas been calculated from the values of ρ, on the assumption that a cubic foot of water at $39^{\prime} 2^{\circ}$ Fahr. is 02.425 tb . For ordinary caleulations in hydraulies, the density of water (whieh will in future be designated by the symhol G) will be taken at 62.4 th per culic foot, which is its density at 53° Fahr. It may be noted also that ice at 32^{2} Fahr. contains 57.2 to per cubic foct. The values of ρ are the densities in grammes per cubic centimetre.
8. Pressure Colunth. Free Surfuc Level.-Suppose a small vertical pipe introduced into a liquid at any point 1'(fig. 13). Then the liquid will rise in the pipe to a lerel 00 , such that the pres. suredue to the colyma in the pipe exactly balances the pressure on its mouth. If the Aluid is in motion the mouth of the pipe must be supposed accurately paratlel to the direction of motion, or the impract of the liquid at the mouth of the pipe
will have an iofluence
\qquad

Fig. 13.
on the height of the column. If this enindition is compled with, the height h of the column is a measure of the pressure at the point P. Let ω be the area of section of the pip, h the height of the pressure column, p the intensity of pressure at P; then

$$
\begin{aligned}
p_{\omega} & =\mathrm{C} h_{\omega} \mathrm{t} \\
\frac{p}{\mathrm{G}} & =h ;
\end{aligned}
$$

that is, h is the buight due to the pressure at p The lesel $O C$ will be termed the free surface level corresponding to the pressure at P.

Relation of Pressure, Temperature, and Density of Gases.

9. Relation of Pressure, Volume, Temperature, ond Density in Com. prissible Fluids. - Certain problens on the how of air and steamare so similar to those relating to the How of water that they are conveniently treated together. It is necessary, therefore, to state as briefly as possible the propurties of compressible Huids so far as knowledge of them is requisite in the solution of these problems. Air may be taken as a type of these fluids, and the numerical data here gisen will relate to air.
Relation of Pressure and Volume at Constant Temperature.- At constant temperature the produet of the pressure p and volume V of a given quantity of air is a coustant (Bryle's law)
Let p_{0} be mean atmospheric messure (2116 8 th per square foot), V_{0} the volume of 1 to of air at 32° Fahr uader the pressure $r_{0}{ }^{\circ}$ Then

$$
\begin{equation*}
p_{0} V_{0}=26214 \tag{1}
\end{equation*}
$$

If G_{0} ts the weight per cubic foot of air in the sante conditions,

$$
\begin{equation*}
\mathrm{G}_{0}=\frac{1}{\boldsymbol{V}_{0}}=\frac{21168}{26214}=08075 \tag{2}
\end{equation*}
$$

For any other pressure p_{1}, at which the volume of 1 tb is V and the weight per cubie foot is \mathbf{G}, the temperature heing 32° Fahr

$$
\begin{equation*}
p \mathrm{~V}=\frac{p}{\mathrm{G}}=26214 ; \quad \text { or } \mathrm{G}=\frac{p}{26214} \tag{3}
\end{equation*}
$$

Change of Pressure or Tolume by Change of Temperature - Let po. $V_{0 i} G_{0}$, as before be the pressure, the volume of a pound in cubic feet, and the weight of a culice foot in pounds, at 32° Falir Let μ, V. G he the same quantities at a temperature t (measured strictly by the air thernometer, the degrees of which ditler a little from those of a nereurial thermoneter). Thu, by experiment,

$$
\begin{equation*}
r^{V}=p_{0} V_{0} \frac{4606+t}{460} \frac{6+32}{6+p_{1}} V_{T_{0}}^{T} \tag{14}
\end{equation*}
$$

where T, T_{0} are the temperatures t and 32° reckoued from the abso lute zero, which is - 1606° Fahr

$$
\begin{align*}
& \frac{p}{\theta_{i}}=\frac{p_{0}}{i_{0}} \cdot \frac{\tau}{\tau_{0}} \cdot \tag{4a}\\
& 0=\frac{p}{p_{0}} \cdot{ }_{i}^{T_{0} \mathrm{O}_{\mathrm{a}}} \tag{5}
\end{align*}
$$

If $\mu_{0}=21168, \mathrm{G}_{5}=080 \pi r_{1}, \tau_{0}=4606+32=1926$, thed

11 KINEMATICS OF FLUIDS

10. Moring lluids as commonly observed are conveniently elassifed thus:-
(1) Streams are moving masses of indefinite length, completely or incompletely bounded latcrally by solid boundaries. When the solid boundarics are complete, the flow is said to take place in a pipe. When the solid boundary is incomplete and leaves the upper surface of the Quid free, it is termed a stream bed or channel or canal.
(2) A stream bounded laterally by differently moving fluid of the same kind is termed a current
(3) A jet is a stream bounded by tluid of a different kiud.
(4) An eddy, wortex, or whirlpool is a mass of fluid the particles of which are moving circularly or spirally.
(5) In a stream we may often regard the particles as llowing along definite paths in space. A chain of particles following each other along such a constant path may be termed a fluid filament or elementary stream.
11. Steady and U'nstcady, Uniform and Farying, Motion. -There are two quite distioct ways of treating hydrodynamical questions. We may either fis attention on a given mass of flaid and consider its changes of position and eaergy under the action of the stresses to which it is subjected, or we may lave regard to a given fixed portion of space and consider the columo and energy of the fluid entering and learing that space.

If, in following a giv ' D path ab (fig. 14), a mass of water a has a constant velocity, the motion is said to be uniform. The kinetic cocrgy of the mass a remains unchanged. It the relocity varies from point to point of the path, the motion is called varying motion. If at a given point a in space, the partieles of water almays antive with the same velocity and in the same direction, duriug any givea time, then the motion is termed steady motion. On the contrary, if at the point a the velocity or direction
 varies from monent to

Fig. 14.
moment the motion is terned unsteady. Steady mation is sometimes terned permanent notion. A river which excarates its own bed is in unsteady motion solong as the slope and form of the bell is changing. 1t, however, tends always towands a condition in which the bed ceases to clange, ond it is then said to have reached a condition of permanent regioie. No river pobably is in aboolutely permanent regime, except perlapg in rocl:y clannols. In other cases the bed is acoured nore or less daring the rise of a floot, and sitted again duriag the subsidence of the tlood. But while many streans of a torrential character change tbe condition of their bed often and to a large extent, in others the changes are comparatively small and not casily ouserved.

As a stream approaches a condition which would be strictly defined as one of steally motion, its regimo becomes permaneat. Hence steady motion and permanent regime are sometimes used :s meaning the same thing. The one, howewr, is at detinite uernappli. cable to the mution of the water. Whe other a less definite term applicable in strictness only' to the cotrlition of that stream bed.
12. Theoretical Notions on the Motion of "Jafcr. - The actual motion of the particles of water is in mont cases sery comples. Tu aimplify hydrodynamic problems, simpler modes of motion are assumed, and the results of theory so ohtainod are compared experimentally with the actual motions.

Morion in Planc Laycrs. -The simplest kind of mation in a stream fo one in which the particles initially situated in any plane cross section of the strean contime to be found in jlane cross scetrons during the subsequent motion. Thus, if the particles in a thin plane laycr ab (fig. 15) are found again in a thin plane layer $a^{\prime} b^{\prime}$ after any interval of time, the motion is said to be motion in plano layers. la such motion the inter.

Fig. 15. nal work in deforming the layer may namally
 mote disregarded, and the resistanco to the Lamis confined to the circumference.
It is obseryed then. -in the case of streams having sodid boandaries, It is observed that tho central parts move laster than the lateral parts. To take nccondt of these differeaces of velocity, the stream may bo conceived to bo divided into thin lamine, laving crnss sections somerhat sinilar to the solid boundary of tho strean, and sliding on each other. The different lamine can then be trented as haviog differing velocities according to any law either observed
or deduced from their mutual friction a mueh closer approxiaration to the real motion of ordinaly streams is thes obtained
Stream Line Motion. - In the preceding hypothesis, all the $1^{\text {mir. }}$ thes in each hatiod have the same velocity at any given cruss section of the stream. If this assumption is abandoned, the cross section of the stream must be supposed divided into indefinitely samaliareas, each representing the section of a fluid filament Then these filmments may have any law of variation of volocity assignd to them. If the botion is steady motion these liuid hitaments (or as they are then termed strean lines) will have exed positions in space.

Periodic Uistcedy Motion.-in ordinary streans with roagh boundaries, it is observed that at any given point the velocity varim from moment to moment in magnitude and direction, but that the average velocity for a sensible period (sxy for 5 or 10 minutes) varies very little either in magritude or velocity. It has hence been conceived that the variations of direction aud magnitude nf the velocity are periodic, and that, if for each point of the stream the arean relocity and direction of notion were substituted for the acetual more or less varying notions, the motion of the stream might be treatell as steady stream line or steady laminar motion.
13. Tolume of Flow.-Let A (fig. 16) be any ideal plane surface, of area ω, in a strean, nornal to the direction of motion, and let b

Fig. 16
be the velocity of the fluid. Then the volume flowing through the surface A in anit time is

$$
\begin{equation*}
Q=\omega V \tag{1}
\end{equation*}
$$

Thes, if the motion is rectilinear, all the particles at any irstant in the surface A will be fonnd after one secoud in a similar surface d; at adistance V, and as each particle is followed by a continumb threal of other particles, the solame of how is the right prista Ad having a base wand length V.

Fig. 17.
If the direction of motion makes an angle θ wath the normal to the sinface, the volume of tlow is represented by an ollique prism A^{\prime} (fog 17), nud ta that case

$$
Q=\omega V \cos \theta
$$

If the velocity varies at diflerent points of the sarlace, let the surface be divided into very small portions, for cach of which the velocity may lee regarded os constant. If $d \omega$ is the area and v, or v cos θ, the nurmal velocity for this elerueut of the surface, the volumie of tlow is

$$
\mathrm{Q}=\int v d \omega, \text { or } \int v \cos \theta d \omega
$$

as the case may be.
14. Principle of Contmuty. - If we consiller any comptetrly bonnded fixed space in a noving liquid initially and finally filled coationously with liquad, the inllow must be equal to the outhew. Expressing the intlow with a pustive and the out low with a negetive sign, and estimating the volume of flow Q for all the boandaries,

In general the space will remain fllled with fuid if tbe pressure at every point remains positive. There will lee a break of contiauity, il at any point the pressure becones negative, indicating that the stress at that puint is tensile. In the case of ordinasy rater this statement requires molifieation. Water contains a variable amoant of air in solution, often about one-twentieth of its volume. This nir is disengaged and breaks the cuntinuity of the liquid, if the pressuro falls below a poiat correspouding to 1 ts toosion. It is for this reason that pampis will not draw water to the full height dae to at maspheric pressure.

Apulication of the Irinciple of Consinuity to the case of a Stram. -If λ_{1}, λ_{2} are the areas of tro normal cross sections of a stream and V_{i}, V_{∂} are the relocitics of the stream at those sectious, thon from the principle of continuits.

$$
\begin{gather*}
V_{1} i_{1}=V_{2} A_{2} \tag{2}\\
\frac{V_{1}}{V_{2}}=\frac{A_{2}}{A_{1}} .
\end{gather*}
$$

that is, the mormal relocities are inversely as the areas of the ctoss se.tiong. This is true of the mean velocities, if at each section the valicity of the stream varies. In a river of varying slope the viocity varies with the slope. It is easy therefore to see that in purts of large cress section the slope is smaller than in parts of siasall cross section.

Fig. 18.
If we conceive a space in a liquid bounded by normal sections at A_{1}, A_{2} and between A_{1}, A_{2} by stram lines (fig. 18), then, as there is no How across the strean lines,

$$
\frac{V_{2}}{V_{2}}=\frac{A_{3}}{A_{1}},
$$

as in a stream with rigid boundaries.
In the case of compressible fluids the variation of volume due to the difference of pressure at the two sections must be talsen into arcerret. If the motion is steady the weight of fluid between two cross seetions of a stream must remain constant. Hence the weight Ho wing in must be the same as the weight flowing out. Let n_{1}, p_{2} we the pressures, v_{1}, v_{2} the velocities, G_{1}, G_{2} the weight per cubic fort of turd, at cross sections of a stream of areas A_{1}, A_{2}. The rolumes of inhow and outfow are

$$
A_{1} v_{1} \text { and } A_{2} v_{2} \text {, }
$$

ajd if the weights of these are the same,

$$
G_{1} A_{1} v_{2}=G_{2} A_{2} v_{2} ;
$$

and hence, from (50) $\S 9$, if the temperature is constant,

$$
p_{1} A_{1} v_{1}=p_{2} A_{2} v_{2}
$$

III. PHENOMENA OF THE DISCHARGE OF LIQUTDS FROM ORIFICES AS ASCERTAJABLE BY EXPERMANTS.

15. When a liquid issues vertically from a small orifico, it forms n jet which rises nearly to the level of the free surface of the liquid
in tho vessel frpm which it flows. The diticrence of level h_{r} (fig 19) is so small that it may be at once suspected to be due rititer to air resistance or. the surface of the j tor to the viscosity of tho liquid or to friction against the sides of the orifice. Neglect. ing for the momerit this small quartity, we may infer, from the clevation of the jer, that each moleculs of leaving the otifico jressessed the velocity required to lift it nopainst penvity to tho histht h. From nrdinaty dynnmics, the 1 hation betwern the velucity and higight of projection is given by the equation

Fig. 19.

$$
v=\sqrt{2 y^{h}}
$$

As this velocity is nearly reachel in tho low from well-formed orifires, it is sometimes ralled the theoretion velocity of discharge. This relation was first ofthinnd by Torrieslti.

If tho orifies is of a suitable connilal form, the water issues in filamentanomal th the pano of the orifice. Lut ω la the atom of the oritice, then the disehargo per second muat be, fromen. (1),

$$
\mathrm{Q}-\omega t=\omega \sqrt{2 y^{h}} \text { nanly. }
$$

This is often termet tha thenretien fisclaren.
rise of the ferm Head in Hylratlics - The thrm heme is an old milluwisht's term, and mant primarily the licight through which a

7ass of water descended in actuating a hedraulic machons. Since the water in fig. 19 cuscends through a beight h to the orifice, we may say there are h feet of head above the ortice. Still more generally any mass of liquid h feet above a horizontal plane may be said to have h feet of elpration head relatively to that datum plane. Further, since the pressure p at the orifice which produces outhow is connected with h by the relation $\frac{p}{G}=h$, the quantity $\frac{p}{\mathrm{G}}$ ray bo termed the pressure head at the orifice. Lastly, the velocity v is connected with h by the relation $\frac{v^{2}}{2 g}=h$, so that $\frac{v^{2}}{2 q}$ may bo termed the head due to the velocity v.
16. Cocfurients of Vilocity and Resistance. - As the actunl velocity of discharge differs from $\sqrt{2 g h}$ hy a small quastity, let the actual velocity

$$
\begin{equation*}
=r_{\alpha}=c_{0} \sqrt{2 g h} \tag{3}
\end{equation*}
$$

where \mathcal{c}_{0} is a coefficient to be determined hy experiment, called the coefficient of velocity. This cotficient is found to be tolerahly constant for different heads with well-formed simple oritices, and it very often has the value 0.97
The difference between the velocity of discharge and the relocity due to the head may be reckoned in another way: The total beight h causing outflow consists of two parts,-one part h e expended in prolucing the velocity of outfor, awother h_{P} in overcoming the resistauces due to viscosity and friction. Let

$$
h_{r}=c_{r} h_{0},
$$

where c_{r} is a coefficient determined by experiment, and called the cocficient of resistance of the orifice. It is thlerably coustant for difilerent heads with well-formed orifices. Then

$$
\begin{equation*}
x_{a}=\sqrt{2 g h_{c}}=\sqrt{2 g_{1} \frac{h}{+c_{r}}} \tag{4}
\end{equation*}
$$

The relation between c_{v} and c_{r} for any orifice is easily found :-

$$
\begin{align*}
v_{a}=c_{0} \sqrt{2 g h} & \sqrt{i g \frac{h}{1+c_{r}}} \\
c_{v} & =\sqrt{\frac{1}{1+c_{r}}} . \tag{5}\\
c_{r} & =\frac{1}{c_{v}}-1 . \tag{3}
\end{align*}
$$

Thus if $c_{0}=0.97$, then $c_{r}=0.0628$. That is, for such an orifice about $6 \frac{1}{\text { per cent. of the head is expended in overcoming frictional }}$ resistances to flow.

Coufficient of Contraction-Sharp-edyed Orifices in Plane Surfaces. -When a jet issues from an apurture in a vessel, it may either spuing char from the inner edge of the onitice as at a or b (fig. 201, or it may aubere to the sides of the orifice as at c. The former con-

7

r

Fig. 90.
dition will be finnd if the orifice is bernlled ontwards as at a, so ns to bo sharp edgel, and it will also necur actarally for a prismatic aperture Jike $b_{\text {a }}$ provided the thickness of the ressel romet the aper ture is less than the dinmeter of the jut. But if the thiekness ts graater the condition shown at c will betur.
When the discharge takes phere as at a or 8 , the section of the jet is smaller than the settion of the orifice. This is due to the fiormation of the jet from filaments. converging to the oritico in all directions insile the ressel. The inurtis of the filaments opposers sudlen change of direction of motion at the edge of the orifice, and the convergence continues for a listance of about half the diameto: of tho orifice lreyond it. I, at w he the area of the orifice, and c_{s} the area of the jet at tha point where convergence ceases: then c_{e} is a enefficient to the determined experimentally for each kind of arifice, called the coeficitrat of contraction. When the orifice is a sharpectged orifice in a plane surface, the value of c_{e} is on the aseryge 0 fit, or the section of the jet is very nearly five-cighths of the area of the orifice.

Coefficient of Dischargc. - In spplying the general formula $Q=\omega v$ to a stream, it is assumed that the filaments have a common relocity v normal to the section . But if the jet contracts, it is at the contracted section of the jet that the direction of motion is normal to a transverse section of the jet. Hence the actual discharge when contraction accurs is

$$
Q_{3}=c_{v} v \times c_{\varepsilon} \omega=c_{c} c_{\mathrm{r}} \omega \sqrt{2 g h}
$$

or simply, if $c=c_{v} c_{n}$

$$
Q_{\Delta}=c \omega \sqrt{2 g h}
$$

There c is called the cocficient of dischargc. Thus for a sharr: edged plane orifice $c=0.97 \times 0.64=0.02$.
17. Experimextal determination of c_{c}, c_{e}, and c.-The coefficient of contraction c_{e} is directly determined by raeasuring the dimeasions of the jet. For this purpose fixed screws of fine pitch (fig. 21) are convenient. These are set to touch the jet, and then the distance botween them can be messured at leisure.

The coefficient of velocity is determized directly by aneasuring the parabolic path of a borizontal jet.

Let OX, OI (fig. 22) be horizontal and rertical axes,

Fig. 21, ihe origin being at the orifice. Let h be the head, and x, y the soordinates of a point A on the parabolic path of the jet. If v_{a}

Fig. 22.
is the relocity at the orifice, and t the time in which a particle moves from 0 to A, then
Eliminsting t,

$$
=v_{a} t ; y=\frac{1}{2} g t^{2}
$$

Then

$$
\tau_{a}=\sqrt{\frac{g x^{2}}{2 y}}
$$

$$
c_{*}=\frac{v_{a}}{\sqrt{2 g h}}=\sqrt{\frac{x^{2}}{4 y h}}
$$

If the jet is not initially horizontal, let OB (fig. 23) be any horizontal datum line, and let the rerticsi distances OC, $A D, B E$ be

Fig. 23.
measmred, the point A being taken conseniently midway between 0 and B. Then

$$
. O C-A D . \text { and } y_{2}=O C-B E
$$

Let a be the ioclination of the jet at C to the harizontal, so that $v_{a} \cos a$ is its horizontal and $v_{a} \sin a$ its vertical velocity at that point. If t is the time in which a particle moves from C to D_{2} than

$$
\begin{aligned}
& \frac{x}{2}=v_{a} \cos a t \\
& y_{1}=v_{a} \sin a t-\frac{g t^{2}}{2}
\end{aligned}
$$

Eliminating

$$
y_{1}=\frac{x}{2} \tan a-\frac{g x^{2}}{8 x^{2}}\left(1+\tan ^{2} a\right)
$$

Similarly,

$$
y_{3}=x \tan a-\frac{g x^{2}}{2 x_{a}^{2}}\left(1+\tan ^{2} a\right)
$$

Hence

$$
\begin{aligned}
\tan a & =\frac{4 y_{1}-y_{a}}{x} \\
r_{a} & =\sqrt{ } \frac{g\left\{x^{2}+\left(1 y_{1}-y_{2}\right)^{2}\right\}}{4\left(2 y_{1}-y_{0}\right)} \\
c_{v} & =\frac{v_{0}}{\sqrt{v_{2} b_{1}}}=\sqrt{\frac{x^{2}+\left(4 y_{1}-y_{2}\right)^{2}}{s h\left(2 y_{1}-y_{0}\right)}}
\end{aligned}
$$

where for h is to ve pat the depth of C below the free rrater enr. face.
The coefficient of discharge is determined inderendently by measuriug the discharge in a ganging tank for a giventime. Then. if Q is the measured volume discharged in one second,

$$
=\frac{Q}{\omega \sqrt{2 g h}}
$$

18. Cosficients for Bcllmouths and Bellmouthed Orifices.-If in orifice is furnished with a monthpiece exactly of the form of the contracted rein, then the whole of the contraction occurs within the monthpiece, and if the area of the orifice is measured at the smaller end, ce must be put $=1$. It is often desirable to bellmouth the ends of pipes, to avoid the loss of head which occurs if this is not done; and such s bellmonth may also have the form of the contracted jet. Fig. 24 shows the proportions of such a bellmouth

Fig. 24.
or bellmouthed orifice, which spproximates to the form of the contracted jet sufficiently for any practical purposc.
For such an orifice Weisbach has lound the following values of the coefficients with different heads.

Head over oulfice, in feet $=h$	'66	164	11.43	85:7	33753
Coefficient of velocity $=c_{\text {c }}$.	. 959	-967	05	-3) 4	-924
Cocfficicat of resisiance $=c_{r}$.087	-063	$\cdot 05 \cdot$	-012	-012

As there is ro contraction after the jet issues from lice crisce, $c_{e}=1, c=c_{\pi}$; and therefore

$$
Q=c_{v} \omega \sqrt{2 g!}=\omega \sqrt{2 g \frac{h}{1+i}}
$$

19. Coefficicnts for Sharp-adged or virluall, Shary-seiged Orifices. -The coefficient of relocity for sharp-edged orifies of dafierent areas and under different heacis is not verj securately detmmined Its mean ralue is about 0.96 .

The coefficient of contraction is aiso deperient ca circumstanecs the relative influonce of which is not so pericetiy lnown as is deeirable. Its mean value for ncifplaced orifees in a plano surface is 0.64 . For conditions sinilar in other respects, the contraction is less (that is, the area of the stream is greuser) the smaller the orifice and the less the liead. If the suriace surounding the orifice is not plane, the coefficient is greater foi a surface consex to the interior of the reservoir and less for a concave surface. The thicliening of the calges of the orifice modifies the contraction'in a slight digree, and if a border or rim is placed rourd part of the edge of the orifice, and projects invards or ontwards, the cocfficient is rery consider. ably altered, end the contraction is thea termed incomplete. If the orifice is placed in a contracted part of the ressel so that the water approaches the orifice with consilerable relocity, the coeffecient is increased, and the contraction is said to be imterfec:

The coefficient of discharge has beeu determined for sharp－edged srifices under a great variety of conditions．Its inean ralue，taking he values of c_{2} and c_{s} given above，is 0.52 ．

For circular orifices，sharp－edged and with complete and perfect contraction，Weisbach found tho following values：－

Coefficients of Dischargo for Sherp－cdgcd Circular Orifices．

Dtameter of Onfico In inctioe．	Ceeftcient of Discharge $=6$ ．	
	Head 2 ft	Head 0．s ft ．
0.4	0.628	0.637
08	－621	629
12	$\cdot 614$	622
16	607	614

The following table，compiled by Mr Finning（Treatise on H＇ater Supply brujinemory，gives values for rectangular orifices in vertical plane surfaxes，tho head being measured，not immediately over the orifice，where the surface is lepressed，but to the still－water surface at some distance from the orifice．The valnes were ottained by graphte interpolation，all the most reliable experiments being plotted and curves drawn so as to averare the discrepabcies．

Coefficienss of Descharge for Rechngular Orifices，Sharp－cdged，in V̈rtical Plane Surfaces．

	Eatio of Height to WInth．							
Orifice	4	2	12	1	$\frac{9}{4}$	\downarrow	$\$$	$\frac{1}{6}$
Fret．			E0 E3 -2 -2	S S $=3$ $=3$		$\begin{aligned} & \text { Bi } \\ & \text { By } \\ & \sum_{0}^{2} \\ & = \end{aligned}$		
$0 \cdot 2$	－	a．	．\cdot	\ldots	．．．	．\cdot ．	\cdots	－ 6.333
3	－	\cdots	\ldots	．．．	．	\cdots	－6293	－6334
4						－ 1140	－6306	6304
－5	＇，	．			60.50	－ 6150	－6：313	．6383
6	．，	．．		－ 5934	－6013	－615	． 6817	6．332
7				－59， 1	6074	（116\％	－6819	－6328
． 8			4130	－\ddagger mot	－6082	6165	－6．322	6326
． 3			613！	－f00 0°	－6， 303	rilts	8392：5	6321
10			6135	－6引l0	6096	6179	R $3: 20$	＋6320
1．25		13193	． 6110	－4018	6095	6153	$6: 117$	－6312
1．50		6197	－6114	－ $4+36$	－ 6100	－6172	$15 * 313$	． 8303
175	．．．	615	－ 1115	tha：3：3	61.63	41159	（i3） 0	6－296
2	，	61143	d111	60	6101	－ 1165	－630以	－ 6 － 541
2．2．		61519	＋1113	bun	（1113	－til 63	623！2	－625\％
$2 \cdot 51$	－2900	（ 31710	－13123	0913	6102	－ 615%	6282	．6078
275	क2．20	－1173	－ 61.36	－ 0146	－6101	－415．4	－6274	0×73
3	－6．273	4176	－18132	－6018	．61 1 2	－ 01515	－ 6268	6297
35	－2，2511	－ 614	Tile：3	－ 60,51	－ $10 \leq 1$	切1和	6054	6251
4	－ $5 \cdot 215$	6150	01611	（60） 7	608．${ }^{\circ}$	－6136	623：3	－63：36
15	－6：2 23	11133	（1）191）	19011	6071	－6125	－ 52.2063	じい口
5	920．8	6124	130） 20	－10： 08	1306：3	－13114	¢゚～いい	－630
6	＋1598	6＋1） 4		＊ $10 \cdot 20$	（i） 19	－ 611.67	＂ 8154	6151
7	Bils	¢081		（a） 11		－615 0	bill	6114
8			6032	13010	－1020	＇60゙33	61173	（bis）
9		－ $5^{2}\left(0{ }^{(1)}\right.$	－1911	64110	6015	－6020	60．05	6川莐
10	6，0935	6915	－1910	－1り11）	－ 0 O10	＇6010	6430	¢冂）
1.5	（6） 10	6015	（ti） 61	full	8012	－901：3	（i0，3）	乐いが
20	－ 010	$60 \leq 1$	6012	（61） 2	－ 0101	6018	．6036	0607
25	foll ${ }^{\text {f }}$	10128	6011	61912	43113	60220	6010	＇60m3
$31)$	－6054	－析？	－6017	－61）13	cinls	602 7	6014	60！2
35	G1矿）	4039	（6） 0	－ij） 11			－60．49	6103
40	们行号	919	－609	－61115	8158	－ 611.37	605．5	－6114
45	－10．5 4	＇6け5＇s	－ 6 （1）	＂5016	615： 14	＊ 019	－6tire	－61：5
50		＇6045	（303）	＇6018	60：35	－0，50	－60\％	－6140

20．Origieas with Ethrs of Sinsible Thikness．－Whan the ciges of the orifier ure not bevelled whtwata，lut have asmuible thickness， the compticint of diselarges is somewhat altered．＇the frollowing

 plan of all tho orifiees is shown at 8 ．＇the phans fonming the orifice and sluice were each 2 inclieg thick，and the onfices were all $2 \boldsymbol{f}$ incbes wide．The headswere measured immediately over tho orifuco．The formato afory becomes，in this case．

$$
Q-c b(H-h) \sqrt{2 g \frac{11+h}{2}}
$$

Table of Coefficionts of Discharge for Rectangular Verlical Orifices i2t Fig． 25.

	Height of O_{1} fice， $\mathrm{H}-\mathrm{h}$ ，in feet．											
	131			0.66			016			$0 \cdot 10$		
	P	Q	R	P	？	R	P	Q	R	P	Q	R
$0 \cdot 328$	0.598	0.644	0648	0.634	0685	0 Crim	0.691	0664	$0 \cdot 660$	0710	0－694＇	0690
－ 656	0 COS	0.653	0651	$0 \cdot 640$	$0 \cdot 672$	0.675	0.685	0.687	0.688	0696	0701	0700
787 .984	0．612\％	0.655	$0 \cdot 659$	0641	0.674 0.675	0675		${ }^{0 \cdot 690}$	0.692 0.695	0.694	0706 0.709	0．708
． 984	$\begin{aligned} & 0.616 \\ & 0.618 \end{aligned}$	0 ¢ 6.5	0.660 0653	0641	0．675	0678	0.683	0893	$0 \cdot 695$	0692	$0 \cdot 08$	0711
1－468	$\begin{aligned} & 0.618 \\ & 0605 \end{aligned}$	0．649	0653 0.634	0.6401 0 688	0.6761 0.614	0.679 0.67%	${ }^{0.678} 0$	0695.	0697 0695	0.688	\bigcirc	0712 0705 0
427	0．602	$0 \cdot 624$	0696	0.68	0.673	0 － 6	0672	$0 \cdot 693$	0.694	0.678	0701	0．702
4.92	0．598	0620	$0 \cdot 622$	0.637 ．	0673	0－674	0672	$0 \cdot 692$	0.693	0.676	0．699	0．698
558	0.596	0.618	0.620	0633	0.672	0.673	0672	0.602	0693	0.676	0698	0.698
6．56	$0-395$	0.615	$0 \cdot 617$	0.636	$0 \cdot 671$	0672	0671	$0 \cdot 691$	0692	$0 \cdot 675$	0.696	0．696
984	0.293	0．611	0612	0.634	0669	0．670	0－668	0.680	0690	0.672	0.693	0.693

21．Puttictly Sup－ pressed Contraction．－ Since the contraction of the jot is due to the convergence towards the orifice of the is． suing streams，it will be diminished if for ang portion of the convergence is pre－ vented．Tluus，if an internal rim or border is apliel to part of the eilge of the orifice gence for so much of the edge is supmressed． For such cases Bidona found the following empinical formulre ap－ plicable：－

For rectangular ori fices，
$c_{6}=0.62\left(1+0.152 \frac{n}{n}\right) ;$ and for circular ori． fices，
$c_{0}=0$ 62 $\left(1+0.128 \frac{n}{n}\right)$ ； where n is the length of the adge of the oni fice over which the honder cstemles，and ？ is the whale lengeth of

etfge or perimeter of the orithe．The fullowing are the valnes of er when the burdm extends over＇$\frac{1}{2} \frac{1}{2}$ ，or $\frac{3}{4}$ of the whole perimeter：－

$\frac{n}{p}$	c Fectanguta Oilfices．	Crecums＂oufiery
025	0613	640
0.10	0667	660
$0 \cdot 15$	0.601	680

For laiger values of $\frac{n}{p}$ the formulac are not applicable．Bornomand has shown，however，that these formula for suppressed contraction are not roliable．
22．Imperfect Contration－If the sides of thi＂wessed ipproath near to the wige of the orifiee，they interfere with the convergnace of the stocams fo which the contraction is dac，and the contraction is then moditied． It is gampally stated that the infleme of the sidis lingins to be fill if Hlwir distance flam the chace of the orifier is hess than 27 timms tha corresponting with of the onifice． The coellimints of contraction for this case are impurfotly known．
23．Onifice＇s Furnishat with Chernmils of Dischurti－These extermal bonders fo an oritico also molify the contraction．

Fig． 26.
The following eonfitiontes of distharge were ohtained with open－ ingey 8 inches sith，amb amall in proprotion to tho chaonel of

$m_{2}-A_{1} \text { in }$	h_{1} in feer.								
	0656	-164	323	655	1.640	328	492	0.56	3 SH
1)	- 480	-511	-542	. 574	- 599	601	-601	$\cdot 601$	601
B 0.656	-480	- 510	-538	-566	592	. 600	$\cdot 602$	-602	601
c.	-527	-553	-574	-592	607	610	-610	. 609	. 608
1	-488	. 577	6224	. 631	-625	6.24	-619	613	-606
B 0.164	- 487	. 571	-606	-617	-626	628	. 627	623	. 618
C)	. 585	$\cdot 614$. 633	$\cdot 645$	652	$\cdot 651$	650	. 650	649

24. Inversion of the Jct. - When a jet issues from a horizontal orifice, or is of small size compared with the head, it presents no marked peculiarity of form. But if the orifece is in a vertical surface, and if its dimensions are not small compared with the head, it undergoes a scries of singular changes of form after leaving the oriticc. These were first investigated by Bidone; subsequently Magnus measured jets from different orifices; and lately Lord Knyleigh (Proc. Moy. Soc., xxix. 71) has investigated them anew.

Fig. 28 slows somo remalkablo forms, the upper row fiving the shape of the orifices, and the others sections of the jet. The jet first coutracts as described ahove, in consequence of the convergence

Fig. 27.
of the fluid streams within the vessel, retaining, however, a form similar to that of the orifice. Afterwards it expands into shects in planes perpendicular to the sides of the orifice. Thus the jet from \rightarrow triangular orifice expands into three sheets, in planes bisecting at right angles the three sides of the triangle. Generally a jet from
an orifice, in the form of a regular polygon of n sides, forms n shects in planes perpendicular to tha sides of the polygon.

Bidone explains this by reference to the simpler case of meeting streams. If two equal streams having the same axis, but moving in opposite directions, meet, they spread out into a thin disk nor*

Fig. 28.
mal to the common ayis of the strams. If the directions of two streams intersect obliquely they spread ioto a symmetrical shect perpendicular to the plane of the streams. Now those portions of a jet which proceed from different portions of an orifice are con. ceived to behave in some degtce like in. dependent mecting streams.

Let a_{1}, a_{2} (fig. 29) he two points iu an orifice at depths $h_{11} h_{2}$ from the free surface. The blaments issuing at a_{1}, a_{2} will have the
 to describe parabolic paths $a_{1} c b_{1}$ and $a_{2} c b_{2}$ of different horizontal rance and intersecting in the point i. But since two filaments
cannot simultancously fow through the same point, they must excrcise mutual pressure, and will be deflected ont of the paths they tend to describe. It is this mutual pressure which cemses the expansion of the jet into shcets.
Lord Rayleigh bas pointed out tbat, when the orifices are small and the head is not great, the expansion of the shects in directions perpendicular to the direction of flow reaches a limit. Sections taken at greater distance from the orifice show a contraction of the sheets until a compact form is reached similar to that at the first contraction. This is shown in the elevation of the jet c. Beyond this point, if the jet retains its coherence, sheets are thrown out again, but in directions bisecting the angles between the previous shepts. Lord Rayleigh accepts au explanation of this contraction first suggested by Buff, namely, thiat it is due to surface tension or Eapillarity. The fluid is enchsed in an cavelope of constant tension, and the recurrent form of the jin it due to vibrations of the fheil column, about a circular figure of equibibium, superpmed on the geseral progressive motion. Since the phase of vibration de. pends on the time elapsed, it is always the same at the sane point in apace, and thus the motion is stealy and the houndary of the jet i is a fixed surface.

In so far as the ribrations may be considered isochronous, the distanco between consecutive corresponding points of the recurrent figure, or, as it may be termed, the wava length of the figure, is directly proportional to the velocity of the jet, that is, to the square root of the head of water. For low he uds the measurements confirm thi.lus. For higher heads there is an merease of tho wave lengths in a higher ratio than the velocity of the jet. This points to a de. parture from isochronous vibration, the ature of which is investigated in Lord liayleioh's paper.

IV. THEORY OF THE STE.ADY MOTION OF FLULDS.

25. The general equation of the steady notion of a fluid given under Hydrodynamies furaishes immediately three results as to the distribution of pressure in a stream which may here be assumed.
(a.) If the motion is rectilinear and uniform, the variation of pressure is the same as in a fluid at rest. Io a stream flowing in an open chanael, for instance, when the effect of eddies produced by the roughness of the sides is neglected, the pressure at each point is simply the hydrostatic pressure due to the depth below the frea surface
(1)) If the relocity of the fluid is very small, the distribution of presare is approsimately the same as in a fluid at rest.
(c.) If the Auid molceules take precisely the accelerations which they would have if independent and submitted only to the external forces, the pressure is uoiform. Thus in a jet falling freely in the air the pressure thoughout any cross section is uniform and equad to the atmospherie pressure.
(2) In any bounded plane section, traversed normally by streams which ara rectilinear for a certain distance on either side of the sec. too, the distribution of pressute is the same as in a Auid at rest.

Distribution or Energy in Incompressible Fluids

Sh Application of the Principle of the Conservetion of Energy to Caser of Stream Line Motion. -The external and internal work dune on a mass is equal to the change of kinetic energy jroduced In many hyilraulic questions this princinle is difficult to apply, becanse from the complicated nature of the motion produoed it is drlicult to cstimate the total kinetic energy generated, and because in some cases the internal work dono in overcoming frictional or viscous resistances cannot be ascertained; but in the case of stream line motion it furnisbes a siuple aud important result known as Eernouilis theorem.

Let AK (fig 30) be any one elementary stream, in a stendily moving fluid mass Then, from the steadness of the motion, AB is a tixed

Fig 31)
path in space through whict a stream if Huin is constantly flowing Let O_{1} b be the free surfice and XX any hormontal datum line Let w twe the area of a nomal cross section, the velacity, p^{\prime} the intensity of pressume, and z the elevation atmue $A x^{\prime}$, of the elementary stram Abat A, and wis $, p_{1}, x_{1}, z_{1}$ the sume quantities at 13 Suppose that in a short time t the mass of thail initially oceajying AB comes to
 fland AA^{\prime}, EB are the equal inllum and ontfow $-\mathrm{Q} t=$ wit $=\omega_{1} \mathrm{v}_{1}$, , in the given tima. If we suppose the litament $A B$ surrounded by atha filaments moving with not very ditterat velocities, the fruc tional wi vernus resistance on its sulfare will he small enonghto be neglected, anl if the fluid is mompri ablite ne intemmal work ia done in change of vilume ithen the werk dume ly extermal furces will be equal to the kinetic enengy fromuced in the thme conanderal

The normal pressures on the shifure of them mass (exclutimg the ents A. blare ue math feint nosmel tw the ditection of motiun, and de be work Hence the enly exterabl touses to be reckulled are arinity and the jressinesen the coula of then atream.
"The wor k of privity what Als fills to A^{\prime} ' B^{\prime} ' is the same bes that of
 femurean on the efila, rimhong that ot brugative, hevaluse it is

no change of kinetic energy, in consequence of the steadiness of the motion. But the mass of $A A^{\prime}$ and $B B^{\prime}$ is $\frac{G}{g} Q t$, and the change of kinetic energy is therefore $\frac{\mathrm{G}}{g} \mathrm{Q}\left(\frac{v_{\mathrm{L}}^{2}}{2}-\frac{v^{2}}{2}\right)^{9} \quad$ Equating this to the work dore on the mass $A B$,

$$
\mathrm{GQ}\left(z-z_{1}\right)+\mathrm{Q} t\left(p-p_{1}\right)=\frac{\mathrm{G}}{g} \mathrm{Q} t\left(\frac{v_{1}^{2}}{2}-\frac{v^{2}}{2}\right)
$$

Dividing by $G Q t$ and rearranging the terms,

$$
\begin{equation*}
\frac{v^{2}}{2 g}+\frac{p}{G}+z=\frac{v_{1}^{2}}{2 g}+\frac{p_{1}}{G}+z_{1} \tag{1}
\end{equation*}
$$

or, as A and B are any two points,

$$
\begin{equation*}
\frac{v^{2}}{2 g}+\frac{p}{\mathrm{G}}+\approx-\text { constant }=\mathrm{H} \tag{2}
\end{equation*}
$$

$\operatorname{Now} \frac{v^{2}}{2 g}$ is the head due to the velocity $v, \frac{p}{G}$ is the head equivalest to the pressure, and $\%$ is the elevation above the datum (sea § 15). Heace the terms on the luft are the total head due to velocity. fressure, and elevation at a given cross section of the filament. z is easily scen to be the work in foot-pounds which would be dona by 1 lb of fluid falling to the datum line, and similarly $\frac{p}{G}$ and $\frac{v^{2}}{2 g}$ are the quantities of work which would be done by 1 to of thid due to the pressure p and velocity v. The expression on the left of the equation is, therefore, the total energy of the streamat the section considered, per to of floid, estimated with reference to the datum line $\hat{X} \dot{B}$ Hence we see that in stream line motion, umder the restrictions named above, the total eacrgy per th of fluid is uniformly distributed along the stream lina. If the free surface of the Ilvid $O O$ is taken as the latum, and $-h,-h_{1}$ are tlie dejphe of A and B measured down frow the fiee surfaca, the equation takes the form
or generally

$$
\begin{equation*}
\frac{v^{2}}{2 g}+\frac{p}{\mathrm{G}}-h=\frac{v_{1}^{2}}{2 g}+\frac{p_{1}}{\mathrm{G}}-\dot{h}_{\mathrm{t}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{v^{2}}{2 g}+\frac{p}{b}-h=\text { constant } \tag{3a}
\end{equation*}
$$

27 Second Form of the Theorem of Eernoulli.-Suppose at the tro sections $A, B(n) g 31)$ of an elementary stream smald vertical pipes are introduced, which may be terined pressare columns

Fig. 31.
(\& 8). having their lower ends accurately parallel to the direction of flow. In such tubes the water will rise to heigite conespunding to the pressures at A and B. Ilence

$$
b=\frac{p}{G}, \quad \text { and } U=\frac{p_{1}}{G}
$$

Conscquently the tops of the pressure columns A^{\prime} and B^{\prime} rill bo at total heights $b+c=\frac{p}{G}+z$ and $u^{\prime}+c^{\prime}=\frac{p_{1}}{G}+z_{1} z$ bove the datum line XX Tho difference of level of the pressuc column tops or the fall of free surface level between A and B, is thercfore

$$
\varepsilon-\frac{p-p_{1}}{4}+\left(=-z_{1}\right)
$$

and this by equation (1), §20, is

$$
\frac{v_{1}^{2}-v^{2}}{2 g}
$$

That is, the fall of fro surface level between "wo sectiona is equal t.) the difference of the heights due to the velocities at the suctions Tho line $A^{\prime} B^{\prime}$ is sometimes called the line of hydraulic gradier!' though this term is atso nsel in cases whoro friution needs in. takef into account. It is the line tho height of which above daia

Ls tha sum of the eleration and pressure head at that noint, and it fulla below a horizontal line $\mathrm{A}^{\prime} \mathrm{B}^{\prime \prime}$ drawn at Il feet above $\mathcal{X} X$ by the quantities $a=\frac{v^{1}}{2 g}$ and $b=\frac{v_{1}^{2}}{2 g}$, when friction is absent.
23. Mlustrations of the Thcorem of Bernou?li. - In a lecture to the mechanical aection of the British Association in 1875, the late Mr W. Froude gave sone experimental illustrations of the primeiple of Bernoulli. Mr Froude remarked that it゙ was a commod but errenenus improssion :hat a fluid exetcises in a eontracting pipe人 (fig. 32) an exccss of preasure against the entire converging surface which it meeto, and that, conversely, as it entera an enlarge.

Fig 32 ment B, a relief of pressure is experienced by the entire tiverging sutface of the pipe Further it is commonly assumed that when passing through a cou trection C, there is in the narrow neck an excess of pressure due to the squeezing together of the liquid at that point. These im pressions are in nn respect correct; the pressure is smaller as the section of the pipe is smaller and conversely.

Fig. 33 shors a pipe so formed that a contraction is followed by to entargeruent, and fig. 34 one in which an enlargement is followed Ly a contraction. The vertical pressure columns show the decrease of pressure at the contraction aud increase of pressure at the en-

Fig 34
largement. The line abe in botli figures shows the variation of free surfaco level, supposing the pipe frictionless In actual pipes, however, work is expended in friction against the pipee, the total heal diminishes in praceeding along the pipe, and the fiee surface level is a line such as $a b_{1} c_{1}$, falling below abc.

Mr Froude further points out that, if a pipe contracts and enlarges थमyin to tho samo size, the resultant preasure on the converging part

Sinilarly the pressures on BC, CD halance those on GII, EG. In the same way, in any combination of enlargements and cootractions, a bulance of pressures, due to the flow of liquid parallel to the axis of the pipe, will be found, provided the sectional area and direction of the ends are the same.

The following eaperiment is interesting. Two eisterns provided with converging pipes were placed so that the jet from one was ex. actly opposite the entrance to the other. The cisterns being filled very bearly to the same level, the jut from the left hand cistera A eatered the right haud cisteru B (big. 36), shooting across the free

Fig. 36.
space betweed them without any waste, except that due to iodirectness of aim and want of exact correspondence in the form of the orifices In tha actual experimeut there wás 18 inches of head in the right and 201 inches of head in the left hand cistern, so that about 24 inches were wasted in frietion. It will be seen that in the open space between the orifices there was no jressure, ex. cept the atmospheric pressure acting voiformly throughout the system.
29. Pressure, I'clocity, and Energy in Diferent Stream Lincs -The equation of Bernouilli gives the variation of pressure and velocity from point to pont along a stream line, and shows tbat the total enargy of the flow across any two sectious is the same. Two other directions may be defioed, one normal to the stream line and in the plabe containing its radins of eurvature at any point, the other normal to the stranm line and the radius of eurvature. For the problems most practically useful it will be sufficient to consider the stream lines as parallel to a vertical or horizontal plane. If the motion is is a vertical plane, the action of gravity nust be

Fig 37
taken ioto the reckoning, if the motion is in a horizontal pare. the terms expressing variation of elevation of the filament will dis: aprear ${ }^{1}$
Let AB, CD (fig 37) be two consecutivo stream lines, at present
 theso liues making an angle ϕ with the veitical. Let I. Q le two particles moving nlong these lues ne a distance $\mathrm{P} Q-d x$, and let z
exactly balances the resultant pressure on the diverging part so that there is no tendency to move the pripe bodily when nater flows through it. Thus the conical part Al3 (fig. 35) presenta the same projected surface as III, and tho pressures parallel to the axis of the pipo, dormal to theso nroiected aurfaces, balance each other.
pressure. Then, if II is the tutal energy at Q per nuit of weight of ftuid,

$$
\mathrm{H}=z+\frac{p}{\mathrm{G}}+\frac{v^{2}}{2 g} .
$$

Differentiating, we get

$$
\begin{equation*}
d \mathrm{H}=d \tau+\frac{d p}{\mathrm{G}}+\frac{\tau d v}{g} \tag{I}
\end{equation*}
$$

for the increment of energy between Q and P. But

$$
d z=\mathrm{PQ} \cos \phi=d s \cos \phi ;
$$

$$
\begin{equation*}
\therefore d \mathrm{H}=\frac{d p}{\mathrm{G}}+\frac{v d v}{g}+d s \cos \phi . \tag{1a}
\end{equation*}
$$

where the last term disappears if the motion is in a horizontal plane. Now imagine a small cylinder of section ω described round $P Q$ as an axis. This will be in equilibrium under the action of its centrifugal force, its weight and the pressure on its ends. But its volume is wds and its weight Gads. Hence, taking the components of the forces parallel to PQ -

$$
\omega d p_{\rightarrow \rightarrow} \frac{\mathrm{G}}{\mathrm{~g}} \frac{v^{2}}{\rho} \omega d s-\mathrm{G} \omega \cos \phi d s
$$

where ρ is the radius of curvature of the stream line at Q. Consequently, introducing these values in (1),

$$
\begin{equation*}
1 \mathrm{H}=\frac{v^{2}}{g \rho} d s+\frac{v d v}{g}=\frac{v}{g}\left\{\frac{v}{\rho}+\frac{d v}{d s}\right\} d s \tag{2}
\end{equation*}
$$

Now it is already known that if, through any particla A, lines be drawn through B and C two particles near to A, such that $A B$ and AC are at right angles at the instant considered, then the mean angular veloeity of these lines is the same in whatever direction they are drawn, and is equal to the angular velocity with which a small cylindrieal element described round A would rotate if supposed sud. denly solidified. This mean angular velocity may be conveniontly called the molecular rotation, and will be denoted by \odot. In the present case $\frac{v}{\rho}$ is the angular velocity of the tangent at Q , and $\frac{d v}{d s}$ is tha angular velocity, reckoned in the same direction, of a line perpendicular to the tangent through P and Q. The sum of these is, therefore, twice the molecular rotation, and

$$
\begin{equation*}
d \mathrm{H}=2 \frac{v}{g} \cup d s: \tag{3}
\end{equation*}
$$

Now $v d s$ is constant, being the flow in an elementary stream of breadth unity, and thickness $d s$. Therefora the difference of energy between two consecutive elementary streams is proportional to the molecular rotation at any point of either.

Curments.

30. Rectilincar Current.-Suppose the motion is in parallel straight stream lines (fig. 88) in a vertical plone. Then ρ is infinite. and from cq. (2), § 29 ,

$$
d \mu=\frac{v d v}{g}
$$

Comparing this with (l) we see that

$$
\begin{gather*}
d z+\frac{d p}{\mathrm{G}}=0 ; \\
\therefore z+\frac{p}{\mathrm{G}}=\text { constant } . \tag{4}
\end{gather*}
$$

or the pressure varies bydrostatically as in a fluid at rest. For two stream lines in a horizontal plane, z is onstant, and therefore p is constant.

Radialing, Current.-Suppose watet howing radially between horizontal parallel planes, at ne dirtance apart - \mathbf{z}^{2} Conceive two cylin-
 drical sections of the current at ralii r_{1} nind r_{j}, where the velocities are r_{1} and v_{2}, and the preseures p_{1} and p_{2}. Since the Eow across each cyliudrical section of the current is the same.

$$
\begin{align*}
& 2 \pi r_{1} \delta v_{1}=2 \pi r_{2} 5 v_{2} \\
& r_{1} v_{1}=r_{2} v_{2} \\
& \frac{r_{1}}{r_{2}}=\frac{v_{2}}{v_{1}} . \quad . \quad . \tag{5}
\end{align*}
$$

The velocily wanld be infinite at ralius 0 , if tho current conld bo conceived to cxtend to the exis. Now, if tho motion is steady,

$$
\begin{aligned}
& \mathrm{I}=\frac{p_{1}}{G}+\frac{\eta_{1}^{2}{ }_{2}^{2}}{2 g}-\frac{r_{3}}{6}+\frac{r_{2}{ }^{2}}{2 g} \text {, }
\end{aligned}
$$

$$
\begin{align*}
& r_{2}-r_{1}-\mu_{1}^{2}\left(1-\frac{r_{1}^{2}}{r_{2}^{2}}\right) \tag{6}\\
& \frac{p_{2}}{H_{j}^{2}}=11-\frac{r_{1}^{2}}{r_{2}^{2}} \begin{array}{l}
r_{1}^{2} \\
2 y_{1}^{2}
\end{array} \tag{6a}
\end{align*}
$$

Hence tho pressure increases from the interior ontwards, in a way indicated by the pressure columns in fig. 39, the curve throushl thi frce surfaces of the pressure columns being, in a radial sectivi, th:

Fig. 39. quasi-hyperbola of the form $x y^{2}=c^{3}$. This curvo is asymptotic to a liorizontal line, II feet above the line from which the pressures are measured, and to the axis of the current.

Free Circular Fortex. - A free circular vortex is a revolving mass of water, in which the stream lines are coneentric circles, and in which the total head for each strenm line is the same. Hence, if by any slow radial motion portions of the wnter strayed from ono strcesn line to another, they would take frecly the velocities proper to their new positions under the action of the cxisting fluid pressurns only.
For such a current, the motion being horizontal, we have for oll the circular clementary streams

$$
\begin{align*}
\mathrm{H} & =\frac{p}{\mathrm{G}}+\frac{v^{2}}{2 g}=\text { constant ; } \\
\therefore d \dot{\mathrm{H}} & =\frac{d p}{\mathrm{G}}+\frac{2 d v}{g}=v . . \tag{i}
\end{align*}
$$

Considice two stream lines ot radii r and $r+d r$ (fig. 39). Then in $(2), \S 29, p=r$ and $d s=d r$,

$$
\begin{aligned}
& \frac{v^{2}}{g r} d r+\frac{r d v}{g}=0 \\
& \frac{d v}{v}=-\frac{d r}{r} \\
& v \propto \frac{1}{r}
\end{aligned}
$$

preciscly as in a radiating current ; nud henco the distribution of pressure is the some, and formule 6, $6 a$ ure applicable to this case.
Frec Spirct Vorkx. - As in a radiating and circular current the equations of motion are the same, they will also apply to in vortex in which the motion is commommled of theso motions in nny proportions, provided the radial component of tho motion varies inversely as the mulius ns in a radial current, and tho tangential - component anrics inversely as the radius us in a free vortes. Then the wholo velocity at any point will be inversely proportional to the radjus of the point, and the fluid will describe stream lines having a constant inclination to the rulius drawn to the nxis of the current. 'That is, the strean lines will be logerjth. wic spirals. When water is delivered from the circumbervere
of a centrifugal pumpor turbine into a clamber, it lomins a free vortex of this kind. The water Hows spmally outwards, its velocity din?inishing and its pressure iucreasing according to the law stated above, and the head along each spial strcam line is coustant.
31. Forced Fortex.- If the law of motion in a rotating current is different from that in a free vortex, some force must be applied to cause the variation of velocity. The simplest case is that of a rotating current in which all the particles have equal angular veloeity, as for instance when they are driven round by radiating paddles revelving uniformly. Then in equation (2), $\$ 29$, considering two circular strean lines of radii r and $r+d r$ (fig. 40), we liave $p=r, d s=d r$. If the angular velocity is a, then $z=a r$ and $d v=a d i$. Hence

$$
d \mathrm{H}=\frac{a^{2} r}{g} d r+\frac{a^{2} r d r}{g}=\frac{2 a^{2} r}{g} d r .
$$

Comparing this with (1), $\S 29$, and putting $d z=0$, bēcause the motion is horizontal,

$$
\begin{align*}
& \frac{d p}{\mathrm{G}}+\frac{a^{2} r d r}{y}-\frac{2 a^{2} r}{y} d r, \\
& \frac{d p}{\mathrm{G}}=\frac{a^{2} r}{y} d r \\
& \frac{p}{G}=\frac{a^{2} r^{2}}{2}{ }^{2}+\text { constant } \tag{9}
\end{align*}
$$

Let p_{1}, T_{1}, v_{1} be the pressure, radius, and velucity of one cylin. drien! section, p_{2}, r_{2}, r_{2} those of another; then

$$
\begin{gather*}
\frac{p_{1}}{G}-\frac{a^{2} r_{1}^{2}}{2 g}=\frac{p_{2}}{G}-\frac{a^{2} r_{2}^{2}}{2 g} ; \\
\frac{p_{2}-p_{1}}{G}=\frac{a^{2}}{2 g}\left(r_{3}^{2}-r_{1}^{2}\right)=\frac{r_{2}^{2}-r_{1}^{2}}{2 g} . \tag{10}
\end{gather*}
$$

That is, the pressure iocreases from within outwards in a curve which in ralial sertions is a parabola, and surfaces of equal pressure are paraboloids of revolution (fig. 40).

Fig. 40.

Dissifation of llead is Shock.

32. Relation of Pressure and Velocily in a Stream in Steady Sfotion when the Changes of Siction of the Struand are Abrupt. When a stream changes section aliruptly, rotating eddies are formed which dissipate energy. The energy absorbed in producing
rotatoul \mathfrak{s} at once abstractel from that eflecture in causing the flow, and sooner or later it is wasted by frictional resistances due to the rapid relative motion of the eddying parts of the fluid. In such cases the work thus expended intermally in the fluid is too inportant to be neglected, and the energy thus lest is commonly termed energy lost in shock. Suppose fig. 41 to represent a stream laving such an
abrupt change of section. Let $A B$, CD be normal sections at points where ordinary strcam line motion has not been dis-
 turbed and where it has been re-establishod. Lei ω, p, v be the area of section, pressure, and velocity at AB , and $\omega_{1}+\nu_{1}, r_{1}$ corresponding quantities at CD. Then if no work were experded internally, ond assuming the stream horizontal, we should have

$$
\begin{equation*}
\frac{k}{\mathrm{G}}+\frac{\mathrm{r}^{2}}{2 g}=\frac{p_{1}}{\mathrm{G}}+\frac{r_{1}^{2}}{2 g} \tag{1}
\end{equation*}
$$

But if work is expended in producing irregular eddying motion, the head at the section CD will be diminished.
Suppose the mass $A B C D$ comes in a short time t to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. The resultant force parallel to the axis of the stream is

$$
p \omega+p_{0}\left(\omega_{l}-\omega\right)-p_{1} \omega_{1}
$$

where p_{0} is put for the unknown pressure on the annular space bo. tween AB and EF. The impulse of that force is

$$
\left\{p \omega+p_{0}\left(\omega_{1}-\omega\right)-p_{1} \omega_{1}\right\} c
$$

The horizontal change of momentum in the same time is the difference of the momenta of $C D C^{\prime} D^{\prime}$ and $A B A^{\prime} B^{\prime}$, because the amonnt of momentum between $A^{\prime} B^{*}$ and $C D$ remains unchanged if the motion is steady. The volume of $A B A^{\prime} B^{\prime}$ or $C D C^{\prime} D^{\prime}$, being the irflow and outflow in the time t, is $Q t=\omega v t=\omega_{1} v_{1} t$, and the momentum of these masses is $\frac{\mathrm{G}}{g} \mathrm{Q} v$ and $\frac{\mathrm{G}}{g} \mathrm{Q} v_{\mathrm{l}} \ell$. The change of momentom is therefore $r\left(r_{1}-v\right)$. Equating this to the impulse,

$$
\left\{p_{\omega}+\overrightarrow{p_{0}}\left(\omega_{1}-\infty\right)-p_{1} \omega_{1}\right\} \ell=\frac{\mathrm{G}}{g} Q \ell\left(v_{1}-q\right)
$$

Assume that $p_{0}=p$, the pressure at $A B$ extending unchanged through the portions of fluid in contact with $A E, D F$ which lie ont of the path of the strearn. Then (since $Q=\omega_{1} v_{1}$)

$$
\begin{align*}
& \left(p-p_{1}\right)=\frac{\mathrm{G}}{g} v_{1}\left(v_{1}-v\right) \\
& \frac{p}{\mathrm{G}}-\frac{p_{1}}{\mathrm{G}}=\frac{v_{1}\left(v_{1}-v\right)}{g} . \tag{2}\\
& \frac{p}{\mathrm{G}}+\frac{v^{2}}{2 g}=\frac{p_{1}}{\mathrm{G}}+\frac{v_{1}^{2}}{\varepsilon^{2}}+\frac{\left(\tau-v_{1}\right)^{2}}{2 g} \tag{3}
\end{align*}
$$

This differs from the expression (1), § 26, obtained for cases where no sensible internal work is done, by the last term on the right. That is, $\frac{\left(v-v_{1}\right)^{2}}{2 g}$ has to be odded to the total head at CD, wlich is $\frac{p_{1}}{G}+\frac{\boldsymbol{v}_{1}{ }^{2}}{2 g}$, to make it equal to the totel hesd at AB , or $\frac{\left(v-\frac{z_{1}}{2}\right)^{2}}{2}$ is the head lost in shock at the abrupt change of section. But $v-v_{1}$ is the relative velocity of the two parts of the stream. Hence, when an cbrupt chonge of section occurs, the liead duo to the relative velocity is lost in shock, or $\frac{\left(v-v_{1}\right)^{2}}{2 g}$ foot-pounds of encrgy is wasted for each pound of fluid. Experiment verifies this result so that the assumption that $p_{0}=p$ appeers to be alnuissible.

If there is no shock,

$$
\frac{p_{1}}{\mathrm{C}}=\frac{p}{\mathrm{G}}+\frac{v^{2}-v_{1}^{2}}{2}
$$

If there is shock,

$$
\frac{p_{1}}{\mathrm{G}}=\frac{p}{\mathrm{G}}-\frac{v_{1}\left(v_{1}-v\right)}{g} .
$$

Hence the pressure head at $C D$ in the second ease is less than in the former by the quantity

$$
\frac{\left(v-v_{1}\right)^{\prime}}{2 g}
$$

or, putting $w_{1} \varphi_{1}=$ are, by the quantity

$$
\begin{equation*}
\vdots_{2}^{2}\left(1-\frac{\omega}{\omega_{1}}\right)^{2} \tag{4}
\end{equation*}
$$

7. THEORY OP THE DISCHARGE FROM ORIFICES AND MOUTHPIECES.

33. Minimum Cofficient of Contraction. Se-entrant Mouthprica of Borda. - Ia one special case the coefficirut of contraction can be datermined theoretically, and, as it is the case where the convergeace of the streams approaching the orifice takes place through the greatest possible angle, the coefficient thus determinad is the minimum coeflicieat.
Let fig .42 represent a vesgel with vertical aides, 00 being the free water surface, at which the pressure is $p_{\text {a }}$. Suppose the liquid issaes by a hori. roatal mouth. pieco. which is re-entrant aod of the greatest leogth which permits the jet to apring clear from the imner eod of the orifice, without adhering to its sides. With such an orifice the velocity aear the points CD is neg. ligible, and the prassure at those points may be E taken equal to the bydrostatic pressure due to the depth Irom the free aurface. Let Ω be the ares of the mouthpiece $A B$, ω that of the con. tracted jet aa. Suppose that in a

Fig. 42.
mass 00 cta comes to the position $0^{\prime} O^{\prime} a^{\prime} a^{\prime}$; the impulse of the borizootal external forces octing on the mass during that time is eyual to the horizontal change of momeotum.

The pressnre on tha side $O C$ of tha mass will be balanced by the pressure on the opposite side OE, and so for all other pertions of the verticai surfaces of the mass, excepting the portion EF opposite the moutlipiece and the sarface daaB of the jet. On EF the pressure is eimply the fiydrostatic pressure due to the depth, that is, $\left(p_{\mathrm{a}}+\mathrm{Gh}\right) \mathrm{a}$. On the surface and section Aad $\begin{aligned} & \text { of the jet, the liorizontal re- }\end{aligned}$ onltant of the pressure is equal to the atmospheric pressure p_{a} acting on the vertical projection AB of the jet; that is, the resultant pressure is $-p_{a} \Omega$. Heace the resultant horizontal force for the whole mass $00 a n$ is $\left(\rho_{\mathrm{a}}+\mathrm{G} h\right) \Omega-\rho_{\mathrm{a}} \Omega=\mathrm{G} h \Omega$. Its impulse io the time t is Ghnt. Since the motion is steady thera is no chaoga of moraentum between $O^{\prime} O^{\prime}$ and $a a$. The change or horizontal momentum is, therefore, the difference of the horizontal fuomentum lost in the space $000^{\prime} 0^{\prime}$ and gained in the epace aaa'a'. In the former space there is do horizontal momentum.
The volome of the space aa a a^{\prime} is writ; the mass of liquid in that space is $\frac{\mathrm{G}}{\mathrm{g}} \omega v t$; its momentum is $\frac{\mathrm{G}}{g} \omega v^{2} t$. Equating impulse to momentum gained,

But

$$
\begin{aligned}
& \text { Gh } \Omega t=\frac{G}{g} \omega v^{2} t \\
& \frac{\omega}{\Omega}=\frac{g h}{v^{2}} \\
& v^{2}=2 g h_{,} \text {and } \frac{\omega}{\Omega}=r_{c}: \\
& \frac{\omega}{\Omega}=\frac{1}{2}=c_{c} \text {; }
\end{aligned}
$$

a result confirmet by experiment with mouthpieces of this kinul. A similar theoretical investigation is not possible for orifices in plane surfaces, because the velocity along the sides of the vessel in the neightourhool of the orifice is not so small that it cas lee neg. lected: The resultant horizontul 1 ressure is therefore greater than G / s, and the eontraction is less. The experimental values of the coefficieat of discharge for a re-entrant mouthpiece are 0.5149 (Rordu), 0.5517 (Bidone), 0.5324 (Weishach), valucs which diffier little from the throretical value, 0% given ahove.
34. Velmety of Filtomonts issming in a Jet. - A jut is composend of tlaill filmmente or clementary stimma, which stare into motion at aome pont in the interior of the sesuel from which the fluid io dis. chargerd, and grablady acfure the volmeity of the jot. Lut It ,
 city is insensibly small, and m at the most contracted seetirn of the
jet, where the filaments bave become parallet and exercise uniform matual pressure. Take the free surface $A B$ for datum line, and let

Fig. 48.
n_{1}, u_{1}, h_{1}, be ine pressure, velocity, and depth below datem at M; p, v, h, the corresponding quatities at m. Then $\S 26$, eq. (3),

$$
\begin{equation*}
\frac{v_{1}^{2}}{2 g}+\frac{p_{1}}{G}-h_{1}=\frac{v^{2}}{2 g}+\frac{p}{G}=h \tag{1}
\end{equation*}
$$

But at M, since the velocity is insensible, the pressure is the hydro. statie pressure due to the depth; that is, $v_{1}=0, p_{1}=p_{a}+G h_{1}$. At $m, p=p_{a}$, the atmospheric pressure souod the jet. Heace. ioserting these valucs,

$$
\begin{align*}
0+\frac{p_{a}}{G}+h_{1}-h_{1} & =\frac{v^{2}}{2 j}+\frac{p_{a}}{\mathrm{G}}-h ; \\
2^{2} & =h \tag{2}\\
\text { or } & =h \\
v & =\sqrt{2 g h} \Rightarrow 8025 \sqrt{h}
\end{align*}
$$

That is, neglecting the viscosity of the fluid, the velocity of filameats at the contracted section of the jet is simply the velocity dus to the difference of level of the free surface in the reservoir and the drifice. II the ortfice is small in dimen. gions compared with h. the flameots will all have nearly the same velocity, and if h is measured to the centre of the orifice, the equation above gives the meas velocity of the jet.
Case of a Submerged Orifice.-Let theorifice discharge belew tho level of the tail mater.
 Then usiug the notation shown in fig. 44, we have at $M, v_{1}=0$, $p_{1}=\mathrm{G} h_{1}+p_{\mathrm{a}}$; at $m, p=\mathrm{G} h_{3}+p_{\mathrm{a}}$ Inserting these values in (3), § 26,

$$
\begin{gather*}
0+h_{1}+\frac{p_{\mathrm{a}}}{\mathrm{G}}-h_{1}=\frac{v^{2}}{2 g}+h_{\mathrm{s}}-h_{3}+\frac{r_{a}}{\mathrm{G}}: \\
\frac{v^{2}}{2 g}=h_{\mathrm{a}}-h_{3}=h \tag{3}
\end{gather*}
$$

where h is the difference of level of the head and tail water, and may be termed the effictive head prolucing flow
Case where the Preswerps are different on the Free Surface and al the Orifice. - Let the fludd flow Irens a vessel io which the pressure is p_{0} into a vessel in which the pressure is p, fig. 45. The pressure p_{0} will produce the same effect ay a layer of fluid of thickness $\frac{p_{9}}{G}$ added to tha G
head water: and the presaure p will proluce the same ceffect as a layer of thickuess arked to the tail water. Hence the vifentiva difference of luvel, or ctiective herdpredacing flew, will he

Fig. 45.

$$
h-h_{0}+\frac{p_{0}}{3}-\frac{p}{6}
$$

and the velocity of discharge will be

$$
\begin{equation*}
\left.v=\sqrt{2 j^{i}\left\{h_{0}+\mu_{0}-p\right.} \mathrm{G}^{-2}\right\} \tag{4}
\end{equation*}
$$

We may express this result by saying that differences of pressure at the free surface aod at the orthee are to be rectioned as part of the effective head

Hence in all cases thus fir treated the velonty of the jet is the relocity due to the effective head, and the discharab , allowing for coutraction of tbe jet, is

$$
\begin{equation*}
\mathrm{Q}=c \alpha \cdot t=i \omega \sqrt{2-g h} \tag{5}
\end{equation*}
$$

where $\boldsymbol{\omega}$ is the area of the orifices. sw the area of the contracted sec. tion of the jet, and h the effertive hend measured to the centre of the oritice. It haud ware taken iu lect. Q is m rutice feet per second.

It is obvions, however, that this formula assimes that all the filameats have seasibly the same velocity. That will be true for horizontal orifices, and very approximately true in other insis, if the dimenstons of the orifice are nut harge compared with tho head h In larige oritices in saly a "ertwal surface, the value: of h is ditherent for different filmonts, and then the velocity of diferent filanomes is not seosibly the same.

Simple Obifices-IIrad Consirant.

35. Large Rectangutar Jits from Oifices in l'ertical Plane Sur. faces. - Let an oritice ta a vertical plaueydriace be so Jormed that it produces a jet having a reet. angular contract. ed section with vertical and burizontal sides. Lut b (fig. 46) be the breailth of the jet. h_{1} and h_{2} the depths below the frea surface ot its ujper and lower surfaces. Consider a lamina of the jet between the depths h and
 Fig. 46. $h+d h$. Its nommal section is $6 d h$, and the velocity of discharge $\sqrt{2 \text { eh. }}$. The discharge pro seconl in this tamina is therefore $b \sqrt{2 g h} d h$, snd that of the whole jet is therefore

$$
\begin{align*}
& Q=\int_{h_{1}}^{n_{2}} b \sqrt{2 g h} d h \\
& =3 b \sqrt{2 g}\left\{h_{2}^{9}-h_{1}^{\prime}\right\} \tag{6}
\end{align*}
$$

where the first factor on the rigut is a coefficient depending on the form of the oritice.
Now an orifire prolluciog a rectangular jet must itself be rery npproximately rectangular Let B bo the braadth, $\$ 1_{1}$, $M_{a,}$ the lepthy to the ujeber and lower edges of the orifice Put

Then the discharge. To tems of the dmensians of the orifice, instead of those of the jet, 1 s

$$
\begin{equation*}
\mathrm{Q}=1 \mathrm{cB} \sqrt{29}\left(\mathrm{H}_{2}{ }^{1}-\mathrm{H}_{4}^{\mathrm{l}}\right) \tag{8}
\end{equation*}
$$

the formula conamonly giver for the discharge of rectaboghar orilices The coetheient e is not, however, aimply the coellicie ot ol coutraction, the value of which is

$$
\begin{gathered}
\ell\left(h_{j}-n_{1}\right) \\
\overline{\mathrm{E}}\left(\mathrm{H},-11_{1}\right)
\end{gathered}
$$

and out that given in (7). It cannot be a s.med. therefore, that c mequation (8) is coustint, and in fact $1 t$ is found ta vary for dafferent values of $\frac{3}{1 H_{2}}$ and $\frac{8}{H_{1}}$, unt mast be asiertained expermentally.

Relation between the Eifpressionx (5) and (8) -For a rectangular
 sured to lls centie is $\frac{1}{2}\left(11_{2}+H_{1}\right)$ Putting these values is (5).

$$
Q_{1}=c \mathrm{~B}\left(\|_{2}-I_{1}\right) \sqrt{y\left(1 I_{2}+I_{1} \mid\right.}
$$

From (8) the discharge is

$$
Q_{2}=2 c \Gamma \sqrt{211}\left(11_{2}^{2}-11_{1}^{1}\right)
$$

Hence, for the same value of c in the two cases.

$$
\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}-\frac{\mathrm{H}_{2}^{2}-\mathrm{H}_{1}^{9}}{\left(\mathrm{H}_{0}-\mathrm{H}_{2}\right) \sqrt{2}\left(\mathrm{H}_{2}+\mathrm{H}_{6}\right)}
$$

$$
\begin{equation*}
=0.9427 \frac{1-\frac{1_{1}}{H_{2}}}{1-\frac{H_{1}}{H_{1}} \frac{H_{1}}{H_{2}}} \sqrt{\left(1+\frac{H_{1}}{H_{z}}\right)} \tag{9}
\end{equation*}
$$

If H_{1} varies from 0 to $\infty, \frac{H_{1}}{H_{2}}$ varies from 0 to 1 . Thet following tablegives values of the two estimates of the discharge for different valure of $\frac{\| I_{1}}{\| I_{2}}$,

$\frac{H_{1}}{H_{1}}$	Q_{2} Q_{2}	$\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}$.	$\frac{Q_{2}}{Q_{1}}$
00	943	08	-909
02	$\cdot 979$	09	-989
115	- 995	- n	1000
07	$\cdot 498$		

Hence it is obvious that, except for very small values of $\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}$, the simpler equation (5) gives values sensibly ilentical with those of (8). Whed $\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}<05$ it is better tu use equation (8) with valuts of c determined experimentally for the particular proportious of orifice which are in question.
36 Large Jets having a Cirnular Section from Orifies in a Vertical I'taue Surface. - Let hig 47 represent the stetion of the jet

Fig. 47.
00 being the free surface level in the rescrooir. The discharg throngh the horizontal strip aabb, of breadth $a a=b$, betweea the $h_{2}+y$ and depths $h_{1}+y+d y_{1}$ is

$$
d \mathrm{Q}=u \sqrt{ }\left\{2 g\left(h_{1}+y\right)\right\}(l y
$$

The whole discluarge of the jet is

$$
\mathrm{Q}=\int_{0}^{d} u \sqrt{ }\left\{2 y\left(h_{i}+y\right)\right\} d y
$$

But $b=d \sin \phi, y=\frac{1}{2} d(1-\cos \phi) ; d y=\frac{1}{2} d \sin \phi d \phi$. Lot

$$
\epsilon=\frac{d}{2 h_{1}+d} .
$$

then

From en (5), putting $w=\frac{\pi}{4} d^{2}, h=h_{1}+\frac{d}{2}, c=1 \pi h e n d$ is the dia. meter of the jet and not that of the orilice.

$$
\begin{aligned}
& \left.Q_{1}=\frac{\pi}{4} d^{2} \sqrt[2]{2}\left(h_{1}+\frac{d}{2}\right)\right\} \cdot \\
& Q_{1}=\frac{2}{\pi} \int_{0}^{T} \sin \theta v^{2}\{1-\cos \phi\} d a \\
& Q_{1}
\end{aligned}
$$

For
aed for

$$
\begin{aligned}
& h_{1}=\infty, \epsilon=0 \text { and } \begin{array}{l}
\left.\frac{Q}{(}\right)=1 \\
Q_{1} \\
h_{1}=0, \epsilon=1 \text { and } \\
\frac{Q_{1}}{(}=006
\end{array}
\end{aligned}
$$

So that in this case abothe difference between the sinuple formula (5) and the formala above, in whin the valation of head at dincre. cont parts of the oritice is taken moto accomat, is very smal!.

Notches and Wears.

37 Nothes, Wears, and fyerashex. - A notch is an orifice extend. ing up to the free sultoe devel in the reservoir from which the dise harge takes place A whe is a stucture over which the water Hows, the dischange being in the same conditions as for a notch. The fors. mula of dsahatere for an onitice of this kims is ondmaty dedured

tained as in the preceding, saction. . Thus for a rectangular notch, put $\mathrm{H}_{\mathbf{1}}=0$ in (8). Then

$$
\begin{equation*}
Q=B \operatorname{B} 2 g H \tag{11}
\end{equation*}
$$

where \mathbf{H} is pot for the depth to the crest of the weir or the bottom of the notel Fig. 43 shows the mode in which the disckarge occurs in the case of a rectangular notch or weir with a level crest. As the free surface level falla very sensibly near the notch, the head H should be measured at some distance bsck from the notch, at a point where the velocity of the water is very small.
Since the area of the notch opening is BH , the above formala is of the form

$$
\mathrm{Q}=c \times \mathrm{BH} \times i \cdot \sqrt{2 g \mathrm{H}},
$$

where k is a factor depending on the form of the notch and expressing the ratio of the mean velocity of discharge to the velocity due to the depth H .
33. Francis's Formula for Rctangular Notches.-The jet discherged through a rectangular notch has a sectiou smaller than BH , (a) because of the fall of the water surface from the point where HI is measured towards the weir, (b) in con. sequence of the crest cootraction, (c) in consequeace of the end contrac. tions. It may be pointed cut thal while the diminution of the secion of the jet due to the surface fall and to the crest contrac. tion is proportiooal to the length of the weir, the end con. tractions bave nearly the same effeat whether the weir is wide or nastow.

Mr Francia's experimenta ehowed that a perfect end contraction, when the heads varied from 3 to 24 inches, and the length of the weir was not leas than three times the head, dimin. iabed the effective

Fig. 48. an and and anderimately equal to one-tenth of the bead. Hence, if l is the length of the notch or weir, and H the head measured behind the weir where the wator is nearly still, then the width of the jet passing through the notch would bo $l-0.2 \mathrm{H}$, allowing for two end contractiona. In a woir divided by posts there may be more than two end contractions. Hence, generally, the width of the jet is $l-0 \cdot 1 n \mathrm{H}$, where n is the number of cod contractions of the atrcam. The contractions due to the fall of surface and to the crest contrattion are proportional to the width of the jet. Hence, if cH is the thickness of the atream over the weir, measured at the contracted section, the section of the jet will be $c(l-01 n H) H$ and ($\$ 37$) the mean velocity will be $\frac{\sqrt{2} g \mid \overline{1} \text {. Consequently the }}{}$ discharge will bo given by an cquation of the form

$$
\begin{aligned}
& -3 c(l-0.1 n \mathrm{H}) \mathrm{H} \sqrt{2 g \mathrm{H}} \\
& -5.35 e(l-0.1 \mathrm{nH}) \mathrm{H}^{?}
\end{aligned}
$$

This is Francla's formuln, in which tho coefficient of dischargo e is much more nearly constant for different values of l and h than in

$\mathrm{l}^{\prime} \mathrm{ig}, 49$.
the orimary formula. Francis fuund for c the mean value 0.02 z , the weir beine shatpeedged.
39. Triangular Notch (fig. 49).-Consider a lamina issoing between the deptha h and $h+d h$. Its area, neglecting cont:action, will be $b d h$, and the velocity at that depth is $\sqrt{2 g h}$. Hence t^{2} dia charge for this lamina is
But

Hence discharge of lamina

$$
b \sqrt{2 g h} d h
$$

How deharge or lamia

$$
=\mathrm{B} \frac{\mathrm{H}-\pi}{\mathrm{H}} \sqrt{2 g h} d h ;
$$

and total discharge of notch

$$
\begin{aligned}
=\mathrm{Q} & =\mathrm{B} \sqrt{2 g} \int_{0}^{\mathrm{H}} \frac{\mathrm{H}-h^{\frac{3}{2}}}{\mathrm{H}} h^{2} d \pi \\
& ={ }_{5}^{4} \mathrm{~B} \sqrt{2 g} \mathrm{H}^{3},
\end{aligned}
$$

or, introducing a coefficient to allow for contraction,

$$
Q=\frac{4}{15} \subset \mathrm{~B} \sqrt{2 g} \mathrm{H}^{\frac{1}{2}} .
$$

When a notch is used to gange a stream of varying flow, the ratlo $\frac{\mathrm{B}}{\mathrm{H}}$, varies if the notch is rectangular, but is constant if the zotch is triangular. This led Professor Jance Thomson to suspect that the coefficient of discharge, c_{r}, would be much more constant with different valuea of H in a triangular than in a rectangular notch, and this has been experimentally shown to be the casc. Hence a triangular notch is more suitable for accurate gangings than a rectangular notch. For a sharp-edgel triangular notch Professor J. Thomsod found $c=0.617$. It will be seen, as in $\S 37$, that since $\frac{1}{2}$ BH is the area of section of the stream through the notch, the fornula is again of the form

$$
\mathrm{Q}=c \times \frac{1}{?} \mathrm{BH} \times k \sqrt{2 g \mathrm{H}},
$$

where $k=\frac{9}{16}$ is the ratio of the mean velocity in the notch to the velocity at the depth H. It may easily be shown that for all notches the discharge can be expressed in this form.
40. Weir with a Broad Sloping Crast - Suppose a weir formed with a broad crest so sloped that the streams flowing over it have a move ment sensibly rectilidear and uniform (tig. 50). Let the inner edge'

Fig. 50.
oo rounded as to prevert a crest contraction. Consider a filament $a a^{\prime}$, the point a heing so far back from the weir that the velocity of approach is negligible. Let 00 be the surfece level in the reservoir, and let a be at a height $h^{\prime \prime}$ below 00, and h^{\prime} abovo a^{\prime}. Let h be the distance from 00 to the weir crest and e the thickness of the stream upon it. Neglecting atmospheric pressure, which has no influence, the pressure at a ie $\mathrm{C} h^{\prime \prime}$; at a^{\prime} it is $G z$. If v be the velocity at a^{\prime},

$$
\begin{aligned}
& \frac{n^{\prime}}{2 g}-h^{\prime}+h^{\prime \prime}-\varepsilon-h-0 ; \\
& \mathrm{Q}=b e \sqrt{2 g(h-\varepsilon)}
\end{aligned}
$$

Theory doos not furniah a value for e, but $Q=0$ for $e=0$ and for $0=h$. Q has therofore n maximum for a value of e between 0 and h, obtained by equating $\frac{d Q}{d \theta}$ to zero. This gives $c=\$ h_{1}$ and, inserting this value,

$$
\mathrm{Q}=0.385 b h \sqrt{2 g h},
$$

as a maximum value of the diacharge with the conditions assigned. Experiment shows that the aetual disclange is very approximutely equal to this maximum, and the formula is more legitimately ap. phicnble to the discharge over broul-crested weirs and to cases such as the discharge with frue upper surface through large masonry sluice openings than the oriliuary weir formula for sharp-edged weirs. It shond be remembered, however, that tho friction on tho sides and crest of the weir las beca negteeted, and that this tends to reduce a little the discharge. The formula is equivalent to the ordinary weir formula with $c=0.575$.

Cosfficients for the Discharge over Weirs, derived from the Experiments of Mr Blaciwell. When more than one cxpsriment vas mude with the same head, and the results were pretty uniform, the resulting cosflcients are marked with an (") The efficet of the converging uing-boards is very strongly marked.

Hesis in	Shap Edge.		Planis 2 inches thick, square oo Crest				Crests 3 feet wide					
measured trom still Water in Reservolr.	$\begin{aligned} & 8 \text { feet } \\ & \text { lung. } \end{aligned}$	$\begin{aligned} & 10 \text { feet } \\ & \text { long. } \end{aligned}$	$\begin{aligned} & 3 \text { feet } \\ & 100 \mathrm{~g} . \end{aligned}$	6 reet long.	10 feez long.	10 feet long, wing bourds making an angle of $\mathrm{CO} 0^{\circ}$.	$\begin{gathered} 3 \text { feet long. } \\ \text { leve. } \end{gathered}$	3 fect long, fal 110	3 feet long. fall 1 In 12.	$\begin{gathered} 6 \text { feet long. } \\ \text { level. } \end{gathered}$	10 feet long, level	10 feet lung. fall 1 m 18.
1	677	- 809	${ }^{-467}$	459	${ }^{4} 435^{1}$	$\cdot 754$	- 452	-545	$\cdot 467$...	-981	'467
2	$\cdot 675$	-803	-509*	. 561	-585*	-675	-482	-546	-533	\cdots	-479*	* $495{ }^{*}$
3	-630	642*	-563*	-597*	${ }^{-568 *}$	\cdots	-441	-537	-539	'492*	...	
4	$\cdot 617$	$\cdot 656$	-549	-575	-602*	$\cdot 656$	-419	-431	$\cdot 455$	-497* 515
5	- 602	-650*	${ }^{3} 5888$	-60]*	-609*	-671	-479.	-516	\cdots	. -07	$\cdot 518$	1
6	-593	...	-598*	-608*	-576*501*		'531	-507	$\cdot 513$	$\cdot 543$
7	...	\ldots	${ }^{617}{ }^{*}$	-608*	-576*	\cdots	-488	-513	-527	$\cdot 497$	\cdots	
8	.	581	.606*	-590*	. 548 *	... ${ }^{\text {! }}$	-470	-491	\cdots	\cdots	-468	. 507
\bigcirc	-	'530	-600	-569*	-558*	...	-476	-492*	-498	-480*	-486	.
10	-614*	-539	-534*	- 465^{*}	-455	.
12	-525	-534*	-467*
12	\ldots	..	\ldots	${ }^{\circ} 549^{*}$	\cdots	-	. ${ }^{\circ}$	\cdots	\cdots	\cdots

- The uscharge per second rarled from 461 to 655 coble feet in two experimeots. The coefficient 435 is derived from the mean value

Special Cases of Discearge from Orifices.

41. Cases in which the Velocily of Approach needs to be taken into Account. Rectangular Orifices and Notches.-In finding the velocity at the orifice in the preceding inveatigations, it has been assumed that the head h has been measnred from the free surface of atill water above the orifice. In many cases which occar in practice the chanael of approach to an orifice or notch is not so large, relatively to the stream through the orifice or notch, that the velocity in it can be disregarded.
Let h_{1}, h, (6 g .51) be the heads measured from the free aurface to the top and bottom edges of a rectangular orifice, at a point in the

Fig. 51.
ehannel of approsch where the velocity is u. It is obrious thet a fall of the free surface,

$$
\mathbf{h}=\frac{u^{2}}{2 g}
$$

has been aomewhere expended in producing the velocity u, and hence the true heads measured in still water would have been $h_{1}+\hbar$ end $h_{3}+b$. Consequently the discharge, allowing for the velocity of appmach, is

$$
\begin{equation*}
\mathrm{Q}=\frac{8}{3} c b \sqrt{2 g}\left\{\left(h_{3}+b\right)^{3}-\left(h_{2}+b\right)^{3}\right\} \tag{1}
\end{equation*}
$$

And for a rectangular notch for which $h_{1}=0$, the dasharge is

$$
\begin{equation*}
\overrightarrow{\mathbf{u}}=\overline{\mathrm{g}} \mathrm{c} \dot{\delta} \sqrt{2 g}\left\{\left(h_{2}+\mathfrak{b}\right)^{\prime}-b^{3}\right\} \tag{2}
\end{equation*}
$$

In cases where u can be directly determined, thesc formule give the discharge quite aimply. When, however, u is only known as a function of the section of the at ream in the channel of approach, they become complicated. Let Ω be the sectional area of the cliannel where h_{1} and h_{2} are measured. © Then $u=\frac{Q}{\Omega}$ and $b=\frac{Q^{2}}{2 g \Omega^{2}}$.

This value introduced in the equations above wonld render them excessirely cumbrons. In cases therefore where Ω only is known, it is best to procecd hy approximation. Calculate an approximate value Q^{\prime} of Q by the equation

$$
\left.\mathrm{Q}^{\prime}=\right\} \operatorname{cb} \sqrt{2 g}\left\{h_{y}{ }^{\prime}-h_{1}\right\}
$$

Then $t=\frac{Q^{\prime 2}}{2 g \Omega^{2}}$ aearly. This ralue of b introduced in the equations ibsre witl give a second and much more approximate ralue of Q.
42. Parlially Suhmerged Fetangular Orifecs and Notchas.When tho tail water is above the lower but below the upper edge of the orifica, the flow in the two parts of the orifice, iato which it is divided by the anrfaco of the tall water, takes place under diferent souditions. - A Glament $\mathrm{M}_{3} n_{1}$ (Gig. 52) in the upper part of the :2.-1乌*
orifice issnes with a head h^{\prime} which may have any ralue between h_{1} and h. But a filament $\mathrm{M}_{3} \pi_{7}$ issuing in the lower part of the orifice has a velocity due to $h^{\prime \prime}-h^{\prime \prime \prime}$, or h, simply. In the upper past

Fig. 14.
of the orifice the head is reriable, in the jower constant. If Q_{1}, Q_{2} are the discharges from the upper and lower parts of the orifice, d the width of the orifice, then

$$
\left.\begin{array}{l}
\mathrm{Q}_{1}=\frac{g}{3} c l \sqrt{2 \eta}\left\{h^{\mathbf{1}}-h_{1} \eta\right\} \tag{3}\\
\mathrm{Q}_{2}=c^{\prime}\left(h_{2}-h\right) \sqrt{2 g h}
\end{array}\right\}
$$

In the case of a rectangular notch or weir, $h_{1}-0$. Traerting this value, and addiog the two portions of the discharge together, we get for a drowned weir

$$
\begin{equation*}
Q=c b \sqrt{2 g h}\left(h_{2}-\frac{h}{3}\right) \tag{4}
\end{equation*}
$$

Where h is the difference of level of the head and tail water, and h, is the head from the free surface above the weir to the weir crest. If relocity of approach is taken into account, let b be the head due to that velocity; then, adling \mathbf{b} to each of the beads in the equations (3), and reducing, we get for a weir

$$
\begin{equation*}
\mathrm{Q}=c b \sqrt{a_{g}}\left[\left(h_{2}+\mathfrak{b}\right)(h+\mathfrak{b})^{3}-\mathfrak{b}(h+\mathfrak{b})^{2}-3 \mathfrak{b}^{3}\right] \tag{5}
\end{equation*}
$$

an equation which may be useful in estimating flood discharges. ä $_{7}$ Bridge Piers and other Obstructions in Streams. - When the piers of a bridge are erected in a strean they create an obstruction to the How of the stream, which causes a diference of surfacc-level above

Fig. 53.
and below the pier (fig. 53). If it is necessary to estimale this difter ${ }^{-}$ enco of level, the now between the piers may be treated as if it occurred over a drownod weir. Wut the valuc of c in this casp

49. Separating Weirs - Many towns derive their water supply from etreams in high moorland districts, in which the flow is ex. teomely variable. The water is collected in large storage reservoirs, from which an noiform supply can be sent to the town. In such cases it is desirable to separate the coloured water which comes down the streams in high tloods from the purer water of ordinary flow. The iatter is sent into the reservcirs; the former is allowed to flow away down the origival stream channel, or is stored in sepa. rato reservoirs and used as compensation water. To accomplisb the separation of the flood and ordinary water, ed vantage is taken of the different horizontal range of the parabolic path of the water falling over a weir, as the depth on the weir and, conecquently, thine velosity change. Fig. 5s shows one of these eepsrating weirs

Fig 54
which they were first introduced on the Manchester Waterworks; fig 55 a more modern weir of the bame kiod desigued by Alr Binnie for the Bradford Waterworks. When the quantity of water coming

Fig, 55
down the stream is not excessive, it drops over ine weir incos transverse channel leading to the reservoirs. In flood, the water springs over the mouth of this channel and is led into a waste channel.

It may be assumed, probably with sccuracy enough for practical purposcs, that the particles describe the parnbolas due to the mean velocity of the water passing over the weir, that is, to s velocity

$$
8 \sqrt{2 g h}
$$

where h is the herd ebove the crest of the weir.
Let $c b=x$ he the width of the orifice and $a c-y$ the difference of level of its edges (6g. 56). Thea, if a particle passes from a to biot seconds,

$$
\begin{aligned}
& x=\frac{1}{2} g t^{2} \\
& y=3 \sqrt{2 g h} t ; \\
& x=i \frac{y^{2}}{h}
\end{aligned}
$$

Which gives the width x for any given difference of level y and head h, which the jet witl just pass over the oritico. Set off ad vorti. cally und equal to bg on any scalo; of horizodally and equal to © $\sqrt{g^{h}}$. Divido af, fe into an equal number of equal parta. Join a with the divisions on ef. Tho intersections of these lines with verticals from the divisions on af give the paraholis path of the joth

efiecra-llean Constant

44. Culindricul Mouthpicees, - When water issues from a short cylindrical pipe or mouthpiece of lungth at loast equal to is times i: 3 mallest transvorse dimension, thestram, after contraction within the monthyiece, expands to fill it md issues full loore, or without rontraction, at the point of lisharge. The dischange is found to
be about one-third greater than that from a simple onfice of the same size. On the other hand, the edergy of the fluid per unit o? weight is less thso that of the stream from a simple orifice with the same bead, because part of the energy is wasted in eddies produced at the point where the otream expands to gll the mouthpiece, the action being something like that which occurs at an obrupt change of section

Fig. 56.
Let fig. 57 represent a vessel discharging throngh a cylindrics; mouthpiece at the depth h from the free surface. and let the axis r^{\prime}
the jet $X X$ be taken as the detum with reference to which the head is estimated Let Ω be the area of the mouthpiece, a the ares of the stream at the contracted section EF. Let v, p be the velocity sad preseure et EF, and v_{1}, p_{2} the same quantities at GH. If the discharge is into the sir, p_{1} is equal to the atmo-

Fig. 57.
The total head of any tilament which goes to form the jet, taken at a point whore its velocity is sensibly zero, is $h+\frac{p_{a}}{G}$; at EF the total head is $\frac{v^{3}}{2 g}+\frac{p}{G}$; at GII it is $\frac{v_{1}^{\prime}}{2 g}+\frac{p_{1}}{G}$

Between EF and GH there is a loss of hend due to abrupt change of velocity. which from eq. (3), §32, mey heve the value

$$
\frac{\left(11-v_{1}\right)^{2}}{2 g}
$$

Adding this head lost to the head at GH, before equating it to the heads at EF and at the point where tho lilameuts start into motion,-

$$
h+\frac{p_{a}}{6}=\frac{v^{2}}{2 g}+\frac{p}{6}-\frac{r_{1}^{2}}{2!}+\frac{p_{1}}{G}+\frac{\left(v-r_{1}\right)^{2}}{2 g}
$$

But ant $=\Omega_{11}$, innd $\omega \Rightarrow c_{r} \Omega_{\text {, if }} c_{e}$ is the corfficient of contractlon within the mouthpiece. llence

$$
v-\frac{\Omega}{w} v_{3}-\frac{v_{1}}{n_{2}}
$$

Supposing the discharge into the air, so that $p_{1}=p_{a}$,

$$
\begin{gather*}
h+\frac{p_{0}}{\mathbf{G}}-\frac{v_{1}^{3}}{2 g}+\frac{p_{4}}{\mathbf{G}}+\frac{v_{1}^{3}}{2 g}\left(\frac{1}{c_{e}}-1\right)^{2} ; \\
\frac{v_{1},}{2 g}\left\{1+\left(\frac{1}{c_{e}}-1\right)^{2}\right\}=h ; \\
v_{1}=\frac{1}{\sqrt{1+\left(\frac{1}{c_{6}}-1\right)^{3}}} \sqrt{2 g h} \tag{1}
\end{gather*}
$$

where the first term on the right is evidently the coefficient of velocity for the cylindrical mouthpiece in terms of the coeflicient of contraction at EF. Let $c_{c}=0.64$, the value for simple orifices, then the coefficient of velocity is

$$
\begin{equation*}
c_{0}=\frac{1}{\sqrt{1+\left(\frac{1}{c_{c}}-1\right)^{2}}}=0.87 \tag{2}
\end{equation*}
$$

the actual value of c_{c} found by esperiment is 082 , which does not differ more from the theoretical salue than might he wapected if the friction of the mouthpiece is allowed for. Hence, fur mouthpieces of this kind. and for the section at Gil,

$$
\begin{gathered}
c_{c}=0.82 \quad c_{c}=1.00 \quad c=0.82, \\
Q=0.82 \Omega \sqrt{2 g h}
\end{gathered}
$$

1218 casy to see from the equations that the pressure p at EF is less than atmospheric presure. Eliminating v_{1}, we get

$$
\begin{align*}
& \frac{p_{a}-p}{G}=3 h \text { nearly . . . } \tag{3}\\
& p=p_{a}-\{G h \text { fo per sq. ft. }
\end{align*}
$$

or
If a pipe connected with a reservoir on a lower level is introduced into the mouthpiece at the part where the contraction is formed (tig. 58), the water will rise in this pipe to a height

$$
\mathrm{KL}=\frac{p_{a}-p}{G}=\frac{8}{4} h \text { nearly. }
$$

If the distance X is less than this', the water from the lower reservoir Nill be forced continuously in to the jet by the atmospheric pressure, thid discharged with it. Tihis is the crndest form of a kind of pump known as the jet pump.
45. Comvergent Bouthpicces. - With convergent mouthpieces there is a contraction within the mouth piece causing a loss of head, and a diminution of the velocity of discharge, as with cylindrical mouthpieces. There is also a second contraction of the stream outside the mouthpiece. Hence the discharge is given hy an equation of the form

$$
\begin{equation*}
Q=c_{0} c_{c} \Omega \sqrt{2 g h} . \tag{4}
\end{equation*}
$$

where Ω is the area of the exterual end of the mouthpiece, and $c_{\Omega} \Omega$ the section of the contracted jet beyond the mouthpiece.

Conrcrgent Mouthpicces (Castel's Experiments),-Smallest diameter of orifice $=0.05085$ fect. Length of mouthpiece $=$ 26 diameters.

Aogle of Convergence.	Coefficlent of Contraction, c.	Coefflelent of Velocity. c	Coeffictent of Discharge. c
$0^{\circ} 0^{\prime}$. 999	. 830	-829
$1^{\circ} 30^{\prime}$	1.000	-866	-866
$3^{\circ} 10^{\prime}$	1.001	-894	'895
$4^{\circ} 10^{\prime}$	1.002	910	-512
$5{ }^{\circ} 26^{\prime}$	1.004	920	- 224
$7{ }^{\circ} 52^{\prime}$	-998	931	-929
$8^{\circ} 58^{\prime}$	$\cdot 392$	$\cdot 942$	$\cdot 934$
$10^{\circ} 20^{\prime}$	$\cdot 987$	$\cdot 950$	$\cdot 938$
$12^{\circ} 4^{\prime}$	$\cdot 986$	$\cdot 955$	942
$13^{\circ} 24^{\prime}$	-983	-962	-946
$14^{\circ} 28^{\prime}$	-979	-966	$\cdot 941$
$16^{\circ} 36^{\prime}$	-969	$\cdot 971$	-938
$19^{\circ} 28^{\prime}$	$\cdot 953$	-970	-924
$21^{\circ} 0^{\prime}$	-945	$\cdot 971$	-18
$23^{\circ} 0^{\prime}$	-937	974	-913
$29^{\circ} 58^{\prime}$	919	'975	. 8.96
$40^{\circ} 20^{\prime}$	- 887	$\cdot 980$	-869
$48^{\circ} 50^{\prime}$.861	984	-847

The maxlmum coeffelent of dischatese fe thut for a mowhylece with a rouberathec of 15 2t

The ralues of c and c_{e} must here be determined by experiment The abore table gives values sufficient for practical purposes. Sinco the contraction beyond the mouthpicce iucreases with the convergence, or, what is the same thing, c_{0} diminishes, and on the other band the loss of energy diminishes, so that c_{0} increases with the convergeace, there is an angle for which the product $c_{c} c_{0}$, and consequently the discharge, :s a maximum.
46. Divergent Conoidal Mouthpicce.Suppose a mouth. piece so designed that there is no abrupt-change in the section or velocity

Fig. 68. of the stream passing tbrough it. It may hare a form at the inner end approximately the same as that of a simple contracted rein, and may then enlarge gradually, as shown in fig. 59. Suppose that at EF it becomescylindrical, so that the jet may be taken to be of the diameter EF. Let ∞, v, p be the section, velocity, and pressure at CD , and Ω, v_{1}, p_{1} the same quantities at EF, p_{a} being as usual the atnospheric pressure, or pressure on the free surface AB . Then, si ice there is no loss of energy, except the small frictional resistance of the surface of the mouthpiece,

$$
h+\frac{p_{a}}{\mathrm{G}}=\frac{v^{2}}{2 g}+\frac{p}{\mathrm{G}}=\frac{v_{\mathrm{L}}{ }^{2}}{2 g}+\frac{p_{1}}{\mathrm{G}} .
$$

If the jet discharges into the air, $p_{1}=p_{a}$; and

$$
\begin{gathered}
\frac{v_{1}^{2}}{2 g}=h ; \\
v_{1}=\sqrt{2 g h} ;
\end{gathered}
$$

or, if a coefficient is introduced to allow for friction:

$$
v_{1}=c_{0} \sqrt{2 g h} ;
$$

where c_{0} is ebout 0.97 if the mouthpiece is smooth and well. formed

$$
Q=\Omega v_{1}=c_{r} \Omega \sqrt{2 g h}
$$

Hence the discharge depends on the area of the streand at EF, and not at all on that at CD, and the latter may be made as small as we

Fig. 59.
please without affecting the amonnt of water discharged.
There is, however, a limit to this. As the velocity at CD is greater than at EF the pressure is less, and therefore less than atmospheric pressure, if the discharge is into the air. If CD is so contracted that $p=0$, the continuity of flow is impossible In fact the stream discogares itself from the mouthpiece for some value of p greater thsa 0 (fig.60).

> From the equations,
$\frac{p}{\mathrm{G}}=\frac{p_{a}}{\mathbf{G}}-\left(\frac{v^{2}-v_{1}^{2}}{2 g}\right)$

L.ct $\frac{\Omega}{\infty}=m$. Then

$$
\begin{aligned}
\frac{p}{\mathrm{G}} & =\frac{p_{\mathrm{a}}}{\mathrm{G}}-\frac{v_{1}^{3}}{2 g}\left(m^{2}-1\right) \\
& =\frac{p_{0}}{\mathrm{G}}-\left(2 n^{3}-1\right) r
\end{aligned}
$$

whence we find that $\frac{p}{G}$ will become zero or negative if

$$
\frac{n}{\infty} \equiv \sqrt{\frac{h+\frac{p_{a}}{\mathrm{G}}}{h}}=\sqrt{1+\frac{p_{a}}{\mathrm{G} h}}:
$$

or, patting $\frac{p_{a}}{G}-34$ feet, if

$$
\frac{\Delta}{\omega} \geqq \sqrt{\frac{h+3 t}{h}}
$$

In practice there will be an interraption of the fall bore flow with - less ratio of $\frac{\Omega}{\omega}$, because of the disengagement of air from the water. But, supposing this does not occar, the maximum discharge of a mouthpiece of this kind is

$$
Q=\infty \sqrt{2 g\left(h+\frac{p_{4}}{\mathbf{G}}\right)} ;
$$

that is, the discbarge is the same as for a well-bellmontbed monthpiece of area ∞, end without the expanding part, discharging inte s racuna.
47. Jet Pump.-A divergent monthpiece may be arranged to act es a pump, as shown in fig. 61. The water which sapplies the energy

Fig. 6.
reqalred for pamping eaters at A. The water to be pamped enters at B. The streams combine at DD where the velocity is greatest and the pressare least. Beyond DD the stream enlarges in aection. and its pressure increases, till it is sufficient to balance the head due to the height of the lift, and the water flows away by the discharge pipe C.
Fig. 62 shows the whole arrangement in a diagrammatic way. Δ is the reservoir which supplies the water that effects the pump-

Fig.
the: \boldsymbol{B} is the rcservoir of water to bo pamped; \mathbf{C} is the rescrvoir Into which the water is pumped

Discharge witil Vagyino IIead.

48. Flooo from a Vessel when the Effect ive IICat varies with the Time. - Various uscful problems arise relating to the time of emptying and filling vessels, reservoirs, lock chambers. \&e., where the llow is dependent on a heal which iacreases or dimatishes during too opration. The simplest of these protheme is the cuse of fillage or enptyiog a vessel of constant horizontal section.

Time of Emplying or Filling a Vertical-sidud Look Chamber Suppose the lock chamber, which has a water surface of Ω squars feet, is emptied throngh a sluice in the tail gatea, of area ω, pluced below the tail-water level. Then the effective bead producing thou through the sluice is the difference of level in tha chamber ond tai bay. Let H (fig. 63) be the initial difference of level, h the तiferenci

Fig. 63.
of level after t seconds. Let - $d h$ be the fall of level in the chamber during an interval $d t$. Then in the time $d t$ the volume in the ohamber is altered by the amount $-\Omega d h$, and the ontlow from the sluice in the same time is $c_{\omega} \sqrt{2 g h} d t$. Hence the differential equation connecting h and t is

$$
\omega \omega \sqrt{8 g h} d t+\Omega h=0
$$

For the trme s, doring which the initial head H diminishes to ao: other value $h_{\text {, }}$

$$
\begin{aligned}
& \frac{\Omega}{\sqrt{2 g}} \int_{\mathrm{B}}^{h} \frac{d h}{\sqrt{h}}=\int_{0}^{t} d t . \\
t & =\frac{\Omega}{c \omega \sqrt{2 g}} 2(\sqrt{\mathrm{H}}-\sqrt{h}) \\
= & \frac{\Omega}{c \omega}\left\{\sqrt{\frac{2 \mathrm{H}}{g}}-\sqrt{\frac{2 \bar{h}}{g}}\right\}
\end{aligned}
$$

For the whole time of emptying, daring which h diminisbes from H to 0 ,

$$
\mathrm{T}=\frac{\Omega}{c \omega} \sqrt{\frac{2 \mathrm{H}}{g}}
$$

Comparing this with the equation for flow under a cobstaor head. it will be seen that the time is double that required for the discharge of an equal volume under a constant head.
The time of filling the lock tbrough a sluice in the bead gates is exactly the same, if the sluica is below the tail-water level. But if the sluice is above the tail-water level, then the head is constant till the level of the sluice is reached, and afterwards it diminishea with the time.

Practioal Use of Orifiees in Gaceino Wate:-

49. If the water to be measured is passed through a known orifice under an arraagement by which the constancy of the head is ensuied, the amount which passes in a given tima can be ascertained hy tho formulæ already given. It will obviously be best to make the orifices of the forms for which the coefficients are mest accurately determined ; beoce sharp-edged orifices or notehes are most comnionly used.
Water Inch - For meusuring small quantities of water circular sharp-edged oritices have been used. Tha discharge from a circular orifice one French inch in diameter, mith a head of one lino above tho top edgo, was termed by tho older hydraulic writers a waterinch. A common estimate of its value was 14 pints per minute, or 677 English cubic feet in 24 hours. An experionent by Bossut gave 634 cubic fect in 24 hours (see Narier's edition of Felidor's Arch. Mydr., 1. 212).
Weistach peints out that measurements of this kind would be made more aecurately with a greater head over the orifice, and be proposes that the head aboukd be equal to the diameter of the erifice. Several equal erifices may be used for harger discharges.
50. Pin Ferrules or Measuring Cocks.-To give a tolerably definito supply of water to houses, without the expense of a meter, a ferrule with an orifice of a definite size, or a coek, is introduced in the servieepipe. If the head in the water main is constant, then a definito fuantity of water would be delivered in a given time.. The arrangewont is not a very satisfactory one, and acts chiefly as a check on oxtravagant use of water. It is interesting here chiefly as an examplo of regulation of discharge by means of an orifice. Fig. 64 shows a coek of this kind ned at Zurich. It consists of three cocks, the middle ene having the oritice of the predetermined size in a small eircular plate, protected by wire gauze from stoppage by impurities in the water. The cock on the ripht hand can be used by the consumer for criplying the pipes. Tho one on the left and tho measuring eock are couneeted hy a key which can be loeked ly 3 ladlock. which is under the control of the water conpauy.
51. Measurement of the Flow in Sircams - To determine the fuantity of water flowing off the ground in small streams, which is available for water supply or for obtainiog water power, small tem-

Fig 64
porary werrs are often used. These may be furmed of planks supperted bs piles and puddled to prevent leakage The measurement of the head may be made by a thio-edged scale at a short distance behind the weir, where the water surface has not beguu to slope dowa to the weir aad where the valocity of approach is not high. The measurements are coaveniently made from s short pile diiveniate the bed of

Pig. 65
the river, accurately levol with the crest of the weir (fig 65). Then if at any moment the heid is h, the discherge is, for a rectangular auteb of breadth b,

$$
\mathrm{Q}=\xi c b h \sqrt{2 g h}
$$

Where $c-u$ oc, or, better, the formula in $\$ 38$ may be used
Gauging weirs are roost commonly io the form of rectangular notelies, and carn should be taken that the crest is scrurately horicontal, and that the weir is normal to the direction of flow of the atreain. If the planks are thick, they sloould be bevelled (fig. 66), and then the edge may be protected by a metal plate about foth iach thick to gecure the requisite accuracy of form and sharpaess of edigc. In permanent gauging weirs a cast steel plate is sometimes used to form the edgo of the weir c east. The weir should be largo enough to discharge the raximum volume flowing in the stream, and at the same time it Is desirable that the minimum head should not be too small (say half a foot) to decrease

Fig 66 the effects of errors of measurement. The section of the jet over the weir sheald oot exceed one-fifth the section of the stream hehiod the weir, or the velocity of epproach will need to be taken into account. A triungular notch is very suitable for measurements of this kind.

If tbe flow is variable, the head λ must bo rccorded at equidistant intervals of time, say twice daily, end then for each 12 hour period the discharge must be calculated for the mean of the heads at tho thengning and end of the time. As this involves a good deal of troublesomic calculation, Mr Sang has proposed to use a scale eo framuated as to read off the discharge in cubic feet pur secood. The leugths of the principal graduntions of such a gcalc are casily calculated by putting $Q=1,2,3 \ldots$ in the ordinary formula for notches; the intermedietc graduations may ho taken accumtely enough by su blividing equally the distances between the priocipal graduations.

The accurate measurement of the discharge of a stream by meana of a weir is, however, in practice, rather more difficult than might be inferred from the simplicity of the principle of the operation.

Apart from the difficulty of selecting a sultable coemenent of diso charge, which wed not be setious if the form of the weir and the nature ol its crest are properly attended to, otber diticulties of measurement arise. The length of the weir should be very accurately determened, and if the weir is rectungular its deviations from exactuess of level should be tested. Then the agitation of the water, the ripple on its surface, and the adhesion of the wster to the acale on which the head is acasured, are liable to introduce errors. Upon a weir 10 fect long, with 1 foot depth of water flowiog jver an crror of 1-1000th of a foot in measuring the head, or an errer of 1-100th of a foot in measuring the length of the reir, would cause an error in computing the discharge of 2 cubic feet per minute.
52. Hook Gaugc.-For the determination of the surface level of water, the most accurate instrument is the book gauge used first by Mr U. Boyden of Boston, iL 1840. It consists of a fixed frame with scale and vernier. In the instrument in fig. 67 the vernier is fixed to the frame, and the scalo slides vertically. The geale carrics at its lower end a hook with a finc point, and the scale can be raised or lowered by a fine pitched acrew If the hoek is depressed below the water surface and then raised by the screw, the moment of its reaching the water surfiace will be very distinctly marked, by the reflexion from as amall capillary elevation of tho Water surface over the point of the hook. In ordinary light, differences of level of the water of 001 of a foot are casily detected by the hook gauge. - If such a gauge is used to determine the heads at a wcir, the hook should first be set accutately level with the weir erest, and a reading taken Then the difference of the reading at the water surface and that for the weir crest will be the bead at the weir
53. Modules uscd in Irrigation. In distributing water for irrigation, the charge for the watcr may be simply nesessed on tho area ol the land irrigated for each consumer, a metbod followed ia India; or a re. gulated quantity of water may be given to ear:h consumer, and the clarge may be made proportional to the quantity of water supplien, o method employed for a long time in laaly and other parts of Europe. To deliver a regulated quantity of water from the irrigation channel, arrangements termed modules are used These are constructions

Fig. 67. intended to maintain a constant or approxinastely constant head above an orifice of fixed size, or to regulate the size of the orifice so as to give a constant discharge, notwithstending the variation of level in the irrigating channel.

54 Italian Module.-The Italian modules are masonry construetions, consisting of a regulating chamber, to which water ia admitted by an adjustabla sluice from the canal. At the otber end of the clamber is an orifice in a thinflagstone of fixed size. By means of the adjustable sloice a tolerably constant head above the fixed orifice is maintained, and therefore there is a nearly conatant discharge of aacertaluable amount through the orifice, in to the chanael leading to the fields which are to be iirigated

Fig. 68.
In fig. 68 A is the aljustalilo sluice by which water is admitted to the regulating chamber, B is the fixed orifice through which the water is disclarged. The sluice A is adjusted from time to time hy the canal officera, so as to bring the level of the water in the regulat-
tng chamber to a nxed level marked on the wall of the chamber. When adjusted it is locked. Let ω_{1} be the area of the orifice through the aluice at A, and ω_{2} that of the fixed orifice at B; let h_{1} be the difference of level between the surface of the water in the canal and regulating chamber ; h_{2} the head above the centre of the discharging orifice, when the sluice has been adjusted and the flow has become steady; Q the normal discharge in cubic feet per second $T h e n$, since the flow through the orifices at A and B is the same,

$$
Q=c_{1} \omega_{1} \sqrt{2 g h_{1}}-c_{3} \omega_{2} \sqrt{2 g h_{2}},
$$

where \bar{c}_{1} and c_{2} are the coefficients of discharge suitable for the two .orifices. . Hence

$$
\frac{c_{1} \omega_{1}}{c_{2} \omega_{1}}=\sqrt{ }=\sqrt{\left(\frac{k_{n}}{h_{2}}\right)}
$$

Suppose now that in the interval between the visits of the canal officer the level of the canal rises h feet, eausing the heads relativels to the orifices A and B to become h_{1}^{\prime} and h_{2}^{\prime}. Since the areas of the orificea are unchsnged

$$
\sqrt{\frac{h_{2}^{\prime}}{h_{1}^{\prime}}-\frac{c_{1} \omega_{1}}{c_{2} \alpha_{2}} .}
$$

and therefore

$$
\frac{h_{1}^{\prime}}{h_{2}^{\prime}}=\frac{h_{2}^{\prime}}{h_{2}}
$$

or the ratio of the effective headg above the orifices A and B is unaffected by the change of level of the canal. Also
Eliuinating h_{1}^{\prime} we get the discharge in the altered conditions is
That is

$$
\begin{aligned}
& Q^{\prime}=c_{1} \omega_{2} \sqrt{2 g h_{2}^{\prime}} \\
& -c_{0} \omega_{2} \sqrt{\left\{2 g \frac{\left(h_{1}+h_{2}+h\right) h_{2}}{h_{1}+h_{2}}\right\}}
\end{aligned}
$$

 sserving the le of the whather or not ho is receiving the proper quantity of water.

On oach canal the orifices are of the game height, and intended to work with the same normal heal, the width of the orifices being varich to suit tho demanl for water. The unit of discharge varieg on different canals, briog fixed in pach case by legal arrangements. Thus on the Canal Lodi the unit of discharge ar one molule of water is the Aischatge through an orifice 112 fect high, $0 \cdot 12410$ fret wids, with a heal of 082 feet above the top edge of the orifice, or 88 fuct above the centre. This rorresponds to a discharge of ahont 0 cibs culic feet per second. Two modulps would he tho discharere of a sinilure orifre of twice the width. The following table gives some examples of different units of dischar

If the orifice at B opened directly into the canal without any intermediate regulating chamber, the discharge would increase for a given change of level in the canal in exactly the same ratio. Coneefucatly the Italian module in no way moderates the fluctuations of discharge, except so far as it afforda means of easy adjustment from time to time. It has further the advantage that the cultivater, by

	Height of Onfice.	Width of Orifice.	Head above top edge of Ontice.	Discharfe per sec. in c. fest.
Canal Lodi	$1 \cdot 12$	$0 \cdot 12416$. 0.32	06165
Canal of Cremona	1.81816	$0 \cdot 131$	0'131	$0 \cdot 7225$
Sardinian Module........	$0 \cdot 6562$	$0 \cdot 6562$	0.6562	$2 \cdot 046$
Oncia Magistralc of Milan	0.655	$0 \cdot 3426$	0.3294	$0 \cdot 866$

* In the most elaborate Italian modules the regulating chamber is arched over, and its dimensions are very exactly prescribed: Thus in the modules of the Naviglio Grande of Milan, shown in fig. 69, the measuring orifice is cut in a thin stone slab, and so placed that the discharge is into the air -with free contraction on all sides. The adjusting sluice is placed -with its sill flush with the bottom of the canal, and is provided with a rack and lever and locking arrangement. The covered regulating chamber is about 20 feet long, with a breadth 1.64 feet greater than that of the discharging orifice. As precisely the normal level of the water in the regulating chamber, there is a ceiling of planks intended. to still the agitation of the water. A block of stone serves to indicate the normal level of the water in the chamber. The water is discharged into an open channel 0.655 feet wider than the orifice, splaying out till it is 1.637 feet wider than the orifice, and about 18 foet in length. This apparatus was invented in the 16 th century, and is still used. The greatest objection to it is the loss of level between the canal and discharging channel. Arrangements precisely similar to an Italian module are in use in England, for discharging compensation water into streams from impounding reservoirs. The fullest account of Italian modules is to be found in Colonel Baird Smith's Italian Irrigation.

55. Spanish Modute.-On the canal of Isabella II., which supplies water to Madrid, a module much more perfect in principle than the 1 talian module is employed. Part of the water is supplied forinigation, and as it is very valuable its strict measurement is essential. The module (fig. 71) consists of twe chambers one above the other, the upper chamber belng in free communication with the irrigation camal, and the lower chamber discharging by a culvert to the fields. In the arehed roof between the chambers thice is a circular sharp edged orifice in a brenze plate. Hanging in thls there is a bronze plug of variablo diamcter suspended from a hollow brass float. If the water level in the canal lowers, the plug descends and gives an eularged opening, and conversely. Thus a perfectly constant dischargo with a varying head can be obtained, provided nc alogging or ailting of the chambers prevents the free discharge of th, water or the rise and fall oi the float. The theory of the module is very simple. • Let R (fig. 70) be the radius of the fixed opening, r the diameter of the plug at a distance i from the plane of flotation of the float, and \mathbf{Q} the required discharge of the module. Thes *

$$
\mathrm{Q}=c \pi\left(\mathrm{R}^{2}-\tau^{2}\right) \sqrt{2 g h}
$$

Taking $\mathrm{c}=0.63$,

$$
\mathrm{Q}=15 \cdot 88\left(\mathrm{R}^{2}-r^{3}\right) \sqrt{h} ;
$$

$$
r=\sqrt{ }\left\{\mathrm{R}^{2}-\frac{Q}{15 \cdot 88 \sqrt{2}}\right\}
$$

Chöosing a value for R , successivo - - - - -
values of n can be found for diffcrent values of h, and from these the

Fig. 70.
curve of the plug can he drarn. The module shown in fig. 71 will discharge 1 cubic metre per second. The fixed opening is 0.2 metre
liametar, nind the greatest head above the fixed orifice is 1 metre. l'ine use of this modnlo involves a great sacrifice of level between the canal and the ficids. The module is deseribed in Lientenant Scott Moncrieff's Irrigation in Southern Europe.
56. Reservoir Gauging Basins.-In obtaining the power to store the water of streams in reservoirs, it is usual to concede to ripaian dwaera below the reservoirs a right to a regulated supply through-

out tho year. This compensation water teq ?es to be measured in such at way that tho millowners and others interesied in tho anatter can assuro themselves that they are recciving a proper quantity, and they aro generally allowed a certain amount of control as to tho times during which the daily supply is diselarged into the stream.
Fiss. 72 and 73 show an arrangement designed for the Manches. ter Water Works The water enters from the reservoir a clamber

A, the object of which is to still the irregular metion of the water. The admission is regulated by slnices at b, b, b. The water is discharged by orifices or notches at a, a, over which a tolerably constant head is maintained by adjusting the sluices at b, b, b. At any time the millowners can see whether the disclarge is given and whether the proper head is maintained over the orifices. To test at any time the discharge of the orifices, a gaigging basin B is

Fig. 72.-Scale $\frac{1}{125}$
provided. The water ordiarily flows over this, without entering it, on a floor of cast-iron plates. If the disebarge is to bo tested, the water is turned for a definite time into the ganging basin, ly suddenly opening and closing a sluice at c. The volume of fluw can be ascertained from the depth in the gausing chaniber. A mechanical arrangement was designed for securiog an absolutely constant bead over the orifices at a, a. The orifices were formed

Fig. 73.-Siale 8 效
in a east-iron plate capable of slidiug up and drwn, without sensible leakage, on tho face of the wall of the chamber. The orifice plate was nttached by a link to a lover, one end of which restect on the wall and tho other on floats f io the chasmber A. The Huats rose and fell with the changes of level in the chamber, and asised and lowered the orifice plate at the same time. This mechanical arrangemeut was not tinally a dopted, carcful watching of the sluices
at δ, δ, δ, being sufficient to secure a regular disebarge. The arrangement is then equivalent to an ltalian module, but on a large scale.
57. Professor Fleeming Jenkin's Constant Flow Valve.-In the modules thus far deacribed constant discharge is obtained by varying the area of the orifice through which the water flows. Professor F. Jenkin has contrived a valve in which a constant pressure head is obtained, so that the orifice need not be varied (Roy. Scot. Sooiety Qf $A r t \mathrm{~s}_{1}$ 1876). Fig. 74 shows a valve of this kind suitable for a

Fig 74.-Scale ${ }^{2} 5$.
6 inch water maia. The water arriving by the main U passes through an equilibrium valve D into the chamber A, and thence through a sluice 0 , which cao be set for any required area of opening, into the diacharging maie B . The object of the arrangenent is to sacure a constant differeace of pressure between tha chambers A and B, so that a constant discharge flows through the stop valve 0 The equilibrium valve D is rigidly connected with a plunger P loosels fitted in a diaphragm, separatiog A from a chamber B_{2} connected by a pipe B_{1} with the dischargiog nain B Any increase of the differonce of pressura in A and B will drive the pluger up and close the equilibriura valve, and conversely a decrease of the difference of preseure will cause the desceat of the plunger and open the equilibrium valve wider. Thus a coestant difference of pressure is obtained in the chambers A and B . Let ω be the area of the plunger in aquare feet, p the difference of pressure io the chambers A and B in pounds per equare foet, wo the weight of the plunger and valve. Then if at any moment $p \omega$ exceeds w ths plunger will rise, and if it is loss than w the plunger will descend. Apart from friction, and assuming the valve D to be etrictly an equilibrium valre, sioce ω and w are constant, p must bo constant also, and equal to $\frac{w}{\omega}$ By makiag w emall and ω lorge, the difference of pressure required to ensure the working of the apparatus may be mado very small. Valves working with a difference of pressure of $\frac{1}{2}$ inch of water bave been constructed.
58. Appold"s Moduls -This acts on the some gegeral priaciple as the Spanish module, bat it eccures only an approximately constant discharge. Oa the other hand it involvea na great sacrifice of level, and is not very likely to bo affected by silting. It was coatrived originally as an air rcgulator, lut it has also been tried with success as a water module. It consista eimply of a borizontal pipe with an

Fig. 75.-Scalo it
enlarged chamber, in which hanga heavy wedge -shaped pendulum. The pressare of the water on the upstream aido of this pendulum hrepa it in e positlon inclined to tho vertical, and partially closing than orifice of discharge as ahown by the lotted lines in fig. 75. Any increnge of pressure will cathe" a greater inelination of the pendulum ond decrease the orilice of discharge. and viee versa.

VI. STEADY FLOW OF COMPRESSIBLE FLUIDS.

59. External Work during the Expansion of Air.-If air expandı without doing any external work, its temperature remains constant. This result was first experimentally demonstrated by Joule \quad I. leads to the conclu. siod that, however air changes its state, the iateral woris done is proportional to the change of temperature. When, in expanding, air does work againstan exterDal resistance, either heat mast be cupplied or the tomperature falls.

To fix tho condi. tions, sappose one pound of air confined behind e piston of one aquare foot area (6.g. 76). Let the initial pressure be p_{1} and the rolums of the air t_{1}, and suppose

Fig 78 this to expand to the pressure p_{3} and volums v_{y}. if p and v are the corresponding pressure and volume at any intermediate point in the expansion, the work done on the piston during the expansion from otw $0+d v$ is $p d v$, and the whole work during the expansion from ∇_{1} to ∇_{v} represented by the area $a b c d$, is

$$
\int_{v_{1}}^{v_{7}} p d v
$$

Amongst poasible cases two may be selected
Case I -So much heat is supplied to the sir during expansion that the temperature remaios constant. Hyperbolic espansion.
Then

$$
w=p_{1} v_{1}
$$

Work done during expansion per poued of air

$$
\begin{align*}
-\int_{r_{1}}^{v_{3}} p d v & -p_{1} v_{1} \int_{r_{1}}^{v_{2}} \frac{d v}{v} \\
& -p_{1} v_{1} \log \frac{v_{2}}{v_{1}}-p_{1} v_{1} \log \frac{p_{1}}{p_{1}}
\end{align*}
$$

Since the weight percubic foot is the reciprecal of the volume pes pound, this may be written

$$
\begin{equation*}
\frac{p_{1}}{G_{2}} \log \cdot \frac{G_{1}}{O_{2}} \tag{la}
\end{equation*}
$$

Then the expansioe curve a b is a comman hyperbola.-
Case 2.-No heat is auplied to the air during expansion. Then the eir loase anamount of beat equivalent to the external work done and tha temparature falls. Adiabatic espansion

In this cass it can be shown that

$$
p v^{\gamma}-p_{1} v_{1}{ }^{\gamma},
$$

Where γ is the retio of the sprcific heata of air at coustant pressure and volumo. Its valua for air is 1408 , and for dry stoam 1.186 .
Work done during expansiou per poind of air

$$
\begin{align*}
&=\int_{v_{1}}^{r_{1}} p d v=p_{1} v_{1}^{\gamma} / v_{1}^{v_{3}} \frac{d v}{v^{\gamma}} \\
&=-\frac{p_{1} v_{1}^{\gamma}}{\gamma-1}\left\{\frac{1}{v_{3}^{\gamma-1}}-\frac{1}{v_{1}^{\gamma-1}}\right\} \\
&=\frac{p_{1} v_{1}^{\gamma}}{\gamma-1}\left\{\frac{1}{v_{1}^{\gamma-1}}-\frac{1}{v_{9}^{\gamma-1}}\right\} \\
& \frac{p_{1} v_{1}}{\gamma-1}\left\{1-\left(\frac{v_{1}}{v_{1}}\right)^{\gamma-1}\right\} \tag{2}
\end{align*}
$$

The value of $p_{1} v_{1}$ for any given temperaburo can be found from the data already given.
As before, substituting the meights G_{1}, G_{9} per cubic foot for the volumes per pound, we get for the work of expension

$$
\begin{align*}
& p_{\perp} \cdot \frac{1}{\mathrm{C}_{1}} \cdot\left\{1-\left(\frac{\mathrm{O}_{3}}{\mathrm{G}_{1}}\right)^{\gamma-1}\right\} \tag{2a}\\
- & p_{1} v_{1} \frac{1}{\gamma-1}\left\{1-\left(\frac{p_{3}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\} \ldots \tag{2b}
\end{align*}
$$

60. Medification of the Theorem of Bernoulli for the Case of a Compressible Pluid. -In the application of the principle of work to n filament of compressible fluil, the internal work done by the expan oion of the fluid, or absorbed in its compression, must bo taken inta
acconnt Suppose, as betore, that AB (fg. 77) comes to $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ in a short time t. Let $p_{1}, w_{1}, v_{1}, G_{1}$ be the pressure, sectional area of atream, velocity, and weight of a cubic foot at A, and $z_{1}, \alpha_{y}, r_{2}, G_{2}$ the same quantities at B. Then, from the steadiness of motion, the weight of fluid $1^{\text {mssing }} A$ in my given timo innst be equal to the weight $!$ mssing B :

Fig. 77

$\mathrm{G}_{1} \omega_{1} v_{1} l=\mathrm{G}_{2} \omega_{2} v_{2} l$

Lect z_{1}, z_{2} be the heights of the sections A and B above any given lutum Then the work of gravity ou the mass $A B$ in ℓ secollds is $G_{1} \omega_{1} v_{1} l\left(z_{1}-z_{2}\right)=W\left(z_{1}-z_{8}\right) l$.
there W is the weight of gas passing A or B per second. As in the case of an ineompressible Guid, the work of the pressures on the conds of the mass AB is

$$
\begin{aligned}
& p_{1} \omega_{1} v_{1} l-p_{2} \omega_{2} v_{2} \ell, \\
& =\left(\frac{p_{1}}{G_{1}}-\frac{p_{2}}{G_{2}}\right) w t
\end{aligned}
$$

The work done by expansion of W t pounds of flusd between A and B is $W \int_{r_{1}}^{r_{2}} p d v$. The change of kinetic energy as before is $\frac{W}{2 g}\left(v_{2}{ }^{2}-v_{1}{ }^{2}\right) \ell$. Hence, equating work to change of kinctic encrgy,

$$
\begin{gather*}
W\left(z_{1}-z_{n}\right) \ell+\left(\frac{p_{1}}{G_{1}}-\frac{p_{2}}{G_{2}}\right) W \ell+W \ell \int_{v_{1}}^{r_{2}} p l v=\frac{W}{2 g}\left(\tau_{2}:-v_{1}{ }^{2} \jmath,\right. \\
z_{1}+\frac{p_{1}}{G_{1}}+\frac{v_{1}^{2}}{2 g}=z_{2}+\frac{p_{2}}{G_{2}}+\frac{v_{2}^{2}}{2 g}-\int_{v_{1}}^{r_{2}} p d v \tag{1}
\end{gather*}
$$

Sow the wook of expansion per pound of nuid bas already been given. If the temperature is constant, we get (eq. la, §59)

$$
z_{1}+\frac{p_{1}}{\mathrm{G}_{1}}+\frac{v_{2}^{2}}{2 g}=z_{2}+\frac{p_{2}}{\mathrm{G}_{2}}+\frac{v_{2}^{2}}{2 g}-\frac{p_{1}}{\mathrm{G}_{1}} \log \frac{\mathrm{G}_{1}}{\mathrm{G}_{2}} .
$$

But at constant temperature $\frac{p_{1}}{\mathrm{G}_{1}}-\frac{p_{2}}{\mathrm{G}_{2}}$;

$$
\begin{equation*}
\therefore \quad z_{1}+\frac{v_{1}^{2}}{2 g}=z_{2}+\frac{v_{2}^{2}}{2 g}-\frac{p_{1}}{G_{1}} \log _{6} \frac{p_{1}}{p_{2}}, \tag{2}
\end{equation*}
$$

or, neglecting the differeace of level,

$$
\begin{equation*}
\frac{i_{2}^{2}-r_{1}^{2}}{2 g}=\frac{p_{1}}{G_{1}} \log \frac{p_{1}}{p_{2}} \tag{2a}
\end{equation*}
$$

Similarly, if the expansion is acliabatic (eq. $2 \Omega, \$ 59$),

$$
\begin{equation*}
z_{1}+\frac{p_{1}}{G_{1}}+\frac{v_{1}^{2}}{2 g}=z_{2}+\frac{p_{9}}{G_{2}}+\frac{v_{2}^{2}}{2 g}-\frac{p_{1}}{G_{1}} \frac{1}{\gamma-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\} . \tag{3}
\end{equation*}
$$

or neglecting the difference of level

$$
\begin{equation*}
\frac{\gamma_{2}^{2}-v_{1}^{2}}{2 g}-\frac{p_{1}}{G_{1}}\left[1+\frac{1}{\gamma-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\}\right]-\frac{p_{3}}{G_{2}} . \tag{3a}
\end{equation*}
$$

It will be seen hereafter that there is a limit in the ratio $\frac{p_{1}}{p_{2}}$ beyond which these expressions eease to be truc.
6. Disciarge of Air froma an Orificc. - The form of the equation of work for a steady stream of compressible fluid is

$$
z_{1}+\frac{p_{1}}{G_{1}}+\frac{v_{1}^{2}}{2 g}=z_{2}+\frac{p_{2}}{G_{2}}+\frac{v_{2}^{2}}{2 g}-\frac{p_{1}}{G_{1}} \frac{1}{\gamma-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\}
$$

the expansion being adiabntic, because in the fow of the streams of air thronghan orifice no semsible amount of heat can be communicated froin outside.

Suppose the air flows from a vessel, where the pressure is p_{1} and the relocity sensibly zero, through an orifice, into a space where the pressure is p_{2}. Let z_{z} be the velocity of the jet at a point where the cenvergence of the stresms has ceased, so that the pressure in the jet is also $\mu_{\text {. }}$. As air is light, the work of gravity will be small rompred with that of the pressures am! expansion, so that $=_{1}, z_{2}$ may be aeglected. Putting these valucs in the equation above-

$$
\begin{gathered}
\frac{p_{1}}{\mathrm{C}_{1}}-\frac{p_{2}}{\mathrm{G}_{1}}+\frac{v_{2}^{2}}{2 g}-\frac{p_{1}}{\mathrm{G}_{1}} \frac{1}{\gamma-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\}: \\
\frac{v_{2}^{2}}{2 g}-\frac{p_{1}}{\mathrm{G}_{1}}-\frac{p_{2}}{\mathrm{G}_{2}}+\frac{p_{1}}{\mathrm{G}_{1}} \frac{1}{\gamma-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\}^{r} \\
-\frac{p_{1}}{\mathrm{G}_{1}}\left\{\frac{\gamma}{\gamma-1}-\frac{1}{\gamma-1}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\}-\frac{p_{2}}{\mathrm{G}_{2}} \\
\frac{p_{1}}{\mathrm{G}_{1}^{\gamma}}-\frac{p_{2}}{\mathrm{G}_{2}^{\gamma}} \cdot \frac{p_{2}}{\mathrm{G}_{2}}-\frac{p_{2}}{\mathrm{G}_{1}}\left(\frac{p_{g}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}} \\
\frac{v_{2}^{2}}{2_{y}}-\frac{p_{1}}{\mathrm{G}_{1}} \frac{\gamma}{\gamma-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\} . \\
\frac{r_{2}^{2}}{2!}-\frac{\gamma}{\gamma-1}\left\{p_{1}-\frac{p_{1}}{G_{1}}\right\} .
\end{gathered}
$$

But

بر
an equation commonly ascribed to W cishach (Cizitingenieut, 1856), thoung it appears to have been givea earlicr by St Venant and Wantzel.
It has already ($\$ 9$ eq. $4 a$) beeu seen that

$$
\frac{p_{1}}{G_{1}}=\frac{p_{10}}{G_{0}} \frac{\tau_{1}}{T_{0}},
$$

where for air $p_{0}=2116.8, \mathrm{G}_{\mathrm{a}}=08075$ and $\tau_{0}=492 \cdot 6$.

$$
\begin{equation*}
\frac{v_{2}^{2}}{2 g}=\frac{p_{0}}{G_{0}} \frac{\tau_{1}}{\tau_{0}} \frac{\gamma}{\gamma-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\} \text {. } \tag{2}
\end{equation*}
$$

or, inserting numerical values,

$$
\begin{equation*}
\frac{\boldsymbol{\theta}_{2}^{2}}{2 g}=183 \cdot 6 \tau_{1}\left\{1-\left(\frac{\mu_{2}}{p_{1}}\right)^{029}\right\} \tag{2a}
\end{equation*}
$$

which gives the velocity of discharge v_{2} in teims of the pressure and absolute temperature, p_{1}, T_{1}, in the vessel from which the air flows, and the pressure $p_{\text {, }}$ in the vessel minto which it flows.

Procceding now as for liquids, and putting a for the area of the orifice and c for the coefficient of dischange, the volume of air discharged per second at the pressure p_{2} and temperature τ_{3} is

$$
\begin{gather*}
Q_{y}=c \omega \mathrm{t}_{2}=e \omega \sqrt{\left.\left.2 g \frac{\gamma}{\gamma-1} \frac{p_{1}}{\mathrm{G}_{1}}\right\} 1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\}} \\
=108 \cdot \% \mathrm{c} \mathrm{\omega} \sqrt{\left[r_{1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{0.29}\right\}\right]} \tag{3}
\end{gather*}
$$

If the volume discharged is measured at the pressure p_{1} and absolute temperature T in the vessel from which the air flows, let Q_{1} be that volume; then

$$
\begin{gather*}
p_{1} Q_{1}^{\gamma}=p_{\eta} Q_{2}^{\gamma} ; \\
Q_{1}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\gamma} Q_{2}} ; \\
\left.Q_{1}=c \omega \sqrt{2 g} \frac{\gamma}{\gamma-1} \frac{p_{1}}{G_{1}}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{2}{\gamma}}-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma+1}{\gamma}}\right\}\right] ., \\
\left(\frac{p_{2}}{p_{1}}\right)^{\frac{2}{\gamma}-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma+1}{\gamma}}=\left(\frac{p_{2}}{p_{1}}\right)^{1+1}-\left(\frac{p_{2}}{p_{1}}\right)^{1 \cdot 7}=\psi ; \text { then }} \\
Q_{1}=c \omega \sqrt{\left[2 g \frac{\gamma}{\gamma-1} \bar{p}_{1} \psi\right]} \\
=1087 c \omega \sqrt{\tau_{1} \psi} . \tag{4}
\end{gather*}
$$

Let

The reight of air at pressure p_{1} and temperature r_{1} is

$$
\mathrm{G}_{1}=\frac{p_{1}}{53 \cdot 2 \tau_{1}} \text { pounds per cubic feot }
$$

Hence the weight of air discharged is

$$
\begin{array}{r}
W=G_{1} Q_{1}=c \omega \sqrt{\left[2 g \frac{\gamma}{\gamma-l} p_{1} G_{1} \psi\right]} \\
.2 .043 i \omega 1)_{1} \sqrt{\frac{\psi}{\tau_{1}}} . \tag{5}
\end{array}
$$

Weisbach has found the following values of the cocfficient of discharge c :-

62. Limit to the Application of the above Formulte.-In the formule above it is assumed that the fluid issuing from the orifice expands from the presumte p_{1} to the pressure p_{2}, while passing from the wessel to the section of the jet considered in estimating the area ω. Hence p_{0} is strictly the pressure in the jet at the plane of the external orifice in the ease of mouthpuces, or at the plane of the contractell section in the case of simple orifices. Till recently it was tacitly assumed that the pessure y was identical with the general pressure external to the onfice. Mr K. D. Napier frst discovered that, when the ratio $\frac{p_{2}}{p_{1}}$ exceeded a value which docs not greatly diffor from 0.5, this was no longer true. In that ease the expansion of the fluid down to the extemal pressure is not completed at the time 11 reaches the plate of the contracted section, and the pressure there is encester than the general extermal pressure: or, what amounts to the same thing, the section of the jet where the expansion is completed is a section which is greater than the area cew of the contracted section of tho jet, and may be grenter than the area ω of the orifice. Mr Napier made experiments with steam which showed that, su long as $p_{2}>0: 5$, the formula above
were trustworthy, when p_{2} was taken to be the general external pressure, but that, if $\frac{p_{3}}{p_{1}}<0.5$, then the pressure st the contracted geetion was iadependent of the exteroal pressure and equal to $0.5 p_{1}$. Hence in such cases the constant value 0.5 should be substituted ia the formule for the ratio of the interaal and external pres-内ures $\frac{p_{3}}{p_{1}}$

It is easily deduced from Weishach's theory that, if the pressure exterual to au orifice ia gradually diminished, the weight of air dacharged per second increases to a maximum for a valno of the ? 1 ilo

$$
\begin{aligned}
\frac{p_{2}}{p_{2}} & =\left(\frac{2}{\gamma+1}\right) \frac{\gamma}{\gamma-1} \\
& =0.527 \text { for air } \\
& =0.58 \text { for dry steam. }
\end{aligned}
$$

For a further decrease of external pressure the discharge dimnishes, -a result no doubt improbable. The oew view of Weisbach's formula is that from the polat where the maximom is reached, or not greatly differing from it, the pressure at the contracted section ceasts to dimioish.

Fliegoer has abowa (Civilingenieur, xx., 1874) that for air flow. ing from well-rounded mouthpieces there is oo discontinaity of the law of Now, as Napier'e hypothesis implies, but the curve of fow beods so eharply that Napier's rule may be taken to be a good approximation to the rue law. Tho limiting value of the ratio $\frac{p_{9}}{p_{1}}$, for which Weisbach's formula, as origioally understood, ceasea p_{1}, to apply, is for air 0.5767 ; and this is the number to be substituted for $\frac{p_{3}}{p_{2}}$ in the formule when $\frac{p_{2}}{p_{1}}$ falls below that value. For later researehes on the flow of air, relerence may be mado to Zeuner's paper (Civilingenieur, 1871), and Fliegner's palers (ibid., 1877, 1878).

VII. FRICTION OF LIQUIDS.

3. When a etream of flaid flowe over a solid surface, or conversely when a solid moves in gtill fluid, a resistance to the motion is generated, commonly tarmed luid friction. It is due to the viscosity of the fluid, but generally the laws of fluid friction are very different from those of simple viscous resistance. lt would appear that at all apeeds, except the slowest, rotating eddies aro formed by the roughness of the solid surface, or by abrupt changes of velocity distritated throughout the fluid; aud the energy exjended in producing these eddying motions is gradually lost in overcoming the viscosity of the lluid in regiona more or less distant from that where they are firet produced.

The laws of fluid friction are generally stated thus:--

1. The frictional resistance is independeat of the pressure between the fluid and the solid against which it flows. This may be verified by a simple direct experiment. Coulonab, for instance, oscillated a disk uader water, first with atmospheric pressure acting on the water ourface, afterwarda with the atmospleric pressure removed. No difference io the rate of decrease of the oscillations was observed. The chief proof that the friction is independent of the pressure is that no differeoce of resistanco has been observed in water maius and in other cases, where water flowe over solid surfaces under widely different pressuree.
2. The frictional resistance of large surfaces is proportional to the area of the surface.
3. At low velocities of not more than 1 ineh per second for water. the frictional resistance increnses directly as the relative velocity of the flaid and the surface against which it Hows. At velocites of of foot per second and greater velocities, the frictional resistance is more vearly proportional to the apuare of the relative velocity.

In many treatises on hydranlies it is statal that the frictional resistance is independent of the mature of the solid surface. The explanation of this was supprased to be that a film of fluid remained attached to the solid surfare, the resistance loing gerberated between this fluid layer and liyers nore distant from the surface. At extremely low velorities the solid surface does mot seem to have much influence on the friction. In Combombis expuriments a mutal surface covered with tallow, and uscillated in water, lume exuedy the eame resistance as a clean metal surfice, and when sand was scattered over tha tallow the resistaneo was only viry slighty increased. The earlict calcmbutions of the resistaber of water nit hagher velocities in iron and woral pipes amd arthen chanacls sermed to give a similarresult. Thesp, however, wrectronmos, and it is now well mulerstosid that riffereness of ronghness of the solid surface very gratly influcere the friction, at such velomitus as are
 Ahoweal that in ahd and, incrastal water mains the resistame was

64. Ordinary Erpressions fur Fluad Frielion al Dituchies not Eetrentely Small. - Let f bat the frictional resistance estimatud iu
poúnds per square foot of surface at a velucity of oue foot per serond: ω the area of the aurface in square feet, and v its velocity in leet per secoad relatively to the water in which it is immersed. Then, in accordance with the laws stated above, the total resistance of the surface is.

$$
\begin{equation*}
\mathrm{R}=f \omega v^{2} \tag{1}
\end{equation*}
$$

where f is a quantity approximately constant for any given surfaze.

$$
\begin{align*}
& \xi=\frac{2 g f}{G} \\
& \mathrm{R}=\xi \mathrm{G} \omega \frac{v^{3}}{2 g} \tag{2}
\end{align*}
$$

where ξ is, like f, nearly constant for a given surface, and is termed the coefficient of fiction.

The following are average values of the coefficient of friction for water, obtained from experiments on large plane surfaces, moved in an undefintely large mass of water.

	Coeffleient of Fiction. 6	Frictional Resistance ia to per sq. ft. f
New well-panted iron plate	00489	$\cdot 00473$
Painted and planed jlank (Beaufoy) ...	-00350	. 00339
Surface of ron shups (Rankine)	-00362	. 00351
Varnished sulface (Froude)	-00258	-00250
Fine sand surface	-00418	. 00405
Coarser sand sarface , ",	-00503	-00488

The distance through which the frictional resistance is overcomu is v feet per second. The work expended in Huid friction is therefore given by the equation-

Work expended $=f \omega v^{3}$ foot-pounds per second

$$
\left.\begin{array}{lll}
=f \omega v^{100 t} \text {-pounds per secoua } \tag{3}\\
-\xi G \omega \frac{v^{3}}{2 g} \quad \text { in } & \|
\end{array}\right\}
$$

The coefncient of friction and the friction per square foot of surface can be indirectly obtained from observations of the discharge. of pipes and canals. In obtaining them, however, some assumptions as to the motion of the water must be made, and it will be bettes therefore to discuse these values in connexion with the cases to which they are related.
Many attempts have been made to express the coefficient of friction in a form applicable to low as well as high velocitues. The older hydraulic writers considered the resistance termed duid friction to be made up of two parts, - a part due directly to the distor. tion of the mass of water aud froportional to the velocity of the water relatively to the solid surface, and another part due to kinetic energy imparted to the water striking the roughnesses of the solid surface and proportional to the square of the velocity. Hence they proposed to take.

$$
\xi=a+\frac{B^{\prime}}{\imath}
$$

in which expression the second term is of greatest importance at very low velocitues, and of comparatively littlemoportance at velocs. ties over about $\frac{t}{}$ foot per second. Values of t expressed in thas and similar forms-will be given in connoxion with pripes and canala.
A All these. axpressions must at present be regarded as merelr empirical expressions serving practical purfoses. The frictionst resistance will be seen to vety through wider limits than thes expressions allow, and to depend on circumstances of which they do not take aceonst.
65. C'oulomb's Experiments. -The first direct experiments on fluid friction were mate by Coulomb, who guploym a cirunar disk suspunded ly a thin buss wire and oscillated in its own [hathe llis experimants wire chadly mude at very low velucites. Whea the disk is rotated to any given angle, it oscillates muler the netan of its merta And the tucsion of the wire. The oscillations duminish gralually in consto prone of the work

Fig. 78.
donce in overeoming the friction of the disk. The diminution fur nishes in metns of determining the friction.
liys. 78 shows Conlomber apparatus. LK supports tho wiro and disk; $a y$ is the brass wire, the torsion of which causes the oscilles.
tions; DS is a graduated disk serring to measure the angles through which the alparatus oscillates. To this the friction disk is rigutly attached hangingin a vessel of water. The friction disks were from 4.7 to 7.7 mehes diameter, and they generally made one oscillation in from 20 to 30 geconds, through angles varying from 360° to 0°. When the velocity of the circumference of the disk was less thas 6 Inches per second, the resistance was sensibly propertional to the velocity.
Beaufoy's Experiments. - Towards the end of the last century Colonel Beaufoy made an immense mass of experiments on the resistence of bodies moved througlt wster (Nautical and Hydraulic Experimenes, London, 1834). Uf these the only enes directly bearing on surface friction were some made in 1796 and 1793. Smooth fanted planks were drawn through water and the resistance measured. For two planks diffenng in area by 46 square feet, at a velocity of 10 feet per second, the difference of resistance, mealsured on the difference of area, was 0.339 th per square foot. Also the resistance veried as the 1.949 th power of the velucity.
66. Afr Froude's Erperiments. - The most important direct experiments on fuid friction at ordinary velocities are those made by Mr Froude at Torquay. The method adapted in these experiments was to tow a board in a still water canal, the velocity and the resistance being registered by very ingenious recording arrangements. The general arrangement of the opparatus is shown in fig. 79. AA is the board the resistance of whech is to be determined. B is a cut. water giving a fine entrance to the plane surfaces of the board. CC is a bar to which the board AA is attached, and which is suspended by a parallel motion from a carriage running on rails above the still water canal. G 19 a link by which the resistance of the board is transmitted to a apiral sprog H . A bar I rigidly connects the other ond of the spring to the carriage. The dotted lines K, L indicate the position of a couple of levers by which the extension of the spring iscaused to move a pen M, which records the extensions on a greatly tocreased scale, by a line drawa on the paper cylinder \mathbf{N}. This cylinder revolves at a speed proportionate to that of the carriage, its motion being obtained from the axle of the carriage wheels a second pen O, recerving jerks at every second and a quarter from a clock P , records time on the paper cylinder. The scale for the line of resistance is ascertained by stratching the spiral spring by known weights. The boards nsed for the experiment were fis inch thick, 10 inches deep, aud from 1 to 50 feet in leagth, cutwater included. A lead keel counteracted the buoyancy of the board. The boards were covered mith various substances, such as paint, varnish, Hay'a composition, tinfoil, \&c., so as to try the effect of ditferent degrees

Fig. 79.
of roughness of aurface. The results obtaiaed by Mr Froude may be anmmarized as iollows.-
(1) The friction per aquare foot of surface varies very greatly for differd surfaces, being generally greatro as the sensible roughness of the surface is greater. Thus, when the surface of the beard was covered as mentioned below, the resistance for boards 50 feet leng, at 10 feet per second, was-

Fine sand \qquad $0.405 \cdots "$.
Coarser sand. 0.488
(2) The power of the relocity to which the friction is propertional waries for different surfaces. Thus, with short boards 2 feet long, For tinfoil the resistance raried as $v^{* \cdot 15}$
For other surfaces ., $\quad, \quad v^{200}$
With boards 50 fret loug,
For varnish or tipfoil the resistance varied as $v^{1.53}$
For sand
(3) The average resistance per square foot of aurface was buach greater for short than for long boards; or, what is the same thing, the resistance per square foot at the forward part of the board was greater than the friction per square foot of portions nore sternward Thus,

This remarkable resnlt is explained thus by Mr Froude:"The portion of surface that goes first in the lime of motion, in experiencing resistance frota the water, must in turn communicato motion to the water, in the direction in which it is itself travelliag. Consequently the portion of surface which succeeds the first will be rubbing, not agatnst stationary water, but against water partially moving in its own direction, and canoot therffore experience so much resistance from it.'
67. The following table gives a general statement of Mr Froude'a reaults. In all the experiments in this table, the boards had a fine cutwater and a fine stern end or run; so that the resistance was entirely due to the surface. The table gives the resistancea per square foot in pounds, at the standard speed of 600 feet per minute, and the power of the speed to which the friction is proportionsl, so that the resistance at other speeds is casily calculated.

	Length of Surface, or distance from Cutwater, in feet.											
	2 feer			8 1eet.			20 feet.			s0 feet.		
	A	B	C	A	B	c	A	B	C	A	B	
Varnish......				1.85	-325		$\frac{1}{1.89}$	278	240			\%
Paraffin......				1.94	$\stackrel{314}{278}$		l-93	271	-237 24	$1{ }^{18}$		-232
Calico	193	87	725	L•92	626		$1-89$. 531	-447			423
Fine sand	20	. 81	$\cdot 690$	2.00	583		200	480	-384	2.06	405	337
Medlum sand	200	90	$\cdot 730$	200	-625		200	-534	44			456
Course sand.	200	I. 19	880	200	714		200	588	49			

Columns A give the power of tbe speed to whleh the resistance ts approximately proportional.
Columns B gire the mean reststance per aquare foot of the whole aarface of a board of the lengths stated in the table.
Columns C give the resistance in pounds of a squere foot of surfece et the dis tance aternwaid from the cutwater stated in the beading.

Although these experimenta do not directly deal with surfaces of greater leugth than 50 feet, they indicate what rould be the resistances of longer surfaces. For at 50 feet the decrease of resistance for an increase of length is so small that it will make no very great difference in the cstimate of the friction whether we suppose it to continue to diminish at the sarac rate or not to dimiuish at all. For a varnished surface the frietion at 10 fect per second diminishes from 0.41 to 0.32 1t per square foot when .the length is increased from 2108 feet, but it only dimimshis from 0.278 to 0.250 n per square foot for an increase from 20 fect to 50 feet.
If the decreasa of friction sterawards is due to the generation of a curcent accompanying the noving plane, there is not at first sight any reason why the decrease should net be greater than tbat shown by the experiments. The current arcompanying the board might be assumed to gain in volume and volocity stern wards, till the velocity was nearly the same as that of the moving phano and the friction per square foot dearlyzero. 'Chast this docs not happen appears to be due to the mixing up of the current with the still water gurrounding it. P'art of the water in contact with the board at any point, and receiving energy of motion from it, passes afterwards to distant regions of still water, and portions of still water are fed in towards the board to take ite place. In the forward part of the board more kinctic energy is given to the current than is diffused into aurrounding space, and the current gains in velocity. At a greater distance back there is an approximate balance hetween the energy communicated to the water and that dilliused. The velocity of the current accorupanying the board becomes conatint or mearly conatant, and the friction per aquare feot is therrfore dearly constant also.

VIIL. STEADY FLOW OF WATER IN PHES OF UNIFORM SECTION.

58. The ordinary theory of the flow of water in pipies, on which all practical formule are based, assumes that the variation of velocity at different points of any cross section may be neglected. The water is considered as moving in plane layers, which are driven througn the pipe against the frictional resistance, by the difference of pressure at or elevation of the ends of the pipe. If the motion is steady the velocity at each cross section rempins the same from momeat to moment, and if the cross sectional area is constant the velocity at all sections must be the same. Hence the motion 19 uniform. The most important resistance to the motion of the water is the surface friction of the pipe, and it is convenient to estimate this indepeadently of some smaller resistances which will be accounted for presently.

In any portioc of a unilorm pipe, excluding for tha present the ends of the pipe, the water enters and leaves at the same velocity. For that portion therefore the work of the exterdal forces and of the surface friction must be equal. Let fig. 80 represent a very short portion of the pipe, of leagtin dl , between cross secthons at z and $z+d z$ leet above any horizontal datum line $x x$, the pressures at the cross sections being p and $p+d p$ th pier
 square foot. Fur. ther, let Q be tho volume of flow or discharge of the pipe per second, Ω the area of a normal cross section, a a x the perimeter of the pipe. The Q cutic feet, which How through the spare considered pcr second, weigh GQ tt, and fall through a hexht - d : feet. The wort done by gravity is thea

> -GQdz :
a positive quantity if $d z$ is negative, and nece versa. The resultant pressure paralle] to the axis of the pipe is $p-(p+d p)=-d p$ to per उquare foot of the cross section. The work of this pressure or the rolume Q is

$$
-Q d p .
$$

The only remaining force doing work on the system is the friction ar-rinst the surface of the pine. The area of that surface is $x \mathrm{dl}$.

The work expended in overcoming the frictional resistance per sccond is (sec § 64, eq. 3)

$$
\left\langle G x^{\pi l} \frac{}{2 \pi}\right.
$$

or, since $Q=\Omega v$,

$$
-\zeta G \frac{x}{\Omega} Q \frac{n \cdot x}{2 g} d l ;
$$

the negative sign being taken because the work is done against a resistance. Adding all these portions of work, and equating the resolt to zern, aine the motion is uniform,-

Dividing by GQ.

$$
-G Q d z-Q d r-\xi G \underline{X} Q \frac{r^{2}}{2 g} d l-v
$$

Integratiog

$$
d=+\frac{d p}{6}+\zeta \frac{x}{\Omega} \frac{y^{3}}{2!} d l-0 .
$$

$$
\begin{equation*}
=+\frac{r}{G}+\zeta \frac{x}{\Omega} \frac{v^{2}}{2 g} l=\text { constant } . \tag{1}
\end{equation*}
$$

Fig. 84.
69. Let A and B (fig. 811 bo any two sections of the pirms for which $p_{1} z_{1} l$ bave the values $p_{1,}, z_{1}, l_{1,}$, and p_{31}, z_{2}, l_{2} pespuctively.

Then $\quad z_{1}+\frac{p_{1}}{G}+\zeta_{\Omega}^{X} \frac{z^{z}}{2 g} l_{1}=z_{2}+\frac{\rho_{2}}{G}+\zeta \frac{x}{\Omega} \frac{v^{2}}{2 q} l_{2}$.
or. If $l_{2}-l_{1}=L$, rearranging the terms.

$$
\begin{equation*}
\left.\zeta \frac{r^{2}}{2 g}=\frac{1}{L}\right\}\left(i_{1}+\frac{r_{1}}{G}\right)-\left(z_{2}-\frac{\rho_{2}}{G}\right)\left\{\frac{\Omega}{x}\right. \tag{21}
\end{equation*}
$$

Suppose pressure columns introlucel at A and B The water will rise to those columns to the heights $\frac{p_{1}}{G}$ nad $\frac{\mu_{3}}{B}$ due to the pressures p_{1} and p_{2} at d and B Henre $\left(z_{1}+\frac{p_{1}}{G}\right)-\left(z,+\frac{p_{9}}{G}\right)$ N. the quantity regresented in the horure thy DE, the fall of level int the pregsure columns, or wirtual frell of the jule 11 there were no friction in the pipe, then by Bernoullis equation there would to no fall of level of the prossure columns, the velority henge the same at A and B. Hence DE or h is the head lost in Iriction in the distance $A B \quad$ The quantity $\frac{D E}{A B}-\frac{h}{L}$ is termed thir virtual slope of the pree or sirtual fall per foot of iength. If is somietimes termed very "onvenieatly the relative fall. It wall be denoted by the symbol a.

The quantity $\frac{\Omega}{x}$ which appears in many liydraulhe' equations is called the hydrantic mean raduas of the plpe. It wali be deooted by 3 .

Introllieng these values,

$$
\zeta \frac{v^{2}}{\partial \vartheta}=m \frac{h}{\mathrm{~L}}=m \mathrm{~m} .
$$

For pipes of circular section, and diumeter d.

$$
m=\frac{\pi}{x}=\frac{\frac{\pi}{4} d^{2}}{\pi d}=\frac{d}{4}
$$

Then

$$
\zeta_{\frac{r^{\prime \prime}}{2 g}}-\frac{d}{4} \frac{h_{1}}{\mathrm{~L}}-\frac{d_{1}}{4} .
$$

$$
h=\zeta \frac{4 \mathrm{~L}}{d}-\frac{n^{2}}{2 q}
$$

whin shows that the leall lost in friction is proportional to the heal duc to the velocity, and is found by muluthying that head by the coefficient $\frac{4 \mathrm{~L}}{\mathrm{~d}}$
70. Hylrauthe Gradient or Line of Vivtunl Slmpe -Jom CD Since the head lost in frection is proportionat to L . any intermediate pressure colomis between A and B will have its free surface on the line CD, and the vertical distance between CD and the file at ony point measuras the pressurc, exclustve of atnoospherif pressure. in the preat that point If the pipe were lathl along the lime CD instead of AB, the water would flow at the sume velority ly gravity without any change of pressiure from section to section. Hence CD is terned the wirtual slope or lydraulic gradient of the pipe. It is the line of free surfice level for each point of the pipe

If an ordmary pipe, connectung reservars opell to the ur, rises at any pornt above the line of virtual slope, the pressure at that point is less than the atmospheric pressure trananitited through the pipe At suct: a poont there is a hability that ar may te hasengenged from the water, and the flow atopped or mipeded hy thu accumnilation of air. If the prie rises more than $3+$ fiet atove the hie of virtuad slope, the purssure is negative. Bút as this is impossible, the rontinnty of the llow will be braken.

If the plipe is not straight. the line of virtunl sope fircomes a curved line, that since in actual pipes the vertiral alterntious of Irvel are generally small, compared with the bength of the plipe, distanees measured along the pipe are sensibly proportional to distances measured along the horizontal projection of the pipe. Hence the line of hydraulic gradient may be taken to be a straight live without error of practical unportance.

Fg. 8.
71. Case of a Umform Pipe connecting two Reservoirs, waen all the Wenistences are taken into account. - Let h (fir. "32) be the diference
 and datmeered The whole wark done per second is virtuatly the removal of Q cubic feet of nater from the surface of the upper
reservoir to the surface of the lower reservoir, that is $\mathrm{GQ} h$ foot-pounds. This is expended io three ways. (1) The head $\frac{v^{2}}{2 g}$, corresponding to an expenditure of $\mathrm{GQ} \frac{v^{3}}{2 g}$ foot-pounds of work, is employed in giving energy of motion to the water. This is ultimatcly wasted in eddyiog mothons in the lower reservoir. (2) A portion of head, which experience showa may be expressed in the form $80 \frac{v^{2}}{2 y}$, corresponding to an expenditure of GQ $S_{0.2}^{v^{2}}$ foot-pounds of work, is employed in overcoming the resistance at the entranfe to the pipe. (3) As already show the head expended in overcomag the surface friction of the pipe is $\int_{d}^{4 \mathrm{~L}} \frac{v^{z}}{2 g}$ corresponding to GQ $\frac{4 \mathrm{~L}}{d} \cdot \frac{v^{2}}{2 g}$ fuot-pounds of work. Hence

$$
\left.\begin{array}{rl}
G Q h & =G Q \frac{v^{2}}{2 g}+G Q S_{0} \frac{v^{2}}{2 a}+G Q \zeta \frac{4 L}{d} \frac{v^{2}}{2 g} \\
h & =\left(1+\zeta_{0}+\left(\frac{4 L}{d}\right) \frac{v^{2}}{2 g},\right. \tag{5}\\
v & =8 \cdot 0.025 \sqrt{\frac{h d}{\left.1+\zeta_{0}\right) d+5 \zeta L}}
\end{array}\right\}
$$

It the pipe is lellmouthed, ζ_{0} is about $=08$. If the entrance to the pipe is cylindrical. $\zeta_{0}=0.505$ Hence $1+\zeta_{0}=1 \cdot 08$ to $1 \cdot 505$. In general this is so small compared with $\zeta \frac{4 L}{d}$ that, for practical calculations, it may be neglected; that is, the losses of head other than the loss in surface friction are left out of the reckoning. It ts only in short prpes and at bigh velocities that it is necessary to cake acconat of tha first two terms in the bracket, as well as the third. For anstance, 14 pipes for the supoly of turbides, v is usually limited to 2 feet fer secund, and the jupe ss bellowothed. Then $108 \frac{r^{2}}{2 g}=0.067$ foot. In pıpes for towns' supply v way range from 2 to $4 \frac{1}{2}$ feet per second, and then $1.5 \frac{v^{2}}{2 g}=0.1$ to 0.5 foot. In sither case this amount of head is small compared with the whole virtual fall in theases which most commooly occur.

When d and v or d and h are given, the equationsabove are solved quite aimply When vand h are given and d is required, it is better
to proceed by approximation. Fu. 3 an approximate value of d by assuming a probable value for ζ as mentionea below. Then from that value of d fad a corrected value for ζ and regeat the calculation.

The equation above may be put in the form

$$
\begin{equation*}
-\frac{4 \zeta}{d}\left\{\frac{\left(1+\zeta_{0}\right) d}{4 \zeta}+L\right\} \frac{v^{2}}{2 g}, \cdots \tag{6}
\end{equation*}
$$

from which it is clear that the head expended at the mouthpiece is equivalent to that of a length

$$
\frac{\left(1+\dot{S}_{0}\right) d}{4 \zeta}
$$

of the pipe. Putting $1+\zeta_{0}=1.505$ and $\zeta=0.01$, the length of pipe equivalent to the mouthplece is $37 \cdot 6$ nearly. This may be added to the actual leagth of the pre to allow for mouthpiece resistance in approximate calculations.
7.2. Cocfficient of Friction for Pipes Discharging Water-From the average of a large number of experiments, the value of δ for ondinary aron pipes is

$$
\begin{equation*}
\zeta=0.007567 \tag{7}
\end{equation*}
$$

But practical experience shows that no sígle value can be taken applicable to verydifferent cases. The earleer hydraulicians occupied themselves chiefly wath the dependeace of s on the velocity. Hav. ing regard to the differeace of the law of reastance at very low and at ordinary velocities, they assumed that $\zeta \mathrm{migb}{ }^{\circ}$ be expressed in tha form

$$
\delta=a+\frac{B}{v}
$$

The following are the best numerical values ohtaned for s so expressed -

	a	β
Prony (from 51 experiments)	0.006836	0.001116
D'Aubuisson	0.00673	0.001211
Eytelwein......	$0 \cdot 005493$	0.00143

Wersbach proposed the formula

$$
\delta=a+\frac{\beta}{\sqrt{v}}=0.003598+\frac{0.004288}{\sqrt{v}}
$$

The following short table gives Weisbach's values of the coefficieal of friction for different velocitres in feet per second :-

13. Darcy's Erperiments. - All previous experiments on the reBistance of pipes have been superseded by the remarkable researches carmed out by thr late Inspector-General of the Paris Water Worka, M. Darey His experimente were carmed out on a scale, poder a vanation of conditions, and with a degree of accuracy which leaves little to he desired, and the results obtaned are of very great practical inportance These results may be stated thus:-
(1) For new and clean pipes the friction varica considerably with the aature and polish of the surface of the pupe. For clean casttron it is about $\frac{1}{2}$ times as yreat as for cast-iron covered with pitch.
(2) The nature of the surlace has less influence when the plues are old and incrusted with leposits, due to tha action of the water. Thus old and inicrusted pipes gire twice as grent a frictional resistance as new and clean [ipes. M Darcy's coefficients wete chicfly detarmined from experinients on new pipes. Ile doubles thrse coefficients for old aud incrusted pipes, io accordance with the results of a very limited number of experiments ou pipes containing incrus. tations and dejosits.
(3) The coeflicient of friction may bo expressed in the form $\zeta=a+\frac{\beta}{v}$; but in pipes which have been some time in use it is sufficiently accurate to take $\zeta-a_{1}$ simply, where a_{1} depends on the dameter of the pipe alone, bat a and B on the otlier haod depend both on the diameter of the pipe and the nature of its surface. The following are the values of the constants.

For pipes which have been some time in use, neglecting the term depending on the velocity ;

$$
\begin{equation*}
2\left(1+\frac{B}{d}\right) \tag{9}
\end{equation*}
$$

	a	β
For diawn wronght-iron or smooth cast-iron pipes \qquad	$\cdot 004973$. 084
For pipes altered by light incrus. tations	-00996	$\cdot 084$

These coefficients may be put in the following very simple form. without sensibly altering their value :-
For clean pipes. \qquad $\left.\begin{array}{r}\delta=005\left(1+\frac{1}{12 d}\right) \\ \cdots=01\left(1+\frac{1}{12 d}\right)\end{array}\right\}(9 a$
For slightly incrusted pipes. \qquad

Darcy's Value of the Cocficient of Friction $\$$ for Velocities not less than 4 inches per second.

Diameterof Pppein Inches.	, 5		nlameter of ripe in Inches.	ζ	
	New Pipes.	tecrusted Pipes		$\begin{aligned} & \text { New } \\ & \text { Pipcs } \end{aligned}$	Incmusted Dipes.
2	0.00750	0.01500	18	-00528	. 01056
3	-00667	-01333	21	-00521	-01648
4	-00625	-01250	24	$\cdot 00521$	-01042
5	-06600	-01200	27	-00519	-01037
6	-00553	01167	30	-00517	-01033
7	.00571	-01143	36	-00514	-01028
8	-005:63	-01125	42	-00512	-0102
9	-00556	-01111	48	-00510	$\cdot 01021$
12	-00542	$\cdot 01083$	54	-00509	$\cdot 01019$
15	.00.533	$\cdot 01067$			

These values of §are, however, only applicahle when the velocity exceeds 1 inches per second. To cmbrace all cases Darcy pronow the expression

$$
\begin{equation*}
\zeta=\left(a+\frac{a_{1}}{d}\right)+\frac{\beta+\frac{\beta_{1}}{d^{2}}}{v}, \tag{10}
\end{equation*}
$$

which is a modification of Conlomb's, incluang terms expressirg tho intluence of the diameter and of the velocity. For clean pipes Darcy found these values
$a=001262$
$a_{1}=0010533$
$\beta=00200$
$\beta_{1}=00001042$
74. Scraping Thater Mains. - The influence of the condition of tho surface of a pipe ou the friction is shown by various facts known to the engineers of waterworks. Pipes are very often heated and dipped in pitch, which gives them a amooth bard surface and protects them fromoxidation Such pipes are knomn to give a discbarge larger than that calculated by the ordinary formule. In pipes which convey certan kinds of water oxidation proceeds rapidly, and the discharge is very perceptibly and sometimes very greatly diminished. In a main lan at rorquay the disoharge diminished from this cause more than fil per ceut., and the supply became insufficieut for the town. Mr Appold suggested an appasatus for scraping the interior of the pip. do. 1 this was constructed and tried under the direction of Br Froude. It was foum that by scrapiag the interior of the pipe the discharge was increased 56 per cent. The scrapiog requires to te repeated ut iutervals. After each scraping the discharge dimio. ishes rather rapidly by 10 percent. and afterwuds more slowly, the diminutior. in a year being about 25 per cent.

Fig. 83 shoma a scroper for water maios, simal ir to A1r Appold's bet todified in details, as constructed by the Glenfield Company, at Kilmarnock. A is a longitudioal setton of the pipe, showing the sr:aper in place; B is an end view of the plungers, and C, D sec tions of the boxes placed at intervals on the main for matroducing or bathdrawing the acraper. The apparatus consists of two pluagers, packed with luather so as to fit the nain pretty closely. On the
for the sucessive portions, and let l, d, v, and i he corresponding 9tantites for the equivalent uniform main B. The tutal luss of licad un a due ounicion is

$$
\begin{aligned}
& l_{1} l_{1}+i_{1} l_{2}+ \\
= & \zeta \frac{i_{1}^{2}}{2_{g}} \frac{4 l_{1}}{l_{1}}+\zeta \frac{v_{2}^{2}}{2 g} \frac{4 l_{2}}{d_{2}}+\cdots
\end{aligned}
$$

and in the uniform man

$$
i l=\zeta \frac{v^{3}}{2 g} \quad \frac{4 l}{d}
$$

If the mains ore equivalent, as detined abore,

$$
\zeta \frac{v^{2}}{-g} \frac{4 l}{l}=\zeta \frac{v_{1}^{2}}{i_{g}} \cdot \frac{4 l_{1}}{l_{1}}+\zeta \frac{v_{a}^{2}}{2 g} \frac{4 l_{2}}{d_{2}}+
$$

But, since the discharge is the same for all portions,

$$
\begin{aligned}
& \frac{\pi}{4} d^{2} v_{v}=\frac{\pi}{4} d_{1}{ }^{2} \tau_{1} \\
&=\frac{\pi}{4} d_{2}{ }_{2} l_{2}= \\
& v_{1}=v \frac{d^{2}}{d_{1}{ }^{2}} ; v_{2} \\
&=v \frac{d^{2}}{d_{2}{ }^{2}}
\end{aligned}
$$

Also suppose that $\$$ may he treated as constant for all the pipes.
Then

$$
\begin{aligned}
& \frac{l}{d}=\frac{d^{4}}{d_{1}^{5}} \cdot \frac{l_{1}}{d_{1}}+\frac{d^{4}}{d_{2}^{4}} \frac{l_{2}}{d_{2}}+ \\
& l=\frac{d^{5}}{d_{1}^{5}} l_{1}+\frac{d^{5}}{d_{1}^{5}} l_{2}+
\end{aligned}
$$

which gives the length of the equi
 valent unilorm main which would have the same total lose of head for any given discharge
${ }_{76}$ Case of a Prpe of Uniform Diameter unth Dascharge diminushing undformly along its Lenget. - In the case of a branch main the water is delivered at nearly eyual distaoces to service pries along the route Such a num a pincoxmates to the case of a moin of voilorm diameter, whith 8 discharge ut earh pout diminishel by an anount froportinoal to the distance from tha origio Let $A B$ (6y 85) be a main of diumeter a and leagth L; let Qoculic feet per second euter at A, and let q cubir feet bea delivered to survies pipes per foot of its leogth Then ot any puiot C. I leet from A. the discharge is
epindle of these plungers are fixel eight steel scraping blades, with curved scraping edges bitting the surface of the main. The aprpa. ratus is plated in the tuain by removing the cover from oue of the boxes shown at C, D. The cover is then replaced, water pressure is admitted behind the phangers, and the apparatus driven through the main. At Lancaster, gfter twice scraping the discharge was increased $56 \frac{1}{2}$ per cent., at Oswestry 54 per cent. Tbe increased diseharge is due to the diminution of the friction of the pipe by re. moving the roughnesses due to oxidation.
75. Reduction of a louy Pipe of 「arying Diampter to an Equiva Irat Pipe of Uniform Diameter. Dupuit's Equation - Watermains for the supply of towas often consist of a series of lengthe, the dia. meter being the ame for each length, but diflering from length to leagth. In approximate calculations of the lead lost in such mains, it is generilly accurate enough to veglect the smaller losses of head and to have regard to the pipe friction only, and then the caloula. thons may bo facilitatol by reducing the main to a nain of unform diameter, in which there wonld be the same loss of bead Such a uniform main will be termed oo equivaleot moin

Fig. 8
In fi: 84 , let A be the mion of variable dinmeter, and B the exuivabut uniform main. In the given main of variable dinumer A, let

l_{1}, l_{2}, be the fungthe. d_{1}, d_{2}, \ldots thon dianuelers, $v_{1}, v_{2} \ldots \quad$ the vilaraties, $i_{1}, i_{3} \ldots$ the shan"	

$Q=Q_{0}-q l$ Consider a short length d/ at c The loss of bead io that length is

$$
\zeta \frac{v^{2}}{2 g} \frac{4 d l}{d}-\zeta \frac{Q^{2}}{\frac{\pi^{2}}{16} d^{\prime}} \quad \frac{4 l l}{d}=64 \zeta \frac{Q^{2} d d}{\pi^{9} d^{3}}=\frac{64 \zeta}{\pi^{2} d^{6}}\left(Q_{0}-q^{1} d l\right.
$$

Heace the whale bead lost in the length AB wall be

$$
\begin{gather*}
h=\frac{64 \zeta}{\pi^{2} d^{3}} \int_{0}^{L}\left(Q_{0}-g l\right)^{2} d l \\
=\frac{64 \zeta L}{\pi^{2} d^{6}}\left\{Q_{0}{ }^{2}-q Q_{0} L+\xi \eta^{2} L^{2}\right\} \tag{1}
\end{gather*}
$$

or, putting $P=q L_{\text {, }}$ the total discbarge through the service pipes between A and B.

$$
h-\frac{6+\zeta L}{n^{2} d^{3}}\left\{Q_{0}^{2}-I Q_{0}+3 \Gamma^{2}\right\}
$$

The diacharge at the end B of the pipe iq $Q_{1}=Q_{0}-P$. If Q^{\prime} is put for the dis. chargo of tho pipe when tha llow juta tho servire pipes is stopped, under the same head h, it may be shown that

$$
Q_{1}=Q^{\prime} \quad 055 \mathrm{P} \text { uearly }
$$

If tho pipo is so long that

$$
Q_{1}=Q_{0} \quad P-0
$$

all the water passing into service pipes en route.

$$
\begin{equation*}
h=\frac{1}{3} \frac{64<L_{\pi^{2}} d^{b}}{} \mathrm{Q}_{1}{ }^{2} \tag{8}
\end{equation*}
$$

77. Ohher Rossws nf Hond in Piges - Most of the losees of head in

to abrupt changes in the velocity of the strean producing edilics. Tise kinctic edergy of the: is deducted from the general cuergy of translation, and practically wasted.
Sudden Enlargement of Sec-(ion.-Supposa a pipe eularges in section from an area $\omega_{1,}$ to an area ω_{1} (fig. 86); then

or, if the section is circular,

Fig. 86

$$
\frac{z_{3}}{v_{0}}=\binom{l_{0}}{l_{1}}
$$

The liad lost at the abrupt change of veloeity has alreaily been shown to be the head due to the relative velocity of the two parts of the strealu. Hence bead lost
$b_{1}=\left(z_{0}-v_{1}\right)^{2}=\left(\frac{\omega_{1}}{\omega_{0}}-1\right)^{2} \frac{v_{1}}{2 g}=\left\{\left(\frac{d_{1}}{d_{0}}\right)^{2}-1\right\}^{2} \frac{v_{1}{ }^{2}}{2 g}$
ol $b_{0}=\zeta_{0} \cdot \frac{v_{t}{ }^{2}}{2 y}$,
If $S_{\text {e }}$ is put for the expressioo in brackets.

$\frac{\omega_{1}}{\omega_{0}}-$	11	1.2	$1 \cdot 3$	14	15	16	17	18	19	20	$\because 5$	30	35	$4 \cdot 0$	5.0	60	70	$8 \cdot 0$
$\frac{d_{1}}{d_{0}}=$	105	110	1.14	118	122	126	130	134	138	141	158	133	187	200	$2 \cdot 21$	245	265	283
S. $=$	01	. 04	-09	$\cdot 16$	25	36	49	64	81	100	225	$4 \cdot 00$	625	9.00	16.00	2500	360	490

Alrupt Contraction of Scction - When water possew fruma a larger to a smaller section, as in ligs $87,88,8$ cuntinction 15 formed, and

Fig 88.
the cootracted stream abruply expands to fill the section of the pipe let ω be the section and v the velochy of the strean at $b b$. At ac the aectiod aill be $c_{c} \omega$. and the celocity $\frac{\omega}{c_{c} \omega} v=\frac{v}{c_{s}}$, where c_{0} is the cotficient of contraction Theo the lead lust is

$$
f_{m}=\frac{\left(\frac{v}{c_{c}}-v\right)^{2}}{2 g}-\left(\frac{1}{c_{c}}-1\right)^{2} \frac{v^{2}}{2 g} ;
$$

and, If c_{0} is takell 064.

$$
\begin{equation*}
h=0316 \frac{v^{9}}{2 u} \tag{2}
\end{equation*}
$$

Tbe value of the coefficient of contraction for this case is, however, not well ascertained, and the result is somewhat modified by frictivn. For uater entering a cylindrical, not bellunouthed, pipe from a reservair of indefieitely large aize, experiment gives

$$
\begin{equation*}
b_{a}=0505 \frac{v^{2}}{2 g} \tag{3}
\end{equation*}
$$

If there is a daphragm at the mouth of the pipe as in fig. 88 , let ω_{1} he the area of this orifice Then the area of the contracted strean iaccen, ath the bead lost is

$$
\begin{aligned}
& \left(\frac{\infty}{c_{c} w_{1}}-1\right)^{2} \frac{r^{2}}{2 g} \\
& -6 \cdot \frac{v^{1}}{2 g} \\
& =
\end{aligned}
$$

'f δ_{0} is puif for $\left(\frac{\omega}{c i \omega_{1}}-1\right)^{\prime}$
Weisbach has found experimentally the following values of the coefficient, when the stream approaching the orifice was considerably larger than the orifice :-

$\stackrel{\omega_{1}}{\sim}$	$0:$	02	03	04	03	06	07	08	09	10
$4 \cdot 7$	${ }^{6} 16$	614	612	610	. 60	${ }^{6} 05$	c03	${ }^{6} 01$	-593	-596
$s_{c}=$	231:	5095	1978	9612	5.25f	3077	$18: 6$	1193	0734	$0+80$

Wheo a diaphragm was placed io a tube of unifurm section (lig. 89),

Fig. 89.
the following values wero obtaidet, ω_{1} being the area of the orifice, and ω that of the pipe:-

$\stackrel{y}{3}$	0.1	0.9	0.3	0.4	0.5	06	0.7	0.8	0.9	10
4	629	63	. 613	639	691	712	-75	813	392	
¢ $=$	2359	47.78	30.83	: 801	1753		.79\%	1390	-00	-0,0

Ellows. - Wrishach considers the loss of head at pllwws (fig) 90) to be date to a contraction formed by the strean. From experiments with a pile ll inches dia. inter, he found the loss of head
J) $=\zeta_{r} \frac{v^{2}}{2 y}$
(5);

Fiz. $90 . \ddots, \phi$
$S_{2}=0.9457 \sin _{2}^{2}{ }_{2}+2017 \sin _{2}^{4}{ }_{2}^{4}$

$\phi=$ $s_{c}=$		40 0139	${ }_{6}^{60}{ }^{6}$	80 0.780	${ }^{90}$	100° 1200	120 1.556	120 1.861	130^{*} 2158	14% 2.433

Hence at a right-angled elbow the whole head due to the relocity very nearly is lost.
Bends. - Weisbach traces the Joss of head at curred bends to a eimilar cause to that at elborss, but the coefficients for hends are oot very satisfactorily ascertaibed. Weisbach obtained for the loss of head at a bend in a pipe of cireular section

$$
\begin{align*}
& \Sigma_{8}=\delta_{8} \frac{v^{2}}{2 g} \cdot \cdots \tag{6}\\
& \delta_{0}=0131+1817\left(\frac{a}{2 \rho}\right)^{2}
\end{align*}
$$

where d is the diancter of the pipe and p tha radius of curvature ol the beod. For bends with rectaugular cross bections

$$
s_{0}=0 \cdot 124+3 \cdot 104\left(\frac{s}{2_{P}}\right)^{\frac{\xi}{2}}
$$

Wheres is the leagth of the side of tho section parallel to the radius of eurrature ρ.

$\frac{5}{2 \rho}=$	0.1	0.2	03	0.4	0.5	06	07	0.8	0.9	10
$50=$	$\cdot 124$.135	150	250	398	643	1015	1.546	2.271	328

Intres, Corks, and Suices. - These prodnec a contraction of the water-stesns, similar to that for an abrupt dimidution of sectiod alrealy discussei The loss of head mav butaken as before to be

$$
\begin{equation*}
b_{0}=S=\frac{2^{2}}{2 g} \tag{7}
\end{equation*}
$$

where v is the velonity in the pije beyond tho valve and Co a coetlicient determined by ex. periment. Tho following are Wisbach's results.
Stuice in Fipe of Rectangular Section (ing. M1). Section at sluice $=\omega_{1}$ in jipera ω.

$\underline{w}_{1}=$	1.0	09	0 B	07	06	05	04	$0 \cdot 3$	0.2	0.1
$5 \cdot=$	000	\cdots	39	23	2.60	10.	81.	17.8	4.5	197

. Siuice in Cylindrical Fire (fig. 92).

iftlo of beight of opcning to de metcr of pipe)	10	1	\ddagger	\&	1	\#'	\ddagger	4
$\stackrel{\Delta 1}{1}^{=}$	100	0.348	856	740	699	-466	-315	-159
$50=$	0.00	0.07	026	0.81	2.06	$5 \cdot 52$	170	978

Fig. 92.

Fig. 93.

Cock in a Cylindrical Pipe (fig. 93), Angle through which cock s turned $=\theta$.

$\theta=$	5°	10°	15°	20°	25°	30°	35°
$\left.\begin{array}{l}\text { Ratio of } \\ \text { cross sec- }\end{array}\right\}$	-926	- 850	722	'692	613	$\cdot 535$	-458
$S_{0}=$. 05	$\cdot 29$	$\cdot 75$	$1 \cdot 56$	$3 \cdot 10$	$5 \cdot 47$	9.68
$\theta=$	40°	45°	50°	55°	60°	65°	82°
$\left.\begin{array}{c}\text { Retio of } \\ \text { cross sec- }\end{array}\right\}$	$\cdot 385$	315	$\cdot 250$	$\cdot 190$	$\cdot 137$	'091	- 0
\%.-	$17 \cdot 3$	31.2	52.6	106	206	486	∞

Throttle Valve in a Cylindrical Pipe (fig. 94).

$\theta=$	5°	10°	15°	20°	25°	30°	35°	40°
$60=$	24	52	90	1.54	2.51	3.91	6.22	10.8

$\theta=$	45°	50°	55°	60°	65°	70°	90
$\zeta=\infty$	187	32.6	58.8	118	255°	751	∞

78. Practical Culculations on the Fluw of Water in Pipes:-lo the following explaations it will be assumed that the pipe is of so great a length thet only the loss of head In friction agaiust the surface of the pre needs to be cousidered. In general it is one of the four guantities $d, i, 2$, or Q which requires to be determined.

For since the loss of head h is giren by the relation $h=i l$, this need not be separately considered.
Thero are theo three equations (sere el. 4, \& 69, and for, 5 78) for the aolution of such problems as arise :-

$$
\begin{equation*}
s=a\left(1+\frac{1}{12 d}\right) \tag{1}
\end{equation*}
$$

Where $a=0.005$ for now and -0.01 for incurasted pues.

$$
\begin{align*}
& \delta \frac{v^{2}}{2 y}=\frac{i l l_{l}^{4}}{Q}=\frac{\pi}{4} d r^{2} v . \tag{}
\end{align*}
$$

Probiem 1. Gisen the diameter of the pipe and ita virtnad slope. to find the diecharye tod velocity of tlow. Here a nud inre given, and () and v wre ryumme. Find (from (1); then v from (2). lastly Q from (8). Flus caie presents no difliculty.

By combining equations (1) and (2), 1 is obtained directly :-

$$
\begin{aligned}
& u=\sqrt{\frac{4}{4 b^{l i}}=\sqrt{\frac{1}{2}} \sqrt{\frac{a}{1+\frac{1}{12 d}}} .} \\
& \text { Fur now lipess }
\end{aligned}
$$

$$
=80: 21
$$

For pipes not less than 1, or more than 4 feet in diameter, the mean values of $\$$ are

> For new pipes. 0.00526
> For incrusted pipes 0.01052.

Using these values we get the rery simple expressions-

$$
\left.\begin{array}{rl}
v & =55 \cdot 31 \sqrt{d_{2}} \text { for oew pipes } \\
& =39 \cdot 11 \sqrt{d \iota} \text { for nacrusted pipes } \tag{4a}
\end{array}\right\}
$$

Witho the limits stated, these are accurate eoough for practical purposes, copecially as the precise value of the coefficient $\$$ caonot be known for each special case.

Problem 2. Giveo the diameter of a pipe end the velocity of flaw, to fiod the virtual slope and discharge. The discharge is given by (3) : the proper value of ζ by (1); and the vartual slope by (2). This also presenta no special difficulty.

Problen 3 Given the dameter of the pipe and the discharge. to find the virtual slope and velocity. Find v from (3) ; ζ froin (1), lastly 2 from (2). If we combine (1) and (2) we get

$$
\begin{equation*}
z=\zeta \frac{v^{2}}{2 g} \quad \frac{4}{d}=2 a\left(1+\frac{1}{12 d}\right) \frac{v^{2}}{g d} \tag{5}
\end{equation*}
$$

and, taking the mean values of 5 for pipes from 1 to 4 teet diameter, given above, the approximate formula aro

$$
\left.\begin{array}{l}
i=0.0003268 \frac{r^{2}}{d} \text { for new pules } \tag{5u}\\
=0.0006536 \frac{r^{3}}{d} \text { for incrusted pipes }
\end{array}\right\}
$$

Problem 4. Gireo the virtual slope and the relocity, to fud the diameter of the pipe and the dascharge. The diameter is obtanced from equations (2) and (1), which gisc the quadratic expressiva

$$
\begin{gather*}
a^{2}-d \frac{2 a v^{2}}{g_{2}}-\frac{a l^{3}}{6 y^{2}}=0 \\
\left.\therefore \quad d=\frac{a v^{2}}{g^{2}}+\sqrt{\{ } \frac{a i^{2}}{g^{2}}\left(\frac{a v^{2}}{g^{2}}+\frac{1}{6}\right)\right\} \tag{6}
\end{gather*}
$$

For practica! purposes, the approximate equations

$$
\begin{aligned}
d & =\frac{2 a v^{2}}{g i}+\frac{1}{12} \\
& =0.00031 \frac{v^{2}}{2}+083 \text { for new pipes } \\
& =0.00062 \frac{v^{2}}{2}+083 \text { for incrusted mies }
\end{aligned}
$$

are sufficiently accurate.
Problem 5. Given the virtual slope and the discharge, to find the diameter of the mpeand velocity of flow This case, which often oceurs in tesigniog, ia the one which is least essy of dircet solution. From equations (2) and (3) we get-.

$$
d^{3}=\frac{32 \zeta Q^{2}}{9 \pi^{2}-2}
$$

If now the value of ζ in (l) is introduced, the equation becomes very cumbrous Varioua approsimate methods of meeting the didiculty lauy be ased.
(a) Taking the mean values of ζ given abore for pipes of 1 in a feet diameter wo get

$$
\begin{aligned}
& d=\sqrt[3]{\frac{32 \zeta}{9 \pi^{2}}} \sqrt[8]{\frac{Q^{3}}{2}} \cdot . . \\
& =0.2216 \sqrt[3]{\frac{Q^{2}}{2}} \text { for uer inpes } \\
& =0.2541 \sqrt[3]{\frac{Q^{3}}{2}} \text { for incrusted pipes. }
\end{aligned}
$$

equations which are interesting os showing that when the ralue of fis doubled the diameter of pipe for a given discharge is only tocreased by 13 per cent.
(b) A creond method is to obsain a rough ralue of d by assuming $\zeta-\mathrm{a}$. This matue is

$$
d^{\prime}=\sqrt[3]{\frac{32 Q^{2}}{y \pi^{2} i}} \sqrt[5]{ } / a=0.6319 \sqrt[3]{Q^{2}} \sqrt{3} / a
$$

Then a very approximate value of ζ is

$$
s^{\prime}=a\left(1+\frac{1}{12 a^{\prime}}\right) .
$$

and a revised valuo of d, not sensibly differing from the exact value. ls
(c) Lination 7 may be put in the form

$$
\begin{equation*}
d=\sqrt[3]{\frac{-\sum^{2} a()^{2}}{y \pi^{2}}}\left(1+\frac{1}{12 d}\right)^{\}} \tag{9}
\end{equation*}
$$

HYDRAULICS.」
H Y DROMECHANICS

Expanding the term in brackets,

$$
\left(1+\frac{1}{12 d}\right)^{\frac{1}{d}}=1+\frac{1}{60 d}-\frac{1}{1800 d^{2}}
$$

Neglecting the terms after the second,

$$
\begin{aligned}
d & =\sqrt[6]{\frac{32 a}{g \pi^{2}}} \sqrt[6]{\frac{Q^{3}}{i}}\left(1+\frac{1}{60 d}\right) \\
& =\sqrt[6]{\frac{32 a}{g \pi^{3}}} \sqrt[6]{\frac{Q^{3}}{i}}+0.01667
\end{aligned}
$$

and

$$
\begin{aligned}
\sqrt[0]{\frac{32 a}{g \pi^{2}}} & =0.219 \text { for new pipes } \\
& =0.252 \text { for incrusted pipes }
\end{aligned}
$$

79. Arrangement of a Pipe Network for Town's Supply. -Exclud. ing tbe service phes wheh directly supply the houses, the smallest branch water nians are made 3 to 4 mehes in diameter. For the gmallest distriets supplied, these are sutlicient or more than sutficient to ronvey the necus. sary supply, and in that case the only question arising $\mathrm{ts}_{\text {, to }}$ lay them ont in that therr total length ts
 ns small as possible.
fall of the two brancli maing. Then, aecording to Dnpuit, the best nosition for the intersection M is that for which

$$
\frac{l_{a}}{l_{b}}=\frac{I_{a} Q_{b}{ }^{2}}{l_{b}\left(Q_{a}{ }^{3}\right.} ;
$$

or, if the consumption of water occurs uniformly throughout the length of the branch mains, then

$$
\frac{l}{a}_{l_{b}}^{0}=\sqrt[1]{h_{a}}
$$

In this way various points $M N$ may be determinca giving the pesition $A \Delta N$ for the nain, and afterwards the nearest convenicul position ADC may be fixed.

In determiniog the consmption of water Q for any given locality, the moda of supply must be taken into account. On the intermittent system, water is supplied for a period of t seconds daily. Then the dischargo ger second is $\frac{N Q d}{t}$, where N is the number of inhabitants, and Q_{d} the daily supply to each in cubic fect. With a constant supply the rate of flow is variable at different perionls of the day, and the maximum rate of flow may be taken at 2.1 times the meau rate. Hence in this case the disclarge to be provided for in the mains is $\frac{2 \cdot 1 N Q_{d}}{2+60 \times 60}$. The dnily supply to a district N_{d} is sometimes taken proportional to the nrea supplied, sometines to the length of house fromacre in the distilict.

Determination of tho Diameters of Different Parts of a Fater Main.

When the plan of the arrangement of mains is determined upon, and the supply to eacli locality and the pressure reguired is ascertained, it remains to determme the linancters of the pipes. Let fig. 97 show an elevation of a main $\triangle B C D$. .il being the tescrvoir from which the supply is deswed. Let NN be the datum dine of the levelling operations, and Π_{a}, H_{b}. . the heighte of the main above the datum line, H_{r} being the height of the water sutface in the reservoir from the same datum. Set uj next heights $A A_{1}, B B_{1}, \ldots$ representing the minimum pressure height necessary for the adequato supply of each locality. Then $A_{1} B_{1} C_{1} D_{1}$. . is a line which shon:ld form a lower limit to the lino of virtmal slope. Then if beights $b_{a} J_{b}, b_{c}$. . are taken representing the nctual losses of head in caeh Iength $l_{a}, l_{8} l_{c} . \therefore$ of the main, $A_{0} \mathrm{C}_{0} \mathrm{C}_{6}$ will be the line of virtual slope, and it will be obvious at what peints such as D_{0} and F_{0} the pressure is deficient, and a different choice of dianetor of main is required. For any point z in the lengtly of the main, we liavo Pressure height $=\mathrm{H}_{5}-\mathrm{H}_{s}-\left(\mathrm{h}_{\mathbf{a}}+\mathrm{b}_{b}+\ldots . . . \mathrm{b}_{s}\right)$.
Where no other circunstance limits the loss of hoad to bo assigned to a given length of main, a considetation of the safety of the main from fracture by hydranlie shoek leads to a limitation of the velocity of flow. Generally the velocity in water maire 'p.

Fig. 97.
between $1 \frac{1}{2}$ and 4 f feet per eecnnd. Occasionally the velocity in pres reaches 10 feet per second, and in hydranlic machanery working under enormous prussures even 20 feet per second. Usually the velocity diminishes along the main as tho discharge dimmishes, so as to reduce somewhat the total loss of head which is liable to render the pressure insuffieient at the end of the main.

Mr Farning gives the fellowing velocities as suitable in fipes for towns' supply :-
$\begin{array}{lllllllll}\text { Diameter in inches..... } & 1 & 8 & 12 & 18 & 24 & 30 & 26\end{array}$ Velocity in feot per sec. .. $25 \begin{array}{lllllllll} & 3.0 & 3.5 & 4.5 & 5 \cdot 3 & 6 \cdot 2 & 7.0\end{array}$
80. Branclucd Pipe cannecting Rescrvoirs at Different Levels.-1.et A, 13, C (fig. 98) be three reservoirs connected by the arrangement of pipes shown, $l_{1}, d_{1}, Q_{1}, v_{1} ; l_{2}, d_{2}, Q_{2}, v_{2} ; l_{3}, d_{3}, Q_{3}, v_{3}$ being the longth. diameter, discharge, and velocity in the threo portions of
the main pipo. Suppose the dimensions anu positions of the pipes known and the discharges required.
If a pressure column is introduced nt X, tho water will rise to a height XR, measuring the pressure at X, and aR, Rb, Rc will be the lines of virtual slope. If the free surface level at $l i$ is above b, the reservoir A supplies B and C, nnd if R is below b, A and B supply C. Consequeatly there are three cases:-

1. R above $b_{:} Q_{1}=Q_{12}+Q_{3}$.

1I. R level with $b, Q_{1}=Q_{3} ; Q_{3}=0$.
III. R below $b ; Q_{1}+Q_{2}=Q_{3}$.

To determine which case has to be dealt with io the giren conditiong, suppose the pipe from \mathcal{X} to B closed by a sluice. Then there is a gimplo main, and the height of free surface h^{\prime} at \mathcal{I} can be determined For this condition
since the work done by sratiry an the air during its flow through a pipe due to variations of its devel 5 generally small compared with

$$
\begin{aligned}
& h_{3}-h^{\prime}=\zeta \frac{r_{1}{ }^{*}}{2 g} \cdot \frac{4 l_{1}}{d_{1}}=\frac{32 \zeta Q^{\prime}+l_{1}}{g \pi^{2} d_{1}^{5}} \\
& k^{\prime}-h_{e}=\zeta \frac{r^{\prime} 3^{3}}{2 g} \cdot \frac{4 l_{3}}{d_{3}}=\frac{32 \zeta 2^{2} l_{3}}{g \pi^{2} l_{3}{ }^{5}}
\end{aligned}
$$

where \boldsymbol{Q} is the common discharge of the tro portions of the prpe. Hence

$$
\frac{h_{4}-h^{\prime}}{\overrightarrow{h^{\prime}}-h_{c}}=\frac{l_{3} d_{3}^{5}}{l_{3} d_{1}^{5}}
$$

fram which h is easily obtained. If then h is greater than $h b$, opening the sluice between X and B will allow fow towards B, and the cass in hand is case 1. If h^{\prime} is less than h_{8}, opening the sluice will allow flow from B, and th.e case is case Ill. If $h^{\prime}=h_{b}$, the case is case II., and is already completely solved.

The true value of h must lie batween h^{\prime} and h_{b}, Cboose a now value of h, and recolculate Q_{2}, Q_{8}, Q_{3}. Then if
 the work done by changes of pressure, the former may in many cases be neglectod.

Consider a short length dl of the pipe limited by sectious A_{0}, A_{1} at a dis. tance dl (fig. 99). Let y, u be the pressite and velocity at $A_{0, p}+d p$ and

Fig. 30. $u+d u$ those at A_{1}. Fur-
ther, suppose that in a very short time $d t$ the mass of air between $A_{0} \Lambda_{1}$ comes to $A_{0}^{\prime} A_{1}^{\prime}$ so that $A_{0} A_{0}^{:}=u d t$ and $A_{1} A_{1}^{\prime}=\{u+d u\} d t$ Let Ω be- the section, and m the hydraulic mean radius of the ripe, and W the weight of air flowing through the pipe per second.

From the steadiness of the motion the weight of air between the sections $A_{0} A_{0}^{\prime}$, and $A_{1} A_{i}$ is the same. That is, $W d t=G \Omega u d l=G \Omega(u+d u) d t$.

By analogy with liquids the head lost in friction is, for the length $d l$ (sec $\S 69$, eq. 3),

$$
\zeta \frac{u^{2}}{2 g} \cdot \frac{d l}{m}
$$

Let $\mathrm{H}=\frac{u^{2}}{2 g} \quad$ Then the bead lost is

$$
\zeta \frac{\mathrm{H}}{n^{2}} d l ;
$$

and, since $W d t$ pounds on
air flow through the pipe in the time considered, the work expended in friction is
ig. 98.
$-\int \frac{\mathrm{I}}{\mathrm{m}} \mathrm{V} \mathrm{Vl} d t$.
The change of kinetic energy in $d l$ seconds is the differenco of trkinetic energy of $A_{0} A_{0}^{\prime}$ and $A_{1} A_{1}^{\prime}$, that is,

$$
\begin{gathered}
\frac{W}{g} d t \frac{(u+d u)^{2}-u^{2}}{2} \\
=\frac{W}{g} u d u d t=W d \mathrm{H} d t .
\end{gathered}
$$

The work ot expansion when sudi cubic fect of air at a pressure p expand to $\Omega(u+d u) d t$ cubic feet is.

$$
\Omega p d u d t
$$

But from (3a)

$$
\begin{gathered}
u=\frac{c r}{\Omega} \frac{W}{p} \\
\frac{d u}{d p}=-\frac{c \tau \mathrm{~W}}{\Omega p^{2}}
\end{gathered}
$$

And the work done by expansion is

$$
\frac{c \tau W}{p} d p d t
$$

The work done by gravity on the mase between \tilde{N}_{0} and A_{1} is zmat if the pipe is horizontal, and may io other cases be neglected without great error. The work of the pressunes at the gections $\Lambda_{0} \Delta_{1}$ is

$$
\begin{gathered}
p \Omega u d t-(p+d p) \Omega(u+n t u) d t \\
=-(p d u+v u l p) \Omega u .
\end{gathered}
$$

But from (3a)

$$
\begin{aligned}
& m=\text { constant } \\
& p d u+u d p=0
\end{aligned}
$$

and the work of the pressures is zero. diding together the quan. titics of work, and equating them to the thango of kinetic enelgy,

The equation of enntimuty, which expresses the combition that in stemy motion the same weight of thid, W, must pass through each eross section of the stram in tho unit of timn, is

$$
\begin{equation*}
\mathrm{C} \Omega u=\mathrm{W}^{+}=\text {constant } \tag{3}
\end{equation*}
$$

where Ω is the section of the fije and u tho vibocity of the anr. Tombining (1) and (3),

$$
\begin{align*}
& W d U d t=-\frac{c+W}{p} d n d t-\zeta \cdot \frac{1 I}{m} W d d t \\
& d \Pi+\frac{i \tau}{p} d p+s \frac{I I}{m} d l=0 . \\
& \frac{d \Lambda}{\Pi}+\frac{c \tau}{\Pi p} d p+\zeta \frac{d l}{n}=0 \quad . \\
& u=\frac{c+W}{\Omega \rho}, \\
& 11=\frac{u^{2}}{2 \eta}-\frac{c^{2} r^{2} W^{\prime}}{2 \mu \Omega^{2} \mu^{2}}, \tag{in}\\
& \frac{d H}{U}+\frac{2 p \Omega^{2} p}{i \tau W^{2}} d l+c \frac{d l}{m}=0
\end{align*}
$$

and

For tubes of uniform section m is constant ; tor steady motion W - bunstant, ad for tsothermal expansion 7 is coustaot integrat. "!
fos
and for

$$
\log \mathrm{H}+\frac{g \Omega^{2} p^{2}}{W^{2} c \tau}+\zeta \frac{l}{m}=\text { constant }
$$

(5);

$$
l-0, \text { let } \mathrm{H}=\mathrm{H}_{0}, \text { and } p=p_{0}
$$

$$
l=l, \text { let } H=H_{1}, \text { and } p=p_{1}
$$

$$
\begin{equation*}
\log \frac{\mathrm{H}_{1}}{\mathrm{H}_{0}}+\frac{g \Omega^{2}}{W^{2} c \tau}\left(p_{1}^{2}-p_{0}^{2}\right)+\zeta \frac{l}{m_{l}}=0 \tag{5a}
\end{equation*}
$$

where p_{0} is the greater fressurn and p_{1} the less, and the flow is from d_{u} towarils A_{1}.

By rephening W and H,

$$
\begin{equation*}
\log \frac{p_{0}}{p_{1}}+\frac{g c r}{u_{0}{ }^{2} p_{0}{ }^{2}}\left(p_{1}{ }^{2}-p_{0}{ }^{2}\right)+\zeta \frac{\cdot}{m n}=0 \tag{6}
\end{equation*}
$$

Hence the iontal velocity in the pipe is

$$
\begin{equation*}
u_{0}=\int\left\{\frac{\operatorname{gc\tau }\left(p_{0}^{2}-p_{1}^{2}\right)}{p_{0}^{2}\left(\zeta \frac{l}{n l}+\log \frac{p_{0}}{p_{1}}\right)}\right\} \tag{7}
\end{equation*}
$$

Wheu l is great, $\log \frac{p_{0}}{p_{1}}$ is eomparatively small, and then

$$
\begin{equation*}
u_{0}-\sqrt{ }\left\{\frac{g c \tau m}{\zeta l} \frac{p_{0}^{2}-p_{1}^{2}}{p_{0}^{2}}\right\} \tag{7a}
\end{equation*}
$$

a very simple and easily used expression. For pipes of circular section $m=\frac{d}{d}$, where d is the diameter:-
or approximately

$$
\begin{equation*}
u_{0}=\sqrt{ }\left\{\frac{g c+d}{4 \zeta l} \frac{p_{0}^{2}-p_{1}^{2}}{p_{0}^{2}}\right\} \tag{7b}
\end{equation*}
$$

$$
\begin{equation*}
u_{0}=\left(1.1319-0.7264 \frac{p_{1}}{p_{0}}\right) \sqrt{\frac{g c \tau d}{4 \zeta l}} \tag{7c}
\end{equation*}
$$

8s. Coefficient of Frict'm for Air. - A discussion by Professor Uiawn of the experimeats by Messrs Culley \& Sabine on the rate of transmission of light carriers through pnenmatic tubes, in which there is steady flow of air not sensibly affected by any resistances ather than surface friction, furaished the value $\zeta=007$. The ples were lead pipes, slightly moist, el inches ($0 \cdot 187 \mathrm{ft}$.) in diameter, and in lengtlos of 2000 to nearly 6000 feet.

Some experiments on the flow of air through cast-iron pipes have been made by ML. Arson. He funnd the coefficient of friction to vary with the velocity and diameter of the pipe. Putting

$$
\begin{equation*}
\delta=\frac{a}{v}+B . \tag{8}
\end{equation*}
$$

he obtaioed the following values-

Diameter of Pipe in fieet	a	B	5 for 100 feet per secod.
1.64	00129	-00483	-00484
1.07	-00972	-00640	-00650
-83	-01525	00704	. 00719
-333	. 03604	-00941	-00977
$\cdot 266$. 03790	-00959	-00997
164	. 04518	$\cdot 01167$.01212

It is worth while to try if these numbers can be expressed in the form proposed by Darcy for water. For a velocity of 100 feet per second, and without much error for higher velocities, these numbers agree fairly with the formula

$$
\begin{equation*}
\delta=005\left(1+\frac{3}{10 d}\right) \tag{9}
\end{equation*}
$$

Which only differs from Darcy's volue for water in that the second term, which is always small except for very small pipes, is larger.

Some more recent experiments on a very large scale, by M. Stockalper at the St Gothard Tuaael, agree better with the value

$$
\zeta=0.0028\left(1+\frac{3}{10 d}\right)
$$

These pipes were probably less rough than M. Arson's. - When the varastion of pressure is very small, it is ne longer safe to neglect the varation of level of the prpe. Fer that case we may neglect the work done by expansion, and then

$$
\begin{equation*}
z_{0}-z_{1}-\frac{P_{0}}{\mathrm{G}_{0}}-\frac{p_{1}}{\mathrm{G}_{1}}-\zeta \frac{v^{2}}{2 g} \frac{1}{m}-0 \tag{10}
\end{equation*}
$$

procisely equivalent to the equation for the fiow of water, z_{0} and z_{1} being the elevations of the two ends of the pipe above any datum, p_{0} and p_{1} the presures, G_{0} and G_{1} the densities, and v the mean velocity in the pipa. This equation may be used for the flow of conl gas.
81. Distmoution of f'Tessure in a lipe in which Air is Flowing.From equation (7a) it rcsults that the pressure p, at l feet from that ead of the pipe where the pressure is p_{0}, in

$$
\begin{equation*}
p=p_{0} \wedge\left\{1-\frac{\zeta l u_{0}^{2}}{u u^{2} c \tau}\right\} \tag{II}
\end{equation*}
$$

which is of the form

$$
p=v^{\prime} a l+b
$$

for any given pipe with given end pressures. The curve of free aurface level for the pipe is, therefore, a prarabola with horizootal axie. Fig. 100 shows calculated curves of pressure for two of Mr Sabine's

Fig. 100.
experiments, in one of which the pressure was greater than atmospheric pressure, and in the other less than atnraspheric pressure. The observed pressures are given in brackets and the calculated pressures without brackets. The pipe was the pneumatic tube between Fenchurch Street and the Ceatral Station, 2818 yards in length. The pressures are given io inehes of mercury.

Variation of Vclocity in the $P_{1} p e$. - Let T_{0}, u_{0} be the prossure and velocity at a given section of the pipe: p, u, the pressure and velocity at aoy other section. From equation $(3 a)$

$$
u p=\frac{c \tau W}{-\Omega}=\text { constant : }
$$

so that, for any given uniform pipe,

$$
\begin{align*}
& s p=u_{0} p_{0} \\
& u=u_{0} \frac{p_{0}}{p} \tag{12}
\end{align*}
$$

which gives the velocity at any section in terms of the pressure, which has already been determined. Fig. 101 gives the relocity

Fig. 101.
curves for the tro experiments of Messrs Calley \& Sabine, for which the pressure curres have olrealy been drawn. It will be seen that the veloeity increases consideralily towards that end of the pipe where the pressure is least.
85. Weight of Air Flouing per Sicond. -The weight of air diso charged per second is (equation $3 a$)-

$$
W^{\prime} a^{\Omega u_{0} p_{\theta}}
$$

From equation ($7 b$), for a pipe of circular section and diameter d,

$$
\begin{align*}
W & =\frac{\pi}{4} \sqrt{\left\{\frac{g d^{5}}{\zeta l c \tau}\left(p_{0}^{2}-p_{1}^{5}\right)\right\}} \\
& =611 \sqrt{\left\{\frac{d^{5}}{\zeta l \tau}\left(p_{0}^{2}-p_{1}^{2}\right)\right\} \cdot \cdot \because} \tag{13}
\end{align*}
$$

Aprroximately

$$
\begin{equation*}
: V=\left(\cdot 6916 p_{u}-\cdot 4138 p_{1}\right)\binom{d^{s}}{\zeta l \tau}^{\prime} \tag{13a}
\end{equation*}
$$

80. Application to the Case of Pacumatic Tubes for the Transmission of Messages. - In Paris, Berlia, London, and other towns, it has been found cheaper to transmit measages in pacumatic tubes than to telegraph by electricity. The tubes aro lain molergrouod with casy corves; the messuges are made inte a roll and olaced in
a light felt carrier, the resistance of which in the tubes in Loadon is only oz. A current of air fored into the tube or drawn through it propels the carrier. In most systems the current of air is steady and continuous, and the carriers are introduced or removed without materially altering the flow of air.

Time of Transit through the Tube.-Putting t for the time of transit from 0 to l,

$$
t=\int_{0}^{l} \frac{d l}{u}
$$

From ($4 a$) neglecting $\frac{d \mathrm{H}}{\mathrm{H}}$, and putting $m=\frac{d}{4}$,

$$
d l=\frac{g d \Omega^{2} p}{2 \zeta W^{*} c \tau} d p
$$

From (1) and (3)

$$
\begin{gather*}
u=\frac{W c \tau}{p^{2}} \\
\left.\frac{d l}{u}-\begin{array}{c}
g d \Omega^{3} y^{2} \\
2 \zeta W V^{3} c^{2} r^{2} \\
l
\end{array}\right] \\
\ell=\int_{p_{1}}^{p_{0}} \frac{g d \Omega^{1} y^{3}}{2 \zeta W^{3} c^{2} \tau^{2}} d p \\
=\frac{q d \Omega^{3}}{6 \zeta W^{3} c^{2} r^{3}}\left(p_{0}^{3}-p_{1}^{3}\right) \tag{14}
\end{gather*}
$$

130:

$$
\begin{align*}
W & =\frac{p_{0} u_{0} \Omega}{c \tau} ; \\
t & =\frac{1}{6} \frac{g d c \tau}{\zeta p_{0}^{3} u_{0}^{3}}\left(p_{0}^{3}-p_{1}^{3}\right\rangle, \\
& =\frac{1}{6} \frac{\delta^{\frac{1}{2} l}}{(g c \tau d)^{\frac{1}{2}}} \frac{p_{0}^{3}-p_{0}^{3}}{\left(p_{0}^{2}-p_{1}^{2}\right)} \cdots \cdots \tag{15}
\end{align*}
$$

It $+=521^{\circ}$, corresponaing to $60^{\circ} \mathrm{S}$.,

$$
t=001412 \frac{5^{\frac{1}{2}} l^{2}}{d^{\frac{1}{2}}} \frac{p_{0}^{3}-p_{1}^{3}}{\left(p_{0}^{2}-p_{1}^{2}\right)^{2}}
$$

(15a);
Which gives the time of transmission in terms of the initial and final pressures and the dimensions of the tube.

Mean Velocily of Transmission.-The mean velocity is $\frac{b}{t}$; or, for - -521°,

$$
\begin{equation*}
u_{\text {mean }}=0.703 \sqrt{ }\left\{\frac{d}{\zeta^{6}} \frac{\left(p_{0}^{2}-p_{1}^{3}\right)^{\frac{3}{3}}}{p_{0}^{3}-p_{1}^{3}}\right\} \tag{16}
\end{equation*}
$$

The following table gives eme results:-

Absolute Pressures in th per sq. Inch.		Stean Velocitics for Tubes of a length in it.				
r_{0}	p_{1}	1000	2000	3000	4000	5000
Vacuum IForkiog.						
15	5	93.4	$70 \cdot 3$	$57 \cdot 4$	49.7	44.5
15	10	$67 \cdot 2$	47.5	$38 \cdot 8$	$34 \cdot 4$	$30 \cdot 1$
Prcssure Working.						
20	15	57.2	$40 \cdot 5$	33.0	$23 \cdot 6$	$25 \cdot 6$
25	15	746	$52 \cdot 7$	$43 \cdot 1$	$37 \cdot 3$	$33 \cdot 3$
30	15	84.7	600	49%	$42 \cdot 4$	$37 \cdot 9$

Limiting Velocity in the Pipe when the Pressure at one End is diminished indefinucly. - If in the last equation there bo put $r_{t}=0$, then

$$
u_{\text {mean }}^{\prime}=0.703 \sqrt{\frac{l}{5 l}}
$$

where the velocity is independent of the pressuro p_{0} at the other end, a result which apparently must be absurd. l'robably for long pipes, as for oritices, there is a limit to the ratio of the initial and terminal pressures for which tho formula is applicable.

X. Flow in rivers and candas.

87 How of Water in Open Counds and Iivers.-.When water flows in a jipes the section at any point is determined by the form of the boundiny. When it flows in an open chanmel with free upper osafine, the section depends on the velocity due to the dynamical contulitastis.

Sublume water almittel to an unfilmel canal. Tho chanmel will gradually fill, the suction and velocity at each point gradnally chanping. But if tho inflow to the canal at ats heal is constant, the inmase of cross section and timinution of velocity at ench

 batucht frgime is established.

If when the motion is steady the sections of the stream are an equal, the motion is uniform. By hypothesis, the inflow Ωv is conatant for all seetions, and Ω is constant; therefore v must be conatant also from section to eection. The case is then one of uniform steady motion. In most ertificial channels the form of section is constant, and the bed has a uniform slope. In that case the motion is uniform, the depth is constant, and the stream surface is parallet to the bed. If when steady motion is established the bections are unequel, the motion is steady motion with varying velocity from section to section. Ordinary rivers are in this condition, especially where the flow is modified by weirs or obstructions. Short unobstructed longths of a river may be treated as of uniform section without great error, the mean section in the length being put for the actual sections.

In all setual streams the different fluid filaments havo different velocities, those near the surface ani centre moving faster than those near the bottom and sides. The ordinary formula for the flow of streams rest on an hypothesis that this variation of veloeity may be neglected, and that all the b^{1} ments may be treated as having a common velocity equal to the mean velocity of the stream. On this hypothesis, a plane layer abab (fig. 102) between sections normal to
the dircetion of motion is treated as sliding down the channel to $a^{\prime} a^{\prime} b^{\prime} b^{\prime}$ without deformation. The component of the weight parallel to the channel bed balances the friction against the channel, and is estimating the friction the velocity of rubbing is taken to be the mean velocity of the

Fig. 102.
strearn. In aetral streams, however, the velocity of rubbing on which the friction depends is not the mean velocity of the stream, and is not in any simple relation with it, for chamels of different forms. The theory is therefore obviously based on an imperfect bypothesis. However, by taking variable values for the coefticient of friction, the errors of the ordinary formule are to a great extent neutralized, and they may bo used without leading to practical errors. Formulx have been obtained based on less restricted hypotheses, but at present they are not practically so reliable, and are more complicated than the formulie obtained in the manoer deseribed above.
88. Steally Flow of Water with Uniform Velocily in Channels of Constant Section. - Let $a a^{\prime}, b b^{\prime}(f i g .103)$ be two cross sections normal to

Fig. 103.
the direction of motion at a distance αl. Since tho mass a $a a^{\prime} b b^{\prime}$ mov, uniformly, the external forces acting on it are in equilibrium. Ia Ω bo tho arca of the cross sections, χ the wetted perimeter, $p q+q r+r$, . of a section. Then the quantity $m=\frac{\Omega}{x}$ is termed the hydraulic mean depth of the ocction. Let v be the mean velocity of the strean. which is taken as the common velocity of all the particles, i, the slope or fall of the stream in fect, per foot, being tho ratio $\frac{b o}{a b}$.
The external forees acting on $\alpha a^{\prime} b b^{\prime}$ parallel to the direction of motion aro three:- (a) The pressures ons $a a^{\prime}$ and $b b$, which are equal and opposite sinco the sections are equal and similar, and the mean pressures ou each are the samo. (b) The component of the weight W of tho mass in the direction of motion, acting at its centre of gravity g. The woight of the mass ra'b is G Ω ill, nud the component of the weight in the direction of motion is $\mathrm{G} \Omega \mathrm{a}^{2} \times$ the cosine of the anglo between Wgand $a b$, that is, G $\Omega l l \cos a b c=\operatorname{G} \Omega l l \frac{b c}{a b}=-\mathrm{G} \Omega \dot{u} l l$.
(c) There is the friction of the stream on the siles and botton of the ehomel. This is proportional to the ares $x d l$ of rubbing surface and to a finction of the velocity which may bo written $f(v) ; f(v)$ heing tho frietion per siquare foot at a velocity v, Hesce the friction is $-x^{d l} f(v)$. Equating the sum of tho forces to ecro,

$$
\begin{gather*}
G \Omega i d l-x d l f(v)=0 \\
\frac{d(v)}{l i}=\frac{\Omega}{x} i=m i \tag{1}
\end{gather*}
$$

But it lias been alrnaly shown $(\S 63)$ that $f(v)-\varsigma \mathrm{C}_{\frac{v^{3}}{2 y}}$,

$$
\zeta_{i=y}^{v^{2}}-m x .
$$

This may bo put in the form

$$
v=\sqrt{\frac{2}{\zeta}} \sqrt{m i} \Rightarrow c \vee m i
$$

- hicre c is a coefficicat dependingon the roughness and form of the Lannol.
The coefficient of friction § varies greatly with the degree of rouginess of the channel sides, and sonewhat also with the velocity. It must also be made to depend on the ubsolute dimensions of the section, to eliminate the error of neglecting the variations of velocity in the cross section. A common acan value assumad for S is 000757 . The ramge of values will be discussen presently.
It is often convenient to estimate the fall of the strean in feet per mile, instead of in iect per tout. If f is the fall in feet per unlo

$$
j=52 S_{1} y .
$$

luttiog this and the above valtue of ς in (2α), we get the very

$\sigma=$	03	04	0.5	06	0.7	0.8	0.9
$\zeta=$	001215	0.91907	0.01035	0.09978	0.0094	0698	00398

In using this value of ζ when v is not known, it is best to proceed by approximation. Calculate os rough value of v by taking any mean value of δ, for instance the oge given in the preceding section. Thed from this valuc of v calculate a revised value of ζ, sad from this a new value of v.
90. Darcy \& Buzin's Expression for the Coefficient of Friction.Darcy \& Bazin's rcsearctieg have ohown that δ varies very greatly for differeat degrees of roughacss of the channel hed, and that it elso varies with,the dimensione of the channel. They give for ζ an empirical expression (similar to thi. for pipes) of the form

$$
\begin{equation*}
\delta-a\left(1+\frac{\beta}{m}\right) \tag{6}
\end{equation*}
$$

where m is the hydranlic nean depth. For different kinds of channels they give the following values of the coefficient of friction:-

EInd of Channel.	a	β
I. Very sumooth chamnele, sidcs of smouth cement or planed timber.	000316	$0 \cdot 1$
II. Smooth channels, sides of ashlar, brickwork, planks.	0.00501	$0 \cdot 23$
III. Rough chaunele, sides of rubble masonry or pitched with stone \qquad	0.00507	. 0.52
IV. Very rough canals in esith.........................	0.00592	4.10
V. Torrential streams encumbered with detritus \qquad	0.008 .16	8.2

The last values (Class Y.) are dot Darcy \& Bazin's, but are taked from experimerts by Ganguillet is Kutter on Swiss streams.
The folloring table very much facilitates the calculation of the mean velocity and discharge of clannols, when Darcy \& Bazin's value of the coefficient of friction is used. Taking the general formuls for the mean relocity alreedy given in cquation (2a) above,

$$
v=A \sqrt{n i},
$$

Where $c=\sqrt{\frac{2 g}{\zeta}}$, the following table gives valucs of c for chatnels of different degries of roughness, and for such values of the bydraulie mean depths as are likely to occur in practical calculations:-

	Hydualle Mean Depth=m.
	Very Sioouth Channels Cemeat.
	Saooth Chanaela. Asblar or Bnckwork
	Rough Chancels. Itublie Manonry.
	Very Rough Channels. Canals in Earth
Qiscoor	Excesalvely Rough Chantieds eacumbered with Detritua.
$\mathrm{CO} \mathrm{O}^{\circ}$ 	Hydraulic Sican Depth $=m$.
	Very Smooth Chamels. Cement.
W以	Sinooth Channely Axhinar or Brickwoik.
	Rought Channelg. IRobble Jasonry.
	Very Rough Channels. Canals in Earth.
	$\|$Excessively Rough Chanety encurn bered with Detritur

sinple and long-known approxiumte formule for the nican vclocity of a streanı-

$$
\begin{equation*}
v=t h \sqrt{2 m f} \tag{9}
\end{equation*}
$$

The flow down the stream per secood, or discharge of the stream, is $Q-\Omega v=\Omega c \sqrt{m i}$.
(4).
89. Cocficient of Friction for Opicn Channcls.- Various expressions have been proposed for tho coefficient of friction for channels as for pipes. Weishach, giving attention chiely to the voriation of the coelficient of flletion with the relocity, proposed an expression of the form

$$
\begin{equation*}
S=a\left(1+\frac{\beta}{v}\right) \tag{5}
\end{equation*}
$$

and from 255 cepriments obtained for the constants the values $a=0.007409 ; \beta=0.1920$.
This gives the following-values at different velocities:-

1	11	2	3	5	3	10	15
000883	0.00836	0.00512	0.40788	0.00769	0.00761	00035	0.00750

91. Ganguillet \& Kuttcr's modified Darcy Formula.-Starting from the general expression $v=c \sqrt{m i}$, Messrs Ganguillet \& Kintter have examined the raristions of c for a wider varicty of cases than those discussed by Darcy \& Bazin. Darcy \&" Razin's experimeats are confined to chosnels of moderate eection, and to a limited variation of slope. Ganguillet \& Kutter brought into the discussion two rery distinct and important additional series of results. The gaugings of the Mississippi hy Mesars Humplireys \& Abbot afford data of discharge for the cose of a etream of exceptionally large section and of very low slope. On the other hand, their own measurenaents of the fow in the regulated chaoncls of some Sxiss torrents gave data for cases in which the inclination and roughness of the channels were exceptionally grest. Darcy.\& Bazin's experiments alone were conciusive as to the dependende of the coeflicient c on the dimensions of the channel and on its roaghness of surface. Plotting values of efor clamnels of diferent idclination indicated to Ganguillet \& kutter that it also depended on the slope of the stream. Taking tho Migsissipi data only, they. found

$$
\begin{gathered}
c=256 \text { for an inclination of } 0.0034 \text { per thoussed, } \\
=154 \quad, \quad \text {, } 0.02
\end{gathered}
$$

so that for very lowinchnations no constant value of c indencadent of the slope would furnish grod values of the discharge inn 5 mall rivers, on the other hand, the values of c vary little with the slope. As regards the influence of roughness of the sides of tho channet a different lbw holds. For very small channsls differences of roughness have a great influence on the discharge, but for very large chanmels different degrees of roughness have but little infuenee, and for indefinitcly large channels the iofluence of different degrees of roughacss moust be assumed to vanigh. The coefficients given ly Darcy \& Bazin are different for each of the classes of channels of different roughness, even when the dimensions of the chanacl are infinite. But, as it is nuch more probable that the influence of the naturc of the sides diminishes inciefinitely as the chandel is larger, this must be regarded as a defect in their formula.
Comparing their orn measuremetts in torrential streams in Switzerland with those of. Darcy \& Bazin, Genguillet \& Kutter found that the four classes of cocficients proposed by Darey \& Bazin wereinsufficient to cover all cases. Some of the Swiss streams gave results which showed that the roughness of the bed was markedly greater than in any of the channels tried by the Freach engineers. It was necossary therefore in edopting the plan of arrangiag the different chandela in classes of aproximatoly similat roughoess to incresse the number of classes. Especially an additional class was required for channels obstructed by detritus.
To obtain a new expression for the cocficient io the formula

$$
v=\sqrt{\frac{2 g}{\delta} \sqrt{3 n i}=c \sqrt{m i}}
$$

in which Darcy 5 Bazin take

$$
\cdots \infty \sqrt{\frac{2 a}{a\left(1+\frac{\beta}{m}\right)}}
$$

Genguillet \& Kutter proceded in a purely cmpirical way. They found that an expression of the form

$$
c=\frac{a}{1+\frac{\beta}{\sqrt{n}}}
$$

conll le made to fit the experimenta somewtat better than Darcy's "xpression. Invertiug this, we get

$$
\frac{1}{c}=\frac{1}{a}+\frac{\beta}{a \sqrt{m}}
$$

an equation to a straight line having $\frac{1}{\sqrt{m}}$ for sbscissa, $\frac{1}{c}$ for ordinate, and ucliaed to the sxis of abscisse at an angle the tangent of which $2 \frac{\beta}{a}$
Plotting the experimeatal values of $\frac{1}{\mathrm{c}}$ and $\frac{\mathrm{l}}{\sqrt{m}}$, the points so fouad indicated s curved rather than a straight line, so that β must dopend on a. After much comparison the following form was arrived at-

$$
c=\frac{A+\frac{1}{n}}{1+\frac{A n}{\sqrt{m}}}
$$

where n is a eoefficient depending only on the roughness of the sides of the channel, and A and l sre new coetficientis, the valus of which remsins to be determined. From what has been ahready stated, the coefficient c depeads on the inclination of the stream, decreasing as the slope increases.
Let

$$
\begin{aligned}
& =a+\frac{p}{i} . \\
& c=\frac{a+\frac{l}{n}+\frac{p}{i}}{1+\left(a+\frac{p}{i}\right) \frac{8}{\sqrt{m}}}
\end{aligned}
$$

the form of the expression for c ultimately sdopted by Ganguillet ε Kutter.
For the constants a, l, p Ganguillet \& Katter obtain the values 23. 1, and 0.00155 for metrical measures, or $41 \cdot 6,1.811$, and 0.00281 ior English feet. The coefficient of roughness n is sound to vary from 0.008 to 0.050 for etther metrical or English measures.
The most practically ustinl values of the coefficient of roughoess n are given in the following table:-

of the coeffieient of roughaess. The difficulty is one which on theory will overcome, because no sbsolute measure of the roughness of stream beds is possible. For channels lined with tinlber or masonry the difficulty is act so great. The coostunts io that case are few and sufficently defined. But in the case of ordinary canals and rivers the case is different, the coefficients having a much greater range. For artificial canals in rammed earth or gravel n varies from 0.0163 to 0.0301 . For natural chanels or rivers n varies from 0.020 to 0.035 .

In Mr Jackson'sopinion even Kutter's numerousclasses of channels seem inadeyuately graduated, and after careful examioation he proposes for artificial canals the following classification -

1. Canals in very firm gravel, in perfect order
$n=0.02$
2. Canals tn earth, above the average in order.......... $n=0.0225$
3. Canals in earth, in fair order
1V. Canals in earth, below the average in order $n=0.025$
$n=0.0275$
V. Csnals in earth, in rather bad order, partially overgrowa with weeds and obstructed by detntus
$n=0.03$

Fig. 104.
92. Forms of Section of Channels. - The simplest form of eectlon for channels is the semicircular or nearly semicircular channel (fig. 104), a form now often adopted from the facilit; with which it can be

Fig. 105.
executed in concrote. It has the advantage that the rubbing surface is less in proportion to the area than in any other form.

Mr Lowis D'A. Jackson has published complete a ad eantensive tables for facilitatic? the use of the Gangillet \& Kutter formula (Cznal and Culvert Tables. Loadon, 1878). To lessen caleulation he puts tho formula in this form :-
$B=n\left(41 \cdot 6+\frac{0 \cdot 00281}{i}\right) ;$
$v=\frac{\sqrt{m i}}{m}\left(\frac{M+1 \cdot 811}{M+\sqrt{m}}\right) \sqrt{m i}$.
The following tablogives a
Seiection of values of M, taken from Mr Jsckson's tables :-

	Valpes of Mforn $n=$						
	0.010	0.012	0.015	0.017	0.020	0.025	0030
00009	3.22 \% 0	$3 \cdot 8712$	1.83 .90	5.942	6.4520	$8 \cdot 0654$	9.6780
-0001022	1.4210	3.1852	2.731:	3 -0967	$3 \cdot 6420$	4.552 .5	54631
-130004	111185	1:3423	$1 \cdot 6777$	1-nall	2.8370	$2 \cdot 7982$	3.3585
-	0.8848	1.0612	1-3964	1-6033	1-7686	2.2107	$2 \cdot 6539$
-00008	0.7672	0.9204	$1 \cdot 1508$	1-3012	1-5334	1.180	$2 \cdot 3016$
-10010	0.8870	$0 \cdot 8364$	$1-0156$	1-1849	1.39 .10	J.7425	$2 \cdot 0910$
-00025	0.5284	0.6341	0.7926	$0 \cdot 898.3$	10568	1.2210	13852
'600ro	$0 \cdot 1722$	$0 \cdot: 666$	0.708.	$0 \cdot 8027$	$0 \cdot 9144$	1-1805	$1 \cdot 4166$
-60076	0.1535	0.3442	$0 \cdot 6804$	0.7709	0.91070	1.1337	13 cos
- (6) 100	$0 \cdot 14.11$	0.8329	0 6 6101	0.73in	0 0.8882	1.1108	-13323
-00290	0.1390	0.8160	$0 \cdot 645$	0.7319	0.8600	107.00	- 5 ¢09
-00300	0.1251	0\%6103	$0 \cdot 6381$	0.7282	0.8508	1.063 .5	1.2762

One pricipal difficulty in tho uso of this formula is tho selection

Fic. 106. -Scale 20 feet $=1$ inch.
Wooden channels or flumos, of which thero are exsmples on a largo scale in Ancrica, are rectangular in section, and the same form is adopted for wrought and cast-iron aqueducts. Channels buitt with brickwork or masoary may be also rectangular, but they are often trapezoidal, sad are always so if the sides are pitchcd with masonry laid dry. 1 a a traprozoidal channel, let b (fig. 105) be the bottom breadel, b_{0} tho top breadth, d the depth, nid let the slope of the silfes be n horizontal to 1 vertical. Then the arca of section is $\Omega-(b+n d) d-\left(\delta_{0}-n d\right) d$, and the wetted perimeter $x=b+2 d \sqrt{n^{2}+1}$.

When a channol is simply excenvated in carth it is alwnya originally trapezoidnI, though it becomos moro or less rounded in courso of timo. Tho alope of the sides then depends on the stalility of the earth, a olope of 2 to 1 being the one mast commonly adopted.
Figs. 100, 107 show the form of canals excavated in carth, tho
former being the section of a Navigation Canal and the latter the section of an Irrigation Canal.
93. Channels of Circular Scction. -The following short table facilitates calculations of the discharge with different deptlis of water
94. Egg-Shaped Channels or Sewers. - In sewers for dischorging ntorm water and house drainage the volume of flow is extremely variabls; and there is a great liability for deposits to be left whea the flow is amall, which are oot removed during the short periods when the flow is large. The sewer in consequence becomes choked. To
in the channel. Let r be the radius of tho channel section; then for a depth of water $=\kappa r$, the hydraulic mean radius is μr and the area of section of the waterway r^{2}, where κ, μ, and ν have tho following values:-

Depth of water ins	01	-05	10	15	$\checkmark 20$	-23	30	35	$\cdot 40$	45	50	55	60	-6s	70	73	8	83	3	. 3	1.0
Hydraulle mean depth:	00668	. 0321	-0523	-0963	$\cdot 1278$	-1574	-1852	'2142	242	269	-293	320	343	365	38i	-409	${ }^{4} 29$	${ }^{4} 49$	466	$43 i$	500
Waterway in termas of $v=$ minare of radles.	00189	.0211	0039	-1067	$\cdot 1651$	$\cdot 223$	294	-370	150	-332	614	$\cdot 709$. 735	885	979	1075	1173	1.270	1371	1470	1571

96. Prollem IV. Most Eiconomical Form of Channel for given Side Slopes. - Suppose the channel is to be trapezoidal in section (fig. 109), and that the sides are to bave a given slope. Let the longitudnal slope of the stream be given, and also the mean velocity. An infinitw number of channels could be found satisfying the foregoing conditions. To render the problem determinate, let it bo remembered that, since for a given discharge $\Omega \propto \sqrt[3]{x}$ other things being the same, the amount of ex. cavation will be least for that cbannel which has the least wetted perimeter. Let nbtain uniform scouring action, the velocity of flow should be contant or nearly so ; a complete uniformity of velocity. cannot be obtained with any form if section suitable for cewers, but an approximation to uniform velocity is obtained by riaking the sewers of oval section. Various forms of oval have been suggested, the simplest neing one in which tise radius of the rown 19 double the sadius of the invert, sud the greatest width is two thirds the leight. The section of such a sewer is shown in fig. 10S' the numbers marked on thie figure being pro.
 portional numbers.
95. Problems on Channels ine which the Flow is Steady and at finiform Vclocity.-The general equations given in $\$ \$ 88,90$ are

$$
\begin{align*}
\zeta & =a\left(1+\frac{\beta}{m}\right) . \tag{1}\\
\boldsymbol{\zeta} \frac{v^{2}}{2 g} & =m i \quad . \quad . \quad . \tag{2}\\
Q & =\Omega v . \quad . \quad . \quad .
\end{align*}
$$

Problem f. Given the tranaverse section of stream and disclarge, to find the slope. From the dimensions of the section find Ω and m; from (1) find ζ, from (3) find v, and lastly (rom (2) find i.

Problem II. Given the transverse section and slope, to find the discharge. Find v from (2), then 0 from (3).

Probiom III. Given the discharge and slope, and either the breadth, depth, or general form of the section of the channel, to determune its remaining dimensions. This must generally be solved by appreximatione. A breadth or depth or both are chosen, and the discharge calculated. If this is greater than the given discharge, the dimensions are reduced and the discharge recalculated.

Since n lies generally betweon the limits $m=d$ and $m=\frac{1}{2} d$, where d is the depth of the atream, and since, moreover, the velocity
varics as \sqrt{m} so that an error is the volue of m leads unly to a much less error the value of the velocity cal. culated from it, we may proceed thus. Assume a value for m, and calculato p from it. Let v, be this first approxi-

Fif 109. mation to v. Then $\frac{Q}{i_{1}}$ is a firat approximation to Ω, say Ω_{i}. With this value of Ω design the section of the channel; calculate a scound value for m; calculate from it a second ralue of v, and from that a second value for Ω. Repeat the process till the ouccessive vulues of mpproximately coinciuc.
d be the depth and b the bottom width of the channel, and let the sides slope n herizos. tal to 1 vertical (fg. 110), then

$$
\begin{aligned}
& \Omega=(b+n d) d ; \\
& x=b+2 d \sqrt{n^{2}+1}
\end{aligned}
$$

Both Ω and x are to be minima. Differentiating and equating to zero,

Fig. 110.

$$
\begin{aligned}
& \left(\frac{d b}{d d}+n\right) d+b+n d=v \\
& \frac{d b}{d d}+2 \sqrt{n^{2}+1}=0
\end{aligned}
$$

eliminating $\frac{d b}{d d}$,

$$
\begin{aligned}
& \left(n-2 \sqrt{n^{2}+1}\right) d+b+n d=0 \\
& b=2\left(\sqrt{n^{2}+1}-n\right) d .
\end{aligned}
$$

But

$$
\frac{\Omega}{x}=\frac{(b+n d) a}{0+2 d \sqrt{n^{2}+1}}
$$

Inserting the value of b,

$$
m=\frac{\Omega}{x}=\frac{2 d \sqrt{n^{2}+1}-n d}{4 a^{n^{2}+1}-2 n d}=\frac{d}{2} .
$$

That is, with given slide slopes, the rection is last for a givet discharge when the hydraulic mean depth is hall the actual depth.

A simple construction gives the form of the channel which fulfila this condition, for it caa be shown that when $m=\frac{d}{2}$ the sides of the channcl are tangential to a semi-circle drawn on the water line.

Since

$$
\frac{\Omega}{x}=\frac{d}{2}
$$

therefore

$$
\begin{equation*}
\Omega=\frac{1}{2} x^{d} \tag{1}
\end{equation*}
$$

Let ABCD be the chanael (fig. 109); from E the centre of AD atop perpendiculars $E F, E G, E I$ on the sides.

$$
\begin{aligned}
\mathrm{AB}=\mathrm{CD} & =a ; \mathrm{BC}=b ; \mathrm{EF}=\mathrm{EH}=\mathrm{c} ; \text { and } \mathrm{EG}=d . \\
\Omega & =\mathrm{area} \mathrm{AEB}+\mathrm{BEC}+\mathrm{CED} \\
& =a c+\frac{1}{2} b d . \\
\chi & =2 a+b .
\end{aligned}
$$

Putting these ralues in (J),

$$
a c+\frac{1}{2} b d=\left(a+\frac{1}{3} b\right) d \text {; and hence } c=d .
$$

That is, EF, EG, EH aro all equal, hence a semicircle struck from E with radius equal to the depth of the stream will pass through F and H and be tangential to the sides of the channel.
To draw the chan. nel, describe a scmi. circle on a horizontal line with radius $=$ depth
 tom will be a horizontal tangent of that semicircle, and tha sices tangents drawn at the required side slopes.
she above result may be obtained thus (haz 111):-

$$
\begin{align*}
x & =b+\frac{9 d}{\sin \beta} \tag{1}\\
\Omega & =d(b+d \cot \beta) ; \\
\frac{\Omega}{i} & =b+d \cot \beta \tag{2}\\
\frac{\Omega}{d^{2}} & =\frac{b}{a^{3}}+\cot \beta \tag{3}
\end{align*}
$$

s.om (I) and (2),

$$
\chi=\frac{a z}{d}-d \cot \beta+\frac{2 d}{\sin \beta}
$$

Tlis will be a minimum for

$$
\begin{align*}
& \frac{d \chi}{d l}=\frac{\Omega}{d^{2}}+\cot \beta-\frac{2}{\sin \beta}=0, \\
& \frac{\Omega}{d^{2}}=2 \operatorname{cosec} \beta-\cot \beta . \quad . \tag{4}\\
& d=A \sqrt{\frac{\Omega \sin \beta}{2-\cos \beta}} \\
& \frac{b}{d}=\frac{2(1-\cos \beta)}{\sin \beta}=2 \tan \beta .
\end{align*}
$$

or
or
Heace also

$$
\begin{gathered}
\frac{\text { Increnient of section }}{\text { Increment of perimeter }}=\frac{y^{\prime} l x}{d s}=k . \\
\bar{y}^{2} d x^{3}=k^{2} d s^{2}=k^{2}\left(d x^{2}+d y^{2}\right) ; \text { and } d x=\frac{k d y}{\sqrt{y^{2}-k^{2}}} .
\end{gathered}
$$

lategrating,

$$
x=k \log _{e}\left(y+\sqrt{ } y^{2}-k^{2}\right)+\text { constant }
$$

and, since $y=\frac{b}{2}$ when $x=0$,

$$
x=k\left\{\log _{e} \frac{y+\sqrt{y^{2}-k^{2}}}{\frac{b}{2}+\sqrt{\frac{b^{2}}{4}-k^{2}}}\right\}
$$

Assuming values for y, the values of x can be found and the curra drawn.
The figure has been drarrn for a channel the minimum section of which is a half hesagon of 4 feet depth. Hence $k=2: b-9 \cdot 2$; the rapid flattening of the side alopes is remarkable.
98. Variation of Velocity in Different Parts of the Cross Section of a Unijorm Strcan.
Vertical Velocity Curve in a Stream.-If it is assumed that the resistance to the relative sliding of the layers of water in a atream is of the nature of a viscous reastance, then the law of the diatribution of velocity in a vertical longitudinal section of the stream cau be determined theoretically. Forsimplicity, su [ipose the stream of uniform depth and indetinite width. Let fig. I13 show a por. tion of a veitical longitudinal section of the
stream, and let $O A, O A^{\prime}$ be the intersections with this of two transverse sections at a distance apart l. Let $a b, c d$ be the traces of two planes parallel to the frea surface or to the bed, and let us consider the equilitrium of a layer abcd of widthunity. Let $\mathrm{O} a=y$,
 $a c=d y$, and let v be the velocity of the particles comprised in abrd, v peing a function of y. which is to be determined. Taking the components of the forces acting on $a b c d$, parallel to 00 , the pressures on ac, bd, being proportional to the lepth from the free surface, are equal and opposile; nlso, the frictions or viscous resistances on the lutcral faces of the prism are zcro, since in a wide stream there is no relative sliding betwecn abed and the layers on each silo. There remain only the resistances on the upper and lower surface, and the component of the. meight.

The weight of the layer is G $l d y$, and if i is the slope of the stream the component of the weight parallel to 00 is G/idy. Tho fictive, or viscous resistnnce on the face $a b$ is propertiunal to its ores and to the differential coeffecient $\frac{d v}{d y}(\$ 3)$: Thu resistance is, thorefore, $-k l \frac{d v}{d y}$, the negative sign being used because, if v increuses with $y_{\text {, }}$ $\frac{d v}{d y}$ is praitive, while the action of the layers above $a b$ is a retardingsction. The resistance on the face $c d$ is similarly $k l \frac{d v}{d y}+k l d \frac{d v}{d y}$ The resultant of the action of tho layers atoove and belon is. therefore, $k \cdot h \frac{d v}{d y}$.

When the motion is uniferm,

$$
\begin{gathered}
\mathrm{G} l \dot{u} l_{y}+h l d \frac{d v}{d y}=0 ; \\
\frac{d_{2} y}{d y^{2}}=-\frac{\mathrm{Gi}}{\mathrm{k}} ;
\end{gathered}
$$

intcgratinge

$$
\begin{align*}
& \frac{d v}{d y}=-\frac{\mathrm{G} i}{h} y+\mathrm{C} \\
& v=-\frac{1 \mathrm{C} i}{2} y^{2}+\mathrm{C} y+\tau_{0} \tag{I}
\end{align*}
$$

Fig. 114.
an equation which gives the velocity v at any depth? If on a vertical hino OA (fig. 114), representing the depth of the stream. the valuos of v aro sct off hosizontally, a paratolic curve is obtainmi, termed the vertical valocity curve for the section considered. The constant x_{0} is evidnntly the aurface velocity, being the value of r, for $y=0$. The promblit has a logizontal axis correaponding to the fosition inf the filament of maximum velocity. If there is no nosistanon nt tho aurface of the stream liko that at tho bottom and sides.

HYDEAOLICS.]

the maximum velocity should be at the surface, and then $c=0$, and the equation becomes

$$
\begin{equation*}
v=v_{0}-\frac{1}{2} \frac{\mathrm{G} i}{k} y^{2} \tag{2}
\end{equation*}
$$

Assuming this for the present, the mesn velocity is

$$
\begin{equation*}
v_{n}-\frac{\int_{2}^{h} v d y}{h}=v_{0}-\frac{1}{6} \frac{G i_{i}}{k} h^{2} \tag{8}
\end{equation*}
$$

The bottom velocity is, patting the depth h for y in (2);

$$
v_{0}=v_{0}-\frac{1}{2} \frac{G t}{k} h^{2} ;
$$

sod theretore

$$
\begin{equation*}
v_{m}=\frac{1}{\left(2 v_{1}+v_{s}\right)} \tag{4}
\end{equation*}
$$

It is now understood that the monion in a stream is much more complete than the viscous theory just atated assumes. The retarda* tion of the atream is much greater than it would be in aimple motion of thet kind. This has already been partly explained in tho introduction to the present article. Nevertheless the viscous theory may probably be so modified as to furnish ultimately s true theory of atreams.
99. Experimental Observations on the Vertical Velocily Curve. - In obtaining the vertical velocity curve from direct observations in streams, a preliminary difficulty arises from the fact that the velocity at any given depth is not constant, and hence the motion in the atrict sanse is not ateady. The velocities taken on a given vertical section at any given moment do not form when plotted any regular curve But if a sories of observations ore taken at each depth and the rwalts averaged, the mean vclocities at each depth when plotted give a regular curve, agreeing very fairly with the parabola, which might be expected from the theory obove. Hence it may be inferred that the velocity at a ay given point fluctuates about a mean valuc, tho flnctuatious being due to irregular edilying motions superposed on the general ateady motion of the stream, end having an effict which disappears in the mean of a series of observations. For certain purposes these irregular motions may be ignored, and the constant mean velocity substituted for the actual varying velocities at each point. In the next place, all the best observations show that the maximnm velocity is to be found, not at the free surface of the otream, bot at some distance below it. ${ }^{1}$

Influence of the Wind. - In the experiments on the Mississippi the vertical velocity curve in calm wenther was found to egree fairly with a paraboln, the greatest velocity being at 3^{3} the of the depth of the stream from the surface. With a wind blowing down atream the anriace velocity is increased, and the axis of the parabola approaches the anrface. On the contrary, with a wind blowing up atream the onrface velocity is diminished, and the axis of the parabola is lowered, sometimea to half the depth of the stream. The American obsorvors drow from thoir observations the conclusion thnt there was an energatic retarding action at the surface of a stream like that dus to the bottom and sides. If there were such a retarding action the position of the filement of meximum velocity below the surface would be explained.

It is not difficalt to understand that a wind acting on surface ripples aloould accelerate or retard the surface motion of the stream, nnd the Mississippi results may be accepted so far as showing thet tho surface velocity of a stream is variable when the mean velocity of the otream is constant. Hence observations of surface velocity by floata or otherwise should oaly be made in very calm weather. Bat it is very difficult to suppose that, in still air, there is a resistance at the free ourface of the stream at all annlogous to that nt the oides sod bottom. Further, in very careful experiments, Boileau found the maximum velocity, though raised a little above its position for calm weather, atill at a considerablo distanco below the surface, ovep when the wind was blowing down stream with a velocity greater then that of the atream, and when the action of the nir must have been an accelerating nind not n retarding action. Professor James Thomson has given n much morc probablo explenation of the diminution of tho velocity at and near the free surface. IIe pointa out that portions of rater, with a diminished volocity from retardation by the sides or bottom, are thrown off in eddying masses and mingle with the rest of the stream. These cddying masses modify the velocity in all parts of the stream, but havo their greatest influcnco at tlo free surface. Reaching the free surface they apread out and remain there, mingling with the water ot that level and diminishing the relocity which would otherwise be foand there.
100. Influcure of the Wind on the Depth at which the Maximum Vclocily is found. - In the gaugings of the Mississippi the vertical velocity curvo was found to ngree well with a parabols having a.

[^99]horizontal axis at aome diatance below the water surface, the ordjnate of the parabola at the axis being the maximum relocity of the section. During the gaugioga the force of the wind was registered on a acale ranging from 0 for a calm to 10 for a hurricane. Arrang. ing the velocity curves in three sets-(1) with the wind blowing up atream, (2) with the wind blowing down stream, (3) calm or wind blowing across atream-it was found that an upatream wind lowered, and a down stream wind raised, the axis of the parabolic velocity curve. In calm weather the axis was at rioths of the total :.tpth from the sarface for all conditione of the stream.

Let h^{\prime} be the depth of the axis of the parabols, m the hydraulic mean depth, f the number expressiog the force of the wind, which may range from +10 to -10 , positive if the wind is op stream, aegative if it is down stream. Then Messra Humphreys and Abbot find their results agree with the expression

$$
\frac{h^{\prime}}{m}=0.317 \pm 0.06 f
$$

Fig. 115 shows the parabolic velocity curves according to the American observera for calm weather, and for an up or down stream wind of a force represented by 4.

Fig. 115.
101. Bazin's Formule for the Variation of Velocity in a Vertical Longitudinal Section of a Stream.-M. Bezin essames that the vertical velocity curve is a paraboln, and has investigated numerieal values for the constants from his own and other expriments. Assuming the general equation already found, 898

$$
\begin{equation*}
v=v_{0}+c y-\frac{1}{2} \frac{G i}{k} y^{2} \tag{1}
\end{equation*}
$$

v will nave the maximum value V, for a value of h of y whirb ora? ${ }^{2}$ $\frac{d v}{d y}$ zero. That is,

$$
h^{\prime}=\frac{c k}{G i}, \text { or } c=\frac{G i}{k} h^{\prime} ;
$$

and the maximum velocity is

$$
\begin{aligned}
\quad \mathrm{V} & =\tau_{0}+\frac{1}{2} \frac{G i}{k} h^{\prime 9} \\
\therefore \quad & v_{0}=\mathrm{V}-\frac{1}{2} \frac{G i}{k} h^{2}
\end{aligned}
$$

Inserting these values of τ_{0} and c in (1),

$$
v=\nabla-\frac{G i}{2 \lambda}\left(y-h^{\prime}\right)^{2}
$$

or patting $M=\frac{G i^{3}}{2 k}$, where h is the whole depth of the section,

$$
\begin{equation*}
v-V-M\left(\frac{y-h^{e}}{h}\right)^{\prime} \tag{2}
\end{equation*}
$$

where M is constant for any given atreem. Let $\frac{y}{h}-x$ and $\frac{h^{\prime}}{h}-a$.

$$
v=V-M(x-a)^{2}
$$

Then the meen velocity on the vertical is

$$
v_{a}=\int_{0}^{h}\left\{\nabla-M(x-a)^{s}\right\} d x=V-M\left(d-n+a^{2}\right)
$$

Let v_{n} be the velocity at $n h$ feet from tho surisce, v_{1-n}, the velocity at an equal depth from the bottom,

$$
\begin{gathered}
\frac{b}{2}\left(v_{n}+v_{1-n}\right)=V-M\left(n^{2}-n+a^{2}-a+\frac{1}{2}\right) \\
\quad=v_{m}-M\left(n^{2}-n+d\right)
\end{gathered}
$$

Let $n=\frac{1}{1}$, and put v_{y} for the velocity at mid dopth, then

$$
\begin{equation*}
v_{y}=v_{m}+i_{y}^{2} M \tag{3}
\end{equation*}
$$

so that tho mid depth velocity differs from the mean velocity by the emell quantity $x^{\frac{1}{2}}$ M only, whatever bo the position of the exis of the parabola. Messra llumphreys and Abbot hare based on this property a method of rapidly ghuging rivers which will be described hereafter.

From a discussion of experiments in which the manmum velocity was at the surface, Bazin was led to taka

$$
\begin{equation*}
M=36.3 \sqrt{h i} \tag{4}
\end{equation*}
$$

and for that case the equation to the vertical velocity curve is ($a=0$)

$$
v=\mathrm{V}-36 \cdot 3 \sqrt{h i x^{2}} .
$$

In the cases in which the maximum velocity ras below the surface, Batin fonad that the differance between the maximum velocity V and tha bottom velocity to remained constant.
But, potting $x=\frac{h}{h}=1$ in the equation (2a), and v_{8} for the battom velocity,

$$
\begin{gather*}
v_{3}=V-M(1-a)^{2} \tag{5}\\
\mathrm{~V}-\mathrm{z}_{5}=\mathrm{M}(1-a)^{3}=\cos \tan ,
\end{gather*}
$$

for diferent positions of the axis of the parabola.
Let

$$
\mathrm{M}=\frac{\mathrm{N}}{(1-a)^{3}},
$$

Whera N is a constant; then

$$
v=V-N\left(\frac{x-a}{1-a}\right)^{\prime}
$$

for any position of the axis of the parabola. But thas must agrea with the equation (4) above, for $a=0$; bence,

$$
\mathrm{N}=36 \cdot 3 \sqrt{h t}
$$

and the general equation for all cases becomes

$$
\begin{equation*}
v=V-36.3 \sqrt{h i}\left(\frac{x-\alpha}{1-\alpha}\right)^{2} \tag{6}
\end{equation*}
$$

Bazin has shown that this equation agrees well with experiments on artificial channels by himself, and on the Saone, Seine, Garonoe, and Rhine. In all these the ratio $\frac{V}{v_{m}}$ ranged from $1 \cdot 10$ to $1 \cdot 13$, except in the case of the Rhine at Basel, for which the ratio was 1.17. The parameter $\frac{36 \cdot 3 \sqrt{h i}}{(1-a)^{2}}$ lies between 13 and 20 , and the ratio of the depth at which the maximum velocity is found to the whole septh, $-a$, ranges from zero to 0.2 , except in aome of the artificial ebsnnel, where it reached 0.35 . The Mississippi experiments give iifferent results, and Bazin inclines to believe that the method of experimenting was untrustworthy.
The extreme diference $\mathrm{V}-\tau_{b}$ between the maximam and bottom velocity is found by Bazin to range from $\frac{t}{} \mathrm{~V}$ to $\frac{1}{2} \mathrm{~V}$ in ortifical chanyels, being greater the greater the roughness of the sides. In naturol atreams it is more generally $\& \mathrm{~V}$, but in tha Rhine at Basel it reached $\frac{1}{2} V$, the bed being covered with boulders.
Boikau's Formulde.-Boilesu also assumes the vertical velocity curve to be a parsbola ; below tha flamedt of greatest velocity the curve is expressed by the relation

$$
\begin{equation*}
v=\mathrm{A}-\mathrm{B} y^{3} . \tag{1}
\end{equation*}
$$

That is, the velocity curva is a parabola having its axis at the frea surface of the streilm. Above the filament of greatest velocity this law fails, and the velocities diminish instead of increasing. The vertical volocity curve is therefore such a curve as $\mathrm{I}^{\prime} \mathrm{MSI}^{\prime \prime}$ (fig. 116), whera the part $\mathrm{MMI}^{\prime \prime}$ is a parabola hav. ing its vertex at S, and DMI is the saximum velocity. The part M'SI does not follow the

Fig. 13e. prabolic law. Let ∇ be the maximum velocity DM, CMits depth $-\theta$. Dresp at M the tangent and normal to the parabola. Then PC is the balf parameter $\frac{1}{2 \mathrm{~B}}$ Let $\mathrm{OS}-\mathrm{V}+\mathrm{c}$, then $\mathrm{CT}-2 \mathrm{CS}-2 c$.

$$
\begin{aligned}
& \mathrm{B}=\frac{1}{2} \frac{1}{\mathrm{I}^{\mathrm{C}}}, \text { and } \mathrm{CN}^{3}-\mathrm{PC} \cdot \mathrm{CT} ; \\
& \mathrm{B}=\frac{1}{2} \frac{\mathrm{CT}}{\mathrm{CS}}=\frac{c}{\theta^{3}} .
\end{aligned}
$$

Poikenu hade $\mathrm{c}=\mathrm{Be}$ to be nearly conatant for very different atreams. Thar from twe ex jeriments of his own on atrenms 0.2 and 0.3 metres defp, $e=001070$ and 0.01072 In IIennocque's experiments on the Rhior, 2.45 metres deep, $c=00107$; and in the Misyissippi experiments with n depth of 32 metrea, $c-0.0093$ to 0.0113 . Requacing dand B im (1) by the values now given

$$
\begin{equation*}
v=V-c \frac{v^{3}}{\theta^{3}}+c \tag{2}
\end{equation*}
$$

an equation which gives the velocity v at any depth y from tho surface in the region below the flameot of maximum velocity: For the region above the filament of maximum yelocity Boileau assames

$$
\begin{equation*}
v_{t}=V^{\prime}-c \frac{y^{9}}{\theta^{2}}+\left(V-V^{\prime}+c\right) \frac{z}{\theta} \tag{3}
\end{equation*}
$$

where v is the velocity at the deptli y and $V^{\prime \prime}$ is the surface velocity.
102. Ratio of Mean to Greatest Surface Velocity, for the whole Cross Section in Trapezondal Channels. It is often very important to bo able to deduce the mean velocity, and thence the discharge. from observation of tha grestest surface velocity. The aimplest method of gauging small streams and channels is to observe the greatest surface velocity by floats, and thence to deduce the mean velocity. Now, for channels not widely differing from those experimented on by Bazin, the expression obtained by him for the ratio of aurface to mesn velocity may be relied on as at least a good approximation to the truth. Let v_{0} be the greatest surface velocity, v_{m} the mean velocity of the stream. 'Then, according to Bazin,

$$
v_{m}=v_{0}-25 \cdot 4 \overline{\mathrm{~V}} \mathrm{mi}
$$

Put $\quad v_{n}=c \sqrt{m i}$,
where c is a coefficient, the values of which have heen already giren in the table in § 90 . Hence

$$
\begin{gathered}
v_{m}=\frac{\varepsilon}{c+25 \cdot 4} v_{0} . \\
\text { Valucs of Coefficioute } \frac{c}{c+25 \cdot 4} \text { in the Formula } v_{m o}=\overline{c+25 \cdot 4} \bar{v}_{0}
\end{gathered}
$$

Hydraulie Hean Depth $=m$	Very Smonth Channels. Cement	Smooth Channels. Ashlar or Brick work.	Rungh Channels. Rubble Masonry.	Very kough Cliannels. Conals in Esth.	Chaunels encumbered with Detritus.
0.25	. 83	'79	'69	51	42
0.5	-84	81	'64	-38	S0
0.75	-84	82	-6	$\cdot 63$	-35
1.0	. 85		$\cdot 77$	-65	
2.0	-	-83	-79	-1	64
3.0	-	-..	80	$\cdot 73$	-67
$4 \cdot 0$		-	8t	$\cdot 75$	$\cdot 70$
5.0		\ldots	...	-78	.71
$6 \cdot 0$	-	84	\ldots	77	72
7.0	\cdots	-8	. 95
8.0 9.0	\cdots	\cdots	$\dddot{82}$...	\cdots
100	...	\ldots	...	\cdots	
150	79	95
900	..	\cdots	\ldots	80	76
30.0	-82	...	-78
40.0 50.0	\cdots	...	\ldots	\cdots	...
∞	\cdots	...	\ldots	-79

103. River Bends.-In rivers flowing in alluvial plains, the windings which already exist tand to increase in curvature by the scouring away of material from the outer bank and the deposition of detritua along the inner, bank. The sinuosities sometimes increase till a loop is formed with only a narrow strip of land between the two cneroaching branches of the river. Finally a "cut off" may occur. a watervay being opened thruing tha atrip of land and the loop left separated from the atream, forming a horse-shoe shaped lagoon or marsh. Professor James Thomson has pointed out (Proc. fioyal Soc. 1877, p. 356 ; Proc. Insl. of Dech. Engineers, 1879, p. 4561 that the usual supposition is that the
watcr tending to go watcr tending to go
forwards in s straight line, rushes against the outer bank and scours it, ot the same timo creatingdeposita at the inner bank. That view is very far from a complcte accoumt of the matter, and Professor Thomson haygiven a mach more ingenious account of the action at the bend, which he has completely confirmed by experiment.

When water moves round a circular curve under the action of gravity only, it takea a motion like that in a freo vortex. Its velocity is greater parolbel th the exis of tho atream at the inner than at tho outer side of tha
bend. Hence the ecouring at the outer side and the deposit at the inner side of the bend are not due to neere diflerence of velocity of How in the generel direction of the stream; but, in virtue of the centrifugal furce, the water passing round the bend presses outwards, and the free surface in a radial cross section has a slope from the inner sida upwards to the outer side (ig. 118). For the greater pert of the water flowing in curved paths, this difference of pressure praduces do tendency to transverse motiou. But the water immediately in contact with the rough bottom and sides of the clanael is retarded, and its centrifugal force is insulficiont to bal. ance the pressure due to the greater depth at the outaide of the bend. It therefore fiows inwards towards the inner eide of

Fig. 118. the bend, carrying with it detritus which is deposited at the inner bank. Conjointly, with thes flow inwarda elong the bottom end sides, the general mass of water must flow outwerds to teke its place. Fig. 117 shows the directions of flow as observed in a small oribcial stream, by means of light seeds end specks of aniline dye. The lines CC show the directions of flew immediately in contact with the sides and bottom. The doted line AB shows the direction of motion of floating particles on the surface of the stream.

Steady Motion of Water in Open Channels of Varying Cross Section and Slope.

104. In every stream the discharge of which is constant, or may be regarded as cunsersit for the time considered, tha velocity at diferent places depends on the slope of the bed. Except et certain excepronal points the velocity will be greater as the slope of the bed is greater, and, ss the velocity and cross section of the etreann vary inversely, the eection of the atream will be leest where the velocity and slope are greatest. If in a stream of tolerably mifform slepe an obstruction such as a weir is built, that will cause an alteranun of flow similar to that of an alteration of the slope of the bed fur a greater or less distance above the weir, add the o"ignsilly unifurm cross section of the atream will becomea varied one. In euch rases it is often of much practics! importance to determus the longitudinal section of the stream.
The cases now considered will be those in which the chenges of velocity end cross section sra gradnal snd not abrupt, and in which the only internal work which needs to bo taken into eccount is that due to the friction of the stresm bed, as in cases of uniform motion. Further, the nrotion will be supposed to he stcady, the mean velocity at each given cross section remaining constant, though it varies from section to section along the course of the stream.
Let fig. 119 represcat a longitudinal section of tho stream, $A_{9} A_{1}$ being tha water surtace, $B_{0} B_{1}$ the stream bed. Let $A_{0} B_{0}, A_{1} B_{1}$ bo

Fig. 119.
cross sections normal to e direation of flow. Suppose tho mees of water $A_{0} B_{0} A_{1} B_{1}$ comes in a elowe time θ to $C_{0} D_{0} C_{1} D_{1}$, and let the work done on the mass be equated to its change of kimetic energy during that period. Let l be tho length $A_{0} A_{1}$ of the portion of the stream considored, and z the fall of eurface level in thet dietsnce. Let Q be the diechargo of the stream per second.

Change of Kinctic Energy. - At the end of the time θ there are as many particles possessing the same velocitics in the epsce $\mathrm{C}_{0} \mathrm{D}_{0} \mathrm{~A}_{1} \mathrm{H}_{1}$ as at the heginning. The clange of kinctic energy is therefore the difference of the kinctic energios of $A_{0} B_{0} C_{0} D_{0}$ and $A_{1} B_{1} C_{1} D_{1}$.

Let fig. 120 represent the cross ecction $\mathrm{A}_{0} \mathrm{~B}_{0}$, and lot ∞ ho as amall element of its area et a

Fig. 120.
point where tho velocity is v. Let Ω_{0} be the whole area of the cross section and u_{0} the mesn velocity for tho whole cross boction. Froms the definition of mean velocity wo heve

$$
u_{0}=\frac{\Sigma^{\omega} u}{n}
$$

Let $v=u_{0}+w$, where w is the diffenence betreen the velocity at the amall eletuent ω and tho nean velocity. Fur the wholo crose section, $\Sigma \omega w=0$.

The mass of luid passing through the element of section ∞, iu e eeconds, is $\frac{\mathrm{G}}{g} \omega v \theta$, and its kinetic encrgy is $\frac{\mathrm{G}}{2 g} \omega_{\nu^{3}} \theta$. For the whole section, the kinetic cuergy of the mass $A_{0} B_{0} C_{v} D_{0}$ passing in θ secords 13

$$
\begin{aligned}
& \frac{\mathrm{G} \theta}{2 g} \Sigma \omega v^{3} \\
- & \frac{\mathrm{G} \theta}{2 g} \Sigma \omega\left(u_{0}^{3}+3 u_{v}{ }^{\mathrm{s}} w+8 u_{0} v^{2}+w^{2}\right), \\
- & \frac{\mathrm{G} \theta}{2 g}\left\{u_{0}^{9} \Omega+\Sigma \omega w^{2}\left(3 u_{0}+\tau\right)\right\}
\end{aligned}
$$

The facter $3 u_{0}+w$ is equel to $2 u_{0}+q_{\text {; }}$ a quantity necessarily positiva. - Consaquently $\sum \omega v^{\prime}>\Omega_{0} H_{0}{ }^{3}$, end consequently the kinctic energy of $A_{0} B_{v} C_{0} D_{0}$ is greater than

$$
\frac{\mathrm{G} \theta}{2 g} \Omega_{0} u_{0}^{3} \text { or } \frac{\mathrm{G} \theta}{2 g} \mathrm{Q} u_{0}^{2} \text {, }
$$

which would be its value if ell the particles passing the eection had the same velocity u_{0}. Let the kinetic energy be taken at

$$
a \frac{\mathrm{G} \theta}{2 g} \Omega_{0} u_{0}^{3}-a \frac{\mathrm{G} \theta}{2 g} \mathrm{Q} u_{0}{ }^{2}
$$

where a is a corrective fector, the value of which has been entimated by Belanger at $1 \cdot 1.1^{1}$ lts precise value is not of great iniportance.
In a aimitar way we should obtain for the kinetic energy of $A_{2} B_{2} C_{1} D_{1}$ the expression

$$
a \cdot \frac{\mathrm{G} \theta}{2 g} \Omega_{1} u_{1}^{3}=a \frac{\mathrm{G} \theta}{2 g} Q u_{1}^{2},
$$

where Ω_{1}, u_{1} ere the eection and meen velocity at $A_{1} B_{1}$, and where a may be taken to have the same value as before without any injort, ant error.
Hence the change of kinotic energy in the whole mass $\mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{~A}_{1} \mathrm{~B}_{5}$ in θ seconds is

$$
\begin{equation*}
a \frac{\mathrm{G} \theta}{2 g} Q\left(u_{1}^{3}-u_{0}^{2}\right) \tag{1}
\end{equation*}
$$

Sotive Work of the Wcight and Pressures.-Consider a small filament $a_{0} a_{1}$ which comee in θ eeconds to $c_{0} c_{1}$. The work dons by gravity during that movement is the eame as if the portion $a_{0} e_{0}$ were carried to $a_{1} c_{1}$. Let $d Q \theta$ he the volume of $a_{0} c_{0}$ or $a_{1} c_{1}$, end y_{0}, y_{1} the depths of a_{0}, a_{1} from the surfece of the etream. Then the volume $\alpha Q \theta$ or $G d Q \theta$ pounde falls through 3 vortical height $z+y_{1}-y_{0}$ and the work done by gravity is

$$
\mathrm{G} d Q \theta\left(z+y_{2}-y_{0}\right)
$$

Putting p_{a} for ntmospheric pressure, the whole pressure por unit of area st a_{0} is $\mathrm{G} y_{0}+p_{\mathrm{a}}$, nud that st a_{1} io $-\left(\mathrm{G} y_{1}+p_{\mathrm{a}}\right)$. The woitk of these pressurce is

$$
\begin{aligned}
& \mathrm{G}\left(y_{0}+\frac{p_{a}}{\mathrm{G}}-y_{1}-\frac{p_{a}}{\mathrm{G}}\right) d \mathrm{Q} \theta, \\
& -\mathrm{G}\left(y_{0}-y_{1}\right) d Q \theta .
\end{aligned}
$$

Adding this to the work of grevity, the whole work is GriQe; or, for the whole cross eection,

$$
\begin{equation*}
G: Q \theta \tag{2}
\end{equation*}
$$

Work expended in Overroming the Friction of the Stream Bed. Let $A^{\prime} B^{\prime}, A^{\prime \prime} B^{\prime \prime}$ be two cross sections at distances s and $s+d s$ from $\mathrm{A}_{0} \mathrm{~B}_{0}$. Between theso eectione the velocity may be treated as uniform, beceuse by hypothesis the clenges of veloclty from section to section are gradual. Hence, to this short length of stream the equation for uniform motion is appliceble. But in that case the work in overcoming the friction of tho etreara bed betreen $A^{\prime} B^{\prime}$ and $A^{\prime \prime} B^{\prime \prime}$ is

$$
\operatorname{GQ\theta } \int \frac{n^{9}}{2 y} \frac{x}{n} d s
$$

where $u ; \chi, \Omega$ are the mean velocity, wetted perimeter, and sectlon at $A^{\prime} B$. Heuce the whole work lost in friction from $A_{0} B_{0}$ to $A, B_{\text {, }}$ will bo

$$
\begin{equation*}
\operatorname{GQ\theta } \int_{0}^{1} \int_{2 g}^{u^{s}} \frac{\dot{x}_{d}}{\hat{n}} d s \tag{3}
\end{equation*}
$$

Equating the work given in (2) and (9) to the change of kinetio energy given in (1),

$$
\begin{aligned}
& a \frac{\mathrm{GQ} \theta}{2 g}\left(u_{1}^{2}-u_{0}{ }^{2}\right)-\mathrm{CQ}=\theta-\mathrm{GQ} \theta \int_{0}^{1} \delta \frac{u^{2}}{2 g} \hat{K}^{\hat{1}}{ }^{a s} . \\
& \therefore=-\frac{\left(n_{1}{ }^{2}-\mu_{0}{ }^{3}\right)}{2 g}+\int_{0}^{1} \int \frac{u^{2}}{2 n} \frac{x}{n} d s
\end{aligned}
$$

1 Boussinesg has alowm that thla node of detemmiulng the corrective fector la det entiafuctory.
105. Fundamental Differential Equations of Steady Varied Motion. -Snppose the eqnation just found to be applied to an indefinitely ahort length d_{s} of the stream, limited by the end sectioas $a b, a_{2} b_{1}$, taken for simplicity normal to the stream bed (fig. 121). For that

Fig. 121.
short length ef atream the f an of surface level, or difference of level of $a_{\text {and }} a_{1}$, may be written $d z$ Also, if we write u for u_{0}, and $u+d u$ for u_{1}, the term $\frac{u_{0}{ }^{2}-u_{1}^{2}}{2 g}$ becomes $\frac{z u u^{2}}{g}$. Heace the eouation spplicable to an indefinitely short longth of the stream is

$$
\begin{equation*}
d z=\frac{u d u}{g}+\frac{x}{\Omega} \varsigma \frac{u^{2}}{2 g} d s . \tag{1}
\end{equation*}
$$

From this equation some general conelusions may be arrived at as to the form of the longitudinal section of the stream, but, as the investigation is somewhat complicated, it is convenient to simplify it by restricting the conditions of the problem.

Mfodification of the Formula for the Restricted Case of a Stream flowing in a Prismatic Stream Bed of Constant Slope.-Let i be the constant slope of the bed. Draw ad parallel to the bed, and ac horizontal. Then αz is sensibly equal to $a^{\prime} c$. The depths of the stream, h and $h+d h$, are sensibly equal to $a b$ and $a^{\prime} b^{\prime}$, and therefore $d h=a^{\prime} d$. Also $c d$ is the fall of the bed in the distance $d s$, snd is equal to ids. Hence

$$
\begin{equation*}
d z=a^{\prime} d=c d-a^{\prime} c \propto i d s-d h \tag{2}
\end{equation*}
$$

Since the motion is stoady-
Differentiating,

$$
\mathrm{Q}=\Omega u=\text { constant } .
$$

$$
\begin{aligned}
& \quad \Omega d u+u d \Omega=0 ; \\
\therefore & d u=-\frac{v d \Omega}{\Omega}
\end{aligned}
$$

Lat x be the width of the stream, then $d \Omega=$ xalh very nearly. Inserting this valne,

$$
\begin{equation*}
d u=-\frac{u x}{\bar{\Omega}} d h \tag{3}
\end{equation*}
$$

Putting the values of $d u$ and $d z$ found in (2) and (3) in equation (1),

$$
\begin{gather*}
d s-d h=\frac{u^{2} x}{g \Omega} d h+\frac{\chi}{\Omega} \zeta \frac{u^{2}}{2 g} d s . \\
\frac{d h}{d s}=\frac{i-\frac{X}{\Omega} \cdot \delta \frac{u^{2}}{3}}{1-\frac{u^{2}}{g} \frac{x}{\Omega}} . \tag{4}
\end{gather*}
$$

Further Restriction to the Case of a Stream of Rectangular Section and of Indefinite Width. -The equation might be discussed in the form just given, but it becomes a little simpler if restricted in the way just atated. For, if the stream is rectangular, $x h=\Omega$, and if x is large compared with $h, \frac{n}{v}=\frac{x h}{x}-h$ ncarly. Then equation (4) bucemes
100. Gereral Indeations as to the Form of Witer Sitfice furnished by Equation (5).-Let $A_{0} \Lambda_{1}$ (fig. 122) be the watcr surface, $\mathrm{B}_{0} \mathrm{~B}_{1}$ the bed io a longitudinal section of the atream, and ab any see. tion at a digtance sfrom B_{0}, the depth $a b$ being $h_{\text {. Suppose }} \mathrm{B}_{0} \mathrm{~B}_{1}$. $\mathrm{B}_{0} A_{\theta}$ taken as rectangulnr coordinate exes, then $\frac{d h}{d s}$ is the trigonemetric tangent of tho angle which the surface of the stream of a makes with tho axis $B_{0} B_{1}$. This tangent $\frac{d h}{d s}$ will be positive, if the stream is increasing in depth in the direetion $B_{0} B_{1}$; negative, if the stroam is diminishiog ia depth from B_{0} towards B_{1}, If $\xlongequal{\text { dh }} \sim 0$, the
surface of the stream is parallel to the bed, as in cases of uniform metion. But from equation (4)

$$
\begin{aligned}
& \frac{d \delta}{d s}=\dot{0}, \text { if } i-\frac{x}{\Omega} \delta \frac{t^{9}}{2 g}=0 ; \\
& \therefore \quad \delta \frac{u^{2}}{2 g}=\frac{\Omega}{X} i=m i,
\end{aligned}
$$

which is the well-known general equation for nniform motion, based on the same assumptions as the equation for raried steady motion now being considered. The case of uniform motion is therefore a limiting case between two different kinds of varied notion.

Fig. 122.
Consider the possible changes of value of the fraction

$$
\frac{1-\zeta \frac{u^{2}}{2 g i h}}{1-\frac{u^{2}}{g h}} .
$$

As h tends towards the limit 0 , and consequently u is large, the numerator tends to the limit $-\infty$. On the other hand if $\bar{n}=\infty$, in which case u is small, the numerator becomes equal to 1. For a value H of h given by the equation

$$
\begin{aligned}
& -\zeta \frac{u^{2}}{2 g i \mathrm{H}}=0 \\
& \mathrm{H}=\zeta \frac{u^{2}}{2 g i}
\end{aligned}
$$

we fall upon the case of uniform motion. The results just stated may be tabulated thus :-

$$
\text { For } \quad h=0 \quad \mathrm{H} \quad>\mathrm{H} \quad \infty
$$

the namerator has the value $\quad-\infty \quad 0>0 \quad 1$.
Next consider the denominator. If h beeomes very small, io which case 12 must be very large, the denominator tends to the limit $-\infty$. As h becomes very large sad u consequently very small, the denominator tends to the limit 1 . For $h=\frac{u^{2}}{g}$, or $u=\sqrt{g h}$, the denominator becomos zero. Hence, tabulating these results as be-fore:-
$\begin{array}{rrrll}\text { For } & h=0 & \frac{u^{g}}{g} & >\frac{u^{9}}{g} & \infty \\ \text { the denominator beeomes } & -\infty & 0 & >0\end{array}$
107. Casc 1.-Suppose $\overline{ }>\frac{u^{2}}{g}$, and also $h>H$, or the depth greater than that corrsponding to uniform motion. In this case $\frac{d h}{d i s}$ is positive, and the stream inereases in depth in the direetion of tlow In fig. 123 let $\mathrm{B}_{0} \mathrm{~B}_{1}$ bo the bed, $\mathrm{C}_{0} \mathrm{C}_{1}$ a line parallel to the hed as...

Fig. 123.
at a height sbove it equal to H . By hypothesia, the aurface $\mathrm{A}_{0} \mathrm{~A}_{1}$ of the struan is ahove $\mathrm{C}_{0} \mathrm{C}_{1}$, and it has just beco ahown that the depth of the stream iacreases from B_{0} towards B_{1}. But going up stream h approaches more ead mere nearly the value H, and therufore $\frac{d^{\prime} h}{}$
approaches tha limit 0 , or the surface of the stream is asymptotic to $\mathrm{C}_{n} \mathrm{C}_{3}$. Going down stream h increases and u diminisios, the Dumerator and aenominator of the fraction $\frac{1-\zeta \frac{2 g i h}{u^{2}}}{1-\frac{u^{2}}{g h}}$ both tend towards the limit 1 , and $\frac{d h}{d s}$ to the limit i. That is, the surface of the stream tends to become asymptotic to s horizontal line $\mathrm{D}_{0} \mathrm{D}_{1}$.
Tha form of water surface here discussed is produced whan the flow of a atream originally uniform is altered by the constraction of a weir. The raising of the water surface sbove the lavel $\mathrm{C}_{0} \mathrm{C}_{1}$ is termed the backwatar due to tha weir.
108. Case 2.-Suppose $h>\frac{u^{2}}{g}$, and also $h<H$. Then $\frac{a \pi}{d_{s}}$ is nega. tive, and the atreann is diminishing in depth in the direction of flow. In Bg. 124 let $\mathrm{B}_{0} \mathrm{~B}_{1}$ be the
stream bed as be. fore; $\mathrm{C}_{0} \mathrm{C}_{1}$ a line drawn parallel to $\mathrm{B}_{0} \mathrm{~B}_{1}$ at a height abova it equal to I. By hypothesis the surface $\mathrm{A}_{0} \mathrm{~A}_{1}$ of the stream is below $\mathrm{C}_{0} \mathrm{C}_{1}$,
 and the depth has just been shown to dimidish from B_{0} towards B_{2}. Going np stream a approaches tha limit H, and $\frac{d h}{d s}$ tends to the limitzero. That is, ur stream $A_{0} A_{1}$ is asymptotic to $\mathrm{C}_{0} \mathrm{C}_{1}$. Going down stream h dimiaishes and u increases; the inequality $h>\frac{u^{2}}{g}$ diminishes; the denominator of the fraction $\frac{1-\zeta \overline{u^{2}}}{1-\frac{u^{2} h}{g \hbar}}$ tends to the limit zero, and consequently $\frac{d h}{d s}$ tends to ∞. That is, down stream $A_{0} A_{1}$ tends to a direction perpeadicular to the bed. Before, however, this limit was reached the assumptions on which the general equation is based would ccase to be even approximately true, and the equation would cease to be applicable. The filaments would hava a relativa motion, which would make the influeace of internal friction in the Buid too important to be neglected. A stream surface of this form toay be produced if there is an abrupt fall in the bed of the stresm (fig. 125).

Fig 125.
On the Ganges canal, as originally constructed, there were abrupt falls precisely of this kind, und it appears that the lowering of the water surface and increase of velocity which such falls occasion, for a distance of some miles up stream, was not forescen. The result was that, the velocity above the falls being greater than was intended, tha bed was scoured and considerable damage was done to the works. "When the canal was first opencd the water was allowed to pass freely over the crests of the operfalls, which were haid on the level of the bed of the earthen channel ; erosion of bed and sid.s for some miles up rapidly followed, and it soon became apparent that means must be adopted for raising the surface of the stream at those points (that is, the crests of the falls). Planks were accordingly fixed in the grooves above the bridge arches, or temporary weirs were formed over which the water was allowed to fall; in some cases the surface of the water was thus raised above its normal height, causing a backwater in the channel above" (Crofton's Report on the Ganges Canal, p. 14). Fig. 126 represcnts in an exaggerated lorm what probably occurred, the diagram being intended to represent some miles length of the canal bed above the fall. AA parallel to the canal bed is the level corresponding to uniform motion with tha intended velocity of the canal. In eonacquence of the presence of the ogea fall, however, the water surface would take some such form as 13B, corresponling to C'ase 2 above, and the velocity would be greater than the intended velocity, nearly in the inverse ratio of the actual to the intended depth. By constructing a weir on the orest of tha fall, as shown by dotted lioes. a
new water surface CC corresponding to Case 1 would be produced, and by auitably choosing the height of the weir this might be mado to agree spprosimstely with the intended level AA.

Fig. 126.
109. Case 3.-Suppose a stream flowing uaiformly with s depth $\mathrm{H}<\frac{u^{3}}{g}$. For a stream in uniform motion $\frac{u^{2}}{2 g}=m i$ or if the stream is of indefnitely great width, so that $m=\mathrm{H}$, then $\zeta \frac{u^{2}}{2 g}=i \mathrm{H}$, and $\mathrm{H}=\delta \frac{u^{2}}{2 g i}$. Consequantly the condition stated sbove inrolves that $\zeta \frac{u^{4}}{2 g^{2}}<\frac{u^{9}}{g}$, or that $i>\frac{S}{2}$.
If such a stresm is interfered with by the construction of a weir which raises its level, so that its depth at the weir become $h_{2}>\frac{u^{2}}{g}$, then for a portion of the stream the depth h will satisfy the conditions $h<\frac{u^{2}}{g}$ and $h>H$, which are not the same as those assumed in the two previous cases. At gome point of tha stream above the weir the depth h becomes equal to $\frac{u^{2}}{g}$, snd at that point $\frac{d h}{d s}$ becomes infinita, or the surface of the stream is normal to the bed. It is obvious that at that point the influence of internal friction will be too great to be deglected, and the gencral equation will cease to represent tha true conditions of the motion of the water. It is known that, in cases such 89 this, there occurs an abrupt rise of the free surface of the strean, or a standing wave is formed, the conditions of motion in which will bo examined preseatly.
It appears that the condition Decessary to give rise to a standing wave is that $i>\frac{\zeta}{2}$. Now \int depends for different channels on the roughness of the channel and its hydraulic mean depth. M. Bazin has calculated the values of sfor channels of differcat degrees of roughness and different depths given in the following table, and the corresponding minimum values of i for which the exceptional case of tha production of a standing wava may occur.

Nature of Bed of Stream.	Slope below which a Statd. Ing Wave is impossible in feet per foot.	Standing Ware Formed.	
		Slope in leet per fook	Least Depth In feet.
$\left.\begin{array}{c}\text { Very smooth cemented } \\ \text { surface }{ }^{\circ}\end{array}\right\}$	0.00147	0.002 0.003	0.262
		0.003	. 098
	(0.003	-394
Ashlar or brickwork.....	0.00186	0.004	-197
		0.006	-098
Rubblo masonry		0.004	1.181
	0.00235	0.006	-525
		$0 \cdot 010$	-262
Earth	0.00275	0.006	3.478
		0.010	1.542
		0.015	'919

Standing Wates.
110. The formation of a stanaling wave was first observed by Bidone. Into a small rectangular masonry chaanel, having a slopo of 0.023 feet per foat, he adnitted water till it flowed uaiformly with a depth of 0.2 fect. He then placed a plank across the atream which raised the level just above the obstruction to 0.95 feet. He found that the stream abore the obstruction was seasibly unaffected up to a point 15 feet from it. At that point the depth suddenly increased from 0.2 fect to 0.56 feet. The velocity of the struam in
the part naffected by the ooscruction whs 5.54 feet ref secund Above the point where the abrupt change of depth occarred u^{2} $6 \cdot 54^{2}-30 \cdot 7$, and $g h=322 \times 0 \% 2=6 \cdot 44$, hence u^{2} was $>g h$. Just be. low the abrupt change of depth $u=5.54 \times \frac{0.2}{0.56}=1.97 ; u^{2}-3.88$; and $g h=3.2 .2 \times 0.56=18.03$; bence at this prost $u^{2}<g h$. Between thess two points, therefore, $u=g h$; and the condition for the production of a atanding wave occurred.

The change of level at a standing wave may be fonnd thus. Let fig. I27 represent the longitudinal section of a stream and

Fig. 127.
$a b$, cet cross sectione normal to the bed, which for the short distance considered may be assumed horizontal. Suppose the mass of water abcd to come to $a^{\prime} b^{\prime} c d^{\prime \prime}$ in a short time t; and let $u_{0} u_{1}$ be the velocities at $a b$ and $c d, \Omega_{0}, \Omega_{1}$ the areas of the cross sections. The force causing chenge of momentum in the mass abcd estimated horizon. tally is simply the difference of the pressures on $a b$ and $c d$. Putting $h_{0} h_{1}$ for the depths of the centres of gravity of $a b$ and $c d$ measured down from the free water surface, the force is $G\left(h_{0} \Omega_{0}-h_{1} \Omega_{1}\right)$ pounde, and the impulse in t seconds is $G\left(h_{0} \Omega_{0}-h_{1} \Omega_{1}\right) t$ second pounds. The borizontal change of inomentun is the difference of the momenta of adc'al sad $a b a^{\prime} b^{\prime}$; that is,

$$
\frac{\mathrm{G}}{g}\left(\Omega_{1} u_{1}^{2}-\Omega_{0} u_{0}^{2}\right) t
$$

Hence, equating impulse and change of momentunt.

$$
\begin{gather*}
7\left(h_{0} \Omega_{0}-h_{1} \Omega_{1}\right) t=\frac{\mathrm{G}}{g}\left(\Omega_{1} u_{1}^{2}-\Omega_{0} u_{u}{ }^{2}\right) t \\
h_{0} \Omega_{0}-h_{1} \Omega_{1}=\frac{\Omega_{1} u_{1}^{2}-\Omega_{0} u_{0}^{2}}{g} \tag{1}
\end{gather*}
$$

For simplicity let the section be rectangular, of breacth B and depths H_{0} and H_{3}, at the two crose sections considered; then $h_{0}=\frac{1}{?} \mathrm{H}_{0}$. and $h_{1}=\frac{\mathbf{i}}{-} H_{1}$. IIcace

$$
\mathrm{H}_{8}^{8}-\mathrm{H}_{1}{ }^{2}=\frac{2}{g}\left(\mathrm{H}_{1} \mu_{1}{ }^{2}-\mathrm{H}_{0} u_{0}^{2}\right)
$$

But, since $\Omega_{0} u_{0}=\Omega_{1} u_{1}$, we have

$$
\begin{align*}
& u_{1}^{8}=u_{0}{ }^{2} \frac{\mathrm{H}_{0}{ }^{2}{ }_{1}^{2}}{}{ }^{2}, \\
& \mathrm{H}_{0}{ }^{2}-\mathrm{H}_{1}{ }^{2}=\frac{2 \mu_{0}{ }^{2}}{g}\left(\frac{\mathrm{H}_{0}{ }^{2}}{1 \Pi_{1}}-\mathrm{H}_{0}\right) \tag{2}
\end{align*}
$$

This equation is satisfied if $\mathrm{II}_{0}-\mathrm{HI}_{1}$, which corresponds to the caso of uniform motion. Divading by $\mathrm{H}_{0}-\mathrm{H}_{1}$ tho equation becones

$$
\begin{align*}
& \frac{\mathrm{H}_{1}}{\mathrm{H}_{0}}\left(\mathrm{H}_{0}+\mathrm{HI}_{4}\right)-\frac{2 u_{0}^{2}}{\underline{g}} \tag{3}\\
& H_{1}=v\left\{\frac{\left.2 u_{0}^{2} l_{0}+\frac{-1}{4} H_{0}^{2}\right\}-\frac{1}{2} H_{5}}{}\right. \tag{4}
\end{align*}
$$

In Bidone's experiment $u_{0}=5.54$, and $\mathrm{H}=0.2$. Hence $\mathrm{I}_{1}=0.52$, which agrees very well with the observed herglit.

Fig. 123.
111. A standing wave is frequently produced at the foot of a weir. Thus in the ogeo falls originally constructed on tho Gancgs canal a standing wavo was obscrved as shown in fig. 128. The water falling ovor the weir crest A acjuired a very high velo. city on the steep slope AB, and tho section of tho strean at 13 became very amall. It easily happened, thercfore, that at 13 tho depth $h<L^{2}$. In fowing along the rouz? anmon of tho weir tho
velocivy u diminished and the depth h increased. At a point C. where h becane equal io $\frac{u^{2}}{g}$, the conditions for producing the standing wave occurred. Beyond C the free sarface abruptly rose to the level corresponding to uniform motion with the assigned slope of the lower reach of the canal.

A standing wave., is sometimes formed on the down stream sido of bridges the piers of which obstruct the flow of the water. Some interesting cases of thia kind are described in \& paper on the "Floods in the Nerbudda Valley" in the Proc. Iust of Cionl Engnneers, vol. xxpii. p. 222. by BIr A. C. Howden. Fig. 129 Ls compled from the data given in that paper. It represents the section of the stream at pier 8 of the Towah Viaduct, during the tlood of 1865 . The ground level is not exactly given by
 Mr Howden, bit Fig. 129.
has been inferred from dacs given on another drawing. The velocity of the stream was not observed, but the author states it was probsbly the same as at the Gunjal river during a similar Hood, that is 16.58 feet per second. Now, taking the depth on the down stream face of the pier at 26 feet, the velocity necessary for the production of a standing wave would bo $u=\sqrt{g h}=\sqrt{ }(32.2 \times 26)=29$ feet Fir second nearly. But the velocity at this point was probably from Mr Howden's statements $16.58 \times \frac{10}{0}=25.5$ feet, an agreement as close as the spproxinute character of the data would lead us to expect.

Xl. On streams and rivers.

112. Catchment Basin. - A stream or river is the channel for tho discharge of the svailable rainfall of a district, termed its catchwent basin. The catchment basin is surrounded by a ridge or watershed line, coutinuous except at the point where the river finds an outlet. The area of the catchment basin may be determined from a suitable contoored msp on a scale of at least 1 in 100,000 . Of the whole rainfall on the catchment basin, a part only finds its way to the stream. Part is directly re-evaporated, part is absorbed by vegetation, part may escape by fercolation into neighbouring distiicts, The following table gives the relation of the average stream discharge to the uverge rainfall on the catchment basin (Tisfenbacher).

	Rallo of average Discharge to avolage Kainfall.	Loss by Evaporation, de. in per cent. of tot us Rainfall.
Cultivated land and spring. 1 forming declivitics..	. 3 to 33	671070
Wooded hilly slopes.	35 to 45	55 to 65
Naked unhssurad mountains	$\cdot 55$ to 60	40 to 45

113. Flood Discharge. - The flood discharge can generally only bo dotermined by examining the greatest height to which floods liave been known to rise. To produce allood the rainfall must be heavy and willely distributed, and to produce a thood of exceptional height the duration of the rinfall must bo so great that the llood waters of the most distant atiluents reach the point considered, simultaneously with thoso from nearer points. The lager the catchment hasim the less probable is it that all the conlitions tending to pro duce a maximum discharge should simultaneously occur. Further, lakes and the river bed itself act as storage reserwirs during the riso of water level and diminish the rato of discharge, or serve as flood modorators. The influence of these is ofted important, because very lieavy rain storms are in most countries of comparatively alort duration. Tiefonbachor gives the following estimate of the flood discharge of atronans in Europe:-

Food diseharge of Streama per Second per Squince MHe of Catchucht Bashn.
In flat country
$8 \cdot 7$ to $12.5^{\circ} \mathrm{cmb}$. ft.
In hilly district
In moderately mountainons diatricts...... $36 \cdot 2$ to $45 \cdot 0$
In vory mountainous diatricta
50.0 to $75 \cdot$

It has been sttempted to express the dectease of the rate of flood dischargo with the increase of extent of the eatchment hasin by -mpirical formula. Thus Colonel O'Cunell proposes the formula $y=31 \sqrt{r}$, where M is a constant called the modulus of the river, the value of which depends on the emwunt of ranfall, the physical characters of the basin, and the extent to which the floodsare moderaten by storage of the reter. If 81 ia small for any given river, it shows that the rainfall is smasll, or that the permeability or slope of the sides of the ralley is such that the water does not drain rapidly to the river, or that lakes and river bed moderate the rise of the floods. If values of 11 are kjown fot a number of rivera, they nusy be used in inferring the probable discharge of other similar rivers. For British rivere 1 varics from 0.43 far a small stresm draioing meadow land to 37 for tbo Tyoe. Generally it is about 15 or 20. For large European rivers 18 varies from 16 for the Scine to $67 \cdot 5$ for the Dsuube. For the Nila 8 - 11 , a low value wheh results from the inmenso length of the Nile throughout which it reccives no affluent, and probably also from the influeuce of lakes For different tributaries of the Mississippi M raries from 13 to 56. For various lidisn rivers it varies from 40 to 303 , this variation being due to the great variations of rainfall, alope, end cheracter of ladlan rivura.
lus sore of the tank projects in India, the floed discharge has been calculated from the formula $\mathrm{D}-\mathrm{C} \sqrt[3]{n^{2}}$, where D is the discharge in cubic yards per hnur from n square miles of basio. Tha constant C was taken $-61,523$ in the designs for the Ekrooka tank, $-75,000$ on Ganges and Godevery works, and $=10,000$ on Madras works.
114. Action of a Strenm on its Bed.- If the velocity of a etream exceeds e certain limit, depending on its size, and on the size, heaviness, form, and cohereace of the materinl of which its bed is composed, it scours its bed and carries forward the iusterials. The quautity
of materisl which a given stream can carry in suspensiea depends on the aize anddensity of the particles in suspension, and is greater as the velocity of the stream is greater. If in one part of its course the veln. rity of a stream is great ehough

Fig. 130. to scour the bed and the water becomes londed with silt, and in - subsequent part of the river's cuurse the velocity is diminished, theu part of the transported material must be deposited. Probably depnait and sconr go on simultaneOnsly over the wholo river bed, hut in some parts the rate of scour is in excess of the rate of de. posit, and in other parts the rate of deposit is in excess ol
 the rate of acour. Deep streams oppear to hase the greatest scouring rower at any given velucity. It is possible that the difference is strictly a diffrence of tramporting, not of scuuring action. Let fig. 130 represent a section of a stremin The material lifted at a will be diflused through the mass of the stream aod deposited at different distaices dewn stream. The average path of a particle lifted st a will be some auch curve as $u b c$, and the average fistance of transport each time a particle is lifted will be represented by ac In a deeper stream such as that in fif 131, the average hoight to which particles sre lifted. and, wince the rate of vertical fall through the water msy be assumed the asme as before, the average distance $\mathrm{a}^{\prime} \mathrm{C}$ ' of trausport, will be greater Coosequently, al. tbough the acouring action may be identical io the two streatis, the velocity of transport of material down stream ls greater as the depth of the stream is greater The effect is that the deep stream excavates its bed more rapidly tban the sbsllow stream.
115. Buttom Velucity at which Scour commences - The following bottom velocities were deternined by llubuat to be the uiaximum velocities consistent with etability of ths stream bed for differeat materials.

Darcy and Bazin give, for the relation of the mesa velocity to sud bottom velocity v_{0},

But

$$
r_{n}-v_{0}+1087 \sqrt{2 n 12}
$$

$$
\begin{aligned}
& v m_{i}=r=\sqrt{\frac{\zeta}{2 g}} \\
& r_{0}=r_{0} \div\left(1-1087 \sqrt{\frac{\zeta}{2 g}}\right)
\end{aligned}
$$

Taking a mean ralue for ©, we get
and from this the following values of the mean velocity ere obtained :-

	Bottorn Veloclty $-v_{6}$	$\begin{gathered} \text { Mean } V_{\text {eloclit }} \\ =v_{m} \end{gathered}$
1. Soft earth. .	0.25	33
2. Loam..	0.50	65
3. Sand ..	$1 \cdot 00$	$1 \cdot 30$
4. Gravel	$2 \cdot 0$	$2 \cdot 62$
5. Pebbles	$3 \cdot 40$	4.46
6. Broken stonn, fint	4.00	5.25
7 Chalk, soft shals.	$5 \cdot 00$	656
8. Rock in beds	600	$7 \cdot 67$
Q. Hard rock	10.00	1312

The following table of relocities which abould not be exceeden in channels is given in the Ingenicurs Taschenbuch of the Vereiu "Hutte":-

	Surlace Velocity	Meen Velocily	Bottom Velocity.
Slimy earth or browo clay	-49	- 36	26
Clsy -	-98	75	-52
Firm sand.	197	161	1.02
Pehbly bed	400	3.15	$2 \cdot 30$
Boulder bed	500	4.03	$3 \cdot 08$
Conglomerate of slsty fragments	$7 \cdot 28$	610	$4 \cdot 90$
Stratified rocks .	800	745	6.00
Herd rocks	14.00	$12 \cdot 15$	10.36

116. Regime of a River Channel. - A river channel is said to be in a stata of regime, or stability, when it changes little in draught or form in a series of years. In some rivera the deepest part of the chanael changes its position perpetually, and is seldom found in the same place in two successive years. The sinuousuess of the river also changes by the erosion of the banks, so that in time the position of the river is completely altered. In other rivers the change from year to year is very small, but probably the reqime is never perfectly stable except where the rivers flow over a rocky bed.

If a river hal a constant discharge it would gradually modify its bed till a permanent regime was established. But as the volume discharged is constantly changing, and therefore the velocity, silt is deposited whea the velocity decreases, and scour goes on when the velocity increnses in the same place. When the scouring and silt. iag are considerable, a perfect Lalance between the two is rarely established, sod bence contiaual variations occur in the form of the river and the direction of its currents. In otber cases, where the action is less vielent, a tolerable bslance may be established, and the deepening of the bed by scour at one time is compensated by the silting at another. Io that case the general regime is permongent, thnugh alteration is constantly geing on. This is more likely to happen if by artificial meaus the erosion of the banks is preveated. If a river flowa in soil inca pable of resisting its tendency to scour it is necessarily ainuous ($\$ 103$), for the slightest deflexion of the current to either side begina sn erosion which increases progres. sively till a cousiderable bend is formed. If such a river is straightened it becomes sinuous again anless its banks ara protected frum scour.
117. Longzudinal Section of River Bed. -The declivity of rivers decresses from source to month. la their higher psits rapid and

torrential, flowing uver beda of gravel or bouldera, they enlarge in voluors hy receiving affluent streams, their alope diminishes, their bed consists of amaller materials, and figally they reach the eea: Fig. 132 shows the length in miles, and the surface fall in feet pes mile. of the Tyne and its tributaries.

The decrease of the slope se due to two causes. (1) 'The action of the transporting power of the water, carrying the smallest debris the greatest dratance, causes the bed to be less stablo dear the mouth than in the higher parts of the river; and, as the river adjusts its alope to the stability of the bed by scouring or increasing its sinousness when the slope is too great, and by silting or straighteoing Its course of the glope 19 too small, the decreasiog atability of the bel would coincide with a decreasing alope. (2) The inerease of volume ad gection of the river leads to a decrease of slope; for the larger the section tho less alope ia necessary to ensure a given velocrty.

The following investigation, though it ralates to a purely arbitrary case, is cot without interest. Let it be assumed, to make the conditions definite-(1) that a river flows over a bed of uniform resistance to scour, and let it be further assumed that to maintain stability the velocity of the river in these circumstances is constant from source to mouth - (2) suppose the sections of the river at all points are similar, so that, b being the breadth of the river at any point, its aydraulie mean depth is ab and its section is $c b^{2}$, where a and c are coustants applicable to all parts of the river; (3) let us further assume that
 the discharge increases uniformly in eonsequence of the supply from affuents, so that, if l is the length of the river from its source to any given point, the discharge there will be $k l$, where k is another constant applicatile to all points in the course of the river.

Let AB (fig. 133) be the longitudinal aection of the river, whose source is at A; and take A for the origin of vertical and horizontal coordinntes. Let C be a point whese ordinates are x and y, and let the river at C have the breadth b, the alope i, and the velocity v.
Since velocity \times area of section $=$ discharge,$v c b^{2}=k l$, or $b=\sqrt{\overline{k l}}$.
Hydraulic mean depth $=a b=a \sqrt{\frac{\pi \cdot}{c v}}$.
But, by the ordinary formula for the flow of rivers, $m i=\delta v^{2}$;

$$
i=\frac{\zeta v^{2}}{m}=\frac{\zeta v^{\xi}}{a} \sqrt{\frac{c}{k l}}
$$

But i is the tangent of the angle which tbe corre at C makes with the axis of X , and ia therefore $r \frac{d y}{}$. Also, as the alope is small, $t=A C=A D=x$ nearly.

$$
\frac{d y}{d x}=\frac{\zeta v^{\prime}}{a} \sqrt{\frac{c}{k x}}
$$

end, remembering thst v ia conutant,

$$
y=\frac{2 \zeta v^{q}}{a} \sqrt{\frac{c x}{k}}
$$

or

$$
y^{2}=\text { conatant } \times x
$$

ao that the curve is a common perabola, of which the sxis is horizontal and the rertex at the aource. This may be considered an ideal loagitudinal aection, to which actual rivers approxin ate more or less, with exceptions due to the varying hardness of their betls, and the irregular manner in which their volume increases.
118. Surface Level of River. - Tho aurface level of a river is a plane changing constantly in poaition from changes in the volunae of water diacharged, and moro alowly from changes in the river bed, and the circumstances affecting the drainago in to the river.

For the purposes of the eaginecr, it is important to letermine (1) the extremo low water level, (2) the extreme high water or flood level, and (3) the higheat navigable level.
(1) Low IF ater Levol canoot be abolutely knoten, because river reaches its lowest level only at rare intervals, nad because alterations in the cultivation of the land, tho drainage, the removal of foresta, the removal or erection of obstructions in the river bed, se., gradually nlter tho eonditions of discharge. The lowest level of which recordsean be found is taken as the conventional or approximate low water level, and allowance is mate for possible clanges.
(2) High Waler or Flood Kevel. - The eugineer nssumes as the tighest flood level the highest level of which records can he obtained. In farming a judgment of the data available, it mast be rimembered that the highest lovel nt one point of a river is not always simultaneous with the attanment of the lighest level at 0 hur pininta, and that the riso of a river in flood is viry different in dullerent parts of ita course. In temperate regiona, tho thonds of rivers ackdom riso more than 20 feet above low water level, bat in the tropics the rise of flooda ia greater.
(3) Highest Navigable Level. - When the river rises abovo n certain lovel, navigation becomes difficult from the increase of the
veloeity of the eurrent, or from sulumersion of the tow paths, on from the beadway under bridges becoming insufficient. Ordinarily the highest navigable level may be taken to be that at which the river begins to overflow its banks.
119. Kelative Value of Different Materials for Submerged Works. That the power of water to remove and trausport different materials depends on their density has an important bearing on the aelection of materials for submerged works. In many cases, as in the aprons or floorings beneath bridges, or in front of locks or falls, and in the formation of trainiag walls and breakwaters by pierres perdus, which have to resist a violent current, the materials of which the structures are composed should be of such a size and weight as to to able individually to resist the scouring action of the water. The heaviest naterials will therefore be the best; and the different value of materiala in this respect will appear much more striking, if it is remembered that all materials lose part of their weight io water. A block whose volume ia V cubic feet, and whose density in air is w th per cubic foot, weighs in air $w \mathrm{~V} \mathrm{fb}$, but in water only $(w-62 ' 4) \vee \mathrm{tb}$.

	Weight of a Cuble Foot in $几$,	
	In Alr.	In Water.
Basalt...	$187 \cdot 3$	124.9
Brick.	130.0	676
Brickwork	112.0	49.6
Granite and limestone.	170.0	$107 \cdot 6$
Sandstone..	144.0	81.6
Masonry	16-144	63.6-81 6

120. Inundation Deposits from a Hiver. - When a river carrying silt periodically overfows its badke, it deposits silt over tha area flooded, and gradually raises the surface of the country. The ailt is de posited in greatest abundance where the water first leaves the river. It hence results that the section of the country assumes a peculian form, the river flowing in a trough along the crest of a ridge, from which the land slopes downwarda on both sides. The ailt daposited from the water forms two wedges, having their thick ends towards the river (fig. 134).

Fig. 134.
This is strikingly the case with the Mississippi, and that river is now kept from flooding immense areas by artificial embankments or levees. In India, the term deltaic segment is sometimes applied to that portion of a river ronning through deposits formed by inundation, and having this characteristic section. The irrigation of the country in this case is very easy, a compnratively slight raising of the river surface by a weir or annicut gives a command of level which permits the water to be conveyed to any part of the district.
121. Deltas. -The oame delta was originally given to the Δ-shaped portion of Lower Egypt, ineluded between seven branches of tha Nile. It is now given to the whole of the alluvial tracts round river mouths formed by deposition of sediment from tho river, where its volocity is checked on its entrance to the sea. The characteristic feature of these alluvial deltas is that the river traverses them, not in a single channel, but in two or many bifurcating branches. Each branch

Fig. 135.
has a tract of the deltn under its influence, and gradually mises tho aurface of that tract, and extends it seaward. As the delta extenda itself scownrd, the conditions of discharge through the differmt branches change. The water finda the passage through one of tho branches lesa obstructed than through the others; tho velocity and ecouring action in that branch are increased; in the others they
diminish. The one chanacl gralually abserbs the whole of the water supply, while the other branches silt up. But as the mouth of tho new main chanuel exteods seaward the resistance inereases both from the greater length of the channel and the formation of ahoals at its mouth, and the river tends to form new bifurcatioos AC or AD (fg. 135), and one of these may in time become the mann elannel of the river.
122. Field Operations prcliminary to a Study of River Improve. ment. - There are required (1) a plan of the river, on which the positions of lines of levelling and crass sections are marked; (2) a longitudinal section and numerous eross sections of the river; (3) a series of gaugings of the discharge at different points and in different conditions of the tiver.

Longitudinal Section.-This requires to be carried out with great sccuracy. A line of stakes is planted, following the sinnosities of the river and chained and develled. The cross sections are referrel to the line of stakes, both as to position and direction. To deternaine the slope of the water surface great care is necessary.
123. Cross Sections. - A stake is plented flush with the water, and its level relatively to some point on the line of level; is determined. Then the depth of the water is determined at a scries of points (if pr: sible at uniform distances) in a line starting from the stake and perpendicular to the tliread of the stream. To obtain these, a wire thuy be stretched across with cqual distances marked on it by hanging tags. Tho depth at each of these tars may be obtained by a light womlen staff, with a disk-shaped shoe 4 to 6 inches in diameter. If the depth is mreat, soundiags may he taken by a chain nnd weight. To eusure the wire beine perpendicular to the thread of the stream, it is desirable to stretch two other wires similarly graduated, one above and the other below, at a distanco of 20 to 40 yards. A number of floats being then thrown io, it is observed whether they pass the same graduation on each wire.

For large and rapid rivers tive sross section is obtained by somind. tng in the following way. Let AC (fig. 130) he the line on which soundings aro required. A base line $A B$ is measured ont at right angles to $A C$, and ranging staves nre set up at $A B$ and at D in line with AC. A boat is allowed to drop down stream, and, at the moment it somes in line with $A D$, the lead is iropped and an observer in the boat takes, with n box sextant, the anglo AEB subteoded by AB. The sounding line may havo a weight of 14 to of lead, and, if the boat drops down atream slowly, it may hang near the bottom, so that tho observation is made instant. ly. In extensive surveys of the Mississippi observers with theodolites sere stationed at A and B. The theodolite at A was directed towards C, that at B was kejt on the boat. When the boat came on the line AC, the

Fig. 136. obscrver at A signalled, the sounding line was dropped, and the observer at B read off the aogle $A B E$. By repeating observations a number of soundings nro obtainel, which can be plotted in their proper position, and the form of the river bed drawn by comecting the extremitics of the lines. From the section can be measured the sectional area of the streani Ω and its wetted perimeter χ : and from these the hydraulic mean depth m can be calculatcal.
124. Measurcment of the Discharge of hivers. - The area of cross oection multiplied by the mean velocity gives the discharge of the atream. The height of the river with reference to some fixed mark alould bo noted whenever the velocity is observel, as the volocity and area of cross section nre different in different states of the tiver. To detormine tho mean velocity varions methods may be aclopted; nod, since no mothod is free from liability to entor, cither from the lifienlty of the observations or from unecrainty as to thic ratio of the mean velocity to the velocity observed, it is desivable that move than one method shonld be used.

Inbtruments for Measering the Vilocity of Water.

125. Surface Flonts are convenient for determining the surfare velocitics of a stream, though their use is diflicult near the lmoks. The floats may be amnll hanls of wood, of wax, or of hollow metal, so londed as to float nearly flush with the water sraface. To rember them visible they may lave a rertical printed stem. In cxjerineuts on tha Scine, cork balls is inches diameter were used, londed to Host flush with the water, and provided with n stem. In Crptain Cumanghan's obscrvations at Roorkee the flonts were thin circular disks of Euglish deal, 3 inclics diancter nud 1 inch thick. For obsicuationa uear tho banks, floats 1 inch dinmeter and $\frac{1}{a}$ inch thick were used. To render them visible a tuft of cotton wool was used loasely fixed in a licle at the centre.
$12-1!1^{*}$

The velocity is oltaided by allowing the float to be carried down, amd noting the time of passage over a measured jengell of the strean. If v is tho velocity of any lloat, t the time possing over a length l, then $v=\frac{l}{l}$. To mark out distiuctly the Jengtli of stream over which the floats pass, two ropes may be stretched across the stremm at a distance apat, which varies usually from 50 to 250 feet, accolding to the size aud rapidity of the river. Io the Roorkee experiments a length of run of 50 feet was fonml best for the cential twofifths of the width, nad 25 feet for the remainder, except very close to the banks, where the run was pade $12 \frac{1}{2}$ feet only. The longer the run the less is the proportionate error of the time obsen wations but on the other hand the greater the deviation of the thats from a straight course parallel to the axis of the stream. To mank the precise position at which the doats cross the ropes, Captain Cunningham nsed short white rope pendants, hanging so as nearly to touch the surface of the water. In this case the streams were sol to 180 feet in widtl. In wider streams the use of ropes to mark the length of run is impossible, and recourse must be hat to box scx. tants or theodolites to mark the path of the Moats.
Let AB (fig. 13i) be a measured base line strictly panallel to the thread of the stream, and $A A_{1}, B B_{1}$ lines at right angles to $A R$ marked out by ranging rods at A_{1} and B_{1}. Suppose observers stationed at A and B with sextants or theodolites, aml det CD be the path of any float down strean. As the loat approaches ΛA_{1}, the observer at B keeps it on the cross wire of his 11 . strument. The obscrver at A observes the instant of the float reacling tho line $A A_{1}$, and signals to B who then reads of the aggle $A B C$. Sitailarly, as the float opproacbes BB_{1}, the ob. scrver at A keeps it in sight, aad when signalled to by B reads the angle BAD. The data so ot alained are sufo ficient for plotting the path of the float and determining the distances $A C, B D$.
The time taken by the float in passing over the measured distance may

Fig. 137 be observed by a chronograph, started be observed by a chronograph, started
as the float passes the upper rope or line, and atopped when it passes
the lower. In Captain Cunningham's observations two chronometcrs were sometimes used, the time of passing oue end of the run being noted on one, nnd that of passing the other cold of the ruu leing noted on the other. The chronometers were comparal insmediately before the observations. In other cases a single chronometer was used placed milway of the run. The moment of the floats passing the cuds of the run was sigmalled 10 a timekeeper at the chrononaeter by shouting. It was found quite possible to count the chronometer beats to the nearest half second, and in some cases to the nearest quarter second.
126. Sub-surface Foats. - The velocity at different depthe below the surface of a stream may be obtazned by sub-surface floats, used precisely in the same way as surace flonts. The most usual arrangement is to have n larce font, of slightly greater density than wnter, connected with a small amd very light surface float. The motion of the combined arrangement is not sensibly different from that of the large float, and the small surface float enables an observer to note the path and volocity of the sub-surfnce doat. The irstrmment is, however, not free from objection. If the largo subnerged lloat is mate of very nearly the same density as water, then it is liable to be thrown up. waris by very slight eddies in the water, and it does not mantain its position at the depth at which it is intended to float. On the other hand, if the large floot is made sensibly heavier than water, the indicat. ing or sulace flont must lie made rather large, aml then it to some ex. tent influences the motion of tho submerged floath Fig. 138 shows
 owe form of sub-surface float. It con-

Fig. 138. sists of a couple of tin flates bent nt π right angle and soliered together at the angle. This is connectel with a woold n mall at the surface ly a very thin wire or cord. As the tim alone makes a henvy sulbmergel flont, it is better to attach to the tin iloat some pieces of wood to diminish its woight in water. Fig. 139 slows the form of submerged doat usal by Captain Cunningham. It consists of hollow metal ball connected to a slice of coik, which serves as the eurface doat.
127. Twin Floats. - Suppose two equal and sibular floats (fig. 140) connected by a wire. . Let one float he a little hghter and the other a little heavier than water. Then tha velocity of the combned llats will be the mean of tha surface velocity and the velocity at the

Fig. 139.

Fig. 140.
aepth at which the heavier float swims, which is determined by the longth of the connecting wire. Thus if v_{1} is the surface velocity and v_{d} the velocity at the depth to which the lower float is sunk, the volocity of the combined floats will bo

$$
v=\frac{v_{d}+v_{d}}{2}
$$

Consequently, if v is observed, and v determined by an exp riment with a single float,

$$
e_{d}=2 v-v_{1}
$$

According to Captain Cunningham, the twin float grees bettery sults than the sub-surface float.
123. Velocuy Rods.-Another form of float is shown in fig. 141. This consists of a cylindrical rod loaded at the lower end so $\& \exists$ to float nearly vertical in water. A wooden rod, with a metal cap at the bottom in which shot can be placed, answers better than anything else, and anmetimes the wooden rod is made in lengths which can be serewed together so as to suit streama of different depths. A tuit of cotton wool at the top aerves to make the float more easily visible. Such a rod, ao adjusted in lergth that it siaks aearly to the bed of the stream, gives directly the mean velocity of the whole vertical section io weich it floats.
129. Revy's Current Jeter. - No instrument has been so much used in duectly determiaing the velocity of a stream at a gived point as the screw current meter. Oi this there prea dozen varieties at leost. As an example of the instrument in its
 simplest form, Mr Revy's metar may

Fig. 141. onplest form, Mr Revy's metar may
be selected. This is an ordinary screw meter of a larger size than usual mora carofully made, and with its details carefully studied (figs. 142, 145). It was designed after experience in gnuging the great South American rivers. The screw, which is actuated by the water, 196 inches in diametor, nnd is of the type of the Griffiths serew used in ships. The hollow spherical hoss berves to make the wenght of the screw sensibly equal to its disphacement, so that friction 18 much reducet. On the axis an of the acrow is a worm whin druves the counter. This consists of two worm wheila g and h fixed on a common axis. 'l'he wha wherla are carried on a frame attached to the pal. Diy monas of a string attached to l they can be pulled moto gear with the worm, or dropped out of gear nud stopped at any instant. A nat on can be esruwd up, if necessary, to kerp the counter purmatantly in gear. The worm is twothreaded, and the worm wheel g hat 200 teeth. Consequently it makes one rotation for 1 ut rocations of the scrow, and the number of fotatrons up to 10019 matrked hy the prassage of the graduations ous its cedge in front of a fixed inllex. The apcond worm whel has 190 treth, und its wedere is dwald into 40 divisons. Ienee it falls behnd the first wheel one disison for a complete rotation of the latter. The mumber of handruds of ratations of the serew are therefore shown by the mumber of divistons on h prassed over by anindex fixed to g. One datficulty in the use of the ordinary serew metor is that particles of grit. getting into the working parts, very gensbly alter the fiction, and therefore tha apmed of the meter. Mr Revy obviatea thas by anclosing the counter in a brass box with aglass face. This hox is tilled with aure
water, which easures a constant coefficient of friction for the rubbin. farts, aud prevents aay mud or grit finding its uay in. In oud

Fig. 142. - Scale \& full size.
that the meter may place itself with the axis parallel to the current, it is piroted on a vertical axis and directed by a large vane abowo in fig. 143. To give the vane more direct. iog power the vertical oxis is nearer the serew than in ordinary meters, and the vage is larger. A second honzontal vane 18 attached by the serews x, x, the object of which is to allow the meter to rest on the ground without the motion of the screw being interfered with. The string or wire for starting ond stopping the meter is carmed through the centre of the vertical axis, so that the atrain on it may not tend to pull the meter oblique to the enrrent. Tha pitch of the screw is about 9 naches. The screws at x serve for filling the meter with water. The whole alparatus is fixed to a rod (fg. 143), of a length proportionate to the depth, or for very great depths it is fixed to a weighted bar lowered by ropes, a plasa invented by Mr Revy. The mstrument is geaerally used thus. The reading of the counter is noted, aod it 19 put out of gear. The meter is thed lowered iuto the water to the required position from a platiorm between two boats, or better from a temporary bridge. Then the counter ta put into gear for one, two, or five muntes. Lastly, the instrament is rasem and the counter again read. The velocity is deducad from the anmber of rotations in unst time by the formule given below. For surface velocaties the counter may be kept per. manently in gear, the screw beigg started and stopped by hand.
130. The Marlacher Current Meter.-A very interestug monlafation of the current meter is that mate by Amsler Latmon of Schafthauseo, wheh is described in llensinger von Waldege (Handb. der Ingenent. urssenschaflen, iii. p . 284). In thas the or-
 F!g 148. dinary countang apparatus is abmadoned. A worm drives a worm wherl, which makesan chetrial cootact once for each 100 rotations of the worm. This contact giwes a gigmal above water. With this arrangenent, a sertes of velocity observations cad be made. withont removing the mstrument from the water, and o number of practieal dafienlties attending the accurate starting and stopping of the orlmary counter are enturly got rad of. Fig 144 sliows the meter. The worts whefl a makes one rotation for 100 of the screw. A pin moving tho lever x makes the electrical contact. The wire b, care led through a gas pipe 13; thas also serves to nitjust the meter to any requred position on tho woorlen isd dd. J'he rudder or
vane is shown at WH. The galvame current acts on the electrodagnet m, which is fixed in a small motal box contanning also the tatiery. The nagnet exposes and withdraws a colomred disk at an upening in the cover of the box

Fig. 144
Sfoores Current Meter - The ditficulties in using the ordmony current meter have been overcome to a great extent by on arrange. ment of another kind, wented by Mr B. T. Bloorw (Proc. /nst.

Fig. 145

Civil Eng., xlv, 220). This instmment (fog. 145) can be jowered into the wnter to any required depth by n light cord or chan The counting arrangenoent unside the meter can be started nr stopped at any instant. The instrumont consists of a lifht brass frame carry-
ing an ogival hend, and long ruditer, cross-shaped in section. Tha frame 18 suspended in a starrup, and if necessary a lead weight can be snspended below the meter. A rotatiog cylinder with ecrew blades is placed behod the ogival head. the centre of gravity of the instrument is accurately in the intersection of the axis of the stirrup-bearings and the longitndinal axis of the instiument. The rotatheg eylinder is started by releasing a spring by a cord. The racording mechansm is msule the rotating cylinder. Tho instrument is put in motion by a very small force. Some experiments mate by towing it in still water gave the following equations:-

For speeds giving more than sixty rotations per madite,

$$
v=10 R
$$

where v is the velocity of the wisur relatively to the instrument in feet per manate, and R the nomber of lotations per manate. For lower spueds,

$$
1=\mathrm{N}+12 .
$$

It would appear therefore that the instrument will record velocities down to tid feet per mante. Mr Moore states that a velocity at any depth down to 20 feet can be taken in five miniles, the meter being rased and lowered much more easily than when it is attached to a rod.

Determuation of the Coeflicaents of the Current Meter. - Suppose a series of observations have been made. ty towing the meter in still water, at different speeds, and it $1 s$ required from these to ascertain the coetherents of the meter. A formala must be assumed to connect the observed velocities v with the number of rotations per second n. Then, in determining the coefficients of the formula from the given observations, the condition to be fulfilled is that the suol of the squares of the differences between the observed resulta aod those gived by the furmula should be a minmum.

Let the formula assumed be of tho form

$$
\begin{equation*}
v=a n+\beta \tag{1}
\end{equation*}
$$

Then the difference in any case between the observed and calculated quantity is $v-a n-\beta$, and therefore $\Sigma(v-a n-\beta)^{2}$ is to be a mamıum.

The coefficients being independent, we must equate separately to zero the differential coefficients of the expression with respect to the two coelficients.

$$
\begin{aligned}
& \Sigma[(v-a n-\beta) n]=0 \\
& \Sigma[(v-a n-\beta)]-0
\end{aligned}
$$

whenco

$$
\begin{aligned}
& \Sigma(n \text {) } a+\Sigma(n) \beta=\Sigma(\eta n) ; \\
& \Sigma(n) a+\Sigma(n) \beta=\Sigma(v) ;
\end{aligned}
$$

from which a and B are easily determined.
Exner has shown (Zentschrift fur Bauucsen, 1875) that the relation between the velocity of the water and the number of rota. tions of the meter 19 better expressed by the formula

$$
\begin{equation*}
v=\sqrt{ }\left(a^{2} r^{2}+r_{0}^{2}\right) \tag{2}
\end{equation*}
$$

than by that generally used v_{0} is semsibly equal to the velocity at which the meter juist ceases to revolve; and a is a constant deter. maned bv experments at different speeds. Other expressions have been given. but they are more complicated and not more accurate thnn (1) and (2).
131. DarcyGaugror Modificd Fitot Tube - A very old instrument for mensuring velocities, iuvented or used ly Pitot, coasested simply of a vertucal glass tube wath a rightangled bencl. placed so that its mouth was normal to the direction of flow (fig. 146).

The impact of the r, stram on the mouth of the tube balances a column in the tube. the hewht of whoh.
 is a Miproximately $h=\frac{r^{2}}{2 g}$. Where o is
the velocity at the depth x. Placel with its mouth parallel to the stream the water mside the tube is nearly at the same level as the surface of the stream, and turned wath the mouth down streain, the fluid smks a depth $h^{\prime}=\frac{v^{2}}{2 g}$ nearly, though the tube in that case interferes with the free flow of the liquid and somewhat modifies the result. Picot expmaled the month of the tube so as to form a fumbel or bell mouth. In that case hefound by experiment

The objectin 4 to this is that the motion of thestream is interfered with, and i_{i} is no longer certan that the velocity in front of the orifice is exactly the velocity of the noobstructed strearo. Darey preferred to make the mouth of the tube very small, partly to avoid ioterference with the stream, partly to check oscillations of the column. In that case he foned the difference of level of two tubes, such as A and B, to be alinost exactly

Fig. 117
One objection to the Pitot tohe'ill its original form was the great diffenty and incorvenience of reading the lueght h in the immondiato neighbourhood of the strem surface. Thisis obvouted in the Darcy ganke, which can be removed from the stream to be read.
fige $1: 17$ showa Darey gange. It enngists of two ritot tubea having their aouths at aght angles. In tue instrument shown, tho
two tabes, furmed of copper in the lower part, are united into one for strength, and the mouths of the tubes open vertically and horizontally. The uplier part of the tubes is of glass, aod they are provided with a brass scale and two verniers b, b. The whole instrument ia aupported on a verical rod or small pile AA, the fixing at B permitting the instroment to be arljusted to any height on the rod, and at the same tine allowng frec rotation, so that it can be beld parallel to the current. At c is a two-way eock, which can be opened or closed by cords. If this is shot, the instrument can be lifted out of the stream for reading. The glass tubes are conneeted at top by a brass fixing, with a stop cock a, and a flexible tube and mouthpiece m. The use of this is as follows. If the velocity is required at a point near the surface of the stream, one at least of tha water colnoins, ould be below the levelat which it could be read. It would beio the copper part of the instroment. Suppose then a little air is sueked out by the tube m, and the cock a closed, the two columns will be fores up an amount corresponding to the difference between atmosphertc pressure and that in the tubes. But the difference of level wil' remarn unaltered.

When the velocities to be measured are not very small, this instrument is an admirable one. It requires observation only of a single linear quantity, and does not require any time observation. The law connecting the velocity and the observed height is a rational one, and it is not absolutely necessary to make any experiments on the coefficient of the instrument. If we take

$$
v=k \sqrt{2 g h},
$$

then it appears from Darey's experments that for a welt-formed instrument k does not sensibly differ from unity. It gives the veloeity at a definite point in the stream. The chief diffeulty ariaes from the fact that at any given point in a stream the velocity is not absolutely constant, but varies a little from noment to moment. Darcy in some of his experiments took several readings, and deduced the velocity from the mean of the highest and lowest.
132. Hydrodynamometer of M. Perrudil. - This consists of a frame ahed (fig. I48) plaeed vertically in tha stream, and of a height net less than the stream's depth. Tbetro vertical members of this frame are connected by cross bars, and united above water by a cireular har, situated in the vertical plane and cariyng a horizoutal graduated eircle of. This whele system is movable round its axis, being suspended on a pirot at g connected with the fixed support $m n$. Other horizontal arms serve as guiles. The central verticalrud $g r$ forms a torsion rod, being fixed at r to the frame abcil, and, passing frecly upwards through the guiles, it earries a horizontal needle moving over the graduated circle of. The support g, which carries the apparatus, also receives in a tubular guide the end of the torsion rod gr and a set serew for fixing the upper end of the torsion rod when neeessary. The impulse of the strean of water is received on a circular disk x, in the plane of the torsion rod and the frame abch. To raise and lower the
 apparatus easily, it is not fixed diretetly to the rom $m n$, but to a tube $k l$ shiding on $m m$.

Suppose the apparatus arranged so that the disk x is at that level in the stream where the velocity is to bo determined. The plane abed 18 placed parallel to the dircetion of motion of the water. Then the disk x (acting os a rulleter) wall place itself parallel to the stream on the down stream side of the frame. The rorsion rod will lue unstramed, and the eedile will be at zero on the graduated cirele. If then the matrument is turned by pressing the needle, till the plane abral of the disk and the zero of the gradmited circle is at right angles to the stream, the torsion rol will he twisted through an angle which mosures the normal impulse of the strem on the disk x. That angle will be given ly the distance of the needte from zero. Observathen shows that the velocity of the water at a given point is not constant. It varies between limits more or less wide. When the apraratus is nearly in its right position, the set serew at g is mado to elamp the torsion spring. Then the needle is fixed, and tho apparatis enrying the grmbuated nirclo osoillates. It is not then diffeult to note the mean ande marketl by the needle.

Let r be the ralus of the lorsion rod, lits length from the needle nuer of to r, ant a the olserveri toruman angle. 'Ihen the moment of the couple due to the mulceular funces in the torsion rod is

$$
\mathrm{A}=\mathrm{E}_{1} 1 \frac{a}{l} ;
$$

where \mathbf{E}_{1} is the modulus of elasticity for torsion, and I the polar moment of inertia of the section of the rod. If the rod is of circular section, $I=\frac{1}{5} r^{4}$. Let R be the redius of the disk, and b its leterage, or the distance of its centre from the axis of the torsion rod. The moment of the pressure of the water on the disk is

$$
\mathrm{F} b=k \cdot \frac{\mathrm{G}}{2 g} \pi \mathrm{R}^{2} v^{2}
$$

Where \mathbf{G} is the heariness of water und k an experimental coefficient. Then

$$
E_{1} \mathrm{I} \frac{a}{l}=k b \frac{\mathrm{G}}{2 g} \pi \dot{R}^{2} v^{2}
$$

For any given instrureent,

$$
v=c \sqrt{a} ;
$$

Where c is a conetant coefficient for the instrument.
The instrument as constructed -had three disks which could be used st will. Their radii and leveragee wers in feet

	$\mathrm{R}=$	ho
1st disk	0.052	016
2d .,	$0 \cdot 105$	032
3d	0.210	0.68

For a thin circular plate, the coefficient $k=112$. In the actual tustrument the torsion and was a brass wire 0.06 inch diameter and 61 feet long. Suppostug a measured in degrees, we get by calculation

```
v=0.835\sqrt{}{a},0115\sqrt{}{a},0042\sqrt{}{a}
```

for the three disks.
Very careful experiments were made with the instrament. It was fixed to 8 wooden turning bridge, revolving over a circular cbancel of 2 feet width, and about 76 feet circumferential length. Ao allowance was made for the slight current produced in the channel. These experiments gave for the coefficient c, in the formula $v=c \sqrt{a}$,

$$
\begin{aligned}
& \text { lst disk, } \mathrm{e}=0.3126 \text { for velocities of } 3 \text { to } 16 \text { fee }
\end{aligned}
$$

or ralues little different from the values calculated from the torsion. The instrument is preferable to the curreat meter in giving the velocity in terns of a eingle observed quantity, the angle of torsion, while the current meter involve日 the observation of two quantities, the nomber of rotatioas and the time. The current meter, except in some improved forms, must be withdrawn from the water to read the result of esch experiment, sod the law connecting the velocity and number of rotations of a current meter ia less weld-determined than that connectivg the pressure on a disk and the torsion of the wire of a hydrodyoamometer. At very low velocitles the curtent meter fiils altogether.
The Pitot tube, like the hydrodynamometer, docs not requirs a time observation. But, whera the velocity is a varying oae, and consequently the columns of water in the Pitot tobs are oscillating, there is room for doubt'as to whether, at any given moment of clos. ing the coek, the difference of level cxactly measures the impuise of the etream at the moment. The Pitot tubs also fails to give measurable indications of very low velocities.

Pbocesses for Gadoino Strrama.

193. Gauging by Observation of the Maximum Surface Velocity.The method of gaugiog which involves the least tromble is to determins the surface velocity st the thread of the stream, snd to deducs from it the mean velocity of the whole crose eection. The maximum surface velocity may be determined by flosts or by a current meter. Unfortunately, however, the ratio of the maximum anfface to the mean velocity is extremely variable. Thus patting r_{g} for the surface velocity st the thread of the streem. sid vin for the mean velocity
of the whole cross section, $\frac{v_{m}}{v_{0}}$ bas been found to have the lollowing raloes:-

De Prony, experiments on amall wooden channels, Experiments on the Seine,
Destrem and De Prony, experiments on the Neva, Boilean, experimeuts on canals,
Rnumgartner, experiments on the Garenne,
Briaings (mean),
Cunniogham, Sojanl aqueduct.

$$
\begin{aligned}
& \frac{v_{m}}{v_{0}} \\
& 0.8164 \\
& 0.62 \\
& 0.78 \\
& 0.82 \\
& 0.80 \\
& 0.85
\end{aligned}
$$

Varions formule, either erapirical or based on some theory of tho vertical end borizontal velocity curves, have bocn proposed for determining the ratio $\frac{v_{m}}{v_{0}}$. Bazin found from his experimenta the supirical expression
where m is the hydraulic mean deptn and i the stope of the stream. In article 101, it has already beed shown how frcra this furmula the ratio $\frac{v_{m}}{v_{0}} \operatorname{can}$ be obtaned for different kinds of chanoels.

In the case of arrigation cadala end nvera, it is often important to determine the discharge either deily or at other iotervals of time, while the depth aud consequently the mean velocity is. varying. Captain Cunningham, R.E. (Noorkee Prof. Papers, vol. iv. P. 47), has shown that, fer a given part of such a strean, where the bed is regular and of permeneat section, a aimple formuls may be found for the variation of the central aurface velocity with the depth. When once the constants of this tormula have beca determined by measuring the eentral surface velocity and depth, in different conditions of the stream, the surface velocity can bc obtained by simply observing the depth of the stream, and from this the mean velocity and discharge can be calculated Let z bo the depth of the stream, and v_{0} the surface velocity, both measured at the thread of the stream. Then

$$
v_{0}{ }^{8}=c_{2} ;
$$

Where c is a constant wibich for the Soleni aqueduct had the raluse 19 to 2, the depths being 6 to 10 feet, and the relocities $3 \frac{1}{2}$ to $4 \frac{1}{2}$ fect. Without any assumption of a formula, however, the surface velocities, or still better the mead relocities, for different conditions of the stream may be plotted on a diagram io which the abscisse sre depths and the ordinates velocities. The contiouous curve through points so found would then alwaye give the relocity for any ebserved depth of the stream, without the need of making any new toat or current meter observations
131 Mean Velocity determined by obscrving a Scries of Surface Velocitics. -The ratio of the mean velocity to the surface velocity in oac longitudinal section is better ascertained than the ratio of the central surface velocity to the mesn velocity of the whole cross section. Suppose the river divided into s number of compartments by equidistant longitudinal planes, and the surface velocity observed in each compartment. From this the mean velocity in each eunpartment and the discharge can be calculated. The sum of the partial discharges aill be the total discharge of the stresun. Whed wires or ropes can be stretched across the atream, the compartments can be marked out by tags attached to them. Suppose two such ropes stretched across the streain, and floats dropped in above the upper rope. By observing within which compartment the path ot the float lies, snd noting the time of transit between the ropes, the surface velocity in each compartment can be ascertained The mean velocity in each compartment is 085 to 091 of the surface velocity in that compantment. Puttiog k for this ratio, ond v_{1}, v_{2}. for the observed velocities, in compartments of area Ω_{1}, Ω_{2}. then the total discharge is.

$$
\mathrm{Q}=k\left(\Omega_{1} \nu_{1}+\Omega_{\mathrm{z}} \nu_{z}+\right.
$$

If several floats are allowed to pass over each compartment, the mean of all those corresponding to one comportment is to be taked as the surface velocity of that compartment.
This method is very applicable in the case of lerge atreams or rivers too wide to stretch a rope across. The pathe of the flosto are then ascertained in this way. Let feg. 149 represent a portion
of the river, which should be straight and free from obstructions Suppose a base line $A B$ messured parallel to the thread of the stream, and let the mean cross section of the stream bo ascertained either by souading the termiaal cross eections $A E^{\circ}$, BF . or by sounding a ecries of equidistant cross sections. The cross acctions are taken at right angles to the base line. Observers are placed at A and B with theodolites or box sestants. The lloats are dropped in from a bont above AE, nad picked up by snother boat below BF. ${ }^{\text {. }}$ An obscrver with a chronograph or watch notes the time io which each lloat passcs from ΛE to BF The method of procecding is this. The ohserver Λ sets his theodolite in the direction AE ,

Fig. 149. and gives a signal to drop a Boat. B keeps his instrument on the floal as it comes down. At the moment the foat arrives at C in the line $A E$, the observer at A calls out. Belamps hisinstrument and reads of the angle ABC, and the time obscrver begins to note tha time of transit. B now points his instrument in the direction BF , and A kecps the float on the cross wire of his instrument. At the moment the foat arrives at D in the line BF , the observer B calls out, A clamps his instrument and reads off the angle $B A D$, and the time obscrrer notes the time of transit from C to D . Thus all
the data are determined for plotting the path CL of the float and determining its relocity. By droppug in a series of floats, a number of surface velocities caa be determined. When all these have been plotted, the river can be divided ioto convenient compartments. The observations belonging to each compartment are then averaged, and the mean velocity and discharge calculated. It is obvious that, as the surface velocity is greatly altered by wind, experiments of this kind should be made in very calm weather.
The ratio of the surface velocity to the mean velocity in the same vertical can be ascertained from the formulx for the vertical velocity corve already given (§ 101). Exner, in Erblam's Zeiischrift for 1875, has given the following convenient formula. Let v be the mean ond V th ourface velocity in :ny given vertical longitudinal section, the depth of which is h

$$
\frac{v}{\mathrm{~V}}=\frac{I+0.1478 \sqrt{h}}{1+0.2216 \sqrt{h}}
$$

If vertical velocity rods are used instead of common floats, the mean velocity is directly determined for the vertical section in which the rod floats. No formula of reduction is then necessary. The observed velocity has simply to be multiplied by the area of the compertment to which it belongs.
135. Mean Velocily of the Stram from a Scrics of Afid Depth Velocities.-In the gaugings of the Mississippi it was found that the mid depth velocity differed by only a very small quantity from the mean velocity in the vertical section, and it was uninfluenced by wind. If therafore a series of mid depth velocities are determined by double floats or by a current meter, they may be taken to be the mean velocities of the compartments in which they occur, and no formula of reduction is necessary. If floats are used, the method is precisely the same es that described in the last paragraph for sur. face floats. The paths of the double floats are observed and ploted, and the mean taken of those corresponding to each of the compart. meots into which the river is divided. The discharge is the sum of the products of the observed mean mid depth velocities and the areas of the compartments.
136. Boilcau's Process for Gauging Streams. - Let U be the mean velocity at a given section of a stream, V the maximum velocity, or that of the principal filament, which is generally a little below the surface, W and w the greatest end least velocities at the surface. The distance of the principal tilament from the surface is generally less than ono-fyurth of the depth of the stream; W is a little less than V ; and U lics between W and w. As the surface velocities change continuously from the centre towards the sides, there are at the surface two filaments having a velocity equal to U. The determiontion of the position of these filaments, which Boilcau terms the gauging filaments, cannot be effected entirely by theory. But, for sections of a stream in which there are oo abrupt changes of depth, their position can be very approximately assigned. Let Δ aod l be the horizontal distances of the surface filament, having the velocity W, from the gauging filament, which has the velocity U. and from tha bank on oue side. Then

$$
\frac{\Delta}{l}=c \sqrt{\frac{W+2 w}{7(W-u)}}
$$

- being a mumerical constant. Fromgnurings by Humphreys and Abbot, Bazin, and Baumyarten, the values $c=0.919,0.922$, and 0.925 arc obtained. Boilenu adopts as a mean value 0.922 . Honce, if W nnd w are determined by float gauging or otherwise, Δ can be found, and then a single velocity observation at Δ feet from the filament of maximum velocity gives, without aced of any reduction, the mean velocity of the stream. More conveniently W, v, and U can be measured from a horizontal ourface volocity curve, obtained from a series of float observations.

137. Direct Determination of the Mectn Velocity by a Current Meler or Darey Gauge. - The only method of determining the mean velocity at a cross section of a strean which involves no assunption of the ratio of the mean velocity to other quantitics is this-a plank bridge is fixed across the stream near its suiface. From this, velocities are observed at a sufficient number of points in the cross section of the stream, evenly distributed over its area. The mean of theso is the true mean velocity of the stream. In Dacy and Bazin's experiments on small streame, the velocity was thus observed at 36 points in the cross section.

When the stream is too large to fix a bridge across it, the ohservations may be taken fiom a boat, or from a couple of bats with a gangway betweoo them, nuchored successively nt a series of points across the wilth of the stream. The position of the boat for each aorics of olservations is fixed by angular obsorvations to a base lino on shore.
188. Hherlacher's Grophic Method of dicterminieg the Disharge from a Series of Current Metci Observations. - Let A1SC (hg. 150) bo tho cross section of a river at which a complete series of cursent meter observations bave beon taken. Let 1., II., III. . . . be the verticals at difforent point of which the velocitios were mensured. Supposo the depths at 1., 11., III., . . . (fig. 150), set off as vertical ordinates io fig. 151, and on theso vertical ordiates suppose the velocitics
set of horizontally at their proper depths. Thus, if v is the measured velocity at the depth h from the surface in fig. 150, on vertical marked III., then at III. in fig. 151 take $c d-h$ and $a c=0$.

Fig. 150.
Then d is a point in the vertical velocity curve for the vertical III., and, all the velocities for that ordinate being similarly set off, the corve onn be drawn. Suppose all the vertical velocity curves I
V. (fig. 151), thus drawn. On each of these figures draw verticals corresponding to velocities of $x .2 x, 3 x \ldots$ feet per second Then for instance $c d$ at IIl. (f.g. 151) is the depthat which a velocity of $2 x$ feet per second existed on the vertical III. in fig. 150, and if ca is set off at III. in fig. 150 it gives a point in a curve passing through points of the section where the velocity

Fig. 151.
was $2 x$ feet per second. Set off on each of the verticals in fig. 150 oll the depths thus found in the corresponding diagram in fig. 151. Curves drawn through the corresponding points out the verticals are curres of equal velocity.
The discharge of the stream per second may be regarded as a solid having the cross section of the river (fig. 150), as a base, and cross sections normal to the plane of fig. 150 given by the diagrans in fig. 151. The curves of equal velocity may therefore be considered as contonr lines of the solid whose volume is the discharge of the stream per second. Let Ω_{0} be the aree of the cross section of the river, Ω_{1}, $\Omega_{2} \ldots$. the arcas coatained by the successive curves of equal velocity, or, if these cut the sarface of the stream, by the curves and that surfnce. Let x be the difference of velocity for which the ouccessivo curves are drawn, assumed above for sinpliciry at 1 foot per second. Then the volume of the successive laycrs of the solid body whose volune ropresents the discharge, limited by successive planeo passing through the contour curves, will be

$$
\frac{1}{2} x\left(\Omega_{0}+\Omega_{2}\right), \quad \frac{f}{d} x\left(\Omega_{1}+\Omega_{2}\right), \quad \text { and so on.. }
$$

Consequently the discharge is

$$
Q=x\left\{\frac{\Omega_{0}+\Omega_{n}}{2}+\Omega_{1}+\Omega_{2}+\cdots+\Omega_{n-1}\right\}
$$

The arens Ω_{0}, Ω_{1}. . . are easily ascertained by means of the nolar planimeter. A slight difficulty nrises in the part of the solid lyint above the lnst contour curve. This will have generally a height which is not exactly x, and a form more rounded than the other layers and less like a conicnl frustum. The volume of this may ho estimated scparately, and taksn to be the area of its base (the area Ω_{n}) multiphied by ${ }^{n} 10 \frac{1}{3}$ its beight.

Fig. 152 shows tho results of ono of Professor Harlacher's gauginge norked out in this way. The upper figure shows the section of the river and the positions of the verticals at which the soundings and gaugings were taken. The lower gives the curves of equal velocity. worked out from the current meterobservations, by the aid of vertical velocity curves. Tho vertical scele in this figure is ten times ac great as in tho other. The discharge caleulated from the contour curves is 14.1087 cutic metres per second. In tho lower figure some other interesting curves ara drawn. Thus, the uppermost dottal curve is tho curvo through polnts at which the maximum velocuy was found: it shows that the maximum velocity was always a littlo below tha surface, and at a greater depth at the centre than at the sidea. Tho next curve shows the depth at which tho mean velocity for each vertical was found. The next is the curve of equal velocity corresponding to the mena velocity of the streans; that is, it passes through points in tho cross section where tho velocity was identical with the menn volocity of the stream.

XII. IMPACT AND REACTION OF WATER.

When a stream of fuid impinges on a solid surface, it presees on the surface with a force equal and opposito to that by whech the velocity and direction of motion of the thid are changed. Generally, in problems on the impnet of fluids, it is necessary to negleot the effect of firction butween the fluid and tho surface on which it moves.
139. During Inpact the I'locity of the Fluid relatitely to the Souface on which 16 impnges remains unchanged in Magnitude.- $\mathrm{C}=$
sider a mass of thid flowing in contact with a solid surface arso in motion, the motion of buth fuid and sold beng estimated relatively to the earth. Then the motion of the fluid may be resulved into two parts, one a motion equal to that of the solid, ind in the same duree. tion, the otber a motion relatively to the solid. The mution which
the fiund has in eomnon with tho solid cannot at all be inflacnceal by the contact. The relative component of the motion of the fluid can only he altered in direction, but not in magnitude. The fluid moving in contact with the surface ean only have a relative motion parallel to the surface, whilo the pressure between the fluid and

Fig. 152.
solid, if friction is neglected, is normal to the surface. Tha pressure therefore can only deviats the fluid, without altering the magnitude of the relative velocity. The unchanged cominon component and, combined with it, tha deviated pelative component give the resultant final velocity, which may differ greatly in maguitude and direction from the initial velocity.

From the prisciple of momentum the impolse of any mass of fluid reaching the surface in any given time is equal to the change of momentum estimated in the same direction. The pressure between the fluid and surface, in any direction, is equal to the change of momentum in that direction of so much flug as reacbes the surface in one aecond. If P_{a} is the pressure in any direction, om the mass of flud impinging per second, v_{a} tho change of velucity in the direction of P_{a} due to impact, thed

$$
P_{a}=m v_{a}
$$

If τ_{1} (fig. 153) is the velocity and direction of motion before $1 m$ pact, r_{2} that after impact, then r is the total change of motion due to impact. The resultant pressure of the fluid on the surface is in the direction of v, and is equal to v multiplied by tho mass im. pinging per second. That is, putting P for the resultant pressure,

$$
\mathbf{P}=m v .
$$

Let P be resolved into two components.

Fig. 153.
 N and T, normal and tangential to the direction of motion of the solid on which the fluid impinges. Then \mathbb{N} is a lateral force producing a pressure on the supports of the solid, I is an effort which does work on the solid. If u is the velocity of the solid. T u is the work done per second by the fluid in moving the solid surface.
let Q bs the volume, and GQ the weight of the fluid impheging fer second, and let v_{1} be the initial velocity of the fluid before striking the surface. Then $\frac{\mathrm{G}}{2} \frac{\mathrm{Q}}{\boldsymbol{g}}{ }_{1}^{2}$ is the original kinctic cucrgy of Q cubic fect of fluid, and the efficiency of the stream considered as an arrangement for moving the solid surface as

$$
\eta=\frac{\mathrm{T} u}{\frac{\mathbf{G}}{g} Q v_{i}^{2}}
$$

140. Jcl deviater entirely in one Direction-Gcomatrical Solution
(fig. 154). - Suppose a jet of water impinges on s surface ac with a velocity $a b$, and let it be wholly deviated in planes paraliel to tha

Fig. 154.
figure. Also let ae he the velocity and direction of motion of tho surface. Join $c b$; then the water moves with respect to the sur:
face in the darecton and with the velocity $c b$. As this relative velocity is ualtered by contact with the surface, take $c d=c b$, then $c d$ is the relative motion of the water with respect to the surface at c. Take $d f$ equal and parallel to $a c$. Then $f c$ (ohtained by compounding the relative motion of water to surface and common velocity of water and surface) is the ausnlute velocity and direction of the water leaving the surface. Take ag equal and paralle! to $f c$. Then, since $a b$ is the initial and ag the final velocity and direction of motion, $g b$ is the total change of motion of the water. The ressultant pressure on the plane is in the direction $g b$. Join cg. In the triangle gac, ac is equal and parallel to $d f$, and ag to $f c$. Hence eg is equal and mallel to $c d$. But $c d=c b=$ relative motion of water and surface. Hence the change of motion of the water is represented in magnitude and direction by the third side of an isosceles triangle, of which the other sides are equal to the relative velocity of the water and surface, and parallel to the initial and final direc. thons of relative motion

Special Ciases

141 (1) A Sct impinges on a planc surface at rest, in a direction normal to the plane (fig 155), -Let a jet whose section is a Impinge with a relocity v un a plane surface at rest, in a directio normal to the plane. The particles approach the plane, are gradually deviated, and finally fow away parallel to the plane, having then no velocaty in the origiaal direction of tho jot The quantity of water ampinging per second is av. The pressure on the plane, which is equal to the change of momentum per second, is $\frac{\mathrm{G}}{g} \omega v^{2}$
(2) If the plane is moviny in the dirce. tion of the jot with the velocity $\pm \mathrm{u}$, the quantity impanging per secoud is a(v干u). The momentum of this quantity before impact is $\frac{G}{g} \omega(v \mp u) v$. After impact, the water still possesses the velority ± 16 in the direction of the jet; and the momentum, iu that direction, of so much water
 es impinges in one second, after impact, is $\pm \frac{\mathrm{G}}{g} \omega(v \mp u) u$. The pressure on the plane, which is the change of momentum per second, is the differeace of these quantities or $\frac{G}{g} \omega(v \mp u)^{2}$. Thi differs from the expression obtained in the previous case, in that the relative velocity of the water and plano $v \mp u$ is substituted for v. The expression may be written $\mathrm{P}=2 \times \mathrm{G} \times \omega\left(\frac{v \mp \neq}{2 q}\right)^{2}$, where the last term is the volume of a prism of water whose section is the arca of the jet and whose leagth is the head due to the relative velocity. The pressure on the plave is twice the weight of that prisin of watcr. The work done on the plane in this case is $\mathrm{P} u=\frac{\mathrm{G}}{g} \omega(v \mp u)^{2}$ foot-pounds per second. There Issue from the jet ωv cubic feet per sccond, and the energy of this quantity before inpact is $\frac{\mathrm{G}}{2 \eta} \omega v^{3} \quad$ The efficicocy of the jet is thercfore $\eta-2 \frac{(v \mp u)^{2}}{q^{3}} u$. Tho value of u which makes this a maximum is found by differentiating and equating tho differential coufficient to zero:-

$$
\begin{gathered}
\frac{d \eta}{d u}=2\left(\frac{v^{2} \mp 4 v u+3 u^{2}}{v^{3}}\right)=0 ; \\
u=v \text { or } \frac{d}{} v .
\end{gathered}
$$

The former gives a minimum, the latter a maximum efficiency
Putting $u \circ \frac{\xi v}{}$ in the expression above.
η mex. $=$ ' ${ }^{9}$
(3) If, instead of ono plane moving before the jet, a acrics of planes are introduced at short intervals at the same point, tho quantity of water impinging on the scrics will be ωv instead of $\omega(v-u)$, and tho wholo pressure $=\frac{G}{g} \operatorname{\omega v}(v-u)$. The work done is $\frac{G}{g} \omega v u(v-u)$. Tho afficieacy $\eta=\frac{\mathbf{G}}{g}$ wut $(v-u) \div \frac{\mathbf{G}}{2 g} \omega v^{3}=2 u\left(\frac{v-u}{v^{2}}\right)$. This becomes a maximum for $\frac{d \eta}{d u}-2(v-2 u)-0$, or $u=\frac{1}{d v}$. This result is often used as an approximate oxpression for tho velecity of greatest efficiency when a jot of water atrikes the floats of a water whecl. The work wasted in this case is half the wholo energy of the jot when tho Roats iun at the best sperd.
112. (1) Case of a Conave Cup V"ane, velocity of water v, velocity of ranu in the same direction u (lig. 156).

If the cuo is hemispherical, tho water leavea the cud in a direction
parallel to the jet. Its relative velocity $i s v-u$ when approachlng the cup, and $-(v-u)$ when leaving it. Hence its absolute velocit! when leaving the cup is $u-(v-u)=2 u-v$. The change of momentum per second $=\frac{\mathrm{G}}{g} \omega(v-u) v-\frac{\mathrm{G}}{g} \omega(v-u)(2 u-v)=2 \frac{\mathrm{G}}{g} \omega(v-u)^{2}$. Comparing this with case 2, it is seea that the pressure on a bemispherical cup is donble thaton a that plane. The work done on the cup $=2 \frac{\mathrm{G}}{g} \omega$
foot-pounds per second The efliciency of the jet is greatest when $v=2 u$. in that case the efficiency $=\frac{1}{2}$ if

If a serics of cup ranes

Fig. 156.
are introduced in front of the jet, so that the quantity of water acted upon is wv ustead of $\omega(v-u)$, then the whole pressure ou the chain of cups is $\frac{\mathrm{G}}{g} \omega v^{2}-\frac{\mathrm{G}}{g} \omega v(2 u-v)=2 \frac{\mathrm{G}}{g} \omega v(v-\imath c)$. In this caso the efficiency is greatest when $v=2 u$, and the maximum efficiency is unity, or all the energy of the water is expended an the cups.
143. (5) Case of a Flat Vane oblique to the Jct (fig. I57). -This case presents some difficulty. The water spreading on the plane in all directions from the point of inpact, difierent particles leave the plade with different absolute velocities. Let $A B=v=$ velocity of water, $\mathrm{AC}=u=$ velocity of plane Then, completing the parallelogram, AD represents in magnitude and direction the relative velocity of water and plane. Draw AE normal to the plane and DE parallel to

Fig. 157.
the plane. Then tho relative velocity ΛD may be regarded as consisting of two components, one AE normal, the other DE parallel to the plane On the assumption that friction is insensible, DE is unaffected by impact, but AE is destroyed. Hence AE represents the entuo change of velocity due to impact and the direction of that change. The pressure on the plane is in the direction $A E$, and its amount is $=$ mass of water impinging per secood $\times \mathrm{AE}$.

Let $\mathrm{DAE}=\theta$, and let $\mathrm{AD}=v_{r}$. Then $\mathrm{AE}=v_{r} \cos \theta ; \mathrm{DE}=v_{r} \sin \theta$. If Q is the volume of water impinging on the plane per scoud, the change of momentum is $\frac{\mathrm{G}}{g} \mathrm{Q} v . \cos \theta$. Let $\Lambda \mathrm{C}=u=$ velocity of tho plane, and let $A C$ make the anglo $\mathrm{CAE}=\delta$ with the normal to the plane. The velocity of the plane in the direction $A E=$ $u \cos \delta$ The work of the jet on the plane $=\frac{G}{g} Q v_{r} \cos \theta u \cos \delta$. The same prollem may bo thus treatod nigebraically (fig. 158). Lot BAFoa, and CAF=ס. The velocity v of the water.may bedecom.

Fig. 158.
posed into $\mathrm{AF}-v \cos$ a normal to tho plane, and $\mathrm{F} \beta=v$ oin a parallel to the plane. Similarly the velocity of the plane $=u=A C=\mathrm{BD}$ cad be decomposed into $1 \mathrm{G}-\mathrm{FE}=\imath \cos \delta$ normal to the plane, and $\mathrm{DG}=$ u sin δ parnllel to the plane. As friction is neglected, the velocity of the water parallel to the plane is unaffected by tho impaet, but its component v cos a normal to the plane becomes after impact the samo as that of the plane, that Is, $u \cos \delta$. Ilenco the chango of velocity during impat $-\Lambda E=v \cos a-u \cos \delta$, Tho cliange of momentum per second, and consequently the wormal pressure on the plano is $\mathrm{N}=\frac{\mathrm{G}}{\mathrm{Q}}(v \cos a-u \cos \delta)$. The pressure in the
direction in which the flane is moving is $\mathrm{P}=\mathrm{N} \cos \delta=$ $\frac{G}{g} Q(u \cos a-u \cos \delta) \cos \delta$, and the work done on the plane is $P u=\frac{G}{9} \mathbf{Q}(v \cos a-u \cos \delta)$ $u \cos \delta$, which is the same expression as befure, since $\mathrm{AE}=0$, $\cos \theta=$ $v \cos a-u \operatorname{cog} \delta$.
lu one second the plane moves so that the point A (6g. 159) cumes to C , or from the position shown in full lines to the posithon shown in dotted lines. If tho plane remained stationary: a length $\mathrm{AB}=v$ of the jet would impinge

Fig. 159. on the plane, but, since the planc moves in the same ditection as the jet, only the length $H B=A B-A l l$ impinges on the plane.

- But $\mathrm{AH}=\mathrm{AC} \frac{\cos \delta}{\cos \alpha}=u \frac{\cos \delta}{\cos \alpha}$, and therefore $11 \mathrm{~B}=v-u \frac{\cos \delta}{\cos a}$. Let $\omega=$ sectional arca of jet; volume impinging on plane per second $=Q=\omega\left(v-u \frac{\cos \delta}{\cos a}\right)=\omega \frac{v \cos a-z \cos \delta}{\cdot \cos a}$. Inserting this io the f-ulde abore, we get

$$
\begin{align*}
& \mathrm{N}=\frac{\mathrm{G}}{g} \frac{\omega}{\cos a}(v \cos a-u \cos \delta)^{2} . \tag{1}\\
& \mathrm{P}=\frac{\mathrm{G}}{g} \frac{\omega \cos \delta}{\cos \alpha}(v \cos a-u \cos \delta)^{9} . \tag{2}\\
& \mathrm{P} u=\frac{\mathrm{G}}{g} \omega u \frac{\cos \delta}{\cos \alpha}(v \cos 2-u \cos \delta)^{2} . \tag{3}
\end{align*}
$$

Three cases may be distinguished :-
(a) The plane is at rest. Then $u=0, N=\frac{t f}{g} \omega v^{2} \cos a$; and the work dane on the plane and the efficicucy of the jet are zero.
(b) The plane moves parallel to the jct. Then $\delta=a$, and $P_{16}=\frac{\mathrm{G}}{g} \omega u \cos ^{2} a(v-u)^{2}$, which is a maximum when $u=\xi v$. When $u=\frac{3}{} v$ then $\mathrm{P} u$ max. $-{ }_{i}^{17} \frac{\mathrm{G}^{-}}{g} \omega v^{3}$ cos ${ }^{2} \mathrm{a}$, and the efficiency - $n-\frac{1}{5} \cos ^{2} \alpha$.
(c) The plane moves perpendicularly to the jet. Then $\delta=90^{\circ}-2$; $\cos \delta-\sin a$; and $\Gamma u=\frac{0}{g} \operatorname{ar} u \frac{\sin a}{\cos a}(v \cos a-v \sin a)^{2}$. This is a maxinum when $u=\frac{f}{} v \cos a$.
When $u-\frac{30}{} 0 \cos a$, the noaximum work and the efficledcy are the sanc as in the last case.
144. Best Form of Vone to reccive Waler. - When mater impinges normally or obliquely on a plana, it ia scattored in all directions after impact, add the work carried away by the water is then generally lost, from the impossibility of desling afterwards with streams of water deviated in so many directions. By suitably forming tho vane, however, the water may be entirely deviated in nnc lifection, and the loss of energy from agitatioo of the water is entirely avoided.

Let $A B$ (fig. 160) be a vane, on which a jet of water impinges at The point A and in tho direction AC. Tako $A C=v=$ velocity of wnter, and let AD represent in magnitude and direction the velo. city of the vanc. Completing the prallelogran, DC or AE rejre-

Fig. 160
sents tho direction in which the water is moving relatively to the vane. If the lip of the vane at A is tangential to AE , the water will not bave its difection anddenly changed when it inpinges on the vana, ond will therefore have no tendency to apread laterally. Un the contrary it will be so grodually deviated that it will nlide
of the rane in tine direction $A B$. This is sometimes expressed or: saying that the vane reccircs the prater wilhoul shoch.
145. Floals of Poncelel Water Wheels. Let AC (fig. 161) reprsent the direction of a thin borizontal stream of water laving th-

vclocity.v. Let $A B$ be a curved foat moving horizontally with yeloeity uc. The relative motion of water and float is then initially hoizontal, and equal to $v-2 c$.

In order that the foat may reccive the water without shock, it is necessary and sufficient that the lip of the float at A should be taogential to the dirction AC of relative motion. At the end of $\frac{v-u}{g}$ seconds the float moring with the velocity u comes in tho position $A_{4} B_{1}$, and during this time a particle of water received at A and gliding up the float with the relative velocity $v-w$, attains a height $\mathrm{DE}=\frac{(v-u)^{2}}{2 g}$. At E the water comes to relative rest. It then deseends olong the float, and when after $\frac{2(v-u)}{g}$ secoods the float has come to $A_{3} B_{2}$ the water will again lave reached the lip ot A_{2} add will quit it tangentially, that is, in the dircetion CA_{2}, with a relative velocity $-(v-u)=-\sqrt{2 g \mathrm{VE}} \mathrm{required}$ under the influence of gravity. Tlie absolute velocity of the water leaving the foat is therefore $u-(v-u)=2 u-v$. If $u=\frac{1}{2} v$, the water will drop off the bucket deprived of all energy of motion. The whole of the work of the jet must therefore have been expended in driviug the float. The water will have been received without slinck and discharged without velocity. This is the principle of the Poncelct wheel, bat in that case the thats move over an arc of a large circle; the strean of mater has considerable thickness (about 8 inehcs); in order to get the water into and out of the whecl, it is then necessary that the lip of the float should make a small angle (about 15°). with the direction of its motion. The water quits the wheel with a little of its energy of motion remaining.
146. Pressure on a Curved Surface when the Water is deviated wholly in one Direction. - When a jet of water impinges on a curved surface in such a direction that it is reccived without shock, the ;ressure on the surface is due to its gradual deviation from its frrst. dirnation. On any portion of the area the pressure is equal and oplosite to the force required to cause the deviation of so much water as rests on that surface In commod langunge, it is equal to the centrifingal force of that quantity of water.
Case 1. Surfice Cylindrical and Stotionary.-Let AB (fig. 162) be the surface, laving its axis at 0 and its radius - r. Let tha witer impinge at A tangentially, and quit tho surface t.angentinlly. at B. Since the surface is at rest, v is both the absolute velocity of the water and the velocity relatively to the surface, and this remsins unchanged during contact with the surface, because the deviating force is at each poiot perpendicular to the direction of motion. The water is deviated through anangle $\operatorname{ECD}=A O B=\phi$. Each paiticle of water of weight p cxerts radially a centrifugal furce $\frac{p v^{2}}{r g}$ Let the thiekness of

Fig. 162.
the stream $-t$ fect. Then the weight of water resting on unit of surfice $-G \ell t i t$ ond the normal pressure per unit of surface $\Rightarrow n=\frac{\mathrm{G} \ell}{g} \cdot \frac{v^{2}}{r}$. Tho resulant of tho radial pressures uniformly distributed from A to B will bo a forco neting in the direction $O C$ bisecting AOB, and its maguitude will c'lual that of a force of intensity $=n$, acting on the projection of $A B$ on a plana perpendicular to the direction $O \mathrm{C}^{\prime}$. The length of the cbord $a B=2 r \sin \frac{\phi}{2} ; \ln b=$ lireadth of the surface pelpendicular to the 1lane of the figure. The resultant pressure on surface

$$
-\mathrm{R}=2 r b \sin \frac{\phi}{2} \times \frac{\mathrm{G} t}{g} \cdot \frac{x^{2}}{r}=2 \frac{G}{g} l t z^{2} \sin \frac{\phi}{2}
$$

which ia independent of tho mdius of curvatura it may be ins ferrad that the.resultant pressuro is the same for any curred suro
lace of the same projected area, which deviates the water through the same angle.
Case 2. Cylindrical Sutface moving in the Direction AC wuth Velo. sity u - The relative velocity $=v-u$. The final velocity BF (fig. 163) is found by combining the relative velocity $B D=0-u$

Fig. 163.
tangeutial to the surface with the velocity $\mathrm{BE}=u$ of the surface. The intensity of normal pressure, as in the last case, is $\frac{\mathrm{G} \ell}{q} \frac{(v}{\left.-\frac{u}{r}\right)^{3}}$.
The resultant normal pressure $\mathrm{R}-2 \frac{\mathrm{G}}{g} b l(v-u)^{2} \sin \frac{\phi}{2}$. This resultant pressnre may be resolved into two comiponeats P and L , one paraliel and the other perpendicular to the direction of the vane's motion. The former is an effort doing work on the vane. The latter is a lateral forec which dees no work.

$$
\begin{gathered}
P=R \sin \frac{\phi}{2}=\frac{G}{g} b t(v-u)^{2}(1-\cos \phi) ; \\
L=R \cos \frac{\phi}{2}=\frac{G}{g} b u(v-u)^{2} \sin \phi .
\end{gathered}
$$

The wort done by the jet on the vane is $\mathrm{P} u=\frac{\mathrm{G}}{g} b t u(v-u)^{2}(1-\cos \phi)$, which is a maximum when $u=\frac{1}{2} v$. This result ean also bo obtained by considering that the work done on the plane must be equal to the eaergy lost by the water, when friction is neglected.

If $\phi=180^{\circ}, \cos \phi=-1,1-\cos \phi=2$; then $P=2 \frac{G}{n} b\left((x-u)^{2}\right.$. the same result as for a coacave cup.
147. Position which a Movable Plane takcs in Flowing Waler.When a rectangular plaac, movable about an axis parallel to one of its sides, is placed in nn indcfinite enrrent of fluid, it takes a position such that the resultant of the normal pressnres on the two sides of the axis passes through the axis. If, therefore, planes pivoted so that the ratio $\frac{a}{b}$ (fig. 164) is varied are placed in water, and the gngle they
 make with the direction of
the strearo is observed, the position of the resultant of the pressures on the plane is determined for different angular positions. Experiments of this kind have been mate by llerr llagen. Some of his results are given in the following table :-

	Larger Plane.	Smaller Plane.
$\frac{a}{b}-1.0$	$\phi-\ldots$	$\phi=90^{\circ}$
0.9	75°	729°
0.8	60°	67°
0.7	48°	43°
0.6	25°	29°
0.5	13°	13°
0.4	8°	61°
0.3	61°	\ldots
0.2	4°	\cdots

148. Effect of Firiction during Impulse. -Thus far the cffect of the friction between tho water and the surface which deviates it has been neglected. Nothing precise is known of its mode of action, mal the following investigation is in part conjectural (lankine, Stcon E'ngine, p. 171, § 146).
Let it be assnmed that the friction canses a loss of energy per aecomi profortioal to tho height due to the velocity of the water relatively to the aurface; that is, the heal duo to the relative velocity being $\frac{v^{2}}{2 q^{2}}$, the less of hoad dae to friction will be $f \frac{v^{2}}{2 g}$; the
whole energy due to the relative bead being $G Q \frac{v}{2 g}$, the loss of energy due to friction will be GQ $f \frac{v^{3}}{2 g}$.

Cylindrical Surface with Water dcviated wholly in one Dircetion, Friction taken into accourt.-In Case 2, discussed in $\$ 146$, the velocity of the water relatively to the aurface is $v-u$. The quantity of water impinging per second is $\delta \ell(v-u)$. The loss of head due to friction is $f \frac{(v-u)^{2}}{2 g}$. The loss of energy due to frietion is Gbef $\frac{(v-u)^{3}}{2 g}$. The energy exerted on the surface, after deducting the loss due to friction, is

$$
\begin{aligned}
P u & =\frac{G}{g} b t(v-u)^{2} u(1-\cos \phi)-G b t f \frac{(v-u)^{3}}{2 g} \\
& =\frac{G}{g} b t(v-u)^{2}\left\{u(1-\cos \phi)-f \frac{v-u}{2}\right\}
\end{aligned}
$$

The cfficiency when friction is taken into account bccomes

$$
\eta=\frac{\mathrm{P}_{u}}{\mathrm{G} b t(v-u) \frac{r^{2}}{2 g}}=\frac{(v-u)\{2 u(1-\cos \phi)-f(v-u)\}}{v^{2}}
$$

and this becomes a maximum if

$$
u=\frac{1-\cos \phi+f}{2-2 \cos \phi+f} \vartheta
$$

being greater than the speed when friction is neglected in the ratio

$$
2(1-\cos \phi)+f: 3(1-\cos \phi+f) .
$$

Suppose that the spced of greatest efficiency u has been found hy experiment ;

$$
f=\frac{(2 u-v)(1-\cos \phi)}{v-u}
$$

149. Direct Action distinguished from Reaction (Rankine, Steam Engine, § 147).
The pressure which a jet exerts on a vane can be distinguished into two parts, viz :-
(1) The pressure arising from changing the direct component of the velocity of the water into the velocity of the vane. In fig. $154, \S 140, a b \cos b a c$ is the direct conponent of the water's velocity, or component in the direction of motion of vane. This is changed into the velocity ae of the vane. The pressure due to direct impulse is then

$$
\text { - } P_{1}=G Q \frac{a b \cos b a e-a e}{g}
$$

For a flat vane moving normally, this direct action is the only action producing pressure on the vane.
(2) The term reaction is applied to the additional action due to the dircetion and velocity with which the water glances off the vane. It is this which is diminished by the friction between the water and the vaue. In Case $2, \S 146$, the direct pressure is

That due to reaction is

$$
\mathrm{P}_{1}-\mathrm{G} b t \frac{(v-u)^{2}}{g}
$$

$$
\mathrm{P}_{\mathrm{g}}=-\mathrm{G} b \frac{(v-u)^{\mathrm{s}}}{g} \cos \varphi
$$

If $\phi<90^{\circ}$, the direct compenent of the water's motion is not wholly converted into the velocity of the vane, and the whole pressnre due to direct inpulse is not obtained. If $\phi>90^{\circ}, \cos \phi$ is acgative and an additional prossure due to reaction is obtaincd.
150. Reaction of a Jet issuing from a Fessel. - Suppose a vassol filted with water (fig. 165), having an orifice of area a, from which water issues horizuntally with a velo. city $v=\cdot \sqrt{2_{g} h}$. The volume discharged per second, aeglecting con. traction, $=\omega v$. The monentum gencrated per second in a horizontal direction $=\frac{G}{g} \mathcal{L} v^{2}$; and this is cqual to the force producing the change of momentum.
Hence the horizontal force or reaction R, actiry on the side of the vessel, oppesite to the orilice, and equal and

Fig. 165. opprosite to the force producith the momentum, is

$$
\mathrm{F}=\frac{\mathrm{G}}{g} \omega v^{2}=2 \mathrm{G} \omega h ;
$$

this is the weight of a enlmm of water the section of which ts the orea of the orifico, and the height is twice the heall.
If the vessel moves ina direction opposite to that of the jet, with the velocity n, the absolute velocity of the water leaving the vessel is $v-u$. The momentom geueratod per second is $\frac{G}{d} u v(v-u)-\mathbb{R}$.

Jet Propeller.-In the case of vessels propelled by a jet of water (fig. 166), driven sternmards from orifices at the side of the vessel, the wster, originally at reat outside the vessel, is drawn iato the ship and caused to move with the formard velocity V of the ship. Afterwards it is projected sternwards from the jets with a velocity v relatively to the abin, or $v-V$ relstively to the earth. If Ω is the total sectional area of the ;ets,.Ωv is the quantity of water discharged per second. The momentam
 charged per secoad. The momentam Fig. 166. genersted per second in a aternward direction is $\frac{G}{g} n v(v-V)$, and this is equal to the formard acting reaction P which propels the ship.

The energy carried a way by the water

$$
\begin{equation*}
\frac{\mathrm{G}}{\mathrm{~g}} \cdot \Omega(v-\nabla)^{2} . \tag{1}
\end{equation*}
$$

The useful work donc on the ship

$$
\begin{equation*}
P V=\frac{G}{g} \operatorname{si}(v-V) V \tag{2}
\end{equation*}
$$

Adding (1) and (2), we get the whels work expended on the water, neglectiog friction :-

$$
V=\frac{G}{g} \Omega v \frac{v^{2}-V^{3}}{2}
$$

Hence the efficiency of the jet propeller is

$$
\begin{equation*}
\frac{P V}{W}=\frac{2 V}{v+V} \tag{3}
\end{equation*}
$$

This increases towsrds unity as v approsches ∇. Jo other words, the less the velocity of the jets exceeds that of the ship, and therefora tha greater the area of the orifice of discharge, the greater is the efficiency of the propeller.
In tha " Wsterwitch" v was about twice V. Hence in this case the theoretical efficiency of the propeller, friction acglected, was about 3 .
151. Pressure of a Sleady Stream in a Uniform Pipe on a Plane normal to the Direction of Motion.-Let CD (fig. 167) be a plane

Fig. 167.

placed normally to tho stream which, for simplicity, may be sup. posed to flow horizontally. The flid flaments are deviated in Pront of the planc, form a contraction at $A_{1} A_{1}$, and converge again, learing a mass of eddying water behind the plane. Suppose the aection $\Lambda_{0} A_{0}$ taken at a froint where the parallel motion has not begun to be disturbed, and $\Lambda_{2} A_{3}$ where the parallel nestion is reestablinhed. Then, since the same quantity of water with the sane velocity lnsses $A_{0} A_{3} A_{2} A_{2}$ in any given time, the external furces produce so change of thomentura on the mass $A_{0} A_{0} A_{3} A_{2}$, and must tierefora be in equilibrium. If Ω is the section of the stream at $A_{0} A_{0}$ or $A_{2} A_{2}$, and ω the area of the plate CD, the area of the contracted section of the strearn at $A_{1} A_{1}$ will be $c_{e}(\Omega-\omega)$, where c_{s} is the coefficicat of contraction. IFence, if v is the velocity at $A_{0} A_{0}$ or $A_{2} A_{2}$, and i_{1} the velocity at $\Lambda_{1} A_{2}$,

$$
\begin{align*}
& 2 \Omega=c_{c} r_{1}(\Omega-\omega) ; \\
& \therefore \quad r_{1}-r_{c_{c}} \frac{\Omega}{(\Omega-\omega)} \tag{1}
\end{align*}
$$

left $p_{n} p_{1}, p_{2}$ he the pressures at the three sections. Applying Bernouli''s :heorem to the sections $A_{0} A_{0}$ and $A_{1} A_{1}$,

$$
\frac{p_{0}}{\mathrm{G}}+\frac{v^{2}}{2 g}=\frac{p_{1}}{\mathrm{G}}+\frac{v_{1}{ }^{2}}{2 g}
$$

Also, for tho sections $\Lambda_{1} \Lambda_{1}$ and $A_{2} A_{2}$, allowng that the head dac to the relative velocity $x_{1}-v$ is lost in shock:-

$$
\begin{align*}
& \frac{p_{1}}{\mathrm{G}}+\frac{v_{2}}{2 g}-\frac{p_{3}}{\mathrm{G}}+\frac{v^{2}}{2 g}+\frac{\left(v_{1}-v\right)^{2}}{2 g} \\
& \therefore p_{0}-p_{2}=\mathrm{G} \frac{\left(v_{2}-v\right)^{2}}{2 v_{j}} \tag{2}
\end{align*}
$$

r, introducing the value in (1),

$$
\begin{equation*}
-33=\frac{\frac{\pi}{2 g}\left(\frac{\Omega}{c_{6}(\Omega-\omega)}-1\right) v^{2} .}{} \tag{3}
\end{equation*}
$$

Now the cxternal forces 10 tiod direction of motion acting on the mass $\Lambda_{0} \Lambda_{0} A_{2} A_{9}$ are the pressurea $p_{0} n_{1}-p_{2}$ ni at the ends, and the reaction -R of the pladoon the water, which is equal and ofpesite to the pressure of the water on the plane. As these arc in equilibrium,

$$
\begin{align*}
& \quad\left(p_{0}-p_{3}\right) \Omega-R=0 ; \\
& \therefore \quad R=G \Omega\left(\frac{\Omega}{c_{c}(\Omega-\omega)}-1\right)^{2} \frac{2^{2}}{2 g} \tag{4}
\end{align*}
$$

an expression like that for the pressure of an isolated jet on an indefinitely extended plane, with the addition of the term in brackets, which depends only on the arcas of the stream and the plsac. For a given plane, the expression in brackets diminishes as Ω iocreases. If $\frac{\Omega}{\omega}=\rho$, the equation (4) becomes

$$
\begin{equation*}
\mathrm{R}=\mathrm{G} \omega \frac{v^{2}}{2 g}\left\{\rho\left(\frac{\rho}{c_{c}(\rho-1)}-1\right)^{2}\right\} \tag{4a}
\end{equation*}
$$

which is of the form

$$
\mathrm{R}=\mathrm{G} \omega \frac{v^{2}}{2 g} \times \mathrm{K}
$$

Where E depends only on the ratio of the sections of the stream and plane.

For example, let $c_{e}=0.85$, a value which is probshle, if we sllow that the sides of the pipeact as internal borders to an orifice. Then

$\mathrm{B}=\rho\left(1 \cdot 176 \frac{\rho}{-1}-1\right)^{2}$	
$\rho=$	$\mathrm{K}=$
1	0
2	3.66
3	1.75
4	1.29
5	1.10
10	.94
50	2.00
100	3.50

Thie assumption that the cocfficient of eontraction c_{e} is constant for diferent values of ρ is probably only true when ρ is not very large. Further, the iocrease of K for large values of p is contrary to
experience, and hence it may be inferred that the assumption that experience, and hence it may be iuferred that the assumption that all the filaments have a common velocity r^{\prime}, at the section $A_{i} \Lambda_{1}$ nul a common velocity v at the section $\Lambda_{2} \Lambda_{0}$ is not true when the strerm is very much larger than the plaac. Hence, in the expressiou

$$
\mathrm{R}=\mathrm{K} \mathrm{G} \omega \frac{v^{2}}{2 g}
$$

K must be determiund by experiment in cach special case.
152. Prcssure on ar Cylindrical Body of a Length about three lincs its Diametor. - A contraction of the stream is formed at $A_{1} A_{1}$,

Fig. les.
(fig. 1GS). Let the same notation be used, the subscript figures iodicating the section to which the quantities beloug.
For scctioas $A_{0} A_{0}, A_{1} A_{1}$,

$$
\frac{p_{0}}{\mathrm{G}}+\frac{v^{2}}{2 \prime}=\frac{p_{1}}{\mathrm{G}}+\frac{v_{1}{ }^{\eta}}{2 y} ;
$$

for sectiens $\Lambda_{1} A_{1}$ and $A_{2} \Lambda_{2}$, allowing for the abrupt colargement of the stream,

$$
\frac{p_{1}}{\mathrm{G}}+\frac{r_{1}^{2}}{2 g}=\frac{r_{2}}{\mathrm{G}}+\frac{r_{1}^{2}}{2 g}+\frac{\left(r_{1}-r_{2}\right)^{2}}{2 g} ;
$$

and for sections $A_{2} A_{2}, \Lambda_{3} A_{3}$, allowing for thather abrupt enlargement,

$$
\frac{p_{2}}{\mathrm{v}_{\mathbf{2}}}+\frac{v_{2}^{2}}{29}=\frac{r_{3}}{\mathbf{G}}+\frac{v^{2}}{2!}+\frac{\left(r_{2}-r\right)^{2}}{2 g} .
$$

Adding the three equations,

$$
r_{0}-r_{3}=c\left\{\frac{\left(r_{1}-r_{1}\right)^{2}}{2 g}+\frac{\left(r_{3}-v\right)^{2}}{2 n}\right\} .
$$

From the principle of momentum,

$$
\begin{gathered}
\left(r_{0}-r_{3}\right) \Omega-\Omega=0 ; \\
R=\operatorname{Cos}\left\{\frac{\left(r_{1}-r_{0}\right)^{2}}{\eta_{1}}+\frac{\left(r_{2}-r^{2}\right)^{2}}{2_{r}}\right\}
\end{gathered}
$$

Putting a for the section of the body, c_{c} for the coefficient of contraction, $c_{c}(\Omega-\omega)$ for the area of the stream at $A_{1} A_{1}$,

$$
v_{1}=v \frac{\Omega}{c_{6}(\Omega-\omega)} ; v_{2}=v \frac{\Omega}{\Omega}-\omega
$$

or, putiug $\rho=\underline{\|}$,

$$
v_{1}=v-\frac{\rho}{c_{c}}\left(\frac{\rho-1)}{}, v_{2}=v \frac{\rho}{\rho-1} .\right.
$$

Then

$$
R=K, G \omega \frac{v^{2}}{2 g},
$$

whers

$$
\mathrm{K}_{1}=\rho\left\{\left(\frac{\rho}{0-1}\right)^{2}\left(\frac{1}{c_{0}}-1\right)^{2}+\left(\frac{\rho}{\rho-1}-1\right)^{2}\right\}
$$

Taking $c_{c}=0.35$ aod $\rho=4, \mathrm{~K}_{1}=0.467$, a value less than berors. Hence there is less prossure on the cylinder than on the thin plane.
153. Distribution ff Pressure on a Surfoce on whech a Jet impinges nomally. - The principle of momentum gives readily enough the tatal or resultant pressure of a jet impinging on a plane surface, but in some cases it is useful to know the distribution of the pressore. The problem io the case in which the plane is struck normally, and the jet apreads in all directions, is one of great complexity, but even in that case the maximum intensity of the prossure is easily assigned. Each layer of water tlewing from an orifice is gradually deviated (fig. 169) by centact with the surface, and during deviation exércises a centrifugal pressure towards the axis of the jet. The force exerted by each small mass of water is nermal to its path, and inversely as the radius of curvature of the path. Hence the greatest pressure on the plane must be at the sxis of the jet, and the pressure must de-
 crase from the axis outwards, in some such way as is shown by the curve of pressure in fig. 170, the brunches of the curve being prohably asymptetic to the plane.

For simplicity suppose the jet is a vertical one. Let h_{1} be tha depth of the orifice irum the free surface, and v_{1} the velocity of dis-

Fig. 170.
chargo. Then, if ω is the area of the orifice, the quantity of water impinging on the plane is obvieusly

$$
Q=\omega v_{1}=\omega \sqrt{2 g h_{1}},
$$

that $1 s_{1}$ supposing the orifice rounded, and neglecting the coeflicient of discharge.
-I'le velocity with which the fluid reaches the phane is, however, greater than this, and ruay reacla the value

$$
v=\sqrt{2 g h}
$$

where h is the depth of the plane below the free surface. Tho evternal layers of fluid subjected thoughout, after leaving thu orifice, to the atmospheric pressure will attain the velocity $\%$, and will llow away with this velocity unchanged except by friction. The layers towards the interior of the jet, being subjected to e pressure greater than atmospheric fressure, will ottain a less valocity, and so much less as they are nearer the centre of the jet. liut hep piressure can io ne case exced the pressure $\frac{v^{8}}{2 g}$ or h eleasured in fect of water, or the directiea of metion of the water rould to
reversed, and there would be reflux. Hence the maximum intensity of the pressure of the jet on the plaue is h feet of water. If the pressure curve is drawn with pressurcs represented by feet of water it will touch the free water surface at the ceritre of the jet.
Suppose the pressure curve rotated so as to form a solid of revelu. tion. The weight of water contained in that solid is the total pressure of the jet on the surface, which has slready been determined. Let $V=$ volume of this solid, then $G V$ is its weiglit in pounds. Consequently

$$
\begin{aligned}
\mathrm{GV} & =\frac{\mathrm{G}}{9} \omega v_{1} v ; \\
\mathrm{V} & =2 \omega \sqrt{k h_{1}}
\end{aligned}
$$

We have already, thercfore, two conditions to be satisfied by the pressure curve.
Sume very interesting experiments on the distribution of pressure on a surface struck by a jet have been made hy Mr J. S. Beresford (Prof. Papers on Indian E.rginecring, No. cccaxii.), with a view to afford imformation as to the forces acting on the aprons of weirs Cylindrical jets $\frac{1}{2}$ inch to 2 inches diameter, issuing from a vessel in which the water level was constant, were allowed to fall vertically on a brass plate 9 inches in diameter. A small bole in the brass plate communicated by a dexible tube with a vertical pressure column. Arrangenents -were made by which this aperture could be moved $\frac{3}{20}$ inch at a time across the area struck by the jet. The height of the pressure column, for each position of the aperture, gave the pressure at that point of the area struck by the jet. When the aperture was exactly in the axis of the jet, the pressure column was very nearly level with the free surface in the reservoir supplying the jet; that is, the pressure was rery ocarly $\frac{v^{2}}{2 g} \quad$ As the apcrture moved away from the axis of the jet, the pressure diminished, and it became insensibly small at a distance from the axis of the jet about equal to the diameter of the jet. Hence, roughly, the pressure due to the jet extends over an area ahout four times the area of section of the jet.
Fig 171 shows the pressure curves obtained in three experimenta with three jets of the sizesshown, and with the frec surface level in the reservoir at the heights marked.

As the general form of the pressure curve has been alresds indicated, it may bo sssunced thut its equation is of the form

$$
\begin{equation*}
y=a b^{-x^{2}} \tag{I}
\end{equation*}
$$

But it has already heen sliown that for $x=0, y=h$, hericea $a=A$

To determine the remaioing constant, the other condition may be used, that the eolid formed by rotating the pressure curve represents the total pressure on the plano. The volume of the solid is

$$
\begin{gathered}
\mathrm{V}=\int_{0}^{\infty} 2 \pi x y d x \\
-2 \pi h \int_{0}^{\infty} b^{-x^{2}} x d x \\
=\frac{\pi h}{\ln \cdot b}\left[-b^{-x^{2}}\right]_{0}^{\infty} \\
=\frac{\pi h}{\log _{b} b} .
\end{gathered}
$$

Using the condition already atated,

$$
\begin{align*}
& 2 \omega \sqrt{h h_{1}}=\frac{\pi h}{\log _{e} v} \\
& \log _{c} b=\frac{\pi}{2 \omega} \sqrt{\frac{h}{h_{1}}} \tag{2}
\end{align*}
$$

Putting the value of b in (2) in aq. (1), and also r for the radius of tha jat at the oritice, so that $\Delta=\pi r^{2}$, the equation to the pressure curve is

$$
y=h \epsilon^{-\frac{1}{2}} \sqrt{\frac{\hbar}{h_{1}},} \frac{x}{2}
$$

154. Resistance of a Plane moving through a Fluid, or Prcssure of a Current on a Plane. - When a thin plate noves through the air, or through en indafinitely large mass of atill water, in a direction normal to its eurface, there is an excess of prasaure on the anterior
definiteness to be moving throngh the hluid, receive from it forward momentum. l'ortions of this furward moving water are thrown off Interally at the edges of the plate, and diffused through the surrounding flud, instead of falling to their original position behond the plate. Other portions of coniparatively still water are dragged into motion to fill the apace left behlnd the plate; and there is thos a pressure less than hydrostatic pressure at the back of the plate. The whole resistance to the motion of the plate 15 the sum of the excess of pressure ia front and deticiency. of pressure behind. This resistance is iudependent of any friction or viscosity in the find, and is due simply to its inertia resisting a sudden change of direction at the edgo of the plate.

Experiments made by a whirling machine, in which the place is fixed on a long arm and moved circularly, gave tha following values of the coefficient f. The method is aot free frem objection, as the centrifugal force causes a flow outwards across the plate.

Approximata Arss of Plate In eq.	Values of f			
0.13	Bords.	Hutton.	Thibsuls	
0.25	1.39	1.24		
0.63	149	1.43	1.525	
111	1.64		1784	

There is a ateady increase of resistanca with the size of the plate. in part or wholly due to centrifugal action.

Dubuat made experiments on a plane ona foot aquare, moved in a straight line in water at 3 to $6 \frac{1}{2}$ feet per second. Calling m tha

Fic. 171.-Curves of Pressura of Jets impiaging normally oo a Plade. coefticient of excess of pressure io froat, and n the coefficient of de. ficlency of pressure behimh. so that $f=m+n$, he foumd the following values:-

$$
m=1 ; n=0.4: 3, f=1.433
$$

The pressures were measurcd by pressure columns. Experimenta by Morit. Piobert, and Didion on plates of 0.3 to 27 squara fuet area, drawn vertically of through water. gave $f=218$; but the experi. ments wera mado in a reservoir of comparatively small depth. For similar plates moved through air they found $f=1 \cdot 36$, a result mora in eccordance mith those mbich precede.

For a fixed plane in a moving curreat of water Mariotto found fool 25 Dubuat, in experiments in a culdrent of water like those mentioned above. obtained the values $m=1.156 ; \quad n=0.670$; $f=1.856$. Thibault ex: posed to wiml pressure planes of 117 ond 25 square feet area, abd found f to vary fromi 1503 to $2 \cdot 125$, the mean value heing $f=1 \cdot 834$, a result agreeing well with Lubuat.
155. Case when the Direction of Motion is
face and a diminution of pressaro on tho posterior face. Let v be the relntive volocity of tha plate and fluid, Ω the area of the plate, G the density of the fluid, n tho hoight due to the velocity, then the potal rosistanco is expressed by the cquation

$$
\mathrm{R}=f \mathrm{G} \Omega \frac{v^{2}}{2 g} \text { pounds }=f \mathrm{G} \Omega h
$$

where f is a coeffeicot having about the valuc 1.3 for a ylate moving in still fluid, and $1-8$ fora current impinging on a fixed plane, whether the thuid is air or water. The difference in the varue of the coefficient In the two cases is perhaps due to errors of experiment. Thero is a similar resistance to motion in the case of all bedics of "unfair" form, that is, in which the surfaces over which the water alides are not of gradual and contiouons curvature.
The atress between the fluid and plate arises chisfly in this way. The streams of fluid deviated in fionit of the plate, sulposed for
obligue to the Plane. - The determination of the pressure between a lluid and surface in this case is of importance in many practical questions, for iastance, io assigning the load due to wind firessuro on sloping and curved reofs, and experiments havo been made by Ilutton. Vince, and Thibault on planes moved cirenlarly through oir and water on a whirling machine.
Let $A B$ (fig. 172) bo a plaae moving in the dircetion R making an angle ϕ with the plane. The resultant pessure batween tha fluifand the plane will be a normal pressure N The component R of this normal pressure is the resistance to the motion of the plano and the other component L , is a lateral force resisted by the guidsa which support the plane. Obvionsiy

$$
\begin{aligned}
& 1:-N \sin \phi ; \\
& 1,-\mathcal{c o s} \phi .
\end{aligned}
$$

In the case of wind pressure on a sloging noof surface, R is the
horizontal and L the vertical component of cau nortas preseure.

In experiments with the whirling machine it is the resistarice to motion, R, which is directly measured. Let P be the pressure on a plaae moved normally through a fuid. Then, for the same plane inclined at sn angle ϕ to its direction of motion, the resistance was found by Hutton on be
$R=P(\sin \phi)^{1 \cdot 842 \cos \phi}$.
A simplor and more com-:- ent expression given by ael Duchemin is

$$
R=P \frac{2 \sin ^{2} \phi}{1+\operatorname{sia}^{2} \phi}
$$

Fig. 172
Culsequently, the total pressure between the fluid and plane to

$$
N=P \frac{2 \sin \phi}{1+\sin ^{2} \phi}=\frac{2 P}{\operatorname{cosec} \phi+\sin \phi}
$$

anc the lateral force is

$$
L=P \frac{2 \sin \phi \cos \phi}{1+\sin ^{2} \phi}
$$

In 1872 soma experiments were mado for the Aeronautical Suciety on the pressure of air on oblique planes. Theso plates, of 1 to 2 feet equare, were balanced by ingenious mechaniom designed by Mr Wenham and Mr Spencer Browning, in sach a manner that both the pressare in the direction of tho air current and the lateral force werz separately measured These planes were placed opposite a blast from a fan. issuing from a wooden pipe 18 inches equare. The pressure of the blast varied from $\frac{9}{10}$ to 1 inch of water pressure. Tha following are the results given in pounde per square foot of the plane, end a comparison of the experimental results with the pressures given by Dachemia's rule. Theso last values are obtained by taking $P=3 \% 1$, the observed pressure on a normal surface:-

Aagle between Plape asd Directioa of Blast.	15^{\prime}	20°	60°	${ }^{00}$
Horizontal pressure R.......	04	0.61	2.73	3.31
Lateral pressure L.	16	196	126	
Normal pressure $\sqrt{L^{*}+R^{2}} \ldots \ldots \ldots$	1-65	$2 \cdot 05$	3.01	3.31
$\left.\begin{array}{c}\text { Normal pressure by Ducheruin's } \\ \text { rale }\end{array}\right\}$	1-605	$2 \cdot 027$	3.276	3-31

Reststance of Ships.

156. Down to a recent period the resistance of ships was supposed to be duc to a differenco between the pressure on the bow and stern, caused by the pushing aside of the water, precisely as in the case of the "unfair" bodies whose resistoneo has just been diseussed Ilence the resistance was supposed to be proportional to the imanersed mid. slap sectional frea of the vessel. It will be shown immediately, lowover, that in a "fair" body, completely immersed, thero is no resistance of this kind, the pressuro of the water closing in behind exactly balanciug the excess of pressure on the bow In such a touly, therefore, the resistance is alinost entirely due to the fractional dag of the water on the surface of tho body, and is proportional to its skin area. In a ship, which is only partially immersed, a further rusistance, which in somo cases becomes vory lerge, is due to tho alteration of the surface lovel of the water cansing a dissuation of suergy in producing waves.

Stram Line Motion of a Flitul past a submergrd. Body(innsuler a shipshape body, or body of fair form, that is, hounded 1 y surfaces of continuous eurvature, moving below tho surfiace of a flind and for the moment let the friction of the lluid agmast the

Fig. 173
atlifice of the bolly be bupposed obsent In such conditiona, tho fureleq of linul are gralually derinted sideways as the body passea, ani innumally closo togeture again behind it They aro left after the reqeation in their ofignal position with momentum melanged; theme the tore, , the case no resistance due to the direct action of the inertia of the water.

The aarare of the act:ura is more converiently studied by suppoeing the body at reat and the fluid flowing past it. Let S, fig 173, repre sent the immersed body surrounded by fluid which is flowing pas it. The fluid particles, arriving at A in the direction shown by tha arrow, are gradually deviated as they approach S, gradually unite again after possing it; and, if the body is of fair form, that is, if it presents no abrupt changes of section or discontinuity of curvature, tho stream lines or patha of the particles will be continuoue lines, which take, at a sufficient distance B sternwards of S, their original direction of motion. The fuid eurronading S may then be conceived to be divided into an infinite number of elementary atreams of contiouous curvature. Suppose, for simplicity, S is a colid of revolution. Thea, from the similarity of conditions in all directions, the elcmentary streams will be in planes drawn through the axis of S .

Each elementary stream may be conceived as a mass of fluid flowing steadily in an infimitely thin frictionless pipe. But it has already been shown that in a tortuous pipe, the ends of which are in the same direction, there is no resultant force due to the motion of the fluid which tends to displace the pipe, either due to its curvature or its changes of section. Consequently the whole mass of fluid exerts no resultant pressure on the body S past which it is flowing. Nor, if the fluid is at rest, will there be ang resistanoe to the uniform motion of the body S through it. The resistance of the ship thereforo cannot be due, like that of an unshipshape body, to the forward momentum impressed directly on tho fluid. In a frictionless tuid, and for a uniformly monng and wholly immersed body of fair form, the rcsistance would be nil.
With a Auid which is not perfectly frictionless, however, 8 resistance may be genersted in this woy. The particles of water exert a drag on the surface of the body over which they slide. They receive, either in consequence of their adhesion to the surface, or in consequence of impact on the ronghnesses which project from it, a forward monentum, sind the velocity at B is no longer, as in a frictionless fluid, the sarne ss the velocity at A.

In the case of a ship which is only in part immorsed thero is another source of resistance. Considering the elementary streams already defined ss flowing along indefiaitely thin frictionless pipes, it is obvious that there would be greater pressure in those parts where the cross section was large and the velocity small, and less pressure where the section was small and the velocity high. It will be seea from tho diagram that the streams are large in cross section in the neigh bourhood of the bow and stern, and small along the sides. There will therefore be an excess of pressure at bow and stern, and a diminution at the sides. But the free surface of the water in which the ship flcats is a surface of uniform pressure. Hence the water will be forced up at tho bow and stern, and siak dowa in the space between, the vanation of the hydrostatic pressure due to depth balancmg the variation of pressuro io the stresm lines. There are thus formed waves accompanying the ship. So far as the ship in its passago through the water has to supply the waste of energy due to the diffusion of this wave aiotion in the surrounding liqud, it sutfere a resistance which may be termed the wavemaking resistance. This resistance would arise even in of frictionless fluid.

It will be seen from tho foregoing that the two principal causes of tho resistance to the motion of a ship aro tho skin friction and the production of waves. The frictional resistance depends on the immersed surface of the ship, its roughness, and the velocity of the water relatively to the surfaco. Mr Froude concludes that no sensilito erior is commatted it the frictional resistance is taken to be equmalent to that of a reetangular surface of equal area and of leneth (an the lace of motion) equal to that of the ship and moving ot the same speed. For such a rectangular ourfaco Mr Froudo"e expenments already deseribed furnish the means of calculating the resistance

Expenments mado on II. B. ship "Greyhound " oppear to show that in well-formed, clean-bottomed ships, at speeda not excceding 3 knots per hour. the frictional resistance is from 80 to 90 per ceat. of the whole resistanec, and that at the greatest speeds of the quickest ships the frietional resistanco is from 60 to 70 por cent of the whole resistance For shij's with foul bottoms tho frictional resistance is a still harger fraction of tho whole resistance.

The wave-making ressubuce is not yet fully understood, and involves considerations beyond the seopo of tho present articlo. For any given length of ship, whth given proportions of entranco, mulde body, and rum, there is a hinit of speed beyond wheh tho resustanco due to dissipation of energy in waves rajudly increasea Below that limat the resistance, being ehielly duo to friction, in ereases nearly es the sunare of the speed. Abovo that limit the reastanco mereases as a higher power of tho speed. In the trials of the " Greyhound" the resistance varied nearly as tho supuare of the speed up tu 8 knots per hour, as tlie eubo of the speod at 10 knots, and as tho fourth power of the opeed nt 12 knots.
158. Futen of the Resistance of Models and of Actual Shins.-It will be understood from the foreronge explamations that tho liws of the rembtane of ships are commlicated and at vereent imperfectly
known. Atr Froude has, however, indicated a way in which experituents, on comparatively amall molels, way be made so as to furnish very useful data as to the resistance of ships. In order that experiments on models may be serviceable, it is decessary that their resistance should be measured at speeds for which the different resistances bear the same proportion to each other ss in the actual ship. Let d he the ratio of the dimensions of tho model to that of the ship. Let $R_{1}, R_{3}, R_{3} \ldots$ be the resistances of the model at apoeds $v_{1}, v_{2}, v_{3} \ldots$ Then it may be expected that the actual slip at apeeds $v_{1} \sqrt{d_{1}}, v_{2} \sqrt{d}, v_{3} \sqrt{d} \ldots$ will have resistances $d^{3} \mathrm{R}_{1}, d^{3} \mathrm{R}_{2}, d^{3} \mathrm{R}_{3}$.

This law, howover, is not strictly applicable to that part of the resistance which is dne to friction, because of the diminution of tho coefficient of friction for a givon surface as the leogth increaseg. Hence, when the registance of the model has been ascertained, a correction must be made to ollow for the different coefficient of friction of the ship. The frietional resistances of the model and of the ship are calculated from their immersed snrfaces, using the coefficients of friction suitable for their respective lengths. Deducting the former and adding the latter to the observed resistance at the corresponding speeds, the total resistance of the ship is ascertained.

XIII. Hydraulic maghinery.

159. Hydraulic machinery may be broadly divided into hydraulic motor machines and pumps. In the former class, a quantity of water descending from a bigher to a lower level, or from a higher to a lower pressure, drives a machine which receives energy from the water, and applies it to overcoming the resistances of other machines doing useful work. In the latter class, work done on the machine by a steam engine or other source of energy is employed in lifting rater from a lower to a higher level. A few machines such as the ram and jet pump combine the functions of motors and pumps.

Water Motors.

In every system of machinery deriving energy from a natural water fall there exist the following parts:-
(l) A supply'channel or head race, leading the water from the highest accessible level to the site of the machine. This may be an open channel of earth, masonry, or wood, laid at as small a slope as is consistent with the delivery of the necessary aupply of water, or it may be a closed cast or wrought-iron pipe, laid at the natural slope of the ground, and about 3 feet below the surface. In some cases part of the head race is an open channel, part a closed pipe. The channel often starta from a small storage reservoir, constructed near the stream supplying the water motor, io which the water accumulates when the motor is not working. There are sluices or penstocks by which the supply can be cut off when necessary.
(2) Leading from the motor there is a tail race, culvert, or discharge pipe delivering the water after it has done its work at the lowest, convenient level.
(3) A waste channel, weir, or bye-wash is placed on or at the origin of the head race, by which surplus water, in floods, escapes.
(4) The motor itself, of one of the kinds to be described presently, which either overcomes a useful resistance directly, as in the case of a ram acting on a lift or crane chain, or indirectly by actuating transmissive machinery, as when a turbine drives the shafting, belting, and gearing of a mill. With the motor is usually combined regulating machinery for adjusting the power and speed to the work done. This may bo controlled in some cases by automatic governing machinery.

Water Molors with Artificia! Sources of Energy:-The great convenience and simplicity of water motors bas led to their adoption in certain cases, where no natural source of water power is available. In these cases, an artificial source of water power is created by using a steam engine to pump water to a reservoir at a great elevation, or to
pump water into a closed reservoir in which there is great pressure. The water flowing from the reservoir through byilraulic engines gives back the energy expended, less so much as has been wasted in friction. Such arrangements are most useful where a continuously acting steam engine stores up energy by pumping the water, while the work done by the bydranlic engines is done intermittently.
160. Encrgy of a Water Fall.-Let H_{4} be the total fall of level from the point where the water is taken from a natural atreana to the point where it is discharged into it again. Of this total fall a portion, which can be estimated independently, is expended in overcoming the resistances of the bead and tail races or the supply and discharge pipes. Let this portion of head wasted be br. Then the available head to work the motor is $\mathrm{H}=\mathrm{H}_{t}-\mathrm{b}_{\mathrm{r}}$. It is this available head which should be nsed io all calculations of the proportions of the motor. Let Q be the supply of water per secodd. Then

GQH font-pounda per second

is the gross available work of the fall. The power of the fall mas be rendered available in three ways. The GQ pounds of water may be placed on a machine at the bighest level, and descending in contact with it a distance of H feet, the work dono will be (neglecting losses from frietion or leakage)

GQH foot-pounds per second.
Or the water may descend in a closed fipe from the higher to the lower level, in which ease, with the same reservation as before, the preasure at the foot of the pipe will be $p=\mathrm{GH}$ ponnds fer square foot. If the water with this preasure acts on a morable piston like that of a steam engine, it will drive the piston so that the rolume described is Q enbic feet per sceond. Then the work done will be

$p Q=$ GHQ foot-pounds per second

as before. Or lastly, the water may be allowed to acquire the relocity $v=\sqrt{2 g \mathrm{H}}$ by its descent. The kinetie energy of Q cubio feet will then be $\frac{G}{g} Q_{2}^{v^{2}}=\mathrm{GQH}$, and if the water is allowed to im. phoge on surfaces suitably curred which bring it finally to rest, it will inpart to these the same energy as in the previons cases. Generally, if Q feet-per second of water act by weight through a distance h_{1}, at a pressure p due to h_{g} feet of fall, and with a velocity v duc to h_{3} feet of fall, so that

$$
h_{1}+h_{3}+h_{3}=\mathrm{H}
$$

then, apart from coergy nasted by friction or leakage or imperfetion of the machine, the work dove will be

$$
\mathrm{GQ} h_{1}+\gamma^{\prime} \mathrm{Q}+\frac{\mathrm{G}}{g} \cdot \mathrm{Q}^{v^{2}} \frac{2 g}{2 g}=\mathrm{GQH} \text { foot pounds, }
$$

the same as if the water acted simply by its weight while descending H feet.
161. Site for Wuter Motor.-Wherever a stream flows from a higher to a lower level it is possible to erect a water motor. The amount of power obtainable depends on the available head and the supply of water. In choosing a site the engineer will selcct a portion of the stream where there is an aluopt natural fall, or at least a considerable slope of the bed. He will have regard to the facility of constrocting the chanmels which are to convey the water, and will take advantage of any bend in the river which enables him to shorten them. He will have accurate measurements made of the quantity of water flowing in the stream, and he will endeavour to aseertain the average quantity available throughout the year, tho minimum quantity in dry scasons, and the maximum for which byewash channels must be provided. In many cases the natural fall can be increased by a dam or weir thrown across the stream. The engineer will also examine to what extent the head will vary in different seasons, and whether it is necessary to sacrifice part of the fall and give a steep slope to the tail race to prevent the motor being drowned by backwsta- in floods.

In designing or selecting a water motor it is not sufficient to consider only its efficiency in normal conditions of working. It is generally quite as inportant to know how it will ant with a scanty water supuly or a diminished head The greatest difference in water motors is in their adspta. bility to varying conditions of working.
162. Action of Water in a Water Motor.-Water motors may be divided into water-pressure engines, water wheels, and turbiaes.

Water-pressure eagines are machines with a cylinder and piston or ram, ia principle identical with tha corresponding part of a steam engine. The water is alternately admitted to and discharged from the cyliader, eausiag a reciprocating action of the piston or ram. It is admitted at a high pressure and disehniged at a low one, and consequently werk is dene on the pisten. The water in these machines never acquires a high velocity, and for the most part the kivetic energy of the water is wasted. The useful work is due to the differeace of the pressure of admission and discharge, whether that pressure is due to the weight of a celuma of water of mere or less considerable height, or is artificially produced in ways to be deseribed presently.

Water wheels are large vertical wheels driven by water falling from a higher to a lower level. In most water wheels, the water acts directly by its weight loading one side of the wheel and se causing rotation. But in all water wheels a portion and in some a censiderable pertion of the work due to gravity is first emploged to generate kiaetie energy in the water; during its aetion on the water wheel the velocity of the water diminishes, and the wheel is therefere in part driven by the inpulse due to the change of the water's mementum. Water wheels are therefore motors on which the water acts, partly by weight, partly by impulse.
Turbines are wheels, geaerally of small size compared with water wheels, driveu chietly by the impulse of the water. Before entering the moving part of the turbine, the water is allewed to aequire a considerable velocity; during its action on the turbine this velocity is diminished, and the impulse due to the change of mumentum drives the turbine.
Roughly speaking, the fluid acts in a water-pressure engine directly by its pressure, in a water wheel cliefly by its weight causing a pressure, but in part by its kinetic energy, and in a turbine chiefly by its kinetic energy, which again eauses a pressure.

\#ater-Pressure Engines.

163. In these water acts oy sinipie pressure due to the Jeight of the column in the supply pipe or tine pressure in the supply resersoir. The water aets on a piston or ram which it displaces. When the height of the column exceeds 100 or 200 feet, or there is a pressure equivalent te this, water whe ls are inapplieable, and turbines have the dizadvantage that in such circumstances their speed is very great. Then water-pressure engines maybe very conveniently adopted. In other cases they are generally too cumbrous.

When an ineempressible fluid such as water is used to actuate piston engines, twe special difliculties arise. One is that the waste of work in friction is very great, if the water attains considerable velocity; another is that there is great straining action on the machinery. The violent straining action due to the more or less sudden arrest of the motion of water in maehinery is termed hydraulic sheck. For thove reasons the maximum velecity of flow of water in hydranlic machines should generally not exceed 5 to 10 feet per secend. Under very high pressure, where there is less nhject in eceaomizing energy, nad it is very inportant to keep the dimensions of the machinery small, Mr Andersnn gives 24 feet per seeond as the limiting velocity. In largo water-pressuro engincs used for pumpring nines the average piston speed dees net exceed $\frac{1}{2}$ to 2 fect pur socond.

Dinet-Acting Hy trantic Lift (fig. 174). -This is tho Ahmplest of all kinds of hydraulic motor. A cage W is lifted directly ly water pressure acting in a cylinder C, tho
length of which is a little greater than the lift. A ram or plunger R of tha same length is attached to the cage. The water pressure admitted by a cock to the cylinder forees up the ram, and when the supply valve is closed and the discharge valve opened, the ram descends. In this case the ram is 9 inches diameter, with a stroke of 49 feet. It censists of lengths of wroughtirea pipe screwed tegether perfectly water-tight, the lower end beiag closed by a cast-iron plug. The ram works ia a cylinder 11 inches diameter, of 9 feet lengths of flanged cast-iron pipe. The ram passes water-tight through the cylinder cover, which is provided with double hat leathers to prevent leakage out wards or inwards. As the weight of the ram and cage is much more than sufficient to eause a deseent of the cage, part of the weight is balanced. A chain attached to the cage passes over a pulley at the tnp of the lift, and carries at its free ead a balance weight B, werking in T iren guides. Water is admitted to the cylinder from a 4 -ineh supply pipe through a twe-way slide, worked by a rack, spindle, and endless rope. The lift werks under 73 feet of bead, and lifts 1350 to at 2 feet per second. The efficiency is given by Mr Andersen at 75 to 80 per cent. ${ }^{1}$
The principal prejudicial resistance to
the motion of a
rama the motion of a ram Leve of of this kind is the friction of the eup Leathers, which make the joint between the eylinder ond ram. Some experiments by Mr Jolin llick give for the friction of theso leathers the following formula. Let F- the total fiction in pounds : $d=$. diameter of ram in feet $; p=$ water pressure in pounds per square foot; k a coullieient.
$\mathrm{F}=k p d$
$k=0.00393$ if the leathers are now or badly Iubrieated;
$=0.00262$ if tho leathers are in Fool condition and well hubri. cated.

1 Tho drawing and degcription of this ram aro taked from Mr Andersou's Chatham Lectures on IIydraulic Machinety.

Bince the thal pressure on the ram is $\frac{\pi}{4} d^{2} p$, the fraction of the Lotal pressure expended in overcoming the friction of the leathers is $\frac{.005}{d}$ to $\frac{0,133}{d}, d$ beiog in feet.
Let H be the height of the pressura cotuma measured from tha free aurface of the anpply reservoir to the bottom of the ram in its lowest pusition, Ho the beight from the discharge reservoir to the eame point, h tha height of the ram abova its lowest point at any moment, S the length of stroke, Ω tha area of the ram, W the weight of cage, R the weight of ram, B the weight of balance welgbt, w the weight of balance chain per foot rod, F the friction of the cup lasthar and alides. Then, neglecting Huid friction, if tbe ram ja rising the accelerating force is

$$
\mathrm{P}_{1}=\mathrm{G}(\mathrm{H}-h) \Omega-\mathrm{R}-\mathrm{W}+\mathrm{B}-u(\mathrm{~S}-h)+u h-\mathrm{F} .
$$

nod if the ram is deaceoding

$$
P,-G\left(H_{0}-h\right) \Omega+W+R-B+u(S-h)-w h-F \cdot
$$

If $w=\frac{1}{3} \mathrm{G} \Omega, \mathrm{P}_{1}$ and P_{1} are constant thranghout the stroke; and the moving furce in ascending aod descending is the same, if
$B-W+R+u S-G \Omega \frac{H+1 I_{s}}{2}$
Uaing the values just found for u and B,

$$
P_{1}=P_{1}=G \Omega\left(H-H_{6}\right)-
$$

Let $W+R+n S+B=C$, and let P be the constant accelerating force acting on the system, then the acceleration is

$$
\frac{\mathrm{P}}{\overline{\mathrm{U}}} g
$$

Tho velocity at the end of the struhe is (assumung the friction to be coltstant)

$$
\sqrt{ }\left(2 \frac{p^{\prime}}{\mathrm{C}^{g^{4}}}\right)^{\prime}
$$

and the mean velocity of asceut is

10.

164. Self.Acting Hydranlic Engines.-The afmassion and discharge valve in the lift just described is worked by hand at the required times. It is easy to see that mechanism like that used in steam engines can lie applied to actuata the admission and discharge valves periodically, and the lift is then converted into a cootinuously acting engine.
Lat II bo the avaitable tatt to work the engine after deducting the loss of head in the supply and discharge pipes, Q the suppiy of water in cubic feet per second, and η the efficiency of the engine. Then the horse-power of the engine is

$$
\text { H P. }=\frac{\eta \mathrm{GQ1}}{550}
$$

The efficiency of large slow moving pressure engines is $\eta-68$ to 8 In small motors of this kind probably η is hot greater than 5 Let v be the roean velocity of the pistun. then its diameter d ss given ty the relation

$$
\begin{aligned}
& Q=\frac{\pi}{4} d^{n} v \text { in double artine engines. } \\
& -\frac{\pi}{8} d r^{2} \text { in sinnatmathgengimes }
\end{aligned}
$$

If thera are n cylindery $\mathrm{B}^{\prime \prime} \frac{\text { "? }}{n}$ for Q in these equatious
The mean velocity v is from of to 2 feet per second in large engines. Smaller engines working on liigh lifts may be run at a greater speed, but with a sacrifice of efficiency. The usunl piston apeed of Messrs Hastic's engines de. acribed below is 100 feet per minute For pressures of less than 200 feet of bead, the speed is less. The velocity of the water in the supply pipes may be 3 to 6 fect res second.

In large engines the ndmission and discharre values are of very large size, and require very considerable force to move them. It is also desirable that they should open nad close more rapidly than the eccentric-moved valves used in steam engines. In these engines the valves aro made cylindrical, so that the water pressure causes no friction of the valve on its seating. They are moved by a weight which is released at the proper moment, or by a sobsidiary water-pressure engine, the valves of which being small can be actuated automatically. Tolerably full details
of engines with mechanism of this kind are to be found in Weisbach'a Mechraics of Engineering.

Small pressure engides form extremely convenient motors for hoists, capstans, or ainches, and for diving small machinery. They are usually rotative engines, and may be single or double acting. The siugle-acting engine las the advantage that the pressure of the piston on the crank pin is always in one direction; there is then no knocking as the dead centres are passed. Generally three single. acting cylinders are used, so that the engine will readly start in all positions, and the driving effurt on the crank pin is very uniform

Mr Brotherboud's well-known three cylinder stoim engine has been modified 80 as to be used as a water pressure engine. The three es \therefore.nders are formed in one casting The valve is a circular revolving disc with segmental ports. which pass over corresponding apertures in the ralve seating during rotation. The valve seating is of ligoum vitæ.
Fig. 1 is showg a similar engine made by Messrs Hastie of Greenock G. G, G are the three plungers wbich pass out of the cylinders through cup leathers, and act on the same erank pin A ls the inlet pipe which communicates with the cock R This cock controla the action of the angine, being so constructed that it acts as a reversing valve when the handla C is in itacxtrene poaitiona end as a brake whell in its middle position With the

rig. 175
haodle in its midule position, the ports of the cylinders are in com. munication with the extaust. Two passages are formed in the framing leading from the coek B to the ends of the cylinders, one being in communication with the supply pipe A, the ot ther with the discharge pipe Q. These passages end as shown at F. The oscillation of the cylinders puts then alfernately in communication with each of these passiges, and thus the water is alternately admitted and exhausted
In any ordinary rotative engine the lingth of stroke is invariatie Corsequently the consumiting of water divends singly on the apend of the engine, :iseaprectise of the eiffort overcome if the power of the engine must be varied with out altering the number of ratations. then the stroke must be made varable. Messrs Hastie have

Fig. 176 contrived an exceed. ingly ingenious method of varying the stroke outomatacally, in [ropartion to the amount of work to be done (fig 176). The crank pin 1 is carried in oslide 11 moving in a disk $\$ 1$ In this is a double cam $k i$ acting on two enall steel tollers J, L attached to the slide II. If the cam rotates it moves the slite and increaseg or decreases the radius of the circle in which the crank gin I rotites The disk M is keyed on a hollow shaft surroundmat the driving shaft P, to which the cams are attached. The hollow shaft N bus ino anugg to which the chains Rll ore attached (fig. 1:7). The shaft P carries the spring case SS to which also are atiached the other ends of the chains. When the engine is at rest the sjorings extend themsilves, rotating the hollow shaft N and the frame M, so as to place the crank piol at ite nearest position to the axis of rotation. When
a resistanco has to be overcome, the shaft N rotates relatively to P, compressiog the aprings, till their resistance balances the pressure due to the resistsuce to the rotation of P. The engiae then commences to work, thecrank pin being in the position in which the turning effort just overcomes the reaistance. If the resistance diminishes, tho apriugs force out the chains and shorten tho stroke of the plun. gers, and vice versa. The following experiments, on an engine of this kiad working a hoist, chow hov the antamatif arrangement adjosted the water

used to the work done. The lift was 22 fect and the watcr pressure in the cyliaders 80 to per square iach.

Weinhtlifed, in pmunds	Chain ouly	427	633	745	857	969	1081	1193
Waltruse 1 , in gallons.....	$7 \frac{1}{2}$	10	14	16	17	20	21	22

165̃. Acrumulator Machinery.-It has already been pointorl out that it is in some cases conrenient to use a stcam engine to ereate an artificial head of water, which is afterwards employed in driving water-pressure machinery. Where power is required intermittently, for short periods, at n number of different points, as, for instance, in moving the cranes, lock gatos, \&c., of a dockyard, a separate steam engine and boiler at each point is very ineonvenient; nor can engines worked from a common boiler be used, beeause of the great loss of heat and the difficulties which arise out of condensation in the pipes. If a tank, into which water is continuously pumped, ean be placed at a great elevation, the water can then be used in hydraulic machinery in a very conveniont way. Each hydraulic machine is put in communication with the tank by a pipe, and on opening a valve it commenees work, using 2 quantity of water directly proportional to the work done. No attendance is reyuired when the machine is not working.

A site for such an elevated tank is, however, seldom available, and in phace of it a beatiful arrangement termed an accumulator, invented ly Sir W. Armstrong, is used. This consists of in tall vertical cylinder ; into this works a solid ran throngli cup leathers or bemp packing, and the ram is lowled liy fixed weights, so that the pressure in the eylinder is 700 ll or 800 lb per square inch. 'lhe pumping engines which supply the eneroy that is stored in the aceumulator slould be a pair coupled at right angles, so as to start in any position. The engines punp into the aceumulator cylumer till the ram is at the top of its strole, when by a catell arranement the engines are stopuct. If the aecumulatur ram descends, in consequence of water lieingtaken to work machinery, the engines immediately recommence working. Jipes lead from tho aceummator to each of the machines requiring to be driven. 'lhese pipes do not reruirn to be oi large size. as the pressure is so great. Fhey are generally flanged pipes about 1 , inches bore, the joints being marlo by a gatta-perelia ring.

Fig. 178 slows in a rlimganmatic way the scheme of a system of necumblator machinery. A is the necmmantor, with its ram carryiog a cylindrical wroughtiron tank W, in which weichts anc placeal to loat the accumblator. At R is no of the pressme enerines worked from tho accumblator, discharging the water after bee ino the bank ' Γ. In this case the pressure "ngine is shown womkine t
 buck on the rum. The rhain manmer oum these bindia work a lift cage C , the gject of whill is as many tames greate that that of
the ram as there are plies of chain on the block tackle. B is the balance weight of the cage.

In the use of accumulaters on shipboard for working gun gear or stcering gear, the uecumbulator ran is loaked by springs, or by steani pressure actiog on a piston much larger than the ram.
Mr Tweddell has used accumulators with a pi ssure of 2000 lb per square inch to work hy. draulic riveting machinery.
The amount of encrgy stored ia tho accunulator, having a ram it iuches in dia. meter, a stroke of S feet, and working at p pounds pressure per square inch, is $\frac{\pi}{4} p d^{2} S$ foct-pounds. Thus, if the ram is 9 inches, the stroke 20 feet, and the pressure 800 it per square iuch, the work stored in the accumulator when the ram is at the top of the stroke is 1,017,600 footpounds, that is,
 enumgh to drive a macume requring one horse power for about half an hour. As, however, the pumpiog engine replaces water as soen as it is drawn off, the working capacity of the accumulator is very much greater than this.

Fig 179.
Wieteve I"hecls.
160. Overshot and hiyh breetst Wheels. - When a watet fall ranges between 10 and $\overline{6} 0$ feet, and the water supply
is from 3 to 25 cubic fect per second, it is pussible to conbtruct a bucket wheel on which the water act chiefly by its weight. If the variation of the head-water level does not exceed 2 feet, an overshot wheel may be used (fig. 179). The water is then projected over the aumnit of the wheel, and falls in a parabolic path ivto the huckets. With greater variation of bead-water level, a pitch-back or high breast wheel is better. The water falls over the top of a eliding aluice into the wheel, on the same side as the bead race channel. By adjusting the beight of the sluice, the requisite aupply is given to the wheel in all poritions of the head-water level

The wheel consists of a cast-iron or wrought-iron axle C supporting the weight of the wheel. To this are attached two sets of arms A of wood or iron, which support circular segruental plates termed shrouds B. A cylindrical sole plate $d d$ extends between the shrouds on the inner side. The buckets are formed by wond planks or curved wrougbt-iron plates extending from shroud to shroud, the back of the buckets being formed by the sole plate.

The efficiency maty be tuken at 0.75 . Hence, if $h . p$ is the effec. tive horse power, H the available fall, and Q the avuilable water supply per second,

$$
h_{p}=075 \frac{\mathrm{GQH}}{550}=0.085 \mathrm{QH}
$$

If the peripheral velocity of the water wheel is too great, water is thrown out of the buckets before reaching the bottom of the fall. In practice, the circumferential velocity of water wheels of the kind now deseribed is from $4 \frac{1}{2}$ to 10 feet per accond, about 6 feet being the usual velocity of good iron wheels not of very small size In order that the water may enter the buckets easily, it must have a greater velocity thad the wheel. Usually the velocity of the water at the point where it enters the wheel is from 9 to 12 feet per second, and to produce this it must enter the wheel at a point 16 to 27 inches below the head-water level Hence the diameter of an overshot wherl may be

$$
\mathrm{D}-11-13 \text { to } \mathrm{H}-2 \frac{1}{6} \text { fect. }
$$

Overshot and high breast wheelswork badly in back-water, and heace if the tail.water level varies, it is better to reduce the diameter of the wheel ao that its greatest immersion in flood is not more than 1 foot. The depth d of the shrouds is about 10 to 16 inches The number of buckets may be about

$$
N=\frac{\pi D}{d}
$$

Let $\%$ be the peripheral velocity of the wheel Then the capacity if that portion of the wheel which passes the slucte io one sccoud is

$$
\begin{aligned}
Q_{1} & =\frac{v b}{\mathrm{D}}\left(\mathrm{Dd}-d^{2}\right) \\
& =v \cdot b d \text { Dearly. }
\end{aligned}
$$

6 being the breadth of the wheel Letween the shrouds If, however, this quantity of water were allowed to pass on to the wheel the burkets would begin to spill their contents almost af the top of the fall To dimmish the loss from spilling, it is not ouly necessary to give the buckets a auitable form, but to restrict the water supply to one-fourth or one-third of the gross bucket capacity Let on be thic value of this ratio. thed, Q being the supply of water per second.

$$
\mathrm{Q}=m \mathrm{Q}_{1}=m b d v
$$

This gives the brendtb of the wheel if the water supply is known The form of the buckets should be determiued thus The outer
elemeut of the bucket ahould be in the direction of motion of the witcr entering relatively to the wheel, ao that the water may cnter without splashing or shock. The buckets should retain the water as long as pos. sible, and the width of opening of the buckets should be 2 or 3 inches greater thiun the thickiness of the sheet of watel eutering.

For a wooden

Fig. 180
bucket (fig. 180, A), take $48=$ distance between tyo buckets on peri.
an iron bucket (fig. 180, B), take ed $=\frac{1}{3} e b ; b c=\{a b$ Draw co making an angle of 10° to 15° with the radius at $c \quad \mathrm{OD} O \mathrm{O}$ tako a centre giving a oircular arc passing near d, and round the curve into the radial part of the bucket de.

There are two ways in which the power of a water wheel is given ofl to the machincry driven. In wooden wheela and wheels with rigid arma, a apur or bevil wheel keyed on the axle of the turbine will transmit the power to the sbafting. It is obvious that the whole turning moment due to the seight of the water is then transmitted through the arms and axle of the water wheel When the water wheel is an iron one, it usually bas light irod auspeosion arms incapable of resisting the bending action due to the transmission of the turning effort to the axle. In that case spur segments are bolted to one of the shrouds, and the pinion to which the power is transmitted is placed so that the teeth in gear are, as nearly as may be, on the line of action of the resultant of the weight of the water in the loaded arc of the wheel.
167. The Poncelet Water Wheel.-When the fall does not exceed 6 feet, the best water motor to adopt in many cases is the Poncelet undershot water wheel. In this the water acts very nearly in the same way as in a turbine, and the Poncelet wheel, although slightly less efficient than the best turbines, in normal conditions of working, is superior to most of them when working with a reduced supply of water. A gencral notion of the action of the water on a Puncelet wheel has already been given in $\S 145$. Fig. 181 shows its construction. The water penned back

Fig. 181
between the side walls of the wheel pit is andowed to flow to the wheel under a movable sluice, at a velocity nearly equal to the velocity due to the whole fall. The water is guided down a slope of 1 in 10 , or a curved race, and enters the wheel without shock Gliding up the curved floats it comes to rest, falls back, and nequires at the puint of discharge a backward velocity relative to the whecl nearly equal to the forward velocily of the wheel Conseyucutly it leaves the wheel deprived of nearly the whole of its original kinetic energy.
Taking the efficiency at 0.60 , aud putting Il for the available fall, h. p for the herse-power, and Q for the water supply por second.

$$
\text { h.p. }=0.068 \text { QH1 }
$$

The diameter D of the wheel does not depend on the fall With a straight chanucl of approach the smallest convericht dianoter is nbout 14 feet, with a curved channcl 10 feet The diameter is often taken at four times the fall.

Let 11' be the fall measured from the free surface of the head-water to the point. F where the wean lager euters the whect; then tbo velocity at which the water enters is $v=\sqrt{2 g 11}$ ', and the best circumferential velncity of tho whecl is $\mathrm{V}=0.550$ to 0.6 v The number of rotations of the whel per sccond is $\mathrm{N}=\frac{\mathrm{V}}{\pi \mathrm{D}}$
 portant. Tho best thickness according to experiment is 8 to 10 inclics. The maximum thickness should not exceed 12 in 15 inches, when there is a surplus water supply. let c be the thickness of the sheet of watar witering the wheel, and b its width; then

$$
b e v=Q ; \text { or } b=\frac{Q}{e v}
$$

Gmshof takes $e=\frac{1}{d}$, and then

$$
b=6 \overline{H \sqrt{2 y]}}
$$

Allowing for the coctraction of the stream, the area of opensing through the sluice may be 1:25 be to $1: 3 \mathrm{be}$. The inside width of the wheel is made about 4 mehes greater than b.

Several coostructions have been given for the floats of Poncelet wheels. One of the simplest is that slown in figs. 181, 182.

Let OA (fig. 181) be the vertical raltus of the wheel. Set off OB, OD makigg aogles of 15° with OA. Then BD may be the length of

Fig. 182.
tae close breasting fitted to the wheel. Draw the bottom of the head race BC at a glope of 1 io 10 . Parallel to this, at distances he and e, draw EF and GH. Theo EF is the mean layer and GH the surface layer entering the wheel. Join OF, and make OFK $=23^{\circ}$. Take $\mathrm{FK}=0.5$ to 0.7 H . Then K is the centre from which the bucket curve is struck and KF is the radius. The depth of the slirouds must be suflicient to prevent the water from rising over the top of the float. It is $\frac{1}{2} 11$ to $\frac{3}{3} 11$. The number of buckets is not very iouportant. They are usurlly 1 toot aprart on the circumference of the wheel.

The effictency of a Poncelet wheel has been found in experiments to reach 0.68 . It is better to take at at 0.6 in estimating the power of the wheel, so as to allow some marym.
la fig. 182 r ' is the ivitial and usthe final velocity of the water, er parallel to the vace the relative relocity of the water and wheel, and V the velucity of the wherl.

I'arbines.

168. The name turbine was origidally given in France tol any water mutor which revolved in a horizontal plane, the exis being vertical. The raphd development of this class of motors dates from 1827, when a prize was offered by the Soeieté d'Encobragemeut for a motor of this kiad, which should be an improvement od certain atheels then in ose. The prize was ultimately awarded 1) M. Fourneyron, whose turbine, bat little modifed, is still eonstrueted.

Classification of Turbines.-In some turbines the whole available energy of the water is converted ioto kinetie chergy before the water aets on the moving part of the turbine. Such turbines are termed Impulse Turbines, and they are distinguished by this that the wheel passages are never entirely filled by tho water. To ensure this condition they must be placed a little abore the tail water and discharge into free air.

Tartines in which part only of the available energy is converted anto kinetic enersy, before the water enters the turbine wheal, may de termed lieaction T'urbines. In these the pressure is greater al the intet than at the outlet ends of the wheel passagez. Tho wheel passages mast thereiore b: entirely filled, and the wheel may be and gencrally is fhered helow the tail-water level.

Next there is a difference of constructive arrangement of turbines, which tlues nat very essentially alter the manle of aetion of the water. In axial lowe or su called paraldel flaw turbmes, the water enters and lawes the turbine in a duectumpuallel to tho axis of rotation, and the pathe of the molerales lie in eglindrian surfaces concentric weth that axis. In radial ontward and mand low torlones,
the rater coters and leaves the corbine in directions normal to the axis of rotation, and the paths of the molecules lie exactly or nearly in planes normal to the axis of rotation. In outward flow turbines the general direction of flow is away from the axis, and in inward flow turbines towards the axis. There are also mized flow turbines in which the water enters normally and is discharged parallel to the axis of rotation.

Another difference of construction is this, that the water may be admitted equally to every part of the circumfereoce of the turbine wheel or to a portion of the circomference only. In the former ease, the condition of the wheel passages is always the same; they receive water equally in all positions during rotation. In the latter case, they recelve water during a part of the rotation only. The former may be termed torbines with complete admission, the latter torbines with partal admission. A reaction turbine should always have complete adonission. An impulse turbine may have complete or partial admission.

Whea two tarbine wheels smilarly constructed are placed on the same axis, in order to balanee the pressures and dimintsh journal friction, the arrangement may be termed a twia torbine.

If the water, having acted on one torbine wheel, is then passed through a second on the same axis, the arrangement may be termed a compound turbine. The olject of such an arrangement would be to diminish the speed of rotation.

Many forms of reaction turbine may be placed at any helght aot exceeding 30 feet above the tail water. They then discharge into an air-tight suction pipe. The weight of the column of water in this pipe balances part of the atmospheric pressure, and the difference of pressure, producing the flow through the turbine, is the same as if the tarbine were placed at the bottom of the fall.
.1. Impulse Turbines.
(Wheel passages not filled, and disehargug above the tail water.)
(2.) Complete admission. (Rare.)
(b) Partial adnussiou. (Usual.)
11. ILcaction Turbines.
(Wheel passages filled, discharging above or below the tail water or into a suction. pipe.)
Alvays with complete admission.

Axial flow, ontwarif flow, inward llow, or mixed llow.

Simple turbines; twin turbines; compound turbines.
169. The Simple Reaction I'hcel.-It has been shown, in \$ 151, that, when water issues frem a vessel, there is a reaction on the vessel conding to cause molion in a direction opposite to that of the jet. This phmeiple was applicd in a rotating water motor at a very early period, and the Seoteln turbine, at ono lime much nsed, ditfers in he essential respeet from the ohler form of reaction wheel.
d'le old reaction wheel consisted of a vertical pipe balanced on a vertual aws, und suphliol with water (fig. 183). From the bottous of the vertical pipe two or more bolluw hor wurital arnis extended, at tho enls of which were orifices from which the water was discharged. The reaction of the jets caused tlio sotation of the makhine.
Let I! te the available fall measured from the level of the water in the ver. tocal pije to the sentres of the orifiens, r the radius from the axw of rotation to the cuntres of the oritieus, v the valority of dischage through the jets, a the angular velocity of the machine. When the machine is at rest the water issues from tho orifices with the Whatity $\sqrt{2 y I I}$ (friction bemg ne.

Fig. 183.
ghered) lint when the machine whater the water in the mons rolates aso, and is in the condition uf a fored vortex, all the patiches having the some angular velocity. Consequably the pressure in the arme at the orffices is

$$
11+\frac{a^{2} r^{2}}{a g}
$$

fect of water, and the velocity of discharge throngh the orifices is $v=\sqrt{2 y} 1+a^{6}$.

If the total area of the urifices is a, the quantity discharged from tha wheel per second is

$$
\mathrm{Q}-\infty=\omega \sqrt{2 y \mathrm{HI}+a^{2} r^{2}}
$$

Whina the water passes through the orifices with the velocity v, the orifices are moving in the opprosite direction with the velocity ar Tha abselate velecity of the water is therefure

$$
v-a r-\sqrt{2 g H+a^{4} r^{3}}-a r
$$

The mumentum generated per secead is $\frac{\mathrm{GQ}}{\mathrm{g}}(\mathrm{v}-\mathrm{ar})$, which is numerically equal to the force driving the motor at the radius 9 . The work dute by the mater in rutating the wheal is therefore, per aecuud,

$$
\frac{\mathrm{GQ}}{g} \mathrm{iv}_{\mathrm{v}} \text { - arjar foot-puunds }
$$

The werk expended by the water fell ia riQH foot-pounds per second. Consequently the efficiency of the motor ts

Lot

$$
\eta=\frac{(v-a r) a r}{g H}-\frac{\left\{\sqrt{2} g \overline{H+a^{2} r^{3}}-a r\right\} a r}{g \mathrm{H}}
$$

$$
\sqrt{2 g \mathrm{H}+a^{2} r^{3}}-a r+\frac{\beta \mathrm{H}}{\alpha r}-\frac{y^{2} \mathrm{H}^{2}}{2 a^{2}, \mathrm{~B}} \cdots .
$$

then

$$
\eta=1-\frac{g \mathrm{H}^{0}}{2 a r}+
$$

Which increases towards the limit 1 as ar iucreases towards fnfinity Naglecting friction, therefore, the maximum efficiency ia reached when the wheel has an infoitely great velocity of rotation. But this condition is impracticable to realize, and even, at practicable but high valocities of rotation, the friction would conailersbly refuce the efficiency. Experiment seems to show that the best efficiency is reached whan ar $-\sqrt{2 g \mathrm{H}}$. Than the efficiency apart fron frictiou in

$$
\begin{aligned}
\eta & =\frac{\left(\sqrt{2 a^{2} r^{2}}-a r\right) a r}{g H} \\
& -\frac{0.414 a^{2} r^{2}}{g \mathrm{H}}=0.828,
\end{aligned}
$$

abont 17 per ceat. of the energy of the tall being carried away by the water discharged. Tha actual efficiency realized aypeara to ba abont 60 per ceat., ao that about 21 per ceat. of the encrgy of the fall is lost is friction, in addition to the energy carried anay by tha water.

170. General Statement of Hydrodynamical Principles necessary for the Theory of Turbines.

1. When water flows through eny pipe-abaped passage, such as the passaga between the raues of a turbine wheel, tha relation between tha changea of pressure and velocity is given by Bernoulli'a theorem (§ 26). Suppose that, at a oection A of auch a passage, h_{1} is the pressure measured in feet of water, v_{1} the relocity, and z_{1} tha olevation ebove any horizontal datum plane, sud that at a bection B the same quantities are denoted by h_{1}, r_{2}, z_{2}. Than

$$
\begin{equation*}
h_{1}-h_{2}-\frac{r_{2}{ }^{2}-v_{1}{ }^{2}}{2 \jmath}+z_{3}-z_{1} . \tag{1}
\end{equation*}
$$

If the flow is horizontal, $z_{1}-\varepsilon_{1}$; aod

$$
\begin{equation*}
h_{1}-h_{7}=\frac{v_{y}^{2}-v_{y}^{2}}{2 g} \tag{1a}
\end{equation*}
$$

2. When there la an abrupt change of section of the passage, or en ebrupt change of acction of the stream dua to a contraction, then, in applying Kernoulli's equation allowance must he made for the loss of head in shock (\$ 32). Let v_{1}, v_{2} be tha velocities before and after the abropt change, then a atrenm of velocity y_{1} impinges on a atream at a velocity ${ }^{2}$, and the relative velocity is $r_{1}-r_{2}$. The head lost is $\frac{\left(v_{1}-v_{j}\right)^{2}}{2 g}$. Then equation (la) becemes

$$
\begin{equation*}
n_{3}-h_{1}-\frac{v_{1}^{2}-v_{2}^{2}}{2 g}-\frac{\left(r_{1}-r_{1}\right)^{2}}{2 g}-\frac{r_{3}\left(v_{1}-r_{2}\right)}{g} . \tag{2}
\end{equation*}
$$

To dimieish ss much as possible the loss of anergy from irregular eddying motions, the clauge of aaction in the turbine passages nulst be very gradual, and the curratura nithout discontinuity.
3. Equality of Angular Impulse and Change of Angular Momen. tum - Suppose that a couple, the moment of which is SI, acts on a body of weight W for t seconds, during which it moves from A, to A_{3} (fig. 184). let v_{1} be the velocity of the body at A_{1}, v_{3} its velocity st A_{1}, and let p_{1}, p_{2} be the propendiculars from C on v_{1} a ad v_{2}. Then Mis is termed the aogular inpulse of the coullfa, and tha quatity

$$
\frac{W}{g}\left(v_{1} p_{2}-v_{1} p_{1}\right)
$$

la the change of angular menentum relatively to C. Then, from the equality or angular impulse and change of angular monentum

$$
\Delta t t-\frac{W}{g}\left(v_{3} p_{1}-v_{1} p_{1}\right)
$$

or, if the change of momentum is estimated for one accond,

$$
\mathrm{M}-\frac{\mathrm{W}}{g}\left(v_{1} p_{1}-v_{1} p_{1}\right)
$$

Let $\boldsymbol{r}_{1}, r_{2}$ be the radiidrawn from C to A_{1}, A_{2}, and let w_{1}, w_{2} be tha components of v_{1}, w_{5}. perpendicular to these radi, niaking angles β und a with riv v_{T} Theu

$$
\begin{aligned}
& r_{1}-u_{1} \sec \beta ; v_{1}-w_{y} \sec a_{1} \\
& p_{1}=r_{1} \cos \beta: p_{3}=r_{8} \cos a \\
& \therefore M=\frac{W}{g}\left(w_{3} r_{2}-u_{1} r_{1}\right)
\end{aligned}
$$

Fig 184

Where tha moment of the couple is expressed in terma of the radil drawn to the positions of the body at the beginaing and end of a recond, and tha tangential components of its velocity at those,

Now the water fluripg through a turbine eaters at the admission surface and leaves et the diacharga surface of the mbeel, with its angular mornentum relatively to the axts of the wheel changed it therefore exerte a couple - Bi tendiag to rotate the wheel, equal and uplosita to the couple M which the wheel exerta on the water Let Q cuhic feet enter and leave the wheel per second, sod let w_{1}, w_{a} b the tangential componenta of the velocity of the water at the receiv. ing and discharging surfacea no the wheel, r_{3}, $r_{\text {, the }}$ tadia of those surfaces. By tha pridelple abova,

$$
\begin{equation*}
\Delta i=\frac{G Q}{g}\left(v_{2} r_{2}-v_{1} r_{1}\right) \tag{4}
\end{equation*}
$$

πa is the engular velocity of the wheel, the work done by the water wo the whel is

$$
\begin{equation*}
\mathrm{T}-\mathrm{Ma}=\frac{\mathrm{GQ}}{g}\left(v_{1} T_{1}-v_{1},\right. \text {, la foot-pounda per seciond } \tag{5}
\end{equation*}
$$

171. Total and Available Fall. - Let H, be the total difference of level from the head-water to tha tail-water surface. Of this total head a portion is expended in overcoming the resistances of the head raca, tail race, supplly pupe, or other rbanoel convenng the water. Let h_{p} be that loss of head, which vories with the local conditions in which the turbive re placed. Then

$$
\mathrm{H}=\mathrm{H}_{1}-\mathrm{h}_{\mathrm{p}}
$$

is the a vailable head for working the turbine, and on this the cal culationo for the turbine shouly be hased Io sume cases it is necea. sary to place the turline ahove tha tail-water level, and there is theo a lall h from the centre of the nutlet surface uf the turbine to the tainwater level which is wasted, but which ia propmrly one of the lngses belongiog to the torline itself in that case the velmaitirs of the water in the tritbinc should be calculated for a bead $\mathrm{H}-\mathrm{b}$. but tha efficiency of the turbine for the bead H .
172. Gross Rfficincy and Hydraulic Efficiency of a Turbine -Let T_{d} to tha nseful work done by the turbiae, in font-pounds per second, $T_{\text {: }}$ the work expended in frictiou of the turbine ahaft, geariog, ec, e quantity whidh varics with the local conditions in which the turbine is placed. Then the effective work done by the water in the turbine ip

$$
T-T_{0}+T_{1}
$$

The gross efficieany of the whole arraggement of turbina, races, and transmissive machiuery ia

$$
\begin{equation*}
\eta_{1}=\frac{T_{2}}{G Q H_{1}} \tag{6}
\end{equation*}
$$

And the hydmulic efficiency of the turbine alone is

$$
\begin{equation*}
\eta=\frac{T}{C Q \|} \tag{1}
\end{equation*}
$$

It is this last efficiency only with which the theory of turbines io coacerned.

> Frem equations (5) and (7) we get

$$
\begin{gather*}
\eta \mathrm{GQH}=\frac{\mathrm{GQ}}{g}\left(k_{1} r_{1}-u_{9} r_{3}^{\prime} \varepsilon_{i}\right. \\
\eta=\frac{\left(t c_{1} r_{1}-c_{2} r_{2}\right) a}{y]} . \tag{8}
\end{gather*}
$$

This is the fundamental equation in the theory of tarbioes In gaveral,' w_{1} and v_{v}, the tangential components of the water's motion

[^100]on entering and kaving the wheel，are completely indepeadent． That the efficines may be as great as possible，it is obviously neecessary that $u_{t}=0$ ．In that caise

Fig $18 ;$

sace．Calling this V_{1} ，the enuation hecomes

$$
n=\begin{gathered}
u_{1} v_{1} \\
g H_{1}
\end{gathered}
$$

（9a）．
This remarkably simple equation is the fumbanental countion in
αr_{1} is the enrcurfereatal velocity of the whech at the inlet sus．

Fig． 186.

ドi Jくら
the thonry of turburs．It was first emen by Hert v．Reiche （Tworbener－bicuss，15in）．

173．General Destrighion of a hiraction Turent－Profes－ sor Jhace＂Thomson＇s inw m！thow or vortex tubline has been
selected as the type of reaction turbines. It is oae of the best even in normal conditions of working, and the mode of regulation iutroduced is decidedly superior to that in most resction turbines; it might almost be said to be the only mode of regulstiun which satisfies the conditions of efficient working, sud it bas been adopted in a modified fnem in the Leffel turbine, which is now largely used in America.

Figs. 185 and 186 are external viers of the turbine case , figa 187 and 188 are the corresponding sections; bg. 189 is

Fig 189.
the turbine wheel. The example chosen for illustration has auction pipes, which permit the turbine to be placed at any beight less then 30 feet abore the tail-water level. The water eaters the turbine by cast-iron supply pipes at A, and is discharged through two suction pipes S, S. The water on entering the case distributes itself through a rectaggular supply chamber SC, from which it finds its was equally to the four guide-blade passages G, G, G, G Io these passages it acquires a velocity about equal to that due to half the fall, and is directed into the wheel at an angle of about 10° or 12° with the tangent to its circumference. The wheel W receives the water in equal proportiona from each guide-blade passage. It comsiats of a centre plate p (6 g .189) keyed wo the sbaft $a a$, which passes tbrough atuffing boxes on the suction pipes. On earh side of the ceatre plate are the curved wheel vanea, on which the
pressure of the water acts, and the vaoes are bounded on each side by dished or conical coverplates c, c. Jointrings j, j on the cover plates make a sufficiently watertight joint with the casing, to prevent leakage from the guide blade chamber inte the suction pipes. The pressure near the joint rings is not very great, probably not onefourth the total head. The wheel vanes receive the water without shork, and deliver it into central epaces, from which it flows on either side to the suction pipes. The mode of regulsting the power of the turbine is very simple. The guide-blades sre piroted to the cass at their inner ends, sad they are connected by a linkwork, so that they all open and close simultaneously and equally. In this way the area of opening tbrough the guide-blades is altered without materially altering the sagle or the other conditions of the delivery into the wheel. The guide-blade gear may be variously arranged. In this example four spindles, passing through the case, are lioked to the guide-blades inside the case, and conneeted together by the links l, l, l on the outside of the case. A worm wheel on one of the spinules is rotated by a worm d, the motion being thus show enough to adjust the guide-blades very exactly. These turbines are made by Messrs Williamson Brothers of Kendal, who supplied the drawing of the turbine.

Fig 190 whows another arrangement of the same turbine, with some adjuncts not shown in the other drawings. In this case the turbine rotates horizoutalty, and the turbine case is placed eotirely below the lul water The water is supplied to the turbine by a vertical p pre, over whichis a wooden pentrough, containing a atrainer, which prevents sticks and other solid bodies getting into the turbina

By 190
The turbine rests on three foubdation stones, uud, the pipot for tha vcrtical shaft being under water, there is a screw and lever arrangement for adjusting it as it wears. The vertical shaft gives tootion to the machinery drisen by a pair of bevel wheels On the right are the worm and wherl for working the gulde blade gear

Fig 191
174. Diferent Forms of Turbine Wheel - Tho wheel of a turblae or part of the machide on which the water acts is an annular space, furnished with curved vaues dividing it into passages exactly or roughly rectangular in crose section. For radial flow turbincs the wricel may have the form Δ of B, fig. 191, A being most usual
with inward, and B with outward flow turbines. In A the wheal zanes ere fixed on each side of a centre plate keyed on the turbine shaft. The vanes are limited by slightly-coned annutar covar plates. In B the vanes are fixed on one side of a diak, keyed on the shaft, and limited by a cover plate parallel to the disk Paralled
now or axial flow turbines have the wheel as in C . The vanes are limited by two coacentric cylinders.

Reaction Turbines.

175. Felocity of Whirl and Velocity of Flow.-Let acb (fig. 192) be the path of the particles of water in a turbine wheel. That
path will be in s plane normal to the axis of rotation io radial flow turbines, and on a cylindrical surface ln axial flow turhines. At any point e of the path the water will have some velocity \boldsymbol{v}, in the direction of a

Fig. 192. path that the
 city may be.resolved into tro components, a whirling velocity w in the direction of the wheel's rotation at the point c, and a component \boldsymbol{u} at right angles to this, radial in radial flow, and parallel to the exis in axial flow turbines. This becond component is termed the velocity of flow. Let v_{0}, w_{0}, u_{0} be the velocity of the water, the whi:ling velocity and velocity of flow at the ontlet surface of the wheel, and $v^{d}, w_{i}, u s$ the same quantities at the inlet surface of the wheel. Let a and β be the angles which the water's direction of motion makes with the direction of motion of the wheel at those surfaces. -Then

$$
\left.\begin{array}{l}
x_{0}=v_{0} \cos \beta ; u_{0}=v_{0} \sin \beta \tag{10}\\
v_{i}=v_{0} \cos a ; u_{i}=v_{i} \sin a
\end{array}\right\}
$$

The velocities of flow are easily ascertained independently from the dimensions of the wheel.- The velocities of flow at the inlet and outlet ourfaces of the wheel are normal to those surfacts. Let Ω_{0}, Ω_{i} be the areas of the outlet and inlet surfaces of the wheel, a a Q the velume of water passing through the wheel per second ; then

$$
\begin{equation*}
v_{0}=\frac{Q}{\Omega_{0}} ; v_{i}=\frac{Q}{\Omega_{i}} \tag{11}
\end{equation*}
$$

Using the notation in fig. 191, we have, for an inward flow turbine (neglectiog the space occupied by the vanes),

$$
\begin{equation*}
\Omega_{0}=2 \pi r_{0} d_{0} ; \Omega_{1}-2 \pi r d_{r} \tag{12a}
\end{equation*}
$$

Similarly, for an outward flow turbine,

$$
\begin{equation*}
\Omega_{0}=2 \pi r_{0} d ; \Omega_{i}=2 \pi r_{i} d \tag{12b}
\end{equation*}
$$

and, for an axial flow turbine,

$$
\begin{equation*}
\Omega_{0}=\Omega_{i}=\pi\left(r_{3}^{3}-r_{2}^{3}\right) . \tag{12c}
\end{equation*}
$$

Relative and Common Velocity of the Water and Whel.-There is another way of resolving the velocity of the water. Let V be the velocity of the wheel at the point c, fig. 193. Then the velocity of the water may be re. solved into a component V, which the water has in common with tho wheel, ond a com. ponent $v_{\text {re }}$ which is the velocity of the water relatively to the whel.
relocely of Flow. -It is ohvions that the (rictional lossera
 Fie head is the wheel passares will incres. pasaages will increase as the velocity of fow is greater, that is, the smaller the whecl is made. Lut if the wheel warks under water, the skin friction of the whel cover increases as the diameter of the wheel is made greater, and in any case the weight of tha wheel and consenuently the journal friction increase as the wheel is made larger. It is therefore desirable to choose, for the velocity of flow, as large a value as is consistent with tho condition that the frictional losses in the wheel possages are a small fraction of the total head.
The values frost commonly nasumed in practice are these :-
In axial flow turbines, $\quad n_{0} \sim u=0.15$ to $0.2 \sqrt{2 g \mathrm{H}}$;
in outward flow turbiner, $u_{i}=0.25 \sqrt{2 g(1)-b)}$,
$u_{n}=0.21$ to $0.17 \sqrt{2(2(11-\eta)}$;
fa insard flow turbincs, $u_{0}=u_{6}=0.125 \sqrt{2} 2 \mathrm{~J}$.
176. Specd of the Wheel. - The best speed of the wheel depends partly on the frictional losses, which the ordinery theory of turbines disregards. It is best, therefore, to assume for V_{0} and V_{s} values which experiment has shown to be most advantageous.
In axial flaw turbines, the circumferential velocities at the mean redius of the wheel may be taken

$$
\mathrm{V}_{0}=\mathrm{V}_{1}=0.6 \sqrt{2 g \mathrm{H}} \text { to } 0.66 \sqrt{2 g \mathrm{H}} .
$$

In a radial outward flow turbine,

$$
\begin{aligned}
& \mathrm{V}_{i}=0.56 \sqrt{2 g(\mathrm{H}-\mathrm{b})} \\
& \mathrm{V}_{0}=V_{i} \frac{r_{0}}{r_{i}}
\end{aligned}
$$

where r_{0}, r_{t} are the radii of the outlet and inlet surfaces ${ }^{-}$
In a radial inward flow turbine,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{d}}=0.66 \sqrt{2 g \mathrm{H}}, \\
& \mathrm{~V}_{\mathrm{a}}=\frac{r_{0}}{r^{i}} \mathrm{~V}_{d} .
\end{aligned}
$$

If the wheel were stationary and the water flowed through it, tho water would follow pathe parallel to the wheel vanecurves, at least when the vanes were so close that irregular motion wes prevented. Similarly, when the wheel is in motion, the water follows paths rela. tively to the wheel, which are curves parallel to the wheel vanes Hence the relative component, ψ_{r}, of the water's motion at \mathbf{c} is teageatial to a wheel rane cure drawn through the point c. Let v_{0}, $Y_{0}, v_{r 0}$ be the velocity of the water and its common and relatire components at the outlet surface of the wheel, and $v_{i}, \mathrm{~V}_{i}, v_{r r}$ be the same quantities at the inlet surface; and let θ and ϕ be the angles the wheel vanes make with the inlet and outlet suriaces; then

$$
\left.\begin{array}{l}
v_{0}^{2}=\sqrt{ }\left(v_{r_{0}}^{2}+V_{0}^{2}-2 V_{0} v_{r o} \cos \phi\right) \tag{I3}\\
v_{s}-\sqrt{ }\left(v_{r o}^{2}+V_{s}^{2}-2 V_{0} v_{r c} \cos \theta\right)
\end{array}\right\}
$$

equations which may be used to determine ϕ and θ.
177. Condition detcrmining the Angle of the Vancs at the Outct Surface of the Whect. - It has been shown that, when the water leaves the wheel, it should have no tangential velocity, if the efficiency is to be as great as possible; that is, $v_{0}=0$. Heace, from (10), $\cos \beta=0, \beta=90^{\circ}$, $u_{0}=v_{0}$, and the direction of tho water's motion is nermal to the
 ontlet surface of the whecl, radial in radial flow, and axial in axisa flow turbines.

Drawing v_{0} or u_{0} radial or axial as the casc may be, and V_{0} tangential to the direction of motion, $v_{r_{0}}$ can be found by the perallelogran of velocitice. From 6ig. 194,

$$
\begin{equation*}
\tan \phi=\frac{v_{0}}{V_{0}}-\frac{u_{0}}{V_{0}} \tag{14}
\end{equation*}
$$

but ϕ is the angle which the whecl veno makes with the outlet surface of the wheel, which is thus determined when the relocity ol How u_{0} and velocity of the wheel V_{0} are known. Whon ϕ is thus determiaed,

$$
\begin{equation*}
v_{r_{0}}=u_{0} \operatorname{cosec} \phi=\mathrm{V}_{0} \sqrt{1+\frac{\boldsymbol{u}_{0}^{2}}{V_{0}^{2}}} . \tag{14a}
\end{equation*}
$$

Correction of the Anglo ϕ to allow for Thickness of Vanes.- ID determining ϕ, it is most conveniont to calculnte its value opproximately at first, from a value of u_{0} obtained by neglecting the thickness of the vancs. As, however, this angle is the most important anglo in the turbine, the ralue ohould be afterwards corrocted to allow for the vano thickness.

Let

$$
\phi^{\prime}-\tan ^{-1} V_{0}^{-\tan }{ }^{-1} \frac{Q}{\Omega_{0} V_{0}}
$$

be the firet or appooximate valuo of ϕ, and let t be the thickness, and n the number of whecl vanes which reach the ontlet surface of the wheel. As the vanes cut the outlet surface approximately st the angle ϕ^{\prime}, their width measured on that aurface is t coser Hence the opacooccupicd by the vancs on the outlet eurface is

$$
\left.\begin{array}{c}
\text { For A, fig. } 191, n t d_{0} \operatorname{cosec} \phi \\
\text { B, fig. 191, } n d(\operatorname{coscc} \phi \\
\text { C, fig. } 191, n t\left(r_{0}-r_{2}\right) \operatorname{cosec} \phi
\end{array}\right\}
$$

Call thig aren occupied by the vades a. Then the true value of thu clear discharging ontlet of the wheel is $\Omega_{0}-\omega_{1}$ and the true value of u_{0} is $\frac{Q}{\Omega_{0}-\omega}$. The cerrected value of the angle of the vanes will ba

$$
\begin{equation*}
\phi=\tan ^{-11} \frac{Q}{\left(\Omega_{0}-\omega\right) V_{0}} \tag{16}
\end{equation*}
$$

178. Head producing Velocity with vchich the Water enters the Wheel.-Consider the variation of pressure in n wheel pussage, Which satisfieg the condition that the sections change so gradually that there is no loss of acad in shock. When the flow is in a horicontal plane, there is no work done by gravity on the water passing through the wheel. In the casc of an axial flow turbine, in which the flow is vertical, the fall d between the inlet and outlet surfaces should be taken into sccount.

Let V_{i}, V_{0} be the velocities of the wheel at the inlet and outlet surfaces,
v_{i}, v_{0} the velocities of the water,
u_{n}, u_{0} the velocities of flow,
$v_{r i}, v_{r_{0}}$ the relative velocities,
h_{r}, h_{0} tha pressures, measured in fect of water,
r_{i}; r_{0} the गadii of the wheel,
a the angular velocity of the wheel.
At any point in the path of a portion of water, at radius r, the velocity v of the water may be resolved into a component $V=a r$ equal to the velocity at that point of the wheel, snd a relative compooent $v_{r .}$ Heace the motion of the water may be considered to consist of two parts :-(a) a motion identical with that in a forced vortex of constant engular velocity $a ;(b)$ a flow slong curves parallel to the wheel vane curves. Taking the latter first, and using Berpoolli's theorem, the change of jressure due to flow through the wheel passages is given by the equation

$$
\begin{aligned}
& h_{i}^{\prime}+\frac{v_{r i}^{2}}{2 g}=h_{0}^{\prime}+\frac{v_{r 0}{ }^{2}}{2 g} \\
& h_{i}^{\prime}-h_{1}^{\prime}=\frac{v_{r 0} 0^{2}-v_{r i}^{2}}{2 g}
\end{aligned}
$$

The varistion of pressure due to rotation in a forced vortex is

$$
h_{1}^{\prime \prime}-h_{0}^{\prime \prime}=\frac{V_{i}^{2}-V_{0}^{2}}{2 g}
$$

Conseqnently the whule difference of pressure at the iolet and outlet surfaces of the wheel is

$$
\begin{align*}
h_{i}-h_{0} & =h_{i}^{\prime}+h_{i}^{\prime \prime}-h_{0}^{\prime}-h_{0}^{\prime \prime} \\
& =\frac{\Gamma_{i}^{2}-V_{0}^{2}}{2 g}+\frac{v_{r 0}^{2}-v_{r i}^{2}}{2 g} \tag{17}
\end{align*}
$$

Case 1. Axial Flow Turbines. $-V_{i}=V_{. .}$; and the first term on the right, in equation 17, disappears. Adding, however, the work of gravity due to s fall of d feet in passiug through the wheel,

$$
\begin{equation*}
h_{i}-h_{0}=\frac{\eta_{n} 0^{2}-v_{r i}^{2}}{-g}-d \tag{17a}
\end{equation*}
$$

Case 2. Outward Flovo Turbines, -The inlet radius is less than the outlet radius, and $\frac{V_{i}{ }^{2}-V_{0}^{2}}{2 g}$ is negative. The centrifugal head diminishes the pressure at the iulct surface, and increases the velocity witlo which the water enters the wheel. This somewhat increases the frictional loss of head. Further, if the wheel varies ia velocity from variations in the uscful work done, the quantity $\frac{\mathrm{V}_{i}{ }^{2}-\mathrm{V}_{0}{ }^{2}}{2 g}$ is. creases when the turbine speed increases, and vicc vorsa. Consequently the flow into the turbine increases when the speed increases, und diminishes when the speed diminishes, and this again augments the rariation of speed. The action of the centrifugal heal in an outrand flow turbine is therefore prejudicial to stealiness of motion. For this reasod $r_{0}: r_{i}$ is mede small, generally about $5: 4$. Evin then a governoz is sometimes required to regulate the speed of the turhine.

Case 3. Invard Flow Turbincs.-The inlet ralius is greater than the untlet radius, and the centrifugal head diminishes the velocity of flow into the turhine. This teods to diminish the firctional losses, but it has a more important intlnence in seeuring steadiness of motior. Any increase of apeed diminishes the flow into the tur. bine, and vice versa. Hence the variation of sped is less than the variation of resistance overcome. In the so-called centre vent wheels in America, the ratio $r_{i}: r_{0}$ is ahout $5: 4$, and then the influmee of the centrifigal head is not very important. Professor James Thomsen first pointed out the advantago of a nuch greater diffrence of radii. By making $r_{1}: r_{v}=2: 1$, the centrifugal head balases ahout liale the lead in the supply chamber. Then the velo.

$$
12-20
$$

city through the guide-blades dues not exoced the relocity duc to half the fall, and the action of the ccatrifugal head in securing steadiness of speed is considerable.

Since the total head producing flow throagh the turbine is $\mathrm{H}-\mathrm{f}$, and of this $h_{i}-h_{0}$ is expended in overcoming the pressure in tho wheel, the velocity of How lato the wheel is

$$
v_{1}=c_{v} \sqrt{ }\left\{2 g\left(\mathrm{H}-\mathrm{b}-\frac{\mathrm{V}_{i}^{2}-\mathrm{V}_{0}^{2}}{2 g}+\frac{v_{r 0}{ }^{2}-v_{r i}^{2}}{2 g}\right)\right\} .
$$

where may be taken 0.96 .
From (14a).

$$
\tau_{r 0}=V_{0} \sqrt{\left(1+\frac{v_{0}^{2}}{V_{0}^{2}}\right)}
$$

It will be shown immedistely that

$$
v_{r i}=u_{i} \operatorname{cosec} \theta ;
$$

or, as this is only a sinall term, and θ is on the average 90°, we may take, for the present purpose, $v_{r}=u_{i}$ vearly.
loserting these values, and remembering that for an sxial flow turbine $V_{i}=V_{0}, \mathfrak{b}=0$, sad the fall d in the wheel is to be added,

$$
\left.v_{i}=c_{0} \sqrt{ } \sqrt{2 q}\left(\mathrm{H}-\frac{\mathrm{V}_{i}^{2}}{2 g}\left(1+\frac{u_{0}^{2}}{V_{0}^{2}}\right)+\frac{u_{i}^{2}}{2 g}-d\right)\right\}
$$

For an outward flow turbine,

$$
\left.\varepsilon_{i}=c_{v} \sqrt{ } \sqrt{ } g\left\{\mathrm{II}-\mathfrak{b}-\frac{V_{i}^{2}}{2 g}\left(1+\frac{u_{0}{ }^{2}}{V_{i}^{2}}\right)+\frac{u_{i}^{2}}{2 g}\right\}\right]
$$

For an ioward flow turbioc,

$$
\left.\tau_{i}=c_{2} \sqrt{ } \sqrt{2 g}\left\{\mathrm{H}-\frac{\mathrm{V}_{i}^{2}}{2 g}\left(1+\frac{u_{u}^{2}}{V_{i}^{2}}\right)+\frac{u_{i}^{2}}{2 g}\right\}\right]
$$

179. Augle which the Ouide-Blades make with the Circumforcne of the Wheel.-At the moment the water entera the vheel, the radial component of the velocity is u, and the velocity is vi_{i} Hence, if γ is the angle bitween the quide.blades and a tangent to the wheel

$$
\gamma=\sin ^{-1} \frac{u_{i}}{2 i}
$$

This angle can, if necessary, be corrected to allow for the thickness of the guide-blades.
180. Condition Determining the Angle of the Vanes at the Intet Sur. face of the Wioce. -The single condition necessary to be satisfied at the inlet surface of the wheel is that the water should enter the wheel without shock. This condition is satisfied if the direction of relative motion of the water and wheel is parallel to the first element of the wheel vames.

Let A (fig. 195)
be a point on the inlet surface of the wheel, and let virepresean in magnitude and direction the velocity of the water cntering the wheel, and Vi the relocity of the wheel. Completing the parallelogram, $v_{r i}$ is the direction of relative ruotion. Hence tho angle between $v_{r i}$ and V_{i} is the angle θ which the vancs should make with the inlct surface of the wheel.
181. Example of the Mcthod of Designing a Tutbinc. Profissor James Thomson's Inuard Flow Turbine. -

Let $I I=$ the ava:lable fall after deducting loss of head in pipes and channels from the gross fall;

$$
Q=\text { the sulply of water in chbic feet per second; sma }
$$ $\eta=$ the elliciency of the turbine.

The rork dune per second is

$$
\eta \mathrm{G} \subseteq \mathrm{II}
$$

and the loorse-power of the turbine is

$$
\text { h.p. }=\frac{\eta \mathrm{G} \mathrm{QLI}}{5} \frac{1}{50}
$$

If η is taken at 0.55 , an alloranee will be made for the frictional losses in the turbine, the leakage, and the friction of the turbine ahaft. Then h.p. $=0.055 \mathrm{QII}$.

The velocity of How throngh the turbine (uncorrected for the apace occupided by the vanes and guide-blates) may be taken

$$
u^{\prime}=u_{u}=0.125 \sqrt{2 g} I
$$

in which case about fith of the energy of the fall is carried away by the water discharged.

The areas of the outlet and inlet surface of the whed are then

If we take r_{0}, so that the axial velocity of discharge from the central ortices of the wheel is equal to u_{0}, we get

$$
\begin{aligned}
& r_{0}=0.3984 \sqrt{\frac{Q}{\sqrt{\mathrm{H}}}}, \\
& d_{0}=\tau_{0} .
\end{aligned}
$$

If, to obtain considerable steadying action of the ceatrifugal head, $r_{1}=2 r_{0}$ then $d_{i}=\frac{1}{2} d_{0}$.
Speed of the Wheel. - Let $\mathrm{V}_{1}=0.66 \sqrt{ } 2 g \mathrm{H}$, or the speed due to half the fall nearly. Then the number of rotatious of the turbine per second is

$$
\left.\mathrm{N}=\frac{\mathrm{V}_{i}}{2 \pi r_{i}}=1.0579 \sqrt{\mathrm{H} \sqrt{\mathrm{H}}} \underset{Q}{ }\right\}
$$

also

$$
\mathrm{V}_{0}=\frac{r_{0}}{r_{1}} \mathrm{~V}_{1}=0.33 \sqrt{-y_{g} \mathrm{H}}
$$

Angle of Vanes with Outlet Surface.

$$
\begin{aligned}
\operatorname{Tan} \phi & =\frac{u_{0}}{V_{0}}-\frac{0.125}{0.33}=3783 . \\
\phi & =21^{\circ} \text { nearly } .
\end{aligned}
$$

If this value is revised for the vane thickness it will urdinarily become about 25°.

Velocity with which the Water enters the Wheel. -The head producing the velocity is

$$
\begin{aligned}
& H-\frac{V_{1}^{2}}{2 g}\left(1+\frac{u_{0}^{2}}{V_{1}^{2}}\right)+\frac{u_{1}^{2}}{2 g} \\
- & \|\{1-4356(1+0.0353)+0156\} \\
- & 0.5646 \mathrm{H} .
\end{aligned}
$$

Then the velocity is

$$
\therefore 30 \sqrt{2 g(5046 \mathrm{H})}=0.721 \sqrt{2 g \mathrm{H}}
$$

Angle of Guide-Blades.

$$
\begin{gathered}
\operatorname{Sin} \gamma=\frac{u_{i}}{v_{i}}=\frac{125}{721}=0173 ; \\
\gamma=10^{\circ} \text { nealy } .
\end{gathered}
$$

Tangential Velocity of W'ater entering Whes.

$$
u_{1}=v_{1} \cos \gamma=0.7101 \sqrt{2 g I I} .
$$

Angle of Vancs at Inlct Surface.

$$
\begin{aligned}
& \operatorname{Cot} \theta \propto \frac{m_{i}-V_{i}}{u_{i}}=\frac{7101-66}{125} \oplus 4003 ; \\
& 0-65^{\circ} \text { nearly. } \\
& 7=\frac{w_{1} V i}{g l l}=7101 \times 60 \times 2 \\
& -0.9373 .
\end{aligned}
$$

This, however, nemiccts the friction of whed eoverg and leak. oge. The ellicicucy fiom experiment las been found to lic 075 to 0.80 .

Impulse and Partal Almessen Turbenes.

182. The principal defect of most turbines with eomplete admission is tho imperfection of the arrangements for warkint with low than the mormal supply. With most forms of turbine the efficiency is considerably reduced when the regulating shices are partially closad, but it is cractly whea the supply of water is deficient that it is most important to get out of it the grontest possible amount of work. The imperfection of the regulating arragements is, therefore, from the practimal point of view, a serious defect. All turbine makers lave sought by various methods to improvo the regulating mechanism. Fourneyron, by divid-
ings his wheel by horizontal diaphragms, virtually obtained three or more separate radial flow tarbines, which could be successively set in ection et their full power, but the arrangement is not altogether successfol, becaust of the spreading of the water in the space between the whed and guide-blades. M. Fontaine sialilarly employed two conceatric axial flow turbines furmed in the same casing. One was worked at full power, the other regulated. By this arrangement the loss of efficiency due to the action of the rggulating sluice affected ooly half the water power. Many makers have adopted the expedient of erecting two or three separate turbines on the same waterfall. Then one or more could be pat ont of action and the others worked at full power. This is an excellent plan, but the separate turbines cust more than a single one. All these methods are rather palliatives than remedies. The movable guide-blades of Professor James Thomson meet the difficulty direetly, bat of course they are not applicable to every form of turbine.

A subsidiäry defect of turbines with complete admission is their rery great specd of rotation on high falls. The turbine wheel cannot be increased in diameter without great increase of the fluid friction in the passages and on ibe surface of the wheel, and it also becomes impossible in radial fow turbines to adjust properly tbe vane angles, if the diameter is made very large.
M. Callon, in 1840, patented an arrangement of sluices for axial or outward flow turbines, which were to be closed successively as the water supply diminished. By preference the sluices were elosed by pairs, two diametrically opposite slaices forming a pair. The water was thus admitted to opposite but equal ares of the wheel, and the forces driving the turbine were symmetrically placed. As soon as this arrangement was adopted, a modification of the mode of action of the water in the tarbine became necessary. If the turbine wheel passages remain foll of water during the whole rotation, the water contained in each passage must be put into motion each time it passes an open fortion of the sluice, and stopped each time it passes a closed portion of the sluice. It is thus put into motion and stopped twice in each rotation. This gives rise to violent cddying motions and great loss of energy in shock. To prevent this, the tarbine whecl with partial admission must be placed above the tail water, and the wheel passages be allowed to clear themselses of water, while passing from one open portion of the sluices to the next.

Lat if the wheel passages are tree of water when they arrive at the open sluiees, theu there can be no pressure other than atmuspheric pressure in the space between the sluices and wheel. 'The water must issne from the sluices with the whelo velocity due to the licad; received on the curved vanes of the wheel, the jets must be gradually deviated and discharged with a radial velocity only, precisely in the same way as when a single jet strikes a curved vane in the free air. Soulhines of this kind are therefore termed turbines of free deviation. There is no variation of pressure in the jot during the whole time of its action on the wheel, and the whole energy of the jet is imparted to the wheel, simply by the impulse due to its grarlual change of momentum. It is elear that the water may be admitted in exactly the same way to any fract fon of the circumferenco at pleasure, without altering the eflicieney of the wheel. The dhameter of the whed may be made as large as convenient, and thus the speed of rotation on higli falls may be kept down to a manageable amount. The Poncelet water wheel is a turbine of free deviation, in which, hewever, the actien uf gravity canses the water to thow back along the vancs, so that it is discharged at the same point. of tho wheel at which it enters.

So long as the tail-water level is invariable, no difficulty
arises in adopting the system of partial admissien. But if, as is more commonly the case, the tail-water level varies, then there is danger that the turbine will be drowned in flood time, and tho essential condition of the system that the wheel passages should be empty when they come in froat of the open sluices will not be satisfied. Ii the fall
is considerable, a portion of it may be sacrificed without much harm, and the wheel placed sufficiently high above the tail water to secure it from being drowned; but with lew falls this is impossible. The difficulty has been overcome by a method invented by M. L. D. Girard in 1849, and termed the hydropneumatic system. The turbine ix

Fig. 126
glaced below the tail-water level in a casing snplied with air by a small air-pump. It thergore always discharges freely into an atmosphere of air, the pressure of which, howcyer, varies with the beight of tho tait-water level ontside the casine. Inside the easing the free water surface.
is maintained at an "invariable larel just below the als clarge orifices of the whect.
183. Gencral Descrintion of an Jokpulec Turlinem Turtine with. Free Deminfort-Fig 196 shows a genemal sectional clevation of a Gimard turbine, is which the flow is axtel. The seater, adnitted
above a horizontal lloor, passes down through the annular wheel eontaining the guide-biades G, G and thence into the revolving wheel

WW. The revolving wheel is fixed to a hollow shaft suspended from the pivot p. The solid inter. mal shaft ss is merely a fixed column support. ing the pivot. The advantage of this is that the pivot is acceasibla for lnbrication and adjustment. R is the mortise bevel wheel by which the power of the turbine is

Fig. 197. given off. The sluices are worked by the hand wheel h, which raises them successively, in a way to he described presently. a, a aro the aluice rods. Figs. 197, 198 show the seetional form of the guideblado chamber and wheel and the eurves of the wheel vanes and guideblades, when drawn on a plane develop. ment of the cylin. drical section of the the sluices for cut. ting off the water; b, b, b are apertores by which the entrance or exit of air is facilitated as the buckets empty and fill. Figs. 199, 200 show the guide. blade gear. a, a, a are the aluice rods

Fig. 198. as before. At the top o. each sluice rod is a small block c, having a projecting tongue, which alides in the groove of the circular ean plate d, d. This eircular plate is supperted on the frame e, and

Fig. 109.
revolves on it by means of the flangel rollers f. Insile, at the top, the cain plate is toothed, and gravs into a spur pision connected with the hanel whed h. At gy is an inelined groove or shunt.

Fig. 200
When the tongmes of the llocks c_{1} carrive at g, they slide np io a woml grmue, or the teverse, aceorling as the camplate is rewolvel
in one direction or in the other. As this operation takes place with each sluice successively, any number of sluices ean be opened or closed as desired. The turbine is of 48 horse power on $5 \cdot 12$ feet fall, and the supply of water varies from 35 to 112 eubic feet per second. The efficiency in normal working is given as 73 per cent. The mean diameter of the wheel is 6 feet, and the speed 27.4 revolutions per minute. ${ }^{1}$
184. Theory of the Impulse Turbinc. - The theory of the impulso turbine does not essentially differ from that of the reaction turhine, except that there is no pressure in the whcel opposing the diseharge from the guide-blades. Hence the velocity with which the water entery the wheel is simply

$$
v_{\mathrm{i}}=0.96 \sqrt{2 g(\mathrm{H}-\mathrm{h})},
$$

where \mathfrak{h} is the height of the top of tle wheel above the tail water. If the hydropneumatie system is used, then $b=0$. Let Q_{∞} be tho maximum supply of water, r_{1}, r_{3} the internal and extemal radii of the wheel at the inlet surface; then

$$
u_{i}=\frac{Q_{m}}{\pi\left(r_{2}^{2}-r_{1}^{2}\right)}
$$

The value of u_{i} may be about $0.45 \sqrt{2 g(\mathrm{H}-5)}$, whence r_{1}, r_{2} can be determined.

The guide-blade angle is then given by the equation

$$
\begin{aligned}
\sin \gamma & =\frac{u_{i}}{v_{i}}=\frac{0.45}{0.94}=\cdot 48 \\
\gamma & =29^{\circ}
\end{aligned}
$$

The value of u_{1} should, however, be corrected for the space occupied by the guide-blades.

The tangential velocity of the eatering water is

$$
w_{\mathrm{i}}=v_{1} \cos \gamma=0.82 \sqrt{2 g(\mathrm{H}-\mathrm{G})}
$$

The circumferential veloeity of the wheel may be (at mean radius)

$$
V_{i}=0.5 \sqrt{2 g(\mathrm{H}-\boldsymbol{b})} .
$$

Heace the vane angle at iulet surface is given by the.equation

$$
\begin{aligned}
\cot \theta & =\frac{v_{i}-V_{i}}{u_{i}}=\frac{0.82-0.5}{0.45}=\cdot 71 \\
\theta & =55^{\circ} .
\end{aligned}
$$

The relativo velocity of the water striking the vaue at the inlet edge is $v_{r i}=u_{i} \operatorname{cosee} \theta=1 \cdot 22 u_{i}$. This relative veloeity remains unchangel during the passage of the water over the vane; eense. quently the rclitive velocity at the point of diseharge is $v_{r o}=1 \cdot 22 u_{i}$. Also in an axial flow turbine $V_{0}=V_{i}$.

If the final velocity of the water is oxial, then

$$
\cos \phi=\frac{V_{0}}{V_{r o}}=\frac{V_{t}}{V_{r i}}=\frac{0.5}{1.22 \times 0.45}=\cos 24^{\circ} 23^{\prime}
$$

This shonld be correeted for the vane thickness. Neglecting this, $u_{n}=i_{r n} \sin \phi=z^{\prime}$ ri $\sin \phi \Rightarrow u_{i} \operatorname{cosec} \theta \sin \phi=0.5 u_{i}$. The discharging area of the wheel must therefore be greater than the inlet area in the ratio of at least 2 to 1 . In some actual turhines the ratio is 7 to 3 . This greater outlet area is obtained by splaying the wheel, as shown in the scction (fig. 198).
185. The IIydroulic Ram. -The hydraulic ram is an ar. rangement by which a quanlity of water falling a distance h forees a pertion of the water to rise to a height h_{1}, greater than h. It cunsists of a supply reservoir (Λ, fig. 201), into which the water enters from some natural stream. A pipo s of considerable length conducts the water to a lower level, where it is disebarged intermittently through a self-aeting pulsating valve at α. Tho supply pipe s may be fitted with a flap-valvo for stopping the ram, and this is attached in some cases to a tloat, so that the ram starls and stops itself automatically, aceording as the supply cistern fills or empties. The pipe s should bo as long and as straight as possible, and as it is subjectod to considerable pressure from the sudden arrest of the motion of the water, it must be strong and strongly jointed. d is an air vessel, and e tho delivery pipe learling to tho reservoir at a higher level than A, into which water is to bo pumped. Fig. 202 shows in scetion the construction of tho ram itself. d is the pulsating discharere value alrealy mentioned, wheh opens inwards and downwards. The struke of the valve is regulated ly the eotter through the spindle, under which are washeta, by

[^101] the thytrantia, patly frosn Uhlaml; shiedubuch.
which the ambunt of fall can be regulated. At \dot{o} is a delivery valve, opening out wards, which is often a ball-valve bat sumetimes a flap-valve. The water which is pumped passes through this valve into the air vessel a, from which it flows by the delivery pipe in a regular stream into the cistern to which the water is to be raised. In the vertieal chanoer bebind the uiter valve a small air vessel is furmed,

Fig. 201
and into this opens an aperture $\frac{1}{4}$ inch in diameter, made int brass serew plug b The hole is reduced to $\frac{1}{18}$ ineh in diameter at the outer end of the plug and is closed by a small valve opening inwards. Threugh this, during the rebound after each stroke of the ram, a small quantity of air is sucked in whieh keeps the air vessel supplied with its elastic cushion of air
The disclarge valve d is of greater weight than the statical pressure of the water on its under side. When, therefore, the water is at rest in the supply pipe this valve opens. In eunse. quence of the flow through this valve, the water in the supply pipe acquires a gradually increasing velo. city. The upward flow o the water, towards the valve d, increases the pressure tending to lift the valve. and at last, if the vaive is not too heavy, lifts and closes it. The forward momentum of the column in the supply pipe being destroyed by the stoppage of the fow, the water

Fig. 202. exerts a pressure at the end of the pipe sufficient to open the delivery valve o, and to cause a portion of the water to flow intu the air vessel. As the water in the supply pipe comes to rest, the valve d opens again and the operation is repeated. Part of the energy of the descending column is employed in compressing the air at the end of the supply pipe and expanding the pipe itself. This causes a recoil of the water which mementarily diminishes the pressure in the pipe below the pressure due to the statical head. This assists in opening the valve d. Mr W. Anderson states that the recoil of the water is sufficiently great to enable a pump to be attached to the ram body instead of the direet rising pipe. With this arrangement a ram working with muddy water miny be employed to raise clear spring water. Instead of lifting the delivery valve as in the orlinary ram, the munentum of the column drives a sliding or elastic piston, and the recoil brings it back. This piston lifts and forces alternately the clear water through ordinary pump valves.

Pomps.

186. The different classes of pumps correspond alinost exactly to the different classes of water motors, although the mechanical details of the construction are semewhat different. They are properly reversed water motors. Ordinary reciprecating pumps correspund to water-pressure engines. Chain and bucket pumps are in principle similar to waten wheels in which the water acts by :veight. Scoup wheels are similar to undershot water wheels, and centrifugal pumps to turbines.

Reciprocating P'emps are single or double acting, and diffier from water-pressure eugiues in that the valves are moved by the water instead of by autumatic machinery. They may be elassed thus :-
(1.) Lift Punep - The water drawn through a foos valve on the ascent of the pump bucket is forced through the bueket valve when it descends, and lifted by the bucket when it reascends. Such pumps give an intermittent diselarge.
(2.) Plunger or Force Pumps, in whici the nater drawn through the foot valve is displaced by the descent of a solid plunger, and foreed through a delivery valve. They have the advantage that the frietion is less than that of lift pumps, and the packing round the plunger is easily aceessible, whilst that round a lift pump bucket is nut. The flow is intermittent.
(3.) The Double-acting Force Pump is in principle a double planger pump. The discharge fluetuates from zero to a maximum and back to zero each stroke, but is not arrested for any appreciable time.
(4.) Buchet and Plunger Pumps consist of a lift pump bucket cumbined with a plunger of balf its area. The How varies as in a double-ueting pump.
(5.) Duaphragm Pumps have been used, in which the solid planger is replaced by an elastic diaphragm, alternately depressed into and raised out of a cylinder.
The variation of velocity of diselharge would cause great waste of work in the delivery pipes when they are long, and even danger from the hydraulic ramming action of the long column of water. An air vessel is interposed between the punp and the delivery pipes, of a volume from 5 to 100 times the space described by the plunger per stroke. The air in this must be replenished.from time to time, or continuously, by a special air-pump. At low speeds not exceeding 30 fect per minute the delivery of a pump is about 90 to 95 per cent. of the volume deseribed by the plunger or bucket, from 5 to 10 per ecut. of the discbarge heing lost by leakage. At high speeds the quantity pumped oceasionally execeds the volume described by the plunger, the momentum of the water keeping the valves open after the turn of the stroke.
The velocity of large mining pumps is about 140 feet per minute, the indoer or suction stroke being sometimes made at 250 feet per minute. Rotative pumping engines of large size have a plunger speed of 90 feet per minute. Small rotative pumps are run faster, but at some loss of efficieney. Fire-engine pumps bave a speed of 180 to 220 feet per minute.
The efticiency of reeiprocating pumps varies very greatly. Smail reciprocating pumps, with metal valves on lifts of 15 feet, were found by Morin to have an efieiency of 16 to 40 per cent., or on the average 25 per cent. When used to pump water at considerable pressure, through hose pipes, the elficieney rose to from 28 to 57 ier cent., or on the average, with 50 to 100 feet of lift, alwut 50 per ceet. A large
pump with barrels 18 inches diameter, at speeds. under 60 feet per minute, gave the following results:-
Lift in fee
Efficiency \qquad 142
47 47

The very large steam-pumps employed for waterworks, with 150 feet or more of lift, appear to reach an efficiency of 90 per ceat., not including the friction of the discharge pipes.

The Centrifugal 「umpp.

187. The efficicney of reciproeating pumps diminishes with the lift. When large quantities of water are to be raised on a low lift, no pump is so suitable as a centrifugal pump. The first pump of this kind which attracted notice was one exhibited by Mr Appold in 1851, and the special features of his pump have been retained in the best pumps since constructed. Mr Appold's pump raised continuously
a volume of water equal to 1400 times its own capacity par mioute. It bad no valves, and it permitted the passage of solid bodies, such as walnuts and oranges, without obstruction to its working. Its efficiency was also found to ba good.
Fig. 203 shows a centrifugal pump differing from ordinary centrifugal pumps in one feature only. The water rises through a suction pipe S, which divides so as to enter the pump wheel at the centre on each sido. The pump disk or wheal is very similar to a turbine wheel It is kayed on a shaft driven by a belt on a fast and loose pulley arrangement at P. The water rotating in the pump disk presses outwards, and if the speed is sufficient a continuous How is maintained through the pump and into the discharge pipe D. The special feature in this pump is that the water, discharged by the pump disk with a whirling velocity of not inconsiderable nagnitude, is allowed to continue

Fig. 203.
rotation in a chamber soniewhat larger than the pump. The use.of this whirlpool chamber was first suggested by Professor James Thomsm. It utilizes tbe energy due to the whirling velocity of the water which in most pumps is wasted in eddies in the discharge fipe. In the pump shown guide-blades are alsoadded which lave the direction of the stream lines in a free vortes. They do not therefore interfere with the action of the water when pumping the normal quantity, but only prevent irregular motion. At A is a plug by which the pump case is filled before starting. If the pump is above the water to be punped, a foot valve is required to pormit the pump to be filled. Sometimes instead of tho foot valve a dolivery valvo is used, an air-pump or steam jet pump being employed to exhaust the air from the pump caso.
188. Design and Iroportions of a Centrifugal Pump.-Tho design of tho punap disk is very simple. Let τ_{i}, τ_{0} bo the radii of tho iofet and outlet surfaces of the puinp disk, di; to the clear oxial width at those radii. The solocity of flow through tho pump may bo taken the eame as for a turbine. If Q is the ruantity pamped, and 11 tho bitt,

$$
\begin{gather*}
u_{i}=0.25 \sqrt{2 g I I} \\
2 \pi x: d_{i}=\frac{Q}{24} .
\end{gather*}
$$

Also in practice
Hence.

$$
\left.\begin{array}{l}
d_{1}=1.2 r_{6} \tag{2}\\
\tau_{i}=2571 \\
\sqrt{\frac{G}{V} \frac{1}{2}}
\end{array}\right\}
$$

$$
r_{0}=2 r_{i},
$$

$$
d_{0}=d_{i} \text { or } \nexists d_{1}
$$

according as the disk is parallel-sided or coned. The water enters the wheel radially with the velocity ati, and

$$
\begin{equation*}
\imath_{0}=\frac{Q}{2 \pi r_{0} l_{0}} \tag{3}
\end{equation*}
$$

Fig. 204 ahoms the notation adopted for tho velocities. Suppose tho water enters the wheel with the velocity r, while the velocity of
the wheel is V_{6}. Completing thd parallelogram, in is the relative velo. city of the water aud wheel, and is the properdirection of thio wheol vancs Also, by resolving, u_{i} and $i t$ are the component velocities of flow and velocities of whir of the velocity $t:$ of the water. At the outlet eurfaco, r_{0} is

Fig. 204. the final velocity of discherge, and the rest of the notation fa sumbal to that fop the inlet stirface.
Usually the water flows equally in sll dircetions in the oye of th: wherl, in that case v_{i} is radial. Then, in normal conditions of wort. ing at the inlet surface.

If the pump is raisingless or more than its ןroper quantity, θ will not satisfy the last condition, and there is then some loss of head in shock.

At the outer circumfercnce of the whee or ondet surlace.

$$
\left.\begin{array}{l}
v_{r_{0}}=u_{0} \operatorname{cosec} \phi \tag{5}\\
w_{0}-V_{0}^{\circ}-u_{0} \cot \phi \\
v_{0}=\sqrt{ }\left\{u_{0}^{2}+\left(V_{0}-\tau_{0} \cot \phi\right)^{n}\right\}
\end{array}\right\}
$$

Variatiun of Pressure in the Pump Disk. - Precisely as in the case of turbines, it can be shown that the samition of pressure between the inlet and outlet surfaces of the pump is

$$
h_{0}-h_{1}=\frac{V_{0}^{2}-V_{1}^{2}}{2 g}-\frac{v_{m 0}^{2}}{2 g}-v_{v i}^{3}
$$

Inserting the values of $v_{r o}, v_{r}$, in (4) and (5), we get for normal couditions of working

$$
\begin{align*}
h_{0}-h_{1} & =\frac{V_{0}{ }^{2}-V_{0}^{2}}{2 g}-\frac{v_{0}{ }^{2} \operatorname{coscc}{ }^{2} \phi}{2 g}+\frac{u_{1}^{2}+V_{1}{ }^{2}}{2 y} \\
& =\frac{V_{0}{ }^{2}}{2 g}-\frac{u_{0}^{2} \operatorname{cosec}{ }^{2} \phi}{2 g}+\frac{u_{1}{ }^{2}}{2 g} \tag{6}
\end{align*}
$$

F Ifydraulic Efficicncy or the Pump. - Nergecting disk friction, journal friction, and leakage, tbe effeiency of the pamy can be found in the sane way as that of turbines ($\$ 172$). Lapt M be the moment of the couple rotating the pump, and a its angular velocity; w_{0}, r_{0} the tangential velucity of the water and radius at the outlet surface; $u{ }^{\prime}, r_{i}$ the same quantities at the inlet surface. Q being the discharge per second, the change of angular momentum per second is

Hence

$$
\frac{\mathrm{GQ}}{g}\left(w_{0} r_{0}-u_{i} r_{i}\right)
$$

In normal working; $w_{;}=0$. Also, multi 1 lying by the angular velocity, the work done per second is

$$
{ }_{n} \operatorname{Ma}=\frac{G Q}{g} u_{0} r_{0} a
$$

But the useful work done in punping is GQH. Therefore the efficiency is

$$
\begin{equation*}
\eta=\frac{\mathrm{GQHI}}{\mathrm{Ma}}=\frac{g \mathrm{H}}{w_{0} r_{0}{ }^{a}}=\frac{g!\mathrm{l}}{w_{0} \bar{V}_{0}} \tag{i}
\end{equation*}
$$

189. Casc 1. Centrifugal Pump with no Whirlpool Chamber. - When no special provision is ruade to utilize the energy of motion of tho water leaving the wbeel, and the pump discharges directly into a clamber in which the water is flowing to tbe discharge pire, nealy the wholo of the energy of the water leaving the disk is wasted. The water leaves the disk with the more or less considerable velocity v_{n}. and impinges on a mass flowing to the discharge pipe at the buth alower velocity v_{0}. The radial component of v_{0} is olinest necessarily wastcu. From the toagential component there is a gain of pressure

$$
\begin{gathered}
\frac{w_{0}^{2}-v_{0}^{2}}{2 y}-\frac{\left(u_{0}-r_{0}\right)^{2}}{v_{g}} \\
=\frac{v_{0}\left(w_{0}-\right.}{g}
\end{gathered}
$$

which will be small, if ${ }^{2}$, is small combared with r_{0}. Its greatest value, if $v_{4}=\frac{1}{2} w_{0}$, is $\& \frac{2 v_{11}^{2}}{2 g}$, which will always be a small part of the whole head. Surposo this neglected. Tho whole vanation of fressure in the purap, disk then balanees the lift and the heal $\frac{v_{4}^{3}}{2 y}$ necessary to give the initial velocity of flow in the ege of the wheol
ot

$$
\left.\begin{array}{c}
\frac{u_{1}^{u}}{2 \prime}+I I=\frac{V_{n}^{2}}{2 g}-\frac{u_{0}^{2} \operatorname{cnsec}^{2} \phi}{2 g}+\frac{u_{1}^{2}}{2 g}, \\
\mathrm{t}^{2}=\frac{V_{0}^{2}}{2 g}-\frac{u_{0}^{2} \operatorname{cosec}^{2} \phi}{2 g} \\
V_{u}=\sqrt{ }\left(2 g I I+u_{0}^{2} \cdot \operatorname{coscc}^{2} \phi\right)
\end{array}\right\}
$$

and the efliciency of the ןmmp is, from (7).

$$
\begin{align*}
\eta- & \frac{g l I}{V_{0} \frac{I}{v_{0}}}-\frac{g l \mid}{V_{0}\left(V_{0}-\frac{\left.u u_{0} \cot \phi\right)}{}\right.} \\
& =\frac{V_{0}^{2}-u_{0}^{2} \operatorname{cosec} \phi}{2 V_{0}\left(V_{0}-u_{0} \cot \phi\right)}
\end{align*}
$$

For $\phi=90^{\circ}$.

$$
\eta=\frac{i_{0}^{2}-1_{0}^{2}}{2 V_{0}^{2}}
$$

which is necessarily less than ! That is, laff the work expended io driving the puarj) is wasted. By recurwhig the vanes, a puan introduced by Mr Aploho, the etheicucy is increaxd, lecause the velocity v_{0} of discharge from the punp is dimmished. If $\boldsymbol{p}^{\prime} 15$ rery small.

$$
\operatorname{cosec} \phi=\cot \phi:
$$

and then

$$
n=\frac{V_{0}^{2}+u_{0} \operatorname{cosec} \phi}{2}
$$

"hich may appronéh the value l, as Φ teuds towards 0 Eytuatioc (8) shows that $u_{0} \operatorname{cosec} \phi$ cunnot be greater theu V_{0}. Puting.

$$
u_{0}=025 \sqrt{2 g I I}
$$

we get the following numerical values of the etliciency and the corcumierental velocitv of the pump:

ϕ	η	V_{0}	
90^{3}	047	103	$\sqrt{211}$
45°	0.5 i	100°	
30°	065	112	
20°	073	$1 \cdot 24$	
10°	088	175	

कcanoot practically be made less than 20°, and, allowng for the fric. tional losscs neglected, the efficiency of a tumb in which $\Phi=20^{\circ}$ is found to be about " 60 .
190. Case 2. Pamp with a Whirlpool Chambrr, as in fing 203 -Pro-: fessor Janes Thomsna first suggested that the energy of the water after luaving the pump disk might tre ntilized, if n space wete left in which a free vortex conh be formen. In such a tre vortex the velocity varies inversely as the radius. The gan of pressure in the vortex clanmber is, putting r_{0}, r_{w} for the adii to the outlet surface of wheel and to cutside of free vortex,

$$
\frac{v_{0}^{2}}{2 g}\left(1-\frac{r_{0}^{2}}{r_{\infty}^{2}}\right)=\frac{v_{0}^{2}}{2 g}\left(1-h^{2}\right)
$$

if

$$
k=\frac{r_{0}}{2}
$$

The lift is theo, alding this to the lift in the last cuse.

$$
H-\frac{1}{2 g}\left\{\bar{V}_{0}^{2}-u_{0}^{2} \operatorname{cosec}^{2} \varphi+v_{11}^{2}\left(1-h^{2}\right)\right\}
$$

But

$$
\begin{gather*}
u_{0}^{2}-V_{0}^{2}-2 V_{0} u_{0} \cot \phi+u_{0}^{2} \operatorname{cosec}^{2} \phi, \\
\mathrm{H}=\frac{1}{2 y}\left\{\left(2-k^{2}\right) \mathrm{V}_{0}^{2}-2 k \mathrm{~V}_{0} u_{0} \cot \phi-h^{2} u_{0}^{2} \operatorname{cosec} \phi\right\} \tag{110}
\end{gather*}
$$

Putting this in the expression for the efficiency, we fint a con. siderable incrase of efficiency. Thus with

$$
\begin{array}{ll}
\phi=90^{\circ} \text { and } \quad k=\frac{1}{2}, & \eta=\frac{y}{3} \text { nearly, } \\
\phi \text { a small ancle and } k=\frac{1}{4}, & \eta=1 \text { uearly }
\end{array}
$$

With this armagement of pump, thenfore, the angle at the outer ends of the vanes is of conpratively little importance A moderato angle of 30° or 40° may very well be atepted The following numerical valucs of the velocity of the circumference of the pump have been obtained by takitig $k=\frac{1}{2}$, and $u_{n}=025 \sqrt{2 g \mathrm{H}}$

0	20
90°	$762 \sqrt{3!11}$
$4!0^{\circ}$	842
31°	911
20°	023

The quantity of water to be pumpel by a centrifugal pinip neces sarily varies, and an alpustnent fordifliacnt quantities of water cannot casily be intanduced. Hence it is that the average efformency of purnes nf this kind is in practice less than the mficmenes given above. The alvantage of a vortex ahamber is also gimernly noglecterd. Tho velocity in the supply and discharge fipes is also often made greater than is consistent with a high dugree of ellietency Velowities of 6 or 7 feet per secoml in the diselmatge and suction pipes, when the lift is small, eause a very sensible waste of energy; ito 6 feet would be much letter. Centrifugal pumps of very largo size liave been ennstracted. Messrs Easton and Anderson have made jumps for the North Sea Ganal in lloliand whichdediver cach 670 tons of wator par minute on a lift of 5 fect. The puntublas ave 8 fect dianel. r. Alessrs J. and II, Gwynne constructen some pmates for dratning tho Ferrarese Matshes, which together deliwer goon tons fer minute
 works in Barbados hat a pmp disk 16 leet in diameter and a whill. pool chamber 32 feet in diameter. The ellicictrey of centrifugal fumps when delivering less or mone than the normal quantity on water is discussed in a pajer in the Proc. Inst. of Civil Engineers, rol. liii.
(W. C. U.)

HYDROMETER. The object of the hydrometer is the datermination of the density of bodies, generally of fuids, but some iorms of the instrument are adapted to the determination of the density of solids.
It is shown in the article Hydromechanics that, when a body floats in a luid under the action of gravity, the weight of the boly is equal to that of the fluid whieh it displaces. It is upon this principle that the bydrometer is construeted. and it obriously admits of two modes of applieation in the case of fluids: either we may compare the weights ol finating bodies whieh are eapable of displacing the same volume of different fluids, or we may cempare the volumes of the different fluids whieh are displaced by the same veight. In the latter case, the densities of the fluds will be iaversely proportional to the volumes thus displaced.

Perhaps the simplest method of experimentally determining the densities of different liquids is afforded by the series of areometrical glass beads, or hollow balls, first proposed by Dr Wilson, professor of astronomy in the uaiversity of Glasgow. As subsequently improsed by Mrs Lovi, these beads were constrncted in sets, each bead in the set differing io density from its predecessor by 002 (of the density of water). Each bend is nombered according to its density, and in order to determine the specific gravity of a liquid it is only neeessary to throw into it the set of beads, or so many of them as are knuwn to inelude between their extremes toe density of the kquid, when all the beads whose deasities exceed that of the liquid will sink, while those whose densities are less than that of the liquid will float. If there is a bead of exactly the same density as the liquid, it will rest in any position, provided it is completaly immersed. Failing this, all that is immediately apparent is that the density is intermediate between that of the lightest bead that sinks aod that of the heaviest that flozts. For example, if all the bends numbered $1 \cdot 466$ and upward sink, while those below 1.460 float, it is obrious that the density of the liquid is intermediate between $1 \cdot 464$ and 1466 . Io the ease of must fluids the intervals may be divided approximately by slightly warming the liquid. Thus, if on heating the liquid $6^{\circ} \mathrm{C}$. it is found that the bead 1.466 begins to sink, and on heating it still farther through $12^{\circ} \mathrm{C}$. (i.e., through $18^{\circ} \mathrm{C}$. altogether) the bead $1 \cdot 468$ begins to sink, then the density of the liavid is approsimately 1465 .

The hydrometer is said by Synesius Cyreneus in his fifth letter to have been invented by Hypatia at Alexandria, ${ }^{1}$ but appears to have been neglected until it was reinvented by Robert Boyle, whose "New Essay Instrument," as deseribed in the Phil. Trans. for June 1675 , differs in no essential particular from Nieholson's lydrometer. This instrument was devised for the purpose of detecting eounterfeit enin, especially guineas and half-guineas. In the first section of the paper (Phil. Trans, No. 115, p. 329) the sutbor refers to a glass instrument exhibited by himself many years before, and "eonsisting of a bubble furnished with a lour and slender stem, which was to be put into several liquors, to comparo and estimate their spreeifis gravities." This seems to be the first reference to the hyilrometar in modern times.

In fig. 1 C represents the instrument used for guineas, the circular plates A representing plates of leal, which are used as ballast whon lighter coins than grineas are examined. \mathcal{L} represents "a smell glass instrument for estimating the specific gravities of liquors," an uceount of which was

[^102]promised by Boyle in the following number of the Phit: Trans., but did not appear.

The instrument represented at B (fig. 1), whieh is copied from Robert Boyle's sketch in the Phil. Tivens. for 1675. is generally known as the common hydrometer. It is usnally made of glass, the lower bulb being loaded with mereury or small shot whieb serves as bal last, causing the instrument to float with the stem vertical. The quantity of mereniy or shot inserted depends upon the density of the liquids for whieh the bydrometer is to be employed, it being essential that the whole of the bulb should be inmersed in the heaviest liquid for whieh the instrument is used, while the length and diameter of the stem must be such that the bydrometer will float in the lightest liquid for which it is required The stem is usually divided into a number of equal parts, the
 divisions of the scale being varicd

Fio. 1.- Boyle's New Esssy in different instruments, according to the purposes for which they are emploged.
Let V denote the volume of the instrument immersed (i.e., of liquid displaced) when the surfare of the liquid in which the hydrometer floats coigeides with the a jest division of the seale, A the aren of the transverse section of the stem, l the length of a scale division, n the number of divisions on the stem, and W the weight of the instrument. Suppose the successive divisions of the seale to be numbered $0,1,2 \ldots n$ starting with the lowest, and let w_{0} $w_{1}, w_{2} \ldots w_{n}$ be the weights of unit volume of the liquids in which the hydrometer sinks to the divisions $0,1,2 \ldots n$ respectively. Then, by the principle of Archimedes,
or

$$
\begin{aligned}
& W=V w_{0} ; \\
& u_{0}=\frac{W}{V}
\end{aligned}
$$

Also
$W=(V+l A) 20$
or
$w_{1}=\frac{W}{V+l A^{0}}$
Su
ond

$$
\begin{aligned}
& u_{p}=\frac{\mathrm{W}}{\mathrm{~V}+p l \mathrm{~A}} \\
& w_{n}=\frac{\mathrm{W}}{\mathrm{~V}+n l \mathrm{~A}}
\end{aligned}
$$

or the densities of the several liquids vary inversely as the respective volumes of the instrament immersed in them; and, since the divisions of the scale correspund to equal increments of volume immersed, it follows that the densities of the several liquids in which the instrment sinks to the sucecssive divisions form a harmonic series.

If $V=N / A$ then N expresses the matio of the volume of the in. strument up to the zero of the scale to that of one of the scalerivisions. If we suppose the lower part of the iostrument replaced by a miform bar of thic same sectional area as the stem and of volume V, the indications of the instrument will be in no respect altered, and the bottom of the bar will be at a distance of N scale. divisions below the zero of the seate.

In this cuse we linve

$$
v_{p}=\frac{W}{(N+p) l A}
$$

or the density of the liquid varies javersely as $\mathrm{N}+p$, that is, as th. whole momber of scale-divisions hetween tho bottom of the tuhu and the flare of flotation.

If wo wish the successive livisions of the geale to correspond to equal increments in the density of the corresponding tiquids, then tha volumes of the instrmaciat, measured up to the successive divisions of the seale, must form a suries in hamomical progression, the lengths of the divisions increasing as we go up the stem.

The greatest density of the liguid for which the instument doocitibed above cas be employed is $\frac{V}{V}$, while tho least density is $\frac{W}{V} \frac{W}{V i 6 h}$, or $\frac{W}{V+v}$, were v representa the volume of the otem bet sieen
the extreme divisions of the acale. Now, by increasing v, leaving W und V unclianged, we may increase the range of the instrument indefinitely But it is clear that if we increase A, the seetionnl irea of the stem, we shall diminish l, the lengtlo of a scale-division correGponding to a given variation of density, and thereby proportionately diminish the sensibility of the instrument, while dimuinishing the section A will inerease band proportionately inerease the sensibility, but will diminisli the range over which the instrument can be ennployed, unless we inerease the length of the stem in the inverse ratio ol the sectional isrea. Hence, to obtain great sensibility along with a considerable range, we require very long slender stems, and to these two objections apply in adilition to the question of portar bility; for, in the first place, an instrument with a veiy long stent re. quires a very deep vessel of liquid for its complete immersion, and, in the second place, when most of the stem is above the plane of flotation, this diminishes or may destroy the stability of the instrument whenfontiug. The various devices which hase been adopted to overeme this difficulty will le deseribed in the account givea of the several hydrometers which have been hitherto generally employed.

The plan commonly alopted to obviate the necessity of incon. veniently long stems is to construct a number of bydrometers as nearly alike as may be, but to load them differently, so that the sealedivisions at the bottom of the stem of one bydrometer just overlap thosa at the top of the stem of the preceding. By this means a set of six hydrometers, each having a stem rather more than five inches long, will be equivalent to a siuglo hydrometerwith a stem of thirty inches. But, instead of employing a number of instrunients differiog only in the reights with which they are loaded, we may employ the same instrumeat, and alter its reight either by adding mercury or shot to the iaterior (if it ean be opened) or by attaching waighty to the extcrior. These two operations are not quite equivalent, since a weight alded to the interior does not affect the volume of liquid displaced when the iastrument is immersed up to a given division of the seale, while the adilition of weights to the exterior inereases the displacement. This difficulty may be met, as in lieene's hydrometer, by having all the weights of precisely the same volume but of different masses, and never using the instrument except with one of these reights attached.

The first bydrometer intended for the determination of the densities of liquids, and furnished wilh a set of weights to be attached when necessary, was that construeled by Mr Clarke, and described by Dresaguliers in the Philo. sophical Transactions for March and April 1730, No. 413, p. 278. The fotlowing is Desaguliers's aceount of the instrument (fig. 2) :-
"After haying made several fruitless trials with irory, becanse it Imbihes spirituous liquors, and thereby altes its gravity, be (JIr Clarke) at last made a copper hydrometer, represented in fig. 2, having a brass wire of about inch thiek groing through, and soldered into the corper ball Bb . The upper part of this wire is filed flat on ono side, for the stem the hydrometer, with a mark at m, to which it siuks exactly in proof spirits. There are two other marks, A and B, at top and hottom of the stem, to show whether the liquor be ${ }^{\frac{3}{y}}$ th above proof (as when it siaks to A), or T^{2} th under groof (as when it emerges to B), when a brass weight such as C has been screwed'on to the bottom at c. Thero are a great many sueh weights, of different sizes. and marked to be screwed on instead of C , for liquors that difier more than I'th frou proof, so as to serve for the speeilic gravities in all such proportions as relate to the mixture of spirituons liquors, in all the variety made use of in trale. There are also other balls for slowing tho specific gravities quite to common water, which make the instrument perfect in its kind."

Clarke's lyydrometer, as afterwards con-

Fto. 2.-Clarke's IIyilrometer. strueted for the purposes of the exeise, was provided with thirty-two weights to adapt it to spirits of different specific gravities, and eleven smaller weights, or "weather weights" as they were ealled, which wero attached to the instrument in order to correct for variations of temperature. The weights were adjusted for successire intervals of 5° Falir., but for degrees intermediate between these no additional correction was applied. The correction for temperature thus afforded was not sufficiently accurate for excise purposes, and Mr Speer in his essay on the hydrometer (Tillocli's Ihil, Mag, vol. xiv.) mentions cases in which this imperiect compensition led to the extra duty payable upon spirits which wers
more than 10 per cent. over proof being demanded on spirits which were purposely diluted to below 10 per cent. over proof in order to avoil the charge.

Desaguliers bimself constructed a hydrometer of the ordinary type for comparing the specific gravities of different kiods of water (Denguliers's Experimental Philosophy, vol. ii. p. 234). In order to give great sensibility to the instrument, the large glass ball was made nearly 3 inches in diameter, while the stand consisted of a wire 10 inches in length and only ${ }^{\prime}{ }^{\prime}$ inch in diameter. The instrument weighed 4000 grains, and the addition of a grain caused it to sink througb an inch. By altering the quantity of shot in the small balls the iustrument could be adapted for liguids other than water.

To an instrument constructed for the same purpose, but on a still larger seale than that of Desaguliers, M. De parcieux added a small dish on the top of the stem for the reception of the weights necessary to sink the instru. ment to a conrenient depth. Tha cffect of weights placed in such a dish or pan is of course the same as if they wero placed within the bulb of the instrument, since they do not alter the volume of that part which is immersed.

The first important improvement in the bydrometer after its reinvention by Boyle was introduced by Fahrenheit, who adopted the second mode of construction above referred to, arranging his instrument so as always to displace tio same volume of hiquid, its weight being varied accordingly. Instead of a scale, only a single mark is placed upon the stem, which is very slender, and hears at the top a small seale pan into which weights are placed until the instrument sinks to the mark upon its stem. The volume of the displaced liquid being then always the same, its density will be proportional to the whole weight supported, that is, to the weight of the instrument together with the weights required to be placed in the seale pan.

Nieholson's hydrometer (fig. 3) eombines the characteristies of Fabrenheit's hydrometer and of Boyle's essay instrument. ${ }^{1}$ The following is the description given of it by Nicholson in the Manchester Memoirs, vol. ii. p. 374.
" AA represents a small scale. It may be taken off at D. Diameter $1 \frac{1}{3}$ inch, weight $4 t \mathrm{gtains}$.
"B a stem of hardened steel wire. Diameter $\frac{10}{10}$ inch.
"E a hollow eopper glole. Diameter 2 sf iuches Weight witb
stem 369 grains.
$"$ FF a stirrup of wire screwed to the globe at C.
"G a small seale, serving likewise as a counter-* roise. Diameter ly inch. Weight with stirmp 1634 grains.
"The other dimensions may be had from the drawing which is one-sixth of the linear mag. nitude of the instrument itself.
"In the construction, it is assmmed that tho upler scale shall constantly carry 3000 mains wien the lorer seale is empty, and the instrument sunk in distilled water at the temperature of 60° Fahrenheit to tho widdle of the wire or stem.
 The lencth of the stem is arbitrary, as is like- Fin. 3.-Nichol. wise the distance of the lower scale from the gon's Iydrometer,
surface of the globe. But, the length of the stem being settled, the lower seaio may be made lighter, and, conse. quently, the globe less, the greater its distance is taken from the surface of the globe ; and the contrary."

In comparing the densities of diferent liquids, it is clear that this instrument is precisely equivalent to that of Falrenlicit, and must be cmployed in the same manner ${ }_{6}$ weights being placed in the top sealo only until the hydroe meter sinks to the mark on the wire, when the specife gravity of the liquid will be proportional to the weight of the iostrument together with the weights in the seale.

In the subsequent pertion of the paper above referred ta

Nicholson explains how the instrument may be employed as a thermometer, since, fluids generally expanding more than the solids of which the instrument is constructed, the instrument will sink as the temperature rises.

To determine tha delsity of solids heavier than water with this instrument, let the solid be placed in the upper scale pan, and let the weight now required to cause the instrument to sink in distillad water nt standand temumature to the namk B bo denoted by w, while W denotes the weight reruired when the solid is not rresent. Then $W-w$ is the weight of the solid. Now let tha oolid be placed in the lower pan, care being taken that no bubbles of air remain attached to it, and let w_{1} be the weight now required in the scala pan. This weight will exceed w in consequence of tha water displaced by the solid, and the weight of the water thus dis. 1 taced will be $w_{1}-w$, which is therefore the weight of a volume of water equal to that of the solid. Hence, since the weight of the colid itself is $W-w$, its density must be $\frac{W-w}{w_{1}-w}$
The above example illustrates how Nicholson"e or Fahrenheit's hydrometer may be employed as a weighing machine for small weights.
In all hydrometers in which a part only of the instrument is immersed, there is a liability to error in consequence of the surface tension, or capillary action, as it is frequently called, along the line of contact of the instrument and the surface of the liquid (see Capillary Action). This error diminishes as the diameter of the stem in reduced, but is sensible in the case of the thinnest stem which can be employed, and is the chief cource of error in the employ. ment of Nicholson's hydrometer, which otherwise would be an instrument of extreme delicacy and precision. The following is Nicholson's statement on this point:-
"One of the greatest difficulties which attends hydrostotical experimants arises from the attraction or repulsion that obtains at the aurface of the water. After trying many experiments toobviate the irregnlanties arismg from this cause, I find reason to prefer the simple one of carefully wiping the whole instrument, and especially the atem, with a clean cloth. The weights in the dish must not be esteemed accurate while there is either a cumulus or a cavity In the water round the atem."
It is possible by applying a little oil to the upper part of the bulb of a common or of a Sikes's bydrometer, and carefully placing it in pure water, to cause it to float with the upper part of the bulb and the whole of the stem emerging as indicated in fig. 4, when it ought properly to sink almost to the top of the stem, the aurface tension of the water around the circumference of the circle of contact, AA^{\prime}, providing the sdditionsl support required.

Tha univerand hydrometer of Mr G. Atkins, described in the Phil Mag, for 1803. vol. xxxi. p 254, is mercly Nicholson's hydromater with the screw at C projecting through the collar into which it is acrawed, and terminating in a aharp point above the cup G. To this point soft bodies lighter thme water (which would foat if placed in the cup) could be attached, and thus cont. pletely inmersed. Atkins's instrument was constructed bo ns to weigh 700 grains, and when inmersed to the mark on the stem 11 distilled water at 60°

Fig. 4 F., it cariod 300 grans in the upper dish. The hydrometer thereforo displaced 1000 grans of distil]ed water at $60^{\circ} \mathrm{F}$., and henco tho specific gravity of any other liguid was at onec indicated by ldang 700 to the number of grans in the pan required to make tho instrument aink to tho mark on the atem The small divisions on tho ecale corrcsponded to diflerences of foth of a grain 113 the weight of tho instrumeut.
"hice "Oravimeter." constracted by Citizen Guyton und deseribed in Nicholson's Journal, 4to, vol. 1 1. 110. differs from Nicholson's ingtrument in being constructed of glass, aud having a cylindrica. bulbahout 21 eentimetres in fongth and 22 millmetres indiameter Its weight is wo udjusted that an udditional welght of \dot{E} gramman
most be placed in the upper bin to cansa the instrument to sink to the mark on the stemin distilled waster at the standard temperature. The mastrument is provided with nn idditional nfece, or "plongcur," whosa weight exceeds 5 grammes by the weight of water which it displaces; that is to siy, it is so constructed as to weigh 5 gramnes in water, and consists of a glass envelope fillet with mercury. It is clear that the elfect of this "plonytur," when placed in the lower pan, is exactly the same as that of the 5 gramme weight in the uprer pan. Withont the cxima 5 ghammes the instru. ment wegges about 20 grammes, sand theretore toits in a liguid of specafic gravaty © Thus deprived of its additional wight it mny be used for spirits. To use the instrunent for liquitia of much greater deusity than watcr odditinnal werghts must be placed in the upper pan, and the " plongeur" is then phacell in the lower pan for the purpose of guving to the instrument the requsite stability.

Charles's balance areometer is similar to Nicholson's hydrometer, except that the lower basin admits of inversion, thus enabling the instrument to be employed for solids lighter than water, the inverted basin serving the sama nupose as the pointed screw in Atkins's modification of the instrument.

Adie's sliding hydrometer is of the ordinary form, but can be adjusted for liquds of widely differing specific gravities by drawing out a sliding tube, thus changing the volume of the hydrometer while its weight remains constant
Adje's statical hydrometer is really a specific gravity balance, one of the arms of which is $2 \frac{1}{2}$ inches in length, and the other 8 inches. A brass ball, whose volume is 01 gallon, is suspended from the shorter arm, and inmersed in the liquid whose density is to bo determined. The ball is balanced by menns of a weight which slides along the beam, and a snaller weight which also slides aloug the beam scrves to make the necessary correction for temperature.

The hydrometer of Beaunee, which has been extensively used in France, consists of a common hydrometer graduated in the following manner: Certain fixel points were first deternined upon the stem of the instiument. The first of these was found by inimersing the hydrometer in pure water, and marking the stent ot the level of tho surface. This formed the zero of the scale. Fifteen atandard oolutions of pure common salt in watcr were then prepared, containing respectively $1,2,3, . . \quad .15$ per cent. (by weight) of d_{1}) aalt. The hydrometer was plunged in these solutions in order, and the stem havisig been marked at the several surfaces, the degrees so obtained were numbered $1,2,3, \ldots, ., 15$. These degrees were, when necessary, repeated along the stem by the employment of a parr of compasses till 80 degrees were marked off. The instru. ment thus adupted to the detcrinination of densities exceeding that of water was cilled the hydrometer for calts.
Thro hydrometer intended for densities less therr that of water, of the hydrometer for spirits, is constructed on a gimilar principlo. The instrament is so arranged that it floats in pure water with most of the stem above the surface. A solution containing 10 per cent. of pare salt is used to indicate the zero of the scale, and the pout at which the instrument floats when inmersed in distilled water at $30^{\circ} \mathrm{R}$ ($54 t^{\circ} \mathrm{F}$.) is numbered 30 . Equal divisions nre then marked off upwards along the atem as far os the 50 th degree.

The densities corresponding to the several dences of Beaume's hydrometer are given by Nicholson (Journal of Philus vol. i. p. 89) as follows :-

Bcaume's Ifydronncter for Spirits Temperature $10^{\circ} \mathrm{I}$.

Degrees.	Denstiv	Degrecs.	Denaly:	Sigices.	Densily.
10	$1 \cdot 000$	21	-922	31	861
11	990	22	915	32	. 850
12	985	33	909	33	-852
13	977	24	903	34	847
14	970	25	897	35	842
15	903	26	892	30	'837
16	955	27	856	37	-832
17	949	28	-880	38	-827
18	913	29	874	89	. 822
19	-935	30	-857	40	'817
20	. 928				

Beaune's ITydrometer for Salts

Degrecs	Densty	Degaes	Densir)	Degrecs	Denbity.
0	P000	27	1,230	[.]] 547
9	1.020	30	1201	64	1-594
6	1.040	33	1 208	57	1.659
9	1.064	36	1.333	60	1 717
12	1.089	39	1373	63	1779
15	$1 \cdot 114$	43	1314	60	1.848
18	1.140	4.5	1-453	69	1.920
21	1170	48	1-500	72	$2 \cdot 000$
24	1-200				

[^103]Aaving been employed by the latter to constract his instruments for the French revenue. The point at which the instrunsent floated In distilled water was marked 10° by Cartier, and 30° on Carticr'o 6cale corresponded to 32° on B enume's.
Though constructed upon a very different principle from ordinary hydrometera, we may brielly refer bere to Brewster's capillary hydrometer or staktometer, which is based upod the difference in tha aurface tension and deasity of pure water, aud of mixtures of sleohol and water in ratying proportions. If a sasal piece of paper be bent idto such a shape os th's, \AA it may be made to rest upon the surface of water without being immersed if now a drop of alcohol be placed on one corner of the paner, it with rush violently away aud geaerally spin romnd, souewhat resembling the action of pieces of camphor, iddicating that the sufface tension of the mater is dimin. ished by the presence of aleohol If the water be very pure it is sufficient to bring a drop of alcohol on the extremity of a pipette near to the paper, without touehing either it or the water, and the vapour absorbed will produce elve same effect. For other proofs of the same action see the articlo Capillary detion. Now, if a drop of water be allowed to form at the extrenity of a fue tube, it will go on increasing until its weight overcomes the surface tension by which it elings to the tube, asd then it will fall. Hence any impurity which diminishes the surface tension of the water will dimiaish the gize of the drop (anless the density is proportionately diminished). Now, according to Quincke, the surface tension of pure water in contact with air at $20^{\circ} \mathrm{C}$. is 81 dyaes per linear centimetre, while that of alcohol is only 25.5 dynes. Also, a small perceatage of alcohol produces rouch more than a 1 roportional decrease in the surface tension when added to pure water. Tbe capillary hydrometer consists simply of a small pipette with a bulb in the middle of the stem, tha pipette terminating in a very fine capillary point. The instrumeot being filled with distilled water, the number of drops required to enpty the bulb and portions of the stem between two marks in and n (fig. 5) on the latter is carefally counted, and the experiments repeated at different temperatures. The pipette having been carefully dried, the process is repeated with pure aleohol or with proof apirits, and the strength of any adonixture of water and spirits is determined from the corresponding number of drops, but the formula generally given is not based upon sound data. Sir David Brewster foumd with one of these instruments that the number of drops of pure water was 734, while of proof spirit, sp. gr. 920, the number of drops required was 2117.
Perhaps the main object for which hydrometers have been conatructed in the determination of the value of apiritious liquors, chiefly for revemue purposes. To this end an immeosa variaty of hydrometers have been constructed, differing mainly in the character of their scales.

In Speer's bydrometer the stem bas the form of an octagonal prism, and upon.each of the eight faces a rale is engraved, indicating the percentago atrength of the spirit corresponding to the sereral divisions of the scala, the eight seales being adapted respeciively to the temperatures $35^{\circ}, 40^{\circ}$, $45^{\circ}, 50^{\circ}, 55^{\circ}, 60^{\circ}, 65^{\circ}$, and $70^{\circ} \mathrm{F}$. Fonr small pins, which can be inserted into the counterpoise of the instrnment, serve to adapt the instrument to the temperatures intermediate between those for which the acales are constrncted. William Speer was supervisor add chief assayer of spirits in the port of Dublin. For a more complete account of this instrament see Tilloch's Phil. Mag., vol. xir. p. 151.

The hydrometer constructed by Mr Jones of Holborn, consists of a spheroidal bulb with a rectangular stem (fig. 6). Between the bulb and counterpoise is placed a thermometer, which serve9 to indicata the temperature of the liquid, avd the instrument is provided with three weights wh:ch can be attacherd to the top of the stem. On the fonr sides of the stem AD are engraved four scales corresponding respectively to the unloaded instrumeat, and to the instrument loaded with the res apective waights. The instrument when unloaded Berves for the ramge from 74 to 17 above proof; when londed with the first weight it indieates from 13 over proof, with the scond meight from 13 over proof to 29 unter proof, and with the third from 29 under proof to pure Water, the gmanation corresponding to which is marked W at the batton of the foumth seale. One side of the stem AD is chown in fig. 6, the other three in fig. 7. The thermometer is also provided with four acales corresponding to the scales abore roentioned. Each scale has its zero in the middle corresponding to $60^{\circ} \mathrm{F}$. If
the mercury in the thermometer stand above this zcro the apirit must be reckoned weaker than the hydrometer iodicates by the number on the thermometer seale level with the top of the mercury, while if the thermometer indicate a tentperature lower than the zero of the scale $\left(60^{\circ}\right.$ F.) the spirit must ba reckoned stronger by the seale reading. At the side of each of the four seales no the steru of the bydrometer is engraved a set of smail numbers indicating the contraction in volume which woull be experienced if the requisite amount of water (or spirit) were added to bring tho sample tested to the proof streng:h

The hydrometer constructer by Mr Dieas of Liverpool is provided with a sliding scale which can be sdjusted for different temperatures, and which also indicates the contraction in volume incident oa bringina the spirit to froof strength. It is provided with thirty-six different weights which,
 with the ten divisions on the stem, form a scale from 0 to 370. The employnent of so many weights readers the instrument ill-adapted for practical work where speed is an object. It was adopted for the United States reveuve by Act of Congress, Angust 10, 1790.

Qnin's universal hydrometer is described in the Transactions of Whe Socicly of Arts, vol. viii. p. 98. It is provided mith a sliding rule to adapt it to different temperatures, and has four beales, ono of which is graduated for spilits and the other three serve to shon -the strengths of worts. The peculiarity of the instrument consists in the pyramidal form given to the stem, which rendere the scale-divisions more dearly equal in length that they would be on a prismatic stem.
Atkins's bydrometer, as originally constracted, is deseribed in Nichotson's Journal, 8vo, vol. ii. [. 276. It is made of brasa, and is provided with a spheroidal bulb whose axis is 2 inches in length, the conjugate diameter being $1 \frac{1}{3}$ inchea. The whole length of the in. atrumeat is 8 inches, the stem square of about $\frac{1}{4}$ inch side, and the weight about 400 grains. It is provided with four weights, marked 1,2 , 3,4 , and weighing respectively $20,40,61$, and 84 grains, which can be attached to the ahank of the instrument at C (fig. 8), and retained there by the fixed weight B. The scale engraved upon one face of the stem contains fify-five divisions, the top and bottom being marked 0 or zero, and the alternate intermediate divisions (of which there are trenty-six) being marked with the letters of the alphabet in order The four weights are so adjusted that, if the instru. ment floats with the stem emerging as far as the lowar division 0 with one of the weighto attached, then replacing the weight by the next heavier causes the instrument to sink through the whole length of the scale to the upper division 0 , and the tirst weight produces the same effect when applied to the naked instrument. The stem is thus vitually extended to five times its length, and the number of divisions inereased practically to 272. When no weight is attached the in. atroment indicates densities from 806 to -843; with INo. 1 it registers fron 843 to 880, with No. 2 from -880 to 918 , with No. 3 from 918 to $\cdot 958$, and with No. 4 from 958 to 1000 , the temperature being $55^{\circ} \mathrm{F}$. It will thos be scen that the whole length of the stem corresponds in a difference ot density of about '04, and one division to about -00074, indicating a difference of little mora than $\frac{1}{s}$ per cedt. in the strength of any sample of spirits.

The instrument is provided with a sliding rule, with seales corresponding to the several
 Hydioneter. veights, which indicate the specifie gravity corresponding to the several divisions of the hydrometer seale counpared with water at $55^{\circ} \mathrm{F}$. The slider upon the rule serves to adjust the scale for different temperatures, and then indicates the strength of the spirit in percentages aver or under proof. The slider is also provided with seales, marked respectively Dicas and Clarke, which serve to show the readings which woull have been obtained had the instrunients of those makers been cm lloyed. The lino on the scale marked "concentration" imdicates the diminntion in volume con. sequent upon reducing the samplo to proof strength (if it is O. P.) or upon raducing proof spirit to the strength of the sample (is
it is U．P．）．By applying the several weights in suceession in addition to No．4，the instrument can be employed for liquids heavier than water；and graduations on the otber three sides of the stem，together with an additional slite rule，adapt the instru－ meat for the deternination of the strength of worts．

Mr Atkins subsequently modified the instrument（Nicholson＇s Journal，Svo，vol．iii．p．50）by constructing the different weights of different shapes，viz，eireular，square，triangular，and pentagonal， instead of numbering them 1， 2,3 and 4 respectively，a figure of the weight being stamped on the sliding rule opposite to every letter in the series to which it belongs，thus diminishing the probability of mistakes．He also replaced the letters on the stem by the corre－ sponding specifie gravities referred to water as unity．Further infomation conceraing these instruments and the state of hydro－ metry in 1803 will be found in Mr Atkins＇s pamphlet On the Relation between the Specific Gravities and the Strength of Spirituous Liquors， 1803 ；or Phil．Mag．，vol．xvi．pp．26－33，205－212，305－ 312 ；vol．xvii，pp．204－210 and 329－341．

In Gay Lussac＇s alcoholometer the scale is divided into 100 parta corresponding to the presence of 1,2 ， alcohol at $15^{\circ} \mathrm{C}$ ，the highest division of the seale corresponding to the purest alcohol he conld obtain（density 7947 ）and the lowest division corresponding to pure water．A table providea the necessary corrections for other temperatures．

Tralles＇a lyydrometer differs from Gay Lussac＇s only in being graduated at $4^{\circ} \mathrm{C}$ ．instead of $15^{\circ} \mathrm{C}$ ．，and taking alcohol of density 7939 at $15.5^{\circ} \mathrm{C}$ ．for pure aloohol instead of 7947 as taken by Gay Lussae（Keene＇a Handbook of Hydrometry）．
In Deek＇s hydrometer the zero of the scale corresponds to density 1.000 and the division 30 to density 850 ，and equal divisiona on the scale arecoutinued as far as is required in both directions．The following table serses to indicate the relation between the degrees and the correspondiog densities ：－

Relation betuecn Degrecs of Deck＇s Mydrometer and Densilies．

$\begin{gathered} \stackrel{0}{2} \\ \stackrel{y}{5} \\ \stackrel{5}{6} \\ \hline \end{gathered}$	Density．			Density．			Density．	
	$\begin{gathered} \text { Greater } \\ \text { than } \\ 1000 . \end{gathered}$	Less that 1000.		Greater than 1.000.	Less than 1.000 ．		$\begin{gathered} \text { Greater } \\ \text { than } \\ 1 \cdot 000 . \end{gathered}$	Less than 1.000.
1	1.006	－994	25	$1 \cdot 172$	．872	48	1.393	$\cdot 780$
2	1.012	－988	20°	$1 \cdot 181$	－867	49	$1 \cdot 405$	$\cdot 776$
3	1.018	－983	27	1．189	－803	50	I• 417	$\cdot 773$
4	1.024	.977	23	$1 \cdot 197$	－859	51	1－429	$\cdot 769$
5	1.030	．971	29	1.206	－854	52	$1 \cdot 441$	－766
6	1.037	－ 866	30	$1 \cdot 21.1$	－850	53	1.453	$\cdot 762$
7	$1 \cdot 013$.960	21	$1 \cdot 223$	－ 816	51	1－466	$\cdot 759$
8	$1 \cdot 649$	． 955	32	$1 \cdot 232$	－812	55	$1 \cdot 478$	$\cdot 756$
9	1.055	.950	33	$1 \cdot 2+1$	－837	56	1－491	－752
10	1.063	－ 944	34	1.250	－833	57	1504	$\cdot 749$
11	1.069	． 939	35	1．259	． 829	58	1．518	$\cdot 746$
12	1.076	－931	36	1.268	． 825	59	I．532	$\cdot 712$
13	1.053	－329	37	1.278	＇8．1	60	$1 \cdot 5: 6$	－739
14	$1 \cdot 090$	－921	38	1．n8S	． 817	61	1－140	.736
15	1.097	． 919	$3: 1$	$1 \cdot 253$.813	62	1531	.733
16	$1 \cdot 101$.914	40	1．308	－ 810	63	$1.5 \$ 9$.730
17	$1 \cdot 111$	－009	41	$1 \cdot 318$	． 506	6.4	1＇604	727
18	1－118	－901	42	$1 \cdot 328$	－802	65	1.619	－723
19	$1 \cdot 126$	－8！19	43	1.339	．799	66	1.635	－20
20	$1 \cdot 133$	－80\％	41	$1 \cdot 349$.794	67	$1 \cdot 6.51$.717
21	1141	． 8.11	45	1．360	－791	68	$1 \cdot 667$	$\bigcirc 14$
22	1．149	－885	46	$1 \cdot 371$	$\cdot 787$	69	1.683	$\cdot 711$
23	$1 \cdot 157$	－881	47	$1 \cdot 382$.783	70	1.700	＇708
24	I 161	－ 576						

In the centesimal hydrometer of M．Francour the volune of the stem between sucersive divisions of the scale is always roth of the whale volume inmerach when the instrument foats in water at 4° C．lof onder to graduate the stem the instrument is first weighed， then immersel in dist．lled water at $4^{\circ} \mathrm{C}$ ，and the line of thotation inarkeltyero．The first degree fo then found by flacing on the top of the stena weight equal to y^{2} oth ou＂he weyht of the instrument， which increases the volume immersul by，ifth of the orizanal volome．The andition to the ton of the sten al s．＂ecobsje weiphts， cash，to th of the weight of the instrument itself，serves odefornine the successive flegrees．The lemeth of 1 wo divisions of the seale，or the length of the uniform sten tho volume of which would is crual to that of the laydrofncter upe to the zero gratuation，Fran－ cuur called the＂montubus＂of tho hylroneter．＂Ile constumet his instrumats of ghas，using dilferent jnstrmments for diflement Fortims of the scale（Franceur，Traiks d＇areometrie，Parive 15t2）， Dr Borirs of Mont indlire constructel nu hydrometer which was lased upth the resitty of lise experinuats on mixtures of alenhol

divisions，the other 90 being provided for by the aldition of 9° weights to the bottom of the instrument as in Clarke＇s lydrometer． Sikes＇s hydrometer，on account of its similarity to that of Bories， appears to have been borrowed from that instiument．It is Dude of brass，and consists of a apberical ball A（fig．9）， 1.5 inches in diameter，below which is a weight B connected with the ball by a short conical stem C ． The stem D is rectangular in section，and about $3 \frac{1}{2}$ inches in length．This is divided into ten equal parts，each of which is subdivided into tive．As in Boriés＇s instrument，a series of 9 weights，each of the form shown at E ，serves to extend the scale to 100 principal divisions．In the centre of each weight is a hole capable of admitting the lowest and thiekest end of the conical stem C，and a slot is cut into it just wide enough to allow the upper part of the cone to pasa．Each weight can thus be dropped on to the lower stem so as to rest on the counter． poise B．The weights are marked 10，20， and in using the instrument that weight must be selected which will allow it to float in the liquid with a portion only of the stem submerged．Then the reading of the scale at the line of flotation， added to the number on the weight，gives the reading recuired．A small supernumerary weight F is added，whieh can be placed upon the top of the stem．F is so adjusted that when the 60 weight is placed on the lower stem the instrument sinka to the same point in distilled water when F is attached as iu proof spirit when F is removed．

ro．9．－Sikes＇s Hydrometer．
The following table gives the specific gravities corresponding to the prineipal graduations on Sikes＇s hydrometer at $60^{\circ} \mathrm{F}$ ．and at 62° F．，together with the correaponding strengths of spinits．The latter are based upon the tablea of Gilpin，for which the reader is referred to the Phil．Trans，for 1704.

Table showing the Densitics corresponding to the Indications of Sikes＇s IIydrometer．

	$60^{\circ} \mathrm{F}$ ．		$6^{2} \mathrm{~F}$ ．			$60^{\circ} \mathrm{F}$ ，		$02^{\circ} \mathrm{F}$ ．	
	Denslty．	$\begin{gathered} \text { Proof } \\ \text { Siririt } \\ \text { pert } \\ \text { cent. } \end{gathered}$	Density．	Proof spirt pent． Com		Density．	$\begin{aligned} & \text { Proof } \\ & \text { Spilt } \\ & \text { per } \\ & \text { cent. } \end{aligned}$	Density．	$\begin{aligned} & \text { Proof } \\ & \text { Spirit } \\ & \text { per } \\ & \text { cent. } \end{aligned}$
0					S	，		05133	110.7
1	－816956	166.1	－817059	1656	62	－906569	1100	－906983	1093
2	－8186：1	165．3	818723	16.18	53	－90872	108 G	－ 905837	107.9
3	－820204	1645	－880397	163.9	54	－910582	107.1	－910697	106：5
4	－ 821973	1636	822077	163.1	55	－912430	105.6	－ 2.565	1050
5	－823C39	1627	823703	18.3	50	－914329	1042	－91－441	103.5
6	－82535	1618	－825457	$161 \cdot 4$	57	－916209	1037	P16333	1020
7	－827052	$160 \cdot 9$	＇887157	$160 \cdot 5$	58	－915100	1013	－918216	100.5
8	－825759	1600	－828564	159.6	59	919999	90.7	－920115	98.9
9	－830．173	1501	830378	158.7	60	－92190	981	－9220	07.4
10	－832105	1．8．2	－832300	157.8	6_{60}	92188．4	98.1	$\bigcirc 22000$	97.1
11	－833883	1．7．3	833993	1568	61	．923760	96.6	－923877	95.3
12	－835＇57	1504	835693	1559	62	925643	950	？257c0	
13	－837294	150.5	－837．100	1580	63	4927534	03.3	－927652	923
14	－ 339008	154，6	－839114	1540	6.4	$\cdots 2933$	91.7	？ 29.50	90.9
15	－840729	1：33．7	－840835	153．1	${ }^{6}$	－031359	900	031407	－
16	－842．408	153.7	812064	15.1	66	93324	88.3	－933372	T，5
17	－844193	1.517	－811299	1511	67	935176	56.5	－93529：	，
18	－845936	1：077	$31604{ }^{2}$	150.1	68	933107	84.7	937225	84.0
19	－847685	$1+2.7$	817892	1491	69	＇839015	8.9	－039163	$82 \cdot 2$
20	－ 819442	1157	8105.13	1451	\％ 0	－940091	81.1	＇941110	$80 \cdot 3$
${ }_{20} 0^{8}$	－849393	1437 ${ }^{\circ}$	81050	1.48 .1	7013	－940981	811	－911100	80
21	－8．51122	117．6	8.1229	147－1	71	－342897	70.2	－943016	78.4
22	－83，9367	1166	83291	160.1	72	＇944819	273		76.5
23	－854593	1 A G	－851007	$1+5.1$	73	946749	75.3	3－16869	73.5
21	－856348	1146	－856456	3.40	7	－988687	38.3	998808	72＇5
25	－859105	113\％	＇858．13	122.5	75	－95063－4	71？	950753	70.4
29	－859963	1424		1418	76	－930208	60	2527	88＊2
97	－85．1649	1113	－9til7 19	1108	77	－951530	06.5	254670	$\mathrm{CO}^{\circ} \mathrm{O}$
28	86319	1102	＊ 630.5	1397	74	－9545，${ }^{\text {a }}$	64.	－ 5 6091	635
$\because 3$	－863＋0；	1：9．1	R6\％313	1358	79	905 4	${ }_{6} 61.9$	－93661	61.1
30	88699	1 13n	Stitu7	1185	80	460	69.4	－2matiot	38．
2 O 13	－bite	138	－667100	1384	80 a	1904	21	－1606	is． 5
31	865－5．5	1348	cowers	106：	8	4043	30.7	9030	55：
$3:$	－8， $0: 53$	1837	¢ 5146	1831	8	－1948？	33．1	－9，4：3	33.0
3.3	－8is 39	1313	872115	1：339	83	－atgath	240	966488	8，400
：1	6titeto	1：31	87：120	13：8	84		4.8	－9tikitic	$4 \cdot 0$
3	－20．s3	1320	－85991	131 ${ }^{\text {f }}$	$8 \cdot$	－9003	113	2015	＋
36	－8tatiol	1310	478095	1304	8	483	41.0	97248	（1）．-1
37	－570484	$1: 93$	S74， 03	$1: 91$	［37	－97432	37.5	97.14	63
38	－83107	128：5	881419	127	8	－976\％30	3840	97684	：33．5
39	－863129	1273	－88324	124．	89	－97835	30.6	yast	$30 \cdot 1$
0	＇之и	1260	－88．	123．	90	－380584	27	Pas？	ar
3 n	88が	1320	－88000	123：	901	－980376	27.2	－ 8 cino	
1	－8stin89	1218	8 ± 4504	12r：	41	－984371	，	28：190	20.6
	885197	13\％	S856id	1－3	9	－38437	20.8	98198	205
	－29031？	1935	－ 810125	1216	97	－0，638	17.7	astisto	$12 \cdot 3$
	\＄2\％ 13	13046	80923	1903	9	－48s．404	148	－488329	140
4.4		1116 118.3	－891078	119 $11: 8$	14 16	－192168	10.0 8.3	？	117 90
$4{ }^{46}$	\cdots	1169	897861	1183	！ 9	901512	6． 7	991617	\％
$4{ }^{41}$	－890 ${ }^{\text {a }}$	11156	Sumbis	1119	95		$4 \cdot 1$	－946691	0
49	！01360	14：	901417	11.	100	10146	1．8	－ 1900858	1.6 0.0
\cdots	phase？	11．${ }^{8}$	103：13		100	1014656	$0 \cdot 0$	1.008	0.0
50 m	903156	11							

Table of the Densitics of Bodics (from Mr Tod's series of Tables).

In the above table for Sikes"s hydrometer two densities ate given corresponding to each of the degrees $20,30,40,50,60,70,80$, and 90, iidicating that the sucecssive weights belonging to the particular instrument for which the table has been calculated do not quite agrec. The discrepancy, however, does not produce any sensible error in the strensth of the corresponding spirit.
A table which indicates the weight per gallon of spirituous lionthors for every degrec of Sikes's hydrometer is printed in 23 and 24 Vict. c. 114, schedule B. This table dufers slightly from that given obove, which has been abridged from the table given in Kecne's dandibok of IIydrometry, appraretly from the equal divisions on Sikes's scale having been taken as corresponding to equalincrements of density.
Sikes's hydrometer was established for the purpose of collecting the rerenue of the Uuited Kingdom by Act of Farliament, 55 Gco. III c 140, by which it was enacted that "all spirits shall be decoued and taken to be of the degree of stiength whith the said hydrometers called Sthes's hydrometers shall, upon tral by any officer or officers of the customs or excise, denote such spirits to he." This Act came into force on January 5, 1817, end was to have remamed in force until August 1, 1818 , but whs repealed by 58 Geo . III. c. 28, which established Sikes's hydrometer on a permanent footung. By 3 and 4 Will. IV e. 52 , § 123, it was further enacted that the came ustrumeuts and methods should be employed iu determining the duty upon imported spinits as sloould in virtue of any act of Parliament be employed in the determination of the dity upon epurits distilled at home. It is the practice of the officers of the inland reverne to adjust Sikes's hydrometer at $62^{\circ} \mathrm{F}$, that beng the temperature at which the imperial gallon is defined as contaning 10 tb avoirdupois of distilled water. The spectice gravity of any 6ample of sputs thus deternined, when multiplied by ten, gives the weight in pounds per imperial gallon, and the weight of any bulk of sprits divided by this number gives its volume at once un mintor gallons.
Mr J B. Keene of the IIydrometer Office, London, has constructed an instrument after the mold of Sikes's, but [hovided with twelvo weaghts of difterent masses lut equal volumes, and the instrument is never used without having one of these attached. When loaded with etther of the lightest two weights the instrument is specifically lighter than Sikes's hydrometor when unloaded, and it may thus bo used for specific gravities as low as that of absolute alcohol. The volume of each weight boing the same, the whole volume immersed is always the same when it floats at the same mark whatever weight may be uttached.
besides the above, many hylrometers have been employed for spectal purpases. Twaddell's hydrometer is adapted for densities greater than that of water. The scale is so arrauged that the read. ing multiplied by 5 and added to 1000 gives the spreific gravity with reference to water as 1000 . To avoid an ineonveniently long stem, different instruments are employed for differeat parts of the scale as mentioned above.
The lactometer constructed by Dicas of Liverpool is adapted for the dutcrmination of the quality of milk It resenbles Sikes's hyltometer in other respects, hut is provibed wath raght weights. It is also provinied whth a thermoneter and slide rule, to reduce the reanding to the stimdan! tenperature of $55^{\circ} \mathrm{F}$.
The marine hylroncters, us supplied by the British Goverament to the mal mavy arith the mocrehant marime, are glass metrments with slender stems, nod generally stre to indic:tesperfling gravities from 1.000 to 1040 . Jefore being assued they are comparel with a standard mistrament, ami their errors deteminet. They are employel for taking abservations of tho dencity of sea-water.
The sillinmeter is a hydrometer intended to indicat: the strength of the brue in marine hoiless in whech sea-water is amployet. Sambless's salinometer consists of an laydroneter which floats in a chamber through whech the water from the boiler is allowed to flow 111 a purnte streant, at a temperature of $200^{\circ} \mathrm{fi}$. The fiecuarity of the instrument consists in tho strean of water, at it ehters the hydronetor chamber, , cing malu to impinge against a lisk of metal, by which it is broken men drops, thas liberating the -team, which would ntherwise disturt the instmment.
Snys stereoncter is an instament for the thermination of the volumes, nom henereof the ilensitios, of honlivg whela comot he convaintly mosuma hy the ordinary hydrometer, as, for "xample, sombhas font porans botice, puwiors, ise. 'The instrument.
 in an :up l'e, the mouth of wheh ran he mended airetipht le the
 is placed in the cup Pr, and the tube $l^{\prime} \mathrm{C}$ is immersel in the wesel of maremy D, whtil the mercury renches the mark I^{\prime}. The phite E is then praced on tho cup, and the tubo l'C raised until

Fin. 10,-
Say's
Sterworneter.

 Who, at Mata, in 17으, obtained results by iced water nhune, which, according tollahn, caused a great stir throughont linope ; lut, owing to the excesses of his imitntors, it was of no long duration. With this exception there is, as regards the remedial use of water, nothing in the bistoryof medicine that approaches in completeness the syatem of Pricssnitz, though much leading up to it can be discovered. Among most primitive peoples, indeed, both in the Old and in the New World, the existence of one kind or another of hydropathic prackice can be traced; and the fathers of medicine made frequent reference in their writings to the employment of water. The warm bath came iato usb ab an early period (sce Batis, vol. iii, p. 434) ; and the clyster, shower bath, douche, plunge, wet compresy, drop bath, hoad and foot baths, are mentioned from time to time, as also combinations of heeat and culd and primitive modes of sweating, until, befere the end of the 17th century, all the processes of modero hydropathy, the wet sheet pack and induced cutaneous crisis alone excepted, had become knowu and were in a measure practised. Promiaent in the roll of names associated more or less with the advocacy of water in earlier times are those of Asclepiados of Prusa (90 в.c.), surnamed $\Psi u \chi \rho 0 \lambda o u ̈ t \eta s$ ("cold bather "), Antoninus Musa (30 в.c.), famed fur his cure of Augustus by cold water (comp. Hor., Epist. i. 15, 3-5), Galen (130 A.D.), Rhazes (923), Avicenna (1036), Cardaa, and Van der Heyden:: Raymond of Marseilles (1755) gained a prize for the best treatise on the applications of cold water in disease, and another prize essay by Harteau shews what knowledge of the subject prevailed in his time.

At Gräfenberg, to which the fame of Pricssnitz drew pcople of every rank and many cuuatries, medical men were conspicueus by their numbers, some being attracted by curiosity, others by this desire of knowledge, but the majurity liy the hope of curs for ailments which had as yet proved incurable. Many records of experiences at Gräfenberg wers published, all more or less favourable to the claims of Priessnitz, and some enthusiastio in their estimate of his genius and penetration; and from these alone can a knowledge of his practice and views be obtained, not a line having ever been written by this singular man. To Captain Claridge was due the introduction in 1840 of hydropathy to England, his writings and lectures, and Inter throse of Drs Wilson, Gully, and Edward Johnson, making numerous converts, and filling the establishments opened seon after at Malvern and elsewhere. In Germany, France, and America hydropathic establishments multiplied with great rapidity. Antagonism ran high between the old practice and the new. Unsparing condemoation was heaped by each on the ofher; and a legal prosecution, leading to a royal commission of inquiry, served but to make Pricssnitz and his system stand higher in public estimation.

But increasing popularity diminished before long that timidity which hitherto had in great measure prevented trial of the oew method from boing made on the wcaker and more serious class of cases, and had caused bydropathists to occupy themselves mainly with a sturdy order of chronic invalide well able to bear a rigorous regimen and the severities of uorestricted crisis. The need of a radical adaptation to the former class was first adequately recognized by John Smedley, a manufacturer of Derbyshire, who, improssed in his own person with the severities as well as the bencfits of "the cold water cure," practised among his workpeople a milder form of hydropathy, and began about 1859 a new era in its history, founding at Matlock a counterpart of the establishment at Grïfenberg.

Whilat hydropathy as a system has been gaining favour with tho people, and receiving ample acknowledgment frum the more liberal members of the medical profession, individual measares have from time to time been advocated in the medical journals and adopted more or less widely in particular diseases. Brand of Berlin, Raljen and Jürgensen of Kiel, and Liebermeister of Basol, betrecen 1860 and 1870, employed the cooling bath in abdominal typhus with results
which, after every deduction on the score of defective classification had been made, were striking enough; and led to its introdution to Eagland by Dr Wilson Fox, whose ablo menograph commanded general acceptance. In the FrancoGermad war the cooling bath was iargely employed in coajunction frequently with quinine; and it now holds a recognized position in tho treatment of hyperpyresia. The wet sheet pack has of late been much used in fevers of all kinds both in private and hospital practice; and the Turkish bath, introduced about tweaty-four years ago by Mr David Urquarart on his return from the East, and ardently adopted by Mr Barter of Cork, has become a public institution, and, with the " morning tub" and the general practice of water drinking, is the most noteworthy of the mauy contributions by hydropathy to public health.

The theoretical basis of hydropathy is wide and fundamental enough to include within its scopo all diseases Each individual cell of the mass constitutiog in various forms and combinations the human body being in its growth end function dependent ou and regulated by the nerrous and vascular aystems, themselves cellülar, and every derangement of these cells origiating in or being attended with a derangement of their nerrous and vascular snpply, and that sapply being powerfully and in quite diverse way's influenced by heat and cold,-all morbid conditions of the economy may be influenced materially by the regulated employment of, heat and cold, which are eatitled therefors to rank as powerful factors in therapeutics.

Hydropathy insists in quite a special way on the necessity of regarding disease first in relation to its cause. It next requires that whatever assistance may be afforded to the vis medicatrix natura should in the first place be aimilar in kiad (i.e., should be datural or .physiological), rather than alien to it and drawn from aqurces remete and strange; and, while proceeding an liaes which have been common to all medical practice from an early period, it does so by agents bitherto atrangely neglected, though not unknown, and effects its purpose in ways less open to objection than those it would displace. For example, when local depletion is required, as of the lung in pneumonia, or the brain in hemorrbagic apuplexy, the final withdrawal from the general circulation of a quantity of blood is deprecated as unnecessary for the attainment of the object in view, and prejudicial in the nfter period of convalescence. Hydropathy substitutes a diversion to parts indifferent, as the extremities and general cutaneons surface, and so màterial and sustained as to be much more effectual; whilo at the samo time it holds in reserve tho abstracted blood to perform its part in the restoration of strength. Where purgation is employed to derive blood from the brain, liver, or kidneys, a highly sensitive and vital membrane is more or less injured thercby, and convalescenco proportionately imperilled. Hydropathy selects the skin as more accessible than the mucous membrane of the alimentary tract, more serviceablo also, and less, if at all, susceptiblo of injury, either temporary or permanent. The skin can with safety be used for counter-irritation, and is a reservoir of capacity alnost unlimited, into which to divert the excess of bloed from the brain or other part, while for purposes of excretion it is not inferior to the bowels themserses, and, unlike the latter, is left even more efficient than before. In the febrile state, a reduction of pulsc and temperature, aud relief frem pain aod slecplessnes, were commonly attempted, at tho period when hydropathy was introduced, by depressants, as antimony, ipecacuanha, and perhaps large doses of alcohol, in combination with sedatires, as opium and chloral. Impaired digestion and depressed vitality were results in some measure inevitable, and always of moment, especially in the more protracted fevers, where recovery becomes a question often of simple physical endurance. By means of the wet
sheet pack, coolirg compresses, spongings, and allied measures, these ends are attained with comparative ease, cortainty, and simplicity, and with cntire freedom from objectionable secondary effects.

The agents of hydropathy are at once simple and complex,-simple in their eleurents, and comples in their combinations and modifieations. They afford the physician a series of effects almost infinite in variety, both in kind and in degree, both immediate and remote. According as heat and cold ${ }^{2}$ are used in their extreme or their intermediate degrees, singly or in combination, successively or alternately, momentarily or continuously, dry or moist, and according as the primary action is utilized or the secondary, do their effects differ. The direct or primary effect of cold is to depress, ccol and deplete the part coucerned. If its exhibition is bref, reaction (an important factor in hydropathic practice) quickly establishes an opposite condition, stimulating the part, and determining an increased flow of bivad to it, with increase of its temperature and vital activity. If it is contiuuous, the primary depression is maintained, and the revulsive or secondary effect delayed or averted. The direct eflect of heat is to increase the amount of blood present; but if the exhibition is brief, and ewaporation is permitter, the contrary effect is produced, viz., depression, coolness, and depletion; if it is continuous, the primary effect is preserved. Thus with truth It may be said that culd heats and beat cools, while the converse holds grood, and that by simule rariations of detail. From the intermediate temperatures (80° to 100°) simpe sedative effects are obtained, with absence of secondary or revulsive effects in proportion as the temperature of the part is approximated to. Results vary also according to the heat of the subject. In local inflamantions, contiunons cold benumbs and contracts, continuous heat soothes and relaxes. Momentary cold excites, heats by reaction, and intensifies intlammation; while momentary heat soothes and ultimately cools the inflamed fart by the after evaporation. In the earlier stages and acute varictics of inflammation, therefore, continuous cold or transient hot applications are appropriate, and brief applications of cold in the later, congestive, and chronic forms. But where the local inflammation eoexists with general fererishness, continuous cold as the hocal application is preferable, helping, as it does, to reduce the general exaltation of temperature. In collapse the low general temperature makes heat tho best local application. On internal parts the application of heat and cold extermaty has definite therapeutic effects ether identical or mposite (as remarked by John ltunter) throngh reflex or sympathetic nervons action. Through the vascuiar hystem also remote effecta are profuced, as in beating tho lower extromitics to derive hlood from the brain. The connter relation also of the entire cutanems surfeme to the internal organs, as the kidueys and alimentary macons mambrane, is, in hydrupathy, largely utilized for remedial purposes. This sympathy is fandiar enongh in the etiolngy wif disease, which may be sath] likewise of nll the physidogical laws applied to curative farposes in hydropathy:

The alydimes and armarsemeats hy meals of which huat amp
 and colk, genmal and lowal, sweating and cooling: (i) hut air and Etram bathes ; (r) gemal baths, of hot water amb cold; (di) sitz,
 dry; also (f) fommatations and ponlticers, hot anl cold, simajisms, stupeq, rudbings, and water potations, hot and cold.
(e.) lacking -The full pack ronsists of a wetsheet enveloping the lindy, with a number of dry hankets packel tightly orer it, in. chading imacintosh onvering or mot in in hour or less shase are

- Runtigly, aul for practurn purposes, temperature lower than 60° maj ho callex coll; from Bin to 80°, temperate or tepil; from $90{ }^{\circ}$ to 100°, warm: and above 100°, hot (compare wol. lit. 1 . 40).
sedative, sudorific, and stimulator of cutancous excretion. Ther are numerous modifications of it, notably the cooling pack, when the wrappings are loose and scanty, permitting cvaporation, and the application of indefioite duration, the shect being rewetted as it dries; this is of great value in protracted febrile cooditions. There are also local packs, to trunk, limbs, or head separately, which are derivative, soothing, or stimulating, aecording to circumstance and detail.
(b.) Hot air bathe, the chice of which is the Turkish (properly, the Roman) bath, consisting of two or more chambers ranging in temperature from 120° to 212° or higher, but mainly usel at 150° for curative purpases. Exposure is froan twenty miautes up to two hours according to the effect sought, and is followed by a general bath, and occasionally by soapmand shampoong. It isstimulating. derivative. depurative, sudorific, and alterative, powerfully promotng tissue ehange by increase of the natural waste and repair. It deternines the blood to the surface, reducing loternal congestions, is a poteot diaphoretic, and, through the extremes of heat and cold, is an effective aerrous aad vascular stmulant and toaic. Morbid growths and secretions, as also the uramic, gouty, and rheumatic diathesis, are beneficially influeaced by it. The full pack and Turkish bath lave between them usurned the place and bettered the function of the once familiar hot bath. The Russian or steam bath and the lamp bathare primitive and inferior varieties of the modern Turkish buth, the atmosphere of which cannot be too dry and pure.
(c.) General baths comprise the ram (or needle), spray (or rose), shower, shalluw, plunge, douche, wave, and common morning sponge baths. with the dripping sheet, and hot and cold spongings, and are combinatons, as a rule, of hot and cold water. They aro stimulating, tonc, derivatise, and detergent.
(d.) Local haths cemprise the sitz (or sitting), douche (or spoutiog) spoal, foot, and head baths, of hot or cold water, singly or in combination, successive or alternate The sitz, heod, and foot baths are used "flowing" on occasion. Raph alternations of hot and cold water have a powerful effect in vascular stasis and lethargy of the dervous system and absorhents, yicldiag valuable results in local congestions and chronic millamations.
(o.) Pandages (or compresses) are of two kinds,-cooling, of wet malerial left exposed for evaporation, ased in local inflammatiens and fesers: and henteng, of the same, covered with waterproof material, used in congestion, exterual or iaternal, for short or long poriols. Poultices, wam, of bread, linseed, bran, \&c., changed but twice in twenty four hours, are identical in actoo with the heatug bandage, and superor only in the greater wamelh and consequent vital astivity their closer alplication to the sbin ensures.
(f.) Fonentations and poultices, hot or coll, sinapisnes, stupes, rubeficients, irritants, frietions, knealiogs, calisthenics, gymmastics, electricity, se, are aljuncts lnryely employed in hydropathic practice. Water drinking, while still mo impertant factor in hydropathy, has declined somewhat since the carly tumes of the system
lint that which bas from the first distinguished modern hydropathy, and still makes its strict practice a thing apart, is tho "crisis" so called It is related of l'riessnitz that, when a boy of foutcen, and treating a spram, as was the nature custom, with wet cloths, he observed an eruption appear beneath them, with immediate recovery of the part Gradusdly the stgnificance and wider application of this emption dawned anon him, until it came to hold so frominent a plase in his practice as to be regarded by many as his greatest discovery. The eruption conciding in point of time with reovery as a rife, 11 was ealled the crisis, involving doubtess a refence to the term as wied hy hippoctates and his successors. But with l'riessuitz cusis athancla higher rank, a witerapplication, and a more dedinite character. He first showed it to be producible at will under given conditions of the paters. and amemable to direction and cintrol This eruptron, it is elmand, appears only in murdid states of the blood (callexia) resulting from derangement or Whact in the organs of assmilation or exchetion of both (e.g., gont, rhe umaticia), or fron the presence of a sprevitic prison (e.g, sy, hilis). The contanums afplication to a given tract of skin of the leating bandage or pultire (mediums mexly for the exhitition of wamth and meisture) stamulates, in a chmalatwe way, its basenlar and nerwons activity, and laals, it may be in a lew days or weeks (in some eases henrs, in others months), to an craption, papuar, then pustular, and ultimatuly resolving itedf' mon a suppurating surface commensurate with the area covered by the lmuldge. There is, in the latter stage, a copions discharge of yellowish-grem pus, usually frotid, varied oceasimally with patches of hrown, bluc, or metallic gren, and accompanid with itching sometines intense. Tho Henemal temperature is mot, wa rale, disturbed; the pulse, exerpt gerlapis for tho first day or two, latls, if previously quick, to a matural rate : the weight nul strongth, in the mest favourable eases from the onsel, and in the rest later on, increase, and it is not uncommon to tind the monaly of a patient exulting in liechom from sulfiengand at retnen of the implases of health simultaneously with the apyanale of an extomsive inflammation of the skin. The aphlintima, contimucl without intermission mon maltered (save os chanduess reymites) for wewk or monthe necording to the maturo of the case, we at last no more stained with jus hut with serum
simply; and finally, still without change of epplication, the skin rill heal, or, at most, ahow a little psoriasis, pityriasis, or eczema, 16 , it may be, but a faint tinge of red. The bandages are then vithdrawn. The original symptoms meanwhile have disappeared with more or less celerity and completeness; and with the cruption has departed the disease that called for it and made it possible. Strength grows apace, no longer taxed by disease cr crisis, until recovery in appropriate cases is absolute and secare.

Occasionally the cutaneous inflamation extends in the form of psoriasis, eczema, sudamina, a papular rash, or a succession of boils, invading parts untouched by the wet compress. This is called a general crisis; it usually occurs in the last stage of the local oue, eometimes after it has ceased, and is advantageous and transicnt. Debility, whether pre-existing or consequent on the crisis, may call for some modification of its severity and duration, whether by instalments at proper intervals, or curtailment in the later stages, the natural emunctories being relied ou to complete the work of purification at greater leisure. A residuum of ineurable organic degeneration, as of the kidneys or liver, may likewise put limits to recovery, and provide perpetual material for crisis until the patient is worn out in a rain and ignorant attempt at cure. It was the failure of the earlier hydropathists-through inexperience, default of medical education, or inordinate enthusiasm-to recognize these limitations, that brought crisis into its present discredit aud comparativo desuetude. Where it is necessary from theso or other causes to relieve the patient of the eruption, the substitution of simple ointment, unsalted lard, or other oleaginous or viseid material for the stimulating bandages or poultices, permits the excitement to subside, aud, with occasional exceptions, the skin, in a few days, it may be hours, bears little trace of the cruption.

In the course of hydropathic treatment there occur, though rarely, attacks of diarthoea, sickness, diuresis, or diaphoresis, which, having been observed frequently to mark the tutoing point in the history of the case, are held to be varieties of erisis, disturbances attendant on the expulsion of the materies morbi from the system.

The theory of crisis may be atated thus. The digestive and essimilative organs are, as is well known, involved, whether primarily or secondarily, in by far the majority of morbid conditions. Their prodact, the blood, undergoing constant renerial, becones necessarily more or less impaired, -deprived of the blandness that pertains alone to a pure and perfect condition, with what may be termed an inflamatory disposition as the result. The most familiar, because pronounced, forms are the gouty, rheumatie, tubeteular, and etrumous diatheses. Later the excretory organs, in common with the Fhole economy, must more or less become deranged, with edditions, in consequence, to the sum of morbid elements in tho blood, such as uremic and biliary matters. A ricious circle of action and reaction is established from which escape is diffeult, if not impossible, in its more pronounced developments. The digestive disorder begets inperfect and impure blood, and the morbid blood keeps up, and coteris paribus increases, the initial and originating digestive disorder. In all but its most adrazeed stages ordinary measures, hydropathic or other, may suffice to break this chain, and, by eliminating one or more of its links, render recovery rossibie, or accomplish it. It is when the complication is beyond their reaeh that the domain peculiar to crisis beging. The superior raseularity and vitality of tho digestive organs-the alimentary tract of mucous membrane, the pancreas, and the liver-is what makes them (in addition to their susceptibility to injury through errors in dict) so commonly the seat of diseased action. The highly nervous and vascular structure of the okin makes easy its clevation to at least an equality in vital activity with the mucous membrane. Warmth and moisture continuously epplied to a given portion will, in time, effect this, eided doubtless by maceration and denudation of the cuticle and exposure of the sensitive cutis vera. It thus becomes the seat of greatest vital activity; pre-eminence in morbid activity naturally foltows, and a genvine metastasis is effected, such as the natural history of disease is rich In examples of. There is a decline, pro tanto, of the primary internal disorder under this combined pressure, first by the diversion of morbife clements, and then by the diversion of an epprecisble quantity of the blood itself, and by counter-irritation, when the sito of the vicarious inflammation has been selected with that in siew. The aid of a sustained derivation to the entire cutaneous surface and tho extremities is at the same time secured by means of the Turkish bath, full packs, and other stimulating ageuts, while, at the same tinoe, due care is tiken to eliminate and negative the original causes of disease. The sum of morbid activity is for the time being increased and intensificd ; but, in the new location, no longer self-supporting and self-perpetuating, it is sonner or later exhausted. The chango in the relation of the materies morbi to the digestive aysten puts an end at ono and tho same time to the originating and sustaining conditions. The failure of simple eounter-irritation (where, as by sinapisms, vesicatorics, \&.c., the irritant is derived from without) to effeet the amme result in many of the cases ofterwards cored by crisis negatives of itself the view that the results of the latter are to be altributed to the olement in it of coulter-irritation alone.

Bibiogrophy.-Amott, Indigestion and its Treatment by the Local Aprens tion of Heat and Moisture, 1847: Dalbiraic. Water Cure in Conrumption, 1847 , Mydropathic Aphorisms, 1856 , and A Plea for the Turkish Bath, 1862 Maynard, HIot and Cold Baths, 1715; Bend-Barde, Traile dHydrolhèrapie, 1874 ? Bushnan, Observation on Hydropathy, 1846: Clarídge, Cold Fater Cure, of Hydropathy (passed throagh nincteen editlons In 18 months), 1841 . Facts and Evidence in Support of Hydropathy, 1043, and Cold Fater, Tepid Fater, and Friciion Cure, 1843 ; Colın, Kaltuasser-Ifilkunde, Lelpsic; Crescenzo, Ragiona. menti intorno alla nuora Medicina dell Acqua, 1727; Curte, Medical Report; on the Effects of Watcr, \&c., 1797; Dunlop, Phllosophy of the Bath, 1873; East. Primiples and Practice of the Water Cure, 1850, and Hydropathy in tha Diseases of Women, 1550 ; Floyer, Psychrolousia, or the History of Cold-Bathing, de., 1702; Fyfe, Manual of the Thrkinh Bath, 1856 ; Gibbs, Letters from Grafen. berg, $18 i 7$; P. H. Graham. Orärenberg, or a True Accownt of the Waler Cure, 1844: T. J. Graham, Cold Water System, 1843; Gully, The Simple Treatuent of Discase. 1842, Ezposition of the Symptons, dic. of Seuropalhy, 1842. Water Crire in Chronic Disease, 1817, and Hoter Chre in Acute Disease 1863: J. G. Hahn (Breslao). Cold Affusion in Feters, 1737, and Cold Sponging in Fever (ln Acta Germanica), 1786; J. S. Hahn (Schweldnitz), Obserrations on the Healing Firtues of Cotd lf"ater, 1738; S. Hishn, Psychrolutia Yeteram Renotata, 1738; Hancocke, Febrifugun Magnum, or Coramon Water the Cure of Feters, 1700; Henderson, Trealment of Disease by means of Hater. 1803 : Hunter, Hydropalhy for Home Lise 1879: Jackson, Exposition of Practice of Cold Atfision in Feters, J805; E. Jolinson, Hydropathy, 16\$ Theory, Principles, and Practice, 1S43, Theory and Principles of the thater Cure, 18:2, Etomestic fuctice of Hydropathy, 1849, and Hydropathic Treatment of Diseases of Women, 1849; II. F. Johnson, Researchea into the Effects of Cotd Water, 1850; Johnson, Results of Ifydropaldy, 1 E46; W. Johnson, Hydropalhic Treatment of Children, 14\$5, and Journal of Health, 1852; King. Hot and Cold Bathing. 1735: F. W. Lane, Hydrogathy. ot the Nafural Syefem of Medical Trratment 1857 ; IR. J. Lane, Lite at the lFater Cure, 185l; Sis E. B. Lytton, Confessions of a Water Patient. 15sl; Maclead. Theory of the Treatment of Disease 1863; Mayo. Cold W'ater Cure, its l'se and Jisuse Enomined, 1845 . kichardson, Fourteen lears' Erperience of Cobd Water, 1857: Ramford, Salubrity of Warm Balhing, 1502; Shew, Iydropalhic Family Physician, 1s57; Short, On the fruard C'se of Cold Water; Schucirner, Medrema Vera l'nirersalis; Simpson, Ubsercations on Cold Bathing: Smedley, Praclical Hydropathy, 1879; Smethorst, Ifylrotherupia, or The Water Cure, 1543. Smith, Curiosuies of Common Water: Sjence, Constiparion Cured by Cold Hoter. 17St: Toduro, De Aequa Frigida: Tnall Bydiopathac Encyclopadia; Vian der Meyden, Arthrilíugum Magnum, Ghent 1619 .
 Handoox of Hydroparhy, 1844 ; Whe Cold Hiure Cure. 1854, and The Waler Cure 1859; Wright, Sfemoir on Cold Affuston in Fevers, 1786.
(W. B. H.)

HYDROPHOBIA, from i i $\delta \omega$, water, and $\phi o \beta \epsilon \omega$, to fear (Syn. Rabies, Lyssa), an acute infectious disease, occurring chietly in certain of the lower animals, particularly the canine species, and liable to be communicated by them to other animals, and to man. The main features of the disease are similar alike in the lower animals and men, but that peculiar symptom from which the malady derives its name, viz., the dread of water, appears only to affect the latter. Rabies as it manifests itself in animals belongs to the subject of veterinary medicine; the present notice refers only to hydrophobia occurring in man. The discase has been known from early times, and is alluded to in the works of Aristotle, Xenophon, Plutarch, Virgil, Horace, Ovid, and many others, as well as in those of the early writers on medicine. Celsus gives detailed instructions respecting tho treatment of men who have been bitten by rabid dogs, and dwells on the dangers attending suel: wounds. After recommending suction of the bitten part by means of a dry cupping glass, and thereafter the application of the actual cantery or of strong cnustics, and the employment of baths and various internal remedies, he says: "Idque cum ita per triduun factum est, tutus esso homo a periculo videtur. Solet autem ex eo vulnere, ubi parum occursum est, aque timor nasei, ídpoфoBiav Greci appellant. Miserrimum genus morbi ; in quo simul eger et siti et aqne metu cruciatur ; quo oppressis in angusto spes est." Subsegnently Galen descrived minutely tho phenomena of hydrophobia, and recommended the excision of the wounded part as a protection against the disease. Throughout many succeeding centurics little or nothing was added to the facts which the early physicians bad made known upon the subject. The malady was regarded with unisersal horror and dread, and the unfortunate sufferers were genemally abandoned by all around them and left to their terrible fate. In later times the investigations of Eochaave, Van Swieten, John Munter, Magendie, Brescket, Virchow, Reder, as also of Iouatt, Fleming, Meynell, IIertwig, and others, have furnished important information; nevertheless much remains obscure as to the nature and pathology of this formidable disease.

Whatever may be said as to the spontancous derelopment of rabics in animals-a view which is now generally dis-crodited-there can be no duubt that in man the disease is in every instance the result of the inoculation of the virus XII. - 60
contained in the secretions of the mouth of the affected animal into a wound or abrasion of the skin or mucous membrane. In the great majority of cases (90 per cent.) this is due to the bite of a rabid dog, but bites of rabid cats, wolves, foses, jackals, \&c., are occasionally the means of conveying the disease. There is no cridence that the poison can be introduced into the system without an abrasion of the surface. But it must be observed that evea of those who have undoubtedly becu bitten by rabid auimals, only a proportion subsequently suffer from hydrophobia. Thus where the bite has been inflicted on a part of the body pro tected by clothing, the virus may be wiped from the teeth of the animal before they penetrate the skio. Hence it is found that bites on exposed parts such as the face are very much more dangerous than on other parts which are ordinarily covered. But further, individual suseeptibility must be taken into account, for it is undeniable that many persons in whom the virus of rabies bas been inoculated escape bydrophobia. John Hunter mentions one remarkable instance in which of twents-one persons bitten by a rabid dog only one subsequently died from hydrophobia; and a comparison of the best authorities would seem to show that the proportion of those who are attacked with the disease to those who are bitten is less than one-half, Numerous popular fallacies prevail on the subject of hydrophobia. Thusit is supposed that the bite of an angry dog may produce the disease, and all the more if the animal should subsequently develop symptoms of rabies. The ground for this erroneous notion is the fact, which is unquestionable, that animals in whom rabies is in the stage of incubation, during which there are few if any symptoms, may by their bites convey the disease, though fortunately during this early stage they arc little disposed to bite. The bite of a non-rabid animal, howerer coraged, cannot give rise to hydrophobia. Another fallacious notion, not altogether of popular origin, but maintained by a few eminent professional authorities, is to the effect that there is no such disease as hydrophobia at all, but that the symptoms designated by that name are cntirely mental phenomena produced by the effect of fear of the consequences following a bite. It might be sufficient as a reply to this to point to the uniform sequence of terrible symptoms which mark the progress of the malady when it has commenced, and to its acute course and iuvariably fatal termination; but there is the additional faet that very young ehildren, in whom this feeling could scarcely be expected to operate, may suffer and die from hydrophobia.

The period of incubation of the dise:sse, or that time which elapses between the introduction of the virus and the development of the symptoms, appears to vary in a remarkable degree, being in some cases as short as a fortnight, and in others as long as several meoths or even years. On an average it seems to bo from about six weeks to three months. The rare instances of the appearamee of hylrophobia many years after the introduction of the poison are always miore or less open to question as to sulsequent inoculatiou. Duriog the period of latency, in which the patient scems perfectly well, it is supposed that the poison is undergoing a sort of multiphication, both in the previously wounded part and in the system at large, somewhat analogous to the fermentive proeess, and that ultimately it concs to tell with deadly effeet upon certain prortions of the nervous system.
When the discase is about"to declare itself it not unfrequently happens that the wound, which lad quickly and entirely healed after the bite, begins to cxhibit evidence of irritation or inflammatory action, or at least to be the seat of morbid seusations such as numbness, tingling, or itching. The symptoms characterizing the premonitory stage are great meatal depression and diaquictude, together with restlers.
ness and a kind of iudefinite fear. There is an unusual tendency to talk, and the articulation is abrupt and rapid. Although in some instances the patienta will not acknow. ledge that they.have been previously bitten, and deny it with great obstinacy, yet generally they are well aware of the nature of their malady, and speak despairingly of its consequences. There is in this early stage a certain amount of constitutional disturhance showing itself by feverishness, loss of appetite, sleeplessness, headache, great nervous excitability, respiration of a peculiar sighing or sobbing character, and even occasionally a noticeable aversion to liquids. These symptoms-constituting what is termed the melancholie stage-continue in general for one or two days, when they are succeeded by the stage of excitement in whieh all the characteristic phenomena of the malady are fully developed. Sometimes the disease first shows itself in this stage, without antecedent symptoms.
The agitation of the sufferer now becomea greatly increased, and the countenance exhibits ansiety and terror. There is noticed a marked embarrassment of the breathing, but the most striking and terrible features of this stage are the effects produced by attempts to swallow fluids. The patient suffers from thirst and desires eagerly to drink, but on makiog the effort is seized with a most violent suffocative paroxysm produced by spasm of the muscles of swallowing aod breathing, which continues for several seconds, and is sneceeded by a feeling of intense alarm and distress. With great caution and determination the attempt is renewed, but only to be followed with a repetition of the aeizure, until the uohappy sufferer ceases from sheer dread to try to quench the thirst which torments him. Indeed the very thought of doing so suffices to bring on a choking paroxysm, as does also the sound of the running of water. The patient is extremely sensitive to any kind of external impression; a bright light, a loud noise, a breath of cool air, contact with any one, are all apt to bring on onc of these seizures. But besides these suffocative attacks there also oecur gencral convulsions affecting the whole muscular system of the body, and oceasionally a condition of tetanic spasm. These varieus paroxysms increase in frequency and severity with the advance of the disease, but alternate with intervals of comparative quiet, in which, however, thero is intense ansiety and more or less constant difficulty of breathing, aceompanied with a peculiar sonorous expiration, which has suggested the notion that the patient barks like a dog. In many instances there is great mental disturbance, with fits of maniacal cexcitement, in which he strikes at every one about him, and accuses them of being the cause of his sntlerings,-these attacks being succeeded by calm intervals in which he expresses great regret for his violent behaviour. During all this stage of the disease the patient is tornented with a riscid secretion accumulating in his month, which from dread of swallowing he is constantly spittiug about him. There may also be noticed snapping movements of the jaws as if he wereattempting to bite, but these are in reality a mauifestation of the spasmodic action whieh affects the museles generally. Thero is no great amount of fever, but there is constipation, diminished flow of urine, and often sesual excitemcat.

After two or threc days of suffering of the most terrible description the patient succumbs, death taking place cither in a paroxysm of choking, or on the other hand in a tranquil manner from exhaustion, all the symptoms haviog abated, and the power of swallowing returned before the cad. Tho duration of the discase from the first declaration of the symptoms is gencrally from three to five daya.

Post-morten examination has not hitherto thrown mucb light upon this mahidy, but the subject is at the present time engaging the special attentiou of certain eminent pathulogists, and important and valuable information may
be anticipated. The chief morbid changes which have been described are evidences of congeation and inflamınatory action in certain portions of the brain and apinal cord, but more particularly in the locality known as the "respinatory centre" of the medulla oblongata, where the accumulation of "leucocytes" around the small blood-vessels and in the surrounding uervous substanceare a prominent phenomenon. Sinilar changes have been found in the salivary glands. On the whole, however, it can scarcely be said that the formidable array of symptoms above narrated are accounted for by these appearances, which in the opinion of some are in all likelihood merely the results of anteccient processes of an occult nature aflecting the nerve centres and forming the esseace of the disease.

That amotional disturbance is present is undeniable, for it is found that those cases of hydrophobia are less severe where there is no suspicion on the part of the sufferer of the nature of bis complaint; yet this only represents one of many elements. The function of the eighth pair of nerves (which are largely concerned in the processes of respiration and deglutition) is disturbed in a marked degree, and it is probable that this is the portion of the nervous system upon whicn the poison most powerfully exerts its specific action. But that the great nerve centres, viz., the brain and spinal cord as a whole, 'ąre profoundly affected, is manifest in the tendency to general convulsion, the remarkable hyperæsthesia, and the mental perturbation of the patient.

The treatment of most arail in this disease is that which is directed towards preventing the absorption of the poison into the system. This may be accomplished by excision of the part involved in the bite of the rabid animal, or, where this from its locality is impracticable, in the appliation to the wound of aome chemical agent which will 'sastruy the activity of the virus, such as potassa fusa, lunar zustic (nitrate of ailver), or the actual cautery in the form if a red.hot wire. The part should be thoroughly acted
on by theae agenta, no matter what amount of temporary suffering this may occasion. Such applications ahould be resorted to immediately after the bite has been inflicted, or as soon thereafter as possible. Further, even though many hours or days should elapse, these local remedies should still be applied; for if, as appears probable, some at least of the virus remains for long at the injured part, the removal or effectual destruction of this may prevent the dread consequences of its absorption. Every effort ahould be made to tranquillize 'and reasaure the patient.

When once the aymptoms of hydropbobia have declared themselves, little can be achiered by the resourcca of the physician beyond palliating the agonizing sufferings and rendering easier the inevitably fatal event.

Medicines cannot be administered by the mouth, owing to the impoasibility of swallowing and the distress occasioned by the effort to do ao; they must tuerefore be given either by the bowel in the form of enema, by hypodermic injection, or by inhalation. The most approved and potent agents are opium, belladonna, curarc, chloral, and chloroform inhalation. The vapour bath is also recommended. It need scarcely be said that those coming in contact with the patient should guard against the risk of being bitten during the paroxysms of excitement, or of being inoculated by the saliva, for although there are few if any well-authenticated cases of the disease being communicated in this way, yet the possitility must be admitted.

It should be remarked that occasionally an individual who may have at eome time been bitten by a non-rabid dog manifests symptoms strongly resembling in many poin's tloss of hydrophobia. These are often simply the effect of "fear, and have much of the hysterical element mixed up with them. They are generally of much less severity in every way than those of the true disease, and yield readily to treatment appropriate to the disturbed nervous condition.
(J. o. A.)

HYDROZ0A

THE Hydrozoa form one of the three classes into which the Colentera nematophora (distinguished from the Calentera porifera, or Sponges) have been divided, recogoized as such in the article Cglentera, to which the reader is referred. It results from observations made by Ernst Haeckel, since that article and the article Activozon were penned, that the Ctenophora should not be regarded as a class equivalent to the Mydrozoa and Actinozoa, nor as a aubdivision of the latter class, but that they must be considered as a peculiar modification of the medusiform IIydroza (see final paragraph). If this conclusion be accepted, it will be necessary to divide the IIgelrozoa into two primary groups or grades, for which the names Polypomorpha and Clemophora are proposed.

The /Iydrozoa correspond to the Linnman genera IIydra, Tubularia, Sertulterie, and Medusa. The name was applied 1,y Wuxley in 1856 to a group corresponding to that termed IIy $/$ Iromeduse by Vogt (1851) and Meduse by Leuckart (1853), and embracing the forms placed by Gegenbeur in his Etements of Comparative Anatomy (1878) in four classes, viz., Mydromeduse, Calycozoa, Thecomeduse, and Medusa. Our knowledge of the structure and life history of the Mydrozoa, many of which, on account of their delicacy and oceanic habits, are excessively difficult to obtain in a state fit for inrestigation, has greatly extended within the last five years. Whilst in the two decades preceding this period the admirable researches of Huxley, Gegenbaur, Agassiz, and Allman had brougbt to light and systematized a vast mass of information with regard to these organisms, the later observations of Clisus; the Hertwiss, Haeckel, and

Metscbnikoff, have corrected, extended, asd added to their history, especially in respect of embryologica! and histological detail. An epitome of the present condition of our knowledge of the group is afforded by the subjoined tabular classification of its familics, orders, and sub-classes.

The definition and synonyny of the dirisions recngnized will be entered into, after a sketch has been given of tho common atructural features of typical Mydrozoa.

Class ifiddrozoa.
Sub-Class I Scyphomeduse (sya. Ephyromeduse)

The IIydrozor present a greater simplicity of witimate es rueturo than do any aninal organisms possessed of an Ereat a complexity of external form. Asin all Uetazon or Dinterozon, the life cycle of a ligdrozonn starts with an egge which is at first a single cell or unit of protonlasm, but proceods after fertilization to multiply by tanaverso fission in such a way that the resulting colls or units are arraiged in two layerz, cach one coll deep, disposed around a motral cavity-tho enteron or archenteron. The sac thins formed is known as a diblastula (figs. 2, 2, and 25). Fy the formation' of a month to the sac, the enteron arquires the functions of a digestive retort in. which food materes taken in at the month are brought into a chemical condition suitablo for the rutrition of the surrounding cells. The two layers of cells (of which the outer only acquires additionsl layers ${ }^{2}$

[^104]by the division of the primary cells, and that by no means in all cases) received from Allman (Phil. Trans., 1855) the names respectively of the ectoderm and the endoderm, having previously been shown by Huxley (1849) to be the fundamental membranous constituents of which the most varied parts of the more comples Hydrosoa-such as tentacles, swimming bells, and air-bladdersare built up in the adult condition. Huxley also pointed out the identity of these menbranes with the two primary lagers of the vertebrate embryo. The endoderm and the ectoderm, which present themselves, as is now known, in the diblastula (or gastrula) phase of all Enterozoa, remain in Mydrozoa (and alsoin the allied

1G. 1.-Diagiam ot a Di blastult. a, orifice of in. sagination (blastopore): b. archentertc cavity: 4 endoderm: d. ectoderm (From Gepenbaur's Ele ments of Comparative Anatomy.) groups of Colentera) as permanently distinguishable elemonts of structure. This important disposition is associated with and dependent on the simple character which the archenteron or primitive digestive space retains. Into whatever lobes or processes the sac-like body may be, so to

Fig. 2.- Formation of the Dibinstin of Furcor (one of the Calyptoblustic Ifinfro
 successuve stajes. ep, cetoderm; hy, endoderm; ah, cuterac cavity.
speak, moulded, whether tentacles ${ }^{3}$ or broader expansions, into these the cavity of the archenteron is extended in the first instance; and where the actual cavity is obliterated the endalermic cell-liayer remains to represent it (Gefäss. plate or endaderm-lamella, soo figs. 7 and 16).
Conversely, whateser cabals or spaces are discovered in the substance of a hydrozoon (excepting ouly the eavity of ectollermal otocysts) are simple and direct contimutions of the one original enteric cavity of the diblastula, and all such spaces are permanently in free commanication with one another. ${ }^{4}$
The whole of the IIydrozo seem to present a luwer grade of structure than the detimozor, in so far as the later, whilst refaining permanently free commanication botween all parts of the archenteric space, yet exhithit a diflerentidtion of this spaco into at axial and a periaxial portion-a digestive tube and a body carity. The differentiation has only to proced a step further, namety, to tho cloanro or slutting of of the axial from the periayial portion of the archenteric space, and wo obtain the condition which characterizes the adult forms of the Colomata, or animals
originat entotermal cell-duyer. The two kinds of cells in two layer figured by the same authority in tho endoiderna of G cmonellaria implexa, pl. vii. fig. 5 , cannot, lowever, the thus explained.
some molin tentacles, with a kinglo axial row of ondodornal coll form an exception to this statenent.

* The observations of Lilhard Schules citod in tho articlo Celents do not form any real exception to this statempist
with blood-tympt space distinct from digestive canal. ${ }^{1}$ With the attainment of the collomate coodition, the two fundamental cell-layers, eetoderm and endoderm, which still appear in the embryo, become so far interwoven, and their products so highly differentiated, that it is no longer possible to recognize them as anatonical structures in the adult.
The ouly deep seated distiuction between $I I y d r o z o a$ and Arthozoa (the Actinozoa being thus terned when the Ctenophora are detached fron them) appears to be the particular difierentiation of the archenteric space in Anthosoa which has just been noted. It is no longer possible to separate the two groups frou one another as Exoarii and Endoarii, as was preposed by Rapp (Ueler die Polypen inz Allgemeinen und die Actinien insbesondere, Weimar, 1829) -the first term indicating the IIydrozou as possessed of external generative organs, whilst by the latter term the Anthozoa are pointed to as having internal generative organs. ${ }^{2}$ This distinction breaks down completely in the case of Lucernaria, and even in that of the se-called phanerocarpous and some other meduse which discharge their genital products by the mouth, and yuite rarely by rupture of the outer body-wall The teudency to form calcareous depesits in the deep layers of the ectederm, or mesoderm, as it bas been termed, exhibited almast universally by the Anthooon (whence the name Coralligera applied to them), is distinetive of them, though it has been shown first by Louis Agassiz, and more fully and recently by Moseley, to be paralleled among IIydrozon, by the external calcareous deposits of the abundant and widely distributed Millepores and Stylasterids. A minute distinction between Hydrozoa and Anthozon, which does not, however, held good universally, is found in the form of the barbed threads ejected by the nematocysts. \{nstead of the complieated furms present in the latter group, the Hydrozoa are usually provided with either an unbarbed thread or one in which the barbs are coufined to three at the base and a few minute barblets (fig. 5).

Fundamental Forms of the IIydrozoa.-The diblastula derived from the egg of a hydrazoon, when proviled with a mouth, may be spoken of (as are the equivalent forms in other animals groups) as a persou. Either this person elongates and develops tentacles in a circlet around or near the meuth, and usually becones fixed by the aberal pole of the sac-like body. or the sae gradually assumes the form of a clapper-bell or of an umbrella with greatly thickened handle, the mouth being placed at the free end of the handle or of the clapper, and the animal freely swimming by the contractions and expansions of the dome of the bell (dise of the umbrella). The two forms of persens are knewn, -the former as the "hydriform" (2, 3 in fig. 16), the latter as the "medusiform" ($4,5,6$ in fig. 16).

The invoriform persons usually oceur as fixed brauching colonies or trees (figs. 36 and 37) yroduced by lateral budding from an original hydra-form developed from a diblastula.

The lydriform person in its most fully developed state ls seen in the colonies of Tutularia. In such a coleny a number of hydriform persous are united like the llowers of a plant on its branches (whenee Allman's terms hydranth, hydrophyton). Each hydriforin persun (fig. 35) las an elo.ggated body with oral aud aboral prole. The mouth is placed centrally at the oral pole, which is somewhat enlarged and conical. At the aper of the cone, immeliately aroumd the mouth, is a circlet of small tentacles; at the base of the eone is a seeond circlet of larger tentacles; the surface of the ural cone is termed the hypustome. In other genera

[^105](e.g., IIyitra, fig. 42) the smaller circle of tentacles is waoting; io others, again, the tentacles are irregularly placed and not ceacentrated inte one circlet (fig. ${ }^{38}$). We regard the former as the typical condition. In the hydriform persons of the Scyphomedusce (figs. 26 and 27) the vertical axis is mueh shortened, the hypostome is fiat, and the whole body cup-like or hemispherical.

The tentacles of the hydriform persen are sometimes holiow (IIydra, Garveia nutans, Hydrocorallina), being mere prolongations of the sac-like body; but usually, though the endodernal cell-layer i's continued into them, they are solid (2 ip lig. 16). Very. generally the tentacles of the hydra-forni are indefnite in number, but io those belonging to the group of Scyphometluse a primary aeries indicating four radii (perradial) can be distioguishod, to which are adided four internediate to these, markiog four secondary radii (interradial), whilst eight mare placed between the eight of the perradial and interradial series. are known as adradial tentacles. The surface of the bydraform may be entirely naked, or encased in a horny tube (perisare) formed by the ectoderm: this may be confined to the aboral portion of the hydranth and to the common sten which uuites the persons of a coleny, or it may rise up and form a cup (or hydrotheca) around the oral region of the hydranth (figz. 32 and 33).

The bodies of all hydriform persons, as well as the tentacles, are excessively contractile, and when hydrothece are present can be withdrawn into them.

The ectoderm or outer cell-layer farnishes tha protective and contractile tissues of the hydra-fom. Very ustailly it is not more than one or two cells deep, and is separated from the endoderin by a struetureless lamella of firm consistence. In IIydra large cells of the ectoderm (neuro-nuscular cells of Kleinenberg) bound the
 external surface (fig. 3) and give off horizontal musenisr processes which lie side by side on the st ructureless lemeilatorming thus a deep muscular coat, the fibrous elements of

Fic. 4.-Portinn of the body-wull of //ydra, Alowing; ectoulems colls above: separated by structurelese firmelis" from thrce figellate endoderth colls below. The tatper are sacuolated, and contaln each a nuelang arol cueral duth granulea. In the mudte cetoenim cell are scen a nueleue and three temato-
 Schulze.)
which are net independent cells. In laiger species some of the fibres may becone separated frum the sermmentary or superficial cells, and acquire the character of indefendent nucleated corpuscles (Ilydrartinit, Van Beneden). Nio nervous elements nor seaise-organs uccor in any hydra-form (except perhaps the Lucernaric). In Antenularia senna extoderm cells are amobiform, and project processes which change shape (nematophurs). Tactile hairs (palpocils),
however, occar on the ectodermal cells, and the solid tentacles are essentially tactile organs. Placed in and between the large cells of the ectoderm (Hydra, Cordylophora, Allman, Kleinenberg, F. E. Schalze) are small nocleated cells which become converted into vesicles contain. ing a three-barbed (figs. 4 and 5) or simple filament (nematocysts). These are frequently grouped on the auriace in wart-like processes or "batteries." Nc. matocysts also are found in the endoderm; but it is prob. able that their presence there is due to their having bean smallowed.

The endoderm is usually
 but one cell deep, and lines fro. 5 - Nematocsst or Hydra, showing the entire cavity of the body cell-gutstance and naclens cyst trto starting from the margin of F.E. Schulze.)
the mouth In the region of the body proper, and in bollow tentacles, the cells are ciliated (fig.4). In this region they are concerned in the secretion of digestive fluids and in absorption, and sometimes contain coloured granules(hepatic?). Allman feand in Myriothela (Phil. Trans., 1875) that the cododerm cells project processes liko the pseurdopodia of Pro. tozou, and suggests that solid food particles are incepted by them. T. J. Parker has published similar observation on Hydra (188:). In the solid tentacles the endodermal cells are greatly modified, forming a kind

Fig. 6 . Vacunated cadoderm cells of carilaginors corsistence from the ayis of the tontacle of a Medusa (Cunina). (Fiom Gegenbsur"s Elements of Comparatire Anatomy.)
of akeletal tissuc, each cell recalling by its racuolation and firm cell-wall the characters of vegetable parenchyma (fig. 6). In the atems of Siphonophora enduderm cells give origin to muscular processes like those of the ectoderm (Claus). This latter fact bas a morphological significance which cannot be too gravely estimated.

Generative products are not developed by any hydriform persons (excepting the Lucernaricy), the sexual process being carried or by a distinct set of buds developed on the sides of hydriform persons. These buds either become medusiform persons, or are degeocrated representatives of such persons (sporosacs) (figs. 17 and 18). Even the fresh water Hydra (fig. 42) does not appear to be an exception to this generalization. The singlo eggeell of Hydra projects st the breeding season in an ectodermal covering, as a wart, from the lower part of the body. A conical eminence or two nearer the mouth contains the epermatozoz. Each ovarium and each spermarium representa an aborted gencmative person. According to Kleinenberg the egg-cell and the syerm-cells are both derived from the eetnderm. The Lucornario develop internal generative organs (fig. 19) which correapond closely with those of the medusiform persons of tie gronp Sryphamedusce (see below), with which they are classificed. Both ova and testis are condodermal in erigin in Lemeramentand in the medusiform persons of the Seyphomedessa, whilst they appear to be cetortermal in origin iu the conplete medusiform persons of Hytro. moiluse, though in the degenerate medusiform persons known as spmosacs they may either or both have an endodermal urigin.

Medusfan rersons usually present themselves as isolated freeswimuing mdiriduals, lut like bdifutm
persons they have the power of producing new persons budding (figs. 44, 45, and 46), which may become detached or may remain connected with the primary person (fig. 57) to form a freely swimming colony (Siphonophora) comparable to the fised colonies of hydriform persons. Medusi form persons are often produced as the immediate result of the development of the diblastula without any intermediatr hydrifurm phase (Pelagia among Sryphomedusa, Tiachn methsce, Narcomedusce, and probably some Anthomedusce and Leptomedusa), but quite as frequently originate as lateral unds upon the body-walls of hydrifurm persons (figs. 34, ${ }^{1}$ 37 , and 43), or of other medusiform persons (see below), or as metameric fission-products of hydra forms. The typical medusa-ferm is a hemispherical cup (the nectocalyx, or umbrella, or disc), from the centre of which rises up ε cylindrical or conical process (the manubrium, erroneously polypite) at the summit of which is the mouth (4,5 in fig. 16). Funr perradial (see above for use of this terni) teu tacle-like lobes very commonly surround the mouth, of numeruns small tentacles (fig. 58), whilst the margin of the disc is beset with tentacles four in number, or a mul. tiple of four (sometimes six, or one only, or indefinite) The aboral pole is dome.like, sud is never attached execp: in those forms which take their origin as buds on a hydri. form colony when the connesion exists at this point. The tentacles are, as in the hydriform persons, some solid. seme hollow: both occur in the same individual.

Fio. 7 - Portions of sections thiough the disc of meluse, -the npper one of Lfrrio. the lowel of Aurelia el, endodem lamella, or vascular lamella; m. mnsculs processes of the ectolerm cells in cross suction; d. eciodeim; en, endodesm fining the enteric carity: e, mandering endoderm cells of the gelatinoos sub. stance. (Alter llertwig)
The body is not so competely hollowed out as in the hydriform persons. The mouth leads into a straight tube (the stomach) ehich occupies the axis of tho manubrinm, and expands at its insertion into the disc. The disc, even when thick and feshy, is not fully excevated by the enterio carity. In young forms the earity docs occupy it right up to the margin, but gradually the lumen disappears (fig 29). learing a saries of canals and a continuous plate of eado. derm (fig. i) formed by the coalesced walls of the space (the endoderm-lamelln of the Hertwigs, see Organismus det Meduser, 1878 ; the vascular-lamella of Claus, "Polypen und Quallen der Adria," Wiener Denksch., 1278). Tho peripheral portion of the lumen of the original enteric cavits forms the ring-canal, which runs all round the nargin of the dise, and is continued into the hollow tentacles. The lumen is further retained at iutervals in the form of radiat ing eanals connecting the axial euteric carity with the ring. canal. These may be perrailial, interradial, and adradiai (see above as to tentaclas of bydra-form), and may branch dichotomonsly in the disc or form networks.

The maluse are thicker and more fleshy to the tourt than are the hydraforms, and are at the same time trans parent. This is entirely due to the enormous derelopmem if a strut tureless subitance bet ween ectoderm and endedern, corresponaling to the "S'tutz-hmelta" or structurcless lamella of the hydrafirms. (Sce figs t? and 51, requescnting sertinns of formarine and of ('mines)

The remarkable development of this substance in a byaline condition has led to the description of canals and spaees where none exist-the supposcal spaces being really occupicd by this byaline substance. F. E. Schulze's statements as to extra-enteric spaces in Sarsia are thisexplained-and more decidedly the supposed cireular and longitudinal canals attributed by some authors to the seyphi. stomi p ilase of Discomediusce. In the same manner (aceording to (lius) Altman's observations on Strphanoseypheres are reronciled with those of F. E. Schalze on Spongicoln-clearly the same form. Strphenoseyphus is devoid of either sirenlar or longitudinal canals, nini thougli it has four remarkablo ridges on the enterie wall like those of the seyphistoma of Scyphomeduse (sce fig. 26) stands in all pobability very close indeed to the Tubularian genus, Pcrigonimus.

In a large number of medusa-forms the byaline gelatinous substance is structureless, but in many of the larger $S c y$. 'phomathsee it is oceupied by in-wanderingamoboid cells derived from the cndoderm and by fibrous trabecule (fig. 8).

Fie -Gelotiooiss substance of the disc of Auretia, showlog $-\infty$, fibious trabecule, and o wandering cndodelm cells, with amoboid movements. (From Gegenbaul)
The wandering eudodermal cells are nutrient in function, and represent so far isolated elements of the enteric canal system.

The medusiform person is fundamentally adapted to swimming movements. The museular fibres are mostly transversely striated. aod are as a rule outgrowths of super-

Fice 9 - Minheurat cells of meduste (Lizzio). The uppermost is a purcly muscular cell finm the sol umbrella; tie fwo lowe are cpldermo-inuscatar cells from tho buse of a tentoclo: thic upstanding niscleated portlon forms part of the cpluterinal orosaic on the freo surface of the body. (After Ilertwig.)
ficial ectoderm cells as in IIydra (fig. 9), (thougls in some eases distinet cells) ; they are confined to a sheet spread on the oral face only of the dise or swimming.bell (sometimes called sub-umbrella), to the extensile manubrium and tentacles, and to an inwardly directed tlap of the margin of the dise known as the velum (b^{\prime} in 4 of fig. 16), which is present in those meduse that are not flattened but conical (bell like). The musfular libres on the oral face of the dise aud on the velum have a circular dircetion, interropted in some cases by radial tracts. The direction of the swimming movemonts is obvious from this arrangement.

The velum is not a constimut element in the mednsa's dire, it serves to contract the spmee by which water is expelled from beneath the bell in the act of swimminas.

All fully developed IIydromeduse possess the velum, but only a few of the Scyphomeduse (Charybdua). In tho former the endoderm plate (vascular lamella) is not continued into it; in the latter vessels of the enterie system aro present in it (fig. 21), and, being probably morphologically distinet, it has been here termed the "pseudo-velum."

Unlike the hydra-forms, the medusa-forms of IIntrotore possess in addition to the tentaeles highly developed senseorgans and ganglionic nerve-centres and nerves. The sense.' organs appear to be either eye-spots, or else otocysts, or to combine the functions of both. In addition to theso are olfactory tracts or pits comnected with the preceding. The scase-organs are placed along the margin of the dise (lacnec ealled marginal bodies), and are of three kinds:(l) ocelli-rounded pigment spots, rarely provided with a

Fig. 10.

Fig. 11.

Fig. 10.-Ocellus of amednsa (Lezia Kocllikeri). oc, pigmented cetodermal eells; f. lens. (After Hertwig.)

Fig. 11.- Otocyst (formed ontirely by ectoderm) of Phinliditm, no of tho vesientate meduse. a^{\prime}, superficiat hayer of ectoderon; d^{2}, deep layed of ectodenm; h, andilory cells of cetoderm; $h=0$, aditory liais; nh, nerve hody: wri, upper nervering ; r, endoderm cells of the cucular canal. The otolith cavity is seen above h.
leus (Liszia) (fig. 10), always plaeed at the base of a tentace or in the radius of one on the oral surface (Liziit), entirely ectodermal in origin; (2) vesiculi or otocysts-formed (as discovered by the Hertwigs, 1878) by an invagimation of the ectoderm (fig. 11) containing concretions and hair cells; either open or entircly closed, generally numerous, and placed between tentacles, sometimes at the bases of tentacles (Obelia) ; (3) tentaculocysts-which are reduced and roodified tentaeles; into them alone of the three kinds of mar-

Fin 12 -Simple tentactulecyst of none of the Tiachometuser (filogatomema velatum). The process carrying the otolith or concietion hi, formed by
 not yet quite closed in at the tup. (Aftel Hetluig)
ginal bodies do the endoderm and, in the more complex, the enteric camal system enter (figs. 12, 13, and 30). Tho endodermal sae forms the axis of the tentaculocyst, its cells secrete.crystalline enneretions, and it functions as an otocyst; pigment spots, which may have comen, lens, and retina well developed, are formal sometimes to the matuber of six (Chargheleca) un the ectuderm of the tenticulocyst (fig. 13). The olfactary achase-chithelinm (hys. 11) is either distributed in a contiumons baml on the margin of the dise (IIydromedest, discuvered here lyy the Ilcitwing), or it is
confined to deep pits (fovem nervosix) from each of which a tentaculocyst arises (discovered in the Scyphomeiusce independently by Schäfer and Claus). With some exceptions, meduse provided with ocelli are destitute of vesiculi, which alone occur in the vesiculate Leptomeduse. Tentaculocysts

Fig. 13.

Fig. 14.

F10. 13. - Tentacnlocysts of meausz (A, of Pelagia: B. of charybdaea). a_{1} the free tentacle hanging in the notch of the disc: b, stalk: c, enterte canal continued into it; d_{4} enlarged portion of the canal; e, concretions on endodermal cells; f, plamented ectodern; g. lens. (From Gegenbaur)
Fig 14. Cchs from the olfactory plts (forea oervove) of Aureha. (After Schifer.)
characterize to the exclusion of the ocelli and vesiculi the Trachomedusce and Narcomedusee among Hydromedusce and all the Scyphomedusce, except Lucemaria, wbere they are replaced by "colleto-cystophors."

The nervous system has only recently been correctly recognized in meduse, though seen by Agassiz as long ago as 1849 , and described both by Fritz Müller and Haeckel in certain forms (Geryonide) more recently (1860). It differs remarkably in the two great groups into which the IIydrozoa are divisible. In the Scyphomeduse there is no continuous nerve-centre, but around and about each tentaculocyst nerve-fibres and cells are grouped in such a way as to divide the disc into zones of nerve supply correoponding to the number of tentaculocysts (usually eight).

Fio. 18.-Scatered nerve ganglion cella, e form the sub-umbrella of Auretia aurata. (Afier Schatier.)
Both the Ilertwigs (Nerven-System der MPelusen, 1878) and Eimer (the Medusen, 1879) entirely n issed in their researches the large norve-fibres and prominent ganglinn colld (fig. 15) which were discovered by l'rofessom Schafer of University Collcere, London (Phil. Trams., 1879), in the Scyphaneduse. The writer cat confirm Schafur's ubservestion oi the existence of such fibres and gragtion cells in the region of the circular muscular zone un the oral fare of the dise of Aurction, imncliately boneath the flattened eputhelium of the ectoderm. I'rofessor Clane of Vionna has indeperdently deseribed ("Polypen nud Quallen der Adria," 1878) simular nerve-cells and tiloress in Chrysaora and Churybura. Professer Sichaifer failed to ascertain satiafachorily the origin and termioation of the fibres, which appear, bowever, to originate in superficial ecto-
dermar cells ("sense-epithelium") in the neighbourhood of the tentaculocysts and in the cells of those organs, and to terminate without any plexifurm connexion with ode another in the muscular fibres. Eimer has described very abundant and excessively fine fibres, often moniliferm, which extend from epithelial cells in the neighbourhood of tentaculocysts and form a network travorsing the gelatinous substance of the disc in every direction. This observation, though supperted by the fact that such fibres are indicated by the extended cxperimental investigation of Eimer and of Romanes (Eimer, Die Medusen; Romanes, Phil. Truns., 1876, et seq.), is not confirmed by other observers, and the fibres described aro regarded as skeletal tissue. If Eimer's fibres do not exist, the muscular tissue of the medusa must be regarded as acting to a large extent indepeadently of nerve-control ; and this is borne out by Claus's observation of the absence of sense-organs and nerve-fibres from the swimming-bells of the Siphonophora (compound mednsie). In the Hydromedusce the nerve ganglion cells are grouped in a continuous ring around the margin of the dise, separated horizontally into an inferior and superior portion by the insertion of the velum. The difference in the form of the nervous system has led Eimer to prupose the names Cycloneura for the Hydromeduse and Toponeura for the Scyphomedusce. Amongst the latter, however, Charybdaea, having a continuous velum like /Iydromedusap. has also a continuous nerve ring.

Comparison and Relations of Hydriform and Medusiform Persons.-A simple shortening of the vertical axis, and a widening of the hypostome, with obliteration of the lumen (but not of the cells) of the endoderm over a considerable region of the disc thus produced, suffice to convert the hydraform into the medusa-form. ${ }^{1}$ This change of proportion made (fig. 16), the seuse-organs of the medusiform person have to be added, and the change is complete. Thus it becomes clear that we have to deal with one fundamental form, appeariag in a lower, fised, nutritive phase and a higher, locomotor, gencrative phase in the two cases respectively.

The phylogeny of the Hydrozoa and the historical relationship of the two phases (hydrifurm and medusiform) appears to be as follows.

A two-cell-layered sac-like form, with mouth and with or without tentacles, was the common ancestor of Hydrozoa, Anthozoa, and Sponges. The particular form which the proximate ancestor of the IIydro:oa took (1 in fig. 16) is most nearly exhibited at the present day in Lucernaria and in the scyphistoma larva (hydra-tuba) of Discomedusie. It was a hemispherical cup-like polyp with tentacles in multiples of four, with four lobes to the wide enteric chamber. This polyp, after passing a portion of its life tixed by the aboral pole, loosened itself and swam freely by the contractions of the circular muscular fibres of its bypustome (sub-umbrella), and developed its ovaria and spermaria on the inner walls of the enteric chamber. This sucestor possessel, like its descendants, a very marked power of multuplication, either by buds or by detached fragments c^{\prime} ita boily. Accordingly it acpuired definitely the characte: of multiplying by bul-formation durinis the earlier period of ite life; each of the buls so formed completed in the course of time its growth into a fre swimming persoro. We must suppuse that the peculiarities of the two phase of development becume more aml more distinetly developed, the eandier buddimg hase eshibiting a mire chougted form armi simple enteric cavity (hyita furmu), which subsequently

[^106] ohtan ly Professor Alhman. He supposed tho enetusis dise 10 rupresent tho coalesced thaticles of a hydra-form, and cited the webbed Whtinlers uf Iaumeder jemusa in aupport of the identification, whalch bast bt the tuse very such tu comomend it.
became changed in the course of the ontogeny (development of the individual) into the umbrella or disc-like form, with roalesced enteric walls and radial and circular ourviviug spaces (meriusa form). And now the ancestry took two distinct lines, which have given rise respectively to the two great, grougs into which the Mydrozoa are divi-sible-the Scyphomedusce and the Mydromedusce. In the one aet the bydriform persons of a colony, instead of each becoming metamorphosed iato a medusiform person, proceed ed cacla to break up into a series of tradsverse divisions ; each division became a medusiform person, and was liberated in its turn as a free swimming organism (figs. 26 and 27). We must suppose that this process began historically by the outgrowth of new tentacles around the point where the disc of a person fully trausformed from the

f10. 16.-Dingrams te exhiblt the plao of suructare of hydriform and medusiferm persoas (all except 5 are vertical sections). A, base of teotacles, margin of the disc. B, oral margin; $\mathcal{A} a$, manobrlum; Te, tentacle; $C V$, circulay vessel; EnL, endodcrm lamelia; of, ovocyst; oc, ocellus olf, olfactory ple: H, hood of tentaculocyst: $m g$, genitalia developing in manubrimin; dg, genltalia develop-
lng in the disc (wal! of a radiatlng canal); $G P$, sub.genital pits of the subing in the disc (wall of a radiatlng canal): $G P$, sub-gcnital pits of the subumbrella, GF, gastral flaments; Ve, velem. 1, Form intermuedlate between nedusa.form and hydra-fomm. 2, liydra-form with wide dise, manubrium, and sulld tentaclea (Tubularian), 3, Hydra-form with namower disc, and hollow lentacles (Kydra). 4, Nedass-form with endoderm lamelia on tho ent, the section passing through a radiating canal on the rlght: a velun, two posslble positions of the genitalia, and two klinds of sensc-organs are shown Hydionedusa). 5. A slmllar medusa-form seen from the aurface. 6, Scetion of Aurelia ourida, to show especlally the nature of the sub-gental plta $O P$ outside the genital frills, and the position of the gastral flameats $O P$, as well
bydriform to the medusiform phase was loosened in its attachment and about to separate from the colony. The "hastening of events," a well-known feature of organic growth-sequences, would complete the development of the newly sprouting person before the loosened medusa had got well away, and so on with a third, fourth, and even with twenty such successive buds. The separation of the adult form from its fixed larva by fission has been justly compared by Louis Agassiz to the scparation of the Comatula from its pentacrinoid larval stall. If the stalk could only produce new Comatula, the analogy would be complete. Luccrnaria is in the same way couparable with the stalked crinoids, being an adult form which retains the characters exhibited by the immature phases of its congeners.
The Scyphomedusce do not, however, all exhihit a hydriform phase, aud a production of n:cdusar hy the
"strobilation" or "metamerizing" of a scyphistoma. Some of them (Pelagia) "basten events" so far that the diblastula never fises itself, but becomes at once a singlo medusa, the hydriform phase of the ontogeny being altogether omitted. Certain peculiarities of the medusa's struc. ture, abore all the possession of gastral filaments (solid filaments like tentacles projecting in four interradial groups near the genitalia into the enteric carity), serve to nnite Pelagza, which has no larval stage, and Lucernaria (which is always of intermediate character between bydra-form and medusa-form) with the numerous species which develop by the strobilation of hydriform larve.

The second line of descent which has giren rise to those Mydrozoa known as Hydromeduse not only acquired at the start a different mode of producing medusiform persons, but the medusiform persons acquired characters differing from those of the Scyphomedusce in important (but not fundamental) features. The larval stage in this series developed the property of budding to a very great degree, so as often to form fixed tree-like colonics of considerable 812e. Then the transformation of the identical colonyforming persons into free-swimming persons was fibally and definitively abandoned, and only a late-appearing set of buds proceded to complete the typical changes and to become medusx. The earlier-produced buds were thus arrested in development, and became specially modified for the purposes of a fixed life as members of a colony. Thns they acquired the elongate form and the sporadic position of the tentacles which we see in some hydriform persons of the Hydromedusce group (figs. 38 and 40), and were adapted to outrition solely (hence the term trophnsome applied by Allman to such colonies). The characters of the mature generative person, with its power of detachment and free locomotion, being confined to the later buds berne on the sides of the hydriform persens or on special pertions of the colony, we find that the former became more and more specialized as sexual medusiform persons in proportion as the latter became specialized as asexual bydriform persons, and thus it is that we bave the remarkable phenomenon of bydriform colonies, developed from the eggs of meduse producing as it were crops of meduse (figs. 34 and 37) which detach themselves and swim away to deposit their eggs (alternation of generations). The Hydromeduse never produce meduse by strobilation or transverse division of a hydriform persod, although in rare cases the cicatrix left by a detached medusa-bud baa been observed to spront and produce a bydriform person. Neither medusiform nor hydriform persons of the Hydromedusa series cver bave gastral filaments (unless they are represented by the "villi" of the Siphonophora described by Husley, Oceanic Hydrozoa), whilst the medusa-forms always pessess a velum and a comparatively simple set (feur, six, or cight) of radiating eanals in the disc, the remains of the enteric lumen.

The complete differentiation of hydriform and medusiform persons existing on one and the eame colony having been attained in the Mydromedusce, further changes of a most remarkable character were bronght about in some of the descendants of these forms. The condition which we have so far noted is perpetuated nt the present day in Bougainvillia (Eudendrium), Campamularie, and a vast number of the so-called hydroid polyps; others have undergone further adaptational changes. We have to notice at least four important additional modifications independent of one another
(1.) The hydriform stage was sulpressed altogether, and, as in some Scyphomedusic, so here ton the diblastula devcleped directly into a medusa (Trachomadnsa, N'urcomedusa, and probably some Leptomedusuc like Thaumantias and Equorco, and some Authorictuste like Oiearia and Turvitopsis).
(2.) The medusiform persons being early produced did not separate themselves from the colony, but the whote colony became free (if it ever were fixed), the medusiform persons carrging the hydriform persons away with them. Thus the highly differentiated swimming and floating colonies of the Siphonophora originated.
(3.) The medusiform persons ceased to detach themselves from the fixed hydriform persons or colonies, and developed the ova and sperm within themselres, whilst still small in size and attached to the hydriform stock. Having once abandoned the detached, freeswimming life, the meduse underwent in different gearra a varying amount of degeneration and atrophy, of which we have in existence alt

Fig. 17. - Diagrams HIustrating the gradual degeneration of the medusa bud Into the form of a sporosse. Tbe black represents the enteric cavity and its continuations; the lighter shading represents the genital products (ova or sperm). A. medusiform person still attached by a stalk at the aboral pole to a colony (phrnerocodonle gonophor of Allman) ; B, moditied medusifom person, with margin of the disc (umbrella) anited above and imperforste (mouthtess) manubrium (adelocodooic gonophor of Alman): C. sporosec, with incomplete axtension of the enteric cavity into the unbrella, -rudimentary invagiaarion ubove to form the sub-umbrella cavity: D, sporosac with manubria por
only of the enterfe cavity ; E, sporosac whout any trace of manubrium.
possible degrees, leading from the fixed "phanerocodonic gonophors" (Allman, bell-like genital buds) of many Siphonophora through the "adelocodonic gonophors" (genital buds with the bell no longer open but closed by the union of the margins of the disc) of Cordylophora to the sporosacs of IIydractinia, and even to the simple genital warts of the little degenerate Hydra viridis of fresh waters (see fig. 17, and explanation). By this process a large num-

Fio. 18. Two temale sporoascs (ilegenerato medosie) of Mydractinin echinafo. (From Gegenbaur, after Van Benfden.) a, ecthterin; b, endoderm: o, cमRcelly: g. enteric cavity. Int A 'sn invagiontion of the exaderm, which is moro cormete in B, repiesenty the radimed of the sub-umbrela space.
ber of IIytromeduse (figs. 35, 38, 39, 40, and 42) have lost all evidence of the reat characters of thoir mellusa-forms, just as others have suppressel the evidence of their hydra forms by direet devehoment from the egg; and inasmuch as both these processes take place in genera baving the closest allinity with genera in which both hydra-form and medusa-form are fully preserved, it is not possible to erect groups similar to the Haplomorptea of Carus or the Monopsed of Alman for their reception. The clifficulty of classification is, however, renderad very great, for a double system becomes necessary, which shall deal with the characters of hydriform and medusiform persuns in farallel equivatent series. The difliculty is consinerably onhancol when we find that identical medusa-forms may spring from unlike hydra-forms, and, conversely, that closely allied hyira-forms may give rise to very different medusa-forms. The eharacter first noticen ly Rapp as distinguishing the hylroill pulyps from the corat polype, namely, that of developing their genitalin as externallondes (Eiconri) insteal of internally (fintotrii).
is seen by the considerations just adduced to be fallacius The Hydromeduste, it is true, often (not always) develop their generative products from the ectoderm, and the genitalia frequently project as ridges and discharge themselves directly to the exterior in this division. The Ay hitromedusse contrast in this respect with the Scyphonerduse and $A n$ thozoc, which develop their genitalia from the endoderm, and are (to use happ's terms) Eneluecrii whilst the former are Exarrii. But the bedies mistaken for external generative organs by Rapp and otber early observers in many lydroids, and in Ityltra itself, are aborted deyenerate meduse.
(4.) A further set of changes, which bave affected the original hydriform colonies and their nedusa-buds so as to produce new complications of structure among the Hydromeduse, are summed up under the head of " ρ 'olymurphism." The differentiation of bydriform and medusiform persons is a case of dimorphistn ; a further distribution of functions, with corresponding modification of form, gives us "polymosphism." Potymorphism is unknown in the Scyphomedusce, and it is chiefly confiued to two groups of Hyllromedusce (the Ifydrocorallince and the Siphonophora). In the hydriform colonies of Ilydractinia (one of the Gymnoblastea-Anthomeduse) the outer hydriform persons of the colony (fig. 39) differ in form from the rest, aud have wart-like tentacles. In the same genus, and aiso in many Calyptoblastea, the hydriform persons which are destined especially to give orgin to medusa-buds are devoid of tentacles and month, and are knowin as blastostyles (Allman). (fig. 43). In Hydrocorallince (fig. 53) elongated hydriform persons (dactylozooids) with no mouth and sporadic tentacles are set in series around a central short month-bearing person (gastrozooids) forming the "cyclo-systems." of Mr Moseley (figs. 52 and 55). In the Siphonophora, in addition to nutritive (Lydriform) persons and gencrative (medusiform) persons, there may be rows of swimming-bells (meduse devoid of mouth and of genitalia), covering-pieces (flattened medusa), and tentacle bearers (bydriformpersons with one lohg highlvdeveloped tentacle), (see figs. 56 and 57).

Hypothesis of the Individuation of Organs.-The buildng up of complex individualities, such as a hydrozoon colony, a flowerng plant, or a segmented worm or arthropod-in any one of which a number of common units are repeated, but with varied form and function in each part of the compound body-is generally adnitted to be explicable in two ways, and which of the tro explanations may be adopted in any one case must depend on the ultimate inference from a wide series of observations. The first lyypothesis, which undoubtedly apphies to the ordinary hydriform colonies of Mydrosa, to tho segments of Tania, and to plants formed by the repectition of phyllomes, is that an original unit like those which coustitute the composito organism has freety budded, and repeated its own structure in the well-marked units which remain coujoined to form an aborescent or tinear aggregate. This is "eumerogenesis," and such aggregates may be termed cumeristic. By a division of habour airl consequent modification of form among the units of a cumeristi a aggregate, such an aggregato may (in the course of phylogeny) acquire varied shape and definite grouping of its constitnent units, and a high specialization as an individual. The high degree of individuation which may be thus attained is due to the more or less complete synthesis of a mameristic colony. The moro highly individuated Chatopods and Arthropods are synthesizel Linear colonies. The cyclo-systems of the Hydrocorallina tre undoubted examphes of synthesizcl colonics. The second hypothesis is one which is applicable to cases which, in the absence of speciat evilence to the contrary, might be regarted as highly synthesized colonics. According to this secoml hypothesis, such highly individuated commonite organisurs have not (in their phylageny) passed
through a eumeristic phass in which the units were well doveloped and alike, but the tendency to bud-furmation (whathar lateral, linenr, or radial) has all along acted concarrently with a powarful aynthetic tendency, so that new units havs from the firat made but a gradual and disguised appearance. This is "dyamerogeneais," and such aggregates as exhibit it may bs called dysmeristic. In dyameristic forms the individuality of the primary unit domloates from the first, and the merogenesis (segmentation or bud-formation) cau only show iteelf by partially here and more completely there compelling (as it were) the organs or regions of the body of the primary unit to assume the form of new units. The arms of star-fishes are, when we consider them as derived from tie antimera of a Holothurian, explained as examples of dysmerogenesis. So, too, the series of segments constituting a leach, and probably also the segmenta of a vertebrate. Eumerogenesis and dysmerogenesia ars only variations of one process, merogenesis, and no sharp line can be drawn between then. Individuation may appear at any period in the phylogeny of a eumeristic aggregate and synthesize its units. On the other hand, individuation is more or less completely dominant throughout the history of a dysmeristic aggregate, and is gradually broksa down as a more and more complete analysis of the primary onit into dew units is effected. It will be observed, however, that in dysmerogenesis, the form which individuation tends to preserve is that of the primary unit (notably the case in leeches as compared with the ameristic flukes), whereas when we have eumerogenesis folluwed by synthesis the resulting form-individuality is something absolutely naw. Thus, using the terms eumeromorph and dysmeromorph, we have-(1) gynthesized eumeromorph simulates normal dysmeromorph; (2) analysized dysmeromorph simulates normal ermeromorph.

Whether the fised hydriform colonies of the Hydrozoa, with their more or less complete medusitora buds, and further, the floating colonies of Siphonophora, with their polymorphous units, are to be regarded as synthesized eameromorphs or as dyemeromorphs, more or less analysed, is perbaps still open to discussion. The former view (that adopted bere) is that beld by Allman (Monograph of the Tubularian Hydroids, 1874), by Leuckart (1851), by Gogenbaur (Grundriss, 1874), by Claua (Grandzüge der Zoologie, 18i6), and by the Hertwigs (Organismus der Medusen, 1878). On tha other hand, Huxley (Oceanic Hydroza, 1856), formerly Gegenbaur (Zur Lehre der Gene-rations- Wechsel, 1854), and, more recently, Ed. Van Beneden ("Da la distinction originella du testicule et de l'oraire," Bull Acad. Roy. Belg., 1874) bave held that the medusifrom person is a generatire wart which has gradually assumed tho characters of a bud, and that the various phases presented by it in different gencra are so many more or less successful strivings after complete assumption of the hydra-form (frow which the medusa-form is thus secondarily derived). Similarly the variously modified units of the siphonophorous colony bave been regarded as the organs of a parent unit which have each more or less completely acquired the form of that parent unit, or, in other words, the colonies in question have been beld to be dyameromorphs. Recently ascertained facts as to the polyuorphism of Hydrocorallince, but more especially the demonstration of the identity of structure of the meduse of the Scyphomedusan and Hydromedusan groups, and, further, the noole - development of the Scyphomeduse from the scyphistoma and the relations of the generative products to the enteric cavity, combine to rculer the view that the polymorphous and dimorphous colonies of Mydrozoa are synthesized eumeromorphs more provable, in the judgment of tho present writer, than that which would explain them as dysmeromorphs.

The term "merogenesis," and its subordinate terms, "eumerogenesis, dysmerogenesis," \&c., are applicable to units of the first order, namely, cells, as well as to the "persons" which are built up by them. Ordinary celldivision is an example of eumerogenesis; free formation of nuclei, as in the fertilized ovum of Arthropods, is dssmerogenesis. A syncytium is usually a synthesized enmeromorph, but may be a dysmeromorph.

Definition of the Hydrozoa. -The Hydrosoa are Ceelentera nematophora, distinguished from the fellow-group anthozaa (the name applied to Actinosoa when the Ctenophora ars removed from them) by not possessing the latter's constant and aliarp differentiation of the arch-enteric carity iato axial digestive and periaxial septate portions, usually by a simpler form of nematocyst, and generally by lower Listological differentiation. ${ }^{1}$

The following is a brief summary of the chicf characters of the larger divisions of the Hydrozoa :-
Sub-class I. Scyp iomedese. -These are Hydrozoa which in the adult condition al. ways have four or eight interradial groups of gastral filaments ("phacellx" of Haeckel) (figs. 16 (6).23, and 26). Thegenitalia (ovaria and spermaria) are developed from endoderm, and are always interradial (in the four radii formed after the first four). The hsdra-form is not a "hydroid," buta short polyp with broad hypostome-the "acyphistoma," which gives rise to medusa-forms by transverse fission (strobilatiou), or itself develops genitalia

19.-Diagrammatic vertical section of a Lucernaria in the plane of so interradias a ooe of the interradial angles of the tentailes adradial in postion; b, axtal totentailes saradial in position; io, axial toteric casley: c, endoderm:
geoital glaod (ovary or testia), adrsdial ia gesital glanod and avary or testis), adrsulial to the iaterratial position, and attached to the iatersalial septum which runs aloog the angular pro-
cess of the disc, to which the letters c, d cess of the disc, 2 Which the letters co
point: p, ahorsi reatoo or "fool": z the interradial gaseral filaments or phacella (After Allman)
(Lucernarias). Combined visual and anditory urgabs in the form of modified tentacles (tentaculocysts) to the number of four, eight, or more occur on the edge of the disc (except in Lucernarixe, where they are represented by the "colleto-cystophors"). The medusa-form in some cases develops from the egg withnut the intermediato scyphistoma-stage (Pelagia, Charybdoa 3). The edge of its dise is provided with lappets, which cover the eensorial tentaculoeysts (bence Steganophelhatmia of Forbes), and is not provided with a relum (hence "Acraspeda" of Gegenbaur), excepting the rudimentary velum of Aurelia (fig. 31) and the well dereloped rascular velum (pscudo velum) of Charybdea (fig. 21). There is no continuous marginal nerve-ring (except in Charybdea), but several separate rarginal nerve centres (hence Toponeura of Eimer). The

[^107]diblastula 111 all casez. as yet obsersed, is formed by invagination, the blastupore closing up (Balfour).

Fig. 23.

cophore for the Scyphomeduse alone, an illegitimate limitation of the term which was followed by Louis Agassiz in 1860 . Nichol. son has used the teru in the reverse sense for a heterogeueous asscmblage of those meduse not classified by JIuxley as Lucernaridee, nor as yet recognized as derived from hydroid trophosones. This use of the term adds to the existing confusion, and renders its abandomment nevessary. The temm Disconcaluse was used for the Seyphomodrase by Haccke] in his Generclle Morphologic (exclud. ing Charyddea)-whilst Carus (Mandbueh, 1807) confines the tam
" Arduse" to then alone, which is objectionable, since it belongs as justly to the Mydromalusc. Forbes's term for them, Sleganoph. thatmia, indicates a true characteristic, failing only in the Lucernarie, but its complementary term Gymmophelhalmia is inaceurate. Similarly the terms Acraspola and its complement Craspedota are inacceptable. Eimer has proposed to use the terms Toponeura and Cycluncmar for the two divisions-but Charybdeca appears to break down this division as so many others. The old term Acalcphice, which is retained by Gegenbaur in its proper scuse for all the Cirlentere nematophorte, is used as the desigmation of the Scyphomeduse alone by Claus (Grundzitge der Zool., 1878), which camot fail to produce confusion. The tem Lucernaride, proposed so long ago as 1856 by Huxley (Med. Times and Gazclec), most truly iudicates the relationshijes of these organisms which he was the tirst to recognize, but it secms desirable to restriet this tem to the limited onder in which Luccruaria is placed, and to employ for the larger group-Seyphonchuse-a term which is the true conplement of the convenient name assigned to the other division ot Hydrozoa, viz., Hylromedusce. ${ }^{1}$

Order 1. Luctinarice, -Scyphomedusce devoid of tentaculocysts, with the aboral pole of the body produced into an adbesive disc by which the organism (whieh possesses tho power of swimming by contraction of the circular muscular zone of the hypostome) usually affixes itself. The enterie eavity is divided into four perradial chambers by four delicate interradial ${ }^{2}$ scpta. The genitalia are developed as four-paired ridges at the sides of the interradial septa on the oral wall of the chambers (fig. 19). No reproduetion by fission nor "alternation of generations" is known in the group. At the edges of the dise capitate tentacles are developed in eight adradial ${ }^{2}$ groups; between these are modificd tentacles in some genera,-the marginal anchors ur colleto-cystophors. The camal system which has sometimes been deseribed in them is a product of erroneous observation. A very few genera and species of this order are known. 'lhey uav be justly called the conotypo of the meduse (James vlark), and their relationship to the free swimming forms may be compared, as was done by L. Agassiz, to the relationship of the stalked Crinoids to sueh forms as Comalula. Three species are not uncommon on the British coasts.
By Milac Edwards the noimals forming this group were termed Potectinaria and associated witl: the Anthozot. By Leuckart they were temed Culycozoa; it is only of late that the cluseness of their relationslip to the Scyphomedusec has licen fully recognizel, though long since insisted on ly lluxhy aml hy James Clak. llaeckel in his new system of the meduse (Sitzungsber. der Jonaische Gesellscheft fur Mcalitit und Nalurwiss, July 26, 1878) adopts for them the term Sicy homaluse ia allusion to their permanently maintaining the distinctive features of the seyphistoma larval form of the Scraspede, the term which ho adopts from Cegeubaur for our Seyphomedusa.

Order 2. Discomedust.-These are Scyphomedusce de. veloping as sexual medusiform persuns by transverse fission from a seyphistoma, or else directly from the egg. They have eight tentaculveysts, four perradial, four interradial, and sometimes aecessory ones (adradial). Fuur or eight genital lubes (ovaria or spermaria or hermaplurodite) are developed from the endoderm forming the orat floor of the central region of the enteric cavily, whind is produced intu a correspombing mumber of pumches. The moulh is either a simple opening at the termination of a rmdimentary manmbrimen (sub-order (.ubospomer), or it is provinled with fanar ar ebght armblike proeesses (sulborders simostome and likisostonet). In the sub-order Mhizostume (fig. '2t, a), the

[^108]edges of the oral opening fuse together at sn early age and leave several sucker-like secondary mouths, which were fermorly mistaken for independent persons, The central enteric chamber is continued through the disc by a complicated often reticulate system of radiating canals, which excavate the endederm lamella.

Fio. 21-Seyphomeduse a, Rheostor pulmo; b, Chrysaora hyoste.a
In the Semostome and Rhizostomae (not in the Cubostomac) four remarkable (respiratory) sub-genital pits (fig. 28) are hollewed out in the gelatinous substance of the sub-umbrella (oral face of the umbrella). These do not communicate, as

Fio. 25 -Four atagee In the development of Chrysiota A. Diblastula stage: B, atage after closure of blatopore. C. fixed larsa with commencing stornodar um or oral ingrowth: D, fixed larpa with mouth, ahort tentecles, dc, ; p, ectodern; My, endoderm: al, Btomodaam : m mouth; b' blastopore. 'From Balfour, aftr Clens)
has been erroneonaly supposed, with the genital organa, the products of which normally are evacuated by the mouth. In the Tetragamelian Rhicostome these pits remain distinet from one another as in Semostomae, but in the Monogamelian Rhizostoma they unite to form one continuous sub-genital cavity placed between the wall of tho enteric carity and the polystomous oral disc. The common English forms, Aurelia, Chrysaora, and Cyanaa, are types of the Semo. stonke, the somewhat less rommon Rhiostoma of the Monogamelisn Rhizostome, whilst Nausithoe and Discomedusa represent the simple Cubostomas.

The writer has adopted the term used by Haeckel for this order, and is indebted to his preliminary notices of a large work on the Medusa, now in the press, for outlines of the classification and definitions which have been introduced with modifications in relation to these and tho other Medusc. The term Discophora is used by Claus (Grundelige) for the Discomoduse. It is quite clear from the varied aod inconsistent use by different authors of that term, and also of the terms Acaleghe and Mediser, that they must be ejected altogether from use in systematic treatiseg.

The structure of the cummon Aurelia aurita and its
development have recently formed the subject of investigation by Claus, Eimer, and others. As the current account:

Fio 26 - Later development of Chrysaora and Aurelia (after Clane). A, Scyphsetoms of Chrysaora, wath four perradial teatacles and borny banal pensarc. 8, Oral sarface of later stage of $\operatorname{BCyphistome~of~} \Delta$ urelid with commenceroe t the ountinc of the alomach wall, seeo by transparency around it to atpped in the ounlinc of the abomach wall, seeo by transparency around it is atpped in
four places lotersadially to form the fonr gastric ridges. C, Orai surfece of a sixteen-teotacled scyplistoma of Aurelia. The foar mastrle interradid ndges are seen throngh the mouth. D, First constriction of the Awedia scyphlatoma to form the pile of ephyta or young medosse (sce $\theta \&$ 27). The aingle ephyts cartles the sixteen scyphistoma tentacles, which will trophy and disappear The four longiladinal gustric sidges are seen by tiansparency. E, Young ephyra jost Hberated, showing the eight bifarcate arms of the dise and the interradsal single gastral fisments, FF. Ephy dercloping into a medasa by the growth of the adradial regioos. The gastral filaments liare Increased to three in each of the lour sets. A, margin of the mooth; A d adradial radus: F gastral flameot: n. buteradia radan ananiad Castral canal ; $J K=R^{3}$, adradial tube of the disc; K, lappet of a perradial armo:
 $A f^{\prime}$, mesoderm; O, entecuiocsst; P pertailial vadius; R^{2}, intertadial raditas:
R^{\prime}, adradial radus. ΣG, commencenent of taterol vesscl.
in text-books are very inadelpuate, a short sketch of the morphology of that form is appended here.
From the egs, according to the researehes of Claus (whose figures, here reproduced, refer more especially to tho closely allied genus Chrysaora, up to the completion of the seyphistoma), a single-cell-layered blastula develops which forms a diblastula by invagination (6g. $25, \mathrm{~A}, \mathrm{~B}$, C). The orifice of invagination closes up, and the ciliated "planala" (as this stage used to be termed in all Colentera), after spimming around for a time, fixes itself, probably by the blastoporal pole. The true ructh then forma by inruption at the opposite pole. Two ten. tacles now grow out near the mouth opposite to one another (fig. 25, D), and sre followed by two more (fig. 26), these indicating the four primary radii of the body which pass througls the angles of the four sidel mouth, and are termed parnat. Meadwhile , which in Chrysnora sccrctes a borny perisare (fig. 25,
D). Four cew tentacles, those of the atermediate or becondary radii, now appear between the first four, and are termed interradial. At the sacue time four longttadioel ndges grow forward on the wall of the enteric navity (fig 26). These interradial ndges bave sometumes

F10. 29-Surface view of the Enb-umbrells or oral asper A. An "roka nur7ta to

 of Ural fima in wlacb is the opening icorngate 6 of Ag 161
been erroneously described as contanngearb a loggitudinal conal connected with a circular canal at the base of the teotacles. They are in reahty sohd, as is the margin of the hypostane from which the tentacles spring. It is in curnexion with these lour ridges that the gastral flaments will subsequently appear, as also the gential urganserther along then maddle line or alradtally to them The niges correspond to the mesenteries of the Anthusoa Eight additional tentacles placed one on eacb sade of the perradial tentacles (or of the mater. radial, according as we may chunge to regard the matter) hext appear, and ate dotinguasbed as ariradead. All the ten t.scles reaching an equal sie.e, we obtala the ap fearance seen in fig. 26, when the young scyple. stoma is louked at from above. loouked at from the side, with its arde hyprostome and shore vertical axis, the scr.

is 20 - 1 lint of the linwer nartace of surfin burata The ballogh eft thasmes milawe the erteme casbes and catmas to bee wen thomigh
 Co5t b ©

 arsies the catital miambrat newr to these
 phivtoma differs adely from on arilinaty byitraform, ánd approar hea the medasa-form, to abeb itm four loneriminal gastral ndges further assombate it The bithe creature is now about an eughth of an wach or hewht. Whelier genera, loni not in Chegsoora. It was now multupts the the preme. tua of a iex tiuds fromite fixen bacal dase ifter momerah. ang itself for a pernd, and morraswg to four or tive thes the size just noted, the vertical axis elongates nud a sertes: of transecrse coustrictions ifpear oo the surface, barking off the body of the seyphistuma uta a series of dises fig3. 26 and 2i), each of uhich by the derelapment
of tentacles aud completion of the constriction will become a separate medusa (in its young state called "ephyra"). The tentacles of the Aurelia and the structure of the margin of its bypostome are very difierent from those of the seyphistowa. They are exbibited in their earliest condition (wheu the Aurelu-medusa is first laterated from ts attacbment aud is an epbyra) in fig. 20. E, F The margin of the bypostome is drawn out into eight arma (which are not to be confused with tentacles). the end of each arm is bifid, carrying a pair of lappets-the marginal lappets which persist in the adult (see hgs 30 and 31). Betreen the lappets is placed a stort and pecuhar tentaele, the tentaculocyst or semse-urgan The elght arms of the dise and their tentaculocysts are perradial and interradial. As the organism grows, a set of eight adradial tentacles appear in the nutches between the eight arms, but never attanany relatively large size in Aurela The asterod arm-bearing

Fis 30 -Tentaculacyst and unatginal lappets o! Aureha aurtia In the lefthaod forure- $M L$, marginal lappers, T, tentaculacyst ; A, superior or abmat
 aurarc magobicu sbout 30 diameters In the richt-hand firate-s supeno: or aboral olfacrory fit. B infenor or adoral offaciory pit, H bridee berweun the iwo rouretal lappets formbog the bood, T. tentaculocyst: End endsxerm the two turtetasi appets lormiog the bood, T. entacu.ocysti End endixaerin
 mepras concretinn a section taked ir a radial verical plape so as fo puss thruuch Jotig usis of the searaculocym (Alter Etwer)
character of the margin of the disc is soon obliterated by the relative growth of the intermediate adradial areas, which become quite filled up, su that in the adult the tentaculocyst is carried in a noteb instead of on a promoence, and is concealed by the two lappets (figs 28 and 30) The margan of the das between admacent pars of lappets gives rise to a fold whel grows mwards (toward the mumel) duritg an early stige (hey 3 3, and mumerous small tentacles (the (ringe) apyear along the margin of the dase whach somen equal an suze the first adradial tentacle the ingrowing fold ts the velum or "pscudo-velum," and wever mereases in size, so that in the idult it is not observ.

able The tentarles alow reman very small and fine on A"rphen, forming a contmons fringe alnog the edge it the disc interriptal only is the enght motches for the tentaculocysta (fig. 89)

The exteen tedacles of the sepphastoma are necescarily attached to the must moterner of the pale of meduse, they atrophey, but to what extent they may be ontammponed In form the farts at the ephyta al pollog nedusa has not beed determined The seyphostma, haribig gisen rise to Its pile of eqhyra, may (in sume genera, Aurehal) redevelop its own kuid of teatacles bele the constriction marking off the last ephyra. Hence scyphistoma tentacks apenar sometnones ef the top and sometimes at the bottom
of the pile, which has led to diverse aecounts of the mode of development of the ephyre.

Whilst changes are guing on in the conliguration of the matrin of the dise of an ephyra on its way to the perfect iorm of the idult λ^{\prime} urdict, the enteric eavity has also undergone must important ehanges. looremost in importance is the developluent of a single gastral filament on each of the four gastral rilges which neecssarily are present in the transverse sliee (so to eall it) of a seyphistona, whieh becomes an eplyya (fig. 26). These rapidly inerease in number as the epliyra grows. Further, the enteric cavity at first follows the outline of the eplyyra, sending a process into each arm. but tieu by adbesion of its walls is converted into a four-lobed ecntral chamber, a marginal canal, and an endoderm lamella. A system of canals, tbe arrangement of which is scen in figs. 29 und 31 , subsequently opens out again certain lines and tracts of the conjoined endoderm walls.
In the adult Aurelia we find the mouth surrounded by four large arm.like perradial processes (figs. 25 and 29) (not teatacles), and leading through a short manubrium into a flattencd four-lobed chamber, the lobes being interradial, and having on their oral floor numerous gastral filaments (rich in thread cells) (6 in fig. 16). Each pouch or lobe gives off a canal, which runs towards the circular canal at the margin of the disc, but breaks up into tbree or four secondary eanals on its way. Detween the pouches come off eight other "radiating" (auals (adradial), which do not branch, but go straight to the circular canal.

The oral lloor of the coneavity of each lobe of the enteric cavity is occupied by a horse-shoc-shaped frill (fig. 29, ov), either testis or ovary (the sexes being in separate individuals). The open arms of the borse-shoe aro turned towarls the centre of the dise, and the fulds of the genital frill are so decp as to show themselves on the outer ectodermal wall of the diss. Here, bowever, there is a very remarkable arrangement, which hay rarely, if ever, been correctly deseribed and figured in our common Aurelia. The gelatimous substance of the dise is hollowed out on that part of the oral face corresponding to the position of the genital frills, so as to form four seprate extunsive pits or chambers. Each of these sub-genital pits has in Aurelia a small round opening on the oral face of the disc (fig. 28 , GP), but is otherwise entirely closed, having no communication with the.genital tissues, from which it is separated by a delicite layer of ectorierm (6 in fig. 16). The pits probably serve to ad mit water for respinatory purposes intn close prosimity with the genital tissues.

The whole enteric surface, iucluding canals, is cilintel, whilst the ectoderm is not ciliatel, but proviled with genups of nematicysts.
Tle tentaculoryst in the adult A urchice is relatively an extremely minute hody, com letely hiden by the two large margimal lappets (lio. $30, \mathrm{~T}$). Alowe it (that is, on the ahomil surface, as the Aurlia swims) is a deep pit (A), Schaiter's fovea nervosa superior, sumk in a sort of bridge whicl comects the two lappets and overlangs the tentaculdeyst. is similar pit (the fovea inferior) exists on the oral surface. These have been recognized hy Claus, Einer, and the lIertwigs as olfactory organs. The tentacnlocyst is seen in scetion in fig. 30 (right-hand figure), which exlibits its central cavity continuous with the encerie cavity, its ectolernal pigment spot (eye), and its entodermal mass of cmacretions (:anditery orsan).

The elaief museular mass of Aurelier, except that of the oral arms, is a circular zone on the oral face of the disc. The muscular fibres are not distinct cells, but transversely. striated processes of the epidermic eells (elidermo-muscular cells) (fig. 9). In the "arms" of other meduste, and presumably of Aurelia, the muscular filre is formed by independent nueleated cells (fig. 9).

The nerve-cpitheliom from the olfactors pits of Aurelia is drawn in fig. 14. Starting from this aud from the cells of the tentaculocysts are nerve-libres, which spread themselves on the surface of the circular muscular zone in tho neighbourhood of the tentaculocysts, and these are conuected each and scparately with large isolated nerve-ganglion cells (fig. 15). The nerve-fibre is contiuned beyond the cell, and in somo instances has been traced iuto a broadened ex. pansion lying on a muscular filre (Schäfer). The nerveganglion cells lie very superficially immediately below the flat epitbelium of the budy surface and between it and its muscular processes.

The ova and spermatozon of Aurelia develop in the genital frills from endoderm cells in separate individuals. They pass to the exterior through the mouth.
Order 3. Conomedusa, - Scyphomedusa with ouly four tentaculocysts, and these perradial. A broad veium (socalled pseudo-veluni) of complete circular form is present, differing from that of the Mydromedusa in the fact that it is penctrated by canals of the enteric system (Charybdaa). The whole umbrella is bell-shaped. The genital organs are four pairs of lamelliform ridges (fig. 22) which are attached to the four narrow interradial septa that divide the large enteric eavity of the umbrella into four perradial gastrocanal pouches. The lameliform genital glands hang frecly in these pouches. At the edge of the umbrella are four interradial lappet-like prolongations of the gelatinons substance of the disc, which suppert each a long tentacle (fig. 20). The nerve-ring is complete, like that of the Mydromedusa.
There is now no doult, that Charybacea, which has been placel in each of the two large divisions of the Hylroosa, must be classed with the Scyphomedusc. The recent investigations of Claus (Afbeiten cuas clem Zool. Instizut zu Wicn, Bdi. i. Hft. ii., 1878), as well as thosc of Haeckel and Fritz Muller, lead to this conclusioo. The tcrm Conomed lisce is alopted from Ihaeckel, who places bere, besides Charyblear and Tumoya, other forms, a fuller deseription of which may be expected in his fortheomiog System der Meduseri. In many restects-its quadrangular form, its marginal lappets, its broad enteric pouthes in place of fine canals, its vascular velum, and its lighly complicated tentaculocysts (fig. 13, B)-Charybdera is peculiar. The simplicity of the enteric ssstem and the arrangement of the genital glands brings it near to Luceruaria. The existence of four interradial groups of gastal filmuents, and the disposition of the 1 nired gemtal glands at the sides of the interratial septa, determine its position to he amiong the Scynthomeduses. Its development is not known. Figs. 20 to 23 illustrate the structure of Charybldera.
Order 4. Peromedusce,-Scyphomedusce with four interralial tentaculocysts. The enteric system ennsists of three divisions, -an aboral main stomach with four interradial gastral ridges and filament groups ; a mid-stomach, which communicates by means of four perradial slits with a very large ring-sinus (oceuping two-thirds of the umbrella); and thirdly, an oral portion or phargns, with four wido perradial pouches. The genital organs are four pairs of salusage shaped interradial ridges lying on the oral floor of whe ring-sinus.
This is a new gromp founded by Hacckel, of which we have at present mo furthior details.
Sub-classIT. Hynronedus.a. - Theseare IIydrozo a devoid of gastral filments; the sexual persons are always medusiform, the genital glands are developed sometimes from ectoderinal cells, sonetimes from endederm, aud are always perradial (in the radii of the first order). The medlusiform persons always possess a muscular non-vascular velum (henee Craspedota) and a complete nervo-ring (lienec Cyiloneura of Eimery, The marginal senseorgms are either ocelli or otocysts on tentaculocysts. The dilhastula, in all cases :as yet olserver, is formed ly delamimation (Balfour). The sexual medusiform persons may develop directly from the egg, but more ustully the eger gives rise to a bydriform person-the hedrois- which differs from a scyphintoma in its clongate

H Y D R O Z O A

vertical axis, the indefinite number (often also position) of its tentacles, and its frequent formation of a colony of large size by lateral budding. By lateral budding (not by

Fio. 82.-Diagram ohowing possibie modifications of persone of a gymnoblastic Hydromedusa. a, hydrocaulus (strm); b, hydrorhiza (root); c, enterle cavlty; d, eadodenm; e, ectoderm; f, perisarc (horny case); g, hydranth (hydrlform person) expended; g, by drantb (hydriform persoa) contracted; h, hypostome, besring roouth at lis extremity; k, escelform aonophor (sporosac) spriaglag Irom the bydrocaalus; k^{\prime}, sperosec springlng from m, modifled bydriform person (blastostyle): tbe genitalia are spen surroundiag the spadix or macu
briom ; l, meduiforme person or medusa; m, biastostyle. (After Allman.)
metameric fission) medusiform persons whieh alone develop
sexual glands are produced on the hydriform colonies;

fic. 33.-Dlagram ohowing possible modifications of the persans of a Calypto. Gantic hydromednas. Letters a to n bame mis in flg. 32. i, the borny cup or hydrothecs of the hisdifiorm personas: , mednsifurm permon apinging from m, enclosing the blastontyle and the buda. Thif and tho lyydrethece a give oulgin to tho name Calyptoblastea. (After Allman.)
these may separate from the eolony, or may be retained in a more or less degenerate form adherent to it, as generative buda or warts.

The medusifurm persous of this group are the Discophora crypto. carpe of Eschscholtz, tbe Craspedota of Gegenbaur (1854), and the Hydromedusida of Kölliker (1853)-the last two authors at tbat time separating the hydriform persons as Hydroidea. Louis Agassiz (1860) includes both sets of jersons under the term

Fig. 34.

Fig. 35.

Fin. 34.-Dingram of Corymorpha. A, a hydriform person giving rise to medasiform persoas by baddiag from the margin of the disc; B, free swlmming medass (Steensirupia of Forbes) detached from the same, with manubrialgenltalia (Anthomedusc) and oaly ona tentacle. (After Allman.)
Fig. 35.m-Dlagram of Tubularia indivisa. A singla bydriform person a bearing a stalk esirying numerous degencrate meduslform persons or sporosacs b. (Alter Allasin.)
Hydroida (together with Lucernaria), which also is tha term adopted by Allman in his beautiful monograph (1871-74). J. V. Carus, amending the limitations given by Carl Vagt, was the first to use the term Hydromcduse in the sense here adopted (Handbuch der Zoolngre, 1863), and it is now employed in the same nense by Grgenbaur (Elements of Comparative Anatomy, London, 1878), namely, to embrace both the cryptocarpous medusie of Esehscholtz and the

Fta. 36.-Colony of Eeugainvilien fruticosa, nolural size, attached to the underalde of a picco of feating tmber. (After Altman.)
hydroids related to them. The term Fiydromedusx is used unwisely by Chus (Grundzulge d. Z.) for the whole group of IIydrozoa. It ling been the practice of some authors to givo a double elassification of the group-ono based on the charucters of the medusiform perzons, the other on that of the hydriform persons. In the present nuticlo a doublo name will in aome cases be assigned to a groupbut tho attempt is made to bring both sets of persons under one system.

Order 1. Gymmoblastea-Anthomedusce.-Tbese are IIydromednse which all, as far as is known, pass tbrough a hydriform phase, but in which the medusiform persons may eitber reach full development or exhibit the extremest degeneration (Hydra). The cetoderm of the bydriform
persons may ecrete a horay tubular prutective case (perisare), but this does not form cups for the reception of the tentacular crown nor cases enclosing groups of meduaiforto buds (gonangia). The fully-developed medusiform

Pto 3i-Portion of colong of Bougain rillea (Entendrium) frut noora (Anthomeautccaljploblasta) more magmited. (From Lubbock, ater Ayisad.)
persous neser possess otocysts nor tentaculecysts, but always ocelli at the base of the tentacles. The latter are usually four or six, corresponding to the same number of simple radial enteric canals, but may be more numerous or reduced to one or to two; rarely they are branched (Cladonema).

Fig. 38.

Fig. 39

Fup 40.

Fis. 39 -Dingram of Clara. showing n typhiform perenn surymmbed by a

The sexual glands are placed in the wall of the manubrium, either equally distributed all romed it or in four separite perradial groups, which are often divided into cight all radial groups by the perradial longitudinal muscles.

This is a rery well defined gronp, since the Gymnoblastea of Allinan, based on the characters of the hydnform persons-atso known na Tubularie and Gymotota-correspomit exactly with the Anthoncluse of Lacekel's new system. Hydra is included here, thoner placed in a serarate order by Allman. Some of the leading firmss of bydriform and medusiform persons are cifen in the cuts (6 ins. 34 to 42). The greatest range in the amount of degeneration of the medusiform persons is seea even in genera of the same family-c.g., Turris aud Clava-the former producing fiee medusx, the latter sessile sporosacs. The Oceanide of Geftentaur (excluding the Hillinde, which Haeckel assigns to the next groun) correspond on the whole to the medusa-forms of this oider.

Fig. 4
Fig. 42.

Fto 41.- Ifsdriform perton of Smeoryse nithinedaslform perbons boddine lrom if, and shown io vartous alages of derelopmeat, a, b, c, d, e. (From Gegenbaur, after Desor)
Fig. 42.-Hydra riridis. oo, orary; te, tcstle
Order 2. Calyptollastea-Leptomedusc.-These are Hydromeduse of which the hydriform phase is known in a large number of cases, whilst of others only the medusaforms are knope; none are known to develop directly from the egg to the medusa-form. As in the preceding groupr, the medusiform persons may reach full development or

Fig, 43.

Fig 11

 tenfans, andiwo medusiform tuds on the sides of them nulatum cafier Allneans.)
exhibit themselves as degenerate sexual sacs on the hydriform colonies. The cetoderm of the hydra-forms always secretes a perisore which furms a cup-like protection (bydro. theca) to the tentacle-crown, and which also encloses the gronp of medusa buds in peculiar horuy cases (gonangia). The fully-develuped medusifurm persous (fig. 47) either
bave no otocysts, but only ocelli (Ocellata), or they have otocysts (fig. ll) (ectodermal sacs), four, cight, or over a hundred, not homologous with tentacles, and sometimes in addition ocelli (Tesiculatce). The radial enteric cauals are usually four or eight in number, but may be more numerons, whilst the marginal tentacles of the disc are either few or

Fig. 45.

Fig. 46.
fic. 45- Medusiforts persoo (Sarsia) ose of the Arthomedusa, detached from a hydroll colony of the family Corynide. K, the long manubrium, bearlog (as an exception) meduaiform buds; a, mouth.
fia, 4,-Medusionm person, one of the Anthomeduse, detacbed from a hydro. colooy of Syacoryhe. Ocelli are seen at the base of the tentacles, and also (as an exceptlon) groups of acdusiform buds.
very numerous. The genital glands always are placed in the course of the radial canals of the disc (not in the manubrium), and stand out as groups of wart-like processes on the sub-nmbrellar surface (fig. 43). Their modo of dissharge is uncertain.

Fic. 47. - View of the orn surface of one of the Letrometusie (trene pellucida, fineckel, to bhow the nomeruna tentacleq and the otocysts. ge, fenital clands: Bf. manubriun; of otocysts: rc , the four rudating canals: ${ }^{\circ} \mathrm{i}$, tho velum.
The Calyptobleste of Allman, Skenotoke of Carns, and Campanu. larice of authors form a well-marked group of hyilvoits which, when they give rise to free meduse, give rise to those ternen Lentomeduse by Harekel, corresponding to tho Thermantiade and B'ecopidic of Gegrnharr's aystem. The calyptoblastic hydroil Lermosemhus, which, ancorting to Alman, gives rise to a Lizzio-lime medusa (Anthomaiuser), is the only recorded exveption to this correspondence. The Áporideand other mednse of similar structure hate not been traced into connezion with any hydriforan trophosome, but we are not justified therefore in concluding that they developinimetly from the egg, without hydriform phase. "like chief pint distiuguishing tho Lepomeduse as a lod fiem the Anthonatiese is the te velopuent of the generative loules in the radial canals. This pertion is simihir to that oceupiod by the same ergans in Truchomeduse and Siuphtomeluse: Allman, hawever, consilers the gerital glands of the faptomedusex, wat as mere glands like thase of Aurelia or Charybelda, but as a sertipg of lads-a genemation of ahortud masluse or gporasars. In consequence he terms the medisai of the a. -homedtase abdastichme (or bud-produces), as distinguished from is annomeme (one genital-producer). In support of this view,

Allman (Monograph, 1874) adduces the various remarkable cases of production of buds by meduse which have been recorded (fig. 4i, 45, 46), and, further, the yery striking similarity between the structure of a lobe of the genital gland of Obelia and a sporosae such as we find in Hyaractinia. It secms necessary to accept Alman's view on this matter, unless we are prepared to abandon the homology of sporosacs with meduse in the case of bydriform persons.
The colonies of hydriform persons of the present group differ intct sc accerding to the arrangement of the cups or hiydrothecx. In Plumularide they are sessile, and all on one side of a branch; in Scrlularide they are sessile, and alternatcly placed on cither side ; in Camparularide each cup is raised on a pedicel or stalk. The medusiform persons sometimes remain abortive and sessile in theil gozangia.

Fig.48,-Carmarina (Geryonin) hastata, one of the Trachomedusce. (After Hacekel.) a, werre-ring; a, radial nerve; b, tentaculocyst; c, circular canal; ℓ, radiatlng a, anal; $g^{\prime \prime}$, ovary; h, petonia or cartilaginous process ascending from the cart laginous margin of the dise centrifetally in the outer surface of the jelly-like disc; slx of these are perradial, six interradial, col responding to the tweivo solid disc; slx of these are perradial, six interradial, col risponding to the tweivo solid larval tentacics, resembing those of cunna; manuorium; , jeltiary, i.e, preced by sixperradialand sla interradinisolid lnrval teutaclea): u, cartilaginous margio of the disc covercd by thread-celle ; \mathbf{v}, velum.
Order 3. Trachomedusa,-Hydromeduse which have as sense-organs tentaculocysts. The otoliths (fig. 12) ars

Fig. 19-Diactam of n rettion section of Carmarina Aastaka, passing on the right through the whole lencth of an indatag crmat, and on the lefe througt the nutspread lote of an ovary. l, befutinous sulatance of the dise and gastrio

 velum; ul, caridar:hous margiana ring. (From Gegenbaur.)
formed by endodermic colls as in Scyphomedusce, and geelli may or may not be present on the tentaculocypa

The genital glands bare the form of wide outgrowths or lamelliform enlargenents in the course of the radial canals (figs. 48, 49). No bydriform phase is known in any member of this group, and one at lcast (Gcryonic) las been observed to develop from the eger directly into the medusaform.

Order 4. Narcomeduste.-Those bave the same character's as the Trachomedusa, excepting that the genital glands are in the wall of tho manubrium or in pookel-like radial ontgrowths thereof (figs. 50 and 51). Further, the marginal tentacles of the dise possess peculiar "roots," which can be traced uprards into the gelatinous substance of the body. No hydriform phase has been observed in this groulp; whilst Alina and Eyinopsis have been shown to develop directly from the egg to the medusa-iorm.

FIg. 50.-Cunina rholdactyla; one of the Narcumedusce, c, el.cninar camal; h_{1} "otoporpse" (eat-rivets) ur centilpclal process of the marzhat cnmiloghinus
 Flic lappets of the marght of the slise, sepatated by terp unthes, abote wheh (nearer the aboral pole) the tentacles project fion the dise (not man. gins therelor ϵ, ore cliaructeristle of many Narionedmse and Tidehobeduset. C'arthagineus sirands (blie mantle vitcts or jerouja) connect the tomacie tuot witl the sotid marginal theg.
The two orders Trachomeduse and Narcomedisae are established by Haeckel in his new "system" for the peculinr furms chnssed by Carus as Haplonzorpha, and ly Allinan as Monopsca. Thess latter names have reference to the fact that no hydiform finse is latura to occur in the life-history of these organisms, a faet which is not peculiar to them, and, if it slould prove to be not universal amongst them, wonld by no means invalidate their claim to a distinct yosio. tion on the gromels afforded by the characters nhove given They are cemarkalile for a certain linrliness and stifness of the gelotinous substance of the dise, or at any rate of the cellular avis of the tentacles, on accout of which the orders are contrasted by llacekel as Truchyliner with Anthomoduse and Leptonudusa, which are

Fio 51.-Dlagram of n verical sectlon through n young Camina vhododnctula, passing on the right shic through a radiahas pouch. b, tentaculocysl: $c_{\text {, }}$
 r radialing canal or pouch; if, tehtacle fsolid, cartlaginous): tw, telituche rout: v, velun (fiom Gegenbaur.)
fermed Leptoline ; a curious parallelism as to the position of the gemitalia exists between Authomedrsse and Siercomedtuse on the cone hanil and Leptomedisse and Trachomedisse, on the other. The orders present a very ligid degrec of developnent, both in coarser and histological difirerentiation. At oule time it was supposed, in accordauce with Itacekel's obscrations, hat Geryonia (Carmarina, fig. 18), one of the Truchomenhusc, aave niec by buts from its enteric walls to young Cunine (Sarcomedus(c, lig. 50). Wat this lias bech explained by the ouscruations of Fianz Sclunze and of Ulianin as due to paracitisn, young Conniuce in the condition of ciliatel Pht stice entering the mowh and enteric clamber of the Curmarione. The s.me exf hanation probsibly willies (Chans) in the sulpmsel interral buls of C_{n} inn olservell by Gegenban, Fitz Mitler, and Melschnikow. The process is sulficiently temsikal, de according to the last observer, for the time generemion of hums prop dace a seconl gencration lys cxtrmal femmation, betore altointing

is ful? given in IIncelicl's mentoirs in the Jenoische Zcitschaift, ruls, i. and ii., 180.1-60; also further uletails as to Cornoman aregiven io limuris dedutsen, 1878.

Order 5. Mydrucoralland:-These are Mydromedusce is which the hydriform plase forms large colonies, presenting a conious calcareous deposit in the ectodermal tissue (cre. nostcum of Moseley), leavthy only the hydrantis or tentacular region free from such hardening. The medusiform persons arc, at present, only known in the degenerate form of sperosacs, which occupy cavitics (ampullie of Moscley) in the har. dened base of the colony (Stypasteridet). No such cavitics lave been detecterl) in others (.1Filleporidte), which may, therefore, give rise tu complete merlusiform persons.
 In all a marked polymorphisul has been cbserved (fig. 53), consisting in the differentiation of longer tentacle-like persons (lactylozooids) and shuter mouth.Leamus persons (gastrozooids). The persons of Loth linuls are citler seattered irregularly or the dactyluzooids are arranged around the gastrozooids in cyclosystems of greater or less definiteness, or in distinct rows (fig. 5.5). The presition on these two kinds of lydruform persuns is marked by definite groups of pits (eyclosystems) in the drued calcarenus skeleton of the colonies, which simulate the calycles of the stony corals (Anthozoa).

F10 :3.-Entarged viev of the suftace ef a living Millispoty ehowing tive dacijlozooids surromnding a cerrmat gasliozuoh (Tiom Jisectes:)
Louis Agassi\% was the first to recognize the ture mature of the Milleporide, anh his imperfect observations have been fully confirmaland gratly extudel tyy Mr Moscley (Jhit. Trans, 1878) who adided the Stylasteratre previonsly regardel as Anthozo to the catcery of calcigetor:s hychoils, oned ionnded thie order of
 possessing a calcificul avial style at the base of the ditatua portion of cach gastrozooid, and furtlier in the aseertancel development of shorozacs, and in the gerater complication of then cyelesystems. These forms are abundant in tropioal seas, and contuibute with the Anthoson anil Corallines to the lommicn of coral reefs. Allopora and Sigluster occur off the Nomenian const. The woalches illnstrating the structure of the groupare lonowed from Mr Moseley's Aotes of a Aumbition on te: "Chatlenger:"
The unarest alline of the Hullecorilline are such polymorphic
 and the folymorphime in the former, togelhet with their calct. gencus !urnlianity, cutite llam to tank as a slistinct ordar.

Order 6. Siphonophoru.-These are Hydromeduse in which bydriform persons alone (Velella) or hydriform persons and sterile medusiform persens are united, under many special modiscations of form, to constitate floating colonies of very definite shape and constitution. In addition to these are developed medusiform sextal persens which usually sre sporasacs and only exceptionally attain full developpent so as to be liberated from the colony as free-swimaing medusa (Velella, as Chrysomitra; Physalia, coly liberating famale meduse). The medusiform persons, where anficiently dereloped, ezhibit the velum characteristic of Mydro meduse; the larger molith-bearing nydriform persons, which are sometimes the only representatives of their kind, are remarkable for differentiation ioto four regions,a preboscis, a stomach, a basal ring, and a sbort stalk on which the ringle tentacle of great length is situated (fig. 56, f). In the subarder Physophoridice (fig. 57, C) the persons are united by a short or long and spiral stem, terminated at one ond by a flusk-like air-sac (paeumatocyst); below the air-sac a. biserial or multiserial range of swim-ming-bells (nectocalyces = meduse with suppression of manubriun, tentacles, and sense-ergans) aro placed. Coveriag pieces (hydrophyllia, reduced meduse) and dactylozocids are affixed to the succeeding region of the stem, and aitcmate in definite order with the meuth-bearing hydriform persoas (polyps or nutritive persons) and generative medusiform persons. In the sub-order Physalidee the stem is converted into an air-sac, enormously enlarged, and the necto-

Fig. B5.-Disgrama linastrating the ancersmbion atages in the slevelopment the the cyclosyateme of the Seylasteridie. 1, Sporadopera dichotomis. 2, 3, Allopora

 Innel horseshoe-shaged month of gastroperc. (Atar Moseluy)
calyces and hydrophyllia are alsent. In the sub-order Calycopharith: the air-sac is not developel, the nectocalyces are in a biscrial group, or reduced to twa or to one. Dactylozooids are wanting. The modificel persmas (appentages, Huxley) ariso from the stem in groups, and can be withrtawn into the cavity of a swimming bell (fig. 57, D).

Each group censists of a nutritive person, with long teo taclé, of generative meduseids, and usually also an unorclliashaped or funnel-like cevering piece. The iatter separate in some Diphyider, and lead an independeot life as Eudo.xir.
In the suborder Discoidee the sten is converted into a flattened dise with a system of canalicular cavities. Above this lies the air sac, a flattened rescrucir of cartilagincus consistence. The hydrifurm persons depend from the disc, centrally a large nutritive person surrounded by smaller similar persons carrying at their bases the gererative medusoids; near the edge of the disc are dactyluzonids. The medusoids develop into complete medusiform persons, and develnp the genital products after liberation from the colony, when they are knuwn as Chrysimitra.

Fio. 86-Dingram showing posstble modifications of medoslform and hydriforn persons of a colony of Siphonophora. n_{1} poeumstocyst: A, neclocalyces (swimming bells): \boldsymbol{J}, hydiophylium (cotering-plece); i, generative medualform persoo; g, daciylozooid with attached tentacle, h; e. nulrilive black line reproscots endoderm, the thioner lioe ectoderis. (After Allman)

The Siphonophora alone, amongst the colonies formed by Hydrozoa, exhibit a bigh degree of division of labour and coosequent individuatioo. The mode of origin of auch colonics has been discussed above. The locomotive babit, as contrasted with the sessile bahit of other colonies, is no doubt correlated with the sharply defined indiviluality which they attain (compare Cristatella amoog Poly=os). Velellin and Physalia are occasionally sceo on the soubliern and west rn shores of England, but as a rule the Siphonophora are met with only in the open occan and in the Mcditerrancan. By some nuthoritios the Siphemophora are assigned a distinct position amosg the Hydrozoa, side by sild with the Hydromeduse nod Seyphoneduse; their interpretation na floating colonies of $H_{y d r}$ romeduser, an interpretatinn meressituted by the structure of their medusiform persons, forbids their siparation from that group.

Fossil Il ybrozon. - The researches of Mnseley have necessitated a redistribution of the group of Authoira known as the Thubulata. Ameng these appear to be a fow Myltro. corallime, which occur in the frosil state. The l'alienzoie forms known as graptulites are by some autbors assigned to the Ifydrozon, hut the grounds for phacing them in this pasition are very slight, owing to the imperfect nature of the remains. A discussion of the small anmunt of structure which they present would be out of place here.

Remarkable Siynhomedusu: have been obtainced foom the Solenhofen slates (. Iurassic); cxcepting these, no noteworthy extinet Hydrozos are known (see Haccke) in Zeilsch. veis.

Zool., rols. x., six., and Jenaische Zeitsch., vol. riii., 1874).

Relutionship of the Ctenophora to the Mydrozoa.-The remarkablo medusa-form recently described by LIaeckel (Situngsber. Jenaische Gesellsch., 1878) as Ctenaria ctenophora, and classed by him amongst the A nthomeduce, scems to furnish a very direct transition from the structure of a medusa to that of such a ctenophor as Cydippe (Pieuro-

Fic 37,-Floatlng colonies of Siphonophors. A. Diphyes campanulata B, A croup of ispendages from the stem of the same Dephyes. C, Phymphora hydrostatica, D. Separate nectocalys of the sarae E, Cluster of femalo sporosacs (aliortcd medusx) of Agalma sareai. a, stem or azis of the colony: n. preumasocyut far-bladder); m, nectocalys: e, sub-umbrcllar carity of nectecalys : c, radhang canals of the nabiella of the nectocalyx. o, orifice formed by the markin of the umbrella; t, hydrophylila in B. ductyiozoolda in C: n, stomach; i, teatacles; 9, sporosacs (Erom Gegenbaur.)
brachia). The woodent and appended explanation (fig. 58) copied from Haeckel's memoir will render the relations of the two forms clear. Ctenuria has the marcin of its
disc narrowed so as to give the organism a spherical form, The approximated margins bonnd an orifice leading to the sub-umbrella space. This orifice corresponds to the socalled mouth of a Cydipue. Further, Ctenaria has tro, and only two, long-fringed tentacles, like those of Cydizpe, and each springing from a pocket as in that gonus, and on the surface of its spheroidal umbrella eight rows of differentiated ectodermal cells, which though not ciliated

Fig. 58.-Cienaria Cienephora (llaeckel), one of the Anthomedusa, connecting that group with the Cienophora. A, lateral view of the entire meduse: B_{1} two horizontal views, that to the left representing the surface of the aboral hemt. sphere, that to the right a scetion passing nearly equatorlally, a, the eigbt (cilinted?) rows of thread-cells, adradial in position thd corresponding to tha eight ctemophoral zones of Pleturob, acha; b, jelly ut the umbrella; c, circular muscle of the sub-umbrella: dungitudinal muscles of the sub-umbrella; e. stomachal dilatation of the cutcric cavity: f, the sixtect orat tentacies: 9 , the four periadal generative chands in the ntomach wall (mantrjum); h, the four perradial primaty radialug canal: s, the elght adiadial bifurcations of the procedane, 1 , ring canal in the margin of the umbrella; 1 , relum; m, the two lateral tenterle pouches; n. the two luteral unilaterally filnged tentacles, o, the aphend cassty (infundibulum) abuve the stomach The canal system, with its four primary and enght seconduy rana agiees in Cfmaria and PleuroLrachia. The mouth of the latter is homolugous with the margin of the umbrella of the fommer. The sumbth of Cofulatia is homologous with the janctlon of the somalled funnel of fimurubracha with lis socmlied digcstive cavity This last is thic homolofue of the suh-umbrellay cavity of Cirnaria The apleal opening of operungs of the fummel of Cenophora is paralleled by the spalk canal of maflusx, whist tha agreament betweea the tentacles and thein pouches In Cfenaria and Pleurobraitha is complete.
correspond closely in position with the eight ctenophoral ambulacra of Cydipue. The disposition of the enteric canalsystem of Ctenaria is, as shown in the cnt, also transitional in the direction of Cylippe. $A_{\text {part }}$ from the cxistence of Ctenerin, the homologies suggested by Hasckel betreen Hydromeduse and C'tenophore are such as to commend themselves very strongly to acceptance.
(E. R. L.)

HYDRUNTUM. Sce Otranto.

HYERES, a torn of France, in the department of Yar and arrondissement oi Toulon, about 3 miles from the const of th Mediterranean. It is connectod by a brancb line with the railway from Toulon to Cannes, and by diligences with the neighbouring towns. The towa proper is sitnatel on the sonth-eastern side of a steep hill (650 feet bigh) which forms one of the hast buttresses of the Maurettes, a group of picturesque hills covered with olive, Fine, and cork trees, and underwood of myrtles and other shrubs. In front, towards the south and southecast, a fertule plain, onee famons for its orange groves, and now mainly occupied by vincyards and farms, stretcles to the sea, whilo towards be south-west, across a narrow valley, tises a cluster of low but well-elad hifls. The older part of the town, still on its castern and northera sides sur-
rounded by its ancient and dilapidated wall, is a labsrinth of steep dirty strects. but the new quarters which have grown up at the foot of the hill hare handsome boulevards and villas, many of them "ith beautiful gardens futh of semi-tropical phants. Of best note amone the objects of interest at 11 yères are the house (Rne Labaton, No. 7) where Massillon was botn, the eathedral or church of St Louis, a low building of the 12th century (restored in 1840), which belonged to the Cordcliers; and the ancient castle, crowning the highest part of the lill. The Place des Palniers thkes its name from the seven palm trees phated there in 1834. On the fhain between the town and the sea are large nurseries, an excellent jardin d'acclimatation, and the famed kiteben gardens which supply Paris with carly fruits and vectables and with roses in winter. There are cstensive salt-beds on the peninsula of

Giens, which juts due south into the Meditermnean, where ' jails and busputals were in many cases the botbeds of fatal salt is made by the exposure of the sea-water to the sum. U_{μ} to the lith century Hyeres was a larger and more 1 m portant town than Toulon; and in the lith eentury it became famous as a minter resort. Catherme de' Medna at one time thought of making it the seat of a royal residence. At present the more brilliant social attractions of some of the neighbouriar wateriag-places of the Riviera divert the more fushionable visitors from Hyeres. In chmate it differs little from its more favoured compeers. From the east and portb-east winds it is completely sheltered, but it lies open to the ravages of the mistral. The population i. 1812 was returned at 5881 fur the town and 11,212 for the commune; in 1876 the correspronding firures were 9797 and 12,289 . The islands of Hyères (the Stochades -ai $\sum_{\text {rooxades }}$ mon-of the classical geosraphers), otherwise called Les Îles d'Or, lie to the tast of the penmsula of Giens, and form a protection to the roads of Hyeres, one of the great reodezvous of the French fleets. The procipal islands are Porqucrolles, which rises to a beight of 600 feet, Port-cros, and Titao Tbe population is scanty. A marquisate of the lles d'Or was created by Francis I.
Sce Alphouse Denis, Promenades pettoresques a Hyeres, 1842; Engène Farenc, LLes réuts did touraste Provencil. 1859 ; Aufauvre, Hyeres et sa rallé, 1862, Joanne, Hyeres et Toulon, 1870; Lentheric. La Prorence martime, 1889
hygiene is the scence, Practical Hygiene the art, of preserving bealth The name has been adopted from the Freach, from which language it has also been iutrodnced into most other tongues; it is derived from the G"eek iricia or iryeia, bealth. Writnugs on bealth are among the oldest in the world, for the subject has engaged the attention of the profoundest thinkers and the must renowned leaders of men. We bave only to puint to the elaborate directions in the Mosaic laws fur the preservation of bealth through scrupulous attention to cleanliness, the ssolation of the sick, and extreme care in the use of wholesome articles of food and drink. Throughont the whole of their history the Jers enjoyed a remarkatle immunity from epilcmic disease, the most of the instances in which such discase occurred beiag regresented as those in which they departed from the law and doubtless relaxel the whelesome vigilince eujoined by it. In medixalal aml modern bistury they have often, even dumn to our own time, been spared the ravages of epilemics, when their Christim neighlours were perishing around them. Ignorant superstition olten gave rise to the idea that they had poisured the wells, and they foll victims to the famaticism of the times. It is highly probable that the periodical eleansing of their dwelhings, involved in the thorough search for tho leaven which preceded the yealy passover (Mishna, Pesachim, i. 11), had a notable influence in preveating that contimpons deposition of organic matter, which is no doult one most puweriul factor in the prodnction of aymotic disease. On the other hamd, the filthy labits of the Christian populations oflered a prenium to plagues of every kind; for there is no parallel in ancient bistory to the terrible invasions of discase which from time to time ravaged Eurofe dewn to quite recent times.

It is the proviace of hysicne to seck out and determine the causes of discase, and to formulate rules for their prevention and removal. It may thus be called also preventive medicine, although this term dues mot quite express all that must the includecl. The progress of hyyieme, such as it was, restell fur many ages urom an empitical fosis, and indeed to a large extent this is still the casce. The sulject has, husover, in liter times at least, luen studiex to conswatable advantage, although nuch wnains to be. 中man. Two centurics ago the momtality of hadom was 80 per 1 (000-at the present day it is muker 23. A
 disease, now thuse cundituns are rectified, or at least the means of rectifyng them are known. Tharty years ago the English troops at home died at the rate of 20 per 1000 nuw their deatherate is less than one-halt of this. A knuw. ledge of the causes and modes of prophgation of disease beurs necessary in order to provide rules for its prevention, it is ohvons that hygrene must be largely dependent upor the adrances made us gatholory and retiology, bence the inpossibility of any sery nuriked progress in former times, by reasun of the mpertection of the collateral sciences, and the waot of the appliances more recontly made a a ailable for inquiries of such a dithcult and recondite character. Within this century, bowever, and especially withio the last forty or tifty years, it bas been possible to follow out the subject on a more strictly scientific basis, and so to lay a foundation, at least, un which to build a structure, which may one day entitle hygiene to a place amoug the more exact scleaces.

The spectal subjects which hygiene embraces are the iol-lowing:-I. Those which concera the surroundings of nan; such as meteorological conditions, roughly included under the bead of cliaate ; the site or soil on which his dwelling is placed ; the character, materials, and arrangement ot his dwelling ; the air be breathes; the cleansing of his dwell. ing, and the arrangenients for the removal therefrom of excreta and other effete matters.
II. Those which concern the personal care of health; such as the food he eats and the water and other beverages be drinks; clothing; work and exercise; personal cleanliness; special babits, such as the use of tobacco, nareotics, \&c. , control of sexual and other passions.
III. Certain points not directly included in the alove; such as the management of infancy; the prevention of disease; the hygiene of the sick-chamber; and the dispusal of the dead.

It is obrious that it is impossible to draw any hard and fast line in these divisions, and that they must constantly rum into and orcrlap cach other. Such a dirision, bowover, gives a general idea of the scope of the science, and a brief consideration of the different sections will enable us to furnish a slight sketch of the mature of the subject.

1. Meteorological or (so-called) climatic conditions. Here temperature and humidity are the two points that chivimsly present themselves for consideration, but it is very dillicalt indecal to separate their influence from those of son or site. It is also certain that much that bas been attributel to climate is really duc to other canses. It may be laid dum as a general principle that, if moderate care be taken, mau may preservo his bealth in almost any part of the wold, although it must be almitted that in some phaces, such as hot and moist climates, disease causes appenr to be more casily called into action than under culler or driercondit tous Some diseases, such as yellow fever, appear to require a certain temperature fur their development and proparation, others, such as enteric (commenly called "typheid") fever, appear to exist indiscriminately under any meterolomical conditions; others, such as chulera, although undoubselly miginating in bot and uost countries, appear capabe of being propmated in most parts of the world. In some eases great heat and dryness arrest disense, as used to be olserved in Prypt, where the phagne was commonly said to cease after St dohn's day. During the hot harmatian wind of the west const of Africa small- p ox is arrested, and suceessful vaceination theomes impossible. To the sick or inficate, metarntugical conditions are of great impurtance, but this part of the subjeet helongs more to the treathent of discase than to gencral hygiene. To the bealthy, meterrologital conditions, howower much they may affect persmal confort, are of compratively litte moment as
regards healta, su leng as reasonable eare is observed. In a healthy body an adaptatton to circumstances rapidly takes place, and an equilibrmmis somestathished Thus, it nsed to bo supposed that great beat mereased the temperatare of the body, but later observations have shown thes to he erroneous, and that the balane is som re-established by the process of transpuratun, -should this, however, bearrested, then a rise of temperature may take place, and disease of a febrile character be established.
?. The soil or ste of the dwelling is, however, of greater moment, and much that has been attributed to chmate has been onore truly due to locality. Soils are generally duvided moto moist and dry, permeableand impermeable, and again subdivided accurding to formation, composition, slope, de. Healthy soils aru those which aro dry and permeable, or which have such a slope as renders drainage easy, on the other hand, soils which are that, moist, and impurmeable are generally unhealthy, Soilscontaininer much crganic matter are to bo avoided, such as alluvial suils generally, as well as all marshy districts. The air in soils is generally more or less impure, heace the unadvisability of occupying twellings below the ground level or situated immediately on its surface. The water in the soil is a question of great impertance, apart from the mere moisture. At varying dist:nces from tho surface, but everywhere, tafee exists a great subterranean lake or sea, known as the ground-voter or water-fable, which is constantly in motion, bath vertically and horizontally. Its horizontal movement is towards the nearest water-course or towarls the sea; its vertical movement is determined by rainfall chiefly. Much importanco has been attached to it, and the following points may be consideredas accepted by most hygienists:-(1) a permanently high grouod-water, that is, within 5 feet of the surface, is bad, while a permanently luw ground-water, that is, more than 15 feet from the surface, is good; and (2) violent fluctuations are bad, even with an average low ground-water; a comparatively high ground-water with moderate and sluw fuctnations may be healtly. Aecording to the school of l'ettenkofer, it is the gromud-water which determines the spread of certain forms of disease, such as cholera and enteric ferer. A previously high level, sueceeded by a fall, with a certain beight of temperature in the soil-air, is the condition believed loy them to be the one most favourable for disease production. Healthy soils are the granites, metamorphic rucks, clay-shate, limestone, sandstone, cbalk, gravel, and saud; unhealthy are-clay, sand and gravel with clay subsoil, alluvial suil, and ararsh-lands, with the exception of peatlands. Among the mhealthy suils onght also to be included all "made" soils, paricularly those that are formed so often in towns from rublish of all sorts. Such soils ouglat not to be occupied as building sates for at least two years.
2. The sanitation of dwellizgs anvolves numerous points. The sito has been considered in the previous section, but the impurtance of exeluding soil comanations must be insisted upon The placing of a dwelling in any spot of ground irmes to exert an extractive force npon the soil, because the air of the dwelling is olmost always warmer than the external air, and there is therefore a constant danger of sucking up the more or less impure soil-air into the dwell. ing. Not only is this a recognized source of disease, but fital cases of direct poisoning have sometimes resuled, ns whon coal-gas has escapel into tha soil liclow or near a dwelling. An impervious toundation is therofore neenssary, althorgh this mrecnution is too often neghected, even in high-cliss itwellings. Louses ought to be so arranged that thoy may receive plenty of light, not merely for work or convenionce, hut as a matter of health. Sinlight, for full health, is az necossary as air, and this is now so strongly recognized in America that in many of the hospitals in
that country rooms are provided where patients may tako a "sua-bath,"

The materials of which houses are buit are varous. Wooden dwellings have adrantages, but there is always the danger of tire. Brick or stone is most commonly used, but very good dwellings may be made of concrete or even of mul. Probably the best material is good, sound, well. burnt brick. Dyyness must be secured by means of dampprouf courses along the foundations, hollow walls, and cementing or slate-hanging externally. Non-absurbent surfaces internally are important, although sono writers, such as Pettenkofer, de., have been inclined to attribute the unhealthiness of dwellings to the impermeability of the walls obstructing air change. But where air can pass, organic matter can lodge and become a source of danger. It is better, therefore, to have non-absurbent surfaces as much as possible, and to proride for ventilation in other ways. Paint that can be washed is thereforo better than paper; if the latter is used it had better be glazed. Care should be taken to scrape off all old papers beneath, as they and the paste used with them tend to decompose and become injurious to health. Ceilings ought to be impervious as well as walls, and floors ought to be made of well-fitting scasoned wood, caulked, and oiled or varnished so as to make them water-tight.

Proper cubic space is a mattor of great importance, tor upon it depends the renewal of eir. The air of an air-space can seldom be changed oftener than three times an hour, henee the space ought to bo large enough to allow of such rate of change providing enough of air for respiratory purpuses. The furniture of rooms, especially sleeping rooms, ought not to be too massive; whilst curtains and banginge too often form traps for dust and organic matter.

The warming of houses is important, and is generally badly and wastefully done. The open fireplace has great advantages, but it is in many cases insufficient. Where any general system is employed it is better to warm the air in the room itself, as by pipes conveying hot water or steam, than to warm it before delivery. Overheated rooms are a source of ill-health. For sitting-rooms 60° to 65° is quito enough ; for a study or work-room 60° is sufficient, even in some eases less than this. A sleping-room need never be above 60°, often with adrantage beluw it. Fresh air ought not to be sacrificed to temperature, except under extreme circumstances. Dwellings should not be eccupied for some time after building, till they are thoroughly dry. Rheumatism, chest disenses, de., are rery apt to atise from neglect of this precaution.

Scrupulous attention to cleanliness is necessary in dwellings, and there is wisdom in their periodical vacation for a certain time, so as to let them lie fallow, as it were, and interrupt the continuity of deposit of organic matter. Dwellings ought to be scattered over as wide on area as possible, for statisties show that sickness and death-rate are often inversely proportional to the amount of area per head oceupied ly at community. The area [ef head in london is estimated at doablo that of Paris and many other cities, whilst at the same time its death-rate is smaller than that of any other Large city in Europe
J. Air is the prime necessity of life. Food or nater may he abstained from for a considerable time, and we may thus have an upportunity of replacing either should we doubt its parity or wholesomeness, lut the atmusplere around us we must breathe or dic. Ilence the paramoma necessity for having it pure. Lut, although hisis is apparently so obvious, attention to its impurtance has heen vers genemally mittod. Air consists of a mechanical mistane of oxygen an! nitrogen, in the proporion of nearly 21 ;as cent. of the former to 89 of the lather, with small quantulias in addition of carboric acid, moieture organic matter.
scc. By respiration and combustion air becomes vitiated, the osygen diminishing end the carbonic acid and orgeuic and snspeaded matter increasiug. Within certain limits the amnunt of carbonic acid is is itself immaterial to bealth, but it is important as a measure of the amount of organic matter, which is really the dangerous impurity. Air vitiated by respiration is also much more dangerous than when the carbonic acid is partly the result of combustion. ' is now pretty generally admitted that air cannet be considered as renlly good and fot for respiration in weich the respiratory impurity reckoned as carbonic acid much exceeds tro parts in 10,000 by volume. On the other hand, if air can be kerit down to this point, the condition may be looked upon as satisfactory. The amenat of impurity given of by living beings varies of course with size, weight, age, $8 e x$, and work, but it may be allowed that under ordinary circumstances it amounta to about six cubic feet of c3:bonic acid per head in ten hours during repose. This raquires an hourly supply per head of 3000 cubic feet of frest eis for its dilution, and this amocet should be largely increased durigg work or in sickness (see iospital). The diseasas which have been shown to arise from the effects of vitiater air are widely provalent, iocluding euch os consumption and uther forms of ecrofulous disorders, bronchitis and pabumoaia, sore throat, \&c. Crowded and ill-reutilated places elso tend to increase the riruleace end the rapidity of epread of the various communicatle discases.
5. Citansing, iacluding the removal of blops, ezcrata, dc., forms one of the most important and also most dificult of questions. The main principle is that all should bs immedintely and efectually removed from the house and its noighbourhood, and thet there should bo no possibility of refinx of foul eir from drain or cesspoul. The system of water-carriage is certainly tho cleanest and most convenient, especially among large communities, but other systems find advocater. In villagos and isoleted houses the earth systemand otberdry methods have mauy advantages. The question of the dispossl of eamege is a very large one, into which it is impossiole to enter here. Hitherto all or elmost all the material has been wasted by being poured into rivers or the sea, the streams being thes polluted aod the shores rendered offensive. The olject to be simed at is to utilize a product of uedoubied fertilizing infleence, withont endangering tho health of tho com nunitg. The diseases to bo appeeberded from imperfact methods of sewage removal are enteric ferer, cholcra, diphtheria, sore th oat, and an aggravation of most other disbases, especially those of an eraptire character. Ashpia ought to be cspecialiyatiended to, their negice being attended prith nuch danger.
6. Wuer-sunply, althoagh iacludal under tac bead of food and boverajes, merits specisl consideration, so importent is its relation to health, both directly as a drink and indi. rectly writh reference to its many other uace. It is required for drinking, cooking, the cleansing of person, clothes, and dwelling, and the flushing of closets, bewers, nad dreins. The bjgicnic requirements are thet mater shouid bo good in quaslity and sufficient in quantity. Gond water should be clear, colourlose, quite free from suspended mattce, of in good lastre, and should have a pleasant sarkling tasto, the latter qualities boing due to the carbonic acid and aturisheric air dissolved in it. In its chemival composition it ought to be as free as pessible from orgauic matter. 'ike evidence in turour of communication of disease ly menas of drinking water is now very extensive, and wo may cite diarticas, dyeantery, ayus, coteric fever, and cholera as annong tho dissuses which may be conveyou through this chanael. Numorous parasites also fund their way into tho husnan body by this means. IIard water is objectionable for cootcirg and washiug, bor can it bo recommended for drinkinge shimetug burug inaist hpon a certain amount of
larduess being essentiai. In th. 3 case of water being impure, boiling, distilling, of filtering may be resorted to. Tho two former ars the most efficacious, but the last has advautages of converieace if properly carried oat. Charconal filters, if properly cleansed, or renewad sufficiently often, are useful, but it is better to have a material that purifies without rishiag auy deteriaration of the water itse!f. Such filters as the spongy iron and the carferal effect this. All filters, however, require the medium to be cleansed or renewed periodically. In a house the chief dangers are from dirty cisteras and from pipes baing connected with drains and closets. All supply should be on the constant sgstem, and no pipe supplying a closst should be resorted to for drinking purposes. All orerlow pipes should deliver in the open air. The quantity of water required per head may be stated at a minimum of 12 to 16 gallons per diam where there is no general system of drainage, and about 25 galions with drainage. In towns more than this is necessary, and from 30 to 50 gellons are desirable. In sickness generally double tho amount is mecessary that is requred in health. The source of the water ought to be pure, springs, deep wells, and upland surface water bying the beat. Shallow wells and rivers to waich ecwage gains access are most to be avoided.
7. For food and beverages the realer is referred to the articlo Dietetica.
8. Work and Exerciec.-The kinds of work periormed by man are of courso very various, but they may be rediced more or less to a uniform atanderd, whici is usuaily reckoned as 60 many toas (or pounds) raisou through cas foot, 0 : tersely, as foot-tons or tonfect. A fair day's work is generally taken at 300 foot tons, a laburious day's work at 450 , and the maximum to be expected, except under very special conditions, at 600 . For this work a certana time should be allowed, as the strain increases (almost in a geometrical ratio) with the velocity. Usually speaking 50 foot-tons an hour is a fair nmount, and this ratio is squal to a walt of three miles for an average man. The emonnt for mental work hes not been aceurately calculated, bet it may be aafely assumed that a man of sedeatary occupation ought to take esercise of 3 physical bind verying from 50 to 100 foot-toos per diem. In sll cases his food ought to bo proportioned to his work, for it is now recognized that man is a machine, whose work depends upon the evergy derived from the food be cats.
9. Clothing and Fersonal Cleanliness.- Clwihing should fulfil the functions of preserving warnth in cold wather, providing covering without being soo oppressive in bot wather, kcoping out wet ia wat wcather, and yet allowing sufficient transpiration for bealth. At the same time it ought to admit of frequent change and cleansing. Dr Parkes has pointed nut that it is probably due in some messure to cleaner habita with reference to clothing tf t the diminotion of typhus fever should have been so marked in recent times. Fersonal cleauliness is also a mattor of great importance, a daily general bath leiag advisacle for every one. For animals as well $a s$ humau loings it bas been shomen that cleanliness is conducire to improved appetite ond gencril health. Filth is one of tho prime factors in the production and propagation of most of the devastating playucs known to mankind.
10. Premtion of Disease--This is a large riuestion, on vinch we can only briclly touch. Much dupends unon our knowledge of retiolngy of the remoto canses of disense. The best rule for preventing discase is to follow out carefully the principles of gereral hygenc, laid hown with reference to pure air, pure water, puper food, cleanliaess, \&c. Somo diseases may ho more sperially provided ugainst, such as paroxysmal fovery by the uso on quinime, andsmall-

no such apecial preventive is known. Some diseases, such as typhus fever and plague, are successfully combated by seatteriog the population over a large area and inducing the freest ventilation, and to all diseases this plan may bs applied with more or less effect. In those diseases which are known to be communicable, ${ }^{\circ}$ such as scarlet fever, isolation of the patients is an effectual micans of arresting the spread; but the poisons of others, such as measles and hoopingecough, are so subtle that isolation can only be looked upon as a metsure of doubtful success. Nuch stress lins been laid upon disinfection as a means of preventing uiscose, and if properly carried out it has some effieacy: liut it is a mistake to place too implicit reliance upon it as odinarily practised. In dealing with clothing, bedding, dc.. the best method is the application of heat, at or above the builing point of water, which may be done by means of dry heat, superheated steam, or boiling water. In fumigating places, burniug sulphur or the vapour of chlorine or nitreas actid is used, but to be effectual the air must be rendered for the time irrespirable. The solid and liquid disinfectants (so-called) are chloride of lime, the permanganates, carbolic acid, and a great many sinilar sobstinces, many of which have been made the subjects of patents. A large number of them are merely deodorants. It may be stated generally that disinfectants are useful as adjuncts to other hygienic measures, but that they cannot replace them, except to a small extent, and in a very imperfect way.
11. Disposal of the Dead.-The most frequent plan is interment in the earth, but it may well be a question if this be the best plan; it has certainly led to much evil when carried out near halitations. Two otber phns have been suggested, viz., burial at sea (suggested by the late Dr Parkes) and cremation. The former is bardly likely to be resorted to, but the latter would be effectual in preventing the evil consequences of ordinary interment. At the same time the danger that it might too effectually conceal much secret crime lias to be taken into account.
Cibliogrephy.-F. A. Parkes, Manual of Practical Hygicne, elited by F. de Chaumont; G. Wilson, Mandlook of Ifygicne; A. Wynter Blyth, Diclionary of IIygiene (afte: Tardieu); F. de Chatmont, Lectures on State Merlicine; A. II. Buck, Hyeicnc and Patlic Jcalth, Now lork; Michet Lévy, Traité d'Hygiene Publigue et Pricte; Von l'appenheim, Handluch der Sanitats-I'olizei; Roth and tes. IIandbuch der Militurische Gcsundheitsplege; and numerous works aud mongraphs on special departments.
(F. DE C.)
hliginus, Caius Julius, a native of Spain, and the frcedman of Augustus, by whom lie was made chief of the Palatine library: He is said to lave fallen into great paverty in his old age, and to have been supperted by one C. Licinius. LIe «as a voluminous author, and his works included topographical antl biographical treatises, comnent ries on Cinma and on Virgil, and disquisitions on agriculture, bee-keeping, and the military art. All of these are lost. But there have come down under his name two school treatises on mytholozy, which have produced muct discossion. They are cntilled (1) Fabularum Liber, containing 277 inythological legends, and valuable for the use male of the Greek tragedians; and (2) Pocticon Astronomicon Libri I IF., an astronomical treatise of litte value. Both are abridements; both are by the same hand; but from the "tyro-like mistakes" in both they bave leen Thought unworthy of the librarian of Augustus. It is not, horever, impossible that they are early compnositions of his, written before he hall gained full command of the lation language. A surgestion lans also been male (Tursian in Fleckeisen's Jahriruch, xciii. p. T73) that a work of 11 y ginus, mamet Gerealagie, was abridged by a grannnarian of the latter lanif of the orl century, who appenied a treatise on the whele mythology arranged arenerting to my: thological views. This text bouk, retaining the tame of Hyginus, would be ";ien :o the enhools, and would he from
time to time altered and augmenten. But in these, as in the many other opinions that have been advanced, there is nothing beyond conjecture.

IIYGINUS (surnamed Gromaticus, from gruma, a surveyor's measuring rod), a writer on land surveying and castrametation, who flourished in the reign of Trajan ($98-117$ A.D.). There survive fraguents of a comprelicisive treatise De munitionibus castrorum or De castrameta. tione, and of a work De limithus constituendis, which may be found in Lachmann's edition of tho works of the Roman Gromatics (1848), i. 105-134.
hYGROMETRY. In the British Islands all are faniliar with the arid character of the east winds of spring, and not a few are only toe painfully aware of the discomfort expreienced while under their iofluence; and all are likewiso familiar with the opposite state of the atmosphere, most frequently aod unmistakably occurring also with east winds, when every objert feels damp and clammy to the touch, and horses on the streets are seen each with a steaming cloud of dense mist around it. In certain other climates, such as are met with in India and South Africa, these effects are greatly intensified, so that on the one hand the ivery scales of thermometers, quill pens, and other objects curl up, articles of furniture open at the joints and split up, and th a grass which corers the soil is reduced to a state of tinder; and on the other hand, everything becomes so permeatod with moisture that, eren in the interior of houses, furniture, books, and wearing apparel become sodden with wet. : These different effeits depend on the states of the air as regards the quantity of aqueous vapour diffused through it taken in connexion with the temperature, these varying from the completest pessible saturation of the air, which is of occasional occurrence in the rainy seasen of some tropical climates, to that extrenie desiccation of the nir which sometimes happens in Great Britain in sputing, but more completely and frequently in such dey summer climates as that of the Punjaub.

A large number of substances, such as sugar, fleur, ana bread, possess the property of absorbing moisture, and inost gases, as well as air, alsorb and retain aqueons vapour. The term hygrometry is employed to signify the measurement of the degree of dampness ${ }^{\circ}$ sulstances, and to denute the processes by which their hamadity is ascertained. The term, however, may be considered as restrietell to tho humidity of the atmonsphere, owing to the paramount imsportance of that branch of the subject, and the slight and unsatisfactury knowledge we yet possess of the laws of hygronetry of other sulustances.

All organic substances contain pres for the conseyance of their juices, and are influenced by the accession of meisture, some of them very markedly so. Every species of wood is liable to these lygrometric changes, the amount of contraction and expansion being much greater across the grain of the wood than lengthrays. Itence the panels of doors are fitted inte groores so as to allow of shrinkage, for, if secured at the edges, the pancls must inevitably : flit. The hair of animals is also eminenty lyyometic, cuitu; and uncorling as the air becomes drier or moister, and it is because of the peculiar sensations accompanying thesu hygrometric changes that the cries and belaviour of many of the lower animals furnish raluable proguostications of weather clanges. Similarly many manuactured wijects, such as priper, cordage, \&e., vary in weight, bulk, fonm, ant elasticity with the varying degrees of hamidity of the ain, and other interesting prugheostics have Leen i in frum threse hygrometric clanges.
In the earlier stages of the anpestigation on the hygro. metry of the air, the hygromectric propetties of several substances were made use of ay instrmuments of obervation. Of these may be uamed the twistal hndian grass (r....an,

Ifvoloo), emplosed oy Captain Kiater on "accennt of its tomarkeble property of twisting ad untwisting accerding to the dampness of the air ; a slip of whalebone cut across tha fibres, used by De Luc; and the hygrometer of Saussure, which was formed of a hair from which the oily matter had teen previously removed, and which stretches when moist and contracts when dry. Experience has, however, shown that none of these hygrometers are satisfactory instrumeuts, seeing they give inconsistent results, and are liable wien in 138 to great and nacertain changes. Hence, white they serve to give the roughest idea of the state of the air as regards moisture, they have fallen into disuse as accurate instruments of observation of the hygrometry of the atmosphere. But in the intensely cold climates of Russia and Siberia, the hair hygrometer still continucs to be used as an instrument of obeervation; and when we censider the tediousness and difficulty of making hygrometric observations with the hygrometer in most general use when the temperature of the air descends below the freezing-point of water, the hair hygremeter should perhaps be considered as good an instrument as is arailable to put inte the hands of oriisary observers in times of lew temperature.

The most accurate hygrometers are those which are constructed, net as the above, on the priaciple of absorption of vapour, but on the principles of condensation or eraporation. The well-known fact that the tempera ture of a wet body is lemer than that of a dry one when under the same atmospheric conditions was applied oy Sir John Leslie to measure the humidity of the air. Jeslie's hygrometer (fig. 1), which is an odaptation of his differential thermometer, is formed by uniting two tubes having a ball blown ou tho end of each, inte which seme coloured sulphuric ether has been previensly introduced. When both bulos are at the same temperature, the fluid stands at the zero of the sale, but when ono of them is covered with wettod paper or muslin the instrurucat shows the depression of temperature of the wetted bulb. In order to ascertain the quantity of moisture corresponding to the readiug of a Lextio's lyggroueter, we must deduct from the total quantity of monistury which the air of the temjeratare at the time of observation is capable of holding the

Fic. 1.-Leslie's Hygrometer. deficiency duo to the dagree of cooling shown by the lygrometcr.

As no the is ever absolutely dry, but centains more or less manisture, it is evident that if any mass of air le cooled fufficiently it may be made to deposit its moisture. A funtiar example of the condensation of vapour is seen in the formation of dew on a tumbler filled with cold water and bronght into a warin room. This dew is cansent sy tho depositien of musture from the sir in contact with the cold surface of the glass, which is couled down betow the point of saturationt. The tomperature of the ghass at the instant duy begins to formo it it suffare is termes the dew-point, which correspombs with the puint of saturation of the air.

I muiell's and liegrantis hymemeters are constracted on the principte of this simple phenomenon, varous contrivancea leing usenl for lowering the tenpurature guickly to -any wint that may be desind, and for obsevin! with
requisite precision the temperature at whish the dew begins to form. In both cases cther is emploged to lower the temperature.

Daniell's bygrometer consists of a glass tube bent at right angles at two points with a bulb at each extremity, one buib being of black and the other of clear glass, the latter corered with muslin. The liquid within the bulbs is ether, which at the time of being sealed is made to boil for the parpose of expelling the air. If the temperature of the two bulbs be made to differ from each other, all the ether is tansferred from the warmer to the celder bulb. In making an observation the whole of the ether is first transferred to the black bulio, and ether is then drepped on the muslin covering outside the clear bulb. This ether quickly evaporates, and in doing se rapidly lowers the temperature of the clear bulo so that the ether inside the black bulb distils over inta the clear bulb. The rasult is a lowering of the temperature of the black bulb, and, as soon as this falls to the temperature of the dew-point of the air where the experiment is conducted, a ring of vapour begins to te formed outside the black bulb, more or less dulling its surface. At this instant a thermemeter placed inside the tube with its bulo immersed in the ether filling the biants bulb is read, and the reading gives the dew-peint of the sir at the time.

Regnault's hygrometer is a little more complicated thar Danjell's, but its indications are much more trustworthy It cousists (fig. 2) of a glass tube or capsule A, haring on the bottom and a little way up a highly polisted silver surface, and closed by a cork with two holes. Through one of theso holes the sten of a thernometer B pases, having its bulb at the bottom of the silveral eapsule, while through the other bole passes a narrow metallic tube C, one end of which onens close to the bottom of the capsule, and the other end may, if destirsd, be connected with an aspirator or air-pump. In making an ubservation as mueh ciher is iatroduced into the capsule A as will cover the bulb of the thermonieter, and then by transmitting air through the tube C the ether vaporr is withdrawn from the caprule A threugh another tube D . By this means the temperature of the ether is very rapidly reduced, and since the whole mass of the ether is agitated by the air-butbles which rise through it from the botton of the eapsile, the corling of the ether is equal hironghont. The thermemer is then reat quiekly, but to eusure an accuracy to the teutls cif a degree a second and a third experiment, conducted more slowly, should be made. As showing the rayidity with which observations can be made with this hyerometer, Hcury F . Blanford on one cecasiốu mate six obscrvations in six miunules in the dry climate of Secunderabod, when the temperature of the air was 93°, tho dew: point 01°, aud the relative humidity consequently 24°. The termporature of the air at the time of observetion may be ascertained in the usual waty, or by means of the thernometer E , if care loe taken that its temperature is unafiected by the proximity of the person of the ubserver.
Owing to the expense and great tronlle attenaling the uso of lygrometers which give the dew point diteetly by conJersation, anuther lyegrenieter has come into cxtensive use ly which the dew-pint is datrminel imbiretly ly evaporation. This is insust's lygrounter, sometimas callied.

Masen's hygrometer, but more generally known as the dry and wet buib hygrometer, which las the strong recommendation of being self-aeting, and requiring only the readings of the two thermometers in making air observations. This bygrometer (fig. 3) consists of two thermoneters a and b sumilar to each other in all respeets exeept that one of them has a picee of muslin tied elosely over the surface of its bulb c, and kept constantly wet by a few threade of cotton which cen. nect it with the water in the vessel d. The water then which rises frum the vessel by capil. lary attraction spreads over the muslin, and evaporates from its surface with more or less rapicity according to the dryness or moistness of the air; and the greater the dryness of the air the greater is the difference between the observel readings of the dry and the wet thermometers.
The formula for deducing the lygrometric state of the air from these two observations has been investigated by Professor Apjohn (Trans. Roy. Irish Acul., vol. xvii.), and has beed alrcady described (see Atmospien:p, fol. iii. p. 32). As it is very

Fic. 3.-Dry and Wet Bull Hygrometer. troullesome to go through the calculations for each fresh observation, tables have bren prepared which give the dewpoint by inspection. The best of these tables in English measures are those of Glaisher, fifth edition, conetructed empirically from direct experiments carried on at Greenwich, combined with Regnault's last revised tables relating to aqueons vapour. There can be but one opinion as to the great service rendered to meteorology by Glaisher in the preparation of these tables, which give results alpruximately correct for ligh and moderate humidities and fur situations at no great height abore the sea ; in other wurds, they may be regarded as accurate for at least buech cmuditions as are presented by the elimates of the British Llants. They are, lowever, insuffcient, oxing to the comparatively large errors attending their use, for the reduction of observatinns made in elerated situations and in such arid states oi the atmosiphere as are of frequent occurrence in India and South Afriea. The preparation of such tables remains still a serious desideratam in metcornlory; and anuther desideratum epnally important is the introduction of a singlte, handy, and accurate method of observing the hysrometry of the tir when its temperature descutds below the freezing. pmint of water, some method which wuld in: volve only a minimun of manipulative skilland trouble in making an olsermation. See Atsinsifuens (A. D.)

HIMEN, or HMESA:'s, was orginally the name of the song sung at marriages anong the Grecks. As usual the mame gradually produeed ite idea of an actual person whose adventures gave pise to the custom of this song. He uecurs often in association with Linus and Ialemus, who represent similar persunifications, and is generally called a son of Apulla and a Muse. In attic legend he was a beautiful youth who, being in love vith a girl, folluwed her in a procession to Eleusis disguised as a wroman, and saved the whole hand from pirates. As reward he obtained the girl in marriage, and his haply married life caused him crer afterwards to he inroked in marriage songs. At other times the tale is of an opposite character; Hymen was mufuthmate eillu. t
by dying on his marriage day or in some other may, and be was invoked to propitiate him and avert a similar fate. He necurs often in the train of Aphrodite, along with Eros, Himerus, Pothus, \&e. Accorditig to Orblie legend he was restored to life by Asclepins.

HYMENOPTERA (the Piezata of Fabricius, Hawthiäer or Adeylityer in Cerman), an order of Insecta (so named from their wings being joined, as hereafter described) containing the insects commonly called bees, wasps ants, iclmeumons, gall-flies, saw-flies, and others less known which lave received no English nanoes. The main charac-General teristics of the order are these:-the possession of four claracterwings, of which the anterior are almays larger than the posterior, always of the same texture, and mostly with nervures "erranged in regular patterns; a dense hard skin, smooth, shining, or very hairy; a mouth always provided with mandibles adapted for biting, though the other mouth parts may be so modified as to serve for mastication, or for the saching, or rather lapping, of liquids. The female is provided with an agal instrument connected with oriposition, and sometimes serving for defence, in which case it is in communication with a poison gland. They underso a regular transformation, and hare larva prorided with legs on the thorax and abdomen, or on the former part only, or (as is more often the case) entirely footless.
The wings have few nervures, and may be even entirely Win devoid of them; when present they proceed from the base of the wing, or from the costa (the part which bounds the wing in front) towards the apex, which they may or may not reach. Connected with the lateral nervures are others (recurront nervures) which unite them together, and form in this way regular cellules. The first two lateral vervures (those nearest the top) are the most important, and are called the "marginal" and "subinarginal" respectively. The cellules which they form by means of the cross or recurrent nerrures are called the "marginal" add "submarginal cellules." Not unfrequently there is, towards tho apical third of the costa, a thickened spot (considered by some to act as a counterpoise when the insect is flying) termed the "stigma" or "pterostigma." It is not always present, however, and when present may be very smail, or, as in Pechylostica, very large and projecting. In a sinilar way the bind wing may contain lateral and cross nervures, but they are fewer in number and in importance, and may be entirely absent. althongh present in the larger pair. The arrangement of the nervures in the Ilymenojitera undergoes, in the various families, great diversity; and, what is of great importauce in classification, their form, in the difterent families, and eren genera, is, within certain limits, remarkally constant. On this acconnt gieat attention has been paid to them: and each nervure and cellule has received a cistinct name. The use of the derrures and celinles does net lead to the formation of artificial groups; for we tind that the existence of a particular arrangement of the nerwures in a hymenopterons insect denotes the presence of other cliaracters. Each family iodeed has its oxn forta of wing, is will be seen from the aecompanying figures. The reiarive value, however, of the Eeuration in cla sification is not always the same. It is of much grenter impert. ance, for instance, with saw- llies than with bees. The wings are usually shorter than the borly, and may be so short as to be nseless for flight ; they may be even ontirely alsent. Apterous species are found in alninst ail the families. In most cases it is the femanes only whice note t!ms deprived of the parmer of fight. But the rimposite of this may exist; as, for instance, will: a curious sureies of Chalcidide which lives in the nest ei beesas a parisite. With ants, again, the newters are aiways mingicse; fond the iemales lose their wings whei they consercte the formation of a colmy. It is wethy of remark, too, that some Chutci.
dide and Oxyura, which ate nermally winged, occasionally appear in an apterous or semi-apterous condition. On the enterior margin of tha hind wings ars placed a number of very minuta heoks, which fit into a thickened rin on the posterior margin of the front wings, so that the two become united, and striks the air as one whole. The wings ere usually transparcnt, end, in certain arrangements of the light, are seen to bo highly iridescent. Occasionally they are coloured in patches, or are entirely black or blue; in tho latter case, they are not unfrequently of a thickish texture and have a metallic lustre, as, e.g., in Hylotoma. The amaller furms (Chalcididice and Oxyura) have few or no nervures. Some of these have tho wings deeply fringed;

Wings of Hyzenoptera.
A. Tentiredinidre (fiyotoma)-1, marginal: 2, appendicular: 2, 4, 5, 6, satomaralmal: 7. 8, 9, discodeal: 10, costal: 11, 12, branchlat; ard 13, lanceolete

and Mymar and Flatrinus have the wings as it were cleft and stalked ; that is to say, there is a long, thin atalk projecting fron the thorax for a cerimin distance ; then it dilates into a number of decply fringed brancles (600 fis. 6%.
Hosd.
The had is seldon bruader than the choraz. It is uaually of a nare or less glotalar shaje, but enay be nach flattened and long. Tho compound eyes are phicod along the sidea, white the simple eyes, or ocelli, are arranged in a triunglo on the vertex. Certain auts and Chalcidide aro blind. Others have oyes, but want the ocelli. The mouth orgus nee, carept with beos, allapted solely for mastication or for perhension; white, in adjation to perforang these fanctions, waps ure them for huiding up or dixgiong out their nests in the grollul or woend. Sime worker anta ead other aculcates (empecially mates) have the mandibes cror-
 las a curi mas madible, remarkale, not in itsclf, but by having atheched to it an appemiage whose wise is supposed to be to clean nway the juice of the fig fron the noouth. The maxilla and latians are providu. with jrinted palpi.

The number of juints in the maxillary palpi is usually five, but may be more or less than that; the labial palpi are two to four-jointed. It is with bees that the mouth parte (and especially the ligula) have their greatest development and specialization. With them the various parts (excopt the mandibles) are elongated to form a ancking tube, hy means of which they lap up the nectar of
The form of the antennæ is yery variable. They may Antenox have thres (Hylotoma) to sixty jeints (ictncumens); may be very long and thin as in iclneumaons, or scarcely projecting beyond the head as in Perga; of unifurm thickness, or distinctly clavate as in Cimbex; bare, or very bairy. Then they often differ very much in the males. Lophyrus (Teathredinidec) and many Chalcidides have them pectinated in various dagreea; they are deeply forked in Schizocera; and many others bave them covered with long hair, althongh they are quite bare in the other bex. In geme fanilies the number of juints varies very much, but most Aculeata baye the same number, namely, 13 in the male and 12 in the female. These appendages serve as sense organs, especially for the discovery of food, and, in the male, for finding the female. At any rate an ichneumon (for instance) when searching for a larva in which to lay its eggs (and this has especially been noticed with those which oviposit. in concealed larva) keeps them in a state of centinuous trembling motion, and males have also been observed to do the a ame when searching for the females.

The three divisions of the thorax-pro-, meso-, and meta- Thorax thorax-have pretty much the same relative proportions in all the families. The prothorex is amall. The upper part is atrongly articulated to the mesothorax, while the lower is freer ; and it is by means of this lower part that the head is united to the thorax. The metathorax is very large, as might be expected, from ite having to take suich an important part in flight. As for the scutellum it varies mors than any other pertion of the thorax. Mostly it is flat, or at least only slightly raised abore the mesonotum; but in the smaller groups (Oxyura, Chalcidide, Cynipida) its form is sometimes very curious. In Lgilips (Cynipida) and Agriotypes' (Ichneumonidex) it is produced inte a sharp more or less curved spine ; in Eucala it is cup-shaped, that is to say, it is raised up, and has the centre bollow. It undergoes, bowever, its grentest development with some Chalcididu. In Chirocerus, fer example, it is lengthened zo much that it reaches the middle of the ahdomen. Tho metathoras is never very large, nor dows it exhibit noy marked peculiarities.

The legs show the aame numutald diversity in form that Lexa. ve found te exist with the other appendages. The basal parts-thecoza and trochanters-are not usasily of any size, except in the lower tribes, e.g., Chalcidide. In classifica. ion the trochanters are of valuc, for wo find with the Aculeata they rere joined to the femura by 6 single joint, whercas in all tho other Ifymerophera thete are tin joints. Hence tho bece, wasps, \&c., furm the division Munotrocha; and the ichacumons, saw-fies, \&c., are denominated Bitrocha. Sonso Chalcididue havo the fenora grently thickencd, and toethed on the under eido ;' but as a rule it does not alow any striking peculiarity unlcss it be with snme malo insects. As might be expected from their more istimate comexion with the habits of the insects, the tibio and tarsi vary necording to the uses they arc pit to, apint from locomotion. With becs (nt least with the noa-iarasitic species) they are curployed to carry the pellen necessary for the nourislement of tho young; for this purpose they are

[^109]provided with hairs, or the apex of the tibix and base of che tarsi are flatiened out to form a plate on which the $i^{\text {rilhan }}$ is stored for its easier and more cconomical conveyaace to the hive. They are richly spined in the sand-wasps, and are thus useful to the animals in digging out the nests which they form in the earth. At the base of the tibie are placed two spurs (calcaria), which, however, may be absent. Finally the tarsi are provided with plate-like processes termed patello, which may be very largely developed, especially with males; and the front pair may terminate in large jointed raptorial claws, as is the case with Chelogynus (Oxyura). The abdomen may be united to the metathorsx in two ways: it mey be joincd to it by its entire width, or by a narrow pedicle only. In the former case the thurax and abdomen form as it were one whole, so that the body has the rppearauce of beiag composed of only two parts; whercas in the other section the threc divisions, head, thorax, and abdomen, are clearly separated, or specialized. It is only the Siricidos and I'enthredinides which have the abromen uaite! by the whole width. Tbus the order becomes dirided into two well-marked divisions, one repreocuted by the Tenthredinidae (having the abdomen sessile) and the other by the Aculeata, Ichneumonidee (having it appeudiculated). The abdomen shows little variation in structare or form in the Teathredinide; but does so to a large extent with the others. Usually more or less globular and rounded, and not of any great length compared to the hend and thorax, it is ofteo very much compressed and abare-like, as in Ophion, or very long and thread-like as in Pelecinus; then it may be joined to the thorax in such a way as to be scmi-sessile, or by a very long, thin, threadlike pedic'e (Pelopous, many Chalcidida, and Cynipida). Between these two extremes there are all gradations, the form of the abdomed depending on the habits of the insect, upon its manaer of self-defence or of oriposition. As regards the number of the segments, it varies. It is 8 with the Tenthredinidas and with the Siricida, but in other gronps it is less. Through one or other of the basal segmeats teing greatly developed, a ad the terminal ones correspondingly reduced in size, sorce groups appear to bave only 3 or 4 (Chrysidida). The Aculeata have alwags the same number, namely, 7 in the males and 6 in the females. Some bees (Colioxys) and Chrysidide have the abdomen armed with spines or teeth at the apez

The raale and female organs are cituated at the end of the abdomen. They are rarely conspicuous externally with the males; but in some females they are of grest lengtin, end may indeed exceed considerably the length of the body. However different in the various groups of IIymenoptera the organs connected with the laying of the eggs way be, they are fundamentally constructed on the satae plan ia all of them, no matter how different they may appear or bow various the ways in which they may he ased. A typical ovipositor in the Hymenoptera may be described ns being composed of threc bristle-like organs, -one flaced Ebjve, and the othersbelow. This upper bristle is channelled througbout, and has (when in use) the others pressed to it is such a way that the three together form a narrow tube, though which the egg passes. The two lower bristles are toothed at the lower end. These threc parts are caclosed briween a couple of two-jointed ralves, situated at their base, which serve them as supports. Thus the ovipositor consists of dive different parts. It exists under two forms. In the bees and waspe (Aculeate) it takes the form of a sting, or weapon of defeace; and it is commected with a glant secreting a poison (the principal constituent being formic acid) which the insect injects by mesas of the sting into say thing that attaeks it. Besides this defensive (or cacnaive) use to which it is put, it is cuployed by the
sand-wasps to kenumb the larve and other insects or spiders with which they store their nests for the use of their young, in such a way that they remain to all intents and purposes lifeless, yct still keeping fresh, until euch time as the wasplavex cscape from the eggs and are ready to feed on them. In the rest of the order-with ichneumons, saw-flies, \&c.it is not used as an instrument of defence (snme ichneamons, indecd, will attempt to pierce the hand with it when caught, but they are never able to do auy harm) ; it is simply an instrument for laying the eggs, and is not connected with a poison gland, or at any rate with a gland secreting a poison similar to that of a wasp. A poisnn gland exists, for instance, with saw-flies, but its purpose and also the manner of its use are different from whet they are in the case of the aculeates. Its function is to act on the plaat in which the eggs are laid,-either to raike galls in which the larvae will find food and shelter, or to prevent the hole made by the ovipositor for the reception of the egg from closing in on the egg, and thereby crashing it; for we find that eggs laid, for example, on leaves are not closely pressed by the substance of the leaf, but bare a more or less open space surrounding them.

From the observations of Kraepelin on the development of the ovipositor, it seems clear that the grooved central bristle and the two basal sheaths arise in the larva from papille situated on the under side of the ninth abdoninal seganent, while the two lateral (or rather lower) bristlea have their origin in similar papille on the eighth. It Fould appear also highly probable that the parts are trme appendages of the abdomiual segments, rather than nodified portions of the body malls.

The ovipositor is either hidden (as is mostly the casc) or may be exserted to a greater or less extent. Its length Faries with the habits of the species; that is to say, the longer it is, the deeper, in wood, or in any other substance, does the larva, on which the ichucamon is a parasite, lire. Species with long ovipositors occur in all the parasitic families, except the Oxyura and Chrysidide. With tha last-mentioned family it is tubular. It is strangely modifed with the sam-flies. With them it forms a reritable sarior apparatus (bence the rame of these insects), being broad, plate like, and toothed in rarious ways snd degrees according to the haiits of the insects; according as the eggs are laid in leaves or in bark it is slender mod thia or broad and thick. In the pupa state Hymenoptera with long ovipositors hare them curled up on, and closely pressed to, the back. It is a curious circumatance that this embryonic condition of the ovipositer is retained in the perfect state by a few forms, es, e.g., Leucaspis.
As remarked at the beginning of this article, the Humenoptera go Netame through a regular nictanorphosis-appearing in four distinct forme, phoses The egg is generally longer than it is hroad, and ruunded at both The ens enth. The skin is always thin, neversculptored, and rarely coloured; the only instince of colour in any of their egms kown to the writer being in those of ecthin saw-flieswhich are more or less greenish, and this colour may hare been intuted from the leaf. Siny pirasitic species (Ophion, Cynips, Mynar) have pedunculated efph, -eggs provided with a long pedicle or stalk, by mesus of which they are attached to the piant or insect, as the case rray be. A Trygion, for example, athaches her stalked eggs to the larva's skin; it hangs by the stalk; and when the young tryphon-larva's development in the ege is matured it leaves it by the lower end, aud then procerds to bore its way into the inside of its vichru. A curious phenomenon has been oliserved to take plare ial hymenolterous agrs shortly after being laid ; it is that they seli up (jurthaps by imbiting thoisture, although this cannet be the vole cause of the swelling) to doulle or more than donhle the size thry were when laid. The number of egge laill ly a female raries of course with the species. Colonial spectes lay the greatest number ; but with them the efor are not lail all at once, as is the case with solitary plecirs. Some social lorms iny comparatively few eges, while, cil the other hand, many saw-hies and ichncumons must lay sone hundreds. Solitary bees and wasps do not lay nany; but it must be remembered that the storing nf fonl and the building and digging of the nest are works of labour and time.

The larrix are of iwo surts. Those of suecies with a petiolated abdemen are white, footless grubs, incapablo of any extended motion ; nor is this necessary, for they have not to seek their food, which is provided for them by their methers,- either cellected and stored up for them in nests made by the female, as with bees and wasps, or by the egris being placed in the hodies of other insects on which they live as parasites, or in galls upheaved on plants. It is, however, of interest to note that, while the lara after leaving the egeg shows notrace of ters, yet thoy were present when it was in the eys. This shows clearly that the legs were lost thronsh disnse. Am this sies is confirmed by the fact that the larve of the lowest division of the Mymenoptera, thase with a sessile abdemen, have jointed thoracic legs, and often ablemimal legs as well, while they, for the most part, lead a free existence. In the lowest group of this dijvision, the Siricitee, as well as in those Tenthredindue most nearly allied to them, the larre have only the theracic or true legs. T'ley live either boring in wool, as Sirex, or in stems of plants, as ciphus, or in leaves rolled torether by silken threads, as Lyda. Except Lydr, Cepluss, and Cyela, all the saw-lly larva have the uswal theracic and a variable mumber of false or abdeminal legs, which aro in fact merely prolengations of the ventral surface of the body, as with many phytopbarous Coleontera; nor have they any. thing like the claspers of lepidopterms caterpillars. With their similar habits and the presence of these ventral legs, saw-fly larva bave a congiderable resemblance to the caterpillars of Lepidoptera, but they may be known from them in two ways,-by always having more than five pairs of ventral lers (eight in Cimbex, seven in Ne. matus, and six in some Ifylotomides), and never having more than two ecelli-one on each side of the head-instead of six on cach side as in Inpidoptara. As with lepidopterous caterpillars, green is the prevailing solour of saw-fly larse. They agree with them, teo, in their general habits: they live on the leaves of various plants, devouring them in different ways, roll dewn leaves, raise galls, and mine leaves. It is interesting to note further that, as with lopidoptereus caterpillars, larva which are innoxious and caten by binds are eitoer entircly green, or green with black, pink, or white stripes leng the sides and back, while nexious larva-those with bad smells or secretions which render them unpalatable to birds-have bright contrasting celours with irregular markings, tubercles, \&c., and they feed expesed, so that they may be readily seen and avoiled. Some bymenoptcrous larre before becoming jupe moult a certain number of times. According to Packard, a Lombus casts off its skin ten times; Tenthredinide do it five times; but many (all parasitic, and most aculeates) do not moult until they become pupe; per do they empty the contents of the stomach till then. The period during which a hymenopteron vemains in the larva state is seldon long; it may be eight or nine days, or a month or two, but this depends on the season of the year; for many larve, which have not been able to reach maturity in the autumn, remain in the same condition until the following spring, when they pupate. In order that this period may be passed in puictness, a cocoon is wsually spun by the larva. For this purpose it is proviled with a spinming apparatus, and a gland for seereting the silk required for the construction of the cecoen. With the Acxleala it is thin and almost transparent; it is of a fimmer consistency with ichnemmons, and is often coloured Ulack, Urowo, or grey. Mierogrster and other Braconily spin their cocoons in cempany, and often around the dead body of the larva which they have devoured. They may be placed together without any regularity, or closely pressed in regularly ar. ranged rows like the cells in a hive. Some ichneumons suspend their cacoons from twigs, \&e., by means of a silken thread. Gencrally the cocoon is single, but certain saw-flies (e.g., Cimbex) spin donble ones, - it thin inner one (wlich may bo separated from the outer one by a considerable space) placed inside an outer, harder, and mare tenacious covering. Λ cocoon, however, is not nlways spun. Cynipide never spin one, nor appurently do Chalcidide nor seme ants, c.g., Myrmica. The emply skin of the caterpillar which they havo devonred is utilized by sonie ichneumons instend of a cocoon; galls serve the same purpose with others; while Expheytius anl other Tenthredinidat bere into pithy stems, where they]uss into pune without any other protection. Finally, ethers make a cell in the earth for the samo purpose.

The pupa resembles very closuly the perfuct insect, save that the wings are not developed, athongh visible as pat-liko structures alone the sides. The legs and antenna are lainl along the front of the Golly, encloneal in thin pollicles. In certain Chrevilider (Éulofhes) the pupa is of that form catleal "cosrceate"; that is to say, the cation loaly is crnveloged in acese which conceals its fiom, and
 thin tragsparant skin. When the insoct baves this pmpa covering the latter matas its fomm intact Most pupa aro white. Many
 Bravethe (Apmentides) have orange-colourod pupe.

 pont in this comlition, but have considmable power of motion,

insect gradually reaches maturity, the pupa becomes more or less black, -at first on the back of the therax, then on the abdomen and limbs. When maturity is gained, the inseet splits the peilicles which so closely envelop its body; the limbs are freed; tlie wings spread out and lose their flabby consisteucy; the norvures become hard and firm; the insect moves about, ejects from the anus a coleured liquid, and enters on its new moile of existence.

Hymenopterous inseets proereate by the union of the The two sexes. This takes place usually in the sunshine. sexes. Sometimes the connexion docs not last more than a lew seconds, and is not preceded by any preliminary courting On the other hand many bees remain united for hours, and the genital parts of the male get torn and ruptured, so that it dies immediately after. Some species of Chalcidide have been obseryed coquetting together for more than an hour before uniting. Generally copulation takes place on the ground; but a few forms pair on the wing. The male Anthophora, for instance, enrries the female with him into tho air for the marriage Hight. This is the reason why the male Anthophora is larger'tion the female, instead of being smaller, as is usually the ease.

While, as has been said, Hymenoptera reproduce by the nnion of the two sexes, yet parthenogenesis or virgin reproduction is of not uucemmon oceurrence, and bas been observed in all the families whose development for more than ove gencration can be traced with sufficient facility and accuracy. We meet with this phenomenon under (broadly speaking) two or three phases. Many females, if they cannot get access to males, will readily lay eggs, which are fertile aud give issue tolarya; but these larva, when they reach matarity, yield invariably males. Any one can test this for bimself with the too common gooseberry grub, Nematus ribesii. The same thing oceurs with wasps, ants, and bees. With saw-flies, again, there are some species whose males are quite unknewn, although the species have been caught and bred from the larve in hundreds, e.y., Eriocampa ovala. Others bave malcs, but they are extremely rare, e.g., Nematus yallicola. It has been shown, too, that the species just mentioned and some others (Phyllotoma nemorata, I'ecilosoma pulveratum, \&e.) with males unknown readily lay fertile eggs. The queen bee can lay eggs which will produce males or females, by opcning or closing the spermatic sac, and letting the eggs come in contact or not with the spermatic fluid. In the former case females will be the result, in the latter males. Worker bees, wasps, and ants deposit eggs which produce, however, only males. A still more curious pbenomenon in connexion with the reproduction of some gall-insects (Cynipida) requires to be mentioned. In early spring will be found on oak leaves and flowers soft, juicy, greenish, glebnlir pea-sbaped galls. Ont of these come in summer the gallflies represented by beth sexes. In the autumm (also on oak leaves) are found thoso curious flat brownish galls. commonly called "oak spangles," which by many are taken for fuagi, and have indecd been described as such. These "spangle galls" retain very much the same form during the autumn and winter ; thes in March they swell up and become juicy, and a larva makes its appearance; this suon becomes a pupa and finally a fly, but only in one sex, the female. It was long supposed that these two insects had no relationship with each other, that they belonged in face to two distinet genera, for not only did the galls diller, that the iasects themselves dittered in the form of the body, the wings, de. But it has recently been slown by Dr Ader that the two are forms of the same sprecies, that there is an alternation of a spring bisexual form, with an autumnal unisexual onc.

A dimorphism of another kind exists among the social bees, wasps, and ants. An orlinary culony of these insects consists of three sorts of individuals. There is the large fenate which founded the colony; then there
are the workers 0 : neuters, undeveloped females on whom the work of the evlony diepends; and, lastly, there are the males. It is with ants that the workers are most profoundly monified. They are wingless, and there may be in a colony several sorts, each kind performing different duties, and baving the body modified in aceordance with the work it las to do. Those which act as soldiers (when a special kind is set apart for this worb), for instanec, have the mandibles enornously developed; :nother set may secrete honey for the benefit of the others, \mathbb{E}.

The ilymenoptera must be regarded as one of the most beneficial and useful to man of the inseet orders. The produce of the hive bee-wax and honey-has been employed byman since the earlicst ages, and torms an extensive article of commerce. The curions structures raised by Cynipide on the oaks of eastern Enrope-ralls-have long been used in the manufacture of ink. But, whatever the bee may have done in coutributing to ou: luxuries, and the gall-fly in rendering easier the adrauce of knowledge, these are small beafits compared to the indirect advantages we derive from the labours of the parasitic species through the havoc they make among the insects which devour the produce of our fields and gardens, and too often destroy the labours of the farmer and gardener. When we remember that there are vast numbers of insects which destroy plants; that many of these are so minute and obscure in their mode of life as to escape ordinary observation, save when the injury is done; and that others appear in enormous numbers, -it becomes evident that an insect which causes the daath of a single caterpillar does good service, since that caterpillar would bave (if left undisturbed) given, in all probability, origin to an imago which might give birth to hundreds of others. It is this which the ichneumons do,they destroy the larve of plant-devouring insects. Auother division of H ymenoptera do equally good service. It has been slown by modern researches that without the aid of bees many flowers would nerer yield seed. Many plants cannot fertilize themselves, so that if bees did not earry the pollen from one pient to another, and thus effect fertilization, no seed would be produced. The red clover, for instance, nould never produce seed if it were not for the humble bees fertilizing it in their visits in search of honey. It must, however, be confessed that some Hymenoptera do very considerable damage to regetation, especially saw-flies and ants. Of injurious saw-Hies the most destructive are Eriocampa adumlrata, on fruit trees; Nematus ribesii, which is so destructive to the gopseberry and red currant; Alhalia spinarum, at one time so destructive to the turnip (probably when it first took to feeding on it) ; and Cephus, in the stems of eorn. The damage done by ants in Europo is small; but in the tropics the leaf-cutting ants do enormous damage by eutting down the leaves of trees (especially cultivated ones), which they convey into their nests, where they are used (according to Belt) to rear fungi upon which the auts feed.

The IIymenoptera are almost exclusively dwellers on land, and are essentially sua-loving insects. Two or three only Tive an aquatic or quasi-aquatic mode oi life. Sir Jobu Lubbock diacovered two miunte species of Owyura (Polynema) which descend into the water for the purpose of depositing their eggs in the eggs of aquatic insects. They use the wiugs as oars to swim in the water, and can remain in it for two hours. An ichncumon (. igriotypes) has long been known to live as a parasite in the bodies of caddisworms; and it has been observed to go down into the water to find the worms, which are said, when infested by the ichneumons, to anchor themselves by meaus of a silken thread.
Emission Jany Hymenoptera give origin to sounds. The humwing of sound. of bees is one of the most faniliar and delightful of country
sounds. It is not yet quite clearly understood how it is caused, but there is evidence enough to show that tho buzzing originates by the air iopinging against the lipa of the metathoracic and ablominal stigmas; although it is possille, too, that the rapid vibration of the wings (294 per second with the Bombus mascorman and 440 with the hovey bee) may also bave something to do with the production of sonnd, for a bee can give out differently pitched notes according to its mood, as it is pleased or angry. Besides the buzzing sounds, a few other species ehirp by means of the abdominal segments. Mutilla stridulates by danwing in and ont the raised striated surface of the third under the edge of the elongated sccond seguent. The workers of Myrmica stridulate in pretty much the same way.
The internal anatomy of the IIymenoptera presents some Interpal interesting ieatures. Their organs of secretion are numer. anatomp. ons. The poisun is scereted in two long ramose tubes; and from then it goes into a sac situated near the base of the sting. Was is made in some of the abdonimal segnemts. ${ }^{3}$ The salivary glands in the hive bee (worker) are very lare ard complicated. They are three in number, two (an trper and a lower) placed in the head, and the other in the front region of the thorax. Each gland is different, and his excretory ducts of its own. In the queen bee these are nut nearly so much dercloped as in the worker, and they are even less in the drones. Many saw-fly larve secrete fluids for purposes of defence. Some species of Tenthredo secrete a blackish liquid, which they ejcet frow the mouth; Perga throws out a gummy matter from the same orifice, and Cindex an acid liquid from lateral pores. Then there are the silk-secreting glands which most larre possess. The urinary vessels are always present, and may be as meny as 150. According to Von Siebold, the aculeates bave a long intestine and a stomach with many convolutions, while they are short in the terebrant forms. The trachere are well develcped. Many dilatations are given off from the main stems, a pair at the base of the abdomen being exceptionally large. In connexion with the female organs of generation, it is worthy of remark that rebaceous glands and a copulatory pouch are abseut in the Aculeato, alchongh present in the other section. The ovaries aro tro in number, and consist of a number (it mas be as many os a bundred) of distinct many-chambered tubes. Each tobe in Athalia, for instance, contains 7 eggs, and, as there are 18 of such tubes in each ovary, there will be thus 250 egss in all. In Platyyaster the ovary is of a very exceptional nature, inasmuch as the egg tube is a close sac, so that it is burst when the egg is laid.

The most noteworthy and exceptional features in the Speciad developmental history of the Hymenoptera are those shown ties in by some very minute species of Oxyura, which live in the develophodies of Diptera (Cecidomyia), and in the eggs of beetles and dragon-flies. After the eggs of Platygaster Lave undergone segmentation, and the embryo has been formed, there leaves the cege a larva of a very unusual form. It is broad and rounded at the head, but contractel towards the tail, which terminates in four spined, luristle-like appendages, so that the larva has a considerablo resenblanee to a copepod. It is provided with a mouth and hook-lixe mas dibles, by the aid of which it anchors itself inside the budy of its host (the larva of a Cecidomyia); there are a radi mentary stomach and antennx, but no trace of nerves trachex, or organs of circulation. Soon it changer its form: the tail with its bristles is thrown off; it becomes shaped somewhat like a hen's egg; the nervous, cire ilfitnry, and reproductive organs become visible, whilo the alimentary organs show an advance in structure. This seeo.d
${ }^{1}$ The wax is secreted on the ventral surface of the hive bee, but ca the dorsal suriace with the stingless bee of America (1) elipong).
.al,
.anta-
larva is succeeded by a thind, which defers from it in being luager and thinner, whilo the various organs have reached a further stage of adrancement in complesity of structure. The after course of its dovelopment does not differ from that of other Mymenoptera. Potynema and Mymar fegs. pardsites) go through somewhat simular changes in their early cubryoric life.

Classifuation, - As regards the classification of the Hymenoptera, the order divilies itself naturally inte two great divis?ons, is has been already indiated. 'The fealiath form a diveson distaguished alike by the form of the stiog, with its conoected forson-bag, and by the trochanter being joined to the fenur by a smifle joint 'flae other division (that usually called Terebrantut or Ditrocha) has a double joint to the trochanter, and the ovirositor is never used as a weapon uf otfence.

The Ditrocha are again diviled into two spctions, well distio guished by the form of the abdemen, by the dava, and by hatits: the one (the Sccurfera) Las the abuomen sessle, the larve huve logs. aod they are jhytopbagons; while the other (the sipuctifira) has the abdomen petiolated, the larve are apodal, and they are rexcert part of the cynipidx) animal feeders. The Securefera are further distinguished from all others by the form of the ovipositur, which forms either a short "saw," as in the Teathredendec, or a stont exserted "borer," as in the Suricides; and they have annther peculiarity in having at the bottom of the auterior wing a cellule, termed the " lanceolate cellule" (see lig 1 , above), whela is found in no other family, and is of great use in classification. The Securifera embraces the damilies Tenthroduida and Sirtcudor (by some Cephus is made into a third fimbly, whale by others it is placed among the Tenthredinides, owing to its agreeing with the saw Hies in the form of the thorax and ovipestor, and by others with the Siriciles, because it has only one spine in the anterior leg, while the saw-flies have two). Thu species of Strecires are few in number, and have a very wide distribution. They are larger than any Tenthredinide, and are indeed among the giants of the order. All live in wood, especially in Conifere, amd have occasionally done great damage to the forests in Gemany. As they are easily imported along with timber, they vely often wake their abpearance in out-of-the-say places amb frishten ignorant people, alihourh, of course, they are porfectly harmless.

The Spuculijere contain the familes eynipader, Chatedide, Prociotrmide, Evanide, Eracomide, and lehnevmonide.

The Cindipulde, or gall-tlies, are small insects, rarely exceeding two lincs in longth. The antenne are straight, inserted in the naidelle of the [ace; the joints are valumsly shaped, and do not exced 16 in number. The thorax is large; the sutullum always lorms a conEpingons object, and its form is very varied. The abdomen is much compressed, especially with the males; curled up over the apional scgnents is the long thon bristledike ovipositor. A few speces are muterons. There is abways a radial cellule in the anterior wing, but few nervures and there is never a stignaa. What dintinguislus the Cymipide more especially is their hatit of raising galls on plants tu serve as food and lodgings for their young 1 Thesegalls have the most diversified shapes, and are raised on all pats of a piant- the buls, leaves, roots, llowers, and fruit all being ased by the gall imsects. A gall may serve to shelter a solitiry larm, or it may be an large as to contain nany hamitrels. The tak is the prinelpal tree bued by the cymipide; next is the rose, "pron which is fombl the well known "beleggargall" of Rtwites rase, once used medicimally ; the maple, poppy, bramble, lawtiwed, and some other ghants have likewise their galls. All Cynizude, however, are not gallomakerg. One gronp deposit their egeg in the galls raised by the true enth-makers, when they are softami goung and the larva of the eacknorty lives on the enall at the expense of the leytinate owner, which is killed by the more energetie intruder. Another gromp contains pure animal fuelers, prarasites which live at tho expurse of uther insecta (usperially phant hee)

Chosty alled to the C'ympide is the fanily Chalcidtede, an inmense tribe of very minote insects with lrilliant metallie green intlies. Their wings have fiw newnes, umb ehey never fotm elosed
 - l'oured; thay have never mont than 13 jaints, and may hase as

are rery diversilied. They are parasites on insects of ell orders and in all stages. Whale no detinite line can be drawn, yet particular Groups in the mass conline their attacks to cortain fanilies of insects. Thus Leucaspis and chulcis are allached to bees and other nestbuilding aculcates, the long-tailed Torymides to oak and other galls, the Einerytides to Hommpere (Corcus especially). Species of Isosoma appear to be herbivorous, and one in America is destrnctive tocorn, by raising gall-like structures at the joints and thus causing the phant to wither. Grand has likewise descibed Jsosoma to be a vegetahite leder, at any rate duang a considerable portion of us life, as well as amother species (.fulogimuts aceras) whidh lives in galls on the naple. Those curious !oms, Sycophogre and Filastophayn, whach live in bigs, almar undonbtedly to leed on their seens.
The species of l'ructotrypube (called also Oxymre), unhke thoen of the Chulculube, are dull.coloured insects, usually entircly lidack, ur at bust releved by hrown or red. They are distinguislied frow. the last lamily by the non-elbonad antenme, mhich are 8- to 1 : jomted. IThe nimgs io the smaller forms nay he without nervures, whle in the lagher they are much mone developed than in ti, Chalcadude. The edges of the wings are decply finged with sone species; and other specte's have donse patches of hair on the thorax aud abdomen. One group bears riptoital clans on the front tarsi; and, in connexion with his sluctume it is wroby of notice that the late A. 11 llahday observed one sjecies to kill and deposit in an empty straw a caterpillar, apparently for the purpose of laying its egys in it; so that in habits it aljuvamates 10 the fossorial Hymenoptera, which some of them undoubtelly do in sturetute. The Oryura are parasiteg. Sunse ate attached to gall insects, others to aphules, uhble Diptera and eggs of insects of all onders affurd nomrisiment to many

The insects usually called "inlineumons" belung to tiro families - the I/huenmonidacand Braconider. Buth are readily distingushed from the families already mentioued by the wings being well provided with nervures, wheh form regular cellulis, by the greater number of joints in the antenne, and generally by their mach meater size. The only radical distinctions between the giouls ore that the Chnemonide have two tecurant nervares, and a little joint in foomt of the second antennal joint, whereas this is absent in the Lraconida, which have besides only one recurrent nervure. In habits there is no broad distinction between theon. They are pala. sites on insects of ell orders The Evanide are a small ond someWhat heterogencous assemblage of instets, which do not ogree vely well in tbeirstructure ; limt the typical species may be known by the abdomen being inserted in the miblle or alove the milale of the metathorax. As lar as is known the family are parasitic on cockroaches, and appear to be not very numemem in species.

In some respets the Chrysulifu ate intomediate between the Aculeata and the Tcrchranha, for they have the single jointed tie. chanter of the fomer, nhile in the shucture of the ovijositer, in having the antenne 13 -jointed in hoth seacs, os well as in habit, they arce witb the latter. Thiny are excectingly billiant insects; their bodits are metallie, with shatung green, lurbile, or golleulnes. The ablomen hangs as it were from the thorax, and is somowhat concave on the under side. It can he hent under the thorax, so that. the insect can roll itself ap into a lall, ulich is its way of proteeting itself when attacked-its hand metallic cont of mail heing im. frimable against the mandrbles of oller insects. These insects dulfir forn olher terebrant Hymenopicaa in the structure of the obelomen, for it has never more than form sements visible in the female amd live in the male, while the ichnemmons havealuays mose. The terminal segments form a tabe, ribh is used in owbositom. In halite the chrysidide do not differ fiom the ichneumons, being parasites. They prey principally on bees unl "asjes, whose nests they enter uhen the owners are absent, athl should dioy te diseovered their himd skin saves them fiom semmen injuy y Inded the only pontions of their hodus whish tan bo montated ure the wings. St Fiargean observed a bee do thas to a clagel: ; the hit off the fout wings, hut did oot therchy save her, oung, for as soon as the bec left, the nuw wingless parasite cranhed nitu the nest and laid her efges therein.

As lias buen stated, the Aculeata are distinguished from all oth, r
 antenne with 12 joints in lhe female mal 13 in the male. Tlay diller, too, in habits fom the Ti rebrantia, lise, alihomghany of thom are parasites, their jarasitem is mabke that of the ichnemmons. larmitis Acutede cam their bead dalionntly they enter the nests
 there for the bemfit of the yombif of the Pmikher, whellare starsed or thestroyed by the more vigumata latia of the parasite. In order to cary out thir chle with pratar ease, some patasites mimic tho
 is codomad exaclly loke hambus lapmererias, its host. On the other haml the sperics of dommen, mexternise genms of parasitic bes,

Many, like Andrena, dig in light soils a lurrore, consisting of a narrow jessage going down sone inches, and having at each side of it at intervals colls in whieh the food is stured. Woorl is used by others to form somewhat similar cells, which may be lined witi lieces of leaves or flowers. The stems of brambles are utilized lis a large number of apecios of bees and fossorial Mymenoptera. Osmia uses empty sleells for its habitation. Then others build up nests. Chaticodoma and other bees, with many wasps, construet cells by cementing together lits of mad and clay. Social wasps form t ' eir large nersts of prper male of masticated wood; humble bees and the live bue do so by' a sceretion called wax. Some ants build up from the crount, of learoa, \&e., nests shaped like n lay-stack, which in size they may almost equal, An [udian sfucsies builds, at the ends of sranches of trees, large nesta of dead and living leaves matted tonenher with a white web. Finally, the thorms of Acaia are hollowed out ly otheis to serve as a residence.

The denlath may l_{n} divided into five families-the formicide, or ants, "futiliule (rommonly ealled "solitary ants"), Fossores (samb-wasps, se.), Ihplopleta, or true wasps, and Anthephile, or hees. The ants are, as a rule, social iusects, and their workers differ from those of waspanallees in being alwayg winuless ${ }^{1}$ What norfoologically more espeenily disungushes ants from other arnleates is the stricture of the abdomen, which at the base fon the peduocle or petoic) is provided either with a flattened plate-like projection or with two notles In the former case, there is, n in formicu, only a rudimentary ating, whils in the latter there is so eflicient one, as in A/yranica; hut there are exceptions to loth roles. A few unts are solitary and parasitic in hatuts, and in this case the female is wiogless. Closely allied to the ants are the dfutillide (by some suthors the two are placed in oue group, Meterogenal, which, however, differ from then in being solitary, in having neither a seale nor nolle, whila the tibie are spiad, and the tami ciliatril. It is only the mal's whicbare waneri, and they have the abdomen spiaed and curred at the spez. They ure brightly coloured insects, and are very bumorous in species. So far as is known they are parasites on harmble theen The groop of Fossores is a rery extensime one. Their liabitararery interesting and varied even in the same ponus. They are carnirarons, storing up (after having benumbed but not killed) caterpillars, beetles, fies, aptides, \&e., in cells formed or dog out of wood or of tramble stems, in the ground, or tuit up of mud or aidu. Some build no nests, snil store up no food for their young, but live, cuckoo fishion, od other Fussores or bees. In gencial structure the Diploptera do not differ essentially from the fossores hut they maty be readily khown from them ly tho wings being foltarl longitadinally in repose, while the cyes are reniform and rearin to ar near to the hase of the mandibles. They dalfer too from the Fussores in sunve of them being social, as is the case with Polistes and berpa In habist the soltary wasps argee more or less with the Fowsorex. While tho above-mentioned tribes are camivorous, the bers, on the other had, are entirely vegetable feedurs, living on the follen or nectar of lowers. Asmight be expected, we find with then curtain peculiaritios of structure in connexion with their habits. The great business of a bee is the storing up, of foot, for its own uso or (a:nl mare especially) for that of its young. To do this to the best acivotage cestain parts of the body are adapted for the carry. ing home of pollers. This is done more especially on the leas. Tho basd joint of the tarsus is, for this purpose, flattencol and comprescel, and eavered (at least on the umer side) with hair. This then is a eltaracter which distingnishes them from sll other acobrates. Tho least specialized bees earry home the pollen loose, lut Apis mixey it into a paste in the field. To serve the samo end the month parta are profonnilly moditicd for the lapping of nertar. Maby leeds are parmites on other kees, Theso want the pollen colde thing a!darathy and maty of them have bright-colonred hair. less tholies, as already remarked.
B, ntritu. Tile earliest Mymenoptera known leconer to the upper Oolitie
tob. formstion; but, as they are Apider, it is certain that the order must bavo enpeared much corlier in tume than tham At the fresent day,
representatives of the orler are found in all parts of the wolls, eren as fur nortlo as 75° to $83^{\circ} \mathrm{N}$. lat., whue Liombi and ielnemmons were found by the maturalists attached to the Arctic expedition of 1855-76. Many gencra in all the familios have a very uide distaibution, c.g., Ophion and Pingua among the ichmenmons, Oflynorus with the wasp, Mchachio with bees. llumble lices and saw-flies are clamateristic of tomperate, if not northern, latitudes; Mutilla of warm regions, althongh it also appears in atctio regions. Fespa is more limised in its rasige than the solitaty wasps (Odynerus \&c.), beias absent from Alicin, Australia, ind South America, Many individual species hare a very eabonsive rame. This has hean brousht abcat in some cases liy the aid of man. In this way many lests have hien carried over the glohe, c.g., Amatas ribesib, the gooseberry grab, whirh is now speading over the Aurricun gardeas; Etriocampa adumbrata, the slug worm of Butisla init trees, has reached New Zealand; while, among unts, the hoose ant of Nadeira (lheidole pusillet) is now cosmopolitau. Many species are common to the l'ulsarctic and Nearctic jegions, e.g., Jicguchiole contunularis, Vespa tulgaris, Himichroa rija. Ohhers lıave a wiler ceosmphical mage. The ont Sulenopis geminota, for instance, is found in Imhia, the Eastern Archinelago, Sunth America, and the llawaian lslands. Hylotoma pagant, amain, occars in the Southern

There being no conplete list of Hymenoptera, it is not easy to give Nnmber the number of deseribed sjecies, but frobably it is not much orer of 17,000. The artual number, howeycr, must be very much greater; prolably it will be found to reach 70,000 or 80,000 ; for in those countric's where anything like the sante attention has betn paid to them as to bectles they are nearly as numernons; and in no country have they received so much atiention as Colriftera. As regards the number of Eritish suceies, there are reconded io the catalogues published by the Entodolorical Suciety of London, in 1571-2, 378 Aculeata, 1654 Ichncumonidie and Lirtoconthe, aml 3き5 Oxyjura; while 325 sar-flies were catalocrual in 1878 -in all abont 2700 . Besides these there are about 150 Cminide, anl upwards of 1200 Chalcidide have been deseribed by lianeis Walker; bat that num. ter may safely be reduced to 600 or 700 .

Aibliography.-I. Sistpsatic.-Westwoms, in Fmtrofurtion to the Moden

II Y M N S

1. Clussical Hymnody.

TH1E word "hymo" (ipmon) was emploged by the nucient Greeks to signify a eong or pooin eomposed in honcur of gods, herres, or famous men, of to be recited on some joyful, mournful, or solcmn occasion. Polymuia was the name of heir lyric muse. Homer nakes Alcinous enterain Odysseus with a "hymn" of the minstrel Demodinens, on the eapture of Tray liy the worten horse. The Ilorksamd Days of Hesiod Degins with an iavocation to the

[^110]Muses to address hymms to Zens, and in his Theozonia he speaks of them as singing ori inspiting "hymns" to alt the dicinitics, aud of the bard as "their servant, lymmine the glories of men of olt, and of the gods of Olympus." l'indar calls ly this mame orles, like his umb, in praise of congucrors at the phthic ganus of Cirece. 'Whe Ahenian dramatists (Empipiles monst frequently) lase lle worl and its cognate veths in a similar manner; they aloo describe by them metrical wracles and apophthesms, martial, fostal, and laymental songs, dirges, and bamentations or incanta. tions of we.

Hellenic hymns, according to this conception of them, have come down to us, 8ome from a very early and others from a late period of Greek classical literature. Thuse which passed by the name of Homer were already old in the time of Thucydides. They are mythological poems (several of them long), in hexameter verse,-some very interesting. That to Apollo contains a traditiocary history of the origin and progress of the Delphic worship; those on Hermes and on Dionysus are marked by much liveliness and poetical fancy. Hymus of a like general character, but of less interest (though these also embody some fine puetical tiaditions of the Greek mythology, such as the story of Tiresias, and that of the wanderings of Leto), were written in the 3 d century before Christ, by Callimachus of Cyrene. Clcanthes, the successor of Zeno, composed (also in hexameters) an "excellent and devout hymo" (as it is justly called by Cudworth, in his Intellectual System) to Zeue, which is preserved in the Ecloger of Stobaus, and from which Aratus borrowed the words, "For we are also His offsyring," quoted by St Paul at Athens. The ao-called Orphic hymns, in hexameter verse, styled $\tau \epsilon \lambda \epsilon \tau a ́$, or hymos of initiation iato ths "mysteries" of the Hellenic religioo, are productions of the Alexandrian school,-as to which learned men are not agreed whether they are earlier or later then the Christian era.

The Romans did net adopt the word "hymm;" nor havo we many Latin poems of the classical age to which it can properly be applied. There are, however, a fen,-such as the simple and gracefur "Dianæ sumus in fide " ("Dian's votaries are wa ") of Catullus, and "Dianam tenere dicite virgines" ("Sing to Dian, gentle maideus") of Harace, which approach much mure nearly than avything Hellenic to the form and character of modern hymnody.

2. Hebreen IIymnody.

For the origin aod idea of Christian hymnody we must look, not to Gentile, but to Hebrew sources. St Augustine's definition of a hymn, generally accepted by Christian antiquity, may be summed up in the words, "praise to God with song" ("cum cantico"). Bedo understood the "canticum" as properly requiring metre; though he thought that what in its origioal language was a trus hymn might retain that character in an uometrical translation. Modern use las enlarged the definition: Roman Catholic writers extend it to the praises of saints; and the word now comprelients rhythmical pross as well as verse, and prayer aad epiritual meditation as well as praiso.

The modern distinction between psalma and hymns ia arbitrery (see Psalms). The former word was used by the LXX. as a generic designation, probably bacause it implied an accompaniment by the paaltery (said by Euscbius to have been of very ancient use in the East) or other instruments. The cuguate verb "psallere" las been constontly applice to hymns, bath in the Eastera and in the Weatern Cburch; and the same compositions which they described gencrically as "psalms" were also called by the LXX. "odeg" (i.e., songs) and "hymns." The latter word occurs, eg., in I's. $1 \times x i i .20$ ("the hymms of Inviel the non of Jesse"), in I's. Ixv. I, and also in the Greek litles of the Gth, 5Ith, 55th, fïth, atul Tith (this numberine of the pratms beiner that of the Euglisfi version, not of tho LXX.). The difi chapter of becdesiastions, "Let ans now paise famons men," dec, is entitled in the (ireek matipar "̈n"os, "The Fiathens" Hymm." liede sueaks of the wholo bork of l'salms as called "hiber hymuman," by tho universal eonsent of llebrews, Greeks, and latins.

In the New Thestament we furd our Jornd and Itis apostles
 of the lord's Supper; St l'anl and Silics duing the same (ïnrour rov Oáor) in their prisun at I'hiliphi; St Jances re-
commending psalm-singing (ψ а入入 étu $^{\prime}$), aud St Paul "psalms
 widais $\pi v \in v \mu a t i k a i s)$. St Paral also, in the l4th chapter of the first epistlo to the Corinthians, speaks of siogity
 ex́ct, in a context which plainly has reference to the assemblies of the Corinthian Christians for common worship. All vis words thus used were applied by the LXX. to the Davidical psalms; it is therefore possible that these only may be intended, in the different places to which we have referred. But there are in St Faul's epistles several passages (Eph. v. $14 ; 1$ Tim. iii. 16 ; 1 Tim. vi. 15,16 ; 2 Tin. ii. 11, 12) which have ao much of the form and character of later Oriental hymundy as to have been sup. posed by Michaelis and othera to be extracts from original hymos of the Apostulic age. Two of them are apparently introduced as quotations, though not found elsewhers in the Scriptures. A third has not only rhythm, but rhyme. The thanksgiving praver of the assembled disciples, recorded in Acts iv., is both in substacce and in mauner poctical ; aod in the cacticles, "Magoificat," "Becedictus," $\& c$., which manifestly followed the form and atyle of Hebrew poetry, hymns or songs, proper for liturgical use, have always been recognized by the church

3. Eastern Church IIymnody.

The hymn of our Lord, the precepts of the apostles, the angelic song at the aativity, and "Benedicite omnia opera," are referred to in a curious netrical prologue to the hymnary of the Mozarabic Breviary, as precedents for the practice of the Western Church. Io this respect, however, the Western Church folluwed the Eastern, in which bymnody prevailed from tho earliest timos.

Philo describes the "Therapeuta" of the neighbourhood Therw of Aleanadria as composers of original hymns, which (as penter well as old) were sung at their great religious festivals, - the people listening in silence till they cane to the closing strains, or refrains, at the end of a hymn or stanza (the "acrotelentia"unt "ephymnia"), in which all, women as well as men, heartily joined. These songs, he says, were in varions metres (for which he uses a number of technical terms) ; some were choral, sume not; and they wers divided into rariously constructed strophes or stanzas.

Eusebius, who thought that the Therapeuta were com. munities of Christians, says that the Christian practice of his own day was in exact accordance with this description. Gibbon consilered it to be proved, by modero criticism, that tho Therupente were not Christians, but Essene Jews; lut he recognized in their customs "a very lively image of primitive discipline;" and he states that the Christian religion was embraced by great numbers of them, and that they were probably, by degrees, absnrbed into the church, and became the tathers of the Eyyptian ascetics. Apollos, "born at Alexandrin," may possibly have been one of them.
The practice, not only of singing hymens, but of singing Ant. them antiphonally, appears, from the well-known letter of phomat Pliny to Trajan, to have been estallished in the Bithynian siughe churches at the begining of the 2d contury. They were arenstomed "stato die anto lucem convenire, carmengue Christo, Inasi Deo, dicere sectem invicem." This agrees well, in print of time, with tho tradition recorded by the listorim Socrates, that Ignatias (who suffered martyrdon' nhout 107 A.o.) was led by a vision or dream of angels singing lymms in that mamer to the looly 'rinity to introduce autiphomal singing into the clurch of Antioch, from which it yuickly spread to other churches. 'llere secms to be an allusion to chomal singing in the epistlo of Igmatios himuself in the homans, where lic exhorts them, "xopos yoroferos" ("having formed themsches into a choir"), to "sing praise to the Father in Christ Jesus." Λ statement
of Theodoret has sometincs been supposed to refer the origin of antiphonal singing to a much later date; but this scems to relate only to the singing of Old Testament Psalms (rivv Δ avi $\delta(k i \eta v \quad \mu \epsilon \lambda \omega \delta i a v$), the alternate chanting of which, by a choir divided into two parts, was (according to that statement).first introduced into the church of Antioch by two munks famus in the history of their time, Flavianus and Diodorus, under the emperor Constantius II.
Other evidence of tic use of hymns in the 2 d century is contained in a fragment of Cuius, preserved by Ensebius, which refers to "ali the psalms and olles written by faithful brethren from the beginuing," as "hymning Christ, the Word of God, as Gud.'. Tertullian alsu, in his description uf the "Agapa," or love-feasts, of his day, says that, after wasling hands and bringing in lights, cach man was invited to come forward and sing to God's praise something either taken from the Scriptures or of his own composition ("nt quisque de Sacris Scripturis vel proprio ingenio potest"). Bishop Bull believed one of those primitive compositions to be the byinn apperded by Clement of Alexandria to hie Padagogus; and Archbishop Ussher consillered the ancient morning and evening hymns, of which the use was enjoined by the Apostolical Constitutions, and which are also mentioned in the "Tract on Virginity" printed with the works of St Athaoasius, and in St Basil's treatise upon the Holy Spirit, to belong to the same family. Clement's hymn, in a short anapestic metre, beginning

 field, "O Thou, the King of saints, all-conquering Word"), is rapid, spirited, and well-adapted for singing. The Greek "Morning Hymn" (which, as divided into verses by Archbishop Ussher in his treatise De Symbulis, has a majestic rhythm, resembling a choric or dithyrambic strophe) is the original form of "Gloria in Excelsis," still said or sung, with some variations, in all brauches of tho church which have not relinquished the use of liturgies. The Latin form of this bymn (of which that in the English communion office is an exact translation) is said, by Bede and other ancient writers, to have been brought into use at Rome by Pope Telesphorus, as early as the tine of the emperor IIadrian. A third, the Vesper or "Lamp-lighting" hymo ("中üs ilapòv áyias $\delta \dot{\text { ojens }}$,"-translated by Canon Bright "Light of Gladness, Beam Divine"), holds its place to this day in the services of the Greek rite. In the 3d century Origen seems to have had in his mind the words of sonie other hymns or hymn of like character, when he says (in his treatise Agains Celous) ; "We glorify in hymns God and His only begotten Son; as do also tho Sun, the Moon, the Stars, and all the host of hearen. All these, in one Divine chorus, with the just among men, glorify in hymus God who is over all, and His only begotten Son." So highly were these compositions esteemed in the Syrian churches that the council which deposed Paul of Samosata from the see of Antioch in the timo of Aurelian justified that act, in its synodical letter to the bishops of Rome and Alexandria, on this ground (among others) that he had prohibited the use of hymm of that kind, by uninspired witers, addressed to Christ.
After the conversion of Constantine, the progress of hymnody becamo closely conneeted with chureh controversies. Theic had been in Edessa, at the end of the 2d or early in the 3d century, a Gnostic writer of conspicnous ability, named Bardesanes, who was succeeded, as the head of his sect or school, by his son Harmonius. Both father and son wrote hymns, and set then to agrecable melodies, which aequired, and in the 4th century still Eplraesa retaincd, much local popularity. Ephraem Syris, the first Sjras. voluminous hymn writer whose works remain to us, think. ing that the sanic melodiss might be made useful to tho
faith, if adapted to more orthodox words, composeci to them a large number of hymns in the Syriac language, principally in tetrusyllabic, pentasyllabic, and heptasyllahic metres, divided iuto strophes of from 4 to 12, 16, and ceca 20 linces each. When a strophe contained five lines, the fifth was generally an "ephymnium," detached in sense, and consisting of a praycr, invocation, doxology, or the like, to be sung antiphonally, either in full chorus or by a separate part of the choir. The Syriue Cherestomuliny of Halin (yublished at Lcipsic in 1825), and the third volume of Danicl's T'hesuurus IIymnologicus, contain specimens of theso hymns. Sume of them have been translated into (unmetrical) English by the Rev. Henry Burgess (Select Metricat Hymns of Lyhrem Syrus, sc., 1853). A considerable number of those su translated are on subjects connected with death, resurrection, judgroent, \&c., and display not only Christian faith and hopre, but much simplicity and tenderness of natural feeling. Thicoduret speaks of the epiritual songs of Ephracm as very sweet and profitable, and as adding much, in his (Theorluret's) time, to the brightness of the commenorations of martyry in the Syrian Church
The Greek hymnody contemporary with Ephracm followed, with some licence, classical models. One of its favourite metres was the Anacreontic; but it also made use of the short anapastic, Ionic, iambic, and other lyrical measures, as well as the hexameter and pentameter. Its principal authors were Methodius, bishop of Tyre (who died about 3Il s.D.), Synesius, who becamo bishop of Ptolemais in Cyrenaica in 410, and Gregory Nazianzen, for a short time (380-381) patriarch of Constantinople. The merits of these writers have been perbaps too much depreciated by the admirers of the later Greel "Melodists." They have found an able English translator in the Rer. Allen Chatfield (Songs and Hymns of Earliest Greek Christian Poets, \&c., London, 1876). Among the most striking of their works are $\mu \nu \dot{\omega} \epsilon o$ Xpiart́ ("Lord Jesus, think of ne "),

 repining "), by Gregory ; also à $\omega \theta \in \omega$ тap θ 'vor (" The Bridegroom cometh"), by Methodius. There continued to be Greek metrical hymn writers, in a sim:ilar style, till a much later date. Sophronius, patriarch of Jerusalem in the 7th century, wrote seven Anacreontic hymns; and St John Damascene, one of the most copious of the second school of "Melodists," was also tho author of some long composit:ous in trimeter iambics.

An important development of hymnody at Constantinople Period arose out of the Arian controversy. Early in the 4th of Arian century Athanasius bad rebuked, not only the doctrine of controArius, but the light character of certain hymas by which reass. he codcavoured to make that doctrino popular. When, towards the close of that century (398), St John Chrysostom ras mised to the metropolitan see, the Arians, who were still numerons at Constantinople, had no places of worship withiu the walls; but they were in the habit of coming into the city at sunset on Saturdays, Sundays, and the greater festivals, and congregating in the porticoes and other places of public resort, where thcy sang, all night through, antiphonal songs, with "acroteleutia". (closing strains, or refrains), expressive of Arian doct-ine, often accompanied by taunts and insuits to tho orthodox Chrysnstom was apprehensive thet this muaic might draw somo of the eimpler church people to the Arizn side; he thercifore organized, in upposition to it, ander the patronage and at the cost of Eudusia, the empress of Arcadius (then lis friend), a system of nigbtly processional hyma-singing, with silver crosses, wax-lights, and other circumstances of ceremonial pomp. Riots followed, with bloolshed on both sides, and with some perzonal injury to the eupress's chict
ennueh, who seems to lare officiated as conductor or directur of the chureh musicians. This led to the suppression, by an imperial edict, of all public Arian singing; while in the church the practice of nocturnal hytun-singing on certain aotema occasious, thus first introduced remaiued an established institution.
Sreek
It is net improbable that some rudiments of the peenliar sytem of sy:tem of hymnody which now prevails throughout the Greck communion, and whose afinities are rather to the Hebrew and Syriac than to the classical forms, may have existed in the charch of Constantinople, eren at that time. Anatolius, patriarch of Constantinople in the middle of the Dih evotury, was the preeursor of that system; but the reputation of being its proper founder belongs to Romanus, of whom little more is known than that he wrote hymons still extant, and lived towards the ead of that eentury. The impurtance of that system in the strvices of the Circek chureh mity be understood from the fact that the late Dr Neale curnputed four-fifths of the whole space (abuut 5000 pages) contained in the different service-books of that church to be ocenpied by hymnody, all in a language or dialect which kas ceased to be anywhere spoken.

7 ho system has a peculiar techoioal termioology, in which the wor is "troparion," "ode," "canon," and "hirmus" (eip,uos) ehiefly requrn explanation.
lhe troparion is the unit of the system, being a strophe or stai,a, sren, whea analysed, to be divisible into verses or clauses, with regulated cesuras, but printed io tho books as a single prose sentence, without marking any divisions. The following (turnad iato English, Irom a "canon" hy Joha Mauropas) may be taken as an example:-"The aever-sleeping Guardian, I the patron of my soul, | the guide of my life, | allotted me by God, | 1 hymn thes, Dhvioe Aagel | of Almighty God." Dr Neale and most othce writers regard all these "troparia" as rlythmical or morlu. latai prose. Cardinal J. B. Pitra, on tho other hand, who in 1867 and 15 it 0 publisled two learned works oa this subject, maintains that they are really metrical, and governed by definite rukes of prosody, of which be lays down sixteen. According to him, each " trophrion" eontaios from three to thirty-three verses; each verse varies from two to thirteen syllables, often in a contimous serins, uniform, alternate, or reciprocal, the metre being always syllahie, and depeading, not on the guantity of vowels or the pusition of consonants, but on an harmonic series of accents.

In varions parts of the services solitary troparia are sung, under varimus names, "contacion," "cecos," "eathisma," \&c., which matk distinetions either in their character or in their use.

An ode is a song or hymn compoanded of several similar "troparia,"-usually three, fonr, or five. To these is always prefixed a typical or standand "troparion," culled the hirmus, by which the syllabic measure, the perimelie series of necents, and in fate the whole structure and rhython of the stamas which follow it are regulated. Eneh succeding "troparion "in the same "onfe" cuntans the same number of verses, amb of syllables in eath verse, and similar accents on the same or "unvabut syllables. Thas "hamons" may either form the first shawa of the "ohe" itnelf, or (as is more frepuntly the ease) may be then form some ather piowe ; and, when so taken, it is ofen indented ly inttial words only. withont being pinted at lewotb. It is monally printed whenn commas, nfler the proper rubtic of the "ule." A hymu in irrapalar "stichera" or stanzas, without a "himmes," is callat "idmmelon." A system of three or four onles is "triodion" or "traodion."
A conon is a system of cight (thcoretically nine) connected onlen, the secom being always smpressol. Varions pauses, reluwed lay the interposition of other short ehants or reanlings, weun dumur the smaing of a whole "camon." "lhe finil" "troparion"

 the (wry common form of a "thotokion," of aseripetion of prater: io the mother of our Lord, and when it is a recnering raftam or 1414n.
'There were two principal perionls of Greck hymmongaply construtud on these prinejples,-the first that uf lionamus afrl his followers, extendine wer the Gila and 7 th econtmies, the seronel thist of the selrools whirh acose during the Jemoclastic controversy in the 8th eentury, aml which continned for aome ecouturies afterwarla, unti] the art itself died unt.

Illo works of the writers of the former period were
collected in Trophoyne, or church bymm-bonks, whieb School of were held in ligh estem till the 10 th century, when they Rourama ceased to l,e rearded as church books, and so fell into neglect. They are nuw preserved ouly in a very small nomber of manuscripts. From three of these, belonging to public librapies at Moscow, Turin, and Liome, Cardinal I'itra has lately printed, in his analecta, a number of interesting examples, the esistence of which appears to have been unknown to the late learned Dr Neale, and which, in the eardinal's estimation, are in many respeets superior to the "canons," \&ee, of the present Greek service-books, from which all Dr Neale's translations (escept some from Anatolius) are taken. Curdinal Pitra's selections include twenty-nime works by Romanus, and some by Sergius, and nine other known, as well as some unknown, auhors. He describes them as having generaily a more dramatic eharacter than the "melodies" of the later period, and a much more animated style; and he supluses that they may have been originally sung with dramatic accompeniments, by way of substitution for the theatrical performances of Pagan times. As an instance of their peculiar character, he mentions a Christmas or Epiphany hymn by Romanus, in twenty-fire long strophes in which there is, first, an account of the Nativity and its accompanyiug wonders, and then a dialogne between the wise men, the Virgin mother, and Joseph. The magi arrive, are admitted, deseribe the moral and religions condition of Persia and the East, and the cause and adrentures of their journey, and then offer their gifts. The Virgin intercedes for them with lee Son, instructs them in some parts of Jewish history, and ends with a prayer for the salvation of the world.

The controversies and persecutions of the Sth and suc. Melorceeding eenturies turned the thoughts of the "nuelodists" ists of the great monasteries of the Studium at Constantinople and St Saba in Palestine and their fullowers, and those of the adherents of the Greck rite in Sicily and Soutb Italy (who suffered much from the Saracens and the Normans), into a less picturesque but more strictly theological course; and the influence of those controversies, in which the final suceess of the eanse of "Icous" was largely due to the hywns, as well as to the courage and sufferings, of these confessors, was probably the cause of their sulplanting, as they did, the works of the older school. Curdinal litra gives them the praise of haring diseovered a graver and nure solemn style of chant, and of having done mueh to fix the dogmatic theology of their elurch upon its present lines of near approael, to the Roman.

Among the "melodists" of this latter Greek sehool there were many saints of the Greck church, several patriarelis, ard two emperors, - Leo the Phitosopller, and Constantine I'orphyrogenitus, his son. Their greatest pocts were 'liseoture and Joseph of the Studium, and Cosmas and Juha (called Damaseene) of St Saba. DrNeale hastrauslated into Enelish verse several selected portions, or centees, from the works of these and others, together with four selections from carlier works by Auatelius. Sume of his translations, - particularly "lhe day is past and over," from Anatolius, and "Christian, dost thon see them," from Andrew of Crete, Tave heen adopted into hymothoolis ased in many laidish charches; and the hymn "Art thou weary," \&e., which is rather fommed upon than tramshated from one by Stephen the Sabaite, has ottaned still more general popmarity.
 masic is collectat in a dissetation prefixad to the seeond volano

 ("umbinem (Gristiverom (lupai", 1sit), and in Di Danill's
 l'stm's wotks, by M. E. Siller, in the Journal des Surants for 18 ©.

4. Western Church IIymuoly.

It was not till the 4 th century that Greek hymoody was imitated in the West, where its introduction was due to two great lights of the Latin Church,-St Hilary of Puitiers and St Ambrose of Milan.
Hilary was banished from his see of Poitiers io 356 , and was absent from it for abont four years, which be spent in Asia Minor, taking part during that time in one of the councils of the Eastern Chureh. He thus had full opportunity of becoming acrpuainted with the Greet church music of that day; and he wrote (as St Jerome, who was thirty years old when he died, aud who was well acquaiuted with his acts and writings, and spent some time in or near lini diocese, informs us) a "book of bymns," to rne of which Jerome particularly refers, in the preface to the second book of his own commentary on the epistle to the Galatians. Isidore, archbishnp of Seville, who presided over the fourth council of Tuled o, in Lis book on the offices of the church, speaks of Hilary as the firt Latio hymnwriter; that council itself, it its 13th canon, and the prologue to the Mozarabic hymnary (which is little more than a versifecation of the cannob), associate his name, in this respect, with that of Ambrose. A tradition, ancient and widely spread, ascribed to him the authorship of the remark. able "Hymnum dieat turba fratrum, hymnum cantus personet" ("Band of brethren, raise the byon, let gour song the hymn resound"), which is a succinct darrative, in hymnal form, of the whole gospel history; and is perbaps the earliest example of a strictly didactic hymn. Both Bede and Hinemar much admired this con:prosition, therggh the former does not mention, in conncxion with it, the name of Hilary. The private use of hymns of such a character by Christians in the West may probably have preceded their ecclesiastical use; for Jerome says that in his day. those who went into the felds night hear "the ploughman at his hallelujalis, the mower at hishymus. and the vine-dresser singing David's psalms." Besides this, seven shorter metrical hymns attributed to Hilary are still extant.

Ambrose Of the part taken by Ambrose not long after Hilary's

 donth, in bringing the use of hymns into the church of Mhlan, we have a contemporary account from his convert, St Augustine. Justina, mother of the emperor Valentinian, favoured the Arians, and desired to remove Aobrose from his sce. The "devout people," of mhom Augustine's mother Monica was one, combined to protect him, and kept guard in the church "Then," says Augustine, "it was fist alpointed that, after the manner of the Eastern ehurehes, liymns and pisalms should be sung, lest the people should grow weary and haint through sorrow, which custom has cier siace been retained, and has been fullowed by almost all congregations in other parts of the world" He deseribes himself as moved to tears by the sweetness of these "hymms and canticles":-"The voiecs flowed into my cars, the truth distilled into my heart, I overflowed with devout affections, and was happy" To this time, aceoring to an uncertain but nat imprubalile tradition which aseribel the composition of the "Te Deum "to Ambrose, aud connected it with the conversion of Augnstine, is to lie referred the commeneentent of the use in the church of that sublime unmetrical hymnIt is not, however, to be assumed that tho hymnody thus introduced ly Ambrose was from the first used aceording to the precise order and method of the later Western ritual To bring it into (substantially) that order and method appears to have been the work of St Penedict. Walafrimus Strabo, the carliest ecelesiastical writer on this suliject (who lived at the beginning of the 9 th century), Eays that Enedict, of the constitution of the religions order 2 thon n
by his name (about 530), appointeat the Ambrusian hymns to be regularly sung in bis oflives in the canmical hours. Hence probably originated the practice of the Italian chuches, and of others which followed their csample. to sing certain hymus (imbrusian, or by the carly successors of the Ambrusian school) daity throughout the weck, at " Vespucrs," "Lauds," and "Nueturns," nul on some days at "Comphe" alsu-varying them with the different ecceciastical seasuns and festivals, commemorations of saints and matyrs, and other special ollices. Different dioveses and religious homses had their, own peenliarities of ritual, inctuding such hymns as were nymuvel by their scveral binhus or ceclesiastical superiors, vatying in detail, but all following the same gencral method. The national rituals, which were first redined intu a furm sul. stantially like that which has since prevailed, were prabialing thase of Lombardy and of Spain, now known as the "Ambrosian" and the "Muzarabic." That of S_{p} ain was settled in the 7 the entury by Leander and lisilore, brothets, successively archbishops of Seville. It contained a copiuns Lymnary, the original form of which may be regarded as canonically approved by the fourth council of Toletio (633). By the 13 th canon of that council, an opinion (which even then found advocates) against the use in churches of any bymis not taken from the Scriptures, -apparently the same opinion which had been held by Paul of Samesata, -was censured; and it was ordered that such Lymms should be used in the Spanish as well as in the Gallican churcles, the penalty of excommunication being denounced against all who might presume to reject then

The hymns of which the use was thus established and anthorized were those which entered into the daily ant "ther offices of the church, afterwards collected in the "Breviaries;" in which the bymns "proper" for "tho week," and for "the season," continued for many crituries, with very few exceptions, to be derised from the caliest epuch of Latin Church poctry,-reckoning that epoch as estending from lilary and Ambruse to the cud of the pontificate of Gregory the Greal. The "Ambrnsian" music, to which those bymus were generally suug down to the time of Gregory, was more popular and congregational than the "Gregorian," which then came into use, and afterwards prevailed In the service of the mass it was not the general practice, before the invention of sequences in the 9th century, to sing any bymns, except somic foom tho Scruptures estecmed canulical, such as the "Song of tho Three Children" ("Denedicite ommia opera"). Dut to Wis rule there were, aecording to Walafridus Strabu, somo occasional exceptions; particulanly in the ease of Paulinus, Iratriarch of Aquileia under Clanlemagne, limelf a hymnwriter, who frefuent!y in ed hymns, composed by himsull or others, in the cucharistic office, esjecially in privato masses

Sons of the hymms called "Ambrosian" (nombly 100 in Ane. number) are beyond all question by Ambrose thmself, and lionian. the rest probably belong to his time or to the following hymus century Four, thase beginning "Sterne rerum conditur" ("Dread Framer of the eith and sky"), "Dens Creator (imnimm" ("Maker of all thinge, glorious Cond"), "Vieni licienptor Gentium " ("Redeener of the nations, come "), and "Jam surgit bora tertia" ("Clirist at this hour was crucified "), are tuoted as works of Ambrose ly Augnatine. These, and others by the hand of the sme mater, have the qualities most valuable in hyuns intended for cungregathenal use They are shore and complete in themecties; cacy, and at tic sane time elevated in heirexprestion and
 and (thongh somatimes criticizel as deficient in thentheical precisum) smatle, pure and ant techinicat in their rendering of the encat facts and exetines of Chisiamity, which they
present in an objective and not a subjective manner. Thes hrve exercised a powerful irfluenee, direct or indireet, upen many of the best morks of the sime kind in all succeeding generations. With the Ambrosian hymas are properly classod those of Hilary, and the eontempurary works of Pope Damasus (Who wrote two hymis in commanoration of saints), and of Prudontius, from Whose Cathemerinc ("Daily Devecions") and Peristephena ("Crown-songs for Martyra", , ell poams of considerabla, esmo of great 'eugth. -about twen:F-cight hymns, forat in wrious Breviaries, were derived. Prudentius was a larman, a aative of Sara gossa, and it Tas in the Spanish rital that his Lymns were most largely ured. In the Mozarsbic Brefiary almost the whole of one of his fuest peems (from which mest churehes took one part only, beginning "Corde nâtus ex parentis") Tras appointed to be sung between Eester and Ascension-Day, being divided into eight or nire hymns; and on some of the conmemorations of Spanish saints long poems from bis Peristepiana were recited or sung at lerge. IIe is entitled to a high rank among Christian poets, many of the bymns taken from bis works being full of fervour and sweetness, and by no means deficient in digaits or etrength.

5th and 8th exaturies.

These writers wero followed in the 5th and early in the 6th ceatury by the priest Sedulius, whose reputation perhaps exceeded his merit; Elpis, a noble Roman lady, wife of the philosophic atatesman Boetius; Pope Gelusius ; and Ennodius, bishop of Pavis. Sedulius end Flpis wrote very little from whieh hymus could be extracted; bat the smail number taken from their compositions oltained ride popularity, and have since held their ground. Gelasius was of no great account es a hymn-writer; and the works of Ennodius appear to have been known only in Italy and Spain. The latter part of the 6th eantary produced Pope Gregory the Great, and Venantius Fortunatus, an Italian poet, the friend of Gregory, and the favourite of Radegunda, queen of the Franks, who died (609) bishop of Poitiers. Eleven hymns of Gregory, and twelve or thirteen (mostly taken from longer poems) by Fortunatus, came into geners! use in the Italiun, Gallican, and British churehea Those of Gregory are in a stylo hardly distinguishable from the Ambrosian; those of Fortunatus are graceful, end scmetimes vigorous. He does not, bowever, deserve the praise given to him by Dr Neale, of baving struck out a new path in Latin hymoedy. On the contrary, he may more justly he describod as a disciple of the school of Prudentius, and as having affected the classical style, at least es much as any of his predecessors.

Thn pocts of this primitivo epoch, which closed with the eck eantury, wroto is the old rlissical metres, and rade use of a con sinlerable varicty of them-anamestic, anacreontic, bendeasylabic, asclopial, hexamotery and redtaneters, and othe's. Gregory and some of tha Ambrosinn authora orcasionally wrote in sapphics lut the most fryatent masure was the inmbic dimeter, and, next to that, the trochaic. 'Ihe fill aleaie stanza does not apeor to lave luen used fir church jurpuses tefore tho 16 th contury, titomb sono of its elawnots were. In the greater manbre of thase works, atgerrab intontion to conform to the mules of Roman prosedy ia manifat; hat rex thase writers (like Prodenting) in whon that andfurmaty was mont deci fad allowed themselves murla liberty uf deviation from it. Otherworks, incluting some of the wery carliost,

 "phythm"), "molulate:d to the "ar it tmatatuen of dibutht

 jntronduting to his simed fatin foctry, has tatced tho whole contrie
of the transition from the ancuent to the modern forms of wersification, ascribing it to matural and necessury causes, which made sach changes neadind for the due development of tho new forms of spiritual and intellectual life, conseguent unon the conversion of the Latin speakiog vations to Christianity.

From the 6th eentury downwards we see this transtorma. 6th tion making continual progress, each nation of Weatern centur Cbristendom adding, from time to time, to the earlier down. hymns in its service-boons others of more recent and frequently of local origia. For these additions, the com memorations of saints, $\mathfrak{d e}$, as to which the devetion of ont place ofton differed frem that of another, offered especial opportunities. This process, while it prumeted the development of a medieval as distinct from the primitice style, led also to much deterionation iu the quality of hymas, of which, partups, some of the strongest examples may be found in a rolume published in 1855 by the Irish Arehæological Society from a manuseript in the library of Trinity College, Dublin. It contains a number of bymas by Irish saints of the Gth, 7 th, and 8th centuries,-in several instances fully rhymed, and in one mising Erse and Latin barbarously togother, as was not uncommon, at a mneb later date, in semi-vernacular hymas of other eountries. The Mozarabic Breviary, and the collection of hymns used in the Anglo-Saxon churches, published in 1851 by the Surtees Society (chielly from a Denedietine MS. in the college library of Durbam, suplemented by other MSS. in the British Museum), supply many further illustrations of the same decline of taste:-such sapphics, e.g., as the "Festum insigne prodiit coruscum" of Isidore, and the "O veneranda Trinitas laudanda" of the Anglo-Saxon books. The early cuedieval period, however, from the time of Gregory the Great to that of Hildebrand, was far from defeient in the production of good hymns, wherever learning flourished. Bede in England, and Paul "the Deacon." -the author of a fairly classical sapphic ode on St John the Baptist,-in Italy, wero successfal followers of the Ambrosian and Gregorian slyles. Eleven metrical hymns are attributed to Bede bj_{y} Cassander; and there are also in ono of Bede's works (Collctanea et Mtores) two rhythmieal hymns of considerable leagth on the Day of Julgment, with the refrains "In tremendo die" and "Atteude homo," buth irregularly rhymed, and, in parts, not uuwortly of eomparison with tho "Dies Ire." Paulinus, patriarch of Aquileia, contemporary with Paul, wrote rhythmical trimeter iambics in a manner peculiar to himself. Theodulph, bishop of Orleans ($793-835$), author of the famous processional hymn for Palm Sunday in herameters and pentameters, "Ciloria, laus, ot honer tibi sit, Fiex Christo Redemptor" "Clory and honour and land he to Thee, King Christ the Redeemer"), and Irrbanus Maurns, archbiabop of Brain: ($8: 7-850$), the pupil of Acuin, and the most leamed theologinn of his day, cmrimed the church with gome exeellont worts. Amoner the anonymens ligmons of the same period shere are thee of great heanty, of which the infuence mey bo triced in most, if not all, of the "New Jernacuin" lymma of later generations, itelaciing thuse of Germany und (Great lritam:-"Urbs beata llierusa!em" (" Hussel ity, hewnery Salem") ; "Allemia pis chite lmalibus" "Allelutas somm ye in strams of holy

 Wha, beime form in Angh-fanom hymarios certainly wh.r than the Conduest, ramot le of the late date assigned
 Thege wer followed ly the "(lhens nove liernsalem" ("Vie ('hoirs of New derusalem") of luthert, bishop of Chart res ($16(107-10$ est). This group of hymas is rumakablo fur an attructive mion of melory, inozination, potical coburinh, and fatls. It reprokenion perhaps, the best and

Venl Another celebrated hymn, which belongs to the first reator. medixval period, is the "Veni Creator Spiritus" ("Come, Holy Ghost, our sonls inspire"). The earliest recorded occasion of its use is that of a translation (898) of the relics of it Marcellus, mentioned in the Annals of the Benedictino order. It has sinco been constantly sung throughout Western Clristendon (as versions of it still are in the Church of England), as part of the appointed offices for the coronation of kings, the consecration and ordination of bishops aud priests, the assembling of synods, and cther great ecclesiastical solemnities. It has been attributedprobably in consequence of certain corruptions in the text
Pother. of Ekkehard's Life of Notker (a work of the 13th contury) -to Clarlemagne. Etkehard wrote in the Benedietine monastery of St Gall, to which Notker belonged, with full access to its records; and an ignorant interpolator, regardless of chronology, added, at some later date, the word "Great" to the name of "the emperor Cherles," wherever it was mentioned in that worls. The biographer relates that Notker, -a man of a gentle contemplative nature, observant of all around him, and accustomed to find epiritual and poetical suggestions in common sights and sonnds, -was moved by the sound of a mill-wheel to compose bis "sequenco" on the Holy Spirit, "Sancti Spiritus adsit nobis gratia" ("Present with us ever be the Holy Spirit's grace"); and that, when 6nished, he vent it as a present to "the emperor Charies," who in return sent him back, " by the same messenger," the hymn "Veni Creator," which (says Ekkehard), the same "Spirit bad inspired him to write" ("Sibi idem Spiritus inspiraverat"). If this story is to be credited,--sud, from its circumstantial and almost dramatic character, it has an air of truth,-the anthor of "Veni Creator" was not Chailemagne, but his grandson Charles the Bald, who succeeded to the royal crown in 840 , about the time when Notker was born, and to the inperial in 875 . Notker himself long survived that cmperor, and died in 912.
Ec- The invention of "sequences" by Notker may beregarded
quences. as the beginning of the later mediral epoch of Latin bymnody. In the eucharistic service, in which (as has been stated) hymns were not generally used, it lad been the jractice, except at certain seasons, to sing "laud," or "Alleluis," between the epistle and the gospel, and to fill up what would otherwise have been a long panse, by extending the cadence upon the two final vowels of the "Alleluia" into a protracted atrain of music. It occurred to Notker that, while preserving the apirit of that part of the service, the monotony of the interval might be relicved by introducing at that point a chant of praiso speci:tlly composed for the parpose. With that view he produced the peenliar species of rhythmical composition which obtained the name of "sequentia" (probably from following after the close of the "Alleluia"), and also that of "prosa," because its structure was originally irregular and unnetrical, resembling in this respect the Greek "tropraria," and the "Te Deum," "Lenelicite," and canticles. That it was in some measure angested by the forms of the later Greck hymnody seems probable, both from the intercourse (at that time frequent) between the Eastern nnd Western churelies, and from the application by Ekkehard, in his biography and clsewhere (o.I., in L.yndwood's Proinciule), of some technical terms, borrowed from the Greek terminology, to works of Notker and his school and to books containing them.

Dr Neale, in a learned dissertation prefixed to his collertion of selpueners from medieval Missals, nonl cnlarged in a Latin etter to Mr Daniel (printed in the fifth volume of Daniel's Thesuneus), las investigated the laws of ersura and modulation which and decoverahle in these works. Those fint hought into use were sant by their author to Nicholas I.: paro liom sís to sot, who authoriect
their use, and that of athers composed after the same molel by other brethren of St Gall, in all churches of the West.

Althongh the scquences of Notker and his selool, which then rapidly passed into nost German, Fiench, and British Misanls, were not metrical, the at of "assomance" was mueh practisel iu them. Many of those in the Saruan and French Missals have every verse, and even every elanse or division of a verse, emaling with tho sarve vowel "a,"- perhaps with some reference to the terminal letter of "Alleluis." artifices such as these natn:ally lell the way to the adaptation of the same kind of composition to regular metro and fully developed rlyme. Dr Neales lull and harge collectior, and the second volume of Dr Daniel's Thesaurus, conzin numerevs examples, both of the "proses," properly so callet, of the Notkerian type, and of those of the later school, which (rociu the roligions hotiso to which its chief rriter belouged) has been colled "Victorine." Most Missals appear to have eontained some of bcth kinds. In the majority of those from which Dr Neale's speeimens aro taken, the metrical kind largely prevailed; but in some (e.7., those of Sarum and Liége) the greater number nere Not. kerian.

Of the sequence on the Holy Ghost, sent by Notker (according to Ekkehard) to Charles the Bald, Dr Neale says that it "was in use all over Europe, even in those countries, like Italy and Spain, which usually rejected sequencos"; nod that, "in the Missal of Palencia, tho priest was ordered to hold a white dove in his liands, while intoning the first syllables, and then to let it go" Another of the most remarkable of Notker's sequences, beginning "Media nitra" ("In the midst of life we are in death"), is said to heve benn suggested to him whilo observing beme workmen engaged in the construction of a bridge over a torrent near his monastory. Miss Winkworth states that this was long used as a battle-sung, until the custom was forbidden, on acceunt of its being supposed to exercise a magical influence. A translation of it ("Ditten wir im Leben sind") is one of Luther's funeral hymins; and all but the opening sentence of that part of the burial service of the Church of England which is directed to be. "said or aung" at the grave, "while the corpse is made" ready to be laid into the earth," is taken from it.

The "Golden Sequence," "Veni, saucte Spiritus " ("Holy Spirit, Lord of Light"), is an early example of the transition of sequences from a simply rhythmical to a metrical form. Archbishop Trench, who esteems it "the loveliest of all the hymas in the whole circle of Latin sacred poetry," is inclined to give credit, to a tradition which ascribes its authorship to Robert II., king of France, son of Hugh Capet (997-1031). Others have assigned to it a later date,-some attributing it to Pope Innocent III., and some to Stephen Langton, arcbbishop of Canterbury. Many translations, in German, Englist, and other languages, attest its merit. Berengarius of Tours, St Bernard of Clairvaux, and Abelard, in the Ilth century and early in the 12 th, followed in the same track; and the art of the Victorine sehool was carried to its greatest perfection by Adam of St Yictor (who died between 1173 and 1194), "the most fertile, and" (in the concurrent juig. ment of Arebbishop Trench and Dr Neale) "the greatest of the Latin liymnographers of the Midule "Ages." Tho archbishop's selection contains many excellent specimens of his works.

But the tro most widels celebrated of all this class of compositions,-works which hare cxercised the talents of the greatest musieal composers, and of immumeralle translators in almost all languages, -are the "Dics Ire" Hies Irw ("That day of wrath, that dreadful day"), by Thomas de Celano, the companion and biographer of St Faiucis of Assisi (who died in 1206), and the "Stabat Mater Stabat dolorosa" ("Jy the cross sad vigil kecping") of Jacopone Mn: or Jacobus do Bencdictis, a Pranciscan humorist end refurmer, who was persecmied by lope honiface VIII. fo lis satires on the prelacy of the time, and died very old in 1306. besintes these, the 13 th century produced tho famons sequence "Lawla Sion Salvaturen" ("Siun. lira

Aotiuas mental hemna of " gloriosi corporis mysterium" ("Sing, ms tongue, the Sariour's glory"), "Verbum euperaum prodiens" ("The Word, descenting from above "-not to be confounded with the Aubrosian hymn from which it borrowed the first lins), "Sacris solemniis juncta sint gandia" (" Let us with tearts renewed our grateful homage pay "), aud "Adoro Te derote, latens Deitas" ("O Godhead hid, devoutly I adore Thee "),-a grcup of remarkable compositions, written by him for the then new festival of Corpus Christi, of which he induced Pope Urban IV. (1261-1265) to decree the observance. In these (of which ali but "Adore Te derote," \&c., passed rapidly into Rreviaries and Missals) the ductrine of transubstantiation is set forth with a wonderful degree of scholastic precision; and they exercised, probably, a not unimportant influence upon the general reception of that dogma They are undoubtedly works of genius, powerful in thought, feeling, and expression.

These and other medieval bymo-writers of the 12 th and 13th centurics may be described, geoerally, as poet-schoolinen. Their tone is contemplative, didactic, theological; they are especially fertile and ingenious in the field of mystical interpretation. Two great monasteries in the East bad, in the 8th and 9tb centuries, been the principal centres of Greek bymnology; and, in the West, thrce monasteries,-St Gell, near Constance (wiich was long the especial aest of Gorman religious litcrature), Cluny in Burgundy, and St Victor, near Paris,-cobtained a simblar distiuction. StGall produced, besides Notker, several distinguisbed sequence writers, probably bis purils,-1lartmann, Hermann, and Gottsclink, -to the last of whom Dr Nesle ascribes the "Alleluiatic Sequence" ("Cantemons cnncti melodum nunc Alleluis"), well known in England through hia translation, "The strain upraise of juy and praise." The chief pocts of Cluny were two of its abloots, Odo (who died in 917) and Peter the Vencrable (1123-1156), and one of Peter's monke, Bernard ol Morlaix, who wrote the remarkable poem on "Contempt of the World" in about 3000 loag rolling "leonine dactylic" rerses, from parts of which Dr Neale's popular liymns, "Jerusslem the gollen," sce., are taken. The abbey of Si Victor, besiles Adam and bis follower Pistor, was destined afterwarts to produce the most popular churd poet of the 17th century.

There were othor distinguished Latin hymn-writers of the later medixval perior besides those already mentinned. Remaril Tho name of St Bernand of Chairvaus cannot be passed ol Clair- over with the mere mention of the fact that he was the vaux.
author of some meiricil equences. He was, in truth, the father, in Iatin lymmoly, of that waren and passionate form of devotion which some nay consifer to aply two frecly to Divine Oijgets the lateguge of hunan affertion, Inat which hav, uevertheless, heen popular with many devout persons, in Protestant as well ow homan Catholic churches. Spec, "Angelus," Madame Cinyon, Baina, Ken, Count \%inzondorf, and Frederick Willian laler many be rexarded as divelples in thiz school. Many lapmes, in marion langunges, have heen foumen uma st inemard's "Jesu intecs menaria" ("Jesu, the very thanght of Thro"), "(Jesu datecho cordium" ("Jesu, theon joy uf howine harts"), and "Jean Rex admirakilis " ("O Jesu, King munt womberful"), -threo pretime of no fuctu, nearly 200 lives long. Cardinal Damizni, the frime uf lome (iremory Vll., Anthene (hishup of hemmed) in the Ilth, Hilduct (arehbindop of Thars) in the 12 h , an! Cardinal bunaventura in the 1ath eenturive, are other eminent men, who admed

Dicfure the tha of the reformation, tho mantiphis ation

in style) lad done much to degrade the common conception of bymnody. In some parts of Frayce, Portugal, Sardinia, and Bohcmia, their use in the vernacular language had been allowed. In Germany also there were vernacular sequences as early as the 12 th century, specimens of which may be seen in the third chapter of Miss Winkworth's Christian Singers of Germany. Scoffing parodies upon sequences are said to hare been among the means used in Scotland to discredit the old church services. After the 15th century they were discouraged at Rome. They retained for a time some of their old popularity amorig German Protestants, and were only gradually relinquished in France. A new "prose," in bonour of St Maxeutia, is among the compesitions of Jean Baptiste Santeul ; and Dr Dasiel's escond volume closes with one written is 1855 upon the dogma of the Immsculate Conception.

The taste of the Reuaiasance was offended by all deviationa from Roman ro elassical prosody enl Latinity. Pope Lce X. Nirected the whole vision of body of the hymos in ine at Rome to be reformid; and a volume hismans of "new ecclesiasticul hymns," prepared br Ferreti, a seholer of Yicenza, to whom Leo lad conmitted that task, appeared io 1529, with the sanction of a later pre, Clemeal $V 11$. The dest atep was to revine the whole Roman Brevary. That undertaking, atter passing through several stiges under different popes (narticulariy l'ius V. sid Clemant VIII.), was at tast brought to a coaclusion i.g Urban V111., 10 163I. From thits revised Breviary a large mumter of medixal hymos, hoth of the earlier and the later perimen, were excluded; and in their places many new hymas, includng some by Pope Urban himself, nod some by Card aal Bellarmine and another cardina! (Silvius Antonianus) were introduced. The hymns of the primitive cpoch, from Hilary to Gregory the Great, for the wast part retained their places (especially in the offices for every day of the week); and there remained altogether from sewaty to eighty of carlier date than the 11 th etatury. Tbose, howover, which were so wetained were freely altered, and by no meas.s gencrally improved. The revisers appointed by Pope Urban (thrse learned Jesuits,-Strada, Gallucei, and Petrucei), prufessed to have mede " 23 fewe eliagres as 1 rossible " in the works of Ambrose, Gregory, Pradentus, Sedulius, Fortunatus, and other "pocts of great neme" But sonce changes, even in those works, were made with considerable bolduess ; and the pme, in the "coastitution" by which his new book was promulgated, boastel! that, "with the execption of a very small number ('perpancis'), which were either panse er merely rhythmical, all the hymns had been made cosfore:able to the haws of prosody and Latinity, those which could not be correctul hy any milder meibod being entirely rwritten." The latier fato befel, ameng others, the beautiful "Urbs beata Hierusalem," which now assumed the form, (to many, terlaps, better known), of "Colestis urbs Jerusalem." Of the "very few" which were spared, the elici were "Ave naris stella" (" Geatie ster of ocean "), "Dies irce," "Stabat Mater dolorosa," tho hymas of Thomas Aquinas, two of St Bermari, and one Anibrosian hyma, "Jesa nostra Retemptio" ("O Jesu, our licdemption"), which appruselaes neare: than others to the tone of Se Denard. A then recent hyma of St Frums Navier, with scarcely enough murit of any kint to atone for its neglect of prosody, "U Dens, "gonmo To" ("O Gud, I love Thre, not because", was at the same time introdneed without change. This hymary of Pope Urtun Vlli. is now in genctal ase tirongreat the Roman Communion.

The Parisha lommary underwent three revisions-tho first in Parnan 1527, when an new "l'saltery with hymas" was issam. In this revienons. such changers only were made as the revisera thought justifiable npon the primefipe of currecting oupposel corruptions of the original text. Of these, the transposition, "Urbs in mank ma hata," instead of "Urbs hata Herrasalem." may he takna as a typical example. The mext revision was in 1670-1680, unlet Cardual l'etefixe, pre-
 of laris, who mapheyed for thas purpusic Clande Sinteal, of tho
 ance of other lrewh siflolars, intluding lias wore celebrated

 do Vintimille, whan engend for it tho servies of charles Contho, then recter of the umberity of laris. Many mid lymas wewo
 new compuitions, by the subuls and oithers, was momberel. It

in 1735, although Cardinal Vintimille, in his preface, piofessell to have still admitted the old hymns, except when the acw were better -(" veteribus hymnis locus datus est, nisi quibus, ob seutentiarum vim, elegantiam verborum, et tencriores pietatis sensus, recentiores anteponi satius visurn est"). The number ol the new was, at the same time, very largely increased. Only twenty-one more ancient dan the 16 th century remained, of which those belonging to the frimitive epoch were but cight, viz., four Ambrosian, tivo by Fortunatus, and one each by Prudentius and Grearory. The number of Jean baptiste Sunteal's hymns (who had died in 1097) rosa to cighty-nine ; those by Colfin, -iaclading some old hymos, e.g., "Jam lucis orto sillere" ("Once more the sun is beaming bright"), which he substantially rewrote, -were cighty-thare ; those of other mollern French writers, ninety-seven. Whatever opinion may be entertained of the principles on which these Roman and Parisian revisions procceded, it would the unjust to deny very high praise as hymm-writers to several of their pocts, especially to Cottin aud Jem baptiste Sadteul. The noble hymn by Coffin, begianing-

> O luce qul motalibus
> Lutes inaccessan Deus,
> liswsente gho sancll tromunt
Nubuntque vullus ancent
> Nubuntque vultus angeli,"

O Triou w no m the light dinst dwell.
To morials unapprmactiabie.
Hhere angels seil shem from Thy rase, And lrentbie as they gaze,

Thesaurus Hymnologicus ; aml Mohnike's Mymnologische Forschungen ;-ind in England, Archlishop Trench's Sacrad Latin Poctry; Dr' Neale's two collections of Latin Hymnts and Sequenecs (Oxford, 1851 and 1852), atul his Lssays on Liturgiology and Church HisLory; the Osford collection of Hynas from tho Romad, Sarun, York, and other Breviaries (1838) : the P'salter, \&c., according to Sarum use, of MrJ. D. Chambers (1852); and the two volumes already referred to of Anglo-saxon and Trish hymbs, puhtished in 1851 and $18 \% 5$ by the Surtecs Society and the hrish Arelaological Socicty, have left littic to be added by any future laboarers int this fiet. The same period bas also produced mamerous Englisht translations of Latu hymns, many of whicharegood andinteresting, thongh porhap few of the translators have overcome the imherent difliculties of their task sufficiently either to represwit the characteristic merits of the originals, or to add to onr vernachar hymse tanay adaptations really well-suitud for jopular use. The most important aro-Mr Isaac Williams's Hymns from the Rarisian Breviary (1832), and Mr Clander's Ihyma of the I'rimitire Church (1837) ; Lishop Mant's volume of 1537 , and the liev. Edward Caswall's Lyra Catholica (1849), both from the Iiomad Breviary; the versions of Mr Chambers, in his Sarum I'saller, we.; Dr Neale's Mediceral Ifynns and Sequences (1802), with his wersions, sepuarately published, of some other works; and Hymns of the Lutin Chureh, translated by David T.' Morgan, with the originals appented (privately printed in 1871). The tirst lines, in English, gived in this article, are generally ndopted fom some of these.

5. German Hymnody,

Lather ras a proficient in and a lover of music. He Luther. desired (as he says in the preface to his hymn-book of 1545) that this "beautiful ornament" might "in a right manner serve the great Creator and His Christian people." The jersecuted Bohemian or Hussite Church, then settled on tho borders of Moravia under the name of "United Brethren" (which their descendants still retain), had sent to him, on a mission in 1522, Michael Weiss, who not long afterwards published a number of German translations from old Bolemian hymng (known as those of the "Bohenian Brethren"), with some of his own. These Luther bighly approved and recommended. He himself, in I522, published a small volume of eight hymns, which was enlarged to 63 in 1527, and to 125 in $1545 . \cdots$ He bad formed what be called a "house choir" of musical friends, to select such old and popular tunes (whether secular or ecelesiastical) as might be found suitable, and to compose new melodies, ior chureh use. His fellow labourers in this feld (besides Weiss) were Justus Jonas, his own especial colleague ; Paul Eber, the disciple and friend of Melanchthon; John Walther, choirmaster successively to several German prinecs, and professor of arts, \&e., at Wittenberg; Nicholas Decius, who from a monk became a Protestant teacher in Branswick, and translated the "Glorio in Excelsis," \&e.; and Paul Speratus, ehaplain to Duke Albert of Prussia in 1525. Sume of their works are still popular in Germany: Weiss's "Funeral Hyan," "Nun lasst ons den Leib hegraben" ("Now lay we calmly in the grave"); Eber's "llerr Jesu Christ, wahr Menseh und Gott" ("Lord Jesus Clurist, true Man and God"), and "Wenn wir in hüchsten Nüthen scin" ("When in the Lour of utmost need'); Walther's "New Heavens and new Earth" ("Now faim my joyous heart would sing"); Decius's "To God cn high be thanks and praise;" and Speratus's "Salvation dow Las come for all," are among thoso which at the lime produced the greatest effect, and are still best remembered.

Luther's own bymns, thirty-seven in noniver (of mhits about twelvo are translations or adaptations from Latin originals), are for the principal Christian seasons: on the saeraments, the church, grace, death, de; and paraphmses of seven psalms, of a passage in Ioai.a, and of the Lord's Prayer, Ten Commandments, Creed, Litany, nua "Te Deum." There is also a very touching and stirring song on the martyrdom of two youths by nire at lirussels, in 1523-2.4. IIomely and sometimes rugged in form, and for the most lart oljcctive in tone, they are full of fire, manly simblicily, and strong faith. Three rise above the
rest. One for Christmas, "Yom Himmel hoch da komin ich her" ("From Hearen above to earth I come"), has a reverent tenderness, the infuence of which may be traced in many later prodactions on the same subject. That on salvation through Christ, of a didactic character, "Nun freapt euch, liebeu Christen g'nein" ("DearChristian people, r:0:\% rejoice "), is said to bave made many conversions, and to bave been once taken up by a large congregation to silence a Toman Catbulic preacher in the cathedral of Frankfort. Pre-cainent above all is the celebrated paraflrase of the 4bth Psalm: "Ein' feste Burg ist unser Gott" A sure stronghold our God is He "), 一"the production" (as Ranke says) " of the moment in which Luther, engaged in a contlict with a world of foes, sought strength in the consciousness that be was defeuding a divine cause which could never perish." Carlyle compares it to "a sound of Alpine a atanches, or the first murmur of earthinakes." Heine called it "the Marseillaise of the Reformatien."

Luther spent sceveral jears iu teaching his people at Wittenberg to sing these hymas, which soon spread over Germany. Without adopting the byperbolical saying of Coleridge, that "Luther did as much for the Reiormation by his hymns as by his translation of the Bible," it may truly be affirmed that, among the secondary means by which the success of the Reformation was pronoted, none waz more pawerful. They were stug everywhere, in the streeta and fients as well as the churches, in the workshop and tho palace, "by children in the cottage and Ly martyrs on the seaffold." It was by them that a cengregational character was given to the new Pratestant worstip This success they owed partly to their metrical stiucture, which, though sometimes comples, was recommended to the people by its ease and variety; aud partly to the tunes and melodics (many of them already well known and popular) to which they were set. They were used as direct instruments of teaching, and were therefore, in a large neasure, didactic and theological; and it may be partly owing to this cause that German bymody came to deviate, so som and so generally as it did, from the simple idea expressed in the ancient Augustinian definition, and to compreliend large classes of compositions which, in most other conatries, would be thought bardly suitablo fol church use.
Fol.
loweri The principal hymn-writers of the Lutheran sehool, in Luther. Herwaun, and Hans Sachs, the shomalker of Nurenberw alsi known in other brances of literature. All these wrote smone ey bymo. They were succeded by men of another sure, to whom Cum gives the name of "nastersingers," as having raisel both the puetion and the musicai standard of Geman bymody:- Liogwalde, Helmbobi, Paphus, Schalling, liutilius, and Weingartner. The grincipal topice of their lymms (as if with sume foretaste of the calamities which were soun to follow) were the ranity of earthly things, resigustion to the Disine will, and preparation for dath rad juld annt. The well known Enthish hymn, "Great Cod, what do I soe and liarr," is founded uphon one by Pingwahlt. Of as puite different character were two of great beanty aul miw ral pupharity, compased by Philip Nicolai, a Westphataur Masur, durine a fostilence in 1597 , and publishod liy him, with fine chorales, two years afterwarts. One of theso (the "stingers wake! a voice is calling," of Mmalelsohn's uratorin. st Peul) lelonge th the family of Nalsent or Now Jerusalem hymas, The uber, a "Some of the believing sind conreming the Ileavenly Brinctam" ("Wie schmin leachatt uns der Ahegentern,"-"(0) morning ©tar, lum fair and bright "),

The hymb prodncet dufusth. Thinty I'ears' War are characteristic of that many than, which (as Miss

Wink worth says) "caused religious men to look away Period of from this world," and made their songs more and more Thirty expressive of persomal feelings. In point of refincment Yars and graces of style, the bymn-writers of this period excelled their predecessors. Their taste was chiefly formed by the influence of Martin Opitz, the founder of what bas beca called the "first Silesian schoul" of German poctry, who died comparatively young in 1639, aud whe, thongh not of any great nriginal genius, exercised much power as a critie. Some of the best of these works were by men who wrote little. In the famons battic-song of Gustavus Adohbus, pubilished (1631) after the victory of Leipsic, for the use of his army, "Verzage nicht du Häuflin klein" ("Fear not, O little flock, the foe"), we bave almost certainly a composition of the hero-king himself, the versification corrected by bis chaplain Fabricius, and the masic composed by Altenburg, whose mame has been given to the hymn. This, with Luther's parai hase of the 67th Tsalm, was sung by Gustavus and bis soldiers before the fatal battle of Liitzen. Two very fine hytous, one of prayer for deliverance and peace, the other of trust in God unter calamities, were written about the same tine by Läsienstern, a saddler's son, pnet, musician, and statesmen, who was ennobled after the peace by the emperor Ferdinand ili. Martin Rincklart, in 1630, wrote the "Chorus of God's faithful childscu"("Nun danzet alle Gott,"-"Now thank we all our Gol"), introduced by Mendelssohn in his "Lobgesang," which has been called the "Te Deum" of Germany, being usually sung on oceasions of public thanks. giving. Weissel, in 1635, composed a beautiful Advent bym ("Lift up your heals, ye mighty gates"), and Meyfart, professor of theology at Erfurt, in 1042, a fino arlaptation of the ancient "Urbs beata IIicrusalcm." The hymn of trust in Previdence by Neumarck, librarian to that duke of Weinar who was a distinguished general in the war (" Her nur deu lieben Gott liisst walten "-" Leavo God to order all thy ways"), is scarcely, if at all, infeitior to that of Paul Cerbarit on the samo theme. Paul Flemming, a great traveller and lover of nature, who diad young in 1639 . also wrote excellent coupositions, coloural by the same tone of fecling; and zome, of girat nerit, were composed, soon after the closo of the war, by louisa Henrietta, electress of Brandenburg, granddaughter of the famons Admiral Coligny, and motber of the first king of Trussia With these may be classed (though of later date) a feve striking bymas of faith and prajer under mental ansiety, by Anton Ulrich, duko of Brunswick, whose acminal conversion to Romanism cast a slado over the close of a life otherwise conscientions ond thonourable.

The most copious, and in their day most estemet, bymn- Iter. writers of this tirst hali of the 17 th cestary, were 1Icernann mana and Rist. Heermann, a pastor in Silesia, the theatre (in a peenliar deyree) of war and persecution, experienced in his nwn person a very largo sharo of the miseries of the time, amb suveral times narcowly escaped a violent death. His Dremti Musiat Cordis, published in $16: 30$, reflects the feelingz natural umber sulh circumstances. With a correct style and grod versification, his tone is subjective, and tho burden of his bymas is not praise, but prayer. Amorg his works (which enter largely into most (ierman laym-books), two of the best are the "Song of Tears," and the "Song "A Connfort," translated ky Miss Winlsworth in her Christian Cumens af Cicmamy. Hist publishad abont $\mathbf{C 0 0}$ hymis, Rist. "pressed coit of hitu," as he sain, "by the criss." 110 was a pastur, aud sun of a pastor, it llokstein, and lived after the peace to ening many years of prosjerity, buing apminted berelareate to the emperer, and fimally comobled. The bulk if his bymns, like these of other conimus witers, are if inforim ymality; but some, particthaty those for Advent, Ramany, Faster Eve, and on Angols, aro very
good. They are more objective than those of Hecrmann, and written, upon the whole, in a more manly spirit. Nest to Heermann and Rist in fertility of production, and abore them in poetical genins, was Simon Daeb, professor of poetry at Königsberg, who died in 1659 . Niss Winkworth ranks him high among German poets, "for the sweetness of formand depth of tender contenplative emotion to be found in his verses."

The fame of all these writers was celipsed in the latter part of the same century by three of the greatest hynnographers whom Germany bas produced,-Paul Gerbardt (1604-1676), John Franck (1618-1677), and John Schefller (1624-1677), the founder of the "second Silesian

Gerharch

 school," who assumed the name of "Angelus." Gerhardt is by unirersal consent the priace of Lutheran poets. His compositions (rhieb mas be compared, in many respects, to those of the Christian Year) are lyric poems, of considerable length, rather than hymns, thongh many hymns bave been taken from them. They are, with few exeeptions, subjective, and speak the language of indiridual experience. They ocenpy a middle ground between the masculine simplieity of the old Lutheran style and the higbly wrousht religious emotion of the later Pietists, towards whom they (on tho whole) incline. Being nearly all excellent, it is not easy to distinguish among the 123 those which are entitled to the highest praise. Two, which were written one during the war and the other after the conclusion of peace, "Zeureh ein zu deinen Thoren" ("Come to Thy temple bere on earth"), and "Gottlob, nun ist ersebollen," ("Thank God, it hath resounded"), are bistorically interesting. Of the rest, one is well known and highly appreciated in England through Wesley's translation, "Commit thon all thy ways," dre. ; and the Evening and Spring-tide hymns ("Now all the woods are sleeping," and "Go forth, my heart, and seek delight") show an exquisite feeling for nature; while nothing ean be more tender and pathetie than "Du bist arar mein nod bleibest mein" ("Tbou'rt mine, yeu, still thon art mine own"), on the Franck. death of his son. Fianek, who was burgomaster of Guben in Lusatia, has been considered by sone second only to Gerhardt. If so, it is with a great distance between thero. His approach to the later Pietists is closer than that of Gerbardt. His hymna were published, under the title of Spirituol Zion, in 1674, some of them being founded on Ambrosian and other Latin originals. Miss Winkworth gires them the praise of a condensed and polished style and fervid and impassioned thought. It was after his stheffer. conversion to Romanism that Schefler adopted the name of "Angelus," and pulished (1657) his hymns, under a fantastic title, and with a still more fantastic preface. Their key-note is divine love; they are enthusiastic, intense, exuberant in their streetness, like those of St Bernard among medirwal pocts. An adaptation of one of them, by Wesley, "Thee will I love, my Strength, my Tower," is familiar to English readers. Those ior the Grist Sunday after Epiphany, Sexagesima Sunday, and Trinity Sunday, in Lyra Gernamida, are good exanyles of his excellences, with few of his defects. His hymns are generally so free from the expresion, or even the indireet suggestion, of Reman Catholic doctrine, that it has been suplusef they wer: writen before his conversion, though published afterwards. The evangelical clurches of Germany found no difficulty in admitting then to that prominent place in their servies which they have cver since retained.Towards the end of tho 17 th century, a new religious school arose, to wich the nane of "Pietists" was given, and of whiel Γ hilip Jneob Spener was esteemed the fonmer. He and his pupils and suceessors, August Ifermann Francke and Auastasius Freyliughausen, all wrote hymns. Spener's bymns are ont remarkzble, and Francke's are not mumer-
ons. Freylinghausen was their chief singer: his rhythm is lipsly, his music florid; but, though his book attained extraordinary popularity, he was surpassed in solid merit by other less fertile writers of the same seliool. The "Auf Linanf andeiner Frende" ("Up, yes, upward to thy gladness ") of Schade may reeall to an English reader a byma by Scagrave, and more than one by Lyte ; the "Malabarian Lyynn" (as it was called by Jacobi) of Schïtz, "All glory to the Sovereign Good," bas been popular in Enoland as well as Germany ; and one of the most exquisite strains of pious resignation ever written is "Whate'er my God ordains is right," by Rodigast.

Joachim Neander, a sehoolmaster at Düsseldorf, and a Neander. friend of Spener and Schütz (who died before the full development of the "Pietistic" scheol), was the first mar of emineuce in the "Reformed" or Calvinistic Church whe, initated Lutheran bymnody. This he did, while snffering persention from the elders of his own church for some other religions practices, which he had also learnt from Spener's example. As a poet, be is sometimes deficient in art ; but there is feeling, warmth, and sweetness in many of bis "Bundeslieder" or "Songs of the Corenant," and they obtained general farour, both in the Reformed and in Lutheran congregations. The Summer Hymn ("O Thou true God alone ") and that on the Glory of Cod in Creation ("Lo, heaven and earth and sea and air") are instances of his best style.

With the "Pietists" may be classed Schmoke and Dessiler, representatives of the "Orthodos" division of Spener's school; Hiller, their leading poet in South Germany; Arnold and Tersteegen, who were practically independent of ecelesiastical organization, though comnected, one with the "Ortbodos" and the other with the "Reformel" elurches; and Lovis Connt Zinzendorf. Schmolke, a Scbmolke pastor in Silesia, called the Silesian Rist (1672-1737), was perhaps the most voluminous of all German hymnwriters. He wrote 1188 religious poems and hymns, a large proportion of which do not riso abore mediocrity. His style, if less refined, is also less subjectivo add more simple than that of most of his contemporaries Among his best and most attractive works (which, indeal, it would be difticult to praise too highly) are the "Hosianna Devid's Sohn," for Palm Suuday,-much resembling a shorter hymn by Jeremy Taylor ; and the Ascension, Whitsuntide, and Sabbath bymns,-" Heavenward doth our journey tend," "Come deck our feast to-day;" and "Light of light, enlighten me." Dessler was a greater poet than Schmolke. Dessler. Few hymus, of the subjectivo kind, are better than his "I will not let Thee go, Thou Help in time of nced;" "O Friend of souls, how well is me;" and "Now the pearly gates unfold," de. Hiller was a pastor in Würtemberg Diller. (1699-1769), who, falling into ill-health during the latter part of his ministry, published a Casket of Sprititual Songs, in a didactic vein, with more taste than porer, hat (2s Miss Wink worth says) in a tone of "deep, thoughtful, practical piety." They were so well-adapted to the wants of his poople that to this day liiller's Casket is rrizel, next to their Bibles, by the feasantry of Wiirtemberg; and the numerous cmigrants from that rart of Gernany to america and other foreign countries generally take it with them wherever they go. Arnold, a professor at Giessen, and Armold, afterwards a pastor in limdenturg, was a man of strong will, uncompromising character, and sustere views of hife, intolerant and controversial towarls those whose doctrine or practice he disappruvel, and more indifferent to separatism and sectarianism than the "Orthodos" generally thought right. His hymus, like those of our own Toplady (whom in these respects be resembled), wnite with considerable strength more gentleness and broadth of sympathy than minht be expectul trom a man of sueh a character.

Tersteegen（169i－1760），mio aever formally saparated himself from the＂Reformes＂commumion，in minch be was brought up，but whose symnaties atese with the Morarians and Count Zinzendorf，万az，of e！l tie more cupious German hyma－writers after Lutber，perhaps the most remartable maa．Pietist，mystie，and mizsioaary，he mas cilso a great religions poct．His $1!1$ hymas rere publioned in 1731，in a volume called The Spiritual Flower－parden． They are inte：ssly individual，maditative，and stejective． Wesley＇s adaptations of two－＂Lo！God is hero；let us adore，＂aad＂Thou biduen Loro of Gul，whose source＂ －aro well baoma．Among those transhated by Diss Winkworth，＂O Con，O spirit，Liglt of all that live，＂and ＂Come，bretlren，let us go，＂are stecimens which eaxhibit favourably bis manner and fower．Wiss Cox speaks of him as＂a gentle bearea－inspired soul，whose hymns are the refexion of a heavealy，happy life，his mind veiog full of a child－itbesimplicity；＂and his onn poem on the ckild－ character，which Siss Wiakworth has appropriately con－ nected with Innocents＇day（＂Dear Soul，couldst thou oecome a child＂）－one of his best compositions，ex－ quisitely conceived and expressed－shows that this was in truth the ideal which he sought to realize．The Ziazen－hymns of Zinzendorf are often disfigured by excess in the application of the language and imagery of human affections to Divine Objects；and this blemish is also fount ia many later Morarian hymns．But oad bymn，at least， of Zinzendorf may be mentioned with narualified 1 raise， as uniting the merits of force，simplicity，and brevity，－ ＂Jesu，geh voran＂（＂Jesns，lead the way＂），which is taught to mest children of religious parents in Germany． Wesley＇s＂Jesus，Thy blood and righteonsness＂is a translation from Zinzeodorf．

The transition from Terstecgen and Zinzendorf to Gellert and Klopstock marks strongly the reaction against Pietism which took place towards the middle of the 18 th ceatary．
Gellert．The Spiritual Odes and Songs of C．F．Gellert were pub－ lisbed in 1757，and are said to have been reccived with an enthusiasm almost like that which＂greeted Luther＇s hyans on their first appearaace．＂It is a proof of the modera－ tion both of the author and of his times that they mere largely used，not only by Protestant congregations，but ia those German Loman Catholic ehurehes in which ver－ nacular services had beea established through the intlu－ ence of the emperor Joseph II．They became the model which was followed by most succeeding hymn－writers，and exceeded all others in popularity till the close of tho century，when a new waro of thougit was gentrated by the movement which proluced the French Revolution． Since that time they have been，perhaps，too much depre－ ciated．They are，indeed，cold and didactic，as compared with Schefler or Tersteegea；but thero is nevertbeless i：t them a spirit of genuine practical piety；and，if not marked by genius，they are pure in taste，and often terse，vigorons， and graceful．

Klopstack，the arthor of tho Missiah，cannot the con－ sidered great as a bymowriter，though his＂Siburatit Hyma＂（of which ticere is os rersion in lebmens from lis Lard of Luther）is sirsmle en＇geol．Cinnera！！hia howns （ten are translated in Mr Shempare．＇s Fureign sizered isore） are artificial and mach too chabme．

Of the＂romantic＂fontool，which eame in witb the Erench Revolition，the two leuding writers are irctierick ron Hardenlerg，ealled＂Novalis，＂aud Frederick do la Sotte Fouqus，tha celemated author of Endise and Sintran，－buth romancowniers，as well as poeta．
Nowalis The gening of Novalis was early lost to the wold ：he died in 1 rox，juat thirty years dh．Sume of his nymung ane very lusertuful ；bat even in such worts as Thorath 1 all to Thee were faithless，＂and＂If onty ile is mive．＂
there is a feeling of insulation and of despondency as to good in the actual world，which was perhaps inseparable from his ecelesiastical idealism．Fouquésurvived tili 1343 ．Fouqua In his bymns there is the same deep How of fecling，rishness of imagery，and charm of expression，which dietinguishes his prose works．The two missionary hymns－＂Thou， solemn Ocean，rollest to the strand，＂and＂la onr saiis all soft and sweetly，＂－and the exquisite composition which finds its motive in the rospel narrative of blind Dartimeus， ＂Weis du for tansend Jaticen＂（finely translated both by Miss Winkworth and by Miss Cox），are among the best examples．

The later German hymn－nriters of the present century are mumcrous，and belong，gencrally，to the sevived ＂Pietistic＂school．Some of the best，e．g．，Arndt，Albertui， Krommacher，and especially Spitta，have produced nouks Spitia not unwertby of the fame of their uation Mr Massie，the able translator of Spitta＇s Panlery and IIarp（pablished at Leipsic in 1033 ；，apents of it as having＂obtained for him i：a Germany a popularity on？second to that of Paul Gerbard．．＂Sueb praise is hyperbolical ；posterity alone can adjust the relative places of the writers of this and of former generations．In Spitta＇s poems（for such they gererally are，rather than hymns）the subjectire and meditative toso is tempered，not ungracefulls，with a didactic element ；and they are not，like some coatemporary bymns，distigured hy＂eagggerated seatiment，or by a too thorid and rhetorical style．

The best and follost modern collection of ehoice German hymns is Anthor－ that of Baron von Binsen，in his Firsuch eines allycmeinen Gisaing－tea und Geclethuchs of 1833 ，unfortunately not reprinted after the first edition．This contains about 900 hymas．In his lster Aligemeincs erangelischen Gesaieg－rand Gebetbuch of 1846 the number wiss redueed to 440．Many othor authore，lesides those who hare been here mentioned，are represented in these collections，and also in the exeelient English translations contained in the Lyra Germanica of Misa Winkworth；Miss Cox＇s Sacred Hymns from the Ger－ mers；Miss Fry＇s Hymns of the Reformation；Miss Duna＇s IHyms from tios Qerman；the Misses Bortbwick＇s Hymns from the Land of Luther；and the Rev．Arthur T．Russell＇s Hymns for the Church of＇England．In Cunz＇s Ceschichte des deutsticn Hirchen－ liules（Lieipsic， 1555 ），tho number of German hymb－writers named considerably exceeds 300 ．Besides the volumes of mixed transs lations from different authors just enumersted（of whien the ear liest is that of M iss Cox，1841），translations of Luther＇s hymns were puh－ lished by Mr John Hunt，ó Preston，in 1853，and by Mr Massie， of Eecleston，in 1554．The Lyra Domestica of Mr Miassie（Whieb appearel in 1860）contains his translations from Spitta A much earlier series of English versions of binety－three mixed German hymns was published in 1722，1725，and 1732，by John Cliristian Janosi，umder the patronage of Caroline，queen of George 11．To this eollection，entitled Fsalmoria Fermanica，a supplement，eon－ teining thisty－one more，and aleo twn latin hymas by Petersen，was
 of Ceorn ill．Some of thest are now sung（though not withont． consib（white alteration in Euglish churches．

Such of the fristorical nat critical information contained in tho forctuing accuobt of heman hymbenly has been taken from Biss Whiworth＇s book，mititul ehristian Singers of Germeny （3harmillan，1469）：and to her also we are in most instansea in－ delited for Gur knglish renderings of the first lines of hymns，The pineipal forman autiorities en the sabject，Wackernargl＇s Dhes
 mperanges，\＆e，are mentioned in her preface；to whieh may be ad Ited the werk alrealy mentioncd of E．A．Cunz．

6．Fritish 1 Izmnody．

\therefore fter tha Reiormation，the development of hymandy wha retarleci，in beth parts of Gireat liritain，by tho cxame and inflnence of Genera．Arcabishor Crammer appears at ono time to havo heen disposed to follow Luther＇s eourse，and to present to tho people，in an English drecs，eome at least of tho hymis of the ancient church．In a letter to King Henry V11）．（ $\mathbf{F 1}_{1}$ October 1544），arobra some new＂processiuns＂which he hat him－ solf tamaleted into lingliste，he ：nentions the Easter ingm， ＂Sntre，fefla diea，iuto memorabits avo＂（＂Huil，glad day，
to be joyfully leept through a!l generations"), of Fortunatus. In the two "Primers" of 1535 (by Marshall) and of 1539 (by Bishop Hilsey of Fochester, published by order of the vicar-general Cromwell) there had been several rule English hymus, none of them taken from ancieat sources. King Hemry's "Primer" of 1515 (commanded by his injunction of the 6th May 1545 to be used threughout his dominions) was formed on the model of the daily offices of the Breviary; and it contains English metrical transfutions from some of the best-known Ambrosian and otier early hymas. But in the suceecding reigu different views ${ }^{\text {rere- }}$ vailed. A new direction had been given to the taste of the "Reformed" congregations in Franco and Switzerland by the French metrical translation of the Ohd Testament Psalms, which appeareil abrut I540. This was the joint work of Clement Marot, valet or groom of the chamber to Francis l., and Theodore Beza, then a mere youth, frosb from his studies under Wolmar at Orleans.
Marot's Isalms were dedicated to the French ling and the ladies of France, and, being set to popular airs, beceane fashionable. They vere sung by Francis binself, the queea, the princesses, and the courtiers, upon all sortis of secular occasions, and also, moro seriously and religiously, by the sitizens and the common people. They were soon perceived to be a power on the side of the Reformation. Calvin, who had seitled at Genera in tie year of Marot's return to Paris, was then organiziug his ecelestastical system. He rejected the bymnody of the Breviaries and Missals, and fell back upon the idea, anciently leeld by Paul of Samusata, and condenned by the fourth council of Toledo, that whatever was sung in churches ought to be taken out of the Serifitures. Narot's Psalter, appearing thus opportunely, was introduced into bis new system of worship, and appended to bis eatechism. On the other band, it was interdicted by the Roman Catbolic priesthood. Thus it became a badge to the one party of the "Reformed" profession, and to the other of heresy.
Bternbold and The example thus set produced in England the translaHopkins. Th commonly known as the "Old Version" of the Psalms. It was begun by Thomas Sternhold, whose position in tho hoischold of Henry Vili., and afterwards of Edward VI., was similar to that of Marot with Francis I., and whose services to the former of those kings were rewarded by a substantial legacy under his will. Sternhold publisbed versions of thirty-seven Psalms in 1519, with a dedication to King Edward, and died soon afterwards. A second edition appeared in 1551, with seven more I'salms added, by John Hopkins, a Suflulk clergyman. The work was continned during Queen Mary's reign by British refugees nt Genera, the chief of whon were W:llim Whittingbam (afterwards dean of Durhari) who sueceeded John Kinox as minister of the English congregation there, and William Ketho (or Keith), said by Strype to have been a Scotchnan. They published at Geneva in 1556 a service-book, containing fifty-one Enghish metrical Psalms, which number was increased, in later editions, to eighty-seven. On the accession of Queen Elizabeth, this Genevan Psalmody was at once brought into use in Encland,--first (according to a letter of Bishop Jewell to Peter Martyr, dated 5th March 1560) in one London chureh, from which it duiekly spread to others both in London and in other eities. Jewell deseribes the effect produced by large congregations, of ns many as 6000 persons, young and old, women and chidren. singing it after the sermons at St Piul's Cries,--adding, "Id sacrificos et diabolum ægro babet; vident enim sacras conciones hoe pacto profundius descendere in hominum nuimos." The first edition of the completed "Old Version" (eontaining forty Pisalms by Sternhold, sixty-scren by Hopkins, fifteen by Whittingham, six by kethe, and the rest by Thomas Nozton, a barrister, Hobert Wisdoun,

Johin Mardley, and Thomas Churchyard) appeared in 156.

In the meantina, the Books of Common Frayer, \&c., of 15:9, 1552 , and 1559 had been suecessively established as law by tho Acts of liniformity of Elwati VI. and Quen Elizabeth. In these n n brovision was made lor the use of any metrical jisalm or lay an on any aceasion whatever, except at the consecration of bishops and the ordination of priests, in which oflices (first added in I552) an lingiish version of "Veni Creator" (the longor of the two now in use) was appoiated to be "saik or sumg." The canticles, "Te Ihenm," "Denedieite," \&e., the Nicene and Athanasian Creed, the "Gloriz in Excelsis," and some other parts of the cosmmunio" and other special offices were also directed to be "said or sung;" and, by general rubrics, the chanting of the whole service was allowed.

Tho silence, however, of tho robries in these books as to any other siaging was not meant to exclude the use of psalms not expressly appointed, when they could be used w!thout iuterfering wilt the preseribed order of ady ervice. It was expressly provided by King Vidward's First Act of Uniformity (by later Acts made applicable to the later books) that it should be lawful "for all men, as well in churehes, ehapels, oratories, or other places, to use openly any pasalms or prayers taken ont of the Bible, at any due time, not leting or omitting therehy the serviee, or auy part thereof, menthanc in the book. And Queen Elizabeth, by one of the injonetions issued in the first year of her reign, declared her desire that the provision made, "in divers collegiate and also some parish churches for singiog in the chareh, so as to promote the landable service of mosic," shonld continue. After allowing the use of "a modest and distinct song in all parts of the common pragers of the choreh, so that the same may be as plainly understindel as if it were read withont singing," the injunction procerded thus-" And yet, nevertheless, for the oomforting of sach that delight in music, it may be permitted that in tbe beginning or In the end of the Common Prayer, either at morning or evening, there maty be sumg an hymn, or such like song to the praise of Alhaighty God, in tho liest sort of melody and music that may be conveniently devised, having respect that tho sentence" (i.e.. sense) "of hymin may bo nmbestanded and perceived."

The "Old Version," when published (by John D je, for tloo Stationers" Company, "cum gratia et privilegio Regix Majestatis "). hore upon the face of it that it was "newly sct forth, and allowed to be sung of the people in charches, before and after morning and evening prayer, as also before and after the scrmon." The question of its authority has been at different times much dehuted, (Hiefly ly Ileylin and Thomas Warton on one side (both of whom disliked anl disparaged it and by Bishop Beveridge and the Rev. Il. J. Todd on the other. Heylin says, it was "pernitted rather than allowed," which seems to Le a distinction without much difference. "Allowance," which is all that the book clamed for itsclf, is anthorization by way of permission, not of commandment. Its puilication in that form could hardly have been limensed, nor conld it have passed into use as it did without question, throughont the ehorehes of Eugland, unless it had been "allowed" by somo authority then esteemed to he sufficiont. Whether that authority was royal or ceclesiastical does not appear nor (considering tho proviso in King Edward's Act of Uniformity, and Queeu Elizabeth's injunetions) is it very inportant. No inference ean justly bo drawn from the inability of inquirers, in Ileylin's time or since, to diseover any publie record bearing uion this sulyect, many publio documents of that period having been lost.

In this book, as published in 1562 , and for many years alterwards, there were (besides the versified l'salms) eleven metrical versions of tho "Te Deum," canticles, Lord's lraycr, \&c., de. (the best of which is that of the "Benedicite"); and also "Da pacem, Dominc," a hymn suitable to the times, rendered into English from Lather; two original hymns of praise, to $^{\text {re }}$ sung befure Morning and Fvening Prayer; two penitential hymns (one of them the "llumbla Lamentation of a Simner") ; and a hymo of faith, beginning, "Lord, in Thee is all my trust.". In these respects, and also in the tunes which acconpranied the words (stated by Dr burney, in his Mistory of Music, to be German, and not French), there was a departure from the Genevan platiom. Some of these hymm, and some of the pealms also (eqg, those ly Robert Wisdom, being allornative versions), were omitted at a later period; and many alterations and supposed amendments were from time ta. time made by unknown lands in the Pealms which remainen, so that tho test, as now printed, is in many praces different frum that of $156 ?$

Scotch Psalma.

In Scotland, the General Assembly of the kirk cansed to be printed at Edinburgh in 1564 , and enjoined the use of, a bouk entitled The Form of Prayers and Ministry of the Sucraments used in the English Church at Geneva, approved and recived by the Church of Scotiand; whereto, besides that was in the former books, are also udded sundry other prayers, with the whole Psalms of Duvid in Eniglish metre. This contained ail tho Psalms of the "Old Version" by Sternhold, Whittingham, and Kethe, but only thirty-seven of those by Hopkins, and none by any of the other English translaters. Instead of those omitted, it had nineteen more by Fucties and Whittingham; one by John Pullegn (one of the Gonevan refugees, who became Archdeacon of Col. chester) ; six by Kobert Pont, Kuos's son-in-law, who was a minister of the kirk, and also a lord of session; and fifteen signed with the initials I. C., supposed to be Juhn Craig.

So matters continued in both chnrehes until the Rebellion. Daring the interval, King Janes I. conceived the project of himself making a new version of the Psalms, and appears to have translated thirty-one of them, - the correction of which, together with tho translation of the rest, he entrusted to Sir William Alexander, afterwards earl of Stirling. Sir William having completed his task, King Charles the First (after having it examined and approved by severa! archbishops and bishops of England, Scotland, and Ireland) caused it to be printed in 1631 at the Oxford University Press, as tho work of King James; and, by an order noder the royal sign manual, recommended its use in all churebes of his dominions. In 1634 he enjoined the Privy Council of Scotland not to suffer any other Psalnas, "of any edition whatevor," to be priuted in or imperted into that kingdom. In 1636 it was republished, and was attached to the famous Scottish Service-book, with which the troubles began in 1637. It need hardly be added that the king did not sncceed in bringing tbis Psalter into use in either kingdom.

When the Long larliament undertook, in IC42, the task of altering the liturgy, its attention was at the same time direeted to psalmody. It had to judge between two rival translations of the Psalms-one by Francis louse, a member of the House of Commons, afterwards one of Cromwell's councillors, and finally provost of Eton; the other by William Barton, a clergyman of Leicester. The House of Lords favonred Darton, the House of Commons Rouse, who had made much use of the labours of Sir Willinm Alexander. Both versions were printed by order of parlitament, and were referred for considcration to the Westminster Assembly. They decidedin farnur of liouse. His version, as finally amended, was published in 1646 , under an order of the Honse of Commons dated $14 t h$ November 1615. In the following year it was rceommended by the parliament to the General Assembly at Edinhurgh, who alnointed a committee, with large powers, to prepare a revised I'salter, recommending to theic consideration not only liouse's book but that of 1564 , and two other versions (by Zachary loujd, end Sir William Mure of howallan), then lately cxucuted in Sentland. The result of the labours of this committee was the "Paraphrase " of the J'salms, whieh, in 1619-1650, by the concurrent authority of the General Assembly and the committee of estates, was ordered to be exclusively used thronghout the church of Scotland. Some use was made in the preparation of this hook of the versiens to which the attention of the revisers had been directed, and also of Jhartor's; but its hasis was that of liouse. It was received in Scotland with great favour, which it has ever since retained; and it is fairly cotitlet to the praise of striking a fuldrable medium letween the rule homeliness of the "Ohd," and the artificial modernism of the " New" Enelish venions-perhape an great in suceess as was possible for such an nodurtaking. Sir Watter Sooth is said to lrave dis.
suaded any attempt to aiter it, and to have pronounced it, "with all its acknowledged occasional harshness, so bcautiful, that any alterations must eventually prove only so many blemishes." No further step towards any authorized ligmnody was taken by the kirk of Scotland till the fullow. ing century.

In England, two changes bearing on church bymnody were made upon the revision of the Prayer-book after the Restoration, in 1661-1662. One was the addition, in the ofices for cousecrating bishops and ordaining priests, of the shorter version of "Veni Creator" ("Come, Holy Ghost, our souls inspire"), as an alternative form. The other, and more important, was the insertiou of the rubric after the third Collect, at Morning and Evening Prayer: "In quires and places where they sing, here followeth the Authem." By this rubric synodical and parliamentary anthority was given for the interruption, at that point, of the preseribed urder of the service by singing an anthem, the choice of which was left to the diseretion of the minister. Those actually used, under this authority, were for some tine only ummetrical passages of Scripture, set to music by Blow, Purcell, and other composers, of the same kind with the anthems still geverally sung in eathedral and collegiate churches. But the word "anthem" had no techuical signification which could be an obstacle to the uso under this rnbric of metrical hyinns.

The "New Version" of the Psalms, by Dr Nicholas Tate add Brady and the poet-lanreate Nahum Tate (both Irishmen), Brady. appeared in 1696, under the sanction of an order in council of William III., "allewing end promitting" its use "in all such churches, chapels, and congregations as should think fit to receive it." Dr Compton, bishop of London, recommended it to his diocese. No lymms were then appended to it; but the authors addel a "Supplement" in 1703, which received an exactly similar sanction from nn order in council of Queen Anne. In thiat Supplement thero were several new versions of the canticles, \&ic., and of the "Veni Creator;" a rariation of the old "Inmble Lamentation of a Simuer ;" six hymns for Christmas, Easter, and Holy Communion (all versions or paraphrases of Scripture), which are still.usually printed at the end of the Praycr-books containing the new version; and a hymn "On the Divine use of Music,"-all accompanied by tunes. The authors also reprinted, with very good taste, the excellent verstion of the " Benedicite" which appeared in the book of 1562 . Of the hyms in this "Supplement," one ("While shepherds wateloed their hocks by night") greatly exceeded the resh in merit. It has been aseribed to Tate, but it has a character of simplicity unlike the rest of his works.

The relative merits of the "Old" and "New" versions old ame have heen very varionsly efimatod. Competent judges ne have given the old the praise, which certainly camot be accorded to the new, of fidulity to the Ildorew. In both, it must be admithed, that these parts which lave poetical merit are few and far between; bat a reverent (aste is likely to be more oflended by the frequent saerifice, in the new, of depth of tone and accuraty of sense to a lluent commonplace correctness of versification aml diction, than by any excessive homeliness in the old. In both, however, some J'sulas, of portious of I'salms, are well enough rendered to entitle them to a permanent place jn our lymu-books, especially tho Sth, and parts of the lSth l'salm, by Siemhold ; the 57th, Sth, and looth, by llopkins; tho 23l, 34 th, and $36 t h$, and lart of the 1484 , by late and Eraly.

The judgment whielu a fastidions critic might be disposed to pars upon both these hooks may pertaps ine considerably mitigated by comparig them with the works of wher hhomers in the same fied, of whom Mr Lholland, in his intercating volumes entitled I'salmists of Greal britain,
enumerates abore 150. Some of them have been real buets-the celebrated carl of Surrey, Sir Philip; Sidney and his sister the countess of Pembrake, Gcorge Sandys, Genege Wither, Juln Bilton, and Julia Keble. In tlicir versiuns, as might be expected, there are oceasional gleams of power and beauty, excecding anythang to be found in Sterohold and Hopkins, or Tate and Brady; but even in the best these are rare, and chiefly occur where the strict idea of translation has been most widely departed from In all of them, as a rule, the life and spirit, whieh in prose versions of the Psalms aro so wonderfully preserved, have disappeared. The conclusion practically suggested by sen many failures is that the difliculties of metrical translatiun, always great, are in this case insuperable; and that, while the Psalms (like other parts of Seripture) are abundantly suggestive of motive and material for hymnographers, it is by assimilation and adiptation, aml not by any attempt tu transform their exact sense into modenn poctig, that they may be best used for this purpose.
The order in council of 1703 is the latest act of any public authobity lyy which an express sanction has been given to the use of peihos or hyons in the Churelo of England. At the end, iundeet, of many montem Prayer-books, there will be found, besides some of the ly ynnssunctionel by that order in conncil, or of those contained it the lang of 1562 , a Sacramental anm a Cliristmas hyma by Doddi.ke; a Clonistmas hym (varict by Martin Malan) from Chates Wenley; an thister hymn of the tsib centary, beminning "Jesus Chuist has risen to day;" ant abridgments of Bishop Kens Momintend Exening Ilymus. These additions tist began to be made in ol alont 1791, in London editions of the lrayer-book and I'salier, at the mere will and pleasure (so far as appers) of the printerg. They liave no sort of authority.

It the state of authority, opimion, and practice diselosed conero. by the preceling nurrative may be found the true explana. Shakespeare, and Milton, and notwithstanding the example of Cermany, no natire congregational hymmody wortliy of the name arose till after the eommencement of the 18 th century. let there was no want of ajpreciation of the power and value of congregational church music. Milton could write, before 1615, -

> 'Thene let the pealing organ blow
> To the fult-voiced quive below
> In service hifhe, and anthems clear,
> As may with sweetness though mine ear
> Dissolve ine into eestasies,
> And lring all lleaven before mine cyes."

Thomas Mace, in his Music's Mommert (1676), thus describel the eflect of pisalm-singing before sermons, by the congregation in York Blinster on Sundays, during the siege of C ill: "When that wast eoneneding unity of the whole congicgatinal chorns came thundering in, even so as it made the very ground shake under us, oh, the umutterable ravishing soul's delight! in the which I was so transported and wrapt up in hioh contemplations that there was no ronm left in my whole man, body, soul, and spirit, for allything below divine and heavenly raptures; nor could there possibly be anything to which that very singing might be truly compared, execpt the right apprehension on eonceiving of that glorions and miraculous quire, recorded in the Scriptures at the dedication of the Temple." Nor was there any want of men well-qualified, and by the tura of their minds predisposed, to shine in this braneb of literature. Some (likeSandys, Boyll, and Bartom) devoted thenselves altngether to paraphroses of other Seriptures as well as the Pralus. Others (like Genrge llerbert, and Francis and John Quarles) moralizel, meditated, suliloquized, and allugmizel in verse. Withnit recknning these, there were a few, even liefore the liestonation, who eame very near to the fileal of hymmily:
Sodele First in time is the Sentish poet Iohn Wedilerburn, who Gurn. Lramsatal several of Luther's hymers, and in his Compeneli-
ous Book of Godly and Sprivituel Songs added others of his own (or his brothers') composition. Some of these [oems, published before 1560 , are of uneommon excellenee, uniting ease and melody of rhythm, and structural skill, with grace of expression, and simplicity, warnth, and reality of religious feeling. Those entitled "Give me thy beart," "Go, beart," and "Leave me not" (which will be found in a collection of 1860 called Sucred Somgs of Scolkmed), require little, beyond the change of some arehaisms of language, to adapt them for church or domestic use at the present day.

Nest come the two hymns of "The New Jerusalem," by an English homan Catholic priest signing himself F. B. l'. (suplused by the late Mr Sedgwick to be "Franeis Daker, Jresbyter "), amt by another Scottish poct, David Dickson, Dicksun of which the history is given by Dr Bonar in his edition of Dickson's work. 'This (Dickson's), whieh begins "O mother dear, Jerusalem," and has long been popular in Scotlanel, is a variation and amplifieation (by the addition of a large number of new stanzas) of the English original, beginning "Jerusalem, my hapry home," written in Queen Elizabeth's time, and printed (as apmears by a copy in the British Museum) about IG1G, when Dickson was still young. Buth have an easy matural flow, and a simple hapy rendering of the beautiful Scriptural imagery upon the subject, with a spirit of primitive devotion uncorrupted by medieval peculiarities. The English hymn (of which some stanzas are now often sung in churches) is the true parent of the several shorter forms,-all of more than common merit,which, in modern hymm-books, begin with the same first line, but alterwards deviate from the origiual. Kindred to these is the very Gne and faithful translation, by Drammond of Hawthornien (who was Dickson's contemparary), of the ameient "Unt)s beata Hierusalem" ("Jerusalem, that place divine"). Other ancient hymms (two of "Thomas Aquinas, and the "Dies lre") were also well timisliated, in 1G.dG, by Crasliaw, ufter he had become a Roman Catholic, and han heerideprived by the parliancont of his fellowship at Cambridge.

Conspienus among the sacred poets of the first two Wither. Stuart reigns in Eugland is the name of George Wither, an accomplished layman, of strong chureh princijles, whose fate it was to be opmosed and slighted while lie was a staunch chureliman and hityalist, and alterwards to be driven into the parlianentary and Puritan ranks; for which cause, probably, recognition was denied to his genius as a poet by Dryden, Swift, and lope. He had almost fallen into oblivinn, when attention was recalled to his merits ly the more discerning eriticisms of Charles Lamband Sonthey; and, when his Mullelujele was repulished in 1857 by IIr F'arr, mily two enfies of it were known to exist, me in the Pritish Museum, and another which had been in 3x Heber's library. Ilis llymus ant Sings of the Chareh apperal in 1622-1623, uder a patent of King James I., by which they were delared "worthy and profitable to be inserted, in comvenient manner and due place, intocvery" Einglish I'salmbuok to metre." "Ihis patent was oplosed, as incmisistent with their privilege to print the "singing pisalus," by the Stationers' Company, to Wither's great mortification aud loss. Il is Mallehriah (in wbich some of the former Hymnes end Sougs were repuated) followed, after several intermediato Iublications of a different kind, in 1641 . The $1 / \mathrm{mm}$ m and Somgs were set to musie ly Orlando Gibhons, and these in both books were uritten to he sung, hough, for the most part privately, there licitio no cvilence that the anthor comtemplated the use of any of them in charehes. They inchuted, however, hymis fur every diay in the week (fombleal, as thase eomitributel neway it century afterwarly by Cullin to the lanisian limiary also were, uron tho suceessive woks of the dass (f creation); bymos for all
the church seasons and festivals, incloding saints' days; bymns for rarious public oceasious; and hymus of prayer, meditation, and instruction, tor a great number of different borts and conlitions of men snd women, in a variety of the cirumstances incident to human life, -being at once a "Cbristian Year" and a manual practical piety. Many of them rise to a very high point of cacellence, - particuiarly the "general invitation to praiso God" ("Come, O come, in pions lags"), with which Hallelnjah opens; the Thanksgivings for Peace and for Victory, the Coromation Hymo, a Christmas, an Epiphany, and an Easter Hymn, and one for St Bartholomer's day (Eyymns 1, 74, 75, and $8 \frac{1}{1}$ in part i., and 26, 29, 36, and 54 in part ii., of Malletujah). All these are properly entitled to the designation of bymus, which can hardly be conecded to some others, of singular beanty, viz., the Cradle-sorig ("Slecp, baby, sleep, what ails my dear"), the Anmiversary Marriage Song ("Lord, living here are we"), the Perambulation Song ("Lord, it bath pleased Thee to say "), the Song for Lovers ("Come, sweet heart, come, let ns prove"), the Song for the Happily Prarried ("Since they in singing take delight"), and that for a Shepherd ("Renowned men their herds to keep") (Nos. 50 in the frst part, 17 and 24 in the seconil, and 20,21 , and 41 in the third). There is also in the second part a fine song (No 59), full of historical as well as poetical interest, upon the evil times in which the poot lived, beginning-

> Now are the times, these are the days, Which will those men appove
> Who take delight in honest ways And pious conrses love ;
> Now to the world it will appear That innocence of heart
> Wilt keep us far mone free from fear Than helmet, shield, or dart."

Wither wrote, generally, in a pure nervous English idiom, and preferred the reputation of "rusticity" (an epithet applied to him eren by Eaxter) to the tricks and artifices of poetical stylo which were then in favour. It may be partly on that account that he has been better ajpreciated by poscerity than by bis contemporaries. Cosin, afterwards bishop of Durham, published in 1627 a volume of "Irivato Devotions," for the canonical hours and other occasions. In this there are seven or eight hymns of considerable merit,-among them a very good version of the Ambrosian "Jam lucis orto sidere," and the shorter version of the "Veni Creator," which was introduced aiter the Restoration into the consecration and ordination services of the Church of England.

We mentions particularly the Advent hymm ("Lord, come anay"), part of the hymn "On Hearen," and (as "mote regular in metre, and in words more applicable to public devetion") the "Prayer for Charity" ("Full of mercy, full of love ").

The epoch of the Restoration producel in 1664 Samuel RestoraCrossman's Foung M1an's Calling, with a few "Divine tion Meditations" in verse attached to it; in 1668 John period Anstin's Derotions in the Ancient Way of Ofices, wilh psalms, hymns, and prayers for every day in the werk, and every hulyday in the year; and in 1681 hichard laanter's Purtical Fragments. In these bouks there are altngether scren or eight hymns, the whole or parts of which aro extrewely good:-Crussman's "New Jerusalem" ("Sweet place, sweet place alone "), one of the best of that class, and "My" life 's a shade, my days;" Austin's "Hark, my soul, how everything," "Fain would my thoughts ty up to Thee," "Lord, now the time returns," "Wake all my Lopes, lift up your eyes;" and Baxter's "My whole, though broken Leart, O Lord," and "Ye holy angels bright." Austin's Offices (he was a Roman Catholic) seem to have attracted moch attention. Theophilus Dorrington, in 1686, and afterwards Hickes, the non-juror, published variations of them buder the title of Reformed Devotions; and the Wesleys, in their carliest hymn-book, adopted hymns from them, with little alteration. These writers were followed by John Mason in 1683, and Thomas Shepherd in 1692,the former, a country clergyman, muel esteemed by Baxtes and other Nonconformists; the latter himself a Nonconformist, who finally emigrated to America. Between these two men there was a close alliance, Shepherd's Penitential Cries being published as an addition to the Spiritual Songs of Mason. Their hymins came into early use in several Nonconformist congregations; but, with the exception of one by Mason ("There is a streau which issues forth"), they are not snitable for poblic singing. In those of Mason there is often a very fine vein of poetry; and later authors have, by extracts or centoes from different parts of his works (where they were not disfigured by his general quaintness), constructed several hymos of more than average excellence.

Three other eminent names of the 17 th century remain to be mentioned, John Dryden, Bishop Ken, and Bishop Simon latrick; with which may be associated that of Aldison, though he wrote in the lsth century.

Dryden's translation of "Veni Creator" (a cold and Dryiten. laboured performance) is to be met with in many hymu. books. Abrilgments of Ken's Morning and Evening ǐen Ilymos are in all. These, with the Midnight IIynm (not inferior to them), first appeared in 1697, appended to tho third edition of tho author's Manual of Prayers for Hinchester Schutars. Petween these amd a large number of other ligmus (on tho Attributes of God, and for the listivals of the Church) publishat ly Bishop Lien after 1703 tho contrast is remakable. The universal acceptanco of the Morning and Evening Ilymens is che to their transparent simplieity, warm but not overstrained devotion, and extromely popmar style. Those afterwards published havo no such qualitics. They are naystical, Hurid, stiff, didactie, nod selilom pretical, and descrve the negicet into which they havo fallen. Dishop l'atrick's Patries hymns wore chicfly transhations from the latin, most of them from Irudentius. The best is a version of "Alleluia Alalee carmen." Of the five attributed to Addison, not Aldison mure than three are adajted to public singing ; one ("Tho surcions fimament on high") is a very perfect ant firished composition, taking rank amoner the best hymms in tho Enchish langunge. ${ }^{1}$
" 'ibe anthorship of this and of one other, "When nll Thy mercies, 0 my (ive." has been made a sulpiect of controicray, -boank claimed

From the preface to Simon Browne's hymns, published a 1720 , we learn that down to the time of Dr Watts tho undy hyinns known to bo "in common use, either in privato fanilies or in Christian assemblies," were those of Barton, Mason, and Shepherd, together with "an attempt to turn some of Mr Herbert's poems into common metre," and a few sacramental hymns by authors now forgotten, named Vincent, Boyse, aud (Joseph) Steanett. Of the 1410 authors of origioal British hymns enumerated in Mr Sedgwick's ritalogue, published in 1863, 1213 are of later date than $1 ; 07$; and, if. any correct equmeration could be made of the total 'oumber of hymns of all kinds published in Great Britain before and after that date, the proportion subseglisut to 1707 would be very much larger.

Tho Eaglish Independents, as represented by Dr Watts, hare a just claim to be considered the real founders of modern English hymody. Watts was tho first to underatand the nature of the want, and, by the publication of his Hymins in 1707-1709, add Psalms (not translations, but hymns founded on psalms) in 1719. he led the way in providing for it. His immediate followers were Simon Browno and Doddridge. Later in the 18th century, Hart, Gibbons, Grigg, and Mrs Barbauld (the tro first Independents, the two last Presbyterians), and Miss Steele, Medley, Samuel Steanett, Ryland, Beldome, and Swaine (all Baptists), succeeded to them.

Among these writers (most of whom produced some hymns of merit, and several are extremely roluminous), Watts and Doddridge are preemineut. it has been the fashion with some to disparage Watts, as if he had never risen above the level of his Hymns for Little Children. No doubt his taste is often faulty, and his style very unequal, but, loeking to the good, and disregarding the large quantity of inferior matter, it is probable that more hymns which approach to a very high standard of escellence, and are at the same time suitable for congregational use, may be fornd in Lis works than in those of any other English writer. Such are "When I survey the wondrous cross," "Jesus shill reign where'er the sun" (and also another adaptation of the same 22d Psalm), "Before Jehovah's awful throne" (which first line, Lowever, is not his, but Wesley's), "Joy to the world, the Lord is come," "My soul, тepeat His praise," " Why do we mourn departing friends," "There is a land of puro delight," "Oar God, our help in ages part," "Up to the hills I lift mine eyes," and many more. It is true that in some of these cases dross is fouud in the original peems mixed with gold; but the process of separation, by selection without change, is not difficult. As long as pure nervous Enghsh, onaffected fervour, strong simplicity, and liquid yet manly sweetness are adnitted to be charactersties of a good bymn, warks such as these nust command admeration
Doddridge is, generallj; much more laboured and artificial, but his place also as a hymn-writer ought to be determined, not by his failures, but by his successes, of

[^111]which the nunber is not inconsiderable. In his better works he is distinguished by a graceful and pointed, sometimes even a noble sfyle. His "Hark, the glad sound, the Saviour comes" (which is, indeed, his masterpiece). is as swect, rigorous, and perfect a composition as can anywhere be found. Two other hymns, "How gentle God's commands," and that which, in a form stightly varied, became the " O Gud of Bethel, by whuse hand," of the Scottish "Paraphrases," well represent his softer manner.

Of the other followers in the school of Watts, Miss Steele Miss (1780) is the most popular and perhaps the best. Her steele hymn beginning "Far from these narrow scenes of night" deserves high praise, even by the side of other good performances on the same subject.

The influence of Watts was felt in Scutlond, an: among Ralph the first whom it reached there was Ralph Erskine. This Erkine seems to hare been after the publication of Erskine's Goavel Sonuets, which appeared in 1732, five years before ho joined his brother Ebenezer in the Secession Church. The Gospel Somnets becane (as some have said) a "people's classic"; but there is in them very little which belongs to the category of hymnody. More than ninetcen-tnentieths of this very curious book are oceupied with what are, in fact, theological treatises and catechisms, mystical meditations on Clrist as a Bridegroom or Husband, and spiritual enigmas, paradoxes, and antithetical conecits, versifid, it is true, but of a quality of which such lines as-

> 'Faith 's certsin by fiducial acts,
> Sense by its ovidential facts,",
may be taken as a sample. The grains of poetry seattered through this largo mass of Calvinistic divinity are very few ; yet in one short passage of seven stanzas (" O send me down a draught of love "), the fire burns with a bright wess so remarkable as to justify a strong feeling of regret that the gift which this writer evidently had in him was not more often cultivated. Another passage, not so well sustained, but of considerable beauty (part of the last piece under the title "The Belieser's Soliloquy"), became afterwards, in the hands of Berridge, the foundation of a very striking hymu ("O happy saints, who walk in light").

After his secession, Ralph Erskine published two paraphrases of the "Song of Sols,mon," and a number of other "Scripture songs," paraphrased, in like manver, from the Old and New Testaments. In these the influence of Watts becamo very appa;ent, not only by a change in the writer's general style, but by the direct appropriation of no small quantity of mitter from Dr Watts's hymes, with variations which were not always improvements. His paraphrases of 1 Cor. i. 24, Gal. vi. 14, IIeb. vi. 17-19, Rev. v 11 , 12, vii. 10-17, and xii. $7-12$ are little else than Withs transformed. One of these (Rev. vii. 10-17) is interesting as a variation and improvenent, intermediate between the original and the form which it ultimately assumed as the Gcith "Paraphrase" of the Church of Scotland, of Watts's "What happy men or angels these," and "These glorions minds, how bright they shine." No one can compare it with its ultimate product, "IIow bright theso glorions spirits shane." withont perceiving that Cameron followal Erskine, and only added finish and grace to his work,both excelling Watts, in this instance, in simpheity as well as in conciseness.

Of the contributions to the nuthorizel " Paraphrases " Scotish (with the settloment of which committecs of the (ieneral bian: Assemily of the Church of Scotland were occupied from: thises 1745 or earlier till 1781), the most notermorthy thesides the two alrealy mentinnell) were those of John Marism and those clamed fur Minatel bruce. The obligations if these "Paraphrases" to Vreglish hymmoly, alreaty trace in some instanese (to which may be added fle nilnptimn Grum Adison of thace unt of the live "hymas" if pemad.
to them), are perceptiblo in the vividness ana Force with which these writers, while adhering with a severe simplicity to the sense of the passages of Scripture which they undertook to render, fulfilled the conception of a good original hymn. Morrison's "The race that long in darkness pined" and "Come, let us to the Lord our God," and Bruce"s "Where high the heavenly temple atands" (if this was really his), are well entitled to that praise. The advocates of Bruce in the controversy, not yet closed, as to the noems said to have been entrusted by him to John Logan, and published by Logan in his own name, also claim for him the credit of having varied the paraphrase " Behold, the mountain of the Lord," from ite original form, as printed by the committee of the General Assembly in 1745 , by seme excel lent touches.

Attention must now be directed to the hymns produced by the "Methodist" movement, which began about 1738, and which afterwards became divided, between those esteemed Arminian, under John Wesley, those who adhered to the Moravians, when the original alliance between that jody and the founders of Methodism was dissolved, and he Calvinists, of whom Whitfield (bimself no poet) was the .eader, and Selina, countess of Huntingdon, the patroness. Each of these sections had its own hymn-rriters, some of whom did, and others did not, secede from the Church of England. The Wesleyans had Charles Wesley, Seagrave, Olivers, and Bakewell; the Morarians, Cennick and Hammond (with whom, perhaps, may be classed John Byrem, who imbibed the mystical ideas of some of the German schools) ; the Calvinists, Toplady, Berridge, William Williams, Madan, Batty, Haweis, Rowland Hill, John Newton, and Cowper.

Among all these mriters, the palm undoubtedly belongs to Charles Wesley. In the first volume of hymns published by the two brethers are several good translations from the German, believed to bo by Joha. Wesley, who, although he tranelated and adapted, is not supposed to have written any original hymns; and the influence of German hymoody, particularly of the works of Paul Gerhardt, Schefler, Tersteegen, and Zinzendorf, may be traced in a large proportion of Charles Wesley's works. He is more subjective and meditative than Watls and his school; there is a Iidactic turn, even in his most objectivo pieces (as, for example, in his Christmas and Easter hymns) ; most of his works are supplicatery, and his faults are connected with the same habit of mind. He is apt to repeat the same thoughts, and to lose ferce by redundancy-be runs sometimes even to a tedious length; his hymas are not always symmetrically constructed, or well balanced and finished off. But he has great truth, depth, and variety of feeling; Lis diction is manly, and always to the point; never florid, though sometimes passionate and not freo from exaggeration ; often vivid and pieturesque. Of his epirited atyle \&isro are few better examples than "O for a thousand tonguos to sing," "Blow ye the trumpet, blow," "Rejoice, the Lord is King," and "Come, let us join our friends theve;" of his mure tonder vein, "Happy sonl, thy days tro ended;" and of his fervid contemplative style (without zoing beyond hymne fit for general use), "O Thou who ? emest from above," "Forth in thy name, O Lord, I go," End "Eternal Beam of Light Divine." With thoso whoso taste is for hymns in which warm religions feelings are Tramily and domonstratively expressod, "Jesus, lover of may scial," is as popular as any of these.
Ohvar. Of the ether Wesleyan hymn-writers, Olivers (originally a Welsh shoemaker, afterwards a preacher) is the most remarkalle. He is the author of only two works, both odes, in a stately tnetre, and from their length unfit for congregational singing, but ono of them, "The God of Abralan praise," an erle of singular power and beauty.

The Moravian Methodists produced few hynins now Cennick available for general use. The best are Cennick's "Children of the heavenly King," and Hammond's "Awake and sing Hamthe song of Moses and the Lamb," the former of which mond. (abridged), and the latter as varied by Madan, are found in many hymn-books, and are deservedly esteemed. Byrom, Byrom whose name we have thought it convenient to connect with these, theugh he did not belong to the Moravian community, was the author of a Christmas hymu ("Christians awake, salute the happy morn") which enjoys great popu larity in the county (Lancashire) of which he was a native ; and also of a shert subjective hymn, very fine both in feel. ing and in expression, "My epirit longeth for Thee within my troubled breast."

The contributions of the Calvinietic Methodists to English Tcplady. hymnody are of greater extent and value. Few writers of hymos had higher gifts than Augustus Montague Toplady, author of "Rock of Agee," by some esteemed the finest in' the English language. He was a men of ardent temperament, enthusiastic zeal, strong convictions, and great energy of character. "He had," saya one of his biographers, "the courage of a lion, but his frame was brittle as glass." Between him and John Wesley there was a vielent opposition of opinion, and much acrimonieus controversy; but the same fervour and zeal which made him an intemperate theologian gave warmth, richness, and spirituality to his hymns. In seme of them (partieularly those which, like "Deathless principle, arise," are meditations after the German manner, and net without direet obligation to Cerman originals) the setting is somewhat too artificial ; but his art is never inconsistent with a genuine flow of real feeling. Others (e.g., "When languor and disease invade," and "Your harps, ye trembling saints") fail to sustain to the end the beauty with which they began, and would have been better for abridgment. But in all these, and in most of his other works, there is great force and eweetness, both of thought and language, and an easy and barmonious versifcation.

Berridge, Williams, and Rowland Hill (all men remark- Berridgo, able for eccentricity, activity, and the devotion of their Williams lives to the special werk of missionary preaching), though not the authore of many good hymns, composed, or adapted from earlier compositions, some of great merit. One of Berridge, adapted from Erskine, has been alresdy mentionod; another, sdapted from Watts, is "Jesus, cast a look on me." Williams, a Welshman (who wrote "Guide me, O Thou great Jehovah "), was especially an apostle of Calvinistic Methedism in his own country, and his hymns are still much used in the principality. Romland Hill wrote the popular hymn beginning "Esalted high at Gud's. right hand."
If, however, tho number as well as the quality of goed Cowve. bymns available for general use is to bo regarded, the aud authors of tho "Olney Hymns" are entitled to bo placed Newton at the head of all the writers of this Calvinistic school. The greater number of tho Olnes IIymns are, no doubt, homely and didactic ; but to the best of them (and they art no inconsiderable proportion) the tendernesa of Cowper and the manliness of Newton give the interest of contrast, as well ns that of sustained realits. If Nemton carried to some excess the sound principlo laid down by him, that "perspicuity, simplicity, and easo should be chiefly altended to, and the imagery and colouring of poetry, if admitted at all, should be indulged very sparingly and with groat judgmont," if he is often dry and celloquial, he rises at other times into "soul-animating atrains," such as "Clorious things of thee are spoken, Zion, city of our Ged;" and sometimes (as in "Approach, my soul, the mercy seat") rivals Cowper bimself in depth of feeling. Cowper's Chymns in thie book are, almust without oxception, worthy

If his name. Among them are "Hark, my soul, it is the ,ord," "There is a fountain filled with blood," "Far from the world, O Lord, I lee," "God moves in a mysterious way," and "Sometimes a light surprises." Some, perhaps, even of these, and others of equal excellence (such as "O for a closer walk with God"), speak the language of a special experience, which, in Cowper's case, was ony toe real, but which could net (without a degree of unreality not desirable in exercises of public worship) be applied to themselves by all ordinary Christians.
an were not many indications of the tendency, which afterwards became manifest, to enlarge the boundaries of British byanody. A fer, indeed, of Bishop Heber'e hymns, and
f. Grant. those of Sir Robert Grant (which, theugh offending rather too much against John Newton's canon, are well kuown and pepular), appeared between 1811 and 1816, in the Christian
Buwder. Otserver. In John Bowdler's Remains, published soon after his death in 1815 , there are a few more of the same, perhaps too scholarlike, character. But the chief bymn-writers of that period were two clergymen of the Estabished Church -one in Ireland, Thomas Kelly, and the other in England, William Hurn-who both became Nonconfermists, and the Moravian poet, James Mentgomery, a native of Scetland.

Kelly was the son of an Irish judge, and in 1804 published a small velume of ninety-six hymne, which grew in successive editions till, in the last before his death in 1854, they amounted to 765 . There is (as might be expected) in this great number a large preponderance of the didactic and commenplace. But not a few very excellent hymns may be gathered from them. Simple and natural, without the vivacity and terseness of Watts or the severity of Newten, Kelly has some points in common with both those writers, and he is less subjective than most of the "Methodist" school. His hymns beginning "Lo! He comes, let all adore Him," and "Through the day Thy love hath spared us," have a rich melodious movement; and another, " We sing the praise of Him who died," is distinguished by a calm subdued power, rising gradually from a rather low to a very high key.
Gurn Hurn published in 1813 a volume of 370 hymns, which were increased after $1_{1 i s}$ secession to 420 . There is $l_{i t t l e}$ in them which deserves to be saved from oblivion; but onc at least, "There is a river deep and broed," may bear com. parison with the best of those which bave been produced upon the same (and it is rather a.favourite) theme.

The Psalms and Hymns of James Moutgomery were published in 1 S 22 and 1825, though written earlier. FIare cultivated and artistic than Kelly, he is less simple and natural. The number of his valuable contributions to our hymnals is, upon the whole, cousiderable; and, though it may be doubted whether he ever attains to the first rank, sll must acknowledge that he stands high in the second. His "Hail to the Lord's Aneinted," "Songs of praise the angels sang," and "Merey alone can meet my case" are ameng his most saccessful efforts

During this first quarter of the present century, the collections of miscellaneous hymns for cengreyational use, of which the example was set by the Wesicys, Whitfield, Toplady, and Lady Huntingdon, had greatly multiplied; and with them the practice (for which, indeed, too many precedents existed in the history of Latin and Gernan hymnedy) of every cellectur altering the compositions of other men witheut scruple, to suit his own doctrine or tiste; with the effect, too generally, of patcling and distifuring, spoiling, and emasculating tho works se altered, substituting neutral tints for natural colluring, and a dead for a living sense. In the Church of England, the use of these cellections had become frequent in churches and chapels (principally in cities and towns) where the senti.
meats of the clergy approximated to those of the Nonconformists. In rural parishes, when the elergy were not of the "Evangelical" scheol, they were generally held in disfaveur; for which (even if doctrinal preposscssions had not eutered into the question) the great want of taste and judgment often manifested in their compilation, and yerhaps alse the prevailing mediocrity of the bulk of the original compositions frou which most of them were derived, would be enough tu account. In addition to this, the idea that wo hymns ought to be used in any services of the Church of England (except prose anthems after the third Cellect), witheut express reyal or ecclesiastical autherity, continued down to that time largely to prevail among churchinen of the higher school.

Two publications, which appeared almest simultaneeusly iteres, in 1827,-Bishop Heber's Ilymns, with a few added by Dean Milman, and Keble's Christiun Year (not a hymn-book, but one from which several admirable hymne have been taken, and the well-spring of many etreams of thought and feeling by which good hymns have since been produced), -introduced a new epoch, breaking down the barrier 2 as to hymnedy which had till then existed between the different theological schools of the Church of England. In Jan: this movement Bishop Mant was also one of the first in cooperate. It seon received a great additional impulse fren: the increased attention which, abont the same time, begar. to be paid to ancient hymnody, and from the publication in 1833 of Bunsen's Gesangbuch. Ameng its earliest fruits was the Lyra Apostolica, containing hymns, sennets, and other devetional poems, most of them eriginally centributed by some of the leading authors of the Tracts for the Times to the "British Magaziue"; the finest of which is the pathetic "Lend, kindly Light, amid th' encircling gloom," by John Henry (now Cardinal) Newman, -well known, and uni Nenma versally admired. Frem that time bymine and hymn. writers rapidly multiplied in the Church of England, and in Scotland also, and their number is still on the increase. Nearly 600 authers, whose publications were later thas 1827, are enumerated in Mr Sedgwick's catalogue of 1863, and many more have ince appeared. Works, critical and historical, upon the subject of hymns, have also multiplied ; and collections for church use have become inmmerable, several of the various religious denominations, and many of the leading ecclesiastical and religious societies, having issued hymn-books of their own, in additics to those compiled fer particular dioceses, churches, and chapels, and to books (like IIymins Ancient and Modern) which have become popular witheat any sanction from authurity. In these more recent cellections, an improved standard of taste has become generally apparent. There ie a larger and more liberal admission of good hymns from all seurces than might have been expected from the jealousy, so often felt by churches, parties, and denominations, of everything which does not bear their own mint-mark; a considerable (perhaps toe large) use of translations, especially from the Lstin; sid an increased (though net as yet sufficient) scrupulousness about taupering with the text of other men's works. To mention all the authers of good hymms since the commencement of this new epoch would be impossible; but protably no names could be chosen mere fairly representative of ils characteristic merits, and perhaps also of some of its defect: than those of Josiah Conder and James Edmesten amorg English Noncenformists; Henry Francis Lyte and Charlote Elliutt among evangelicals in the Church of England John Mason Neale and Bishop Christopher Wordsworth among English cluarclumen of the higher हchool; and. in Scotland, Dr Heratius Bonar. Criticism, in this place, ef the works of these and other living or recent authars, or of those of IIeber and keble, which are on cuerybudy's lips, and in every. buly's bands, v. juld be at ence premature and superfiueus.
\qquad
 (

313

 I

H Y P - H Y P

What has been aid of British hymoedy doring the last fifty years is equally true of Americao. The American hymn-writers belong to the same achools, and have beeo 3 ffected by the same intuences. Some of them enjoy a past repration on both aides of the Atlantic. Among those best knowd arg Bishop Doane, Dr Muhlenberg, and Mr Thumas Hastings, and it 18 difficult to prase tuo higbly sucb works as the Cbristmas hgmo, "It came upon the tuldaight clear." by Mr Edmuad H. Sears; the Assension byma, "Thyu, who didst stoop below," by Mrs s E Milea, and two by Dr Ray Palmer, "My lath luoks ap to Thee, Thou Lamb of Calvary," and "Jesua, Tbou joy of loving herts," tha latter of which is the best among sereral gond English verswas of "Jesu, duicedo cordium"

Arong the axthonties of abich use has been made io the fore. joing scindac of Britesb Hymnody ara the Appeodue oo Scottisb Pasimndy to Mr Laing's edtioo of Bathie's Letlers and Joumals. Mr Hollaut's 「solmeqte of Bmuan (1s43), Mr Josiah Miller's oner Hymn, their Authors and Omuln 118651. Mr Jobn Ggidaby's Memurs of the Prinmpul Dymn wrilers, \&e $3 d$ od, 1861). the "Annotations" of the Rev Louis Coutier Biggs to Bymns Anurene and Nomern 1987), and the late Mr Dansel Sedgwick's Cmipre. henrive Index of Namas of omginal Authers of Hynind, \&c. 12 d ed., 1883). Mr Sedgurck's nams cannot be inestioued without apecial hoaour, as one of the most panataking, syrapathetic, add aceurate of al modern students of British bymas

7 Conclusion

Tha object ammed at 11 this article has been to trace the geaeral bistory of the prineipal schools of anctent and moderd bymnody, and especially the history of its use in
tho Christian church For this purpese it bas not been thought necessary to give any atcount of the hymos of Racme, Madame Guyon, and otbers, who can lardly be elassed with any sebuol, nor of the wurks of Casar Mialan and ather quite modern byma-writers of the Reformed churcbes in Switzerland and France.

On a general view of the whole subject, bjinaody is seen to have been a not inconsiderable factor in relymous worship. It has beea sometimes eadloyed to dis seminate and popularize particular peews, but its afirit and iofluence has been Catholic, on the whole. $f t$ has enbidied the fath, trust, and hope, and oo saiall part of the inward experience, of generation after geatratho of mea, in diany dufferent countries and ctimates of many different nationa, and is many varieties of circumetancee and cunditiun Coloured, indeed, by these differences, and also by the various modes in which the same truths have beev apprehended by different minds (and snmetimes rettectiag partial and amferfect conceptions ul them, and arrors with which they have been assuciated in particular cburches, timea, and places), its teatimnny is, devertheless, generally the same. It has upos it a atamp of genviaeness which cannot be mistaken. It beara witaess tu the force of a central attraction more powerful than all causes of differeoce, which binds together times ancient and modero. nations of varioua race and language, churchmes and soocun formists, churches reformed and uareformed; to a truefunda mental unity among guod Cbristians, and to a aubstantral ideutity in their moral and spiritual experience.
 aopher, and fioally une of the uartyrs of pagamam, was the daughter and disecple of the mathematieman und fithlo. sopher Theon,' and was born in Alcsandra nut earlier than 350 a b^{2}. After a long perind of study (furtly, perhaps. in Athens) she becance a daymushed fecturer on philusurby in her nallve town. and ultmately became the recognized head of the Neoldatanic soboot there (c. 400) The fascitation of ber great elonueace (whe is silid on more than une oceaston to have proveal an effective aducate in the courta of haw), und the charm of a rare modesty and bealitg, cumbiued with ber remarkathe in tellectual gitas to alliact to ber clasu roum a large number of dwoples. oversome uf ubum later inthence was verg great Aomin these was Syesus, who aftewards

 tion amb pevereace, are athl intant (Efp $10,15,16.33$ 80. 121. 153) In the cmbthets between the varmas elements of Alexudrian suciety which tow fiace aloorily sfter the acregunan ef Cyol to the patrarchata in 112. sbe tereme ingoly idontifiod as rounsertor and friend wh the protect Oreatos. and in the sane degrey mad. berself on ujuet of fuar and hatred th the Nitran monks and the fanatical Christon mots, by whum shem was ultunately murdered under eircumstamena of revolting barharity Lent, 115) Surrates has related han abo was torn from ber chariot, Imggot to the Corsaremm (then a Chriatian sharch), atrifped naked, cut to peres with oyster shells
 ninent among the netual perpetratora of the crome was one foter, a reader, but threre fermow hithe reason to dualit Thenduret's assorthon at r'yut's real complicty

Hypatia, accordang to sumba, wis the author of com-

[^112]mentaries oa the mathemafician Dophantus aod on the Contes of Apolloniua of Perga, and also of an astronomeal camo. Noae of these works bave conso dono to our haie, bot their utles, combined with expresstous in the lettery of Synenius, who coosulted ber atout the constructun of an astrolabe, wuild aeem tir indicate that she deroted herself specally to astronumg and nuectanics of her piblosophical upuniuns oothing ia known, except that they shared the general eclectic feqturea of the Alaxandran NicoPlatunisua A Latialetter to Cyral on bebsill if Nestorius, which bas sometimes been attrbuted to ber, is undoubtedly sputhons. It csa be read in Baluze Thestery of Hypatia apperars in a cuasiderably disgoised yet still recognizablo furm to the legend of St Cotberme in recorded in the komat Bremary (Nov 25), and stall mere fully in the Martyrologas (see Jamesoo, Sacred and Legendary Art, P 467 kg)
fite whef somice tor the little we krom atout Hypstas is the
 wheb Gitbon has characterized ns "cunoun and argmal," roust ho
 what foublful slateluent is male that she was the wife of ladonus the phulosepher she is the sulyect of an epagram by fialladas ia

 An anonynupts work ehtuted Hyph'ta. of the hiviry of a most Arabliful, mast whimbus, move learnod, and every way acempotashat tody, who was: iorn es purces in the clergy of Alexanidia by gratify the
 indeserterdly velutd samt ryril, whas pubhishad in foondoa in 1720. Tha hastory of Ilypmin has also kewa made the hasis of an attructive hisureal rematice ty Clarles Kidgaley (1853).
 was sun of (flamplus, of a noble family of the tribe Aspeis nod the deme Collytus. He was probably younger than Legurgas (born nhaut 396 a.e.) and older than Demosthenes (horu about 385 me e.). Maving atudied nuder Isocrates, lio Lugzan life as a writer of suceches for the courts, and in 360 me: he prosecuted Antuclos, a general charged wul, creasun ia Thrace From tho end of tho Sacred War, 346 .

324 b.c., Hyperides supported Denoathenes in the struggle against Macedon; but in the affair of Harpalus he was one of the ten unblic prosecutors of Demostluenes, and on the exile of his former leader be becamo the head of the patriotic party (see Demostaexes). He was the chicf promoter of the Lamian War against Antipater and Craterus. After the decisive defeat of Crannon, 322 b.c., Hyperides with the other orators demanded by Antipater was cendemued to death by the subdüed Athenians, but fled to Egina and thence into aanctuary in the temple of Demeter at Hermione. Antipater's emissaries dragged him ferth to be put to death at Athens. Hyperides was an ardent pursuer of "the beautiful," which in his time generally meant plessure and luxury. His temper was easy-geng and humorous; and hence, though in his derelopment of the periodic sentence he followed Iaccrates, the esscatial tendencies of his style are those of Lysias, whom he surpassed, hossocer, in the richness of his vocabulary and in the variety of bis powers. His diction was plain and forcible, though he occasionally indulged in long compeund words probably borrowed from the Middle Comedy, with which, and with the everyday life of his time, he was in full aympathy. His composition was aimple. He was specially distinguished for subtlety of expression, grace, and wit, as well as for tact in approaching his case and handling his eubject matter. Professor Jebb sums up the criticism of Longinus in the phrase-" Hyperides was the Sheridan of Athens." Of his lost apeeches we should perhaps regret most the $\Delta \eta \lambda a x o ́ s$, on the presidency of the Delian temple claimed by Athens and Delos, which was adjudged by the Ainphictyons to Athens.

The extant works of Hyperides are-1, Fragment of the axo.Aopia úzip nuxффpovos, Pro Lycophrone, delivered before 349 R.C., incidentally interesting as throwing light on the order of marriage processions and other details of Athenian life, and on the

 perfect (3 lochs classicus on eiagryetian); 3, fragments of tha
 portion of the λ doy $\langle\pi$ irdipos, Oratio Funcirus, over Leusthenes and his comrades who fell in the Lamian war, 322 ac 0 , siter Antiphilug's rictory over Leonnatus at Melitea. This s an elevated pancgric in the style of loccrates, but in in reation sad sentiment the best specimen we have of epidcictic oratory. Of the tplog ogue a portion is preverved by Stobxus only. The 31SS. are papyri-those of the first two speeches found by Joseph Arden, January 1847, hiat of tha third speech by A. C. Harris, 1847, of the last by the lev. 11 . Swbart, 1856, all at Thebes in Egypt. They arc among the oldest extant MSS., dating within the limits 300 B.C. and 300 A.D.

Principal Edifions-All the remaina, F. Blass, Lefpsic, 1869: Aoy. intrap and ©rig 'Fukev., J. C. Cobet, Leyden, 1877 ; Kara Δ mp. (with fassimzle of MS.), A. C. Marris, London, 1877 ; Kará $\Delta \eta \mu$., Professor Cburchil laabington, London, 13.50 ; Oraions jor Lyy. and for Euzen. (with facsimile of MS.) Id., Cambridge, 1953: The Funcral Oration, Jd., ib., 1859. See also Oratores Abteci, J. G. Batcer and I. Sauppe, 1850. Translations.-German, W. S. Teuflel. Stuttgart, IS65-90; French, Euren., 1860, Or. Fun., 1858, H. Camaux, Valenciennes.
Sen Egker in 3 fim. de C'Acad. des Inscript. ef Belles Letires, 1s70; W. Tiöbst In Newe Jahrb. f. elass. Philal., 1876 ; Herm. Hager in Curtiusis Gram. Stud., 1470: Joum. of Philology, Cambrldge, 18j2-73: Hably In Neue Jahrb. J. elass. Phiol, u Pedagog. $18: 2$: Protesmor R. C. Jebb, The Attic Orators (vol. il., ch.玉xit., Pp. 581-92), London, 1876: G. Hoehnecke, Demosshenes, Lykurgos, My. perdes, und ihr Zetatier, Bertin, 1874. There is a Russlan study by A. N. Schwarz, on tbe epech for Euxeñippus, published at Hoseow. 1975.
HYPERTROPIIY (from intip, over, and $\tau \rho o \phi \dot{\prime}$, nourishment), a term in medicine cmployed to designate an ninnormal increase in bulk ol one or mere of the organs or couponent tissues of the body. In its striet sense this tern can only be applied where the inerease affects the natursl textures of a part, and is not applicable where the enlargement is due to the presence of eome extrancous morbid irrmation. Hypertrop hy of a part may manifest itself either by simply an increase in the size of its constituents, or by this combined with an inerease in their number (hyperplasia). In many instances both are asquecisted.
The conditions giving rise to hypertrophy are the reverse of thoso already described ss prolucing itropuy (q.e.). They are coneisely stated by sir james laget as bcing
chiefly or only three, namely:-(1) the increased exerctso of a part in its healthy functions; (2) an increased accumulation in the blood of the particular materials which a part appropriates to its nutrition or io secretion; and (3) an increased afllux of healthy blood.
Illustrations are furnished of the first of these conditions by the high development of muscular tiasuc under hobitual active exercise ; of the secend in the case of obesity, which is an hypertrophy of the fatiy tissues, the elements of which are furnished by the blood ; and of the third in the eccasional overgrowth of hair in the neighbourbood of parts which are the seat of inilammation. Obviously therefore, in many instances, hypertrophy cannot be regarded as a deviation from bealth, but rather on the contrary as indicative of a high degree of nutrition and physical frower. Even in those cases where it is found associated with disease, it is often produced as a salutary effort of nature to compensate for ubstructions or other difficulties which have arisen in the system, and thus to ward off evil consequences. No better example of this can be seen than in the case of certain forms of heart disease, where from defect at some of the natural orifices of that organ the onward flow of the blood is interfered with, and would soon give rise to serious embarrassment to the elrculation, were it not that behind the seat of obstruction the heart gradually becomes hypertröphied, and thus acquires greater propelling power to overcome the resistance in front. Again, it has been noticed, in the case of certain double organs such as the kidneys, that when one has been destroyed by disease the other bas become hypertrophied to such a degree as enables it to discharge the runctions of both.

Hypertrophy may, bovever, in certain circumstane.s constitute a disease, as iu Goitre and Elephantiasts (q.u), and also in the case of certain tumours and growths (sach as cutaneous excreseences, fatty tunhours, mucous polypi, \&c.), which are simply enlargements of normal teatures. Hypertroply does not in all cases involve an increase in bulk; for, just as in atrophy there may be no diminution in the size of the affected organ, so in hypertrophy there may be no increase. This is apt to be the case where certain only of the elements of an organ undergo increase, while the others remain unaffected or are actually atrophied by the pressure of the hypertrophied tissue, as is secn in the disease known as cirrhosis of the tiver.

A apurius sort of hypertrophy is observed in the rare diseasa to which M. Duchenne has applied the name of pseudo-hypertrophic paralysis. This ailment, which appears to be confined to children, consists essentially of a pregressive loss of power acconspanicd with a remarkable eulargement of certain muscles or groups of nuscles, more rarely of the whole muscular system. This increase of bulk is, howerer, not a true bypertroply, but rather sn escessive development of connective tissue in the substance of the museles, the proper texture of which tends in consequence to undergo atrophy or degeneration. The sppearance presented by a child sulfering from this disease is striking. The sttitude and gait are remarkably ultered, the child atanding with shoulders thrown lack, small of the back dceply curved inwards, and legs wide apart, wble walking is accompanied with a peculiar swinging or rocking novement. The calves of the legs, the buttocks, the muscles of the back, and wecasionally other muscles, ere scen to be unduly colareed, and contrast strangely with the general fectlencss. The progress of the dicesso is tnarked by inereasing failure of lacomotory power, and utimately by conplete paralysis of the imbs. "The malady is little amenahle to treament, and, althongh often protonged for years, genvali:g lotes fatal W.fore the period of maturity.

ILYPOCHONDRIASIS (synonyms-the spleen, the vapours). As the name implies (from tò ímoxóvopov, тà imoxóvopta, the soft part of tho body immediotely under the χ óvopos or cartilage of the breast-bone), hypochondriasis and its symptoms were referred by the ancients, and indeed liy physicians down to the time of Cullen, to diseases or lerangements of one or more of the abdominal viscers. Cullen classified it amongst nervous diseases, and Falret more Iully described it as a morbid condition of the nervous system characterized by depression of feeling and false beliefs as to an inpaired state of the health. The subjects of hypochondriasis are for the most part inembers of families in which bereditary predisposition to degradation of the nervous system is strong, or those who have suffered from morbid influences affecting this system duriag the earlier years of life. It may be dependent on depressing disease afficting the general system, but muder such circumstances it is generally so complicated with the symptoms of hysteria as to render differentiation difficult (see Hysteria). Hypochondriasis is often banded down from one generation to snother in its individual form, but it is also not uufrequently to be met with in an individual as the solo manifestation in him of a family tendency to insauity. In its most common form it is manifested by simple false belier as to the state of the health, the intelleeit veing otherwise unaffected. Wo may instance the "vapourish" womsn or the "splenetic" as terns society has applied to its milder manifestations. Such persons are constantly asserting a weak state of bealth although no palpable cause can be discovered. In its more definite phases psin or uneasy sensations are referred by the patient to same particular region, gencrally the abdomen, the heart, or the head. That these are subjective is apparent from the fact that the general health is good: all the functions of the various systems are duly performed; the patient eats and sleeps well ; and, when any circumstarce temporarily overrides the false belief, he is bappy and coufortable. No appeal to the reason is of any avail, and the bypochondriac idea so domiaates his existence as to render him unable to perform the ordinary duties of life. In its inost aggravated form irypochondriasis anounts to actual insanity, delusions arising as to the oxistcace of living creatures in the intestines or brain, or to the effect that the body is materially changed, e.g., into glass, waod, \&c. (sec Insanity). The symptorns of this condition may be remittent; they may even disappear for years, and only reture on the adrent of some exciting cause. Suicide is occasionally committod in order to escape from the constant misery. As there is nothing to troat, medication is of no avail, and recovery can only be looked for ly placing the pratient under such morally lyygicnic conditions as may help to take his miul off himself. Nore gencrally he lives through the attack rather than is cured of it.
See Cullen, Cliwical Lectures, pp $39-57$ (London, 1777); Georget, De hit Thys. dh Syt Nitro, (laris, $181: 4$; linyulds, Systern of
 togy and Theraprutics (1567); Nicmeyer, Iractical Mcticine (187)).

IFYPOTITEC (IIypotheca), in Roman law, is the most advanced form of the contract of pledge. A specific thing may lo given absolutely to a creditor on the understandiog that it is to be given back when the creclitor's deht is paid; or the praperty in the thing may be assigucd to the erelitor while the deltor is allowed to renain in possession, the creditor as owner beinf able to take pressession if his delt is nut dischargel. Here wo have the kind of security koown as piledge and mortgage rospectively. In the hypotheca, the property does not pass to the creditur, nor whes he get possexsiont, but be accurires a preferential right to have his debt phid out of the hypotlaceated properly ; that is, he cau sell it and pay himself out of the troceculy,
or in default of a purchaser be can becume the owner himself. The name and the principle bave passed into the law of Scotland, which distinguishes between conventional hypothecs, as hottomry and respondentia, and tacit hypothecs cstablished by law. Of the latter the most im portant is the landlord's bypothec for rent (corresponding to distress in the law of England), which extends over the preduce of the land and the cattle and sheep fed on it, and over stock and horses used in husbandry. The law of agricultural hypothec bas long caused much discontent in Scotland; its operation was restricted by $30 \& 31$ Vict. c. 42 , and fally by 43 Vict. c. 12 it bas been enacted that the "landlord's right of hypothec for the rent of land, including the rent of any buildings thereon, exceeding two acres in extent, let for agriculture or pasture, shall cease and determine." As a set off the landlord is to have the ssme rights and remedies against a tenant when six months' rent or 'twelve months' rent is due and unpaid as be had formerly agoinst a tensant when twelve monthe' rent or two years' rent respectively was doe and unpaid.

HYRAX, a genus of diminutive plantigrsde mammals, the pasition of which in the mammalian eeries has, ewing to their apparcnt affinity with several widely different groups, given rise to considerable controversy. Approaching the hare in their external appearance and babits, the rhinoceros in their molar teeth and much of their skeleton, the hippoprotsmus in the form of their lower incisors, and the sloth in the great number of their dorsal vertebre, they were at first classed with the rodents, and afterwards, by Cuvier, with the pachyderms, where they remained until, on the breaking up of that most hetcrogeneous of groups,

Professor Huxley established tho order Hyracoidea for their reception. Thicy ore small, rablit-like creatures, the largest not exceoding 18 inches in length, covered with a thick soft fur with numerous brislles interspersed. Their cars and legs are short; the tail is renresented only by a small tuberelo; and their toes, of which they bave foun on each foot in front and threc belhind, are, with the excep. tion of the inmer one on cach hind foot, provided with tlat hoof like mails. They lave twentyone pairs of ribs-a larger number than is pessessed by any other matumals oxcept the sloths, which have twenty-tbrec pairs. They are grevarious animals, dwelling in colonics in the crevices of rocks and in the caverns which elomen in tho hilly regions they frequent, and feeding on sruss and other herrage, on roots, fruits, and the tenfler shoots of plants. There are, according to Dr Gray; Hirtecus species of Hlymar; many of which are, however, regaritell ly pother autheritics as merely varicties. They are all confincal to tho African continent with the exception of tho Syrian hyrax or daman (/lyrax syriacus), whose range cextents from Alyyssinia into Arabia,

Syria, and Palestine. This speeies is generally regarded es the "shaphan," rendered "sonics" in the English Bible, which "aro but a feeble folk, yet make their houses in the rocks " (Prov. xxx. 26). They measure about a foot in length and 11 inches in beight, and are of a greyish-brown colour above, fulvous on the tlanks, and white beneath. They are active little ereatures, darting in and out of their rocky shelters with remarkable agility. Bruce, who observed their habits in Abyssinia, states that large numbers of them wero frequently to be seen sitting on great stones at the mouths of eaves, basking in the sunshine, or enjoying the coolness of the summer evening. Of timid and gentle disposition, they can be readily tamen, althuugh when roughly handed at first they are said to bite severely. The Cape hyras (IIyrax capensis) or "badger" (dasse; Dutch, Das, ©icrman, Dachs) is the largest known speceies, measuring about 18 inches in tength. It frequents situations similar to those occupled by the Syrian form, and is eseeedingly shy, peeping out of its rocky biding places with a circumspection whieh is by no means uncalled for, ns it forms a fovounte foud of hous, byamas, and the larger birds of prey. The latter, it is said, may often be seen perehed, for hours, like statues on the rneks, watching their oppor. tunity to dart apon the luckless "badger." To guard against such surprises, they are said, when feeding, to place one of their number, usunlly an old mate, as a sentuel, whose shrill prolonged ery gives timely notiee of approaching danger. Like the "eomes," they are readily tamed, and seem capable of considerable attackment, although ther matural tumidity and suspicion cause them to hide themselves on the appearance of a stranger. There are two spectes of hyras, one in the south and the other in the west of Africa, which aro said to be arboreal in their habits, making their abode in the holes of trees. Dr Gray has placed these in a separate genus-Dendrohyrax. The island of Fernando Po possesses a species peculiar to itself, while the genus is entirely wanting in Madagasear. No fossil remains of the byrax bave yet been found.
hyRCANIA, a province of Asia, sonth of the Caspian Sea, and bounded on the E. by the river Oxus. It was, however, a wide aud indefinite tract, the extent of which is variously conceived. Its chief city is called Tape by Strabo, Zadracarta by Arrian. The latter is cvidently the same as Carta, mentioned by Strabo as an important cits. Some parts of the country were fertile, but the general idea prevalent among the elassical writers is that it was a rude region of forests full of dangerous wild animals. Little is known of the history of the country, as it seldom came into connexinn with the better known raees. Xenophon says it was subdued by the Assyrinns; Curtius says that 6000 Hyreanians were in the army of the last Persian king Darius. Two towns named liyreania are mentioned, one in the country of IIyrcania, the other in Lydia. The latter is said to have derived its name from a colony of Hytcanians, transported thither by the Persinus.

HYRCANUS ('Ypкarós), a Greck surname, of unknown origin, home by several Jews of the Maceabean period.
dons: Hrranus I., high priest of the Jews from 135 to 10.7 rec., was the youngest sun of Simm Maccaberth. In 1.37 rec. he, along with his brother Judas, commanded tho force which refeltell the invasion of dudea led hy Cemblebens the general of Antiochus Vill. (Sidetes). On the ussassination of his father and two chder brothers by Tolomy, governor of Jericho, his hother-indaw, in February 135, he sueceeded to the high priesthoal and the supreme anthority in Judaa Whife still engaged in the athagyde wihh Peulemy, he was attacked by Antiochus with a large army (1:3), and compelied to shint himself up, in Jerusalem; after a severe sicge peace was at last secureal
only on condition of a Jewish disarmament, and the pay. ment of an indemnity and an annual tribute, for which hostages were taken. In 129 le accompanied Antiochus as a vassal prinee on his ill-fated Parthian expedition; returning, however, to Judea before winter, he escaped the final disaster. By the judicious mission of an embiassy to Rome he now obtained confirmation of the alliance which his father had previously male with the growing western power; at the same time he availed himself of the weakened state of the Syrim munarely under Demetrius II. tu overrun Samaria, and also to invade Idumea, which he completely subdued, compelling its inhabitants to necews circumeision and neeept the Jewish faith. After a long period of rest he directed his arms aganst the town of Samaria, which, in spite of the intervention of Antiochus, Lis sons Antigonus and Aristobulus ultimately took, and by his orders razed to the ground (c. 109 e.c.). The died in 105, and was suceeeded by Aristolutus, the eldest of his five sons. The external policy of Hyreanus was marked by considerable energy and tact, and, aided as it was by favouring circunstances, was so successful as to leave the Jewish nation in a position of independence and of influence such ns it had not known since the days of Solomon. During its later years bis reign was much disturbed, howeser, by tho contentions for ascendency which arose between the Pharisees and Sadducecs, the two rival sects or parties which then for the first time (under those names at least) came into prominence. Josephus has related the eurious circumstances under which be ultimately transferred his personal support from the former to the latter.

Jome llyrcanus II., high priest from 78 to 40 b.c., was the eldest son of Alexander Jameus by his wife Alexandra, and was thus a grandson of the preceding. When his father died in 78, he was by his mother forthwith appointel high priest, and on ber death in 69 he claimed the suceession to the supreme civil authority also; Lut, after a brief and troubled reign of three months, he was compelled to aldit. eate both kingly and priestly dignities in favour of his more energetie and ambitious younger brother Aristoouns II. In 63 it suited the policy of Pompey that he should be restored to the high priesthood, with some semblance ol supreme command, hat of much of this semblance even the was soun again deprived by the arrangement of the proconsul Gabinius, accorling to which Palestine was in 57 18.c. divided into five seprarate circles (σ ivodoc, σ vidorpa). For services rendered to Ciesar after the battle of lharsalia, he was again rewarded with the sovereignty (tppataoin toi
 buwever, being at the same time made prochator of Judica. In 41 B.c. he was practically superseded ly Antony's appointment of Herod and Phasael to be tetrarehe of Judia ; and in the following year he was taken prisoncr by the Parthians, deprived of lisears that he might we permanemtly disqualified for pristly oflice, and carrinl to Dabyton. Te was permitted in 33 bec. to return to derusalcm, where on a charge of treasonable currespondence with Dalchus, king of Arabia, he was put to death in 30 e.c.

See Joscphus (Ant, xiii. 8-10; Av 5-13; Dilt. Juet, i. 2 i. 8-13), "pon whose natratime all the mudern accounts, as, c.y., theso Ly Ewahi, Gratz, and Hatzig m Wher Masturies, ate hasal.

HYSSOP (Hyssopus officumetis), a garden herb helonging to the natural order Letelinta, cultivated for use in domestic medicine. It is a small peremial flant ahout 2 feet high, with slender, quadrangular, woody stems narrowly elliptical, puinted, entire, duted leaves, atout 1 inch long and: inch wide, growing in luirs on the stom; and long terminal, erect, balt verticillate, leafy sukes of small violet. blue thowers, whichare m hasom from June to September. Two varietics of the phant oecon mardens, one baving variegated leaves and the wher reduish thowers. The
leaves have a warm, aromatic, bitter tasie, and are believed to owe their properties to a volatile oil which is present in the propertion of $\frac{1}{4}$ to $\frac{1}{2}$ per cent. Hyssep is a native of the south of Europe, its range extending eastward to Siberia; it was introduced into England by Gerard in the year I596. A strong tea made of the leaves, and owectened with honey, was formerly used in pulmonary and catarrbal affections, and externally as an application to bruises and indolent swellings.
The Hedge Hyssep (Gratiola officinalis) belongs to the natural order Scrophulariacece, and is a native of marshy lands in the soutb of Enrope, whence it was introduced into Britain nearly 300 years ago. Like Hyssopus officinalis, it has smooth opposite entire leaves, but the stems are cylindrical, the leayes twice the size, and the flowers solitary in the axils of the leaves and having a yellowishred veined tube and bluish-white limb, while the capsules are oval and many-seeded. The herb has a bitter, nanseens taste, but is almost odourless. In small quantities it acts as a purgative, diurelic, snd emetic when taken internally. It was formerly official in the Edinburgh Pharmacopueia, being esteemed as a remedy for dropsical and scrofulens affections. It has also been given in the form of wine for hypochondriasis. It is said to have formed the basis of a celebtated nestrum fer gout, called Eau médicinale, and in former times was called Gratia Dei, on account of its medicinal preperties. When growing in abandance, as it does in some damp pastures in Switzerland, it becemes dangerous to cattle. G. perwiana is known to possess similar properties.
Tho hyssop ('ezob) of Scripture (Ex. xii 22; Lev. xiv. 4, 6 ; Numb. xix. 6,$18 ; 1$ Kings v. 13 (iv. 33); Ps. li. 9 (7) ; John xix. 29), a wall-growiag phant adapted for saprinkliug purposes, has loug heen the aubject of learued disputation, the only point on which all have agreed being that it is not to be identifieal with the $H y s$ ssopus affcinatis, which is not a native of Palestine. No less than righteen ptants have beco supposed by various, anthors to answer the conditious, and Celsius bas devotod moro than forty pages to the diseussion of their sevoral claims. By Tristram (Oxford Bible for Teachers, 1880) and others the caper plant (Capparis syinosa) is supposed to be meant ; but, apart from other dificulties, this identification is opon to tho objection that the caper bcems to be, at least in one passago (Eccl. xii. 5), other wise designated ('abiy yôrah). Thenius (oa 1 Kings r . 13) suggests Orthotrichum saxatile. Tho most probable opinion would seem to be that found in Maimonides and many later writers, according to which the Hebrew 'ceob is to be identified with the Arabic satatar, now understood to be Sittureja Thymus, a plant of very frequent occurrenco in Syria and Palestine, with which Thymus Serpyllum, or Wild Thyme, and Satureja Thymbra are closely allied. Its stuell, taste, and mediciual properties are similar to those of H. offeinalis. In Aforocco the siatar of the Arahs is Orignonum compactum, Benth. ; and it appears prolable, as suggested by Mr W. Carruthers, that seeveral plants of the genera Thymus, Origanum, and others nearly allied in form and habit, and found ia similar localities, were used under the namo of hyssol.
Sue Gerard, Herrall, p. 578-582; Stillé and Maisch, Netional Dis. pensatory, p. 7512; Carruthers, in Bible Educator, vol. iv. p. 226-27; Theroson, The Lend and the Book, P. 112; J. Smith, Bible Plants, p. 214; Furrer, art. "Ysop," io Scheokel's Sibcl-Lexicon, vol. v.

IIYSTERIA, a term applied to a disordered condition of the nerveus system, the anatemical seat and natne of which are unknown to medical science, but of which the symptome consist in well-marked and very varied disturbances of nervo function. By the ancients and by modern physicians down to tho time of Sydenham its symptoms were supposell to be duotadisturbances of the uterus (instipa, whence the name), but it is now universally recognized that they are dependent on a variety of causes with which that organ has no neces sary connexion. The causes of hysteria may be divided into tho predisposing, such as hereditary predisposition to norvons degeneration, sex, age, occupation, and national inlioayncracy; and the immediate, such as mental and physic th exhaustion, fright, and other emotional influcnces, Frognanes, the pherperal condition, diseases of the aterus
and its appendages, and the depressing infuence of injury or general disease. Each and all of these causes may act and react in any given case; in fact, it is nearly alway impessible to assign a particolar cause in a particulat instance. Perhaps, taken over all, hereditary predisposition to nerve-instability may be asserted as the most prolific cause. It is often noticed in families in which this insta bility exists that hysteria presents itself to a greater or less extent in a considerable number of its members as the sole indication of the diathesis. As regards age the condition is apt to appear at the evelutional periods of life- puberty, pregnancy, and the climacteric-without any further assign able canse escept that frst spoken of. It is very frequent in girls between the ages of twelve and fifteen, and in women on the cessation of the menstrual How. It ie much more common in the female than the male,-in the proper tion of 20 to 1 ,-which circumstance points to the impertant influence of the uterus in causation, but defnitely places hysteria in the category of nerveus diseases. It has been asserted that certain races are more liable to the disease than others-that for instance the Latins and the Slapa are more prone to it than other inhabitants of Europe. This, however, is deubtful; in the more excitable races we find on the whele a greater, tendency to hysterical excitement, in those whose natienal characteristic is calm and impassionatercess a tendency to hysterical depression ; and it is probable that the greater prominence of the symptoms in the former may have masked the more subtle yet not less important manifestations of the disease presented in the latter. Occupation, or be it rather said want of occupation, is a prolific cause. This is noticeable in all classes of eociely: in the higher the idle lusurious woman concentrates herself upon herself, and the frivolity of her existence helps to aggravate the evil which may be innate in ber censtitution; in the lower classes the disease is net so prevalcat except among women who live a vicious and excited life. Tho experience of prison authorities shows not only that women of the criminal classes are individually liable to the hysterical paroxysm, but that it is very spt to assume an epidemic form amongst them. There is ne proof that any particular legitimate occupation tends toits development. The depressing effects of almost any disease may be directly productive of hystria, more especislly those accompanied by pain and loss of sleep. There can be little denbt, hewerer, that disease of the uterus and its appendages has a greater tendency towards its production than disease of any other system. At the same time, hysteria seems to follow more frequently on tho less severe than on the graver forms of uterine complaints.
In point of duration hysteria may be transient or chronic. In the first phase it consists of an explosion of emotionalism, generally tho result of mental oxcitement, to which the popular term "hysterics". is applied. Such atlacks are gcnerally precedod and accompnaied by a sensation of a lump in the throat (the "globus hystcricus"), a flew of limpid urine, violent ontbursts of alternate laughter and weeping, and sometimes even convulsion. In the chrenic condition we furd au extraerdinary complexic of symptoms, both physical and meutal. These are contivuous, constituting the "status hystericus," and paroxysma.. The physical symploms are estremely diverse: thero may bo a pscudoparalysis, the patient lying palsied wholly or partially, or there may be rigidity of one or mere linibs, in either case the symptom persisting for weeks or months or even years; there may be flushing or pallor of the face, an increase or decrease of temperature. Terversions of sensation are frequent symptoms ; these consist in complaint of pain, generally of a local character: a common instance is the scasation of a nail being driven through the vertes of tho head ("clavus hystericus"), or of increased sensibility of
rarcuular parts. On the other nand loss of seasation may be complained of, or, as occasionally happens, hyperesthesia and anmsthesia may be stated by an individual to exist in different parta of the body. The region of the spine is a very frequeut seat.of hysterical pain. Pain, more especially when referred to a joiat, is apt to be accompanicd by swelling. Botb the moter and the sensory symptoms are in every iostance out of all preportion to any assignable cause, and for the most part disappear suddenly, leaving the patient in perfect health. It is to such cases that the wonderful cures effected by quacks and charlatans may be referred. The mental symptoms have not the same tendency to pass away suddenly. They may be spoken of as interparoxysmal and parosysmal. The chicf charucteristics of the former are extreme erootionalism combined with a curious obstructiveutss, a desire to be an object of importance, and a constant craving for sympathy. This is sought to be procured at an immense sacrifice of personal comfort, and to this may be refarred a very large proportion of the motor and seasory symptems above spoken of. The parosysmal condition does not matcrially differ from the transient bysteric attack, except that conculsion is more common and mors violent. The special senses of taste, aight, and hearing may be affected, sometimes temporarily obliterated. Hysteria may pass into absolute insanity.

Treatment consists in attention to the general bealth, and to sucb special symptons as may arise, notably those connected with the function of menstruation. The submission of the patient to the best moral influences is of no mean importance. But it may be admitted that the results are generally unsatisfactery so far as medication is concerned, as the cure is usually spnntageons or dependent on some sudden meutal influence.
See Ziemssen's Cyclopatia of the Pratice of Medicine, vol xiv Reynolds's System of medicinc, vol. ii.
(J. B. T)

HYST'ERO EPILEPSY, a nervous disease of women, occurring during the fertile period of life, first observed and described by Professer Charcot-of Paris. As yet it has becn rarely observed in Great Britain. Its phenomena are very extraordinary, and serious doubts have been entertained by eminent nuthorities as to their substantiality, it being asserted that they are merely manifestations of ordinary hysteria, iotensified by a process of education. But these doubts are being rapidly dissipated by the observations of competent observers. The diseass is of a parosysmal nature, and its symptoms may be divided into inter-parosysmal and parosysmal. The former consist of extreme sensitivencss over the region of one or (less frequently) both ovaries, and loss of tactile sensibility and complete insensibility to pain in one lateral half of the body, the side on which ovarian tenderness exists. Sight is sumetimes implicated, manifested by a peculiar forui of colour-blindness. Perbaps the most remarkable pheno. menon preseated in this disease is that all these impairments of aensation may be shifted to t^{\prime}, other side of the body on the application of magnets and plates of metal:, the originally affected side regaining scusibility so long as the opposite one is insensible. In some cases the symptoms are permanently bilateral. The paroxysm consists in violent general convulsion, epileptiform in character, which is at once checked by pressure over the tender ovary. The mental faculties are generally weakened, and the discase is for the mast part incurable. (Sce Cbarcot, Lectures on Diseases of the Si-rvons System, New Sydenham Soc., 1877.)

HYTHE, a municipal and parliamentary bnrough of Kent, England, and one of the original Cinque Purts, is heautifully situated at the fuot of a steep clif near the istern extremity of Romney Marsb, about half a mile .om the ses, on a branch line of the South-Eastern Iiail. ay. 66 miles E.S.E of London, 16 S.W. of Dover, and

5 W . of Fulkestuue. ac consists, riocipaty of one long handsome atrect running parallel with the shore. On the slope of the hill above the town stands the fine old church of St Leenard, partly Late Norman and partly Early Eoglish, with a tower rebuilt about 1750 . In a vault under the chancel there is a collection of human akulls and bones supposed to be the remains of ancient Britons and Saxons slain in a battle which took place near Hyths in 456. Of late the church has been uadergoing restoration at a considerable cost, and it is proposed to complete the chancel, which was originally left unfinished. At Lympns there are the remains of a Roman castrum, and excavations made some years ago brought to light many interesting remains of the old Roman town, the Portus Lemanus. The site of the castrum is now occupied by the fine old castellated mansion of Studfall Castle, at one time the residence of the archdeacons of Canterbury, but at pre. sent used as a farm house. Norman pertions of the Lympae church originally built by Arcbbishop Lanfranc are still standing; and a amall distal e'st from it is Shipway or Shepway Cross, where the great assemblies relating to the Cinque Ports used to be beld until they were removed to Romney. Several bronze implements and weapons were discovered near Hythe in 1873, during the excavation of the railmay line from Hythe to Sandgate. A mile nortb from Hytbs is Saltwood Castle, of sery ancient origin, but rebuilt in the time of Richard II. Hythe possesses a guild hall founded in 1794, and two hospitals, that of St Bartholomew founded by Haimo, bisbop of Rocbester, io 1336, and that of St Jolio, of still greater antiquity but unknown date, and fouaded originally for the reception of lepers. A Gevernment school of musketry, in which instructors of musketry for the army are trained, was established in 1854; and the Shorncliffe military camp is within $2 \frac{1}{2}$ miles of the towa. On account of its pleasant situation aud its picturesque and interesting neighbourbood, Hythe has become a favourite watering place. Baths were erected in 1854 at a cost of $£ 2000$, and the sea wall and parade bas lately been extended eastwards to Sandgate, the total length being 3 miles. From the town to the sea-shore there is a stately avenue of wyeb elms. The area of the municipal borougi, is 1744 acres, and of the parliamentary berough $35 \% 1$ acres. The pepulation of the municipal borougb in 1871 was 3383 , and of the parliamentary berough 24,078 . The latter includes the municipal boreugh of Felkestone.

Hythe oceurs it old docuntrits as llethe, and in Donmesday Book as llede. The word is derived from the Saxon IIyth, meanmig a harbour. The present town of Ilythe tose to importance aftre the decay of West llythe by the withdrawal of the sea, West Hythe having fucvirusly succeeded to the Portus Lomanus, whose decay hat been due to a likecause Since the reign of Elizabeth the harbour has been choked up with sand. It is a theory of some writers that the landing flace of Julius Casar on his first invasion of Britain was in the vicinity of J.ympne Auciently Hythe, with the parish of West Jythe, was wathin a "huodred" of its own. Along with Saltwood it was given in 1026 by Halfolan, a Saxon thaue, to Christ Churchs in Canterbury; aod it was afterwards held for kniglit's service by lial Godwine. According to Leland, it at one tho had a fine abbey and four parish churches. It succeded to the ancient privileges which West Hythe enjoyed as a Cinque l'ort, its quota boing 5 shis, 105 men, and 5 boys Wheo Earl Golwine ravaged the const of kent in 1052 he took several slaps from the harbour of liythe. In 1293 the inhabitanta with great valoner repulsed the attacke of the sea. men of a Fritich manof war who had disembaknd in the has bout and were beginnm: to funter the town In the reigen of Richand 11. a great conflegration destroyed 200 of the hutsers and 5 of the ships in the harbour. IIythe and Saltwond were given by Arch. bishop Cranmer to Henry Vlll in lien of other extales, and they enntinued wested in the crown untal the 17th year of Elizabeth, when the town received a charter of incorperation. It is now fovernesl liy 4 aldermen and 12 ronmellora, one of w buta is mayor. From the 42d year of Eiward III. it possessed the grivilege feturning twe members to farliament, hit since 1832 it has retuncd only one.

Iis one of those symbole which the Greeks employed diffrently from the Phœebicians. In Phœenician it deanted the palatal semi-rowel y, called in Hebrew yodh. The Greeks disliked thie sound, and it vanished at an early time out of their language. Consequently they seeded no symbol to represent it, and could use the Phœenician symbol to denote that for which the Phoenician alphabet gave them no help, namely, the vowel i. The symbol, however, had not at that time, its present simple form, as may be seen by referecce to the table at the end of the article Alphabet. It was made up of several lines, and so it. appears in the oldest Greek inscriptions, e.g., in those of Thera, about the 40 th Olgmpiad, in which it is not unlike the later form of sigma (Σ). In the old Corinthian alphabet it sometimes has this form ; sometimes the angles to the left are rounded, so that it resembles an e. Generally, however, we find it in Greek simplified into the single straight line with which we sre familiar. It has no other form in the Latin alphabet. In the last certury before Christ, the Romans sometimes lengthened the symbol to denote the long vowel, so that it reached above the top of the line, while the short vowel was expressed by a line of the usual length. This took the place of the older method by which the symbol was doubled to denote the long vowel; as aa, ee, ii. But it never became universal, nor was the lengthened symbel always put to the same use; for about the same time we fiod it used to denote the y sound in words like Maia, cuius, where the Romans rightly thought it expedient to have a distinet mark for the semi-vowel. But this slso was not permanent.

The value of the symbol is generally constant in all European languages, ancient or modern, with the exception of Eoglish. It is the vowel sound produced by raising the froot of the tongue towards the palate, as high as it can be raised without touchiog. The lips are not rounded; by rounding them, when the tongue is in this position, we should praduce the sound of the French u or the German ii. The vowel may, however, be either open or close, and in either of these cases it may be short or leag. Therefore we have four variations; of which, bowever, probably not more than two sre found in any sponen language:-(i) the short open i, heard in English "sin"; (2) the long open i, which is not one of our spoken seunds, but can be produced is singing ; (3) the short close i, which again is not English, but is the Italian short $i ;(4)$ the long close i, which is tho Italian long i, and is also common in English; but wo denote the sound, not by i, but by ep, as in "seen." It is generally supposed that the sound of ee stands to that of i in English as a long vowel to the corresponding short; but this is not eo; there is a difference in quality as well; ee denotes (as has been just explained) a close vowel, whereas i is open. It is true that in ordinary English the open vowel i only occurs short, and the close vowel long, therefore the confusion is natural. A Scotchman, however, fiads no difficulty in pronouncing "seen" short.

It is practically nocessary in English to denote the simple long i sound by ce, hocause the Euglish language hins babitually altered the simple sound into a diphthong, and has retamed for that diphthong the origimal speling i. "Thus in worls like "pride," "mine," "firn", \&e., the vowel had once in Englanil thasame sound as it his on the Comtinent ; but now it is somuleal na the diphthong ai, thongh the subling has not been changel. It ippears from Mr Alavander J. Ellis's invertigations into the listory of Enslish pronunciation that i had become a diphthong in
the 16 th century; but the exact date of the change must remain uncertain. There can be little doubt that its nature has been correctly explained by the same philologist. It consists in pronouncing the long vowel without sufficiently raising the tongue at the beginning of the sound; hence the sound is at first too open, and is modified into the proper i sound before it is terminated. Changes of this sort are natural in long vowels, becanse there is time to vary the original sound, either as a refinement, or, more probably, through mere inattention and laziness.

IAMBLICHUS, the chief representative of Syrian Neo.Platonism, is only imperfectly known to us in the events of his life and the details of his creed. We leara, however, from Suidas, and from his biographer Eunapius, that he was born at Chaleis in Cole-Syria, the ecion of a rich and illustrious family, that be studied under Anatolius and afterwards under Porphyry, the pupil of Plotinus, that he himself gathered together a large number of disciples of different nations with whom bo lived on terms of genial friendship, that he wrote "various philosophical books," sud that he died during the reign of Constantine, -according to Fabricius, before 333 A.D. His residence (probsbly) at his native town of Chalcis was varied by a yearly visit with his pupils to the baths of Gadara. Of the books referred to by Suidas only a fraction has been preserved. His commentaries on Plato and Aristotle, and works on the Cbaldæan theology and on the soul, are lost. For our knowledge of his system we are indebted partly to the fragments of these writings preserved by Stobreus and others, and to the notices of his successors, especially Proclus, partly to his five extant books, the sections of a great work on the Pythagorean philosophy. Besides these, Proclus (412-485) seems to have aseribed to him ${ }^{1}$ the authorship of the celebrated book On the Egyptian Mfysteries (so-called), and although its differences in style and in somè points of doctrine from the writings just mentioned make it improbable that the work was by Iamblichus himself, it certainly emanated from his school, and in its systeoratic attempt to give a speculative justification of the polytheistic cultus of the day, marks the turning-point in the history of thought st which Iamblichus stood.

As a speculative theory Neo-Platonism had received its highest development from Plotinus. The roodifications introduced by Tamblichus were the elaboration in greater detail of its formal divisions, the more systematic application of the Pythagerean number-symbolism, and chienly, under the influence of Oriental systems, the thorough-going mythic interpretation of what the frevious philosophy had still regarded as notional. It is on the last account, probably, that Iamblichus was looked upon with such extravagant veneration. As a philosopher he had learning indeet, but little originality. But by using what he had to throw a haze of philosophy over the popular superstition, he acquired his fame. By his contemporaries he was secredited with miracnlous powers (which he, however, diselamed), and ty his followers in the decline of Greek philosophy, and his admirers on its revival in the 15 th and 16 th eenturies, his namo was scarcely mentioned without the end ithet "divine" or "most tivine," while, nut eontent with the more modest enlogy of limapius that he was inferior to l'orphyry only in style, the emperor dulian regatded him as not even
${ }^{1}$ Bestles the ammymour tentimony prefixal to nom ancient MS. of I'roclus, fe dfyst, viii. is recurs to he puoted by the latter as Iambluhns's. if. Meinery. "Julirium de Libro qui Me Mint. Feg.

second to Plato, and said that he rienld give all the gold of I. dia for one epistle of Iamblichus.

Theoretically, the philosophy of Plotinus was an attempt to harmonize the principles of the various Greek schools. At the head of bis system he placed the tianscendent
 intellect (vois), from which proceeds soul ($\psi v \times \eta$), which in turn gives hirth to фíves, the realm of nature. Immediately after the absolute one, Iamblichus introduced a second superexistent unity to stand between it and the many as the prodncer of intellect, and made the three snecceding noments of the development (intellect, soul, and nature) undergo various modifications. He speaks of them as
 mundane gods (єेкобрior). The first of these-which Plotinus represented under the three stages of (objective) being (ov), (subjective) life ($\zeta \omega \eta^{\prime}$), and (realized) intellect (voís) -is distinguished by him into spheres of intelligible gods (θ coi voproi) and of intellectual gods (θ soi vocpoi), each subdivided into triads, the latter sphere being the place of ideas, the former of the archetypes of these ideas. Between these two worlds, at once separating and uniting then, some scholars think there wes inserted by Iamblichus, ds afterwards by Proclus, a third sphere partaking of tho sature of both ($\theta \in o i$ voproi кai vocpoi'). But this supposition depends on a merely conjectural emendation of the text. We read, however, that "in the intellectual hebdomad he assigned the third rank among the fathers to the Demiurge." The Deminrge, Zeus, or world-creating potency, is thus iisentified with the perfected vois, the intellectual triad being increased to a bebdonad, probably (as Zeller supposes) through the subdivision of its first two members. As in l'lotinus vois produced nature by mediation of $\psi \chi^{\prime} \chi \eta^{\prime}$ so here the intelligible gods are followed by a triad of psychic gods. The first of these is incommunicable and supramundane, while the other two evem to be mundane though rational. In toe third class, or mundane gods (Ccui $\dot{\text { c/roorpiot }}$), there is a still greater wealth of divinities, of various local position, function, and rank. We read of gods, angels, demons, and heroes, of twelve heavenly gods whose number is increased to thirty-six or tbrec hundred and sisty, and of seventy-two other gods proceeding from them, of twenty-une chiefs ($\dot{\eta} \gamma \epsilon \mu$ óves) and forty-two naturegods ($\theta \in o i \quad \gamma \in \nu \in \sigma \in o v \rho \gamma o i$), besides guardian divinities, of particular individuals and nations. The world is thus peopled by a crowd of superhoman beings influencing natural events, possessing and communicating knowledge of the futnre, and not inaccessible to prayers and offerings.

The whole of this complex theory is ruled by a mathematical formulism of triad, hebdomad, \&c., while the first rinciple is identified with the monad, vois with the dyad, and $\psi u x y$ with the triad, symbolic meanings being also ussigned to the other numbers. "The theorems of mathematics," he says, "apply absolutely to all things," from t!ings divine to original matter (${ }^{*} \lambda \eta$). But though he thus subjects all things to number, he holds elsewhere that numbers are independent existences, and occupy a middle place between the limited and uulimited.

Another difficulty of the system is the account given of nature. It is said to be " bound by the indissoluble chains of necessity which men call fate," as distinguished from livine things which are not subject to fate. Yet, being itself the result of bigher powers lecoming corporeal, a continual stream of elevating intlucnce dhws from then to it, interfering with its necessary laws and turning to good ends the imperfect and evil. Of exil no satisfactury account is given: it is said to have been generated accidentally.

In his doctrine of man Iamblichus retains for the soul the middle place between intellect and nature it occupies in the universal order. He rejects the forsionless and
purcly intellectual character ascribed to the human soul by Plotinus, distinguishing it sharply both from those abovo and those below it. He maintains that it moves between the higher and lower spheres, that it descends by a necessary law (not solely for tifal or punishment) into the budy, and, passing perlaps from one human body to another, returns again to the supersensible. This return is effected by the virtuous actirities whach the soul performs through its own power of free will, and by the assistance of the gods. These virtues were classified by lorphyry as political, purifying (кatapтinai), theoretical, and paradigmatic; and to these Iamblichus adds a fifth class of priestly virtues (iepariкai dpєrai), in which the divinest part of the soul raises itself above intellect to absolute being.

Iamblichus does not seem ever to bave attained to that ecstatic communion with and absorption in deity which was the aim of earlier Neo-Platonism, and which Plotinns enjoyed four times in his life, Porphyry once. Indeed his tendency was not so much to raise man to God as to bring the gods down to men-a tendency shown still more plainly in the " Answer of Abamon the master to Porjhyry's letter to Anebo and solutions of the doubts therein expressed," afterwards entitled the Liber de Mysteriis, and ascribed to Iamblichus.

In answer to questions raised and doubts expressed by Porpbyry, the writer of this treatise appeals to the innate idea all men havo of tho gods as testifying to the existence of divinities countless in मumber and various in rank (to the correct arrangement of which he, like Ianblichus, attaches the greatest importance). He holds with the latter that a bove all principles of being and intelligence stands tho absolute one from whom the first ged and king spontuncously proceeds; while after these follow the etherial, cmpyran, and heavenly gods, and the various orders of archangels, angels, demons, and herocs distinguished in nature, power, and activity, and in greater profusion than cven the imagination of Iamblichus had conceived. He says that all the gods are good (though he in another place admits the cxistence of evil demons who must be propitiated), and traces the souree of evil to matter; rebuts the oljection that their answering prayer implies passivity on the part of gods or demons; defends divination, sootbsaying, and theargie practices as manifestations of the divine actisity; deseribes the appearances of the different sorts of divinities; discusses the rarious kinds of sacrifice, which he says must be suitable to the difierent natures of the gods, material and immaterial, and to the double condition of the sacrificer as bound to the body or free from it (differing thus in his psychology from Iamblichas) ; and, in conclusion, states that the only way to hapyiness is through knowledge of and nnion with the gods, and ihat thenrgic practices alone prepare the mind for this cnion -again going beyond his master, who heh assiduous contemplation of divine things to be sufficient. It is the passionless mature of the soul which permits it to le thus united to diviue beings,- knowledge of this mystic union and of the worship associated with it laving been derived from the Egyptinn priests, who learnt it irom Hemes.

On one point only does the author of the De Mysteriis secm not to g_{0} so far as lamblichus in thus making philosophy sub. rvient to priesteraft. Ile condemins as fullo and impicty the worship of images of the guals, thongly has master beld that these "simulacra" were tilled with divine power, whether made by the hand of man or (as he believed) fallen from heaven. Fur innges conld easily be dispensed with from the point of view of the writer, who not only
 as Thales said), but thought that each man had o special divinity of his win -an iolos \&aimev-as his guard and combanion.

Bibliogrusiy. -Of the inve extant books of Ismblichus referred to above, (1) that On the Pythagorean Life ($\pi \in \rho 1$ той Пuөayopıкой Bıovi) was first edited, in Greek and Latin, by Arcerius Theodorctus, 1598; agaia by Kuster, 1707; and by Kiessling, Leipsic, 1815-16; while a oew edition is promised by E. Rhode, who discusses the conrces, \&c., of the work in the Rhcin. Mfuseum, vol. xxvi., 1871, pp. 554 sq.; cf. vol. xxxiv., 1879, pp. 260 sq. (2) The Exhortation
 along with the former in 1598, and again by Kiessling, Leipsic, 1813. (3) The treatise On the General Science of Mfathematics (π. $\tau \hat{\eta} s$ кoupns μ аөпиaтıкйs) was edited by Villoison, Anecd. Greca, ii. 188-225. Venice, 1781; and a nseful account of the same is given by J. G. Friis in tis Introductio in Librum Iamblichi Tertium, 1790. (4) The book On the Arithnetic of Nicomachus ($\pi . \tau \bar{n}$. Nıo-

 by S. Teamulius, 1668 ; aod (5) the Theological Principles of Arith-
 aeries-by Ast, Leipsic, 1817. Two lost books, treating of the physical and ethical signification of numbers, stood fifth and sixth, while books on music, geometry, and astronomy followed.

The so-called Liber de Mysteriis was reodered into Latin by Marsilius Ficinus, Venice, 1497, fol., -several times reprinted,-and again by N. Scutellius, Rome, 1556,4 to. The original Greek was edited, with Latin translation and notes, first by T. Gale, Oxford, 1673, fol., and more receatly by G. Parthey, Berlin, 1857, 8 vo.

There is a mooograph on Iamblichus by Hebenstrcit (De Iamblichi, philosophi Syri, doctrina Chrisiana religioni, quam imitari studet, noxia, Leipsic, 1764), and one on the De Mfyst. by Harless (Das Buch v. d. ägyp. Myst., Munich, 1858). The discussion by Meiners on the genuineness of the De Myst. bas been already referred to, and seems to be conclusive against attributing it to Iamblichus. 'Ihomas Taylor, the English Platonist, translated the Life of Pytha. goras and the Egyptian Mysterics (London, 1818; Chiswick, 1821). The best accounts of Iamblichus are those of Zeller, Phil. d. Griechen, iii. 2, pp. 613° sq., 2d ed., aad Vacherot, Hist. de l'Ecole d Alcxandris, ii. 57 sq.
(W. R. SO.)

IBADAN, a large and hourishing town of West Africa, in the Yuruba country, about 80 miles inland from Lagos, and about 50 miles to the north-east of Abeokuta. It occupies the alope of one of the hills of the Kong range, and atretches down into the valley through which the river Ona flows. The aite is well drained by natural streams, but their waters are often polluted by the dead bodies flung out to the valtures. The mud walls by which the town is enclosed haye a cireuit of 18 mites, and it is encompassed by a circle of cultivated land about 5 or 6 miles in breadth. The houses are all low thatched structures, enclosing a square court, and the only break in the mud wall is the door; but the monotony of the streets is relieved by orishas or idol-houses, and open apaces shaded with trees. Most of the population are engaged in agrieulture; but for a West-African town there is a great variety of handicrafts. The town is subject nominally to the king of Oya; but in reality it is not only an indopendent state but has a number of vassal towns. The government is in the hands of two chiefs, a civil and a military, the bale and the balogun; these together form the highest court of appeal. There is alao an iyaloda or mother of the town, to whom are subruitted afl the disputes of the women. Aoy one causing a fire in the town, whether intentionally or by accident, is deprived of his possessions and put in prison. Ibadan has long had e feud with Abeokuta; and the two towns often engage in war with each other. In 1862 the people of Ibadan destroyed Tjaya, a neighbouring town of 60,000 inhabitants Mr IIinderer, a missionary of tho Clurch Society, established a station at Kudati on the outskirts of the town in 1853, and labonred there for seventeen years. The native ehurch is still in a flourishing state. The depmation of 1 badan is not less than 100,000 . The great bulk of the population consists of staves. There are twenty four mqques noll soveral Mahomotan schools in the town.

Gon Seventenz Years in the Forvela Country: Acmorials of Anuce fonderer, Lomion, 1877, where a view of the town is given.

IPARRA, a rity of Feuador in South Ameriea, tho capital of the province of Imbabura, ia situated on a plain
about 2000 feet lower than Quito, from which it is su miles distant. Before the earthqnake of 1868 it was a place of considerable prosperity, with regalar atreets and well-built houses, and about 13,000 of a population, but in that terrible disaster it is estimated that no fewer than 10,000 of its inhabitants perished. Cotton and woollen atuffs, laces, hats, brandy, cordials, angar, and salt were among its industrial products. Tbarra was fonnded in 1597 by Alvaro de Ibarra, the president of Quito. About a league distant was Carranqui, the birthplace of Atahuallpa, the last of the Incas.

IBERIANS (Iberi, "I β ppess). To the question, Who are the Iberians? it is imposaible to give a aatisfactory answer in the form of a concise definition. While our knowledge of their actual history is comparatively alight, the position which they have acquired in modern ethnographical theory is at once a prominent and a perplexing one. It is almost impossible to hazard any atatement in regard to them which will not find an impugning voice from one quarter or other. Historical, numismatieal, linguistic, and anthropological evidances have been brought to bear on the problem of their affinity, and the result is on the whole not so much light as darkness visible.

The name Iberiana seems to have been applied by the earlier Greek navigators to the peoples who inhabited the eastern coast of Spain ; and there is considerable probability in the auggestion that it originally meant the ripuarians of the Iberus or Ebro. ${ }^{1}$ On the other hand, the term Iberis is said to have embraced in older Greek usage the country as far east as the Rhone (see Herodorus of Heraclea, Fragmenta Historiarum Gracarum, tom. ii. p. 34), and by the time of Strabo it was the common Greek name for the Spanish peninsula,-Iberians meaning aometimes theinhabitants of the peninsula in general, and sometimes, it would appear, the peoples of a definite raca or yévos. Of tha tribal distribution of this rsce, of its linguistic social and political characteristics, and of the history of its relation to the other peoples of Spain, we have only the most general, fragmentary, nad in part self-contradictory aceounts. On the whole our historical evidence authorizes the assertion that in Spain, when it first became known to the Komans and Greeks, there exiated a large number of separate and variously civilized tribes connected with each other by at least apparent identity of race, and by similarity (but not identity) of language, their general characteriatice aufficiently differencing them from Pheenicians, Romans, and Celts. The statement that the mingling of these Iberians with the immigrant Celts gave rise to the Celtiberians (Keltiberians) is in itself sufficiently probable, and has been impugned by nothing more precise then the general untrustworthiness of the author by whom it is made (Diodorus Sieulus). Varro and Dionysiua Afer went ao far as to identify the Iberians of Spain with the Iberisns of the Caucasus, the one regarding the eastern and the other the western sottlements as of earlier date.

The only material relics which have come down to us with the imprint of the nncient Iberian or Celtiberian civilization are a variety of coins and a few inscriptions of dubious interpretation. So difficult has the reading of the legends of the coins been found that tha Spanish numismatists have regutarly catslogued them as the desconocidus or unknown; and the explanation of them has beon songlat now in Visigothic runes (Olaus Wormius and Olans liutbeck), now in Hebrew (I, J. Velasquer.), now in Latin, and now in Celtic. By the general consensus of more modern investigators, however, their ! berian character is recognizel, though the methods and results of

[^113]intcrpretation have been aufficiently various．${ }^{1}$ According to M．Heiss，the Celtiberian coins are found most frequently in the north－east and east of Spain，in smaller numbers in the centre，rarely in the soath，and more rarely still in Portngal and Asturias．The legends，he maintains，belong to peoples who inhabited the country at the time when the Greeks were atill coining pieces with the type of Apollo and the wheel，－that is，before the completion of the Roman

Fio．i．－Coln of Illiberis or Granads．
conquest．Their monetary ayatem seems to have been imitated from that of tho Roman republic，having a division analogous to that of the denarii and quinarii．The principal type on the reverse is either a horseman galloping with iance in rest or bear－ ing a palm－branch or laurel－branch，or a man leading two horses and brandishing a sword or a bow．The Latin coins of Bilbilis，Osca， Segobriga，\＆c．，retain

Fro．2．－Coin of Narboane． the type of the galloping horseman．Pieces with inscrip－ tions in the eame alphabet and eimilar images are found in the district of Narbonne．

The following is a list of M．Heiss＇s proposed identifications，and the accompanying alphabet is that which he has compiled from the ooios：－

Ovriasav，Turiaso；klaqriqs，Kalaquri－qos，Calagurrie；iak， Jaea；plplis，Pilpilis，Bilbilis；ilovre，Iluro；Nerencon，Narbo； pavrp，Perpinianum；clse，Celea；seqbrics，Segobrica；alaavn， Alavona；setiscon，Sctisacon；olioem，Oligito；oli，Gili；afvees－ con，Ausa，Ansenses；avsecbt，Osicenda；lanvth，Laurone；cse， Cose；qntrba，Contrebia；seqtzas，Segontia；briritz，Bebryces； hrnesqn，Hucraes；hlscan，Iliosca，Osca；sectsa，Segisa； tmaniav，Dumanis；arciliqs，Arcocili，Ocili；oelieqs，Beliones； vhsones，Balsiones．

A	A ${ }^{\text {a }}$	V®ODDPO	M	jMm	Ψ
8	8	－	N	NrN	MNNNH
G	1rct	1321	x	Masま	3423
D	$\triangle D D$	－	0	00	000000
E	EfE	exetee	PB	Prpr	PPr
		ももん1	TZ	2	$\boldsymbol{\psi} \boldsymbol{\Psi} \boldsymbol{\Psi} \boldsymbol{\omega}$ ¢
F	F	T＾A	Q	－Øర○	X $\triangle 8 \times$
2	1	－－＞	R	DPRPR	－4009яя
E	Hi	HHH）XX＊			－0४Оロの
TH	\oplus	－0日 ${ }^{\text {（1）}}$	S	M31E	MミMMM
1	1	NNr	T	T	$X T$
K	－K	＜An \cap ก	UVB	v ¢ Y ¢ μ	Y
		คのも：く\＆	0	ก8今	Ω
L	｜616	1／ni	OV	$\Delta \Delta \Delta A$	

Fio．3．－Table of alphabets．The first colume contains the English char． acters；the second the srchaic Greek；and the third the Celtiberian．
It was not till 1821 that the lberinn problem beeame an cstah． lished piece de resistance in the ethnographical programme．In that year Karl Wilbelm Humboldt published his Pruifung der
${ }^{1}$ The most important contributious to the subject are P A．Bou－ dard＇：Elules sur t＇Alphabet ibtrien，Paris，1852，and Numismatique ibèrienne，Béziers， 1859 i and Aloiso Heiss，Notes sur les monnaies cellibtriennes，Paris，1865，and icseription ainerato des monnaics antiqucs de IEspagne Paris， 1870.

Untersuchungen über dic Ürbewohner Hispaniens vermittelst der Washischen Sprache，Berlin，1821．As a nutter of rourse this was a work of exuberant learning and bold hypothesis；and partly through its inherent attractiveness，partly through the prestige of its author，the tbeory which it expounded met with general acceptance．The main arguments were these：－that the lberians were one great people，speaking a distinct language of their own； that they were to be found in Sicily，Sardinia，and Corsica，in eouthern France，and even in the British Isles；and that the Basques of the present day were the distinctly recognizable rcm－ nants of the race which had elsewhere bcen expelled or absorbed． This last was the central and seminal idea of the work，snd it las been the point round which the battle of scholarship has mainly mged．The principal evidence which Humboldt sdduced in its support was the possibility of explaining a vast number of the sncieut topographical names of Spain，and of other asserted lberian distriets， by the forms and significations of Basque．The first serious attack on the theory was made by Graslin（De l＇foeric，Paris，1839），who maintained that the name lberis was nothing but a Greek mis－ nomer of Spain，and that there was no proof that the Basque people had ever occupied a wider area than at present ；sad M．Bladé has since，in his Origine des Basques（Paris 1869），token up，the same line of argument and brought to bear on the subject a vast amount of laborious and many－sided erudition．His criticism is almost purely negative．Of the whole structure of the lberian theory he would not leavo one stone upon another．He holds that Iberia is a purely geographical term，that there was no proper lberian people or race，that the whole Basque－Iberian theory is a modenn figment， that the Basques were always shut in by alien races，and that thein affinity is still to seek．His main contention has met with some aeceptance；${ }^{2}$ but the great current of cthnographical speculation still flows in the direction indicated by Humboldt，though it brcaki up into a number of distract channels．The antluropologica？ researches of Broca，Thurnam and Davis，Huxley，Busk，Virchow， Tubino，and others have proved the existence in Furope of a Neo－ lithie race，small of stature，with long or oval skulls，and aceustomec to bary their dead in torabs．Their remains have been found ir Belgium and France，in Britain，Germany，and Denmark，as well ar in Spain；but they bear a eloser resemblanee to the Basques that to any other living people．This Neolithic race has consequen＇i） been identilied with the Basques and the lberians；and cxtrems exponents of the theory do not hesitate to speak of tbe lberian an． cestors of the people of England，recogrizing the racial character． istics in the＂small swarthy Welshman，＂the＂small darh High． londer，＂snd the＂Black Celts to the west of the Shannod，＂as wel＂ ss in the typical inlabitants of Aquitania and Brittany．（Compare the interesting resume of the whole question in Boyd Dawkins＇s Early Man in Britain，Loodon， 18500^{3} ）Some investigators goeven further．M．D＇Arbois de Jubainville，for example（Les premicts habitants de l＇Europe，Paris，187\％），regards the 1 berians as the de－ sceadants of the Allantes（i．e．，the hypothetical inhabitants of Plato＇s great western isle the Atlantis，see ATLANTIS），and maintains that in Europe they possessed Spain，Ganl，It：dy，aud the British Isles， penetrated into the Balkau priusula，and occupied n part of north－ ern Africa，Corsica，and Sardinia．And in reviewing M．Jubaioville＇s work in Revue d＇Anthropologie（1877），M．Hovelacque eensiders that it has been elearly made out that a race with distinctly marked characteristics was at one time in possession of the south of Frane （or at least of Aquitania），the whole of Spain from the Pyrences to the straits，the Canary Islands（the Guauchos），a patt of morthem Africa，and Corsica l＇ubino，in his Losaborigenes ibericos（Madrid， 1876），argues that the buidders of the megrathic monuments of Spain and northern Africa，the ancient Iberians，and the modern Basques and Andalusian mountaineers，as well as the lberbers＊in at least one of their main elensents，are all of kindred blond；and in so doing he impagus the theory of Broca and his sclrool．

Besides the works already mentioned，reference thay be mace to Hofmann，Due Iberer im W＂esten und Osten（Leips．1838），aml tc Phillips，Uober dus ibesische Alphabet（Vieana，1570），Die Lin． wanderung der Jocrer in die pyren．Halbinsel（Vienna，1870），nal several other works by the same writer．

IBEX，the common name of scveral closcly allicd species of ruminant mammals，belonging to the genus Cajra or gonts，inhabiting the loftiest regions of Furope，Asia，and Africa．The European ibex or steinboc（Capra ibex） abounded during the Middle Ages among the ligite：

[^114]mountain ranges of Geramany, Switzerland, and the Ural, but has since disappeared from the greater part of this area, being now almost wholly confined to the Alps which separate Valais from Piedmont, and to the lofty peaks of Savoy, where its continued existence is mainly due to the action of protective game laws. The ibex is a handsome enimal, measuring about $4 \frac{1}{2}$ feet in length and $2 \frac{1}{2}$ feet high; its skin is covered in summer with a short fur of an ashy grey colour, and in winter with much longer ycllowish-brown hair concealing a densc fur beneath. A short beard is present in the male in winter, but, as it dis. appears altogether in spring, Darwin regards this appendage es rudimentary. The horns, especially in the male, form a striking feature: rising from the crest of the skull, they bend gradually backwards, attaining a length in old specimens of ahout 2 feet; they are thick and flat, and have the anterior face ridged with knotty transverse bands. In the female the horns pever exced half a frot in length, and are much leas rugose than in the male. The front legs are somewhat shorter thain those bchind, which enables the

ibex to ascend the mountain slopes with more facility than it can descend, whilo its hoofs, according to Tschudi, are "as hard as stecl, rough anderncath, and when walking aver a flat surface capable of being spread out." These, together with its puwerful sinews, enable it to take prodigious leaps, to balance itself on the smallest foothold, and to scalo almost perpendicular rocks. The ibex lives habitually at a greater height than the chamois or any other fo the Alpine manmals, its vertical limit being the line of perpetual snow. There it rests in sunny nooks during the day, descending at night to the highest woods to graze, and retiring at sunrise to its snowy fastnesses. This return journcy forms tho ibex hunter's oppertunity. To get within gunshot the huntaman has usuallyo to approach from above; accordingly ho ascends to the limit of perpetual anow, and there Insses the night among the daily haunts of the ibex, lying in wait from early dawn for its return. The ibexes are gregarions, fecding in herds of ten to fifteen indiviluals; the old males, howeser, anenerally live apart from, and usanlly nt greater elevations than, the females and youns. They nre said to givo out a shapp whistling sound not unlike that of the chamois, but when prestly irritated or frightioned they make a perthar snorting mise. The perion of gestation in the fomale is ninety days,

single young one, watch is able at ance to follow its nother These when caught young and fed on goat's milk can, it said, be readily tamed; and in the 16 th century young tame, ibexes were, according to Tschudi, frequently driven to the mountains along with the goats, in whose company they would afterwards voluntarily return. Even wild specimens have thus been known to stray among the herds of goats, although, strange to say, they at all times shun the society of the chameis. The ibex was formerly hunted largely for its flesh and skin; but, although the latter, owing to its scarcity, now commands a high price, the difficulty arising from the operation of the game laws, and above all the difficulty and danger inseparable from the sport, have reduced the nomber of hunters to a few hardy mountaineers, who find in the pursuit of the ibex the keenest enjoyment of life. For weeks the spertsman will follow a track acress fields of ice, along narrow ledges, over precipices, and acress chasms, nearly frozen to death at night, and often with little more than a crust of bread for sustenance, jet considering himself more than repaid by the sight at last of his prey grazing within range of his rifle. Its flesh is said to resemble mutten, but has a flavour of game.

IBIS, one of the most sacred birds of the ancient Egyptians, which in modern times was identified by Bruce (Travels, v. p. 173 , pl.) with the Abou-Hannes or "Father John" of the Abyssinians, and in 1790 received from Latham (Index Ornithologicus, p. 706) the name of Tantalus cethiopicus. This determination was placed beyond all question by Cuvier (Amu. du Muséum, jv. pp. 116-135) and Savigny (Hist. Nat. et Mythol. de l'Ibis) in 1805. They, however, shewed the removal of the bird from the Linnæan genus Tantalus to be necessary, and, Lacépéde having some ycars before founded a genus Ibin, it was transferred thither, gnd is now generally known as I. athiopica, theugh some speak of it as I. religiosa. No useful parpose would be served by dwelling on the vain attempts of older writers to discover what the much venerated bird was, or on the other synonyms applied to it by later ornithologists, some of whom (and among them the most recent) have shewn little acquaintance with the literature of the subject. Nor can the Ibis be here trented from a mythological or antiquarian point of view. Savigny's momoir above noticed contains a great deal of very interesting matter on the subject. Wilkinsen (Ancient Egyptians, ser. 2, ii. pp. 217-224) has thercto added some of the results of modern rescarch, and latest of all Mr Renonf in his Hiblert Lectures concisely explains tho origin of the myth.

The Ibis is chicfly an inhabitant of the Nile basin in Nubia, from Dongolia southward, as well as of Kordofan and Sennaar; whenco (according to Savigny, whose oppertunities for observation seem to have been greater than those enjoyed by any European since his time) about mid. summer, as the river rises, it moves northwards to Egypt, and reaches the delta, passing over the intermediate dis. tricts, in a way not nuknown elsewhere among migratory birds. In Lower Egypt it bears the mame of Abou-meng: or "Father of the Sickle," from the form of its bill, but i docs not stay long in that country, disapparing by all accounts when the inundation las snbsidel. Hence doubtless arises the fact that almost all European travellers have failed to mect with it there, ${ }^{2}$ since their acquantance with

[^115]1. os onue us cigpt is mostly linited to those which frequent the country in winter, and consequently writers have not been wanting to deny to this species a place in its modern fauna (cf. Sbelley, Birds of Egypt, p. 261); but, in December 1864, Von Heuglin (Journ. für Ornithologie, 1865, p. 100) saw a young bird which had been shot at Gata in the delta, and subsequently Mr E. C. Taylor (Ibis, 1878, p. 372) saw an adult which hat been killed near Lake Menzaleh in November 1877. The old stury told to Herodntus of its destroying snakes is, aecurding to Sarigny, devoid of truth, ${ }^{1}$ and that naturalist found, from dissection of the examples he obtained, that its usual food was fresh-. water univalve mollusks ; but Cuvier asserts that he discovered partly digested remains of a snake in the stomach of a mummied Ibis which he examined, and there can be littlo doubt that insects and crustaceans, to say nothing of other living ereatures, enter on ocession into the bird'a dict.

The Ibis is soniewhat larger than a Curlew, Numenius arquata, which bird it in appearance calls to mind, with a much stouter bill and stouter legs. The head and greater part of the neck are bare and black. The plumage is white, except the primaries which are black, and a black plume, formed by the secondaries, tertials, and lower scapulars, and richly glossed with bronze, blue, and green, which curves gracefully over the hind-quarters. The bill and feet are also black. The young lack the ornamental plume, and in them the head and neek are elothed with short black feathers, while the bill is yellow. The nest is placed in bushes or high trees, the bird generally building in companies, and in the middle of Augost Von Heuglin (Orn: Nord Ost Afrika's, p. 1138) found that it had from two to four young or much incubated eggs. ${ }^{2}$ These are of a dingy white, splashed, spotted, and speckled with reddish-brown.

Congeneric with the typical Ibis are two or three other species, the S. melanocephala of India, tho S. molucca, or S. strictipennis, of Australia, and the S. bernieri of Madagascar, all of which closely resemble S. athiopica; while many other forms not very far removed from it, though placed by authors in distinet genera, ${ }^{3}$ are also known. Among these are several beautiful species sueh as the Japaneso Geronticus mippon, the Lophotilis cristata of Madagascar, and the Searlet Ibis, ${ }^{4}$ Ludocimus ruber, of America; but here there is only room to mention more particularly the Glossy Ibis, Plegadis falcinellus, a speeies of vary wide distribution in both hemispheres, being found throughout the West Indies, Central and the south-eastern part of North America, as well as in many parts of Europe (whence it not unfrequently strays to the J3ritish islands), Africa, Asia, and Australia. This bird, which is no doubt the second kind of Ibis spoken of by IIerodotus, is rather smaller than the Saered Ibis, and mostly of a dark ehestnut colour with brilliant green and purple reflexions on the upper parts, exhibiting, however, when young little of this glussiness. One of the most remarkable things about this piccies is that it lays eggs of a deep sea-green colour, having wholly the character of Heron's eggs, and it is to be noticed that it often breeds in company with Herons, while the eggs of all other Ibises whose eggs are known resemble those of the Sacred Ibis. Congeneric with the Clossy lbis, some

[^116]three or four other -species, sll from South America, have been described; but the propriety of deeming theu distinct is questiooed by some authorities.

Much as the Ibises resemble the Curlews exteroally, there is oo real affinity between them. The /hadider are more aearly related to the Sturks, C'iconiidir, and stall more to the Spoonbills, Plataleuder, with which latter many systematists consider them to form one group, the Hemiyluttides of Nitzseh. They belong to the Pelaramorphae of Professor Huxley, ono of the divisions of his Desmognatho, while the Curlews are Schizognathous. The true Ibiscs above spoken of are also to be clearly separated from tho Wood-Ibises, Tantalida, of which there ars four or five species, by several not unimportant structural characters, which cannot bero be particularized for want of space. Fossil remains of a true Ibis, I. pagana, have been found in considerable numbers in the middle Tertiary beda of France. ${ }^{6}$
(A. N.)

IBN BATUTA (1304-78), whose proper name was Abu-Abdullah Mahonmed, one of the most remerksble of travellers and autobiographers, was bern at Tangier in 1304. He entered on his travels at the age of twenty-one (1325), and closed them in 1355. Their compass was so vast that we ean but give the barest outline of them.

He began by traversing the whole African eoast of the Mediterranean from Tangier to Alexandria, finding time to marry two wives on the road. After some stay at Cairo, then probably the greatest city in the world (excluding China), and an unsuccessful attempt to reach Mecea from Aidhab on the west coast of the Red Sea, he visited Palestine, Aleppo, and Damascus. He then made the pilgrimage to the holy cities of the Hedjaz, and visited the shrine of Ali at Meshed-Ali, travelling thenee to Bussorah, a ad across the mountains of Khuzistan to Ispahan, thence to Shiraz, and back to Kufa and Baghdad. After an excursion to Nosul and Diarbekr, bo made the haj a second time, staying at Meeca three jears. He next sailed down the Red Sea to Aden (then a place of great trade), the siagularposition of which be describes, noticing its dependence for water-supply upon those great cisterns for preserving the seanty rainfall which have been cleaned out and restored in our own time. He continued his voyage down the Alrican eoast, visitiag, amon: nther places, Mombas, and Quiloa in $9^{\circ} \mathrm{S}$. lat. Returning north he passed by the chief eities of Oman to New Hormuz, as be calls the city which had, not rany years before, been transferred to the island where it became so famous. After visiting other parts of the gulf, he crossed the breadth of Arabia to Mecea, mukiug the hij for the third time. Crossing the Red Sea hemade a journey of great hardship to Syene, aod thence along the Nile to Cairo. After this, travelling through Syria, he made an extensive circuit among the petty Turkish sultanates into which Asia Minor was divided after the fall of the kingdom of Rum (or Iconium). He now erossed the Black Sea to Caffa, then mainly occupied by the Genoese, and apparently the first Christion eity the Moor had seen, for he was much perturbed by the bell-ringing. Ile next travelled into Kipchak, or the country of the Mungol khans on the Volga, and joinea the ramp of tho reigning khan Mahommed Uzibek, from whom the great and heterogenpout body that we know as Uobeks is believed to have tiaken a name. Anung other places in this empire lie travelied in Bulgar ($51^{\circ} 54^{\circ}$ N. lat.) in order to witness the short nessul the summer oight, and desired to continue his travels noth into the "Land of Darkness," of which wonderful thingg were told, but was ohliget to forego this. Rejoining the

[^117]sultan's camp, he was allowed to juin the cortege of one of jhe Khátúns, who was a Greek princess by birth (probably in illegitimate one), and who was about to visit her own people. In her train he travelled to Constantinople, where he had an interview with the emperor Andronicus the Elder, whom he calls Jirjis (George). He tells us how, as he passed the cits gates in the lady's train, he beard the guards muttering Sarakinú! Sarakinü! Ret rning to the cuurt of Uzbek, at Sarai on the Volga, he took his way across the steppes to Khwarizm and Bekhara, and thence through Khorasin and Cabul. On this journey he crossed the Hindu Kush (q.. .), to which he gives that name, its first occurrence. Travelling on, he reached the Indus,occording to his own statement, in September I333. This closes the first part of his narrative.

From Sind, which he traversed to the sea and back again, he proceeded by Multan, and eventually, on the invitation of Mahommed Tughlak, the reigning sovereign, to Delhi. Mahommed was a singular character, full of pretence at least to many accomplishments and virtues, the founder of public charitics, and a profuse patron of scholars, but a parricile, a fratricide, ard as madly eapricious, bloodthirsty, and unjust as Caligula. As Ibn Fatuta pithily sums up the contradictions of his character, "there mas no day that the gate of his palace failed to witness alike the elevation of some object to affluence and the torture and murder of some living soul." He appointed the traveller to be kizi of Delhi, with a present of 12,000 sibver dinars (rupees) and an annual salary of the same anount, besides an assignment of village lands. In the noltan's service he remained eight years; but his gear tortune only stimulated his natural extravagance, and at an early period his dolts amounted to four or five times his salary. At last he fell into disfavour, and retired from the court, only to be summencel again on a congenial duty. The emperor of China, the last of the Mongol dynasty, had sent a mission to Delhi which was to be reciprocated, and the Mour was to go as one of the enroys. The account of the jorrnoy through Central India to Cambay is full of interest. 'IR sence the party went by sea to Calicut, which is classed by the traveller with the neighbouring Kaulam (Quilon), Alexandria, Sudak in the Crimea, and Zayton (or Chivenew, q.v.) in China, as one of the greatest trading havens in the world,-an interesting enumeration from one who had seen them all. The mission party was to embark in Chinese junks (the worl used) and smaller vessels, but that carrying the other envoys and the presents, which started befure ho was ready, was wrecked totally; the vessel that he had engaged went off with his property, and he was left on the beach of Calicut. Not daring to teturn to Delhi with such a tale, he remained about Honore end other cities of the western coast, taking part in various adventures, among others the capture of Sindahn (m Goa), tiil he took it into his head to visit the Mahlive Islamls. There he wals made welcome, was nominated kizi, married four wives, and remained some montis.]int lefore long he was deep in quarrels and intrigues, and in August 1311 he left for Ceylou. In this islamel lee made the pilgrimage t. Adam's Peak ("The Fuotmark of our Father Aclam," lie calla it), of which le gives an interesting account. 'Thence he betook himsilf to Ma'abar (the Coromandel coast), where the joined a Musulman adventurer who had made himself master of much of that region, with his resiclence nt Malura. After once more visiting Matabar, Camara, and the Mahlives, he departed for Rengal, a voyge of Andy three daya, landing at Sadkiwan (Chittagong). 'Plae rafe circumatanco of his sojourn in Rengal was a visit made to a Musuhan sime of singular chatevter amp pre. tensions, Shaikh Jalahudin, who dwelt in a berantage amone the Silhet hills, and where his shrime \{at Silhet\} is
still maintained as a place of sauctity uuder the name of Shah Jolál. Returning to the delta, he took ship: Sunárgânw (near Dacca) on a junk bound for Java (i.e. Java Minor of Marco Polo, or Sumatra). Touching ou the coast of Arakan or Burmali, be reached Sumatra in forty days, and was hospitably received at the court of Malik al-Dháhir, a zealous disciple of Islám, which hall then recently spread ameng the states on the northern coast of that island. The king provided him with a junk in which to prosecute his voyage to China. Some of the places which he describes on this line are hard to identify, but appareutly one of them was the coast of Camboja. The port which received him in China was Zayton, fameas in Marce Polo's book, and identified with the modern Chinchew. He also visited Sin-Kalán ("Great China" or Machín), a name by which Canton was then known to the Arabs, and professes to bave visited also Khansí (K"izsay of Marco Polo, i.e., Hangchau), aod Khánbalik (Cambaluc or Peling). The truth of his visit to these two cities, and especially to the last, is very questionable. The traveller's awn history singularly illustrates the power of the freemasonry of Mahometanism in carrging him with a welcome over all the known world, and some anecdotes of his adventures in China illustrate this even more forcibly.

We cannot follow in detail his voyage back, or tell how he saw the great bird Rukh (evidently, from bis description, an island lifted by refraction). Fevisiting Sumatra, Malabar, Oman', Persia, Baghdad, he crossed the great desert to Tadmor and Damascus, where he got his first news of home, and heard of his father's death tifteen years before. Diverging to Hamath and Alcppo, on his retura to Damascus he found the Black Death raging, so that two thousand four handred died in one day. Revisiting Jerusalem and Cairo, he made the naj for a fourth time, and finally turned westward, reaching Fez, the capital of his native country, 8th Novembel 1349, after an absence of twenty four years. It was, he says, after all, the bost of all countries. "The dirhems of the West are but littie ones, 'tis truc; but then you get mure for them."

After going home to Tangier, he crossed into Spain and made the round of Andalusia, including Gibraltar, which had just then stood a sicge from Alphonso XI. (whom the travelter calls "the Roman tyrant Adfunus"). In 1352 the restless man started for Central Africa, passing by the oases of the Sahara (where the houses were built ef rock-salt, as IIcrodotus tells, and roofed with camel skins) to Timbuctoo and Gogo on the Niger, a river which he calls the Nilc, believing it to flow down into Egypt, an opinion maintained by some up to the date of Lander's discovery. Being then recalled by his own king, he returned by Takadha, LIogar, and Tawat to Fez, which ho reached in the begimning of 135 . This is tho end of his recorded wanlerings, which extended over a space of twenty-eight ycars, and in their main liues alone oxceeded 75,000 miles.

By royal order his history was written down from his dictation by Mahommed Ibn Juzai, the king's secretary, a work conchuded on the 13th December 1355. This editur ends the werk with this apprepriate colophon :-" Here ends what I have put into shape from the memoranda of the Shaikh Abu-Abdallah Mahommed Ibn Batuta, whom may (iod honour ! No persen of senso can fail to see that this Shaikh is the Traveller of Our Age; and he who should call him The Traveller of the whole Body of Islim would not exceed the trutl! [" The traveller died in 1377-78, aged seventy-three.

Ibn Batutu's traveds have ouly been known in Europe during tho present century, and were knawn then for many years only by At, hic alridgments existing in the Gotha and Cambridge libraries. Notices or extracts hal heen published by Sectzen (c. 1808), Lines guten (1818), Apetz (1819), and Burek hardt (1819), when in 1820 Ur $\$$. Lee published fur the Oricutal Translation Fund a versma

Irom the abridged MSS. at Cambridge, which attracted muchinterest. The French capture of Constantina at last afforded MSS. of tho complete work, one of them the autograph of Ibn Juzai. And from these, after versions of fragments by rarious French scholars, was derived at last (1858-59) a carcful editiou and translation of the whole by M. Défrémery and Dr Sanguinetti, with a valuable index and other apparatus, in 4 vols. $8 \mathrm{vo} .{ }^{\text {. }}$
Though there are some singular chronological difficultics in the narrativo, and a good many cursory inaccuracies and ceaggerations, there is no part of it except the voyage to China in which its substantial veracity is open to doubt. Nor can it be questioned, we think, that he really visited China, though it is probable that his visit was confined to tho ports of the south. The whole of the scond part of his story especially is full of vivacity and interest. llis accounts, e.g., of the Maldive Islands, and of the Negro countries on the Niger, aro replete with interesting particulars, and 1ppear to be accurate and unstrained. The former agrees surprisingly with that given by the ouly other forcign resident we know of, viz., Pyrard do la Val, two hundred and fifty years later. His ull and curious statements and anecdotes regarding tho showy virtues and very solid vices of Sultan Dahommed Tughlak are in entire agreement with Indian historians, and add many fresh details.
To do justice to the traveller's own character, as he has unconsciously drawn it, would require the hand of Chaucer and his freedom of speech. Not deficient either in acuteness or in humanity ; full of vital energy and cnjoyment; infinite in curiosity ; daring, restless, impulsive, scnsual, inconsiderate, extrapagant; supcrstitious in his regard for the Moslem saints and quacks, and plying devout obscrvances when in difficultics; an agreeable companion, for he is always welcomed at first, but clinging like a horseleech when be fiuds a full-blooded subject, and lience apt to disgust his patrons, and then to turn to intriguc ngainst them, 一such is the picture wo form of this prince of Boslem travellers.

IBN EZRA. Sce Abenezra.

IBN KHALDOUN (1332-1406), a celebrated Arabic historian, peet, and philosopher, was born at Tunis on the 1st Ramadhan 732 A.H. (February 8, 1332). His name was Abu Zeid Abdarrahmán, that of Ibn Khaldonn being a patronymic derived from an ancestor Khaldoun ibn Othmáa, who came over with a band of Arab warriors and settled at Carmona in Spain. The family afterwards established itself in Seville, which it quitted for Tunis on the approach of Ferdinaud III. Ibn Khaldoun at an early age applied himself to the study of the various branches of Arabic learning with very great success, and entered the emplogment of the sultan as private secretary at the age of twentyonc. Not believing, however, in the stability of his master's throne, he soon aftersards took refuge with and obtained smployment under the Merinide sultan Abu Eionn at Fez. Ia the beginning of the year 1356 , his integrity having been suspected, he ras thrown into prison until the death of Abu Einân in 1358, when the vizier El Hasan ibn Omar set him at liberty, and reinstated him in his rank and offices. He hero continued to render great service to Abu Salem, Abu Einán's successor, but, haring offended the prime minister, his position became less pleasant at court, and he sought and obtained permission to emigrate to Spain, where, at Granada, he was received with great enrdiality by Ibn el Ahmer, who had been greatly indebted to his geod offices when an exile at the court of Abu Salem. The farours and honours he received from the sovereign soon, however, excited the jealonsy of the vizier, and he was Iriven back to Africa, where he was received with great cordiality by the sultan of Bujaiye, Abu Abdallab, who had been formerly his companion in prison. Jealousics and intrigues again drove him forth, this timo to take refuge with the lord of Biskera, Ahmed ibn el Mozni. In answer to an appeal from the sultan of Tlemcen, Ibn Klialdoun raised a large force amongst the desert Arabs of tho district, and passed over to the service of that prince. A few years later ho was taken prisoner by $A b d$ el Aziz, who had defeated the sultan of Tlemcen and seized upon the throne. He then entered a monastic establishonent,

[^118]and occupied himself with scholastic duties, until in too year 1370 be was scnt for to Tlemcen by the new sultan, Abd el Aziz. After the death of Abd el Aziz he resided at Fez, eojoying the patronage and confidence of the regent. After some further vicissitudes he entered the service oi the sultan of his native town of Tunis, where he devoted himself almost exclusively to his studies. Having roceived permission to make the pilgrimage to Mecca, he set ont and reached Cairo, where his reputation had already preceded him, and was presented to the sultan, El Melek ed Dhaher Berkouk, who insisted on his remaining there, and in tha ycar 1384 promoted him to the high rank of grand cadi of the Malekite rito for Cairo. This office he filled with gres: prudence and probity, and succeeded in removing a masa of abuses with which the administration of justice in Egypt was overgrown. A terrible misfortune now fell upon him; the ship in which his wife and family, with all his property, were coming to join him, was shipwrecked, and every one on board lost. He endearoured to find consolation in fresh derotion to his studies, and to the completion of his great work the IIistory of the Arabs of Spain, in which he had long been engaged. At the same time he was removed from his office of cadi, which gave him still more leisure for his work. Three years later he made the pilgrimage to Mecca, and on his return lived in strict retirement at the village of Faiyoum until 1399, when he was again called upon to resume his functions as cadi Ho was removed and reinstated in the office no less than five times.

In the month of Rabia I. 803 A.H. (October to November 1400 A.D.), he was sent to Damascus, in connexion with the expedition intended to oppose the celebrated Timur or Tamerlane. When Timur had become master of the situation, Ibn Khaldoun let himself down from the walls of the city by a rope, and presented himself before the conqueror, who, charmed rith his dignified appearance and his learned discourse, permitted him to return to Fgypt. Ibn Khaldoun died on the 25th Ramadhan 808 A.H. (16th March 1406), at the age of sixty-four.

The great work by which he is known is a "Uniscrsal History," but it deals more particularly with the history of the Arabs of Spain and Africa. Its Arabic title is Kitcib cl 'Iber', sca diwán ci Mubtadd wa'l K7aber, fle aiyion cl 'Arab wa 'l' Ajam wa'l Berber; that is, "The Book of Examples and the Collection of Origins and Informa. tion respecting the History of the Arabs, Foreigners, and Berbers." It consists of thre hooks, an introduction, and an autobiography. Book i. treats of the influcace of civilization upon man; book ii. of the history of the Arabs and other pcoples from the remotest antiquity until the author's own times; book iii. of tho history of the Berber tribes and of the kingdoms founded by that race in North Africa. Tho introduction is an claborate treatiso on the science of history and the derclopment of society, and the autobiography contains the history, not only of the author himself, but of his fanily and of the dynastics which ruled in Fez, Tunis, and Tlemeen during his lifetinc. An admirable edition of the Arabic text bas been jwinted at Boulak (Cairo), and a part of the work has been translated by the late Barm de Slane under the title of Hisloire-des Berbercs (Alricrs, 1850-56); it contains an admirable account of the author and nalysis of his work. (E. II. P.)

IBN KHALLIKAN (1211-1282). Abu'l Abbus Ahmed, betier known as Ibn Khallikan, ${ }^{2}$ author of the celcbrated Arabic biographical dictionary, was born at Δ rbela on the 22d September 1211. Some of his biographers trace his descent to Jaafer tho Barmecide, the well-known unfortunate friend and vizier of Haronn Alraschid. His life was that of a scholar and literary man, and he was promoted in his later years to the office of cadi of Damascus. He died in tho Najibiyelı Collego of that city on tho 29th Octuber 1282. Ilis great work is the Kitab Wafayat el "Aiyan, "The Obituarics of Eminent Men," and contains brief sketcles of tho lives of all the most important

[^119]porsonages of Muslim history a ad literature, with many appropriate anecdotes illustrative of their personal character, and extracts from the works of such of them as were authors or poets. It is the most complete and at tho same time the must universal and comprehensive biographical dictionary in the Arabic language, and \vdots the indispensahle companisu of the stndent of Mahometan literature. Ibn Khallikan has many imitators, the best-known work of the kind being the Fuwat el" Ilrafayat, "Omissions of tho Wafayat," by Saláh ed din Muhammed ibn Shákir, which has been published, as well as the work which it is intended to supplement, at the Boulak press.

Ibn Khallikan's work has been published in Arabic with an Enclish translation by Baron MacGuckin de Slane for the Oricntal Translation Fund of Great Britum and Ireland (Paris, 1942), and this odition, which is found io most public libraries, is the best and the most accessible oue extant.

IBN SINA. Seo Avicenna

IBO, Ibu, Igbo, or Eboe, a district of Wost Africa, situated in the delta of the Niger, and nainly on the left or eastern bank of the river. The chief town, which is frequeutly called by tho samo name, but is more correctly designated Abo or Aboh, lies on a creek which falls into the main stream about 150 miles from its mouth, and contains from 6000 to 8000 inhabitants. The Ibo are a strong well-built Negro race. Their women are distinguished by their embonpoint, which is considered by the people themselves as the perfection of beauty. The language of the Ibo is one of the most important in tho Niger delta, and is gradually extending its area. The Rev. J. F. Schön began its reduction in 1841 , and in 1861 he published a grammar of it (Oku Ibo Gramnatical Elements, London, Church Miss. Soc.). Isoama is the dominant dialect, being spoken by the Aboh, Elugu, Aro, and Abadja tribes.

See Captain W. Allen's Narrative, London, 1848; M. Burdo, Niger et Benué, Paris, 1880 (Euglish trans. by Mrs Strange, 1880).

IBRAHIM PASHA (1789-1848), viceroy of Egypt, a real or adopted snn of Mchemet Ali, was born at Cavall: in Roumelia in 1789 . Early associated with tho Egyptian army, he won a name for himself by successful operations against tho rebel tribes of Upper Egypt and the fugitive Mamelukes in Nubia, beforo he entered his twenty-fifth yeur. In un expedition which he led in 1816 against tho Wahhábees of Arabia, the young gencral was seriously hampered by the want of organized disciplino among his troops, and on his triumphant return to Cuiro in 1819 he eagerly availed himself of tho services of some Frouch officers in his efferts to convert the Oriental turbulence of his forces into the disciplined steadiness of the West. Ibrahim's nest campaign was in Greece, whither he was nedored in August 1821 to support the Turkish sulten's attempts to restrain the risings of lfellenic nationality. The defeat of tho Turkish and Egyptian llect at Navarimo (October 20, 1827) by tho unitad English, French, anal Russiun sifudruns was tho situal for Hrahim's tecall from the Morea, which had suffered keenly at the hands of the cruel Oriental. In Esypt low at onco sot himself afresh to tho work of rearganation in army and navy, and in 1831, when Melacmet Ali ordered an almost wnimovoked invasion of Syria, Itrathin was again at the head of the Egyption army. Unchecked by the Joss of 5000 men [rom cholera befote leaving Egypt, he appened suditenly on tho Syrian coast, tuok Gaza, Jutfi, and Kitiff by surpriso, r.d by the $29 t h$ of Noveratur hat iuvested Aere. Thero lias met with a stubborn resistanco; f wice in vin loattempted to carry tho seaport by storm, and in the midet of tho siege he was called away, to mect an army of relief, commanded by 'Oman Fasha, governor of Aepりor. Near 'lrijnit ho surprised 'Osmán, who decamped without fightiag, and fenurning hastily to Acre, ho throw his whole forco on thu
place, carrying it (27th May 1832) with a loss of lyuv wen. Without a pause he marelted on Damascus, which offered no resistance. At Hims (July 28) he encountered and defeated a Turkish army of 30,000 men, with a force of 16,000 , and passing swiltly through the defiles of Beylan, overtook and completcly roated the retreating enemy at Adaneh. Another victury followed at Oulou-Kislás, and then, near Kouieh, Ibrahim was met by tho vizier Resheed Pasha at the head of 60,000 men. Favoured by a murky day-an advantage whoch belped to counterbalance the great disparity of bis forces-ho contrived to throw the Turkish army into confusion, and, by tho capture of the vizier, cooverted an impendino disaster into the most brilliant of his victorics. Meantimo his fleet, equally successful, had chased that of the sultan bacts to the Bosphorus, and the victor, witbunt an army to oppose him, was withiu six marches of Constantinople. At the critical moment the order came from Mulemet Ali to await reinforcements. But before these arrived the golden opportunity was lost. The Russian army and fleet aulvanced to the protection of the Ottonan capital ; the otber Western powers combined in tho effort to effect peace; and by treaty in February 1533 Syria and Adana were handed over to Mehemet on the condition of his paying tribute for them. As governor, Ibrahim reduced the new territory to order, and gave a strong impulse to industrial enterprise. But war again broke out in 1839, and at Nezeeb (24th June) Ibrahim dealt a second deadly blow to the Turkish power. Again the commands of Mehenct forhade him to follow up his success, and the campaign, cut shont by the interfereoce of the British, ended in the restoration of Syria to the Porte in 1841. After his retreat from Damascus, achieved with martial skill, although accompanied with sertous losses, Ibrahim haid dowa his sword. lietiriag to his estates in tho plain of Heliopolis, he occupicd himself in establishing cotton and nlive plantations, till in 1844 he was called to succed his fither as viccroy. He died at Cairo, 9th November 18.18, only a few uionths after the formal confirmation of his rank of viceroy. The finest qualities of a great comnander were his, who out of semibarbarous hordes fashioned a formidable army, and twite by his individual prowess threatened the overthrow of the Ottoman empirc. His cruelty, the ono blot on his valour niay be regarded as an accident of his lile rather than as a fixed trait in his character. In tiunes of peace, at least, he displayed the sagacity as well as the firmess of an enlightened alministrator. See Erypr, vol. vii. p. 764.

Iblialla, brabit, Bhthblew, or Bralow, a town, formerly of Wallachia, now of houmania, situated on tho left bank of tho Dambe, about 9 miles south of Calatz aud 102 iniles from the Sulina mouth of the river. It has a railway station within a quarter of a mile to tho north-west on tho Bucharest and Galatalime-a branch line coming down to the harlour; and it i: the seat of a chamber of commerce, a tribunal of commerce, and an agency of tho Danabe Navigation Congany. Most ol the town lies about 45 or 50 fuct abovo the level of 2 tio sea, there being only at very marrow strip of low-lyine ground (somo 60 or 100 feet) betwern the edge of the river and the steen and lofty bink by which at this part its course is defined. Ibraila is one of the most regular places in lommania, standing, indecd, in this repect, next after Bucharest itscif. Few of the houses, howerer, are more than two stories high. Towards the land it has the shape of a cresecnt, the curve of the outer streets being controlled hy the direction of the old fortilications, which wero dismantled in 1898. A wide and treeplanted honlevard-the Strada Joblivarduhui-separates the town proper from the suburban protion. There is a public garden along the brow of the bank towarls tho riser. liesides the enthodrat of St

Michael, a large bot ungunty buiiling of grey saribtome, there are seveu Greek churenes, a Ronan Cutholic church, \& Protestant church, a Jewist: synagogue, and a church belonging to the strange Russ:an seet of the Lipovani or Skoptst. Ibraila bas luag had a large slare in the trade of the Danule. In 1836 it was visited by 382 ships. In 1870 there entered 4936 vessela and 6697 cleared, with a respective total burden of 867,189 tons and 821,274 tuns. In 1877 the exports included 87,002 guarters of wheat, 87,314 of maze, 80,938 of barley, 11,964 of rye, besides a largs quantity of grain which appears cader the returns fur Galarz. The railway hetween Ibraila and Galatz takes wide carcuit, instead of following the direct line of the iver The population, according to Henke (Rumënzen: Land und Votk, Leıpste, 1877), 1s 42,000, of whom 53 per cent. are Roumaoans, 20 per cent. Greeks, 15 per cent. Jews, and the remander Germans, de According to the Bulet. Soc. Geogr Romane, 1876, the total is 28.000 .

In the latter part of the 18 th century lbraila was several times taken by the Russtans, and on one occasion (1779) it was burned. By the peace of Bucharest (1812) the Tirks retained the right of farrisoning the fortress. In 1828 it was gallantly defended by Solimsn Pasha, who, after holding out from the middle of May till the end of June, was allowed to mareth out with the honours of war. At the peace of Adrianople the place was definitively assigned to Nallachia. It was tho spot chosen by Gortschakoff for crossing the Danube with his division in 1854.

IBYCUS, a Greek lyric poet, who fourished about the coth Olympad-540 b.c.-was a native of Rhegium in Italy, but spent the greater part of his life at the court of Polyerates, tyrant of Samos. A curious story, not always accepted, $1 s$ told in connexion with his death. While travelling in the neighbourhood of Corinth, the poet was wayland and mortally wounded by robbers. As he lay dying on the ground, he saw a flock of cranes flying averbead, and called upon them to avenge his de..ch. The murderers betank themselves to Corinth, and soon after, while sitting in the theatre, saw the cranes hovering above. One of them, etther in alarm or jest, ejaculated, "Behold the arengers of Ibycus," and thus gave the clue to tho detection of the crime. The phrase, "the cranes of Ibycus," passed into a proverb among the Greeks. Of the seren books of lyries by Ibycus, which Suidas mentions, only a few frag. ments have cone down to us, but these afford sufficieat ardenco to support Cieero's estimate of the author whom he pronounces (Tusc., 18. 33) from his writings " maxime vero omnium flagrasse amore." Even from his mythical and herote pieces, in which he was less successful, Ibyeus did not exelude the erotic clement. The dialeet in which he wrote partonk both of the Doric and of the Nulie peculiarities. The best edition of the frigments is Hyy Rhegini Carminum Relignor, edited by Schneidewin, and p:blished at Göttingen in 1833.

ICA, Yes, or Ecca, an inhand city of Peru, capital of a district in the department of Lima, situated 170 miles sonth south-east of the city of Lima, and 48 miles soutb-aouth-west of Pisco on the Pacific Ocean, with which it is "manected by a railway. Betweer isco and lea the country 3 a desolate and barren desert, but Iea itself lies in a fruitfut viloy surrounded by corn fields and vine yards. On aceount of tha frequent earthquakes the town has a very ruinons sppearanco, but it enjoga considerable prosperity, and exfurts by way of Piseo large quantities of wheat. maize, coston, coshineal, wine, and spirits. Origially the city, when foundel in 1563 , was built 4 miles southeeast from Where it now stands, the change of site taking place after a great earthquake in 1571. Another severe earthquake in 1664 led to a new town being built close to the old one. The population is alout 7000 .

ICE is the solid crestalline form whach water assumes. when exmaed to a sufficiently low temperature. Io :
frepuently precipitated from the air as hoarfrost, snow, or hail; and in the glaciers and snows of lofty mountain systems or of regions of high latitude it exists on a gigantic scale, being eapecially characteristic of the seas and lands around the poles, which consequently have hitherto been practically inacecessible to man. Also in varoons parts of the world, especally in France and Italy, great quantities of tee furm in caves, which, in vitue of their depth below the earth's surface, their height above the sea-level, or their exposure to suitable winds, or to two or mure of thes? conditoons in combination, are unaffected by ordinary climatic changes, so that the mean anaual temperature is sufficiently low to ensure the permanency of the ice. Tho great ice supply for the island of Tenerifte is obtained from such a cave, which ts 100 feet lung, 30 feet broud, and from 10 to 15 feet high, and which is sttuated on the Peak some 10,000 feet above the ser-level. According to the Rev. S. Browne (Lrrt. Ass. Report, 1864), such cave-ice is generally peculiar in ths columnar appearance, and apparently less easy to melt than ordinary surfuce ise.

In the mutual transformations of water and ice, many remarkable physical plenomena occur. Thus, during the process of melting a block of ice or of freezing a quantuty of water, no change of temperature can take place so long as there is a thorough mixture of water and ice. Consequently, the "freezing-point" or temperature at which water freezes is a temperature so readily determined that it is conveniently employed as one of the standard temperatures in the gradua. tion of ordinary thermoneter seales, surh as the centigrade, the Fahrenheit, and the Reaumur. The centigrade scale, whose zero corresponds to this freezing-point of water, is the temperature seale that is employed throughout this article. In the aet of frcezing, water, though its temperature remains unchanged, undergoes a remarkable expansion or inerease of bulk, so that iee at $0^{\circ} \mathrm{C}$. is less dense than water-a fact demonstrated at onre by its power of floating. "Ground-ice" or "anchor-iee," which forms in certain crcumstances at the bottom of streams, is only an apparent exception to this relation between the densities of water in its solid nad liquid states, being retained there by tho cohesion between it and the stones or rocks which conpose the river's bed. When forcibly released from this contaet with the bottom, the ice at once ascends to the surface. Ground-iee may thus be the lowest stratum of the once completely frozen mass of water, adhering to the bottom during the thawng and melting of the ice at the suriace; or it may even be formed under favourable conditions below briskly flowing water, probably liy the action of eddies, which draw the surface water down through the warmer hut denser liquid, and thus cool the stones and rocks at: tho bottom. As water then expands on freezing, so enf:versely iec contracts on melting; and the ice-coll water thas formed continues to contract when heated until it has reached its point of maximum density. Joule, from a serics of eareful experiments, determined the temperature at whiels water attains its maximum density to be $39^{\circ} \cdot \mathrm{J}$ Fallr,, a very nearly $4^{\circ} \mathrm{C}$. ITence water contracts as its temperature rises from $0^{\circ} \mathrm{C}$. to $4^{\circ} \mathrm{C}$; but at higher temperatures is belaves like the great majority of other substances, expand ing with rise of temperature. At no temperature, howesf. dnes water in the liquil state become less lense than ice as the following table of relative densities shews:-

Deusity of	ice at	91
"	"aternt $0^{\circ} \mathrm{C}$.	- 409
\cdots	$\cdots \quad 4^{\circ} \mathrm{C}$	- 1.0000
	$\cdots \quad 10^{\circ}$	09946
	100°	

Under the influence of heat, ier $\mathrm{i}^{\text {teelf }}$ hehaves ac nom andids do, contracting when cuoled, expanding ahen hen

Accolding to Plizker, the coefficient of cobical detatation at moderately low temperatures is 0001585 . From a series of elaborate experiments, Person deduced 505 as the specific heat of ice, or about half that of water; in other words, the heat required to raise 1 th of water $1^{\circ} \mathrm{C}$. will raise 2 tb of ice through the same range of temperature or 1 th of ice through $2^{\circ} \mathrm{C}$.

Though no rise of temperature accompanies the melting of ice, there is yet a definite quantity of heat absorbed, and a corresponding amount of work done-mainly in altering the physical condition of the substance. The heat which disappears is transformed into other and less evident forms of energy, -as, for example, the energy of translatory motion, which is the chief characteristic, according to the recognized molecular theory of matter, of the molecule in the Liquid as compared with the molecule in the solid. The heat which is thus absorbed during the melting of nnit mass of ice is called the latent heat of water, and its value in ordinary heat-units is 7925 , according to the determination of Person. Hence as much heat is required to transform 1 lb of ice at 0°. C . into water at the same temperature as would raise in temperature 1 f of water through a range of $79^{\circ} .25 \mathrm{C}$., or 79.25 b) of water through a range of $1^{\circ} \mathrm{C}$. The same amount of heat which is absorbed when ice becomes water is evolved when water becomesice, so that the melting of ice is aceompanied by the abstraction of heat from surrounding objects, that is, by a cooling effect; and the freezing of water by a heating effect. These thermal effects are generally masked by the processes whereby the change of state is effected; but the cooking which accompanies the melting of ice may be observed when pressure is used as the agent for accomplishing the change. That ice can be so melted by increase of pressure was first pointed out by Professor James Thomson (now of Glasgow) in a paper published in the Transuctions of the Royal Society of Edinburgh for 1849 ; previous to that time the temperature of melting ice was believed to be absolntcly constant under all conditions. Thomzon showed that, since water expands on freezing, the laws of thermodynamics reqnire that its freezing-point must be lowered by increase of pressure; and, by an application of Carnot's principle, he calculated that for cvery additional atmosphere of pressure the freczing-point of water was lowered by 0075 of a degree ecntigrade. This remarkable result was soon after verified, even to its numerical dotails, by his brother, Sir William Thomson (Praceetings of the Royal Socicty of Eidinburgh, 1850). The Thomsons and Helmholtz have since then succussfully appplied this behaviour of ice under pressure to the explanation of many curious properties of the substance. When two blocks of ice at $0^{\circ} \mathrm{C}$. are pressed together or cven simply laid in contact, they gradually unite along their touching surfaces till they form one block. This regelation, as it is called, is due to the increased pressure at the various points of contact cansiug the ice there to melt and cool. The whicer so formed tends to escape, thus relieving the pressure for an instant, refreezing, and returning to the original temperature. This succession of melting and freezing, with their accompranying thermal cffects, goes on until the two blocks are comented into one. Thus it is that a snowball is formed; and in virtue of the same succession of 1 henoicna does the glacier mould itself to its rocky beil and fow down the valley, behaving in many respects like a viseous fluid.

Ice forms over fresh water if the temperature of the air has been for a sufficient time at or below the freezing-point ; but not until the whole mass of water has been conled down to its point of maximum density, so that the subsequent cooliof of the surface can give rise to no convection currents, is the freezing possible. Sea-swater, in the most farourable
circumstances, does not frecze till its temperature is reducea to about $-2^{\circ} \mathrm{C}$.; and the ice, when formed, is found to have rejected four-fifths of the salt which was originally present. In the upper provinces of India, water is made to freeze during cold clear nights by leaving it overnight in porous vessels, or in bottles which are enwrapped in moistened cloth. The water then freczes in virtue of the cold produced by its own evaporation or by the drying of the moistened wrapper. In Bengal the natives resort to a still more elaborate forcing of the conditions. Shallow pits are dug about 2 feet deep and filled three-quarters full with dry straw, on which are set flat porous pans containing the water to be frozen. Exposed overnight to a cool dry gentle wind from the north-west, the water evaporates at the expense of its own heat, and the consequent cooling takes place with sufficient rapidity to overbalance the slow influx of heat from above throngh the cooled dense air or from below through the badly conducting straw.

The growing demand for ice for domestic, medicinal, and Ifeother purposes has led, not only to the devclopment of a raan hin regularly organized ice-trade, but also to the invention of machines for the manufacture of ice in conntries which do not possess a sufficient home supply. The various types of machines which have been or are in use call for a brief description. Freezing-mistures, such as the familiar snow and salt or the mixture of sulphate or phosphate of sodium and dilute nitric acid, may be dismissed with a word, since they are restricted in use to the production of intense cold for a brief period of time, and are incapable of economic application to the formation of large quantities of ice.

All ice-machines which lave proved of practical utility may be grouped under two great classes:-those which utilize the lowering of temperature that accompanies the rapid expansion of a compressed gas, and those which make usc of the like thermal effect that results from the vol::tilization of some liquid. In machines of the first type, the gas usually employed is atmospheric air, which is first compressed to three or four atmospheres, and kept cool by circulating water or by other suitable means. It is then allowed to expand, and the heat necessarily absorbed during the expansion is drawn either from tho water to be frozen or from a solution of brine which does not freeze at the ordinary freezing temperature, and thus becomes, so to speak, a vehicle for the cold. In 1849 Gorric constructed such a machine, which, however, was unsatisfactory in its action, probably becanso the compressed air was not sufficiently cooled and dried. More efficient in their action were Kirk's machine (patented in 1863), and Windlausen's (1870), one of which at the Viema exhibition produced 30 cwts. of ice per hour, at the cost of Is. per cwt. The mole of action of Windhausen's is as follows. A piston works to and fro in a cylinder, compressing the air in the oue end and allowing it to expand in the othor. The compressed and therefore heated air forces its way through a valvo 10 the cooling chambers, from which it is led towards the other end of the cylinder. Here the inlet valvo is so arranged that it closes at a certain position of the receding piston, thus permitting what air has entered to expand and cool. At the return stroke this cooled air is forced out through easily opening vulves,-part geing to cool the chambers into which the heated compressed ail enters from the cylinder, and part passing to the refrigerator, from which after serving its purpose it is pushed on by the fresh supply of couled air to the compressing end of the piston chamber. Such machines, to work economically, require large cylinders, tight-fitting pistons working with little friction, and perfect regulation in the motions of the various parts-conditions suddiflicult to fulfil that refrigeration by means of compressed air may be regarded as a practical failure. The machines constructed by the liell-Coleman Mechanical Refrigeration

Cumpany (Glasgow) utilize as the cooling agent a mixtare ui certain hydrocarbon gases which are obtained from the distillation of carbonaceous shale. The gas is compressed to a pressure of about 8 atmospheres, and, after being cooled by expausinn, is carried off and consumed as fuel. These machines are not specially inteaded for the production of ice; but, as refrigerators, they are successfully emploged fur preserving meat on board ship.

Amoug machines of the sacoad group there is a great varicty of construction, because of the great differenees whieh exist in the properties of the liquids used. Thus water, sulphuric ether, bisulphide of carbon, ammenia, nethylic ether, sulphurous acid, and other substances have $b=e n$ employed as refrigerating agents. In all cases, it is the so-called latent beat of vaporization that is utilized; and did the efficiency of the method depend only on this, water would undoubtedly be the best material on account of the great lateat heat of its vapour. But as important from a practical point of view are the vapour pressures that come into play throughout the range of temperature emploged. Thus at $10^{\circ} \mathrm{C}$. the pressure of water vapour is so small, only 012 of an atmosphere (and at lower temperatures of course it is still smaller), that, to make the evaporation of water an efficient means of refrigeration, the process must be conducted under a rery nuuch diminisbed pressure. As early as 1755 , Dr Cullen managed to frecze water by its own evaporation in a racuum ; but this method, though greatly developed by Nairac, Leslie, and Vallance, can be applied to the prodnction of iee in small quantitic; only.

The same objection applies, of course, to sulphuric ether, bisulphide of carbon, or any aubstance which boils under ordicary atmospheric pressure at a temperature above that of the air. Ether boils at $34^{\circ} \cdot 8 \mathrm{C}$., and bisulphide of carbon at $46^{\circ} 2 \mathrm{C}$. and their vapour pressures at $10^{\circ} \mathrm{C}$. are respectively 337 and 267 of an atmosphere. They thus volatilize much more readily than water, and require a comparatively slight vacuum to reader their evaporation aufficicotly rapid for refrigerating purposes. In the ether machine, which may be taken as a type, the ether, on being vaporized in the refrigerator under a partial vacumm, is drawn over and compressed to the liquid state in the coudenser, which is kept cool by circulating watcr. From the condenser it is then led back to the refrigerator, to be reevapurated. Perkins'a machine (1834), Twining's patent of 1850, Harrison's machine (1857), Siebe's machine (IS62), and Siddeley and Mackay's apparatus are ether-machines; aud all except the first, which is hardly adapted for extensive frcezing, surround the refrigerator with brine, which when conled flows easily around and between the eases containing the water to be frozen. Van der Weyde (1869) substituted naplitha, gasolin, or chimogene for the ether; and in Jolnston and Whitelaw's machine bisulphide of carbon is used somewhat similarly. The great difficulty in machines of the ether type is to prevent leakage, so as to keep the partial vacuum rean; efficicat; and morcover ether, which is in most respects superior to all the other substances employed, has an awazard tendency, under the influence of frequent condensations and rarefactions, to transform itself into less volatile isomers.
The great eharacteristie of ice-machines which employ ammonia, methylic cther, or aulphurous acid, as comprared with those of the ether type, is that they work at increased instead of diminished pressures, since these substances are gaseous at ordinary temperatures and pressures, and require for their liquefaction either the production of a low temperature or the application of a high pressure. For facility of reference the boiling points and vapour pressures at three different temperatures for these substances are given in the following tablc.

Name or Subetane	Bnititr lolat.	V.apua:-1'rensuacs esti. mated in Atmosphesis.		
		At $10{ }^{\circ}$.	At 20°.	At 30°.
Ammonia	-330.50 C	$6 \cdot 1$	$8 \cdot 5$	11.6
Methylic ether	- $23^{\circ} .65$	$3 \cdot 5$	$4 \cdot 8$	6.5
Sulphurous acil.	$-10^{\circ} \cdot 08$	$2 \cdot 3$	$3 \cdot 2$	4%

The best known of the ammonia maehines is Care's (1859), the principle and construction of which are remarkably simple. Two strong metal vesseIs, the boiler and refrigerator, are connected above by a tube. In the boiler a saturated solution of ammonia is raised to $130^{\circ}-150^{\circ} \mathrm{C}$. The ammonia is driven orer under high pressure into the refrigerator, round which cold water cireulates, and in Which the ammonia is condensed to a liquid. The boiler is then placed in cold water, and as its temperature falls the pressure in the apparatus is relieved and the liquid ammonia in the refrigerator vaportzes rapidly, thereby producing intense cold, and red:ssolves in the boiler. The temperature to which the boiler must be raised at first is determined by the condition that the pressure in the boiler must correspond to the pressure of the ammonia vapour at the temperature of the condenser. Now the pressure of ammonia rapour increases from $8 \frac{1}{2}$ atmospheres at $20^{\circ} \mathrm{C}$. to $11 \frac{1}{2}$ at $30^{\circ} \mathrm{C}$. ; and this bigher pressure is extremely difficult to keep up in such an apparatus as Carre's, because of inevitable leakage. In warm countries, accordingly, the ammonia-machine is practically useless because of the high pressures required; and in temperate climates, where uatural ice can be stored throughout summer, an ice-machine is not in such great demand. One great drawback to the efficient working of Carre's machine is the difficulty of keeping the refrigerating liquid free of water-only 75 per cent. of it being ammonia. To remedy this defect Recce invented his machine (1869). The essential part of this ingenious apparatus is an upright cylinder in which a descending current of strong ammonia solution, drawn originally from the boiler, is met by an ascending current of steam. The aumonis is thus scparated from the water, and is driven off into a rectifier, from which, after being freed from any small quantity of water it may have carried along with it, it passes into a condenser where it is Eept liquid by its own pressure. It is then allowed to collect in the refrigerator, where at the required moment the prcisure is relieved, permitting the ammunia to vaporize aid escape to a separate chamber to be redissolved. Brine flowing through a coiled tube within the refrigerator is used as the vebicle for the cold produced; or even mere water may suffice if the object is simply to get a diminished temperature without freczing. Linde's ice-making machine, sone twenty-two of which were in operation at the Disscldorf Exhibition of 1880, is the latest form of ammonia macbine ; and its inventor claims for it superiority over all others as an cconomical refrigerator. The danger of explosion, one of the great disadrautages of ammonia, is obviated by earrying the liqueficd gas through narrow iron tubes and by employing only a small quantity of the substance at one timc. Blocks of ice are formed between the spokes of a revolving drum, whicl, cooted internally by the evaporating liquid, dips into a tunk of water Methylic ether is in some respects better than ammonia, having a higher boiling point, and requiring smaller pressures, without the noccssity of heating. In Tellier's machine (described in the Imates de Chimie ce de Physigue for 1874), which is specially suitable for use on board shif, the methylic ether evaporates in a closed metallic vessel, the sides of which are in immediate contact with the water to le frozen ur chilled.

Sulphurbus acid, first successfully employed as a refriger-
ating agent by Pietet of Geneva (1876), and thereafter applied by Gamgee to the formation of his glacarium or artificial skating rink, is in many respects far superio: to any other known refrigerator. Thus it is more easily liquefied than ammonia and methylic ether, exerting a rapour pressure of only $4 \frac{1}{2}$ atmospheres at $30^{\circ} \mathrm{C}$. ; it has no chemieal action upon motals or fats; it is incombustible, it is obtainable at small expense; and it hes, besides, good lubricating properties;-in short, it seems to possess all the essentials of an efficient and economical refrigerator. In Pictet's machine, the liquid sulphurous acid passes under pressure from the condenser to th3 refrigerater, where on the pressure being relieved it vaponzes, cooting to $-7^{\circ} \mathrm{C}$. a curreat of brone which then Hows rumd the tanks containang the water to be frozeb. The sulphurous acid gas in the refrigerator is drawn over by an aspirating foreepump and recondensed in the condenser, which is kept cool by an ample supply of cold water By a special modifieation of the sulphurous aerd machne, Pretet obtaned as low a temperature as $-73^{\circ} \mathrm{C}$., under this low temperature be then compressed carbonte aed gas to a liquid, by the evaporation of which he produced such intense cold as to enable him to liquefy the so-called permanent gases under a pressure of several hundreds of ntmospheres (Bithothéque Universelle, I878). Gamgee uses as his congenhng hquid a solution of 4 parts of glyeerin in 6 parts of water, which is conveyed in prpes beneath the water-surface to be frozen.

Machines which are capable of freezing water may in certain circumstances be much more efficently employed to produce coeling without freczing. For instance, in curinghouses, breweries, sugar refineries, provision stores in hat climates, and in ships engaged in the transport of meat, where it is of importance to have the temperature moderately cool, it is usually by no means necessary to obtan ice. In many such cases, mdeed, the production of ice would be a mere waste of labour. In tropeal and subtrepical chimates refrigeratuon is of high impertance from a sanitary point of view, and there seems little doubt that if a simple, economical, and thoroughly efficient means of cooling were discovered, houses would be cooled in warm weather with the same care and regularity with which they are when necessary heated. At present, however, the manufacture of ice and the artificial production of eold are arts still in their anfancy, which have a powerful ruval in the extensive and increasing ree-trade that has sprung up within the last half century.
The idea of trading in ace first oecurred to n Boston merchant, named Turlor, whe in 1805 shipped see to Martinique. In 1833 Ameriean tee began to be mperted into Calcutta, where at was sold for 3 d . per pound-exactly half the priee of the Bengat manufactured ice. In Amorica, which was for long the great iec-exporting comntry of the world, supplying especially the West lndies, India, nol China, the cutting and storng of ace form an important industry churing the winter months. When the iee is sufficiensly thick, 9 to 12 mehes for home consumption. 90 incter for exportation, the surface is seraped free of all prous ice, and is marked out into squares of if feet each way. Alung these lines the ace is grooved to a depth of 3 inehes bymans of a plough. Aumstrument like a harrow is driwn over the grooves sa as to deepen them, anl, after the surface las heendiveded into smather squares, the we $1+\mathrm{cat}$ up into linces by mems of handsasw. The blocka are then renusen! to larte doulde-walled storchonses, many of which are eapatle of contamong thonsamis of tons of ice It lat extimated that, in America, 2.000 .000 tons of owe are cut
 the mildueStates. New fiork aty alme comsumes as much
 Ann Wealrm Lake uear Buston was at one time inyorted
inte Britain, sut now the whele supply comes from Drobak near Christiania in Norway. The Norwegian ice is remarkably solid and pure, and is superior in its staying power to English ice or to manufactured ice. The total quantity imported into the United Kingdom may be estimated roughly at 150,000 tons per annum, of which the greater part is consumed in London, where it is retailed at frum 2 s .6 d . to 3 s .6 d . per cwt. At preseat Norway is undenbtedly the great ice-store for the Old World; and quite recently (1880) Norwegian ice has been sold in the United States mere cheaply than native ice. The transport on board ship offers practically no difficulty, since, as long as the held is kopt dry and ceol, there is very little loss, and in the lading no special care need be takes. For the storing in houses, see Ice-House.
(c. G. к.)

ICEBERG, a floating mass of ice, which has breken off from such ice-sheets as cover Greenland, Spitzbergen, and other polar lands, constituting vast glacter systems ever creepug out and down from the central heights to the shores. As the glacier is pushed out to sen, the lower margin is exposed to the destructive action of the waves, and breaks ap into fragments of endless variety of form These severed blocks, many of which are hundreds of millions of tons in mass, drift to lower latitudes under the influence of polar currents, and gradually melt away in the warmer water. - Such is the natural history of icebergs, which, In their freshwater origin, are to be distinguished from the ice-fields, ice-thes, pack ice, and ree-hummocks, so familiar to the pelar veyager. The iceberg, as it drifts along, melts most rapidly under water ; and this unequal wasting must be accompanied by a change in the position of the centre of mass and a consequapit shifting of the iceberg into its new pesition of equilibrium. Undermining and fracture also result, so that at length the mass of ice, however square-shaped or symmetrical it may have been originally, assumes a form irregular and fantastic in the extreme. The densties of ice and sea-water are nearly 92 and 1.03 respectivety, so that only $\frac{11}{103}$ or nearly $\frac{1}{6}$ th of the recberg is above water and visible. An leeberg abserved by Sir Jolin Ross and Lieutenant Parry was $2 \frac{1}{2}$ mites long, $2 \frac{1}{5}$ miles broad, and 153 feet bigh. Assuming the form to have been approximately a cone erected upon an ellipitic base, the mass above water would be rouchly 150 million tons-giving a tetal mass of nearly 15 hundred million tons. This iceberg, however, was by no means of extraurdinary dimensions. In the seuthern seas, great flects of icebergs have been observed as far north as the latutude of Cape Horn ; and some of these ace masses have towered to a herght of 700 or 800 feet. The limiting laritude to which acebergs drift is lower in the southern than in the nerthern lemisphere, probably because of the comparative scarelty of land in the somth polar regions. Thus, leebergs have been observed off the Cape of Good Hope in 34° \&. lat., while none has been notieed in the northern lemusphere lower than the 36 th parallel. Generally speaking, the limiting latitudes may be fixed at $40^{\circ} \mathrm{N}$. lat. nud $3 \overline{5}^{\circ} \mathrm{S}$. lat. la the North Athantic the distribution of icebergs is very remarknble, and indicates, in ats peculiar way, the general set of ocean currents. leoberigs, of course, can only drift along with some polar current, - sueh, for example, as the Labrador current, which thws in a generally suutherly direction round the coasts of Newfombland and Nova Seotia. To the enst of this track, in which icebergs ahound during the early summer months, hes the region whech is wamed by the waters of the Guli Stream na it flows to the Scandimmani coast, and here floather be is rately seen. The same considerations regard. mog prevaling curchts detemme the distribution and limit of iechergs in the solithem ocemas, the grent antaretic rabivit that cools the coasta of Chili nad Peru bearmer uisn
its broan expanse the tragmu.cis ot the shimmg tee-clitl's of South Victuria. The clinatic effect of an icebery is somotimes very marked; and not unfrequently the loweriug of the temperature indicates to the mariner the presence of flonting ice even before it is near caongh to be visible. Cerolorically considered, icebergs, like glaciers, aro great transport'ng agents, bearing away to tho deep sea rocks, boulders, and stones, which aro strewn along tho occan bed as the ief gradually melts. By this cause, rather than by the glacier in its integrity, some erratic blocks may doubtless have been transpurted at a timo when tho land was under siater and exposed to icedrift.

ICE-HOUSE. An iec-house, to supply ice for domestic use during tho summer montis, it sue of tho desirabie ndjuacts of a country residence. The old form of icehouso was a well soveral feet deep, dug out on sloping ground or agimst a bank. The bottom was made to slop: towards as ank drain, covered by an iron grating, to permit the water from the melted ico to pass away quickly; while a dip in the drain or a bem in the pipe provented air frum cntering at the bottom of the well. The ice was filled in throurth in opening in the dome, which had to l心 carefnlly elosed.

A good form of ice-house is that recommended many years ago by Mr Bailcy, gardener at Nuncham Park, Oxford, and described iu the Gurdener's ifaguine of Botany (i. 8?). 'Tlais hunse is shown in section and plan in fig. 1 , where the dutted line indicates the ground level. The well ar receptacle for the iee a is 10 feat 6 inches wido at the base, and 3 feet wider near the tep; ; the walls are hulluw, tho outer purtion being built of dry rouch stone, and the inner wall and dome f of brick. The outer wall o might bereplaced by at puddling of clay, carried up, as the work proceeds. Over the (ul) is a mound of elity and soily which is planted with shrubs to kuep the surfacs
 cool in summer. The dran $i c_{n}$ rics off the water formed by the melted ice, and is provided with a trap $/$ to prevent the ingress of air through the drain. There is a porch or lubby 6 provided with non outer and an inner door c, c; nnd there are apertures at d, d, to get rid of the condensed moisture, which, if not removed, would waste the ice. These ventilating dours should he opened every night, and closed again early in the morning. 'The most imprortant conditions to be secured are dryness of the soil and of the enclosed atmosphere, compactness in the bally of ice, which should be broken fino and closely rammed, and the exclusion as far as possible of air.

Tho Americans, who use large quantities of ice, always storo it above ground. One of their ice-houses, of which tho elevation is shown in fig. 2 and the plan in fig. 3 , described in Allan's Jiural Architecture, is both simple and ormanental in character. The housc may le 12 fect spuare.
or any larger size. A series of posts in psirs are set up $1 \frac{1}{2}$ feet apart and 8 feet high, about 1 foot being inserted firmly in tho ground; the distanco between each pair is 3 feet. The tops being cut level all round, a plate 6 inches wide and 4 to 6 inches deep is spiked on to each line of posts, the two plates buing strongly stayed by cross pieces so as to form a double frame. The inner face of each line of posts is now burded up closely, leaviog a space $6 \frac{1}{2}$ feet by 3 feet at the sides, which are also boaddad, to form a donr-casing on each side. TM spaces between the two lines of boards thens furns a continuous box, whiele is tu be eampletuly filled up with moist tan, bark, or sawdust, well packed throughout. There must be a drain tocarry
 off all water from the interior. Within the enelosed space sume level joists are laid down, and on them luose planks to furm a foor, which when covered 1 foot thick with straw is ready to receive tho ice. The roof is formed of rafters, 4 inehes by 3 , long enongh to project at least 4 feet outside the phates, to whinh thev mist be well seenred by spikes. The raftersare tolo boarded over and covered with shingle, and a sarall opening left at the top 10 admit a pipe 8 inches in diameter for a ventilator,over which a small ornamental cap, supported
 on four little Fig. 3. posts, is to be placed. As a finish to the projectang roof, brackets uf 3 by 4 inch seantling, if the joists are of sawed stuff, or of rough limbs of trees to mateh the posts, if theso are rough, may be introduced. After the iee is stored, a close dlour of boards should be laid on joists resting loosely on the wall plate (to admit of this npper floor being removed while the house is being filled), and they must be covered with 6 inclies of tan or sawdust, or failing these with straw. A good layer of tan or sawdust should also be placed on the top of the ree when it is put in. There should be two doors, inside and untside the lining, both opening outwards. is shady place is desirable, but not essential.

A still less expensive wily of storing ice has been described ly the late Mr Pearsun of lindet in the Gurdener's Journal (iii. 10). In this ease the ice-stack was made on sloping ground close to the prond whenee the ice was derived. The ice was beaten small, well rammed, and gradually worked up into a cone or mound 15 feet hirb, with a base of 27 feet, and protectsl hy a compact covering of fern 3 feet thick. A lry situation with a sloping surface is necessary where this man is adopted, and a small ditch slomuld surpound the heap, to drain away any water that may cone from motid ice or from other sourves.

I C ELAND

siact..

ICELAND (in Danish, Island) is an island in the North Atlantic Ocean, immediately to the south of the polar circle. It extends from $63^{\circ} 23^{\prime}$ to $66^{\circ} 33^{\prime} \mathrm{N}$. lat., and from $13^{\circ} 22^{\prime}$ te $24^{\circ} 35^{\prime} \mathrm{W}$. long. Its distance from the north of Scotland is 500 miles, from Norway 500 miles, and from Greenland 250 miles. The greatest leogth of the island is 300 miles, from east to west, änd its greatest breadth 200 miles. The area is estimated at 39,200 square miles, 7000 more than that of Ireland.

The geological formation of the island is throughout volcanic. It rests on a foundation of palagonite, or palagonite tufa, called in leelandic " móberg"; aud on this foundation are raised plateaus of basalts, and mountains of trachyte and other volcanic ejections. The whole island seems to have been filled up by volcanic agency. In some of the mountains the lavas occur in tolerably regular parallel strata or terraces, separated here and there by layers containing lignite, as in the similar volcanic plateaus of Faroe and Greenland.

The whole of the south coast, from Hornafjörour in the south-east to Reykjanes in the south-west, is entirely unbreken by bays or firths. If such ever existed, they have been filled up by the glaciers and the sand and mud carried down from the volcanic ice-mountains situated close te the south coast. The coast-line is not, however, a straight line, but a broad arch, as the land swells out in the middle southsards to a considerable extent. On the north of Reykjanes a bread bay called Faxafloi (Faxi's Bay) cuts into the land ; it is bounded on the north side by Snæfellsues, and has an area of 54 miles by 30 . On the nerth side of Snæfellenes the long Breiðifjörour (Broadfirth) nearly cuts off the north-west penirsula from the rest of the island; it is 80 miles long and 40 broad. The Breiðifjörठur is noted for its great number of small islands, most of them inhabited, and all of them affording breeding places for the cider duck. To the north of the Breisifiorour, innumerable bays cut into the peninsula at every turn, giving it somewhat the look of the outstretched hand of a man; the longest of theso is Isafjarðardjúp (Icefirthdeep), 45 miles long. On the nerth side of the island, between Horn (Cape North) on the west and Melrakkaslétta (Fox Plain) on the east, there are several large firths. Furthest to the west is Hónalói (Bearcubs' Bay), about 60 miles long, which nearly meets the Breibifjurdur running in from the west; the tongue of land which separates them and conreects the torth-west peninsula with the rest of the island is cardly 5 miles broad. The other firths on the north side ere Skagarjurbur, Eyafjorour (Firth of the Ioles) 36 miles long, Šjaifandafjörior, and Axarfjörbur (Axefirth). The Melruklasléta is scparated from Langanes, the vorth-east IViat of Iceland, loy the pistilfjorbur (Thistlefirth). The whule of the vast eonst of the island is indented by numer. was narrow firths like those found in the north-west peninsula, but none of them are of any great length. Sailing round the island from point to puint, the distanco is 900 miles, but if we fullow the coast line it is not less than 2000 miles.

The centre of the island is a table-land, or rather a broad flattened ridge, sloping down to the north and the south, the average height of which above the level of the sea is atout 2000 feet. It eonsists of arid sands aud rurged tracts of lava, the most important of which hear the names of Ohabahraun (the Laga of Exil Deeds), Sprengisandur (Dursting Sand), atul Stórisandur (lhig Sand). Tuis wildernesa is frequently loroken by high and cxtemse ice-hilla alled joknill (flus. juthar). The ice bills rise to the er..
height in the south-east, where the most extensive ice-field in the island, called Yatnajokull, eovers about 4000 square miles. The outliers of this ice-field come close down to the water, hardly leaving room for passage between them and the sea; some of these are the loftiest summits in the island, as Ürefajökull, whieh is 6466 feet high. South of the west end of the Vatnajöbull, called Skaptarjökull, stretebes an inhabited slope, interrupted by sereral small hills, and intersected by considerable streams. The eastmost part is called Siba; then follow Landbrot, Medalland, and Alptaver. West of this the land rises again in the Myrdalsjökull and the Eyafjallajökull, the latter being 5593 feet high, and here again the mountains come clese down to the sea. West of the Eyafjallajökull is the largest plain in the island, stretching westward to the mountain chain terminating in the low cape of Reykjanes, and backed on the north side by several isulated mountains, among which the far-famed Hecla is prominent; its beight approaches 5000 feet. This plain cunsists of stretches of grass land and marshes, afferding abundance of grass for pasture and haymaking.

The southern and part of the eastern coasts of Faxatioi, as far as Reykjavik, are very barren and desolate, being almost entirely rugged liva tracts; but the lewer parts of the hills then begin to be clothed with grass, affording pasture for sheep, cattle, and herses. North of Reykjavik is a long and narrow firth called Hvalfjorður (Whalefirth), and further on a shorter one called Borgarfjörour (Burghfirth). Between the extremity of the latter and the central highlands there is a large and fertile district, consisting of grassy valleys, divided by low hills, and an extensive plain covered with marshy grasslands. This district is a fair specimen of many of the inhabited parts of Iceland. The level land, the valley bottons along the river banks, and in many cases the slopes of the hills, are covered with grass, but the soil is too frequently boggy and marshy. The hills are partly covered with heather, and in a fow places with stuated dwarf birch. Districts similar in character to Borgarfjörour are the Dalir (Dales) on the south side of Breidifjördur, the Húnavatnssysla on the south side of Húnafléi, the Skagafjöröur, the Fljotsdalsherado on the east side of the island, and the western half of the plain lying between Eyafjallajökull and the Reykjanes range of meuntains. The north-west peninsula consists, as already stated, of narrow firths divided by high and narrow mountaip ridges, seldom lower than 2000 feet. In some places the top is a thin rocky edge ; in others it consista of sharp-pointed peaks, denuded of all regetation. Even at a considerable distance the different rocky strata may be distinguisbed. Sometimes these hills, or rather cliffs, rise perpendicularly out of the water to a height of a conple of thousand feet, affording breeding-places to an inmense number of sea-fowl. More frcquently the lower parts of these razer-backed hills slope towards the firths, the stony slopes being partly eovered with grass or heather. The farms are thercfore found along the slores and in short valleys cutting into the hills from the ends of the firths. The cast coasts of Iccland present exactly the same elaracter as that of the north-west peninsula. From the end of Eyafjertur a long and fertile valley, boumed on both sides by lofty mountains, runs due somth into the country for about 25 milcs, The northeast comer of the island, ealled pingeyarsysla, has good sheep pasturage, although its hills and slopes are covered with licather instewl ol grass to a greater extent than most other districts of the islatd. It will thus be \therefore Ilat the inhabited mota mum roma the consts, aud from

Tu, inafi whe ceritun ammimerte. belomge wo thr "Senry of Burnt Jial."
ENCYCIOPADIA BRITANA.

$\{13$
Fenfoe If Danese who has hindly afluerd us reproduction here
1.TH EDHIDM

the end of the bsya intn the interior, thec farms farthest inland being about 50 milcs from the sua.

As the snow-line is at an altitude of from 2500 to 3000 feet, all the bighest mountain-tops are cones covered with perpetual snow. Besides the ice-muuntains already mentioned, there are ecveral on the western part of the central bighlands, auch as Hofajökull, Langjökull, Eiriksjökull, de.; Snæfellsjökull, at the point of the peninsula separating the Faxafloi and Breirifjörður, reaches the height of 1713 feet. All these mountains are snow-capped. \$lost parts of the island are studded with lutls ranging in height from 2000 to 3000 fect. The tops are usually bare and rocky, but the elopes are to some extent covered with grass and heather.

Most of the mountans of Iceland have been volcanoes, and at least twenty-five of them have been active within the bistorical peried of the island, that is, the last 1000 years. It was observed by Mackenzie that there are two volcanic formations in the island, one consisting of flat sheets of basalt, the other of more irregular hilly accumulations of trachyte, obsidian, ashes, and other volcanic masses. The former of these, there can be little doubt, is of Tertiary age - a part of the great Miocene volcanic plateaus, which on the one hand extend southwards through the Faroc Islands and the west of Scotland to the north of Ireland, and on the other stretch northwards and westwards far into Greenland. The other volcauic masses are of recent date. Iceland has thus been the theatre of volcanic activity at two widely separated periods, though we do not yet know whether during the interval the activity was wholly dormant. Of the existing volcanic mountains the best known is Hecla, from which eighteen eruptions have been recorded; the last tuok place in 1845-46. The intervals between the eruptions have varied greatly; sometimes it has remained quiet for six years only, at other times for seventy-two years. As with most other volcanoes, the height of this mountain varies with the eruptions. Thus before the eruption of 1845 its height was given on Gunlaugsson's map as 4951 feet, while Kjerulf measured the mountain in I850, and found it to be only 4532 feet. The earliest bistorical eruption, that of 1104 , is celcbrated as the "sand-rain winter," the second, in 1158 , as the "great darkness," from the quantity of ashes ejected. One feature of the Icelaudic eruptions, nut from Hecla only, but from other orifices in the island, has been the prodigious quantity of fine dust discharged and the great distance to which this material has been carried. Thus in the year 1766 a column of ashes rose out of the crater of Hecla to a height of 16,000 feet into the air. Volcanic dust from the Icclandic vents has frequently been borne by upper air currents so as to fall upou the liarne Islands, and has even been carried in considerable quantities as far as Norway on the one side and the north of Scotland on the other. Next to Hecla, the Katla, or Kötlugría, in Mýrdalsj"kull may be mentioned; its last eruption (the thirtecnth known) took place in 1860. The most tremendous volcanic outbreak in Iceland was that which took place in 1783 in or near the Skaptarjökull, on the north-west border of the Yatuajükull. Two principal lava streams Howed from it: one of them was 50 miles in length, from 12 to 15 miles in breadth, and 100 feet decp, and the other was 40 miles in length. It has been calculated that these two streams cover an area of 420 square miles. This cruption de. stroyed directly or indirectly one-sixth of the inhahitants of the whole island, or one-half of all the live stock. From nearly all the outliers of the Vatnajnkull cruptions now and then take place. To the north of Vatnajokull a range of volcanic ceatres eatends as far as Myvatu. The last outbreak bere took place in 1875, when fine rolcanic dust was discharged in great quantity, some of it being carried as far as Norway. Tho sea around the coasts of Iceland has
bcen frequently disturbeci $: y$ zolcanic outbreaks, eapecially off Cape Reykjanes.

On account of the same volcanic activity, hot springs are frequently met with throughout the ialand. The common name for them in Icelandic is "bverr" (cauldron). The chief of those hat spriugs is Geysir (Gusher). See Gevsers.

The only mineral worked to any extent in Iceland is dinerals, sulphur; the principal mines are those of Kisuvik and Myvatn. Of the lceland spar used for polarizing optical instruments, only one mine has been worked, that of Ilelgustadir in the east of the island. Limestone is found near Reykjavik, and has been worked a few years. Ironore is found in many parts of the island, but not in paying quantities, as suitable fucl is wanting. Aluminium occurs near Cape Reylijznes, but no attempt has been made to work the mine. Coal has also been found in one place, but has not been worked. There are considerable quantities of lignite, called in Icelandic surtarbrandur, in the north-west peninsula; some successful attempts bave been made to use it as fuel, but it has not been worked to any extent. leat is found, and is used as fuel, in most parts of the island.

Iceland is rich in streams and rivers, some of them Rivera carrying a large volume of water; as, however, the fall is steep in every case, they are not oavigable even by small boats. The longest are Pjorsi, running southwards from the central Lighlands, and Skjálfandafljót and Jukulsá a Fjullum in the north-east, running northward. The lastmamed river is 113 miles in length, the other two $10 x$ miles eacb. Of other rivers may be mentioned the Ilvitit, part of which is called Olfusá, running nearly parallel witl, Jjưrsá, Hvita in Borgarfjürbur, Blanda running into Ilúuafói, Héraðsvötn in Skagafjürour, and Lagarlijot in the east. There are several rivers named Hvitá (white river), so called from their milky waters, caused by the glacial mixtures carried down from the highlands. The principal waterfalls are-Skogafoss and Seljalandsfoss, south of Eyafjallajökull, Godafoss in Skjâlfandafljót, aud Dettifoss in Jölulsá a Fjöllum. Of the lakes pingrallavatn, about 25 miles northeast of Reykjavik, and Mjvatn in tho north-east of Iceland are the largest. The former ia 25 miles in circumference, and the latter 36 miles; its waters are studded with thirty-four small islands, affording breed-ing-places to a large number of water-fowl.

The climate of Iceland is not nearly so severe as might Climete be supposed from the latitude. At Reykjavik the mean temperature of the gear is 39° Fahr., of the summer 53° and of the winter $29^{\circ} 18^{\prime}$. The temperature of Akureyri is 32° for the year, that of the summer $45^{\circ} 5^{\prime}$ and the winter $20^{\circ} 7^{\prime}$. There is therefore great difference between the north and the south of the island. Another difference may also be noticed; while the climate of the south is wet and variable, that of the north is dry and regular. The mean temperature of different years eometimes varies as much as 10°, and the mean temperature of the same month has been known to vary as much as 27°. One feature in the climate has been noticed by all travellers, that is, the clearness and purity of the atmosphere, rivalling that of Italy, monntains being seen distinctly at a distance of 100 miles. The rainfall ia considerable in the south and the east of the island, and snow-storms and gales are frequent in winter. Thunderstorms occur mostly in winter.

No cercal is grown in Iceland, but in some places there \mathbf{V} egeto is found a kind of wild outs (Avena arenaria), called in tine Icelandic "melur." Potatocs, carrots, turnips, and several kinds of cabbage have lately been cultivated with consider. able success. The arasses, wild and cultivated, are of the greatest importance to the iuhbitants. The noly trees found are the dwarf birch, rarely higher than 12 fept. and
some willow and juniper bushes. The wild flora of Iceland is small and delicate, with bright bloom, the beaths being especially admired. Wild erowberries and-bilberries are the only kind of fruit found in the island.
tnimale. The only wild animal in Iecland is the fox, of which both white and blue varieties occar; they are hunted for their skins, and also beeause they often attack the sheep. The domestic animals are the cow, the horse, the sheep, the dog, and the cat. The cows are of a small breed, resembling English shorthoras in general, and especially Aldeineys. The horses are also of a small breed, the sverage height being twelve hands; they sre hardy and enduring; many of them are never housed, and forage for themselves as best as they can throughout the winter. They are exported to Great Britain in considerable numbers, for use in the coal mines. The sheep generally are of nearly the same size as the Scotch blackfaced sheep; they are not unfrequently seun with three or four horvs. The genuine Ieeland dog, with his poiated snout, short ears, curled tail, and short legs, has some resemblance to the Esquimanx dog and the Seotch collie. Reindeer were imported-in the last contury, but they fled to the mountains and became wild; they are now nearly extinct. There are said to be ninety different species of birds, fifty-four of them being water-fowl. Tho most remarkable of the birds of prey are the Icelandic falcon (Falco islandicus) and the eagle. The only game bird is the ptarmigan, which is brown in summer and white in winter. Of the wster-fowl the eider duck is of the grestest importance on account of its valuable down ; the killing of it is therefore forbidden by law. Immense numbers of gulls, puffins, and guillemots are seen near their breeding places on the small islsads and on the cliffs round the coasts. The hooper, or whistling swan is found in large numbers in Iceland. The sea round the coast terms with cod, baddock, holibut, and the basking shark; the fin-backed-whale sod seals of various kinds aro also met with, but in smaller numbers. In the lakes and rivers salmon and tront are caught in considerable quantities. no corn is grown, there is no agiculture to speak of, and only a little spade husbandry connected with the cultivation of kitchen gardens, whero potatoes, turnips, and carrots are grown. The area thus under cultivation covers, according to the latest official returns, about 215 English aeres throughout the island. The cultivation of the soil in Ieeland caa hardly indeed be said to have been attempted; such experiments, however, as havo been made, have given good hope of suceess. Around overy farmbouse is a field called "tún," which is but rarely enclosel or fonced. This is the only part of the land which is cultivated at all, and all that is dono there is to spread dung on the top of the soil in autumn and scrape it off ia spring. Even this most primitive cultivation makes the grass twenty-five to fifty per cent. better than elsewhero. Tho haymaking season cxtends from the middle of July to the 20th of September. Tho grass is cut with small seythes, first in the homofield, and then on the uncultivated grass-lands Lelonging to the farms. Many of tho fishermen hiro themselves to the farmers during tho haymaking season; nnd during the fishing season the farmers send their servants to the sca coast to fish.

Aceording to the latest official returns the cattle in the island numbered 20,378; tho horses (ponies) 31,312, and the shoep, 415,339 . It is obvious, hovever, from the quantitics of wool exported that tho number of shecp must Lo at least dontule that stated in the returns.
Ma: 1 .
The manufactures ore confined to spioning, weaving, nind ractures knitting the wool of the sheep. A sort of tweed, called in Ieclandic "varmid," is the principal elothing of tho inkabutants. The spinning of the yarn is dome by the women in winter, and alluwst every farm has an old fashioned loom.

In the north considerable quantitics of jecerts aud stockings are knitted and exported.

The trade with Iceland is entirely in the hands of Danish Truic. traders and a few Icelanders-who mostly reside in Copenbagen. It consists almost entirely in exchange, or barter. The principal exports of the Icelanders are cod fish, about 6,000,000 lb annually; traia oil, 9500 barrels; wool, 1,500,000 Ib ; eider down, 7000 fl ; and feathers, $20,000 \mathrm{ft}$. Ponies are now exported to Scotland,-about 2000 a yesr; and a few cargoes of live sheep have been sent over during the last two yeers. All bread stuffs bave to be imported, as well as groceries, spirits, wines, and beer, tobscco, salt, building materisls, and other items. Since 1854 the trado has been open to all nations; but any vessel trading with Iceland had to take out a sea pass at the cost of 2 s . 3 d . per ton down to 1879, when this diuty was abolished: On the other hand, a trifling duty has been lsid on spirits and tobacco.
There being no roads in the island, but merely tracks commutrodden down by the feet of the ponies, there are no carts nication nor carriages of any description. In the firths boats are chiefly used for conveying goods and passengers; but all inland communication and conveyance is by ponies. These hardy animals carry each a burden of sbout 200 tb weight, under which they walk about 25 miles a day. All travelling is also on ponies; two are considered necessary for every traveller, and on them he caa make from 30 to 40 miles a day.

Formerly Iceland wss divided into four qaarters, the Divi east, the south, the west, and north Now the north and sionk. the cast are anited under one governor, and the south and the west under another. The islsnd is iurther divided iato 18 syslur (counties), and these again into 169 hreppur (rapes) or poor law districts. Ecelesiastically Iceland constitutes one bishopric, divided into 20 desneries, and these agaia into 290 parishes.

Iceland is-subject to the king of Deumark. According Govern. to the constitution granted to Ieeland in 1874, the kiag ment. shares the legislative power with the Al-thing, an assembly of 36 members, 30 of whom are elected by honsehold suffrage, and 6 nominated by the king. The Al-thing meets every secand year, and sits in two divisions, tho upper and the lorer. Tho upper division consists of the 6 members nominated by the king and 6 elocted by the representatives of the people out of their own body. The lower division consists of the remaining 24 representative members.
The secretary for Iecland, who resides in Copenhagen, is responsible to the king and the Al-thing for the maiatenance of the constitution, and he submits to the king for confirmation the legislative measures proposed by the Al-thlng. The king appoints a governor-general, who is resident in the island and carries on the government on the respensibility of the secretary in Copenbagen. Under the governor-geveral (laudshöf Xingi) are two under governors, one for the south and west, another for the north and cast. Under these aro the sheriffs (syslumenn), who act as tax gatherers, notarios public, and judges of first instanco; the sheriff has in every "hreppur" an assistant, called "hreppstjobri." In every hreppur there is also a represontativo committee, consisting of from three to five members, who administer the poor laws, and look after tho general concerns of the hreppur. These committees are controlled by tho conmittees of tho syslur (county boards), and these again are under the control of the anterix (quarter buarl), consisting of threo members.
The alministration of justice is earried out in the first Justirn instance by the sherifis. From the sheriff courts appioals lie to tho superior court at Reykjavik, consisting of thres juldges. Appeals may be taken in all eriminal casos and most civil cases fron this court to tho supreme court at Coprenlagen.

The state chureh of Iceland is the Lutheran; and all the Icelanders, witheut exception, belong to it. One bishep and 141 clergymen minister to the spirital wants of the islanders The bishop is appointed by the king. The parishes are 290 , but the livings are only 141 , from which it may be aeen that many ministers have to serve two, and some even three parishes. The king appoints some of the ministers, and the governor-general others, with the advice of the biahop. The ministers are paid partly from the revenues of chureh property, and partly from tithes.

The Icelanders have long been famous for their education and learning, and it is no exaggeration to say that in uo other country is sueh an anount of information found among the classes which occupy a similar position. A child of ten unable to read is not to be found from ono end of the island to another. A peasant understanding, eeveral languages is no rarity, and the amount of general information which they possess might be envied by many who have had greater facilities for acquiring knowledge. Till within the last few years there were no elementary acheols in the island; all children were taught by their parents or near neighbeurs. Now a few elemeatary schools have been started, bat their number is still too small to make any general difference in the education. For classical and general education there is a college at Reykjavit, with seren professors and about one hundred atudents. There is alse a college for ministers, with three professers. The general physician of the island, assisted by two medical men, gives lectures to medical students; but those who propose to onter the legal profession have to attend the university of Copenhagen.
There is less difference in the matorial prosperity of the
Icelanders than in that of the inhabitants of more advanced countries. One does not find the abject peverty so often seen in large towns and among the agricultural population of some of the most civilized countries of Europe. On the other hand, wealthy men, or owners of extensive properties, are unknewn, the richest man in Ieeland deriving only £300 a year from his property. Althongh no abject
poverty is seen, there are more paupers compi ratively than in more populons countrics, and the poor-rates in mauy parishes exceed all the other taxes pat together. The Icelanders are often too liberal in granting relief, whieh in many cases breeds idleness, carclessneas, and want of forethought. It is also to be noticed that in few countries is it bo easy to live with as little labour as. in Iceland. On account of the clinate, out-of-door work cannot be conducted for more than five months of the year at moat, but even this time is not used with so much energy and skill as it might be. The haymaking, carried on for two months in the year, is the only work which is prosecuted with anything like energy. Fishing is prosecuted not coutinuously but periodically. The want of aetivity among the Ieelanders is to bi aseribed partly to their slow temperament, and partly to their utter want of training. They are very fond of gathering any amount of miscellancous inforination, but their want of training prevents them from turning it to practical account. There is no doubt that they ire endowed with intellectual faculties of a superior -kind, and, with proper training, might make far mere of their country than they do at prcsent. It appears that the island could easily support eight times the nomber of the present population, if its resoncices were proper! y developed. Crime is rare; and the moral character of the Icelanders is abont the same as that of the other countries of the north.

The ceasus of 1870 returned the pepulation of the island as 69,763 . In 1801 the population was only 46,240 ; in 1880 it is estimated to have inereased to 73,000 . The birth-rate is about 33 per thousand, and the death-rate 24. Nearly the whele of the population live on isolated farms, the number of each family, including servants, being on an average seven. The chief town or village is Rejkjarlk, with about 2500 inhabitants. It is the seat of the governor-general, the bishop, the colleges, and the superior court. In the nerth-west is Isafjöronr, with about 400 inhabitants. and in the north Aknreyri, with the same number.
A. H.$)$

Table of Icclandic Literature and History.

Histonp.

With its isolated situation, inclement climate, scant natural advantages, and sparso population, Iceland is yet of hiph intert ${ }^{\prime}$ to the historian, philologist, and lilliratrur. To the firat the cxallance and exactitude of its historical records, the eurions $\mathrm{p}^{\text {hases of }}$ life to which they bear witnces, and the singular circurastances whel have
determined the existence and life of the Teutonic commonity for a thwnsand yrary apart from tho test of the European family, are all attractive. By the phifologist the island is reverenced es the home of a tongue which (though like ury own it has sutared deep phonetic change) yet most nuarly representa in a living form the tongue of onr earliest Tentonic forefathers. And by many more than thene students Icciand is foudly regarded as the land wbete, long before
the "literary eras" of England or Germany, a brlliant period of intellectual life produced and claborated in its own distinet form of expression a literature superior to any north of the Alps, belore the Renaissance since the downfall of Old Kome in power, pority, and life.

To begin with history, in which we are chiefly concerned with the first and fourth periods of the island's inhahited existence, and first the "settlement" Shortly after the discovery of Iceland by the Scandiuavian, c. 850 (it lad long beeli inhabited by a small colony of Irisb Culdees), a stream of inmigration set in towards it, which lasted for sixty years, and resulted in the establishment of some 4000 homesteads seattered round the habitable fringe about the great bays and hirths.
In this immigration three distinet streams can be traced. (1) About 870-890 four great noblemen from Norway, Iagolf, Ketil Hieng, Skalla-Grim, and Thorolf, settled with their dependants in the sruth-west of the new found land. (2) In 890-900 there came from the Western Islands Queen Aud, widow of Olal the White, king of Dobla, preceled and followed by a number of her kinsmen and relations (many like herself being Christinus). Helgi Biolan, Born the Erstern, Helgi the Lean, Ketil the Foolish, \&c., who setlled the best land in the island (west, north-west, and nolth), and founded families who long swayed its destinues. Besides this most inmortant immigration of ald there came foon tho Western Islands a fellowship of vikings seeking a free home in the north They latd colonized the west in the viking times; they had "fonght at Hafursfirth, neiping their stay-at-home kusnen against the centralization of the great head:king, who, when he had crnshed opposition on Norway, sailed after these turbulent colonists across the North Sea, and followed up his victory by compelling them to bow to his rule or fly again to fresh baunts whence they could not so easily interfere with his projects. Such were Ingimuad the Old, Geirmund Hellskin, Thord Beardie (who had wed St Edmund's grand-Iangliter), Andnu Shackle, Bryniulf the Old, Uni, to whom Havold promised the earldom of the new land if be could make the settlers acknowledge him as king, a hopeless project, and others by whom the north-west, north, and east were almost completely "claimed." (3) $\ln 900-930$ १ f.w more incomers direct from Norway completed the settlement of the south, northeeast, and south-east. Among them were Earl Hrollaug (half brother of Ilrolf Ganger and of the first eall of Orkney), Hialti, Hrafnkeld Frey's priest, and the sons of Ashorn. Fally three quarters of the land was settled from the west, and among these immorants there was no small proportion of losh bhot. In 1100 there were 4500 franklins, z.c., about $50,0(10$ souls.
The unit of Icelandic politics is the lomesteal with its franklin. owner (bucndi), its puimal organization the hundred-mont (fhmo), its the the godord or chieftainship. "The chef who had led a lanid of kinsmen and dependants to the new hand, taken a "clam" there, and parcelled it out freely among thom, natnrally heeame their lember, presiding ay priest at the temple fensts and sactifices of heathen times, actug ay president and speaker of their moot, and as their respon. sible representative towarks the neighbouring chefs aod their chents He was not n foulal lord nor a local aheritt, for any franklin cond -hange his gotort when ho would, and the hiphts of "jurlginent by neerg" were in full use; inorcover, the offiee cemhld be bequenthed sold, livided, or pledged by the possessor ; stall the gosi had con sidernble power and intluence as long as the eommoowealth last d

At first there was no higher organimation, hat dispites lietween neighbourine chiefs and their clients, and uncertainty as to the law brought ahout the Constitution of Ul/tiot, c. 930, which appointed a central moot for the whole island, the Al-thing, nod a spanker to speak a single "law " (princinally that followed by the Gular-moot in Norwiny) ; the Reforms of Thord Gellur, 96t, settling a fixal nomine of loral moots and chuftaincies, dividing the island into four daplers (thus characterized by Ari:-morth, thickest gettlet, most fimons ; east, first completely settlewl. sonth, best band and greateat
 court, the "quarter.fourt," was nssignti, sum the Inumationsuf Šaz" (ascriked on the gaga to Nial) the Lam'Spertor (d 1030), whw set uy "fifth court" пa the ultmate tribmat io commal motters, mod atrengthened the communty agranst the ehaefs. But bew constitn. nonal growth ceased: the lnw making horly mande few and manmortant modifications of eustom; the eourts were still too work for the chiefs who misused aml defed them; the speakers funct was not sufficiently anpuorter to remble ham to be any more than a highly rospected lord ehief justire, wherens he ought to have herome a justea if amarchy was to be nomited, even the exelesiastical innovations, while they seeured prace for a time, provoked in the ead the strugeles which put ao end to the commonwealth

Chrostianity was introluered c. 1000 'lithes were estalished in 1006, and an ceolesilustical rodo made c. 112d
The first dispotes about the jurishlimon of the claty wene mownd hy Gudmund in the 13 th ceathry, hrmging on a covil wa, whle the

 the Inml was under Norwegian viceroys and Nomwgatiaw For tha civil ware of tho 13 th century boke dowa and ixtomanated
the great honses who had monopolized the chieftaincies an abused their power for their own ends; and after violent struggle: (in which the Sturlungs of the first generation perished at Orly ristat, 1238, and Reykinholt, 1241. while of the second generation Thord Kakali was ealled awny by the king in 1250, and Thorgils Skardi slain in 1258) the sulnnission of the island, quarter after quarter, took place in 1262-64, under Gizur's auspices, and the old Coninon Law was replaced by the New Norse Code "Ironside" in 1271.

Tl:e political life and law of the old days is ahundantly illustiated in the sagas (especially Eyrbyggia, Hænsa-Thori, Reyk-dæla, Hrafnkell, and Niala), the two collections of law-serolls (Codex Legias, c. 1235, and Stadarhol's Book; c. 1271), the Libellus, the Liber fragments, aud the Landnamabok of Ari, and the Diplomatarium. K. Maurer has made the subject his own in bis Beitrige, Island, Grajzis, \&c.
The medieval Jcelandic ehureh had two bishoprics, Skalholl (S., W., and E.) 1056, and Holar (N.) 1106, and about 175 parishes (two-thinds of which belonged to the southern bishopric). They belonged to the metropolitan see of Bremen, then to Land, lastly to Nidaros, 1237. There were several religious fondations: Thingore (founded 1133), Thwera (1155), Hitardale (c. 1166), Kirkby Nunnery (1184), Stad Nunnery (1296), and Saurby (c. 1200) were Bene. dictine, while $\operatorname{Ver}(1168$), Flatey after Holyfell (1172), Videy (1226), Madderfield Priory (1296), and Skrid Priory (14th century) were Augostinian. The bishops, elected by the people at the Al-thing till 1237, enjoyed considerable power and intluence, and were most of them distinguished men; two, Thorlak of Skalholt and John of Holar, were fiublicly voted saints at the Al-thing after due ex. amination of their claims to that distinction, and one, Gndmund, received the title of "Good" by deeree of the bishop and clapter. Full details ns to ecelesiastical listory will be found in the Bishops Lives (edited by Dr Vigfusson).
lceland was not agricultural hot pastoral, depending upon flocks M x and herds for subsistence, for, though rye and other grain would hes. grow in favoured localities, the bay, self-sown, was the only regular crop. In some districts the fisheries and fowling sere of impodtance, but nine-tenths of the popnlation lived by their sheep and cattle, which gave them food, elothing, and such products for export as cnabled them to import wood for building, iron for tools, and a few loxuries, as boney, wine, grain for brewing, and foreign clothes, fur, \&e. Life on each homestead was regularly portioned out :-ont-door oceupations-lishing, shepherding, fowling, and the important lay. making and fuel-gathering--oceupying the summer ; while in-door husucss-weaving, tool-making, \&c., filled up the long winter. The year was broken by the sping feasts and noot, the great Al-thing meeting at minlsimmer, the marriage and arval gatheringy after the summer, and the long yule feasta at miduinter There weme but two degrees of men, free and nofree, though only the franklins had any political power; and, from the very nature of the life, social intercourse was peculially untestramed ond unfettered ; grobi aml thrall lived the same lives, ate the same food, spoke the same tongue, and differed little in elothing or habits. The pontest franklin was the social equal of the proudest chief, and ir a fow generations the freed man or landless depemant might become their peer in public estimation, provided he got a bomestend of his own The thrall had a house of his owa and was rather villein or serf thau slave, having righta and a legal price hy lnw Huing the leathen days many of the great chiefs prassed part uf their lives 1 n Norway at the king's court, bat after the establish, ment of Chastianity in leeland they kept bore at lome, stil vasitug the Continent, however, for purposes of state, suits with clergy, sc. But the trade was from the first in forcign (Norse) hands almost entirely.

The intioduction of a church system brought little clange. The great families put ther members 10 oto orders, and so continued to enjoy the protits of the land which they had given to the elureh the pricets morried and otherwise lichaved like the fanklins nombd then in every-day maters, farmang, trading, going to law like laymen; so that, in suite of the eflorts of tho more eatmest church reformers, the chureh was powerless to promote ceatralization agamst the fends and jealnusies of the great houses.

The old life in the commonwealth was turhulent and anarehic, I fer: but fre and vaied ; it producet men of mark, nud fostered bravery, of the rulventure, nom progress The frent ehiefs were indeed unly greater umon franklins: but their wealth and comparative luxury gave then and leisure sold opportunities for culture whill rased them as examples change und leadris ulowe thar fillows; the prite of bith preserved a :f tan nobility of fordmer and high standurd of honour amm much of volew'e and clicane But all this now ceased, and thete was left but a bow hema leven of por peasant proprimors without pride in the past, [whturn aturat an the present, or ambition of the future cadess of all saw how to her by as little lahour na possible, ont pay as bw tinus as they could to ther formgn ruters. The islont

 Ly the hatis Aluyal court took the fisee of the Al-thing courta

Che local hainoss of the local things was carried out by the (hreppstjori) bailiff, a anbordinate of the sherint ; and the govors, things, quarter-courts, trial by jury, sc., were all complately swep way by these innovations, which have continued with mere changes of detail till the present century. The power of the crown was increased by the confiscation of the great Sturlung estates, which were under-leased to farmers, while the carly falling off of the Norse trade threatened to deprive the island of the means of existence; for the great opidemics and cruptions of the ith contury had gra:ely attacked its pastoral wealth and ruined much of its pastare sid fishery, for the time at least. The union of the Three Crowns transferred the practical rule of Iceland to Denmask is 1280, and the old Treaty of Union, by which the island had reserved its estantial rights, was disregarded by the absolute Danish monarchs; but, :hough new taxation was imposed, it was rather their careless "uglect than their too active interference that damaged Iccland's titerests. But for an Engligh trade, which sprung up out of tha half-smaggling, half-buccaaeering euterprise of the Bristol merchants, the island would have fared badly indect, for duriag the whole 15th century their trade with England, experting sulphur, eider dowa (which the Eaglish taught them the value of), wool, and silt stock-fish, and importing as before wood, iron, honey, wine, grin, and fax goeds, was their only liok with the outer world. This period of Iceland's existence is torpid and eventless: she hat got peace but with few of its blessiogs; all spirit seemed to have dicil aith the commonwealth ; even shepherding ard such agriculture as there had been sank to a lower stage; waggens, plouglis, and carts went out of use and knowledge; architecture in timber berque a lost art, and the fine carved and painted hallis of the heathen d?ys were -rplaced by turf-walled barns half sunk in the earth, and lasting at oest a generation ; the larga decked luggers of the old days gave way to small undecked fishing-boats; it is needless to odd that letters were neglected, and that all remembranco of the commonsealleh lerished utterly.
The Reformation here as elsewhera had a one-sided effect: it wakencd men'a minds, opening new vistas of hope and new fields of thought, but it left their bodies and circumstances little changes, or, if at all, for the worse. Its necessary complement, a socisl and polutical revolution, never came to Iceland. The Hanse trade reglaced the English for the worse; and the wretched Danish menopoly which succeeded it when the Danish kings began to act agaio with vigour, under tha atimulas of European changes, was still less profitable. The glebes and hospital fands were a fresh power in the hands of the crown, and the subservient Lutheran clergy became the most powerful class in the island, while the bad aystem of under-leasing at rackreat and short lease with unsecured tenant right extended in this way over a great part, at least a quarter, of the better land, stoppiag any possible progress. The details of the roligious cbange are uninteresting : nearly all who tuok active part in it on either side were men of lew type, moved by personal notives rather than religious zeal ; and, theugh it should be notired that the fires of mattyrdom were never lighted in lcelandef the stom of the easily accepted Reformation is not altegether a pleasant one. When it wis once accomplished, the little knot of able men who came to the front for two or three generations, stirred by the new life that had been breathed inte the age, did nobly in preserving the records of the past for a later time to value and appreciate, while Odd and Hallgrim exhibit the noblest impulses of their time.

A now plague, that of the English, Gascon, and Algeriae pirates, marked the clese of the 16 th certury and cpening of the 17 th, causing midespread panic and sorce devastation in 1579, 1613-16, and 1027 . Nothing points more to the helplessness of the natives' condition than their porerlessacss against these tiresome focs. But the 18 th century is the most gloony in Iceland sanals. Small-pex, frmine, shecp disease, and the awful eruptions of 1765 and 1783 follow each other in terriblo succession. Agrainst such fearful visitations, which reduced the population by about a fourth, little zould be done, and when the only man who might have roused the 1. un anders from their miscry; distress, and imporenishment, the noble ind patriotic Eggert Olafsson, a hero of the ell type, was drowaed - fall carect io 1763, it is hardly to be wondered at that thing rew from lad to werse, and that a lastlessaess and torpidity crept wet the national character, the effecte of hich it is only Leginning :o shake off. The few literary men, whose work was tone and xinose books were publighed abroad, were ouly concen ned with the pas:, and Jon Widalin is the oac man of mark, heside Egacrt Olafson, who worked and wrote for his ow generation. ${ }^{1}$

Cradually the ideas which were agitating Europe erept through sthmavia into Iceland, and, now that scholars and traveliers of mark an' inllnence had drawn attention to the island, its claims were mere respectfully listened to. The Continental system, which, by its leading to the blockate of Denmark, threatened to starve Iceland, was neutralized by special action of the British Government. 2'rode and fishery grew a litte brisker, and at lenghth the turn came. The rationalistic movernent, an unlovely attemit at reterta,
headed by Kagnas Stepheason, a patious, tar:ow-minded lawyer, did little gooil as lar as clurch reform wint, but was accompaniel
 within their reach the flactical knowludec of the day. A Unetal Koowledge Sociuty, such as brougham felighted in, was formed and did some honest watk. Newrypersand peliodicals were published, and the very stir which the ecclesiastical disputes encouraged ditd gond. When fiee trule cane, and when the free eoastitution of Lenmark had producel ita legitimate effects, the intelligent and athe endeaveurs of a few patriots such as Jon Sigurdsion were able to push on the next genemation a step further, in spite of such fhysical olistacles as the sheeprlinense Questions of a niodern folitical com. plexion arese; the cattle export controversy and the great home rule strugglo began The intelligence of a projle whose lowe ir. kaowlelge and nental attainments have always been high sceentwal ita leaden well, and after thaty years' agitation heme rule ant concented in 1 sit. The absolute syslumadr amp hirdefore Lecan:o pepulir officials assisted ing elected boards. The Al-thing, a mer council of powerless delegntes, was replaced hy a representative assembly of two chanubers (composed of thirty members chosen ly a $a^{\text {Pojpolar and wide sutfrage, and six crown nomimes) with tegislative }}$ lowers, and other reforms were comprised in this grant. Futher fiolitical claages, suchas the introduction of a jury system to replace the Dacish umpire-and-assessor 1 ,rocedure, are now being considcial by the liberal paty. There are many peculiar circumstances Iresent in the condition of Iceland, the absence of towns, equality of sociuty in a sease which exists in no other European conmunity difficuity of communication, and the intense conservatisn aull dislike of octivity or claane which must necessarily clanacterize a community so long isolated and "farced into lazy habits for lack of oppertunity." Eut that enigration should have begn, and familics left the old home for Canala and the Uoited States to acek n better climate, a richer soil, and the hopes of progress which are sn distant athme, is certaiolyremarkable; and, if the difficulties which must surround emigrants who have never seen a read, a tree, or plongh, on their first takiag up an agricultural life, ate orereome the results may be very important to the mother country.

Literature.

Poctry. - Icelaal has always borme a high renown for song, but Poctr. has never proluced a poet of the highest order, a fact fo- which one can only account by neticiag that the qualities which in other lands were most sought for and adnired in poetry were in Iccland lavinhed on the saga, a prose ejic, and that Icelandic poctry is to be ratel vely high for the one quality which its authors have ever aimed atmeledy of sound. To these generalizations there are lut few exceltions, albeit, in considering the history of this hranch of Icelandie literature, we are at once met by an appareat contradiction to them, a group of potms which possess the very qualitios of high imagimation, deep pathos, fresh love of nature, passionate dramatic power, and noble simplicity of lamguage which leclantic poctry links. The solution is that these pocris do not bulong to lccland at all. They are the poetry of the "Western Islams.

It was among the Scandinavian celonists of the Pritisl, coasts that Poctry in the first generations after the colonization of lceland therefiom a of the nagnificent scheol of poetry arose, to which we owe works that for tiestero pewer and beauty can he paralleledin no Teutonic langurge till cen- 1shads turies after their date. To this school, which is totally distiact from the lcelanlic, ran its own course apmort, and perished before the 13th century, the folloring works belong (of their authors we have scarcely a name or two; their dates can le rarely exactly fixed; hut they lie lectween the beginning of the 9 th and the end of the 104h centuries), classified into grours:-
a. The Mclgi trilogy (last third lo t save a few verses, but pure scrved in prose in IFrommal Gripssor's Saga), the linisting of till ganey and Death of Haalnar (in Herirarar Siga), the thagments of a Wolvang Lay (part internolated in ealicr goons, past numblym; the prose in iolsunga Sega), all ly one port, to whm bitis.
 Grotta Song, and Folmadar-kewh.
b. The Dramatic I'eoms:-Flyfing of Loki, the Lay of Skirns, the Lay of Harbard, aml several fragments, all one man's woth, to whose school belong, prolally, the Lay underlying the story of 1var's deatb in Skioldunge "apo.

The Didactic Poctry: -Grimismal, Vafthrulnisnal, Alvis incl, \&c.
d. The Genealogical and Mythelogical Pocms:- Whmetha-Liof, written for nne of the llaurda-Kari fumily, so famous in the Orkneys; Ingliggr-tal and Manst-long, ly Thiotulf of Ilvin; Rag's Thul, se c. The Dirges and Battle Songs, -such as that on Haforefolle Imetle, by Thídulf of llvin or Ilomkluti, shortly after 870 ; Link's

Bragi, \&c., of this schoo', whieh closes with the Sun-Song, a powerful Christian Dantesque ioem, recalling some of the early compositions of the Irish Church, add Fith the 12th century Lay of Ragnar, Lay of Starkiad, The Proverb Song (Havamal), and Kra. r:unnal, to which wo ma. add those aingular Gloss-poenss, the Thulur, which also belong to the Western Isles.

Poctry
To Greenland, leeland's farthest colony, founded in the 10th rentury, wo owe the two Lays of Atli, and probably Hymistivida, which, though, as was to be expected, of a weirder harsber cast, yet belony to the Western Isles school and not to lceland. In form all these poems belong to two or tbree classes:-hivida, an epic "cantilena"; tal, a genealogical poern; drapa, songs of praise, \&c., written in modifications of the old Teutonic metre which we know in Beowulf; galdr and lok.2r, spell and cbarm songs in a more lyric measure; and mal, a dialogne poem, and liod, a lay, in elegiac measure suited to the subject.
The characteristics of this Western school are no doubt the result of the contact of Seandinavian colonists of the viking-tide, living lives of the willest adventure, tossed by war and storm, with an imaginative and civilized race, that exercised upon them a very stroog and lasting infuence (the effects of which were also felt in Icelaod, hut in a different way). The frequent intermarriages which mingled the best families of either race are sufficient proof of the close conmunion of Northmen and Celts in the 9 th and 10 th centuries, while there are in the poems themselves traces of Celtie mythology, language, and manners. ${ }^{1}$
When one turns to tho carly pretry of the Seandinavian continont, preserved in the rune-staves on the memorial stoues of Sweden, Norway, and Denmark, in the didactic Hazamal, the Creat Wolsteng Lay (i.e., Sigurd 1I., Fafnis's Lay, Sigrdrifa's Lay), and Hamdismal, sll continental, auil all entirely consonant to the remains of our own Oll English poetry in metre, feeling, and treatment, one can see that it is with this sehool that the lcelandic "Ieakers" are in sympathy, and that from it their verse naturally descends. The only difference between them is that, while tho fundamental charaeteristics of shrewluess, plain straightforwardness, and a certain stern way of looking at life are common to both, the leelandic school adds a complexity of structure and ornament, an elaborate my thoiugical and enigmatical phraseology, and a regularity of rhyme, assonance, luxuriance, quantity, and syllabificatioo, which it caught up from the Latin and Celtic poots, and adaptel with oxquisite ingenuity to its own main objcct, that of securiog the greatest possible heauty of sound.

Tho first gencrations of leclandic pocts were very remarkablo mon, and resemble in many ways the later troubadours; the books of the kings and t! a sagas are full of their strange lives. Men of gond lirth (nearly al ways, too, of Celtic blood on one side at least), they leave lecland young and attach themselves to the kings and earls of the north, living in their courts as their henchmen, sharing their alventures in weal and woe, praising their victories, and bymning their dewths if they dill not fall by their sides-men of quick passion, unhappy in their loves, jealous of rival poets and of their own fame, ever ready to answer criticsm with a satire or with a sword-thrust, but clinging through all to their art, in which they attained most marvellous skill.

Such men were Egill, the foe of Eirik Bloodaxe and the friend of Atholstan; Kormak, the hot-healed champion; Eyvint, King Hakon's poet, called Skaldspoiler, because he copied iu his dirga over that king the older and tiner Eiriks-mal; Gunnlang, who sang at Ethelred's court, and fell at the hands of a brother bard IIrafn; Hallfred, Otal Tryggvason's juct, who liea in lona by tho side of Macheth; Sighvat, Saint Olaf's henchman, most prolifie of all his cenrales; Thormod, Coallorow's poet, whe died singing after Sticklostan hatile; Ref, Other the Black, Arnor the earls' poet, and, of those whose poetry was almost confinel to Iceland, Gretti, Liorn the IFitale champion, and the two model Ierlandie masters, Einar Skulamon and Markus the Lawman, hoth of the 12th century.

It is impersible to do more here than mention the names of the most fampas of the long roll of poets which are noted in the works "f sumeri and in the two Skalda.tal. It is evilent that they must differgratly in style and tone, as they range from the rough and moble pathos of Effill, the mystic obscurity of Kormak, tho pridu and gricf of Ilallirel, and the marvellous Huency of Sighvat, (o, tho florill intricacy of Einar and Markus.
Thes art of posetry, which stood to the Icelanders in lieu of music, wis, an! is still, nuch cultivated in the ishand ; searecly any prowinent man but knew how to turn a meeking or laudatory gtanza, and down to the fall of the commonweal'th the accomplislment was in high reçuest. In the literury are the chief pocts belong to the great Sturlung family, Snorri and his two acplewa, Sturla and ohif, tho White foet, heing the most famous "makers" of their

[^120]day. Indeed, it is in Snorri's Edda, a poetic grammar of a very perfect kind, that the best examples of the whole of northern poetry are to be fouod. The last part, Hattatal, a treatise on metre, was written for Earl Skuli about 1222, in imitation of Earl Rognvald and Hall's Hattalykill (Clavis metrica), of 1150. The sceond part. Skaldskapar-mal, a gradus of synonyms and epithets, which contains over 240 quotations from 65 poets, and 10 anonymous laysa treasury of verse - was composed c. 1230. The first part, sn exquisite sketch of northern mythology, Gylfa.ginning, was probably prefixed to the whole later. ${ }^{2}$ Thero is some of Sturla's poetry in his Islendinga Saga, and verses of Snorri occur in the Grammatical Treatisc on figures of speech, \&c., of Olaf, which contains about one hundred and forty quotations from various anthors, and was written about 1250 .
Besides those sources, the Kings' Lives of Snorri and Jater suthors contain a great deal of verse by Icelandic pocts. King Harold Sigurdsson, who fell at Stamford Bridge 1066, wss both a good critic and composed himself. Many tales are told of him and his poet visitors and henchmen. The Icelandic sagas also comprise much verse which is Jartly genuine, partly the work of the 12 th and 13 th century editors. Thus there are genuine pieces in Nizl's Saga (chaps. 34, 78, 103, 126, 146), in Eyrbyggia, Laxdcia, Egil's Saga (part only), Gretlla (two and a half stanzas, cf. Landaamaboh), Biorn's Saga, Guunlaug's Saga, Havard's Saga, Kormak's Saga, Vign-Glum's Saya, Erik the Reel's Saga, and Fostlradra Saga. In Nial's, Cisli's, and Droplaug's Suns' Sagas there is good verse of a later poet, and in many sagas worthless rubbish foisted in as ornamental wherever there was a chance of duing so.
To these may be added two or three works of a semi-literary kiod, composed by learned men, not by heroes and warriors. Such are Konunga-tal, Meysurnnsmal (a paraphrase of Cato's Distichs), Merlin's Prophecy (paraphrased from Geoffrey of Monmouth by Gunnlang the monk), Jomsviking(-drapa (by Bishop Ketil), and the Islendinga-lrapa, which bas preserved brief notices of several lost sagas conecrning Icelandie worthies, with which Gudmundardropa, though of the 14th eentury, may be also placed.
Just as the change of law gave the death-blow to an already Mediperishing coamonwealth, so the rush of medieral influence, which weval followed the union with Norway, merely completed a process which fuetry had been io forco since the end of the ilth century, when it overthrew the old Ieclandic poetry in favour of the Rimur.
The introduction of the Denz, ballads (or jornketedt, as they are now (alled) for singing, with a burden, usually relating to a love. tale, which were immensely popular with the people and performed by whole companics at weddings, yule feasts, and tho like, had relegated the regular Icelandic poctry to more serious events or to the more cultivated of the chiefs. But these "jigs," as the Eliza. bethans would have called then, dissatisfied the popular ear in one way: they were, like our own old ballauls, which they closely resembled, in rhyme, but void of alliteration, and accordingly they were modified and repleced by the "Rimur,"'the staple literary product of the 15th century. These were thymed but also alliterative, in regular form, with prologue or mansong (often the prettiest part of the whole), main portion telling the tale (mostly derived in early days from the French romances of the Carloviggian, Arthurian, or Alexandrian eycles, or from the mythic or skrok-sögur), and epilogne. Their chief value to us lies in their having preserved versions of several French poems now lost, and in their evidence as to the feelings and bent of Icclanders in the "Dark Age" of the island's history. The riog and melody which they all posscss is their chicf beauty.

Of tho carliest, Olafsrima, by Einar Gilsson (c. 1350), and the best, the Aristophanic Skida-rima (c. 1430), by Einar Fostri, thie names may he given. Rimur on sacred subjects was called "Diktur"; of these, on the legends of the saints' lives, many remain. The most notable of its class is the Lilia of Eystein Asgrimsson, a monk of Ilolyfell (c. 1950), a most "eweet sounding song." Later the poems of the famous John Arason, last Catholic bishop of Holar (c. 1530), Liomr ("Gleam") and Pislargrder ("Passion-tears"), deservo mention.
Taste has sunk sinee the oll days; but still this Rimur poetry is popular and genuine, and in such hard and evil days as came upon Ieclant after the fall of the old honsea had destroyed such traditional history and civilization as had fostered the saga, it is perbars rather a wonler that the torch was still olight than that its glimmer was feeble and smoky. Moroover, the very prosaic and artificial verse of Sturla and the last of the old school certainly deserved the oblivion which came over them, as a casual perusal of the stanzas seattered through Islendinga will surely prove. It is interesting to notice that a certain number of kenningar (poctical paraplirases) have survived from the ohl scheol even to the present day, though the muss of them have harpily perished. The change in the phonesis

[^121]Af the language is well illuatrated by the ncw metres as celupared with the old Icclandic Drott-hvodi in its varied forms. Dlest of the older Kimur and Diktur are as yet unprinted. Many of the fornkvodi are printed in a volume of the old Nordiske Literatur. Samfund.

The effects of the Reformation was decply felt in Icclaadic literature, both prose and verse. The name of Hallgrim Petersen, whose Passion-hymns, "the flower of all lceladic yotry," have been tho most popular composition in the lagguage, is foremost of all writers since the Second Change of Faith. The geatle sweetress of thought, and the exquisite harmony of werdiog in his poems, more than justify the popular verdict. His Hymns wore finished in 1660, and publiahed in 1666 , two great Protestant poets thus bejag centemporaries. A colloction of Reformation hymns, adapted, many of then, from the German, the Holar-book, had preceded them in 1619. There was a geod deal of verse-mritiag of a secular kind, far inferior in every way, during this period. In spite of the many phyeical distresses that woighed upon the island, ballads (fornkvodi) were still written, ceasing about 1750 , Rimar composed, and more olaborate compositions published.

The most notable names are those of the improvisatore Stephen the Blind; Therlak Gutbrandsson, author of Ulfar-Rimur, d. 1707 ; John Magnusaon, whe wroto Hristafla, a didactic poem; Stefan Olafssen, compeser of Psalms, Rimur, \&c., d. 1688 ; Gunnar I'alason, the zuthor of Gunnarslag, often printed with the Eddic joems, c. 1791 ; and the famous Eggert Olafsson, traveller, naturalist, -and patriot, whose untinely death in 1768 was a great loss to his conntry, which his energy and talents might have roused frown its torpor. His Bunadar-balkr, a Georgic writteo, like Tusser's Points, with a practical view of raising the state of agriculture, has alway9 haen much prized. Paul Widalin'a ditties are very naive and clover.

The Reformation had produced a-real peet, but the material rise of Iceland has not yot done so. Many have written, but few hare ahown any grest talent ; perhaps the best has been Sigurd of Broadfirth, many of whose prettiest paems were composed in Greewlaad, Like those of Jon Biarnisson bofore him, c. 1.50 ; John Thorlaksson's tranalation of Milton's great epic into Eddic verse ia praiseworthy in intention, but, as inay be imagiaed, falls far short of its aim. He also turned Popo's Essay on Man and Klopstock's Messiah into icelaodic. Beaedikt Grondal tried the same experiment with Homer in his Ilion's Kivedi, c. 1825 . There is a fine [rose translation of the Odyssey by Sweinbiern Egillson, the lexicographer, both faithful and poetic in high degrec. Many poems of varying but little macrit will bo found in the poriodicala of this and last century, the serious verse being pseudo-classic for the most part aad falsetto in tone. The aatiric rerse, such as John Thorlaksson's on Dlagnus Stephenaon's projects and "reforms," and the ditties on all kinda of sujets doccasion, are better, but much of thelr meaning is lost to a stranger. With tho latest scheol of poets whe have begno to imitate foreinu metres(unallite ative) a od to translato foreign poets, it is hardly worth while to liager. A traoslation of Shakespeare and of several of Byron'a poems may be noticed as curiosities. Of minor poetry there sstill an abundant crop ; even in Gimli, the far-off Canalian colony, In Demeriam" verses and wedding-hymns of irrepreachablo fom, out wooden thought, aro printed and admired. That Iceland, inost idyllic of modern laoils, is capable of suplying subject and material for something higher than all this there is no doubt ; but, before anything of real worth can be written, the old stock-in-trade of worn-out mythelogy and pseude-patriotism must be thrown aside for ever.

History and Biography. - The real strength of Icelandic literature is ohown in its most indigenous growth, tho "Saga." This is, in its purest. form, the life of a heto, composed in regular form, governed by fixed rules, and inteuded for oral recitation. It bears the atrongest likeness to the epic in all saro its unver sified form ; in beth are found, as fixed essentials, simplicity of ylat, chronological order of events, set purases used evon in describing the restless play of emotion or the changeful fortunes of a fight or a storm, while in both the absenco of digression, commeat, or intrusion of the narrator's person is invariably maintained. The saga grew up in the quicter days which fellowed the Change of Faith (1002), whern the deeds of the great families herocs were atill cherished by their descendants, and the exploita of the great kings of Norway aod Denmark handed dewn with reveraco from tho mouths of these that had fought and suog by their sida. Telling of stories was a recognized form of entertainment at all feasts and gatherings, and it was the necessity of the reciter which gradually worked them into a regular forat, by which the memory was relieved and the artiatie features of the story allowed to be more carefully elabomted. That this form was so perfect must be attributed to Irish influence, without which indeed there would have been a saga, but not the same saga. It is to the west that the best sagas belong; it is to the west that nearly every classic writer whose name we know belonga; and it is lrecisely in
the west that tho admixture of Irish bloon? is greatest. In compurthe west that tho admixture of Irish blood is greatest. In comparing the Irish tales with the saga, there will hefelt deej diverpencies
in matter, style, and taste, the richness of onc, contrastin: with the chastened simplicity of the other; the ous's balf-ioning half-umnest
bombast is wholly unlike the other's mim humour ; tho marvellous, so unearthly in the one, is almost eredihlo in the other ; hut in both are the keengrasp of character, the bitiog phrase, the love of action. and the delight in blood which almost assumes the garb of a roliofs ous passion.

When the saga had been fixed by a generation or two of oral reciters, it was written down; and this stercotyped tho form, ge that afterwards when literary works were composed by learacd meo (such as Abbot Karl's Sucri's Saya aud Sturla's Islondinga) the samo style was adopted.

Taking first the sagas relating to Icelanders, of which some thirty- laclandio five or forty remain out of thrice that number, we find that they were sog.s first written dewn betwees 1140 and 1220, in the generation which succeded Ari and felt the impulse his books liad given to writiag, on separate scrolls, no doubt mainly for the reciter's convenience; that they then went through all the different phases which such popular compositions have to pass in all lands,-cditing and compounding (1220-1260), padding and amplifying(1260-1300), and finally colloetion in large MSS. (14th century). Sagas exist showing all these phases, some primitive and reugh, some refined and beautibed, some ogain diluted and weakencd, accerding as their copyists have been faithful, artistic, or foolish; for the first generation of MSS. have all perished. We have also complex sagas put together in the 13 th ceutury out of the serolls relating to a given locality, such a group as still exists unteuched in Vopmfirdinga being fused ioto such a saga as Niala or Laxdela. Of the authora vothing is known ; we can only goess that somo belong to the Sturlung scheol. According to subject they fall ivto two classes, those relating to the older generation before Christianity and these telliag of St Olat's centem. porarics; only two fall into a third generation.

Beginniag with the sagas of the west, anost porfect in style and or the form, the earliest in subject is that of Gold-Thori (c. 930), whose wet adventureus career it relates; Hen-Thori's Saga tells of the burnins of Blund-Ketil, a noble chief, au cvent which led to Thord Gelli's reforms next year (c. 964) ; Gisli's Saga (960-50) tells of the career and death of that ill-fated outlaw; it is beatufully written, and the verses by the editor (13th century) are good and appropriate; it has been Englished by Sir G. Daseat; IIord's Saga (980) is the life of a band of outlaws on Whalestirth, and especially of their leader Hord. Of later subject are the sagas of Havard and his revenge for his son, murdered by a neighbouring ehief (997-1002); of the Heath Slaughter (990-1014), a typical tale of a great blood feted, written in the most primitive $p^{\text {rese }}$; of Gunnlaug ared Hrajn ($980-1008$), the rival pects and their ill-starred love. The verse in this saga is important and interestiog. It bas been Englished by Messrs Morris and Magnusson. To the weat also belong the three great complex sagas Egla, Eyrbyggia, and Laxdacla. The frst ($870-980$), after noticing the migration of the father and grandfather of the hero poct Egill, and the origin of the foud between them and the kings of Norway, treats fully of Egill's career, his enmity with Eirik Bloodare, his service with Ethelstan, and finally, after many alventures abread, of his latter days in Iceland at Borg, illustrating very clearly what manner of men those great settlors and their descendants wore, and the feelings of pride and freedom which led them to Jeeland. The atyle is that of Saorri who had himself dwelt at horg, nad Dr Vigfusson is incliaed to 1 efer it to him. Eyrbyggia (890-1031) is the saga of Politics, the nest loosely weven of all the compeuna stories. It iacludes a mass of information on the law, religion, traditions, \&c., of the heathen days in Iceland, and the lives of Eirik, the real discoverer of Grcenland, Biom of Broadwick, a famous chief, and Snorri, the greatest statesman of hiaday. Dr Vigfusson would ascribe its editiog and comple. tion to Sturla the Lawman, c. 1250 . It is koown to many English. men from Sir Walter Scott's paraphrase. Laxdiria (910-1026) is the sara of Romance. Its heroine Gudrun is the most famous of all Icelandic ladies. Her love for Kiartan the peet, and his carrer abroad, his betrayal by his friend Bolli, the sad death of Kiartan at his bands, the revenge taken for him on Bolli, whose slaycrs are themselves afterwards put to death, and the end of Gudrin, who becomes nannchorite after her stormy life, make up the pith of the story. Tho contrast of the characters, the ricli style and fine dialorue which are so remarkable in this saga, have nuch in commen with the best worka of the Sturlung achool. Mr Morris's Lovers of Gudrun is founded upon it.

Of the north there are the sagas of Kormad $(930-60)$, most primi. Of the tive of all, a tale of a wild poet's love and feuds, containing many worih. notices of tbe heathen times; of Wuterdale ($580-980$), relating to the settlement and tho chief iomily in Waterdale ; of Malffred the loet (996-1014), oarrating his fortune at ling (laf's court, his love affaits in Iceland, amb finally his death and burial at Inala; of Feck-date (990), which preserves the lives of Askell and his son Viga-Skuti ; of Suarfedche ($080-10$), a cruel coarse story of the old days, with some good secnes in it, uafortunately imperfect, chapters $\mathbf{1 - 1 0}$ being forged; of liga.Glum $(070-90)$, a tine story of a heathen Jicro, brave, crafty, and cruel; it has been Encrlished by Sir Edmund Head. To tho north also lelong the sagas ul Gickit the Strong (1010-31). the life and death of the most f.ameons of lcelandic vut-
 adventares of lscowulf, here put down to Gretti, and with late rorcintic episodes and fabuleus folk-tales (Dr Vigfusson would ascribe the best parts of this saga to Sturla ; its last cditor, whose additions would be better sway, must have touched it un about t300; Messrs Morris and Magnusson have Englished it), and the stories of the Lightwater Men and Liot O' Vall (1009-60). Gudmund the Mighty and his family and aeighbours are the herees of these tales, which form a little cycle. The Banda-manna Saga (1050-60), the only comedy ameng the sagas, is also a northero tale; it relates the struggles of a plebeisn who gets a chicftaincy against the old families of the neighbourbood, whom he successfully ontwits : U1. Refre Thattr is a later imitation of it in the same huntorous atrain. The asgas of the nerth are rougher and coarser than these of the west, but lisve a good deal of individual character.
Of tales relating to the cast there survive the Weapon-firth eynle,-the tales of Thorstein the Whitc (c. 900), of Thorstein the Stafjomitton (c. 985), Englished by Mr Morris, of Gitmuar Thidrund's Bane (1000-1008), and of the Weapon-firth Men (975990), all relating to the family of Hof and their friends and kio fer several generations,-and the story of Hrafukell Prey's Priest (c. 360), the most idyllic of sagas and best of the eastern tales. Of later times there are Droplaug's Sons' Saga (997-1007), writtea probably bbaut 1110, and preserved in the noconth breken style of the original (a brother's reveoge for his brother's death is the subatance of it; Brand-krossa Thattr is an appendix to it), and the tales of Thorstein Hall of Side's Son (c. 1014), abd his brother Thidrandi (c. 996), which belong to the cycle of Hall o Side's Saga, unhappily lost; they are weird tales of bloolshed and magic, with idyllic and p thetic episodes.
The sagas of the seuth are eithar lost or absorbed in that of Nial ($970-1014$), a long and complex story inte which are woven the tales of Gunnar, Nial, and parts of others, as Brian Boroizhe, Kall a^{\prime} Side, dc. It is, whether we look at style, codteats, or legal and historical weight, the foremest of all sagas. It deals especially with law, the sole boad of a rough beathen community, and contaias in itself, as it were, at once the pith and the meral of all early Icelandic hiatory. Its hero Nial, type of the good lawyer, is contrasted with its villain Mord, the ensample of cunoing, chicane, and legal wrong-doing; and a great part of the saga ia taken up with the thrce cages and suits of the diverce, the death of Hoskuld, ard the burnigg of Nial, which are given with great miduteness end care. The namber and variety of its dramatia persenm give it the liveliest interest throngheut. The women Hallgerda, Bergthora, and Raguhild are as sharply contrasted as the men Guanar, Skarphedin, rilesi, and Kari. The pathes of such tragediea as the death of Goanar and Hoakuld and the burning is interrapted hy the hamaur of the Al-thing scenes and the intellectual interest of the legal proceedings. The plot dealing first with the life and deuth of Gunarr, type of the chivalry of his day, then with the buming of Nal by Flosi, and how it came about, and lastly with K ri's revente on the buroers, is the ideal saga-plot, and affords annile room for the finest treatment of incident. The author must liave been of the cast, a good lawyer and gevealogist, and have caraposed it about 1250, to judge from varions internal evidence. I: has been overworked by a later cditor, c. 1300 , who inserted uany spurions verses. It has heen translated by Sir G. Dasent.
Relating partly to Iceland, but mostly to Greenland and Wineland (N. America), are the bsgas of the Floc-Men ($985-90$), a good stary of the adventures of Thorgila and of the struggles of ship. wrecked colnoists in Greenland, a graphic and terrible picture; and of Sirik the Red ($990-1000$), two versions, one vorthern (Flateylionk), ono western, the better (in Moukt's Book, and ADI. 557, translated by the Rev. J. Sephton), the story of the discevery of (irymbard and Wiuplanl (Americas) by the Ieclandere at the end of the ath century. Later are the story of Thormorl and Thorgeir, the Fosher Brethren (1015-30), a very interesting stery, told in a prant romantic atyle, of Thorgeir, the reckless lienchman of King Olaf, and how his death was revenged in Greenland by his swoll brether the true-hearted Thormod Coathrow's poet, who afterwards Ary at Sticklestad. The tale of Einar Sookinson (c. 1125) may also be unticed The Inst saga of Pout Hfigh, of which ouly fragments remain, way also laid in Ereenland.
 cmbedidel in the Kimas Leves numprom stand thattir ar episodes, fanall tales of derlanders' adventures, often ridating to poeta and then lives at the kinge' courta : onn or two of thesusem to be frag. ments of sagis wow lost. Among the more notable aro those of Orm Staralfsson. Oymani l'gll: Malldar Sitnerrason, Thorstein

 Thord. Linar Shatason the poet, Alani tho pret, \&oc.
The forged Itolandic, sagas appear as ondy as the 13 th century. They aro very poor, and either worked ap on hinta given in geauine storim, or aliugether apmeryphal. Some of them bave been com. posen within the present century.

About the year of the latile of Hastings anas born one of the Mrinuas blood of Qneen And, whe founded the famous histerical school of Iceland, and himself produced its greatest meaument in a work which can only be compared fer ralue with the Eaglish Domesday Book. Nearly all that we knew of the heathen commonwealth may be traced to the collections of Ari. It was he too that fixed the style in which history should be composed in Iceland. It wes he that secured and put into order the vast mass of fragmentary tradition thst was already dying out in his day. And perhaps it is the highest praise of all to him that he wrote in hia ewn "Danish tongue," and so ensured the nse of that tonguc by the learned and codtured of after generations, when, had he chosen to imitate the learned of other lands, not oaly would the freshness and life of the northera history as we have it have beea crashed out, but the vernacular literature (heightened and purified by his infleence as it has now been) would have sunk and disappeared. Ari's great works are Kenungabok, or The Book of Kings, relating the history of the kings of Norwas from the rise of the Yingling dynasty down to the death of Harald Sigurdsson in the year of his own birth. This book he compesed from the dictation of eld men such as Odd Kolsson, who had preserved traditions in their family and got information from contemperaries, frem the genealegical poems, and from the various dirges, battle-songs, and eulogia of the poets. It is most prebable that he slso compiled sherter Kings' Books relsting to Denmark and perhaps to England. The Komungabole is preserved uader the Kings Lives of Snorri, parts of it blmost as they came from Ari's hands, for example, Ynglinga and Harold Fairhair's Saga, and the prefaces stating the plan and critical foundstiens of the work, parts of it only used as a framewerk for the magdificent euperstructure of the lives of the twe Olafs, and of Harald Hardrada and bis nephew Magnus the Good. The best text of Ari's Konungabok (Ynglinga, and the sagas dewn to but not iucluding Olaf Tryggvason's) is that of Fristók.
The Book of Sellicments (Landnamabbk) is a mest wenderful performance, both in its scheme ond carryiag out. It is divided into five parts, the first of which contsius a brief account of the discovery of the island ; the other four, one by one takiag a quarter of the land, describe the name, pedigree, and history of each settler in geographical order, notice the most important facts in the histery of his descendants, the names of their homesteads, their courts and temples, thus including meation of 4000 persons, one-third of whom are wemen, and 2000 places. The mass of information contained in se small a space, the clearoess and accuracy of the details, the immenso amount of life which is somehow breathed into the whole, con hardly fail to astouish the readcr, when he reflects thet this colossal task was sketched out and accomplished thy one man, for his collaborateur Kolskegg merely flled up his plan with regard to part of the east const, a district with which Ari in bis weatern hone at Stad was little familiar. Landnamabok bas reached ns in two complete editions, one edited ly Sturla, whe brought down the genealogies to his own grandfather and graadmether, Sturla and Gudny, and one by Hawk, whe traccs the pedigrees still later to himseli.

Ari also wrote a Dook of Iiclanders (Islendingabok, c. 1127), which has perished as a whole, but fragments of it are embedded in many sagas end Kings' Lives; it seems to have beeu a complete epitome of bis earlier works, together with an account of the constitutional history, ecclesiaatical add civil, of Iceland. An abrilgment of the latter part of it the little Libellus Islandorum (te whicis the title of the bigger Liber-Islendingabot - is ofter given), madu hy the historian for his friends Bishops Ketil and Thorlak, to hom he wrote the Liber (c. 1137). This charming little book is, with tho much later collections of laws, eur sele authority for the Icelaadic constitation of the commenwealth, but, " much as it telle, the lost Liber would have beon of atill greater importance." Kristni-Suga, the story of the christening of Iceland, is also a werk of Ari's, "overlaid" by a later editer no doubt, but eften preserving Ari's very worda. This saga, together with several scattered tales of early Christisus in Celhnd thefere the Change of Fnitl (1002), may have made up a bection of the lost Liber. Of the anthor of these worka little persoanl is known. He lived in quiet days a quiet hife; but he shows himself in his works, as Snomi describes him, "a man wise, of good memory, bnd a specker of the trath." Surely, if Thucylides ie justly acemated the first political listonan, Ari may be fitly styled the first of acientilic historians.
A panans contemporary and friend of Ari is Sumund (1056-Susume 1133), a great schelar and charchanm, whese learning so im. prosacd his age that he got the reputation of a magician. Ho was the friend of Bishop Joho, the fonoder of the great Odd-Verjar family, and tho author of a Book of Kings from Marald lairhair In Magnus the Good, in whith he acems to have fixed 'he exact chronolngy of each reign. It is mest probablo that he wrete in Litun. The ilea that he had anything to do with the poetic Eldm In genoral, or the Sun's somy in particular, is of course unfounded and modern.
The tlame which Ari had kindled was fel hy bis successors in the 12 h ceutury. Eirik Oddsson (a. 1150) wrote the lives of Sidurib

Smmund to which Gunnlaug belonged.
Saorri was known to his contemporarice ns a statesman and poet ; to un he is abore all an historian. His position as a poct and his anthorship of the prose Eldia have been noticed above. Snorri iras mora in 1178 , beiog on hia mother's side sprung from the Myra Amily of liorg; he was brought up in fosterage with Semmod's great grandson Jon Loptsson, a great chief. His career begins with hia martiage, 1199, which made him a wealthy man. In 1205 he moved from Borg to keekholt. He was twice lawman, and twico visited Norway, where ho gained great influence with the kiag; but when the civil war broko out ho sided with Duke Skuli and disoleyed the Ling's orders, whereupon letters were sent out to his cuemics to slay him (Skuli his patron baving fallen), which command was carrived out on the night of 22 d Sopt. 1241, his own friends and kinamen being lis murderers. Snorri wrote the Lizes of the Kings, from Olaf Tryervason to Sigurd the Crus.ader inclusive; and we have them substastially as they came from his hand in the Great King Olafs Saga, which bas been interpolated with thettir and bits of other aagas in such a way as that they can be easily omitted; St Olaj"s Sags, as in Heimskringla an l the stockholm MS. ; and the succeodiog Fings' Lives, as in IIulda and Mrokkinskinna, in which, however, a few episodes bave been inserted.

Theso worts were no daubt indelted for their facts to Ari's labours, and to sagas written sinco Ari's death; but the style and treatment of them are Soorri's own. The fue Thucyalidean speches, the dranatic power of grasping character, and the pathos and poetry that run thromgh the stories, along with a humour such as is shown in the Edula, and u varied grace of style that never llass or palls, make Bnorri one of the erreateat of historians.

Here it should lie poticed that Heimshringha and its class of MSS. (Eirspennul, Jofrastīuna, G'ullinskinna, lris-bod, and Kringla) do not give tho full teat of Snorri's works. They are ablilyments rade in Norway by Icelanders for their Norwegian patrons, the Life of St Olaf aloae being preserved intact, for the great interest of the Norweginns lay in him, but all the other Kings liwes beiner more or less cut down and mutilated, so that they cannot betrust cul for bistoric purposes; nor do they give a far idea of Snoni's styic. As Eoglishmen's knowledgo of these works is offen derived from Ar Laing's trasslation ol a Danish versiun of Aeimstoringia ("SuaLiags of Norway"), this cantion is needed.

Agrip is a 12th ceutury compendinm of the Kings' Liecs from Harold Fairhair 10 Swerri, by a scholastic writer of the sehool of ather Siemuad. As the only laclanlic abridgment of Norwegian history authers. taken not from Snorri but souries now dost, it is of worth. Jtercal title is K゙onunga-tal.

Noregs Konunga-lal, nowcalled Eagrskinna, isa Norsecompicodium of the Kings' Lives from llalfdan the Black to Swerri's accession, probably written for King Hakon, to whom it was read on his deoth. bed. It is an origianl work, and coutains much not found elsewherc. As noa-lcelandie it is only noticed here for completeness.
Styrmi Karason, a contemporary of Snorris, dyine in l245, was a distinguished churchman (lawman twice) and selolar. He wroto a Life of St Olaf, now lost ; his authority is cited. He also copicd out Iandnamabok and Suerri's Lifc, front his MSS. of which our surviving copies were taken

Sturla, Snorri's acphew, of whom more must be said below, wrote the Lives of Kings Hizkon ami Magnus at tho noquest of the latter, finishigg the first c. 1265, the latter c. 1280 . King Jakan's Life is preserved in full; of the other only frammenta remain. These ate the last of the long and valuable series of historie works which Ari"s labours began, from which the history of Norway for $\mathbf{5} 00$ Years must be gathered.

A few books relating tho history of other Scantinavian realme will complete this survey. In skioldunga-bot was told the history of the early kiogs of Deamark, perhapa derived from Aria collections, and ruoding parallel to luglingt. The carlite part of it has perished save a fragmeot Sognt-brot, and citations and paraphrases in Saxo, and the mythical Jagnar Lodlrok's and Coughe-Hrolf's Sagus; the latter part, Lives of HFarolel Hise-tooth ame the K"uys down to Sicelyn $/ I$., is still in existeaco and known ou Skivldznga.

The Lives of St Kinut and his Brethren are of later Origin and separste authorships, parallel to Snorri's Lives of the greal Noruecgian Kings, but earlicria date. The Lives of hing IFadionar and his Son. written c. 1185 , by a coDtemparary of Abbot Karl's, are the last of this series. The whole wero edited and compiled into one book, often quoted as Skioldunga, by a 13 th century cditor, possility Olaf, the White I'oet, Sturla's brother, guest and fricud of King Waldimar

Il., as Dr V'igfussonlias guessed. Jomsuikinga Saya, the listory of the pirates of Jom, down to linut the Great's days, also rulate to Danish history. Several rersions of it exist.

The complex work now known as Orkneyinga is made up of the Earls' Saga, lives of the tirst great earls, Turf-Einar, Thortimn, \&e.; the Lifc of St. Ifagnas, founded partly on Abhot liobert's Latin hifo of him, e. 1150, an Onkney work, jaitly on Norse or lcelandic hoograplica; a Muraclebouk of the same saint; the Lives of Eart lognualh and Sucyn the last of the vikings, and a few episodes such as the Journing of Bishop Adum. A scholastic sketch of the rise of the Scandinavinn cmabe, the Fonndation of Noruay, dating c. 1180, is prefixed to the wbole. The Flatey-book text of this work lias liect iranslated by Jir Hjaltalin in Mr Audeisou's Orkncyingu Saga.

Parcyinga tells the tale of tho conversion of the Fereys or Earoes, and the luves of its chicfs Siggrund ani Leif, composed in the 13 th centery from their separate sagas by an leelander of the Sturiang school.

The saga has already been shown in two forms, its original epic Biogrs. shape and its Jater development applied to the livea of Norwegian phies. and Danish bings ond carls, as heroic but deeper and broader sub. jects chan before. In the 13 th century it is put to a thind use, to tell the phan story of men's laves for their contempories, after satisfying which demand it dies away for erer.

These biocraphics ate more literary and medieval ond lesa poetic Lives of than the lcelandic sagas and hing's lives; their simplicity, truth, chefs. realism, aded purity of style are the sane. They run in two parallel streams, some being concerned with chicfs and champions, some with bishops. The former, as more important, will be taken first. They are mostly found embedded in the complex mass of stories known as Stwrlunga, from which Dr Vigfusson has extricated them, and for the first time set them inorder. Among them oro the sagas of Thargils and Maflidi (1118-21), the fued and peacemakigg of two great chicfa contemporaries of Ari; of Sturla (1150-83), the tounde of the great Sturlang family, down to the settlement of lis great liwsuit liy Jon Loptsson, whothereupoa tock his son Snorri the his. torian to fosterage, -a humorous story but with traces of the decadence about it, aod glimpses of the evil days that were to come ; of the Durning of Onzod (1185-1200), a Lale of feul and fire-raising in the north of the island, the hero of which, Gudmund Dyri, goes at last into a cloistet; oi Irrafn Sueinbiornssorn (1190-1213), the noblest I celander of his day, wari ior, leech, seaman, craftsman, poet, and chicf, whase life at home, thevels and piegrimages abroad (llrafit was one of the first to visit Decket's shine), and death at the hamlv of a foe whom he had twice spared, are recounted by a loving friend in lious memory of his virthes, c. 2220 ; of Aaron Miorkifsson (1200-55), o man whose strength, courage, and ndventures befit rather a henchman of Olaf Tryegrason than ono of King IIakon 8 thaues (the beginaing of the tewds that rise romad Bishop Cudmund are told here), of the Surinefellomen (1248-52), a pitiful story of a family feud. in the far cast of Iceland.
liut the most important works of this cless aro tho Istendinga Stur', Suga and Thorgits Sega of Lawman Sturla. Sturla add his brother Thon!s Olaf were the sons of 'lhord Sturlason and his mistress Thora. Ite son the was torn aod bronght up io prosperoua times, when all was fair for his the Sturlungs, but his manhocul was fasced in tho midst of strifenal torime war, in which his family fell one byone, and he himsolf, though a peaceful man who cared little for politics, was more tban once forced to ly for bis life. Whbe in refuge with limg Magnus, in Norway, he wrote his two sagas of that king and his father. Alter his tirst stay in Norway lie came buck io 127\%, with tho new Narse law. book, and served a seconl time as lawman. The fslendinge must. lave bena the work of his later years, composed at Fairey in Broat. firth, where he died. 30th July 12st, aged about seventy years. The
 of his works oo Icelamlic contemporary history; it deals with tho life of his own nephew, cstrcially his carcer in Iceland from 12 2on 2 to 1258. The second $1^{\text {natt of Islcndinga (1242-1262), which relates }}$ to the sceond part of the civil war, telling of the carcers of Thord Kakali, Kolbein the Young, Farl Gizur, and Ilrafo Oddason. Toce end is imperfeet, there leing a blank of some yoars before tho frag. mentary ending to which an editor has affixal a notice of the author's death. The first part of Psicnalinga (1202-42) tells of the beximangr and first part of the civil was, the lives of suorri and Sighvat, Sturla's uncles of his cousin and namesake Sturla Sirh watsson, of Dishop Gudmand, and Thorwald Gizursson,-ihe fall of tho Sturlunge, and with then the last hows of the great houses to mainthin the commonwealth, lriug the clmax of the story:

Sturla's power lies in his fithfuluess to nature, minute observance of uctail, and purity of style. The great cxtent of his subject. and the difficulty of dealiner with it in the saga form, aro most skilfully overcome; inor doca be allow prejudico or favour to stand ha. the way of the trutb, a thing hard to avoid for ono writing of contemporary events in which his own kinsmen have been concerncd. He ranks below Ari in valne and below Snorri in power; but no one else can dispute his place in the first rank of leclandic writers.

Of the ecclesiastical biographers, an anonymous Skalholt clerk is

Biasopg' the best. He wrote Hunger-waker, lives of the first five hishops of Lives. Skalbolt, and biographies of his patron Bishop Paul, and alsa of St Thorlak. They are full of intcresting notices of social and church life. I horlak was a learned man, aud had studied at Paris and Lincoln, which he left in 1161. These lives cover the years 10561193. The Life of St John, a great reformer, a contemporary of Thorodd, whom he employed to build a cinureh for him, is by enother author (1052-1121). The Life of Gudinund, as priest, secounts the carly life of this Icelandic Becket till his election as bishop (1160-1202); bis after career must be sooght out in Islendengo, It is writen by a friend and contemporary. A later life by Alngrim, abhot of Thingore, written c. 1350, as evidence of his anbjeet's sanetity, tellis a goud deal about Ieclandic life, \&c. The Lives of Bishops Arai and Laverence bning down our knowledge of Icelandic history into the 14 hh century. The former work is onhay: ly imperfect; it is the record of the struggles of choreh and state over patronage rights and glebes, written c. 1315; it now covers only the years 1269-91; a great many documents are give in it, after the modern fashios. The latter, Lawrence's Life, by his disciple, priest Einar Laflidason, is a charming hiogrephy of a goed and pious man, whose chequeted career in Norway and leeland is picturespuely told (1324-31). It is the last of the sagas. Bishop Jon's Tinble-Talk (1325-39) is also worth noticing; it contains many papular stories whieh the gool bishop, who had stadied at Bologna and laris, was wont to tell to his friends.
The Annals are now almost the sole material for Icelandie history; they had begun earlier, but after 1331 they got fuller and richer, thll they end in 1430. The best are Anuales Regii, ending 1306, Einar IIaflileson's Annols, known as " Lawman's Amals," reaching to 1392, and preserved with others in Flatey-book, and the New Annals, last of all. The Icclandic Diplomatarizm, cdited by Jon Sigurdsson, contains what remains of deeds, inventories, letters, \&e., from the oll days, completing our scanty material for this dark period of the island's history.

After the union and change of hav genuine tradition died ont with the great hoases, and the kings' lives and biographies ceased to please. The ordinary medixval literature reached feeland through Norway, sul every one begau to take delight in it and put it iuta a vernacular dress, ao neglecting their own classies that but for a few collectors like Lawnan Hawk they would have perished entirely.

Roman-

 tieваธัas. c. 1305, employed Icelanders at their courts in translating the French romances of the Alsxander, Arthur, and Charlemagne eycles. Some forty or fitty of these Ridilara-Siggur (Romanees of Chivalry) still remain. They resched Iceland and were cagerly rend, many Rimar being foundell on them. Norse versions of Mary of Brittany's Lays, the stories of Brutues and of Troy, nad

Scien-

tifie
works. liscale, with its interesting geographieal and social in inormation, is also Norse, written e. 1240 , by a IIalogalander. Thic eomputistic and arithmetiral treatises of Stiord-Odd, Biarni the Number-skilled, cl. 1173, and I Hawk the Lawman, d. 1334, and the geography of Ivar Bardsson, a Norwegian, e. 1340, are of conrse of foreign origin. A fuw tracts on geography, ec., in Hawk's book, and a Guide to the stoly Land, hy Nichelas, abhot of TLwera, d. 1158, complete the list of gcientific works.
Mythieal The stories which contain the last leos of the old mythology sagas. and pre-history seem to be also non-lcelandic, but stuffed uat and anplified by Icelandic editors, who probably got the plots from the Westera Islands. Wotsunga Sayd and Ileriarar Saga contain gnotations and \{araphrases of lays by the Helgi poet, and Jatf's, Inguar's, nul Asmund L'appabann's Sagas all havo bits of Western popetry in them. Ilrolf' Kraki's Sagic paraphrans part of Biarkicznad; IIrominum Gripsson's gives the story of Helji and Kara (the
 Sisys, ite, contain shreds of true tradition nimillst a mass of hater fictitions matter of no worth. With the Riddara-Sögur they crijoyal great popularity in the 15 th contury, nud gave matter for yn ny Reimur. Thiture's's Saya, a late version of the Wolsung story, is of Norse comprestion, c. 1230 , from North German sources.
Re.
ligious
wiuks.
Tho incliceval relyious lit rature of Western Einrofe Also reached and inllueared Icelinit, and the Ihmilics (like the Laws) were, accorling to Thorold, the earliest buoks writter in the vermucular, antedating even Ari's histories. Tho lives of tha lirgis, the Apostcs, and the Sicints fill many MSS. (edited in fuur largo volumus. by frofessor Unger), ami ate the works of many anthers, chichy of the 13thand 14th centuries (of course they wrie known in latin long before); amongst them are the lives of S.S. Ehararel the Cor-
 of the anthors wo know Pricit Berg Ginnteinsson, d . 1211 ; Kygri1 fioro, bishopmetect, d. 1237 ; Bishop hrabd, d. 1264 ; Ahbat Runolf,
 1310, Lee. A prarsplase of the histurical bouks of the Bible was
 King liakon Vooriorid a commontary un the lable to be made. whish was completed down to Exaluy xir. 'Tu this hamb's work was afterwarls aflxed, and the whobe is knowa as Stiorn. The Norso
version of the famous Barlaam and Jasayhat, made for Prince Hakon, c. 1240, must not be forgotten.
The post-classical literature falls chiefly uuder three heads, - Post religious, literary, and scientifi. Under the first comes foremost classica the noble translatiou of the New Testament by Odd Gottskalksson, litera. son of the bishop of Holar. Brought up in Norway, he travelled ture. in Denmark and Germany, and took npon him the new faith before Rehe retursed to Iceland, where be became seeretary to Bishop ligiou. Ogmund of Skalholt. Here he began by translating the Gospel of work. Matthew into his mother-tongue in secret. Having finished the remainder of the New Testament at his own house at Olves, he took it to Denmark, where it was printed at hoskild in 1540. Odd afterwards trauslated the Psalons, and several devational works of the day, Corvidus's Epistlcs, \&e. He was made lawman of the north and west, and died from a fall in the Laxa in Kios, Jone 1556. Three years after his death the first press was set up in Icelaud by John Matthewson, at Breidsholstad, in Hunafloc, add a Gospel and Epistle Book, aecording to Odd's version, issued frum it in 1562. In 1584 Bishop Gudbrand, who had brought over a splendid foust of type froin Dennark in 1575 (whieb he conpleted with his own lapds), printed a translation of the whole Bible at Holar, iacorporating Odd's versions and some books (Proverbs and the Son of Sirach, 1580) translated by Bishop Gizar, but supplying most of the Old Testament himself. This fine volume has been the basis of every Bible issued for Iceland till 1826, when it was replaced by a tad modero version. For beauty of language and faithfol simplicity of style the liner parts of this version, especially tha New Testament, have never been surpassed in $=$ ay tongue; they stand worthily beside the work of Tyndale, Luther, and Ulfila, formost monaments of the Teutouic tonguea.
The noost nutable theological work Jeeland ever produced is the Postill-Book of Bishop Juln Widalin (1666-1720), whose bold homely style and stiring eloquence made "Johp's Book," as it is lovingly ealled, a fayourite in every household, till in the preseut century it has beell replaced for the worse by the moro sentimental and polished Danish tracts and sermons, Theological literature is very poplar, and many works on this subject, chiefly translations, will beyfound in the liste of Icelandic bibliographers.
The Renaissance of Ieeland dates from the begiuning of the 17th Literary century, when a school of antiguarians arose and betook themselves worha to the task of reconstructing their country's history from the remains their pious care gathered and preserved. Aragrim Jonssou's Brevis Commentarius, 1593, and Crymogaca, 1609, were the first-fruits of this movenent, of which Bishops Odd, Tborlak, aad Bryninlf (worthy parallels to Parker and Laind) were the wlse and earnest supporters. The first (d. 1630) collected much material for chareh bistory. The seeond (d. 1656) saved Sturlunga and the Bishops' Lives, eacouraged John Egilsson to write his New Hungerwaker, Jives of the bishops of the Dark Ages and Reformation, and helped Biorn of Skardsa (d. 1655), a bold and patriotic antiquary (whose Annats continue Einar's), in his researchea. The last (d. 1675) collected a fine library of MSS., and employed the famoua copyist John Erlentsson, to whom and the lishop's brother, Jobn Gizurarsson (d. 1643), we are much beholden for transcripts of wany lost MSS.

Torfans (1636-1719) and Bartholin, a Dane (d. 1690), roused the toste for northem literaturo in Europe, a taste which has uever since fagged ; and soon after them Arui Magnosson trausferred all that remained of vellum and good paper MSS. in Iceland to Denmark, and laid the foundations of the famous library and bequest, for which all Icelandic stadents are so much beholdca. Fur over forty years Arni stuck to his task, resceing cvery scrap lie could lay hands on from the risks of the Icelandic climate and carelessness, and when be died in 1730, aged fifty-seven, only arie good MSS. remainel in the island. Besides his magnificeut erlleetion. there are a few DISS. of great value at Upsala, at Stockhalom, and it the old royal collection at Copenlagen. Those in the vaiversity library in the latter city perished in the fire of 1728. Fagas wer printed ut Upsala aml Capenhagen in the 17th centary, ard the Arma-Magmean fund has been working since 1372. In that yers appeared also the first volume of Bishop Fimm hohnsson's Mistorin Eeclesiastica Ishandire, a work of high wane und much crudition, containing not only ecelesinstical lut civil and lite ary history
 been continued ly Gishop I'. P'eterson to mole tin times, 1740-1840. The resulte, hovever, of modern ohservers and schon, mast b
 others. John Bspolia's Arbirk is very good np to its Inte, 1821.

By far the best histery of Icelandie chassic literature is the hive liant sketch by Dr Vigfusson, l'rolegomom to Sturhema Sage, Oxford, 1870, to which we must hare ack nowlelge our chligations. It replaces mach earlier work, especially the Sciem aphat of Haldan Einarson, 1757, ame the Swga-Fiblitete of Mmet. The numerons edtitions of the clasies liy the Icelandic sorietics, the 1'anivh Société des Antipuités, Norliske Literatur Samfupd, and the new G, manel Nordike Literatur Samfund, the splendid Norwppis editions of Luner, tho labours of the leclanders Sigurdsson o:n

Gislason, and of thoso foreign scholnts in Scandinavia and Germany who have thrown themselves ao beartily into the work of illustrating, publiahing, end editing the angas and poents (nen like Munch, Bugge, Bergmann, Mölius, and Maurer, to name only a few), can only be referred to here.
Tho first modern scientitic work is the Iler per patrian of Eggert Olafsson and Biarni Paulsson, which gires a careful and correct account of tho physical pecaliarities-launa, flora, \&c.-of the island as far as could be done at the hate of its appearance, 1722. The island was first made known to "the world" by this book and by the sketch of Unao ron Troil, n Swede, who accompanied Sir Joseph Banks to Iceland in 1672, and afterwards wrote a scries of "letters" on the land and its literature, sc. This tour was the forerunner of as endless sennes of "trnvels," of rhich those of Hooker (1809), Mackenzio (1810), Henderson (1818), Gaımard (1838-43), Paijknll (1867), and, lastly, that of Captain Burton, an excellent account of the land and people, crammed with information of every kind (1575), are the best.
The maps lay Olann and his colleagues, by Gunnlaugsan, and by the French Admiralty are good. Kalund's work en the bistorieal geography of the island is saluable and interesting. Safn and other poriodirals above inentuned contain muny nble papers on scientific and sociological matters Iceland is an unteresting freld for the pathologist and plysician, aoll damerous medical treatises, Icelandic and foreign, have a:tacked it. Dr Hjaltalin, the prescnt medical director, is perhaps the best modern authority.

The cathedral high sehol merged into a college in 1801, which was fixed at Bessastad during its palmiest days (1805-46), and is now at Roykjavik. Among its lists of masters several distinguished names figure, for exarple, Sweinbiorn Egilsson, whose Homeric tranglations were issued as college "prograns" A law schonl has been recently formed at Reylijavik and a technical school at Mödruvellir. The musoum and library, both st Reykjavik, still in the rudimentary atate, are to be newly housed and extended.

Iceland is emphatically a land of proverbs, which occur on simost every page of the 山ictionary, while of folk-tales, those other keys to the people's heart, there is plentiful stere. Early work in this direction was dooe by Jon Gudmundsson, Olaf the Old, and John Olafsson in the 17th century, who all put traditions on paper, and their labours have been completed by the magmificent collection of Jon Arnason (1562-64), wha, inspired by the example of the Grimms, apent great toil on bis self-imposed task. Many tales are but weak echoes of the sagas; many were family legends, many the ohf fary talcs we all know so rell, dressed in a fresh garb suited to their new northern home; but, besides all these, there are a number of traditions and superstitions not found elserthere, the mass of which is of indigenous growth aod ongm. Some of Arnason's collections have been put into Englisb by Messrs J. G. G. Powell and E. Magousson, anil Sir G. Daseot.

A few tranglations of popular and famong books, such ns the Arabian Nights, ono or two classics, and a tale, Paltr og Stullia ("Lad and Lass"), 1850, complete the notabilities of leelandic bibliography. Mr Lidderdale has prepared a list of Ieclandiceprinted books, which it ia hoped may he published; tbe excellent Catalogus of Möbing is of use for dates, \&e., of eilitions.

Unlike England and France, lccland has had but one golden nge of literature uron which all her fame must rest. Of its creations it has been truly said that they fill a pace none nthers could take in the high ranks of Aryan classics. The noblest of them are distinguished by pare and strict form, nolhe heroic sulyect, and simple truthfal self-control of atyla and treatment, free alike from overvrought aentiment or extravagant passion, and rased equally above euphemism and commonplace, but ever inspred by a weird Eschylean power, grim and tender, and sphendid as thist which breathes throngh those historical books of the Old Testament, to which slone abould the masterpicces of Iccland's greatest writers be compered.

Langeage.

The relations of Icelandic to the other Tentonic tongues may be best ahown by a chrunological trestment It presents the following anomalies:-on the one hadd, it has a lighly inflexional grammar, a pure rocabolary, and a simple syntax, foints which would place it sille byside with Gothie; but, on the other band, it shows suchistrong mustrs of contraction and such deep phonetic changes, cspecia!!y in the vowels, as can only be paralleced in the modern Englis!. It is Turther noteworthy for its unity or lack of diafectic varation, ana possesses cxepptional nilvantages for the phitologist in the conplete series of documents dating from the 11th century downwards in which its hastory may be most acearately and mimutely studied.
There is little doubt but that the Trutonic tribes of the 4th ecatury all spoke one language, that. in fact, of whieh the remanos of Ulfila (which may be suppleasented by n few inscriptions, such as those of the Golden Horn and the earlicat Danish rone-stones, and a few stray words preserved in classic authors) afford us such a noble specimen. The tirst differentiation occurred when the English colony separated in the 5th century from the parent stock, and,
following its own course of development, already by the timo of Bede presented many new nnd peculiar characteristics in form and vocabulary. With the changes whicla produced the High Gernan dialects it does not behove us to deal here, so we may pass on to the Viking Tide (750-925), the results of which ware felt over o wide area, and are ondenced by the changes which gave to tho tongue of those tribus that took part in it a distractly Scandiuavian character.

Just as the earlier movement left its makk in Ofd English, so this one is clearly scen m the speech of the Scandinavian colonies of the West, especially in Icelandic, but it is still well marked in the Eastern Scandmavian dialects-Swedish, Manish, \&c., as the followng pomts common to all east and west, nud marking them of clearly from all other Teutonic tongues, will show:-strong stemcontraction reducing ail words as far as possible to a trochaie form; i-umteut carned out very fully and consistently; the suffixing of the article, and a pecular vocabulary which has chersen out of the conmon Teutont stock certan words for daily use, rejecting others which are common to all the other sister tongues-c.g., eld for fire, "chiza for zeidozo, gamol for old, cugi for net, olf for and, gora for do, tokia for nman, \&c. The later Damsh manestones and those of Sweden, published by Wimmer, Save, Dybeck, \&c., will be the Just documents for this stage ol the Scandinavian tongue.

We may now leave tha Eastern Scandinavian dialects to follow therr own course, which bas led then through a pall not entircly dissimilar to that which English has taken, and conine ourselves to the Western Colonial dialects. Those in their earliest monnments, the rune-stones of Man, the coins of the "Danish" kings and earls in Jreland and England, the lays of the Western pocts in the Edda coilection, and the earliest poetry of such Icclandic bards ns Egill and Kormak, exhibit certain idiosyncrasies n hich show them to have already started on their own career. Such are tho u-umlaut, the loss of w before r and !, the simplification of the rowel system (all aggravations, as it were, of the Scaudinavian peculianties nnticed abore, whe their voca bulary is, as one would expect, affected by the introduction of many English, Gaelic, and Latin words, especially those relating to ideas unkinown an entlice heathen days, ecclesiastical terms, \&c.i. Of these western colonics we are only concerned with the most important, Icciand; the Orkneys and Hebrides have no lingustie monuments later than the Eida lays of the 10th and 11th, and epmonic joctry und rhyured gradusjungles of the 12th centurs: the influence of the Danes on our dialects and book-English must be lett to English philologists; white in lrelaod only a few ןersonal and loch! names aow beiray to the ear tho former presence of the Ostman.
The fact that one of the first leclasdic writers, e. 1120, Ari's Earliest contemporaty, Thorodd, is a grammanan, and one of no mern fower, etage of is our greatest help towards ascotammg the phonesis of the tongue Ice. during the heroic age, and has evidence is supplemented by the landice Icelandic poets, whese strict anherence to metres, which depend fus their effect on a delicatc harmony of solud sud a aigid olservance of quantity, is absolutely to be trusted. Thorodd's scheme for the proper phonetic representation of lcclauda (which the English student may contrast with that of Orm, our first syelling teformer) is briefly as follows. The letters $t, c, d, f, y, l, 2 n, \pi, p, r, s, t$, are used in their ordinary classic values (c always hard), the capitals $\mathrm{B}, \mathrm{K}, \mathrm{r}, \mathrm{F}$, $0, L, M, N, P, R, S, T$, being employed for the doubled letters $l \epsilon_{\text {i }}$ \& c . (each consonant of these doubles was of course separately sud dise tinctly pionounced as in lahlain now, nnd, as Mr A. J. Ellis has proved, in lation formerly); P is used as in 0 , 1 English for $t h: 1$ for the aspirate pure or conbined h. $h n$, \&e.; loth these are of unvary: ing form ; x for $\mathrm{cs}, 3 s$, and η for $n g$ can only lie found m medial and final positions. Thuswe get twenty eight consooants The rowels, $a, e, i, 0, u, 3, x, c e$ long and short, have their ondmary values [pal. a, $c, i, o, u, 1, \mathrm{E}, 2 \mathrm{i}$ and as, $c e$, se. \}, aod to them Thorodd has added no \{ α. long and short. All these vowels may also be masalized, \dot{d}, \dot{e}, sc.; making twenty-seven in all; $\boldsymbol{\imath}$ nod u, whether eonsemantal or vocal, do not vary in form. The following ponts characterize the tongue at this period:-adherence to o in the terminations, right emplos: ment of the subjunctive, which has sunce gone enmpletely out of use. retcution of s in inflexion and the sulstantive verb. Quantity was strictly observed in apeaking, and also ncecnt, and no doabt prople, as in Old England, spoke much more clearly; slowly, and energetically than they do now. The motroduction of quantitative metres measured by syllables is no douht to be ascribed to Celtic influence, as are the line-rhymes and assomances and rhyme-endings, which, as any reader of 'Snorvi's Motla-eal a Earl Rogowald's Mhata. lyhill will see at the first glanee, comidetely separated Ice. lande foetry from the original Tentonic methic of the Contimental rune-stones, of Beowulf, and of llaramal

Thorodd's scheme was unfortumately never used in its stict completeness, but it partly employed in the following MSS., which are of the highest authority for this era of the lcesandic :Elucidarius, c. 1130, cd. facstmile; Lillcllus, c. 1160, cd. Möbins; the Law Scroll-fragments alhxed by N. Finsen to the enil of his ed. of Cod. Regrus Grdgris ; the Siochholn Homiliss, c. 1145, ed. Wisen : Mhysiologus, AM. oi3, cd. facsimile; Agrip, c. 1185, ed.

Dehlerap. For others see Table II. Prolegomens to Seurlunga Saga, Oxford, 187.

The first era of change, ascribed by Dr Yigfussen to about the lifetime of Snorri, is the mark left by the civil wars aud the con. nsxion with Norway (our lath century Wiars of the Roses transition is in many respects its parillel). It is seen in the normal spelling of the editions of tho esgas, \&c., and is best esemplifed by the fanuous AM. 132, c. 1300, and the Annales Regii, 1290-1306 (accurately printed in pp. 348-91, vol. ii., Sturlunga Saga, Oxford, 1879), -t he loss of the s replaced by τ, tho vanishing of the x-umbuted a, tho confusion of z and a, \dot{z} and e, wo and co (the latter of each couplo prerailing, the hardening of the dental finala and the blurring of $s t, s i$, sc into 2. This atage of spelling nod pronunciation is that which should be adhered to io all works which must be pinted in an uniform way, dictionaries, srammars, elassic cditions, \&c. Tho atadeat may be cantionod not to take the ragaries of Norse scribes, or Noricizod Iceanders (anch as Hask) for important phonetic variations.
16th
The second ers of chango is that which mecompenied tho Reformation, and witaeases to the mental and physical stir prodnced by that movement. It is only heard in tho spoken tongue (for all booka, savo a few priated during the last few years, follow the normal type of the 14 th and 15 th centory MSS. with for variations), but it is oone tho less deep and imortant. Its leading featares are the lass of quantity and intoantion, the confusion of the Fowels y and u, a and ai, ey and $a u$, au and d, εi i and $c y y, \dot{y}$ (the lattor takiag the sound of the former in each case), the diphthongization of the long rowels $\varepsilon, \bar{e}, \bar{o}, \bar{u}$, , all changes whith from their symmetry must have taken place at one date, - the diffurentiation of doubled aod toachiog consonants, $l l, n n, g n, \& c$., and of tinsl r. The vocabulary, which during the conoexion with Norway and Eogland through the "Dark Age" had beeu cnriched with many Frenchand Englisb words, now received an importaot aumpentation in a new rehgious termioclogy from Germany, while tho intercourso with Denmark began to lcapo its mark in loan-mords and Danicisms, thostock of which teoded greatly to iacrease, till a reaction arose in tino preseat contury, which, though excusable, his been carried to laugaablu Ieagths. The motro of leelandic poetry bad beguo to show sigas of medicrai intluence (of French origin) cren betore the death of Soorri, as a ditty in Sturlungr shows. During the Dark Age the Rimur metric apstem, dumeding largely on time-ending and burdoa for now effects though still retaining line rhyme aod alitera tion (tho latter being absolutely essential), revolutionized poetry, and leter the hymans of the Ruformation, shaking themselves free from the somewhat monotonong 'rat of the Fimur, containoxanplea of anang new and ingenious metrés. of life in that duriag the Middlo Aeez produed dialects in England, Germany, and France, sach as town-life with ita muilds ond varied interests, the great corporations, eccleciastical, legal, and medieal, which by their necessary use of latin cot off tho most highly educated ciasses from osercisiog any influence on the vermacular, and tho casto influences of chivaly, ice., which sometintes, as in England, allowed the upper classes to ugo a beparate fureign lagraage. In early times before the Darish cuorucst there were no dalecta, becinse, lifo beina single, king and serf, soldier aad peasunt, merchant and priest must live and speak alike. So we sed in our own
days the aewspaper, the state behoul, the ralfay, the oonscription, and the theatre, all tending to bring about in each great European state a sameaess of life, thought, and apeech through avery nook and corner of its area.

The general characteristics of the Icelande tongue are those of 3 spoken speech, par cecellence, - a pare and corroct vocabulary well suited to the overy-day needs of a pastoral life, a pithy and homely rigour of idion (this shows especially io the saws and proverbs which often recall those of Spain), a delicacy and regularity of syntax, which can express much with fow and simple means, and an aceuracy of terminolegy well becoming a legal-minded ncople. All these salient characters strike every ohoerver, but the foll beauty and power of tho tongue as a vehicle of the highest cxpression can ooly be tested by a careful stady of the masterpiecea written in it. No one that bas not read the fintest chapters of Viala or Olaf Tryggnasson's Life, the Tales of Saorri, or a Gopel in Odd's trans. lation, not to speak of other works almost equally worthy of mention, can judge fairly of the capacity, iorce, and sweetness of this most classic langunge.

A few words are due to those whose labours have rendered the Philotask יf mastering it easy and pleasant. The oldest philologist, logleal Thorudd, has been noticed; an anonymons grammarian of the works. next generation, c. 1175, attempted a classification of letters and sounds; Sturls's brother Olaf, tho White Poet, applied the fgures, sc., of Denatus and Priscian to Icelandic, ia which task he weis followed liy a continoator. All these treatises were published along with the Thulur, rhymed glossaries (compiled in the Westera lslands, prebably in the Orkneys), in vol. ii. of the AM. edition of the Eidlu, to a MS. of which they are found affixed, Copenhagen, 1832.

Of modem works, those of Rask, tho founder of modern Icelondic philology, Egillson, the learaed author of the Poctic Lexicon, otherwiso well hoown by his traoalation of Homer, and Fritzact, the first real Icelandic lexicographer, deserve rurerent mention. But for all practical purposes their labours have been superacded snd their designa foltilled by Dr Gudbrand Vigfosson, whose IcelandicEnglish Dietionary, Oxford, 1869-75, must, whether one looks to its scientific philology, completeness, accuracy, or armangement, be pronounced the best existing dictionary of any Tentonic tongue. It comprises a grammar and phooology, \&c. The university of Oxford has recently published, under the editorship of Messra Vigfusson and Fowell, i very complete Ieclandic Prose fieader. In the seattered opusenla of Dr Pugge, as well as in his notes to tho poetic Eila, aro to be foand rany interesting "equations" and observations on tho langage and comparative anythology of Scandinarin.

To Exergish philologists thag study of Icelandic is of high importance, as bearing upon the grammer aud vocubalary of our most iumportant dial.ct. the Northumbrian, to a scientifie knowledge of which it is absolately nccessary. A list of words eccurring in every-day Enclish which we owe to the Scaudinavian scttlers of the Danelaw will be found in the Oxford Icelandic Reader. To Irish schoiars the old nortiern toogte is alsts of interest, as not only did those who spoke it horrow much from their Celtic frienda and iocs, but there was alao a certain nmount of rellex action which it would be desirable to fully trace out. As the most reguler and pare of the 'reutouic dialects, its value to the comparativo philolegrist is suficieatly obvious.

ICELAND moss, a lichen, Cetrama islanaica (Achar.), whoss crect or ascending fotiaccons habit gives it something of the alpearanee of a moss, whenco probably the name. The thalius has a palo chesinut colomr, and grows to a height of from 3 to 4 inethes, the branches being channelled or rohed into tubes, which terminato in llattened lobes with fringed edges. It grows abuadantly in tho mountainous regions of northern countries, and specially it is characteriatic of the lava olopes and plains of the wess and north of Ieeland. As nuet with in commerce it is a light-grey larsh cartilaginona Looly, almost destitute of odour, and having a sliphtly litter taste. It contains alout 70 per ceat. of lichenin or hethenstarch, a hody isomeric with conmon stareh, but wanting any arpearance of strueture. It also yiolda a preculiar momification of ehbopphyll, calleed thallochlor, fumaric acil, licheno-stearic acil, and cetraric aeid, to which last it owes its bitter taste. In medicino it is uscd as a mild tonic, and at tho same timo it forms a nutritious and easily digested amylaceons food, being used in place of strach in some preparations of coeon.
however, in great request, and even in Iecland it is only habitually resorten to in soasons of scarcity.

I-CUANG, or Y-chanc, also colled Y-lin in some maps, a town of Chima, in the provinco of Hoo-pih, one of the four new ports opened to foreign trado by treaty in 1877. It is situatel in $30^{\circ} 12^{\prime} \mathrm{N}$. lat. and (approximately) $111^{\circ} 20^{\prime} \mathrm{E}$. $\operatorname{long},-363$ geographical miles up the Xang-tzeKeang from Itamkow. Duilt on the left bank of the river just where it eseapes from the ravines and gorges which for 350 miles have iuprisoned its chamel, $\mathbf{1}$-chang is exposed to considerable risk of floeds; in 1570 the waters rose ae muela as 20 feet in one diy, nad the town had nany of tts houses and abont half of its wall swept away. The first English vessels to moke tho aseent of tho river as far as I-chang were those of Adoniral Sir James Ilope's expedition in 1561 . In 1878 tho pore was visited by 16 Chineso stcamers with a burlen of 5440 tons, and the net valuo of tho trade was $71,014 \mathrm{IIk}$. tacls (of about 6s.) ; in the following yar the net value had iacreased to 612,508 IIk. taels. Treparg was ono of the principal articles, The

Chinese population is estimated at 33,560 (Denusches Handels Archiv, 1880); and in 1878 there wero fifteen foreign residonts.

Soe Journ. of R. Geogr. Soc., 1862; and Blakiston, Five Months on the Fang-tee-Keang, 1862.
ICHNE JMON (Herpestes), a genus of small carnivoroas mammals belonging to the fanily Viverride, and resembling the truo civets in the elongated weasel-like form of the body and in the shortness of the limbs. There are, according to Gray (British Museum Catalogue, 1869), 22 species of ichneumons, the great majority of which are confined to the African continent, the remainder occurring in Persia, India, aud the Malay archipelago, and one, the Andalusian ichneunon (II. Widdringtonii, Gray), in the Sierra Morena of Spain, tho last probably au Afriean stragglor. The Egyptiau and Indian ichneumons are tho forms best known. The former (Herpestes ichucumon, L.) is an inhabitant of Egypt and the north of Africa, where it is known to foreign residents as ' Pha-
 ranh's rat" When full grown it is about tho size of the domestic cat. It is covered with a fur of long harsh hairs of a tawry grey colour, darker on tho head and along tho middle of the back, its legs reddish and its fcet and tail black. It feeds on rats and mico, birds and reptiles, and for this reason is occasionally domesticated. Its fondoess for eggs leads it to soarch for those of the crocodile, buried as these usually aro beneath a thin covering of sand on the river banks; and its services in thus checking the multiplication of those reptileswere so appreciated by the ancient Egyptians that they regarded the iehoeumon as a sacred animal, and when it died buried it, says Herodotas, "in boly repositories." It is, however, equally fond of poultry and their cggs, and its depredations among fowls considerally detract from its undoubted merits as a vermin-killer. During tho inundations of the Nile it is said to approach the Labitations of man, bat at other seasons it keaps to the fields and to tha banks of the crocadile-frequented riser. The Indian iehneumon or mungoos (Ilerpestes grisens, Desm.) is coneiderably amaller than the Egyptian form; its far is of a palo grey colour, the hairs being largely white-ringed, while tha cheeks and throat aro more or less reduish. Like tho preceding species, it is frequently domesticated, and is then put to a similar use. It is especially serviceable in ludia as a serpont killer, destroying not oaly the egrs and young of these creatures, but attacking without hesitation and killing the most venomous adult snakes. The fact that it invariably survives those encounters las led to the belief that it either enjors immunity from the effects of enake poison, or that after being bitten it has recourse, as the Hindoos have always maintained, to the root of a plant as ni antidote. Neither of these suppositions has stood tho test of acientific examination, for it has been found that when actually bitten it falls a victim to the poison as rapidly as other manmals, while there is no trustworthy cvidence of its seeking a vecretable antilote. The truth seems to be that the mungoos by its exceeding agility and yuickness of eye avoids the fangs of the snake while fixing its own teeth in the back of the reptile's ncek. The whole Thanatophidia of India stand in awo of this ting but tenacious mamnal, and seek to oscape from its presence. Tho mungoos, on the other hand, nerer liesitates to attach; the moment ho eees his enemy, "his whole nature," says a recent spectator of one of those fights, "appears to bo chaaged. IIis fur stands on end, and he presents the inearnation of iutense rage The snake invariably at, , m, , $*$
to escape, but, finding it impossible to evade the rapid onslaught of the mungoos, he raises his crest and lashes cut Gercely at his little persecutor, who seems to delight in dodging out of the way just in time. This goes on until tho mungoos sees his opportunity, when like lightning he rushes in and seizes the snake with his teeth by the back of the nesk close to the lead, shaking him as a terrier does a rat. These tacties are repeated until the snake is killed." The mungoos is equally desterous in killing rats and other four-foted vermin.
ICHNEUMON-FLY is a general name apphed to parasitic insects of the section I'upizora. (or Entomophaga), order Mymenoptera, from the typical genus Ichneumm, belonging to the chief fauily of that section,--itself faucifully so called after the Egyptian mammal (Herpestes), notorious for its hatit of destroging the eggs of reptiles. The sprecies of the fanilies Ichneumonitor, Braconida, Evantida, Proctotrypide, and Chaleidide are often indiscriminately called "Ichneumons," but the term is perhaps properly applicable only to the first ond second of theso, which are respectively equivalent to the chneumones genuini and I. adsciti of older naturalists, chiefly differing in the former having two recurrent nerves to the anterior wing, whilst tho latter has only one such nerve. The Ichneumonidte jroper are one of the most extensive groups of insecte, and have been much studied by entomologists since the time of Linnæus and Gravenhorst. Their sesual difiereaces of colour, \&e., are, however, often so great that fresh discoveries are constantly being made with regard to their truo specific relations, as well as new species detected by biological observers. Gravenhorst described zome 1650 European species, to which considerable subsequent additions lave been made ; and at the latest computation of the English Ichneumonide (in 1872, by the Rev. T. A. Marshall), 1186 epecies, contained in 136 genera, were recognized, - 439 braconide being also enumerated. There are 6 subfamilies of the Ichneumonida, viz., the Ichneumonides, Cryptides, Agriotyprides, Ophionides, Tryphonides, and Pimplides, differing considerably in size and facies, but united in the common attribute of being in their earlier stage rarasitic upon other insects. They have all long nariow bodies; n small free head with long filiform or setaccous antenna, wiich are never elbowed, and have always more than sisteen joints; the abdomen attached to the thorax at its linder extremity between tho base of the posterior coax, and prosided in the female with a straight ovipositor often exserted and very long; ond the wings veined, with perfect cells on the disk of the front pair.

The perasitic habits above alluded to render these flics of very great importance in the economy of natare, as they effectually serve to check any inordinate increase in tho numbers of injurions insects. Withont their aid, indeed, it would in many cases le impossible for the agriculturist to hold his own against the ravages of his minute hexapod foes, whose habits are sot sufficiently known to render artificial checks or destroying agents available. The females of all the species are constantly on the alert to discover the praper living food for their own larve, which are hatched from the eggs they deposit in or on tho eggs, tirve, or pupe of other insects of all orders, chictly Lepidoptera, the caterpillars of buttertlies and noths being specially attacked (as also are spiders). Any one who has watched insoct life, even in a sulurban garden, during summer, can hardly heve failed to notico the busy way in which the parent ichneumon, a small fonr-winged fly, with constantly vibrating aotenna, searches for her prey; and the clusters of minute cocoona round the remains of some unfortunate cabhage-butterfly caterpillar, whicl: has had just enough vitality left in it to crawl instinctively to a prodet
ftseo for undergoing that change to pupa which it will never make, must also have been observed by many. This is the rork of Apanteles (or Mficrogaster) glomeratus, one of the Braconidx, which in days past was a soarce of disquietude to nataralists, who believed that the life of the one defunct larva had transmigrated into the numerous smaller fliez reared from it. Iehneamon-fics which aitack esteraal feeders have a short osipasitor; but those attached to rood-feeding insects bave that organ of great length, for the parpose of reaching their conceated prey. Thus a species from Japan (Bracon penetrator) bas its oripositor nine times the length of the body; and the large species of Rhysa and Rpfialtes, parasitic on Sirex and large weodloring bectles in temperate Europe, have rery long instruments (with which when haudled they will endeavon to sting, sometimes penetrating the skia), in order to get at their secreted rictims. This length of oripositor is, in the female of a species of Pelecinus, common in the boreal parts of Nurth America in pine forests, replaced by an excessively attenuated development of abdomen, causiag the insect to
resemble a small dragen-fly, and falflling the sama mechanical narpuse. A conmon reddish-coloared species of Ophion (O. obscurum), with a sabre-shaped abdomen, is noteworthy from the fact of its eggs beiog attached by stalks outside the body of the caterpillar of the puss-moth (Diranura rinula). Lepidnpterists wishing to breed the latter cat off the eggs of the parasite with scissors.

The larse of the ichneumou-fies aro white fleshy cylindrical footless grabs; the majority of them spin silk coconus before pupating, ofter in a mass (sometimes almost genmetrically), and sometimes ia lagers of different colours and textare.
The reader desirous of investigating more fully the strneture and haluts of this interesting family will, in addition to the older works of Gravenhorst, Esenbeck, Wesmael, and Haliday, find muel suatter in the recent writings of Brischke, Crasson, P'rovancher, Holmgren, Woldstent, Tischbein, Vollenhoven, Forster, Kriechbaumer, Tasch: enterg, F. Smith, C. G. Thomson, and Rondani. Tbe last-wentioned anthor has published (in the Bulletin of the Italian Entomological Society, $1875-78$) a valuable list of parasitic inseets and the species to which they are attacbed.
(E. C. R.)

I CHTHYOLOGY

ICHTHYOLOGY' ${ }^{1}$ is that branch of zoology which treats of the iuternal and extermal structare of fishes, their mode of life, and their distribution in space and time. According to the views generilly adopted at preseat, all those Vertebrate animals are referted to the class of Fishes which combine the following characteristics:-they lire in water, and by menns of gills or branchice breathe air dissolved in water; the heart consists of a single ventricla nad single atrium ; the limbs, if present, are modified into fias, supplemented by appaired asedian fins; aud tho skin is either maked, or covered with scales or with osscous plates or bucklers. With few exceptions fishes are oviparous. There are, however, as wa shall sea hereafter, not a few membors of this class which show a modification of one or more of these characteristies, and which, vevertheless, canot be separated from it. The distinction between the class of Fishes and that of Batrachians is very slight indeed.

Aistory atd Litfratere,

The commencement of toe history of ichthyology oninAristotle. cides with that of zoology ginerally: Aristotle (301-32.2 B.c.) had a perfect knowledge of the general stractare of fishes, which he elearly discriminates beth from the aquatio animals with lungs and manme, i.e., Cetacenns, and troon the varions group of of batio invertelatetes. According to lim, "the special characteristics of the true fishew consist in the branchicu and fion, the majority havish foar fins, hut those of an domgate form, as the cels, havir: two omily Some, as the Mrevent, lack the fins altugether. The rats swim with their whole body, which is syren! ont. Thie bratrchion are sometimes furnished with an oferculum, sometimes they are without une, is in the cartihginnos flobes.

No fiob las hairs nif feathers; noet are enveral with -ales, lut sume bave only a rough or a smouth skin. The bonzers is lart, often toothen, and sometimes so mach atherent that it serms to be wantiong. The eyes have no lide, nor are any cars or nostrils visible, for what tukes the flare of mustrils is a blimi easty; wevertheless they hove the seuses of tating, smelling, and hearing At have blool. All sealy fishes are oviparoms, lint the cartilagimos fistes (with tho exception of the seadevil, which Aristotle pheces alnog with them) are viviporons. All have a heart, liver, and gatl-bladler; but kidneys and wrinary bladder are

[^122]absent. They vary much in the structure of their iutes. tioes: for, whilst the mallet has a fleshy stomach like a bird, others have no stomachic dilatation. Pyloric caeca are close to the stomach, and vary in number; there are even some, like the majority of the cartilaginous fishes, which have none whatever. Two bodies are situated along the spine, which have the fuoction of testicles; they open towards the vont, and are much enlarged in the spawning scason. The ceales becnme harder with sge. Not being provided with lungs, fishes have no voice, but several can emit granting souvds. They sleep like other animals. In most cases the females exceed the males in size; and in the rays aud sharks the male is distinguished by an appendage on each side of the vent."

Aristotle's infurmation on the labits of fishes, their migrations, mode and time of propagation, and ecnomic ases, is, so far as it has been tested, surprisiagly correct. Unfortunately, we too ofteu lack the means of recognizing the species of which be gives a deseription. His ideas of specific distiaction were as vague as those of the fishermen whose nomenclature he adopted; it never oceurred to him that vernacular names are sobject to change, or may be entirely lost in course of time, and the difficulty of identifying his species is further inereased by the circumstance that sometimes severn popular names are applied by him to the some fish, or different stages of growth are designated by nistinet natues. The mumber of fishes known to Aristotle seems to bave been about one handred and fifteen, all of which are iuhabitats of the Egean Sea.

That one man should have diseovered so many truths. and laid so sure a basis for future progress in zoalogy, is less surprising than the fact that for about cighifen centurica e science which seemed to ofer particular attractions to men gifted with power of ouservation was no farther advancel. X'et such is the cane. Aristotle's disciples, 20 well as his successars, remainet satisfict to bo his copiers ar rommentators, and to collect fahblous stories or vagoe notions. With very few exophtions (such ns Ausomius, who wrote a small pom, in which he describes from his own ubservatims the fishes of the Moselle) authons catirely abstainct fromoriginal researeh; and it was not until about the midelle of the 16 th century that ichthyology made a new step in admance by the appearance of Belon, linndelet, and Siflian, who almost simultaneosaly publisked their great works, by which the idea of species was cstablished ilenately and for all time.

Belom P. Belon travelled in the countrics berdering on the eastern part of the Mediterranean, in the years 1547-50; he collected rich stores of positive knowledge, which he embodied in several works. The one most important for the progress of ichthyology is that entitled De aquatilibus libri duo, Paris, 1553 . Belon knows about one hundred and ten fishes, of which he gives rude but generally recognizable figures. In his descriptions he pays regard to the classical as well as to the vernacular nomenclature, and states the outward characteristies, sometiones even to the number of fin-rays; frequently also he gives the most conspicuous anatomical peculiarities. Although Belon but rarely gives definitions of the terms used by him, it is not generally very difficult to ascertain the limits which be iutended to assign to each division of aquatic animals. He very properly divides them into such as are provided with blood and those without it,-two divisions corresponding in modern language to rertebrate and invertebrate aquatic animals. The former are classified by him aceording to size, the further subdivisions beiag based on the structure of the skeleton, mede of propagation, number of limbs, form of the body, and physical character of the habitat.
8ai-taui. The work of the Roman ichthyologist, H. Salviani (1514-72), bears evidence of the high social position which the author held as physician to three popes. lts title is Aquatilium animalium historia, Rome, 1554-57, fol. It treats exclusively of the fishes of ltaly. Ninctytwo species are figured on seventy-six plates, which, as regards artistic execution, are masterpieces of that period, although thoso specific eharacteristics which nowadays constitute the value of a zoological drawing were catirely overlooked by the author or artist. No attempt is made at a natural classification, but the allied foras are generally [laced in cluse proxiunty. The descriptions are quite equal to those givea by Belon, entering much into the details of the economy and uses of the several epecies, and wero evidently composed with the view of collecting in a readable form ail that might prove of interest to the class of society in which the author moved. Salviani's work is of a high order, very remarkable considering the age in which he lived. It could not iail to convey valuable instruction, and to render ichthyology popular in the country to tho fauna of which it was devoted, but it was not fitted to advance ichthyology as a science generally; in this respeet Salviani is not to be compared with Rondelet or Belon.
Rondelet. G. Rondelet ($1507-57$) had the great advantage orer Belon of having received a medical education at Paris, and especially of laving gone through a complete course of instruction in anatomy as a pupil of Guentherus of Andernach. This is conspicuous throughout his worksLibri de piscibus marinis, Lyons, 1554; and Universce aquatilium historia pars allera, Lyons, 1555. Nevertheless they cannot be regarded as more than considerably enlarged editions of Belon's work. For, although he worked independently of the latter, and differs from him in numerous details, of which he had a much more extensive knowledge, the system adopted by him is characterized by the *ane abseuce of the true principles of classification. His work is almost entircly limited to European and chiefly to Mediterrancan forms, and comprises no less than one bundred and ninety-seren marine and forty seven freshwater fishes. 1 tis descriptions are more complete and his figures much mere accurate than those of Belon; and tho specific account is preceded by introdnctory chapters, in which he treats in a general manuer of the distinctions, tho external and interaal parts, and the economy of fishes. Like Belon, he had no conception of the various categorics of classification-confounding, for instanee, throughou' his work the terms "genus" and "species"; but he had an intuitive notion of what his successors called a "spuecies,"
and his principal object was to collect and give as much information as possible regarding such species.

For nearly a century the works of Belon aud Rondelet continued to be the standard works on ichthyology; but tho science did not remain stationary during that period. The attention of naturalists was now directed to the fauna of foreign countries, especially of the Spanish and Duteh possessions in the New World ; and in Europe the establishment of anatomical schools and academies led to careful investigation of the internal anatomy of the most remarkable European forms. Limited as these efforts were as to their scope, being restrieted either to the fauna of sone particular district or to the dissection of a single species, they were sufficiently numerous to enlarge the views of naturalists, and to destroy that fatal dependence on proceding author rities which had continued to keep in bonds the minds of such men eren as Roudelet and Belon. The most noteworthy of those engaged in these inquiries in tropical countries were W. Piso and G. Margrav, who aecompanied as physicians the Dutch governor, Prince Maurico of Nassau, to Brazil (1637-44).

Of the men who left records of their anatonical researches, we may mention Eorelli (1608-79), whe wrote a work De motu animalium, Tiome, 1680 , Ato, in which he explained the mechanism of swimming and the function of the air-bladder; M. Malpighi (1628-94), who examined the aptic nerve of the sword-fish; the celebrated J. Swammerdam (1637-80), who described the intestines of numerous fishes; and J. Duverney (1048-1730), who investigated in detail the organs of respiration.

A new era in the history of ichthyulogy commences with Ray, Willughby, and Artedi, who were the first to recog. nize the true principles by which the natural affinities of animals should be determined. Their labours stand in so intimate a connexion with each other that they represent but one great step in the progress of this science.
J. Ray (1628-1705) was the friend and guide of F. Rny 2na Willughby (1635-72). They found that a thorough Wi reform in the mothod of treating the vegetable and animal kingdoms had become necessary; that the only way of briaging order into the existing chaos was by arranging the various forms according to their structure; that they mast ecase to be burdened with inapplicable passages and quotations from ancient writers, and to perpetuate the vaguo and erroncous notions of their predecessors. They therefore substituted facts for speculation, and ono of the first results of this change, perlaps the most important, was that, haring recognized "speeies" as such, they defince the term, and fixed it as the startiag point of all sound zoological knowledge.

Although they had divided their work so that lay attended to the plants principally, and Willoghby to the animals, the Mistoria priscium, Oxf., 1686, which bears Willoghby's namo on the title page, and was edited by Hay, is clearly their joint production. A great part of tho observations contained in it were collected during the journeys they made together in Great lBritain and in tho varions countries of Eurole; and it is no exaggemtion to say that at that time these tro Englishmen knew tho fishes of the Continent, and ceprecially thoso of Germany, better than any native zoulogist.
ly the definition of fishes as animals with blood, breathing by gills, provided with a single ventricle of the heart, and either cosered with scales or naked, the Cetaccans are excluded. The fishes proper are nrranged primarily according to the cartilagrinous or tho osscous nature of the skeleton, and then sublivided according to tho general form of the body, the presence or the abscace of ventre! fins, the soft or the spinous structure of the dorssl rays, the number of dursal fins, de. No fewer than four
huadred and twenty species aro thus arranged and described, of which about one hundred and eighty were known to the authors from personal examination,-a comparatively small proportion, but descriptions and figures still formed in great measure the substitute for our modern collections nad museums. With the iacreasing accumulation of forms, the want of a fixed nomenclature had become more aad more filt.
Artedi.
Peter Artedi would have been a great ichthyologist if Ray or Willughby had not preceded him. But he was futly conscious of the fact that both had prepared the way for bum, and therefore he did not fail to reap every possible ndvantage from their labours. Bora in 1705 in Swedeu, Le studied with inareus at Upsala; from an early period Lo dovoted himseif entirely to the study of fishes, and was engaged in the arrangement and deseription of the collection of Soba, a wealthy Dutchman who had formed what was perhaps tho richest musoum at that time, when ho was accidentally drowned in one of the canals of Amsterdam in the year 1734, at tho ago of twenty-vine. His manuscripts were fortuately secured by an Englishman, Count Clifiord, and elited by his carly friend Linnæus. The work is divided into the following parts :-
(1) In the Bibliothecre Ichehyologica Artedi gives a vers comprect list of all preceding authors who had written on fishes, with a eritical analysis of their works. (2) The Philosophia Iehthyologica is devoted $\mathfrak{i o}$ a description of the external and internal parts of fishes; Artedi fixes a precise terminology for all the various modifications of the organs, distinguishing belween those characters which determine a genus and such as indicate a species or mercly a variety; in fact he establishes the method and principles which subsequently have guided every systematic ichthyologist. (3) The Genera Piscium contains well-defined diagnoses of forty-five genera, for which he has fixed an unchangeable nomenclature. (4) In the Species Piscium deseriptions of seventy-two species, examined by himsolf, are given,descriptions which even now are models of exactitude and method. (5) Finally, in the Synonymia Piscium references to all previous nuthors are arranged for every species, very much in the yuanner which is adnpted in the systemutic works of the present day.

Artedi has beeu justly called the Father of Ichthyology. So admirablo was his treatment of the subject, that even
Linnaus. Linnæus could only modify and add to it. Iudeed, so far as ichthyology is concerned, Linnesus has scarcely done anything beyoad. applyiag hinominal termis to the species properly described and elassificd by Artedi. His classificatioa of the genera appears in tho 12th edition of the Systema thus:-
A. Amphibia Nantes.-Spraculis compositis.- Petromyzon, Raia, Squalus, Chimæra. Spiraculis solitariis.-Lophius, Acipenser, Cyclopterus, Balistes, Ostracion, Tetrodon, Diodon, Centriscus, Syngnathus, legasus.
B. Pistes Apodes.-Murena, Gymnotus, Trichiurus, Anarrhichas, Ammodytes, Ophidium, Stromateus, Xiphias.
C. I'isecs Jugulares.-Callionymus, Uranoscopus, Trachinus, Gadus, Blemins.
D. Pisees Thoracici.-Cepola, Echenefn, Coryphrma, Gobius, Cottus, Scorpxna, Zeus, Pleuroncetes, Chetodon, Sparus, Labrus, Scirna, Perea, Gasterosteus, Scomber, Mullus, Trigla.
E. Pisces Abtominales-Cobitis, Amia, Silurus, Teuthis, Loricaria, Salmo, Fistularin, Esox, Elops, Argentima, Atherina, Mugil, Mormyrus, Exoccotus, Polynemus, Clupea, CyIrinus.

Two contemporarics of Linures, L. T. Gronow and J. T. Klein, attenupted a systematic arrangement of fishes; both had considerable adrantages for the study, especially in possessing oxtensive collections; but nether exercised any influence on the progress of ichthyolagy.

The works of Artedi and Linnæus led to an activity of research, especially in Scamionavia, Iolland, Gerarany, and England, such as has never bonn equalled in the history of biological seience. Whilst some of the pupils and followers of Linner devoted themselves to the examian. tion and study of the fauma of their mative conotries, others proceoded on voyages of discovery to foroign aad distant lands. Of licse latter tho following miy le
especiaily meationed:-O. Fabricius worked out the fauna of Greenland; Kalm collected in North Americn, Hasselquist in Egypt and Palestine, Brünnich in tho Mediterrauean, Osbeck in Java and China, Thunberg in Japan; Forskil examined and described the fishes of the Red Sea; Steller, Pallas, S. T. Gmelin, and Güldenstedt traversed nearly the whole of the Russian empire in Europe and Asia. Others attached themselves as naturalists to the celebrated circumnavigators of the last century, such as the two Forsters (father and son) and Solaader, who aecom. panied Cook; Commerson, who travelled with Boagainville; and Sonnerat. Numbers of new and remarkable forms were discovered by those men, and the foundation was laid for a knowledge of the geographical distribution of a ieimals.

Of those who stadied the fishos of their native countries, the mest celebrated were Pennant (Great Britain), O. F. Mïller (Deemark), Duhamel (Franee), Meidinger (Austria), Cornide (Spain), and Parra (Cuba),

The mass of materials brought together by those and other zoologists was so great that, not long after the death of Linneus, tho necessity made itself felt for collecting then in a compendious form. Several compilers undertook this task; they embodied the recent discoveries in new editions of the classical works of Artedi and Linnæus, but, not possessing cither a lnowledge of the subject or any critical discernment, they oaly succecded in burying those nolle moauments under a chaotic mass of rubbish. For ichthyology it was fortunate that two men at least, Bloch and Lacépede, made it a subject of prolonged original research.

Mark Eliezer Bloch (1723-1799), a physician of Berlin, Bloch lad reached the gge of fifty-six when he commenced to write on ichthyolegical subjects. To begin at-his time of life a work in which he iotended not only to give full deseriptions of the species known to him from specimens or drawings, but also to illustrato each species in a style truly magnificent for his time, was an undertaking the exocution of which must mea would have despaired of. Yet he accomplished not only this task, but even moro than ho at first coutemplated.

His work consists of two divisions:-(1) Oeconomische Nraturgeschichte der Fische Deutschlands, Berl., 1782-84; (2) Naturgeschichte der ausländischen Fische, Berl., 178595. The first division, which is devoted wo a description of the fishes of Germany, is entirely original, and based upon tho auther's own observations. His descriptions as well as figures wero made from nataro, and are, with but few exceptians, still serviceable; indeed many coutinuo to bo the best existing in literaturo. Bloch was less fortunate, nad is much less reliable, in his natural history of foreign fishes. For many of the species he had to trust to more or less incorrcet drawings and descriptions by travellers; frequently, also, ho was deceived as to the origin of specimens which he acquired by purchase. Hence his accounts contaia numerous confusing crrors, which it would havo been difficalt to correct had not nearly tho whole of the materials on which his work is based been preserved in the collections at Derlin.

After the completion of hie great work Bloch occupied himself with bystematizing. Ile prepared a general system of fishes, in which ho arranged not only thoso do. scribed in his great work, but also thoso with which ho had afterwards become acquainted from the descriptions of others. The work was ably edited and published after Iloch's death by n philologist, J. G. Schneider, under tho title M. E. Blochii Systema ichthyologive iconibus CX. illus. trutum, Berl., 1801. The namber of species enumerated in it nmounts to 1519. Tho systen is based upon the number of the fias, the varions orders being termed IIerulc.
capterygii, Decapterygii, \&e. We need not add that an artificial method like this led to the most unatural combinations and distinctions.

Bloch's Naturgeschichte remained for many years the atandard work, and, with its great number of excellent illustrations, proved a most useful guide to the student. But as regards originality of thought Dloch was far surLscépide. passed by his contemporary, B. G. E. de Lacépéde, born at Agen, in France, in 1756, a man of great and general erudition, who ecame professor at the museum of natural history in Paris, where he died in 1826.

Lacépede had to cootend with great difficulties in the preparation of his IIstoire des Poissons, Paris, 1798-1803, 5 vols, which was written during the most disturbed period of the French Revolution. A great part of it was cumposed whilst the auther was separated from collections and books, and had to rely on his notes and manuscripts only. Even the works of Bloch and other contemporaneous authors remained unknown, or at least inaccessible, to him for a long time. We need not therefore be surprised that his work abounds in the kind of errors into which a compiler is liable to fall. Not only does the same species appear uoder two or more distinet specific names, but it sometimes happeos that the author so little understands the source from which he derives his information that the description is referred to one genus and the accompanying figure to another. The names of genera are unduly multiplied; and the figures with which the work is illustrated are far ioferier to those of Bloch. Thus the infueace of Lacépede on the progress of ichthyology was vastly less than that of his fellow-labuurer; and the labour laid on his successors in correcting the numerous errors into which he had fallen probably outweighed the assistance which they derived from his work.

The work of the principal cultivators of ichthyolngy in the period between Ray and Lacépede was chiefly systematizing ond describiug; but the internal organization of fishes also received attention from more than one great anatunist. Haller, Camper, and Hunter examined the nervous system and the organs of sense; and abore nll Alexander Monro, secundus, published a classical work, The Structure and Physiology of Fishes explained and compared with those of Man and other Animals, Edin., 1785. The elcetric organs of fishes (Torpelo and Gymnotus) were examined by liéaunur, Allamand, Dancroft, Walsh, and still more exactly by J. IInnter. Tho mystery "f the propagation of the ecl called forth a large number of essays, and even the artificial proragation of Salmonide was known and practised by Gleditsch (1761).

Bloch and Lacéperde's works were almest imnediately succeeded by the labours of Cusier, but his early pablications were of yecessity tentative, preliminary, and fragmentary, so that snme little time elapsed before the spitit infused into ichthyology by this great anatomist could exercise its infuence on all the workers in this field. Several of such ante-Cuvierian works must be mentioned on account of their importance to onr kuowledge of cortain faunas. The Deseriptions and Figures of Tiwo Hundred Fishes collected at Vizagapatam on the Coast of Coromandel, Lond,, 1803, 2 vols., by Patrick linssel, and Aa lecount of the Fishes found in the River Ganges and its Brancles, Elin., IS2.2, 2 vols., by F. Itamilton (formerly Duchanan), were works distinguished by greater accuracy of the drawings (especially the latter) than was ever attainet beforc. A Nutural IIistary of Siritish Fishes was pullished by E. Donovan, Lunl., 1803-8; and the Mfer erranean fauna formed the study of the lifetime of A. Fasso (Ichelhyologie de Nice, Paris, is 10 ; and Mistoire natarelle de l'Europe Mérilionale, Paris, 1827). A slight begionting in the description of the fislins of the Luited States was made
by S. L. Mitchcll, who published, besiacs various papers, n Memoir on the Ielthyulogy of New York, in 1815.
G. Cuvier (1769-1832) did not occupy himself with the Curles. study of fishes merely because the class formed part of the Règne Animal, but devoted himself to it with particular predilection. The iarestigation of their anatomy, and especially of their skeleton, was taken up by him nt nn early period, and continued until be had succeeded in completing so perfect a framework of the system of the whole class that his immediate successors required only to fill up those details for which their master had had no leisure. Indefatigable in examining all the external and internal characters of the fishes- in a rich collection, he ascertained the natural affinities of the iofnite variety of forms, and aceurately defined the divisions, orders, families, and genera of the class, as they appear in the various editions of the Rêgne Animal. His industry equalled his genius: he formed connexions with almost every accessible part of the globe; not only French travellers and naturalists, but also Cermans, Englishmen, Americans, rivalled one another in assisting him with collectiuns; and for many years the museum of the Jardin des Plautes was the centre where all ichthyological treasures were deposited. Thus Cuvier brought together a collection the like of which had Dever been seen before, and which, ns it coutains all the materials on which his labours were based, must still be consideren as the most important. Soon after the year 1820, Cuvier, assisted by one of his pupils, A. Valenciennes, buen. commenced his great work on fishes, Histoire naturelle des cieanea Poissons, of which the first solume appeared in 1828 . The earlier rolumes, in which Cuvier liniself took his share, bear eridence of the enthusiasm with which both authors devated themselves to their task. After Cuvier's death in 1832, the work was left entirely in the bands of Valer. ciennes, whose energy and interest gradually slaekened, rising to their former pitch in some parts only, as, for instance, in the treatise on the herring. He left the work unfinished with the twenty-second volume (IS48), which treats of the Salmonoids. Yet, incomplete as it is, it is indispensable to the student.

The system finally adopted by Cuvier is the fullowing :A. POISSONS OSSEUX.

1. A Bravichiss ex Pegeses ou be Lames. 1. A Michoire Suporieure Libre.

	a. Aupuhtop	
Percoincs. Yolynemes.	Sparoilles. Chétodonoilles.	Branchics labyr Loplisoides.
thils	Scomberoides.	Gobivides.

Jones cuirassécs. scomberoides.

Gobinides. Scienomes.

Aldominartx. Sublrachiens. Apoles.
Cyprinnïles.
Gadoindes.
Sinmonkes.
llewronectes.
Salmonoides.
Clupeondes.
Lacioides.
2. A Michoird S'untricure Firee.

Schorlermes. Gymnolontes.
11. A Brancuits en Forme de Moctpes. Lon hobranches.

E. CARTIEAGISEUX OU CHONDRORTEREGIEAS.

Stuioniens. l'lagiostomes. Cyclostomes.

We have ouly to compre this system with that of Linmmus if we wish to measure the gigantic stride made by ichthyology during the intervening period of seventy years. The various characters employed for classification have been examined throughout the whole elass, and their relative importance has heen duly weighed and understood. Though Linneus had furncd a category of "Amphibia Nante;" for fishes with a cartilayinous skeleton, which should coiacide with C'uvier's "Poissons Cartilagineux,"
he had failed to understand the very nature of cartilage, apparently comprising under this term any skeletal frame: work of less firmmess than ordinary bone. Hence he considered Lophius, Cyclopterus, Syngnathus to be cartilaginous fishes. Adopting the position and development of the ventral fins as a highly important character, he had been obliged to associate fishes having rudimentary and inconspicuous ventral fins, like Trichiurus, Niphias, \&c., with the true eels. The important category of "family" appears now in Cuvier's system fully established as intermediate between genus and order. Important changes in Cuvier's system have been made and proposed by bis successers, but in the main it is still that of the present day.

Cuvier had extended his researches beyond the living forms, inte the field of palæontology; he was the first to observe the close resemblance of the scales of the fossil Palcooniscus to those of the living Polyplerus and Lepidosteus, the prolongation and identity of structure of the upper candal lobe in Paloconiscus and the sturgeons, the presence of peculiar "fulera" on the anterior margin of the dorsal fin in Palcooniscus and Lepidosteus, and inferred from these facts that the fossil genus was allied either to the sturgeons or to Lepidosteus. But it did not occur to him that there was a close relationship between those recent fishes. Lepidosteus and, with it, the fossil genus remained in his system a member of the order of Malacopterygii abdominales.

It was left to L. Agassiz (1807-73) to point out the importance of the structure of the scales as a characteristic, and to open a path tewards the knowledge of a whele new subclass of fishes, the Ganoidei.

Impressed with the fact that the peculiar scales of Polypterus and Lepidosieus are common to all fossil osseous fishes down to the Chalk, he takes the structure of the scalos generally as the base for an ichthyological system, and distinguishes four ordees:-

1. Placoids.-Without scales proper, but witlı scales of enamel, sometimes large, sometimes small, and reduced to mere points (Rays, Sharks, and Cyclostomi, with the fossil Hybodontes). 2. Ganoids. - With angular bony seales, covered with a thick stratum of enamel : to this order belong the fossil Lepidoides, Sauroides, Pyenodontes, and Colacanthi; the recent Polypterus, Lepidostens, Sclerodermi, Gymnodontes, Lophobmanches, and Siluroides; atso the Sturgeons. 3. Ctenoids. - With rougle scales, which have their free margins dentioulated: Claxtolontilse, Pleuronectide, Percida, Polyacanthi, Sciænide, Sparide, Scorpenide, Aulostomi. 4. Cycloids. - With smooth scalos, the himl margin of which lacks denticulation: Labride, Mugilidse, Scombrilie, Gadoidei, Gobide, Dlumenidx, Lucioidei, Salmonidx, Clupeidx, Cyprinidx.

We have no hesitation in affirming that if Agassiz had had an oppertunity of acquiring a more extensive and intimate knowledge of existing fishes before his energies were absorbed in the study of fossil remains, he would himself have recognized the artificial character of his classification. The distinctions between cycloid and cteneid ocalos, between placoid and ganoid fishes, are vague, and can hardly be maintained. So far as the living and pestCretaccan forms are cencerned, he abandoned the vantageground gained by Cuvier; and therefore his system could never supersede that of his predecessor, and finally shared the fate of every classification based on the modifications of one organ only. But Agassiz las the merit of having opened an immonse new field of research by his study of the infuite varicty of fossil forms. In his principal werk, Recherches sur les Poissons fossiles, Neuchatcl, $1833-$ 43, 4te, atlas in fol., he placed them before the world arranged in a methodical manner, with excellent doserip. tions and illustrations. His power of discernment and penetration in determining even the most fragmentary remains is truly astonishing; and, if his order of Ganoids is an assconblage of forms very different from what is now understood by that term, he was at any rate the first who sccogaized that such nu order of fishes exists.

The discoverer of the Ganoidei was succeeded by their J. Mïllor. explorer, Johannes Müller (1801-58). In his classical memoir Uleber den Bau und die Grenzen der Ganoiden, Berl., 1846, he showed that the Ganoids differ from all the other osseous fishes, and agree with the Plagiostomes, in the structure of the heart. By this primary character, all heterogeneous elements as Siluroids, Osteoglossidee, \&c., were eliminated from the order as understood by Agassiz. On the other hand, he did not recognize the affinity of Lepidosircn to the Ganoids, but established for it a distinct subclass, Dipnoi, which he placed at the opposite end of the system. By his researches into the anatomy of the lampreys and Amphioxus, their typical distinctuess from other cartilaginous fishes was proved; they became the types of two other subclasses, Cyclostomi and Leptocardia

Müler proposed several other not unimportant modificu tions of the Cuvierian system; and, although all cannot be maintained as the most natural arrangements, yet his rescarches have given us a much more complete knowledge of the organization of the Teleosteous fishes, and later inquiries have shown that, on the whole, the combinations pronnsed by him require only some further modification and another definition to render them perfectly natural.

The discovery (in the year 1871) of a living representative of a genus hitherto believed to be long extinct, Ceratodus, threw a new light on the affinities of fishes. The writer of the prosent article, who had the good fortune to examine this fish, was enabled to show that, on the one hand, it was a form most closely allied to Lepidosiren, and, on the ather, that it could not be separated from the Ganoid fishos, and therefore that Lepidosiren also was a Ganoid,-a relation already indicated by Huxley in a previous paper on "Devonian Fishes." This discovery led to further consideration ${ }^{1}$ of the relative characters of Miuller's subclasses, and to the system which is followed in the present article.

Having follewed the development of the ichthyological system down to the most recent date, we have to retrace our steps to enumerate the most important contributions to iclithyology which appeared contemporaneously with or subsequently to the publication of the great work of Cuvier and Valenciennes. As in ofher branches of zoology, almost every year was marked by increased activity. For the sake of convenience we may arrange these works under three heads.

1. Forages, containino general accounts of Zoolooical" Collections.

Bille
sraphy.
A. French.-1. Voyage autour du monde str les Corvettes de S. M. l'Uranie et la Physicicane, sous to commandement de M. Freycinch, "Zoologic-Poissons," par Quoy et Gaimard, Paris, 1824. 2. Voyags de lu Coquille, "Zoologie," par Lesson, Paris, 1826-30. 3. Foyags de l'Astrolabc, sous te commanudoment de M. J. Dumone d' Urville, "Poissons," Mar Quoy et Gaimard, Paris, 1834. 4. Voyage au Pola Sut par M. J. Dhemont d'Urville, " l'oissons," par IIombron et Jacquinot, Paris, 18:3-4.

1. Enylish.-1. Foyage of M.M.S. Sulphur, "Fishes," by J. Richardson, Lond., 1814-45. 2. Voyage of M.M.SS. Erebus and Terror, "Fishes,"'ly J. Richardson, Lond., 1846. 3. Foyage of IF.M.S. Deagle, "Fishes," hy L. Jenyns, Lond., 1842. 4. 'oyage of II.M.S. Chatlenger, "Fishes," by A. Guiuther.
C. German.-1. Heise der osterrcichischen Frogatte Notara, "Fische," von R. Kiner, Vienna, $180^{\circ} 5$.

11. Faunes.

A. Great Britain.-1. I. Parucll, The Satural IIstory of the Fishcs of the Firth of Forth, Edin., 1538. 2. W. Yarrell, A History of Pritish Fishes, 31 edit., Lond., 1859. 3. J. Couch, History of the Fishes of the British Islands, Lond., 1562-65.
B. Denmark and Scomdinatia,-1. 11. Kroyer, Danmark's Fiske, Copenhagen, 1838-53. 2. S. Nilsson, Skandiuavisk Fauna, vol. iv, "Fiskarna," Lund, 1855. 3., Fries och Ekström, Skandinavians Fiskar, Stockl., 1836.
C. Sersia.-1. Nordmann, "Ichthyologio Pontique," in Domidoft's Voyage duns la lussie míridionale, tom. iii., Paris, 1840. D. Germany.-1. Heckel und Kner, Die Süssuassreffisehe der
osterrechischen.Monarchic, Lcips., 1858. 2 C. T. E. Sicbold, Dic Süssuasser-fische von Milucleleropa, Lcips., 1863.
E. Staly and Mcditerraveun.-1. Bonapartc, Iconografin dellax Fauma Itrlica, tom. iii., "Pesci,". Iome, 1832-4]. 2. Costa, Funare del liegno di Napoli, "Pesci," Naples, about 1850.
F. France.-1. E. Blanchard, Les fovissons des cune douces de la Frunce, Paris, 1806.
G. Spazish Peninsulc. -The freshwater fish launa of Spain and Portugal was almost unknown, until F. Steindachucr paid some visits to those countries for the purpose of exploring the prin. cipal rivers. His discoveries are described in several papers in the Sitzungsberichte der Axademic zu Wien. B. du Bocage and F. Capello made contributions to our knowledge of the marine fishes on the coast of Portugal (Jomb. Sciene. Acad. Lisb.)
H. North Amerien.-1. J. Richardson, Fauna Borcali-Americana, part iii., "Fishes," Lond., 1836. The species described in this work are nearly all from the British possessions in the north. 2. Dekay, Zoology of New York, part iv., "Fishes," New York, 18te. 3. Fic ports of the United Staics Conmission of Fish and Fisheries, 5 vols., Washington, 1573-79, contain much valuable imornation. Besides these works, numerous descriptions of North American freshwater fishes have been published in the reports of the various U . S. Government expeditions, and in North Aubcrican scientific journals, by Storer, Baird, Girard, W. O. Ayres, Cope, Jordan, brown Guode, \&c., but a good gencral, and especially critical, account of the fishes of the United States is still a desideratum.

1. Japan.-1. Faura Japonica, "Poissons," par H. Schlegel, Lejden, 1850.
J. East Iudies; Tropical parts of the Indian and Pacific Oecrns. -i. E. Kuppell, Allas zu der Reise in Sordlicher Afvika, Fiankf, 1829. 2. E. Rüppell, Neuc Wirvelthiere,"' Fische," Frankf., 1837 . 3. R. L. Flayfair and A. Günther, The Fishes of Zansibar, Lond. 1876. 4. C. B. Elunzinger, Synopsis der Fische des Rothen Mecrs, Vienna, 1870-71. 5. F. Day, The Fishes of India, Lond., 1865, 410 , contains an account of the freshwater and marine species. 6. A. Giinther, Dic Fische der Sudsce, Hamburg, 4to, from 1873 (in progress). 7. Unsurpassed in activity, ns regards the exploration of the fish fauna of the East Indian archipelago, is P. Blecker (1819-78), a surgeon in the service of the Dutch East Indian Government, who, from the year 1840, for nearly thinty yens, amassed immensa collections of the fishes of the various islands, end described them in extremely numerous papers, published chiefly in the journals of the Batavian Society. Soon after his return to Europe (1860) Blecker commened to collect the final resnits of his labours in a grand work, illustrated by coloured plates, Allas Ichthelogique des Indes Oricntales Nierlandaises, Amsterd., fol., 1862; the publication of which was interrupted by the author's death in 1578.
K. Afriea. -1. A. Giunther, "The Fishes of the Nile," in Pethe. sick's Travels in Central Afrien, Lond., 1869. 2. W. Peters, Naturvisserschafthiche lieise nach Mossamlique, iv., "Flussfische," Eerl., 1568, 4to.
L. West Indies and South Anerica,-1. L. Agassiz, Selceta genera el specics Pisciam, quex in itinere per Brasiliem colleyit J. B. de Syix, Munich, 1829, fol. 2. F. de Castcluau, Animaux nor. veancour rarcs, recucillis pendantl'cxpedition dans lespartiescontrates de l 'Ameriqus du Sud, "Poissons," Paris, 1855. 3. L. Vaillant and F. Bocourt, Mission seicntifique au Maxique et dens l'Amerique ecnirale, "Poissons," Paris, 1874. 4. F. Pocy, the celebrated naturalist of Havina, devoted many years of study to the fishes of Cuba His papers and memoirs nee jmblished panty in two periodicals, issued by himself, under the title of Memorins setre la Mistoria natural de la Isla de Culua (from 1851), and Aigertorio Fisicu-natural de la Isla de Cuba (from 1865), partly in Nouth American scientifie journals. And, finally, F. Steindacliney and A Gunther have published many contrihutions, accompanied by excellent figures, to ouir knowledge of the tishes of Central and Sontl America.
M. Nero Zcalend.-1. F. W. Hutton and J. Hector, Fishes of Aico Zarland, Wellington, isi2.
N. Arctic Regions.-1. C. Lutken, "A Revised Catalogue of the Fishes of Greculand," in Manuat of the Natural Mistory, Gcoloyy, and Physics of Grecnland, Lond., 1875, Svo. 2. Tho fishes of Spitzbergen were examined ly A J. ilithgren (i $\$ 65$).

Ill. Anatomical Wonks.

The number of nuthors who have in estigated the anatomy of fisnes is amost ns great ns that of fannists ; nud we should ga layond the limits of the present article if no mentioncal more than the most prominent and successful. M. H. Rathke, J. Muller. 1 Hyasl, and H. Stamius left scarcely any organ oncxanineal, and their rebenches had a direct bearing cither on the relation of the chass of fislies 20 the other vertenates, or on the systematic arrangement of tho fishes thenselves. E. E. von bant, F. de Filhph, C. Voze, W. His, W K. Parker, and F. M. Balfour investignted their conbryology ; A. Kolliker and G. Sonchet their histology. The ost cology was specially theated by G. Bukken, F. C. Hosenthal, L. Agassiz,

Stamius, L. de Sanctis, L. Stieda, Baudelot, and Miclucho Maclay; the orgin of hearing by E. H. Weber, C. Hakse, aud G. Retzins. The clectric fishics wene examined by E. Gcorfroy, C Matteuci, P. I'acini, T. bilharz, and Max Schultze. The development and metamorphosis of the lamperns was made the subject of researeli hy H. Miller, M. Schultze, and P. Dwsjamikow ; Muller's pamimation of Eranchiostoma was continued by J. Marcusch, A. Kona. lersky, L. Sticda, W. Muiller, C, Hasse, T. M. Huxley, and F. M. Balloir. The most comprehensive accounts of the anatomy of lishes are contained in the suljoined works, which have been chiefly followed in the following anatomical deseription :-

1. H. Stannius, Zootomic der Fische, 2d edit., Berl., 1954. 2. R. Owen, Analomy of Vertebrates, vol. i., Lond., 1866. 3. R. Owcu, Lectures on the Comparative Anatomy and Physiology of the ICrto brae Aninals, part i., "Fishes," Lond., 1840. 4. 7. H. Huxley, Warual of the Anatomy of Iertelratul Animuts, Lond., 1 Sil.

It has been mentioned above that the great work of Cuvier and Valenciennes had been left incomplete. Several authors, therefore, have supplied detailed accounts of the orders omitted in that work. Mülicr and Ilenlo published an account of the Plagiostomes, and Kaup of the Murcenide and Lophobranchii; while A. Duméril commenced'an IIsloire maturclle des Poissans ou Ichthyologie ycherale, of which, however, only two volumes appeared, containing a complete aceount of the Plagiostomes (Paris, IS65) and of the Ganoids and Lophobranshs (Paris, IS70).

The activity which had prevailed in ichthyology since the publication of the IIistoire naturelle by Cuvier and Valenciennes had been so great, and the results of the numerous investigations were seattered orer such a multitude of publications, that it ultimately became imperative to collect all these materials in one comprehensive work. This was done in the Catalogue of Fishes, published by the trustees of the British Museum, in cight volumes (Lond., 1859-70). Lesides the species previously described, many new forms were added, the total number of species referred to in those volumes amounting to 8525 . As regerds the systematic arrangement, Müller's system was adopted in the main, but the definition of the families was much modified. This, however, need not be further entered on now, as it will become suffiecently apparent in the systematic portion of this article.

For fuller detaiis than can be given here regarding the structure, ciassification, and life-history of fishes, the reader is referred to the Introduction to the Sludy of Fishes, by A. G"uther, Edin., 1880.

Exterval Parts.

In the body of a fish tour parts are distinguished,- the liead, trunk, tail, and fins; the boundary between the first and second is generally indicated by the gill-opening, atd that between the sceond and third by the vent The form of the body and the relative proportions of these principal parts are subject to greater rariation than is to be found in any other class of vertcbrates. In fishes which are endowed with the power of steady and more or less rapid locomotion, a deviation from that furm of body which we observe in a perch, carp, or mackerel is never excessive. The body is a simple, equally-formed wedge, compressed or slightly rounded, well fitted for cleaving tho water. In fishes which are in the habit of moring on the buttom, the whole body, or at least the head, is rertically depressed and tlatened; and the latter may be so enormously enlarged that the trunk and tail apicar merely as an appendage. In one family of fishes, the Plewonechdes or llat-fishes, the body is compressedinto a thin disk; they swim and nove on one side ouly, which remains constantly directed towards the bottom, a peculiarity by which the symmetry of all parts of the body has been affected In fishes moving comparatively slowly through the water, and able to remain (as it were) suspended in it, a lateral conturession of the body, in conjunction with a lengtoening of the vertical and a shortening of the longitudinal
axis, is found. This deriation from the typial form may proceed so far that the vertical axis greatly exceeds the longitudiaal in length; gencrally all the parts of the body participate in this form. but in one kind of fish the Orthegorisens or sun-fish) it is chiefly the tail that has been shortened, that being reduced so much as to present the appearance of boing cut off. An excessive lengthening of the lonsitudinal axis, with a shortening of the vertical, oceurs in cels and eel-tike fishes, and in the so-ealled band-fishes. They are bottom•fish, capable of insinuating themseives into narrow erevices and holes. The form of the body in these long fines is either cylindrical (snake-like), as in the cels and many codishes, or strongly compressed, as in the band-fishes ('richiurus, Regalecus, dc.). It is chietly the tail that is lensthened, but frequently the head and truak particidate more or less in this form. Every possible variation ocenrs between these and other principal types of form. The old ichthyolorists, even down to Linneus, depended in great measure on them for elassification; but, although the same form of boly often obtains in the same groups of fishes, similarity of form by no means indicates matural afinity ; it only indieates similarity of habits and mode of life.
U"a
The External Parts of the Hewd.-The eye divides the head into the ante-orbital and post-orbital portions. In most fishes, especially in those with in compressed lead, it is aituated on the side and in the anterior half of the length of the head; in many others, chiefly those with a depressed head, it is dirceted upwards, and sometimes situated quite at the upper side; in a very few, the eyes look obliquely downwards. In the flat-fishes both eyes ars on the same side of the head, either the right or the left, always on that which is directed towards the light, and coloured.

Fishes in general, as compared with other Vertebrata, have large eyes. Sometimes these organs are enormonsly enlarged, indicuting either that the fish is nocturmal in its labits, or lives at a depth to which only a part of the sum's rays penetrate. On the other hand, small eyes occur in fishes inhabitins mudly places, or grent depths, to which scareely any light descends, or in fishes in which the want of an organ of sight is compensaterl liy the development of oller organs of sense. In a few fishes, more particularly thore inhabitias caves or the greatest denths of the ocean, the eves have beem: guite rudimentary and hidden under the skin.

In the antembintal portion of the head, or the snont, are sitsited the month and nostrils.
x neth.
The month is formed ly the intermaxillary and maxillary fomes or the intermaxiliary only in the upper jew, and by the manlibular hone in the lower These bones are either hare or coverel by integtment, to which frequently batial folls or lips are anded. As regards form, the month , fiors ans many bariations as the body itself, according t.. the nature of the forl, and the mode of feeding. It may ho marrow, or estremely wide and cleft nearly to the haml margin of the hend ; it may be semi-clliputical, semicircuin, ur siminht in a transwerse line; it may bo quite in front of the knont (anterion), on its upper surface (sabrers), on its lower (inferior), or extending along cach silf (bateral) ; sometimez it is subeirenlar, organized for subins. The jaws of some folles are moditied into a
 thronghut the whale elass of fibles the jaws are the only orem ever specialized for this purpec, weapons on other buts of the dody being purely defonsive.

Imh jats may be provided with skmy appendares, lartats, which, if developed and movahle, are sensitive orems of turch.
Nos'n's.
fa the majuity of fishes the nusurils ealaibit in domb.
opening on each side of the unprer stafface of the suont, the openings of each side being more on less close together. They lead into a shallow groove, and only in one family (the Myxinoids) perforate the palate. In this family, as vell as in the lampreys, the nasal aperture is single. In

Fic. 1.- Head of Mordacia morda, x, showing the single nostril and seven brabchial openings.
many eels the openings are lateral, the lower perforating the upper lip. In the sharks and rays (figs. 2, 3, 4) they are at the lower surface of the snout, and more or less conthent. And, finally, in the Dipnoi (fig. 35) and other Gil. noids, one at least is within the labial boundary of the nouth.

The space across the forehead, between the orbits, is called the interorbital space; that below the orbits, the infraorbital or suborbital region.

In the postorbital part of the liead there are
 distinguished, at least in most Teleosteons fishes and many Ganoids, the propereulum, a sub-semiciteular bone, generally with a free and often serrated or rari-ously-armed margin; the operculum, forming the posterior margin of the gill-opening: and the suboperculum and interoper. culum along its inferior margitu. AH these bones, collectively ealled opereula, form the gill-cover, a thin bony lamella coverints the cavity containimg the gills.

The gill-opening is a formmen, or slit, be. a formen, of fiais reverted. hind or bolow the head, by which the mater that has been taken up through the mouth for the purpose of breathing is again crpelled. This slit may cxtend from the umper end of the opereulam all rombd the side of the head to the symphysis of the lower jaw; or it may be shortened and finally reduced to a small opening on any bart of the margin of the gill-cover. Sometimes (stmencenchas) the two openings, thus reduced, coalesce, and form what externally appears as a single opeaing only. The margin of the gitio. cover is provided with a entaneons fringe, in orter moro effectually to clase tho gill-mening; and this frime is sul. ported by one or several or many bony rays, the hathotiostegals. The space on the chest hat ween the two mani of tho lurer jaw and between the gill-openings is alled the isthmms.

The shates and rays diller from the leleostens and Gamin fishos in havine five bramdial slits (six or seven :i Mecertehus and hopuenchns), which are lateral in tho laske and at the fower suface of the head in the rass
(fig. 4). In Myxine only the gill-opening is at a great distance from the head; in that family (Cyclostomi) it is either single or there are six or more on each side (fig. 1), as in the lampreys.

Fic. 1 -Lower aspect of head of Raia lempriert.
The Trunk and Tail.-In the trunk are distinguisbed the back, sides, and abrlomen. It gradually passes in all fishes into the tail, the termination of the abdominal cavity and the commencement of the tail being generally indicated by the position of the vent. The exceptions are numerous: not only may ecrtain abdominal organs, such as the sexual, extend to between the muscles of the tail, but the intestimal tract itsclf may pass far backwards, or it may even be reflected forwards, so that the position of the vent may be either close to the extromity of the tail or to the foremost part of the trunk.

In many fishes tho greater part of the tail is surrounded by fins, leaving finless only a small portion between the dorsal, caudal, and anal fins; this finless part is called the free portion or the pedunele of the tail.

The Fins. -The fins are divided into vertical or unpaired, and horizontal or paired fins. Any of them may be preeent or absent; and their prosition, number, and form are most important guides in determining the affinities of fishes.

The vertical tns are situnted in the median dorsal line, from the beid to the extremity of the tail, and in the ventral line of the tail. In fishes in which they are least developed or most embryonic, the vertieal fin appears as a simple fold of the skin surrounding the extrenity of the tail. In its further progress of development in the series of fishes, it gradually extends further forwards, and it may reaela even the head and the vent. In this embryunic condition the fin is generally supported by fine rays, which are the continuations of, or articulated to, other stronger rays supported by the processes or apopliyses of the vertebral wia, $3,-1$, simple ray.?
 is very common,-for instance in the brancled ray (soft). ects, and many Gadoid, Plennioid, and Gamoid fishes, in which the rays have ceascd, besides, to be simple rods, showing more or less numerous joints (simple artieulated rays,
fig. 5). Branched rays are dichotonously split, the joints inereasing in number towards the extremity.

The continuity of the vertical fin, however, is interrupted in the majority of fishes, and three fins are then distimguished: one in the dursa. line-the dorsal fio; one in the ventral line behind the anns-the anal fin; and one confined to the extremity of the tail-the caudal fin.

The caudal fin is rarely symmetrical so that the upper half is equal to the lower; the greatest degree of asymmetry obtains in fishes with a heterocereal termination of the vertebral column. In fithes in which it is nearly symmetrical it is frequently prolonged into an upper and lower

Fig. G.-Iletetocercal tall of Acipenser. a, fuhat b, osseous buckiers.
lobe, its hind margin being eoucave or more or less deeply excised; in others the hind margin is rounded, and, when the nidule rays greatly execed in length the outer ones, the fin assumes a pointed form.

Many and systematically important differenecs are observed in the dorsal fin, which is either spiny-rayed (spinous) (Acanthopterygian), or soft-rayed (Malacopterygian). In the former, a smaller or greater number of the rays are simple and without transverse joints; they may be flexible, or so much osscous matter is deposited in them that they appear hard and truly spinots (fig. 7); these

Fig 7.-Labraz lupus (Bass), an Acanthoptcrygian with antetlor spmoas and postenor soft dms.l fin.
spines form always the anterior portion of the fin, which is either detached from or continuous with the remaining jointed rays. The spines can be crected or depressed at the will of the fish; if in the depressed position the spines cover one another completely, their points lying in the same line, the fish is ealled homacanth; but if the spines are asymmetrical, alternately broader on one side than on

Fig. 8.-Saurus undespunmi", a Malacnpiteryelan win antertor 60 th dorsal and addithnal adiume tin.
the other, the fish is called licterncantb. The spinous division, as well as the one consisting of jointed rays, ming again be subdivided. In the Mabacopterygian type all the
rays remain jointed; iadeed, sometimes the foremost ray, with its preceding short supports, is likewise ossified, and the hard spine, but the articulations can nearly always be distinctly traced. Sometimes the dorsal fin of Walacopterygian fishes is very long, exteoding from the head to the end of the tail; sometimes it is reduced to a few raya only; and in a few cases it is entirely absent. In addition to the rayed dersal fin, many Malacopterygisn fishes (as the Salmonoids, many Siluroids, Scopeleids; \&c.) have soother of greater or lesser extent, without any rays ; and as fat is always deposited withia this fold, it is called a fatty fin (pinua adiposa) (figs. 8 and 9).

Fig. 9.-siaimo matar (Sallnuth), with abdominal ventral fins.
The anal fin is built on the same plan as the dorsal; it may be single, or there wry be more than one; it may also be long or short, or entirely absent; in Acanthopterygians its foremost rays ure frequently siaple and spinous.

Fio. 10.-Wullus barbatus (Red stailet), wheh thoracte ventral fios.
The horizoatal or paired fins consist of two pairs, the pectorals and ventrals.

The pectoral fins (with their osseuus supports) are the hemologues of the anterior limbs of the higher Vertebrata. They are slways inserted immediately behind the gill opening,-either symunctrical, with a rounded pesterior

> Fio. 11,-Burbat (lenta rulgarin), when jugular ventral ins.
margin, or asymmetrical, with the upper rays longest and strongest ; in Malacenteryginns with a dorsal spine the upper pectoral ray is frequently develeped into a similar defensive weapon.

The ventrul fins are the homologues of the hind limbs, and are inserted on the abulominal surface, either behind the pectorala (Pisces or Pinner abdominales) (fig. 9), or below them (Pases or Pimme tharacica) (fig. 10), or in advance of them (Pisces or Pimen juguleres) (fyg. 11). They are generally narrow, and comprosed of a small number of rays, the outer of which is frequently osscous.

For the definition of the smaller aystematic groups, and the determination of species, the numbers of the spines and raye are geoerally of the greatest impertance. This holds
good especially fur the veutral rass, by the number of which the Acaothopterygian affinities of a fish can nearly always be detcrmined. The numbers of the dorsal and anal rays geverally correspend to the number of vertebra in a certain portion of the spinous column, aad are therefore constant specitic, generic, or even family characters; but when their number is very great, a proportionally wide margin must be allowed for variation, and the taxonomic ralue of this character becomes uacertain. The numbers of the pectoral and caudal rays are rarely of any accoun:-

The fins are organs of motion, but it is chietly the tan and the caudal fin by which the fish impels itself forward. To execute energetic locomotion, the tail and caudal fin are strengly bent with rapidity, alteroately tewards the right and left ; whilst a gentle motion forwards is effected by a simple undulating action of the caudal fin, the lobes of which act like the blades of a screw. Retrograde motions can be made by fishes in on imperfect manner only, by ferward strekes of the pectoral fins. When the fish wants to turn torrards the left, he gives a stroke of the tail tuwards the right, the right pectoral acting simultaneously, whilst the left remains pressed close to the body. Thus the pectoral fins assist in the progressive motions of the tish, but rather by directiag its course than by acting as pewerful propellers. The chief function of the paired fins is to maintain the balance of the fish in the water, which is always mest unsteady where there is no weight to sink it: when the pectoral of one side, or the pectoral and ventral of the same side, are removed, the fish loses its balance and falls on the side opposite; when both pectorals are removed, the fish's head sinks; on removal of the dorsal and anal fias the motion of the fish assumes a zigzag course; deprived of all fins, it fleats like a dead fish, with the belly upwards, the back being the hearier part of the body.

In numeraus groups of fishes which live in mud, or are able to pass a longer or shorter time in soil pertodically dried and hardened during the het season, fornis occur entirely devoid of, or with only rudimentary, ventral fins (Cyprinodon, Ophiocephalide, Galaxiilde, Silurida). The chief function of these fins being to balance the body of the fish whilst swimming, it is evident thst in fishes moving during a great part of their life over swampy ground, or through more or less consistent mud, this function of the ventral fins cesses, and nature can readily dispense with these organs altogether.

In certain fishes the shape and function of the fins are considerably medified: thus, in the rays, locemetion is almost eatirely effected and regulated by the broad and expanded pectoral fins acting with an undulatory motion of their margins, similar to the undulations of the long vertical fins of the flat fishes; in many blemies the vental fins are adspted for walking on the sea bottom; in some Gobioids (Periophthul-

Fig. 12 - foriophthalmus siofreatera.
mus), Trighoids, Scorpanioids, and Pediculati the pectoral fins are perfect ougans of walking; in the gobies, (yyclopteri, and Discololi tho ventral fins are transformed into an adhesive disk (sce fig. 13) ; and finally in the flying-fish the pectorals act as a parachute. In the eels and other anakelike tishes, the swirmong as well as the gliding motionsare effected by several curvatures of the body alternately to-
wards the right and left, resembling the locemetion of snakes. In the Syngzathi (pipe fishes) and IIippocampi (sea-horses), whose body admits of but a slight degree of lateral curvature, and whose caudal fin is generally small if present at all, locomotion is very limited, and almest wholly dependent on the action of the dorsal fin, which consists of a rapid undulating movement.

The Skin and Scales.-The skin of
 Cobius. fishes is either covered with seales, or naked, or provided with more or less numerous scutes of various forms and sizes. Some parts, like the head and fins, are mere frequently uaked than scaly. All fishes provided with electric organs, the majority of eels, and the lampreys are naked. Scales of fishea are very different from those of reptiles,-the latter being merely folds of the cutis, whilst the former are distiuct berny elements, developed in grooves or pockets of the skin, like bairs, nails, or feathers.

Very small or rudimentary scales are extremely thin, bomageneeus in atructure, and more or less imbedded in the -akin, and do net cover each other. When more developed, they are imbricated (arranged in the manaer of tiles), with the posterior part extruded and free, Sle surface of the anterior portion being usuaily ajvered by the skin to a grater or less extent. On their surface (fig. 14) may be observed a very fine striation coucentric with and parallel to the margin, and coarser strix radiating from a central point towarda the hind margin.

Fio. 14.-Cyclold ecale of Scopelus respleviens (magn.) Scales without a covering of enamel, with an entire (not denticulated) posterior margin, and with a concentric stria. tion, are called cycloid scales. Ctenoid scales (figs 15, 16)

Iru 15.-Cteooid scale of Gubius om maturus (mago.).

Fic. 16.-Ctenold acslo of Lethrinus (magn.). are generally thicker, and provided with spinous teeth on the pesterior edges of the layers of which the seale coneists. In aome species, only the layer nearest to the margin is provided with denticulations (fig. 15). Seales the free surface of which is apiny, and which have co denticulation on the margio, bave been termed sparoid scales; but their distinction from eteneid scales is by no means sharp, and there are even intermediate forms between the cycloid and etenoid types. Both kinds of scales may eecur, not only in species of the same genus of fibhes, but in the same fish.

Ganoid scales are bard and bony, covered with a laycr of enamel; thcy are generally rhombic or quadrangular, rarely rounded and imbrieate, and are arranged in oblique rews, those of one row being linked tugether by an articulary procesa. This type of ecalea, common in fossil Ganoid fishes, occurs among recent fishes in Lepidosteus and Polypterus only.

Finally, in sharks, the Bulistiule, and others, true scales are absent, and are replaced ly the ossified papille of the cutis (fig. 18), which give the surface the alpearance of fine-

Fig 17.-Ganoid scaits of Dapedius.
grained shagreen. These generally small bedies, as well ne the large osseous scutes (figs. 6 and 20) of the rays, stur.

Fio. 18.-Dermal papillso of Monacanthus trossulus.
geons, de., have been comprised under the cemmen name pla ceid scales, a term which is being deservedly abandoned.

Pia. 19.-Deimal papilie of koriacant hu's hipyocrepis (magn.).
Along the side of the bedy of osseous fishes runs a series of perforated scalea, which is called the lateral line (fig. 23). The perforating duct is simple at its base, and may be simple also at its outer opening (fig. 81), or (a frequent case) the portion on the free surface of the acale 1 s ramified (fig. 22). T'ne lateral line runs from the head to the tail, sometines reaching the caudal fin, sometimes stopping short of it, sometimes advancing over its rays. Some opecies have several lateral lines, an upper one following the dorsal, a lower the abdeminal outline, while a third runs along the middle as usual. The
 of a malo Thiornscalcs of the lateral line are sometimes back, Buita clarata. larger than the others, sometimes smaller; sometimes they are nedified into scutes; sometimes there are no other scales besides these, the rest of the body being nakcl. The feramina of the lateral line are the outlets of a muciferous duct which is continued on to tho head, running along the infraorbital bones, and sending off a branch into the procopercular
 margin and mandible. Fio. 21.-Cycloid smic from the matoral lino The muciferous system is abundantly provided with nerves, and has theretore heen corsiniered to be the seat of a sense peculiar to fishes,
but there cannot be any doubt that its function is the excretion of muens, althongh probally mucus is excreted also from the entire surface of the fish
The seales, their structure, number, and arrangement, constitute an impertant character for the determination of

Fic. 22..-Cyclola seane from the lateral line of Labrichthys laticaraius (magn). fishes. In most scaly fishes they are arranged in oblique transverse series; and, as the number of scales in the lateral line generally corresjonds to the number of traasverse series, it is usnal to count the scales in that line. To ascertain the number of longitudinal series of scales, the

Fir. 2\%.-Arrangoment of scales in the Roach (Leuciscus rutilus). Li=Lateral

sectes are counted in one of the transverse scrics, generally in that running from the commencement of the dorsal fin,
or the middle of the back, to the lateral line, and from the lateral line down to the vent or veutral fin, or the middle of the abdomen.

Ostelogy.

In order readily to comprehend the fellewing account of the modifications of the skeleton in the various subclasses and groups of fishes, the student should acquaint himself with the terms used fer the numerons bones of the fish skeleton, as well as with their relative position. For this purpose we commence this section with an account of the skeleton of the Teleostei, which is composed of the greatest number of specialized benes, and is most readily accessible. The skeleton of any of the more common kinds of osseous fish may scrve for this purpose ; that of the perch was chosen by Cuvier, and is employed bere (fig. 24), as it was in the last edition of the present work.

In the Telensteons fishes the spinous celumn consists of vertcira completely ossificd amphicolous vertebre; its termination is homecercal-that is, the caudal fin appears to be mnre or less symmetrical, the last vertebra oceupyigg a ecntral position in the base of the fin, and being united to a tlat fao-like bene, the hypural (70 in fg. 24), on the hind margin of which the fin-rays are fixed. The hypural is but a nuien of modified hemapophyses which are directed backwards, and the actual termination of the notechord is bent upwards, and lies along the upper edge of the hypural, hidden below the last rudimentary neural eiements. In some Telcosteans, as the Sulmonidar, the List vertebre are eonspicuensly bent upwards: in fact, strietly speaking, this homocereal condition is but one of the varinus degrees of hetcrocercy, different from that of many Ganoids in this respeet only, that the caudal fin itselt has assuoned a higher degree of symmetry.

The neural and hixmal arches generally cualesce with the centrum, bit there are mauy exceptions, inasmuch as some pertion of the arches of a species, or all of them, may show the original division.

Fio. 24.-Skeleton of the Perch.

The vertebrex are generally unitell with one another by 2 gapaphyses; and frequently similar additional articulations exist at the lower parts of the centra. Parapephyses and tibs are vury general, but the latterare inserted on the centria and the baso of the procosses, and never on their extremities.

The spinal column consiste of abdominal and caudal vertebra, the cualescence of the parapophyses into a con-性te hemal ring and the suspention of the anal tho generally forming a sufficicntly well marked boundary botwern the almhanial and cand regions (fic. 94). In the perch there are twenty ouc abuluminal and as many caudal
vertebre. The centrum of the first vertebra or athas is very short, with the apophyses searely indicated; neither the first nor the second vertebra las ribs. All the other abdominal vertebre, with the exception of the last or the two last, are provided with rils, many of which are bifid (72). A series of flat spines (7.4), ealled interneurals, to which the spines and rays of the dorsal fins are articulated, are supported by the neural spines, the strenth of the nemrals and interncurals correspouding to that of the dermal spines (75). The caudal vertebra differ from the ubdominal in havin: the homapephyseal elements converled into spines similar to the nenrals, the anturior being likewise destined to suy.
port a series of interhemals (79), to which the anal rays are articulated.
There is a great amount of variation as regards the degree in which the primordial cartilaginous cranium persists; it is always more or less replaced by bone; frequently it disappears eutirely, but in some fishes like the Salmonider or Esocide, the cartilage persists to the same or even to a greater extent than we shall find in the Ganoidei holostei. Besides the bones preformed in cartilage there are a great number of membrane-bones, that is, bones originating in membranous or tegumentary tissue. The different kinds of these membrane-bones occur with greater or less constancy throughout the subclass Teleostei; they often coalesce with and are no longer separable from the neighbouring or underlying cartilage-bones.

1. Cartilage-Bones of the Primordial Skull.-The basioccipital (5 in figs. 25-27) has retained the form of a vertebral centrum ; it is generally concave behind, the

concavity containing remains of the notochord. The exoccipitals (10) are sitnated on the side of the basioccipital, and contribute the greater portion of the periphery of the foramen magnum. The supraoccipital (8) is intercalated between the exoccipitals, and forme a most prominent part by its median crest, which sometimes extends far forward on the upper eide of the skull, and effers attachment to the dorsal portion of the large lateral muscle of the trunk. A transverse supraoccipital ridge, coming from each side of the base of this crest, runs outward to the external angles of the bone. When the interior portion of this bone remains cartilaginoue, some part of the eemicircular canals may be lodged in it.

The region of the skull which succeeds these bones en closes at least the greater portion of the labyrinth, end its componeat parts have been named with reference to it by come anatomists. ${ }^{1}$ The alisphenoids (11) (prooticum) form surures posteriorly with the basi- and ex-occipitals, and meet each other in the median line at the bottom of the cerebral cavity; they contribute to the formation of a hollow in which the hypophysis cerebri and the saccus vasculobus are received ; in conjunction with the exoccipital they form another hollew for the reception of the vestibulum; generally they are perforated by the trigeminal and facial nerves. Tho paroccipitals (9) (epioticum) lodge a portion of the posterior vertical semicircular canal, and form a projection of the skull on each side of the occipital crest, to which a terminal branch of the scapular arch is attached. The masteid $(12+13)$ (opisthoticum) occupics the posternexternal projection of the head; it eucleses a part of the external semicircular canal, is generally united to a membrane-bone, the superficial squamosal, which emits a

[^123]process for the suspension of the scapular arch, and is frequently, as in the percb, divided into two separate bones.

The anterior portiou of the skull varies greatly as regards form, which is chiefly dependent on the extent of the cere-

Fic. 26.-Hyoid arch, brancbial apparatus, and acapuary arch of the Perch.
bral cavity; if the latter is advanced far forwards, the lateral walls of the primordial cranium are protected by more developed ossifications than is the case if the cerebral cavity is shortened by the presence of a wide and deep orbit. In thie latter case parts which normally form the side of the skull are situated in front of the brain-case, between it and the orbit, and, being gencrally reduced in extent, are often replaced by membranes; the interorbital septum especially may thus be reduced to a membrane. The most constant ossifications of this part of the skull are the orbitosphenoids (14), which join the upper anterior margin of the alisphenoids; superiorly the olfactory and inferiorly the optic nerves pass between them out of the cranium. They vary much with regard to their develepment : they are small in Gadoids; larger in the perch, pike, Salmonoids, Macrodon, end the Clupeoids; and very large in Cyprinoids and Siluroids, in which they contribute to the formation of the side of the braincase. The single Y-shaped sphenoideum anterius (15) (ethnoid of Owen and basisphenoid of Huxley) is as frequently absent as present ; each lateral branch is connected with an orbitosphenoid, whilst the lower branch rests upon the long basal bone; it forms the anterior mar gin of the fossa for the bypophysis. Finally, to this group of cartilage-bones belongs also the postfrontal (4), a small bone from which the infraorbital ring is suspended.
The centre of the foremost part of the skull is occupied by the ethmoid (3), which shows grcat variations as regaids its extent and the degree of ossification; it may extend backwards into the interorbital septum, and reach the orbitosphenoids, or it may be cenfined to the extremity of the skull; it may remain entircly cartilagiveus, or it may ossify into a lamina which separates the two orbits and cacloses an anterier prolongation of the brain-case, along which the olfactory nerves pass,-modifications occurring gain in higher vertebratcs. A paired ossification attached to the forepart of the cthmoid is the profrontals (2), which form the base of the nasal fessa.
2. Membrane-Bores attachach to the Primordial Skull.To this group belong the parictals (i) end frontals (1). The latter fern ${ }^{2}$ 'e upper marsin of the orbits, and extend from the nasal cavities to the occipital. They are entarged at the expense of the parictals, which are of much amaller extent
XII. - 8i
than in higher vertebrates, and are separated from each other by the anteriur prolongation of the supraoccipital. The squamosal (12) has been mentioned above in connexion with the mastoid. The prefrontal (2) and supraorbital are always small, and the latter is frequently absent. The lower surface of the skull is protected by the basisphenoid (parasphenoid) (6), a very long and narrow bone exteading from the basioceipital beyond the brain-capsule to between the orbits, where it forms the support of the interorbital septum. Anteriorly it is connate with another long hammer-shaped boue ${ }^{\circ}(16)$, the vomer. Both these bones, eapecially the latter, may be armed with teeth.
3. Cartilage-Bones of the Alimentary Portion of the Visceral Skeleton of the Skull.-The suspensorium consists of three cartilage-bones, and affords a base for the opercular apparatus as well as a point of attachment to the hyoid, whilat in front it is connected with the pterygo-palatine grch (fig. 27). These are the hyomandibular (23), sym-

Fio. 27.-Lower vew of Skull of Perck.
plectic (31), and quadrate (26); they are connected by means of the metapterygoid (27) with the pterygoid (24) and entopterygoid (25), the foremost bone of the areh being the palatine (22). Of these hones tho uppermost, the epitympanic or byomandibular (23), is articulated by a double erticulary head with the mastoid and posterior frontal. Another articulary bead is destined for the opercular joint. The mesotympanic or symplectic (31) appears as a styliform prolongation of the lower part of the layomandibular; it is cartilaginous in tho young, but almost completely ossified in the adult. The position of this bone is noteworthy, because, directly inwerds from its cartilaginous junction with the hyomandibular, there is situated the uppermost pioce of the hyoid arch, tho stylohyal. The next bone of the series is the pretympanic or metapterygoid (27), a flat bone forming a bridge towards the pterygoid, and not raroly absent in tho subclass. Finally, the largo triangular hypatympanic or quadrate (26) has a large condyle for the mandibular joint. The palatine arch proper is formed by three bones: the eotopterygoid (25) is an oblong and thin bone attached to the inner border of the valatino and pterygoid, and increasing the surfien of
the bony roof of the mouth towards the median line; it coastitutes also the floor of the orbit; the pterygoid (or os transversum) (24) starts from the quadrate, and is joined by suture to the palatine, which is toothed in the perch and many other tishes, and reaches to the vomer and anterior frontal. The pieee of the mandible which articulates with the quadrate is the articulary boae (35), distinctly part of Meckel's cartilage ; it sends upwards a coronoid process to which the masticatory muscles, as woll as a ligament from the maxillary, are attached; it also sends forwards a long-pointed process to be sheathed in a deep notch of the dentary piece. Frequently another por tion of cartilage below the articulary remains persistent, or is replaced by a separate membrane-bone, the angular.
4. Membrane-Bones of the Alimentary Portion of the Visceral Skeleton of the Skull.-The suspensorium has one. tegumentary bone attached to it , viz., the preoperculum (30) ; it is but rarely absent, as for instance in Murenophis; as it is quite a superficial bone, and frequently armed with spines (as in the perch), its form and configuration constitute an important item in the description of many fishes. The premaxillary (17) and maxillary (18) of the I'eleoste i appear to be also membrane-bones, although they are clearly analogous to the upper labial cartilages of the sharks. The premasillaries sometimes coalesce into a single piece (as in Diodon, Mormyrus), or they are firmly united with the maxillaries (as in all Gymnodonts, Serrasalmo, dc.). Tine relative position and conoexion of these two bones differ much, and form a valuable character in the discrimination of the various families. In some, the front margin of the jaw is formed by the premaxillary puly, the two bones having a parallel position, as in the perch, in which case the maxillary is constantly toothless; in others, the premaxillary is shortened, allowing the maxillary to enter, and to complete, the margin of the upper jaw; and finally, ju many, no part of the maxillary is situated behind the premaxillary, but the entire bone is attached to the end of the premaxillary, forming its continuation. In the last case the maxillary may be quite abortive. The mobility of the upper jaw is greatest in those fiskes in which the premaxillary alone forms its margin. The form of the promaxillary is subject to great variation : the beak of Belone and Xiphias is formed by the prulonged and coalesced premaxillaries. The maxillary consists sometimes of one piece, sometimes of two or three. The principal membrane-bone of the mandible is the dentary (34), to which is added the angular (36) and rarely a smaller one, the splenial or os opercularc, which is situated at tho inner side of the articulary.
5. Cartilage-Bones of the Respiratory Portion of the Fisceral Skeleton of the Skull.- With few exceptions all the ossitications of the hyoid and brachial arches belong to this group.

The hyoid arch is suspended by a sleader styliform bone, the stylohyal (29), from the hyomandibulars; it consists of three segments, the epibyal (37), the ceratohyal (38), which is the longest and strongest piece, and tho basihyal, which is formed by two juxtaposed pieees (39, 40). Between tho latter thero is a median styliform ossicla (41), extending forwards into the substance of tho tonguo, called the glossuliyal or os linguale.

Tho branchial arches (figs, 26 and 28) are onclosed within the hyoid areh, with whieb they are closely connected at the base. In tho perch and in tho majority of Teleosteans they are five in number, of which four bear gills, whilst the tifth (56) remains dwarfed, and is beset with teeth; it is called the lower pharyngeal bone. The arclies adhero by their lower extremities to a chain of ossicles (53, 54, 55), tho basibranchials, and, curving as they ascend, nearly meet at the base of the cranium, to which they
are attached by a layer of ligamentous and cellular tissue. Each of the first three branchial arches consists of four pieces morably connected with one another. The !owest is the hypobrancbial ($5 i^{\prime}$ the next, a much longer one, the

Fre. 23.-Hyoid bone of the Perch.
ceratobranchial (58), and, above this, a slender and "short irregularly-shaped epibranchial. In the fourth arch the bypobranchial is absent. The uppermost of these segments, especially of the fourth arch, are dilated, and more or less confluent; they are beset with fine teetb, and generally distinguished as the upper pharyngeal bones. Only the ceratobranchisl is represented in the fifth arch or lower pharyngeal. On their outer convex side the brancbial begments are grooped for the reception of large bloodvessels and nerves; on the inner side they support horny processes, called the gill-rakers, which do not form part of the skeleton.
6. Membrane-Bones of the Respiratory Portion of the Visceral Skeleton of the Skull.-Tbese include the opcrcular pieces, viz., the operculum (23), suboperculum (32), and interoperculum (33). The last of these is tho least constant; it may be entiiely absent, and represented by a ligament extending from the mandible to the hyoid. The operculum is the principal piece, situated bchind, and movably united with, the vertical limb of the preoperculum. There is an articulary carity at its upper anterior angle for its junction with the hyomandibular. The interoperculum is conaected by ligament with the angular piece of the mandible, and is also attached to the outer face of the hyoid, so that the gill-covers cannot open or shut without the byoid apparatus executing a corresponding moverncat. The remaining membrane-bones are the urohyal (42), a single bone, which is connected by ligament with the anterior extremity of the humeral arch, and separates the musculi sternobyoidei, serving as an increascd surfaco for their insertion ; and, finally, the branchiostegals (43), which vary greatly in number, but are always fixed to the ceratohyals ad epinya's hy ligaments: the branchiestegal membrane is catended between them.
7. Dermal Bones of the Skutl.-To this categore ato referred aome bones which are ossifications of, and beleng to, the cutis. They are the turbinals (20), the snlinshitais
(19), and the sapratemporals. They vary much with regard to the degree in which they are developed, and are seldom entirely absent. Nearly always they are wholly on partly transformed into tubes or hollows, in which the muciferous canals with their numerous nerves are lodged. Those in the temporal and scapulary regions are not alway developed ; on the other hand, the seriee of those ossicles may be continued on to the trunk, accompanying the lateral line. The foremost suborbital is termed the preorbital.

The pectoral arch or shoulder-girdle of the Teleosteous Pectorat fishes exhibits but a remnant of a primordial cartilage, arch. which is replaced by two ossifications, ${ }^{1}$ the caracoid (51) and scapula (52) ; posteriorly they offer attachment to two series of short rods (53), of which the proximal are nearly always ossified, whilst the distal frequently remain small cartilaginous nodules hidden in the base of the pectoral rays; they hare been termed carpals and metacarpals. The bones by which this portion is connected with th. skull are membrane-bones, viz., the clavicle (48), with the postclavicle ($49+50$), the supraclavicle (47), and the post-temporal (46). By this last bone the shoulder-girdle is suspended from tho skull; it is attacbed, in the perch, by a triple prong to the occipital and mastoid bones. The clavicle completes the arch below by the eymphysis or natural connesion of the bones of each side. Many Tele, osteous fishes lack pectoral fins, and in them the pectoral arch is frequently more or less reduced or rudimentary, as in many species of Murcuidic. In otbers the membravebones are exceedingly strong, contributing to the outer protective armour of the fish, and then the clavicles are generally suturally connected in the median line. Th. postclavicula and the supraclavicula may be absent. It is only exceptionally that the shoulder-girdle is not suspended from the skull, but from the anterior portion of the spinous column (Symbranchido, Muronide, Notacanthido). The number of elements in each of the two eries of basalia never exceeds five, but may be smaller; and the distal series is absent in Siluroids.

The pubic bones (S0) of the Teleosteous fishes undergo many modifications of form in the rarious families, but they are essentially of the sane simple type as in the perch, viz., a pair of flat or styliform simple bones, to which the ventral fins are articulated.

The bones of the sknll of the fish have received so many different interpretations that no two accouats agree in their nomenclature, so that their study is a matter of considerable difficulty. The table of synonyms given on p . 644 will tend to overcome dificulties arising from this cause ; it contains the terms used for the different boncs of the skeleton by Cuvier, those introduced by Owen, and finally the nemenclature of Stannius, Huxley, and Parker. Those adopted here are printed in italics. The numbers in the table are those used in the preceding pages and in figs. 24-28.

Modifications of the Skeleton.

We now proceed to pass briefly in reviers the modifcations of the skelcton in the principal types of fishes. commencing at the lowest, and pointing out its gradual development in the other three subclasses

Fic $29-$ Branehiostoma lanccolatum, a, mouth c, rent: b, abdominal poras:
The lowermost subclass of fishes, which comprises one form only, the Lancelct (Eranchiostona [s. Amphioxus] (anceolatum), possesses the skeleton of the most primitive

[^124]Pubic

Table of Nomenclature used by Cuvier, Owen, Slannius, Huxley, de., to indicate the Bones in the Sheleton of a Fish.

Cotier.	OTEN.	Stannios.	Huxley, Pareer, \&o
1. Frontal principal	Frontal	Os frontale	
2. Frontal antérieur	Prefrontal	Os frontale anterius	Lateral ethmoid (Parker)
3. Ethmoid	Nasal	Os ethmoideum	
4. Frontal postérieur	Postfrontal Basioccipital	Os frontale posterius Os basilare	Sphenotic (Parker
6. Basilaire	Basisphenord		
6. Sphénoide	Busisphenoid	Os spbenoideum basilare	"Basal"
7. Pariétal	Parietal	Os parietale	
8. Interpariétal or occipital supéri- \}	Sumraoctipital	Os occipitale superius	
9. Occipital externe	Paroccipital	Os occipitale externum	Epioticum (Huxley)
10. Occipital lateral	Exocipital	Os occipitale laterale	
11. Grand aile du ephenoide	Alisphenoid	Ala temporalis	Prooticum (Huxley)
12. Mastoidien	Mastoid	Os mastoideum + us extrascapulare	Opisthoticum ${ }^{2}$
13. Rocher	Petrosal and Otosteal	Oberfächliche Knochen-lamelle	+ Squamosal (Huxley)
14. Aile orbitaire	Orbitosphenoid	Ala orbitalis	Alisphenoid (Huxley)
15. Sphenoide antérieur	Ethmoid turbinal and Ethmo.	Os sphenoideum anterius	Basisphenoid (Husley)
16. Vomer	Vomer	Vomer	
17. Intermaxillaire	Inter-or Prc-maxillary	Os intermaxillare	
19. Maxillaire supérieur	Maxillary	Os maxillare	
19. Sousorbitaires	Injraorbital ring	Ossa infraorbitalia.	
20. Nasal	Turbinal	Os terminale	
22. Palatine	Palatin	Oa palatinum	
23. Temporal	Epitympanio	Os temporale	Eyomandibular (Huxloy)
24. Transveras	Pterygoid	Os tranaveraum s. pterygoideum ex. ternum	
25. Ptérygoidien interne	Entoplërygoid	Os pterygoideum	Mesopterygoid (Parker)
26. Jugal	Hypotympanic.	Os quadratojugale	Quadrate (Huxley)
27. Tyimpanal	Pretympavio	Os tympanicum	Metapterygoid (Huxley)
28. Operculaire	Operculam	Operculam	
29. Styloide	Stylohyal	Os styloideum	
30. Preopercule	f'rcoperculum	Prooperculum	
31. Symplectique	Mesotympanic	Os symplecticum	
32. Sousopercule	Suboperculum	Suboperculum	
33. Interopercule	Interoperculum	Interoperculum	
34. Dentaire	Dentary	Os dentale	
35. Articulaire	Articulary	Os articulare	
36. Angulaire	Angular	Os angulare	
37, 38. Grandes pièces latérales	Epihyal, Ceratohyal		
39, 40. Petites pieces latérales	Basihyal	Segmente der Zongenbeia-Schenkel	
41. Os lingual	Glossohyal	Os linguale s. entoglossum	
42. Qucue de l'os hyoids	Urohyal		(Parker)
43. Rayon branchiosttge	Branchiostcgal	Radii branchiostegr	
46. Surscapulaire	Suprascapula	Omolita	
47. Scapulaire	Scapula	Scapula	Supraclavicula (Parker)
48. Humeral	Coracoid Epicoracoid	Clavicula	Clavicula (Parker) Postclaricula (Parker)
51. Cubital	Radins		Coraseid (Parker)
52. Radial	Ulaa	Ossa carpi	Scapula (Parker)
53. Os du carpe	Carpals	Ossa metacarpi	Basalia (Haxley) Brachials (Parker)
53 bis, 54, 55. Chaine intermédiaire 56. Pharyngicns inférieurs 57 Piece interne de partic infericure	Basibranchials Lower Pharyngcals	Copula Ossa pharyngea infcriora	
57. Piece interne de partic infericure dc l'arceau branchiale	Hypolranchial		
58. Pièce externe do. do.	Ceratouranchial		
59. Stylet do prémière arceau branchiale	Uyper epibranchial of first branchial arch	Sagmente der Kiemenbogen Schenkel	
61. Partic oupéricure de l'arceau branchiale	Epibranchials		
62. Os pharyngien supérieur 63.	Pharyngobranchial Gill-rakers	Os pharyngeom superius	Upper pharyngeals
65. Rayons de la pectorale.	Pectoral tays	Prustflossen-Strahlon	
67, 69. Vertehres abdominalos	Alstominal vertchace	13.uchwirbel	
69. Vertébres caudales	Cunutal vertebrce	Schwanzwirbel	
70. Plague triangulaire et verticare	[Aggrogated interhæmals]	Verticale Platte	IIypural (Ilusley)
71. 72. Côto	Canulal rays nib	Schwanzlossen-Strahien lippen	
73. Appendices or stylets	Ejpipleural spines	Muskel-Gräthen	
74. Interepineux	Interncural spines	Ossa interspinalia a. obere Flossan. trater	
75. Epines et myons dorsales 76.	Dorsal rays and spines First interneural	Rückenfossen-Strahlen u. Stacheln	
	Thudimentary caudal rays		
79. Apophyses épineuses inférieures	Interhomal spines	Untere Floascnträger	
88.	Prent ${ }^{\text {Pentral spine }}$	Becken llanchiflossen-Stachel	

type. The vertebral column is represented by a simple chorda dorsalis or notochord only, which extends from one extremity of the fish to the other, and, so far from being expanded into a cranial eavity, is pointed at its anterior end as well as at its posterior. It is enveloped in a simple membrane liks the spinal cord and the abduminal organs,

Fru. .ureancertor end of body of Branchiostoma (magn.). d, chorda dorsalis; e, spinal cord: f cartilaginous rods; g, eye: h, branchiul rods; 4 , labial carthlage; k, orat clrm.
and there is no trace of vertebral segments or ribs; a series of short cartilaginous rods, however, above the spine evidently represent apopbyses. A maxillary or hyoid apparatus, or elements representing limbs, are entirely absent.
The skeleton of the Cyclostomata (or Marsipobranchii) (lampreys and sea-bags) shows a considerable advance of development. It consists of a netochord, the anterior pointed end of which is wedged into the base of a cranial capsule, partly membranous, partly cartilaginoua. This skull, therefore, is not movable upon the spinal column. No vertebral segmentation can be

rio. 81,- Vpper (A) and she (B) vews, and vertical scetion (C), of the skull of Petromyzon marinus.

 notochord and cesophagus.
observed in the notochord, but neural arches are represented by a series of cartilages on each side of the spinal chord. In Petromy:on (fig. 31) the basis cranii cmits twe prolongations on eaeh side, an inferior, extending for some
distance along the lower side of the apinal 'column, and as lateral, which is ramified into a skeleten supperting the branchial apparatus. A stylohyal process and a subocular arch with a palato-pterygoid portion may be distinguisted The roof of the cranial capsule is membranous in $1 / y, c i n e$ and in the larvie of Petromyzon, but more or less cartilagin ous in the adult Petromyzon and in Bilellostoma. A cartilaginous capsule on each side of the hinder part of the skull contains the auditory organ, whilst the olfactery capsule occupies the anterior upper part of the roef. A broad cartilaginous lamina, starting from the cranium and overlying part of the sucut, has been determiued as representing the ethmo-vomerine elements, whilst the oral organs are supported by large, very peculiar cartilages (labials), greatly differing in geueral configuration and arrangement in the various Cyclostomes. There are three in the sealamprey, of which the middle one is joined to the palate by an intermediate smaller one; the foremost is ring-like, toeth-bearing, emitting on each side a styliform prucess. The lingual cartilage is large in all Cyclostomes. There is no trace of ribs or limbs.

The Chondropterygians exhibit a most extraordinary diversity in the development of their vertebral column; almost every degree of ossification, from a notechord without a trace of annular structure to a series of completely ossified vertebre, being found in this order. The sharks in which the notochord is persistent are the Holocezhali (if they be reckoned as belonging to this order) and the genera Notillanus and Echinorlinus. In the other sharks the segmentation is complete, each vertebra having a deep conical excaration in front and behind, with a central canal through which the notochord is continued; but the degree in which the primitive cartilage is replaced by concentric or radiating lamellie of bone varies greatly in the various genera, and aceording to the age of the individuals. In the rays all the vertebro are completely ossificd, and the anterier ones confluent into one continuous mass. In the majority of Chondropterggians the extremity of the vertcbral column shows a decidedly heterocercal condition, and only a few, like Squatinct and some rays, pessess a diphycercal tail.

The advance in the development of the skelcton in Chendropterygians beyond the primitive condition of the previous subclasses manifests itself further by the presence of neural and hromal elcments, extending to the foremost part of the axial celumn; but of these the hemal form a closed arch in the caudal region only, whilst on the trunk they appear simply as a lateral longitudinal ridge. The neutial and hemal apophyses are either merely attached to tho axis, as in Chondropterygians with persistent notechord (the rays and some sharks); or their basal portions penetrate like wedges into the substance of the centrum, so tha:, in a transverse scetion, in consequence of the difference in thair texture, they appear in the form of an X (figs. 32-34). The interspaces between the nemrapephyses of the vertebre are not filled by fibrous membrane, as in other fishes, but by separate cartilages (lamine or cartilagines intercrurales), to which frequently a serics of terminal pieces is superadded, which must be regarded as the first appearance of the interneural spines of the T'elcostei and many Ganoids. Similar terminal pieces
are sometimes observed on the hæmal arches. Ribs are either absent or but imperfeetly represented (Carcharias).

The substance of the skull of the Chondropterygians is cartilage, interrupted especially on its upper surface by more or less extensive fibro-membranous fontanelles. Superficially it is covered by a more or less thick shagreen-

Fige 32. 33, 34.-Lsteral view, longitudinal section, and transverse section of caudal Veitebra of Basking Shak (Selache maxima). (Afrer Hasse) a, centrum; b, neurapophyals; c, intercrural cartilage: d, hæmapophysis; e. spinal canal: f, intervertebral cavley ; g, central caual for pelsistent portion of notochord; h, hecmal canals for blond-vessels.
like osseons deposit. The articulation with the rertebral column is effected by a pair of lateral condyles. In the sharks, besides, a central conical exeavatien corresponds to that of the centrum of the foremost vertebral segnent, whilst in the rays this eentral excavation of the skull receives a condyle of the axis of the spinons celumn. The cranium itself is a continuous undivided cartilage, in which the liuits of the orbit are well marked by an anterior and posterior protuberance. The ethmoidal region ends horizental plates over the nasal sacs, the apertures of which retain their embryouic situation upon the under surface of the skull. In the majority of Chondropterygians these plates are produced conically, forming the base of the soft projecting sueut; and in sonce forms, especially in the lony-sneuted rays and the saw-fishes (Pristis), this prolongation appears in the form of three or mere tubiform rods. As separate cartilages there are appended to the skull a suspenserium, a palatine, a mandible, a hyoid, and rudimentary maxillary elements. The suspensorium is movably attached to the side of the skull. It generally consists of one piece only, but in some rays of two. In the rays it is articulated to the mandible only, their hyoid possessing a distinct pioint of attachment to the skull. In the slarks the hyoid is suspended from the lower end of the suspensorium together with the mandible. What io generally called the upper jaw of a shark is, as Cuvicr has already stated, not the maxillary, but the palatine. Jt consists of two simple lateral halves, each of which articulates with the corresponding half of the lower jaw, which is formed by the simple representative of Meckel's eartilage. Some cartilages of various sizes are generally developed on each side of the palatinc, and one on each side of the mandille. They are called labial eartilages, and seem to represent maxillary flements. The hyoid consists gererally of a pair of long and strong lateral Iicees, and a single mesial fiece. From the former, eartilaginous filaments (represcnting branchiustegals) pass directly outwards. liranchial arehes, varying in mumber, and similar to the hyoid, succed it. They are suspended from the side of the forcmost part of the spinous column, and, like the hynid, bear a number of filaments

The vertical fins are supported ly interncural and interhemal cartilages, each of which consists of two or more picces; to these fins the finrays are attached without articulation. The seapular arch of the sharks is formed by a single coracoid cartilage bent. from the dorsal region downwards and forwards. In some genera (Scyllium,

Squatina) a small separate scapular cartilage is attached to the dorsal estremitics of the coracoid; but in none of the Elasmobranchs is the scupular arch suspended from the skull or vertebral column; it is merely sank and fixed in the substance of the muscles. Behiud, at the point of its greatest curvature, three carpal cartilages are joined to the coracoid, which Gegenbaur has distiuguished as propterygium, mesopterygium, and metapterygium, the first oecupying the front, the last the hind margin of the fin. Several more or less regular transverse series of styliferm cartilages follow. They represent the phalanges, to which the horny filaments which are imbedded in the skin of the fin are attached. In the rays, with the exception of torpedo, the scapular arch is intimately connected with the confluent anterior portion of the vertebral column. The anterior and posterior carpal cartilages are followed by a series of similar pieces, which extend like an arch forwards to the rostral portion of the skull, and backwards to the pubic region. Extremely numerous phalangeal elements, lengest in the mindlc, are supported by the carpals, and form the skeleton of the lateral expansion of the su-called disk of the ray's body, which thus, in fact, is nothing but the enormously enlarged pectoral fin.

The pubic is represented by a single median transverse cartilage, with which a tarsal cartilage articulates. The latter supports the fin-rays. To the end of this cartilage is also attached, in the male Chondropterygians, a peculiar accessory generative organ or clasper.

The It locephali differ from the other Chondropterygians in several impertant points of the structure of their skeleton, and unmistakably arproach eertain Ganeids. That their spinal column is persistently notochordal has been mentioned already. Their palatal apparatus, with the suspensorium, coalesece with the skull, the mandible articulating with a short apophysis of the cranial cartilage (autostylic skull). The mandible is simple, without anterior symphysis. The spine with which the dorsal fin is armed articulates with a neural apophysis, and is not immovably nttached to it, as in the sharks. The pubic consists of two lateral halves, with a shert, rounded tarsal cartilage.

The skeleton of the Ganoid fishes presents extreme variations with regard to the degree in which ossifications replace the primordial cartilage. Whilst some exhibit searcely any advance beyond the Plagiostomes with persistent cartilage, others, as regards the development and specialization of the several parts of their osseous framework, approach the Teleosteans so closely that their Ganoid nature can bo demonstrated by, or inferred from, other considerations unly. All Gunoids possess a separate gill-cover.

Tho diversity in the development of the Ganoid skeleton is well exemplified by the few representatives of the order in the existing fish fauna. Lowest in the scale in this respect are those with a persistent notochord, and an autostylic skull, that is, a skull without separate suspen-sorium-the fishes constituting the suborder Dipnoi, of which the existing representatives are Lepidosiren, Protopterus, and C erotodks, nad the extinct (so far as demonstrated nt present) Dipterus, Chirodus (and Pheneropleuron 3). In these fishes the notochord is persistent, passing uninter ruptedly into the cartilaginous base of the skull. Some Dipmoiare diphy-, others hetero-cereal. Neural and hemal elements and ribs are well developed.
The prinurdial erauium of the Dipmoi is cartilaginous, but with more or less extensive ossifieations in its occipitn, basal, or lateral prortions, and. with large tegumentary bones, which, from this suborder upwards in the series, will be found to exist throughout the remaining forms of fishes. Λ strong process doscends from the cranial cartilage, and offers by means of a double condyle (fig. 35,s) attachment to correspending articulary surfaces of the lower jaw. Naxil-
lary and intermaxillary etements are not developed, but are perbaps representegd in Ceratodus by some incoustant rudimentary labial cartilages situated belind the posterior nasal opening. Fecial cartilages and an infraurbital riug are developed, at least in Ceratodus. The presence of a pair of small teeth in front indicates the vonerine portion (v) which remains cartilage, whilst the pesterior pair of teeth are im. planted in a pterygopalatinc ossification (l), which sometimes is paired, sometimes continnous. The base of the skull is constantly covered by a large basal ossification (o): The hyoid is well developed, sonetimes reduced to a pair of ceratohyals, sometimes with a basıbyal and glossohyal. The skeleton of tho branchial apparatus approaches the Telensteous type, less so in Lequido-
 siren than in Ceratodus, Fig. 35.-Palatul view of skull of Ceratodus. in which five branchial arches are developed, but with the「ateral and mesial pieces reduced in number. A large opercalum, and a smaller sub- or inter-operculum are present.
The scapular arch consists of a single mediau transverse cartilage; and a pair of lateral cartilages which bear the articular condyle for the pectoral limb. The latter cartilages form the base of a large membrane-bone and the whole arch is suspended from the skull by means of an osseous supraclavicle. The fore-limb of the Dipnoi (fig. 36) greatly differs exterually from the pectoral fin of other Ganoid fishes. It is covered with small scales along the middle, from the root to its cestremity, and surrounded by a rayed fringe similar to the vertical fin (crossopterygian type of fin). A muscle split into numerous fascicles extends all the length of the fin, which is flexible in every part and in every direction. The cartilaginous framework supporting it is joined to the scapular arch by an oblong cartilage, followed by a broad basal cartilage (a), generally single, but sometimes showing traces of a triple division. Along the middle of the fin runs a jointed axis (b), the joints gradually becoming smaller and thinner towards the extremity; each joint bears on each side a three, two-, or onejointed branch ((c, d). This axial arrangoment of the pectoral skelcton, which evidently represents one of its first and lowest conditions, has been termed the archipterygium by

Fio. 36-Tore.limb 0 Ceratotus. Gegenbaur. It is found in Ceratodus and otber genera, but in Lepidosiren the jointed axis only has been preserved, while rudimentary rays are added in Protopterus.

The pubic consists of a single Elattened subquadrangular cartilage, produced into a long single anterior process. Posteriorly it terminates on each side in a condyle, to which the basal cartilage of the ventral paddle is joined.

The endoskeleton of the padllo Is almost ilentical with that of the pectoral.

The Ganoid fishes with persistent notochord, but with e hyostylic skull (that is, a skull with a scparate suspensorium), consist of the suborder Chondrostei, of which the existing representatives are the sturgeons (Acipenser, Scophirkynchus, Pulyodon), and the extinct that Chondrosteide, Pulconisciduc, and (according to 'Traquair) Platy. somidu.
Their spinal column does not differ ossentially from that of the Dipmoi. Segmentation is represented only so far as the neural and bermal clenents are concerned. All aro eminently heterocercal. liibs are present in wost, but are replaced by ligaments in Polyodon.
The primordial cranium of the sturgcons consists of persistent cartilage without ossifications in its substance, but superficial bones are still more developed and specialized than in the Dipnoi; so it is, at least, in the true sturgeons, but less so in Polyodon (fig. 3i7). The ulper and lateral

Fig. 37.-Skull of Polyodon. (After Trnquanr.) n, ansal carly: so, squamosals
 lage: mr, masillary; d.dentary: h, hyoid: op, pperculam; br, branchiostegali s.cl, supraclasicular: pasl, postelavicular; cl, clasicle ; t.cl, infiaclavicular.
parts of the skull aro covered by woll-developed membrane. bones. The lower surface of the skull is covered by an extremely large basal bone, which extends from the vomerine region on to the anterior part of the spinal column. The nasal excavation in the skull is rather lateral than inferior. The ethmoidal region is generally much produced, forming the base of the long projecting snout. The suspensorium is movably attached to the side of the skull, and consibts of two pieces, a byomandibular and a symplectie, which now appears for the first time as a separate piece, and to which the hyoid is attached. The palato-maxillary apparatus is more complex than in the sharks and Dimoi; a palatopterygoid consists of two mesially-connected rami in Polyodon, and of a complex cartilaginous disk in Acipenser, being articulated in both to the Meckelian cartilage. In addition, the sturgeons possess one or two pairs of osseous rods, which, in Polyodon at least, represent the maxillary, and therefore must be the representatives of the labial cartilages of the sharks. The Meckelian cartilage is more or less covered by tegumentary bones. In the gill-cover, besides the operculum, a sub- and inter-operculum may be distinguished in Acipenser. The hyoid consists of three picces, of which the posterior bears a broad branchiostegal in Polyodon.

In the scapulary arch the primordial cartilaginous elements scarcely differ from those of the Dipnoi. The membrane-bones are much expanded, and show a continuous series suspended from the skull. Their division in the median ventral line is complete. The pecteral is supported by a cartilagioous framework (fig. 38) similar to that of Ceratodus, but much more shortened and reduced in its periphery, the branches being absent altagether on one side of the axis. This modification of the fin is analogous to the heteracercal condition of the end of the spinous coltomn. To the inner cnrner of a basal cartilago (a) a short axis (b) is joined, which on its onter side bears a
few branches (d) only, the" remaining branches (c) being fixed to the basal cartilage. The dermal fiu-rays are opposed to the extremities of the branches, as in the Dipnoi.

The pubic consists of a paired cartilage, to which tarsal pieces supporting the fin-rays are attached.

The other existing Ganoid fishes have the spinous column entirely or almost entirely ossified; these have beent comprised under the common name Holostei. They form, however, three very distinct types; several attempts have been made to coordinate with them the fossil forms, but this task is beset with extreme difficulties, of which no satisfactory solution has as yet been adranced.

The Polypteroilei have their spinous column formerl by distinct osseous amphicolous vertebre, that is, vertebre with coneave anterior

Fig. 38-Fore-limb of Acipenser. and posterior surfaces. It is nearly diphycercal. The neural arches, though ossified, do not coalesce with the

Firs. 32-Skull in Putypterus. (After Traqualr) 1. Cpper aspect of the fatmor. difal cranlum, with the membrainotinnes removed. II. Lower aspect of the same. Ill. Sille whw, with tho membane bones, IV I.ower aspect of the skall,

centrum, and form one camal only fur the myelon. Thero are no intermediate elements, between the neural sumes.

Interneurals are developed, but are simple, articulating with the dermoneurals. The abdominal vertebre have parapophyses developed with epipleural spines. Only the caudal vertebre have hæmal spines, which, like thr interhæmals, agree in every essential respect with the opposite neurals. Ribs are inserted, not on the parapaphyses, but on the centra, immediately below the parapoplyses.

The skull of Polypterus (fig. 39) shows a great advance towards the Teleosteous type, the number of separable bones being greatly increased. They are arranged much in the same fashion as in Teleostei, but a great portion of the primordial cranium remains cartilaginous. The mam-brane-bones which cover the upper and lower surfaces of the brain-case are so much developed as to cause the underlying cartilage to disappear, so that a large vacuity or fontanelle exists in the substance of the upper as well as of the lower cartilaginous wall. Of ossifications belonging to the primordial skull must be noticed the single occipital with a mastoid on each side. They are separated by persistent cartilage from the sphenoids and postfrontals; the former, which are the largest ossification of the primordial cranium, enclose the anterior half of the brain cavity. Finally, the nasal portion contains a median ethmoid and a pair of prefrontal bones. Only a very small portion of the bones described are visible externally, nearly the whole of the primordial cranium being covered by the membrane-bones. Of these are seen on the upper surface a pair of parietals, frontals, "nasals," and turbinals; on the lower surface a large cross-shaped basal, anteriorly bordered on eacl side by a pterygoid, parallel to a palatine which furms a suture with the double vomer. The suspensorium bas in frout a metapterygoid and quadrate bone, and.an operculum and suboperculum are attached to it behind. Premaxillaries and maxillaries are now fully developed, but immovably attached to the skull. The lower jaw is ossified, and consists of an articulary, angular, dentary, and splenial. Of labial eartilages a rudiment at the angle of the moutb bas remained persistent. The side of the skull, in front of the operculums, is covered by a large irregularly-shaped bono (T) (corresponding to the "tympanie lamina" of Ceratodus, fig. $35, q$), held by some to be the preoperculum; along its upper circumferenco lies a serics of small ossicles, of which two may be distinguished as spiraculars, as they form a valve for the protection of the spiracular orifice of these fishes. An infrnorbital ring is represented by a preorbital and postorbital only.

Each byoid consists of three pieces, none of which bear branchiostegals, the siogle median piece being osseous in front and cartilaginous behind. Four branchial arches are developed, the forcmost censisting of three, the second and third of two, and the last of a single piece. There is ne lower pharyngeal. Between the rami of the lower jaw the throat is pretected by n pair of large osseous laminx (gular plates), which have been considered to represent the urohy of osseeus fishes. The seapulary areh is almost entirely formed by the well-developed membrane-bnnos, which in the veutral lino are suturally unitcd. The peetoral fin is supportel by three bones, proo, meso-, and meta-pterygium, of which the dilated middle one alone bears rays, and is cxcluded from the artieulation with the shoulder-girdle.
Tho pubic consists of a paircd bene, to which tarsal bencs supporting the fin-rays are attaelicd.

In the Lepulosteoide the vertebre are completely ossified and opisthocelous, haviug a convesity in front and a coneavity behind, as in somo amphibians. Though the end of the bolly exte:nally appears nearly diphyeercal, the tomination of the rertebral column is, in fact, distinetly
heterocercal. 'The caudal fin is suspended from hæmapophyses only, and does not extend to the ueural side of the vertebral column. The neural arches coalesce with the ceatram; the interneurals are simple. The abdominal vertebre have parapophyses, to which the ribs are attached. Only the caudal vertebre have hremal spines.

In the akull of Lepidosters the cartilage of the endocranium is still more replaced by ossifications than in Polypterus, those ossifications, moreover, being represented by a greater number of discrete bones. The membrane bones in particular are greatly multiplied: the occipital, for instance, consists of three pieces; the vomer is double, as in Polypterus; the masillary consists of a series of pieces firmly united by suture. The symplectic reaches the lower jaw, so that the articulary is provided with a double joint, viz., for the symplectic and quadrate ; the component parts of the lower jaw are as numerous as in reptiles, a dentary, splenial, articulary, angular, supra-angular, and coronary being distinct. The sides of the head are covered with numerous bones, and a preoperculum is developed in front of the gill-cover, which, again, consists of an operculum and sub-- operculum.

Each hyoid cousists of three pieces, of which the middle is the longest, the upper bearing the largest of the three oraachiostegals which Lepidostens possesses; a long and large glossobyal is intercalated between the lower ends of the hyoids. There are five bracchial arches, the hindmost of which is modified into a lower pharyngeal; upper pharyngeals are likewise present as in the majority of Teleosteous fishes, but there is no gular plate.

Of the scapulary arch the two halves are separated by a suture in the median line; the membrane-bones are well developed, only a remnant of the primordial cartilage remaining; the supraclavicle is very similar to that of Telcosteous fishes, and in a less degree the post-temporal. The base to which the limb is attached is a single osscous plate, supporting on its posterior margin semi-ossificd rods in amall number, which bear the pectoral rays. The pubic consists of a paired bone. The elements representing a tarsus are quite rudimentary, and reduced in number (two or three).

The vertebral column of the A mioidei shows unmistakable characters of the Palæeichthyic type. The arrangement of its component parts is extremely simple. The centra of the amphicolous vertebre are well ossified, but the neural and hemal arches do not conlesce with the centra, from which they are separated by a thin layer of cartilage. All the vertebre do not possess apophyses: in the caudal portion of A mia only every alternate vertebra is provided with them. The beterocercal condition of the spinous column is well marked; as in the other Holostei, the hindmost vertebre are turaed upwards, becume gradially smaller in size, and lose their neural arches, the hemals remaining daveloped to the end. Finally, the column terminates in a thin cartilaginous band, which is received between the lateral halves of the fifth or sixth upper caudal ray. The interneurals and interhamals are simple. Only the abdominal vertobre bave parapophyses, with which the ribs are articulated.

The configuration of the skull, and the development and arrangement of its component parts, approach so much the Teleostean type, that perhaps there are greater differences in skulls of truly Teleostean fishes than between the skulls of Amia and of many Physostomi. Externally the uranium is entircly ossified; the remairs of the cartilaginous primordial cranium can only be seen in a section, and are of much less extent than in many Physostomous fishes. The inmovable intermaxillary, the double vomer, the double articulary cavity of the mandible fur jraction with the quadrate and symplectic bones, remind
us still of similar conditions in the skull of Lepidosteus; but the mobility and farmation of the maxillary, the arrangement of the gill-covers, the development of a preoperculua, the suspensorium, the palate, the insertion of a uumber of branchiostegals on the long middle hyoid piece, the composition of the branchial framework (with upper and lower pharyngeals), are as in the Teleosteous type. Λ gular plato replaces the urohyal.
The scapular arch is composed entirely of the nicmbrancbones found in the Teleostei, and the two sides are loosely united by ligament. The base to which the limb is attarched is cartiliaginons; short semi-ossified rods are arranged along its hinder margin, and bear the pectoral rays.

Myology.

In the lowest vertebrate, Erenchiustona, the whole of the muscular נuass is arrauged in a longitudipal band ronning along each side of the body; it is vertically divided into a number of fiakes or segments (myocommas) by aponeurotic septa, which serve as the surfaces of insertion to the muscular fibres. But this muscular band has no connexion with the notochord except in its foremost portion, where some relation has been furmed to the visceral skeleton. A very thin muscular layer covers the ahdomen. In the Cyclostomes also the greater portion of the muscular system is without direct relation to the skeleton, and, again, it is only on the skull and visceral skeleton that distinct muscles bave been dificrentiated for special functions.
To the derelopment of the skeleton in the more highly organized fishes corresponds a similar development of the muscles: the maxillary and branchial apparatus, the pectoral and rentral fins, the vertical fins and especially the cauda!, possess a separate system of muscles. But the most notewortly is the minscle covering the sides of the trunk and tail (already noticed its Pircuchiostoma), which Curier described as the "great lateral musele," and which, in the higher fishes, is a compound of many smaller segments (uyyocommas), corresponding in number with the vertebre. Each lateral muscle is divided by a median longitudinal groove into a dorsal and ventrat latf; the depression in its middlo is filled by an cmbryonal ruscular sulstance which contains a large quantity of fat and numerous blood-vessels, and therefore ditters from ordinary muscle by its softer consistency, and by its colour, which is reddish or greyish. Superficially the lateral musclo appears crossed by a number of white parallel tendinous zigzag stripes, forming generally three angles, of which the upper and lower point backwards, the middle oue forwards. These are the outer cdges of the aponeurotic sept:s between the myocommas. Each septum is attached th the middle and to the apophyses of a vortebra, and, it the abdominal region, to its rik; frequently the scpta receive additional support by the existence of epipleural spines.

In connexion with the muscles reference has to be made to the electric organs with which certain fishes aro provided. That these have been develoned out of muscular substance is more than probable, not only from the e::amination of peculiar muscular orgats (the function of which is still conjectural) occurring in the rays, und in Mormyrus and Gymnarchus, but especially from the researches into the development of the electric organ of Torpedo. The fishes possessing fully developed electric organs, with the power of accumulating electric force and communicating it in the form of shocks to other animals, are the electric rays (Torpedinida), the elcetric sheath-fisti of tropical Africa (Malapterarus), and the electric cel of tropical Americi (Gymnotus). The structure and arrangement of the clectric organ are vory difterent in these tishes.

In Torpedo the clectric organs are large, flat, uniform bodies lying one on each side of the head, bounded behind by the scapular erch, and laterally by the anterior crescent-sbaped tips of the pectoral fins. They consist of an assemblage of vertical bexagonal prisms, whose ends are in contact with the integuments above and below; and each prism is subdivided by delicate transverse septa. forming cells filled with a clear, trembling, jelly-like fluid, and lined within hy an epitbelium of nucleated corpuseles. Between this epithelium and the transverse septa and walls of the prism there is a layer of tissue on which the terminations of the nerves and vessels ramify. Hunter counted four hundred and seventy prisms in each battery of Torpedo marmorata, and demonstrated the enormous supply of nerrous matter which they receive. Each organ receives one branch of the trigeminal nerve and four branches of the vagus, the former, and the three anterior branches of the latter, being each as tbick as the spinal chord (electric lobes).

In Malapterumes the electric organ extends over the whole body, but is thickest on the abdomen; it lies between two aponeurotic membranez below the skin, and consists of rbomboidal cells which contain a rather firm gelatinous substance. The electric nerve takes its origin from the spinal chord, does not enter into connexion with ganglia, and consists of a single enormously-strong primitive fibre, which distributes its branches in the electric organ.

The olectric eel is the most poweriul of electric fishes. Its electric organ consists of two pairs of longitudinal bodies, situated immediately kelow the skin, abore the nanscles, -one pair on the back of the tail, and the other pair along the enal fin. Each fasciculus is composed of flat partitions or septa, with transverse divisions between them. The outer edges of the septa appear in nearly parallel lines in the direction of the longitudinal axis of the body, and consist of thin membranes, which are easily torn; they serve the same purpose as the columus in tho analogous organ of the torpedo, making the walls or abutments for the perpendicular and transverse dissepiments, which are exceedingly numerous, and so closely aggregated as to seem almost. in contact. The minute prismatic cells, intercepted between these two sorts of plates, contain a gelatirous matter: the senta are abont ${ }^{1}$ 'th of an inch from eacb other, and a lengta of one inch contains a series of two bundred and forty cells, giving an enormous surface to the electric orcrans. The whole apparatus is supplied with more than two hundred nerves, which are the continuations of the rami anteriores of the

Fig. 4n.-Drain of Percb. I. Upper aspect. II. Lower aspect. a, cerebellum; b. optle. luthes; c, hemispheres; e, lobi inferiores; f. hypophysis; g_{n} lobl posteriores; i, olfactury lobes; n, nervas opticus: o, nervus olfactorius; p, nervus oculo-motorius; q, nervas trochlearis; r, nervus trizeminus; s, ncrvus acousticus; t, netvus vagus; u, nenvus. ablucens; v, fouth ventricle. sninal nerves. In their course they give out branches to the muscles of the back, and to the skin of the animal. In the Gymnotes, as in the torpedo, the nerves suplying the elcetric organs are mueb larger than those bestowed on any part for the purposes of sensation or morentent.

The phenomena attending the exercise of this extraordinary faculty closely resernblo muscular action. The time and strength of the discharge aro entirely under the control of the fish. The power is exhausted after some time, and neels repose and nourshment to resture it. If the electric nerves are ent and divided from the brain, the cerciural action is interruptel, and no irritant to the bolly has any etfect in exciting vectrie discharge ; but if their enlos be irritated the discharge takes place, just as a rousclo is escited to contraction under similar circumstances. Singularly enomyh, also, the application of strychnine causes simultaneonsly a tetanic state of the museles and a rapid anceession of involuntary electric discharges. The strength of tho discharges depends entirely on the size, health, and puctgy of the lish, in ouservation completely agreeing with that male on the eflicaey of snakn-puison. Like this latter, the property of the dectrie forco serves two ends in the economy of the animats which are enduwed with it: it is neassary to them for overpowering, stunnim, or killing the creatures uo which they feed, whilst incidentally thoy use it as tho means of defending thamselves fiom their enemics.

Nevromory

The most simpte endition of the nervous central organ kwown in vertubrites is foum in Bramchiostome. In this fith the spinal cort tapers at buth cols, ao anterior cerebral sweding, or anythas aproching a lorain, being present. It i.s land like dong its milillo thind, and eroups of darker cells mark the origins of the fifty or sixty pairs nit nerves which acempany the intermuscular septa, and chivis. into
a dorsal and a ventral branch, as in other fishes. The two anterior pairs pass to the membranons parts above the month, and supply with nerve filaments a ciliated depression near the extremity of the fish, which is considered to be an olfactory organ, and two pigment spots, the rudiments of eyes. An auditory organ is absent. The spial cord of the Cyclostomes is flattened in its whole exteut, bandlike, and elastic; also in Chimora it is elastic, but flattened in its posterior portion ouly. 'In all other fishes it is cylindrical, non-ductile, and generally extendiog along the whole length of the spinal canal. The Plectognaths offer a singular exception in this respect, that the spinal cord is much shortened, the posterior pertion of the canal being oecupied by a long cauda equina; this shortening of the spinal cord has become extreme in the suo-fish (Orthagoriscus), in which it has shrunk into a short and conical appendage of the brain. In the devil-fish (Lophius) also a long canda equina partly conceals the cerd which terminates on the level of about the twelfth vertebra.
The brain of fishes is relatively small; in the burbot (Lota) it has been estimated to be the $\frac{1}{830}$ th part of the weight of the entire fish, in the pike the $\frac{1}{1305}$ th part, and in the large sharks it is relatively still smaller.

The brain of osscous fishes (fig. 40) viewed from above shows three protuberances, respectively termed the prosencephalon, mesencephalen, and metencephalon, the two anterior of which are paired, the hindmost being single. The foremost pair are the hemispheres, which are solid in their interior, and provided with two swellings in front, the olfactory lobes. The second pair are the optic lobes, which generally are larger than tho hemispheres, and succeeded by the third siaglo portion, the cerevellum, The optic lobes possess a cavity (ventriculus lobi optici), at the battom of which some pretuberances of variablo devr'opment represent the corpera quadrigemina of higher animals. On the lower surface of the base of the optic laves, bebind the enura cerebri, two swellings are observed, the lobi inferiores, which slightly diverge in front for the passage of the infundibulum, from which a generally large hypophysis or pituitary gland is suspended The relative size of the cerebellum varies greatly in the ditierent osscous fishes: in the tunny and silurus it is so largo as mearly to cover tho optic lobes; sometimes distinct transverse grooves and a median longitudinal groove are visible. The corobellum possesses in its interior a envity which commmicates with the anterior part of the fourth ventricle. The medulla oblongata is broader than the spinal cotd, and contains the fourth ventriclo. In most fishes a perfect roof is formed over tho fourth ventricle by two longitudinal pads, which mect each other in tho median lino (lobi posteriores).

The brain of Ganoid fishes shows great similarity to that of the Teleostei; thero is, however, considerable diversity in tho arrangement of its various pertions in tha different types. In the sturgeons and Polypterus (fig. 41) tho hemispheres are more or less remete from tho mesen. ceplaton, so that in an uper view the crura corebri, with: the intermediate entrance inte the third ventricle (fissura
cerebri magna), may be seen. A vascular membranous ac, epiphysis, containing lymphatic fluid, takes its origin from the third ventricle, its base being expanded over the anterior interspace of the optic lobes, and the apex being

Fic. 4L-araln of Potyp'erus. (After Minter) I. L'pper, II., Lateral, IIt. Lower aspect. a, medulla; b, corpura lestifurmia: c_{0} cercbellum: d, lobl opticl; a hypophysis: f, fissura cerebti magna; g, nervus opticus: $g^{\prime \prime}$, chiasma; λ_{0} hemispheres; i, tobus olfactorius; k, sinus riomboidalis (fourith ventricle).
fixed to the cartilaginous roof of the cranium. This structure is not peculiar to the Ganoids, but is found in various stages of development in Teleosteans, marking, when present, the boundary between the prosencephalon and mesencephalon. The lobi optici are essentially as in Teleosteaus. The cerebellum penetrates into the ventriculus lobi optici, and extends thence into the open sinus rhomboidalis. At its upper surface it is crossed by a commissure formed by the corpora restiformia of the medulla.

As regards external configuration, the brain of Lepidlosteus and A wia approach still more the Telcosteaus type. The prosencephalon, mesencephalon, and metencephalon are contiguous, and the cerebellum lacks the prominent transrerse commissure at its upper surface. The sinus rhomboidalis is open.

The braio of Chondropterygians (fig. 42) is more developed than that of other fishes, and is distinguished by well-marked characters. 'l'hese arefirst, the prolongation of the olfactory lobes into pedicles of greater or less length, which dilate into great ganglionic masses, where they
 como into contact Fso. 42-Brsin at Carchrias. (Mter Owen) ac, with the olfactory nervus acoustcus; b. corpus uestarme; c.ecie. sacs; secondly, the space which generally intervenes beoptres: A hemisphere: i. lobus ollactorius, i^{\prime}. offactory pedicle; k nerva olfactorius ; l " epp.
 trigeminus: 0, ticnos vagus.
they are all colid. The foremost pair are the large olfactory tubercles, which are extremely large io Petro. myzon. They are followed by the hemispheres, with a single body wedged in between their posterior half; iu Ptromyzon, at least, the vascular tissue leading to an epiphysis seems to be connected with this body. Then follows the lobus ventriculi tertii, distinctly paired in Myxinoids, but less distinctly in Petromyzon. The last pair are the corpora quadrigemina. According to this interpretation, the cerebellam would be absent in Myxinoids, and represented in Petromyzon by a narrow commissure only, stretching over the foremost part of the sinus rhomboidalis. In the Myxinoids the medulla oblongata ends in two divergent swellings, free and obtuse at their extremity, from which most of the cerebral nerves take their origin. ${ }^{1}$

Tro very important conditions require mention. The first relates to the optic nerves, viz., to their mutual relation immediately after their origin, which is very characteristic of the subclasses of fishes. In the Cyclostomes they have no further connexion with each other, each going to the eye of its onn side. In the Teleastei (fig. $40, n$) they simply cross each other (decussate), so that the one starting from the right half of the brain goes to the left eye and vice versa. Finally, in the Palxichthyes (fig. $41, g^{\prime}$) the two nerves are fused together, immediately after their origin, into a chiasma.

The second noteworthy peeuliarity occurs in the distri. bution of the nervus vagus; it emits a strong branch, called nervus lateralis, which accompanies the lateral mucous system of the trunk and tail. This is either a siagle longitudinal stem, gradually becoming thinner behind, and running superficially below the skin (Salmoride, Cyclopterus) or decply betreen the muscles (sharks, Chimera), or is divided into two parallel branches (most Teleostei); thus in the perch there are tro branches on each side, the superficial one supplying the lateral line, whilst the deep-seated branch communicates with the spinal nerves and supplies the septa between the myocommas and the skin. In fishes which lack the fateral muciferous system and possess hard integuments, as the Ostracions, the lateral nerve is more or less rudimentary. It is entirely absent in Xlyxinoids, but the gastric branches of the vagus are continued, united as a single nerse, along the intestine to the anus.

Fishes possess all the spino-cerebral nerves of the higher Vertcbrata, with the exception of the nervus accessorius. A separate nerrus hypoglossus is also absent, but elements from the first spinal nerre are distributed over the area normally supplied by this nerse in higher vertebrates. The number of spinal nerves corresponds to that of the vertebra, through or between which they pass out.

A synpathic nerrous eystem appears to be absent in Branchiostoma, and has not yet been clearly made out in the Cyelostomes. It is well developed in the Palaichthyes, but withont the cephalic pertion. This latter is present in all osscous fishes, in which the commanication of sympatby has been found to exist between all the cerebral nerves, except the olfactory, optic, and acoustic. The sympathic trunks run along each side of the vorta and the back of the abdomen into the hemal canal, communicate is their course with the ventral branches of each of the spinal nerves, and, finally, often blend togetber into a common trunk beneath the tail. At the points of communication with the cerebral and spinal nerves ganglia are freyuently developed, from which nerves emerge which are distributed to the various viscera.
${ }^{1}$ For a more detailed acconnt of the epino-cerebral nerves, see "a troduction to the Study of Fishes, by A. Guother.

Organs of Sense.

Organ of Smell.-It is characteristio of the organ of smell in fishes that it has no relation whatever to the respiratory function, with the exception of the Dipnei, in which possibly part of the water received for respiration passes through the nasal sac.

The olfactory organ is single in Branchiostoma and the Cyclostomes. In the former a small depression on the front end of the body, clothed with a ciliated epithelinm, is regarded as a rudimentary organ of smell. In the adult Petromyzon a membranons tube leads from the single opening on the top of the head iato the cartilaginous olfactory caysule, the inside of which is clothed by membranes prolonged into a posterior blind tube (fig. 31, s), which penetrates the cartilacinous roof of the palate, but not the nurcous membrane of the buccal carity. In the Myxinoids the outer tube is strengthened by cartilaginous rings like a trachea; the capsula is lined by a longitudinally folded pituitary membrane, and the posterior tube opens back wards on the roof of the mouth, the opening being provided with a valve. In all other fishes the organ of smell is double, there being one on each side; it consists of a sae lined with a pituitary membrane, and may be provided with one or with two openings, or may have none. The position of these openings is very different in the various orders and suborders of fishes.
It is certain that fishes pessess the faculty of perceiving odours, and that various scents attract or repel them. A mangled carcase ur fresh blood attracts sharks, as well as the voracious Serrasalmonoids of the South Anierican rivers. Toere is no reason to doubt that the seat of that perception is in the olfactory sac ; and it may be reasonably ceniectured that its strength depends mainly on the degree of development indicated by the uumberand extent of the interior folds of the pituitary membrane.
Organ of Sight.- The position, direction, and dimensions of the cyes of fishes vary greatIy. In some they have an upward aspect, and are often very close together; in others they are lateral, and in a few they are even directed downwards. In a very few this organ appears to be entirely absent. In some Gobivids and Trachinoids (Periophthalmus, Boleophthalmus, Uranoscopus, rec.) the eyes, which are on the upper side of the head, can be elevated and depressed at the will of the fish. In tile range of theic vision and in their acnteness of sight, fishes are very inferior to the higher classes of vertebrates, yet at the same time it is evident that they perceive their prey, or approaching danger, from a considerable distance; and it would appear that the visual powers of a Periophthatinns (fig. 12), when hunting insects on the mud-flats of the tropical coasts, are c uite equal to those of a frog.

The eye of Branchiostoma (fig. $30, \mathrm{~g}$) is of the most rudimentary kind. It is simply a minute speck coated with a dark pigment, and receiving the end of a short nerve. In Myxineids the minute rudiment of the cye is covered by shin and muscles. This is also the ease in many of the blind Teleosteons fishes; whilst in the former fishes, bowever, the organ of eight has not attained to any degree of development, the rudimentary eye of blind Tcleostei is a retrogressive formation, in which a lens and other portions of the cye can often be recognized. In fishes with a well-developed eye it is imbedded in a layer of gelatinous nuld allipose substance, which covers the cavity of the orbit. A lachrymal glaud is alsent. In the Chondrepteryginas the cycball is supported by and moves on a cartilaginous peduncle of the orintal wall. In the majority of Telcosteans, nul in Acipenser, a fibrous ligament attaches the sclerntic to the wall of the orbit. The proper museles of the eychall are nhwas present. In all fishes the general integnament
of the head passes over the eye, and becomes transparent where it enters the urbit; sometimes it simply passes over the orbit, sometimes it forms a circular fold. The anterior and posterior portions may be epecially broad, becoming the seat of an adipose deposit (adipose eyelids), as in Scomber, Caranx, Mugil, \&ic. In masy of theso fishes the extent of the eyelids varies with the seasens; during the spawning season they are so much loaded with fat as nearly to hide the whole eye. Many sharks possess a nictitating membrane, developed from the lomer part of tho palpebral fold, and moved by a proper set of museles.
The form of the bulbus (fig. 43) is subbemispherical, the cornea (co) being Hat. If it were convex, as in higher vertebrates, it would be more liable io injury; but, as it is level with the side of the head, the chances of injury by friction are diminished. The sclerotica (sc) is cartilaginous in Chondropterygians and Acipensers, fibrous and of varying thickness in Teleosteans, in the majority of which it is supporsed by a pair of cartilaginous or ossified bemispheroid cups (c). In a few fishes, as in Ceratodus, Xiplias, the cups are confluent into one cun, which possesses a foramen bebind to allow the passage of the optic nerve (0).

The membranes situated between the sclerotica and retina are collectively called choroidea, and are three in number. The one in immediate contact with the sclerotic, and continued upon the iris, is by no means constantly present ; it is the mem. brana argentea (a), and is composed of microscofical crystals retlecting a silvery or
 sometimes golden lustre. The middle layer is the membrana vasculosa or Halleri (v), the chief seat of the ramifications of the choroid vessels; the innermost layer is the membrana Ruyscheana or uvea (u), which is compesed of hexagonal pigment-cells, usually of a deepbrown or black colour.
In many Teleostci a rete mirabile surrounds the entry of the optic nerve ; it is situated between the membrana argentea and vaseulosa, and called the choroid gland (ch). It receives its arterial blood from the artery issuing from the psendobranchia, the presenco of a cloroid gland being always cembined with that of a psendobranchia Teleostcans witheut pseudebranchia have no choroid gland. In tho Palecichthyes, on the other hand, the $\rho^{\text {sendebranchia is present and }}$ a choroid gland absent.

The iris (i) is merely the continuation of the choroid membrane its capability of contracting and expanding is much more limit than in higher vertebrates. The pupil is generally round, sometimes horizontally or vertically elliptical, sometimes fringed. In the rays and Pleuronctida a lohe descends from the upper margin of the pupil, and the outer integument overlying this lobe is coloured and non-transparent,-a structure evidently proventing light from entering the eye from above.

In most Teleostei a fold of the choroidea, ealled the processus falciformis (f), cxtends from the vicinity of the entrance of the optic nervo to the lens. It seems to be constantly absent in Ganoids.

The vitrcous humonr (h), which fills the posterior cavity of the cye-bali, is of n firmer consistency than in the higher vertebrates. The lens is spherical, or nearly so, firm, denser towards the centre, and lies in a hollow of the vitreeus humour. When a falciform process is present, it has one enst attached to the lens, which is thus steadied in its position. It is composed of concentric layers consisting of fibres, whieh in the nucleus of the body havo mirginal teeth, by which they are interlocked tagether. In Petromyzon this serrature is absent, or but laintly indicated.

The anterior carity of the cye is vely small in fishes, in consequence of the small degree of convexity in the cornea; the quantity of the aqutons humour. therefore, is very small, just sufficient to float the free berder of the iris; and the lessened refractive power of the aqueous humour is compensated by the greater convexity of the lens.

Organ of Hecring. --No trace of an organ of hearing has been found in Iranchiostoma. In the Cyclostomes the labyrinth is enclosed in externally visible cartilaginous capisules laterally attached to the sliull; it consists of a single semicircular canal in the Myxinoids, whilst the Petromyzontes possess two semicireular canals with a vestibulum.

In all wher fishoy the labyriuth consists of a restibule
and three semicircular caanls, the vestibule dilating into one or more sacs, which contain the utoliths. A tympanum, tympanic carity, and external parta are eotire!'y absent in the class of fishes.

In the Chondropterygians aad Dipmoi, the labyrinth is eaclosed in the cartilaginous substance of the skull. In the former tho excavation in the cartilage is larger than the membranous labyrinth, but nearly corresponds to it in form; the part which receives the membranous vestibulum is called restibulum cartilagineum, from which a eanal issues aod penctrates to the aurface of the skull, where it is closed by the skin in sharks, but opens by a minute foramen

Fig. 44.-Otolith of Haddock(Cudus colefnus). L Outer, Il. inner sapect. in rays. The otolithic contents are soft and chaiklike.

In the Teleosteans the sac wbich contaius the otoliths lies on each side of the base of the cranial cavity, and is often divided by a septam into two compartments of unequalsize,each containing a firm and aolid otolith (fig. 44) ; these bodies possess iadented margins, frequently other im. pressions and grouves, in which nerves from the N . acousticus are lodged; they vary much in size aud form, but in both respects show a remarkable constancy in the eame kind of fishes. Outwards the vestibule is in contact with the osseous eide wall of the akull, in wards with tho metencephalon nad medulla oblongata; it contains another firm concretion, and opens by fivo foramina into the threo semicircular cauals. The terminations of the acoustic nerve are distri. buted over the vestibular concretion and the ampullifurm ends (fig. 45) of the semicircular canals, without being continued into the latter, which are filled with fluid. The aemicircular canals (fig. 45) are avmetimes lodged in the cranial bencs, sometimes partly free in the cranial cavity. Many Teleostei have fontanelles in the roof of the skull, clused only by akin or very thin bone at the place where the auditory organ approaches the surface, by which means

80norous undulalions must be coaducted with greater case to the ear.
In many Tcleostci a most remarkable relation obtains between the organ of hearing and the air-bladder. In the most simple form this connexion is established in Percoids and the allicd families, in whelh the two anterior horns of the air-bladder are attachect to fontanclies of the oceipital region of the skull, the vestibulum occury. ing the oprosite side of the membranc by which the fontaucho is closed. The condition is similar, but more complicated, in many Clupeoids. The anterior narrow end of the air-bladder is produced into a canal at the base of the skull, and divided into two very narrow branches, whiel again bifurcate and terminate in a globular swelliug. An apreadage of the vestibulun meets the anterior of these swellings, and comes into close contact with it. In addition, the two vestibules communicate with each other by a traosversa eanal, crossing the cranial eavity below the brain.
The connexion is effected by means of a chain of ossieles in Silurida, Characinida, Cyprinike, and Gymnotide. A eamal issues from the communication between the vestibule and its sac, and meeting that from tho other sido forms with it a common sinus impar (tig. 45, r), lodged in the substance of tho basioccipital; this communicates on each side by a small orifice with two subapherical atria, on the body of tho atlas, close to the formanen mag. num. Each atrium is supported externally by a small bone (m) ; a a third and larger bone (k) completes the commonication with the adterior part of tho air-hladder. From the situs impar a bifid canal penetrates into the alisphenoils, in which it terminates. In Cobitis and several loach-like Silurods the small sir-bladder consists of two globular portions placed side by side, and wholly ineluded within two bulle formed by the modified parapoplyses of the seeond and third vertebra. Tho three ossietes on each side are present, but concealed by the fore part of the osseons bulla.

Organ of Tuste.-Somo fishes, especially regetable feeders, or those provided with broad molar-like teeth, masticate their food ; and it may be observed in carps and other Cypriboid fish that this process of mastication frequently takes some time. But the majority of fishos swallow their food rapidly, and withont mastication, and therefore we may cunclude that the sense of taste cannot be keen. The tongue is often entirely absent, and, evenwhen it exists in its most distinct state, it consisls merely of ligamertous or cellular substance, and is aever furnished with muscles capable of producing the movements of extension or retraction as in most of the higher vertebrates. A peculiar organ on the roof of the palate of Cyprinoids is perhaps adanted for the perception of this sense; in these fisbes the palate between and below the upper pharyngeal beaea is cushioned with a thick, soft, contractile substance, richly supplied with nerves from the nervus ragus and nervas glosiso-pharyngeus.

Organs of Touch.- The faculty of touch is more developed than that of taste, and there are numerous fishee which posseas special organs of touch. Most fishes are very sensitive to external touch, although their borly may be protected by hard horny scales. They perceive impresaions even on those parts which are covered by osseons scutes, in the same maner as a tortoise perceives the slightest touch of ils carapaco. The seat of the greatest sensitiveness however, appears to be the snout and the labial folds surrounding the mouth. Many species persess soft and delicate appendages, called barbels, which are almost constantly in action, and clearly used as organa of touch. Among the Triglidec and allied families, there aro many species which bave ono or more rays of the pectoral fin detached from the membrane, and supplied with strong nerves. Such detached rays (also found in the Polynemidee and in Bathypterois) are used partly for locometion, partly for exploring the ground over which the fish moves.

Some fishes appear to be much less sensitive than othere, or at least lose their sensitiveness under peculiar circumstances. It is well known that a pike whose month has been laccrated and torn by the hook continues to yield to the temptation of a bait immediately afterwards. The Greenland shark, when fceding on the carcaso of a whale, allows itself to be repeatedly stabbed in the head without abandoning its prey. A pair of congers are so
dead to external impression at the time of copulation, and, es it were, so antomatically engaged, that they have been taken by the hand together out of the water.

Organs of Nutrition and Digestion.

Fishes are for the most part either exelusively carnivorous or herbirorous, but not a few feed on regetable as well as animal substances, or on mud containing alimentary matter in a lising or decomposing state. Generally they are very voracious, especially the carnivorous kinds, and the rule of "eat or be eaten" applies to them with unusual force. They are almost constantly engaged in the pursuit and capture of their prey, the degree of their power in these respects depending on the dimensions of the mouth and gullet and the strength of the tecth and jaws. If the teeth are sharp and hooked, they are capable of sceuring the most slender and agile animals; if with teeth of this kind are combined a wide gullet and distensible stomach, the fish is able to overpower and swallow others larger thau itself; if the tecth are broad, strong molars, they are able to crush the hardest alimentary substaces; if they are feeble, they are only servicenble in procuring some solall or inert aud unresisting prey. Teeth may be wating altogether. Whatever the prey, in the majority of cases it is swallowed whole; but some of the most vorucious fishes, like some sharks and Characinicle, are provided with cuttiog teeth, which enable them to tear their prey to pieces if too large to be swallowed whole. Ausiliary organs, similar to the clars of some rarnivorous rammals and birds, for the purpose of seizing and overnowering their prey before it is torn by the teeth, are not found in this cluss; but in a few fishes the jaws themselves are modified for that purpose. In the sword-fishes the bones of the upper jaw form a long dagger-shaped weanon, with which they not ouly attaek large animals, but also frequently kill fishes on which they feed. The saw-fishes are armed with a similar but still more complex weapon, the saw, which is armed on each side with large teeth implanted in deep rockets, specially ndapted for killing and tearing the prey before it is seized and masticated by the small tecth within the mouth. Fishes show but little choice in the selection of their food, and some devour their orn offspring indiseriminately with other fishes. Their digestivo powers are strong and rapid, but are affeeted in some degree by the temperature, which, when it sinks below a certain point, lowers the vital powers of these cold-blooded animals. On the whole, narine fishes are more voracious than those inhabiting fresh waters; and, whilst the latter may survive total abstinence from food for weeks or months, the marine species suceumb to hunger within a fow days.

The organs of nutrition, manducation, and deglutition are lodged in two large cavities-an nenterior (the month or buceal cavity), and a posterior (the aldominal cavity). In the former the nlimentary organs aro associated with those fulfiling the respiratory functions, the transmission of food to the stomach and of water to the gills being perforeved by similar act of deglutition. The abdominal cavity commenees immerliately behind the head, so, Lowover, that an oxtremely short thoracie eavity for the heart is partitioned off in front. Besides the nlimentary organs it contains also those of the urogenital sysicm and the air-bladder. The abdominal cavity is generally sitated in the truak only, but in numerous fishes it extends inte the tail, being continued for some distance along each side of the hamal apophyseg. In numerous fibles the adodominal eavity opens contwards by one or two openings. A single porus abdominalis in front of the vent is fonnd in Iepidosiren and seane sturgeons; a paired ong opening on cachs side of the wont, in Cevatodur, some species of sturceon, Lepilosteus, Polypterus,

Amia, and all Chondropterygians. As in these fishes semen and ova are discharged by their proper ducts, the abdoninal openings may serve for the expulsion of semen, and of those ova only which, having lest their way to the abdominal aperture of the oviduet, would be retained in the abdominal cavity. In those Teleoateans which lack an oviduet a single porus genitalis opens behind the vent.

Mouth.--'The mouth of fishes shows extreme rariation with regard to form, size, aud position. Generally opening in front, it may be turned uperards, or it may lie at the lower side of the snout, as in most Chondropterygians, sturgeons, and some Teleosteans. In most fishes the jaws are covered by the skin, which, before passiag over the jaws, is often folded, forming more or less fleshy lips. In the sharks the skin etains its external charactor eveu rithin the teeth, but in other fishes it changes in, a mueons membrane. A tongue may cxist as a more or less free and short projection, formed by the glossobyal and a soft covering, or may be entirely absent. Salivars glands and a velum palatiare absent in fishes.

Teeth.-With regard to the dentition, the elass of fishes offers an amonot of variation such as is not found in any of the other elasses of vertebrates. As the teeth form one of the most important elements in the classification of fishes, their special arrangement and form will be referred to in the account of the various families and genera. Whilst not a few fishes are entirely edentulous, in others most of the bones of the buceal cavity, or some of them, may be tootbed, as the bones of the jaws, the palatines, pterygoids, romers, basi-sphenoid, glossohyal, branchial arches, upper and lower pharyngeals. In others teeth may be found fixed in some portion of the buceal membrane without being supported by underlying bone or cartilage; or the teeth have been developed in membrane overlying one of the dentigerous bones mentioned, without having become anchylosed to the bone. When the tooth is fixed to the bone the attachment bas generally been effected by the ossification of the bone of the tooth, but in some fishes a process of the bonc projects into the cavity of the tooth; in others the teeth are implanted in alveoli. In these, again, frequently a process of bone rises from the bottom, on which the tooth rests.

Many of the class, especially predatory fishes, with long; lancet-shaped teeth, have all or some of thesecapable of being bent towards the intericr of the mouth. Sueh "hioged" teeth resuase at once the upright position when pressure is removed from them. They are, however, depressible in one direction only, thus offeriug no obstacle to the ingress, while they oppose the egress of prey. Mr C.S. Tomes has shown that the neans by which this mechanism is worked are different in different fishes, for, whilst in the Pediculati and Cadoids (hake) the elasticity resides solely in the tissue of the linge (the tooth being as resilient as ever after everything else is severed), in the pike the hinge is not in the least endowed with elasticity, but the bundles of fibres proceeding from the interior of the deutine cap are exceedingly elastic.

The teeth may be, and generally are, very different as regurds size or form in the different parts of the mouth; they may be also different according to the age or sex of the fish (Raia). The teeth miny be few in number and isolated, or placed in a siugle, double, or triple series, distant from one mother or elosely set ; they may form narrow or broad bands, or patches of various forms. As regards form, they may be cylindrical or conieal, pointed, straight, or curved, with or withent an angular bend near their base; some are compressed laterally or from the front backwards (the latter may be triangular in shape, or trnneated at the top liko the incisers of manmals) ; they may have one apex (cusp) only, or be bi- or tri-lobate (bi- or tri-euspid), or may
have the margins denticulated or serrated. Compressed teeth may be confluent, and form a cutting edge in both 'jaws, which assume the shape of a parrot's beak. In some the apex is hooked or provided with barbs. Again, some teeth are broad, with flat or convex sarface, like molar teeth. With regard to size, the finest teeth are like fine tlexible bristles, ciliiform or setifurm; or, if very short and anchylosed to the bone, they appear only as inconspicuous asperities of the bone. Very fine conical teeth arranged in a band are termed villiform tecth; when they are coarser, or mized with conrser teeth; they are cardlike (dents en rape or en cardes) ; molar-like teeth of very small size are ternied granular.
In all fishes the teeth are shod and renewed during the whole course of their life. In fishes which have compound tecth, as the Dipnoi, Chimæroids, Scari, Gyminodonts, as well ns in those which have apparently permanent teeth, as in the saw of Pristis, the detrition of the surface is made up by a constant growth of the tooth from its base. When the teeth are implanted in alveoli, they are generally succeeded by others in the vertical direction; but in other forms they succeed one another side by side. In the majority of fishes the new tooth is not developed (as in reptiles and mannals) in a diverticulum of the sac of its predecessor, but, like it, from the free surface of the buccal membrane. Generally there are more than one tooth growing which are in warious stages of development, destined each to replace the others in function. This is very conspicuous in sharks, in which the whole phalanx of their numerous teeth is ever marcling slowly forwards (or in son:s back wards), in rotatory progress, over the alveolar border of the jaw, the teeth being suecessively cast off after having reached the outer margio and fulfilled for a longer or shorter period their special function. ${ }^{1}$

Intestines. -The intestinal tract is divided into four portions,-the cesophagns, the stomach, the small and the large intestine ; two or more of these divisions may cualesce in fishes and become indistiognishable. But it is characteristic of the class that the urinary apertures are conetantly situated behied the termination of the intestinal track.
In Branchiostoma the whele intestinal tract is straight, aud coated with a ciliated mucons membraoe. The liver is represented by a green-coloured coecal diverticulum of the stomachic dibation. In the Cyclostomi the intestinal tract is likewise straight, and without clearly defined divisions.
The Palcichthyes show differences in the structure of their intestinal tract as considerable as are found among the Teleostei, but they have this in common that the absorbent surface of their intestine is enlarged by the development of a spiral valve, evidence of the presence of which in extinct Palaichthyes is still preserved in the fossilized frees or coprolites, bo nbundant in somo of tho older strata.

In Chondropterygians (fig. 46) the stomach is divided into a cardiac and a pyloric portion, the former frequently terminating in a blind sac, and the latter rarying in length. The pyloric portion is bent both at its origin and its end, and is separated from the short duodenum (called Bursa entiona in these fishes) by a valve; the duetus hepaticus and ductus pancreaticus enter the duodenum. This is succeeded by the straight intestine, provided with tho spiral valve, the coils of which may either be longitudinal and wonud vertically about the axia of the intestine, as in Carcharias, Galeocerdo, Thatassorhinus, and Zygana, or they may be transverse to that axis, as in tho other genera. Tho unmber of gyrations in the latter case varies; there may be as many as forty. The short rectum passca into a

[^125]cloaca, which contains also the orifices of the urogental ducts. Only the beginning and end of the intestinal tract are fixed by mesenterial folds.

Fig. 46.-Siphonal stomach and spiral valve of Basking-Shark (Splache). (After Home and Owen.) a, crophagus: b, cardiac porton of atomach: $c_{\text {o pyioric }}$ portlon: d, pouch Intermediate between stomach and duodellim, with ciacular valves nt both eods; e, duodenum ; f, valve of intestine; g, ductus hepaticus; h. spleen.

The strncture of the intestinal tract of Teleosteous fishes is subject to so numerous modifications that we shonld go beyond the limits of the present article were we to attempt to enter into details. Great differences in this respect may be fonod even io groups of the same natural families. Frequently the intestinal tract remains of nearly the same width throughout its conrse, and only tho entrance of the various dacts serves ns a guide for the distioction of its divisions. An intestine of such uniform width may be straight aud short, as in Scombresocida, Symbranchida, or it may be more or less convoluted and long, as in many Cyprinide, Doradina, de. On the whole, carnivorous fishes have a much slorter and simpler intestinal tract than the herbivoruts.
In the majority of Teleostcans, however, the œesophagus, stomach, dnodennm, sniall intestine, and rectum can be more or less clearly distinguished, even exterually.
Thera are two predominant forms of the stomach, intermediate forms, buwever, being numerons. In the first, the siphonal, it presents the form of a beot tube or canal, one-balf of the horse-shoo bcing the cardiac, the other the pyloric portion. In the second, the ceeal, the cardiac division is prolonged into a long descending blind sae, tho cardiac and pyloric openiogs of the stomach lying closs together (Clupea, Scomber, Thynnus, \&c.).
The duodenum always receives the heratic and pancreatic secretions, and also those of the appendices pylorice, which, in varying numbers (from 1 to 200), are of very common occnrrence in Telensteaus. They vary also in length nad width, and whilst the narrowest serve only as secretory organs, the widest are frequently found filled with the same contents as the intestine.
Glands.-The liver of fishes is distinguished by the great quautity of fluid fat (oil) which it contains. The gall-bladder is but rarely nbsent; it is attaclied to the right lobe, or towards the centre; in some fishes, however, it is detached from the liver and connected with it by the cystic duct only. The bile may be conveyed by one or more hepatio ducts into a common duct which is continued towards the gall-bladder as 2nctus cysticns, and towards the duodenum as ductus choledochns; or some of the hejpatic ducts enter the gall-bladder directly, or the dundenum directly, without communicating with tho common duct. Individual varis. tions in this respect are of common occurrence. ${ }^{\circ}$

A pancreas has been funnd hitherto in all Chondropterygians, in Acipenser, and in many Teleosteans.

The apleen, which is substantially a lymphatic gland, may be mentioned here, as it is constantly situated in the immediate vicinity of the stomach, generally near its cardiac portion. With tho exception of Branchiostoma, it is found in all fishes, and appears es a rounded or oblong organ of dark red colour.

Organs of Respiration.

Fishes breathe the air dissolved in water by means of gills or branchiæ. The oxygen consumed by them is not that which forms the chemical constituent of the water, but that contained in the air which ia dissolved in the water. Hence fishes trassferred to water from which the air has been drivea out by a high temperature, or in which the air absorbed by them is not replaced, are speedily suffocated. The absorption of oxygen by fishes is comparatively small; it has been calculated that a man consumes fifty thousand times more than is required by a teach. Some fishes, however, evidently require s much larger supply of oxygen than others: eels and carps, and other fishes of similar low vitality, can eurvive removal from their element for days, the small quantity of moisture retained in their gillcavity being auficient to sustain life, whilst other fishos, especially such as have very wide gall-openiugs, are inmedistely auffocated after being taken out of the water. In some fishes noted for their muscular activity, like the Scombrider, the respiratory process is ao energetic as to raise the Eemperature of their blood far beyond that of tho medium in which they live. A fow fishes, especially such as are periodically compelled to live in water thickened into mud by desiccation sud ritiated by decomposing substnnces, breathe atmospheric air, and generally have special contrivances for this purpuse. These are so much hsbituated to breathing air that many of them; eren when brought into pure water of normal condition, are obliged to rise to the surfnce at frequent intervals to take iu a quantity of air, and, if they are kept beneath the surface by means of a gauze net, they perisk from suffocation. The special contrivances consist of additional respiratory organs, lodged in cavities either adjoining the gill-cavity or communicating with the ventral side of the cesophagus, or of the sir-bladder which enters upon respiratory fuoctions (Dipnoi, Lepidosteus, Amia).

The water used by fishes for respiration is recoived by the mouth, driven to the gills by an action similar to that of swallowing, and expelled by the gill-openiegs, of which thero may be one or soveral on each side behind the head, or raroly one only in the median line of the ventrnl aurfaco.
Tho gills or branchia consiast essentially of folds of tho mucous membrano of the gill-cavity (lamine branchiales), in which the cipillary vessels are distributed. In all fishes the gills are lodiged in a cavity, but during the embryonic stage the Chondropterygians have the gililemme extonded into long filaments projecting beyond the gill-cavity, and in a few young Canoida external gills aro suporadded to tho internal.

In Branchiostomat tho dilated pharynx is perforated by numerons clefts, supported by cartilaginous rods (fig. 30, h). The wnter $p_{\text {nsses }}$ betwoen theso clefts into the poritoneal cavity, and makes its exit by the porus abdominalls, situated considerably in alvanco o the vent. Tho water is propelled by cilia.

In the Cyclostomes the gills of ench side aro lodged in a sories of six or more nntero-posteriorly compressed sacs, separatod from each other by intervening sejta. Each sac communicates by an inner duct with the acsuphagus, the
water being expelled by an outer duct. lu Bdellostoma each outer duct has a scparate opeaing, but in Dryxine all the outer ducts pass outwards by one common gill-opening on each side. In the lampreys the ducts are short, the outer ones having scparate openings (fig. l). The inner ducts lead into a single diverticulum or bronchus, situated below the cesophagus, blind behind, and communicating in front with the pharynx, where it is provided with two valves by which the regurgitation of the water into the buccal cavity is provented.

The same type of branchial organs persists in Chondropterygians, Which possess five, rarely six or seven, flattened pouches with transversely plaited walls. The septa between them are supported by cartilaginous filsments rising from the hyoidean and branchial arches. Each pouch opens by a cleft outwards, and by an aperture into the pbarynx, without intervening ducts. The anterior wall of the first pouch is supported by the hyoidean arch. Between the posterior wall of the first and the anterior of the second sac, and between the adjacent walls of the succeeding, a branchial arch with its two series of radiating cartilaginous filaments is interposed. Consequently the first and last puuches have one set of gill-laminx only, viz., the first on its posterior and the last on its anterior wall. The so-called spiracles on the upper surface of the head of Chondropterygians must be refersed to in connexion with the respiratory organs. They are the external openings of a canal leading on each side into the pharyax, and situated generally cluse to and behind the orbit. Thoy frequently possess vaives or an irregularly indented margin, and are found in all species during tho ombryonic stage, but it is only in some that they remain persistent. The spiracles are the remains of the first visceral cleft of the embryo, and in the feetal state long branchial flaments have been observed ta protrudo as from the other branchial clefts.

The Holocephali and Ganoilei show numerous deviations from the Chondropterygian type, all leadiug towards the Teleostoans. As a wholo they take an intermediate position betwecu the preceding types and the Teleosteans, but they show a great variation among themselves, and havo in common only the imperfect separation of the branclial sacs and the presence of a single outer branchial aperture.
, In the Teleoste i :ho gills with their supporting branchial arches lio in une undivided cavity; more or less wide clefts between the arches lead from the pharyox to the gills, and a more or less wido opening gives exit to the water after it has washed tho gills. The interbranchial clefts havo. sometimes nearly the same extent as the branclial arches; sometimes they are reduced to small openings, the integuments strctching frcm one arch to the othor. Sometimes there is no cloft behiad the fourth nech, in which caso this arch has only a nuiscrial gill developed. Tho gill-opening likowise varies much in its extent, and whet reducod to a foramen may bo sitnated at any part of the posterior boundnry of tho hend. In the Symbranchide the gillopeniags coalesce into a single narrow slit in the medinu liue of the isthmue. In tho majority of Teleosteans the integument of the concave side of the branchinl arches develops a series of horny protubemnces of various form, the so-culled gill-rakors. These sorve to catch any solid corpuscles or aubstances which would bo carried into the gill-cavity with tho water. Ia some fishes they aro sotiform, nud make a complete siovo, whilst in otbers they are moroly rough tabercles, tho action of which must be very incompleto if they have any function at all.
The wajority of Teleostenns possess four completo gills.
The gills of the Telcosteans, as well as of the Ganoids, are cupportel by a series of solid cattilaginons or horay poiuted rods, artangel aloner the couvex edges of the branchial arches. Archs
trariog a complete gill have two serics of those rods, one olong pach cilge ; those with uniserial gills bear one row of rods only. The rods are not part of the arch, but fixed in its integument, the wevers! rods of the one row corresponding to those of the other, forming pairs (feullet, Cuvier) (fig. 47). Each rod is covered by a loose mucons membrane passius from one rod to its fellow opposite, wheh again is finely plaited transversely, the extent of surface being greatly increased by these plaits. In most Tclcostci tle branchial lamellie are compressed, and taper towards their free end, but in the Lophobranchs their base is attenuated and the end entarged. The mucous membrane contains tho finest terminations of the vessels, which, being very superticial, impart a Llood-red colour to living gills. The arteria branchaalis, the courso of which lies in the open canal in the convexity of the branchial arch, emits a brauch (a) for every pair of lamellx, which ascends (b) along the inner edge of the lamella, and supplies every one of the transverse plaits with a bracehtet. The latter break up into a fine network of capillaries, from which the oxygenized blood is collected into venous branchlets, returning by the venous branch (d), which occupies the outer edge of the lamella
The so.called pseudobranchise (fig. 48) are the remains of an anterior gill which had respirawry functions during the embryonic life of the individuals. By a change in the circulatory system these organs have lost those tunctions, sind appear in the adult fish as retia mirabilia, as they recelve oxygenized blood, which, after having passed through their capillary system, $*$ carried to other parts of the had. In Palauchithyes the pseudobranchia is a rete mira. bile caroticum for the brain and eye; in Teleosteans a rete mirabile ophthalmicum only. Pseudobranchix are as frequently absent as present in Chondropterygians as well as Teleostcans. Among the Ganoids, the organ. occur in Ceratculus, Acipenser, Polyodon, and Lepidosteus, and are absent in Lcpidusircn, Protoplerus, Scaphirhynchus, Poly. pterus, and Amica.

In Chondropterygians and sturgeons the pscudobranchixe are dituated withiu the spiraeles; in those in which spiracles have become obliterated, the pseudobranclize lie on the suspen. sorium, hidden below cellular tissuc ; but pseudobranchise aro not necessarily coexistent with spiracles. In the other Ganoids and Teleosteans the pseuilobranclise (fig. 48, h) are within the gill-cavity, near the base of the gill-corer; in Ceratodus even rudiments of the gillrakers ($x^{\prime \prime}, x^{\prime \prime}$) belonging to this embryonic gill are preserved, part of them ($x^{\prime \prime}$) being at. tached to the hyord areh. 1'seudobranchis are frequently ladden below the integuments of the gill-cavity, and have the appearince of a glandular body rather than of e gill.

Accessory respiratory organs for retaining water or breathing air are found in the Labyrinthici, Ophiocephalide, certain Siluridar, and Lutorlira.

Air-bladder.-The airbladder, one of the most

Fio. 4S.-Gilis of Ceratedus. x. arcus aorta; gl. alosshyal: ch. curatohyal : w, attachiment of lhe first gll to the walls of the gill-castly: he peando branchin; $\boldsymbol{x}^{\prime}, x^{\prime \prime}$, I wo serici of gill-rakel belonging to the pseuloluanchit characteristic organa of fishes, is a linllow sac, formed of several tunics, containing gas, situated in the abrlominal cavity, but outside the peritoneai sae, entirely closed or conmunieating by a duct with the intestinal tract. Being compressible, its special functions consist in altering the specific gravity of the fish or in changing the centre of gravity. In a few fishes it assumes the fuaction of the organ of higher vertobratos of which it is the bomologue
-viz., of a lung. The gas coutained in the $2=$ bladder is secreted from its inner surface. In most freshwater thshes it consists of nitrogen, with a very small quantity of oxygen and a trace of carbonic acid; in sea-fishes, especially those living at some depth, oxygen predominates, as much as 87 per cent. having been found. Davy found in the airbladder of a fresh-run salmon a trace of carbonic acid aad 10 per cent. of oxygen, the remainder of the gas being nitrogen.

An air-bladder is absent in Leptocardii, Cyclostome; Chondrapterygii, and Holocephati, but occurs in all Ganvids, in which, besides, its respiratory functions more or less clearly manifest themselves. Its occurrence in Tcleosteans is very irregular, closely allied species sometiacs differing from each other in this respect; it shows in this subclass the most extraordinary modifications, but has no respiratory function whaterer.

Constantly situated within the abdominal cavity, below the vertebral column, but outside the sae of the peritoneum which covers only its ventral portion, the air-bladder is frequently prolonged into the tail, the prolongation being either single and lodged between the non-united parapnphyses, or double and penetrating between the muscles and hæmapophyses of each side. In the opposite direction processes of the air-bladder may penctrate into the skull, as has been mentioned above (p . 653). In some fshes tho air bladder is almost loose in the abdominal cavity, whilst in others it adheres most intimately by firm and short tissue to the rertebral column, the walls of the abdonien, and the intestines. In the Cobitina and many Siluroids it is moro or less completely enclosed in osscous capsules formed by the vertebre.

There are two tunics in the greater number of airblaiders, - an extremely thin internal one, frequently shining with a silvery lustre, containing crystalline corpuscles, sometimes covered with a pavement-epithelium, and a thicker outer one of a fibrous texture, which sometimes attains to considerable thickness and yields isinglass. The outer wall is strengthened in many fishes by moseular layers for the compression of the whole organ or of some portion of it .

A distinction has been made between air-bladders which communicate by a duct with the intestinal tract and those which are entirely closed. It is to be remembered, however. that at an early stage of development all air-bladders are provided with such a duct, which in some fishes is more or less completely obliterated, being then represented by a fine ligament only. Air-bladders without daet are found in Acarthopterygians, Pharyngognaths, Anacauths, and Lophobranchs. They may consist of a single cavity, or may be divided by constrictions inta two or three cliambers situated behind one another; they may consist of two lateral divisions, assuming a horseshoc-liko form, or of a single sac with a pair of simple or bifid processes in front or behind. The families of Sorenide and Polynemede possess air-bladders with a most extriordinary development of appendages rising from each side. Air-bladders with a pneumatic duct are found in Ganoids and I'hyst. stomes, the duct entering the dorsal side of the intestinal tract, with the exception of Polypterus and the Dipmor, in which it enters on the ventral side of the asophagus. In most eases the orifico is in the esophagus, but in some it is in the cardiev portion of the stomach, as in Acijenser, or in its blind sae, as in many Clupeoids. The air-Wladder may be single, or may consist of two divisions situated one behind the other (fig. 45); its inner surface may be perfectly smooth, or it may form manifold pouches and cells. If two divisions are present the anterior possesses a middle elastio membrane which is ahsent in the posterior; each division has a muscular layer, by which it can be seprately
compressed, so that part of the contents of the posterior may be drisen into the elastic anterior division, and lice versa. The posterior division being provided with the ductus poeumaticus does not require the elasticity of the anterler

Some Siluroids possess a peculiar apparatus for voluntarily exercising a pressure upon the air-bladder. From the first vertebra a process takes its origin on each side, expanding at its end into a large round plate; this is upplied to the side of the air-bladder, and by pressing upon it expels the air through the duct ; the small muscle moring the plate rise from the skull. The connexion of the air-bladder with the organ of hearing in some Physostomes has been described above, p. 653.

In the modifications of the air-bladder hitherto mentioned, the chief and most general function is a mechanical one: this orgar serves to regulate the specific gravity of the fish, to aid it in maintaining a particular level in the water, in rising or sinking, in raising the front part of its body or depressing it, as occasion may require. Yet a secretion of gas from the blood into its cavity must take place: and if this be so, it is notat all impossible that an exchange of gases between the two kinds of Ulood is also effected by means of the cxtraordinary development of retia mirabilia in many air-bladders.

In all fishes the arterics of the air-bladder take their origin from the aorta or the system of the aerta, and its veins return either to the portal, tho vertebral, or the bepatic voins; like the other organs of the abdeminal cavity, it receives arterial blood and returns venous blood.

Whilst the air-bladders of some Ganoids, anatomically as well as functionally, closely adhere to the Teleosteous type, that of A mia is more cellular and lung. like in its interior than the Teleasteous air-bladder, and Polypterus approaches tho rientio, not only in laving a laterally divided air-bladeler, bot also in its pueumatic duct - "ering the ventral side of the oscphagus. The air1 wifer of tho Dipnoi possesses still further the anatomical I F acteristics of a lung and assumes its functions, though, for it cossists witls gills, only periedicaly or in an auxiliary
manner. The ductus pneumaticus is a membranoubronchus, entering the ventral side of the cesophagus, and provided at its entrance with a glottis. In Ceratodus (fig. 49) the lung is still a single cavity, but with a symmetrical arrangement of its internal pouches; it has no pulmonary artery, but receives branches from the arteria coliaca. Finally, in Lepidosiren and Protopterus the lung is completely divided into lateral halves, and by its cellular structure approaches most nearly that of a reptile; it is supplied with venous blood by a true pulmonary artery.

Organs of Circtlation.

The blood-corpuscles of fishes, with one exception, are of an elliptic shape; this exception is Petromyzon, which possesses circular, flat, or slightly biconvex bleod-corpuscles. They vary much in size; they are smallest in Teleosteans and Cyclostomes, those of Acerina cernua measuring $\frac{1}{51 \sigma 1}$ of an inch in their longitudinal, and $\frac{1}{3000}$ in their transverse diameter. So far as it is known at present the Salmonidee have the largest blood-corpuscles among Teleosteans, those of the salmon measuring $\frac{1}{525}$ by $\frac{18}{2880} \mathrm{in}$., approaching those of the sturgeon. Those of the Chondropterygians are still larger ; and finally, Lepidosiren has blood-corpuscles not much smaller than those of Perennibranchiates, viz., $\frac{1}{5+0}$ by $\frac{1}{6} \frac{1}{2}$ in. Branchiostoma is the only fish which dues not possess red blood-corpuscles.

Fishes, in common with the other vertebrates, are prorided with a complete circulation for the body, with another equally complete for the organs of respiration, and with a particular abdominal circulation, terminating at" the liver by means of the yena perte ; but the peculiar characteristic consists in this, that the branchial circulation alone is provided at its base with a muscular apparatus or heart, corresponding to the right half of the heart of mammalia and birds.

The heart is situated between the branchial and abdominal cavities, between the two halves of the scapulary arch,-rarely farther behind, as in Symbranchida. It is enclosed in a pericardium, generally scparated entirely from the abdominal cavity by a diaphragma, which is, in fact, the anterior portion of the peritoneum, strengthened by aponcurotic fibres. In some fishes, however, there is a communication between the pericardial and peritoneal saes, viz., in the Chondropterygians and Acipenser, whilst in the Myxineids the pericardial sac is merely a continuation of ti. peritonenm.

Relativcly to the size of the body, the heart is very 3mall. It consists of thrce divisions:- the atrium, with a large sinus venosus into which the veins enter; the ventricle; and a conical hollow swelling at the beginning of the arterial system, the structure of which forms one of the most impertant characters used in the classification of fishes. In all Pulvichthyes (figs. 50 and 51) this swelling is still a division of the pulsating heart, being provided with a thick moscular stratum; it is not separated from the ventricle by two valves opposito to each other, but its interior ifitted with a plurality of valves, arranged in transvetse series more or less numerous in the various groups of the subclass. Lepidosiren and Protopterus offor an examplo of a modification of this valvular arrangement, their valres being lengitudinal, each valre in fact being formed by the contluence of several smaller ones situated behind one another. This Palsichthyan type is called conus arteriosus.

In Cyclostomes and Teleosteans (fig. 52) the enlargement is a swelling of the artesy, without muscular strature and without contractility; with the exception of the Myxinoids, its walls are thick aud fibrons with many trabechise and pouches, but it has no valves in its interior, and is separated
from the ventricle by two valves oppusite to each other. This Teleost zan type is called bulbus aortæ.

The sinus venosus sends the whole of the venous blood y a single orifice of its anterior convexity into the atrium ;
 two thin membranous valvules turned towards the atrium prevent the blood from re-entering the sinus. A pair of other valves between the atrium and ventricle have the samo function. The walls of tho ventriclo are strong, and,

Fig. 50.
-10. $80-$ Heart of Lepidosteus osseus. I. External pspect. II. Conusarterlosaq opened. a, arrium ; b. conua arterfosus; v_{0} ventilcle; h, branehinl art ery for third and fourth gill; k, for the second; l, for the first ; m, branch for the opercular gill ; d, singlo yolvo at the base of the conus ; es,g, transverse tows of Gaoohl valves.
Fia. 51.- Heart of Ceralodus. a, atrlum; b, conus arzeriosus; d_{4} papllary ralve qithan the conus: é.g, trunsverse rowa of Ganoid volves; h, i, anterior arcus antax; k, l, poslerlor arcus aorts ; v, ventricle.
internally, it is furnished with powerful fleshy trabecule.
The balbus or conus artcriosus is prolonged into the branchial artery, which soun divides, sending off a bracch to each branchial arch. On returning from the respiratory organ the branchial veins assume the structure and functions of arteries. Several branches are sent off to dif. ferent portions of the bead and to the heart, but the main trunks unite to form the great artery which carries the bloorl to tho

viscera and to Fio. 32,-Buibus porte of Tiphias godius, njened. a. all the parts of section thruash pait of the all of venitricle: bisection $^{\text {a }}$ the trunk and orterimam ; dincessary valven, of rudres of the ontarym tail, and which, therefore, represents the aorta of higher animals.

The circulatory system of Branchiontomiz and of the Dipnoi shows essential differences from that of other fishes.

Branchiostoma is the only fish which does not possess is muscular heart, several cardinal pertions of its vascular system being contractife. A great vein extends frrwards along the caudal region below the notochord, and exhibits contractility in a forward direction; it is bent anteriorly, passing into another tube-like pulsatory trunk, the branchial heart, which runs along the middle of the base of the pharynx, seuding off branches on each side to the branchix: each of these branches has a small contractile dilatation (bulbillus) at its base. The two anterior brancbes pass directly into the uorta; tho others are branchial arteries, the blood of which returas by branchial veins emptying into the aorta. The blood of the intestinal veins is collected in a contractile tube, the portal vein, below the intestine, and distributed over the rudimentary liver. Of all other fishes, the portal vein is contractile in Myxinoids only.

In Dipnoi a rudimentary partition of the heart into a right and a left division has been observed; this is limited to the ventricle in Ceratodus, but in Lepidosiren and Protopterus an incomplete septum bas been observed in the atrium also. All Dipnoi have a pulmonal vein, which enters tho atrium by a separate opening, provided with a val7e. The pulmonal artery rises in Lepidosiren and Protopterus from an arch of the aorta, but in Ceratodus it is merely a subordinate branch, rising from the arteria coliaca.

Urinary Organs.

In Branchiostoma no urinary organs have been found.
In Myxinoids these organs are of very primitive structure; they consist of a pair of ducts, extending from the urogenital porus through the abdominal cavity. Each duct sends off at regular iotervals from its outer side a short wide branch (the uriniferous tube), which communicates by a narrow opening with a blind sac. At the bettom of this sac there is a small vaso-ganglion (Malpighian corpuscle), by which the urine is secreted.

In the lampreys the kidneys form a continuous glandlike body, with irregular detached small portions. The ureters coalesce before they terminate in the urorenital papilla.

In Chondropteryginns the kidness occuny the posterior balf or two-thirds of the back of the abdominal carity, outside the sac of the peritoneum (as in all fishes), which forms a firm teadinons horizontal septum. The kidneys of the two sides are never confluent, and generally show a convoluted or lobulated surface. The ureters are short, each is ailated into a poucb, and communicating with its fellow terminates by a single urethra (which also rcceives the vasa deferentia) behind tho end of the rectum in the large common cloaca.

In Ganoids the kidneys occupy a similar position as in Cbondropterygians, but these fishes differ considerably with regard to the termination and the arrangement of the ends of the urogenital ducts.

The kidneys of Teleostcans are likewise situated outside the peritoncal cavity, immediately below somo part of the vertebral column, and vary exceedingly with regard to form and extent. Sometimes they reach from the skull to between the muscles of the tail, sometimes they are limited to the foremost part of the abdominal cavity (in advance of the diapiragm), but gencrally their extent corresponds to that of the abdominal portion of the vertebral column. The ureters terminate, cither sejnatite or united, in a urimiry bladder, varying in shape, which opens by a short urethra behind the vent. The urinary opening may be separate from or confluent with that of the genital ducts, and is frequently placed on a more or less prominent papilla (papilla urogenitalis). If separate, the urimary opening is behind the
genital ; and it a papilla is developen, ato extienity as perforated by the urethra, the genital opening being situated nearer the base. I few Teleosteans show an arrangement similar to that of Chondropterygians and Dipnoi, the urogenital openings being in the posterior wall of the rectum (Symbrauchitla, Pedicalati, and some Plectognathi).

Orgays of Rerroduction.

All fishes are diccious, or of distinct sex. Instances of socalled hermaphroditism are, with the exception of Serranus, abnormal individual peculiarities; such bave been ubserved in the cod-fish, in some Pleuronectider, and in the herring. Either the generative organ of one side was found to be male and that of the other female, or the orgna of one or both sides was observed to have been developed partly into an ovary, partly into a testicle. In the European species of Serranus a testicle-like body is attached to the lower part of the ovary; but many specimens of this genus are undoubtedly males, having normally developed testicles only.

The majority of fishes are oviparous (comparatively few viviparous), the embrsos being developed either in the ovarinm or in some dilated portion of the oviduct. In viviparous fishes actual copulation takes place, and the males of most of them are provided with eopulatory or intromittent organs. In oriparous fishes the generative products are, during sexual exeitement, discharged into the water, a very small quantity of semen being sufficient for effectual impregnation of a number of ova dispersed in a considerable quantity of water,-circumstances which render artificial impregnation more practicable than in any other elass of animals.

In Branchiostoma the generative organs occupy the ventral side of the abdominal cavity, into which they discharge their contents. No ducts are developed in either sex.

In the Cyclostomes the generative organ is single, and fixerl to or suspended from the median line of the back of the visceral cavity by a duplicature of the peritoneum (mesoarium), the testicle and ovary being distidguishable by their contents only. These escape by debisoence of the cells or eapsules and rupture of the peritoneal covering iato the abdominal cavitv, and are expelled, by reeiprocal pressure of the intertwined sexes, through the porus genitalis.

The ova of the lampreys are small and globular, like those of 'Telcosteans. Those of Myxime have a very peculiar shape when mature ; they are of an oval form, about 15 millimetres long and 8 millimetres broad, enveloped in a herny case, which at each end is provided with a bundle of sbort threads, each thread ending in a triplo book. Whilst in the mesoarial fold, the eggs are attached to one anothe ty means of these hooks, and after being espelled they prefably ix themselves by the same means to other objects. As in all fishes producing ora of large size, the number of ova matured in one season is but small.

In Tolensteans the generative organs are comparatively large. In somo fumilies the ovaries are without a e.osed covering and without oviducts, as in Satmonide, Galaxidhe, Nolopteride, Muratidx, and others. The surface of sueh an open ovary-as, for instance, that of the balmon-is transrersely plaitel, the ova being developed in capsules in the stroma of the lamine; after rupture of the capsules the mature ova drop into the abdominal cavity, and are expellen by the porus genitalis. The ovaries of the othicr Teleostoans are clused sacs, continued into oviducts. Frequently such ovaries coalesce into a single borly, or one in which the division is effected intermally only ly a more or less complete septum. In the viviparins Trlcosteans the cuibryos are developed within the urary, notably in the

Embotocidic, mūuy Blemniülde, and Cyprinodontider, Scbastes viviparus, sc.

Fig. 53.-Ditremin argentcum, with fully developed young, ready for expulsion by the genital oritice, $a ; a$, folds of the ovalian sac; v, vent
The ova of Teleosteous fishes are extremely variable in size, quite independently of the size of the parent species The ova of large and small individuals of the same species, of course, do not differ in size ; but, on the whole, lerger individuals produce a greater number of ova than smaller ones of the same species. The larger the size of the ova is in a species, the smaller is the number produced during one season. The ova of the eel are almost microscopic. The numbers of ova in the small-sized roe of the berring, lump-fish, halibut, and codfish hare beeu estimated respectively at 25,000 , $155,000,3,500,000$, and $9,344,000$. Larger in size and fewer in oumber are those of Antenzarius, Salmo, Aspredo, Lophobranchs, \&c. Those of Gastrosteus are comparatively the largest ; and the Siluroid genus Arius, the males

Fra.siboun of trius coorn (chy-
ion), showlon. show. Nat. aive of which take care of their progeny, produces ora from 5 to 10 millimetres in diameter. The ova of all Teleosteans are perfectly globular and soft-shelled. Teleosteans without oriduct deposit them separated from one another; whilst in many Teleosteans with an oviduct, the ova are eaveloped in a glutinous substance, secreted by its glands, swelling in the water and forming lumps or chords, is which the ova are aggregated.

Instances of the female taking care of ber progeny are estremely rare in fishes. At present only two examples are known, that of the Siluroid genus Aspredo, and the Solenostoma. In the former (fig. 55), during the time of propagation, the integuments of the lower side of the flat trunk of the femalo assume a soft and spongy texture. After having deposited the eggs, the female attaches them to and presses them into the spongy integument, by merely lying over them. She carries them on her belly, as the Surinam toas (Pipa) carries her ova on her back. When the eggs are hatehed the excrescence on the skin disappears, and the abdomen becomes as smooth as before. In Solenostoma the inner side of the long and broad ventral fius coalesces with the integuments of the body, a large poueb being fornaed for the reception of the eggs. There is a peculiar provision for the retention of the eggs in the sac, and probably for the attachment of the embryo. The inner walls of the sac aro lined with long filaments, arranged in series along the ventral rays, and more numerous and longer at the base of the rays than in the middle of their length, bebind which they disappear entirely.

The testicles of the Telensteans are always paired, and occupy the same position ast the ovaries. Their size varies extriondinarily at the different seasons of the year. Vase deferentia are constant. In the males of viviparous Teleo. steans the urogenital papilla is frequently enlarged, and clearly serves ns an intromittent organ.

Many Telcostci take care of their progeny, but with thr exception of Aspreslo and Sulchostoma, as meationed above
it is the male on which this duty devolves. In some, as in Cottus, Gastrosteus, Cyclopterus, Antennarius, Ophioccpha:us, Callichthys, the male constructs with more or less skill a nest, and jealonsly guards the ora deposited in it by the female. The male of some species of Arius carries the ova (fig. 54) about with him in his capacious pharyns. The species of Chromis inhabiting the sen of Galilee are said to take care of their ova in the same manuer. And, finally, in the Lophobrauchs, nature has aiderl this instinct by tho development of a pouch on the abdomen or lower side of the tail. In the syngnathide this pouch is formed by a fold of the skin developed from each side of the truuk and tail, the free margins of the fold being firmly united in the median line, whilst the egrys are being hatched in the inside of the pouch. In Hippocampus the pouch is completely closed, with a nasrow anterior opening.

Fin. Sis.-Abdomen of Arpre'o batrachus, with the oven attnchet; at a the nat ure semoved, to show the spongy staclure of the skin, athl the ploccsses tilling the luterspuces between the ova. (Natural size.)

The genital organs of Ganoids show diversity of structure similar to that found in Teleostenns, but on the whole they approach the Batrachian type. The ovaries are not elosed, cxcept in Lepidosiren; all Ganoids possess oviducts. In the eturgeons the oviduct as well as the vas deferens is represented by a finuel-shaped prolongation of the perltoneum, which communicates with the wide ureter. The inner aperture of the funnel is on a level with the midde of the testiclo or ovary, while the muter is within the ureter; and it is a noteworthy fact that only at cot tain periults of the life
of the fish is this onter aperture tenest tu De ch.cis.- at ohler times the peritoneal fumel appears as a closed blind sac within the ureter. The mode of passage of the scmen into the funnel is not known.
In Polypteres and Amia proper oriducts, with abdomnal apertures in about the middle of the abdominal cavity, are developed; they coulcsee with the ureters cluse to tha common urogenital aperture.

In Ccratodus a long convoluted eviduct extends to the foremost limit of the abdominal cavity, where it opens by a slit at a considerable distance from the front end of the long ovary ; this aperture is closed in scxually immature specimens. The oviducts unite close to their common opening in the clocaca. During their passage through the oviduct the ora receive a gelatinons covering secreted by its mucous membrane. This is probably also the case in Lepidosiren, which possesses a convoluted oviduct with secretory glands in the middle of its length
The ora of Ganoids, so far as they are known at present are small, and enveloped in a gelatinous substance. In the sturgeon as many as $7,635,200$ lave been counted. Those of Lepilosteus seem to be the largest, measuring 5 milli. metres in diameter with their envelope, and 3 nillimetres without it. They are deposited singly, like those of newts.
In Chondropterygians (and Iolocephati) the organs of reproduction assume a more compact form, and are more free owing to a lengthened attachment to the back of the abdo. minal cavity. The ovaries of the majority are paired (single in the Carchariidse and Scyltiide, one remaining undeveloped). But the oviducts are always paired, with a common aperturs beginning immediately belind the diaphragma They consist of two divisions, separated ly a circular valve; the upper is narrow, and is provided within its coats with a gland which secretes tho leathery envelope in which

Fig. wo-V'entral ins and cinspers of Chiloscyllibm diepechare.
most of the Chondropteryginn ova are enclosed ; the lower forms the utcrine dilatation in which the cmbryos of the viviparous species are dercloped. Gencrally the vitelline sac of tho cmbryos is free, and has no conncxion with the uterus, which in these cascs has merely the function of a protecting pouds; but in Carcharias and Mrstetus laris a placenta uterina is formed, the vascular walls of tho sitelliue sac forming plaits fitting into those of the membrane of the uterus. Tho ends of the uteri open into the eloaca by a common aperture behind the ureter.

The testicles are always paired, roumled, and situated in the auterior part of tho abdominal cavity, covered by the liver. The vas deforens unens with the urethra in a bamilla within the cloaca.

TTre so-called chaspers of Chondropterygians (fig. 50) are characteristic of all male individuals, They are semm. ossifich appondages of the pubic, with which they are
movably joined, and special muscles serve to regulate their movements. Sometimes they are armed with hook-like osseous excrescences (Selache), They are irregularly convoluted longitudinally, and, when closely pressed to each other, form a canal open at their extremity. A gland, which discharges a secretion abundantly during the season of propagation, is situated at the base of the canal, and opens into it. It is still doubtful whether the generally adopted opinion that their function consists in holding, the female duriag copulation is correct, or whether they are not rather an intromittent organ, the canal of which conducts, not only the secretion of their proper gland, but also the impregoating fluid.

Ths ova of the oviparous Chondropterygions are large, and few in number; they are successively impregunted, and the impregnation must take place before they are invested with a tough leathery envelope, which would ba impenctrable to the semen, that is, before they enter the uterus; therefore, copulation must take place in all these fishes. The form of the egy-shell differs in the various genera; usually (fig. 57) they are flattened and quadraagular, with each of the four corners produced, and frequently prolunged into, lengthy filaments which serve for the attachment of tla ova to other

Fro. 57.-Egg of a Scylium trom Magelian's Siruits (? Se. chitense). natural slze. fixed objects. In Notidanus the surfaces are crossed by numerous ridges. In Cestracion the egg is pyriform, with two broad ridges or plates wound edgewise round it, the two ridges forming five spires. The eggs of Callorhynchus have received a protective resemblanco to a broarl-leaved fucus, forming a long depressed ellipse, with a plicated and frioged margin.

Growta and Variation of Fishes.

Changes of form normally nccompanying growth (after absorption of tho vitelline sac) are observed in all fishes, but in the majority these affect only the proportional size of tho various parts of the body. Relatively to the size of tho head, the eyes in young fishos are always larger than in the adult; and arain, the head is relatively larger than the body. Changes amounting to metamorphosis have been hitherto observed in Petromyzon only. In the larval condition (Ammocotes) the head is very small, nad the toothless buccal eavity is surrounded by a semicircular upper lip. The eyes are extremely small, hidden in a shallow groove; and tho vertical fins form a contimnous fringe. In the course of threo or four years the teeth are developed, and the mouth changes into a perfect suctorial organ; tho eyes grow ; and the dorsal lin is separated into two divisions. In Malaenperyginan nod Amacanths the cmbryonal fringe from which the vertical fins are doveloped is much longer persistent than in Acanthopterygians. A metanurphosis relating to the respiratory organs, ns in Iatrachinns, is indicated in the class of fishes. thy the cxtermal gills with which fectal llagiostomes and tho young of some Canoida, viz, the I'rotupherus and Iolypteras, nreprovibed.

Ono of the most extrioudinary changes by which, during
growth, the form and position of several important organs are affected, oceurs in flat-fishes (Pleuronectidoc) ; their young are symmetrically formed, with a symmetrical mouth, and with one eye on each side, and therefore keep their body in a vertical position when swimming. As they grow they live more on the bottom, and their body, during rest, assumes a horizontal position; in consequence, the eye of the lower sids moves towards the upper, which alone is coloured; and in many geoera the mouth is twisted in the opposite direction, so that the bones, muscles, and teeth are much more developed on the blind side than on the coloured. In a great number of other Teleostei certain bones of the head show a very different form in the young state. Ossification proceeds in those bones in the direction of lines or radii which project in the form of spines or processes; as the interspaces between these processes are filled with bone, the processes disappear entirely, or at least project much less in the older than in the younger individuals. The young of some fishes may bs armed with a long powerful præopercular or scapular spine, or may show a serrature of which nothing remains in the adult fish except some ridges or radiating lines. These processes seem to serve'as weapons of defence during a period in the life of the fish in which it needs them most. In not a few in.

Fic. 5s,-Tholichthys osseus (six times the natural slze).
stances a pertion of this armature is so much developed that tho disappearance of its most projceting parts with the growth of the fish is not only dus to its being surrounded by other bere, but partially, at least, caused by absorption. The Carangidx, Cyttille, Squamipinnes, Xiphiido, offer instances of such remarkable chnoges. A fish described as Tholichthys osseus (fig. 58) is probably the young of a Cyttoid, the suprascupula, humerus, and preoperculum forming enormously cnlarged plates. In another fish (fir. 59) theso bones appear still enlarged, and the frontals develop a remarkably long and curved horn above the orbit. In the Tholichlhys-stago of Pomacanthus (specimens 10 millimetres longr), the frontal bone is prolonged into a straight lancet-shaped process,

Fic. 69-Tholichthys-sting Heniochus (?). nearly half as long as the horly; the suprascapular and preopereular processes cover and hide the dorsal and ventral fins. The phates nttached to the shoulder-girdle remain persistent until tho young fish has assumed the form of tho adnlt; thus they are still visiblo in young Chactodon citrinelles, 30 millimetros long, in which the specific characters aro already fully developed (fig. 60). The swordfishes with ventral fins (Mistiophorus) bclong to the Tele. osteans of the largest aize; in yountr individunls, 9 milli metres long (fig. 61), both jaws are prolacel, and arme!
with pointed teeth ; the supraorbital margia is ciliated; the parietal and preoperculum are prulonged iato long spines; the dorsal and anal fius are a low fringe; and the ventrals make their appearance as a pair of short buds. Whea 14 millimetres loog the young tish has still the same armature on the head, but the dorsal fin has become much higher, and the ventral filaments have grown to a great leagth. At a third stage, when the fish has attained -o a length of 60 millinetres.

Fin, 60.-Young Chaindinn cilrinellus (30 w lil. lons). he upper jaw is considerably prolooged beyond the lower, linsigg its teeth; the spines of the head are shortened, and the fins assume nearly the shape which they 'retain in

Fia. 61.- Foung Sword fish (Histiophorus), 9 mill. ling. Athantlc. (Magn.) mature individuals. Young sword-fishes without ventral fins (Xiphias) undergo similar changes; and, besides, their skin is covered with small rough excresneares langitudin-

Fio 62-Yoang Swotd-flsh (Mfitophorts). 60 mht long. Mid-Atlanth.
ally arranged, which continue to be visible after the young fish has in other respects assumed tho ferm of the mature (fig. 63)

$$
\text { Fic 63-xiphias gladius, youne abou! } 8 \text { incheg loos }
$$

The Plectognathis show changes no less extraordinary: a remarkable form caught in the South Atlantic, and named Ostracion boops, js considered by Lüthen to be the young of a sun fish (Orthagoriscus). In'still very young bui more advanced sun-fisbes (18 to 32 millimetres) the vertical diameter of the body is not much less than the longitudinal, and may oven exceed it ; and small conical spines are scattered
 nver its varions parts. Fin es -rystrucion boops (much magnffect). The caudar fin is developed leng after the uther vertical fins.

Simuilar changes take place in a number of other fislies, and io many cases the young are so dinerent that they have been described as belonging to distinet genera: thus Priacanichthys bas proved to be the young of Serranus,

Rhynchichthys that of Hotocentrum, Cephalacanthus at Dactylopterus, Dicrotus of Thiyrsites, Nauclerus of Naucrates, P'crthmeus of Chorinemus, Lempugus of Coruphaena, Acronyrus of Acanthurus, Keris of Liaseus. Purolirouchnis of Fierasfcr, Couchia of Motella, Stomiasunculus ot Stomias, sc.
The fins are most frequently subject to clanges, uiuring growth; but, whilst in some fishes parts of them ane pro longed into tilameuts with age, in others the filament. exist during t: ~ early life-perious only; whilst in sume a part of the dorsal or of, the ventral fins is normally de-
 veloped in the young only; in others those very parts are peculiar to the mature age. The integuments are similarly altered: in some spceies the young only have asperities on the skin, in others the young are smooth and the old have a tubcreular skin; in some the young only bave a hard bony head,' in others (some Siluroids) the ossoous carapace of the head and neek, as it appears in the adult, is more or less covered with soft skin whilst the fish is young.

In not a few fishes the external changes bear a relation to the sexnal development (Callionymus, many J.atm, rinthici Cyprinodonts). These secondary sesual differences do not show tbemselves in the male individual till it commences to enter upon its sexual functions, and it may require two or more seasons before its external characteristies are fully developed. Inmature males do not differ externally from the uld fenale. The secondary sexual cbaracters of the male consist principally in the prolngation uf some of the fin-rays, or of entire fins, and in Sal. monidce in the greater development of the jaw-bones. The coloration of the male is in many fishes mueh brighter and more variegated than that of the female, but is permanent in comparatively few (as in some Callionymus, Labrus mixtus); generally it is acquired immediately before and during the season of propagation only, and lost atterwards. Another periodical change in the integuments, also due to sexual influence and peculiar to the male, is the excrescence of wart-like tubercles on the skin of many Cyprinoids; they are developed chiefly on the head, but somictimes extend over the whole body and all the fins.

With regard to size, it appears that in all Teleosteous fishes the female is larger than the male; in many Cyprinodonts the male may be only one-sisth of the bulk of the female or even less: In Paluichtlyes we passess few observations on the relative size of the sexes, but such as have been made tend to show that, if a difference exists at all, the male is generally the larger (Lepidostrus). In the ruya (Rain) the sexes, after they have attained maturity, differ in the development of dermal spines and the forni of the teeth, the female being frequently much rougher than the: male. There is much variation in this respect in the different species; but the males are constantly distingnished by an oblong patch of erectile elawlike syines on each pectoral fin, nnd by having the teeth (all, or only a portion) pointed, and not obtuse, like thoss of the females. In sharks no secondary sexual differences have been observed; the male Chimaride possess a singular comb-like cartila. ginous appendage on the top of the head, whieb can be erected or depressed into a groove, bath the nipyendage and the anteriur fart of the groove being armed with hooklets. The use of this singular organ is not known.

The majority of Teleostei are mixogamous-that is, the males and females congregate on the spawning beds, and, the number of the former being in excess, several males attend to the same female, frequently changing from one to another. The same habit has been observed io Lepidosteus. Grestrostens is truly polygamons, several females depositing their ova io the same nest, guarded by one male only. Some Teleostei (Ophiocephatus), and probably all Chondropterygians, are monogamous; and it is asserted that the connexion between the pair is not merely temporary, but lasts until they are separated by accident. All those Teleosteans also are probably monogamous which bring forth living young.

Hybridism is another source of cbanges and variations within the limits of a species, and is by no means so rare as has been bitherto believed; it is apparently of exceptional occurrence, merely because the life of fishes is more withdrawn from onr direct observation than that of terrestrial animals. It kas been observed among species of Serranus, Pleuronectida, Cyprinidre, C'lupeide, and especially Salmonide. As with other animals, the more certain kinds of fishes are brought under domestication, the more readily do they interbreed with other allied species. It is characteristic of hybrids that their characters are very variable, the degrees of affinity to the one or the other of the parents being inconstant; and, as these hybrids are known readily to breed with either of the parent race, the variations of form, structure, and colour are infinite. Of internal organs the teeth, the gill-rakers, and the pyloric appendages are those particularly affected by such mixture of specics.

Some fishes are known to grow rapidly (in the course of from one to three years) and regularly to a certain size, growth being definitely arrested after the standard has been attained. Such fishes may be called "full-grown," in the sense in which the term is applied to warm-blooded vertebrates; the sticklebacks, most Cyprinodonts, and many Clupcoids (herring, sprat, pilchard) are examples of this regular kind of growth. ${ }^{1}$ Pat in the majority of fishes the rate of growth is extremely irregular, and it is hardly possible to know when gruwth is actually and definitely arrested. All seens to depend on the amount of food and the more or less favourable circumstances under which the individual grows up. Fishes which rapidly grow to a definite size are short-lived, whilst those, Telcosteans as well as Chondropterygians, which steadily and slowly increase in size attain to a great age. Carp and pike have been ascertained to live beyond a humdred years.

Abundance or scarcity of food, and other circumstances connected with the localitics inhabited ly fishes, affect considerahly the colur of their musctes and integuments; the periolical changes of colour in connexion with their sexual funtions lave been referred to above. The flesh of many Tetroster is colourless, or but slightly tinged by the bood ; that of Siombrithe, and most Gunoils and Chondropterygians, is more or less rod ; but in ladly-fol fishes, as well as in very young ones, the thesh is invariably white (antemie). Many fishes, like the Salmonidr, feed at times (xclusively on crustaceans, and the colouring substance of these invertebrater, which by boiling and ly the stomachic recretion turns red, seems to pass into their lhesh, imparting to it the well-known "salmen" colur. Tho culora-

[^126]tion of the integuments of many marine fisbes, again, is dependent on the nature of their surroundings. In thosi which habitually bide themselves on the bottom, in sand, between stones, or among seaweed, the colours of the body readily assimilate to those of the vicinity, and are thus an important element in the economy of their life. The cbanges from one set or tinge of colcurs to another may be rapid and temporary, or more or less permanent; in sone fishes-as in the Pediculuti, of which the seadevil, or Lophius, and Antennarius are nembers-scarcely two individuals are found exactly alike is coloration, and such differences are ouly too frequently mistaken for specific characters. The changes of colour are produced in two ways,--either by an increase or decrease of the pig. ment-cells, or chromatophors (black, red, yellow, \&c.), in the skin of the fisb, or by the rapid contraction or espansion of the chromatophors which happen to be developed. The former change is gradual, like every bind of growth or development ; the latter, owing to the great sensitiveness of the cells, is rapid, but certainly involuntary. In many bright-stining fishes-as mackerels, mullets-the colours appear to be brightest in the time intervening hetween the capture of the fish and its death, a phenomenon clearly due to the pressure of the convulsivelycontracted museles on the chromatophors. Exterual irritation readily excites the chromatophors to expand-a fact unconsciously utilized by fishermen, who, by scaling the red mullet immediately before its death, produce the desired intensity of the red colour of the skin, withnut which the fish would not be saleable. It does not, however, require such strong measures to prove the sensitiveness of the chromatopbors to external irritation, the mere change from darkness into light is sufficient to induce thein to contract, the fish appearing paler, and vice versa. In trout which are kept or live in dark places, the black chromatophors are expanded, and, consequently, such epecimens are very dark-coloured; when removed to the light, they become paler almost instantaneously.

Toul absence of chromatophors in the skin, or albinism, is very rare among fishes; much more common is iocipient allinism, in which the dark chromatophors are cbanged into cells with a more or less intense yellow pigment. Fishes in a state of domestication, like tho crucian carp of China, the carp, the tench, and the ide, are particnlarly subject to this abnormal coloration, and are known as the common gold-fish, the gold-tench, and the gold-orfe. But it occurs also not rarely in fishes living in a wild state, and bas been observed in the liaddock, tlounder, plaice, carp, roach, nad eel.

It will be evident from the foregoing remarks that the amount of variation within tho limits of tho satue species -due either to matural growth and development, or to external physical conditions, or to abnormal accidental circumstances-is greater in fislles than in any of the higher classes of vertebrates. The amount of variation is greater in certain genera or familics than in others, and it is much greater in Teleostcans and Ganoids than in: Chondroptcrygians. Naturally, it is greatest in the fow species that have been domesticated, which wo shall ment tion in the following section.

Domestication, Tenacity of Lhfe, Mibefnation, \&c.

Only a fow fishes are thoroughly domesticated-that is, Domoshbeel in captivity, and capable of transportation within cation. cortain climatic limits-siz, the carp, crucian carp (European and Chineso varicties), tench, orfe or ide, and goramy. The first two have necompanied civilized man almost to every part of the globe where he has effected a permanent settlement.

Roclims- Attempts to acelimatize particuisrly usefnl species in tization. countries in which they are not indigenons have been made from time to time, but bave been permanently successful in a few instances only, the failures being due partly to the choice of a species which did not yield the profitable return expected, partly to utter disregard of the difference of climatic and other physical conditions between the original and the now homes of the fish. The first successful attempts at acelimatization were made with domestic specios, viz., the earp and goldfish, which were transferred from Eastern Asia to Earope. Then, in the early part of the present century, the Javanese goramy was acclimatized 10 Mauritius and Guiana, but no care seems to have been taken to insure permanent advantages from the successful execution of the expariment. In those cases fully developed individuals were trinsported to the country in which they were to be acelimatized. The most successful attemut of recent years is tha aeclimatization of the trout and sea trout, and probably also of the salmon, in Tasmania and New Zealand, and of the Californian salmon (Salmo quennat ?), in Victoria, by means of artificially-impregnated ova. In transporting these ice was employed, in order to retard their development generally, and thus to preserve them from destrustion during the passage across the tropical zone.
Artificial Artificial impregnation of fish-ova was first practised by impreg. J. L. Jacobi, a natire of Westphalia, in the years 1757-63, odion of who employed exactly the same method which is followed ova. now; aud there is no doubt that this able observer of nature conceived and carried out his jdea with the distinct object of advantagoously restocking water-courses that had become unproductive, and increasing production by fecundating and preserving all ova which, in the ordinary conrse of propagation, would be left unfecundated or might accidentally perish. Physiology soon turned to aecount Jacooi's discorery, and artificial impregnation has proved to be one of the greatest belps to the student of embryology.
Tenacity Fishes differ in an extraordinary degree with regard to of tife. tenacity of life. Some will bear suspension of respiration -caused by removal from water, or by exposure to cold or heat-fur a long time, whilst others succumb at once. Nearly all marine fishes are very sensitive to changes in the temperature of the water, and will not bear transportation from one elimate to another. This seems to be much less the case with some freshwater fishes of the temperate zones; the earp may survive after being frozen in a solid block of ice, and will thrive in the warmest parts of the temperate zones. On the other hand, some freshwater fishes are so sensitive to a change in the water that they perish when transplanted from their native river into another apparently olfering the same physical conditions (grayling, Salmo hucho). Some marine fishes may be transferred at once from salt into fresh water, like sticklebacks, some blennics, and Cothus, se.; others survive the change when gradually effected, as maay migratory fishes; whilst athers, again, cannot bear the least altcration in the composition of the salt water (all pelagic fishos). On the whole, instances of marine fishes volnutarily entering brackish or fresh water are very numerous, whilst freshwater fishes proper but rarely descend into salt water.

Abstinence from food affects different fishos in a similarly lifferent degree. Marine fishes are less able to endure hunger than froshwater fishes, -at least in the temperate zones, no observations having been made in this respect on tropical Gishes. Goldfishes, carps, and cels are known to be able to 3ubsist without food for months, without showing a visible Hecrease in bulk; whilst the Trigloids, Sparnids, and other marine fisbes survive abstinence from fond for a few days only. In freshwater fishes the temperature of the water las great influence on their vital functions generally, and 12-2.4*
eonsequently on their appitit. Many cease to feed altogether in the conse of the winter; a few, like the pike, are less inclined to feed during the licat of the summer than when the temperature is lowered.

Captivity is casily lorne by most fishes, and the appliances Capthity introduced in modern aquaria have rendered it possible to kecp in confincment tishes which formeriy were considered to be intulerant of captivity, and even to induce them to propagate

Wounds affect fisbes generally anch less than higher Injuy vertebrates. A Greenland shark continues to feed though from. its head is piered by a harpoon or by the knife, so long wounds as the nervous centre is not touched; a pike will survive the loss of its tail, or a sea-perch that of a portion of it, and a carp that of half its snout. Some fishes, however; are much more sensitive, and perish even from the superfictal abrasion caused by the meshes of the net during capture (Mullus).

The power of reproduction of lost parts in Teleostenne fishos is limited to the delicate terminations of their fio-rays auction. and the various tegumentary filaments with wbich some of lost are provided. These filamentsare sometimes developed in an extraordinary degree, imitating the waving fronds of the seaweed in which the fish hides. The ends of the finrays and also the filaments are frequently lust, not only by nccident, but also merely by wear and tcar ; and, as these organs are essential for the preservation of the fish, their reproduction is necessary. In Dipnor, Ceratodis, and Protopterus, the terminal portion of the tail bas been found to have been reprorluced, but without the notocherd.

Hibernation has been observed in many Cyprinoids and Hiberas. Murænoids of the temperate zones. They do not fall into ${ }^{\text {tion }}$. a condition of complete torpility, as reptiles and mammals do, but their rital functions are simply lowered, and they bide in sheltered holes, and cease to go abroad in search of their food. Between the tropies a great number of fishes (especially Siluroids, Labyrinthici, Ophiocephaloids, the Dipmoi) are known to survive long-contimued droughts by passing the dry season in a perfectly torpid state, imbedded in the hardened mud. Protopterus, and probably many of the other fishes mentioned, prepare for themselves a cavity largo enough to hold them, and coated on the inside with a layer of hardened mucus, which preserves them from completo desiccation. It has been stated that in India fishes may survive in this condition for more than one scason, and that ponds, known to have been dry for several years and to a depth of many feet, have swarmed with fishes as snon ns the accumalation of water released them from theip bardened bed.

The principal benefit derived by man from the class of Econo. fishes consists in the abundance of wholesome and nourish. wien tuss ing food whicb they yield. In the polar regions especially, whole tribes are entirely dependent on this class for subsistence; and in almost all nations fiskes form a more or loss essential part of food, many, in a preserved condition, being most ionportant artiches of trade. Their uso in other respects is of but secondary importance. Cedliver oil is prepared from the liver of some of the Gadoids of the northern hemisphere and of sharks, isimglass from the swim-hadder of sturgeens, Scirenoids, and l'olynemoids, and shagreen from the skin of sharks and rays

The flesh of some fishes is constantly or oceasionally Poivon poisonous. When eaten, it canses symptoms of more or ous less intense irritation in the stomach and intestines, inflam. fisbes mation of the mucous membranes, and not rarely death. The fishes which appear always to have poisonous propert ties are-Chenea thrisca, C'lupea venenosa, and some species of Scarus, I'ctrodon, and Diodon. There are anany others which have occasionaliy or frequently caused symp. toms of poisoning. locy enumerates no less then seventy
:wo different kiuds from Cuba; and varions species of Sphyraena, Balistes, Ostracion, Caranx, Lachnolæmus, Tetragonurus, Thynurs, have been found to be poisonous in ill seas between the tropics. All or nearly all these fishes acquire their poisonous properties from their food, which consists of poisonous Meduse and corals, or of decomposing oubstanoes. Frequently the fishes are found to be eatable if the bead and intestines are removed immediately after capture. In the West Indies it has been ascertained that all the fishes living and feeding on certain coral banks are poisonous. In other fisbes the poisonous properties are developed at certain seasons of the year only, especially the season of propegation; as the barbel, pike, and burbot, those roe causes violent diarrhea when eaten during the season of spawning.

Poison-organs are more common in the class of fishes than was formerly belioved, out they seem to have exclusively the function of defence, and are not auxiliary in procuring food, as in venomous snakes. Such organs are found in the sting-rays, the tail of which is armed with one or more jowerful barbed spines. Although they bave no special

Fic. 66.-Portion of tall, with n pines; of Aetobatis narinari, a Sting-ray from the Indisn Occan. a, natural sizo of spine.
organ secreting poison, or canal in or ou the spine by which the venomous luid is conducted, the symptoms caused by a wound from the spine of a sting-ray are such as canuot be accounted for merely by the mechanical laceration, the pain being intense, and the subsequent inflammation and swelling. of the wounded part terminating not rarely in gangrene. The mucus secreted from the surface of the fish and inoculated by the jagged spine evidently pessesses venomous properties. This is also the case in many Scorpænoids, and in the weever (Trachinus), in which the dorsal and opercular spines bave the seme function as the caudsl spines of the sting-rays; in the weevers, however, the spincs are decply grooved, the groove weing charged with a fluid mucus. In Symanceia the peison-orgau (fig. 67) is still mere developed: each dorsal spine is is its terminal half provided with a deep greove on each side, at the lower end of which lies a pear-slaped bag coutaining the milky poisen; it is prolonged into a

Fio. 67.-A dorsal eploe with poison-bages, of Sbnaticela ocr. yucosa (Indlan Occan). membranous duct, lying in the groove of the spine, and open at its poiut. The native fishermen, well acquainted

Fio. 6s, - Thataskophryne reticulatha
with the dangerons nature of theso fisles carefully avoin handting them; lut it ofteu happens that persms wading with naked fect in the sea sten u!on the fish, whieh gene-
raliy lies hidien in the sand. One or more of the erecter: spines penetrate the skin, and the poison is injected int: the wound by the pressure of the foot on the poison-bag: Desth bas frequently been the result.

The most perfect poison-organs hitherto diseovered in fishes are those of Thalassophryne, a Batrachoid genus of fishes from the coasts of Central Americs. In these fishes again the operculum and the two dorsal spines are the weapons. The former (fig. 69) is very narrow, vertically form, and very mobile; it is ismed behind with spine, eight lines long, and of the same form as the bollowvenom-fang of a snake, being perforated at its base and at its extremity. A sac covering the base of the spine discharges its contents through the apertures and the canal in the interior of the spine.

Fic. 60.-Opercalar part of the poison-apparasus of Thalassophryze (Panama). 1. Hinder half of the letad, with the venom-sac* in sith. a_{6} lateral line and its brapches; b, gill-opening; c ventral fin: d, buse ol pectoral fin; e, base of dorsal. 2. Operculum with the perforated spine.

The structure of the dorsal spines is similar. There are no secretory glands imbedded in the membranes of the sacs, and the fluid must be secreted by their mucous membrane. The sacs have no esternal muscular layer, and are situated immediately below the thick loose skin which envelops the spines to their extremity; the ejection of the poison into a living animal, therefore, can only be effected, as in Synanceia, by the pressure to which the sae is subjected the moment the spine enters another body

geological distribution.

Of what kiud the fishes were which were the first to make thcir appearance on the globe, whether or not they were identical with or cimilar to any of the principal types existing at present, are questions which probally will for evor remain hidden in mystery and uncertainty. The supposition that the Pharyngobranchs and Cyclostomes, the lowest of the vertebrate series, must have preceded the other sulclasses, is an idea which has bcen he!d by many zoologists, and, as the horay teeth of the Cyclostomes are the only parts which under favourable circumstance: could have bsen preserved, palxontologists have crer been searching for this evidence.
Indect, in deposits belonging to the Lower Silurian $v m:$ Devonian, in Russia, Englaud, and North Anerica, misuac, slender, pointed horny bedies, bent like a hook, with sharp opposito margins, have been found and described under the name of "conodonts." More frequently they possess an clongated basal portion, in which there is generally a larger tooth with rows of similar but swaller denticles on one or both sides of the larger tooth, according as this is central or at oue oud of the hase. In other examples there is no prominent central tooth, but a series of more or less similar teeth is implanted
on a straight or curved base. Modificatious of these arrangements are very numerous, and many palmontologists still entertaia doubts whether the origin of these remains is not rather from annelids and mollusks than from fisles.

The first undeniable evidence of a fish, or, indecd, of a vertebrate animal, occurs in the Upper Silurian rocks, in a bone-bed of the Downto Sandstone, near Ludlow. It consists of compressed, slightly curved, ribbed spines, of less than 2 inches in length (Onchus), small shagreenscales (Thelodus); the fragment of a jaw-like bar with pluricuspid teeth (Plectrodus) ; the cepbalic bucklers of what seems to be a species of Pteraspis, and, finally, coprolitic bodies of phosphate and carbonate of lime, including recognizable remains of the mollusks and crinoids inhabiting the same waters. But no vertebra or other part of the skeleton has been foand. The spines and scales seem to bave belonged to the same kind of fish, which probably was a Plagiostome. It is quite uncertain whether or not the jaw (if it be the jaw of a fish) belonged to the bucklerbearing Pteraspis, the position of which among Ganoids, with which it is generally asseciated, is open to doubt.

No detached undoubted toath of a Plagiostome or Ganoid acale has been discovered in the Ludlow deposits; but this much is certain, that those earliest remains in Palæozeic rocks belonged to fishes closely allied to forms occurring in greater abundanea in the succeeding formation, the Devonian, where they are associated with undoubted Paiaichthyes, Plagiostomes as well as Ganoids.

These fish-remains of the Devonianor Old Ked Sandstone can be determined with greater certainty. They consist of spines, the so-called "ichthyodorulites," which show sufficiently distinctive characters to be referred to seseral genera, one of them, Onchus, still surviving from the Silarian epocl. All these spunes are believed to be those of Chondropterygians, to which order some pluricuspid testh (Cladodus) from the Old Red Sandstene in the vicinity of St Petershurg have been likewise referred.

The remains of the Ganoid nobes are in a much more perfect state of preservation, so that it is even possible to obtain a tolerably certain idea; of the general appearance and habits of some of them, especially of such as were providerl with bard carapaces, solid scales, and ordinary or bony fin-rays A certain propotion of them, as might have been expected, remind us, as regards therr external form, of Tcleosteous fishes rather than of any of the few otill existing Ganoid types• bnt it is contrary to all analogy and to all palxentologreal pridence to suppose that those fishes were, in their internal structure, mere nearly aliied to Teleasteans than to Ganoids. If they were not true Ganoids, they may justly be supposed to lave had the essential characters of Palcichlthyes Other forms even at that remote geologieal epoch eshibit so unmistakably the characteristies of existing Ganoids that no onc can entertain any doubt with regard to their place in the system In nene of these fishes is there any trace of verts. bral seamentation.

Tbe Palaichthyes of the Old Red Sand tone, the eystcmatic position of whieb is still obscure, are the Cephalaspide from the Lower Old Red Sandistone of Grcat Britain ead Eastero Canada. Pterichthys, Corcosteas, Dinichthys, and Asterdepis (genera which have been combined io one group, Placodermas) ; and Acan thodes and allied genera, which combined numerous branchiostegals with Chondropterygian spines and a sbagreen-like dermal corering.

Among the other Devonian fishes (and they form the majerity) two types may be recognized, buth of which are unmistakably Ganoids. The first opproaches the still living Polypterus, with which some of the genera like Diplopterus singularly agree in the form and armaturc oi
the head, the lepidesis of the body, the lobate pectoral fins, and the termination of the vertebral column. Other geaera, as Holoptychius, have eycloid scales, many tave twe dorsal fins (IIoloptychius), and, mstead of branchiostegals, jugular scutes, others lave one long dorsal confluent with the caudal (Phaneropleuron). In the second type the principal characters of the Dipnoz are maniesst; and some of them-for example, Dipterus, Paledarius, Holodus-approach so clese.y the Dipmor which still sprvive that the differences existing between them warrant a separation into families only.

Devonian fishes are frequently found noder peculiar carcumstances, enclosed in the so-called nodules. These bodies are elliptical tlattened pebbles, whicb bave resisted the action of water in consequcnee of their greater hardness, whilst the surreunding rock has been redueed to detritus by that ageacy Their greater density is due to the dispersinn in their substance of the fat of the anmat which decomposed in them Frequently, on cleaving one of these nodules with the stroke of the hammer, a fish is found embedded in the centre. At certain localities of the Devonian, fossil fishes are so abundant that the whole of the stratum is affected by the decomposing remaina, emitting a peculiar smell when newly opened, and acquiring a density and durability not possessed by strata without fishes. The flagstones of Caithness are a remarkable iostance of this.

The fish-remaias of the Carboniferous formation show o great similarity to those of the preceding. They occur throughout the series, but are very irregularly cistributed. being estremely rare in some countries, whilst in others entire beds (the so-called bene-beds) are composed of ichthyolites. In the ironstones they frequently form the nuclei of nodules, as in the Devonian.

Of Chondropterygians the spines of Onchus and others still occur, with the addition of teeth in cative of the existence of fishes allied to the Cestracion type (Cochiodus, Psammodus), a type which benceforth plays an impertant part in the composition of the extiact marne fish faune Another extinct Selachian family, that of the Hybodonts. makes its appearance, but is kaown from the teeth only

Of the Ganoid fishes, the family Palconascida (Traquenr) is numerourly represented; others are Coclacanths (Col. acanthus, Rhizodrs), and Saurodipterina (Megolichthys) None of these fishes have au ossifici vertebral column, but in some (Megatichthys) the outer surface of the vertebra is ossified into a ring; the termination of their tail is heterocercal. The Carboniferous Uronemus and the Dev. onian Phancropleuron are probably genericaliy the same and the Devoninn Dipnoz are continued as, and well represented by, Cterodus

The fishes of the Permian group are very similar to thase of the Carboniferous A trpe which in the later was bua very scantily represented, namely the Platysomidue, is much developed. They were deep-hodied fish, covered with harc rhombeid scales possessing a strong anterior rib, and pro Fided with a heterocercal caudal. long dorsal and anal, shor non-lobate prired fins (when present), and bravchiestegals Palcooziscus appears io many species, the Sauritue are represented by Pryopterus and Acrolepis, and Cestracionts by Janassa and Sirophothus.
The passage from the Paleozoic into the Mcsozoic ero is not indicated by any marled change so far as fishes are conceraed. The more remarkable forms of the Trias are shark-like fishes represented by ichthyodorulites, like Nemaeanthus, Liacanthus, and IIytortus; and Cestracients represented by species of Acroclus and Strophodus. Of the Ganoids, Celuranthus, itmblyperus (Prleoniseide), and Sonrichliss persist from the Carbomiferous epoch. Cera1o.ins appears for the first time (Muschel Kalk of Germany)

Thanks to the researenes of Agassiz, anu especially of Bir P. Egerton, the iehthyological fauna of the Lias is perbaps the best known of the Mesuzoic era, enehundred and fifty-two species having been described. Of the variouslocalities, Lyme Regis has yielded more than any other, nearly all the Liassic genera being represented there by nofewer than seventy-nine Species. The Hybedents and Cestracients continue in their fullest development. Holocephales (Ischyodus), true sharks (Palcooscyllium), rays (Squaloraia, Arthropterus), and sturgeeas (Chondrosteus) make their first appearance; but they are sufficiently distinet from living types to be elassed in separate genera, or even families. The Ganeids, especially Lepidosteoids, predominate over all the other fishes: Lepidotus, Semionotus, Pholidophorus, Pachycormus, Eugnaius, Tetragonolepis, are represented by numereus species; ather remarkable genera are Aspidorhynchus, Belonostomus, Saurostomus, Sauropsis, Thrissonotus, Conodus, Ptycholepis, Endactis, Centrolepis, Legnonotus, Oxygnathus, Meterole? dotus, Isocolum, Osteorhachis, Mesodon. These genera afford evidence of a great change since the preceding period, the majority not being represented in older strata, whilst, oa the other laad, many are continued into the succeeding Oolitic formations. The bomocercal termination of the vertebral columa begins to supersede the beterocereal, and many of the genera have well-essified and distinctly segmented spinal columns. The cycloid form of scales also becomes more common,-one genus (Leptolepis) beiog, with regard to the preserved hard portions of its organization, so similar to the Teleosteous type that some palmontologists refer it (with anveh reason) to that subelass.

As alrendy mentioned, the Oolitic formations show a great similarity of their fish fauna to that of the Lias; but still more apparent is its appreaeh to the existing fauna. Teeth bave been found which cannot eveo generically be distinguished from Notidanus. The rays are represented by genera like Spathobatis, Belemnobatis, Thaumas; the Holocephaliare more numereus than in the Lias (Ischyodus; Ganculus). The most common Ganeid genera are Caturus, Pycnodus, Pholidophorus, Lepidotus, Leptolepis, all of which had been more or less fully represented in the Lias. Ceratoclus also is continued into it.

The Cretaceous group gives elear evidence of the further advance towards the existing fauna. Teeth of sharks of existing genern, Carcharias (Corar), Scyllinm, Notidamus, nud Galeocerdo, are commen in some of the marine strata, whilst Hybodonts and Cestracionts are represented by a small number of species only; of the latter one new genus, Ptychodus, appears and disappears. A very characteristic Ganoid genus, Macropoma, eomprises homocercal fishes with rounded ganoid scales sculptured externally and pierced by prominent mucous tubes. Caturus becomes extinct. Teeth and scales of Lepidotus (with Sphacrorlus as subgenus), clearly a freshwater fish, are widely distributed in the Wealden, and finally disappear in the Chalk; its borly was covered with large rhomboidal ganoid seales. Gurodus and Aspidorteyncluzs occur in the Leds of Voirons, Colodus ant A mimpsis (alied to A mia) in those of Comen, in Istria. Fut the I'alewhehteyes are now in the minority; undoubted 'leleosteans have appeared for the first time on the stage of life in numerons genera, many of which are identical with still existing fishes. 'lhe most of these are Acanthopterygians, but Physostomes and l'lectugnathis are likewize well represented, most of them being marine. Of Acanthopterygian families the first to nppear are the Berycider, represented by seweral very distinct genera:Pergar; P'omdobrys, with abominal ventral fins; Derycopsis, with cycluid scales; Itomonorns, Stenostomit, S'phenocopluclus, Acrians, Hophoptery, I'atyromme, with granular scales; I'odorys, with a dorsal extending to ine nock; Acrogusiev: Mecrolepis thacolepis, from the Chalk of Drazil.

The position of Pycnosterynx is uncertain; it approaches certain Pharyagognaths. True Percida are absent, whilst the Carangidar, Sphyranidu, Cataphracti, Gobiidae, Cottidce, and Sparille are represented by oae or more genera. Somewhat less diversified are the Physostomes, which belong principally to the Clupeidee and Dercetidce, most of the genera being extinet; Clupea is abundant in some Jocalities. Scopelide (Hemisaurida and Saurocephalus) oecur in the. Chalk of Comen in Istria, and of Maestricht. Of all Cretaceons deposits none surpass those of the Lebanon for the nuaber of genera, species, and individuals; the forms are exclusively marine, and, the remains in the mest perfect. conditioa.

In the Tertiary epoch the Teleosteans hare almost entirely replaced the Ganoids; a few species only of the latter make their appearance, and they belong to existing genara (Lepidosteus, Acipenser). The Chondropterygians merge more and more into recent forms; IHolocephiali continue, and still are better represented than in the present fauna. The Teleosteans show even in the Eocene a large propertion of existing genera, and the fauna of some localities' of the Miocene (Oeaingen) is almost wholly composed of then. Of the whole mere than one-half have already been found to belong to existing genera, and there is no doubt that the number of distinct genera now seearingly extinct will be lessened as the fossils come to be examined with a better knewledge of the living forms. The distribution of the fishes differed widely from that of our peried, many of our tropical genera occurring in localities which are now included within our temperate zone, and being mised with others that nowadays are restricted to a colder climate,-a combination which continues throughont the Pliocene.

A few families of fishes, like the freshwater Salmonidie, seem to have put in their appearance in Post-Pliocens times; not much attention, hewever, has been paid to fishremains of these deposits; and such as have been incidentally examined furnish evidence of the fact that the distribution of fishes has not undergone any further essential change dowa to the present peried.

gEOGRAPHICAL DISTRIBUTION.

In an acconnt of the geographical distribution of fishes the freshwater forms are to be kept separate from the marine. When we attempt, however, to draw a line between theso two kinds of fishes, we meet with a great number of species and of facts which would seem to render that distinction very vague. There are net only species whieh ean gradually accommodate themselves to a sojourn in cither salt or fresh water, but there ate also some that seem to be quite indifferent to a rapid change from the one into the other; so that individuals of one and the same apecies (Gastrosteus, Gobits, Blennius, Osmerus, Retropinnc, Clupa, Syngnathus, ic.) may be found some distance ont at sea, whilst others live in rivers far beyond the influence of the tide, or even in inland fresh waters without outlet to the sca. The majority of these fishes beloag to foras of brackishwater fama; and; as they are not an insiguificant portion of the fauna of almost every const. We shall have to treat of them in a separate elapter.

Almost every large river effers instances of truly mariue fishes ascending for hundreds of miles of their course, and not periodically, or from any apparent physidugical necessity, but sporadically thronglunt the ycar. This is evidently the commencement of a change in a fish's habits; and, indeed, net a few of such fishes have actually taken up their permanent residence in fresh waters, as especies of Ambassis, Aprapon, Dules, Therrpon, Scicna, Ileanius, Cobins, Atherma, Muril, Wrysus, Memirhamphns, Chyea, Ammille, Tetrodon, I'ryyon,--all forms originally marinc.

On the other hand, we find fishes belonging to freshwater genera descending rivers and sojourning in the sea fur a more or less limited period; but these instances are much less in number than those in which the reverse obtains. We may mention species of Salmo (the common trout, the northern charr), and Siluroids (as Arius, Plotosus). Coregonus, a genus so characteristic of the inland lakes of Europe, Northeru Asia, and North America, nevertheless offers some instances of species wandering by the effluents into the sea, and taking up their residence in salt water, apparently by preference, as Coregonus oxyrhynchus. , But of all the freshwater families none exhibit ao great a capability of surviving the change from fresh into salt water as the Gastrosteida (sticklebacks) of the northern bemisphere, and the equally diminutive Cyprinodontidec of the tropics; not only do they enter into, and live freely in, the sea, but many species of the latter family inbabit inlaod waters, which, not having an outlet, have become briny, or impregnated with a larger proportion of salts than pure sea-water. During the voyage of the "Cballenger" a species of Fundulus (F. nigrofasciatus) which inhabits the fresh and the brackish waters of the Atlantic States of North America was obtained, with Scopelids and other pelagic forms, in the tow-net, midway. between St Thomas and Teueriffe.
Some fishes annually or periodically ascend rivers for the purpose of spawning, passing the rest of the year in the sea, as sturgeons, many Salmonoids, some Clupeoids, lampreys, de. The first two evidently belonged originally to the freshwater series, and it was only io the course of their existence that they acquired the habit of descending to the sea, perhaps because their freshwater home did not furnish a sufficient supply of food. These migrations of fresh water fshes have beeu compared with the migrations of birds; but they are much more limited in extent, and do not, as is the case with birds, impart an additional element to the fanna of the place to which the fishes migrate.

The distinction between freshwater and marine fishes is further obscured by geological changcs, in consequence of which the salt water is gradually being changed into fresh, or vice versa. These changes are so gradual, and spread orer so long a time, that many of the fishes inhabiting such localities accommodate themselves to the new conditions. One of the most remarkable and best studied instances of such an alteration is the Baltic, which, during the secoud half of the Glacial period, was in open and wide compunication with the Arctic Ocean, and evidently had the same marine fauna as the White Sea. Since then, by the rising of the land of Northern Scandinavia and Finland, this great gulf of the Arctic Ocean has become an inland sea, with a narrow ontlet into the North Sea, and, in cousequence of the excess of fresh water pouring ioto it over the loss by evaporation it has been so much diluted as to be nearly fresh at its northern extremities; and yet nine species, the origin of which from the Arctic Ocean can be proved, have survived the changes, propagating their species, and agreeing with their brethren in the Arctic Ocean in every point, but remaining comparatively smaller. On the other hand, fishes which we must regard as true freshwater fishes, like the rudd, roach, pike, porch, enter frecly the brackish mater of the Baltic. Instances of marine fishes being prermanently retained in fresh water in consequence of geological changes are well known: as Cottus quadricornis in the large lakes of Scandinavia; species of Gobius, Blemuius, and Atherina in the lakes of northern Italy; Comephorus, which seems to we a dwarfed Gadoid, in the depths of Lake Baikal. Carcharics gungeticus in inland lakes of the Fiji Islanus, is another instance of a marine fish which has permanently established itself in fresh water.

Thus there is a constant interchange of species in piogress betwen the freshwater and marine faune, and in 100t a few cases it would seem almost arbitrary to refer a'genus or even a larger group of fishes to tue une or the other'; yet there are certain groups of fishes which entirely, or with but few exceptions, are, and apparently during the wholo period of their existence have becn, inhabitants either of the sea or of fresh water; and, as the asencies operating apon the distribution of marine fishes differ greatly from those inguencing the dispersal of freshwater fishes, the two series must be treated separately. The most obvious fact that dry land, which intervenas between river systems, presents to the rapid spreading of a freshwater fish an obstacle which can be surmonnted only exceptionally or by a most circuitous route, whilst mariac fishes may readily and voluutarily extend their original limits; could be illustrated by a great number of instances. Without entering into details, it may suffice to state, as the gencral result, that no species or genus of freshwater fishes bas angthing like the immense range of the corresponding categories of marine fishes, and that, with the exception of the Siluroids, no freshwater family is so widely spread as the families of marine fishes. Surface temperature or climate, which is, if not the most, one of the nost inportant physical factors in the limitation of freshwater fishes, similarly affects the distribution of marine fishes, but in a less degree, and only in the case of those which live near the shore or the surface of the ocean; it ceases to exercise its influence in proportion to the depth, the true deep-sea forms being entirely exempt from its operation. Light, which is pretty equally distributed over the localities inhabited by freshwater fishes, cannot be considered as an important factor in their distribution, but it contributes to the formation of the impassable barrier between the surface and abyssal forms of marine fishes Altitude has stanped the fishes of the various alpine provinces of the globe with a certain character, and limited their distribution; but the number of these alpino forms is comparatively small, ichthyic life being extinguished at great elevations even before the mean temperature equals that of the high latitudes of the Aretic regiou, in which some freshwater fisbes Hourish. On the other hand, the depths of the ocean, far exceeding the altitude of the lighest inountains, still swarm with forms specially adapted for abyssal life. That other physical conditions of minor and local importance, under which freshwatcr fishes live, and by which their dispersal is regulated, are more complicated than similar ones of the ocean, is probable, though perhaps less so than is generally supposed; for the fact is that the former are more accessible to observation than the latter, and are therefore more generally and more readily comprebended and acknowledged. It will thus be nccessary to treat of the two series separately, not only because many of the most characteristic forms of the marine and the freshwater scries are found, on taking a broader siew of the subject, to bo sufficiently distinct, but also because their disitribution depends on causes dificrent in their nature as well as in the degree of their action. Whether the oceanic arcas correspond in any way to the terrestrial will be scen in the sequel.

Freshwater Fishis.

Having shown above that numerous marine fishes enter fresh waters, and that some of them bave permanently' established themselves therein, we bave to eliminate froms the catcgory of freshwater fishes all such adventitious elements. They are derived from forms the distribution of which is regulated by other agencies, and which therefore would obscure the relations of the fauna of terrestrial regions if they were included in them. They will bo
mentioned with greater propricty along with thas fishes constituting the faum of brackish water.

The true frediwater fishes are all embraced in the folInwing families and groups:-
Dipuoi, with 4 species; Acipenscride and Polyodontidx, 20 ; Animie. 1; Polyptridic, 2; Lepdosteide, 3, Perema, 46 ; Grystina, 11 ; Aphreloderilic, 1, Centrarchima, 26 ; Dules, 10 ; Namtilx, 7 ; Polycentribe, 3 ; Labyrinthici, 30 , Luciocephalide, I; Gastostens, 10 ; Oldiocephalides, 31 ; Mastacembelide. 13 ; Chromides, 100 ; Comephoride, 1 ; Gadopsidxe, 1 ; Siluride, 572 ; Chamemitle, 261 ; Haplochitonidx, 3: Samomde (3 genera exeepted), 135 ; Гurcopsidie, 1 ; Galaxidie, 15 . Mormyrida (and Gymarchilic), 52 ; Espoilie, 8 ; Unbuide, 2; Cyprinodontide, 112: Heteropygii, 2; Cyprinilic, 724, Kncritax, 2; Hyolontide, 1; Pantolontide, 1 ; Ostcoglosside, 5 ; Notopternde, 5; Gymootide, 20 ; symbmachida, 5 ; 「etromyzontide, 12 . Total, 2270 ${ }^{s}$ pectics.

As in every other class of animals, these freshwater genera and families vary exceedingly with regard to the extent of their gengraphical range, -some extending over mure than the half of the continental areas, whilst others are limuted to one continent only, or even to a very small portion of it. As a gencral rule, a genus or family of freshwater fishes is regularly dispersed and most developed within a certain district, the species and individuals becoming fewer towards the periphiery as the type receles more from its central home, sume outposts, however, frequently being pushed far beyond the outskirts of the area oceupied by it. At the same tine remarkable instances exist of closely allied forms occurring, almost isolated, at most distant points, without beins connected by allied species in the intervening space, and of members of the same family, genus, or species inhabiting the opposite shores of an ocean, and separated by many degrees of abyssal depths.
The dispersal of freshwater fishes has been effected in various ways; probably all the causes are still in operation, most of them working so slowly and impercentibly as to escape direct obscrvation. From the grat number of freshwater forms which we see at the present day already acclimatized or gradually becoming acelimatized in the sen, or periodically or sporadically migrating to it, we must conclude that, under certain circumstances, salt water may cease to be an impassable barrier at some period of the existence of freshwater species, and that many of them have passed from one river through salt water into another. Secondly, the hendwaters of some of the largest rivers, the mouths of which are at oppesite ends of the continents which they drain, are sanctimes distant from each other a few miles only; tho intervening space may easily have been bridged over for the passage of fistes by a slight geological clsange affectiog the level of the watershed, or cven by temporary floods; and a commonication of this kind, if existing for a limited period only, would afford the ready mans for an exchange of a number of species previously peculiar to no er the other of those river or lake systems. Some fishes provided with gill-openings so narrow that the water moistening the gills camot readily evaporate, and eqlowed, besiles, with an extraordinary degree of ritality, tile many Siluroids (Clarias, Callichthys), eely, se., are enablel to wander for some distance over lind, and thus may reach a watercourse lealing them thousands of miles from their original home. Finally, fistees or their ora may lee aceidentally carried by watersponts, or by aquatic birds or insects, to considerable distances.

Freshwater fishes of the present fanna wero already in existence when the great clanges in the distribution of lani anel water took place in the Tertiary epoch, and having seen that salt water is not an absulute larrier to the sprearling of freshwater fishes, we can now mone casily aceonint for those instances of eingular disconnexion of celtain families or genera. It is not necessaly to nssmuo that there was a continuity of land stretehing foom tho
present coast ol Africa to Sonth America, or Srom Suthi America to New Zoaland and Australia, to explain the presence of identical forms in localitios so distant; it suffices to assume that the distances were lessened by intervening archipelagoes. or that an alteration has taken place in the level of the land area.

Dispersal of a type over several distant continental areas may be evidence of its great antiguity, but does not prove that it is of greater antiquity than anotlier limited to one region only. Geological evideuce is the only proof of the antiquity of a type. Thus, although the Depmor occur in the coutinents of Africa, South America, and Australia, anil their present distribution is evidently the conserquence of their wide rango in Palaozoic and Secondary cpochs, tho proof of their high antiquity can be found in their fossil remains only. Thi Siluroids, for exampte, have a still grea'er range, but their wido distribution is of comparatively recent date, as the fow fossil remains that have been foum loclong to the 'Fertiary epoch. The rapidity of dispersal of a type depends entirely on its power to accommo. dato itself to a varicty of physical conditions, and on the degree of ritality by which it is enabled to survive more or less sudden changes under unfavourable couditions; proof of this is afforded by the family of Siluroids, many of which ean suspend for some time the energy of their respiratory functions, and readily survive a change of water.

To trace the geological' sequence of the distribution of an ichthyic type, and to recognize the various laws which have governed and are still governing ito dispersal, is one of the ultimate tasks of ichthyology. But the endeavour to establish by means of onr present fragmentary geological knowledge the divisions of the fauna of the globe leads us into a maze of conflicting evidence; as Mr Wallace truly observes, "any attempt to exhibit the regions of former geological ages in combination with those of our own period must lad to confusion." Nevertheless, as the different types of animals fonnd at the present day within a particular area have made their appearance therein at distant periods, wo should endeavour, in giving an account of the several zoo-geographical divisions, to decide, so.far as we can, the following questions:-

1. Which of the fistes of an area should be considered to be the remnants of ancient types, probably spread over much larger areas in preceding epocis?
2. Which are to be considered to be autochtnonous species, that is, forms which in the Tertiary epoch or later cance into existence within the area to which they are still limited, or from which they have since spread?
3. Which are tho forms which must be consideren to be inmigrants from some other region?

It is the aim of every philosophical classification to indicate the degrees of allinity which obtain between the various categories. In dividing the carth's surface into zoological regions, tho two familics, $C y p$ rinide and Silurida, the former of which yields a contingeat of one-third and the latter of one-fourth of all the known freshwater species of our period, alford most important guidanco for the estimition of those degrees of affinity. The Cyprinoids may be assumed to have originated in the alpine region dividing tho temperate and tropical parts of Asia; cndowed with a greater capability than any other family of froshwater fishes of acclimatizing thenselves in a temperato as well as in a tropical region, they spread north and south as well as east and west; in tho Pre-Clacial cpoch they reached North America, but they have not had time to penctrate into South America, Australia, or the islands of the Pacific. The Sihuroids, principally fishes of the sluggish waters of the [hains, well adapted for surviving changes of the water in which they live, und for living either in mud or in eeawater, ilourish most in the tropical chmate in which this
antos evidently had its origin. They.came into existence ifrer the Cyprinoids, their fossil remains being found only a Tertiary deposits in India, none in Europe. They rapidly spread over the areas of land within the tropical zune, reaching Northern Australia from India, and one specirs migrating esen into the Sandwich Islands, probably from South America. The coral islands of the Pacific still remain untenanted by them. Their progress into temperate regions was eridently slow, only very few species haring penetrated into the tempersta parts of Asia and Europe, and the North Americsn species, although more numerous, showing no great variety of structure, all belenging to the same group (Amiurina). Towards the south their progress was still slower, Tasmania, New Zealand, snd Patagonia being without any representative, whilst the streams of the Andes of Chili are inhabited by a few dwarfed forms identical with such as are characteristic of similar localiies in the more northern and warmer parts of the South American continent.

These remarks may serve to introduce the following division of the fauna of freshwater fishés :-
I. The Northern Zone.-Characterized by Acipenseridx. Few Siluridx. Numerous Cyprinidæ. Salmonidx, Esocidæ. Europo-Asiazic or Palocartic Region.-Characterized by abseace of osseous Ganoidei; Cobitidæ and Barbus numerous
2. North American Region. - Characterized by osseous Ganoidei, Amiuriaa, and Catostomina; but no Cobitidæ or Barbus
II. Tue Equatorial Zone-Characterized by the development of Siluridx.
A. Cyprinoid Divizion.-Characterized by presence of Cyprivide and Labyriathici.

1. Indian Region.-Characterized by [absence of Dipnoi ${ }^{1}$] Ophiocephalide, Mastacembelidx. Cobitidx oumerons.
2. African Region.-Characterized by presence ot Dipooi and Polypteridx. Chromides and Characioidx $n u m e r o u s$. Morimyridx. Cobitidæ absent.
A. Acyprinoid Division.-Characterized by absence of Cypriridx and Labyrintbici.
3. Tropical American or Neolropical Region-Characterized by presence of Dippoi. Cbromides and Characioidæ dumerous. Gymnotidæ.
4. Tropical Pacific Region.-Choracterized by preaence of Dipnoi. Chromides and Characinidx a bsent.
5. Tre Sodteers Zone-Characterized by absence of Cyprinidx, and scarcity of Siluridx. Haplochitonidx and Galaxiidx repreaeot the Salmonoids and Esoces of the northern zone. One region only.
Antarctic Reyion.-Cbaracterized by the small number of epecies; the fishes of-
a. The Tasmanian aub-region,
b. The New Zealaod sub-rogion, and
c. The Patagonias sub-region,
being olmost identical. ${ }^{2}$
In the following account wa begin with a description of the equatorial zene, this being the one from which the two principsl families of freshwater fishes seem to have spread.

Equatorial Zone - Roughly spoaking, the borders of llis zoological zone coincide with the geographical limits .f the 1 ropics of Cancer and Capricorn; its charseteristic forms, however, extend in undulating lines several degrees loth northwards and scuthwards. Commencing from the west coast of Africa, the desert of the Sahara forms a well-marked boundary between the equatorial and northern zones; as the, boundary approsches the Nile, it makes a sudden sweep towards the north as far as northern Syria (Jastacembelue, near Aleppo and in the Tigris; Clarias and Chromides, in the Lake of Galilee), crosses through

[^127]Persia and Afghanistan (Ophiocephalus) to the sonthera ranges of the Himalagas, and follows the course of the Yaug-tse-Keang, which receives its contingent of equatorial fishes through its southern tributaries. Its continuation throngh the Nerth Pacific may be considered as indicated by the tropic, which strikes the coast of Mexico at the southern end of the Gulf of California Equatorial types of South America are known to extend so far northwards; and, by following the same line, the West India Islands, are naturally included in this zone.
Towards the south the equatorial zone embraces the whole of Africa and Madagasear, sad seems to extend still farther south in Australia, its boundary probably following the southern coast of that continent; the detailed distribution of the freshwater fishes of south-western Australia has been but little studied, but the few facts which we know show that the tropical fishes of that region follow the principal water-course, the Murray river; far towards the south and probably to its mouth. The boundary line then stretches to the north of Tasmania and New Zealand, coinciding with tha tropic until it strikes the western slope of the Andes, on the South American continent, where it again bends southrard to embrace the system of the Rio de la Plata.
The four regions into which the equatorial zone is divided arrange themselves into two well-marked divisions, one of which is characterized by the presence of Cyprinoid fishes, combined with the development of Labyrinthici, whilst in the other both these types are absent. The boundary between the Cyprinoid and Acyprinoid division seems to follow Wallace's line,-a line drawn from the south of the Philippines between Borneo and Celebes, and farther south between Bali and Lombok Borneo abounds in Cyprinoids; from the Philippine Islands a few only are known at present, and in Bali two species have been found; but none are known from Celebes or Lombok, or from islands situated farther east.
Taking into consideration the manner in which Cyprinoids and Siluroids bave been dispersed, we are obliged to place the Indian region as the first in tha order of our treatment; and indeed the number of freshwater fishes which appear to have spread from it into the neighbouring regions far exceeds that of tho species which it has received from them.

The Indian Region comprises the whole continent of Asis south of the Himalayas and the Yang-tse-Keang, and includes the islands to the west of Wallace's line. Towards the northeast the island of Formosa, which also by other parts of its fauna shows the characters of the equatorial zone, has received some characteristic Japanese freshwater fishes, for instance, the singular Salmoneid Plecoglossus. Within the geographieal boundaries of China the freshwater fishes of the tropics pass gradually into those of the northern zone, both being separated by a broad dcbatable ground. The aflluents of the great river trsversing this district are mere numerous from the south then from the north, and carry the soutbern fishes far into the temperate zone. Scarcely better defined is the boundary of this region towards the north-west. Before Persia passed through the geological changes by which its waters were converted into brine and finally dried up, it seems to have bcen inlabited by many characteristic Indian forms, of which a few still survive in the tract intervening between Afghanistan and Syria; Ophiocephalus and Discognathus bave cach at least one representative, Macrones lass survived in the Tigris, and Mastacembelus has penetrated as far as Meppe. Thus freshwater fishes Delowinging to India, Africa, and Eurepe are intermingled in a dixtrict which forms the connecting link bictween the three continents. Of the freshwater folins of Arabis we are almust entircly ignorant: we onls
know that the Indian Discognatious lamta occurs in the reservoirs of Aden (baring also fuond its way to the opposite African coast), and that the ubiquitous Cyprinodonts thrive in the brackish pools of northera Arabia.

In analysing the list of Indian fishes, we find that ont of 40 families or groups of freshweter fishes 12 are represented in this region, and that 625 species are known to ocenr in it, or tro-sevenths of the entira number of fresbwater fishes known. This large propertion is principally due to the development of numerons local forms of Siluroids and Cyprineids, of which the former show a contingent of about 200 , and the latter of about 330 species. The combined development of those tro families, therefore, and their undue preponderance over the other frestwater types, is the principal characteristio of the Indian region. The second important character of its fauna is the apparently total absence of Ganoid and Cyclustomons fishes. Every other region has representatives of cither Ganoids or Cyelostomes, some of both.

Of the autochthonous freshwater fishes of the Indian region, some are still limited to it, viz., the Nandina, the Luciocephalide (of which one species only exists in the archipelago), of Siluroids the Chacina and Bagariiuta, of Cyprineids the Semiplotina and Homalopterina; others are very nearly so, such as the Lalyrinthici, Ophiogephalidie, Mastacembelides, of Siloroids the Silurina, of Cyprinoids the Rasborina and Danionina, and the Symbranchida.

The regions to which the Indian bas least similarity are the North American and the Antarctic, as they are the most distant. Its affiaity to the other regions is of very differeat degrees:-

1. It's affinity to the Europo-Asiatic reginn is rery slight, and is iadicated almost solely by three groups of Cyprinoids, viz., the Cyprinina, Abramidina, and Cobitidina. The development of these groups north and south of the Himalayas is due to their common origin in the highlands of Asia; but the forms Which descended into the tropical clinate of the sonth are now so different from their oorthern brethren that most of them are referred to dis. tinct genera. The only generz which are still common to buth regions are (1) the true barbels (Barbus), a gedus which of all Cyprinoids has the largest range ovel the old World, and of which some one hundred and sixty species hare been described, and (2) the mountain barbels (Schizothorax, \&c.), wbich, peculiar to tho alpine waters of Central Asia, descend a short distance only towards the tropicat plains, but extend farther into rivers within the northern teopperate districts. The origiu and the laws of the distribution of the Cobitidina appear to have betn identical with those of Barbus, but they have not spread into Africa.
2. There exists a great affiaity between the ludian and African regions; seventeea out of the twonty-six families or gromps fouml in the former ere represented by one or more species in Africa, and many of the Alrican apeciee are ont evea gencrically different from the ludian. As the majority of theso groups bave many more representatives in India than in Africa, wo may reasonably assume that the Afriean apecies have been derived from tho Indian stock; but probably this is not the caso with the Siluroid group of Clariina, which with regard to afecies is nearly equally distributed between the two regions, tbe African apecies boing reforable to three genera (Ctarias. Ifelerobranchus, Gymnallabes, with tho sob-genus Channallabes), whilst the Indian species belong to two genera only, viz., Clarias and Mete:obranchus. On theotber hazd, the Indian region has derived from Africa one froshwater form only, viz., Etroplus, a member of the family of Cihromides, so welt represented in tropical Africa and Sou'h Amrrica. Etroplus inhabits southernand western India aud Ceyhur and has its nearest ally in a Madagasear freshwater fish, P'arelrophs Consifuring that other Afrienn Chromizes have neclimatized themselres nt the present day insaline water, we think it more prohable that E'trghlus should have foumd its way to ludia through the onea' than over the connectiug land ares, where, lessides, it does not necur.
3. Nocloser affinity exists hetween the Indian and Tropical American regions than is imdicated by the chatacter of the equaterind zone facrally. With two exceptions, no genus of freshwater fishes encyrs im Inda and South America withont leing found in tho inefmediato African region. Fonr small Indian Siluroids (Sisor, Rechives, Pseudedences, and Erostoma) hawe been refertet to the South American $/$ /ypostomatine; but it remains to be seen whether this combination is hasm upon a sumbent scremment of thear internas stracture or whelher it is not rather artibeial: On
the other haad, the occurrence and wide distribution in tropicat America of a fish of the Iudian family Symbranchides (Symbranchus marmoratus), which is not only congeneric with, but also most elosely allied to, the Judian Symbranchus bengalensis, furnishes one of those extraordinary anomaties in the distribution of animals of which no satisfactory explanation can at present be given.
4. The relation of the lndian to the Tropical Pacife region consists only in its baving contributed a few species to the poor faura of the latter. This immigration must have taken place withia a recent period, because sone species now inhabit the fresli waters of tropical Australia and the South Sea lslaads without having in any way changed their specific characters, as Lates calcarifer, species of Dules, Plotosus anguitlaris; others (species of Arius) differ but little from their Indian congeners. All these tislies nust have migrated by the sea, a supposition which is surported by what we know of their habits. We need not add that India has not received a single addition to its freshwater fish fauna from the Pacific regrion.

It may be inentioaed, before concluding these remarks on the Indian region, that peeuliar genera of Cyprinoids and Siluroids iababit the streams and lakes of its alpine ranges ia the north. Some of them, like the Siluroid genera Glyptosternum, Euglyptosternum, Pseudecheneis, have a folded disk on the theras between their horizontally spread pectoral fias; by means of this they odithere to stones at the bottom of the mountain torreats, and without it they would be swept away iato the lewer courses of the rivers. The Cyprineid genera inhabiting similar localities and the lakes into which alpine rivers pass,-snch as Oreinus, Schizothorax, Ptychobarbus, Schizopygopsis, Diptychus, Gymnocypris,-are distinguished by peculiarly enlarged seales near the vent, the physiolegical use of which has not yet been ascertained. These alpine geaera extend far iato the Furopo-Asiatic regino, where the climate is similar to that of their southern home. No observations bave been made by which the altitudinal limits of fish life ia the Himalayas can bo foxed, but it is probable that it reaches the line of perpetual saow, as in the European Alps, which at that beight are inhabited by Salmonoids. Griffith found an Oreinus and a loach, the foriner in abundance, in the Helmuad at Gridun Dewar, altitude 10,500 feet, and another loach at Kialoo at 11,000 fect.

The African Region comprises the whole of the African continent south of the Atlas and the Sahara. It might hare been cenjectured that the more temperate climate of its southern extremity would bave been accompanied by a conspicuous difference in the fish fauna. But this is not the case; the difference between the tropical and southern parts of Africa consists simply in the gradual disappearance of specifcally tropical forms, whilst Siluroids, Cyprinoids, and cven Labyrinthici penetrate to its seuthern coast; no new form has entered to impart to South Africa a character distinct from the central portion of the continent. Ia the nerth-cast the African fauna passes the Isthmus of Suez and penetrates into Syria; the system of the Jordan prosents 80 many Africaa types that it has to bo ineluded in a description of the African region as well as of the Europe Asiatic. This river is inhabited by three species of Chromis, one of IIemichromis, and Clarias macracanthus, a common fish of tho upper Nile. Madagascar clearl, belongs to this region. Desides some gebies and Dule: which are not trne freshwater fishes, four Chromides are known. To.judge from goneral accounts, its freshwater fanna is poorer than might be expected; but, singular as it may appear, cellectors havo hitherte paid but little attention to the freshwater fishes of this island. The fishos fond in the ireshwaters of the Seychelles and Mascarenes are brackish-water fishes, such as Fundulus, Maplochilus, Elopis, Mugit, de.

Out of the 40 fanilies ur groups of freshwater fishes 18 are represcuted in the Afriean segion, or three more than in the Imlian region ; of two of them, however, siz, the Ophioccphalide und Mastaccmbelide. a few species only
have found their way into Africa. On the other hand, the number of specics is much less, viz., 255, being ouly two.fifths of the known Indian species. The sinall degree of specialization and localization is principally due to the greater uniformity of the physical conditions of this continent, and to the almost perfect continuity of the great river systems, which take their origin from the lakes in its centre. This is best shown by a comparison of the fauna of the upper Nilo with that of the West African rivers. The number of speeies known from the upper Nile amounts to 56 , and of these not less than 25 are absolutely identical with West African species. There is an uninterrupted continuity of the fish fauna from the wist to the north-east, and the species known to be common to both extremities may be reasonnbly assumed to inhabit also the great reservoirs of water in the centre of the continent. A greater dissimilarity is noticcable between the west and north-east fauna on the one hand and that of the Zambezi on the other; the affinity between them is merely generic, and all the fishes hitherto collected in Lake Nyassa have proved to be distinct frum those of the Niie, and even frum those of other parts of the system of the-Zambezi.

Unlike India, Africa does not possess either alpine ranges or outlying archipelagoes, the fresh waters of which would swell the number of its indigenous specics; but, when its fauna becomes better known than at present, the great difference in the number of species betweon this and the Indian regions may possibly be somewhat lessened.
The most numeronsly represented familics are the Siluroids, with 61 species; the Cyprinoids, with 52 ; the Mormyrida, with 51 ; the Characinide, with 35 ; and the C'hromides, with 29. There is not, therefore, that grent preponderance of the first two families over the rest which we noticed in the Indian region; in Africa there is a comparatively grenter variety of distinct freshwater types, making the study of its fauna on unflagging pleasure sueh as is scarcely reached in the study of the other region. With the forms peculiar to it there are combined those of India as well as of South America.
In tropical Africa there are still remnants of Ganoids, Protopterus (Lepidosiren) annectens and Polypterus bichir, with the singularly modified Calemoichthys. The first two range from east to west, and are aceompanied by an Osteuglossoid (Heterotis), which has hitherto been found in the Nile and on the west coast only. Autochthonous and limited to this region are the Mormyride, Puntodontidce, and Kneride, a singular type somewhat akiu to the loaehes. Of Siluruid genera the most characteristic are Synodontis, Rhinogleanis, and the electric Malapterurus; of Characinoids, Citharinus, Alestes, Xenocharax, Mydrocyon, Distichnelon, Ichthyborus.

The regions to which Afriea (like Indin) has least similarity are again the North Ancrican and Antarctic. Its affinity with the Europo-Asiatie region consists ouly in its having reeeived, like the latter, a branch of the Cyprinoids, the African carps and barbels, which on the whole resemble Indian more than Europo-Asiatic forms. Its similarity to Australia is limited to the two regions possessing Dipnoous and Ostcoglossoid types. But its relations to the other two regions of the equatorial zonc aro near and of great interest.

1. Afriea has in common with India the Siluroid grouns of the Clariinct, Silurina, and Bityrina, and nore especinfly the small
 in Imlia, and by two on the west coast of Africa. It would be hazaulons to state at present in which of the two regions these fisles firis male their appeanane, but the discovery of remains of Noto2"cridice and Silurima in Tertiary deposits of Sumatra points to tho Indian region as their orymimal home. We are in loss doult athout the other fishes cominnon to the tro regions ; they are cleaty int. migrants into dfrica from the cast, and it is a remalkablo faet that these immigrauts have peactrated to tire macst distant limits of

Africa in the west as welt as in the sonth, viz, the Leubyrinthici, relresented by tho genera elosely allied to the limian A uabes ; tho
 penetrated to the west const, while, singulaty enough, they ane abseat from the eastern rivers; the A iniula, repressuted by sevenat species, of which one or two are identical with lumbin, having id. tended their range along the inten ening coaste to the cast co.s.st ing Afica. The Cyprinoids alsoallout an instance of na limian spectis
 crossed at the southern extemity of the liell Sea, as it is fumbin in the rescrvois at Aden and in the hiill-steams of the opposite cuastrcgion of Λ bysimin.
2. No suci difect influx of species and monera has recurred from South Amenica into Africa, yot the aftinity of tieier freshwater fishes is striking. Two of thie most natural fanilies of fisbes, the Chromides and Charracinide, ale peculiar and (with the exception of E (roph u s) restricted to them. The Arrican and South Auserican Dipmoi are closely allicd to cach other. The Pimcloctina, so clatracteristic of tropical America, have threc ripresentatives in Afica, viz., Pinaclodus platychir, I'. bultuyi, and Auchenotlentis Liscatutus; the Doradina are another Siluroid group resticted to thesc two continents.' Yet, with all these joints of close resentlince, tho African and South Ancrican setics are, with the exception of the two species of Pimelodus, generi ally distinct,-which slows that the scyaration of the continents nulut have becen of old dite. On the other hand, the existence of so many simitar forms on toth sides of the Atlantic affonls much smpmet to the supposition that at a former preriod the distance between the present Atlantie cuntinents was much less, and that the fishes which havediverged towards tho enst aud west are descendants of a eommon stock which had its home in a region now subnerged under some intervening part of thit occan. Be this as it may, it is evident that the pinysicial conditions of Airica and South Aumerica have remained unchanged for a considerable period, and are still sufficiently alike to prestre the idel. tity of a number of peecrliar freshwator formus on both sides of tho Atlantic. Afriea and South America are, mureover, the only continents which have prodaced in freshrvater fishes, though in vay different families, ouc of the most exthaordinary modifications of an organ - the conversion, that is, of mascle into an ap naratus creatii:g electric force.
The boundaries of the Neotropicel or Tropical American Region bave been sufficiently indicated in the defnition of the equatorial zone. A broad and most irrcgular band of country, in which the Snuth and North American forms are mixed, exists in the north, offring some peculiarities which deserve fuller attention in tha subsequent description of the relations betwcen the South and North American faune.

Ont of the 40 families or groups of freshwater fishes, 9 only are reprosented in the trupical American region. This may be accounted for by the fact that South America is too Duch isolated from the other regions of the equatorial zone to have received recent additions to its fama. On the other hand, the number of specics (672) exceeds that of every other region, even of the Indian, with which, in regard to the compmative development of familice, tho neutropical region shows a close analogy; as will be secin from the following table:-
 25 ; Ophioce pandur, 30 ; Mastacembelidie, 10.
 mides, 80 ; Cyprinodontide, 00 ; Gymnotide, 20.

In both regions the great number of specios is due to tho development of numerous local forns of two fanilies, the Charatinide in the New World taking the phace of the Cipprinider of the Old. To these are added a few smaller families with a moderately large number of species, which. however, is only a fraction of that of the leading fams. lies, the remainder heing ropresented by a few species only. The number of generiz within exel of the two reginus belonging to the two principal fanilios is also siugularly alike; the Iudian region having produced about 45 siluroid and as many Cyprinoid genera, whits the Nco. tropical reginn is tenanted by 54 Siluroid and 10 Chara-

[^128]cinoid genera. These points of similarity between the fwo regions cannot be accidental ; they indicate that agreement in their plysical and hydrographical features which in rality exists. Of Ganoirls, we find in tropical America one species only, Lepridusiren puraluxa, accompanied by two Osteoglossoids (Ostegglossum bicirrhosum and Arapaima (ifgns). Autochthonous and limited to this region are the Polycentride; all the non-African genera of Chomides and Characivide; of Silureids, the Iypophthalmina, Aspredinina, and Stegophilina, and the majority of Pimelodina, Minnostomatina, and Doradina; the berbivorous Cyprinodonts or Limnophage, and numerous insectivorous Cyprinodonts or Carmizora; and the Gymonotile (electric ecl).
The relations to the other regions are as follows:-

1. The resemblances to the Indian and Tropical Pacific regions matly ilate from remote geological epochs, or are partly duc to that simithrity of physical combitions to which we have already referred. We have again to draw atteution to the unexplained presence in Sunth Anciicu of a repuesentative of a truly Indinn type (not found in Afriai), vih, Symbranchus marmoralus. On the other hand, a direct genctic affinity exists between the Neotropical and African regions, as has been noticed in the description of the latter, a great palt of their fieshwater fama consisting of desendants from a common stock.
2. A comparison of the specifically Neotronical with the specifually North American ty pes shows that no two regions can be more Tissimilar. It is only in the intervening borderland, amh in the large West Indian islands, that the two fanme mix with cach other. We ued notenter into the details of the physical features of Central Ancrica and Mixico; the broken gromu, the diversity of climate (produced by dilferent altitudes) within limited districts, We hot and moist illuvial plains surrounding the Mexican Gult, nfler a varicty of conditions most favourable to the intermixture of the types from the north and the south. Still the interchange of necular forms appears to be only begiming ; nonc have yet penc. rateld beyond the debatenble ground, and it is evident that the lad connexion between the two continents is of comparatively ecent date, -a vicw which is confirmed by the identity of the manine dishes on hoth sides of Central Ancica.

Cuba-which is the only island in the West Indies that has a number of freshwater fishes sufficient for the determination of its zoo-geographical relations-is inhabited by several kinds of a perch (Centronomzes), freshwater anullets, Cyprinodonts, one species of Chromid (an Acara), and Symbranchas marmoratus. All these lishes are found in Central America, and, as they belong to forms known to snter brackish water more or less freely, it is evident that they have crossed either from that region or from the mainland of South America. But with them thero came a remarkable North Anerican type, Lepidosteus. Levidosteus viridis, which is found in the United States, has penctrated on the mainland to the Pacific coast of Guatemala, where it is common at the mouth of the rivers and in brackish-water lakes along the coast ; it probably crossed into Cuba from Florida. A perfectly isolated type of fistes inhabits the subterranean waters in the caves of Cuba (two species of lacifuga). The eyes are absent, or quite rudimentary, as in miost other cave animals. Singularly, it belongs to a family (ophilitule) the members of which are strictly ni:rine ; and its nearest ally is a genus, Brotula, the species of which are distributed over the Indo-Tacific Occan, one menly occurring in the Caribbean Sea. This type mast have witnessed all the geolngical changea which have taken place since Cuba rese above the surface of the sea. A bimilar mixture of forms of the tropical and temperate types of freshwater fishes takes place in the sonth of South Anerica; its details lavo not yet been so well studied as in the north, hut this much is evident, that, whilst in the east tropical forms follow the Plate river far into the tempecate region, in the west the tenperate fauna fimels still a congenial climate in ranges of the Andes, situated close to, ar even north of, the tropic.

Like the Indian region, the Tronical American has a peruliar alpine fanm, the freshwater fishes of which, how-
ever, belong to the Siluroids and Cyprincionts. The furmer are small, dwarfed forms (Arges, Stygogenes, Drontes, Astrollepus, I'richomycterus, Eremophilus), and bave a perfectly naked body, whilst the representatives in the lowlande of at least the first four genera are mailed. The alpine Cyprinodonts, on the other hand (Orestias), excecel the usual small size of the other members of th:s family, and are covered with thick scales, bnt have lost their ventral fins. Some of these alpine forms, like Trichomycterus, follow the range of the Andes far into the Southern Temperate region. The majority are found at a beight of 15,000 feet above the level of the sea, and a few still bigher.

The Tropical Pacific Region includes all the islands east of Wallace's line, New Guinea, Australia (with the exception of its south-eastern portion), and all the islands of the tropical Pacifie to the Sandwich group. Comparing the area of this region with that of the others, we find it to be the poorest, not only in point of the number of its spectes. generally (36), but also in the possession of peculiar forms. The paucity of freshwater fishes is dne, in the first place, to the arid climate and the deficiency of water in the Anstralian continent, as well as to the insignificant size of the fresbwater courses in the smaller islands. Still this cannot be the only cause; the large island of Celebes, which, by its mountainous portions, as well as by its extensive plains and lowlands, would seem to offer a favourable variety of conditions for the development of a fresbwater fauna, is, so far as bas been ascertained, tenanted by seven freshwater fishes only, viz., 2 Arius, 2 Plotosus, 1 Analas, I Ophiocephalus, I Monopterus, all of which are the commonest species of the Indian region. New Guinea has unt yct been explored, but, from the faune nearest to this island, we expeet its freshwater fishes will prove to be equally few in number, and identical with those of Celebes and North Australia,-a supposition confirmed by the few small collections which have reached Europe. Finding, thien, that even those parts of this region which are favourable to the development of freshwater fishes have not produced any distinct forms, and that the few species which inhabit them are unchanged or but slightly noodified Indian species, we must conclude that the whole of this area has remained geologically isolated from the other regions of this zone since the commencement of the existence of Teleostci, and that, with the exception of Ceralodus nnd Osteoglossum, the immigration of the other species 19 of very recent date.

Fossil remains of Ceratodus have been found in the Liassic and Triassic formations of North Ameriea, England, Germany, and India; it is, therefore, a typo which was widely spread in the Mesozoic epoch. Although it would be rash to conclude that its accupation of Australia dates equally far back, for it may have reached that continent long afterwards, yet it is evident that, ns it is onc of the most ancient of the existing types, so it is certainly the first of the frestowater fistes which appeared in Australia. Ostcoglossum, of which no fossil remains have yet been found, is prosel by its distribution to be one of the oldest Telcosteons types. There must have been a long gap of time before these ancient types were joined by the other Telcostci. All of them migrated through the intervening parts of the occan from Lindia. Most of the Plotosine, some of the Arii, Dukes, and dtherinichthys, also Nanno. perca (allied to Apogon), were among the earliest arrivals, being sufficiently differentiated to be specifically or evengewerically (Cnidoglanis, A"ennoperca) distinguished; hut some others, like Anabas somdens, Lates culcarifer, Inh: marginatus, must have reached the Australian contiment quite recently, for they are undistiuguishable from Indian, succimens.

In oouth-western Australia a mingling of the scanty fauna with that of the southera temperate parts takes place. Oligorus macquariensis (the Murray cod), which has a congener ou the eoast of New Zealand, ascends high up the Murray river, so that we caunot decide whetber this Pereoid should be located in the tropical or tho temperate part of Australia. Several Galaxias also extend to the conGines of Queensland, and will probably some day be found members of this region.
In the smaller Pacific islands the ireshwater fishes exhibit a remarkablo sameness ; they comprise two or three speeies of Dules, several eels, an atherine, and some gobies, mulItts, and other fishes which with equal readiness exchange Tresh for salt water, and which would at once reach and uccupy any stracms or freshwater lakes that might be formed ca ant island.

The Sandwich Islands are the only group among the amaller islands which are tenanted by a Siluroid, a species f Arius, which is elosely allied to Central Ainerican apecies, and therefus orobably migrated from tropical America.

Nortiern Zone.-The boundaries of the northern zono coineide in the maia with the northern limit of the equatorial zone ; but, as las been already indicated, they overlap the latter at three different points. This happens in Syria, as well as east of it, where the mixed faume of the Jordan and the rivers of Mesopotamia demand the in-. clusion of this territory in the northera zoue as well as in the equatorial ; in the islard of Formosa, where a Salmonoid and seycral Japanese Cyprinoids flourish; and in Central America, where a Lepidosteus, a Cyprinoid (Scleromathus meridionalis), and an Amiurus (A. meridionalis) sepresent the North American fauma ia the midst of a host of tropical forms.

There is no separate arctie zone for freshwater fishes; ichthyie life becomes extinct towards the pole wherever the fresh water remains frozen throughout the year, or thaws for a few weeks only; and the few fishes which extend into high latitudes, in which lakes are open for two or three months in the year, belong to types in no wise differing from those of the more temperate south. The highest lutitude at which fishes have been obtained is $82^{\circ} \mathrm{N}$. . lat., $^{\circ}$ whence the late Aretic Expedition brourght back specimens of charr (Salmo arcturus and Salno naresii).
The ichthyological features of this zone aro well marked. The Chondrosteous Ganoids or sturgeons, and the families of Salmonide and Esocida, are limited to and characteristic of it; Cyprinoids flourish with the Salmonoids, both families preponderating in numbers over the others, whilst the Siluroids are few in number and in variety.

The two regions into which this zone is divided are very closely related to one another, and their effinity is not unlike that which obtains betweon the sul-regions of the southera zone. Several species are common to both, viz., Acipenser sturio, A. maculatus, Perca fuviatilis, Gastrosteus pungitius, Salmo salar, Esox lucius, Lota vulgaris, Petro. myson marinus, P. fluviatilis, and P. branchialis; and all recent investigations have resulted in giving additional evidenee of the affinity and not of the diversity of the two regions.

In Europe and temperate Asia, as well as in North America, mountain ranges elevated above the line of perpetual snow would seem to offer physical conditions favourable for the development of a distinct alpine fauna. But this is not the case, because tho differenee of elimate between the mountain districts and the lowlands is much leas in this zone than in the equatorial. Consequently the alpine freshwater fisles do not essentially differ from those of the plains; they are principally Salmonoids, and in Asia there are also unuataiu barbels and loaches. Sulmo
orientalis was found by Griffith to abound in the tributaries of the Bamian river at an altitude of about 11000 feet.

The Palrearctic or EuropoAstatic Region.-The western and southern boundaries of this region ccincido with those of the northern zone, so that only those which divide it from North America need to be indicated. Behring's Strait and the Kamtchatka Sea have been conventionally taken as the buundary, but this is shown to be artificial by the fact that the animals of both coasts, so far as they are knuwn at present, ate not sufficiently distinct to be referred to two different regions. As to the freshwater fishes, those of north-westera A merici and of Kamtchatka are but inperfectly known, but there ean be little doubt that the same agreement exists between them as Is the case with other classes of animals. Tho Japanese islands exhibit a decided Palearctic fish fauna, whieh includes Barbus and Cobitioids, forms strange to tho North American fauna.. A slight intux of tropical forms is perceived in the south of Japan, where two Dayriaa (Pseudobagrus aurantiacus and Liocassis longirostris) lavo established themselves for a considerable period, for buth are peculiar to the island, and have not beea fouad elfewhere.
In tho east, as well as in the west, the distinction between the Europo-Asiatic and the North Anerican regions disappears almost entirely as we advance farther towards the north. Of four species of the genus Salmo known from Ieeland, one (S. salur) is common to both regions, two are European (S. fario and S. alpinus), and one is a peenliarly Ielandic race (S. rivalis). So far as we know the Salnionoids of Greenland and the tract adjoining Baffin's Bay, they are ail very elosely allied to European species, though they may be distinguished as loeal races.

Fiaally, as we have seen above, the Europo-Asiatic fauna minglee with African and Indian forms in Syria, Persia, and Afghanistan. Capoeta, a Cyprinoid genus, is claracteristic of this district, and well represented in the Jordan and the rivers of Mesopotomia. Out of the 40 families of freshwater fishes 13 are represented in this region; the number of species is comparatively small, viz., 360.

Assuning that the distribution of Cyprinoids has taken its origin from the alpine traet of conntry dividing the Iadian and Palearctic regions, we find that this type has found in the temperate region as favourable conditions for its development as in the tropical. Ont of the 360 species no less than 215 are Cyprinoids. In tho countries and on the plateaus immediately adjoining the Himalayau ranges those mountain forms which we menitioned as peculiar to the Iudian Alps abound, and extend for a considerable distance towards the west and east, mixed with other Cyprinina and Cobitidina. The repre. sentatives of theso two groups are more numerons in Central and Eastern Asia thau in Europe and the northern parts of Asia, where the Leuciscina predominate. Abramidina or breams are more numerous in the south and east of Asia, but they spcead to the extreme north-western and northern limits to which the Cyprinoid type reaches. The Rhodeina are a small family esprecially characteristie of the least, but with ono or two ufishoots in Central Europe. Very significant is the appearance in China of a species of the Catostomina, a group otherwiso limited to North America.

The Cyprinoids, in their dispersal northwards from the south, are inet from the opposite direction by tho freshwater Salnonoids. These fislies are, without doubt, onn of the youngest families of Telcostei, for they did not appear before the Pliocene cra; they flourished at any rate during the Glacial period, and, as is testificed by the survivors which we find in isolated elevated positions, like the trout of the Aths ${ }_{l}$
of the mountaias of Asia. Minor, and of the Hindu Kusn, they spread to the extrems south of this region. At tha present day they are most numerously represented io its northera temperate parts; towards tha aouth they become fewer, but increase again in numbera and species wherecrer a great elevation offers them the soow-fed waters which they affect. In the rivera of the Mediterraoean, Salmonoids are by no meaos rare, but they prefer the upper courses of those rivera, and do not migrata to the sea, with the exception, perhaps, of eome species in the rivers of the North Adriatic..
The pike, Unbra, and several apecics of perch and stickleback are also clearly autochthonons species of this region. Others belong to marioe types, and seem to hava been retained in fresh water at parions epochs,- as the freshwater Cottus (miller'a thumb) ; Cottus quadricornis, which inhabits lakes of Scandinavia, whilst other iodividuals of the aame apecies are strictly marine; the burbot (Lota vulgaris); and the singular Comephorus, a dwatted and much changed Gadoid which inhabits the greatest depths of Lake Baikal

Remanats of the Palxichthyic fauna exist in the sturgeons and lampreys. The former iohabit in abundance the great rivers of eastern Europa and Asia, periodically ascending tham from the aea; their southernmost limits are the Yang-tse-Keang in the enst, and towards the centre of this region the rivers flowing into tha Adriatic, Black, and Caspian Seas, and Lake Aral. None are known to have gone beyond the bouadarics of the northern zone. If the laupreys are justly reckoned among freshwater fshes, their distribution is uniqus and exceptional. In the Palearetic region seme of the species descend periodically to the sea, whilst others remain stationary in the rivers; the sama has been observed in the lampreys of North America. They are entirely absent in the equatorial zone, but reappear in the temperate zone of the southern hemisphere. Many points in the organization of the Cyclostomes iadicate that they aro a type of great antiquity.
The remaining Palearctic fishes ara clearly immigrants from neighbouring regions: thus Silurus, Macrones, and Pseulobugrus bave migrated frou the Indian region, Amiurus and, as mentioned above, Catostomus from North Amsrica. The Cyprinodonts are restricted to the southern and warmer parts, and all belong to the carnivorous division. The facility with which these fishes accoramodate themselves to a sojourn in fresh, brackish, or ealt water, and even in thermal springs, renders their general distribution easily comprehensible, but it is impos: sible to decide to which region they origioally belonged; their remains in Tertiary deposits round the Mediterranean are not rare.
The boundaries of tha North American or Neartic Region have been sufficiently indicated. The main features and the distribution of this fauna are identical with those of the preceding region. Out of the 40 families of freshwater fishes 19 are found in this region. The proportion of Cyprinoid apecies to the total nomber of Nurth American fishes (135:339) appears to be considerably less than in the Paliaretic region, but we cannot admit that these figures approach the truth, as tho Cyprinoilds of North America have been much less stadied than thase of Europe; of many scarcely more than the name is known. This slso applics in a great measure to the Salmonoils, of which only half as many as are found in the I'alaaretic region have lwen sulficiently described to he worthy of consileration. Nurth America will, without donbt, in the end show as many distinct races bs Europe and Asia
Cyprinoids belonging to living as.well no extinct genera existed in North America in the "iertiary period. At prosent the Cyprinina, Lcuciscina, ami diramidina are well

- presented, but there is no representative of the Old World geaus Barbus, or of the Cobitidina; ${ }^{1}$ Rhodeina are also absent. On the other hand a well-marked Cyprinoid type is developed-the Catostomina, of which one apecies has, as it were, returned into Asia. Very charalteristic is the group of Centrarchina, allied to the perch, of which thera are aome thirty species; there are two Grystina. Of the sticklebacks thera are as many species as in Europe, and of pike not less than seren species have been distinguished. Umbra appears to be as local as in Europe. Some very remarkable forms, types of distinct families, thougb represented by ons or two species only, complete the number of North American autochthonous fishes, viz., Aphredoderus, Percopsis, Hyodon, and the Heteropygii (4 mblyopsis and Chologaster). The last ara allied to the Cyprinodonts, differing from them in some points of the structure of their intestilues. The two genera are extremely similar, but Chologaster, which is found in ditches in the rice-felds of South Carolina, is provided with eyes, and wants the ventral funs. Amblyopsis is the celebrated blind fish of the Mammoth Cave of Kentucky; it ia colourless and eyeless, and has rudimentary ventral fins, which occasionally may be entirely absent.

A peculiar feature of the North American fish fauna is that it has retained, besides the sturgeons and lampreys, representatives of two Ganoid families, Lepidosteus aud Amia. Both these genera occur in Tertiary formations; whilst the former is represeated in Europe as well as in North America, fossil remains of Amia have been found in the western hemisphere only.

It is difficult to account for the presence of the Amiu. rina in North America. They form a well-marked division of the Bagrina, which are well represented in Africa and the East Indies, but are absent in South America ; it is evident, therefore, that they should not be regarded as imaigrants from the south, as is the case with the Palearctic Siluroids. Nor again, has the counesion between South and Nurth America been established sufficiently long to admit of the supposition that these Siluroids could have spread in tho interval from the sonth to the northera parts of the continent, for some of the species are found as far north as Pine Islands Lake ($\left.54^{\circ} \mathrm{N} . \mathrm{lat}.\right)$. ${ }^{2}$

Southerv Zone.-The boundarics of this zone hare been indicated in the description of the equatorial zone ; they overlap the southern boundarics of the latter in South Australiz and South America, but wa have not at present the meas of exactly defining the limits to which southern types estend northwards. This zone includes Tasmania, with at least a portion of sonth-eastern Australia ($T_{\text {asmannion }}$ sub. region), New Zealand and the Aucklaud Islands (New Zealand sub-region), and Clili, Patsgonia, Tierra del Fucgo, and the Falkland Islauds (Fruegian sub-region). No freshwater fishes are known from Kerguclen's Land, or from islands beyond $55^{\circ} \mathrm{S}$. lat. The southera extremity of Africa has to be excluded from this zone so far as freshwater fishes are concerned.
With regard to its extent as well as to the number of specice, this zene is the smallest of tha three, the number of species known leing 11 in the Tasmanian, 8 in the New Zealand, and 18 in the Fuegian aub-region. Yet tho ichthyological features of this zone are well warked; they consist in the prescnce of two peculiar familics, each of which is analogous to a nerthern type, viz., the Haphochitmaila, which represent the Selmonitar (IIaplochiton being

[^129]tho analogue of Sclmo, and Prototroctes that of Coregonus), and the Galuxiedte, which are the pikes of the sonthern hemisphere.
Although geographically widely separate from each ot the freshwater fisles of the three divisions are noverthcless so closely allied that conclusions drawn from this group of naimals alono would hardly justify us in regarding these divisions as sub-regions. One species of Galaxias (G.attenuaius) and three of lampreys are found in all three, or at least in two of the sub-regions. Percichthys is in Chili the nutochthonous form of the cosmopolitan group of Percina. Diplomystax, au Arioid fish of Clili, and Ncmalogenys seen to have crossed the Andes from tropical America at a comparatively early period, as these genera are not represonted on the eastern side of South America; Trichomycierina occur on both sides of the Andes, which they ascend to a considerable height. Retropinna is a true Salmonoid, nllied to the northern smelt (Osmerus), and representing it in the southern hemisphere. In both these genera part of the specimens live in the sea, and ascend rivers periodically to spawn; another part remain in rivers and lakes, where they propagate, never descending to the sea, this freshwater race being constantly smaller than their marine brethren. That this small Telenstean of the northern hemisphere should reappear, though in a generically modified form, in New Zealand, withont having spread over other parts of the southern zone, is one of the most remarkable and at present inexplicable facts of the geographical distribution of freshwater fishes.

Drachist-Water Figmes.

On those parts of a coast at which there is a mixture of fresh and salt water, either in consequence of some river emptying itsclf into the sea, or from accumulations on the land-sarface forming lagoons which are in uninterrupted or tenporary, communication with the sea, there flourishes a peculiar brackish-water fauna characterized by the presence of fishes found sometimes in the sea, and sometimes in pure fresh water.

This fauna can be somewhat sharply defined if a limited district only is taken into consideration; thus, the specics of the brackish-water fauna of Great Britair, of the Pacific coast of Central America, of the larger East India islands, doc., can be enamerated without much hesitation. But dificultics occur when we attempt to gencralize in the enumeration of the forms referable to the brackisis-water fauna, because the genera and families enumerated include certuin species and genera which have habituated themselves exclasively cither to a freshwater or a marine existence, nnd also because a species of fish may be at one locality an inhabitant of brackish water, at another of tho sea, and at a third of fresh water. The circomstance that these fishes can live either in the sca or in fresh water las enabled them to spread readily over the globe, a fow only being limited to particular regions; in dividing the eartl's surface into natural zonlogical regions, therefore, the taxenomist receives no nssistance from tho brackisli-water forms. 'The following fishes may be referred to this fanua:1. Speeies of Raiult (Raia, Trygon)! 2. Ambassis. 3. Therapnn. 4. Numerous Scicnidic of the equatorial zone. 5. Polynemide. 6. Numerons species of Caraux (or horse mackerels) of the "rqutorial pone. 7. Species of Gastrosteus. 8. Tlic most important gunera of the gotics (Gobiinn); Golize (nearly cosnopolitan), Sicylium, Bolcophthalmus, ICcriophthachnus, Elcotris (equatorial). 9. Anblyopina. 10. Trypauchenina. 11. Many species of Blcinius. i2. The majority of Atherinidx. 13. Most Muyilider. 14. Many Plcuro-nectida- 15. Several Siluriulce, as esplecially the genera Plotosus, Cnidoslanis, Arius. 16. Many Cymrinoduntido. 17. Species of cturm. 18. Chatossus. 19. Meyalops. 20. Anguilla (ects). 21. Nunierous Sympuathidx.

This list could lye considerably incereased if an enume-
ration of species, especiaily of certain localities, were nttempted; but this is more a subject of local interest, nuld would carry us beyond the scope of a general account of the distribution of fishes.

Marine Fisies.

Marine fishes fall, with regard to their mode of life and distribution, into three distinct categories:-

1. Shore Fishes-that is, fishes which chiefly inlabit parts of the sea in the immediate neighbourhood of land either actually raised above, or at least but little submerged below, the surface of the water. They do not descend to any great depth,-very few to 300 fathoms, and the majority live close to the surface. The distribution uf thase fishes is determined, not only by the temperaturs of the surface water, but also by the nature of the adjacent land nnd its animal and vegetable products,some being confined to flat coasts with soft or saudy bottoms, others to rocky and fissured coasts, others to living coral formations. If it were not for the frequent meclanical and involuntary removals to which these fishes are exposed, their distribution within certain limits, as it no doubt originally existed, would resemble still more that of freshwater fishes than we find, it actually does at the present period.
2. Pelagic Fishes-that is, fishes which inhabit the surface and uppermost strata of the open ocean, and approach the shores only accidentally, or vecasionally (in search of prey), or periodically (for the purpose of spawning). The majority spawn in the open sea, their ova and young being always found at a great distance from the shore. With regard to their distribution, they are still subject to the influences of light and the temperature of the surface water; but they are independent of the variable local conditions which tie the shore fish to its original home, and therefore roam frecly over a space which would take a freshwater or shore fish thousands of years to cover in its gradual dispersal. Such as are devoid of rapidity of motion aro dispersed over similarly large areas by the oceanic currents, more slowly than the strong swimmers, but not less surcly. An accurate definition, therefore, of their distribution within certain areas equivalent to the terrestrial regions is much less feasible than in the case of shore fishes.
3. Deep-Sea Fishes-that is, fishes which inhabit such depths of the ocean that they are but little or not at all influenced by light or the surface temperature, and which, by their organization, are prevented from reaching the surface stratum in a beallhy condition. Living almost under identical tellurian conditions, the same type, the same species, may inhabit an abyssal depth under the equator as well as one near the arctic or antarctic circle; and all that we know of these fishes points to the conclusion that no separate horizontal regions can be distinguished in the abyssal fauna, and that no division into bathymetrical strata can be attempted on the base of generic much less of family characters.

Chondroplerpyii, Acanthopterygii, Anacanths, Myxi noids, and Pheryngobranchic furnish the principal contin. gents to the marino fauna; whilst the majority of Plysostomes, the Ganoids, and Cyclostomes are freshwater fisles.

Shore Fistes.
The principal types of shore fishes are the following:-Chownrortenveni-Holucrnhalu, 4 species. PlagiostomataCarchariide (part), 12; Scyliihle, 30; Cestraciontide, is Stimacila
 14; Torpeclinile, 15 ; Rainile, 31; 'tygonidar, 47.

species; Mullidx, 35 ; Sparilic, 130 ; Symamipinnes, $13 n$; Cirrhitida, 40 ; Heterolepidima, 12 ; Senprenide, 120 ; Coltilu (pant), 100; Cataphracti (part), 20; Trachimide, 100 ; Scionilx, 100 ; Sphymenidx, 15 ; Trichiurida, 17 ; Elacate, 1 ; Nomeide (part), 5; Cyttide, S; Stromateus, 2 ; Mene, 1 ; Carangidre (prat), 130 ; Turtille, 7 ; Gohiolon, 7 ; Callionymina, 30; Discoboli, 11; Batrachidre, 14 ; Fediculati (part), 11 ; Blenniide, 90 ; Acantho. clinide, 1 Teuthididu, 30 ; Acronuride, 60; Hoplognathidx; 3 ; Malacanthidx, 3; Plesiofina, 4 ; Trichonotide, 2; Cepolidx, 7 ; Golicsocide, 21 ; Psyehrolutidx, 2 ; Centriscide, 7 ; Fistularidæ, 4. Acanthopterigh Pharyngogsathi. - Pomacentride, 150 species ; Libride, 400; Embiotocidee, 17.
Aricinthint-Gadopside, 1 species; Lycodida, 15 ; Gadila (part), 51; Ophidiide (part), 40 ; 1'luronectidax, 160.
Missos rumi.--Saurina (part), 16 spucies; Salmonide (part), 7 ; Cluneihe (fart), 130 ; Chirocentrida, 1; Chilobrauchus, I ; Muraniute (part), 200 ; J'egaside, 4
Lophobravehif, 120 spucies.
Ylectogkathi, 178 species.
Cyelosmmata-Myxinule, 5 species.
Leprocapint, 2 species
Total number, 3557 species.
These types of shore fishes are distributed over the following oceanie areas:-

1. The Arctic Ocean.

1I. The Northen Temperate Zone.
A. The Temperate Lorth Atlantic.

1. The British district.
2. The Mediterranean district.
3. The North.American district.
B. The Temperate North Pacific.
4. The liamtchatkan district.
5. The Japancse district.
6. The Califormian district.
III. The Equatorial Zone.
A. The Tropical Atlantic.
B. The Tropical Indo-Pacific.
C. The Pacific const of Tropical Ameriea.
7. The Central American district.
8. The falapagos district.
9. The Peruvian district.

IV The Southern Temperate Zone.

1. The Cape of Gand Hope dstrict.
2. The Gouth Austrah district.
3. The Chilian distriet.
4. Thi Patagonian district.

V. The Antarctic Ocean.

As with freshrater fishes, the main divisions of the shore-fish faume are determined by their distance from the equator, the equatorial zone of the freshwater series corresponding entirely to that of the shore-fish series. But as marino fishes extend farther towats the poles than freshwater fishes, and as the prolar types are more specialized, a distinet aretie and antaretic fauna may be separated from the faune of the temperate zones. The two subtivisions of the northern temperate zone in the freshwater series aro quite analngous to the correspoming divisions in the coast series. In the sonthern hemisphere the shore fislies of the extremity of Afriea form a separate district of the temperate zone, whilst the freshwater fishes of Sonth Africa were fund to be tropieal types. The marme series of the southern temperate zone is also mith more diversified than the freshwater series, and admits of further sutulivisinn, which, olthough in some degree indicated in the freswater series, dues not cntirely correspond to that proposed for the latter

Ahetig Ocean.-The shore fishes clearly prove a contimity of the aretie cireumpolar fama, is tho southern limit of which we luay inlieate the scuthern extremity of Greenland and the Alentian Archiprago, or $60^{\circ} \mathrm{N}$. lat.
'Lowards the north, fishes lecome less in varicty of spocios and fewer in momber of individuals, and only very few genera are restructed to this fimma.

Tho sioglest latitule at which shore fishes have ben observed is $83^{\circ} \mathrm{N}$. The late dretic lixpedition collectat at and near that latitule specimens of Cothes quatricomis,
 nelis viridis, and Ciadus fubricii. Tho number wnid
fobably have been larger were it not that the difficulties ot collecting fishes in these high latitudes are altinstinsuperable for the greater part of the year.

So far as we know, the fishes north and snuth of Behring's Straits belong to the same generic or family types as those of the corresponding latitudes of the castern hemisphere, though the majority are specifically distinet. But the information we possess of the fishes of the northernmost extremity of the Pacifie is extremely scanty and vague. Farther south, whence now and then a collection reaches Europe, we meet with some European species, as the herring, holibut, and bake.

Chondropterygians are weyy rare. Of Acanthopterygians the families of Cotida, Catapheracti, Discololi, and Blemiida are well represented, and several of the genera are characteristic of the arctie fauna. Characteristic also is the development of Gadoid fisbes, of which some thirteen spectics, belonging to Gadus, Merluccius, and Molva, form one of the principal articles of food for tho inhabitants of the ceasts of the Arctic Ocean. The Blennoid Auaranthini or Lycodide are limited to the Aretic and Antarctic coasts. Ammodytes and a few Hat-fishes (IIfpoglossoides and Pleuronectes) are common in the more temperate parts. Labroids only exceptionally penetrato so lar towards the north. Physostomes are very rare, and are represented only by a few species of Clupea and by Mallutus. The aretie climate is still less favourable to the existence of Lophobranchs, only a few of Syngnathus and Nerophis heing present in the more southem latitudes, to which they have been carried by oceanic currents from their more congenial home ia the sotth. Scleroderms and Plectognaths are entirely absent. Tho Gadoits are accompanied by Myxine, which thrives in them as a parasite.

Nohthern Temperate Zone.-Temperate Jorth Ai-lantic.-This part of the fauna may be subdivided into three districts:-

1. The fishes of the north-eastern shores, viz, of the British Islands, of Seandinavia so far as it is not included in the arctic fauna, and of the continent of Europe southwarels to about 40° N. lat. : British district.
2. The fisles of the Dediterranean shores and of the adjoining shores of the Athantic, focluding the Azores, Madeira, and the Cumry Islands: Mediterranean district.
3. The fishes of the western shores, from 60° to about 30° N. lat. : North American district.
4. The Pritish district shows scarcely any marked distioctive features; the character of its fama is simiply intermediate betwen tha of the alretic Oeean and the Medecrmonen distaict; cululy aretre fobms desaplyar, whife such as are also lomed in the Medater* rancan make bur abmance. With regand to the abmadace of imburinals and variety of fishes also, this dustruct forms a transition from the math towarls the south.

Besulns the law arctice Chomdropterygians, fll of which extend into this dinthet, the smatl shore dog fishors are nell cepresentud
 anonk-dish is common; of rays, Tata predominates in a vaniety of

 Aspirdenthomdis do motextemi from the moth mato this district;
 ham! "hirh ate also fomm in the Meditupman dietact. The following site the pincital fums known to proverate on thaso shores:

 the Meditumanem) ; (opuin: A mumburaster.
 Oeran, lanst lutug comman th linth districts; but, whist tho minnty slow thoir borthern winin by not extending into tho Bulikumanan, Ammorlytes and mont IVerenectide prove themsel ore If ly he move zanthan reprosentatives of this order, In the

Phryworhombus, Pleuronectes, Solia, and oniy the first two are not met with in the DIediterrancsn.
Labroids are common; with the exception of the North American Tautoga, all tho other genera are met with.
Physostomes are not well represedted, viz., by one species of Osmerus, ono of Engraulis, one of Conger, and about five of Clupca. Syngrathua and Nerophis becoma more cummon as we proceed sonthwards; but the existence of Seleroderms sud Plectoguaths is indicated by single individuals ouly, stragglera from their couthern home, nashle to cstablish themselves in a climate ungenial to them.

The Gsdoids sre accompanied by Myxine; and Eranchiosloma ray be found in all suitable locslities.
2. The Dlediterranean district is distinguished by a great variety f forms ; yet, with the exception of a fow genera established for single species, none of the forms can be considered peculiar to it ; and even that mall number of peculiar genera is more and more diminished as our knowledgo of the distribution of fishes advances. Some geacra are identical with those found on the western coasts of the Atlantic and in tho West Indies; but a most remarkablo and onexpected affinity obtaias with another very distant fanoa, viz., that of Japan. Tho number of geners common to the Dlediterrabean district and the Japanese cossts is larger than that of the genera common to the Mediterranean and the opposite American coasts.
I'he Chondropterygians found in the British district continue in the Mediterranean, their number being inereased by Centrina, Spinax, Pleroplatea, sud somo species of Fhinobatus, a genus inore numerously represented in the tropics. Torpedo snd Trygon are common.

The grestest variety belong to the Acanthopterygisns, which are represented by fifty-sevan genera.

Tho Labridee sra as common as in the British district, or eren more ao, and are represonted by the eame gencra. But, besides these, some other Pharyngognaths, properly belonging to the tropical Atlantic, have fully established themselves, though only by a few spacies, viz., Glyphidodon and Heliastes, Cossyphus, Novacula, vulis, Coris, and Scarus.

The Gbloids show a marked decrease of development; and the species of-Gadus, Gadiculus, Mora, Strinsia, Phycis, and Molva which are peculisr to the Mediterraneau secm to inhabit rather the colder water of moderato depths than the surface near the shore. Mfolella, however, proves also to be a true shore fish in the Mediter-

- raqean, at least iu its adult state. Ophiaium and Fierasfer appear now besides Ammodytes. As the Gadoids decrease, so the Pleitronectides iacrease, 9 genera being found in this district.

The rariety of Physostomes is small, the following only having to ba added to those of the British district: Saurus (a tropical geaus), Aulopus; Congromurana, Heleroconger, Myrus, Ophichithys, ifurana.

The Lophohranchs are more numerous in species aud individuals than in the British district; and, besides Syngnathus and Nerophis, sereral species of lippocampus aro common. A few epecies of Butistes also oceur.
Myxine is lost in this district, whilst Branchiostoma is abundant.
3. Tho shore fishes of the North A merican district consist, as on the etstern coasts of the North A tlantic, of northern (about 50 genera) and southera (sbont 30) elementa; but they are atill more mixed with each other than on the European coasts, so that a boundary liae canot be drawn between them. The sfinity to the fauna of the eastern shores is great, but almost entirely limited to the geners composing the fauna of the British district. British gedera not found on the Amurican coasts are-Galcus, Scyllium, Chimara, Mrulhus, Pagcllus, Trigla, Trachinus, Zcus, Callionymus. Tho southern elements of North Americs are rather derived from the West larlies, and have no special affisity to Nediterrancaa forms; very few of tho not- British Meditermanean forms catend across the Athatic ; insteal of a Meditorrancan wo fiad a West Indian elcmeat. Many of the British specics rango across tho Atlantic, and inhabit In an unchanged condition the northern parts of this district ; and from the frequeat oceurrence of isolated speciracas of other British specirs on the North American coast, we may presume that inany nore occasionally cross tho Atlantic, but wilhout being able to obtaia a permanent footing.

Tho geara peeuliar to this district are few in number, and composed of very few species, viz., Henitrinherus. Pammilas, Chasmolcas, Cryptacanthodes, and Tautoga.

Temperate - North Pacific.-This fauna shows a great affinity to that of the Temperate North Attantic, not only in including a considerable proportion of identical genera, and even of species, but also in having its constituent parts similarly distributed. Our knowledge of the ichthyology of this fauna, however, is by no means complete, and the details of the distribution of the fishes of these shores have arill to be worked out ; nevertbeless, three divisions nay be
recognized which, for the present, may be defincd as fol-lows:-

1. The fishes of the north-western shores, to about 37° N. lat., including the corresponding northern parts of Japan: Kamtchatkan district. This corresponds to the British district of the Atlantie.
2. The fishcs of southern Japan and the corresponding shores of the continent of Asia, between 37° and $30^{\circ} \mathrm{N}$. lat.: Japanese district, which corresponds to the Mediterraneau.
3. The fishes of the eastern shores southwards to the latitude of San Francisco: Californian distriet. This corresponds to the North American district of the Atlantie.

Too little is known of the shore fishes of the coasts between San Francisco and the tropic to enable us to treat of it as a separate division.

The shore fishes of the North Pactic generally are composed of the following elements :-
a. Arctic forms which extend into the Arctic Ocean, and the majority of which are also found in the British district.
b. Peculiar forms limited to the North Pacifie, like the Heterolepidina, Embiolocido, and certain Coltoid and Blennioid genera.
c. Forms identical with fishes of the Mediterranean.
d. Peculiar forms limited to the southern parts of Japan.
e. Tropical forms which have entered the North Pacific from the south.

1. To the Kamtchatkan distrist we can assign hut a small list of fishes, probably because of the imperfect manner io which its fauna has been explored. At present wo have positive knowledge of the occurrence of only two Choadropterygians, viz., Chimara and Raia; the species of the latter genus seen to be mneh less numerous than in the Atlantic. Of Acanthopterygians 15 geacin are knowa. Labroids are absent; they ere clearly a type unable to endure great cold; of the Entiotocoids which represent thera in the Pacific, one species only (a species of Ditrcma) is known from this district.

The Gadoids are, so far as we know at present, sparsely repre. eented, viz., by isolated species of Gadus, Motella, and Lotclla, $1 l_{10}$ last being an iahabitant of moderate depths rather than of the ourface. Hippoglossus, Pleuronecles, and Parophrys seem to occur everywhere in suitahle localitica.

The Physostomes are nearly the same as in the Britisl: district, viz., s smelt (Hyponecsus), probably slso the arctic Mallotus, an anchory, several species of Clupea, and the conger-cel. A very singular Salmonoid fish, Salani, which is limited to the northwestern Pacific, oceurs in great abundance. The Lophobrancles also eorrespoad in their development to those of the l3ritish district, Nerophis being replaced by Urocampus. Neither Mlyxiwoids nor Branchiostoma have as yet been found.
2. The Japanese district is, like the Mediterranean, distinguisled by a great variety of forms. Of 102 genera known to jaluabit these coasts, 13 are peculiar to it, 53 occur in the Mediterranean, though also in other districts. This resemblasco to tho Dlediterrancan is even greater than wonld appear from a comparison of the genera, inasmuch as a considerable number of specics are identical io both districts. Three of the Berycoid geacra havo litherto been lound io the Japanesic and Mediterrazean districts and nowhero else. A nother very siagular fact is that sume of the most characteristio genera, liko Mullus, Zews, Callionymus, Centriscus, inhabit the Meditertanean and Japancsedistricts, but have aever reached the opposite American coasts, cither in the dalantic or the Pacific; althongh, at least in the latter, the ocranic currents would rather favour than obstruct their dispersal in the direction of America. Jold as the hypathesis may appear, wo can only accouat for the siugular dia. tribution of these shore fislies by assuming that the Mediterrancan and Japanese seaa were in direct aad opea communication with each other within the period of the existence of the present Teleosteous faluar.

Gadoids lave disappeared, or are represented by forms inhabiting moderate depths. Neither Myxine nor Lranchiostoma aro es yet known to lave been follod.
3. 'The Californian district iacludes a marked northern element, the principal constitucnts of whichare identical with types occurring in the corresponding district of the Atlantic, viz., tho North Americaa, as exemplifisd by Discoboli, Anarrhichos, Centronotus, Cottus, Ifiphoglossus, Cluper (harengus), de. 13ut it possesses also, in the ercatest degree of development, some types almost peculiar to itself, as tho Ifeferolpidina, some remarkable Cottoid enil 13lennioid gemera, and more especially tho Embiotocoids-viviparona l'harynggoths-which seplace the Labroids of the otber hewin
shere. Gadoids are mach less numerous than in the North American district. The southern forms are but little known, but it nisy be anticipated that, owing to the partial identity of the fauna of the tro coasts of the isthmus of Pansma,' a fair proportion of West Indian forms will he found to have entered this district from the south.

Equatorial Zone-As we approach the tropic from the north, the types characteristic of the arctic and temperate zones become rarer, and disappear. altogether, to be replaced by the greater variety of tropical types. Of Chondropterygians, the Chimaride, Spinacide, Mustelus, and Raia do not pass the tropic, or appear in single species only; and of Teleosteans, the Berycidur, Pagrus, the Heterolepidina, Cottus and allied genera, Lophius, Anarrlickas, Stichreus, Lepadogaster, Psychrolutes, Centriscus, Notacanthus, the Labrider and Embiotocida, the Lycorlide, Gadidx, and marine Sulmonidae either entirely disappear, or retire from the ahores and surface into the depths of the ocean.

With regard to variety of forms, as well as to number of individuals, this zone far surpasses either of the temperate zones; in this respect, the life in the sea is like that on the land. Shere fishes are not confined to the actual coast line, but abound on the coral reefs with which some parts of the Atlantic and Pacific are studded, and many of which ere below the aurface of the water. The abundance of animal and vegetable life which flourishes on these renders them tho favourite pasture grounds for the endless valiety of coralGahes (Squamipianes, Acronuride, Pomacentride, Julidue, Plectognathi, \&c.) and for the larger predatory kinds. The colours and grotesque forms of the fishes of the tropics justly excited the admiration of the earliest obscrvers. Scarlet, black, blue, pink, red, yellow, sec., are arranged in patterns of the most bizarre fashion, mingling in spots, lines, or bands, and reminding us of the werds of Captain Cook when describing the coral-reefs of Palmerston Island: "The.glowing appearance of the mollusks was still inferior to that of the multisude of fishes that glided gently along, seemingly with the most perfect security. The colours of the different sorts were the most bcautiful that can be imagined-the yellow, blue, red, black, \&c., far exceeding anything that art can produce. Their various forms, also, contributed to increase the richness of this submarine grotto, which could not be surveyed without a pleasing transport."

Of Chondropterygians the Scylliilue, Pristis (saw-fishes), Rhinobatids, and I'ryjonide attain to the greatest development. Of Acanthopterygians Centropristis, Serranus, Plectropoma, Mesopnion, Priacanthus, Apogon, Pristipoma, Hemulon, Ditgrammu, Gerres, S'olonsis, Synagris, Cisio, Mullidx, Lethrinus, S'qutmiprinnes, Currhites, some genera of Scorpernultp, Platycephalus, Sicienide, Sphyrana, Cartan, Equula, Ctellionynnus, Teuthis, Acanthurus, N't seus, are rejpescnted by numerots species; and the majurity of these gencra and fawilics are limiteal to this zone. Of Pharyngognathy the Pomacautride, Julidina, and Scarina are met with near cvery coral formation in a living condition. Of Gafoids, a singular ninute form, Bregmaceros, is almost the only representative, the of her forms belonging to deep water, and rafely aseending to the surface. Flatfishes (lleuronectidre) are common on sandy oasts, and the majority of the genera ara pecular to the tropics. Of P'hysostomi only the S'euriur, Chuperile, and Murcnide are represented, tho Clupeider bing exceedingly mumerous in individuals, whilst the Muranilic live more isolated, but show a still greator variety of specics Lopholranchii ant Sclerodermi are gencrulty distributed Brenchiwstona has been found on several consts.

Geograplically it is convenient to describo the coast faum of the tropical Atlantis separately from that of the Indu-Pacific Ocenn. Tle differences between them, however, ale fur less numerous and impertant than between the
freshwater or terrestrial faunx of continental regions Tha majority of the principal types are fonnd in both, many of the species being eren identical; but the species are far more abundant in the Indo-Pacific than in the Atlantic, owing to the greater extent of the archipelagoes in the former. But for the broken and varied character of the coasta of the West Indies, the shores of the tropical Atlantic would, by their general uniformity, afford but a limited veriety of conditions for the development of specifie and generic forms, whereas the deep inlets of the Indian Ocean, with the varying confguration of their coasts and the different uature of the bottom, its long peninsulas, and its archipelagoes, and the scattercd. islauds of the tropical Pacific, render this part of the globe the most perfect for the development of fish life. The fishes of the Indian and Pacific Oceans (between the tropics) are almost. idectical, and the number of specics ranging from the Red Sea and the east coast of Africa to Polynesia, even to its most westerly islands, is very great indeed. This Indo-Pacific fauna, however, does not reach the Pacific coast of Sonth America. The wide space devoid of islands east of the Sandwich Islands and the Marquesas group, together with the current of cold water which sweeps northwards along the South American coast, has proved to be a very effectual barrier to the eastward extension of the Indo-Pacific fauna of coast fishes ; and, consequently, we find an assemblage of fishes on the American coast and at the Galapagos: Islands, sufficiently marked to constitute a distinct zoological division.

Tropical Atlantic.-The boundaries of the tropicai Atlantic extend zoologically a few degrees beyond the northern and southern tropics, but, as the mixture with the types of the temperate zone is very gradual, no distinct bomdary line can be drawn between the tropical and temperate faune.
Types almost exclusively limited to it and not found in the Indo-Yacific are few in number, as Centropristis, Rhypticus, Ilomulon, Mathe. A few others preponderate with regard to the number of species, as Plectropona, Surgus, T'rachynotus, Batrachidue, and Gobiesocida. The Scienoids are equally represented in both oceans. All the remainder are found in both, but aro in a minority in the Atlantic, where they are sumetimes represented by one or two species only (for instance, Leflheinus).

Tronical Indo-Pacific Ocean.-The ichthyological bouñdaries of this part of the tropical zone nay be apprusimately given at $30^{\circ} \mathrm{N}$. and S. lat. ; on the Australian coasts it should probably be placed still farther south, wiz., at 31°; it includes, as mentioncd abore, the Sandwich Islands, and all the islands of the South Sea, but not the American cousts.

Some eighty genera of shore fishes are peculiar to the Indo-Pacific, but the greater number consist of one or a few specics only; conumatively few havea plurality of species, as Diagremmen, Lethrinus, biquula, T'uthis, Amphiprion, Dascyilus, Charops, Chitinus, Anampses, Stethojulis, Corsw, Coilu.
The sea-perches, large and smal!, which fecil on crustickans and on other small fishes, and the coral-feeding Pharyngognaths, aro the types which show the greatest generic anal specific variety in the Indo-lacific Then follow the Sipumipiunes and Murenike, the Clupeider and Caran-fridte,-families in which the variety is more that of species than of genus. The Scorpanida, Pleuronectide, Acronurider, simentux, syngnathide, nud Tenthyes ara those which contrilute the next largest contingents. Of shureloving Chondropterygians the Nryllidide and Trygonide only are represented in moderate numbers, thongh they are more numeroms ia this ocenn than in any other.
l'acific C'ousts of Tronical America-As boundarics
within which this fauna is comprised may be indicated 30° N. and S. lat., as in the Indo-Pacific. Its distinction from the Indo-Pacific lies in the almost entire absence of coralfeeding fishes. There are scarcely any Squanipimues, Pharyngognaths, or Acronzrider, and the Teuthyes are entircly absent. The genera that remain are such as are found in the tropical zone generally, but the sprecies aro entirely different frum those of the indo-Pacilic. They are mixed with a sprinkling of peculiar genera, consisting of one or two species, like Discopyge, /hoplopagrus, Doydixodon, but they are too few in number to give a strikingly peculiar eharacter to this fauna.

Three districts aro distinguishable, viz., the Central American, the Galapagos, and Peruvian. We add a iew emarks on tho first only. ${ }^{1}$ That district shows so close an afinity to the Tropical Atlantic that, if the two were not separated by the neck of land uniting North and South imerica, they would most assuredly be regarded as emhricing a single fauns. With scarcely any exceptions ise genera are identical, and of the species found on the Pacific side nearly one-half have proved to be the samo as those of the Atlantic. The explanation of this fact has "een found in the existence of communications between the wo oceans by channels and straits which must have been roen till within a recent period. The isthmus of Central /.merica was then partially submerged, and appeared as a chain of islands similar to that of the Antilles, but as the recf-building corals flourished chiefly north and east of those islands, and were absent to the south and west of them, reef fishes were excladed from the Pacific shores when the communications were destroyed by the upheaval of the kind.

Southers Temperate Zone-This zone includes "the coasts of the sonthern extremity of Africa from about $30^{\circ} \mathrm{S}$ lat., of the sonth of Australia, with Tasmania, and of New Zealand, and the Pacific and Atlantic coasts of South America between 30° and $50^{\circ} \mathrm{S}$ lat.

The most striking character of this fauna is the reappear. ance of types inhabiting the corresponding latitudes of the northern bemisphere, and not found in the intervening trupical zono. This interruption of the continuity in the geographical distribution of shore fishes is excmplified by species as well as generia, for instance - Chimara monstrosiz, Galeus canis, Acanthias vulgaris, Aranthuas blainvillii, Rhina squatina, Zeus faber, Lophius piscetorius, Centriscus scotopax, Eagraulis encrasicholus, Clapea sprattus, Conger valyaris. Instances of genera are still more numerous:Cestracion, Spinax, I'ristiophorus, Reata; Callanthias, Polyprion, Ilstiopterus, Cantharus, Box, Girella, Pagellus, Chilnductylus, Sebastes, Aploactis, Agonus, Lepiulonms, Cytus, Psychrolutide. Nocacanthus; Lycodes, Mertuccius, Lotella, Phyris, Motella; Aulopus; Urocanpus, Solcnograthus, Myxine.

Naturally, whore the coasts of the tropical zone are contunuous with thnse of the temperan, a number of trepical genera enter the linter, and genera which we have found bet ween the tropics, as well as in the tenperate zone of the northern liemisphere, extend in a similar manner towards the south. But the truly tropical forms are absent; there are no Squamipinnes, searcely any Mullithe, no Acronuri, no Teuthycs, no Pomaccntrides (with a single exception on the coast of Chili), only one genus of Julidiun, no Scarine, which are replaced by another group of Pharyngognths, the Odacina. The Labrina, so characteristic of the temperate zone of the northern bemisphere, reappear in a distinet gemas (Malacopteriss) on the coast of Juan Fernamlcz.

The family of Bcrysilce, equally intoresting with reqard

[^130]to their distribution in time and in space, consists of temperate and tropical genera. The genus by which thas family is represented in the southern temperate zono (Trachicherys) is much more nearly allied to the northern than to the tropical genera.

The true Cotlina and Meterolegetina (forms with a bony stay of the preoperculum, which is generally armed) have not crossed the tropucal zone, they are replaced by fishes extremely similar in general form, ind having the same habits, but lacking that osteolugical peculiarity. Their southern analogues belong chicfly to the fammly Trachinete, and are types of genera peculiar to the southern hemasphere.

The Discoboli of the northern hemisphere likew:se have not penetrated to the south, where they are represented by Goliesocida. These two familues replace each other in thear distribution over the globe

Nearly all the Plearonectuce (but they are not numer. ous) belong to distunct genera, some, however, being remarkably similar in general form to the northern Pleuronertes

With Gadnids Myxmidce reappear, one species being extremely similar to the European Myjine. Bdellustomo is a genus peculiar to the southern temperate zone.

As in the northern temperate zone, so in the southern the number of individuals and the cariety of formis is much less than between the tropics. This is especially apparent on comparing the numbers of species constituthig a genus. In this zone genera composed of more than ten species are the exception, the majority hasing only from onc to five.

The proportion of genera limited to this zone is very high, about 65 out of a total number of 170 being peculiar to it.

1. The cape of Gocal Ilope distret. Many of the genera found in this district are northern forms (Chemarr, Galeus, Seyllium, Acanthuts, Turpedo, Raia, Destex, Cantharus, box, Sayrus, Pagrus, Pagollus, Chrysophrys: Sobastes, Eyhyrana Ifrudopus, Thyrsites; Zeus; Lopkius; Notrlat), which in conjunction with the pechbarly soulhern types (Callorhynchas, chilodecectulus, Agriopus, Climes, Genypterus, Bdellostoma) leave no doubt that this district belongs to the southern temperate zonn, whilst the freshrater fishes of Sonth Alrica are menbers of the tropical fauna. Only a fuv (Ahinobatus, Navcine, Astrape, and S_{y} higrana) lave enteral from the nuigh homing tropical coasts. The development of Sparonls is greater than in any of the ofher districts of this zone, and may be regarded as one of its distonguishing features.
2. The South Australian district comprises the southern coasts of Autralia (northwards to nbout the latitude of Syducy), Tacmania, and New Zealand. It is the richest in the southern temperate zone, prartly in consequeneo of a considerable influx of tropical forms on the castern coast of Australia, where they penetrate farther sonthwards than wonld be expected from merely geagraphical considerations, partly in consequcnce of tho therulugh ninmer in which the ichthyology of New South Wales and New Zealand has been explorel. Of the 120 gunera hitherto found in this district 42 are peenliar.
The shore fisheg of New Zealand are not so distinct from those of south-enstern Australia as to deserve to be flaced in a sepmate distict. With tho exception of the genera which enter thizzone from the tropics, and which are more numerous on the Anstralian coast than on that of New Zcaland, and a few very loeal genma in addition, the remaimer are identical. Many of the South Australian species, too, are fonnd also on the coasts of New Zaland. The Puincipal points of diference are the extraordinary development of Mon. accanturs on the const of South Australia, and the aymently total absonce in Australia of Gadoils, which in the zees zealand fauna are represented by 6 genera.
3. The Chitian district extends over 20 degrecs of latitule only, ond is nealy straisht. In its northern and wamer parts it is ch'a very miffom character: it is there expmsed to high and inergular tides, mod to remarkabie and sudben dhanges in the levels of land and water, which mate secionsly interfere with fisles living and propacaling near the shore. No river of consile rable size intenupts the monntony of the physical conditions, to offer an additional element in favour of the ievelopment of littoral snimals. In the southern larts, where the cont is limel, will achipelages, the elimate is too severe for most fishes. All these conditions combine to render this district cempratively poor ay regarils variety of shere fishes; they betong to 45 genera, "1 which 6 only are not found in
other districts of this zone. I'hree are peculiar, viz., Mendosoma, Myxodes, and Malacoptcr = ; Porichthys and Agonus have penetrated thus farsouthwards from the Peruvian and Californian districts; end Polyprion is one of those extraordinary instances in which a very specialized form occurs at almost opposite points of the globe, without having left a trace of its previous existence in, or of its passage through, the intermediate space.
4. Our knowledge of the fauna of the Patagonian district is, with the exception of the neighbourhood of the mouth of the Rio de la Plata, in too fragmentary a state to deserve further notice here.

Antarctic Ocean.-To this fauna we refer the shorc fishes of the southernmost extremity of South America, frem 50° S. lat., with Tierra del Fuego and the Fadkland Islands, and those of Kerguelen's Land, with Prince Edward's Island. No fishes are known from the other oceanic islands of these latitudes.

In the southern hemisphere surface fishes do not extend so far towards the pole as in the northern; none aro known beyond $60^{\circ} \mathrm{S}$. lat., and the Antaretic fauna which is analogous to the Arctic inhabits coasts more than ten degrees nearer to the equator. It is very probable that the sberes between 60° and the Antarctic Circle are inhabited by fishes safficieatly numereus to supply part of the means of subsistence for the large seals which there pass at least some portion of the ycar, but hitherto none have been obtained by naturalists; all that the present state of our knowledge justifies us in saying is, that the general character of the fauna of Magellan's Straits and Kerguclen's Land is extremely similar te that of Iceland and Greenland.

As in the Arctic famna, Chendrepterygians are rare, and are represented by Acanthias vnlgaris and species of Raia. Holocephali bave not yet been found so far south, but Callorkynchus, which is not uncommon near the northern boundary of this fauna, may prove to extend into it.
As to Acanthopterygians, Cataphracti and Scorpcenide are represented as in the Arctic fauna, two of the genera (Sebastes and Agonus) being identical The Cottide are replaced by six genera of Truchinidke, remarkably similar in form to Aretic types; but Discoboli and the characteristic Arctic Blennioids are absent.
Gadoid fishes reappear, but are less developed; as usual they are accompanied by Mycine. The reappearance of so specialized a genus as Lycodes is most remarkable. Flatisshes are few as in the north, and belong to peculiar genera.
l'hysostomes are probably net entirely absent, but hitherto none have bcen met with so far south. Lophobranchs are rare, as in the Arctic zune ; it is noteworthy, however, that a jeendiar genus, with persistent embryonic chatacters (Protocumpus), is rather common on the sheres of the Falkland Islands.

Pelagic Fishes

Pelagic fishes,-that is, fishes inhabiting the surface of mid-ocean, -belong to various orders, viz, Cloondropterygians, Acanthopterygians, Plysostomes, Lophobrauchs, and Plectognaths. Neither Anacanths nor Ilharyngognaths contribute to this series of the marine famm. The following genera and famities are incluted in it :-
Chondropterygia-Carcharias, Galeocerdo, Thalassorhinus, Zygena, 'Trianols, Lamnida, Rhinulun, Notilanidx, Lemargus, Euprotomicrus, Echinorhinus, Isistins ; Myliobatide.

Acunthopterygii.-Dactylopterns, Micropteryx, Senmbrina, Gastrochisma, Nomens, Centrolophus, Corydhanima, Seriela, Temnodon, Naucrates, Psenes, Xiphiidic, Autennarius.

I'hysostomi.-Sternoptychidic, Scopelus, Astroncsthes, Scombresocida (majority).

Emplobranchii.- $1 \mathrm{Lipmeampus}$.
I'lectognathi.-Orthagoriscus, and вome other Gymnodinte.

Pelagic fishes differ much from one another in their mode of life. The majority are excellent swimmers, which not only can move with great rapidity, but are also pessessed of great powers of endurance, and are thus enabled to con. tinue their ceurse for weeks, apparently without the necessity of rest ; such are many sharks, scombroids, delphins, pilot-fish, sword-fishes. In some, as in Dactylopterus and Exoccetus, the ability to take flying leaps ont of the water is superadded to the power of swimming (llying-fishes). But in others the power of swimming is greatly reduced, as in Antenuarius, Hippocampus, and Gymnodonts; they frequent places in the ocean covered with doating seaweed, or drift on the surface without resistance, at the mercy of wind and current. The Echeneis or sucking-fishes attach themselves to other large fishes, ships, or floating object., and allow themselves to be carried about, unless change of climate or want of food obliges them to abandou their temporary carrier. Finally, another class of pelagic fishes come to the surface of the acean during the night only; in the day time they descend to some depth, where they are undisturbed by the rays of the sun or the agitation of the surface-water; such are Brama, the Sternoptychide, Scopelus, Astronesthes,-fishes the majority of which are previded with these extraordinary visual orgaus that we find so much developed in the true deep-sea fishes. Indeed, this last kind of pelagic fishes constitutes a connecting link with the deep-sea forms.

Pelagic $\mathfrak{\text { cshes} , ~ l i k e ~ s h o r e ~ f i s h e s , ~ a r e ~ m o s t ~ n u m e r o u s ~ i n ~}$ the tropical zene; and, with few exceptions (Echinorhinus, Psenes, Stermoptychidace, Astronesthes), the same genera are represented in the trepical Atlantic as well as in the Indo-Pacific. The number of identical species occurring in beth these oceans is great, and probably still greater than would appear from systematic lists, in which there are retained nuany specific names that were given at a time when species were believed to have a very limited range. The pelagic fauna of the tropics gradually passes into that of the temperate zones, only a few genera, like Cybium, I'scnes, Antcnnarius, being almost cntirely confined to the trapics. All the other tropical genera range into the temperate zones, but their representatives become fower with the increasing distance from the equator. Nerth of $40^{\circ} \mathrm{N}$. lat. many genera have disappeared, or are met with in isolated examples only, as Carchavias, Zygrena, Notidanus, Myliobatide, Dactylopterus, Echencis, Nomeus, Corynhenue, Schetophilus, Seriolu, Temnoton, Antemnarius, Stcrnontychidu, Astronesthes, Exocatus, T'etrodon, Diodon; and only one genus of sharks, Galeocerdo, approaches the Arctic Ciscle. Sone fow species, like Antennarius, Scopelus, are carried by currents near to the farther confines of the temperate zones; but such occurrences are aceidental, and these fishes must be regarded as entirely forcign to the fauna of those latitudes. On the other hand, some pelagic flanes inhabit tho temperate zence, whilst their occurrence whithin the tropics is very problematical; thus, in the Atlantic, Tlachessorhinus, Selache, Lamargus, Cenerolophus, Diant, Ausonic, Lampris (all gencra compesed of ono or two species only). Besides the shark mentiened, no other lelagic fishes are known from the Arctic Ocean.

Wo possess very little infermation abeut the pelagic fishfaum of the southern oceans. This much only is certain, that the tropieal forms gradually disappear; but it would bo hazardons, in the present state of our knowledge, to state even apprexina: cly the limits of the southward range of a single genus. Searenly mere is knewn about the anpearance of types peculiar to the southern temperate zene, -fnr instince, the gigantic shark Rhinodon representing the northern Sthache, near the enasts of South Afriea, and the Scombroid genns Gustrochisma, in the South Preific.

The largest of marine fishes, Rhinodon, Selache, Carcharodon, Myliobatida, Thynnus, Xiphiide, Orthagoriscus, belong to the pelagic fauna. Young fishes are frequcntly found in mid-ocean, which are the offspring of shore fishes normally depositing their spawn near the coast. The manner io which this fry passes into the open aea is unknown; for it has not yet been ascertained whether it is carried by curreats from the place where it was deposited originally, or whether shore fishes sometimes spawn at a distance from the coast. We may remember that shore Gishes inhabit not only coasts but also submerged banks with some depth of water above, and that, by the action of the water, spawn deposited on these latter localities is very liable to be dispersed over wide areas of the ocean. Embryos of at least some shore fishes hatehed under abnormal conditions aeem to have an abnerimal growth up to a certain period of their life, when they perish. The Leptocephali must be regarded as such abnormally developed forms. Fiebes of a sinilar condition are the so-called pelagic Plagusia, young Pleuronectoids, the origin of which is still unknown. As already mentioned, flat-fishes, like all the other Anacanths, are not otherwise represented in the pelagic fauna

Deep-Sea Fishes.

The knowledge of the existence of deep-sea fishes is one of the recent discoveries of ichthyology. It was only about twenty years ago that, from the evidence afferded by the anatomical structure of a few singular fishes obtained in the North Atlantic, an opinion was expressed that these fiches inhabited great depths of the ocean, and that their organization was specially adapted for living under the physical abyssal conditions. These fishes agreed in the character of their connective tissue, which was ao extremely weak as to yield to, and to break under, the slightest pressure, so that the greatest difficulty mas experienced in prescrving their body in its continuity. Another singular circumstance was that some of the examples were picked up floating on the surface of the water, having met their death whilst engaged in swallowing or digesting other fshes not much smaller in size if not actually larger than themselves.

The first peculiarity was accounted for by the fact that, if those fishes really inhabited the great depths supposed, their removal from the enormons pressure under which they lived would be accompanied by such an expansion of gases within their tissues as to rupture them, and to cause a separation of the parts whieh had been held together by the pressure. The second circumstance was explained thus. A raptorial fish organized to live at a depth of between 500 and 800 fathoms seizes another usually inhabiting a depth of between 300 and 500 fathoms. In its struggles to eseape, the fish seized, being nearly as large or strong as the attacking fish, carries the latter out of its depth into a higher stratun, where the diminished pressure causes such an expansion of gases as to make the destroyer with its victim rise with increasing rapidity towards the surface, which they reach dead or in a dying condition. Specimens in this state are not rarely picked up; and as, of course, it is but comparatively few that can by accident fall into the hands of naturalists, occurrences of this bind must happen very often.

The existence of fishes peculiarly adapted for the deep sea has thus been a fact maintained and admitted for some time in ichthyology; and as the same genera and species were found at very distant parts of the ocean, it was further stated that those deep-aea fishes were not limited in their range, and that, conseqnently, the physical conditions of the depths of the ocean must be the same or nearly tho same over the whole globe. That deep-sea fishes were not
of a peculiar order, but chiefly nodified forms of surface types, was another conclusion arrived at from the sporadic evidence collected during the period which preceded systematic deep-sea dredging.

Nothing, however, was positively known as to the exact depths inhabited by those fishes until observations were m_{m}.de during the voyage of H.M.S. "Challenger." The r:sults obtained by this expedition afforded a surer and more extended basis for our knowledge of deep-sea fishes.

The physisal conditions of the deep sea, which must affect the organization and distribution of fishes, are the follow. ing:-

1. Absence of sunlight. Probably the rays of the sun do not penetrate to, and certainly do net extend beyond, a depth of 200 fathoms, therefore we may consider this to bo the depth where the deep-sea fauna commences. Absence of light is, of necessity, aceompanied by modifications of the organs of vision and by simplification of colours.
2. The absence of sunlight is in some measure compensated by the presence of phosphorescent light, produced by many marine animals, and also by aumerous deep-sea fishes.
3. Depression and equality of the temperature. At a depth of 500 fathoms the temperature of the water is already as low as 40° Fahr., and perfectly independent of the temperature of the surface-water; and from the greatest depth to about 1000 fathoms beaeath the surface the temperature is uniformly but a few degrees above the freezing point. Temperature, therefore, ceases to offer an obstacle to the unlimited dispersal of the deep-sea fishes.
4. The increase of pressure by the water. The pressure of the atmosphere on the body of an animal st the level of the sea is 15 Ht per square inch of surface; but under water the pressure amounts to a ton weight for every 1000 fathoms of depth.
5. With the sunlight, regerable life ceases in the depths of the sea. All deep-sea fishes are therefore carnivorous,the most voracious feeding frequently on their own offspring, and the toothless kinds being nourished by the animaleules which live on the bottom, or which, "like a constant rain," settle down from the upper strata towards the bottom of the sea.
6. The perfect quiet of the water at great depths. The agitation of the water caused by the disturbances of the air does not extend beyond the depth of a few fathoms; below this surface-stratum there is no movement except the quiet flow of ocean-currents, and near the bottom of the deep sea the water is probably in a state of almost entire quiescence.

The effeet upon fishes of the physical conditions deseribed is clearly testified by the modification of one or more parts of their organization, so that every deep-sea fish may be recognized as such without the accompanying positive evidence that it has been caught at a great depth; and, rice versa, fislies reputed to have been obtained at a great depth, and net having any of the characteristics of the dwellers of the deep sea, must be regarded as surface fishes.

The most strikirg characteristic found in many deep-sea fishes is in relation to the tremendous pressure under which they live. Their osseous and muscular bystems are, as compared with the same parts of surface fishes, very fecbly dereloped. The bones have a fibrous, fissured, and cavernous texturo; they are light, with scarcely any calcareous matter, so that the point of a ncedle will readily penctrate thera without breaking. The bones, especially the vertebre, appear to be very loosely connccted with one enother; and it requires the most careful handling to avoid the breaking of the connective ligaments. The muscles, espiceially the great hateral musiles of the trunk and tail, are thin, the fascicles being readily separated from one another ur torn, and the corneciive tissuc being extremely loose, feeble, or
apparently absent. This peculiarity has been observed in the Trachypterida, Plagyoths, Chiasmodus, Melanocetus, Saccopharynx. But we cannot assume that it actually obtains whilst those fishes exist under their natural conditions. Some of them are most rapacious creatures, which must be able to execute rapid and powerful morements to catch and overpower their prey; and for that object their muscular system, thin as its layers may be, must bo as firm, and the chain of the segments of their vertebral column as firmly linked together as in surface fishes. It is evident, therefore, that the change which the body of those fishes hae undergone on theic withdrawal from the pressure under Which they live is a much aggravated form of the affection that is experienced by persons reaching great altitudes in their ascent of a mountain or in a balloon. In every living organism with an intestinal tract there are accumulations of free gases: and, moreover, the blood and other fluids, which penetrate every part of the body, contain gases in solution. Under greatly diminished pressure these gases expand, so that, if the withdrawal from a depth is not an extremely slow and gradual process, the various tissues must be distended, loosened, ruptured; and what is a vigorous fish at a depth of 500 fathoms or more appears at the susiace as a loosely-jointed body which, if the skin is not oi sufficient toughness, can only be kept together with difficulty. At great depths a fibrous osseous structure and a thin layer of muscles suffice to obtain the same results for which, at tho surface, thickness of muscle and firm oaseous or cartilagiuons tissue are necessary.

The muciferous system of many deep-sea fishes is developed in an extraordinary degree. We find in fishes which are comparatively little removed from the surface (that is, to depths of from 100 to 200 fathoms) the lateral tine much wider than in their congeners or nearest allies which live on the surface, as in Trachichthys, Hoplostethus, many Scorporide. But in fishes inhabiting depths of 1000 fathoms and more the whole muciferous system is dilated; it is especinlly the surface of the skull which is occupied by larga cavities (Macrurides, deep-sea Ophidiidas), and the whule body seems to bo covered with a layer of mucus. Theso cavities collapse and shrink in specimens which have been proserved in spirit for some time, but a brief reimmersion in water generally suffices to show the immense guantity of mucus sccreted by them, The physiological use of this secretion is unknown; it has been observed to hnve phosphorescent properties in perfectly fresh specimens.

The colours of deep-sea fishes are extremely simple, their bodies being either black or silvery; in a few only are some filaments or the fin-rays of a bright scarlet colour. Among the black forms albinoes are not rare.

Tho organ of sight is the first to bo affected by a sojourn in deep water. Even in fishes which habitnally livo at a depth of only 80 fathoms, we find the eje of a propertionally larger size than in theic representatives at the surface. Ir such fishes tho eycs increase in size mith the depthimhabited by them, down to the depth of 200 fathoms, the largo organs being necessary to collect ns many rays of light as possible. Beyond that depth small-eyed as well ns large-cyed fishes occur, the former having their want of vision compensated by tentacular organs of touch, whilst the lotter havo no sucli necessory organs, and evilently seo only by the aid of phesphoresconec. In the greatest deyths blind fishes occur, with rudimentary eyes and without speciel organs oi touch.

Many fisles of the deep sea are provided with more or less numerous, round, shining, mother-of-pearl-coloured bodies, imbedded in tho skin. These so cented phosphorescent or luminous organs are cither larger luxies of an oval or irregularly elliptical shape paced on the licad. in the
vicinit y of the eye, or smaller round globular bodies arranged symmetrically in series along the sid 1 of the budy and tail, especially near the abdominal profile, less frequently along the back. The former kind of organs possess in the interior a lenticular body, like the lens of an eye, and are considered by some naturalists true organs of vision (accessory eyes), the function of the latter, which have a glandular structure, being left unexplained by them.

There is no doubt that the functions of these orgins have some relation to the peculiar conditions of light under which the fishes provided with them live, these fishes being either deep-sea forms or nocturoal pelagic kinds And it is highly probable that all produco and emit phosphorescent light, enabling the fishes to see in the darkness of the night or of the depths of the sea.

Whenever wo find in a fish long delicate filaments developed in connexion with the fins or the extremity of the tail, we may conclude that it is an inhabitant of still water and of quiet habits. Many deep-sea fishes (Trachypteride, Macruride, Ophidiidee, Bathypterois) are provided with such filamentous prolongations, the development of which is perfectly in accordance with their sojourn in the absolutely quiet waters of abyssal depths.

Some of the raptatorial deep-sea fishes have a stomach so distensible and capacious that it can receire a fish of twice or thrice the bulk of the destroyer (Melanocetus, Chiasmodus, Saccopharynxx). Degintition is*performed in them, net by means of the muscles of the pharynx, as in other fishes, but by the independent and alternate action of the jans, as in snakes. These fishes cannot be said to swallow their food; they rather draw themselves over their victim, after the fashion of an Actinia.

Before the voyage of H.M.S. "Challenger," scarcely thirty deey sen fishes were known. This number is now much increased, six times as many nem species and genera having been discovered. Modifications of certain organs, perfectly novel, and of the greatest interest, were found; but, singularly, no new types of families were discovered, -nothing but what might have been expected from our previous knowledge of this group of fishes.

Tho fish fauna of the deep sea is chicfly composed of forms or modifications of forms which we find represented at the surface in the cold and temperate zones, or which belong to the class of nocturaal pelagic fishes. The Chondropterygians are few in number, not descending to a greater depth than 600 fathoms. The Acanthopterygians, which form the majority of the coast and surface faunas, are also scantily represented; gencra identical with surface types aro confined to the samo inconsidcrable depth as the Chondropterygians, whilst those Acanthopterygians which are so much specialized for a life in the decp sea as to deserve generic scparation rango from 200 to 2400 fathoms. Thrco distinct families of Acauthopterygians belong to the deep-sea fauna, viz., Trachypteride, Lophotider, and Nota. centhiche; they consist of three, one, and two gener: respectively.

Guthder, Ophididdr, and Macruride are very numerous, ranging through all deptls,; they constituto about onefourth of the wholo deep-sea fnuma.

Of 1 'hysostomi, the families of Sternontychide, Scopelida, Stomiutider, Sulmonida, Bathythrisside, Alepocephalida, IIalosauridie, and Ifurcandue aro represented. Of theso the Scopuloids are the most numerons, constituting nearly another fourth of the fauna. Salmonide nro only represented by tineo small gencra. Buthythrisside include ono species only, which is probably confined in its vertical as well as its herizontal range; it occurs at a depth of about 350 fathoms in the sea of Japan. The Alcpocephalide nnd Mntosumidry, l nown before the "Chadenger" expedtion frem isolated examples only, prove to bo true, widely-
spread, deep-sea types. Eels are well represented, and seem to descend to the greatest depths. Myxint bas been ob tained from a depth of 345 fathoms.
The greatest depth hithertu reached by a dredge in which frshes were enclosed is 2900 fathoms. But the specimens thus ubtained belong to a species (Gonostoma microdon) which seems to be extremely abundant in upper strata of the Atlautic and Pacific, and were therefore most likely caught by the dredge in its ascent. The next greatest depth, viz., 2750 fathoms, must be accepted as one at which fishes do undoubtedly live, - the fish obtained from this depth of the Atlantic, Bathyophis ferox, showing by its whole habit that it is a form living on the bottom of the ocean.

CLASSIFICATION.

The class of fishes is divided into four subelasses :-
I. Pakciehthyes.-Heart with a contractile conus arteriosus; intestine with a spiral valve; optie uerves nondeeussating, or only partially decussating.
II. Teleostei.-Heart with a non-centractile bulbus arteriosus; intestine without spiral valve; optie nerves decussating. Skeleton ussified, with completely separated vertebre.
III. Cyclostomatr.-Heart without bulbus arteriosus; intestine simple. Skeleton eartilaginous and notuchordal. One nasal aperture only. No jaws; mouth surrounded by a circular lip.
IV. Leptocardii.- Heart replaced by pulsating sinuses : intestine simple. Skeleton membrano-cartilaginous and notochordal. No brain; no skull.

Subclass 1.-Palaichthyes

This subclass comprises the sharks and rays and the Ganoid fishes. Though it is based upon a singular concurrence of most important characters, its members exhibit as great a diversity of form, and as manifold modifications in the remainder of their organization, as the Teleostei. Ths Palaichthyes stand to the Teleostei in the same relation as the Marsupials to the Placentalia. Geologically, as a subclass, they were the predecessors of Teleosteous fishes; and it is a remarkable fact that all those modifications which show an approach of the ichthyie type to the Batrachians are found in this subclass. It is divided intu two orders, -the Chondropterygii and the Ganoidei.

Order I.-Chondroplerygii.

Skeleton cartilaginous. Body with medial and paired fins, the hinder pair abdominal. Vertebral column generally heterocercal, the upper lobo of the caudal fin produced. Gills attached to tho skin by the outer margin, with soveral intervening gill-onenings ; rarely ono extornal gill-opening only. No gill-cover. No airliadder. Tro, three, or more scries of valves in the conus orteriosus: Ova large and few in numher, impregnated and, in some speries, developed within a uterine cavity. Embryo with deciduous cexternal gills. Males with intromittent organs attached to the ventral ins.
This order, for which, also, the dame Elasmobranchii has been proposed (by Bonoparte), comprises the sharks, rays, and chimaras. It is divided into two suborders,-Plagiostmata and Holocephals.
Suborder. I. Plagiostonata.-From five to seven gill-openings. Skull with a suspensorium and the palatal apparatus detached. T'eeth numerons.
The Plagiostomes differ greatly from each other with regard to the general form of the body. In the sharks, or Sclachoidei, the body is elongate, more or less cylindrical, gradually passing into the tail; the gill-openings are lateral. In the rays, or Batodet, the gill-openimss are always placed on the abdominal aspect of tho fish ; the body is depressed, and the trunk, which is surroumded by tho immensely developed pectoral fins, forms a broad flat disk, of which the tail appears as a thin and slender appendage. Spiracles are always present; the number of gill-openings is constantly five ; there is no anal fin; the dorsal fins, if present, are situated on the tail. Somo of the rays, however, approach the sharks in having the ciudal portion less abruptly contracted behind the trunk

Fossil Plagiostomes are very numerous in all formations 'Irmo
of the earliest determinalle fish remains ore, or are beliced to be, derived fron Plagiostomes. Those which can be referred to any of the families specified below will be mentioned in due course; but there are others, especially fin-spines, which leave us in doubt to which group of Plagiostomes their owners had affinity: as Onchus, from the Upper Silurian, continuing to Curboniferous formations; Dimeracanthus, Homacanthes, from the Devonian; Oractuthus, Gyrucanthes, Tristychius, Astropychius, Ftychacanthus, Spheno. canthas, \&e., from Carboniferous formations; Leptacanthus, from the Coal to the Oolite ; Cludacanthus, Crricacanthes, Gyropristis, and Lcpracanthus, from the Coal-measures; Nemacanthus, Liacenthus, from the Trias; Astracantlius, Myriacanthus, Pristacanthus from the Jurassic group.

A. Sclachoidei, Sharks.

Family 1. Carcharide.-Wye with a nictitating membrane Mouth erescent-shaped, inferior. Anal fin present. Two dowal fins, the first opposite to the space between the pectoral and ventras fins, without spine in front.

Geneta: Carcharias (Bine Shark), Galcocerdo, Gateus (Tope), Zygunia (Hammerhead), Mistelus (Hound), Momigolcus, Loxodoin, S'halassorkinus, Trickodon, Leptocarcharius, and ITiacis. Fossil: Corax and Hemipristis.
Family 2. Lanzaide. - Eye without nictitating membrane. Anal fin present. Two dorsal fins, the first oppusite to the slace between the pectoral and ventral fins, without spine in front. Nostrils not contluent with the mouth, which is inferior. Spiracles absent or nibute.
Genera: Lamna (Purbeagle), Carcharodon, Oidontaspis, Alopccias (Fox-Shark), and Selache (Basking Shark). Fussil : Carcharopsis, Oxytes, Sphenodus, Gomphodus, and Ancistrolon.
Family 3. Rhinodontide.-No nictitating membrane. Ansl fin present. Two dorsul fins, the first nearly opposite to the ventrals, without spine in front. Mouth and nostril near the extremity of the snout.

This small family comprises one species only, Ahinodon typicus, a girantic shark, which is known to exceed 50 feet in length.
Family 4. Notidanide. - No nictitating membrane. One dorsal fin only, without spine, opposite to the anal. Dentition unequal in the jaws ; in the upper jaw one or two pairs of awl-shaped tecth, the following six being broader, and prowided with several cusps, one of which is much stronger than the others. Lower jaw with six large comb-like teeth on each side, besides the smaller postericr teeth. Gill-openings wide, six in umber in Hoxanchus, seven in Heptanchus. Fossill teeth belonging to this type have been formd in Jurassic and later formations (Notidanus and Ellopos).

Family 5. Scyllide. - Two dorsal tins, without spine, the first above or behind the ventrals; anal fin present. No nictitating membrane. Spiracle always distinet. Mouth inferior. Teeth small, several series gencrally being in function.

Genera: Scyllium (Dog.Fishesy, Pristiurus, Parascyllium, Ginglynostoma, Stegostoma, Chiloscyllitit, Crossorhinus. Fossil: Scyl. liodus, Palxoscyllium, Thyellina.

Faunily 6. Hybodontille.-Two dorsal fins, each with a scrrated spine. Teeth rounded, longitudimally striated, with one larger and from two to four smaller lateal cusps. Skin covered with shagleen.

Extinct. From Carboniferous, Liassie, and Triassic formations. Scveral genera lave been distinguished; and, if. Clatudus belongs to this family, it was represented even in the Devonian.

Fanily 7. Cestraciontulue. - No nictitating membrane. Two dorsal fins, the first opposite to the space betieen the pectoral and ventral fins; anal fin present. Nasal and buccal cavities conlluent. Teeth obtuse, several series being in function.
This family is one of partienlar interest, because representatives of it occur in mumerous modifentions in Primary and Secondary strata. Their dentition is uniformly adapted for the prehension and mastication of crustaceous and hari-shefled animals. The fossil forms far exceceded in size the species of the only surviving genus Cestracion (the Port Jackson Shark) ; they make their apparatace with Ctenoptychits in the Devonian; this is succeeded in the Coalmeasures by Psammodus, Chomatodus, D'etrodus, Cochliohus, Jo?y. rhizodus, \&c., and in the Trias and Chalk by Strophodus, Acrollus, Thectodus, and Peychoters. Of the 25 genera known, 22 havo lived in the periods preceding the Oolitic.
Family 8. Spinacide.-No membrana nictirans. Two korsal fins; no anal. Mouth but slightly arched; a lons, deep, straight, oblique groove on each side of the mouth. Spiracles present ; gitl. openings narrow. Pectoral fins not noteled at their origin.
Genera: Centrina, Acanthias (Spiny Dog-Fivl), Centrophoras, Spinax, Centroscyltium, Scymmas, Lemargus (Greenland Shark), Echinorhinus, Euprotomicrus and J^{\prime} sistits. Tho largest of theso fishes is the Greenland shark, which attains to a length of 15 fect, and is common in the Aretic regions. Fossil genem: l'alrospinax and Drepancphorres, from Cretaccous ane Jurassic formations

Family 9. Rhinide-No anal fin ; two dorsal fins. Splraches preanh pectoral fins large, with the basal portion proloneod
forwards, but not gromm to the head. Gill-openings rather wide, lateral, partly covered by the base vi the pectoral. Spiracles wide, behind the eyes. Teeth conical
One genus only: the "Angel-Fish," or "Monk-Fish" (Nhzna squatina), which approaches the rays as regards general form aud labits. Extiact forms, closely allied to the "Angel. Fish," are found in the Oolite, and have been described as Thaumas. The Carboniferous genus Orthocanthus may have heen allied to this Iamily, but it was armed with a spme immediately behond the head.
lamily 10. Pristiophoride. - The rostral cartilage is produced into an exceedingly long, flat lamina, armed along each edge with a semes of teeth (saw).
These sharks sogreatly resemble the common saw.fishes as to be easily confonnded with them, but therr gill-openmgs are lateral, and not inferior Only one genns is knows. Prustiophorus, which occurs in the Australian and Japanese seas. Squaloraza, from the Lias, is supposed to have its nearest affimities to this family.
B. Batoidci, Rays.

Family 1. Pristide. --The soont is produced into an exceedingly long flat lamina, armed with a sernts of strong teeth along each edge (saw).

One genns only : Pristis (Saw-Fiblues).
Family 2. Rhizobatide. -Tail strong ant long, with two welldeveloped dorsat fins, and a longrudmal fold on each side; caudal developed. Disk not excessively dilated, the rayed portion of the pectoral fins not being continued to the snont. Teeth ohtuse, gramular, the dental suifaces of the jaws beng undulated.

Genera: Rhynchobatus, Rhinobatics, and Trygonorhina Fossit: Symehobates ami Triyorhina.

Family 3 forpedinidie ((Eleetrie Rays) -Trunk s broad, smooth disk. Tuil with a longtudinal fuld on each side; a rayed dorsal fin is generally, und a caudal always, present. Anternor masal valves confluent into a quadrangular lobe An electrie orgao composed of vertical hexapomal prisms between the pectoral fins and the head.

Genera Torgelu, Narcinc, Hypmes, Discopyge(from Peru), Astrape, and Temora. A large fish, with the geoeral appearance of a torpedo, has been found at Monte Bolea; and Cyclobatis, from the Upper Cretnceous Limestone of Lebanon, is probably another extinct representative of this fanily.

Family 4. Fuiute. - Disk broad, rhombic, generally with asperitues or spanes ; tail with a lungtudual fold on each side. The peetoral fins extem? to the snont. No elentre organ; no serrated candal sune.

Gnnera: Raia (Rays and Skates), Psammobatis, Sympteryga, Jatyrhime. Fossil: Avthropterus.

Family 5 Trygonade - The pertaml fins are unanterruptedly contmued to, and are conllumt at, the extremity of the snome. Tail long ath slender, without lateral longatudnal folds; vertical fins nome, or imperfetty developed, oftern replaced by a strong serrated spine

Genera Urogymnus, Trugon (Sting-Rays), Urolophus, Pteropratia

Family 6. Myliobuterler ("Devil-Fishes," "Sea-Devils," or "Eagle-Kays").-The disk is very broud, 14 consemuence of the great dewhlopment of the prectoral fins, wheh, however, leave the sides of the head free, and reappear at the extrematy of the smout as a pair of letached (cephatic) tins. Viviparous

Genera: Myliobates, Actohutis, Fihumptera, Dicerobatzs, Ceratophera. Fragmentary fartions of thenr tessellated dentation are cornmom in Tertimy formations
Sunordetill. Molorphatu. -One extermal gill-opening only, rovered hy a fold of the skin, which encloses a millmentary cartila. finousgill-rover; four branchial elefte within the gill-cavity. The mexillary anl patatal apporatus coalescent with the skull.

This sulumter is represented an tho living fauna by one family only, Chimaridr: it forms a connecting link with the following arifur of fishes, the Gamomils lo extcrual appearance, and as regnode the strurture of their organs of propigation, the chimeris are tharks "The females are provided with "claspers" in connexion with the ventral fins, and the ove are large, encased in a loomy copsule, and how in momber; there is nus donbe that they are imforgatal witho the ovndart, as in sharks. The males are pro. viled whth ammanar roctule apurmbage, spung at its extremity, and ramem in agronve on the top of tho head. On the other hamd, the belations of the chimaras to the Canoid, and, more espucially, Io the Jipmonss type become manifest in their soneochordal skeleron and contmaty of eranial cartilage. 'The spine in front of the first
 phated in the mint parts; it 14 inmovalide ns in sharks. A cartalagrmaserperatum makesits apporance, anl the external gill-opening is sungle. T'ho dentition is that of a Jipnoil, vach "jaw" bumg maned with a par of brual dental phates, with the addition of a pair of smallar rutting terth on the upper "jaw." Frossila of siming dental rombination are not mo in atrata commonemg with the Lias and the botom of the Ghitie sulies; bat it is infersilde to decide iu every case whether due Gossil shouhl be medered to the

Holocephalous or the Dipnoous type. According to Newlierry, Chimeroid lishes commence in the Devonian with Rhynchodus, the remams of which were discovered by hm in Oho Undoubted Chimæronds are Elasmodus, Psaliot as, Ganodus, Ischyodus, Edaph. odon, and Elasmognathes, prmeipally from Mesozom and T'erthary formations. Very similar fossils occur in the corresponding strata of North America. A single spectes of Callorhynchus has been dis. covered by Hector io the Lower Greeasand of New Zealand

The living chimæras are few in number, and remain within verv moderate dimensions, probably oot exceeding a length of 5 feet.. inclusive of their long filaoentous, diphycercal tail. They arvreferred to two genera, Chimera and Callorhynchus.

Order 11.-Ganoidei.

Skeleton cartilaginous or ossified. Body with medial and pairen fins, the hinder parr abdominal. Gills free, rarely partially attached to the walls of the gill-cavity. One external gill-openiny only on rach side; a gill-cover. Air-bladder with a pnemmatic due Ova small, impregnated after exclusion. Embryo sometimes witl external gills.

To this order belong the majority of the fossil fish remanns ot Palxozoicand Mesozoic age, whilst it is very seantily represented in the recent fanma, and evidently verging towards total extinction. The knowledge of the fossil forms, based on mere fragments of the hard parts of the body only, is very incomplete, and therefore thes classitication is in a most unsatisfactory state. In the following list only the most mportant groups will be mentioned ${ }^{1}$

Eught suborders may be distinguished at peseut
Suborder 1. Placodermer. - Extinct. The head and pectoral region of the body cncased in great bony sculptured plates, with dots of enamel; the remander of the body naked, or with ganord scales; skeletun notwehordal.

Cobrprises the oldest vertebrate remains, from Devonian and Carboniferous formations.

Genera: Pterichthys, Coccosteus, Dinichthys, Cephalaspss, Auchenaspis, Didymaspus, Pteraspus, Scaphaspis, Cyathasms, Astrolcpis.

Suborder II, Acanthodini. - Extinct. Body oblong, compressed, covered with shagreen ; skull not ossified; caudal fin heterocercal. Large spioes, similar to those of Chondropterygians, in front of some of the median and paired fins. The spines are imbedded he tween the muscles, and not provided with a proximal joint.

Gedera: Acanhodes, Chiracanthus, from Devonian and Car. honiferous formations.

Suborder III. Dipnoi-Nostrils two pairs, more or less with. in the mouth; limbs with an axial skeleton. Lungs and gills. Skeleton notochordal. No branchiostegals.

Family 1. Sircuider - Caudal fiu diphycereal; no gular phates. scales cyeloid. A pair of molars, above and below, and one par of vomerine teeth.

Genera: Lepidosiren and Ceratolus.
Lepridosiren (incluling I'rotopterus) has the lody eel-shaped, with one contimous vertical fin. The limbs are reduced to hlaments. Vomerine teeth conical, pointed. Each dental lamina or molar with strong cusps, supported by vertical ridges. Conus arteriosus with two longitudinal valves. Ovalies closed sats. Two spectes are known, -L. paradowa, from the system of the river Ammzon, and L. (Protopteris) annectens, which abounds in many localitics of the west coast of Africa is spread over the whole of tropical Africa, and ? many districts of the central parts forms a regular article of food.

Ceratodus has the body elongate, compressed, with one continuous vertical tin. The limbs me paddle-shaped, with boad, rayed fringe. Vonsuinc teeth isessor-like; molars with flat, undulated suffice, and lateral prongs.' Conus artertosus with transverse semes of valves. Ovaries transversely lamellated.

Two species, C. forstert and C, miolepes, are known from fresh waters of Quensland. The specimens obtaimed hitherto havecome Hrom the Burnett, Dawson, and Mary rivers, some from the fresh waters of the upper paits, others [rom the lower brackish portions lhe fish is saill to grow to a weight of 20 thand to a length of 0 fert Locally, tho settlers call it "Flat-heal," "Burnett-Salmon," or "Dawson-Salmon," aml the aborigines "Barramunda," a name which they "bear to apjly also to bther large-sealed freshwoter fishes, as the Osteoglossum leichardta. In the stomach there is gernerally found an enomous quantity of the leaves of plants growns on the banks of rivers, evidently eatenafter they had fallum into the water and when in a decomposing evodition. The hesh of the lisht is salmonteolomed, and is nueh estemed as ford. The hatramanta is said to be m the labit of gong on land, or at least on mud-liats, ami this assertion. uppears to lu berue out by the fant

 bul xais
that it ia provided with a lung. It is much more probable, however, that it risea now and then to the surface of the water in order to fill its lung with air, and descends again until the air is so much deoxygenized as to render a renewal of it necessary. As the barramunda has perfectly developed gills, as well as the lung, we can hardly doubt that, when it is in water of normal composition, and pure enough to yield the necessary supply of oxygen, these organs are suflicient for the purpose of breathing, and that the respiratory function rests with them alone. But when the fish is compelfed to sojourn in thick muddy water charged with gases which are the products of decomposing orgnnic matter (and this must very frequently be the case during the droughts which anoually exhaust the creeks of tropical.Anatralia), it commences to breathe air with its lung in the way indicated above. If the mredium in which it happens to be is altogether unfit for breathing, the gilla cease to have any function; if it is irrespirable in a less degree the gills may still continue to assist the lung. The barramunda, in fact, can breatha hy either gills or lung alone, or by huth simultaneously.
The discovery of Ceratodus does not date farther back than the year 1870. It proved to bs of the greatest interest, not only on account of the relation of this creature to the other living Dipnoi and Ganoidei, but also because it threw fresh light on those aingular fossil teeth which ara found in strata of the "riassic and Jurassic formations in varions parts of Europe, India, and America. These teeth vary greatly in general shape and aize; they are sometimes 2 inches long, much longer than broad, depressed, with a flat or slightly undulated always punctuated crown, with one margin convex, and with from threa to seven prongs projecting on the opposite margin.

Family 2. Clenododipleride.-Caudal fin heterocercal; gular plates ; scales cycloid. Two pairs of nolars and ona pair of vomerine taeth.
Extinet. Dipterus (Clenodus), Heliodus, from Devonian strata
Family 3. Phancropleuride.-Caudal fin diphycercal; vertlcal fin contimuous; gular plates ; scales cycloid. Jaws with a series of minute conical teeth on the margin.
Extinct. Phaneropleuron, from Devonian and Carboniferous formations.
Suborder IV. Chondrostei.-Skeleton notochordal; skull cartilaginous, with dernal ossifications; branchiostegals few in number or absent. Teeth minute or absent. loteguments naked or with bucklers. Caudal fin heterocercal, with fulcra. Nostrila double, in front of the eyes.

Family 1. Acipenscrider.- Body elongate, sub-cylindrical, with five rowa of osseous bucklers. Snout produced, subspatulate or conical, with the mouth at its lower surface, small, transverse, protractile, toothless. Four barbels in a transverse series on the lower aide of the anout. Vertical fina with a single series of fulcra in front. Dorsal and anal fins approximate to the caudal. Branchioategals nooc. Air-bladder large, simple, communicating with the dorsal wall of the cesophagus.
Genera: Acipenser and Scaphirhynchus (Sturgeons, Hausen, Sterlet).
Family 2. Polyodonitide. - Body naked, or with minute stellato ossifications. Mouth lateral, very wide, with minute teeth in both jaws. Barbels none. Caudal fin with fulcra. Dorsal and anal fins approximate to the caudal.
Gencra: Polyodon and Psephurus. Fossil : Chondrosteus.
Suborder V. Polypteroidei.-Paired fins with axial skelcton, fringed; dorsal fins two or more. Branchiostegals absent, but gencrally gular plates. Vertebral column diphycercal or heterocercal. Body scaly.
Family 1. Polypterido.-Scales ganoid; fins without fulcra. A serics of dorsal spines, to each of which an articulated finlet is attached; anal placed close to the caudal fin, the vent being near the end of the tail. Abdominal portion of the vertebral column much longer than the caudal.

Genera : Polypterus and Calamoichichys. Polypterus is confined to tropical Africa, occurriog in abundance in the rivers of the west coastard in the upper Nile; it is rare in tho middle and lower Nile. Thera is oaly one apecies known, Polypterns bichir ("Dichir" being its vernacular nama in Egynt), which varies in the number of tho dorsal finlets, the lowest being eight, tho highest eighteen. It attains to a length of 4 fect. Nothing is known of its moda of life, observations on which are sery desirable. Calamoichehys (from Old Calabar) is distinguished from. Ro ypterus by its greatly elonsated form and the absenco of ventral fins.

Family 2. Saurodiplerida. - Scales ganoid, smooth like the surface of the skull. Two dorsal fina ; paired fins obtusely lohate. Teeth conical. Caudal fin heterocercal.

Extinct. Diphopterus, Negalichethys, and Osteolrpis, from Deronian and Carboniferous formations

Family 3. Colacanthider.-Scales rycloid. Two dorsa! fins, each supported by a single two.pronged interspinous bende ; fired fins obtusely lobate. dir-bladder ossified; uotochorl furs.enct. diphycercal.

Extinet. Colacanthus, from Carboniferous strata. Several other genera, from the Coal formations to the Chalk, hava been associated with it:-Undina, Graphiurus, Macropoma, Holophagus, Hoplo pygus, Rhizodus.

Family 4. Holoptychide.-Scales cycloid or ganoid, sculptured Two dorsal fins; pectorals narrow, acutely lobato ; dentitiou deudrodont.

Extinct. Genera: Holoptychius, Saurichthys, Clyploleprs, Den. drodus, Glyptolemus, Glyptopomus, Tristichoplerus, Gyroptychius, Strepsodus, from Devonian und Carboniferous strata.

Suborder VI. Pycnodontoidei.-Body compressed, high and short or oval, covered with rhombic scales arranged in decussating pleurolepidal lines. Notochord persistent. Paired fins without axial skeleton. Teath on the pslate and hinder part of the lower jaw molar-like. Branchiostegals, but do gular plates. Extinct.
Family 1. Pleurolepide.-Homocercal. Body less high. Fing with fulera.
Genera: Pleurolepis and Homcolepis, from the Lias
Family 2. Pycnodontidx.- Homocercal. The neural arches and ribs are ossified; the ronts of the ribs are but little expanded in the older genera, but aro enlarged in the Tertiary forms, so as to siraulate vertebra. Paired fins not lobate. Obtusa tecth on the palate and the sides of the mandible; maxilla toothless ; incisor-like teeth in the intormaxillary and front of the mandible. Fulcra absent in all the fins.
Genera: Gyrodus, Mesturus, Microdon, Ccelodus, Pyenodus, Mesodon, from Masozoic and Tertiary formations.
Suborder VII. Lepidosteoidei.-Scales ganoid, rhombic ; fins generally witb fulera; paired fins not lobate. Prooperculum and interoperculum developed; generally numerous branchiostegals, but no gular plate.
Family 1. Lepidosteide.-Scales ganoid, lozenge-shaped. Skeleton completely ossified; vertebra convex in front and concave behind. Fins with fulcra; dorsal and anal composed of articulated rays only, placed far backwards, close to the caudal. Abdominal $\mathrm{p}^{\text {art }}$ of the vertebral column much longer thas caudal. Branchiostegals not numerons, without enamelled surface. Heterocercal.

Lepidnsteus.-This genus existed as early as Tertiary times; their remains have been found in Europe as well as in North America. Id our period they are limited to the temperate parts of North America, Central America, and Cuba. Three species can be distinguished, which attain to a length of about 6 feet. They feed on other fishes; and their general resemblance to a pike bas gained for them the vernacular names of "Gar-Pike" or "Bony Pike."
Family 2. Saurida.-Body oblong, with ganoid scales; vertebre not completely ossified; termination of the vertcbral columa homocercal ; fina generally with fulcra. Naxillary composed of a single piece; jaws with a single serics of conical pointed teeth. Branchiostegala numerous, euamelled, the anterior forning broad gular plates.
Extinct. Genera : Semionotus, Eugnothus, Cepheroplosus, Ma. crosemius, Propterus, Ophiopsis, I'holidophorus, Pleuropholio, Pachycormus, Ptycholepis, Conodus, Eulepidotus, Lophiostomus, \&c.

Fawily 3. Stylodontider. - Body rhombic or ovate, with ganoid scales ; vertebre uot completely ossificd; termination of the vertebral column homocereal; fins with fulcra. Maxillary composed of a single piece; jaws with several series of teeth, the outer onps equal, styliform. Dorsal fin very long, extending to the caudal. Branchiostegals numerous.
Extinct. Tctragonolepis, from the Lias.
Family 4. Spharodontide.-Body oblong, with rhmbic ganord scales ; vertebre ossified, but not completely closed ; homocercal ; fins with fulcra Maxillary composed of a single piece, teeth io several serics, oltuse; those on the palate globular. Dorsal and anal fins short. Branchiostegals.
Extioct. Tho type genus of this family is Lopifotus.
Family 5 Aspudorhynchide.- lioly clengate, with ganoid scales; jaws prolonged into a beak; termination of the vertebral column homocercal. Fins with fulera; a series of enlarged scales along the side of the body. Dorsal fin cprosito to the mal.

Extinct: Mesozoic. Genera: Aspudorhynchus and Belorostornus.
Family 6. Palconiscidit. - Body fusiform, with thomhic ganoid scales. Notochord persistent, with the wertebral arches ossified Heterocereal. All the fins with fulcra; dorsal short Branchiostegals numerous, the foremost pair forming benad gulars. Teeth small, conical, or cylindrical.

Extinct. Genera: from the Old Rmilsandstono-Chirolems and Acrolegis ; from Carboniferous rocks-Cnimaptychins, Elonichlys, Nemaloplychius, Cycloplychius, Míroconolus, Gmannous, Whadin ichehys, Myriolepis, Urosthens; from the I'ermian-J:habdinfors, Palconiscus, Amblypterus, and Pygpterne ; "from the LiusCentrotepis, Oxygnathus, Cosmolgnis, nal Thrissonntus.
fiamily 7. Platysomidir.-boly gincrally ligh, compressed, enverel with rhombic gatiol scales ananged in dorsin- wemtal badds. Sotocherl peristent. With the vetertal an has oswified Hetero-

naif of the back. Branchiostegals mumerou. 'a eeth todetcuar or obtuse.
Extinct. Genera : from Carhoniferous and l'ermian formations -Eurynotus, Benedcnius, Mesolepis, E'urysomus, Wardichthys, Shirodus ($\mathrm{I}^{\circ} \mathrm{Coy}$), Platysomus.
Sobonder VIll. Amioidez. - Vertebral column more or less comoletely ossified, heterocercal. Body covered with cycloid scales. Branchiostegals present.
Family i. Caturidue. -Notochord persistent, with partially issifed vertebrie; homocercal; fins with fulern. Teeth in a single series, small, pointed.
Extinct. Caturus, from the Oolite to the Chalk.
Fanily 2. Lepiolepidar. -Scales cycloid. Vertebre ossified; bomocercal ; fins without fulera; dorsal short. Teeth minute, in bands, with canines in front.

Extiact, but leading to the living representative of this suborder. Genera: Thrissops, Leptolepis, from the Lias and Oolite. These fishes, so far as the preserved parts are concerned, cannot be distinguished from Teleesteous fishes, to which they are referred by some palaontologists.
Fanily 3. Amiida.-Skeleton entirely ossified; s single large zular plate; homocercal; fins without fulera; a long solt dorsal Gn. Abdominal and caudal parts of the vertebral column subequal un extent. Brauchiostegals numerous.
Ama.-The " Bow-Fin" or "Mud-Fish" (A. calva) is not uncornnon in many of the fiesh waters of the United States; it grows to a length of 2 feet. Little is known about its habits; small fishes, crustaceans, and equatic insects have been found in its stomach. Wilder has observed its respiratory actions; it rises to the surface, snd, without emitting any air-buhble whatever, opens the jaivs widely, and apparently gulps in a large quantity of air ; these acts of respiration are more frequently performed when the water is foul or has not becn changed; and there is no doubt that a conversion of oxygen ioto corbonic acid is effected, as in the lungs of aerial vertebrates.
Fossil remains occur in Tertiary deposits of North America, which have been distinguished as Protamia and Hyparnia

Subclass II.—Teleostei.

Heart with a non-contraetile bulbus arteriosus; intestine without spiral valre; optic nerves decussating; skeleton ossified, with completely formed vertebre ; vertebral celumn diphycercal or homecereal ; brancbix free.
The Teleostei form the majority of the fishes of the present fauna, and are the geological successors of the Palteichthyes, unduubted Teleostei not ranging farther back than the Chalk period. This subelass comprises an infinite variety of furms; and as, naturally, many Ganoid fisbes lived under external canditions similar to those of certain Teleostei, and led a similar mode of life, we find not a few analogous forms in both series,-some Gadoids resembling esternally the Teleosteous Siluroids, others the Clupeoids, others the Chetodonts, ethers the Scombresoees, \&c. But there is ne direct genetic relation between these fishes, as some naturalists have been inclined to believe.
The Teleostei are divided inte six orders:-
I. Acanthopterygii- - Part of the rays of the dorsal, anal, and ventral fins non-articulated spines. The lower phsryngeals separate. Air-bladder, if preseut, without pneumatic rluct in the adult.
II. Acanthopterygii Pharyngopnathi.-Part of the rays of the dorsal, anal, and ventral fins non-artieulated spines. The lower pharyngeals coalesced Air-bladder without pneumatic duct.
III. Anacanthini--Vertical and ventral fins without spinous rays. Ventral fins, if present, juguler or thoracic. Air-bladder, if present, without preumatic duch Lower pharyngeals separate.
IV. Physostomi.-All the fin-rays articulated; only the first of the dorsal and pectoral fins is sometimes ossified. Ventral fins, if present, abdominal, without spine Airbladder, if present, with a pneumatic duct.
V. Lophobranchii.-Gills not laminated, but composed of small rounded lobes, attached to the branchial arehes. Gillcover reduced to a large simple plate. A dermal skeleten replaces more or less soft integuments.

V1. Plertoonathi m-A anft doral fin opposita to the anal :
subuenmes elemicuts or a spinous dersal. Ventral fins nome, or reduced to spines. Gills pectinate; air-bladder withơu pneumatic duct. Skin with rough scutes, or with spines or naked.

Orner I.-Acanthoplerygii.

Part of the rays of the dorsal, anel, and ventral fins are nonarticulated, more or lass sharp-pointed spines. The luwer pharyn. geals are generally separate. Air-bladder, if present, without poeumatic duct in the adult.

Division 1. Acanthopterygii Perciformes. - Dody more or less compressed, elevated or oblong, but not clongate; the vent is remote from the extremity of the tail, behind the ventral fins if they are present. No prominent anal papilla. No superbrancliai: orgin. Doraallfin or fins occupyiag the greater portion of thit baek; spinous dorsal well developed, generally with stiff spines, ui moderatc extent, rather longer than, or as long as, the soft; the sull anal similar to the soft dorsal, of moderate extent or rather short. Ventrals thoracic, with one spine and with four or five rays.

Family 1. Pcrcido.-The scales extend but rarely over the vertical fins, and the lateral line is generally present, continuous from the head to the caudal fin. All the teeth simple and conical; no barbels. No bony stay for the preoperculum.

A large family, represented by numerous genera and species in fresh waters, and on all the coasts of the temperate and tropical regions. Carnivorous.
Fossil Percoids abound in some formations, for instance, at Monte Belca, where species of Labrax, Lates, Smerdis and Cyclopoma (both extinct), Dules, Scrranus, Apogon, Thoropon, and Pristiponas have been recogaized. Paraperca is a genus recently discovered in the Marls of Aix-en-Provence. A specics of Perca is known from the fresHwater deposits of Oeningen.
The living genera are-Perca (Perch), Siniperca, Percichthys, Labrax (Bass), Lates, Psammoperca, Percalabrax, Acerina (Popt), Luciopercn, Pilcoma, Bolcnn-ma, Aspro, Ceutropomas, Enoplosus, Ccutropristis, Anthias, Callu.thias, Serranus (Sea-Perch), Anyper odon, Prionodes, Plectropoma, Trachypoma, Polyprion, Grammistea, Rhypticus, Aulacocephalus, Dfyriodon, Diploprion, Mesoprion, Glaucosoma, Dules, Thcrapon, Helotes, Pristipoma, Conodon, Hamulon, Hapalogenys, Diagramma, Hyperoglyphe, Lobotes, Histio pterus, Gerres, S'colopsis, Heterognathodon, Dentex, Symphorus. Synagris, Mana, Smaris, Casio, Erythrichlhys, Oligorus (MurriyCod), Grystes, Arripis, Furo, Ambassis, Apogon, Chilodipterus, Lanioperca, Acropoma, Scombrops, Pomatomus, Priacanthus, Centrarchus, Brytus, Pomotis, Etelis, Niphon, Aprion, Apsilus, Pentaceros, Velifer, Datnioides, Percilia.

Family 2. Squamipinncs.-Body compressed and elevated. covered with scales, either finely ctenoid or smooth. Lateral line continuous, not continr ad over the caudal fin. Mouth in front of the snout, generally small, with lateral cleft. Tecth villiform or setiform, in bands, without canines or incisors. Dorsal fill consisting of a spibous and soft portion of nearly equal develop. ment; anal with three or four spines, similarly developed as thie soft dorsal, both being many-rayed. The vertical fius more or less densely covered with small scales. The lower rays of the pectoral fin branched, not enlorged; ventrals thoracic, with one spine ane five soft rays.
Gcnera: Chatodon, Chelmo, Heniochus, Holacanthus, Pomacan thus, Scatophagus, Ephippus, Drepane, Hypsinotus, Scorpis, Atypichthys, Toxotes. Some of these genera occur also in Tertiory formatious. The majority of these fishes are inhabitants of the tropical aeas, and abound chiefly in the noighbourhood of coral-reeft (Coral-Fishes). The beauty and singularity of distribution of the colourg in some of the geners, as Chatodon, Heniochus, Holacanthus, is scarcely surpassed in any other group of fishes. They are ot emall eize, and are carnivorous, fecding on small invertcbrates.
Family 3. Mullide. - Body rather low and slightly compressed, covered with large thin scalcs, with or without on extremely fine eerrature. Two longerectile barbels are suspended from the hyoid, and are reccived between the rami of the lower jaw and the opercula. Douth in front of the anout, with the cleft lateral and rather short teeth very fecble. Eye lateral, of noderate size. Two short dorsai fins remote from cach other, the first with feeble spines; onal similat to the eccond dorsal. Vcutrals with one spine end five raya Pectorals short.
Geners: Aullus and Upeneus (Red Mullets).
Family 4. Sparida (Sca-Breams). - Body compressed, oblong, covered with seales, the arrature of which is very minute, aml sometimes altoguther absent. Mouth in front of the snout, with cleft lotirul. Either cutting teeth in front of the jaws, or nula tecth on the side; palate genemily toothless. One doisal fina, furmed ly a spinous and soft prortion of nearly equal development. Anal fin with three spines. 'I'le lower rays of the pectoral fin are genemilly branched, but in one genus simple. Veatrals thoracic, with one spine aud five ruys.
Geucra: Cantharus. Bor. Scatharis. Obiala. Crenillons, Tri-
plerodon, Pachymetopon, Diplerodon, Gynnocrolaphus, Girella, Tephraops, Doydixodon, Haplodactylus, Sargus (Sheep's Head), Lethrinus, Spharodon, Pagrus, Pajellus, Chrysophrys, aul Pimelepterus.

The extinet forms found hitherto are rather numerous; the oldest come from tho Cretaceous formation of Mount Lohanon; some belong to living genera, as Sarqus, Pagcllus; of others from Eocene and Miocene formations noliving representative is known-Sparnodus, Sargodon, Capitodus, Soricidens, Asima.

The Hcplognathide are a very small family distinguished by confluent teeth, and allied to the sea-breans.

Family 5. Cirrhitide.-Body oblong, compressed, covered with cycloid scales; lateral line continuous. Mouth in front of the snout, with lateral cleft. Cheeks without a bony stay for the preoperculum. Dentition more or less complete, composed of small pointed teeth, sometimes with tho addition of canines. One dorsal fin formed by a spinous and soft portion, of aearly equal development. Anal with three spines, generally less developed than tho soft dorsal. The lower rays of the pectoral fins simple and generally enlarged; ventrals thoracic, but remote from the root of the pectorals, with one spine and five rays.
Genera : Cirrhites, Chironemus, Chilodaclylus, Mendosoma, Nemadactylus, and Latris.

Family 6. Scorpcenidre.-Body oblong, more or less compressed, covered with ordinary scales or naked. Cleft of the mouth lateral or suhvertical. Dentition feeble, consisting of villiform teeth, and generally without canines. Some bones of the head armed, especially the angle of the prooperculum, its armature receiving additional support hy a hony stay, connecting it with the infraorbital ring. The spinous portion of the dorsal fin equally or more developed than the soft and the anal. Ventrals thoracic, generally with one spine and dive soft rays, sometimes rudimentary.

Cenera: Sebastas, Scorpena, Glyptauchen, Lioscorpius, Setarehes, Plcrois, Apistus, Agriopus, Synanceia, Micropus, Chorismodaclyius, Tonianolus, Centropogon, Pentaroge, Tctraroge, Prosopodasys, Aplo. actis, Trichopleura, Hemitripterus, Minous, and Pelor.

Family 7. Nandide.-Body oblong, compressed, covered with ecales. Lateral line interrupted. Dorsal fin formed by a spinous and soft portion, the number of spines and rays being nearly equal; anal fin with three spines, and with the soft portion similar to the eoft dorsal. Ventral fins thoracic, with one spine, and five or four rays. Dentition more or less complete, hut feeble.

Genera: Plcsiops, Trachinops, Badis, Nandus, and Calopra.
Family 8. Polycentride.-Body compressed, deep, scaly. Lateral line none. Dorsal and anal fins long, both with numerous epines, the spioous portion heing the more developed. Ventrals thoracic, with one spine and five soft rays. Teeth fceble. Pseudobranchiæ hidden.

Genera: Polyccntrus and Monocirrhus.
Family 9. Teuthidida.-Body oblong, strongly compressed, corered with rery small scales. Lateral line continuous. A single aeries of cutting incisora in each jaw ; palate toothless. One dorsal fin, the spinous portion heing the more developed; anal with seven spines. Ventral fins thoracic, with un outer and an inner epine, and with three soft raya between.
Genus : Tcuthis.
Division II. Acanthopterygit Beryciformes.-Body compressed, oblong, or elevated; head with large muciferous cavities, which aro covered with a thin skin. Ventral fins thoracic, with one apine and more than fire $60 f \mathrm{ft}$ rays (in Monocantris with two oaly).

The family of Berycida has a very remarkable geographical dis. tribution, which has been noticed at pp. 679,681. Members of this family belong to the oldest Teleosteous fishea, the majority of the Acanthopterygians found in the Chalk being Berycoids. Bcreve, Holocenirum, and Myripristis have been found in several species, with other genera nowextinet:-Pscudobery/x, lerycopsis, Ifomonotus, Slenostoma, Sphenoccphalits, Acanus, Hoplopteryx, Platycomus, Podocys, Acrogaster, Macrolepis, and Thacolepis.

Living genera: Monocentris, Hoplostethus, Trachichthys, Anoplo. gaster, Beryx, Mchamphacs, Polymixia, Myripristis, and Molocentrum.

Diviston III. Acanthoptcrygii Kuertiformes.-One dorsal fin only, much ohorter than the anal, which is long and many-rayed. No euperbranchiel organ.

One family, Kuriude.
Genem: Pompheris and Kurtus.
Division IV. Acanthopterygit Polymeniformes.-Two rather ahort dorsal fins, somewhat remote from cach other; free filaments at the humera? arch, below the pectoral fins ; inuciferous canals of the head well developed.

Family, Polyncmide.-Body oblong, rather compressed, covered With amooth or very feebly ciliated scales. Lateral line continuous. Snoot projecting beyond the mouth, which is inferior, with lateral cleft. Eyo lateral, large. Villiform teeth in the jaws and on the palate. Ventrals thorncic, with one spine and five rays.

Gonera : Polynemus, Pentancmus, and Gateoides.
Division V. Acanthopterygii Scianiformes -The soft drossal is more, generally much more, developed than the apinous and the
anal. No pectoral filaments; head with the muciferous canals well developed.
Fanily. Scienida.-Body rather clongate, compressed, covered with etenoid scales. Lateral line continuous, and frequently* extending over the caudal fin. Douth in front of the suout. Eye lateral, of moderate size. Teeth in villiform bands, some. times with the addition of canines; no molars or incisor-like teeth in the jaws; palate toothless. Præoperculum unarmed, and without bony stay. Vestrals thoracic, with one spine and five soft rays. Bones of the head with wide muciferous channels. Air. bladder frequently with numerous appendages.

Genera: Larimus, Pogonias (Drum), Micropogon, Umbrina. Eques, Nebris, Lonchurus, Sciana (Mcagte), Pachyurus, Otolithus, Ancylodon, and Collicklhys.

Division VI. Acanthoptcrygii Xiphijformes. - Tho upper jaw is produced into a cuneiform wearon.

One family, Xiphiido (Sword-Fishes), with the genera Xiphics and Histiophorws.

Division VIl. Acanthopterygii Trichiuriformes.-Body elongate, compressed or hand-like; cleft of the mouth wide, with several strong teeth in the jaws or on the palato. The spinous and soft portions of the dorsa! fin and the anal are of nearly cqual extent, long, many-rayed, sometimes terminating in finlets; caudal fin forked, if prescat.

The family of Trichiurides is composed of the following living genera: Ncolotus, Nesiarchus, Aphanopus Euoxymetopon, Lepidopus (Scabbard-Fish), Trichiurus (Hair-Tail), Epinnula, Thyrsites, and Gempylus. It was well represented in the Chalk and later formations by Enchodus, Anenchelum, Nomopteryx, Niphopterus, ITemithyrsiles, and Trichiurichthys. Two other genera, Íalecorhynchus and Hemirhynchus, belong to a distinct though allied family.

Division VIII. Acanthopterygii Cotto-scombriformes.-Spimes developed in one of the fins at least. Dorsal fins either continuous or close together; the spinous dorsal, if present, always short ; sometimes modificd into tentacles, or into a suctorial disk; soft dorsal always loug, if the spinous is absent ; anal similarly developed as the soft dorsal, and both generally much longer than the spinous, sometimes terminating in finlets. Yentrals, theracic or jugular, if present, never modified into an adhesive aplaratus. No prominent anal papilla.

Family 1. Acronuride.-Body compressed, oblong or elerated, covered with minute scales. Tail gencrally armed with one or more bony plates or 6 pines, which are developed with age, but absent in very young individuals. Eye lateral, of moderate size. Mouth small; a singlo series of more or less compressed, sometimes denticulated, sometimes pointed incisors in each jaw ; palate toothless. Ove dorsal fin, the spimous portion being less developed than the soft; anal with two or three spines; ventral fins thoracic. Nine abdominal and thirteen r^{*} "dal vertehre.

Genera: Acanthurus (Surgev.s), Nascus, and Prionurus.
Extinct species of Acanthurus and Nascus have been discovered in the Monte Bolea formation.

Family 2. Carangida.-Body more or less compressed, oblong or elevated, covered with small scales or naked; eye lateral. Teeth, if present, conical. No bony atay for the pronperculum. The spinous dorsal is less developed than the soft or the anal, either continuous with, or aeparated from, the soft portion; sometimes rudinientary. Ventrals thoracic, sometimes ri dimentary or entircly absent. No prominent papilia near the vento Gill. opening wide. 'Ten abdominal and fourteen camdal vertebre.

Genera: Caranc (Horse-Mackerel), Anofyriosus, Nisrontcruz Seriola, Scriolclla, Seriolicheys (Y eliow.Tails), Néauerat.o illot. Fish), Cheritemus, Lichia, Temmadno (BMuc: rish), Lactarius, Paropsis, Trachynotus, Pammelas, I'sctus, I'lotax, Zancius, Anonalops, Capros (Boar-Fish), Antigonia, Diretmus, Equula, and Gazza.-Members of this family appear first in Cretaceons formations, where they are represented by platax and some caran.like genera (Vumer and Aipichthys). They are more numetons in Tertiary formations, especially in the strata of Monte bolca, where some still existing genera occur, as Zanclus, I'latax, Caranx (Carangopsis), Argyriosus (Fomir), Lichia, Trachmiotus. of extinet genera the following belong to this family:-l'seudovomer (Licata), Amphistium, Archents, Duetor, llioncmus (?), and Semiophorus.

Family 3. Cytlide.-Body elevatel, compressed, cov red with small seales, or with bucklers, or naked ; cye lateral. Teeth conieal, small. No bony stay for the preoperchlum. Dorsal tin composed of two distinct portions. Ventrals thoracic. No 1 rominent papilla near the vent. Gill-opening wide. More than ten abdominal end more than fourteen caudal vertebre.

Genera: Zcus (John Dory) and Cyltus.
Family 4. Stromatcide.-Body more or less oblong and com. pressed, covered with very small seales; eye lateral. IDentition very feeble; osophagus armed with numerous horny, barbed processes. No bony stay for the praperculum. Dorsal fin single, long, without distinct apinous division. More than ten obdominal and more than fourteen candal vertebre.

Genera : Stromateus and Centrolophus.
Fanily 5. Coryphuenüte.-Body conpressed; eye lateral. Teeth small, conical, if present, cesephagus smouth. No bony stay for the prooperculum. Dorsal fin single, long, without distinet spinous division. More than ten abdominal ead more than fourteen caudal vertebra.

Genera: Coryphaxnt (Dolphin), Erama, Taractes, Lampris (Sun•Fish), Fterachs, Schedowhilus, Dima, Ausuiia, Mouc. Fossil : Goniognathes.
Family B. Nomeida.-Body oblong, more or less compressed, covered with eyeloid scales of moderate size; eye lateral. No bony stay for the prizoperculum. Dorsal fin with a distinct spinous fortion scparated from the soft ; sometimes finlets; candal lorked. Fore than ten abdominal and more than fourteen candal vertebre.

Genera : Gastrochisma, Nomeus, Psenes, and Cubiceps.
Family 7. Scaebridox. - Body oblong, scarcely compressed, naked or covered with sinall scales; eyo lateral. Dentition well developed. No bony stay for the preoperculum. Two dorsal fins; geoerally finlets. Ventrals thoracic, with one spine and five rays. ilore than ten abdominal and more than fourteen caudal vertcbre. Genera: Scomber (Mackerel), Thymus (Tunny, Bonito, Albacore), Pclamys, Auxis, Cybium, Elacrer, and Echcueis (Sucking-Fish).

Family 8. Trachinidee. - Bod, elongatc, low, naked or covered with scales. Teeth small, ednical. No boay stay for the preoperculura. One or two dorsal fins, the spinous portion being always shorter and much less developed than the soft; the anal similarly developed as the soft dorsal ; no finlets. Yentrals with one spinc and five rays. Gill-opening more or less wide. Ten or more than ten abdominal and more than fourteen caudal vertebre.

Genera: Utrinoscopus, Liptoseopus, Agnus, Arema, Kathelostoma, Trachinus (Weever), Chainpsodon, Percis, Sillago, Bowichthys, Bathydraco, Chanichthys, Aphritis, Acanthaphritis, Eleginus, Chimarrhichthys, Cottuperca, Percophis, Trichodon, Pinguipes, Latilus, Opisthognathus, Pseudochromis, Cichlops, Pscudoplesiops, Notothenia, and Harpagifur. Fossil : Callipteryx, Trachinopsis, and Pseudocle: ginus.

Malacanthus is the type oi in Amily allied to the Trachinide.

Family 9. Batrachide.-Head broad and thick; body elongate, compressed behind; akin uaked or with small scales. No bony stay for the prrooperculum. 'Tecth conical, small or of moderato size. The spinous dorsal consists of two or three spines only ; the ooft and the anal long. Ventrals jugular, with two solt rays; pectorals not pediculated. Gill-opeuing a more or less vertical slit tefore tho pectoral, rather narrow:
Genera: Eatrachus, Tholussophryne, and Porichlhys.-Psychrolutes and Neophrynichthys are allied forms.

Family 10. Pcdicaluti.-IIcad and anterior part of the body rery large, without scalcs. No bony stay for the prooperculum. Teeth villiform or raspllike. The spinous dorsal is advenced forwards. composed of a tew more or less isolated epines, often transformed into tentacles, or entirely absent. Featral fins jugular, with four or five soft rays, sometimes absent. The carpal booes are prolouged, forming a sort of arm, tcrminating in the pectoral. Gill-opening reduced to a small foramen, sithated in or near the axil. Gills two and a half, three, or three and a hall'; pseudobranchix generally ubsent.

Genera: Lophius (Fishing-Frog, Angler), Ceratias, Himantolophons, Molenoctus, Oneirodes, Antcnarius, Brachionichthys, Succarius, Chaunax, Malthe, Maloutere, Malicutichthys, Dibrenchus, nind Agwonichthys.
Fanity 11. Coltida.-Form of the body oblong, sub-cylindrical. Cleft of the roouth lateral. Dentition feeble, generally in villiform bamls. Some bones of the heall are armuld a and a bony stay conneets the propercular gpine with the infrarhital ring. Two dorsal fius (rarely one), the spinous huing less developrel than the soft and tho anal. Veutrals thoracic, with five or less soft rays.
Genera: Cotens (Bull-head, Miler's 'Thmmb), Centritermichthys, Icclus, Paiscophatus, Hoplichthys, Drenocotus, Rhamphocothes. Triglops, Pedabrus, Mtepsias, Noutichthye, Siurpernichthys, Memibopidths, Astedius, Peyonotus, Polycentus, Sembras, and Trigha (Cimarils).
Fanily 12. Catophracti. - Form of the body clomerate, sn'orsbindrieal. Deatition feelle. Fody completely chirnssen! w. :o yrims keviled scales or plates. A bony stty consurets the re le of tho prengerentum with the infraortiial ring. Ventrals il it ic.

Genera: Agonses, Aspudophoroides, Siphamenis, S'rastethus, Datylutctertes (Flying fumart).

Fasnily 13. Pryasidr.- landy entively covern with bany phates,
 The margin of the upper jow i. Furmed by the intemaxilariob and

 ty a artow mpratiane gill-apaningt narrow, in frant if tho base

air-bladder absent. One short dorsal and a similar anal fin, oplosite to each other. Ventral fin present. Ovarian sacs closed.

One genus only is known, Pegasus.
Division IX. Accanthoptcryii Gobizformes. -The spinous dorsal, or spiaous portion of the dorsal, is always present, short, either composed of flexible spines, or much less developed than the soft ; the soft dorsal and amal of equal cxtent. No hony stay for the: anghe of the pravperculam. Ventrats thomaic or jugular, il present, composed of one spine and five, rarely four, soft rays. A prominent anal papilla.
Family 1. Duscoboli (Lump-Suckers).-Body thick or ohlmeng. naked or tubercular. Toeth small. Veatral hias with one simu. and five rays, all being rudimentary and forming the osseous su;" port of a round disk, which is surrounded by a cutaneous finni" Gill-opeoings narrow, the gill-membranes being attacled to th. isthmus.
Genera: Gyclopterus and Liparis.
Family 2. Gobiidia (Gobies).-Body elongate, naked or scaly Teeth generally small, sometimes with canines. The spinous dorsal fin, or pertion of the dorsal fin, is the less developed, and compossil of tlexible spines; anal similarly developed as the soft dorsal. Sometimes the ventrals are united into a disk. Gill-opening more or less narrow, the gill-membranes being attached to the isthmus.
Genera : Gobius, Latrunculus, Euctenogodius, Lophiogobius, Dolitchthys, Apocryptes, Evorthodus, Gobiosoma, Gobiodon, Tricnophorichthys, Sicydium, Periophtha!mus, Bolcophthalmus, Eleotris, Leatipes, Trypauchon, Callionymus (Dragonet), Benthophilus, Am. blyopus, Orihostomus, Platyptcra, Luciogobius, Oxymetopon, and, perhaps, Oxuderces.
Division X. Acanthopterygii Elenniiformes.-Body low, subcylindrical or compressed, elongate. Dorsal fin very long ; the spinous portion of the dorsal, if distinct, is very long, as well developed as the solt, or much more ; sennctimes the entire fin is composed of spines only; anal more or less long; candal fin subtruncated or rounded, if present. Ventral fins thoracic or jugular, if present.

Family 1. Cepolider.- Fody very elongate, compressed, covered with very small cycloid scales; eyes rather large, lateral. Teeth of moderate size. Ne bony stay for the angle of the preoperculum. One very long dorsal fin, which, like the anal, is composed of soit rays. Ventrals thoracic, composed of one spine and five rays. Gill-opening widc. Candal vertebræ exceedingly numerous.
Genus: Cepola (Band-Fishes). An allied family are the Tricho. notide, with Trichonotus and Hemerocatcs.

Family 2. Heterolepidotide. - Body oblong, compressed, scan; ; eyes lateral ; cleft of the mouth lateral ; dentition feeble. The angle of the preoperculum connected by a bony stay with the nffraorbital ring. Dorsal long, with the spinous and soft portions equally develoned; anal elongate. Ventrals thoracic, with one spine and five rays.

Genera: Chirus, Ophiodom, Agrammus, Zaniolenis.
Family 3. Blemnidda. - Borly elongate, low, more or less cylindrical, naked or covered with scales, which gencrally are small. One, two, or three dorsal fins occupying nearly tho whole length of the back, the spinous portion, if distinct, being ss much developed as the soft, or nore; sometimes the entiro fin is composed of spines; anal fin long. Ventrals jugular, composed of a few rays, and sometimes rudimentary or entircly obsent. Pseudobranclize generally prosent.

Genera: Anarrhichas (Wolf-Fish), Blinnius (Btenuy, Chasmodes, Petroscirtcs, Salarias,Climes, Cristiceps, Cremnobates, Tripteryyium, Stichucus, Menuims, Contronotus, Jiphidion, Cryptacanthodes, Patecus, Zoarces, Ditmnophis, Acmophis, Plagiotrcmus, Neoclinus, Cebidichthys, Mypodis, Ietcrostichus, Dietyosoma, Lepidoblennius, Dactyloscomus, Gunthchethys, Urocrntrns, Sticheropsss, Sticharium, Notogroptus, Pholidichthys, and $P_{s e} u d o b l e n n i n s$.-Closely allied is Achinthoctinus.
Funily 4. liastacenbelide.-Borly elongate, cel-like, coverel with very small seales. Mandible long, but little novablo. Dorsal fin very long, the anterior pertion compesed of numeron: shont isolatel spmes: anal tin with spines anteriorly, Ventral. howe. Thie humeral arch is not suspendid from the skull. Gill. openings mbuced to a slit at the lower part of the sido of the hend
Gomera : Whathobidhe and Mustacembites.
Duvisins X1. Acantheptorynii Mugitifomes. - Two dorsal fins move or less remote from ench other; the anterior cither short, like the josterior, or emposed of teoblo spines. Ventral fim wha one sime nud fixe rays, athominal.
Homily i. Sy hymandes-Rody elongate, sub-cylinhtical, covered with omall eycloid seales; lateral line contimous. Cleft of the romoth wide, armed with stroug teath. Fyo lateral, of morlertia size. Verthbre twenty-four.
(Goncra : Sphyram (harncudu), Fossil: Syhyrunodus, Iypsodon. Ferthrus, Nimorocphatus.
Family 2. Athrimida:-Boty moro or less clongate, sub-cylinIrical, covered with seales of mollerato size: lateral line indistinct. Clifit of the momth of moderate width. with the dentition festia

Eye lateral, large or of moderate size. Gill-openings wide. Vertebre very numerous.

Genors: Acherina, Atherinichthys, sud Tetragonurus.

Family 3. Mugilida (Grey Mullets). - Body more or less oblong and compressed, covered with cycloid scales of moderate size; lateral line none. Cleft of the mouth narrow or of moderate width, with or without feeble teeth. Eye latcral, of moderate size. Gill-opening wide. The anterior dorsal fin composed of four stiff spines. \checkmark ertebra twenty-four.
Genera: Mugil, Agonostoma, and Myzus.
Division XII. Acanthopterygii Gastrostciformes.-The spinous dorsal is composed of isolated 6 pines, if present; the ventrals are either thoracic or have an abdominal position io consequence of the prolongation of the pubic bones which are attacherd to the humeral arch. Mouth small, at the end of the snout, which is generally more or leas produced.

Family 1. Gastrosteide.- Body elongate, compressed. Cleft of the mouthoblique; villiform teeth in the jaws. Opercular boncs not armed; iafraorbitala covering the cheek; parts of the skeleton forming incomplete external mail. Scales none, but generally large acutes along the aide. Isolated spines in front of the soft dorsal fin. Ventral fins abdominal, joined to the pubic bone, cornposed of a spine and a small ray. Branchiostegals three.
One genua only : Gastrosters (Stick lebacks).
Family 2. Fistularizdos.-Fishes of greatly elongated fonn; the enterior bones of the skull are much produced, and form a long tube, teroninating in a narrow mouth. Teeth small; acales none, or small. The spinous dorsal fin is either formed by feeble isolated spines or antirely absent ; the soft dorsal and anal of moderate length; ventral ins thoracic or abdominal, composed of five or six rays, with. out spine; if abdominal. they are separate from the pubic bones, which remain attached to the bumeral arch. Branchiostegals five.
Genera: Fistularia, Aulostoma, Auliscops, and Aulorhynchus. The first three occur also in Eocene formations. Other fossil gencra ara Urosphen and Rhanphosus.
Division Xlll. Acanthoplerygii Centrisciformes.-Two dorsal fins; the epinous short, the soft and the anal of moderate extent. Ventral fine truly nbdominal, imperfectly developed.
One family, Ccntriscide, with two genera, Ccutriscus (TrampetFish, Bellows. Fish) and Amphisilc.
Division XIV. Acanthopterygii Gobiesociformes. - No spinous dorsal ; the soft and the anal short or of moderate length, situated on the tail; rentral fins subjugular, with an adhesiye apparatuc between them. Body naked.
Goaera: Chorisochismus, Cotylis, Sicyases, Gobiesox, Diplocrepis, Crepidogaster, Trachalochismus, Lepadogaster, and Leptopterygius.
Division XV. Acanthopterygii Chenniformes.-Dody elongate, covered with scales of moderate size ; no spine in any of the fins; dorsal and snal long. No superbranchial organ, only a bony prominence on the anterior surface of the hyomandibular.

Geners: Ophiocephalus and Channa.
Division XVI. Acanthopterygii Labyrinthibranchii.-Body com. pressed, oblong or elevated, with scales of moderate size. A superbranchial orgen in a cavity accessory to that of the gills.

Fsmily 1. Labyrinthici.-Dorsal and anal spines present, but in variable number; ventrals thoracic. Lateral line absent, or more or less distinctly interrupted. Gill-opening rather narrow, the -gill-membranea of bottr sides coalescent below the isthmus, and ecaly ; gills fonr; pseudobranchix rudimentary or abseat.
Geners: Anabas, Syirobranchus, Cteropoma, Polyacanthus, (Paradise-Fish), Ospkromenus (Gorany), Trichogaster, Betta, and Micracanthus. - Allied to this family is Luciocephalus.
Division XVIl. Acanthopterygii Lophotiformes.- Body ribbon. ehaped, with the vent ncar its extremity; a short anal behind the vent ; dorsal fin as long as tho body.
Only one genus is known of this division or family, Lophotas.
Division XviII. Acanthopterygii Tanijformes (Kibbon Fishcs). - Body ribbon-shaped; dorsal fin ns long as the body; anal absent; caudal rudimentary, or not in the longitudinal axis of the fish.

Gencra: Trachypterus, Stylophorus, and Regalecess.
Division X1X. Acanthopterygii Notacanthiformes.-Dorsal in ehort, composed of short, isolated spines, without a -soft partion. Anal fin very long, anteriorly with many apincs ; ventrals abdominal, with more than five soft and scveral unarticulated rays.
One genus only: Notacanthus.

Order 11.-Acanthoptcrygii Pharyngognatio.

Part of the rays of the dorsal, anal, and ventral fins me nonarticulated spincs. The lower Tharyngeals coalesced. Air-bladler without pncumatic duct.
Family 1. Pomacentrida. - Body short, comprassed, covered with ctenoid scales. Dentition fecble ; palate smooth. The lateral line does not extend to tho candal fin, or is interrupted. One dorsal fin, with the spinous portion as well developed as the soft, or more Two, sometimes three, nal spines"; the aoft anal similar to tha soft dorsal. Ventral fies thoracic, with one spine and five soft
rays. Gills three and a half; pseudobranchix and air-bladder present. Vertebra, twelve abdomial and fourtecn caudal.
Genera: Anphiprion, Premnas, Daseyllus, Lepidas̃ygus, Pont. accutrus, Glyphidodon, Parna, and Heliastes. Fossil : Odonicus.
Family 2. Labrider.-Body oblong or elongate, covercd with cycloid scales. The lateral line externds to the caudal, or is intterrupted. One dorsal fin, with the spizous portion as well dereloped as the soft, or more so. The 6 oft anal similar to the soft dorsal. Ventral fins thoracic, with one spine aad five soft rays. Palate without teeth. Branchinsterals feve or six ; gills three and a half; pscudobranchix and air-bladder present. Pyloric appendages sone; stomach without cæcal sac.
Gencra: Labrus and Crcnilabrus (Wrasses), Tatutoga, Ctenolabrus, Accutholabrus, Centrolabris; Lachnolømus, Malacopterus, Cossyphus, Chilinus, Epibulus, Anampses, Platyplossus, Novacula, Julis, Coris, Charops, Xiphochilus, Semicossyphus, Trochotopus, Decodon, Pteragogus, Clcpticus, Labrichthys, Labroides, Duymeria, Cirrhilabrus, Duratonotus, Pseudochilinus, Hemigymnus, Gomphosis, Cheilio, Cymolites, Pseudodax, Scarus, Scarichthys, Caltyodon, Pseudo. scarus, Odax, Coridodax, Olistherops, and Siy honogncthus. Eossil : Nummopalatus, Phyllodus, Taurinichthys, and Egertonia.
Family 3. Embiotocida.-Body compressed, elevated or oblong, covered with rycloid scales; lateral liue continuous. One dorsal fin, with a spinous portion, nad with a scaly sheath along the base, which is separated by a groove from the other scales; asal with three spines and numerous rays; ventral fin thoracic, with one spine and five rays. Small teeth in the jaws, noae on the palate. Pseudobranchise present. Stomach siphodal ; pyloric appendages none. Viviparous.
Genera : Ditrema and Hysterocargis.
Family 4. Chronides.- Eody elcvated, oblong or eloagate, scaly, the scales being generally ctenoid. Lateral line interrupted or nearly so. Ore dorsal fin, with a spinous portion; three or more anal spines; the aoft anal similar to the soft dorsal. Ventral fins thoracic, with one spine and five rays. Teeth in the jaws small, palate smooth. Pseudobranchix none. Stomach cecal; pylorio appendages none.
Genera: Etroplus, Chromis, Hemichromis, Paretroplus, Acara, Heros, Nectrophus, Mesonaula, Petenia, Uari, Hygrogonus, Cickla, Crenicichla, Chatobranchus, Mesops, Satanoperca, Geophagus, Symphysodon, and Pterophyllum.

Order Ill.-Anacanthini.

Vertical and rentral fins without spinous rays. The ventral fins, if present, are jugular or thoracic. Air-bladder, if present, without pneumatic duct.
Division I. Anacanthini Gadoidei.-Head and body symmetricoally formed.
Faurily 1. Lycodida.-Vertical fins confluent. Ventral fin, if present, small, attached to the humeral areh, jugular. Gill-opening nasrow, the gill-membrane being attached to the isthmus.

Gencra: Lycodes, Gymuclis, Uronectes, Microdesmale, Blennotesmus, and Moynca.
Fanily 2. Gadida.-Body more or less elongate, covered with small emooth scales. One, two, or three dorsal fins, occupying nearly the whole of the back; rays of the posterior dorsal well developed; one or two anal fins. Caudal free from dorsal and anal, or, if they are united, the dorsal with a separate anterior portion. Ventrals jugular, composed of scvernl rays, or, if they are reduced to a filament, the dorsal is divided into two. Gillopening wido; the gill-membranes genernlly not nttached to the isthnus. Pscudobranchia none, or glandular, rudimentary. An airblsdder and pyloric appendaces generally present.
Gencra: Gadus (Cod-Fish, Haddock, Whiting, Pollach, Coal-Fish), Gadiculus, Mora, Strinsia, Halargyreus, Melanonus, Merluccius (IIakc), Pseudophycis, Lotella, Mhysiculus, Uraleghes, Lemonema, Phycis, Maloporphyrus, Lota (Burbot), Molva (Ling), Mutella (Rockling), Naniccps, Bregmaccros, Meranolenis, Chiosmodus, and Brosmiles. Fossil remains are raro: Nemontcrys and Palcogadus from tho schists of Clarus, a formation belicyel to have been tha bottom of a very decp sea. In the clay of sheppey species occur allied to Goulus, Merluccius, and Fhycis.
Fanily 3. Ophidida. - body more or less elongate, naked or scaly. Vertical fins generally united; no separate anterior dorsal or anal; dorsal occupying the greater portion of the back. Yentral fins rudimentary or absent, jugular. Gill-openings wide, the gitl-membranes not attached to the isthmus.

1. Erotulina: Ventral ins Fresent, attached to the humeral arch. Genera: Brotula, Lucifinga, Pathyncetes, Scanthonus, Typhlonks, Aphyanus, Mhinonus, Sircmbo, Ploritium, Erotulophis, Latidesinus, Dinematichllyys, and Lythitcs.
2. Ophiditina: Ventral fins replaced by a pair of bifid filamente (barbets) inscrted below the glossolyyal. Genera : Ophidium sud Genyteris.
3. Ficrasferina: No ventral fins whatever; weut at the throat. Genera: Ficrasfer and Encheliophis.
4. Anmodytina: No ventral fins mhatever; vent remote from the
head; gill-apenings very wille, the gill-membranes not being united. Genera: Ammollytes (Sund-Ecls) and Bleckeria.
5. Congrogadina: No ventral fins whatever; vent remote from the head; gill-openings of moderate width, the gill-membranes being united below the throat, not attached to the isthmus. Genera: Congrogoulus an 1 IIcliophis.

Family 4. Macruride:-Dody terminating in a long, compressed, tapering tail, covered with spiny, keeled, or striated scales. Oue short anterior dursal; the second very long, continued to the end of the tail, and composed of rery feeble rays; anal of an extent similat to that of the second dorsal; no caudal. Ventral fins thoracie or jugular, composed of several rays. Deep-sea Gadoids.
Genera: Mucrurus, Coryphewoides, Macruromus, Malacocephalus, and Bathyyadus.

Division II. Anacanthin Pleuronctoider. - Head and part of the body nnsymmetrically formed. This division consists of one family only: Pleuronctide (Flat-Fishes).

Genera: Psettodes, Hippoglossus (Holibut), Hippoglossoides, itcpleritis, Rhombus (Turbot, Brill, Whit'), Phrynorhombus (TopKnot), Amoglossus, Pscudorhombus, Rhomboidichthys, Cithrous, Anticilhariws, Brachyplewa, Santaris, Psettichthys, C'itharichthys, Hemirhombus, Puralichthy:, Liopscter, Lophonectcs, Lepidopscte, Thysanopselta, Flcuronctes (Flaice, Dab, Floander), Rhombosolia, Parophrys, Psammodiscus, Ammotictis, Pettorhamphus, Nematops, Latops, Pacilopscta, Solea (Sole), Synaptura, Esopia, Gymnachirus, Cynoglossus, Soleotalya, Apionththys, Ammopleurops, Aphoristia, and Plagiesua

ORDEK IV -Physostomi.

All the fin-rays articulated, only the first of the dorsal and pectoral fins is sometimes ossified. Ventral fins, if fresent, almbuinal, without spine. Air-bladder, if present, with a puemsatic durt (except in Scombresocide)

Family 1. Siluride.-Skin naked or with osscous seutes, but withont scales. Biwhels always present; maxillary bone rudimentary, almost always forming a support to a maxillary barbul. Margin of the upper jaw formed by the intermaxillaries only. Suboperculum absent. Air-blader generally present, communicating with the organ of hearing by means of the anditery ossicles. Atlipose fin present or absent.

A large family of freshwater fishes, represented by numerous genera, which exhibit a great varicty of form and structure of the tins. Their first appearance is indicated by some fossil remains in Tertiary deposits of the highlanls of Padang in Sumatra, where Pscudeutropius and Bagarius, tjpes well represented in the living Indian fauoa, have been found. In North America also spincs referable to "Cat-Fishes" have been found in Tertiary formations.

From tbe great vuraler of diferent generic types this family las been arranged under eight sublivisions:-

1. Siluride Homaloptere.
A. Clarione : Clarias, Ileterobranchns.
B. Plotosina: Plotosus, Cnidoglanis, Copidoglanis, Chaca.
2. Siluride Ieteroptcra.
A. Silurina: Saccolnanchn9, Silurus, Schilbe, Eutropins, Silurichthys, Wallato, Belodontichthys, Eutropiichthys, Cryptopterus, Callichrons, Hemisilurus, Siluranodon, Ailia, Schilbichthys, Lais, I'seuleutropius, Pangasins, IIelicophagras, Silondia.
3. Siluride Anomatoptrre.
A. Hypophthalnuixa: IIypophtlalinus, Helogenes.
4. Siluride Proteropteric.
A. Bagrina: Bugrus, Ehrysichthys,' Clarotes, Macrones, Psendobagrns, Liocassis, Bagroides, Bagrichthys, Rita, Acrochordonichthys, Akysis.
B. Amiurina: Amiarus, Hopladelus, Noturus
C. Himelodina: JJatystoma, Sornbim, Jemisorubim, Platystomatichthys, Pluractocephalus, Piramatana, Ilatynomatichthys, Piratinga, Bagropsis, Sciales, Pimelodus, Irinampus, Conorhyochus, Notoglinis, Callophysns, Lophosilurus, Auchenoglanis.
D. Aribut: Arins, Gateichtlys, Genilons, Paradiplomystax, Diplomystax, Ahrichtloys, Jompintolodus, lietenatus, Ostergeniosus, Batiachocephalua, diopochilus.
 5. Siluride Stenobvanchior.
A. Dorctime : Ageniosns, Tetranemntichthys, Eundemas, Anchenijterus, Glanidimm, Centromodilus, Prachelyo. perms, Cetopsis, Astroplysus, Dorns, Synodontis.
B. Rhinogluning: Rhuoglanis, Callomystax.
C. Malnpterurina: Malapterurus.
5. Siluridae I'rotrropodes.
A. Iyynostomatina: Stygogenes, Arges, Brontes, Astrople. bus, Callichthys, Chetostomus, Plecostomus, Hypoptofoma, Inricaria, Acestra, Sisor, Erethistes, Exostoma, Pseudechronis.
B. Aspratinina: Asprela, Dunocephalus, Bunoceplinl. ichthys, llartin.
6. Siluride Opisthoptcree
A. Nematogcryine: Heptapterus, Nematogenys.
B. Trichomycterina: Trichomycterus, Eremophilus, Pariodon.
7. Silurider Branchicole: Stegophilus, Yandellia.

Fanily 2. Scopelide.-Body naked or sealy. Margin of the upper jaw formed by the intermaxillary only ; opercular apparatus sometines incompletely developed. Barbels none. Gill-opening very wide; psendobranchize well developed. Air-bladder none. Adipose fin present. The egrs are enclosed in the sacs of the ovary, and excluded by oviducts. Pyloric appendages fow in number or absent. Intestinal tract very short.

Genera: Saurus, Buthysaurus, Bathypterois, Harpoion, Scopelus, Ipnops, Paralepis, Sudis, Plagyodus, Aulopus, Chlorophthalmus, Scopelosaurus, Odontostomus, and Nannobrachium. Fossil : Osme. roitcs, Homisaurida, Parcescopelus, and Anapteras.
Family 3. Cyprinidx.-Body generally covered with scales; head naked. Margin of the npper jaw formed by the intermaxil. laries. Belly rounded, or, if trenchant, without ossifications. No adipose fin. Stomach withont blind sac. Pyloric appendages nonc. Month toothless; lower jharyngeal bones well developued, falciform, subparallel to the branchial arehes, provided with teeth, wbich ate arranged in one, two, or three series. Air-bladder large, divided into an anterior and posterior portion by a constriction, or intoa rightor a left portion, enclosed in an osseons eapsulo. Ovarian sacs closed.
The family of "Carps" is the one most numeronsly represented in the Iresb waters of the Old World and of North America. Numerous fossil temains are also found in Tertiary freshwater formations; the majority can be referred to existing genera: Barbus, Thynen. ichthys, Gobio, Leuciscus, Tince, Amblypharyngodon, Rhoderts, Cobitis, - fraithopsis ; anly a few showing characters different from these of living genera : Sychums, Hexepscyhas, Mylocyprinus.

There is much less diversity of forms and habits in this family than in the Siluroids; but the genera are sufficiently numerons to demand a further subdivision of the family into gronps.

1. Catostomina: Catostomas, Moxostoma, Solerognathus, Carpiodes.
2. Cyminina: Cypuinus (Carp), Carassius, Catla, Circhina, Dangila, Ostcocliilus, Labec, Barynotus, Tylngnathus, Abrostomus, Discognathus, Clossochilns, Gymmostonus, Epalzcorhynehus, Capocta, Darbus (Barbel), Thymmelithys, Barbichthys, Anmbly* rhyochichtlys, Albulichthys, Oreinus, Schizothorax, Ptychobarbus, Gyinnocypris, Schizopygopsis, Diptychus, Aulopyge, Gobio (Gudgeon), Ceratichthys, Bungia, Piucplales, Hyborhyuchus, Carapostoma, Hylognatims, Ericymba, I'seudorashora, Cochlognathns, Exoglossum, Rlinichthys.
3. Nhotrichthyina: Khoteichthys.
4. Leptobarbina: Leptobarbus.
5. Resborina: Rasbora, Laciosoma, Nuria. Aplyocypris, Amblyplaryngodon.
6. Semiplotina: Cyprinion, Semiplolus.
7. Xenocypriblue: Xenocspris, Paracanthobrama, Mystacoleucus.
8. Ieuciscina: Leuciscus (White-Fish, Roaeh, Club, Dace, Rudil, Minnow), Mylolencus, Ctehopharyngodon, Mylopharodon, Paraphoxinus, Meda, Graolus, 'línca (Tench), Leucosomus, Chondrostoma, Orthodon, Acrochilus.
9. Whodeine: Achilomathms, Phodeus, Psendoperilampus,
10. Denionima: Dumio, l'tercpsarion, Aspidoparia, Barilius, Bola, Schacra, Opsariichtiys, Spualiubarbus, Ochetobius.
11. Mypophthalmichthyina: Ilypophthalmichthys.
12. Abramidina: Alramis (brean), Aspins, Alburnus (Bleak), Lencaspins, liashorichthy's, Elopichthys, Felotrophens, Acanthobmama, Osteobmma, Chanolichtlys, Sniliogaster, Culter, Pelecus. Enstira, Cheln, l'semdolabuea, Cachins.
13. Homalonterina: llomaloptera, Psilorhynchus.
14. Cobitidina (Loaches) : Misghrnus, Nemachilus, Cohitis, Lepidocephalichthys, Acantliopsis, lotin, Oreonectes, Lepidocephatux, Acanthophthalmus, Apua, P'uramisgurnus.

Family 4. Knerinide-Body scaly, hend naked. Margin of tho uppre jaw formed by the intermaxillaries. Dorsal and anml fins alont, the former helonging to the aixlominal portion of the vertebrul column. Tecth nonr, either in the month or pharynx. Jharbeds none. Stomach siphonal; nopyloric appendnges. P'sendobranchiro nono. Branchiostegals thaee; air-bladder long, not divided. Ovaries closed.

One genlus: Fincrice
l'umily 5. Chomacinida.-Body covered with scales, head naked; barbels noue. Margin of the upper faw formed by the intermaxillaries in tho middle and by the maxilarios laterally. Generally a small adiposo fin lwhind tho dorsal. I'yloric applendages more or less muncrons; ar-bladiter transversely divided into two portions, ami communicating with the organ of hearing by means of tho auditory ossicles. Pacmloluranchie none.

1. Erythrinina: Macrolon, Erythrinus, Lebiasina, Nannostomus. Pyrrhulua, and Corymopoma.
2. Curimatina: Curimatus, Prochilodus, Cenotropus, Hemiodus, 6acordon, Parodon.
3. Cilharinina: Citlarinus.
4. Anastomatinc: Leporinus, Anostomus, Rhytiodus.
5. Nannocharacince: Nennochárax.
6. Tetragonoplerina: Alestes, Tetragodopterus, Chirodon, Megalobrycon, Gastropelecus, Piabncina, Suisgor, Psoudochaleeus, Aphyg. rharax, Chalceus, Brycon, Chajcinopsis, Bryconops, Creagrutus, Claleinus, l'iabuca, Paragoniates, Agoniates, Nanoxthiops, and Bryconathiops.
7. Hydrocyonina: Hydrocyon, Cynodon, Anacyrtus, Hystricolon, Salminus, Ohigosareus, Xiphorlamphus, Xiphostoma, and Sarcodaces.

8 Distichodontina: Distichorlus.
9. Ichthybo. :"a : Ichthyborus an! Phago.
10. Crenuchina: Crenuclus and Xenocharax.
11. Serrasalmonina: Mylesinus, Serrasalmo, Myletes, and Cato. prion.

Family 6 Cyprinorlontide.-Ilead and body covered with seales; barbels none. Margin of the upper jaw formed by the iotermaxil.' laries only. Teeth in both jaws; upper and lower pharymgeals with eardiform teeth. Adipose fin none, dorsal fin situated on the hinder half of the body. Stomach withont blind sae, pylorie appendages none. Pseudobranchix none, air-bladder simple, without ossicula anditus.

1. C. Carmizorce: Cyprinodon, Characodon, Fitzroyia, Haplochilns, Eundulus, Limnurgus, Lueania. Rivulus, Cynolebins, Orestias, Jenymsia, Gambusia, Pseudoxiphophorus, Belonesox, Anableps.
2. C Limrophaga: Poecilia, Mollienesia, Platypeecilus, Girardinus. Fossil remains are referable to Cyprinodon and Pocilia.

Family 7. Hetcropygii.-llead naked, boly covered with very small senles ; barbels none. Margin of the upper jaw formed by the intermaxillaries. Villiform teeth io the jaws and on the palate. Adipose fin none. Dorsal fin belonging to the candal portion of the vertebral column, opposite to the asal. Ventral fins ruelimentary or absent. Vent situated before the pectorals. Stomach cacal; pyloric appendages present. Pseudobranchise none; airbladder deeply notelied anterinily:

Genera : Amblyopsis (Blind-Fish of the Mammoth Cave) and Chologaster.

Family 8. Dinbride. - Ilend and body covered with seales; barbels none. Margin of the uppe jaw formed by the intermaxillaries mesially and by the maxillaries laterally. Adipose fin none; the sorsal fin belongs partly to the abdomina! portion of the vertebral column. Stomach siphonal; pyloric appendares none, pseudobranchix glandular, lidden; air-bladder simple.

One genns: Umbra.
Family 9. Scombrcsocitec.-Body covered with seales; a series of kecled scales along each side of the belly. Nargin of the upper jase formed by the intermaxillaries mesially and by the maxillaries Interally. Lower phargngeals united into a single bone. Dorsal fin opposite the anal, belomging to the candal portion of the vertelural column. Adipose fin none. Air-bladder generally present, simple, sometimes cellular, without pnenmatic duet. Pseudo. branchis hidden, glandu:ar. Stomach not distinet from the intestine, which is quite stritight, without appendages.

Guncra- Bclone (Gar-Pike), Scombresox, Jcmirhamphus, Ar. Husmphus, Exocatus (Flying. Fish). Fossil: Holos'cas.

Fainily 10. Esecider.-Bosly covered with scales; barbels none. Alagia of the upper jaw formed by the intermaxillaries mesially and by the maxillaijes laterally. Adipose fin none; the dorsa! fin bulongrs to the caudal purtion of the vertebral column. Stomach withont blind sac; pyloric appendages none. P'seudobranchia glandudar, hidden; air-hladder simple, gill-opening very wide.

One genus only : Esox (1'ike).
Family 11. Galaxiide-Body naked; barbels none. Margin of the nipur jaw chiclly formed by the intermaxillaries, which are short, and continued by a thick lip, behind whieh are the maxillaries. Belly rounded; adipose fin none; dorsal opposite to anal. l'yloric appendages in small number. Air-bladder large, simple: peudobanchix none. Tho ova fall ioto the cavity of the abdomen before exclusion.

Genera: Galaxias and Ncochanna.
Family 12. Mormyridac-Eody and tail scaly; head scaleless; barbels none. The margin of the upper jaw is formed in the middle by the intermaxillaries, which coalesce into a single bone, and laterally bo the maxillaries. Suboperculam and interopereulum present, the latter very amall. On each side of the single parietal bone a cavity leading into the interior of the skull, and covered with a thin bony lamella. All the fins are welf developed (.Mormyrus) ; or caudal, anal, and ventral fins are absent ($C y m$. narchus). No adipose fin. Pseudobranchic none; gill-openings rednced to a short shit. Air-bladder simple. Two cieca lylorica behiod the stomach.
Genera: Mormyrus and Gymnarchus.
Family 13. Sternoptychille.-Bndy naked, or with very thin dechduous seales; barbets none. Margin of the upper jaw formed
by the maxillary and intermaxillary, both of which are toothed; opercular apparatus not completely developed. Gill-opening very wide; pseudobranchix 1 rescrit or absent; air-bladder simple, is present. Adipose fin presen:, but geacrally rudimentary. Seriea of phosphorescent bodies alun the lower parts. The eggs are enclased in the sacs of the oranum, and excluded by oviducts.

Genera: Sternoptyx, Argyropelccus, Polyiparrs, Coccia, Maurolicus, Chauliotros, Gonostoma, Photichthys, and Diplophos.

Family 14. Stomiatidec.-Skin naked, or with exceadingly delicate scales; a hyoid barbel. Margia of the upper jaw formed by the intermaxillary and maxillary, which are both toothed; opercular apparatus but little developed. Gill-apening very wide; pseudobranchie none. The eggs aro enclosed in the sacs of the ovarino, and excluded by oviducts

Genera: Astronesthes, Somins, Echiostoma, Malacostcus; and Bathyophis.

Family 15. Salmonide.-Body generally covered with seales ; bead nakel, barbels none. Margin of the upper jaw formed by the intermaxillaries mesially and by the maxillaries laterally. Belly rounded. A spall aripose fin behind the dorsal. Pylorio appendages generally numerous, rarely absent. Air-bladder large. simple; pseudobranchiee present. The ova fall into the cavity of the abdomen before exclusion.

Genera - Salmo (Salmon, Trout, Charr), Oncorhyuchus, Brachymiystax, Luciotrutta, Plccoglossus, Osmerus 'Smelt), Retropinna, Hyponcsus, Thalcichthys, Mallotus (Capelin), Coregonus (Gwyniad, Pollan), Thymallus (Grayliag), Salanx, Argentina, Microstoma, Bathylagus. Fossil : Osmeroides, Acroynathus, and Aulolepis.

Family 16. Percopsidec-Body covered with ctenoid seales; head naked. Nargin of the upper jaw formed by the intermaxillaries only; opercular apparatus complete. Barbels none. Gill-openings wide. Adipose fin present.

One genus anly : Percopsis.
-Family 17. Mapluchitonide. - Body maked or sealy (eyeloid). Margin of the upper jaw formed by the intermaxillary, opereular apparatus complete. Barbels none Gill-opening wide ; psendobranchie. Air-bladder simple. Adipose fin present. Ovaries laminated; the egos fall into the carity of the abdomen, there being no oviduct. Pyloric appendages none.

Genera : Haplochiton and Piototroctes.
Family 18. Gonorhynchida.-Head and body entirely covered with spiny seales; mouth with batbels. Marcin of the upper jaw formed by the intermaxillary, which, although short, is continued downwards as a thick lip, situated in front of the maxillary Adipose fin none ; the dorsal fin is opposite to the ventrals, and short, like the anal. Stomach simple, without blind sac; pyloric appendages in small number. Pseudobranchie; arr-bladder absent. Gill-openings narrow.

One genus only : Gonorhynchus.
Family 19. Hyodontiule - Thody covered with eycloid seales:head naked; barbels none. Margin of the upper jaw formed by the intermaxillaries mesillly and by the maxillaries laterally, the latter being articulated to the end of the former. Opercular apparatus complete. Adipose fin none; the torsal fin belongs to the caudal portion of the vertebral column. Stomach horseshoe.shaped, witlont blind sac; intestine short; one pyloric appendage. Jseudobranchie none; air-bladder simple, Gill-openil.gs wile. Theora fall into the abdominal cavity before exclusion.

One gemns only : IIyodor (Maon-Eye).
Family 20. Fantodontide.-Body covered with large cycloid scales; sides of the head osseous. Alargin of the upher jaw formed by the simgle intermaxillary mesially and by the maxillaries laterally the dorsal fin belongs to the candal fortion of the vertebral column, is short, and opposite and sinilar to the anal. Gillopcnings wide; gill-covers consisting of a preoperculum and opereulum only. Branchostegals numęrons. P'sendabranchiax none; air-bladder simple. Stomach without ceecal sae; one pyloric appendage. Sexual organs with a duct.

One genns: Pantodon.
Family 21. Osteoglossule.-Body covered with large lard seales, compased of pieces like mosaic, Ilead scaleless; its integuments almost entirely replaced by bone; lateral line composed of wido openings of the mucous duct. Nargin of the upper jaw formed by the intermaxillaries mesially and by the maxillaries laterally. The dorsal fin belongs to the catulal portion of the vertebral column, is opposite and very similar to the anal tin; both approximate to the rounded candal (with which they are abnormally confluent). Qillopenings wide; jseudobratehix none ; air-bladder simple or cellular. Stomach without cecal sac ; pyloric appendages two.

Genera: Ostcoglossum, Arapaina, and IFctirotis.
Family 22. Clupeide.- Jody covered with seales; head naked; barbels none. Abdomen frequently compressed into a serrated edge. Nargin of the upper jaw formed by the intermasillaries mesially and by the maxillaries latemlly; maxillaries composed of at least three movable pieces. Opercular apparatus complete. Adipose fin none; dorsal not clongate; anal sometimes very long Stomach with a blind sac: prloric appendages numerous. Gilif.
apparatus mach developed, the gill-openiugs being generally vely wide. Pseudubuathise generally present. Air-bladder mora or less simple.
Genera: Eugraulis (Anchovies), Coilia, Clintoesses, Clupca (Herring. Sprat, Shad, Mosshanker, Menhaden, Ale-Wife, Pikhard, Sardine), Clupeoids, Pellonuke, Clupeichthys, Pellora, Pristiqaster, Allula, Elops, Hegriops, Chanos, Dussumieria, Etrunneus. Several of these genera have been found in Tertiary formations; other fossils are: Thrasopuler, Leptosomus, Oprsthopteryx, Sparioulon, Hatec, Plotinu, Ceslogastor, Rhincllus, Sconbroclupea, Crossomathus, Spathodactylus, Churocentrites, and Ifemitrichas.

Family 23. Bathythrisidas. - Allied to the herrings-Bathythrissn.
Family 24. Chirocontridx.- Body covered with thun, deciduous scales; barbels nona. Margin of the upper jaw formed by tla intermaxillaries mesially and by the maxillaries laterally, both iones being firmly united in juxtaposition. Opercular apparatus complete. Adipose fin ame: the dorsal fin belongs to the candal portion of the vertebral column. Stomach with a blind sac ; intes. tinc short, the mueous membrane forming a spiral fold ; pyloric aprondares none. Pseudobranclise noac; air-bladder incompletcly divided into cells; gill-opening wide.

One genus only: Chirocentrus.
Family 25. Alcyoccuhalicue. - Body with or without scales; heal naked; barbels none. Margin of the upper jaw formed by tha intermaxillaries and maxillanes, the former being placed along the upper anterior edga of the latter. Opercular apparatus complete. Adiposa fin none ; the dorsal fin belongs to the caudal portion of the vertebral column. Stomach curved, without blind sac ; pyloric appendages in moderate number. Psendobranchix; air-bladder alseent. Gill-openings very wide.

Genera: Alepocephalus, Bathytroctes, Platytroctes, and Xenodermichthys.

Fanily 26. Notopteridor.-Heal and body scaly; barbels none. Margin of the upper jaw fomed by the intemaxillaries nesially and by the maxillaries laterally. Opercular apparatus incon:plete. Tail prolonged, tapering. Allipose fin none. Dorsal short, belonging to the candal portion of the vertebral column ; anal very long. Stomach without blind sac; two pyloric appendages. Pseudohranchia none ; ail-bladder present, diviled in the interior. The ova fall into the cavity of the abdomen before exclusion. On each side a parieto-mastoid cavity leading tho the interior of the skull.

One "renus only: Notoptemas.
Famnly 27. IIalobsaurida. - Bolly covered with eycloid scales; head scaly; barbels none. Mar fin of the upher jaw formed by the intermaxillaries mesially and by the maxillaries laterally. Opercular apparatus incomplete. Adipose fin none. The short dorsal belongs to the abdominal part of the vertebml column; anal very long. Stomach with a blind sae; intestme short; pyloric appenlages in moderate mumber. Pseudobranchis noue. Air-bladder large, simple; gill-openings wide. Ovaries closed.

One genus only: Halosiurus
Fanily 28. Hoploplcuride - Boly generally with four series of aubtriangular scutes, and with intermediate scale-like smatler ones. One (?) dorsal only; head long, wath the jaws produced.
Extinct. Genera: Dercetis, Leatotrichelus, Pclargorhynchus, Plisthophorus, Sturorhantphus, Eutuphotis, Ischyrocephalus.
Family 29. Gynnotida.-Heal sealeless; barbels none. Body elongate, eel-shaped. Margin of the uphur jaw formed in the middle by the intermaxillaries and laterally ly the maxillaries. Dorsal fin absent or reduced to an adipose strip; candal generally absent, the tail terminating in a point. Anal fin execedingly loug. Ventralsonone. Extremity of the tapering tail eapahle of being reproduced. Vent situated at, or at a short distance behind, the throat. Huncral arch nttached to the skall. Kibs well developeri. Gill-openings rather narrow. Au-bladder present, double. Stomach with a ceeal sac and pylotic appendages Ovaries with oviducts.

Geners: Sternarchus, Ramphichthys, Stcrnopyyus, Caramus, Gymnotus (Electric Eel).
Family 30. Symbranchide. - Boly elongate, naked or covered with minute sales ; barbels none. Margin of the upper jaw formed by the intermaxillaties only, the well-feveloped mavillaries lying behind and parallel to them. Paired fins none. Vertical lins rudimentary, reduced to more or less distunct cutancous folles. Vent situated at a great diatance behind the head. liibs present. Gill. openinga coufluent into one slit situated on the ventral surface. Air-bladler qone. Stomach without ceecal sac or pyloric aprendages. Ovaries with oviducts.
Genera: Amphimous, Momopterus, Symbranchus, Chitobranchus.
Family 31. Aurcaide (Eels), - Body clougate, cylindrical or bame. shaped, baked or with rudimentary seales Vent situated at a great distanco from the head. Ventral fins nono. Vertical fins, if prearut, confluent, or separatod by tho projecting tip of the tail. Sides of the upper jaw formed by the tooth-bearint maxillaries, the fore part'by the intermaxillary, which is moro or less coaleseent with 1 he vomer and ethmoit. Ilunieral arch not attachod to the skull. Stomach with a blind anc; no pyloric alpendages. Organs of erproduction without afferent ducts

Generz: Senuichthys, Cycma, Saccopharyna, Symaphobrnychus, Anguilla, Conger, Congronhuraza, Muranasou, Nittastoma, Suuren. chelys, Oxyconycr, Huphnnis, Myrus, Myrophes, Paranyrus, Ciilorhinus, Muramichthys, Ophichthys, Horinyua, Murena, Euchelycore

Order V.-Lophobranchii.

The gills are not laminated, but composed of small rounded lobes attachell to tha branchial arches. Gill-cover reduced to a large simple plate. Air-bladder simple, without pneumatic duct. A dernal skelcton, composed of numeious pieces arranged in seginents, replaces more or less soft integuments. Muscular system not mueh cleveloped. Snout prolonged. Mouth terminal, small, toothless, formed as in Acanthopterygians.

Fanily 1. Si mostomidec.-Gill-openings wida Two dorsal fins, the rays of the anterior not articulated. All the other fins well developed.
One genus only: Solenostoma, whie was preceded in the Tertiary eporh by Solenor hynchus (Monte Postale).
Family 2. Syngrathide.-Gill-openings reduced to a very small opening near the upper posterior angle of the gill-cover. One soft dorsal fin; no ventials, and sometimes one or more of the other tins are also absent.

Pipe-Fishes and Seahorses. Fossil remains occur at Monte Bolca. Besides species of Siphonostomia and Sinnennthus (Pscudosmignathus), remains of an extinct genus, Calamostima, allied to Hippocampus, but with a distinct catalal fin, have been found.

Gedera: Siphonostona, Syngnathus, Doryichthys, Nerophis, Protocampus, Ichthyocampus, Nau:ocampus, Urocampus, Lentoichthys, Colonotus, Stignatophora, Gastrotokets, Solcrognathas, Phylloptcryx, Hippocampus.

Order VI.-Plcetognthi.

Teleosteons fishes with rough scales, or with ossifications of the cutis in the lorm of scutes or spines; skin sometumes entirely naked. Skelaton incompletely ossified, with the vertebre in smail number. Gills pectinate; a narrow gill-opening in front of the pectoral fins. Mouth narrow ; the bones of the upper jaw generally firmly united. A soft dorsal fin, belonging to the caudal purtion of the vertcbral column, opposite to the anal ; sometimes elements of a spinous dorsal besides. Ventral fin none, or reduced to spines. Air-bladiler without preumatic duct.

Family I. Sclerodcrmi.-Snout somenhat produced ; jaws armed with distinct teeth in small number. Skin with scutes, or rough. The elements of a spinous dersal and ventral fin generally present.

Genera: Triacnithus, Balistes (File-Fish), Monacanthus, Anacanthus, Ostracion (Coffer-Fish). Fossil: Acanthoderma, Acanthoplcuras, Gryptocephatus.

Family 2. Gymnodontes. - Body more or less shortened. The bones of the upper aud lower jaw are confluent, forming a beak with a trenchant edge, without teeth, wh or without mulian sume. A soft dorsal, candal, and anal aro developed, approximate. No spinous dorsal. Pectoral fins; no ventrals.

Gencra: Triodon, Tetrodon (Globe-Fish), Liodon (Sea-Hcdgehog), Orthagorisaus (Sun-Fish).

Subslass III.-C'yctostomata.

Skeleton cartilaginous and notochordal, without ribs and without real jaws. Skull not separate from the vertebral column. No limbs. Gills in the form of fixed saes, without branchial arches, six or seven in number on each side. One nasal aperture only. Heart without bulbus arteriosus. Moulh anterior, surrounded by a circular or subcireular lip, suctorial. Alimentary canal straight, simple, without cexal appendages, pancreas, or spleen. Generative outlet peritoneal. Vertical fins rayed.

The Cyelostomes are most probably a very aneient type. Unfortunately the organs of these creatures are tou soft to be preserved, with the exception of the horny denticles with which the mouth of some of them is armed.

Family 1. Detromyzontide (Lampreys). - Body eel-shaped, naken Subject to a metanorphosis; in the perfect stage with a suctorial month armed with teeth, simple or multicuspid, horny, sitting on a soft papilla. Maxillary, mandibulary, lingual, nad suctorial tecth may be distinguished. Eyes present (in mature animnis). External nasal aperture in the midule of the upper side of the bead. The nasal duct torminates without perforating the palate. Seven branchiml saes and apertures on cach side behind the head; the innor branchial ducts terminate in a separato common tubo. Intestine with a spiral valvo. Etrg small. The larro without teetht and with a singlo continuous vertical fin.

Genera: Petromyzon, Mardacia, and Gcotria.
Family 2. Aypinidu, - Body oel-shaped, naked. The single nasal nyerture is above the moush, quite at the extremity of the
head, which is provided with four pairs of barbels. Month without lips. Nasal duct withont cartilaginous rings, penetrating the palate. One median tooth on the palate, and two comb-like series of teeth on the tongue. Branchial apertures at a great distance from the head; the inner branchial ducts lead into the cesophagus. A series of raucous sacs along each side of the abdomen. Intestine withuut apiral valve. Eggs large, with a herny case provided with threarls for adhesion.

Genera: Jyxine and Ddellostoma (Hag.Fish).

S'ubclass IV.-Leptocardiz.

Skeleton riembrano-cartilaginous and notochordal, ribless. No brain. Pulsating sinuses in place of, a heart.

Blood colourless. Respiratory casity confluent witb the abdominal cavity; branchial clefts in great number, the water being expelled by an opening in frout of the vent. Jaws none.

This subelass is represented by a single family (Cirro. stomi) and by one or two genera (Branchiostoma and Erigionichthy*); it is the luwest in the seale of fishes, and lacks so many characteristics, not only of this class, but of the vertebrata generally, that Haeckel, with good reason, separates il into a distinet elass, that of Acrania. The various parts of its organization have been duly noticed in the former parts of this article.

ICHTHYOSAURUS (from ix θ is, a fisb, and $\sigma a \hat{p} p o s$, a lizard), a genus of extinct reptiles, the species of which are the only buown representatives of the order Ichihyopterygia. Upuards of thirty of theso have been deseribed, all of Mesoznic age, the genus so far as is certainly known appearing for the first time in the Liassic formation where it most abounds, eontinuing throughout the Oolitic, and disappearing before the close of the Cretaceous period. In Britain its remains bave beea found in greatest abundance in the Liss of Lyme Regia, although it occurs more or less commonly throughout the whole of that formation from the south of Dorsetshire through Somerset and Leicester to the Yorkshire eoast. They are found in rocks of similar nge in France and Germany ; and Sir Edward Belcher obtained remains of a Liassic iehthyosaur from an island in $77^{\circ} 16^{\prime} \mathrm{N} . \operatorname{lnt}$., -une of many proofs that in Mesozoic times a comparatively warm climate must have prevailed within the Aretic Cirele. Remains of true iehthyosaure have not yet been Pound on the American continent, althougb Professor Marsh lately (1877) described portions of the akeleton of a eaurian obtained from strata of 'Jurassic ago in the Rocky Mountains which seems to have differed from Old World iehthyossurs chiefly in the absence of teeth, tho jaws being "entirely edentulous and destitute even of a dentary groove." For the reception of this form Professor Marsh proposes to institute a new orderSauranodonta; but it has been suggested, on the other hand, that Sauranodon should rather be regarded as the type of a new femily of the old order Ichthyopterygia.

Owing to the comparative abundance and excellent preservation of ichthyosaurian remains, the hard parts of those ereatures have been studied under exceptionally favourable circumstances, and much has thus been learnt of their structure and, by inference therefrom, of their life history. They were large maride reptiles, measuring in some instances 30 feet in length, and sonewhat resembling in appearanco the dolphins of tho present day. Like these they were air-breathers, and must therefore unve come to the surface to breathe, nithough being coldslooded they were no doubt able, like the aquatie saurians of ur own period, to remain much longer under wates than ;he warm-blooded Cetacea. The ichthyossurian hearl was arge, and was prolonged into a more or less elongated mout, certain apeeies rivalling in this respect the gavial of be Ganges. The brain eavity, on the other hand, was emarkably small. The cyes were enormously large, tho rbit in Ichethynsaurus platyodon-the largest known species -having been found to measure 14 inches in long diameter. Plis huge eyeball was protected by a ring of bony sclerotic dates similar to those found in rapacious birds and in urtles and lizards on the present day. The jaws, which n Iehlhyosaurus platyodon have been known to measure ; feet in leagth, were rendered still more formidable by heir array of strong, conical, pointed teeth, uumbering n some instanecs over one hundted and cighty, and
placed not in distinct sockets, as in the crocodile, but in a common alveolargroove. These, as they became worn, were replaced by a succession of young teetb, which budded up at the base of the oll. The neek in the ichthyosaurus was extremely short, and not marked by any constriction. The vertebre resembled those of fishes in being deeply biconcave. The tail was long and tapering, in plany specimens this organ has beea found to be fraetured at about a fourth of its length from the estreaity, and, as the vertebre of the same region seem to have been flattened vertically, Professor Owen regards it as probable that these reptiles were provided with a tegumentary caudal fin like that of the Cetacea, only vertical instead of horizontal; the sole evidence of the presence of such a horizontal fin ia extinct whales would be the horizontally flattened condition of the last caudal vertebre, should any of these clance to be preserved. Ichthyosaurians were provided with two pairs of limbs in the form of paddles, which externally must bave borne considerable resemblance to the anterior limbs of dolphins and other Cetacea. They diftered, however, very markedly from these in the possession of a bony apparatus, stretching, in the case of the front pair, from one ehoulder joint to the other, on which the anterior paddles were supported. This "seapular arch," according to Professor Owen, resembled, "in the number, shape, and disposition of its bones," the same parts in the Australian Oruithorkynchus, a mammal which leads, ns Ichthyosaurus did, an aquatie life, obtaining its food at tho bottom of lakes and rivers, but having to rise frequently to the surface to breathe. The hiud limbs were in almost all the species mueh smaller than the pair in front. The skeleton of eseb of the paddles consisted mainly of a large number -in some species exceeding a hundred-uf small polygonal bones arranged in more than five elosely packed longitudinal rows, the whole covered with skin, and forming a highly elastic organ of locomotion. The iehthyosaur was provided with slender ribs along the vertebral column from the anterior part of the neek to the tail; a sternum, huwever, was wanting, tho abdominal walls being strength. ened by the development of transveree arcuated bones. As no trace of horny scales or bony scutes bas ever been detected in connexion with those reptilian remains, it may be nssumed that these sea-saurians, as they have been called, were, like the Cetacer of the present day. covered with a smooth or wrinkled skin unprovided with any of those dermal appendages.
From a study of their bony structure it may be inforred that these huge aquatic reptiles inhabited the open sea, occasionally visiting the shores, where their powerful paddles enabled them to crawl on land, and where, like seals, they probably lored to bask in the sunshine. That they wero predatory in their habits-the tyrants indeed of Mesozoic sens-might be inferred from our knowledgo of their jaws and tecth; and this is amply onnfirosed by an examination of the half digested conterits of their stowachs.

I C O-I C T

Their foed seems to have consisted chiefly of ganoid fishes and the smaller reptiles, and as the vertebree and other remains of young ichthyosanrs liave occasionally been found mixed with these, there is reason to believe that they, like many other marine animals, did nut hesitate to de veur the weaker members of their own species. In several instances tolerably complete skeletons of small ichethyosuurs have thus been found enclosed withen the ribs of larger individuals of the same species, and thcir occurrence gave rise to the evidently erroneous conjecture that those reptiles might have been viviparous. The fact that the entombed specimens have in alnost every case beea found with the head turned towards the tail of the coclosing animal was supposed to favour this wiew ; the diseovery, hewever, of additional specimens may at any time deprive this argument of the little value it has, and recently Prefessor Merian deseribed a specimeas from the Upper Lias of Würtemberg in which the inclucled ichthyosaur lay with its head towards that of the enveloping specimen. The nature of their food is indicated, not only by the occurrence, in what from its position must have been the stomach, of the half-digested remains of fishes and reptiles, but also by the presenec of similar reliss, and espeeially of the scales of fishes, in their feces. The coprolites of the ichthyosaurians are oval bodies measuring usually from 2 to 4 inehes in length, and exhibiting on their surfase the impression of the spirally convoluted internal surface of the intestine. These coprolites censist chiefly of phosphate of lime, and occur in great abunlance in cortain Liassie beds, where, says Buckland, they to k " like petatocs scattered on the ground."

The speeies of the genus Ichthyosaurus differ from each other chicfly in the propertion of certain parts of the body and of the teeth. Professor Huxley bas divided them into two groups:-(1) those which have relatively short snouts and short paddics, with four carpalia, including therein such forms as I. intermedius and I. communis, the hatter remarkable as haring its anterior paddles three times the iength of the pair behind; and (2) those with longer snouts, lony pardiles, and three carpalia, including such forms as I. longirostris and I. tenuirostris, which in the length of their snouts rival the gavial of the Ganges, and I. phtutyodon, in which the fore and bind limbs are of equal length.

ICONIUM (Greek 'lxóvor), an ancient city of Asia Minor, now, under the name of Cogni, Konieh, Koniych, Konijah, or Konin, the capital of the Turkish vilayet of Caramonia, is situated 810 miles east from Smyrma, at the cutrance to an extensive and clevated phin which forms the centre of Asin Minor. To the eastward this plain stretches feyond the herizon. but the city is enclosed on wher sides by a semicirele of snow-coveral mountains. It lies at the foot of Mount Taurus, and the country iumatiately arcund it, wateral by streams from the surrounding mountains, is occupied by fruitfui gardens and orchards, forming an oasis in the midst of wide-stretching barremess and desoktion. The numerous richly adorned mosenues, chayels, shrines, and monuments attest the former impertance of the city when in the zenith of its power and prosperity, and hend additional brightness and pieturesqueness to its appearance as seen from a distance; but on closer inspection the splendour is seen to be so intermixed with squator and decay as to degenerate into tawdriness. Ancient walls about 2 miles in circumference surround the odder part of the tosm, but one half of the inlakited pertion is ontsite their boundaries. These walls were built hy the Suljuk sultans in the 13 th ceatury of large square liocks of stoue which have evidently formed part of more ancient cutifices; and they are flanked by square towers richly adernat with corniees, demi-lions couchant, caghes wita outgreal whog, and Arabic inscriptions. The gatoways are crmanashten with alto-rilievos repessenting ligares in
procession. Great part of the space inside the walls is ocenpied by crumbling ruins'of houses, and by dilapidated mosques half-buried in rubbish and overgrown by weeds. Of the ancient Greek city there are now no remains, but Greek inscriptions are to be found in the ancient walls erected by the Turkish conquerers, and bas-reliefs and other relics have been dug up at various periods. Modern Konich lies to the sonth-west of the old town, half of it being outside the walls. The houses are one-steried, muplastered, and built mostly of sun-dried brieks and wood. Among the numerous monuments of saints and sheiks is the famous green menument of Mevlana-Djelah-eddin-Rumi, the poet and founder of the spinning dervishes, large nunbers of whom have taken up their guarters in the surrounding gardevs. The most boautiful building of the city is the court mosque, with a lofty and finely tapering minaret glittering with pereelain. Of the old residence castle situated on the hill within the boundaries there are now only a few remains, great part of it having been used in building the Konak or palace of the pasha. Adjoining the ruins of the castle there is an old Byzantine chapel dedicated to St Thecla. Below the castle, and forming part of the western wall of the town, there is another fortress in a pretty goed state of preservation, and for many years used as a state prison. The bazaar has a miserable appearance, and the principal goods exposed for sale are Eoglish and Swiss cottons and Nuremberg wares, the oppressive regulations of the Turkish Government in regard to the importation of salt having rendered the rearing of sheep wholly unprefitabie, and thus entirely destroyed the native cloth-wearing industry. The number of dwelling-houses is about $\mathbf{7 0 0 0}$, of which 150 are Armenian; and the pupulation numbers in all probability between 40,000 and 50,000 .
lconium was situated on the military rond between Antioch of Pisidia and Derbe. Dy Strabo (xii. 6,1) it is spoken of as a small
 city. Xehophon (Anab, i. 2, 19) mentions it as the nearest town to lhyyia; but Cicero (Ald Du., iii. 6-S ; XV. 4) calls it the capital of Lycaonia; while Ammianus Marcellinus (xiv. 2] reckons it as belonging to Pisidia. In the time of Pling its tertitory formed a tetarcly which embraced foutecis eities; many of them of considerable size. The apostle Paul visited Irominm on his tirst missionary tour from Anthoch, and fotmded a Christian commmity there, lut on acconnt of the lostility of the, lews he deemed it expedient to retire to Lystra. Subsequently he twice visited the city; and it is the scene of the abocryplal story of Paul and Theda, mentioned hy many of the curly fathers. Abont this time it lecame a Ruman colonia, its Rommn name being Clandia or Clatuticomiem. A Christian symod met at leoniam in 235 . Under the rule of the Byzantine emperors the city continned to llomsh, bat in 708 it was compuered by the Arabs and incorporated in the caliphate. Having been conquered by the Seljuk Turks in 108.!, kilidj Arslan 1. in 1097 made it his residence, anu the eapital of a linglom whose ralers were nomed sultans of Iconimn, und which may be regarded as tho cradle of the Ottoman power. On Mny 18, 1190, Frederick Barbarossa, after a victory over' the "lucks on the 7 th, captured the town, but failed to storm the castle. l'mon lelt the sultans wero alternately deposed and reinstated by the khans of the Monmels, mitil the dismeniberment of the sultante on the death of Masoul 11. in 129. when their torritorios were mded to Caramania, which in 1392 aclinowleined tha sovereignty of tho Portr, and in 1486 was incorporated with the Ottoman cmpire. On 80 th December 1832 the city was the sene of a victory over the Turls by Ihrahim Pasha. Sce Kimeir, Trancls in Asia Minor; IIamilton, Rescarches in Asia Minor: Leake, Gcography of Asia Minor: Chesuey, Euthrates Espotition; Texier, Asie Wincure; and L. Sherling in tho Bertin Zotscherift fier allyemeine Erdhunde for 1864.

ICONOCIASTS. Sce Imace Worshmr.
1CTERUS, a hird so called by elassieal authors, and supposed by Pliny to be the same as the Galgulus, which nearly all writers agreo in considering to be what we now know as the Godden Oriole (Oriolus galbuta). " At any

[^131]

rate it signified one in the plamage of which yellow or green predominated, and bence Brisson did not take an unhappy liberty when he applied it in a scientific sense to some birds of the Naw World of which the same could be asid. These are now held to constitute a distinct Family, Icterida, intermediate it wonld seem betwe un the Buntings (vol. 10. p. 52j) and Starlings (q.v.); and, while many of them bear the vulgar name of Troopials (the English equivalent of the French Troupiales, first used by Brisson), others are known as the American Grackles (vol. xi. p. 26). The typical species of Icterus is the Oriolus icterus of Linnæus, the Icterus vulgaris of Daudin and modern ornithulogists, an iohabitant of northern Brazil, Guiana, Venezuela, occasionally it is said visiting some of the Antilles and of the United Ststes, but without much apparent pronf. Thirty-three species of the genus Icterus aluae, and more than seventy others belonging to upwards of a score of genera, are recognized by Messrs Sclater and Salvin (Nomenclator, pp. 35-39) as belouging to the Neotropical Region, though a few of them emigrate to the northward in summer. It would of course be impossible here to dwell apon them, but Cassicus and Ostinops may perhaps be named as the most remarkable. They are nearly all gregarious birds, many of them with loud and in most cases, where they have been observed, with melodious notes, rendering them favourites in captivity, for they readily learn to whistle simple tunes, which are admirably reproduced by their clear voice. Some have a fumage wholly black, others are richly clad, as is the well known Baltimore Oriole, Golden Robin, or Hangnest of the United-Ststes, Icterus ballimore, whose brightly contrasted black and orange have conferred upon it the name it most commonly bears in North America, those colours being, says Catesby (Birds of Carolina, i. p. 48), the tinctures of the armorial bearings of the Calverts, Lords Baltimore, the original grantees of Mlaryland, but probably more correctly those of their liveries. The most divergent form of Icteridac seems to be that known in the United States as the Meadow-Lark, Sturnella magna or S. ludoviciana, a bird which in aspect and habits bas considerable reseublance to the Larke of the Old World, Alaudide, to which, however, it has no near affinity, while Dolichonys oryzivorus, the Rice-bird, with its very Eunting. like bill, is not muich less aberrant.
(A. м.)

IDAHO, a north-western territory of the United States, was originally a part of Oregon, from which it was separated in 1863. It lies on the Pacific slope, with the exception of a small partion in its south-eastern corner, which is drained into the Great Salt Lake of Utah. It is bounded on the N. by British Columbia and N.E. by Montana; on the E. by Wyoming ; on the S. by Utah and Nevada; and on the W. by Oregon and Washington. The boundaries are the meridians (111° and $117^{\circ} \mathrm{W}$. long.) and the 42 d and 49 th parallels of N. lat., except that in the N.E. the Bitterront range separates the territory from Montana, and the Snake river forms part of the western limit. The area of the territory is imperiectly known, but may be ect down approximately at 86,300 square miles. The mean elevation is about 4700 feet. The lowest point, which is on Snake river, at the month of the Clearwater, is about 1000 fect above the sea, while the highest mountaius rise nearly to 10,000 fect. The surface is very diversificd; the northern portion is largely noountainons, with several fine broad valleys. In the southern portion a large area within the

[^132]gr:at bend of the Snake river is occupied by an immense plain of basalt. South of the Snake the country is an alternation of broad valleys aud narraw abrupt monntaia ranges.
The priacipal mountains are the Bitterroot and Salmon River chains, with their spurs and subordinato ranges. They attain a height of from 8000 to nearly 10,000 feet. The Snake River plain lies south of these mountains, extending east and west nearly across the territory. This is a field of basalt, seamed and crevassed, with little vegetation, and that consisting priacipally of Artemisia. The soil here is a shifting sand; and there is little aurface water, as the streams siok and How undcraeath.

Tha priacipal river is the Suake, the south fork of the Columbia. It is a rapid stream with aumerous falls, three of which, the American, Shoshoae, and Salmon or Fishing, are very considerable. It is navigable only in its lower course. Several of the brauches of the Suake, the Salmon, Clearwater, and Spokane, are large etreams, bat are not navigable, and are of value only for irrigation and mining purposes.

Map of Idaho.
The climate, like that of other portions of the northwestern United States, is characterized by great aridity of atmosphere and slight rainfall In the south the aridity is such that large areas are almost desert; but in the mountanous regions of the north the rainfall is macie greater, and agricultural operations can be carrica on to some extent without irrigation. The northern part, being principally mountainous, is covered with forests of conifers, chicfly species of pine, spruce, fir, and tamarack. In the open valleys the vegetation consists mainly of the varioua kinds of gresses known collectively as "bunch grass." On the Snake River plains there is little vegetable growth
except Artemisia, while the country south and east of the Snake is covered with this and with grasses, with a little scattered timber (Coniferce and aspens) on the mountains. A rough estimate gives as the area covered by forest 40,000 square miles, by useful grasses 25,000 square miles, and by Artemisia 21,300 square miles.
Though the bison formerly ranged over this whole region, it is now practically extinct. The moose is still occasionally seen, and, rarely the Rocky Mountain goat (Aploceras montanus). The wapiti, the mountain sheep (Ovis montana), and rarious species of deer are still abundant in the mountains, while the antelope or pronghorn abounds in the plains. Grizzly, black, and cinnamen bears, the Amcricin panther, the wild cat, and the wolverine are not unfrequently met with in the unsettled regions. Among the smaller quadrupeds, the prairie dog and gepher are abundant in the valleys and on the plains. Birds of many species are plentiful, especially in the mountain regions. Of reptiles, several species of rattlesnakes and lizards, including herned toads (Phrynosoma), are characteristic of the arid plains, where they are numerous.

The seutheru portion of this territery has been the ssene of comparatively recent volcanic action, which has covered enormeus areas with basalt. The mountains of this portion are mainly of the Silurian and Carboniferous ages. The ranges of the northern portion are knewn to be mainly Eozoic; but the geelogy of that section has yet to be investigated.
The administration of the territery is in the hands of a governor, secretary, and chief justice, all appointed by the president of the Uuited States, and a treasurer, comptroller, and superintendent of public instruction, who, as well as the members of the two houses of the legislature, are elected by the people. The territery is represeuted in Congress by a delegate, also elective. The population in 1880 was 32,946, distributed thus in the several countics:-

County.	ropuntion.	Connty.	Population.
Adis	. 4674	Nez Percé.	... 4483
Alturas..	. 1693	Oncida..	. 6952
Bear lakie	.3212	Owyhee.	1427
Boisé.	. 3213	Shoshone.	469
Cassia.	.1315	Washington.	... 877
Inaho..	. 2371		
Kootonai ${ }^{1}$		Total.	.32,946
Lemhi	.2230		

The principal settlements are Malade, Beisé (the capital of the territory), Idaho, Bucnavista, and Silver City.

The agrieultural, grazing, and mining interests of Idahe are but commencing their development. In the valleys of the southern portion the Mornons are raisir.g abundant crops of cercals, with the aid of irrigation. In the valleys of the lower Snake, the Boisé, Clenrwater, Salmen, and Spokane rivers, wheat, nats, rye, and other grains are cultivated to some extent. Large portiens of the territery are well adapted for grazing, and this is now being turned to account.
The mincral wealth has not yet, owing to difficulty of transpertation, been developed to any grat extent ; but it is known to be important. Gold and silver are found, tho former both in rein and in placer deposits. The principal vein depusits now being worked aro in the Salmon River and Owyhee mountains. Placers have becu worked in nearly every county of the territory, and lanve paid well. During the year 1880 many new and rich deposits have been discovered in the Wood River distriet, in tho Salmon River mountains, and there has becn a considerable influx of mining propulation.

The Utah and Northern Railroad cresses the sonthEnstern portion of the territory, from Utah to Montana.

The total numbor of Indians in Idaho is alout 6000,

[^133]consisting of the tribes known as the Nez Percé, Eannack, Shoshone, Cœur d'Alène, Spokane, Pend' Oreille, and Kootenai. They are under the control of the Government, and most are settled on reservations. (․ . G. ${ }^{*}$)
IDIOCY. See INsanity.
IDLF, a town of the West Riding of Yorkshire, in the parish of Calverley, is pleasantly situated on an eminence near the river Aire, on the Great Northern Railway, 9 miles north-west of Leeds and 3 north of Bradford. The staple manufacture is woollen cloth; there are also worsted mills, and a cotton-warp factory. There are several. stene and slate quarries in the neighbourhood. The clurch of the Holy Trinity, erected in 1830 in the Later English style, is a handsome structure with ennbattled fower crowned with pinnacles; and there are national and other schools, an oddfellews' ball, a mechanics' institute, and a church institute. The population (including Windhill, which is a separate vicarage) in 1861 was 9155 , and in 1871 it lad reached 12,036 .
IDOLATRY. The word ciō ω dodarpeia (idololatria, afterwards shortened occasionally to ciōoдatpeia, idolatria) occurs in all four times in the New Testament, riz., in 1 Cor. x. 14, Gal. v. 20, 1 Pet. iv. 3, Col. iii. 5. In the last of these passages it is used, obviously in a typical sense, to describe the sin of covetousncss or "mammen-worship." In the other places it is employed in its natural sense, but with the utmost generality, to indicate all the rites and practices of those special forms of Paganism with which Christianity first came into collision. It can only be understood by reference to the LXX., where ciठ $\overline{0} \lambda o \nu$ (like the word "idol" in $\Lambda . V$.) occasionally translates indifferently no fewer than sixteen words by which in the Old Testament the objects of what the later Jews called "strange worship" (עֻבּ) are denoted (see Trommius, Concordantia). In the widest acceptation of the word, idolatry in any form is absolutely forbidden in the second commandment, which runs "Thou shalt not make unto thee a graven image; [and] to no visible stape in heaven above, or in the carth bencath, or in the water under the earth, shalt thou bow down or render service" (sec Decalocue, vol. vii. p. 15). For some acceunt of the farious intercsting questions connected with the many practical departures from this law which are recorded in the bistory of the Israclites the reader is referred to the article Jews ; those differences as to the interpretation of the prohibition which have so seriously divided Cbristendom are discussed under the head of Image Wonsurp.
In the ancient church, idolatry was naturally rockoned among those magna crimina or great crimes against the first and second cemmandments which involved the highest ecclesinstical censures. Not only were those who bad gone openly to beathen temples and partaken in the sacrifices (sacrificati) or burnt incenso (thurificati) held guilty of this crime; the same charge, in various degrees, was incurred by the libellatici, whose renuaciation of idolatry had been private merely, or who otherwise had uscd unworthy means to evade persoention, by those alse who had feigned themselves mad to avoid sacrificing, by all promoters and encouragers of idolatrous rites, nud by idel makers, incense sellers, and arehitects or builders of structures connected with idel worship. Idolatry was mado a crime against the state ly the laws of Constantius (Cod. Theod., xri. 10.4, 6) forbidding all sicrifices on pain of death, nad still more by the statutes of Theodosius (Cod. Theol., xvi. 10. 12) enacted in 392, in which sacrifice and divination were declared treasonable and punisliable with death; the use of lights, incense, garlands, and libations was to involve the forfeiture of heuse and land where thay were used; and all who entered heathen temples were to be fined. Sce Bing. lam, Antiqu., bk. xvi. c. 4.

IDRIA, a mining town in Austria, in the duchy of Carniola and circle of Loitsch, situated in a natrow Alpine valley on the river Idrizza, 28 miles north-northeast of Trieste. It is the seat of a circle court and of an office of mines, the building nsed for which is the old castle of Gewerkenegg or Gewerkenburg, built in 1527 by the miners during the lordship of the Venetian repobls. The town also possesses a handsome clurch, a high school, a miuing school, and a theatre. Linen weaving, lace making, and, gin distilling employ a considerable number of the inhabitants, but the origio and prosperity of the town are due to the rich mines of quicksilver which were accidentally discovered in 1497. Since 1580 they haye been under the management of the Goverument. The mercurial ore lies in a bed of clay slate, and is found beth mingled with schist and in the form of cinnabar. A special excellence of the ore is the greatness of the yield of pure metal compared with the amount of the refuse. The mine is reached by a shaft 150 fathoms deep, and the descent is accomplished partly by means of ladders and partly by steps cut out of the solid rock. The number of miners employed is about five hundred ; they wear a peculiar uniform. Formerly the mines were wrought by otate prisoners, but notwithstandiag the unbealthiness of the employment it is now largely sought after on account of the high wages offered to the workmen, as wefl as the pension allowed them when disabled, and the provision that is made for their widowe and orphans. In 1870 improved ovens for smelting the ore were erected. The yearly yield of the mines is about 290 tons. The pepulation of Idria in $1869^{\text {was }} 3813$.
IDRISI. See Edrisi.
IDUMEA (Iסor~aia) is tho Greek form of the Hebrew
 name Edom is restricted in the Bible to the mountain country south-east of the Dead Sea, and-to the chain of Mount Hor near Petra The word means "red," and the title was no doubt derived from the red colour of the cliffs of Nubian sandstone, which form the greater part of this chain. The coast or desert of Edom was bounded by the desert of Zin (the present-'Arabah) on the W., by the desert of Paran on the.S.W., and estended as far as Eziongeber and Eloth, at the bead of the Gulf of Akabab. It is identifed with Mount Scir, the possession of Esau (Gen. xasii. 3). In later times, bowever, we fid that the term Idumea reccives a considerable extension, embracing all the pastoral country south of Judra, and extending even wittin the borders of Pbilistia. Bethsura (Beit Sûr), Aerabattine (Acrabbim), and Hebron are in 1 Macc. iv. and v alluded to as within or near its limits

By Jusephus the term Idumea is used with this more extended meaning, embracing an area of 3000 square miles. It answers to the Diblical term Negeb ("dry") arplied to the south country, where the formation is a soft chalk, and which is inhabited by nemadie pasteral tribes Josephus divides the Idumean district into prinor divisions, viz., (1) Gobalitis ("mountains"), the original Seir or Edom ; (2) Amalekitis ("the land of Amalek"), west of the former; (3) Acrabattine ("the scorpion land"), tho ancient dcrabbim south-west of the Dead Sea "The frontier towns on the nerth were Tekoa, Bethsura, and Bethgubrin (Beit jilrin), and among the mere impertant places within the district were Hebron, Petra, Arad, Malathn (Tell el Milh), Beersheba, Rehoboth, Elusn (Kholosah), Eboda ('Abdeh), sc. Josephus speaks of Upper Itumea, apparently the district reand Hebron, and enumerates Begabria (Beit jilrin) and Cayhar Topha (Tufikh, Dear Itebron) among its towns.

In the Talmud Eleutherppolis (Bot jubrun) is placed in Idumea (Midrask Yalkut, Gen. xxsiii., and Eereshith Rabba, ch. wi): Jcrome defines Idunca as extending from

Eleutheropolis to Petra and Eluth. The south boundary of the Holy Land, as defined in the Talmud, included Idumea, the reason being that the Idumeans bad embraced Judaism about 140 b.c. (Joseph., Ant., siii. 9, 1). Strabo (lib. xvi.) speaks of the Edomites as of Nabathean or Arab. origin. Pliny (II. N., ₹. 12) makes the country extend southwards to the Serbenian bog (oear the present Port Said). Ptoleray (v 15), in the middle of the 2d century, restricts the name to a district west of Jordan, including Elusa (Khalasah) and Gemmaruris" (probably Jemrîrah in the Hebren hills). The original Edom is called by this geographer Arabia Petrea.
The aborigiual inhabitants of.Idumea were the Horim or "cave dwellers" expelled by Esau. Mount Seir is said to bave been named after onc of their chicfs (Gen, xxsvi. 20, Deut. ii. 12). Jerone speaks of the natives of this country as still dwelling in caves, and in common with the Talmudic writers attributes to them the great caverns at Eleutberopulis. The inhabitants appear to have been almays nomadic and pastoral, they were mingled with the Jews (tribe of Simeon) and with the Hittites. At the time of the great siege of Jerusalem the Idumeans fought in concert with the Jews (Jos., B. J., vi. §, 2), and the Romans applied the name Idumea rery loosely to the whole of southern Palestine, including even Jerusalem. At the present day the babit of living in caverna is very marked in this district, the rock being soft and easily excarated. The soil is generally a soft white marl, producing a rich berbage in spring, and supporting numerous flocks.
(c. R. c.)
iffland, August Whlhelm (1759-1814), a German actor and dramatic author, was born in Hanover on the 19th of April 1759. His father was registrar at the war office of Hanover, and intended that his son should be a clergymao. Toung Iflland, however, preferred the stage to theology, and at the age of eizhteen weut to Gotha in order to prepare himself for a theatrical carcer. At that time the greatest actor in Germany was Eckhof, a man of undoubted genius, for whom Lessing repeatedly expressed the warmest admiration in his Ilamburyische Dramaturgie. Ithand was fortunate cnough to receive instrurtion fron: him in Gotha, and under his gnidanee mado sucb rapid progress that he was able in 1779 to accept an engagement at the theatre in Mannbeim, then the most famous of the German theatres. He soon stood ligh in his yrofession, and extended his reputation by frequently appearing at the leading theatres in different yarts of the country. In 1796 he settled in Berlin, where he becano director of the national theatre of Prussin; and in 1811 be was made general director of all representations before royalty. On the 22 d of September 1814 he died. His plays are almost entirely destitute of inagination; but they display a thorough mastery of the technical necessities of the stage, and a renarkable pewer of devising effective situa. tions His best characters are simple and natural, fond of domestic life, but too much given to the utterance of sentimental commenplace. His best known plays are Dre Jüger, Dicnstpticht, Dit Adincaten, Die Miendel, anid Die Hagestolen, all of which are still oceasionally represented. Ifland was a dramatic critic as well as a dramatic author, and German actors place high value on the reasonings and hints respecting their art which are to be found in his Almanach für das Theater. As an actor be fell far short of bis master, Eckhof, whose style was marked by spontaneny and passion, while Iftand's acting always bore traces of elaborate study. Hence he failed in creat tragical parts; but he was unexcelled in his day in the skill with which he interpreted dranatic conceptions representing the course of ordinary midule class life. Within these limits he was almost ogually distinguished in his capacity for readering comic and pathetic effects. La 1798-1802 Ithand issaed
his Dramatic Frorks (with an autobiogranhy) in 16 volumes, to which, in 1807-9, he added 2 volumes of New Dramatic Works. Two selections from his writings were afterwards published, the one in 10, the other in 11 volumes.

See K. Duncker, Iffand in seinen Schriflcn als Künstler, Leherer, und Director der berlinur Bühne; and Koftka, Iffand und Datberg.

IGLAU, or Jiflava, one of the oldest towns of Moravia, and second only to Brünn in respect of size and population, is situated about 50 miles west-north-west of that city, and on the right bank of the Iglawa, close to the Bohemian frontier, in $49^{\circ} 25^{\prime} \mathrm{N}$. lat. and $15^{\circ} 34^{\prime}$ E. long. Iglau is the capital of a circle of the same name, the seat of the judicial authorities, and the military headquarters of the district. It consists of the town proper and the suburbs of Frauen, Pirnitzer, and Spital. Among the principal buildings are the churches of St James, St Ignatius, St John, and St Paul, the town-hall, a gymoasium, a ligh school, a military seminary, civil and criminal courts, several hospitals, and the barracks formed from a monastery abolished by order of the emperor Joseph II. There is also a fine cemetery, containing some remarkable monuments. The industrial establishments comprise cloth and linen weaving, paper, earthenware, and glass factories; potash, vinegar, and dye works; tanneries, iron foundries, a large brewery. and an extensive cigar factory, employing over 2000 hands. Fairs are periodicalle held in the town; and the trade in timber, cereals, and linen and woollen goods is generally brisk. The population in 1870 amounted to about 20,200 , most of whom were Germans or of German extraction.

At a very early date Iglau enjoyed exceptional privileges, and they were confirmed by King Wenceslaus 1II. in the year 1250. The town-hall contains a collection of municipal and mining laws dating as far back as 1389. At Iglau, on July 5, 1436, the treaty was made with the Hussites, by which Sigismund was acknowledged King of Bohemia. A granite column near the town marks the spot where Ferdinand I., in 1527, swore fidelity to the Bohemian states. During the. Thirty Years' War Iglau was twice captured by the Swedes. 1n 1742 it fell into the hands of the Prussians, and in December 1805 the Bavarians under Wrede wero defeated near the town by the archduke Ferdinand d'Este.

IGLESIAS, a town of Sardinia, capital of a district in the province of Cagliari, is beautifnlly situatod amongst limestone hills about 3 miles from the west coast, and at the terminus of a railway line from Cagliari, 34 miles west-north-west from that town. It is the seat of the suffragan bishop of Cagliari, and possesses a cathedral, an episcopal palace, four convents, a Jesuit college, and the ruins of old fortifications. Tho town is abundantly supplied with water from various springs. The surrounding country is highly productive, and there is an active trade in wine, uil, fruits, cheese, corn, and other agricultural products. Lead and zine are obtained in the neighbourhood. The popula. tion of the town in 1871 was 6630 .

IGLÓ, formerly Neudorf, a mining town of North Hungary, in the county of Szepes or Zips, is pleasantly situated on tho Hernad, and on the Kaschau-Oderberg line of railway, about 5 miles south of Löcso (Leutschau), in $48^{\circ} 56^{\prime}$ N. lat. and $20^{\circ} 33^{\prime}$ E. long. Among tho fow public buildings are Lutheran and Roman Catholic churehes, a gymnasium, a teachers' seminary, a circuit court, and tho usual Government offices. Thero aro, moreover, factories for the manufacture of stonewaro, fuller's carth, linen, and paper ; also sawmills, stoam flour mills, and iron foundrios. In the vicinity are extensivo iron and copper mines and store quarries. The inhabitants of the town and neighbourhood are chiefly employed in mining, beekeeping, flaxgrowing, agriculture, and trade. Tho population (incluling that of Great and Littlo Iglo-IInileca) amounts to 6691, mostly German by nationality and Lutheran by creed. Iglo was formerly the capital of the sixteen priviloged Zips towns, and its origin may bo traed to Saxon eolonists of the lath century.

IGNATIUS, St. See Arostolic Fathers, sol. ii. p. 196. IGNATIUS DE LOIOLA, St. See Loyola.
IGNORANTINES (Frères Ignorantins), as the Brethren of the Christian Schools (Fè̀res des Écoles Chrétiennes) are commonly though improperly called, are a religions fratersity founded at Rheims in 1679 , and formally organized in 1683, by the priest Jean-Baptiste de La Salle, for the purpose of affording a free education, especially in religion, to the children of the poor. The nanse Igrorantine was given either on account of the low class of the pupils, or from a clause in the rules of the order forbidding its members to learn or teach Latin. Other popular names applied to tho order are Frèes de Saint-Yon, from the house at Rouen, which was their headquarters from 1705 till 1770, Frères à quatre bras, from their banging sleeves, and Frères Fouetteurs, from their former use of the whip (fouet) in punishments. The brethren, althuugh nut allowed by their rules to enter holy orders, take the usual vows of chastity, poverty, and obedience. They are distinguished by a peculiar cnarse black dress, consisting of a cassock, a hooded cloak with hanging sleeves, and a broadbrimmed hat. The order, approved by lope Benedict XIII. in 1725 , rapidly spread over France, and although expelled after the Revolution of 1789 , was recalled by Napoleon in 1803, and formally recognized by the French Government in 1808 . Since then its wembers have penetrated into nearly overy country of Europe, and into America, Asia, and Africa. In Franec alone they number more than 1300 schools for young and old, attended by upwards of 300,000 pupils, taught by some 8000 masters. See Mistoire du Vénérable J.-B. de la Sulle, by A. Ravelot, 2d ed., Paris, 1874.

IGUALADA, a town of Spain, in the province of Burcelona, is situated on the left bank of the Noya, in a rich agricultural and vinebearing country, 32 miles north-wost of Barcelona. It consists of an old and a new town, the former dilapidated and dirty, with narrow and irrogular streets and the remains of a fortress and ramparts, while the latter possesses rogular and spacions streets and many finc houses. Among the public buildings are an old Gothic chureh, a town-hall, two conventual buildings, a clerical college, a hospital, and military barracks. The former commercial prosperity of Igualada has now much declined, but its industries aro still considerable, and comprise cotton spianing, cotton and woollen weaving, and ihe manufac. ture of firearns, leather, hats, and brandy. There is alsu some trade in corn. Population in 187, 11,882.

IGUANA (Iguanida), a family of lizards belonging to the suborder P'achyglossee or "thick-tongued," and comprising 56 genera and 236 species. With a single undoubted exception, all the genera of this extensive family belong to tho New World, being speciully charonteristic of the Neotropical region, where thoy oceur us far south as Patagonia, whilo extending northward into tho warmer parts of tho Nearctic region as far as Califorsia and British Columbia. The single non-American genus - Brashylophes -occurs in the Fiji Islands. The iguanas aro charactorized by the peculiar form of their teeth, these being round at the root and blade-like, with sermated edges towards the tip, resembling in this respect the gigantic extinct roptile iguanodon. Tho typical forms belonging to this family are distinguished by the large dewhap or pouch situated beneath the head and neck, and by the crost, composed of slender olongated scales, which extends in gradually diminishing loight from the mapo of the neck to the extremity of the tail. The latter organ is very long, slender, and compressed, whilo its vertebre, in common with those of certain other lizards, possess thin unossified septa traversing their contres. It is,owing to the weakness thus produced in their vertebral column that, when caught
by the tail, they are able to part so readily with the portion seized. The tongue is gencrally short and not deeply divided at its extremity, nor is its base retraeted into a sheath; it is almays moist and covered with a glutinous seeretion. The prevailing colour of the iguanas is green; and, as the majority of them are arboreal in their kabits, such colouring may be generally regarded as proteetive. Those on the other hand whiel reside on the ground have mucit duller, although as a rule equally protective bues; thus Darwin observed on the shore at Bahia a terrestrial member of this family, whiel from its mottled appearance could hardly be distiaguished from the sarrounding surface. Iguanas, however, possess to an extent only exceeded by the ehameleon the pewer of changing their colours, their brilliant green becoming transforbied in an instant, under the influence of fear or irritation, iato more sombre hues and even into black. They differ greatly in size, from a fer inches to several feet in length. One of the largest and most widely distributed is the common iguana (Iguana tuberculata), which oceurs in South America and the West Indies. It attains a length of 5 feet, and is of a greenish

Iguana
celour occasinally mixed with brown, while the tail is surrounded with alternate rings of those colours. Its food consists of regetable substances, which it obtains from the forest trees among whose branches it lives and in the Lollows of which it deposits its eggs. These are of an oblong shape, about an ineb and a balf in length, and are said by travellers to be very pleasant eating, especially when taken raw, as they usually are, and mixed with farion They are timid, defenceless animals, depending for safety on the comparative inaccessibility of their arboreal haunts and their pretective colonring, which is rendered even mare effectivo by their remaining still on the approach of danger. Otherwise they exhibit few signs of animal intelligence. "The iguana," says Bates (The Naturalist on the Amazon), "is one of the stupidest auimals I ever met. The one I caught drepped helplessly from a tree just ahead of me; it turned round for a mement to have an idintic stare at the intruder, and then set off running along the path. I ran after it and it then stopped as
a timid dog would do, croucling down and permitting me to seize it by the neek and carry it off." Along with several other species the common iguana is much sought after in tropieal Ameriea; the natives esteem its Hesh a delicacy, and capture it by slipping a noose round its neck as it sits in faneied security on the branch of a tree. Although chiefly arbcreal, many of the iguanas take readily to the water; and there is at least one species, Oreocephalus cristatus, which leads for the most part an aquatic life. These marine lizards oceur only in the Galapages Islands, where they are never seen more than 20 yards inland, while they may often be observed in compaoies several hundreds of yards from the shore, swimming with great facility by means of their flattened tails. Their feet are all more or less webbed, but in swimming they are said to keep these organs motionless by their sides. Their food eonsists of marine vegetation, to obtain which they dive beneath the water, where they are able to remain, without coming to the surface to breathe, fur a very considerahle time. Thongh they are thus the mest aquatic of lizards, Mr Darwin, who studied their habits during his visit to those islands, states that when frightened they will not enter the water. Driven along a narrow ledge of rock to the edge of the sea, they preferred capture to escape by swimming, while if thrown into the water they immediately returned to the point from which they started. A land speeies belonging to the allied genus Trachycephalus also occurs in the Galapagos, whieb differs from most of its kind in forming burrows in the gronad.

IGUANONON, a genus of extinet Dinnsaurian reptiles, the remains of which have been fuund in greatest abundance in the Wealden, a delta formation of the south-east of England. They also oceur, though more sparingly, in the Lewer Greensand, where lately (1879) Profossor Prestwich announced the diseovery in the "Kimmeridge Clay" of what are as yet the earliest known remains of these reptiles. Although no complete skeleton of the iguanodion bas been found, sueb benes of it as have been obtained prove it to have been one of the largest terrestrial animals known. Thus its femur in one instance measured from 4 to 3 feet in length, with a circumference of 22 inehes at its narrowest part. These and other measurements led Dr Mantell-the original discoverei of Iguanodon-and others to cenelude that it probably attained a length of from 50 to 60 feet. Its frent limbs appear to lave been small, while the hind $1^{\text {nir }}$ attained enormous development, and from the strueture of the latter, which may be regarded as intermediate between those of existing reptiles and of birds, the iguanodon is supposed to have either habitually or oceasionally walked on its hind legs like a lird. This supposition is rendered all the more probable by the diseovery in the same strata of gigantic three-toed footsteps in pairs sueh as might have been formed by the iguanodon lad it walked in this bipedal manner. The teeth of these animals formed one of their most marked characteristies,bearing a striking resemblance to the teeth of existing iguanas in their blade-like form and serrated cdges, but differing from these as well as from those of all other known reptiles in intermal strueture. Like existing ignanas they were probably herbivorous, using their teeth for eutting and tearing their tongh vegetalle food; unlike these, however, they appear to have used their teeth also for the purpose of mastieation. This is showa by the deeply worn eondition in many eases of the erowas of their teeth, which, from being sharp and ineisor-like, gradually assumed a molar-like form. As the old teeth were thus reduced by "tear and wear," they were gradually replaced by a fresh dental crop. The front portion of the jaws was destitute of teeth, the upier part being beak-like, while the lower was hollowed out like the same region in the parrot."

Professar Owen regards this as an arrangement to facilitate the protrusion of what was probably a long prebensile tongue-an organ which the iguanodon may be supposed to have employed in stripping the foliage from the trees. There is no fussil ever nce to show that it possessed either bentes, seales, or any other form of dermal armour.
iGUVIUM. See Eugubine Tables and Gubbio.
ILCHESTER, formerly IVELChester, a market-tom of Somersetsbire, is sttuated in the valley of the river Ivel or Yeo, 33 miles south south-west of Bath, and 5 miles north-nurth-east of Yeovil railway station. It is connected by a stone bridge with the village of Northover on the other side of the river. The principal buildings are the parish church of St Mary, an old edifice in the Early English style, with a small octagonal tower, and the town-hall. It possesses almshouses, fonnded in 1420 , and national sehools. There are no manufactures or trade, and the importance of the town belongs whelly to the past. Under the Romans it was a military station, and bore the name of Ischatis. Anciently it was a place of considerable extent, and was defended by walls and a deep moat. Traces of these fortifications are still to be found, and numerous Roman remains have been discovered at different periods. During a rebellion against William Rufus in 1088, the town was successfully defended agaiust Rebert Mowbray, one of the leaders of the insurgents. Before the Reform Act of 1832, when it was disfranchised, Ilehester returned t wo members to parliament. The county jail was there until 1846 The population of the town in 1871 was 751.

ILE-DE-FRANCE, an old district of France, forming a kind of island, bounded by the Marne, the Seine, tho Oise, the Aisne, and the Ourcq. Until the end of the Carlovingian dynasty it was included in the domains of the crow'n. The government of Ile.de-France, named after this district, now embraces the department of the Seine, together with the greater part of Seine-et-Oise, Seine-et Marne, Oise, and Aisne, and a small part of Leiret and Nievre. It was bounded on the N. by Picardy, on the W. by Normandy, on the S. by Orléannais and Nivernais, and on the E. by Champagne. Its capital was Paris.

ILFRACOMBE, a market-tewn, seapert, and wateringplace of Devenshire, is picturesquely situated on the Bristol Channel, and at the terminus of a branch of the London and South-Western Railway, 11 miles north by west of Barnstaple, and 50 miles north-west by west of Exeter. The parish is under the gevernment of a local board of health, established in 1857. The old town, built on the cliffs above the barbour, consists of n prineipal street about a mile in length, with smaller streets branching off from it. Behind the old town many fine villas and marine residences rise in beautiful terraces cemmanding picturesque and magnificent views. The heights or torrs overspread with feliage form a sort of semicircle round the town, stretching west wards to a considerable distance; and it is sholtered from the sea by the Capstone Rock. Hillsborough Rock, on the east side of the harbour, witha height of about 500 feet, has near its summit some remains suppesed to be of Celtic origin. On Lantern Roek, at the west side of the harbour, a lighthouse has been erected. For access to the bathing ground, which is eonfined to a few small coves at the foot of the rocks, three tunnels have been cut through the solid rock. Inland the comentry jiresents a beautiful variety of hill and dale, elothed with woods and possessing a rich and luxuriant vegetation. The prinelpal public buildings are the parish church, dating from the 12 th century, and recently restered, and St J'bilip' and'St James's. Church, recently erected at a cost of over $£ 10,000$, the town-hall erected in 1860 , the markethouse of the same date, the baths, nud the assombly rooms Waterworks were completed in 1866 at a cest of $£ 7000$.

The harbour, formed wholly of a natural basin, admits vessels of more thau 200 tons burden, and there is a pier 850 feet in length. Herring fishing is presecuted, but the shipping trade has considerably declined. The population of the parish, which in 1861 was 3851 , was 4721 in 1871.
The name of the town is differently spelt in old documents, the variations being llfordscomite, Alfredscombe, Alfrincombe, Iliarcombe, and llfridcombe. In the latter part of the 13tb century it obtained a grant for hollifing a fair and market, and in the retgn of Edward 1ll. it was a place of such importance as to supply lima with six ships and ninety-six men for his armament agaikst Calais During the Parhamentary war, belng garisoned for the Roundheads, it was in 1644 captared by the Royalists, but in 1646 it fell in to the hauds of Fairfu

ILHAYO, a town of Portugal, province of Beira and district of Alveire, is situated on the Atlantic Ocean, 8 mides south-west of Alveiro and 34 north-west of Coimbra. It is inhabited chiefly by fishermen, but has a celebrated mannfactory of glass and porcelain, the Vista-Alegre, at which tb, nrt of glass-cutting has reached a bigh degree of perfection. Salt is largely experted. The popolation is about 6000.

ILI, one of the principal rivers of Central Asia, in what is now the Russian province of Semirgetehensk. The head-stream, called the Tekes (French form, Tekesse), rises at a beight of 11,600 feet in the Ulabas mountains, which lie to the F. of Lake Issyk-kul, about $79^{\circ} 50^{\circ} \mathrm{E}$. long. and $42^{\circ} 40^{\circ}$ N. lat. At first it flows eastward and northexstward through a mountainous gorge which gradually wadens into a-valley of consuderable breadth between the Tian-Shan range on the sonth and the Kara. Tau and the Temur-lik or Nan-Shan on the north. Meeting the Kunges (Frenct form, Koungesse) from the east, the river takes i westerly direction; and under the name of Ili it contigues to hold westward for about 300 miles, to the ueighbourhood of the milhtary pest of Ili or Ilijsk iu $77^{\circ} 5^{\prime} \mathrm{E}$. leng. Tho valley between $79^{\circ} 30^{\prime}$ and $82^{\circ} \mathrm{E}$. long. is about 50 miles wide, and the portion above tho tewn of Kuldja (Old Kuldja) is fertile and populons, Tarantchi villages following each other in rapid succession, and tho pastures being well stocked with sheep and cattlo and horses. At LLijsk the river turns north-west, and at length, after traversing a district of desert and marsh, it falls by at least seven mouths into the Balkhasb Lake, tho first bifurcation of the delta taking placo about 115 miles up the river. From Old Kuldja te New Kuldja, according to Captain Fischer (1871), the Ili is uavigable for only two and a half months at most, and even then considerable difficulty is oceasioned by the shoals and banks. From New Kuldja to Ilijsk (280 miles) navigation is casy when the water is high, and practicablo even at its lowest condition. The section from Ilijsk to Lako Dalkhash (about 240 miles) was explared in 1856 at the instance of Dir Kiutznezoti, who had a boat built on the lako and towed up stream; be found a passable channel all the way, but no practical use has since been made of it. Except in the deltaie portion, the river has a rapid corrent and the water is turbid. At Ilijsk there is a ferry on the road from liopal to Vyornee. The prineipal tributaries of the Jli are the Kash, the Jelluluke, and the Kur-Tcharyn. A vast number of streams flow towards it from the mountains on both sides, but the great propertion of them are used up by the irrigation canals, and never reach their natural goal. Tho wealth of coal in the valley is said to be great, and the Chinese worked gohl and silver with profit. Fort lli or Ilijsk, a modern Russian establishment, must not be confounded with Ili, the old eapital of the Chinese province of the same name. The latter, otherwise known as lloi-yuan-tchen, New Kuldjn (Qulia), or Mantchu Kuldja, was fomerly a city of 70,000 inbabitants, but now lies com pletely deserted. Old Kuldja, Tatar Kuldja, or Nin liuay is now the principal town of the districu: See Kuldse

See Ber and Helmersen, Beilräge zur Keminiss des Rues. Rciches, x.; Semenow in l'etermann's Mittheilungen, 1s5s, Slowar Kioss. Tmp.; Radtoff, "Das lli-Thal und seine Bewoliner," in Petermann's Siutheilungen, 1866 ; Hellwald, Dic Jussen in Centrolesten; Vam. ,ery, "The 'l'ekes Yalles"," in Occan Highuruys, rol. i. ; Sewerzow, Erforscheng des Thian-Skan-Gebirgssysicm (1875); A. W. Dilke, "On the Valley of the Ili," in Proc. Roy. Geog. Soc., 1874.
ILIOS, or Ilium. See Troy.
ILKESTON, a market-town of Derbyshire, is situated on a hill commanding fine views of the Erewash valley, and on the Erewash branch line of the Midland Railway, 8 miles west by north of Nottinglam, and 9 east-northeast of Derby. The town is under the goverument of a local board of health, and has a county court. The principal buildings are the parish church of St Mary's in the Norman and Early English style, with lofty pinnacled tower; the town-hall erected in 1868 ; and the mechanic's institute. National schools have been recently erected. The mannfactures of the town are principally hosiery and lace, and varions kinds of stoneware. Coal and iron are wronglit in the neighbourhood. An alkaline mineral sprong, resembling the seltzer water of Germany, was discovered in 1830, and baths were then erected, which were afterwards extended. The waters are used both externally and internally, and are ellicacious in rheumatism, gont, spinal affections, liver complaints, and kindred ailments. The principal constituents of the water are carbonic acid, sulphuric acid, muriatic acil, lime, magnesia, and soda. Tho town, which is very ancient, obtained a grant for a market and fair in 1251. It was formerly the seat of the assizes, which were transferred to Nottingham on account of the plagne. The population of the parish in 1861 was 8374 , and of the town 3330 , and the population of the parish and local board district in 1871 was 9662.

ILLE-ET-VILAINE, a maritime department of France, formed ont of part of the old prorince of Prittany, is situated on the north-west const, between $47^{\circ} 38^{\prime}$ and 48° 37^{\prime} N. lat. and 1° and $2^{\circ} 14^{\prime} \mathrm{W}$. long. It is bounded on the N. by the sea and the department of Manche, on the E. by Mayenne, on the S. by Loire-Inférienre, and on the W. by Morbihan and Cutes du-Nord. 'It takes its name from its two principal rivers, the Ille and the Vilaine. The former joins the Vilaine at. Rennes after a course of 18 miles through the department, and the latter, which rises in Mayenne, flows past the towns of Vitré, Rennes, and Redon. "The stream is tidal up to the port of Redon, and is navigable for barges as far as Remes. The Vilaine receives the Men and the Sciche, which are both navigable. There are two other navigable streams, the Airon and the Rance. The llle-et-Rance canal conncets the town of Rennes with those of Dinan and St Malo. The depart-ment-forms one vast plateau, broken by ranges of low hills, which deeline on the one side to the English Channe! and on the other to the Bay of Biscay. The sea-coast line Is partly rocky and partly marshy, the marshy portions being in many places defended against the encroachments of the sea by artificial dams. There are also morasses in many parts of the interior, with a number of stagnant lakes, is circumstanco which renders the atmosplere very homid. The sky is seldom bright, for the soutl-west winds, while dhey keep the temperature mild, also bring frequent showers, and in spring and antumn thick fors prevail. The soil is thin and not very fertile, but lately has been improved by the use of artificial manure. The only truly fruitful portion is that ronnd Dol. Alont two-thirds of the soil is under culture, one-ninth in mealows, one-fifteenth in woorl, and one-sixth waste. Cereals of all kinds are grown, butt the prineipal are wheat, rye, and barley. Yotatoes, flour, and liemp are also largely grown, and tobaces is cultivated to some extent. Apples and pears
are the principal fruit, and the cider of the canton of Dol has a high reputation. The vine is cultivated in tho southern districts. Cheese, said to equal (iruyere, is mate in considerable quantities, and the butter of Rennes lias a reputation equal to that of the best in France. Largo numbers of horses and cattle are raised. The horses belong to the small hardy Breton breed, and are much in demand as post and artillery lorses. Notwithstanding the extent of heath land very few sheep are kept. The prineipal mannfactures are leather, sea-salt, glass, paper, and linen. Iron ore is obtained in considerable quantities, and there are also lead and zinc mines as well as slate quarries. The population is of Celtic origin, and the dialect is a miture of Celtic and French. llle-et Vilaine is divided into the arrondissements of Fongėres, St Malo, Montfort, Redon, Rennes, and Vitre, with 43 cantons and 350 communes. The chief town is liennes, and the prineipal seaport St Malo. The department has an area of 2597 spuare miles. The population in 1572 was 589,532 , and in 1576 it had reached 602.712.

ILLINOIS.

ILLINOIS, one of the United States of Americs, is the eigbth state admitted to the Union aller the adoption of the federal constitution, and by the census of 1890 is the third in rank of popnlation. It extends from $36^{\circ} 56^{\prime}$ to $42^{\circ} 30^{\circ} \mathrm{N}$. lat., sud $87^{\circ} 35^{\prime}$ to $91^{\circ} 40^{\prime}$ W. long. It is 388 miles loog and 212 wide, and contaius an area of $56,650 \mathrm{square}$ miles, or $36,256,008$ scres. It is bounded on the north by Wisconsin, on the east by lake Michigan and the state of Indiana, from which it is separated in part by the Wabash river, on the south liy the contlowit rivers Missiscippi and Olmo. Which separate it from the states of Kentncky and Missouri. and on ibe west by the river Mississippi. Which separates it frem the states of Missouriaod lowa.

Topagraphy.-The state of lllinois is in the main level. witb few hills and an monntains. The surface is an inclined plane gently descending from the nortbenst in n southwest direction toward the Mississippi. Along the river hottom's the soil is of vegetable mold 40 feet in depth. On these bottoms heavy crops of maize have been raised for many years. withont manuring. Geologists are now quite unanimously of the opinion that the whole state was once the bed of an immense fresh-water lake. The theory is also adranced that in former ages the waters of the great lakes flowed into the Gulf of Mexico tbrough the channels of ihe Illonois and the Mississippi rivers The soil is of a diluvial charscter, formed of the decsyed vegetation, and the loam and mold which form the surface are underlaid by an almost solid bed of clay. This bed of clay at varying depths--often 25 feet, sometimes even 40 feet-keeps the moisture in the soll from wasting, and thus contributes indirectly to the richness of the soil, which seems inexhanstible in fertility. The plongh may be run for bundreds of miles over these extensive prairies without ever tonching even a pebble or a grain of sand. The plowing is still very, shallow, owing to the richness of the soil, and in the greater portion of the state to otation of crops normannring is necessary. If the soil shows signs of exhaustion, all that is required to restore its productiveness is deeper plongbing, fallowing, grassing or manuring. "Crops have not fáiled in a period of fifty years. Rains have heen abundant and evenly distributed. The rainfall has been insuffcient only two or three seasons, and as many seasons too great. There has once been a frost in the summer. But from no one of these causes has widespread suffer. ing been inflicted upon the farmers of the state.

Geology.-.The entire surface of the state is of limestone formation, and the larger part belongs to the carboniferous era. The extensive coal bed stretches 375 miles in leagth from northwest to southeast, and $20 C^{\prime}$ miles in breadth from SL Louis toward the northeast.

These coal beds are a part of the great bituminous coal formations lying in this and the adjoining states. The coal strata vary in thiekness from $3 t$ to 8 feet, whieh is mueb less than the thickness of the coal measures of the same formation in Ohio and Pennsylvania. As the strata in the state are undulating, the iimestones and sandstones of the formations below are often bronght to the surface. In the northwestern part of the state around Galena are rich lead deposits, lying at the southern end of the great western lead bearing belt. In the northeastern corner of the state for quite a distance hack from Lake Michigan, the district belongs to the Post-tertiary formation, and in the zoutheastern part evidences of the Permian group have been found in strata overlying the eoal measures.

From the lower Silurian limestones the argentiferous galena is mined in such quantities as to form quite an ${ }^{\text {E }}$ mportant item in the products of the state.

Yeralogy-Bituminous coal is first among the minerals of the state. The coal heds underlie over two thirds of the surface of the state. The estimated coal area is 36,800 square miles. The product in 1880 , according to the U. S. census, was $6,089,514$, and the value was $\$ 8,730,755$. By Saward's estimate the numher of tons produced in 1886 was $9,250,000$. Some cannel coal is also found in the state. Besides this souree of supply, bituminous coal is brought by rail from Indiana and Ohio, and anthracite coal by water from Pennsylvania. Some iron is found in the state, although it acquires value only when mixed with the haematic, specular and spathic ores brought into the state from the Lake Superior iron region and from Missouri. Lead ore is fonnd in Jo Davicss Co., and to this the eity of Galena owes its name. Quite a percentage of silver is found in this lead ore.

Zine is mined in the northern part of the state, and excellent veins of copper ore are also found there, along Plum creek and the Peeatonica river. Limestone of good quality for burning and building, freestone, gypsum and variegated marble, are found in some places. Salt springs exist in Vermilion. Jackson and Gallatin counties, and Sulphur and Chalybeate springs in Jefferson county. Other medicinal springs are seattered between Peru nad Ottawa.

Jegetution. -Oask and other forest trees sparsely dot the prairies, and here and there wooded areas are found, where the sandstones and limestones above the enal formations appear on the surface. Trees have been extensively planted along the rivers. About onesixth of the surface of the state is woodland. The trees most abundant are oilk, black walnut, ash, sugar maple, locust, elm, hiekory, linden, pecan, persimmon, cottonwood, buckeye, sycamore, tulip, poplar, heech and black birch. In the neighborhood of the Ohio river are found the yellow pine, eypress and cedar trees. On the ridge extending across the lower end of the state called "Eyypt," because of its never-failing fertility, are grown apples, peaches, plums, cherries, apricots, grapes of all varieties, the smaller fruits, as raspberries, strawherries, blackberries, and all kinds of vegetables in great profusion.
streams and Lates. - The rivers of Allinois, with the exception of a few short streams in the northwestern part of the state, which thow into Lake Michigran, empty directly or indirectly into the Mississippi. The largest river wholly within the state is the llinois. It is formed by the juction of the Kankakee river from Iodiana, and the Des latines from Wisconsin, and is 500 miles in
 Mississippi river 15 miles above Alton. In P'eria and Woolford cemmaics it expands into, Peorialake. The :hiaghor river which emptied, formerly, into Lake Michifan, now thows out of that lake by an artifleially deepmed elaturl inte, the northern branela of the Illinois. The main athuents of the Minois are Fox, Spoou and

La Main rivers and Crooked creek from the north and west, and Vermillion, Mackinaw and Sangamon rivers and Macoupin creek from the south and east. The Kaskaskia river rises in Champaign county, and flows parallel to the Illinois for 250 miles, emptying into the Mississippi near the south border of Randolph county. Rock river flows into the state from Wisconsin, and enters the Mississippi at Rock Island. The Wabash, which separates the state from Indiana on the east for some distance, has, as tributaries, the Big. Vermillion, Embarras and Little Wabash, and empties into the Ohio in Gallatin county. The Saline and Cash rivers flow into the Ohio. The Big Muddy, a tributary of the Mississippi between the Ohio and the Kaskaskia, draing quite an extent of territory. The only lake of any size is Pishtaka, in the noriheastern part of the state.

Climate.-The climate of the state varies according to the degree of latitude. As Illinois stretches over degrees of latitude, this variation is considerable. the northern part the summer heat is intense, and the winter eold severe. The piercing winds at Cbicago and in the northern part of the state generally are from the southwest and south, although the north and west winds are not infrequent in summer. The air is rarely in a calm condition, for the wind blows almost constantly in some direction. About two days in three are ciear, taking the average by years. The mean annual temperature in the extreme sonthern part of the state is $58 \frac{1}{2}^{\circ}$, in the extreme northern part, $47 \frac{1}{2}^{\circ}$, and in the center 54°. The mean annual temperatnre for the entire state is 50°. The climate is generally favorable to health exeept in the low and swampy bottom lands, where hilious and intermittent fevers and diseases of the bowels prevail. At Sandwich, DeKalb county, the average rainfall for sixteen years was 50.17 inches. The rainfall seems to be greatest in this part of the state. At Evanston, near Chicago, 644 feet above sea level, the raiufall is the least, averaging about 24.78 inches.

History. - The French from Canada, following the explorations of Marquette and La Salle, made the first white settlements in the state. La Salle, after crossing the great lakes in 1679 , descended the river, which he called the Illimois, and bnilt a fort at the lower end of lake Peoria, formed by the expansion of the river. After exploring the Mississipni for some distance down its conrse, he went back to Canada. In 1682 he returned with a colony and founded Fahokia, Kaskaskia and some other towns. When in 1762 Canada and the Americin territory east of the Mississippi passed under British rule, the Ihinois sethements were not disturbed. This territory was eeded to the United States by the treaty of 1783 , and in 1787 the whole nutional possession north of the Ohio was organized under the uame of the Northwest territory. In 1800, Ohio was organized as a separate tervitory; in 1803 Miehigan followed suit, and in 1809 the territory of Indiana was organized. Then what was left of the original Northwest territory was soon organizen under the name of llinois. In addition to the state itself at present bounded, it included Wisconsin and a purt of Minnesota. The entire white population was then harlly more than 12,000. The grow lho of the territory was himered ly the Indian warfare; but after the wor of 1812 , the Indian hostilities censed, and immigrants hegan to pour in from the castern stales. In 1818, llinois, with it, present boundaries, was almitted as astate to the fechral union. In 1820 , the population was 55,162 . In 1650, it had increased to 851,470 . In 18:11, alter the Black IIawk war, all of the lndian trites were removed from the state.

The Mormons came to Illinois in 18.40 aml estab. lisher themselves at Nanvo, which they purposed to make their "Jerusalem." IBut their teachings and lathits of living som became very bboxions to their noimhors. The founders of the set, Joseph smith and his brother Hyram, were put under arrest at Carthuge, for destroying a press that liad been set up ly a party

of Mormons to oppose polygamy. They would not submit to the civil law, and their followers, to the number of 20,000 . organized to protect them. At last they surrendered to the militia, but the police bad become so angered that they broke into the jail, and before the two brothers could be Iried they were killed by the mob. The Mormons soon after this left Milinois and went to Utah. In 1856, the Illinois Central railroad was completed, with the aid of Congress, which granted large tracts of the public lands 10 assist the compsny in the construction of the road. This railrosd was the means of drawing thousands of people to that part of the state through which it rao, and many towns and villages soon sprang up along its path. In a few years every acre of government land had been sold.

The territorial capital was Kaskaskia. From 1818 to 183 h the atate capital wss Vandaljs. In the Ister year it was removed to Springfield, the present cspital.

Agricnitural Producfs.- Wbest, lodisn corn snd bny are the principal crops of lilinois. The raigiog of live stock also forins an Primertant ibdastry.
Follswing is a table showiog the principia cereal productions of the siste, compiled trom the t. S. eensai for 1880 .
prodections.
BUEBELA.
Indian corn . $225, ~ 742,181$
Whest. 1.110 .502
Oats... 13.1 $1 \times 9,200$

Barley $1,220,003$
Buckwbeai ...
In the same year, 5,612 screa of land yielded $3,935.425$ punnds of cobacco. The siggregate of some of the teading furm products for I880 is as follows:

Hay	3,280.319 tons
Hope	7.788 pound
Polatoea.	
Milk.	4-4:0.714 wallous
llatter.b	.53,157,943 pounds
Cheese	1, diz, CG9 pounde

For 1888, the lesding commercisl crops in the stute wereas gitest Delow:

cropy.	ACSEA.	HESOELS.	-10.0.
Indisn corn	7.789 .000	278.0tid.000	\$80.6i57.000
Whest.	2,419,000	33,5iャi.000	931, 078,000

the eslue of orchard products for the year is80 nas \$3.i02.583. in the esme year $10.3 \pi^{5}, 70 \%$ burbele of lrish, unil $219,46 \pi$ hashels of oweel polatoes were raised.
 of the fsrms whis $32.402,343$ ncres; of there $26,115,151$ were inproved land. The value of the farme, iucluding lat d. fruces amd bund. inga, was $81,020.54,5 \times 0$. The value of turnimg inplemertits and

 The cost of fertilizars purchatiod the rame y car was \$17fǐ?. The sstimated value of alf farm productions (sold, consunied or on band) in 1879. was $8203,9 \mathrm{k} 0.137$.

Hanufacluring Industry, - Great progress in msnufacturiog has been made thy the state duriug the last twenty gears, erpe. clally Io the citiessod pre-enimently in Chicako.
Tue following lable ahows the capital invented. the fumber of bands employed. the amount of wapes pain, the taine of materiml ased, and the silue of products for all the catabliethaments of manofactoriog indoglry (gas exceptud), ju llin ais, for the gears

Following is a table ahowing the naraber of eatabliabmenta, the capital inveated, the valne of materialy, and the value of prorlacta of ten of the mechanical aud manafacturing findoutrica of the slate for the year live, arranged according to the number of eateblisbmente.

		坒		
Flonring and grial mill prodacts.......	1,024	113,579,680	*41,486,756	847,471,558
Saddlery and buraees.	718		1.645,270	3,095,322
lamber sawed.. .	640	1,245,483	3,144, 005	5,062,037
Brick and Lile........	616	2,397,653	950	$3,065,302$
and abeet-iron ware.	561	1,491,278	2,071,345	3,844,655
Tobaccos, cigars sud cugsrettes...	532	1,050,871	1,702,458	3,764,990
Cooperage	372	865,720	1,737,530	3,233,305
Furviture......	355	3,554,130	3,607,313	7,6+4,639
Clothing-men'6........	350	7.155,533	12,809,297	19,356,849
sbop.................	299	7,568, 359	7, 107,5533	13,515,791

In Its steel snd iron industries, the state ranks with ang in the conntry. The make of pig iron in tons of 2,000 pounde was se folfows, for the ycare 1879-1888:

	TONA.		TONS.
187.	78.148	1883.	237,657
1880	150,556	1884.	327,548
1881	251,781	1885.	327,977
1882	360,407	1856.	501.795

In the nomber of tons of pig aroo made in 183 , the atate ranka third in the luion.
The moat extensive ordasace manotactory io the conntry is situted no Rock lalsod, io the Rississippt river, where the United states government bas eatablished an arkenal for the porpose. The buildinge and workshops cover nearly the entire istand.

Roíroads.- lllinois baba larger damber of rallroade, with a grester extent of trark, than suly other state is the Uatud The fret road balt was the Ilinoia Ceutral in 18:0 For the constraction of a road frounchirg to (inle us and Cbicsgo. congress grsated to the state of llimoís alternute ections of lsud slong the rotite. This grant was Traneferred by the stete to the Illidois Centrs! leailrosd Company. The tollowing tubl: was compiled from Poor's Manual of the rat.
roads of the United Statea Ior 1887:

Length of line
operated
Capital stock
Bonded debt.
CuItonded debi.
cort of railroad snd equipasent.
Grose carainge from pessengers
freight.
all zoarces.
Net earninga.
Interest paid oo bonde. \qquad
\qquad
 15,428 $.15,628$. 330,737, 889 18,697,657 638,501.557 22,741,84 67,8i1. 54 97,685,482 40,572,211 $185 \uparrow 2,2 \pi 1$ 18482,540
The raitway interests of the state are so vast and so complicated that they have heen placed ander the superwision of a rsilwsy commissionspponted by the atste, with power to enforce pensltien for violations of the law. This control of the rillroads was organized by the constitutional convedion of 1870, and supplementary lawa harexince heen pas-a by the legiglatore.

Admsnafrafion - The first constitution was adopted in 1818, Wh." the slate was sdmatted to the lifoo. This wss eaperseded hy another in 1848, sud m lefo the third and present constitution wits adopted. The eenate consifts of th membera elected by as many dismict- cuery fonr yeura, the honse of reverembatives of 183 metsbers. threctected in cuch sedatorial dintrict evers two ycary. The leginlative scosions are biennal. The executive, consiating of a goveruar and other oniccra except treasurer, ure elected for four years and cannot terve for two conkecutive terms. The judiciary is compused of a supreme conrl of seven judges, diserict appellate courte of limited juriadiction, circuit courta, manty courts. justices of the peace and police magistrates. The judges of the supreste court, including the chiri justice, are eflected by the people in the eeven judicial dianticts for terms of nine yeara. The chief juatiec iachosen by his arsociates. The cireut judges are - lected for terms of six yesre, the county sud probate judece for terms of tour years. The countices and townships bave therr own iocal gosernmenth. Under the now spportionment, the state has iocal goteromenth.
19 mernbers of the bonse of representatives in congress.
Debla, Fizinuce, Taxhlion. ete,-llluois bas no slate debl. In

Followng is the estimated true valistion of firoperty, hoth read and personal, for the yosers as given

The taxation was ay follows
sinte..
₹ $3,195,012$
Collnty
$10,8.94+10$
Total.
19, $2 \times 3,413$

In 1844, the amount raised by taxstion for the state was C3,000.000. The amonnt of taxsble property 88 assegsed was, real \$578.684,906; personal. 2221.188,095: total, 7797,773002 . The state. tax on 100 was 53 cents. It now receivea sbout $\$ 500,000$ annually from the lllinois Railroad company.

Pauperism and Crime. - The state pentfentiary is at Jotiet. For mady yeare it was maoaged at a beavy losa. bat s nce 1872 it bys more than pald expenses. In 1880 there were 3,236 prisoners, of whom 1,833 were perstentisries. The atate prinon contains an ezcellest library. Instruction in elementary brapches is gived. end rellojons exerclses are held at stated times. In 1880 there Fere 4,275 paupers in ibe state, and 288 in the wortbonses-
Charties.-The atate maintains four bospitals for the insene. The ode at Jacksonsille, foonded in 18:7, bas an aversge of 40 patients, and ite current expenses amount to about 8110,000 per snonm. The Sonthern Hospita) for the Insune is situated st Anns. It will accommodate 250 patients. The sonual expenses are about 882,500. The Nortbern Bospitsl sid Asylum for the Inaawe is at Eigin. It was founded in 1888 , and has accommodstions for 200 pattenta. The annal expenditure is about $\$ 50,000$. A fourth boa. pital for tbe insume is located at Kankakee, somewbat analler than the other three, and there is a!so an insane asylam connected with the Cook county almebouse, accommodatiag 260 putiente. The state slso maintains, ander the supervision of a board of charitles, an institution for educating tbe blind. and one for eda. cating the deaf and domb, bolh at Jackeonville, an asylum for imbeclle children, a bome for soldiers' orphuns, an eye and ear lafirmary add a reformstory sebool for boys. A hoot $\$ 1,000,000$ Is andeally expended In the nia ntenance of these iostitations. Two insane asylums are maintaided at private expense. In 1880 there were 5,134 lorade persons in the state.
Education.-Ar excelledt system of free scbool edocation is provided by the atste, und the legislature and connlien cinies or towns are forever prohibited by the state constitotion from maklog any appropriation, or paying from say pablic fund whatever, anyibing Inaid of any college, semionry, literary or ecientific institation Which is controlled by any cburch or sectarian denomination whatever. Two normal oniversities bave been establisbed by the state, ode at Carbondsle, Jackeon county, the other ut Normal. McLean county. The state maintains an industrisl university at Champaign. Thereare also many private ecbonls, uaiversitics, and colleges, both medical and theologics), acnttered tbrough the atate The achool age in lllinois is from 6 to 21 yerra. In 1880 the domber of children between 5 and 17 yeare of age in the atate was 043,659 ; the narober between 9 and in jears, in $1885-1886$, wes 644.970.

In 1880 the namber of patilic schools was 15.203 ; of these 113 were reported as bigh schools. The number of sctiool buildings pas 11.880. The total balat of achool property was $\$ 15,876.572$. The total receipte wers $89.850, C 11$; the tatal eapenditures 87536662 The whnle number of teacbers was 15,912 , of whom 6,148 were male and 9,714 femaic. The avernge amount per month paid each tescher was 238 . 8 . The number of acholors enrolled was $\mathbf{7 0 4 , 0 4 1 \text { . There }}$ was an average daily stlendance of 491,6 an.
In $1885-86$ there were 743,345 pupils cnrolled, with a average daily attendance of cas 79s. The overage deration of scbool in daya was 133. For the hame year the balaries of teacbers were 6, 132,866; the total expeuses, $810,136,05 \%$. The total anmeal cot per acholar, includiag tulioon, incidental expeases and 6 per cent inter eat apon the eatamsted valuation of schael property is, apon the oamber earolled, abont 彩: on the average daily attendapce, abont a18. The per cent of illteracy for the state, on tbe basis of readiog. ls 4 3; on the basis of writing, 6.4.
Population and Prancipal Calies.-The stote 18 now divided into 102 coenties. The popalatlon of the etat in i3K0 was as follows: Maler, 1,5 So is 23 : femalen, 1,491,343; total, 3,077,871; dative horm
 Tbe prer cent of inciemse, 1870 io 1350, was 21.1 Following is a table giving dates and popalation for every ten years sirce 1800

1800.	2,458
1810.	12,282
184.	55.163
183.	157,445
1840.	476, 183
1450	851,470
18 \%).	1,711.\%1
1870.	2,599,891
1490.	3,077,871
1830	+ 2 28

By the ceasos of 1890 the state was fourth in raok. in polnt of popalation. The deasity of the popalation wat 55.6 persona to a cquare mille.
The largeat eity ia Chlcagro, the aecond city in the United Statex,

 notmlenstanding the terribly deatructive fres of 1 bit and intit.
(F. [1. $\left.\mathrm{F}_{1}\right)$

ILLUMINATI, or "Enlightened," is a title which at different times has leen given to, or assumed by, various eects or orders of mystics, on the ground of the superior knoxledge of God and of divine things which they claimed. Amner these may to mentioned that of tho Spatish "Alombiados" or "Alumbrades," which arose about the year 1520, and which before its final disapyearance about a codtury later afforded wumerons victims to the Inquisition, esprecially at Cordovi Ignaturs Loyola, while a student at Sahzuanca (1527), way riod by an ecolesiastical com-
mission for alleged sympathy with its riews, but wion aequitted with an admonition. Under the name is Illiminés a similar sect alpeared in Picarly in 1603, and afterwards entered into close relations with tho Gnérinets or followers of Pierre Gnérin; but by its antinomianism it soon provoked repressive measures, to which it fanally snccumbed io 1635. The history of another sect of Illnonioss, which appeared in the south of France about 1722 , is rery olaseure, but it is said to have subsisted until 1794. The tatle of Illuminati has often been popularly bestowed also on Rosicrucians, Martinists, and Sweden. borgians; bnt one of the most recest as well as most important applications of this elastic word has been to denote a secret society, or semi-political semi-religious order, which made some stir in Cermany, especially in the southern and Catholic purtions of it, from 1776 to 1784. It was foundel on Mlay 1, 1770, by Aram Weishaupt, professor of canon law at Ingolstadt, and an ex-Jesuit, and set before it as its general purpose the disconragement of tyranny, superstition, and ignorance, and the furtherance of the canse of reason, freedom, and virtue. The namo originally assumed for the order was the Suciety of the Perfectibilists (Gesellschaft der Perfectibilisten). Politically its tendencies were republican, and in religion it was frec-thinking, baving a distinct aversion to Christian ritual and Christian dogmas alike. The entire subserviency of its nicmbers (who on admission were pledged to blind oberlience to the orders of their superiors) was secured by a strict system of secret confessions and monthly :epurts, checked by mntual espionage. Beginning with a narrow circle of diseiples carefully chosen from among his own students, Weishatupt gradually extended his propaganda from Iogolstadt to Eichstadt, Freising, Munich, and elsewhere, special attention being given to the enlistment of young men of wealth, rank, and social importance. As tho order increased in numbers its organization naturally became more complicated, and was ultimately considerably influenced by the intimate relations which were established with masonic lodges it Munich and Freising in 1780. About the same time an important impulse was given to its prosperity in middle and northern Germany by the ambition and energy of a newly acquired member, Baron Adolf von liniges, who had his headquarters at Frankfort-on-the-Main. It was to him that tho socicty was indeled for the extremely elaborato constitution (never, hoterer, actually realized) according to which the cutire meobership was divided into three great elasses, in the first of which were to be included the "novices," the "minervals," and the "lesser illuminati," while the second consisted of "frecmasons" ("ordioary," "Scotch," and "Scotch knights"), and the third or "mystery class" was subdivided into the two grades of Priests and regents and of magus and king. Each member of the order had given him a special name, generally classical, hy which alone he was referred to in official communications; all correspondeace was conductel in cipher ; to increaso the mystification, topns and provioces were invested with new and altogether arbitrary designations. At its period of greatest development tho order included in its operations a very wide area, extending from Italy to Denmark, and from Warsan to l'aris; at no time, however, do its numbers appear to have excecded two thousand. Its aims and method, which, ns jlainly appears in portions of Gocthe's Wilhelm Meister, were somewhat in eccordance with the taste of the period, met with more or less sympathy and ajproval from Gocthe himself and from llerder, ${ }^{1}$ from the grand dukes Ernest II. of Gotha nud Karl August of Weimar, as well as from other persons of intluenco and reputo (Fode, Nicolai). A rupturo which

[^134]took place betreen Weishanpt and Knigge in 1784 greatly accelerated the public expression of a counter feeling of suspicion and dislike which had been slowly gathering strength, and in 1785 the Bavarian Goverament issued an ediet which proved fatal to the order. Many of its members were imprisoned or compelled to leare their homes; Weishanpt himself was deprived of his chair and banished the kingdem.
See Grosse Absichen des Ordents der Illuminaten (with Appen. dices, Munich, 1786) ; and Weishaupt's Vollstanatige Geschiches der Verfolgung der Illuminaten (1787), and Kurze Kichefortigung neiner Absichten (1787).

ILLUMINATION is a term which has long been used to signify the embellishment of written or printed text or design with colours, and especially with gold, more rarely also with silver. The lustre of the former metal may probably have led to the adoption of the word in this sense. The Latin verb illuminare, with the meaning of "to decorate," occurs as early as the Sth century; and in the first portion of tho Roman de la Rose, composed before 1260, enluminer is found with a similar meaning, while Dante (Purgat., si. 79) allades to this kiad of painting and its Frencla designation as "quell' arte, cho allumioar èchiamata in Parisi."
Io Early English we find the forms enlomyne, luminen, limnen, whence limn. Of synonymons use with these terms we fod in the Middle Ages the words miniare nnd miniatura, from minium, a red pigment, ia carly use for decorating MSS. Miniature employed in connexion with the art of illumination now, however, generally sigaifics a picture or portrait as distingtished from mere ornament or ornato lette

The research into the past which has characterized tio preseat century has extended to the art of illuminakion, and, following the lead of D'Agincourt, Mabillon, and others, has by the examination of medieval decorated manaseripts thrown. a vast amount of light upon the arts of the past. In spite of iconoclasm in the East, the burning of Arabic MSS. ia Spain, and the destruction and dissipation of libraries which unbappily accompanied the Reformation, a considerable number of beautiful and elaborate volumes have come down to us where larger and more exposed works of art have perished. They therefore supply many a lacuna in art history. Conformably to the unity which pervaded all art work in the Middle Ages, a close correspondeace in style has been recognized between the ornamentation of MSS. of different periods and contemporaneous architecture and other arts. The architect, the decorater, the glass-stainer, and other artists have consequently learned, and with great profit, to search their pages for ornamental motives, details, and colouring, in thorough harmony with ancient styles, which no other source supplies so copiously. Invaluable materials too for the history of costume are found in the miniatures with which they abound.

The earliest writing of which monuments exist, the Egyptian, was often enhaneed by the use of colour. In the ritual papyri, directions, \&c., aro written in red to distinguish them from the main text, just as was subsequently done in medixval liturgical MSS.-a practice from which the term rubric is derived. A few scattered passages in Latin classic authors (notably Ovid, Seneea, Varro, Martial, Pliny the Elder, J. Capitolinus) prove the occasional use of rubrication and of pictorial embellishment of MSS. among the Romans. The earliest decorated MSS., at least of European execution, which have reached us date from the 4 th and 5 th centuries of our era, and aro of extreme marity. Of these one of the most celebrated is the Firgil written in elegant capitals preserved in tho Vatican, in which tho adornment is limited to rectangular pictures (miniatures) painted in the antique manner seen in the

Pompeian fresces, the body colour laid on with a free brush and without black outliaes. It may be taken as the type of a class of MSS. of which very few specimens are extant. A different type of early calligraphy, which was much esteemed, is found in the Codex Argenteus, now at Upsala, written about 360, coataiaing Ulfila's MœsoGothic version of part of the Scriptures. It is written ia gold and silver letters on vellum stained a red purple. The art of thus staining vellum, perdaps with tho murex, was afterwards lost, and in the Sth and 9th ceataries wes ionitated by painting the vellum.

After the $2 d$ century art rapidly declined ia the West, owing to the corruption and anarchy of the empire. It fonad a home, hasever, at Constantinople, whero intercourse with l'ersia resulted in a stylo which blends Oriental magnificence with Western vigour and varicty, and is destined, as wo are about to sce, to excreise a dominant influence upo the art of Europe for many centuries. This style, knowa as the Byzantine, is distinguished by very characteristic details, and by its lavish use of gold: especially in backgrounds. Meanwhile Cleristianity hae been planted in remote Ireland, which proved such favourable soil that the isle was already at the beginning of the Gth century renowned for its learning and sanctity, and was the seat of numerous monasteries and seminaries, where a native style of art was developed, wholly distinet from anything else which the world has seen. Its principal features are spirals, extremely ingenious plaits, and interlacements of attenuated lacertino animals and birds of conventiona! form. The human figure is sometimes. introduced, but becomes objectionable, through the ignorance of drawing and of anatomy usually characteristic of semi-civilized attempts to portray the higher organisms. The work is further distmguished by a degree of minuteness, intricacy, and precision baffling to the modern draughtsman. It is seea in its highest perfection in the Book of Kells, pre served in the library of Trinity College, Dublin, and in the Lindisfarne Gospels in the British Mruseum. This style, known as the Celtic or Anglo-Celtic, was traasplanted by Irish missionaries to Lindisfarne, Bobbio, St Gall, Wïrzburg, Lnzeuil, and other places, where volumes displaying this peculiar ornamentation aro still treasured. The influence of Anglo-Celtic art is vers apparent in the snbsequent "Carfovingian stylo" which arose in France and Germany under tho fostering care of Charlemagne, and of Alcuin, whom he had invited to France to direct the progress of learning and the arts The gorpels found upon the kaces of the great emperor when his tomb at Aix-la-Chapelle was opened, the gospels of St Servin de Toulouse, those of St Medard de Soissons, the Bible of San Calisto monastery at Rome, and the IIarleian Codex aureus of the British Museum aro justly renowned examples of this majestic and magnificent style, in which the pages glow with gold and purple, and the Roman acanthus, Celtic interlacements, and Byzantine details combine in harmonious variety. A test written wholly or partially in gold ink is another characteristic of the epoch. About this period too are found those gigantic initials which from containing figures relating to tho text bave been called in liranco Mistoriées. A new style had nlso grisen in England, in which the debased Roman acanthus was largely developed. This conventional foliago is here seen skilfully combined with gold bars, which surround the page, and forma border at the commencement of books, \&e. This style has been callod the Opus Anglicum. It often displays a masterly free. dom and spirit, and a peculiar "tuttering outline," which also characterizes tho spirited pen-drawings frequently found in MSS. of the period. Tho finest epecimens of this stylo, among which are the boaedictional of St Ethelwold, belonging to the duke of Devonshire, and a couple of vol-
umes in the public library, Rouen, were probably executed at Hyde Abbey, Winchester.

The appreheosions of the year 1000 as the end of the world teuded greatly to paralyse art. As these fears died away, bowerer, the Romanesque style of architecture was being developed, especially in the Rhoe-lands. This was favoured by numerous Greek artists who, deprived of their livelihood by Eastern iconoclasm, had migrated westwards, and deeply impressed the Byzantine character upon the architecture of central and western Europe. Simultanevasly there arose a bold sweeping style of ornament, charastcrized by fine rounded curves and Byzantine details, but also by a tendency to naturalism, and, in books, by arge initials. The Byzantine gold backgrounds were still a glowing feature, which indeed continued through the whole subsequent progress of illumination. From the Ilth ciotury gold leaf was applied to the vellum upon a substratam of fine plaster, and could be su highly burnished as to exhibit the rich lustre of a polished lamina of the solid metal. As skill in drawing increased, nature was moro copied, and towards the 14 th century natural foliage, conventionally treated, constitutes the maiu portion of the ornament. The oak, the vine, and especially the ivy, are frequent, springing in free spirited curves from decorated initials, or extending into a border round the whole or part of the page. The initials decrease in size whilst they gain in excellence of execution, and illumination, considered as decorative design, is generally considered to bave reached its highest perfection about this period. The pictures of sacred subjects gradually lose Byzantine rigidity and assume dramatic expression, pose, and grouping. And towards the 15 th eentury the blue or gold background begins to be abandoned for natural scenery and accessories, 'Towards the commencement of the 15 th century illumination was liberally fostered by John, duke of Eerri, brother of Charles V. His magnificence in this branch of art awoke the emulation of Philip the Bold, duke of Burgundy, and of the duke of Bedford, the regent of France, in the same direction. For the last-named was painted the celebrated Rediord Hours, now in the British Museum, part of the workmanship of which has been ascribed to Jan, Ilubert, and Margaretta van Eyck. As perfect mastcry of drawing and facility of realistic execution were gained, illumination as adceorative art beeame debased in design. Borders of gold or richly coloured grounds, orer which are scattered exquisively painted flowers, fruit, and insects, surround pages of text or miniatures wrought with supreme manual dexterity, but not unferquently of meretricions composition. In justaposition with this rich and cophous ormamentation (the primary end of the book), the text, already less black and massive than in preceding centurice, too often dwiodles iato insignificance. The Moners of Aane of Brittany, preserved at the Lourre, is one of the most celcbrated specimens of Ifth century illumination of this style.

The claracter of Italian illumination differs eonsiderably from that which marked the art in central or morthern Eurepe. It had arisen by slow degrecs from the devastadion whicl Italy had suffered in the carly centurics of the Christian era. The scriptoria of liavema, Siena, Elorence, Bologna, I'erugia, Ferrara, in the 13th and 14th centuries, produced illuminated volumes worthy of their growing schools of lainting, and were especially culcbrated fir the elaboration of large choral books.
'Tho lienaissance, with its revival and enrichment of clissical forms, was fully reflected in the illumizator's art, Which was largely emplaged in sualler volumes for secular sulfortu, and was fatroniaed by tho Italian princely families, frai finally reachat its entmination in the hautis of such "rti - as Girolano dei Jibri, whose dmwing is very
accurate, and attains a microsenple delicaey of stippling, and his pupil Giulio Clovio, who in his composition makes large use of the human figure, and with an imitation of Hichelangelo's manner combiues unrivalled minuteness of execution. Long after the invention of printing the popes and doges retained official illuminators in their service; and some of the most elaburate and costly volumes were executed subsequently to the introduction of the press. The typographical multiplication of books, however, proved fatal to the art. The early productions of the press, indeed, had blank spaces left for initials and miniatures, which were painted in by hand, often very roughly. These were soon replaced by printed designs inteaded to be gilt and coloured, which reflected the character of contemporaneous art, as far as the technical difficulties of the yet imperfect ${ }^{\text {ress }}$ allowed. The custom oí adorning sumptuous volumes with engraved initials and other ornament has continued to the present time, with an increasing tendency to naturalism.
The visitor to the public libraries and museums of Moscow and St Petersburg will have there admired the rich display of Slavonic illuminated MSS. of peculiar style, intricate design, carcful execution, and frequently fine colour. The leading features of Fussian art were derived from Byzantium, but, as Russian archrologists maintain, were blended with a native element, and a true national style arose in the 12 th and continued to the 16 th century, when the influence of the Renaissance began to be felt.

The fecund art of Constantinople was also the parent of another style-the Arabian or Mahometan-which, however, contains a previously existing Oriental element. The style began to develop in the 7 th century. It is geometrical or constructive in charicter, the use of symbolism or representations of animals or plants being farbidden in the seet of Omar. Inscriptions in cufic charabters are often happily used as a decorative feature; rich colouring of red blue and gold prevails. The Turkish and Moresque styles are modifications of the Arabian. Illumination was carried in this style to the highest degree of splendour. Casiri's Bibliotheca Arabico-Mispana Escurialensis convess some idea of tho former magnificence of the Hoorish librarics in Spain.
In India illumination, though of great antiquity, does not present those trausitions of style which mark the development of western art. Like Indian art generally, its special characteristics are profusion, richness, harmony, repose, and perbaps monotony, with very extensive employment of flowers. Persian art was derived from India It refleets the l'ersian love of flowers and symbolism, and the treatmont is more free and natural than in India. It scems to have reached its highest perfection about the I5th and 16 th centuries of cur cra, but is still continued. The execution of a magnificent MS. of the Thousand and One Ni,hts was undertaken muder tho anspices of the present shali. The absence of any attempt to shade or give relief to the design is, it shoul. 'hero bo wentioned, a characteristic of all Oricutal design.

During tho carlier part of the Middle Ages the art of illumination was in E'meno mostly prartised in the scriptorium or apmatment devoted to the elaboration of MSS. which was attached to each monastery. In later times the art was practiscd by lay artists. Illuminators as wall as 1ntrons of illumination were occasionally foud among the highest ranks; Suint Dunstan and King liene may bs instancerl. Aud some distingnished painters wero also illminators. . All W'estern MSS. of fine quality were executed upon vellum. Materials wero mostly prepared with great caro ly the artists themselves, of under their direction, and as a rule are foued to liave reli stood tho teg of time.

The price given in recent years for MS. volumes valuable for their beauty or antiquity often reaches inany hundreds of pounds sterling. A folio Vulgate of the 9th century was purchased by the British Museum in 1836 for $£ 750$. The Bedford Hours, aequired with other MSS. for the same establisbment, has been valued at over $£ 2000$. At the Didot sale in Paris a MS. executed in the highest style of French art fetched abore $£ 3000$.
Bibliogrxphy.-Among a large number of works on the subject the following may here be mentioned:--C. G. Schwarzius, De ornamentis Librorum, Leipsic, 1756; N. Humplreys, Illumirtated Books of the Niddle Ages; Silvestre aud Champollion, Unirersal Paleography; Westwood, Palcographin Sacra Pictoria; Madden, Illuminated Ornaments; Tymuns, The Art of Illuminaling; Bastard, Feinnures des Mannscrits; Westwood, Fucsimiles of Anglo-Saxon and Irish MSS. Information npon Eastern styles, with colourell pistes, will be found in Racinet, Polychromatic Oraament, aud 0 . fones, Framanar of Orument, and upon Russian art in Y . Boutowsk''s Histoire de l' ${ }^{\prime}$ Oruement Rhesse, d^{\prime} 'apres tes Manuscrits, Paris, 1870. For the technical part of the subject, see Theophilus, D_{c} diversis artibus, sevcral editions, with translation and notcs; Originurl Treatises from the $12 t h$ to 18 th Ccnturies on the Arts of dininature, diz, editet, with translation aud notes, by Mrs Merrifield ; Bradley, afanual of Illemination ; Shaw, Art of Illumination.
H. в. w.)

ILLYRIA is the nime applied to the country that lies to the east of the Adriatic Sea. The usual Greek name is Illyris, though the older writers generally use the expression oi 'ILAćpoo. The conmon name in Latin is Illyricum. The term Illyria is occasionally used in both languages, and has become the recognized name in English. The boundaries of the country thus known varied very much at different periods, and can be described only along with its history. For'n short time, in the, 4th and 3d centuries B.c., there was some slight government under monarchs whose power was acknowledged by the whole country; but in general the land was either a province of some conquering race or the abode of isolated tribes with little or no common feelings or aims.

The origiu and character of its oldest inhabitants are involved in the obscurity that still alirouds the ethnology aud early bistory of all south-eastern Europe. The Greeks acknowledged some affinity of race between themselves and the Illyrians in the legend that Cadmus retired from Thebes with his wife Harmonia and settled in Illyris, where he became the father of Illyrius, the oponymous ancestor of the whole race. In harmony with this myth, the general consensus of modern investigation tends to the view that at an early period the whole of Europe sauth of the Danube, together with the centre and west of Asia Minor, were peopled by kindred races, some of whose names are preserved to us as Leleges, Thracians, Pelasgi, Illyrians, sec. If we divide the IudoEuropean tribes that peopled Europe into two great fumilies, the northern and the southern, we shall find that the Thraco-Illyrian tribes must be distinguished from the Slavonic tribes who dwelt immediately north of them, and who are closely akin to the Lithuanian and other tribes of the northern family. On the other hand, it would not be caay to draw any line of demarcation at this early time between the Illyriaus and their neighbours on the west, south, and east. Separation of vationalities was produced afterwards by growing civilization, which developed distinct national characters und well-defined countries.

At this early period then we mas say that the Danube, as the boundary between the northern and the southern family, was the limit of the Illyrian tribes towards the north. In other directions they shaded off into kindred tribes of similar manners and language. Various causes led to a very unequal development of civilization among these tribes. Intercourse with atranger races like the Phomicians, and amalgamation with Eindred immigrant races such as the Ionians and Dorians, raised some of these
tribes rapidly to the bighest stage of civilizatien. But these nesp races were attracted by the more favourable conditions of the Greek peninsula, and few of them found their way to the northern countries. Somo traces of early Ionian settlers in Illyria are found (see Cartius, Die Ionier vor der ionischen Wianderung, p. 46); but they do not seem to have permanently affected the character of the natives. As Greece becan o civilized, it sent forth its own colonists to occupy most of the favourable sites along the Mediterrauean coasts. But, whereas Thrace with its rich mines had a line of Hellenic colonies along its southern shore, very few were planted in Illyria. Aecord. ing to Strabo, the shore was full of fine harbours, and the coast land was very fertile; but he adds that the people were barbarous and warlike. On this account it was that Greek colonization neser spread on the Illyrint coast. Dyrrachium or Epidamnus was almost the only Greek colony, and its history for centuries showed onc continuous conflict with the barbarous natives, which pre vented its growth. Macedonia again found a family of Greek refugees who established themselves as petty chiefs, and gradually spread their power, with civilization and settled rule, over the whole country. Nothing of the kinc happened to Illyria ; the chiefs who rose at times to pores were always apparently as barbarous as their followers. In these unpropitious circumstances, the Illyrian tribes remained in their primitive barbarous condition later than almost any of their neighbours, and when many of the surrounding states had become civilized, Illyria was divided from then by the line separating barbarism from civiliza. tiou. Naturally their characteristics resembled closely those of the ruder Thracian tribes, and both are describes by the Greek historians as tattooing their bodies and offer ing human vietims to their gods. Their wonen seem to have had a high position socially, and to bave even exer cised political power. Queens are mentioned more that once as their rulers. This reminds us of the German tribes, whose women alse were much respected; and wr know that among the Greeks women were much freer and more respected in the older time before Orienta influence had affected native custons. It is said that chastity was not held in much account by the women 0^{\prime} Illyria; but it must be remembered that people whost women are kept more secluded are very a ${ }^{\prime}$ to to ascribe such a character to the freer life of other races.

The Illyrians are said by llerodotus (ix. 43) to bave attacked the temple of Delphi. Brasidas with his small arms of Spartans was assaulted by them on his adveuturous march (424 b.c.) across Thessaly and Macedonia to attack the Athenian colonies in Thrace. The earlier history of the Macedonian kings is one constaut struggle against the Illyrian tribes. The migrations of the Gauls at the beginning of the 4 th century disturbed the country betreen the Danube and the Adriatic. The Scordisei and other Galic tribes settled there, and forced the llyyians towards the south. The necessities of defence seem to lave uniter the Illyrians under a ehief Bardylis (about 383 b.c.) ana his son Clitus. Bardylis nearly succended in destroying the rising kingdom of Macedouia; King Amyntas was defeated, and a few years later Perdiccas was defeated and slain. But the great Philip crushed then completcly, and anuexed part of their country. During the next century we hear of them as pirates. Issuing from the secluded harbours of the coast, they ravagct the shore: of Italy and Greece, and preyed on the commeree of the Adriatic. The Greeks applied to Rome for help. Hel lenism had proved too weak to civilize the northern races; it was left to the stronger organization of Rome to absorb them. Teuta, the Illyrian queen, at first scorned the Koman demands for redress, and even nurlered the
ambassadors; but the tmo Illyrian wars (229 and 219 B.c.) ended in the submission of the Illyrians, a considerable part of their frontier being annezed by the conquerors. In 168 p.c. Gentius, the Illyrian king, proveked the third Illyrian war, the result of which was the annezation of the whole country by the Romans. Frequent rebellions occurred, but at last the datives accepted the Roman cirilization. During the empire, the country was one of the best rccruiting grounds for the Roman legions; and in troubled times many Illyrian soldiers fought their way up from the ranks to the imperial purple. Claudius, Aurelian, Probus, Diocletian, and Maximian were all sons of Illyrian peasaats.
In the time of the republic Illyricum comprised the country betwecn the Liburnians, a kindred race, on the north and Epirus on the south. Under the empire the importance of the country made its dame spread over all the surrounding districts. In the 2 d century after Christ, the Illyricus Limes included Noricum, Pannenia, Mresia, Dacia, and Thrace Constantine added Greece, Epirus, and Macedonia, taking from it Thrace and part of Mosia, and made it one of the four dirisions of the Roman empire governed by a "prefectus pretorio." When the empire was divided, Illyricum was halved. Illyris Barbara or Romana, including Noricum, Pannogia, dc., ras annesed to the Western empire ; while Illyris Greca, including Macedonia, Epirus, and Greece, formed part of the Eastern empire. The Via Egnatia, the great line of road which sonnected Fome with Constantinople and the East, led across Illyricum from Dyrrachium to Thessalonica.

In the wreck of the Roman empire Illyria suffered severely. Io the 4th century the Goths raraged it repeatedly, but these, the mest civilized of the barbarian invalers of Rome, with their warlike aristocracy, passed on, and were succeeded by wilder tribes. Slavs, as also Huns and other nomadic races from the East, in succession devastated the country. An agricultural population could no longer maintain itself, and all the clements of civilization disappeared. Justinian (527-565) tried in vain to defend the country by a series of forts; his armies werc defeated time after time, and at last he allowed the Huns to make settlements south of the Danube. Rome gave up the defence of civilization against the isroads of barbarism, and bribed the barbarians to be quiet. Still the Via Egnatia was defended, as the artery of commumication and the bighray of commerce between Constantinople and the wost. The open country, however, even south of the great road, was abandoned to the Slays and lluns. The older Iltyrians partly onited with these races, partly went farther south, encroaching on the Greek peeple, and the name of one of their tribes, Albani, is preserved in the modera name of their descendants, the Albanians.

Heraclius (610-641 A.D.) settled Slaronic peoples all along the coast of Illyria as far sauth as Dyrrachium. The states which were thus created were of great inportance in the Dark Ages The republic of Narenta vied for a time with that of Venice; and the commerce of Ragusa was so rich that it has given its name to all wealthy merchant vessels or "argesies." The name of Illyria hat by this time cisappearcd from bistory; and the country was now divided between these powerful merchant citics and tho states of Losnia, Croatia, Servia, Rascia, and Jolmatin. In literature the name was preserved, and the acene of Shakespearc's comedy T'velfth Nioght is Laitl in Illyria. Politically the name was revived in the beginning of this eentury, when the small kinglom of Illyria to the north of the Adriatic was constituted at the peace of Tiema, 1509. In 18.19 the territerial distribution of the Austrian emplire was remotellet, and Illyria again disappeared.
(w. м. 1....)

ILORI, or Ilorin (the Alourie of the Landers' expedition), an important town of the Yoruban territory of Western Africa, situated about 60 or 70 miles south of the Niger, and about 160 miles north-north-east of Lagos. The wall has a circuit of 12 mikes, bnt is badly kept in repair. Along the south-eastern side flows a small stream which joins the Asa, a tribntary of the Niger. The inhabitants are Yorubas, Fellatah (Pullo), Houssas, Gambarees, Bornuese, and Nufes or Fapas. Most of them speak Yoruban. An exteusive native trade is carried on at Ilorin, the Houssa caravans impertiog manufactured goods of rations serts, not only from Central Africa, but eycn frem the coasts of the Mediterranean. The trade from the Guidea coast on the other land is confined to brandy, guns, and powder. The variety of local industries is very considerable: Rohlfs mentions beatiful leather goods, carved wooden vessels, finely plaited mats, embroidered work, pottery of various binds, shoes of yellow and red leather, and, what was unique in his experience of Negro tribes, the manufacture of cheese. The population is estimated at from 60,000 to 70,000 , exclusive of the resident traders from fereign parts. There are a number of mosques in the town, and the Mahometans are the dominant power, but the lower classes maintain their pagan customs. About 1820 Ilnri deelared itself independent of Yoruba, and assisted in the lestruction of Oyo.

See I. F. Burton, Abcokuta and the Camcroons Mountains, Lond., 1863 ; G. Rohifs, Quer durch Afrika, Leipsic, 1874.

IMAGE WORSHIP. In the present article the word "image" will be employed to denote any artificial representation, whether pictorial or sculptural, of any person or thing, real or imaginary, which is used as a direct adjunct of religious services. This definition of the word shuts out from present consideration, though at some points by an almost imperceptible boundary, the worship of all merely natural symbols, whether animnte or inanimate, conventional or the reverse. Thus, for example, every form of animal worship is escluded by it, and also the eultus connected with memorial stones of which traces so unmistakable are found in the Old Testament and in almost every other ancient literature (the ditoo $\lambda_{\text {latapoí or }}$ dindıu tivol, Baítudot, lapidcs zincti, betyli, of classicai writers). So far as images (eixóves, imagines) arc mercly more or less perfect productions of pictorial or plastic art, they fall to be treated under Paintina, Sculpture, Mosaic, de.; so far as they have been regarded as aids to devotion and spiritual instruction, or made the objects of religious seneration, the history of their introduction and of tho various aspects under which they have been riewed forms a large and not unimportant chapter in the history of religion ing general and of the Christian chureh in particular. Only the cutliocs of that histery can be indicated bere.

Most religions of which the history has been traced give distinct indications of a primitive period in which "idols" were unknown. Thus in India" "the worship of idols is a sccendary fermation, a later degradation of the more Irimitive worship of ideal gods" (M. Müller). In the Vodic liymns it is the nppearances of nature themselves that are worshipped as syimbols of unseen deity; and the present image worship of the IIIedus is most probably Post-Buddhistic in its origin. The testimonics of the Greck historians (IIcrod., i. 131 ; Strabe, p. 732 ; Diog. Lacr., De lit. Phil., proom. 6) ns to the absence of religious images from the worship of the ancient Persians is confirmed ly all the more recent direct investigations into tho primitive life of that branch of the Aryan race. There is the sane concurrence of testimony as regards the ancieat Greeks; the powers of nature were in the first instance
wershipped through natural symbols,-such as serpents, trees, meteoric stones,-and in some cases temples occurred which contained no visiblo symbol at all. Even in the Homeric poems, the allusions to images of the go's are but few : where an image is mentioned (as in $1 l$. vi. 301), it is evident that it was of the rudest description, and but little indebted to luman art. The same renark applies to the cultus of ancient Rome. It was carried on without the use of images until the comparatively late period at which the statorentcred into relations with Etruria, Magne Grecia, and Sicily. ${ }^{1}$ The date of the oldest statue in Rome, that of Diana on the Aventine, can bo given with considerable precision as between 577 and 534 b.c. As regards the ancient Germans alse, we have the testimony of Tacitus that down to his time at least their gods were still invisible and had neither temples nor images.? And, whatever be our construction of the primitive history of the Semitic races there can be little doubt, so far as the Jews at least are concerned, of the correctness of their own impression that "idolatry," in the strict etymological sense of that word, was not the most primitive form of religion practiscd among them.

The decalogue contains a direct precept against the making of any "graven image" (pesel or pasil), for religious uses at least (Ex. xx. 4, 5 ; Deut. v. 8, 9; with which compare Deut. iv. 15-18). The "graven images" contemplated in the passage last cited are'images of men, quadrupeds, birds, reptiles, and fishes; and the manner in which the prohibition is made is fitted to suggest that all these " likenesses" had made their ajpearance and already become objects of religious vencration prior to its promulgation. Nothing certain, however, is known as to tho "strange gods" alluded to in Cen. xxxv. 4 as having been buried by Jacob under the oak at Shechem; nor can much be said with regard to the "teraphim" which are first mentiored as having been worshipped in one of the branches of the family of Terah (Gen. xxxi. 19), but aro often subsequently referred to ns having been used in the time of the judges (Judg. xvii. 5; cf. xviii. 30), and at various stages throughout the history both of the northern and of the southern kiugdom (Hos. iii. 4 ; Zech. x. 2; 2 Kings xxiii. 24). Sometimes they must have been but small; but from ather passages it may be inferred that they may have been, occasionally at least, of human form and size (1 Sam. xiz. 13, 16). Much obscurity attaches nlso to the calf worship of which an instance occurred in the wilderness (Ex. xxxii. 4), and which was a prominent feature in the religion of the northern kingdom from the days of Jeroboam to the end ; it is a disputed question Whether the cult was of Egyptian or of purely Scmitic origin. The difficulty in Lev. xvii. 7, and perhaps also in Deut. xxxiu. 17 , Ps. cvi. 37, is by some interpreters erplained by a reference to the Egyptian goat worship (Mendes) ; if so, these passages contain no allusion to image. worship. The various forms of the Baal cultus sio often refarred to in the Old Testament were no doubt Samitic ; there are no explicit references to aay images, hazever, in this cannaxion; and in point of fact (fee BALI) that deity was generally represented in his "highplaces," not by images, but by obelisks or pillars. That the plastic arts, even in a religious connexion, were not wholly discouraged among the Fews, appears from what we read, not only about the brazen serpent in the wilderness, but also about the existence in tabernacle and temple of such figures as cherubs (Ex. xxv. 18-20; xxvi. l; xxxvi.

[^135]35; 1 Kings vi. 23, 32,35) executed in varous materials: lions, oxen, lotus flowers, and pomegranates (cf. Ex. xxxi4, 5). The graphic descriptions of the process of idol. making, both "graven images" and "molten images" in Isa sl. and xliv. (with which may be compared Wisd. xv.; see also the reference in Isa. xxx. 22 to molten images overlaid with a preeious metal) show that the exercise of those arts was far from being contined, at the periods to which these passages relate, within the limits fised by the second commandment. After the captivity, however, there developed itself among the Jcws a ateadily growing tendency to interpret the language of the law with the most stringent literality; and at the time of the Roman oceupation the masses, under l'harisaic influences, showed a sensitiveness on the subject of images which in certain recorded instances led to very atriking results. Thus, the existence of trophies in the theatre at Jerusalem was violently objected to; Vitellius found it necessary to avoid Judæa in his march from Antioch to Petra, lest the Holy Land should be defiled by the presence of the Roman eagles; at the outbreak of the Jewish war the house of Antipas at Tibetias was destroyed because it was adorned with sculptures (Joseph., Ant., xv. 8. 1, 2 ; sviii. 3. 1; Vit., 12). This aversion to every exercise of the imitative arts; as regards living things at least, p assed over from Judaism to Mahometanism. ${ }^{9}$

As regards the attitude towards religious images assumed by the primitive Clristian church, several questions have often been treated as one which cannot too carefully be kept quite apart. There can be no donbt, for example, that the early Clristians were absolutely unanimous in utterly condemning all heathea imago-worship and the various customs, many of them obviously immoral, with which it was assaciated; it is necdless to multiply citations from the fathers in proof of so undisputed a fact. A form of iconolatry specially deprecated in the New Testament nas the then prevalent adoration of the images of the reigning emperors (see Rev. sv. 2). It is also tolerably certain that, if for no other reasons besides the ferness, obscurity, and poverty of the early converts to Clristianity, the works of art seen in their meeting bouses cannot possibly at first have been numerous Along with these reasons would certainly cooperate towards the exclusion of visible aids to devotion, not only the chureh's vivid recollection of what Christ had been, and its living sense of His continued real though unseen presence; but also, during the first years, its constant expectation of His second advent ns imminent. In point of fact it was a common acensation brought against the Christians by their enemies that they had "no altars, no temples, no known images" (Min. 1el., Oct, e. 10), that "they sct up no image or form of any goll" (see Arnob., Adv. Gent., vi. 1 ; similarly Celsus); and this ehargo was never denicd. At a comparatively early date indeed we read of various Gnostic sects calling in the fine arts to aid their worship; thus Irenæus (Ifar. i. 25, 6), speaking of the iollowers of Marcellina, says that "they possess images, some of them painted, and others formed from difforent kinds of material; and they maintain that a likeness of Clurist was made by Pilate at that time when Jesus lived among men. They crown these images, and set them up along with the images of the phitasophers of the world; that is to sas, with the images of Pythagoras and Plato and Aristotie and the rest. Tlicy have also other modes of honouring these images after the same manner as the Gentiles" (ff. Augr, De Her., e. 7). It is

[^136]also well knewn that the emperer Atexander Severus ound a plaee for several Scripture claracters and evea fer Christ in his lararium (Lamprid., l"it. Alex. Sev., e. 29). But there is no evideace that such a use of images extended itself at that early period to orthodox Chistian circles; and the presumption is all the other way. The first unmistakable iudication of the actual public use of the paioter's art for directly religious ends does not occur indeed uatil the year 306 A.D., when the synod of Elvira, Spain, decreed (can. 36) that "pictures ought not to be in a chureh, lest that which is worshipped and adored be printed on walls." The scope of this proLibition has been very diferently riewed by interpreters,-some thinking that all that is furbidden is any attempt at delineating the divine; others considering that the synod eentemplated frescos only and net pictures, which could be more readily hidlen from profanation in times of persecution; others t iking the canon iu the broadest sense as directed against the exhibition in churches of pictures of sacrel suljects. In any case, and particularly of the last theory le adopted, it is evident that the use of sacred pietures in puble worship was not at the beginning of the 4 th century ia thing wholly unknown within the orthodox church in Spain; and the presumption is that in other places, about the same period, the custon was looked upon with a more tolerant eye. Indications of the existence of allied forms of sacred Christian art prior to this period are net wholly wanting. It seems pessible to trace same of the older and ruder frescos in the eatacombs back to a very early century; and it is certain that Bible manuscripts were often copiously illuminated and illustrated even before the middle of the 4th century. An often-quoted passage from Tertullian (De Pudic., c. 10, cf. c. 7) shows that in his day the communiou cup was wont to bear a representation of the Gued Shepherd. Clement of Alexandria (Pcdag., iii. 11) mentions the dove, fish, ship, lyre, anchor, as suitable devices for Christian aignet rings.

Duriag the 4th and fellowing centuries the tendency to enlist the finc arts in the service of religion and the chureh may be said to have steadily advanced ; not, however, so far as appeats, with the formal sanction of any regular ecclesiastical authority, and certainly not without ationg protests raised Ly more than one pewerful roice. From a passage in the writiugs of Gregory of Nyssa (Orat. de Laudibus Theodori Martyris, c. 2) it is easy to sce how the atorics of recent martyrs would offer themselves as tempting suljects for the painter, and at the same time bo ensidered to have reecived from him their best and most permanent expression; that this feelige was very widespread is slown in many places by Paulinus of Nola (ob. 431), from whom we gather that not only martyrdoms, and Bible histories, but also symbols of the Trinity were in his day freely represented pictorially. Aurustine (De Cous. Ein., i. 10) speaks less approvingly of those who look for Christ and Jlis apostles "on painted walls" rather than in His written worl. How far the Christian feeling of the 4 th and 5 th centuries was from being thoroughly aettled in favour of the employmeat of the fine arts is instructively ahown by such a case ss that of Ensebius of Cesarea, who in reply to a request of Constantia, aister of Constantine, for a picture of Christ, wrote that it was mawndul to possess images pretending to represent tha Savione cither in llis divine or in IIis human nature, and added that to aveid the reproach of illolatry he hat actually taken away from a lady friend the pictures of lanu and of Christ which she had. ${ }^{2}$ Similarly Epiphanius in a letter to John, bishop

[^137]of Jerusalem, tells how in a church at Anablatha near Bethel he had found a curtain painted with the image "of Christ or of some other saiat," which he had tora down and ordered to be used for the burisl of some panper. The passage, bewever, reveals, not only what Epiphanins thought on the subject, but also the faet that such pietures must have been becoming frequent. Nilus, the disciple and defender of Chrysastom, permitted the symbol of the cross in churches and also pictorial delineations of Old and New Testament histery, but deprecated other symbols, pictures of martyrs, and most of all the representation of Christ. In the time of Gregory the Great the Western Church at last obtained something like an authoritative declaration on the vexed question about images, but in a sense not quite the same as that of the syuod of Elvira. Sercaus of Marseilles, on account of what he considered to be flagrant abuses, had ordered the remoral and destruction of all sacred images within his diocese; this vigorous. action called forth several letters from Pope Gregory (viii. 2,111 , ix. 4, 11), in which he utterly disapproved of that violent course, and. for the first time clearly drawing the distinction which has ever since been authoritative for the Roman Chureh, pointed out that "it is one thing to worslip a picture and another te learo from the language of a picture what that is which ought to be worshipped. What those Who can read learn by meass of writing, that do the uneducated learn by looking at a picture. . . That, therefore, ought not to have been destroyed which had been placed in the ehurches, not for worship, but solely for instructing the minds of the ignorant." Here it may be mentioned with regard to the symbol of the eross, that its public use dates from the time of Constantine, though, aceording to many Cliristian archzologists it had, prior to that date, a very impertant place in the so-called "disciplina arcani." The introduction of the erucifix was decidedly later, and originally the favourite combination was that of the figure of a lamb lying at the foot of the cross; the Trullan council in 692 by its $82 d$ canon enjoined that this symbel should be discontinued, and that where Christ was shown in eonnexion with His cross He should be represented in His human nature.

It was not until the 8th century that the religious and theelogical questions which seem naturally to connect themselves with image wership were at last distinetly raised in the Eastern Chureh in their entirety, and argued in what from some points of view might fairly be called an exhaustive maoner. The eontroversy began with the edict by which Lee the Isaurian, in tho tenth gear of his reiga (726), sought to deliver the chureh from what he called "the idolatry of image worshij]." The text of that edict is not cxtant, but it seems to have been directed exclusively against such "idolatrous" homage as appeared to bo involvel in the established custom of prostration before them. The use of the strong word "idolatrous" at onee led to a keen centroversy, in which it was urged by tho
 might, without idelatry, be given to the image of Chisist. Anong these who took this ground was the famous John of Damascus, who retorted upoa the iconoclastie emperor with charges of Judaizing and cyen of Manichean leanings Leo, unconvinced, but fiming that his first ediet bad been wholly ineffectual, four years later (430) issued a eccond decrec, of a more sweeping character than tho first, ionsmuch as all the holy images were orderel to be removed, and all recalcitrant lishops summarily cjected from their posts. This proeceding called forth further arguments from the theologian of Damaseus, through whoso influence the iconoclasts were anathomatized in such churchea as were not tow directly and entircly under the politieal influence of Cunstantinople. At the same timo (730) Pope Gregory
II. addressed to the emperor two inportant cuntroversial letters in favour of inages. They are preserved in the Acta of the sacond council of Nice, Apart from their direct historical inportance, they are of considerable interest as literary and theological curiositics. To the objection which had of course been. urged from the decaloguc, the replied that the prolibition there was directed simply against the idolatry of Canaan, and could not have. been intended in a seuse inconsistent with the fact that- Moses lad lizen commanded to make chorubim and the like. Christ Himsclf was an image, the image of God. The charge that the icomoluli prayed to stones, walls, and pietures was casily met ; and the further dificulty that sis cocumenical coancils lad met and separated, but enjoined nothing about images, it was held, told distinctly against the iconoclasts, for the same councils had equally failed to urge upon men the duty of taking their neeessary food. 17 eedless of Gregory's remonstrances, the emperor continued, during the remaining twelve years of his life, to carry on the struggle with but little effect; the religious use of images was ton intimately intorwoven, not only with the church life, but also with the domestic habits of his people, to yield cren to the most determined efforts of in arbitrary despotism. In 741 Leo was succceded by Constantine Copronymus (741-775), who fully shared the iconoclastic views of his father, and in 754 convoked a council, attended by three hundred and thirty-eight bishops, bat never, recognized as cecumenical, which under his inlluence declared all reverenecrs of images to be men who had lapsed into idolatry ; decreed that "Christ in His glorificd humanity, though not incorporeal, was yet exalted above all the limits and defects of a sensuous nature, too esalted therefore to be figured by human art in an earthly material after the analogy of any other human body"; and prowounced anathema on all who attempted to express by visible colours the form of the Logos in His incarnation, and on all who delineated dumb and lifeless pictures of the saints, which could never serve any profitable end. All images whatsoever of sacred parsons or things were ordercd to be cjected from Christinn churches; and to set them up either in public or in private buildings was forbidden under the gravest ecclesiastical penalties. The stringency of these decrees was justilied by arguments drawn from reason and Scripture, as well as by appeals to such names as those of Gregory, Clirysostom, Athanasius, Epiphanius, and Eusebius. The attempt to enforec the decisious of the council as imperial larss was in many instanees marked by oppressiveness and cruelty, and the general feeling of the conmunity, fostered diligently by a numerous class of its most coergetic and pions members, the monks, continued uachanged in its aversion to iconoclasm ; and, although at the end of his reign Constaotine succeedud in imposing upon cyery citizen of Constantinople an oath never agtion to worship an image, there can be little cloubt that in a vast number of houscholds secret leanings to image worship lad been intensified rather thau weikened by repressive measures. During the carly part of the brief reign (775Ti9) of Lev IV. Clazarus, the stringency of the law was sanewhat relased, until it was discovercd that the cmpress (Irene) was herself a secret iconolater, when she was brought into disgrace, and numbers of her accomplices were seized and imprisoned. On the death of Leo, Irene became regent for her infant son Constantine, and, as was to be espected, nsell the power which she now possessed in favour of the cause slic had long had at heart. With tho assistance of the monks, after an abortivo attempt to hold a synod at Constantinople in 780 , there met at Nice in 787 a general council (the seventh cecumenical), the precesdings of which are of considerable listorical importance. It was there decided that. not valy the finure of the cross, but also other
holy images (Christ, ite Virgin Mary, angels, and saints), whether painted or exeeuted in mosaic or other material, might be set up in churches, placed on holy vessels and vestments, on'walls and panels, in houses ond by highways,
 though not with datpeia, which is giren to the divine mature alone. The decrees, which were signed by all present, were afterwards solemnly ratified at a final session (the eigath) held in Constautinople, and thus, after a strugglo of sisty-one years, the murship of images asserted in the Greek Chureh that ascendency which, with only one briaf interruption of a few years, it has ever since maintaind.

The decisions of this Enstern council were in full harmony with the personal riens and practices of the popes, who, however, were compelled to show considerable moderation in the attitude they assumen. The Latin Church also, as is shown by the mritings of Agobard of Lyons and Claudius of Turin, contained strongly icunoclastic elements, which, if full scope had been given them, might conceivably have altered very considerably the current of Western opinion. On political as well as on religious grounds, however, it was felt to be inespedient to push matters on either side to extremes; very important thercfore at this jubeture was the step taken by the cmperor Charlemagne in the publication of his De Impin Imaginum Culte Lilri' L1., commonly called the Libri Carolini, in which, condemning alike the fanaticism of iconoclasts and the superstition of iconoduli, he maintained the right of inarges to exist forpurposes of commemoration and ornament (propter memeriam rerum gestarum et ornamentun). At the syiod of Frank-fort-on-we Main, hed in 79t, his general position was maintained, and adoration of images (idoratio et, servitus -imaginum) was wholly condomned. Great injustice-was done, however, to the fathers of the second Nicene council when they were accused of maintaining that the same Worship ought to be given to images of saints as to the Holy Trinity,-a doctrine which they had been at special pains to repudiate. The settlement. which had been obtained in 787 did not subsist entirely undisturbed even in the Eastern Churelh. In 815, two years after Leo the Armenian had aseended the throne, a council convaked by him at Constantinople formally abolished the decrés of Nice, and again banished the images from the churchos. The new controversy, with which the nane of. Theodore of the Studium is still more proninently associated than was that of John of Damaseus with its previous phase, went on with vicissitudes very stmilar to those which had formerly occurred during the reign of Leu and his successors Miclael ($820-830$) and Theophilus ($830-842$). At length, during the regeney of the empress Theodora, the decress of Nice were reafirmed by asynod at Constantinople, and the banished images were triumphantly and finally reintroduced into the motemplitan church on the day which on the first Sunday in Lent is still celebrated throughont the Greck Church as a great festival under the name of eoprín or manhripis tis épouobogias. One incident in this second iconoclastic controversy had been the mission of an embassy by Nichael Lallons to Louis the Pions in 825 . 'The reply was given through the synod of Paris, held in that year : in epen disagreement with the orintons of Pope Hadrian I., the relatively neutral ground taken up at the synod of Frankfort ras maintained.

Down to the close of this prriol the "images" spoken of in ceclesiastical roniroversy are almost entirely pictures or mosaics -the religious usc of sculptures, and particularly
 and, so far as knom, disapproved. This distinction docs not indecd appear in thic actual decrees of the conncil of Nice; lut it is clearly drawn in the statements of the parriarch Cermanis and lys Stcpiben Bostrenus, as quoted
in the proceediags (Act. ii.). Such remains of Christian antiquity as the statue of Hippolytas, recently dug up at Ostia, and usually assigned to a date not later than the 5 th century, as alow the sitting figure of St Peter, dating from the same period, now seen in St Peter's, Rome, have no immediats connexion with the subject of this article. The saws remark applies to the still earlier statue at Paneas referred to by Eusebius (H. E., vii. 18), said to have been raised in bonour of Christ by the woman mentioned in Matt. ix 20 ; if it was really iatended to represent Christ at all and not rather the emperor Hadrian, it was, at all events, obriously no object of special veneration. About the 9th century, however, "graven images" seem to have become more cemmon. Thus in the treatise De Imaginibus (c. 31) of Agobard of Lyons (ob. 840), there is an obvious controversial allusion to molten or moulded statues of augels or holy mon. With the gradual introduction of the architecture commonly koowa as Gothic, there came in a great advance in plastic art. The new cathedrals gave scope for and even demsaded a wealth of decorativa formerly unknown, uatil it seemed as if, nut only the entire Biblical history, but all the Acta Sanctorum, were to be artistically told in wood and stone. The earliest extant sculptures in stonc or stucce cannot be carried farther back then the llth century. But the discussion of their date and character belongs to the artistic rather than to the religious side of the subject. ${ }^{\text { }}$

Et the period of the Reformation it was unnnimously felt by the reforming party that, with the invocation of saints and the practice of reverencing their relics, the adoration of images ought also as matter of conrse to cease. The leaders of the movement were net all, however, perfectly agreed on the question as to whether these might not in some circumstances be retained in churches. Luther, it is well known, bad ne sympathy with the iconoclastic outbreaks which history mentions as having taken place with some frequoncy at this period; he classed images in themselves as among the "adiaphora," nud condemned only their cultus; so also the "Confessio Tetrapolitena" leaves Christians free to have them or not, if only due regard be had to what is expedient and edifying. The "Heidelberg Catechism," oo the other hand, emphatically declares that images are net to be telerated at all in churches. This position, which is that of all the reformed churches, bas no obvious connexion with their view as to the division of the decalogue, they following Origen on this question while the Lutberans adhere to the Philonic arrangement (see Decalogue).

At the council of Trent (session xzv.) the Church of Rome fisally formulated the doctrine on the subject of images which is still of authority within its communion. That doctrine is avowedly based on the decrees of the accond council of Nice. It is declared that images of Christ, the Virgin Mary, and other saints are to be ect up and retained, especially in churches, and that "due" hooour and veneretion are to be accorded them by kissing and prostration. Wamings are appended, however, agaiust their superstitious abuse somewhat in tho spirit of Gregory the Great's letter and of the decision of the Frankfort synod.

The Greek Church continues tenaciously to adhere to the decrees of the second Nicene council, nad has not yielded to eny of the artistic impulses which have elsewhere mado themselves so powerfully folt. The sacred pictures which abound everywhere, and aro troated with extraordinary revercnce nud affection, aro for the mest part very defective resthetically. Indeed the prefereace secms to be given to

[^138]those exccuted in rude archaic style, and even now the painter of pictures intended for religious uses must bear in mind the monk's famous criticism on Titian. Nude or incompletely draped figures are forbidden, and only lalf lengths are permitted "ut omnis stulta cogitationis occasio tollatur." No representation of the Godhead or of the Trinity is attempted. Although it is in the records of a Constantinopolitan council that the earliest extant notice of the crusifix occurs, that symbol is not now used in the East.

The literature of the subject is iormense. The most important monographs are-from the Catholic point of view, Maimbourg, Histoire de l'Héresic des Iconoclastes (Paris, 1679-82); from the Protestant, Daillé, De Imaginibus (Leyden, 1642), and Spanheim, Historia Imaginum restituta (Leyden, 1686). For the acts of the councils, Lahbé or Mansi must he consulted; the learned compilation of Goldast, Imperialia deereta de cultu imaginum in utroque imperio promulgata collecta ct illustrala (Frankfort, 1608), will also be found useful. Compare Schlosser, Gesch. der bilderstürmenden Kaiser (Frankfort, 1812). The sections relatiog to image worship in the great work of Chemnitz (Examen Conc. Trid., pars f) are charac. terized by learning and moderation. The whole subject is treated, of course, in all the church histories; with most fulness and in. sight in that of Neander. The iconoclastic controversy is dealt with also in the histories of Gibbon and Milman. Copious archeologieal details are also given in Augusti'a Denkwürdigkeiten, vol. xii. (Leipsic, 1831).
(J. S. BL.)

IMAM is the name given to the priest who leads the prayers of a Mahometan congregation, and is exactly equivalent to Artistes. In the Koran, chap. ii. v. 118 , it is said of Abraham, "Verily, I will set thee as an imám (high priest or model) for men." In Turkey the imam, besides his function as a minister, performs the rites of circumcision, marringe, and burial. He is distinguished only by avoiding gay colours in his dress and wearing a wlite turban. In Persia the imim is also called a majtahid; he lias no secular duties. The title has been always borse by the caliphs or successors of Mahomet, the earlicr ones baving, like the Prophet himself, conducted the services in person, and addressed the people in a khutbah or homily on the great weekly gathering on Fridays. The title thus came to signify lead of the faith, and as such is claimed and used by the present sultans of the Osmanli dynasty in Turkey, the last of the legitimate caliphs, El Mutawakkel, haviog in 1517 A.D. ceded his prerogatives to Selim I., the first Otteman sultan, and his heirs. The caliphate (see Caliph) is also colled El Imamah, the imamate. The Shiah sect hold that the office of iman was specially assigaed by Mahomet to Ali ibn Abi Tálib, his cousin and sen-io law, and passed from him to bis legitimato male issue by Fatima Mahomet's daughter. The first imim then was Ali; the next twe were Ali's sons Hasan and Huscin (bce Masan); then came Ali Zein el "Abidín, son of Huscia. His son Zeid founded the sect called the Zeidiyeh, whe recognized him as inim. This sect split into two subdivisions, one of which declared that the imam ought to be designated by his predecessor, the other that the imamato was olective, but must be confined to the desecndants of Fatima. The twelve imins generally received by the Shiahs do not, howercr, include Zcid, but are the following :-(1) Ali ibn Abi Talib; (2) El Hasan his son; (3) El Iluscin, Ali's other eon; (4) Ali Zein el 'Abidin, sen of Iluseia; (5) Mohammed el Rakir, son of Zein ol Abidin; (6) Jeafer es Sádik, son of El Bakir; (7) Musá el Kadhim, sen of Jeafer; (8) Ali er Ridha, son of Musa; (9) Mohanamed et Taki, son of Er Ridhí; (10) Ali el Iladi, son of Et Takí; (ll) Ilasan el Askari, son of EI Hadi. Here the chain of succession breaks off, the twelfth imam being Mohammed el Meldi, suraamed Λ bu Kasim, who was predicted by the Prophet, and who is yet to come. The title iman is alse applicd to the founders of the four great orthodox accts of Mahometans.
lMblROS, or Imvito, an island in the Aigean Sca, Lging west of the eouthern end of the Thracian Chersonese.
about 14 mites from the mouth of the Dardanelles. To the aprth-west, at a distance of 17 miles, lies the island of Samothraki; and about the same distance to the southeast is Lemnos. The ares of Imbros is estimated nt 105 equara miles, and its population, which is mainly of Greck origia, is about 10,000 . With its bare mountain ridges and sides it hus no small similarity to Attica. Hagios Ilias, or St Elias, is the highest summit, 1859 feet above the sea-level. Accordiog to Franz von Loher about a third of the igland could be turned jnto a very garden by an iodustrious and ekilful race; but at present not more then one-tenth is under cultivation. Wheat, barley, and oats are grown, as well as a dye-plant locally called bouia A German company is working lignite in the island. The only atream of importance has surrendered its ancient name
 or Big River. The valley through which it flows is the ooly considerable tract of arable land in the island, and cootains the four villages of Theodoro, Kastro, Gliki, and Panagia. Kastro, which lies on the coast, is the gite of the ancient towo which bore the same name with the island; but the only remains of antiquity are part of the mole, portions of the town-wall, and a number of tombstones. A hill above the town presents with jts aummit so great a likeness to a medixval castle that it has frequently been described as such. The arehæological investigations of Conze have brought to light a few inscriptions of eecondary interest, which mainly serve to confirm the Attic character of Imbrisn civilization. Attic and Trojan coins are not unfrequent; and traces are foucd of the worship of the Cabiri, Cybele, and Zeus Hypsiotes, Imbros plays no great part in history; though the namo occurs as early as the Jliad and the Honcric Hymus. Herodotus mentions its subjugation to the Persians by Otsnes. In later times it was distinctly recognized as an Athenian colony. 'The numerons watch-towcrs and diminutive atrongholds observed throughout the island would indicate that it had its share in the busy warlike existence of the Middle Ages. Aloog with Samothraki, Lemnos, and Hagiostrati, Imbros belonge administratively to the Vilayet of the Islands, or Jesair bahr i Safid of Asiatic Turkey. It is the seat of a metropolitan of the Greck Church, with the title of exarch of the Ægean.
Seo Richter, W'allfahten nach den Morgcnlande, Berlin, 1822;
 nople. 1845: Louis Lacroix. Les iles de la Grece, 1853 ; Blau and Schlot mann, in Berichter der Kotnigl. preuss. Akad. der W Vissensch., 1855 ; Conze, Reese auf den Inseln des Thrakischen Meceres, Hanover, 1880 ; Von Lobes, Griechische Kiustenfahrten, Bielcfeld, 1876.

IMERITIA, a' district in Transcaueabia, estends from the left bank of the Tzhenys-tzkalys to the range of hills that separate it from Georgis on the east, and is bounded on the aouth by Aklakizikh. Ancieotly a part of Colchis, and included in Lazia during the Roman empire, Imeritia was nominally under the domicion of the Greok emperors. In the early part of the 6 th century it became the theatre of wars between Justinian and Chosroes, and was devastatod by oubsequent hostile incursions, reviviag ooly- on becoming united to Georgia. It flourishod until the reign of Queed Thamar, but after her desth (1212) the country became impoverished through strifieand internal dissensions. Reunited to Georgia, it becamo known is 1259 as Imier, whence Imeritis (1469). In 1621 was made the earliest appesl to Russia for aid; in 1650 the first Russian envoys were received at Koutais, the capital; nnd in 1769 a Russian foreo expelled the Turks. Io 1804 the monarch declared himself a vassal of Russia, and in 1810 the little kingdom was definitively annéxed to that enpire. Imeritia, Mingrelia, and Gourin, provinces not officially recognized as distinet, are now included in the Russian government of Koutaig, See Georola.

IMMACULATE CONCEPTION. Tho dogma of the immaculate conception of tho Virgin Mary, as held by the Church of Rome, is to the effect that "the most blessed Virgin was, in view of the merits of Jesus Christ the Saviour of the human race, by the singular grace and favour of Almighty God, from the first moment of her conception in the womb of her mother, preserved free from all taint of original aio." The "pious opinion" that the mother of Christ had during her life been preserved from \sin in a way in which no othes human being ever had been may be traeed baek to a comparatively early period : indeed, without it her cultus (for some aceount of the growth of which see Mary) as it had developed itself long before the 9th century, would have been impossible. The actaal history of an explicit doctrine of her immaculate conception, however, 80 far as has hitherto been diseorered, may be eaid to begin, in the year 1140, ${ }^{2}$ with the letter of remonstrance which Bernard of Clairvaux wrote to the canons of the eathedral at Lyons (Ep. 174), wh, without consulting the Roman eee, had recently introducod into their church a festival in celebration of that doctrine. Bernard argued vigorously against this on the ground of its novelty, its unscripturaluess (Ps. li. 5), and its absurdity :-"On the same principle," said he, "you wonld be obliged to hold that the conception of her ancestors, in an ascending line, was also a holy one, since otherwise she could not have descended from them worthily, and there would then be festivals without number." How tho recipients, who, it is stated, claimed to have learned their peciliar rite from a document communicated by the Virgin herself, were affected by this letter, is not recorded. Among controversial treatiscs which appeared shortly afterwards are meationed those of Potho of Prim and the Abbot de la Celle against the doctrine, and that of the Euglish monk Nicolas in its favour. In the 13th century all the leading theologians, anch as Alexander Halensis (p. iii., qu. 10, membr. 2), Albertus Magnus (Ccmm. in Sent., iii. 3), Bonaventura (Comm. in Sent., iii. 3. 1, 2), and Thomes Aquinas (Summa, p. iii., qu. 27, art. 1-3), took the vier of St Bernard, their contribution to the theology of the subject consisting ic an accurato definition of the moment at which the Virgin's sanctification in the womb must be held to hare taked place. During the anme century the fenst of the Conception becamo very popular, and in 1263 it was aecepted by a general chapter of the Franciseans at Pisa, without reference, however, to the question of inmaeulacy. Of great importance to the subsequent history of the dogmx was the appearanee in the theological world, towards the beginning of the 14 th eentury, of Duns Scotus, the " subte doctor." of the Franciseans, who, as in so many other points, bo also in this, came into contliet with the atill more illustrious "Doctor Angelicus," the Dominican Aquinss. In one part of his Commentary on the Sentences of Peter of Lombardy (lib. iii., dist. 3, qu. 1, sec. 9) he declares for the thinkableness and eren probability of Mary's having beed preserved intact from original sin ; in a later passage (dist. 18, qua 1, өec. 13) the doctrine is categorically stated. It wes upon this disputed point that the long and bitter controversy between the two great mendicant orders chiefly turned. In 1389, the Spanish Dominiean Jonnnes de Montesono having maintained in a disputation at Paris that the view of the Scotists was unscriptural and heretical, the university, without committing itself on the main point, condemned his violent theses, and this condemnstion was concurred in by the Avignon poje, Clement VII. The members of the entire

[^139]Dominicsn order, for their refusal to acquiesce, were for several years excluded from the privileges of the university. In the beginning of the 15 th ceatury the famous chancellor, John Gerson, aceepted the new dogma, and applied in its farour the well-known doctrine of development. At the conacia 9 i Pisel (in the 36th session, held September 17, 1439) it was defined aun leclared that the doctrine was consistent with faith, reason, aul Scripture, nad therefore to be approved and embraced; the contrary doetrine was not condemned, but it was forbiditen to preach or to teach it. The university of Paris now made subscription to the doctrine of the Immaculate Conception a condition for its degrees, and various other universities entered into a solemn compact to uso every exertion for its spread, but the controversy was far from having been brought to a close even by the action of Pope Sistus IV., who in 1483 published a bull threatening witu excommunication any one who should accuse of heresy either the advocates or the impugners of the doctrine, the point having not yet been decided by the apostolical see. In its fifth session (1546) the council of Trent, after formulating its decreo on the subject of original sin, sought to effect a compromise betreen Dominicans aud Franciscans by apponding a declaration that it did not intend that this doctrine should be applied to the blessed and immaculate Virgin Mary, but that the constitutions of Sixtus IV. Were still to be observed. In the begioning of the l7th century the field of battle was transferred to Spain, where, under the predominant influence of the Franciscans and Jesuits, medals were struck, pictures painted, statues erected, and persecutions set on foot in honour of the Virgin "sin pecado concebida"; and embassies were sent to Rome, both by Philip III. and by Philip IV., to obtain more explicit recognition of the popular doctrine. The popes continucd for a long time, however, to maintain their attitude of reserve. Paul V. (1617) forbade all public dispute on the subject, and Gregory XV. (1022) exteuded the prohibition even to private discussions, oscept in the case of Dooninicans "inter se." But gradually the papal sympathics becane more pronounced onder Jesuit influences; Cloment IN. gave the feast of the Conception on octave; Clement $X I$., in 1708 , made it a festiwal "de precepto" for all Cbristendom; while Bencdict XIV. enteavoured to reconcile St Bernarel with the more modern teadencies of lioman Catholic theology, by insisting upon subtle distinctions between the "conceptio activa" mul the "conceptio passira" of Dlary. In the pontificate of Gregory XVl. several grelates received papal permission to rescribe ber conception as immaculate; and in 1849 lius IN. was innluced to arldress to his bishops from Gacta an encyclical, invitiog them to state how far the flogmatic definition of the dogma would mact their wishes and the wishes of those nuder their charge. A large najority declared themselves strongly in favour of the proposal, and the ultimato result was that in December 8, 1854, the popo, in presence of a numerous cnocourse of carilinale, patriarchs, archhishops, and bishops assemblet in St leter's, Rome, solemnly promulgated the bull "Ineffabilis louns," ly which the chotrine of the lmmaculate Conception fabally became for the Joman commonion an article of faith, the denial of which is accountel to the beresy.?

The foast of the Immaculato Conception is cobservel in the lioman Chureli on Duecmber 8. In the Creck Chatel there is a festival in homour of the conecption of $S t$ Ante
 Apostolorum letri at libali, ac Nostra, declamamus, fromumbarans et

 creduriati.
(the mother of Mary), for which December 9 was fixed by a constitution of the emperor Emanuel Comoenus in the 13th century. Her deliverance from the reproach of sterility is what is celebrated; there is no reference to anything analogous to the Roman doctrine. It may be remarked that strong expressions as to the absolute purity of Mary are found in tho Koran (iii. 37), and still more in later Mahometan writings; but the Christian doctrine of \sin is so utterly foreign to Islam that no precise theological construction of these expressions is possible.
immermanN, liall Leberecht (1796-1840), diamatist and novelist, was born April 24th, 1796, at Magdeburg. From the gymnasium of his native city he passed in 1813 to study law at the university of Halle, but his career thare was interrapted by the commotions consequent upon Napoleon's escape from Elba. Iumermann was prevented by illness from taking part in the carlier campaign, but he served in the Prussion army in 1815 , was present at Ligny and Waterloo, and marched into Paris with Blucher. He weut back to Halle to finish his studies, and held official positions at Oschêrsleben, Münster, and Magdeburg successively, before he became judge of a district on the Fhine, near Düsseldorf. The attention which his writings had already excited won him a warm welcome from the artistic circle which then made Düsseldorf famous, and there he spent the rest of his life, dividing bis time aorongst his judicial duties, his unsuccessful attenapt to raise the theatre there to a permanent classic level of art and refinement, and a platonic literary friendship with the countess of Ahlefcldt. The last, begun at Miunster and terminated only at his marriage wilh a granddaughter of tho chancollor Niemeyer in 1839, exercised a marked influonce over his genins. Immermann died at Duisseldorf, August 25, 1840. His dramas are perhaps better suited for the sturdy than for the stage. Thongh sonctimes rough and forbidding, they are marked by considerable insight into claracter; the comedies are by no means destitute of comic force. Signs of a close study of Shakespeare are alundant. In his semi-humorous romances Immermann is at lis best, and it is by those that he will be ehiefly remembered.

His chief works are the following: the tragedies- Irale of Ronccral, E‘duin, Putrarca, 1822; King Periander, 1823; Cardenio and Celimec, 1526 ; Frederich II., 2] 828 ; and Ghismonda, 1839; and tho comelies-Princt of Syracuse, 1 S21; Eue of Louc, 1824; Disguiscs, 1825 ; Shool of the Pwos, 1829. Besides these he wrote the mythical play, Merlin, 1831; the trilogy of Alexis, 1832: the dramatie jown, The Zragedy in the Tyrol, 1827 ; and the romances-7"ulifintelen, 1857 , Die Ejigoncr, 1836 (perhaps his best work), and Mächmausen, a Sfory in Arabosques, 1839. He published iwo volumes of pocms (1822 and 1832), 'and began Triston ant Isohle, 1842 . Wis misedlaneons witings inclute a translation af Tranhoe; On the Mal Ajore of Siophotes, 1826; Miseellon, 1830; The Itcrmit's W'inelou', 1 sote: fournal of a Traveller, 1833 ; Memerubition (mimishet), 1810 ; and Theaterbriefc, 1851. Tho collectent works were published in 14 vols. in $1835-43$. Sce l'ullitz's K̈url Immermenn, sein Jeden und scine Wienke, 1570.

IMhoRTELLE, of leverlastisc. The immortello Hant belongs to the division Induliflore of the natural filmily Compositer, and is scientifically known as Gnaphalizm (Helichrysum) oriontale of Linmens It is a native oi Nurth Africa, Crete, and the parts of Asla bordering on the Mediterramean; and it is cultivated in many parts of burbye. It first hecame known in Europe about the year 1620 , and has been cultivated since 1815 . Iu common with several other plants of the same gromp, known as "everlast. ings," the immortellaphat possesses a largo involucte of dry scale-like or searions bracte, which preserve their apearance when dried, proviled the pant be gathered in proper combition. The chief supplies of Iftichrysum orientale come from Lower Provence, where it is cultivated in largo quantities on the gromud shoping to the Moliterrancan, in " itions well exposed to the sum, and usually in flots sur-
rounded by dry stone wadls. The finest tlowers are grown on tho slopes of Bandols and Ciutat, where the plant begins to flower in June. It requires a light sandy or stony soil, and is very readily injured by rain or heavy dews. It can be propagated in quantity by moans of offisets from the older stemis. Tho flowering stems are gathered in June, when the bracts are fully developed, all the fully expanded and immature flowers being pulled off and rejected. After being dried, they are sent to Paris in boses containing 10 bundes, with the flowers placel outwards and thoo stems in the centre. The immortello is sold by weight or by the bundlo, tho price varying from 1 da. to 3d. per bunde, according to size, or fromi 19 s. to 18 s. per hundredweight, eccording to quality. A well-mangged plantation is productive for cight or ten years. The plant is tufted in its growth, ozeh plant producing 60 or 70 stems, while each stem produces an average of 20 flowers. About 400 such stems weigh a kilogramme. A heetare of ground will produce 40,000 plants, bearing from $2,400,000$ to $2,500,000$ stems, and weighing from $5 \frac{1}{2}$ to $6 \frac{1}{2}$ tons, or from 2 to 3 tons per acre. Tho colour of the bracts is a deep yellow. The natural flowers aro commonly used for girlinds for the dead, or plants dyed black are mixed with the yellow ones. The plant is also dyed green or orange-ted, and thus ensployed for bouquets or other ornamental purposes.
Tho following is a list of tho more important everlasting flowers:Acroclinium roscum; Ammobium alatun; Graphalium oricutale and other speeies; Helichrysum bractcatum, macrenthum, and composithone, from Australia, and M. vestitem, from the Caje of Cood Hope; Helipterem cancscens and Sandforti, from Sonth Arica; Hhodauthe Manglcsii, maculata, nud atrosenguizea, from Swan River; Wailzia nitidlu and nivea, froan Swan River; and Xeranthemum annuun. Frequently these everlastings are mixed with bleached grasses, as Lagirus oratus, Briza mexima, Bromus brizceformis, or with the leaves of the Cape silver treo (Leveculembron argentenm), to form bouquets or ormamentat groups.
IMOLA, the ancient Foram Coraclii, a town of Italy, capital of a circle in the province of Dologna, is situated in a fruitful and charning phain on the old Temilian way, near tho river Santerno (ancient Jatrenas), 21 miles southeast of Bologna and 46 north-west of Rimini, on the railway connceting those towns. It is the seat of a bishop and of a subprefactore. Tho torn is surrounded by walls flanked with towers, and its streets are spacions and linod with areades. It possesses a cathedral with an octagonal tower, an old castls, a gymuasium, a technical school, a school of music, a public tibmary, orphanages for boys and girls, a hospital, and a corn exelingge. The manufacture of wine is the primeipal industry, but a special kind of cream of tartar is also made, and there is considerable trade in corn, hemp, flax, rice, and silk. The population of the town in 1871 was 9355 and of tho conmune $\mathbf{2 9}, 398$. In IS7C tho population of the commune was 25,678 .
Tho ancient Fornum Corneliz is said to have derived its namo from its founder the dictator Sulla, Arcoriling to Cicero, it was ocenried by Octavian during the eivi war which followed the death of Ciesar, and Martiat mentions it in the third bonk of his cpierams as the phace wherc ho was at that time resiling. The moderninne of the town is, accondint to 'autus Diaconus, derivet from that of tho old citadel. Tlio town, after its desturtion in 533 ly Narses, general of the emperor Justinian 1., was reluith by tho Lombarils, after which it remained under the lorislsip of Bologna tith the end of tho 13 th century. In 1272 it was taken possession of by tho Pasani, and in 1292 ty the chitosii, from whom It was scized in 1472 by Duke Mrilip, Maria. Viseonti of Mitan. Under the pontificale of Alezander पl.' it was incorphorated with tho States of the Church. In 170 o it was captured by the inperialists, and in 1797 by the Fromel.

IMPEACHMENT, an exeeptional, and now rare, form of procedure against criminals in Englama, in which the House of Commons are the prosecutors and the llouso of Lords the judzes. It differs from procedure by bill of attainder, which follows tho ordinary forms of legishation in both Houses, and takes effect in an Act of Parliament.

In impeachment the form of procedure is strictly judicial. When the House of Commons has aceepted a motion for impeachmont, the mover is ordered to proceed to the bar of the House of Lords, and there impeach the accused "in the mame of the House of Commons, and of all the Conmons of the United Kinglom." The charges are formulated in articles, to each of which the accused may deliver a written answer. The prosccution must confine itselt to the charges contained in the articles, though further articles may be adhibited from time to time. The Commons ap. point mapagers to conduct the prosecution, but the whole IIonse in committee attends the trial. The defendant may appear by counsel. The president of the lionso of Lords is the lord high steward, in the ease of peers iolpeached for high treason; in other cases the lord chancellor. The haaring takes place as in an ordinary trial, the defence being allowed to call witnesses if necessary, and the prosecution having a right of reply. At the end of the case the president "puts to each peer, begirning with tho juniur barm, the questions upon the first article, whether tho accused be guilty of the erimes charged therein. Each peer in succession rises in his place when the question is put, and standing uncovered, and laying his right hand upon liis breast, answers, 'Guilty' or 'Nut guilty,' as the case may be, 'upon may honour.' Each article is proceeded with separately in the same wanner, the lord high steward giving lis own opinion the last " (May's Parliamentary Prectice, c. xxiii.). Should the accused be found guilty, judgment follows if the Commons move for it, but not otherwise. The Commons thas retain the power of pardon in their own hands, and this right they linve in several cases expressly claimed by resolution, declaring that it is not parliamentary for their Jordships to give judgnent "until the same be first demanded by this Honse." An impeachment, unlike other parliamentary proceedings, is not interrupted by prorogation, bor even by dissolution. Proceedings in the House of Commons preliminary to an impeachment are sulject to the ordinary rules, and in the Warren Hastings case an Act was assed to prevent the preliminary proceed ings from dis‘untinuance by prorogation and dissolution. A resal parton cannot be piladed in bar of an impeach. ment. The point was raisod in the case of the earl of Danby in IG79, and the rule was finally settled by the Act of Settlement. Persons found guilty on impeachment may be reprieved or parduned like other conviets. Impeachment will lie against all kinds of crimes and mistemeanours, and against offenders of all ranks. La the case of Simon de Jeresford, tried before the House of Lords 4 Edward III., the llonse dechared "that the judgment be not drawn into example or consequence in time to come, whereby tho said peers may be clarged hereafter to judge others than their peers," from which Elackstone and others havo inferrel that "a commoner cannot be impeached before the Lords fur any capital offence, but only for high misdemeanours." In the case of Fitzharris in 1681, the Houso of Commons in answer to a resulution of the Lords suspending the impeaclanent, dechred it to be their undoubted right "to impench any peer or commoner for treason or any other erime or mistemeanour." And the House of Lords has in practice recognized the right of the Commons to impeach whomsoever they will. The procedure has, however, been reserved for great political offenders whom the ordinary powers of the law might fail to reach. It has now fallen into desuetude. The hast impeachments wero those of Warren Ilastings (1788-95) and Lord Melville (1805), but an unsuccessful attempt was made by Mr Anstey to innpeach Lord Palmerston in 184*. The carliest recorded instances of impeachment are those of Lord Latimer in 1376, and of Polc, easl of Suffolk, in 1386 . From the time of Elward IV. to Llizabeth it fell ints disuse, "partly,"
says Hallam, "from the loss of that control which the Commons bad obtained under Richarl II. and the Lancastrian kings, and partly from the preference the Tudor princes had given to bills of attainder or pains and penalties when they wished to turn the arm of parliament against an obnosious subject." Rerived in the reign of James I., it became an instrument of parliamentary resistance to tho crown, and it was not unfrequently resorted to in the first three reigns after the Revolution.

In the constitution of the United States the procedure of impeachment is an almost exact copy of that described above. The House of Representatives are the accusers, and appoint managers to conduct the prosecution at the bar of the senate. The vote of the senate is taken by putting the question separately to exch member, and a majority of two-thirds is required for a conviction. In the separate States it partakes of the same quasi-political cbaracterneither the prosecutors nor the judges being the same as in ordinary criminal offences. The most noted instanees of impeaelment in the United States are those of Associate Justiee Chase in 180t, of President Andrew Johnson in 1868, and of Judge Barmard, New York, in 1872. The object of impeachment is the renoral of public officers for malversation in office, which is followed sometimes by disqualifieation for any future appoint ment.

INCENSE ${ }^{1}$ is the perfume (fumigation) arising from certain resins and gun-resins, barks, woods, dried Howers, fruits, and seeds, whea burnt, and also the substances so burnt. In its literal meaning the word "incense" is one with the word "perfume," the aroma given off with the smoke (per fuinum ${ }^{2}$) of any odoriferous substance when burnt. But, in use, while the meaning of the word "perfume" has been exteaded, so as to ioclude cverything sweet in smell, from smokiag incense to the invisible fresh fragrance of fruits and exquisite scent of flowers, that of the word "jacense," in all the languages of modera Europe in which it occurs, has, by an opposite process of limitation, been gradually restricted almost exclusively to frankincense (see Frankincerse). Frankiacease has always been obtainable in Europe in greater quantity than any other of the aromatics importal from the East; it has therefore gradually como to le the ouly incense used in the religious rites and domestic funigations of many countries of the West, and at last to be popularly regarded as the only "true" or "genuine" (i.e., "franc") incensa (sce Littré's Ft. Dict, and Skeat's Etym. Jict. of "agl. Lang.). ${ }^{3}$
The following is probally an exhanstive list of the sulstances available for incense or pettome mentioned in the llebrew Scrij-tures:-Algymu or almug woad (almug in 1 Kings, x . 11, 12; algum is 2 Chron. ii. 8, and ix. 10, 11), gron rally identified with saulatwoonl (Sentalume atbem), a native of Majabar und Malaya; aloes, or

[^140]lign aloes (Heb. ahálim, ahdioth), produced by Alocxylon Agal. wehum, a native of Cochin-China, and Aquiluria Agallucha, a native of India beyond the Ganges (compare vol. i. p. 597); balm (Heh. tsori), the oleo-resin of Balsamodendron Opobalsamum and B. gilealens ; bdellium (Heb. dutolah), the resin prodnced by Ealsamodendron roxburghin, B. Mukul, and B. pubescens, ait natives of Upper India (Lassen, however, identifies bdalah with musk) ; calamus (lIcb. kanch; sweet calamus, kench boscm, Ex. xxx. 23, Erek. xxvii. 19; swect cane, kateh hattob, Jer. vi. 20, Isa. xliif. 24), identified by Royle witlı the Audropogon Calamus aromaticus or roosa grass ot India; cassia (Heb. Niddah) the Cimarmomum Cassia of China (sce vol. v. p. 181); cinnamon (Heb. Limamon), the Cimnamomum zeylanicum of the Somali country, but cultirated largely in Ceylon, where also it rans wild, and in Java; rostus (Heb. ketziolh), the root of the Auchlandia Costas, native of Caslimere; frankincense (Heb. lebanala), the gunn-resin of Boswellia Frercana aml B. Bhat-Dajiana of the Somali country, and of \bar{b}. Carterit of the Somali country and the opposite coast of A rabia (compare vols. viii. p. 122, and ix. p. 709), galbanuin (IIcb. helbenah), yiclded by Ophoidia galbanifera of Khorassan, ame Galbamom offeinale of Syria: ladanuin (Heb. lat, translated "myrrh" in Gen. xxxvii. 25, xhii. 11), the resinous exudation of Cistus creticus, C. ladaniferves, and other species of "rock rose" or "rose of Sharon"; mytrh (Heb. mbr), the gumresin of the Balsamodendron Miyrrha of the Somali country and opposite shore of Arabia; onycha (Heb. sheheleth), the celebrated odoriferous shell of the ancients, the opercalum or "riail" of a species of Strombus or "wing shell," formerly well-known in Enrope nader the name of Blatta byzantina; it is still imported into Bombay to burn with frankincense and other incense to bring out their odours more strongly; saffron (Heb. kark $6 m$), the stig. mata of Crocus satious, a native origiually of Cashmere; spikenard (Heb. nerd), the root of the Nardostachys Jalamansi of Nepal and Bhutan; stacte (Heb. nataf), generally referred to the Styrax officinale of tho Levant, but Hanbury bas shown that no stacte or storax is now derived from S. officinale, aud that all that is found in modern commerce is the product of the Liguidambar orientale of Cyprus and Anatolia.

Besides these aromatic substances named in the Bible, the follow. ing must also be enumerated on account of their common use as incense in the East; benzoin or gum benjamin (see vol. iii. p. 581), first mentioned among Western writers by Ibn Batuta (1325-1349) under the name of lutin d^{\prime} Javi (i.c., olibancm of Jnva), corrupted in the parlance of Europe into benjanion and benzoin; camphor, proluced by Cinnamomum Camphora, the "camphor laurel" of C'hina and Japan, and by Dryobalanops aromatica, a nativo of the lndian Archipelago, and widely osed as incense throughout the East, martienlorly in Chima (compare vol, ir. p. 761); elemi, the resin of an unknown tree of the Philippine Islands, the elemi of oled writers (see vol. viii. r, 122) being the resin of Bosucllia Frercona; ghm-draton or draron's blood, obtained from Culamus Draco, one of the ratan palms of the Indian Arehipelago, Dracena Draco, a liliaccous plant of the Canary lslames, and Plerocarpus Draco, a leguminous tree of the island of Socotra (see vol. vii. p. 389); rosemalloes, a corraption of the Javanese r'asamala, or liquid storax, the resinous exudation of Liquilambar Allingia, a native of the Indian Archipelago (an American Liquidambrr also prodnces a rose-malloes-like exulation); star anise, the starlike fruit of the Illicium anisatum of Yunan anl south-western Chinn (compare vol. ii. p. 58), burnt as incense in the temples of Jajan; sweet flag, the root of Acores Calamus, the bach of the llindus, mach used for incense in Imlia (see vol. ix. p. 280). An aromatie earth, found on the coast of Cutch, is used as incense in the temples of westere lndia. The animal excreta, musk and civet, also enter into tho composition of modera Eurojean pastils and clous fumants. Bulsam of Tolu, pro duced by Myroxylon toluiferum, a native of Venezucla ant New Granada; balsam of Peru, derived from Myroxylon Percirer, a native of San Salvator in Central Amenica; Mexican and Brazilian elemi, produced loy various species of feria or "incense trees," and tho funid cxudation of an American species of Liquidambar, are all used as incernse in Amerina. Hanbury quates a biaculty granted by I'ope l'ius V. (August 2, 1571) to the lisliops of the W' mitting the sulnstitution of halsam of lern for the balsam of the East in the fleparation of the chasm to the used by the Catholic Church in Amarib". Tibe Smane ibl dirago of the Mexicms is a resin resambling dragon's hood oltathed from a chiborbiaccous tree, Croton Ireceo.

Probably nowhere can the actual historical progress from the primitive use of animal sacrifices to the hater refinement of harning incense bu more cloarly traced than ia the pages of the Ohd Testament, where no mention of tho latter solemity occurs before the period of tho Mosaic legisla. tion; but in the monmment of ancient Egypt the authentic traces of the use of inceuse which still exist carry us back to a much earlier dite. From Breroe to Memphis tho
commonest subject carved or paiated in tho interiors of the temples is that of some contemperary Plirah or Pharaoh worshipping the presiding deity with oblations of gold and silver vessels, rich vestments, gems, the firstlings of the tlock and herd, cakes, fruits, flowers, rine, anointing oil, and incense. Generally he holds in one band the censer, and with the other darts the pastils or osselets of iacense into it ; sometinues lie offers iacense in one hand and makes the libution of wine with the other. One of the best known of these representations is that carved on the memorial stono placed by Thothmes IV. (lõ33 b.c.) on the breast of the Sphinx nt Gizeh. ${ }^{1}$ Tho tablet renresents Thothanes before his guardian deity, the sub.god R_{2}, pouring a libation of wine on one side and offering incease on the other. The ancient Egyptians used various substances as iacense. They worshipped la at suariso with resin, at mid-day with myrrh, and at sunset with an elaborate confection called hophi, compounded of no fexer than sixteen ingredients, among which were honey, wine, raisins, resin, myrrh, and sweet calamus. While-it was being mised, holy writings were read to those engaged in the operation. According to Plutarch, apart from its mystic virtues arising from the magical combination of 4×4, its sweet odour had a benign physiological effect on those whe offered it. ${ }^{2}$ The censer used was a lemispherical cup or bowl of broaze, supported by a long handle, fashioncd at one end like an open hand, in which the bowl was, as it were, held, while the other ead within which the pustils of incense were kept was shaped into the bark's head crowned with a disk, ne the symbel of Ra. ${ }^{3}$ In embalning their dead the Egyptians filled the cavity of the belly with every sort of spicery, except frankincense (Herod., ii. 86), which was regarded as specially consecrated to the worship of the gods. In the burnt offerings of male kine to Isis, the sarcase of the steer, after evisceration, was filled with fine bread, honey, raisins, figs, frankincense, myrrh, and other aromatics, nond thus stuffed was roasted, being basted all tive while by pouring over it large quantities of sweet oil, and then caten with great festivity.
How important the consumption of frakincense in the worship of the gods becrme in Egypt is shown by two of its monumente, which are of the greatest interest and value for the light they throw on the early history of the commerce of the Iudian Ocean. One is an inscription in the rocky valley of Hammamat, throurh which the desert road from the Red Sea to the valley of Egypt opens on the green fields and palm groves of the river Nile near Coptos. It was cut on The rocks by an Egyptian nobleman named Hannu, who states that he was sent by Pharaoh Sankhara, 2500 b.c., with a ferce gathered vut of the Thebaid, from Coptos to the Red Sea, there to tako command of a baval expedition to the Holy Land of Punt, "to bring back odoriferous gums." Punt is identified with the Somali country, which is now known to be the native comntry of the trees that yield the hulk of the frankincense of commerce. The other bears the record of a second expedition to the same land of Punt, undertaken by command of Queen Itasop, 1600 B.c. It is preserved in the rividly chiselled and richly coloured decorations which pertray the history of the reign of this famous Pharauh on the walls of the "Stage Temple" at Thebes. The temple is now in ruins, but the entire series of gorgeous pictures recording the expedition to "the balsam land of Punt," from its leaving to its returning to Thebes, still remains intact and undefaced. ${ }^{4}$

[^141]These are the only anthenticated instances of the export of incense trees from the Somali country until Colonel Playfair, then political ngent at Aden, in 1862-64, collected and sent to Bombay the specimens from which Dr Birdwood prepared his deseriptions of them for the Lingean Society in 1868. Kiag Antigenus is said to have had a brancl of the true frankincense tree sent to him.

Homer tells us that the Egyptians of his time were emphatically a nation of druggists $\langle O d$. iv. 229, 230). This characteristic, in which, as iu many others, they remarknbly resemble the Hindus, the Egyptians have maintained to the present day; and, although they lave chnnged their religion, the use of incense among thein continues to be as familiar and formal ns ever. The kohl or black powder with which the modern, like the ancient, Egyptian ladies paint their languishing eselids, is nothing but the smeeth of charred frankincense, or other odoriferous resin, which is brought with frankinceuse, and phials of water from the well of $Z \mathrm{~cm}-\mathrm{em}$, by the returaing pilgrims from Mecea. They also melt frankinceuse as a depilatory, and smear their hands with a paste into the composition of which frankincense enters, for the purpose of communicating to them nn attractive perfame. Herodotus (iv. 75) describes a similar artifice as practised by the women of Scythia (compare also Judith x. 3, 4). In cold weather the Egyptians warm their rooms by placing in them a brazier, "chafing-dish," or "standing-dish," filled with charcoal, ia which incense is burat; and in loat weather they refresh them by occasionally swinging a band censer by a clain through them-irankincease, beazoin, and aloo wood being chiefly used for the purpose. ${ }^{5}$

In the anthorized version of the Bible, the word "incease" translates two wholly distinct Hebrew words. In various passages in the latter portion of Isaiah (xl.-lxvi.), in Jeremiah, and in Chronicles, it represents the Hebrew lebonalh, more usually readered "frankiacense"; elsewhere the orlginal word is ketoreth (Ex. xxx. 8, 9, Lev. x. 1, Num. vii. 14, \&c.), a derivative of the verb hitter (Pi.) or hilitir (Hiph.), which verb is used, not only in Ex. xxx. 7, but also in Lev. i. 9, iii. 11, ix. 13, and many other passages, to denote the process by which the "savour of satisfaction" in auy burnt offering, whether of flesh or of incense is producerl. Sometimes in the authorized version (as in 1 Kings iii. 3, I Sam. ii. 28) it is made to mean explicitly the burning of iucense with oaly doubtful propricty. The expression "jacenso (ketereth) of rams" in Ps. lxpi. 15 and the allasion in Ps. cxil. 2 ought both to be nnderstood, most probably, of ordinary burnt offeriogs. ${ }^{6}$ The "incense" (ketoreth), or "incense of sweet scents" (ketoreth sammim), called, in Ex. xxx. 35, "a confection aiter the art of the apothecary," or rather "a perfume nfter the art of the perfumer," which was to be regarded as most holy, and the imitation of which was prehibited under the severest penalties, was compounded of four "swect scents" (samnim), ${ }^{7}$ namely stacte (nataph), onyclaz (sheheleth), galbanum (helbench), and "pure" or "fne" frakincense (lebonah zaccah), pounded together in equal proportions, with (perhaps) an admixture of salt (memullah). ${ }^{8}$ It was then to ${ }^{\text {be }}$ "put before the testimony" in the "tent of meeting." It rus burnt on the altar of inceose (sce Altar, vol. i. p. (610) by the priest every morning when the lamps were trimmed in the holy place,

[^142]nal every creming when they were lighted or "set up" (lix. xxx. 7, 8). A handful of it was also burnt once a year in the holy of holies by the ligh pricst on a pan of Lurning coals taken from the altar of burnt-offering (Lev. xvi. 1ㄹ, 13). Pure frankincense (lebonali) formed part of the meat offering (Lev. ii. 1G, ri. 15), and mas also perentel along with the shew bread (Lev. xxis. 7) every sablath day (probably on tro golden saucers; see Jos., Ant, iii. 10, 7). The religioms significance of the use of incense, or at least of its use in the holy of holies, is diatinctly set forth in Lor. xvi. 12, 13.

The Jews more also in the habit of using odoriferans substances in connexion with the funeral obsequies of Histinguished persons (see 2 Chron. xvi. It, xai. 19 ; Jor. xaxiv. 5). In Am, vi. 10 "he that burneth him"probably means "he that burns perfumes in his honour." Teferences to the domestic use of incense occar in Cant. iii. 6, Pruv. xxvii. 9, cf. vii. 17.

The "marbles" of Ninereh furnish frequent examples of the ofuring of incense to the sun-god and his cunsort (2 Kings axiii. 5). The kings of Assyria united in themselves the royal and priestly offices, and on the monuments they erectel they are gencrally represented as offering incense and pouring out wins to the tree of life. They probably carried the jaceose in'the sacred bag which is so frequently scen in thcir lands and in those also of the common priests. Accorliag to Herodotus (i. I83), frankincense to the amount of 1000 talents' weight was ofiered every year, during the feast of Bel, on the great altar at his temple in Babylon.

The monuments of Persapolis and the coins of the Sassanians show that the religions use of incense was as common in ancient Persia as in Babylonia and Assyria. Firo times a day the priests of the Persians (Zoroastrians) burnt incense on theie sacred fire altars. Io the Avesta (Fondidud, Fargud xix 24, 40), the incense they used is named wohugrono. It has been illentified with benzoin, bat was probably frakkincense. Herodotus (iii. 97) states that the Arabs bronest every year to Darins as tribute 1000 talents of frankincense. The Parsees still preserve in westem India the puro tradition of the ritual of incense as fullowed by their race from probably tho most ancient times.

Tho hamayane and Muhabharata allord evidence of tho employment of incenso ly the IIindus, in the worship of the gols and the burning of the dead, from the romotest antiquity. Its use was obriously continued by the Luddhista during tho presalence of their religion in India, for it is still asel by them in Nepral, Tibet, Ceylon, Durmah, Chion, and Japan. These countries all reccived Buddhism from India, and a largo proportion of tho porcolain and earthenware articles imported from Chinz and Japan into Earops consists of innumerablo forms of censers. The Jains all over India burn stickz of inecuse before their Jina. The commonest incenso in ancient Inlia was Irobably frankincense. Tho Indian frankiacense trec, Bosuctliz thurifor, Culebrooke (which certainly inchulea B. glabra, Roxburgh), is a doubtful nativo uf India It is found chiefly where the Budhlist religion prevailed in ancient times, in Bihar and along the foot of tho llimalayas and in western India, whero it paticularly flourishes in tho neighburthool of the caves of Ajanta. It is guite possible theref no that, in the conrse of their widely extendel commerce during the one thousand years of their ascemlency, the burhlists ionportal tho truo frakineenso trecs from Africa and Arabia into India, mud that tho accepted Intian species are merely varietics of them. Now, however, the incenso in eommonest uso in India is benzoin. But the consumption of all manner of odoriferous resins, gum resins, rowta, woods, dried leases, flowers, fruita, and seeds in India, in sacial as weli as religions observances, is enormaus.

The grateful perfamed powder alio or randa is composed either of rice, flour, mango bark or deodar weol, camphor, and aniseed, or of sandalweod or wood nloes, cerumbet, zedoary, rose flowers, camphor, and civet. The incense sticks and pastils known all over India under the names of utl-buti ("benzoin-light") or aggar-ki-buti ("woorl alocs light") are composed of benzoin, wood aloes, samdal. wood, rack lichen, patchouli, rose malloes, Flacourtia leal (talisput-tree), mastic, and sugar candy or gam. The alir and aggir butis marle at the Mahometan city of Bijarpur in the Mahrattr conntry are celebrated all orer western India. The Indian Mussulmans indeed were rapidly degeneratiag into a mere sect of Hindus before the Whanbi revival, and the more recont political propaganda in support of the false caliphate of the sultans of Turkey; and we thetefore fiod the religious use of incense among them nore general than among the Sahometans of any other country. They use it at the cerenomies of circumcision, bismillals (teaching the child "the name of God"), virginity, and marriage. At marriage they burn benaoin witis nim sceds to keep off evil spirits, and prepare the bridecakes by putting a quantity of beazoin between layers of wheaten dongh, closed all round, and frying them in clarified butter. For days the bride is forl on little else. In their funeral ceremonics, the moment the spirit has fled incense is burnt before the corpse uatil it is carried out to be buriod. The begging fakirs also go about with a lighted stick of iucense in one hand, and holding ont with the other an incense-holler (literally, "incense chariot"), into which tho coins of the pious are thruwn. Large "incense trees" resembling our Cbrist. mas trees, formed of incense-sticks and pastils and ussecets, and alight all over, are borne by the SLiah Mussulmans in the annual procession of the Mohurrum, in commemoration of the martyrdom of the sons of Ali. The worship of tho tulsi plant, or holy basil, by the Hindus is popularly explained by its consecration to Vishnu and Krishaa. It grows on tha funr-borned altar beforo the bouse, or in a pot placed in one of the front wiodors, and is worshipped every morning by all the female members of erery Hindu household. It is possible that its adora. tion has survived from the times when the Hindus buried their dead in their bouses, beeath tho family licarth. When they came iuto a hot climate the firo of tho sacrifices and domestic cookery was removel out of the house; but the dead wero probably stild fur a while buried in or near it, and the tulsi was planted ower their graves, at once for the salubrious fragrauce it diffuses and to represent the buraing of incense on the altar of the family lar.

Is to the Oifa mentioned in llomer (IV. ix. 490, and clsewhere) and in Hesiod (Horks and Days, 338), Nhere is somo uncertaiaty whether they wero incense offerings at all, and if so, whether they were ever offered alone, and not always in conjunction with animal sacrifices. That the domestic use, however, of the fragrant wood Diov (tho Arbor vite or Callitris quadrivaleis of botanists, which yields the resin sandarach) was known in tho Homeric age, is shown by tho case of Calypso (O.l. v. G0), and the very similarity of the word oiov to dios may bo taken ns almost conclusively proving that by that timo tho samo wood was also employed for religious purposes. It is not probablo that tho sweet smelling gums and resins of tho countrics of tho Indim Ocean began to bo introducal into Greeco before tho 8 th or Thicentury sece, and doubtless dißaros or λ ßarwós first became an articlo of axtensjo comnerce only after tho Mediterranean trade with the East had been opened up lyy tho Figyptian ling Psammetichus (670 n.c.). Tho new Oriental word is frequently employed by IIerodotus; and thero aro ab:andant references to the use of the thing omong tho writers of the golden age of Attic literaturo (see.
or example, Aristophanes, Plut., 1114; Frogs, 871, 888; Clouds, 426 ; Fasps, 96, 861). Frankincensc, bowever, though the most common, never became the only kind of inccose offered to the gods among the Greeks. Thus the Urphic Hymns are careful to specify, in connexion with the several deities celebrated, a great variety of substances sppropriste to the service of each; in the case of many of these the selection seems to have been determined not at all by their fragrance but by some occult considerations which it is now difficult to divine.

Among the Romans the use of religious fumigations long preceded the introduction of foreiga substsoces for the purpose (see, fer example, Ovid, Fast. i. 337 sq., "Et non exiguo laurus adusta sono"). Latterly the use of frankincense ("mascula thura," Virg., Ecl. viii. 65) became very prevalent, not only in religious ceremonials, but also on various state occasions, such es in triumphs (Ovid, Trist. ir. 2, 4), and also in connesion with certain occurrences of domestic life. In private it was daily offered by the devout to the lar familiaris (Plaut., Aulul., prol., 23) ; and in public sacrifices it was not only sprinkled on the head of the victim by the pontifex before its slaughter, and afterwards mingled with its blood, but was also threwn apon the flames in which it was roasted.

No perfectly satisfactory traces can be found of the use of incease in the ritual of the Christian Cburch during the first four centuries. It obviously was not contemplated by the author of the epistle to the Hebrews; its use was foreign to the synagegue services on which, and not on those of the temple, the worship of the primitive Christians is well known to have been originally modelled; and its associations with hesthen solemnities, and with the evil repute of those who were known as "thurificati". would still further militate against its employment. Various authors of the ante-Nicene period have expressed themselves as distinctly unfarourable to its religious, though net of course to its domestic, use. Thus Tertullian, while (De Cor. Mil., 10) ready to acknowledge its utility in counteracting unpleassat smells ("si me odor alicujus loci offenderit, Arabia aliquid incendo"), is careful to say that he scorns to offer it as an accompaniment to his heartfelt prayers (Apol., 30, cf. 42). Athenageras also (Legat., 13) gives distinct expression to his sense of the needlessness of any such ritual ("the Creator and Father of the universe does not require blnod, nor smoke, nor even the sweet smell of fowers and incense"); and Arnobius ($A d v$. Gent., vii. 26) seeks to justify the Christian neglect of it by the fact ${ }_{j}$ for which he vouches, that among the Romans themsclves incense was unknown in the time of Numa, while the Etruscans had always continued to be strangers to it. Cyril of Jcrusslem. Augustine, and the Apostolic Constitutions make no reference to any such feature either in the public or private worship of the Christians of that time. The earliest mention, it would seem, occurs in the Apostolic Canons (can. 3), where the $\theta v \mu i \alpha \mu a$ is spoken of as one of the requisites of the eucharistic service. It is easy to perceivo low it should inevitably have come in along with the whele circle of ideas involved in such words as "temple," "altar," "priest," which about this time came to be so generally applied in ecclesiastical connexions. Evagrius (vi. 21) mentions the gift of a θ vucarýptov by Chosroes the king of Persia to the church of Jerusalem; and all the Oriental liturgies of this period provide special prayers for the thurification of the cucharistic elements. The oldest Ordo Romanus, which perhaps takes us back to within a century of Gregery the Great, enjoins that in pontifical mssses a sabdeacon, with a golden censer, shall go before the bishop as he leaves the secretarium for the choir, and two, with censers, before the deacon gospeller as be procceds with the
gospel to the ambo. And less than. two centuries afterwards we read an order in one of the capitularies of Hincmar of Rheims, to the effect that every priest ought to be provided with a ceaser and incense. That in this portion of their ritual, however, the Christians of that period were not universally conscious of its direct descent from Mosaic institutions may be inferred perhaps from the " benediction of the incense" used in the days of Charlemagne, which runs es follows: "May the Lord bless this incense to tha extinction of every nexious smell, and kindle it to the odour of its aweetness." Even Themas Aquinas (p. iii qu. 83, art. ${ }^{5}$) gives prominence to this idea.

The character and order of these historical notices of incense would certainly, were there nothing else to be considered, justify the conclusion which has been generally adopted, that its use was wholly unknown in the worship of the Christian Church before the' 5 th century. On the other band, we know that in the first Cbristian services beld in the catacombs under the city of Rome, incense was burnt as a sanitary fumigation at leest. Tertullian also distinctly alludes to the use of aromatics in Christisn burial: "the Sabæans will testify that more of their merchandise, ani that more costly, is lavished on the burial of Christisns, than in burning incense to the gods." And the whele argument from analogy is in favour of the presumption of the ceremonial use of incense by the Christians from the first. It is natural that little should be said of so obvious a practice until the fuller development of ritual in a later age. The slighting references to it by the Christian fathers are no more an argument against its existence in the primitive church, than the similar denunciatiuns by the Jewish prophets of burut offcrings and sacrifices are any proof that there ware no such rites as the offering of incense, and of the blood of bulls and fat of rams, in the worship of the temple at Jerusalem. There could be no real offonce to Christians in the burning of incense. Malachi (i. 11) had already foretold the time when among the Gentiles, in every place, incense should be offered to God. Gold, with myrrh and frankincense were offered by the Persian Magi to the infant Jesus at his birth; and in Revelation viii. 3, 4 the image of the offering incense with the prayers of the saints, before the throne of God, is not without its significance. If also the passage in Ambrose of Milan (on Luke i. 11), where he speaks of "us" as "adolentes altaria" is to be translated "incensing the altars," and taken literally, it is an unequivocsl testimony to the use of incense by the Caristian Church in, at least, the 4th century.

The Dissal of the Roman Church now enjoins incensation before the introit, before the gospel, and again at the offertery, in every high mass; the use of incense also occurs when the sacrament is exhibited, at consecrations of churches and the like, in proccssions, in the office for the burial of the desd, and at the exhibition of relics. On high festivals the altar is censed at vespers and lauds.

In the Church of Eagland the use of incense was gradually abandoned after the reign of Edward VI., until the ritualistic revival of the present day. Its use, however, has never been abolished by law. A "Form for the Consecration of a Censer" occurs in Sancroft's Form of Dedication and Consecration of a Church or Chapel (I6S5). In various works of reforence (as, for cxsmple, in Notes and Qucrics, 3d ser., vol. viii. p. l1) numerous sporadic cases are mentioned in which incenso appears to hare been burnt in churches; the evidence, however, does not go so far as to show that it was used during divine scrvice, least of all that it was uscd during tho communion office. At the coronation of George. III., one of the king's groons appeared "in a gcarlet-drcss, holding a perfuming $E D_{4}$ barning perfumes, as at previeus coronations."

Por the manutacture or the iocense now used in the Christian churches of Europe there is no fixed rule. The books of ritual are agreed that Ex. xxx. 3^{4} shonld be taken as a guide as moch as possible. It is recommended that frankineense should enter as largely as possible into its composition, and that if inferior materials be employed at all they should not be allowed to preponderate. , In Rome olibanum alone is employed; in other places benzoin, storax, aloes, cascarilla bark, cinnamon, cloves, and musk are all said to be occasionally used. In the Russian Charch, benzoin is chiefly cmployed. The Armenian liturgy, in its benediction of the incense, speaks of "this perfume prepared from myrrla and cinnamon."
\rightarrow The preparation of pastils of incense has probably come down in a continnous tradition from ancient Egypt, Babylonia, and Phenicia. Cypros was for centuries famous for their manufacture, and they wero still known in the middle ages by the names of pastils or osselets of Cyprus.

Maimonides, in his More Nevochim, states that the uso of inconse in the worship of the Jews originated as a corrective of the disagreeable odours arising from the slaughter and burning of the animals offered in sacrifice. There can be no doubt that its use throughout the East is based on sanitary considerations; and in Europe even, in the time when the dead were buried in the churches, it was recegnized that the buraing of incense served essentially to preservo their salubrity. But evidently the idea that the odour of a burnt-offering ($c f$. the кvions ijois nüt $\mu \eta$ of Odyss. xii, 369) is grateful to the deity, being indeed tho most essential part of the sacrifice, or at least the vehiclo by which alone it can successfully be conveyed to its destination, is also a very early one, if not.absoJutely primitive; and surrivals of it are possibly to be met with even among the most highly cultared peoples where the purely symbolical nature of all religious ritual is most clearly understood and maintained. Some such idea plainly underlies the familiar phrase "a sweet savour," more literally "a savour of satisfaction," by which an acceptable offering by fro is so often denoted in the Bible (Gen. viii. 2l, Lev. i. 9, el passim; of. Eph. v. 2). It is easy to imagine how, as men grew in sensuous appreciation of pleasant perfumes, and in empirical knowledge of the sources from which theso could be derived, this advanco would naturally express itself, not only in their domestic habits, but also in the details of their religions ceremoniad, so that the custom of adding some kind of iucense to their animal sacrifices, and at length that of offering it paro and simple, would inevitably arise. Ultimately, with the development of tho spiritual discernment of men, the "offering of incense" becamo a mere symbolical' expression for prajer (see Rev. v. 8, viii. 3, 4). Clement of Alexandrix expresses this in bis well-known words: "The rre altar of ivecoso is the just soul, and the perfume from (t is holy prayer." (So also Origen, Cont. Cels., viii. 17, 20.) Tho ancients were fumiliar with the sanitary effecacy of fumigations. The energy with which Ulysses, after the slaugliter of tho suitors, calls to Luryclea for ""firo and sulphur" to purfo (literally "fnmigate") the dining-hall from the pollution of their blood (Od. xxii. 481, 482) would startle those who imarine that sanitation is a veculianly molern seience. Thero is not the slightest doubt that the consing of things and persens was first practised for acts of [mrification, and thus becamo 85 m bolical of cunsecration, and finally of the sanctifieation of the soul. Tho ligyntians understood the uso of incense ns aymbolical of the purification of the sonl by prayer. Contholio writers gencrally treat it as typuifing contrition, the preaching of the gospec, the proyers of the faithful, mul the virtueg of the sainte.
(0. 13)
fNUEST, earnal connexion between persons so-related that marriage conld not take place between them according to the Levitical rules. In England incest has not generally been treated as a crime, although, along with other offences agaiust morals, it was made punishable by death in 1650. 'ince the Restoration it has, to use Blackstone's phrase, been left to the "feeble coercion of the spiritual courts." Under the divorce law, incest is one of the aggravations of adultery which entitle a wife to divorce her hasband. In the law of Scotland, it is a crime nominally punishable with death, but the penalty usually inflicted is penal servitude for life. This sentence was actually prenounced on a man in 1855 . In the United States, as in England, incest is not an indictable offence at common law, but it has beer made so by the legislation of some of the States.

INCHBALD, Mrs Elizabeti (1753-1821), an English actress, dramatic anthor, and novelist, was born 15th October 1753. Slie was the daughter of a farmer a! Standingfield, near Bury St Edmunds, Suffolk, her maiden name being Simpson. On acrount of the death of her father in her eighth year, she and her sisters never enjoyed the advantages of school training or of any regular supervision in their studies, but they nevertheless seem to have acquired at an early period refined and literary tastes. A favourite amusement of the family was readings, ehiefly of a dramatic kind, and Elizabeth, notwithstanding that sho was afllicted with-an inopediment of speech, which drove her into solitude, soon conceived a strong desire, not only to see the great world, but to become an actress. After making an attempt with little success to securo an engagement in a Norwich theatre, she in April 1772 left secretly for London, where sho made the acquaiutance of scveral managers and netors, but with no better fortune. In June she, however, married Mr Inchbald, 'a comedian in Drury Lane Theatre, and in September following she made her debut as an actress in tho character of Cordelia, her husband taking the part of Lear. For several years she acted along with her husband in the provinces, but notwithstanding her great beauty and her good mental aptitude for acting, the impediment in her speech, by rendering rapidity and easo of atterance impossible, prevented ber from attaining to moro than very moderato execllence. After the death of her husband in 1778 she continucd for some time on the stage, but her success as a dramatic author led her to retire in 1789. She died at Iensington, August 1, 1821.

Mrs Inchbald's plays amount to nineteca in all. Somo of thent were for a time very successful, especially Wives as they ucre and Maids as they are. Among tho others may bo mentioned Such Thinas Are ; The Marricd Man; The Wcdding Day; The Mid. night Hour ; Everyone has his Fault; and Lovers' Vous. She also edited a collection of the British Thealre, with biographical and critical remarks, 25 rols., 1806-1809; a Collection of Farees, 7 vols. . 1809; aud The Modern Theatre, 10 vols., 1809. Her fame, howercr, now rests chicfly on her two novels, A Simple Story, nud Nature and Art. Thicso works possess many soinor faults nod innccuracies, but on the whole their style is casy", natural, and gracefal; and if they aro tainted iu somo degreo by n morbid nam exaggerated sentiment, and display nono of thant faculty of ereation possessed by tho best writers of fiction, tho pathetic situations, as: the deep and pure fecling pervading them, secured for them a wide but now a wauing popularity. Somo timo before her death Mirs Inchbald destroyed nu nutobiomraphy for which sho had bee? offered $£ 1000$ by Phillips the publisher; but her Memoirs? compiled by J . Boaden, chielly fiom her private jommal, nppenred in 1833 in two volumes. An interesting account of Mrs Inchbald is contained in hecords of a Ciirthoul, by Fruces Ann Licmble, 1878.
INCUBATION. Seo EMED, vol. iii. p. 775, and Re. production. For Aetificial Incubation, aco Poultix. INDEPENDENTS, a religious denomimation whoso distinetive ocelesiastieal principle is that the individual congregation or chureh is a socicty strictly voluntary and nutonomous, "stmming directly under the authorily of I sus Christ. living in immediate dependence on Him, and
responsible to Him alone for its beliefs and acts as a Christian society. Its ideal stands distinguished, on tho une land, from Episcopacy by Laving no gradations of ministerial or clorical orders, or persons above tho individual congregauon invested with administrative or judicial authority, and, on the other hand, from Presbytery by having no gradation of courts or representative bodics possessed c^{c} legislative and judicial functions. Thesc distinctions imply others. Episcopacy and Presbytery are essentially organized and incorporative systems, building all the societies they comprebend into a political unity, but Independency is essentially voluntary and individualizing, satisfied with a apiritual unity, refusing to permit its various societics to be built into a political organism, lest it should do violenco to the rights of conscience, or prevent or even supersede the duty of the exercise by the individual of his own judgment in matters of religion. Episcopacy and Presbytery regard the collective organization as the church, but Independency the individual congregation, investing it with the attributes and prerogatives the other systems reserve for the organized whole. Its members possess equal rights, and are bound by equal obligations. They constitate a state whose citizens nre all enfranckised, and are so becauso citizenship is limited to the qualified, who, having sought it voluntarily, voluntarily retain it. Independency may bo said to affirm its ecclesiastical in order that it may realizo its religious principle, that religion is purely a matter of the conscience, rot to bo created, extended, or reformed by any political mechanism or agencies, but by moral means, through men who seek to have it believed and embodied by nen for reasons tuat commend themsolves to the conscience, free and unconstrained. It thus holds that the best service the state can render to religion is to leave it free to live and act according to its own nature, in obedienco to its own laws, prompted by its owu impulses, guided by itz own spirit and judgment.

Independency rose in tho reign of Elizabeth, and may be said to have been born of the despair of seeing religion reformed and vivified on any one of the then followed lines. The peculiar condition of the Anglican Cburch at this period is well enough known. There were men in it who wished it to be indepeadent of Rome, but to remain as far as possible Catholic while Anglican, and there were men who wished it to be conformed in doctrine and polity to those churches of the Continent that were by preeminence the Reformed. These latter were the Puritans, and their endeavour was to reform tho church tirough the state, to persuado or compel tho constitutive and sovereign will to make it such as they could conscientiously approse. But it was ineritable in a time of strong religious feeling that somo more daring spirits should endearour to break through the anomalics of tho Puritan position. If their consciences demanded, and the civil authority refused, reform, was it either right or dutiful to sulmit to the civil nuthority as against the conscience? Was there no other way of reformation than by its consent? Was the Clristian man relieved from all responsibility and obligation to obey conscience when the magistrate forbade bim to do sol In so forbidding, was not the magistrate stepping out of his own provinco? Was the church be could so rulo as to prevent the realization of the Scriptural illeal a rightly conceived and constituted church? Was it the upostolical way so to work as to plant, to purge, to otganizs churches only as Cessar gavo consent? And could any but the apostolical way bo right?

Theso wero the questions that created Independency. In the writings of the first Independent, Robert Browne (seo Brows, Rodert), lies tho first crude ottempt at an answer. He is possessod with tho idea that reformation
is necessary, and is to be accomplished, not by the Btate, but by the action and cooperation of men who nro them. selves reformed and rene wed. The Puritans have committed two great mistakes : they have imagined that roformation is a thing of polity only, to bo carried out by changes in the organism, as it were, or structure of the church, leaving many, porhaps tho immense majority, of the individuals who constituto it unreformed; and they haves waited and are waiting to have the work done through and by the magistrate. Browne sets himself absolutely against both positions. "The kingdom of God," be say:s, "was not to be begun by whole parishes, but rather of the worthiest, be they ever so few." This means that a church cannot be created by any political act out of such material as it finds in a parish, but only of the godly, men who are consciously and sincerely Christian. So hodefines a clurch as "a companie or number of Christians or believers, who, by a willing covenant made with their God, are under the government of Goll and Chist, and Lepe his lawes in oue holie communion." 'Ihis idea of a church was as unlibe as possible to the Church of England idcal, and made it as it actually existed so ofiensive to Jrowne that be held communion with it to be a cardinal sin. Lut it also mado him particularly impatient with what be called tho "wickednesse of those preachers which will not reforme themselves and their charge, because they will taric till tao magistrate commaunde and compell them." ${ }^{3}$ This Jed bim to discuss principles and state positions that curivusly anticipate some of tho most modern views as to the relation of the civil authority to religion and the charch. ${ }^{4}$ But tho times were not ripe for either the criticism or the realization of Browne's ideas. They werc estramagances to his own day; failure attended him everywhere-dne partly, perbaps, to the angularities of the man, and partly to the prematarity of tho system; his name was corered with ridicule ; and Brownist became the epithet the early Independents most disliked and rosented.

But the probleus that nad excrcised Browne wers too vital to religion to be his alone. They occupied many minds, and of these not a few looked in a similar direction fur a solution. Genera was at once the strength and tho weakness of the Puritens;-their strength, because it gavo them thicir ideal realized; their woalkess, because it made them think that the only method of realization was in and through the state. Tue Puritan leaders were mainly scientific theologiaus, like Cartwright and Trayers, Terkins and Rainolds, men who strenuously adered alike in doetrine and polity to the principles and methods of their school. But the earliest Independents were mon of simpler minds, educated indeed as well as the English universities could educate them, but of less specific and elaborato training. They studied their own times and interperted their own duties in the light of the Now 'lestament, and

[^143]inferred that as the apostlis had proceeded they ought to proceed, that the methods proper to the apostolic age were also the methods proper to their own. These methods were individual, not national; churches were founded, religion created and reformed, not by civil authorities or agencies, but by preachers who persuaded men to believe, gathered the believers into communities or brotherhoods, each staoding in a fraternal relation to all the rest, none occupying a position of political superiority or dependence. The early Independents believed that in this way only was it possible to reform religion in Eagland, and they acted on their belief, separating themselves from the Anglican Church, forming themselves into communities on what they regarded as the Scriptural model, and working in what was concerived to be the apostolic method. But separation from the church was a capital crime, equal to a denial of the royal supremacy; and so every inveterate separatist became liable to death, And early Independency was not without its martyrs. In the aummer of 1583 two men, Thacker and Coppin, were executed at Bury St. Edmunds for refusing to conform to the church, and "dispersioge of Brawaes bookes and Harrisons bookes." They justified their refusal on the ground that " her Majestie was chieffe ruler civilie, but no further." Two much more remarkable men, who met with a similar fate, were John Greenwood and Henry Barrowe. Both were graduates of Cambridge; Greenwood had been ordained a priest; Barrowe was a barrister, a member of Gray'e Inn. "He made," as we know on the authority of Lord Bacon," "a leap from a vain and libertine youth to a preciseness in the highest degree, the strangeness of which alteration made him very much spoken of." Both became separatists, and were very active in the numerous conventicles that were then being beld in and about London. Their priociples were not so extreme as Browne's, their position being, as it were, intermediate between his and the Puritan. In his notion of the church as a socicty of the godly or the converted, politically independent alike as regards other churches and the state, they agree with him; in bis notion of its rigidly democratic constitution, they differ, inclining more to leave its government in the haods of certain specially chosen men. Their ideal is a sort of Presbyterial Independency. They think of the church as "A companie of Faithfull people; separated from the vabelievers and beathen of the land: gathered in the name of Christ, whome they truelie worship, and redily obey as their only King, Priest, and Prophet: ioyned together as members of one bodie: ordered and gouerned by such officers and lawes as Christ in Ilis last aill and Testanent Lath thereunto ordeyned," \&c. ${ }^{2}$

Of courso, this conception placed them in direct antagonisa to bath the Genevan and Anglicam ideals and methodm. They condemn "Mr Calvine" because "he made no scruple to recerve all the wholo state, even all the profane ignorant people, into the bozome of the church, to dolanister the sacramentes vnto them."3 They condemn

1 "Observations on a Libel"; Letters and Life, by Spedting, vol.

 1. p. 165.A Collrction of certaine Letters and Conferences, latidy passed besmat eertaine I'reachers and fon Prisoncrs in the Flect (1500), 1. 87. These letters were adlresse otn the luritan lowders, and state the radieal point of divergenco of the two systems. This was the eburch Wea; Greeawond and Barrowe, in all their prison Conterences, which wrof many, fall back on this inter:--"Christ's churchalways consisteth of a libly freo preople, separato from the worlh, rightly entled and gathered unto Christ, walking forth in fath moll obedicoce."
${ }^{3}$ Barrowe, A Brief Discourrie of the Firtwe Church (1590), p. 33. This is Barowe's principai work, hat he and Grecowond wero both prolfic anl vigorous writers. They had a lengthy controversy with Mr Georges Giffout, " Cooformable Paritan," who charged then with bring tha "1 lonatists of England." They and the Puritaos wero :urnouny mose deeply at fest. Yel it was only oatural. Tho l'uricuns wero anxious to show that they bal no kirsbip with tho firwurints, tho Browaista were ooxlous to drivo tho I'uritans to tho
the Church of England because it comprehends "all the profane and wicked of the land, "4 and maintain that "Christ is onely head of His church, and His lawes may no man alter"; that the prince is no more than a mere member of it ; that, if he sin, not to excommunicate him is to neglect "God's judgmentes, their dutie and the prince's salvation." The Anglican Church was thus conceived as founded on a wrong principle, worked in a wrong method, and hindered rather than belped by its dependence on tho state. Whitgift asked Barrowe whether, if the princn delayed or refused to reform abuses, the church should proceed without him; and his answer was, "it might and ought, though all the princes of the world should prohibit the same upon pain of death." Ideas like these logically involved separation as a duty; the ideas they contradicted as logically made it a crime. The age was not without the courage of its convictions; and Barrowe and Greenwood died for theirs, April 6, 1593. Shortly afterwards (May 29) John Penry or Ap Henry, a friend and associate. expiated the same sin in the same way.

In spite of the severely repressive measures ot the Government, the Independents continued to multiply. In the last decade of the 16 h century numernus separatist conmunities were formed, ${ }^{5}$ especially in London and the eastern and north-eastern counties. Their conventicles were often surprised, and in 1596 it was reckoned that as many as twenty-four iad died in prison, representing of course but a small proportion of those actually confined. Plainly Eugland had as yet no room for Independency, aod the Independents who wished to keep a gnod conscienca were forced to thiok of seeking a home elsewhere. Certain of their leaders had, indced, in 1592 organized a church in London, with Francis Johnson as its pastor, aud Greenwood as its teacher ; but they were so watched and hunted and harassed-fifty-six of its members having been seized at one time and imprisoned-that they resolved, convinced by the fate of Barrorre, Greenwond, and Peury that a peaceable life in England was impossible, to emigrato in a body. Holland was then the common refuge of the distressed for conscience' sake, the place where the outcasts alike of France and Spain and England found a free and even generous home. The Independents, after trying Campen and Naarden, settled finally at Amsterdam. There they completed their church organization, appointing Francis Johnsen pastor and Henry Ainsworth teacher. Johnson was a untive of Richmond in Yorkshire, had been a fellow o: Christ's College, Cambridge, had beea expelled the university for publicly teaching the Presbyterian polity, and had become pastor of the English merchants' church at Midulcborg. There he had been zealous against the Iude: peadents, had belped to seize and destroy an edition of one of Barrowe's works, but, preserving a copy, had read it and been persuaded to adopt its views. He returned to Eng. land, nssociated himsclf with the author, and became, as wo have seen, the pastor of the first Independent church in England. Ilo was a [ragmatic man, self-willed, emphasizing his separatism, casily drifting into controversies and consequent divisions on minute questions alike of conduct and opinion. Ainsworth (sco Answorth, Henry) was an
logical outcome of their position-separation. Barrowe's first reply to Gifford was the "Plaio Refutation, wherein is discovered tho Forgery of the wholo Ministry; the Confvsion; False Worehip; and Anti-Christina Disorder, of theso Parish Assemblies called tho Cburch of England (3591). - Bbid., P. 9.
${ }^{5}$ ln 1593 , in a debate on a Bill to explain the statato 23 d of Elis 1580, ant for the further reducing "disloyal subjects to obedience," Sir Walter Ralelgh declared that there were "as many as twenty thousnal" Brownists in Finglamd. Ito was naxious that tbey abould be "rooled out of tho commonwenlth," but was ylarmed leat the law that was needed to do so should turn out to be caprablo of use against liberal-miodad Conformists liko himscif. Swo D'Ewes, P. 817, An. 36 Lliz.
altogetber nobler spirit, devout, simple minded, crudite, one who " had not his better for the Hebrew tangue in the uuiversity (of Leyden) nor scarce in Europe," ansious ooly to be allowed to search out the meaning of Scripture and teach it to bis people. The church under these two men bad a somewhat troubled history, and divided at length, part going with Johoson, part with Ainsworth, the cause of the division being as to the offico and power of the elder. The former held that the church had power to elect, but not to depose, the elders, who were its real goreroors, but the latter held that the elders were responsible to the church, which had the power, as to appoint, so also to depose and excommunicate them. Johusun was moving away from Independeacy, as it is now understood, but Ainsworth towards it. Their church is significant as ad attempt to realize the idcal of Barrowe and Greenwood, a provisional or teotative Independency, but no more.
A much more successful attompt at realizing the Independent ideal was made at Leyden under the leadership of Iohn Robinsun (see Rodinson, Jons). He and his people came from Scrooby, in Nottinghamshire. Their headquarters had been at first at Gainsborough-on-Trent. In 1605 one section of the church under Joho Smyth-who was to become the mostestreme of separatists, discovering that baptism by a corrupt church was none, to rebaptize himself and lecome founder of the General Baptistsemigrated to Amsterdam; the other organized themselves under Rubinson at Scrooby. But peace was impossible; fight became necessary. So in 1607 and 1608 they succeeded in escaping in detachments to Holland, settling first in Amsterdam, ultimately in Leyden. There the fine qualitics of Rohinson found a congenial soil, and developed as they could not have dunc in the less gencruus air of England. Leyden Lelpcd to make English separatism into Independency. What is developed in antagonism is ill doveloped, full of exaggerations, unduc emphases, antitheses so sharply stated as to be almost, even when true, dangerously near the false. A prescribed faith may be strong, but can never be sweet; and the strength that is bitter is not a purely rcligious strength. So Independency in England in the days of Whitgift and Bancruft was too much bated and bunted to be able to say the best word and de the best thing for itself. But Independency in Leydes, broathing the free air of the Dutch republic, liring in open fellowship with all its institutions, braced by its strong enthusiasm for liberty, its robust religious faith, its brilliant and fruitful intellectual activity, then at its best and brightest in the young university of the city,-was Independency planted where it could do approximate justice to its own ideal. The influence of the changed conditions soon became manifest in its happier spirit. The church at Leyden lost the narrow and ungencrous spirit of scparatism, pleaded for the duty of communion with the godly in the Charch of Englund and the other reformed churches. On this point Robinson wrote with cloquence and acted with courage, his spirit growing the larger the longer he lived. While professing "a separation from the English national, provincial, diocesan, and parochial church, and churches, in the whole former state and order thereof," le yet confessed and declared that be had still "the same faith, hope, spirit, baptism, and Lord "as in the Cluurch of England, that he enjoyed fellowship with her "many thousands" of godly sons, and that occasional "hearing of the word of God as there preached" was both lawful and necesssry to him as a Christian man. ${ }^{2}$ This most generous spirit and conduct involved Robinson in a long and bitter controversy with Helwys and other extreme sepsratists, who held approval of onything or any one
conacted with the Anglican Cburch to be altugether a sin; but it io no way modified the rigour of his Independency. His definition of a church is almost identical with Barrewe's: "A company, consisting theugh but of two ir three, separated from the morld, whether unchristian ir: anti-christian, and gathered inte the name of Christ by a covenant made to walk in all the ways of God known uato them, is a church, and so hath the whole power of Christ." Its independence, its sufficieacy as a church alike in what concerned idea and reality, be strenuously maintained. Thus "neither was Peter or laul more one, whole, eatire, and perfect man, consisting of thcir parts essential and integral, without relation unto other men, than is a parti. cular congregation, rightly instituted and ordered, a whole, entire, and perfect church immediately and independently. in respect of other churches, under Christ, " Above : church so cenceived there could be no authoritative person or court, eeclesiastical or civil; it was armed with all the powers necessary to do the will of its IIead, and to interfere with it was an ualawful interference with rights it had reccived from Him. Office did not cxalt a man above the brotherbood; the clergy were but Cluristians, and gooc only as Christians. To saintship, and not to office, was promised the forgiveness of sins. "The estate of a saint is most happy and blessed, theugh the person acver so much as come nearan office; but, on the contrary, an officer, if ho be not also and first 2 saint, is a most wretched and accursed creature." Acts to be acts of the churcb must be collective, done, not by the clergy or the officers only, but by the brethren as well. ${ }^{5}$ 'The church was, indeed, an ecclesta, an assembly, called out and called together by the public preaching of the word, but forming in its collective and corporate character a body possessed of supreme authurity, of all the attributes, rights, and prerogatives that belong to those who rule. It is evident that a conception, of this kind was full of promisc. It showed a frm trust in the capabilities of individual Cbristian men to exercise the rights of citizenship within the kingdum of God. It made it in the highest degree wrong for any ruler or bedy of rulers to enforse their own belief on the people. And it was as opposed to ecclesiastical as to civil tyranny, whether in its Episcopal or Presbyterial form. Robinson, indecd, was far from secing or courageously deducing all the consequences implied in lis Independency. He was even illogical enough to state, though in a hesitating way, principles radically incompatible with it. IIe concedes "that godly magistrates are by compulsion to repress public and notable idolatry," by some penalty "to provoke their subjects universally unto hearing for their instruction and conversion"; but be denics that any king is at liberty th inflict death apon all that refuse to be drawn into covenant with God, or remain wicked and unrepentant. ${ }^{\circ}$ Ile knows well enough the utmost cocrcion can do. "By this course of compulsion many become atheists, bypocrites, and fanilists, and, being at first constrained to practise against conscience, lose all conscience afterwards." Liberty is too complex notion to be casily and in all its bearings grasped; and liberty in religion too great a thing to be suddenly and all at once uuderstood and rcalized.
The Leyden chured is the parent of Independency alike in England and America. In 1616 IIenry Jacob, a native of Kent, a graduate of Oxford, one of Johnson's converts; pastor awbile of a church at Middleburg, then a resident with Robinson at Leyden, returned to England, and founded an Independent church at Southwark. In $1620 a^{\circ}$ little company led by Elder Brewster and Deacon Carver sailed from Delftharen, landed in the-midst of a sevcre and storm.

[^144]vinter on tho North American const, and there laid the foundations of the New England States, witliall they were co bo and to create. Jacob had been all through his exile qaxiously looking tomards Englana. In 1609 he had addressed to King James "An Humble Supplication for Toleration," ${ }^{1}$ in which be begs that "each particular church may be allowed to partake in tho benefit of the said toleration, may have, enjoy, and put in execution and practice this her right and privilege," viz., "to elect, ordain, and deprive her orn ministers, and to exercise all Elie other points of lawful ecclestastical jurisdiction under Christ." 'This may be regarded as a clear and explicit statement of the early Independent position, its claim for toleration based on its conception of the Christian church, its plea for liberty of worship based on its principle of individualism and the rights of the iodividual conscience. With what was here asked it would at any time in the 17 th century have been satisfied, but the Anglican policy of Elizabeth, and James, and Charles I. proceeded on this principle, that to allow diversity was to destroy unity, to permit the growth of elements that would prove fatal to the church, involve the denial of the royal authority and the break-ap of the state. Yet the very severity of the Anglican policy strengthened Independency. It luelped to identify the struggle for liberty of conscience with the strugglo for Eoglish liberty.

Up to 1640 little formal progress was made. Churches did not multiply; Land was too active, and the Star Chamber too vigorous. Fht the real progress was immense. Statesmen were persuaded that a system which required so harsh a policy could not be right. Religious men who could not conform went to live in lands and under laws where obedience to conscienco was possible. There was a double emigration, to the Continent and to Now England. In Arnbeim, Thomas Goodirin and Philip Nye ministered to a small congregation; in Totterdam, Hug! Peters and William Ames, the most skilled, scholastic, and disputations theologian of the early Independents, who came from his professorial chair at Franeker in 1682 to die at Rotterdam a year later. Here, too, when Ames was dead and Peters gone to New England, came Jereaiah Burroughs, William Bridge, and Sidrach Simpson, all of them names that were to be conspicuous and influential in days to come.

But the emigration to New England was much the moro important alike as regards its influence on Independency and English history. It bas been calculated that in tho period 1620-1640 upwards of 22,000 Puritan enigrants (tho figures have been placed as high as 50,000) sailed from English and Dutch ports. The reasons that compelled their departuro determined their quality; they were all men of rigurous consciences, who loved their fatherland much, but religion more, not driven from homo by merenntilo necessitiez or ambitions, but solely by their determination to be free to worship God. They wero, as Milton

[^145]said," "faithful and freebora. Englishmen and good Christians constrained to forsake their dearest home, their friends, and kindred, whom nothing but the wide ocean and the savage deserts of America could hide and shelten from the fary of the bishops." Men so moved so to act could bardly be commonplace; and so among them we find characters strong and marked, with equal ability to rula and to obey, as Bradford and Brewster, Winslow and Standish, Winthrop and Dr Samuel Fuller, and men so inflesible in their love of liberty and faith in man as Rnger Williams and young Harry Vane. And as were the people so wero their ministers. Of these it is enougli to name John Cotton, able both as a divine and as a statesman, potent in England by his expositions and apologies of the "New Elgland may," potent in America for his organizing and administrative power; Thomas Hooker, also famed as an exponent and apologist of the "New England may," whose book was commended to theologians at home by Thomas Goodwin, and whose early death was lamented by Cotton in lines which told how

" Zion's beauty did most clearly shine

In Hooker's rule and doctrine, both divine;"
John Eliot, famous as the "apostle of the Indians," first of Protestant missionaries to the heathen; Richard Mather, whose influence and work wers carricd on by his distinguished son. and bis still more ciistinguished grandson, Cotton Mather. The motives and circumstances of the emigrants determined their polity; they went out as churches and settled as charch s'ates. They were all Puritans, but not all Independents-indeed, at first only the men from Leyden were, and they reere throughout more enlightened and tolerant than the men of the other settlements. Winthrop's company were noncomformists but not separatists, esteemed it "an honour to call the Clurch of England, from whence we rise, our dear mother," emigrated that they might be divided from lier corruptions, not from herself. ${ }^{3}$ But the new conditions, backed by the special influence of the Plymouth ectlement, were too much for them; they hecame Independent,-first, perhaps, of necessity, then of conviction and choice. Only so could they guard their ecclesiastical and their civil liberties. These, indeed, wero at first formally as well as really identical. In 1631 the general court of the Massachusetts colony resolved, "thnt no man shall be admitted to the frecdom of this body politic, but such as aro members of some of the churches within the limits of the same." Church and state, citizenship at the one and membership, in the other, thus became identical, and the foundation was laid for thoso troubles and consequent severitics that rexed and shamed tho early history of Independency in New England, natural enough when all thicir circumstanees aro fairly considered, indefensiblo when we regard their idea of the relation of the civil power to the conscience and religion, but explicable when their church idea alone is regarded. And this latter was their own standpoint; their acts were more acts of ckurch discipline than those of eivil penalty.

Meanwhile, the growth of thu New England States and their Independency in religion excreised extraordinary influence in England. It encouraged the Puritans, opened to them a refugo from tlio Anglican tyranny, showed them an English state where the bishop had ceased to trouble and where their own principles wero activo and realized. Land thoroughly comprehended tho situation, saw that Independency in tho colonies must bo struck down it Anglican policy was to succeed at home. They wero a

[^146]recoptacle for schismaties, " irom whonce, is irom the u uweis of the Trojan horse, so many incendiarics might break out to ioflame the nation;" and so it would be necessary to send them a bishop "for their better government, and back him with some forces to compel, if he were not otherwise able to persuade, obedience."! But home politics alone were too much for Laud; and on his downfall and the outbreak of the civil war New England Independency became, on account of its influence on the ecelesiastico-political question, still more potent in English affairs. Thw Independent party in the Westminster Assembly-which had been called to adrise parliament-was small, but influential. Its ministerial members were Thomas Goodwin, a ponderous but learned and conscientions man; Philip Nye, a skilful debater and adroit man of business; Jeremiah Burroughs, a man of sweet manners and gentle disposition, but great prudenec and firmness; Willianı Bridge, and Sidrach Simpson. These iwere all marked by conspicuons moderation of view, but the lay members, like Lord Saye and Sele and Sir Harry Vane, were more advanced, especially on the cardinal question of toleration. The importance of the New England States rias at once recognized by the parliamentary Independents, who made an effort to bring orer their three nost eminent ministers, John Cotton, John Davenport, and Thomas:Heoker. The effort failed; but in place of the men books and pamphlets, expositery and defensive of the "New England way," were discharged in quick succession upon the English public. What gave New England its importanec was this-it was the first realization on a large scale of the "principles of Independency. Here they had been tried under most diffieult conditions, and had proved theroughly successful, capable of maintaining order in the churches, religion in the state, purity of dactrine, and efficiency of discipline. What Geneva lad been to the Puritans under Elizabeth New England was now to the Independents-it was their religious ideal realized, their polity commended by on illustrious example. They--rere no longer, as in the days of John Robinson or Henry Sacob, the apologists of an unpopular and strange theory, hitherto unrealized sare on a scale and undér conditions that made it ridiculous, charged with all the evils that could be prored logically certain to follow from it. On the sontrary, they had now behind them the chureh-state beyond the ocean, and they could proudly tell how men of English 1,hood, who had fled from the Angliean oppression, had tried Independency and prevailed. So there was the amplest controversy on the points at issue, the Scoteh divines being specially active on the one side, and Ameriean divines, prefaced and introduced and explained by English, on the other. The controrersy did something to lessen the distance between Presbyterians and Independents, and did much to strengthen the position of the latter in England. It showed that independence did not inean isolation, that churches that refused to be organized into a political unity still constituted a Cliristian brotherhoed, that socielies that were so jealous of their freedom and rights as to deny to every external authority judicial and legislativo functions could set seck and follow fraternal advice, and mect in common councils to advise and be advised. Dut tho Westminister Assembly and the English Parliament did not approve the "New Eagland way," and the Independents had to be contented to plead for toleration. This, indeed, becamo their great demand-the point on which they and the l'resbyterians differed radically. Here the Presbyterians were inficxible. Toleration was to them the very man of sin. Put to the Independents it was the very condition of continued existence. Without it Enigland would be no better for them under Presbytery than it had been under Episcopacy. As to the uature and decree of this toleration.
${ }^{1}$ Hevly, Life of Laud, n. Eca.
tuey were divided into tro sections, one moderate, tho other more adranced. To the former belonged the ministerial nembers of the assembly, who wished only a limited toleration. They did not desire all views to be tolerated, but only the viers of good men, men of pioue. tender consciences, not those of infidels or blasphemers But the more advanced section courigeously advocated absolute toleration, denied that so lones as a man was a peaceable citizen the magistrate lad any right to interfere with his conscience or conseientious beliefs. To this section belonged Harry Vane, Henry Lurton, Joln Goodwin of Coleman Street, ablest and most restless of eontroversialists in that controversial age; loger Williams, now a Baptist, but still an Independent, home from America, bringing with him the MS. of a great hook on this very subject ; finally, above all, John Milton. ' These were the advanced guard, and theirs was the section that made Independency so immense a political power in the England of the Commonrealth.

This is not the place to inquire into the causes of the sudden and extraordinary ascendency of the Independents in the time of the Commonwealth. Enough to say, it was due to causes both political and religious-to what may. be termed the transmutation of a great religious into a great pelitical question. The men Independency formed and foreed to the front were remarkable mon, strong of will, clear of eye, mighty throngh faith in their principles. And their prineiples were precisely of the kind suited to the emergency, republican and revolutionary, but stecped in the commanding emotions and enthusiasnis of religion. They were principles that ennobled man, that asserted the rights of the indlridual, that made it an easy matter to deal with the divine rights of kings, or kings tou assertive of their rights and forgetful of their dutics. So the Independents had the incalculable adrantage of alrays seeing clearly before them, knowing their end and never being in nny doubt about the way to it. Besides, their theery of the ehurch fell in with the spirit of the Commonwealth. It made but small distinetion between clergy and laity, and tho man with the gift of speech could casily exercise it in preaching. So the army when new modelled, formed of men of spirit and conviction, became quite a nursery of Independents, and men like Richard Baxter found that in it there were quite as many ready to edify as wishful to bo edificd. Religion thus became, not a matter for the elergy. but the possession of the people, not simply the concern of the church, but the business of the whale nation. There was considerable diversity in theological opinion. The moderate men were Calvinists, but among the extreme men were Arminians, like John Goodwin, and men as yet of no recognized school, like Jeln Milton. Independeney, in short, meant the equal concera of every man in religien, alike in its deepest 'mysteries and most practical rrecepts; and so in a period of religious enthusiasm and ferment it naturally came to the front and took the lear. But tho extent of its puwer under the 'Commonweath was tho measure of the disfavour that came to it after the Resteration. The Presbyterians had been mainly instrumental in the bringing back of Charles, and so it had been indecent had no attempt been made to comprehend them within the church. But in the ease of tho Jndependentz there was not eren an abortive attempt at comprehension. And they did not ask what they knew they woull not receive. They only wished to bo tolerated, to bo allowed to live, and no more. At first they thought that this uight be. Philip Nye had seen the king, and was hojeful. But itoirillusions were soon dispellerl. In 1661 the Corporation Act was passed, which disqualified Nonconformists for municipal ofices; in 1662 the Act of Uniformity, which drove upwards of two thousand ministers out of the chureh, sno
silenced all who did not conform ; in 1663 the Conventicle Act, whieh prevented Nonconformist congregations meeting, not allowing in houses more than fise persons beyond the family to be present at once. In 1665 the Five Mile Act forbade aou-conforming ministers to come within 5 miles of any corporate borough; in 1670 the Conventicle Act was made more rigorous; and in 1673 the Test Act made Nonconformists ineligible for offices, civil, naval, or military, nader the crown. Charles, indeed, in his weak way, tried to be mara generous than his church or parliamest, wished to tolerate the Nonconformists that he might the better tolerate the Roman Catholics. Out of thie feeling came the Declaration of Indulgence in 1672 , - which was, incidentally, the means of proving the atreagth of dissent, threc thousand applications being made for licences to use or ercet places of worship; but parliament resisted, and Charles gave ray.

In the dark days that had now come to them, the Inde. pendents, it may well be said, lived with patient courage, and learned through their sufferings. They had men among them that adorned their adversity, and made even their sudden obscurity illustrious. John Oren, hate vicechancellor of Oxford, massive, erudite, the ideal of the acholastic theologian, building up with patient skill his loved science and fencing it round with the sort of arguments his age understood; Thomas Goodwin, less varied but more subtle, not so broad but quite as analytic as Owen, dealing with rich delight in the dialectical aubtleties that pleased his ago; John Howe, with a soul abore the narrowness and bitterness of his day, serens in the midst of his troubles, living in sublime contemplation on "the Living Temple," or the "Vision of God"; Joseph Caryl and William Greenhill, quaint expositors, rich in the lore then used to explain the Old Testament; Theophilus Gale, the equal of Cuaborth in his knowledge of the ancient world, full of the great and fruitful idea he has embodied in his Court of the Gentiles,- these were some of the ejected from church or anivorsity, and they may heip to show the quality of the men who were now, because of their Independency, outeasts from the Church of England, and for it deprived of their common rights as citizeas. Their conduct under James ahowed that they would not purchase their own privileges at tho expense of the pullic safety, and under William their fidelity to the constitation and liberties of England haditsfirst reward in the Act of Toleration. This was but a amall concession, and ono that by the Oceasional Conformity Act of Anne was alinost as good as repealed. But what had been done could not be altogether undone. The coming in of tho Hanoverian dynasty brought a more liberal spirit into polities, and histury has ever since, with an occasional period of declension, been a progressive movement towards freedom. As one by one its priaciples and claims have been admitted by the state, England has become a roomier and healthier ilice for epirits who feel that for religion to be religions it must be free.

In estimating the work alone in England ly the Independents, it is uecessary to bear in mind the extent to which they have supplemented the deficiencies of the Anglican Church. But for them religion in many places would have almost, perhaps altogether, died out. They havo helper to quiction and decpea the religions consciousness and life of the English people. Their preachers, too, have not been without influence, which is the more remarlable as from the time of the det of Uniformity till a few years ago they were exeluded from the national miversities. Soon aiter tho passing of the Act of Tuleration we find Indepeadent preachers riaing to emiaence. The Foster who was celebrated in Pope's couplet-
" Jet modest Foster, if ho will, oxce
Ten nuctropolitans in preaching woll-
was an Independent, and aa vigorous as a thinker as he was eloquent as a preacher, his answer to Tindal naticipating in its leading lines the celebrated argument of Butler in his Analogy. Isaac Watts is a name that must still be honoured, and J'hilip Doddridge a name that must be mentioned with respect. Edward Williams did much to revive the study of theology in the end of last century and early years of this, and Dr Pye Smith showed that within dissent scholarship and theological learning were still possible. The last generation had net a few men of distinction. The names of Henry Rogers, Joseph Gilbert, J. Angell James, Dr Winter Hamilton, Dr Ralph Wardlaw, Dr Robert Vaughan, his distinguished son Alfred Vanghan, Dr Halley, the historian of Nonconformity in Lancashire, and Thomas Binney of London are names representatire of the kind of men that Independency can still produce.

But to cumplete this sketch of the Independente we must and one other element-the work done by their academies and colleges. They have always believed in an educated ministry, and when cast out of the universities one of their very first acts was to found academics. These they had great diffeulty is maintaining, because of the operation of the oppressive acts passed in Charles II.'s reign ; but in spite of the difficulties they contrived to do so. Theophilus Gale had an academy; so had Samuel Cradock, Thomas Doolittle, Richard Frankland, and others of the ejected mioisters. It was possible to kecp these only by tho most frequent changes of place, so as to elude the vigilance of the authorities. When toleration was granted, the academies were able in the greater quiet they now enjoyed to do better work. One of these may serve as a sample. At Gloncester and then at Tewkesbury was an academy conducted by the Rer. Samuel Jones. Here were educated Thomas Secker, afterwards archbishop of Canterbury; Joseph Butler, bishop of Durham, and author of the Analogy; Samuel Chandler, one of the finest scholars of his day, who remained in porerty the scholar and the Christinn Nonconformist still ; and Jeremiah Jones. We know, on the authority of an early letter of Secker's, the method of education followed in Tewkesbury, and certainly, measured by the standard of the day, it was as thorongh as the education was ample. Ont of these academies the present Congregational colleges have grown.

It is unnccessary to attempt any exposition of the principles of Independency. These have been made apparent in the progress of this sketch. It may simply be said here twat the Independents conceive their charch order as the primitive and apostolic, and that out of their idea of the constitution and order of the primitive Christiar. churches their own bystem has grown. They believe that their coneeption of the charch nccessarily invulves freedons of conacience, the jnterference with no man'a helief, the concession of equal rights to all churches or religious aocieties by the state, and they may well remember with pride that John Lecko based his plea for toleration on a conception of the church essentially akin to theirs. Their notion of the pastoral office is in ne respect sacerdotal, but is based on the Old Testament idea of the prophet, on the Now Teatament iden of the preacher-the man who by help or inspiration of Gol speaks for God to men. And the call to his oflice comes through the people; tho divine choice is expressal tlrough the men the divine ward enlightens and the divine spirit puide. Their theology has been predominantly Calvinistic, though of tho more moderato type; but there has always been variety of theological opinion, subscription and the uniformity it attempts to secure being alike impossible to Independency.
ror statistice of the denemination and the reasons which have induced it to assume the name Congregationalist, see Congregationalism.

Authorities. - Fletcher, History of Independency, 4 vols. 1847-9; Heywood and Wright, Cambridge University Transactions, 2 Fols., 1854; Vaaghan, Memorials of the Stuart Dynasty, 2 vols., 1831 ; Roger Willisms, The Blouly Tenent of Persecution, ed. Uaderhill, 1848 ; Hsaburg, Historical Memmials relating to the Independents, 3 vols., 1839-41; Carlyle, Cromwell's Lettcrs and Specches, 1845 ; Underhill, Tracts on Liberty of Conscience and Perscculion, 1846; Masson, Life of Milton, 6 vol.., 1859-80; Vaugban, The Protectorate of Cromwoll, 2 vols, 1839; Stoughton, Church and State Two Hundrea Years Ago, 1862; Underhill, Broadmead Liecords, 1847; Gould, Documents relating to Aet of Uniformity, 1862; Calany, N'ouconformists' Memorial, 3 vola., 1802; 'Toulmin, Protestant Discenters in England, 1814; Stoughton, Religion in England under Queen Anne and the Georges, 2 vols., 1878; Beanet, History of Dissenters during the last Thirty Years, 1839; Barclay, Inner Life of the Religious Socictics of the Commonwealth, 1877; Vanghan, English Nonconformity, 1862; Price, History of Protestant Nonconformity in England, 2 vols., 1836-38; Bogue and Beanet, History of Dissenters, 4 rols., 1803-12; Wilson, History and Antiquities of Dissenting Churches, \&c., 4 vols., 180S-14; Stoughtoa, Ecclesiastical History of Eagland, 5 vols., 1867-74; Dexter, The Congregationalizn of the Last T'hree Hundred Years, 1880; Neal, History of the Puritans, 5 vols.; Waddington, Congrcgational IIstory, 5 vols., 1869-80.
(A. M. F.)

INDEX is a word that may be understood either specially as a table of references to a book or, more generally, as an iadicator of the position of required iuformation on any given subject. Aecording to classical usage, the Latin word index denoted a discoverer, discloser, or informer; a catalogue or list; an inscription; the title of a book; and the fore or index-finger. Cicero also used the word to express the table of contents to a book, and explained his meaning by the Greek form syllabus. Shakespeare uses the werd with the general meaning of a table of eentents or preface-thus Nestor says (Troilus and Cressida, i. 3)-
"And in sach indexes, althoagh small pricks To thoir subsequent volumes, there is seen The baby figure of the giant mass."
Table was the usual Eaglish word, and index was not thoroughly naturalized until the beginning of the 17 th century, and even then it was nsual to explain it as "iodex or table." By the present English usage, according to which the word table is reserved for the summary of the contents as they occur in a book, and tho word index for the arranged analysis of the conteats, we obtain an adrantige not cojoyed in other languages; for the French table is used for both kinds, as is indice in Italian and Spanish. There is a group of words each of which has its distinct meaning but finds its respective place under the general heading of index work; these are calendar, cataloguc, digest, inventory, register, summary, syllabus, and table. ${ }^{1}$ The value of indexes was recognized in the earliest times, and many old books have full and admirably constructed ones. A good index has sometimes kept a dull book alive by reason of the ralue or amusing character of its contents. Mr Carlyle refers to Prynnc's Mistrio-Mastix as "a book still extant, but nover more to be read by mortal;" but the index must have given amusement to many from the curious charncter of its entries, and Attorney-General Noy particularly alluded to it in his speech at Prynne's trial. ladexes have sometimes been uscd as vehicles of satire, and the witty Dr William King was the first to use them is a weapon of attack. His earliestessay in this fich was the index added to the second edition of the Hom. Charles Boyle's attack upon Bentley's Dissertation on the Epistles of Phalaris, 1698.

[^147]To scrve ita purpose well, an index must be compited with care, the refercnees being placed under tho heading that the reader is most likely to seek. An index stiould bo ono and indivisible, and not broken up into several alphabets; thus every work, whatber in one or more volumes, ought to have its complete index. This important rulo has been often negleeted in English books, and is almost universally rejected in foreign ones, to the great inconvenience of readers. The mode of arrangement calls for special attention; this may be cither chronelogieal, alphabetieal, or according to elasses, but great confusion will be caused by uniting the tbree systems. The alphabetical arrangement is so simple, convenient, and easily understood that it has naturally supersedod the other forms, save in some exceptional eases. Much of the value of an index depends upon the mode in which it is printed, and every endeavour should be made to set it out with clcarness. In old indexes the iodexed word was not brought to the front, but was left in its place in the sentence, so that the alphabetical order was oot made perceptible to the eye. There are few points in which the printer is more likely to go wrong than in the use of marks of repetition, and many otherwise good indexes are full of the most perplexing cases of misapplication in this respeot. The oft-quoted instance-

Mill on Likerty

- on the Floss
actually occurred in a catalogue. There appears now to be a revived interest in indeses, and as books daily increase the need of some satisfactory digest of information becomes more keenly felt. In 1877 ths Indes Society was formed with the object of making and printing indexes of books unprovided with them, of compiling and printing indexes of particular subjects, and of gradually preparing a universal index for reference. In order to o'stain uniformity in the eompilation of indezes a serics of rules for indexing have been drawn up by the society. Several publications have already been issued to the subscribers.

Tho following is s list of some of the most important indexes, both of words and of subjects. The chief indexes of words are dictionaries, but these are a special class by themselves. Next come concordsnces : tbe first oue to the Biblo was compiled by Hugo of St Cher in 1247, tho first English concordance to the New Testament was published in 1536, and to the whole Bible in 1550, compiled by John Marheck. Other Biblical concordances are those of R. F. Herrey, 1579 ; C. Cotton, 1622 (frequently reprinted) ; J: Downame, 1632 ; R. Wickeas, 1655 ; S. Newansn, 1650, 3d ed. 1682; A. C'ruden, 1737 (this superseded all works of the same character) ; and R. Young, 1880. Tho following concordances may also be mentionel: -to the Psalter, 1834 ; to the Prayer look, 1851 ; to the Iliod, by G. L. Preadergest, 1875, to Shakespare, by S. Ayscough (1790), by F. Twiss (1805), by Mrs Cowien Clarke (1845), by J. O. Halliwell (Handbook Index, 1860), and by A. Schoidt (1874), ant to. Shakespearo's Pocms, by Mrs 11. 11. Furness, 1874; to Nilton's Paradise Lost (1741), snd to his Puctical Works, by II. J. Torld (1809), by G. L. Prendergast (1857), and ly C. D. Cleveland (1867); to Pope's Works, by E. Abbott, 18 I' $^{\circ}$; to 'l'ennyscu's W^{\prime} orks, by D. B. Bright well, 1869, and another published by Strahan, 1870 ; to In Minnurian (1862); to Keble's Christian Piar, 1871; ond to Watts's Psalms, by D. Guy, 1774. A large nuaber of historical works lave beca supplicd with indexes in acparate volumes. Anong the more important iodexes of prose writers are those of the works of Samucl Richardison (1755), Joanna Southeott (n. 1., and 1815), Juhn Strype (1828), and T. Carlyle (1874); The W'ellington Despatches (1839); Wesley's Journals (1872). A largo mumber of series of jublieations of smeicties and of periodicals have been supplied with general indexes.

The lndexes to tho Statutes anl to tho Journals of the IIouses of Parliament are perhaps the most elaborate werks of the kind ever publishod. In 1778 a sum of $£ 12,900$ was voted for indexes to the Journals of the House of Cormmons. Few parhamentary papers are issued without a satisfactory index being added. Most of the indexes mentioned above refer to marticular books, but ia 1848 Mr W. F. loolo published in New lork an index to subjects treated in reviews and other periodicals; a second edition was published in 1853 as An Index to Perindical Literature. A greatly enlarged edition is now in preparation with tho co-operation of English and American librarians. A largerwork of a similar clar. acter for scicatific literature, but arranged moter authors' names
instead of subjects has been compued by the Royal Soclety and is entitled Codalogue of Scientific Papers (1800-73), 8 vols. 4to, $1867-$ 1879.
(H. B. W.*)

INDEA LIBROROM PROHIBITORUM is the title borne by the efficial list of those books which on doctrinal or moral grounds the Roman Catholic Church, under penalty of ecclesiastical censures, authoritatively forbids the members of her communion to possess or to read. Most Governments, whether civil or ecclesiastical, have at all times in one way or another acted on the general principle that some control may and ought to be exercised over the literature circulated among those under their jurisdiction ; for various examples, both in ancient and in modern times, reference may be mado to the article Bibliograpey (vol. iii. p. 658). The earliest known instance of a list of proscribed books being issued with the autherity of a bishop of Fome is sometimes assigned to the pontificate of Gelasius (494) and sometimes to that of Hormisdas (514), but most probably ought not to be dated earlier than the 8th century. The document is for the most part, as its name implies, a Notitia Librorum Apocryphorum qui non recipiuntur, and chiefly consists of an enumeration of such apocryphal works as by their titles might be apt to mislead the unwary into attaching an undue weight to their teaching (the "Acts" of Philip, Thomas, Peter, Pbilip, and the Gospels of Thaddæus, Matthias, Peter, James the Less, and others). Its concluding paragraph, however, sweepingly declares all the writings of Simen Magus and of many other beretics who are mentioned by name, as also of many more whose names have bcen completely forgotten (minime retineatur), to be repudiated, eliminated entirely from the Roman Catholic and Apostolic Church, and eternally condemned. ${ }^{1}$ Subsequent pontiffs continued to exhort the episcopate and the whole body of the faithful to be on their guard ngainst heretical writings, whether old or new; and one of the fuartions of the Inquisition when it was established was to exercise a rigid censorship over books put in circulation. The bishops in their dioceses bad always, bowever, a considerable discretion. With the discovery of the art of printing, and the wide and cheap diffusion of all-sorts of books which ensued, the need for new precautions against heresy and immorality in literature made itself felt, and more than one pope (Sistus IV. in 1479 and Alexander VI. in 1501) gave special dircction to the archbishops of Cologne, Mainz, Treves, and Magdeburg regarding the growing abuses of the printing press; in 1515 the Lateran council formulated the decree De Impressione Librorum, which required that no work should be printed without previous cxamination by the proper ecclesiastical autherity; the penalty of unlicensed printing being excommunieation of the culprit, and confiscation and destruction of the books. Tho council of Trent in its fourth session, 8th April 1546 , forbade the salc or possession of any anonymous religious book which had not previously been seen and approved by the ordinary; in the same ycar the university of Louvain, at the command of Charles V., prepared an "Indes" of pernicious and forbidden books, a second edition of which uppeared in 1550. In 1557, and again in 1559, Pope f'aul IV., through the Inquisition at Rome,]roblished what may be regarded as the first Roman Iudex in the modern ecclesiastical use of that term (Index auctorum ct libroriom. in tanquam heretici aut suspecti aut perversi al Oflicio S. .2. Inquisitionis reprodentur et in universe Christiana - omalica interdicuntur). All nonymous works published inco 1519 wero condemned without exception in this dulex, which directed its hostility chicfly against works

[^148]that seemed unfavourable to the claims of the Roman carta or maintained the superiority of councils over popes. A list of sisty-two printers of heretical books was appended. At the 18 th session of the council of Trent (26th February 1562), in consideration of the great increase in the number of suspect and pernicious books, and also of the inefficacy of the many previous "censures" which bad proceeded from the provinces and from Rome itself, certain fathers were appointed to enquire into these "censures," and to consider what ought to be done in the circumstances. At the 25th session (4th December 1563) this committee of the council was reperted to bave completed its work, but as the subject did not seem (on account of the great number and variety of the books) to admit of being properly discussed by the council, the result of its labours was handed over to the pope (Pius IV.) to deal with as he should think proper. In the following March accordingly were published, with papal approval, the Index librorum prohibitorum, which continues to be reprinted and brought down to date, and the "Ten Rules" which, supplemented and explained by Clement VIII., Sistus V., Alexander VII., and finally by Benedict XIV. (l0th July 1753), still regulate the preparation of that catalogue. By the first of these rules the condemnation of all books already con demned by pope or council prior to 1515 is renewed; by the second the works of "heresiarchs" (Luther, Zwingli, Calvin, Schwenkfeld, Hiibmaier) are condemned whatever be their subject, but it is provided that the non-religious works of those who are beretics merely may on examination and approval be permitted; the third and fourth relate to translations of the Bible; the fifth orders the expurgation of lexicons, concordances, and similar compilations by beretics; the sixth discourages the circulation of books in the vulgar tongue about controversies between Catholics and heretics; the seventh, eighth, and ninth relato to obscenc or grossly superstitious publications; the tenth contains various detaiis of procedure about the licensing of books, and concludes with the declaration that the possessor or reader of heretical books is forthwith to be excommunicated, while the possessor or reader of books prohibited on other grounds falls into mortal sin, and is to be dealt with severely at the discretion of the bishop. The business of correcting tho Index to date is now in the hands of an ccelesiastical board known as the "Congregation of the Index," which consists of a prefect (who is always a cardinal) and other cardinals, with whom are associated the "consulters" and "examiners of books" (qualificatores). Tho Index Librorm Expurgandorum or Expurgatorius catalogues the works which may be read after the deletion of specified passages. Bishops have the power of grantiug at their discretion the right to read forbidden books, except in some reserved cases, whero the papal dispensation is required. The Roman Index is unfortunately very far from being an calaustive catalogue of works inconsistent with Catholic orthodoxy, and thus lacks the interest and rast importance it would otherwise have hal for the bibliographer.

The carly Reformers, by their attoudo towards writing which from their point of view scemed objectionable, furnished many an argumentum ad hominem to tho Catholics (see Gretser's learned work, De Jure et More prohilendi, cxpargandi, at abolondi libros luercticos et noxios, 1603); thus we find Calvin writing to the ministers at Frankfort about one of the books of Servetus, with a vicw to its being bumt (E_{p}. 153). Gradually, however, all the Protestant churches have recognized the expediency of leaving individuals and communities practically freo to select for their instruction and amusement the works which in the congeirotions exercise of their own responsible judgnent they may find best adapted to their wauti.

YOI. $X I$

I N D I A

INDIA is a great empire of Asia, composed of twelve provinces under direct British administration, and about one hondred and fifty feudatery atates and priacipalities, which equally with the British provioces acknowledge the paramount sovereigaty of the British crown. The whole empire contains close on $1 \frac{1}{2}$ million square miles, and 240 millioas of iahabitants. The area, therefore, ia almost equal to, and the population is just eqnal to, the area and population of all Europe, less Russia The people exactly double Gibbon'a estimate of 120 millions for all the races and nations which obeyed Imperial Rome.

The Name. - The oatives of India can scarcely be said to have a word of their own by which to express their common country. In Sanakrit, it would be called "Bhárata-varsha," from Bharata, a legendary monarch of the Lunar hoe, bat Sanakrit ia no more the vernacular of India than Latin is of Europe. The name "Hiadustáa," which was at one time adopted by European geographers, is of Persian origin, meaning "the land of the Hindus," as Afgháaistan means "the land of the Afghans." According to native usage, however, "Hindustán" is limited either to that portion of the peninsula lying porth of the Viodhya mountaina, or yet more atrictly to the upper basin of the Ganges where Hiadl is the apoken language. The "East Indies," as opposed to the "West Iadies," is an oldfashioned and inaccurate phrase, dating from the dawn of maritime discovery, and atill lingering in certain parliamentary papers. "India," the abstract form of a word derived through the Greeks from thc Persicized form of the Sanskrit sindhu, a "river," pre-eminently the Indus, bas become familiar since the British acquired the country, and is now officially recognized in the imperial title of the sovereign.

The Country.

General Outline.-India, se thus defined, is the middle of the three irregularly shaped peninsulas which jut out southwards from the mainland of Asia, thus correspending roughly to the peniosula of Italy in the map of Europe.
a vast mountainous region, known in the aggregate as the BuinHimalayas, amid which lie the independent states of Bhután dantes. and Nepal, with the great table-land of Tibet behind. The ative principality of Kashmir occupies the north-western angle of India, with Eastero Turkestan stretching to tho north beyond it. At this north-westero angle (in $35^{\circ} \mathrm{N}$. lat., 74° E. long.) the mountains curve southwards, and India is separated by the well-marked ranges of the Sufed Koh and Sulammán from Afghanistán; and by a southern continuation of lower bills (the Hálas, \&ec.) from Baluchistán. The last part of the western land fronticr of ladia is fermed hy the river Hab, and the boundary ends at Cape Monze, at the mouth of its estuary, in $24^{\circ} 50^{\prime} \mathrm{N}$. lat, $66^{\circ} 38^{\circ} \mathrm{E}$. long. Still farther southwarda, India is bounded along the W. and S.W. by the Arabian Sea and Indian Ocean. Turning northwards from the southern extremity at Cape Comorio ($8^{\circ} 4^{\prime} 20^{\prime \prime}$ N. lat., $77^{\circ} 35^{\prime} 35^{\prime \prime}$ E. long.), the long sea-lide of the Bay of Bengal forms the main part of ita eastern boundary. But on the north-east, as on the northwest, India has again a land frontier. The Himálayan raggea at the north-eastern angle (in about $28^{\circ} \cdot \mathrm{N}$. lat., 97° E. long.) throw off spurs and chains to the south-east. These apurs, which have been but imperfectly explored, and may poasibly constitute an independent mountain system, separate the British provinces of Assam and Eastern Bengal from Independent Buratah. They are known successively as the Abar, Naga, Patkoi, and Barel ranges. Turning almost due south in 25° lat., they culminate in the Blue Mountain (7100 feet), in $22^{\circ} 37^{\prime} \mathrm{N}$. lat., $93^{\circ} 10^{\prime}$ E. long., and then stretch southwards uuder tho name of the Arakan Yonas, separating British Burmah from Independeut. Burmah, until they again rise into the mountain of Myeng-mateng (4700 feet), in $19 \frac{1}{2}^{\circ}$ of N. lat. Up to this point, the eastern frontier followa, gencrally speaking, the watershed which divides the river systems of the Braln.'2. putra, Meghna, Koladan (Koladyne), dc., in Pengal and British Burmah, from the Irawadi basin in Independent Burmah. But from near the base of the Myeng-mateng Mountain, in about $19 \frac{1}{2}^{\circ}$ lat., the British frontier stretches almost due east, in an artificial line which divides the lower districts und delta of the Irawadi in British Burmah fron the middle aod upper districts of that river in Independent Burmah. Stretching aouth-eastwards from the delta of the Irawadi, a confuscd succession of little explored ranges separates the British province of Tenasserim from the native kiogdom of Siam. The boundary line rms down to Point Victoria at the cextremity of Tenasserim ($9^{\circ} 59^{\prime} \mathrm{N}$. lat., 98° 32^{\prime} E. long.), following in a somewhat rough manner the watershed between the rivers of the British territory on the west and of Sian on the east.

The empire included within these boundaries is rich in Three varicties of scenery and climate, from the higliest mountains regions in the world to vast river deltas raised only a few inches above the level of the sca. It forms a continent rather than a country. But if we could look down on the whole from a balloon, we should find that India consists of three separato and well-defined tracts. Tho first includes tho lofty Himalaya mountains, which shut it out from the reat of Asia; and which, although for the most pat beyond the British frontier, form an overruling factor in the physical geography of northern India. The second region stretches southwards frou the base of the Himalayas, and comprises the plains of the great rivers which issue from them. Tha third region slopes upward again from the cdge of the river plains, and consista of a high three-sided table-land, supported by the Vindhyi mountains on tho north, aud by the

Eastern and Western Gháts, which run down the ceast on either side till they meet at a poiat near Cape Comoric. The interior three-sided table land thus enclosed is breken by peaks and ranges, interspersed with broad expanses of level uplands, and covers the whule southern half of the peninsula.

The first of the three regions is the Himalaya meuntains and their offshoots to the southward. The Himalayastiterally, the "Dwellint-place of Soow," from the Sanskrit hima, frost (Latin, hiens, winter), and alaya, a housecomprise a system of stupendous ranges, the loftiest in the world. They are the Emodus of Ptolemy (ameng other names), aed extend in the shape of a scimitar, with its edge facing seuthwards, for a distance of 1500 miles along the northern frontier of India. At the north-eastern angle of that frontier, the Dihang river, the connecting link between the Tsan-pu (Sangpu) of Tibet and the Brahmaputra of Assam, bursts threugh the main axis of the range. At the opposite or north-westeru sagle, the Indus in like manner pierces the Himillayas, and turns southwards on its course through the Puojab. The Himálayan region has been fully described in a separate article, vol. xi. p. 821.

This wild region is in many parts impenetrable to man, and newhere yields a passage for a medern army. It should be mentioned, hewever, that the Chinese outposts extend as far as a point only 6000 feet above the Gangetic plaio, nerth of Khatmandu. Indeed, Chinescarnies have serieusly threatened Khatmandu itself; and Sir David Ochterlony's advance from the plains of Bengal to that city in 1816 is a matter of bistery. Ancient and well-known trade rontes esist, by means of which morchandise from the Punjab finds its way over heights of 18,000 fect into Eastern Turkestin and Tibet. The Muztagh (Snowy Mountain), the Karakoram (Black Mountain), and the Changchenmo are the mest famous of these passes.

The Hinálayas not only form a duuble wall along the north of India, but at beth their eastern and western extremities send out ranges to the sonth, which protect its north-eastern and nertb-western frontiers. On the north-east, these offshoots, under the name of the Naga and Patkoi mountains, de., form a barrier between the civilized Eritish districts and the wild tribes of Upper Burmah. The southern continuations of these ranges, known as the Yonas, scparate British from Independent Burmah, and are crossed by passes, the nost historic of which, the Aeng or $A \mathrm{n}$, rises to 4608 (fermerly given at 4517) fect, with gradicats of 472 feet to the mile.

On the oppusite or north-western frontier of India, the mountainous offichouts run dorn the entire length of the British boundaries from the Itimilayas to the sea. As they preceed southwards, their best marked ranges are in tnru known as the Sufed Koh, the Sulaimín, and the Hálz mountains. These massive barricrs have peaks of great height, culminating in the Takht-i-Sulainath or Throne of Solomon, 11,317 fect above the level of the sea. But the mountain watl is pierecd at the corncr where it strikes suuthwards from the IIimilayas by an opening through which the Kíbul (Cabul) river flows into India An adjaceat opening, the Khyber Pass (rising to 3373 feet), the Kuram Pass to the south of it, the Gwalari Fass near Derá Issnail Klaín, thu Tál Fass debonching near Derí Ghazi Khín, and the famous Bolín Pass (5800 fect at top) still farther south, furnish the gateways between India and Afghánistán. The Hála, Brahui, and Pab mountains forn the southern hilly offshoets between India and Baluchistín, und have a mucla tess olevation.

The wide plains watered ly the LIimalayan rivers form the second of the three regions into which we have divided India Thoy extend fron the Pay of Bengal on the east to the Afghan fronticr and the Arabian Sta on the west,
and contain the richest and most densely crowded provinces of the empire. One set of javaders after another has from prehistoric times entered by the passes at their eastexn and north-western frontiers. They followed the courses of the rivers, and pushed the earlier comers southwards beforo them towards the sea. About 150 millious of people now live on and around these river plains, in the provicces known as the lieutenant-governorship of Bengal, Asssm, the Nurth-Western Provinces and Oudh, the Punjab, Sind, Rajputina, and other native states.

The vast level tract which thus covers northern India is River watered by thrce distinct river systems. One of these aystems systems takes its rise in the bollow trough beyoed the Himálayas, and issues through their western ranges upon the Punjab as the Sutlej and Indus. The secend of the three river systens also takes its rise beyond the double wall of the Hintalayas, not very far frum the sonrces of the Indus and the Sutlej. It turns, however, almost due esst instead of west, enters India at the eastern extremity of the Himálayas, and becomes the Brabmsputra of Assam and Eastern Bengal. These rivers colleet the drainage of the northern slopes of the Himalayas, and convey it, by long and tortuous although opposite routcs, into India. Indeed, the special festure of the Himalayas is that they send down the rainfall from their northern as well as from their seutheru slopes to the Indian plains. Of the three great rivers of nerthern India, the two longest, namely the Indus with its feeder the Sutlej and the Brahnaputra, take their rise in the trough on the north of the Himatayas. The third river system of northern India receives the drainage of their southern slepes, and eventually unites into the mighty stream of the Ganges. In this way the rainfall, alike from the northern and southern slopes of the Himalayas, pours dewn iate the river plains of Bengal.

Throughout the river plains of northern India, two Cropa Larvests, and in some provinces three, are reaped each year. These crops are not necessarily taken from the same land; but in many districts the best ficlds have to yield two barvests within the twelve months. In Lower Bengal, pease, pulses, oil-seeds, and green crops of various sorts are reaped in spring; the esrly rice crops in September; the great rice barvest of the ycar, and other grains, in Noventer and December. Beforc these last bave bren gathered in, it is time to p-apare the ground for the spring crops, and the Dengal husbandman knows ne rest exoept during the hot wecks of May, when he is anxiously waiting for the rains. But it should always be remembered that rice is the staple crop in only a limited aren of India, and that it forms the everyday food of only a comparatively small proportion of the prpulation. It has been estimated that, in the absence of irrigation, the rice crop requires an annual minfall of at least 36 incles; and an Indian pro. vince requires an average fall of not less than 50 or 60 inches in order to grow rice na its staple crop. A line might almost le drawn across Rebar, to the north of which the food of the people ceases to be rice and becomes wheat and millots, \&c. There are, indeed, great rice-growing traits in irrigated or low-lying districts of nerth western Indir, but their produce is censumed by the rider classes or exported.

A detailed account of the most important products will be Scener, found under the heading of "Agriculture," farther on in the present article. They are hero alluded to ouly so far as in necessary to give a general idea of the scencry of the river plains. In the northern and drier regions along the upper conrses of the rivers, the country rises gently from their clannels in fertile undulations, dotted with mud villages and adorned with noble trecs. Mange groves scent the air with their blossom in spring, and yield their abundant fruit
in summer. The spreading banyan, with its colonoades of hanging reots; the stately pipal, with its green masses of foliage; the leafless wild cotton-tree, glowing with heavy crimson flowers; the tall, feathery tamarind, and the qnick-grewing babul, rear their heads above the fields. As the rivers approach the ceast, the palms begin to take possession of the scene. The ordinary landscape in the delta is a flat stretch of rice-fields, fringed round with evergreen massee of bambooa, cecoa-nuts, date-trees, areca, and other coronetted palms. This densely pcopled tract aeems at first sight bare of villages, for each hamlet is hidden away amid its own grove of plantains and wealthgiving trees. The bamboo aud cocoa-nut play a conspicuous part in the industrial life of the people; and the number of products derived from them, including rope, oil, food, nad timber, has been dwelt on with admiration by many writers.

The crops also change as we sail down the rivers. In the north, the principal graios are wheat, barley, Indian corn, and a variety of millets, such as joar (Holcus Sorghum) and bajra (Holcus spicatus). In the delta, on the other hand, rice is the staple crop and the universal diet. In a single district, Raogpur, 295 separate kinds of rice are known to the peasaut, who has learned to grow lis favourita crop in every lecality, from the solid field, which yiclds the dman harvest, to the s wamps 12 feet deep, on the surface of whose waters the rice ears may be seen struggling upwards fur air. Sugar-cane, oil-seeds, flax, mustard, sesamum, palma-christi, cotton, tobacco, indigo, satilower, turmeric, ginger, coriander, capsicum, cummin, and many precious opices and dyes are grown both in the North-Western or Upper Provinces, and in the moister valleys and delta of Lower Bengal. A whole pharmacopeeia of native medicines, from the well-known alve and castoroil to obscure but valuable febrifuges, is derived from shrubs, herbs, and roots. Resins, gums, varnishes, scents, and a lundred articles of commerce or luxury are collected in the fields or forests. Vegetablas of many sorts, both indigenous and imperted from Eurepe, form a large part of the food of the people. The melon and huge yellow puapkin spread themselves over the thatched roafs; fields of potatoes, yams, and brinjal are attached to the homestcads. The tea-plaut is reared on the killy ranges that skirt the plains both in the north-west and in Assam; the opium poppy about half down the Gaoges, around Benares aud Patad; the silk-worm mulberry still farther down in Luwer Bengal ; while the jute fibre is essentially a crop of the delta, and would exhaust any soil not fertilized by river tloods. Even the juogles yield the costly lac dye and tasar silk cocoons. The mahua, also a product of the jungle, produces tho fleshy flowers which form a staple article of food among the hill tribes, and when distilled fupply a cheap spirit. The sal, sissu, tuin, and many wher indigenous trees yield excellent timber. Flowering creepers, of gigantic size and gorgeous colours, festoon the jungle; while each tank bears its own beautiful crop of the litus and water-lilies. Nearly every vegetable product that feeds and clothes a people, or eaables it to trade with foreign countries, ahounds.

We come nuw to the third division of lndia, namely the three-sided table-land which covers the southern half or more strictly peninsular portion of India. This tract, known in ancient times as the Deccan (Dakshin), literally "the right hand or south," comprises the Central Provinces, Berar, Madras, Bombay, Mysore, and the native territories of the nizám, Sindhia, Holkar, and other feudatory states. It ha:l in 1872 an aggregate population of over 90 millions. For the sake of casy remembrance, therefore, we may take the inhabitants of the river plains in the nerth to be now nearly 150 millious, and those of the aeuthern three-sided
table-land at nearly 100 miltiens. The Deccan, in its local sho acceptation, is restricted to the high tract between the Deccas Narbadá (Nerbudda) and the Kistna rivers; but it is popularly understoad to include the whole country aoath of the Vindhyas as far as Cape Comerin. It slopea up from the seuthern edge of the Gangetic plains. Threc ranges of hills suppert its northern, its eastern, and its western side; and the last two meet at a sharp angle near Cape Comorin.

The northern side rests on confused ranges, ruuning with a general direction of east to west, and known in the aggregate as the Vindhyá mountains. The Vindhyás, however, are made up of seversl distiact hill systems. Two aacred peaka gaard the flanks in the extreme cast and west, with a succession of ranges stretching 800 miles between. At the western extremity, Monnt Abu, famous for its exquisite Jain temples, rises, as a colitary outpost of tha Aravalli hills, 5650 feet above the Rajputáos plain, like an island out of the aea Beyond the southern limits of that plain, the Vindhyá range of modern geography runs almost due east from Guzerat, formung the northern wall of the Narbadá valley. The Sátpura mountains stretch also east and west to the south of that river, and form the watershed between it and the Tapti. Towards the heart of India the eastern extremities of these tro converge in the highlands of the Central Provinces and their lofty level plains. Passing atill farther cast, the hill system fiods a continuation in the Kaimur range and its congeners, which eventually end in the outlying peaks and spurs that form the western boundary of Lower Bengal, and abut on tho old course of the Ganges under the name of the Rajinahal hills. On the extreme east; Mount Parasnath-liko Mount Abu on the extreme west, sacred to Jain ritesrises to 4400 feet above the level of the Gangetic plaing. The various ranges of the Vindhyas, from 1500 to over 4000 feet high, form, as it were, the northern wall and buttresses which suppert the central table-land. Though now picreed by road and railway, they atood in former times as a barrier of mountain and jungle between northera and sonthern India, and formed one of the main obstructions to welling the whole into an empire. They consist of vast masses of forests, ridges, and peaks, broken by cultivated valleys and broad high-lying plains.

The cther two sides of the elevated southern triangle are GLats. knuwn as the Eastern and Western Gháts (Ghauts). These start southwards from the eastern and western extremities of the Vindhya system, and ron along the eastern and western coasts of India. The Eastern Ghatts stretch in frogmentary spurs and ranges domn the Madras Presidency, here and there receding ioland and leaving broad level tracts between their base and the coast. The Western Gliats form the great sea-wall of the Bombay Presilency, with ouly a narrow atrip between them and the shore. In many parts they rise in magnificent precipices and headlands out of the ocean, and truly look like colossal "passes or landing. stairs" (ghats) from the aea. The Eastern Ghats have in average elevation of 1500 fect. The Western Ghats ascend more abruptly from the aea to an average beight of abont 3000 [ect, with peaks up to 4700 , along the Bombay coast, rising to 7000 and even 8760 in the upheaved angle which they unite to form with the Eastern Ghate, towards their sonthern extremity.

The inner triangular plateau thus enclosed lies from 1000 to 3000 feet above the level of the sea. But it is dotted with peaks and acamed with ranges exceeding 4000 feet in height. Its best known hilla are the Nugiris (Neilgherries), with the summer capital of Madras, Utakamand, 7000 feet above the sea. The higheat poin: is Dodábetta Pcak (8760 fect), at the uphcaved southern angle. The iaterior platcar is approched by several
wretert famous passes from the level coast-strip on the western
Châts. side. The Bor-Ghat, for example, ascends a tremendous ravine about 4C miles south-east of Bombay city, to a height of 1798 feet. In ancient times this pass was regarded as the key of the Deccan, and could be held by a small band against any army attempting to penetrate from the coast. A celebrated nilitary road was constructed by the British up the Bor-Ghat, and practically gave the command of the interior to the then rising port of Bombay. A railway line has now beea earried up the pass, twisting round the shoulders of mountains, tunnelling through intervening crags, and clinging by a narrow ledge to the face of the precipices. At one point the zigzag is so sharp as to render a cireuitous turn impossible, and the trains have to stop and reverse their direction on a levelled terrace. The Thall Ghat, to the north of Bombay, has in like manner been scaled both by road and railway. Another celebrated pass, farther down the coast, connects the military centre of Belgaum with the little port of Vingurla. These "landing-stairs" from the sea to the interior present seenes of rugged grandeur. The trap rocks stand out, after ages of denudation, like circular fortresses flanked by round towers, from the mass of hills bchind, - natural fastnesses, which in the Marbattá times were rendered impregnable to Oriental warfare. To the south of Bombay, the passes climb up from the sea through thick forests, the haunt of the tiger and the stately bison. sitill farther down the coast, the western mountain wall dips down into the Palghát valley, a remarkable gap, 25 miles broad, and leading by an casy route, only 1500 feet above the sea at its highest point, from the sca-board to the interior. A railway now extends by this passage from Beypur across the peninsula to Madras.
Eastern
On the eastern side of India, the Ghats form a series of spurs and buttresses for the clevated inner plateau, rather than a continuous mountain wall. They are tracersed by a number of broad and casy passages from the Madras coast. Through these openings the raiafall of the southera half of the inner plateau reaches the sea. The drainage from the northern or Vindlyin edge of the three-sided table-land falls into the Ganges. The Narbadit (Nerbadda) and Tapti earry the roinfall of the southern slopes of the Vindluyis and of the Satpurn hills, in almost parallel lines, into the Gulf of Cambay. But from Surat, in $21^{\circ} 9^{\prime}$ lat., to Cape Comorin, in $8^{\circ} \mathrm{l}^{\prime}$ lat., no large river sueceds in reaching the western coast from the interior table-land, The Western Chats form, in faet, a lifty unbroken barrier betweon the waters of the central plateau and the Iudian Oceau. The drainage has therefore to mane its way across India to the castwarls, now turning sharply round projecting ranges, now tumbling down ravines, or rushing along the valleys, until the rair which the Bombay sea-breeze has dropped upon the Western GLatts finally falls into the Rivers of Bay of Bengal. In this way the three great rivers of the Southern Madras I'residency; viz., the Godávari, the Krishra, and table. temi. the Kiveri (Causery), rise in the mountains overhanging the western coast, and traverse the whole breadth of the cent.al table-land before they reach the sea on the castern Ehores of India.

The physical geography and the political destiny of the two sides of the Indian peninsum bave been determined by the claracteristies of the mountain ranges on either coast. On the east, the country is comparalively open, and was everywhere accessible to the snread of civilization. On the east, therefore, the ancient dyaasties of southern India fised their capitals. Along the west, only a narrow strip o. lowland intervencs between the barrier range and the seaboard. The inlmbitants of those tracts remained apart from the civilization of the eastern coast. To this day one of their ruling races, the Nairs, retain land-tenures and
social customs, such as polyandry, which mark a much ruder stage of human advancement than Hinduism, and in other parts of India only linger among isolated hill tribes. On the other hand, the people of the western coast enjoy a bountiful rainfall, unknown in the inner plateau and the east. The monsoon dashes its rain-laden Axfneall clouds against the Western Gháts, and pours from 250 to of south100 inches of rain upon their maritime slopes from Khán- ern table desh down to Malabar. . By the time that the monsoon has crossed the Western Gbits, it has dropped the greater part of its aqueeus burden, and central districts, such as Bangalore, obtain only about 35 inches. The eastern coast also rcceives a monsoon of its own; but, except in the aeigbbourheod of the sea, the rainfall throughout the Madras presidency is scanty, seldom exceeding 40 inches in the year. The deltas of the three great rivers along the Madras coast form, of course, tracts of inexhaustible fertility; and much is done by irrigation on the thirsty inland plateau to husband and otilize both the local rainfall and the accumulated waters which the rivers bring dorn.

In tho valleys, and upon the elevated plains of the central Crope plateau, tillage has driven back the jungle to the hilly recesses, and fields of rice and many kinds of smaller grain or millets, tobacco, cotton, sugar-cane, and pulscs sprcad over the. oper country. The black seil of the Deccan is proverbial for its fer. tility; and the level strip between the Western Ghíts and the sca rivals even Lower Bengal in its fruit-bearing palms, rice barvests, and rich succession of crops. The deltas on the castern side have from time immemorial been celebrated as ricc-bearing tracts. The interior of the table-land, as may be infcrred from the scanty rainfall, is hable to drought. The people contend against the calamitics of nature by varied systems of irrigation,-drawing their watersupply in some districts from wells, in others from tanks and reservoirs, or from large artificial lakes formed by dansming up the ends of river valleys. They thas store the rain brought during a few months by tho monsoon, and husband it for use thronghout the whole year. The food of the common people consists chiefly of small grains, snch as joár, bajra, and rádi. Tho great expert is cotton, with wheat from the northern districts of Bombay. The pepper trade with Malabar dates far beyond the ago of Sindbed the Sailor, and probably reaches back to Roman times. Cardamoms, spices of various sorts, dyes, aud many wediciual drugs are also grown.
it is on the three-sided table-land, and among the hilly spurs Mincrab which project from it, that the mineral wealth of India lies hid. Coal-mining ncw forms a great industry on the north-castern side of the table-land, in Bergat, and also in the Central Provinces. The commercial aspects of this and similar undertakings will le dealt with in a bater section of the present article. Beds of irenore and limestone have been worked in several phaces, and hold out a possibility of a new era of enterprise to India in tho future. Many districts are rich in building stone, marbles and the easily worked haterite. Copperand other metals exist in small quantiticy. Gold dust has from very ancient times been washod out of the river-beds, and gold-mining is being attenpted our sciontific principhes in Madras and Mysore.

Of the three regions of India, now briefly surveyed, the first, or the Himalayas, lies for the most part beyond the British frontier, but a knowledge of it supplies tho key to the etbnology and history of india. The secend region, or the great river plains in the nerth, formed tho theatro of the ancient race-movements which shaped the civilization and the political destinics of the whole Indian peninsula. The third region, or the triangular table-lund in the south, has a character quite distinct from either of the other two divisions, and a population which is unw working out a separate development of its own. Broadly speaking, the llimalayas are peopled by Tusamian triber; the great river plains of IIndustín are still the bome of tho Aryan race; the triongular table-land has formed an arema for a long struggle hetweni that gifted race from the nerth and what is known as the Dravidian stoek in the soath.

To this vast empire the English have added British Drilhh Turmah, consisting of the lower valley of the Irawadi Bumah (Irrawaddy) with its delta, and a long flat strip stretching down the castern side of the Bay of Bengal. Between the
narrow maritime traet and the Iramadi runs a baekbene of lefty ranges. These ranges, known as the Yoma (Roma) mountains, are covered with dense fereste, and both historically and geographically separate the Irawadi valley frem the atrip of coast. The Yoma (Roma) ranges have peaks exceeding 4000 feet, and culminate in the Blue Sfountain (7100 feet). They are crossed by passes, one of which, the $4 n$ or Aeng, rises to 4668 feet above the scalevel. A thousand creeks indant the seaboard; and the whole of the level conntry, beth on the ceast and in the Irawadi valley, form:3 one vast rice-field. The river fleats down an abundant supply of teak and bamboos from tha north. Tobacco, of an excellent quality, supplies the little cigars which all Burmese (men, women, and children) emoke. Arakan and Pegu, or the provinces of the coast strip and the Irawadi vallay, contain mineral oil-springs. Tenasserim forms a long narrow maritime province, which runs frem the mouths of the Irawadi southward to Point Vietoria, where the British territory adjoins Siam. It is rich in tin mines, and contains iron-ores equal to the finest Swedish, besides gold and copper in smaller quantities, and a sery pure limestone. Rice and timber form the staple exports of Burmab; and rice is also the universal food of the peeple. British Burmah, with Tenasserim, has an area of $88,55 \mathrm{G}$ square miles, and had a population, in 1 876 , of just under 3 millions of persons.

Geologs:

For geological purposes India may be mapped ont into the three geographical divisions of the Hinalayan region, the Indo-Gangetic plain, and Peninsular India.

The Himalayan Region.-The geology of this district is far mere complex and less fully known than that of the Peninsular area. Until the ground has been carefully gonc over by the Geological Survey, many points must remaid doubtful; probably even then the problems will not be fully solved, as large areas of the Himálayas (Nepál and Bhutân) are at present inaccessible to Europeans. The
impertant changes in physical geegraphy. Tha Nummulitic (Eocenc) strata were laid dewn on the eroded edges of seme of the older beds, and in a long trough within the Silurian gneiss of the Ladakl axis. On the south of this true Himalayan region there is a band of country known as the Lower Himalaya, in which the beds are often greatly Cowns disturbed, and even completely inverted, over great äreas, hireho the old gneiss apparently overlying the sedimentary recke ${ }^{\text {as }}$ as This Lower Himalayan region is about 50 miles wide, and consists of irregular ridges, varying from 5000 te 8000 feet in height, and sometimes reaching 12,000 feet.

Resting upon the gueiss, but often through invarsion apparently underlying it, in the neighbourhood of Simla, is a series of unfessiliferous bcds (schists, quartzites, sandstones, shales, limestenes, \&c.) known in descending order as the Krol, Infra-Król, Blaini, and Infra-Blaini beds. In the Krol beds is a massive limestone (Krol limestene) probably representing the limestoue of the Pir Panjal range, which is most likely of Carboniferons age The Blaini and Infra-Blaini beds are probably Silurian. The Lower Himálayan range ends at the Sutlej anlley, west of which the continuation of the central range is followed immediately by the third or Sub-Himalayan Subrange. This oceurs almost always on the south of the Bims Lower Himálayas; it is composed of later Tertiary ${ }^{\text {laya }}$ rocks (Siwiliks, dc.), which range paralled with the main chain. Generally the Sub-Himalayas cunsist of tro ranges, separated by a broad flat valley ("din" or "doon") ; the sonthern slope, overlooking the great Indo-Gangetic plain, is usually the steepest. Below Naini Tal and Dárjiling (Darjecling), the sub-Himalayau range is wanting; on the Bhutan frontier the whole range is occeasionally absent, and theu the great plain slopes up to the base of the Lowor Himalayan region. It is within the Sub-Himalayan range that the famous Siwalik Sime. \mathbf{z}^{2} beds occur, long since knowa for their vast stores of extiact rammalia. Of about the same age are the Mauchbar beds of Sind, which also contain a rich mammalian fauna. The Lower Manchars probably correspond to the Nahan Leds, the lowest of the Siwaliks; they rest upon the Gaj beds, which are probably Upper Miocenc. From this it would eeen that the lnwest Siwathks are nut older than Upper Mincene. The higher Siwálik beds are considercd by Mr W. T. Blanford to be Plioceue, and to this later period be also refers the mammalian beds of Pikermi in Grcece. These have a large number of fussils ia comm as with the Siwaliks ; but they contain, at their base a marine band with Pliocene shclls. The Manchbar erd Siralits beds are chiefly of freshwater urigin.

Tho Salt Range in the northwest of the Punjab has, in Sule addition to its econonic value, a special geological im-Rango portance; and from that point of riew it is one of the most interesting districts in India, Representatives of most of the great European formations of Silurian aud later epochs are found there; and throughont all the vast length of tume represented by these formations there is here no direct evidence of any importaut break in succession, or unconformity. The lowest bels (salt marl, probably Silurian) and the highest (Siwatiks) are found throughout the range. But the others camot all the traced continuously thronghout; sune ocrur well developed in one Pläox, some in another. Alt the principal fossilifereus leds of the Jurassic. Triassic, and Carboniferous Pormations are contiued to tho western part of the range.

The Indo-Gangetic Plain eovers an area of about 300,000 Iudo square miles, and varies in width from 90 to nearly 300 Ganestio miles. It rises very grallually from the sea at either end ; F"aiu. the luwest point of the waterabed between the Punjab rivers and the Ganges is atout 224 feet abore' the sea This point, by a hue measured down the salley, but not fol
lowiag the winding of the river, is about 1050 miles from the mouth of the Ganges and 850 miles from the mouth of the Indus, so that the average inclination of the plain, from the central watershed to tho sea, is only about 1 foot per vaile. It is less near the sea, where for long distances there is no fall at all. It is generally more near the watershed; but there is here no ridge of high ground between the Indus and the Ganges, and a very triffing change of level would often turn the upper waters of one river into the other. It is not unlikely that such changes have in past time occurred; and if so an explanatien is afforded of the occurrence of allied forms of freshwater dolphins (Platanista) and of many ether animals in the two rivers and in the Brahmaputra.

There is no evidence that the Indo-Gangetic plain existed as such in Pre-Tertiary times. It is highly probable that the Jurassic and Cretaccous coast-line ran across the northern part of the Bay of Bengal, and that most of the area now secupied by the Gangetic plain was then abore the sea. Probably the Jurassic traps of the Rajmahal hills, west of the delta of the Ganges, were continuous with those of Sylhet, east of the delta. Marine Jurassic and Cretaceous beds are absent from the margins of the true Gangetic plain; so too are marine Eocene beds. In Eocene times the sea spread up the Punjab; but that too was land only in Miocene times.
Alluvial The alluvial deposits of the plain, as made known by deposits. the boring at Calcutta, prove a gradual depression of the area through the later Tertiary times. There are peat and forest beds, which must have grown quietly at the surface, altemating with deposits of gravel, sand, and clay. The thickness of the delta deposit is unknown; 481 feet was proved at the bore hule, but probably this represents only a very small part of the deposit. Outside the delta, in the Bay of Eengal, is a deep depression known as the "swath of ne ground"; all around it the seundings are only of 5 to 10 fathoms, but they very rapidly deepen to over 300 fathoms. Mr J. Ferguson has shown that the sediment is carried away from this area by the set of the currents; probably then it has remained free from sediment whilst the neighbouring sea bottom has gradually been filled up. If so, the thickness of the alluvium is at least 1800 feet, and may be much more.

The Indo-Gangetic plain dates back to Eocene times; the origia of the IImalayas may be referred to the same period. Numereus miner disturbances occurred in the area which is now nerthern India during Palxozoic and Secondary times, but the great disturbance which has resulted in the formation of the existing chain of the Himalayas took place after the deposition of the Eocene berls. Disturbances even greater in amount occurred after the deposition of the Pliocene beds. The Eocenes of the Sub-IIimalayan range were leposited upon uncontorted Paleozoic racks, but the whole has since been violently contorted and disturbed. There are some indications that the disturbing forces were more severe to the eastward during midde Tertiary times, and that the main action to the westward was of later date. It seems highly probable that the elevation of the mountain ranges and the depression of the Inde-Gangetic plain were closely related. This view gains some oupport from ai glance at the map, where we see that the curves of the great momatain chains are strictly followed ly those of the great alluvial plain. Probably both are due to almost contemporary mevements of the enrth's crust ; these move. ments, though now of rastly diminisled intensity, havo not wholly ceased. The alluvial depasita prove depression in quite recent geological times; and within the Jlimalayan perion earthquakes are still common, whilst in Peninsular India they are rare.
l'minsular Indita.-Tho eldest rocks of this area cwn
sist of gaelss, wicn occurs in three districts:-a very Peninst large part of Bengal and Madras, extending to Ceylon; larIntt: the Aravalli; and Bundelkhand. Of these formations, the gneiss of Bundelkhand is known to be the oldest, because the oldest Transition rocks rest upon it; whereas the same Transition rocks are altered and intersected by granitic dykes which proceed from the gneiss of the other districts. The Transition rocks are of great bu: unknown age. The Vindhyan rocks which succeed them Vimbua are of very old Paleeozoic age, perhaps Pre-Silurian. But leng before the earliest Vindhyan rocks were laid down the Transition recks had been altered and contorted The great movements of the earth's crust which produced that contortion are the latest which have taken place to any great extent in the Iadian Peainsula. In more recent times there have been lucal disturbances, and large faults lave in places been fonnd; but the greater part of the Peuiasula rocks are only slightly disturbed, and the mest recent of the great and wide-spread earth mevements of tl. s region date back to Pre-Vindhyan times. The Vindhyan series are generally sharply marked off from older rocks; but in the Godávari valley there is no welldefined line between these and the Transition rocks. The Vindhyan beds are divided inte two groups. The lower, with an estimated thickness of only 2000 feet, or slightly more, coser a large area,-extending, with but little change of character, from the Son valley in one direction to Cuddapah, and in a diverging line to near Bijápur-in each case a distance of over 700 miles. The upper Vindhyans cover a much smallor area, but attain a thickness of about 12,000 feet. The Vindayans are well-stratified beds of sandstone and shale, with some limestnnes. As yet they have yielded no trace of fossils, and their esact age is consequently unknown. So far as the evidence goes, it appears probable that they are of very ancient Palrozoic age, perhaps Pre-Silurian. The total absence of fossils is a remarkable fact, and one for which it is difficult to account, as the beds are for the mest part quite unaltered. Even if they are entirely of freshwater origin, we should expect that some traces of life from the waters or neighbouring land would be found.

The Gondwana series is in many respects the most Gondinteresting and important series of the Indian Peninsula, wana The beds are almost cutirely of freshwater origio. Many serics. subdivisions have been made, but here we need only note the main division into two great groups:-Lower Gondwánas, 13,000 feet thick; Upper Gondwinas, 11,000 feet thick. The series is mainly confined to the area of country betwoen the Narbadit and the Son on the north and the Krishna on the seuth; but the westem part of this region is in great part covered by newer beds. The lowest Gondwinas aro very constant in character, wherever they are found; tho upper numbers of the lower division show more variation, and this divergence of character in different districts becomes more marked in the Epper Gondwana series. Disturbances have occurred in the lower series before tho formation of the upper.

The Gondwana beds contan fossits when are of very great interest. . In large part theso consist of planta which grew near the margins of the old rivers, and which were carried down ly flonds, and deposited in the alluvinl plains, deltas, and estuarine areas of the old Gondwina period. So vast was the time occupied by the deposition of the Gondwana heds that great changes in physical geography and in the vegctation repeatedly occurred. I'he plants of the Lower Gondwinas consist chiefly of acrugens (Equisetacece and ferns) and gymnogens (cycads and conifers), tho former being the mere abundant. The same classes of plants occur in the Upper Gondwanas; lont there the proportions are reversed, the cenifers, and still
more the cycads, being more mamcrous than the ferus, whilst the Equiseacea are but sparingly found. But even within the limits of the Lower Gondwana series there are great diversities of vegetation, three distinet floras occurring in the three great divisious of that formation. In many respects the flora of the bighest of these three divisions Panche: (the Panchet group) is more nearly related to that of the sroup. Upper Gondwathas than it is to the other Lower Gendwana florus.
Ove of the most interesting facts in the history of the Gondwana series is the occurrence near the base (in the Talcher groupl of large striated boulders in a fine mud or silt, the boulders in one place restiag upun rock (of Vindhyan age) which is also striated. Thero seems good reasun for believing that these beds are the result of iceactivn. They probably nearly coincide in age with the Fermion beds of Westera Europe, in which Professur Ramsay long since discovered evidence of glaciation. But the remarkable fact is that this old ice-action occurred within the tropics, and probably at no very great height above the sea.
Dimodar The Dámodar series, the midalle division of the Lover series Gond wínas, is the chief suarce of coal in Peninsular Indin, and coas? Gielding more of that mineral than all other formations taken togetber. The Karharbari group is the only other coal-besring formation of any value, The Dímodars are 8100 feet thick in the Ranniganj coal-field, and about 10,000 feet thick in the Satpura basin. They consist of three divisions; coal occurs in the upper and lower, ironstone Raniganj (without coal) in the middle division. The Rániganj coal-soal-tield. field is the mnst important in India. So far as is yet known, it covers an area of abont 500 square miles, extending about 18 miles from north to south aud about 39 miles from cast to west ; but it extends further to the east under the laterite aud alluvium. It is traversed by the Damodar river, along which run the road from Calenta to Demares and the East Indian Railway. From its situation and importance this coal-field is better known thiln any other in India. Mach has been learot concerning it since the last examination by the Geological Survey, and our remarks are in great part based on reeent reports by Mr H. Bauerman. The upper or Raniganj series (stated by the Geological Survey to be 5000 (eet thick) contains ele veu scams, having a total thickness of 1 n feet, in the eastern district, and thirteen seams, 100 feet thick, in the western district. The average thickness of the seams worked is from 12 to 18 fcet, but occasionally a seam acquires a great thickness20 to 80 feet. The lower or Barakhar series (2000 feet thick) contains four seams, of a total thickness of 69 feet. Compared with English coals those of this coal-fietd are of but poor quality ; they contan much ash, and are generally non cokiug. The seams of the lever series are the best, null some of these at Sanktoria, near the Barákhar river, are fairly good for coke and gas. The best coal in India Kurhar. is in the small coal-field at Karlarbari. The beds there are liaricual lower in the series than those of the laniganj field; they belong to the upper part of the Talcher group, the lowest of the Gondwaua serics. The coal-bearing bels cover an area of only about 11 square miles; there are three seams, varying from 9 to 33 feet thick. Thee lowest scam is the West, and this is as good as English steam ceal. This coalfield, now largely worked, is the property of the Last Intion hailway, which is thus supllied with fuel at a cheaper rate than any other railway in the world. Indian conl usually cuntains phesphoric acid; which greatly lessens its value for iron-smelting.
Dimodar The Dánodsr series, which, as we have seen, is the chicf irvil source of coal in India, is also one of the most important chene. sources of irgin. The ore oecurs in the middle division, coil in the highest and lowest. The ore is partly a clay
ironstone, like that occurring in the Coal-measures of England, partly an oxide of iron or hematite. It generally contains phosphoras, which prevents its use in the proparation of the finer qualities of steel. A similar difficulty attends the use of the Cleveland ore of North Yorkshiro. Experiments have been in progress for years in search of a process which shall, in an ceonomital manner, obtain iron from Cleveland ore free from phosphorus, latterly, it is hoped, with some success. If this be so, India will be a great gainer. Excellent iron-ore occurs in the Metamorphic rocks south of the Dimodar river. Laterite (seo below) is sometimes used as ore. It is very earthy and of a low percentage; but it contains only a comparatively small proportion of phosphorus.
The want of limestone for flux, withia easy reach, is generally a great drawback as regards iron-emelting in Indin. Kankar or ghutin (concretionary carbonate of lime) is collected for this purpose from the river beds and allavial deposits. It sometimes contains as much as 70 per cent. of carbonste of lime, but generally the amount is much less and the flusing value proportionally diminished. The real difficulty in India is to find the ore, the fuel, and the flux in sufficiently close proximity to yield a profit.
The enormons mass of basaltic rock knowu as thę Deccan Detcan trap is of great importance in the geological structure of trap. the Indian leninsula. It now covers au area of about 200,000 square miles, and probably "urmerly extended over a nuch wider area. Where thickest, the trap's are at least 6000 feet thick. They form the most strikiug plysical features of the country, many of the most prominent hill ranges being the denuded cdges of the basaltic flows. The great volcame outbursts which prodaced this trap commenced in the Cretaceous peried and lasted on into the Euecne perind.
Latorite is a ferruginons and argillaceous rock, varying Laterila from 30 to 200 feet thick, which often occurs over the tra; area, but is also found in other districts. As a rule it makes rather barren land, it is highly peruus; and the rain rapidly siuks unto it. Laterite unay be roughly divided into two kinds, high-level and low-level laterites. The former, which covers a large area of the ligh bamalte plains, is believed by Mr R. P. Foote to be very frequently the product of decomposition of the trap, and to have been thus formed in the place in which it is now found. Sometimes the bigh-level laterite overlies gnciss or other reeks; and in these cases it has probably heen transpurted. The low-level laterite is generally more sandy in character, and is often associated with gravels. In most cases this has clealy been carried down to its present position, probably largely ly subacrial action, aided by rains and streams. Possibly in some cases it has been spread out along the coasts by marine action. The low-level laterite fringes the ceast of the Peninsular more or less from near Bombay on the west and Orissa on the east to Caje Comorin. It is not contmuuns throughout these districts; and it is of very varying width and elevation. The age of the highr-level laterite is unknown. Its formation probably extended throughout a long perion of time, much of which must he of very ancient date; for the laterite, together with the underlying basalt, has suffered extensive denudation.

The mercantile aspects of the coal, iron, and other mineral products of India will be fully treated of under a sulses quent section (11, 761-66). The geologist comes in thi inatter to the same conclusion ns the ceonomist, vis, that the mineral wealth of Indil, as represented ly its precious stones, was the product of Corced labour, and that the searel for them in our days can searely repay the working expensc.

[^149] lish Gcolugical Survey.)
$$
\text { XII - } 93
$$

Meteorology

Metecrology

Himá layas.

The great peninsula of India, with its lofty mountan ranges behind and its extensive seaboard exposed to the frst violence of the winds of two oceans, forms an exceptionally raluable and ioteresting field for the study of meteorological phenomeaa. But only within the last few years have trustworthy statistics been obtained for some of its most important registration stations.

Meteorological Geography.-After the general description of the country which has been given at the beginning of this article, it is only necessary here to sketch very brielly the meteorological geography of the peninsula. The follow. ing sentences are condensed from an interesting account in the first Report on the Meteorology of India (for 1875), by Mr H. F. Blanford. From the gorge of the Indus to that of the Dibong (Brahmaputra), a distance of 1400 miles, the Himalayas form an unbroken watershed, the northern flank of which is drained by the upper valleys of these two rivers ; whide the Sutlej (Satlaj), starting from the southern foot of the Kailas Pesk, breaks through the watershed, dividing it into two very unequal portions, that to the north-west being the smaller. The average elevation of the Himalaya crest may be taken at not less than 19,000 feet, and therefore equal to the height of the lower half of the atmosphere; and indeed few of the passes are under 16,000 or 17,000 feet. Across this mountain bsrrier there appears to be a constant flow of air, more active in the day-time than at night, northwards to the arid plateau of Tibet. There is no reason to believe that any transfer of air takes place across the Himálayas in a southerly direction, unless, indeed, in those most elevated regions of tha atmosphere which lie beyond the range of observation ; but a nocturnal flow of cooled air, from the southero slopes, is felt as a strong wind where the rivers debouch on the plains, more eapecisilly in the early morning hours; and this probably contributes in some degree to lower the mean temperature of that belt of the plains which fringes the mountain zone.
At the foot of the great moudtain barrier, and separating it from the more ancient land which now forms the highlands of the peoinsula, a broad plain, for the most part alluvial, stretches from sea to sea. On the west, in the dry region, this is occupied partly by the alluvial deposits of the Indus and its tributarics and the saline swamps of Kahhch (Cutch), partly by the rolling sands and rocky surface of the desert of Jaisalmír and Bikanir, and the more fertile tracts to the eastward watered by tho Lunai. Over the greater part of this region rain iz of rare occurrence; and not infrequeatly more than a year passes without a drop falling on the parched surface. On its eastern margin, however, in the neighbourhood of the Aravalli hills, and again on the northern Puajab, rain is more freguent, occurring both in the south-wcst monsoon, and also at the opposite season in the cold weather. As far south as Sirsa and Multinn (Mooltan), the average rainfall does not much exceed 7 inches.
Gangetic The alluvial plain of the Punjab passes into that of the illaia. Clangetic valley withont visible iuterruption. Up or down this plain, at opposite scasons, sweep the monsoon winds, in a direction at right angles to that of their noninal course ; and thus vapour which bas been brought by winds from tho Bay of Bengal is discharged as anow and rain on the peaks and hillsides of the Western IImálayas. Nearly the whole surface is under cultivation, and it ranks'among the most productive as well as the most densely populated regions of the world. The rainfall diminishes from 100 inches in the south-east corner of the Gangetic dolta to less than 30 inches at Agra and Delhi, and there is an average difference of from 15 to 25 inches between the northern and southern borders of the plain.

Eastward from the Bengal delta, two alluvial plains Eastern stretch up between the hills which connect the Eimallayan Bengal. system with that of the Burmese peniosula. The first, or the valley of Assam and the Brahmaputra, is long and narrow, bordered on the north by the Himálayas, on the south by the lower plateau of the Gáro, Khási, and Nágá hills. The other, short and broad, and in great part occupied by swamps and jhils, separates the Gáro, Khási, and Nagá bills from those of Tipperah and the Lushái country. The climate of these plains is damp and equable, and the rainfall is prolonged and generally heavy, especially on the southera slopes of the bills. A meteorulogical peculisrity of some intersst has been noticed, more especially at the stations of Sibsagar and Silchar, viz., the great range of the diurnal variation of barometric pressure during the afternoon hours,-whicb is the more striking, since at Rúrki (Roorkee), Lahore, and other stations near the foot of the Western Himalayas, this range is less than in the open plains.

The highlands of the peninsula, which are cut off from cantral the encircling ranges by the broad Indo-Gangetic plain, are tabledivided into two unequal parts, by an almost continuous land chain of hills running across the country from west by south to east by north, just south of the Tropic of Cancer. This chain may be regarded as a single geographical feature, forming one of the principal watersheds of the peninsula, the waters to the north draining chiefly into the Narbada and the Ganges, those to the south into the Tapti, the Godávari, the Mahánadi, and some smaller streams. In a meteorological point of view it is of coasiderable importance. Together with the two parallel ralleys of the Narbada (Nerbudda) and Tapti (Taptee), which drain the flanke of its western half, it gives, at opposite seasons of the year, a decided easterly and westerly direction to the winds of this part of India, and condenses a tolerably copious rainfall during the soutb-west monsoon.

Separated from this chain by the valley of the Nsrbada on the west, and that of the Sou on the east, the plateau of Malwa and Baghelkhand occupies the space intervening between these valleys and the Gangetic plain. On the western edge of the plateau are the Aravalli bills, which run from near Almadálád up to the neighbeurhood of Dellii, and include one hill, Mount Abu, over 5000 feet in beight. This range exerts an impertant influence on the direction of the wind, and also on the rainfall. At Ajmir (Ajmere), an old meteorological station at the eastern foot of the range, the wind is predominantly south-west, and there and at Mount Abu the south-west monsoon rains are a regularly recurrent phenomenon,-which can hardly be said of the region of scanty and uacertain rainfall that extends from the westorn foot of tho range and merges in the Bikanir desert.
The peninsula south of the Satpura rañge consists chiclly Southera of the triangular plateau of the Decenn, terminating platanu abruptly on the west in tho Sahyidri range (Western Ghats), and shclving to the east (Eastern Ghats). This plateau is swept by tho south-west monsoon, but not until it has surmounted tho western barner of the Ghits; and hence the rainfall is, as a rule, light at Poona and places similarly situated under the lee of the range, and but moderate over the more easterly parts of the platean. The rains, however, are prologged some three or four weeks later than in tracts to the north of the Sitpuras, since they are also brought by the casterly winds which blow from tho Ihay of Bengal in October and the early part of November, when the recurved southerly wind ceases to blow oup tho Gaggotic valley, and sets towards the south-east coast. This was furmerly thought to be a north-east monsoon, and is still so spoken of by certain writers ; but the rainy wind is really a diversion of the south.west moasoon.

At the junction of the Eastern and Western Gháts rises the bold triangular plateau of the Nilgiris, and to the south of them come the Anamalais, the Palnis (Pulneys), and the bills of Travancore. These ranges are separated from the Nilgiris by a broad depressiou or pass known as the Palghât Gap, some 25 miles wide, the highest point of which is only 1500 feet abovo the sea. This gap affords a passage to the winds which elsewhere are barred by tho bills of the Ghat chain. The country to the east of the gap receives the raiafall of the south-west monsoon; and during the north-east monsoon ships passing Beypur meet with a stronger wind from the land than is felt elsewhere on the Malabar coast. According to Captain Newbold, this gap "affords an outlet to those furious storms from the castward which sweep the Bay of Ringal, and, after traversing the peninsula, burst forth through it to the neighbouring sea."

In the strip of low cuuntry that fringes the peninsula below the Ghats, the rainfall is heary and the climate warm and damp, the vegetation being dense and characteristically tropical, and the steep slopes of the Ghats, where they have not been artificially cleared, thickly clothed with fo: 2 st.

Baひนด.

In Burmab, the country around Ava, as well as the hill country to the north, has suffered from severe earthquakes, one of which destrayed Ava in 1839. The general meridianal direction of the ranges and valleys determines the direction of the prevailing surface winds, this being, how6ver, subject to many local modifications. But it would appear, from Dr Anderson's observations of the movement of the upper clouds, that throughout the year there is, with but slight interruption, a steady upper current from the soutb-west, such as has been already noticed over the Himalayas. The rainfall in the lower part of the Irawadi valley, viz., the delta and the neighbouring part of the province of Pegu, is very heavy; and the climate is very mild and equable at all seasons. But higher up the valley, and especially north of the Pegu frontier, tho country is drier, and is characterized by a less luxuriant vegetation, and a retarded and more scanty rainfall.

Observatories.-Meteorological observatories have been established at one hundred and three stations in India (including British Burmah and the Andamans). These observatories are situated at all elevations, from the highest, Leh (11,538 feet above mean sea-Jevel) and Chakráta (7051 feet), to Negapatam (15 feet) and Sagar Island, the lowest, which is only 6 feet above mean sea-level.
Timperature of the Air. - From the average annual mean temperatures of 83 stations (derived from the means of three or more years) the following figures are taken. In the following four stations in thia list, the averago mean yearly temperature was over $82^{\circ} \mathrm{F}$. : -Trichinonoli, 82.8°; Vizarapatam, 82.7°; Madras, 82.4°; and Madura, 82.2. ${ }^{\circ}$ Ali of these stations are in the Madras Presideney. The-next highest means are returned by Negapatam (also in Madras), $81 \cdot 9^{\circ}$; Cuttack and Port Blair, each $80 \cdot 5^{3}$; False loint, $80 \cdot 20^{\circ}$; Goa, 79.9°; Coehin, 79.8°; Ságar Island, 79.5°; Deesa, $79^{\circ} 4^{\circ}$; and Caleutta, $79 \cdot 2^{\circ}$. The mean annual temperature of Bombay is 78.8°, so that it is the eoolest of the three presideney towns. Tho lawest means are obtained at the hilt stations of Dárjiling, 53.9°; Simla, 54.4°; Murree, 55.8°; and Chakráta, 56.1°. Between these and the next eoolest stations is a great gap, Ranakhet following with 604°, Pachmarhi with 68.7°, and Rawal Pindi with a yearly mean of $69^{\circ} 4^{\circ}$. The highest mean monthly temperatures given are : - 95° at Múltán, in June ; 91.3° at Delhi, in June; $94^{\circ} 1^{\circ}$ at Jhansi, in May ; 93.6° at Lueknow, in June. The lowest monthly means are returned by the four coldest hill stations mentioned above, the figures being:-Murree-January $37 \cdot 7^{\circ}$, February $39^{\circ} 4^{\circ}$; Simla-Sanuary $39^{\circ} 6^{\circ}$, February $41^{-1} 1^{\circ}$; Chakráta-January $40^{\circ} 8^{\circ}$, February 42.9°; Dirjiling-Janlary 407°, February 43.2^{3}. The mean temperature at Leh in January is $17^{\prime} 6^{\circ}$, and in December $24^{\circ} 4^{\circ}$.

Atmospheric Pressure.-The meteorological report for 1877 contains.a table showing the annual mean pressure at 72 stations, eorrected (exeept in the ease of Madras) to the Caleutta standard, which reads 0.01 l inch higher than that of Kew. From that tabte the following figures are obtained. The mean yearly preswure at the highest statioas is $23 \cdot 274$ at Chakrita, $23 \cdot 371$ at Da:juliug, $24 \cdot 058$
at Ránikhet, 26.416 at Pachowarhi, and 26.932 at Bangatore. The greatest annual mean pressures returned are-29.862at Negapatam, $29 \cdot 856$ at Madras, $29 \cdot 822$ at Bombay, and $29 \cdot 821$ at False Point.
Rainfall. - The average annual rainfall at 294 stations is reeorded Rainf... 2 in the 1877 meteorological report, from which the following ggures have been obtained :-
In the Punjab the highest average fall (123.21 inches) is at Dharmsala, which is situated on the face of the hiils, and exposed to the full force of the monsoon; the next highest recorded is little more than half that amount, or 68 '61 inches at Sima. The lowest average fatls in the Punjab are- $6 \cdot 16$ inches at Muzaffargarh, 693
 Alt these statious are protected by the Sulaimán range from the monsoon.
In Rajputana and Central India the maximum average is 20.27 at Jaipur (Jeypore), and the minimum, $60^{\circ} 85$ at Mount Abu, the highest poiut in this part of India.

In the North-Western Provinces the heaviest average falls are at Naini Tall ($94 \cdot 17$ inches) and Dehra ($70 \cdot 06$), both of which lle high ; the minimum arerage fall is 24 '32 at Aligath, the next lowest figures being $26^{\circ} 18$ at Muttra (Mathura), $20^{\circ} 46$ at Agra, and $26^{\circ} 74$ at Etah-all stations on the plains.
In Judh the maximum rainfall is at Sultanpur, 4672 iuches; and the minimum at Ráa Bareli, $39 \cdot 99$ incles.
The folluwing stations of Bengal have an average rainfall of more than 100 inches :-Jalpaiguri, $122 \cdot 16$; Dirjiling, 119×25; and Kueh Behár, 119.05 -all at the base of the hills; Noakhati, 107.52 , and Chittagong, $105 \% 1$, both on the north-east coast of the Bay of Bengal. The lowest averages are returned by Chapra, 37.06 inches; Patná, 38.21 ; and Gáyá, $41 \cdot 38$. The average rainfall for Bengal ia 67 inches.

Assam possesses in Cherra Poonjce (Chata Punji) the station with the largest reeorded rainfall in the world. The registered fall during the three years ending 1876 averaged 368 " inches. A total fall of 805 inches was reported in 1861, of which 366 wero assigned to the single month of July. In 1850 Dr Hooker registered 30 inches in twenty-four hours, and returnell the fall from June to November of that year at 530 inches. In the four days 9 th to 12th Sertember 1877, 56 '19 inches were registered. The following stations in Assam ; ave also a very high rainfall :-Silchár, $121 \cdot 7^{\circ}$; Sylhet, $153 \cdot 80$; Dibrugarl, $116 \cdot 43$; and Tura, $115 \cdot 76$. The lowest recorded averages in Assam are at Samaguting ($52 \cdot 58$ inches) and Gauháti ($69 \div 23$ inches), both on the northern side of the hilis separating Cachar from Assang.

In the Central Provinces the highest average falta are at Pachmarhi ($52 \because 20$ inches) and Baldighát ($64 \cdot 11$ inches); lowest averages, Khandwa, $32 \because 26$ inches, and Bednúr, $41 \% 21$ inches.

In Bombay, three stations on the Gháts are recorded as having an average rainlall of over 250 inches, viz. :-Mfatheran, 256 ' 75 inches; Malcolmpet (Mahábleshwar), 252.25; and Baura (Fort), 251.80. 'I'he lowest average rainfalls secorded in Bombay are-12.99 inches at Mandargi ; 17"25 at Dhulia; and 19.93 at Gokak. The averago rainfall for Bombay is 67 inches.
In Sind the average rainfall is very low, varying from 16.31 inehes at Nagar, and 11.78 at Umarkot, to 5.09 at Shikirpur, and 4:28 at Jacobábád.
In Madras the highest averages recorded are- $\mathbf{1 3 5} 60$ inehes at Cannanore; $131 \cdot 91$ at Mangatore ; 125.63 at Tellicherri; 113.62 at Calicut ; and 112.15 at Cochin-all on the wost eoast. The lorest falla recorded are-at Bellary, 16.06 ; Tuticorin (sheltered by the Gháts), $18 \cdot 50$; Guti (Gooty), 20.85 ; and Coimbatore, $20.90 . ~ A 11$ these stations. lie low. The average fall at the stations on the east eoast is about 41 inches. The average rainfall for Madras is 44 inches.
The rainfall along the eoast of British Eumah is heary, as might be expected, the following averages being recorded:--Sandoway, $218 \cdot 58$ inches; Tavoy, $195 \cdot 47$; Maulmain, 191.34 ; Akyab, 189.23 ; Khyouk-hpyn, 170.66 . The smellest rainfall is at Thayet-myo (51.04) and Prome ($59 \cdot 46$), sheltered by the Voma range.

The rainfall at l'ort Blair, in the Andamans, is also niturally leavy, the average being returned as 110.25 inches

Sun-spot Cycles. - The conclusions arrivedat by the Indian sun spot metcorological department on the subject of the son-spot cych;s cyeles, which have been engaging the attention of scientific and men, are thus summed up in the 18.7 report:-" In con- raintall. clusion, the following are the more important inferences that the meteorology of India in the years 1877 and 1878 appear to suggest, if not to establish. There is a tendeney at the minimum sun-spot periods to prolonged excessive pressure over India, to an unusual development of the winter rains, and to the oceurrence of abnormally heavy snonfall over the Himalayan region (to a greeter extent probably in the western than the castorn Himalayes\%. This appears also to be usually accompanied by a weals
south-west monsoon The characteristies of a weak monsoon are-great irregularity in the distribution of the rainfall over the whole uf India, and the occurrence of heavy local rainfalls, which tend, by a law of ranfall and of air-mution, to recur over the same limited areas. The irregularity of ranfall distribution is often shown by the persistent and prolonged absence of rain over considerable areas. These areas of druught and famine are partly marked off by nature, depending to a certain extent on the geographical features and position of the distriet Thus the rains are zore likely to iall below the amount neeessary for cultivaion in the dry region of the Decean or in Upper India, than over the Malabar coast area or the province of Dengal."

Flora

Unlike many other large geographucal areas, India is remarkable for baving no distinctive botancal features peenliar to itself. It differs conspicuously in this respeet from such countries as Australia or Soutn Africa. Its vegetation is in point of fact of a composite charaeter, and is constituted by the meeting and more or less blending of adjorning floras,-of those of Persia and the south-eastern Mediterrancan area to the north-west, of Siberia to the north, ef China to the cast, and of Malaya to the south-east.

Oúr space does not adnit of any minute discussion of the local features peculiar to separate districts, but regarded broadly, four tolerably distinct types present themselves.

IIimalayan.-The base of the Himalayas is occupied by a narrow belt forming an extrente north-western estension of the Malayan type deseribed below Abeve that there is a rich temperate flora which in the eastern chain may be regarded as forming an extension of that of northern China, gradually assuming westwards more and moro of a European facies. Magnolia, Aucuta, Abeha. and Skimmure may be mentioned as examples of Chinese genera found in the eastern Himalayas, and the tea-tree grows wild in Assam. The samc conilerous trees are common to both parts of the range. Pinus longifolia extends to the Hindu-Kush; P. excelsa is found universally except in Sikkim, and bas its Euronean analogue in P. Fence, found in the mountains of Greece. Abies smithiana extends into Afghánistín: Ahies rebbiana forms dense forests at altitudes of 8000 to 12,000 feet, and ranges from Bhutin to Kashmir; several junipers and the common yew (Trarus baccata) also oecur. The dendar (Cedrus Deodara), which is indigenous to the moountains of Afgbanistan and the north-west Himalaya is nearly allied to the Atlantic cedar and to the cedar of Lelanon, a form of which has recently been found in Cyprus. A notable further instance of the connexion of the western Himalayau flora with that of Europe is the holm oak (Quercus Hex), which is claracteristic of the Mediterranean regron

The upper levels of the Ilimalayas slope northwards gradually to the Tibetan uplands, over which the Siterian temperate vegetation ranges. This is part of the great temperate fora which, with locally individualized species, but often with identical genera, ranges over the wholo of the temperato zone of the northern bemsphere. In the western Uimalayas this upland flora is marked by a strong sdmixture of European species, such as the colunbine (Aquilegia) and hawthorn (Cratergns Oxymentha) These disappear rapidly eastward, and are scarcely found beyond Kuman.

North-Frestern.-This is best marked in Sind and the Punjab, where the climate is very dry (the rainfall averig. ing less than 15 inelies), and where the soml, though fertile, is wholly dependent on irrigation for its cultivation. The lifra is a poor one in number of species, and is essentially identical with that of Persia, bouthern Arabia, and Egypt.

The low scattered jungle contains such charaeteristic species as Capparis aphylla, Acacia arabica (babuil), Populus euph. ratica (the "willows" of Ps. cxxxvi. 2), Sulvadora persica (erroncously identified by Royle with the mustard of Matt. siii. 31), tamarisk, Zizyphus, Lotus, \&c. More than minetenths of the Sind vegetation is estimated to be indıgenous to Africa. The dry flora extends somerhat in a suatheast direetion, and then blends insensibly wth that of tho western peninsula ; some species representing it are found in the upper Gangetic plann, and a few are widely distributed in dry parts of the conntry.

Malayan.-Thia Sir Joseph Hooker describes us form- Assan, ing "the bulk of the fiora of the perennially humid and regions of India, as of the whole Malnyan peunsula, the Malastu Upper Assam valley, the Khast mountains, the forests of the base of the Himalaya from the Brahmaputra to Nepal, of the Malabar coast, and of Ceylon" It is not of course iotended that over this wide and disjonted area there is an actual identity of species; but the aftinities and general agreament of facies are sufficiently close to leave no doubt that they belong essentially to one and the same flora A few illustrationg must suffice:-pitcher-plants (Nepenthes), so riebly developed in Borneo, oecur at Singapore, on the Khasi mountains, and in Ceylon, while they are absent from the western peninsula ; wood-oil trees (Dipterocarpex), which abound in the forests of the Malayan archipelago, are well represented by species individualized by isolation in the Malayan peninsula, Ceylun, and southern India, the gamboge of Singapore is seareely distinguishable botanically from the Ceylon speces; rubber-yiclding trees are characteristie, such are the climbing Apocynacea found in the Malayan pelininula and Borneo, and the well-known Ficus elastica, indigenous to Assam and Java; numerous palms and several species of Cycas also distinguish this flora lrom that of the western peninsula. Teak (Tectona, grandis), which is indigenous to the Malayan archipelago, is native to both peninsulas as far as $25^{\circ} \mathrm{N}$ lat., and is more tolerant of a dry elimate than most of its assaciates.
Western Peninsula.-This type is difficult to characterize, Westem ond is in many respects intermediate between the two just Inda preceding. It oceupies a comparatively dry area, with a rainfall under 75 incles. Ir respect to positive affinities, Sir Joseph Hooker lias pointed out some relations with the flora of tropieal Africa as crideneed by the prevaleneo of sueh gedera as Grewia and Impaticens, and the absence, common to boilh countries, of oaksand pines which abound in the Malayan arelipelago. The annual vegetation which springs up in the rainy season includes numerous genem, such as Sida and Indigofera, which are largely represented both in Afriea and Hindustan. Palms also in both countrics are seanty, the most notable in southern Iudia veing the wild date (Phantx sylvestris); Borassus and the cocna. nit are cultivated The forests, though oecasionally very dense, as in the western Ghats, are usually drier nod more open than those of the Malayan type, and are often sernbby. The most important tumber trees are the toon (Cedrela Toona), sal (Shorea robusta), the present area of which forms two belts separated by the Gangetic plain, satin wood (Chloroxylon Suictema), common in the drier parts of the peninsula, sandalwool, especially characteristie of Mysore, iron-wool (Hcsun ferren), and teak, which has already been alluded to.'

[^150]
Wild Anmals.

Mammals.-First among the wild animas of India nust be mentioned the lion (Felis leo), which is known to have been not uncommon within historical times in Hindustín Proper and the Punjab. At present, the lion is aupposed to be confined to the sandy deserts of Guzerat. A peculiar variety is there found, marked by the absence of a mane; but whether this varioty deserves to le classed as a distinct species naturaliste are net yet determined. The former extent of the lion's range, or at lcast the degree to which its preseare impressed the imagination, may be iuferred from the common personal names, Sinh or Sing, Sher, and Hyder, which all signify "lion." The claracteristic beast of prey in Iodia is the tiger (F. tigris), which is found is every part of the country from the slopes of the Himálayas to the Sundarban awamps. Sir Joseph Fayrer, the bighest living sutherity on this subject, believes that I) feet is the maximum length of the tiger, when measured from nose o tip of tail immediately after desth. The advance of cultivation, even more than the iocessant attacks of sportsmon, has gradually caused the tiger to become a rare animal in large tracts of country; but it is scarcely probable that he will ever be exterminated frem India. 'The malarious tarai fringing the Himalayas, the uninhabitable swamps of the Gangetic delta, and the wide jungles of the central plateau, are at present the chief home of the tiger. His favourite food appears to be deer, antelepe, and wild beg. When these abound he will disregard domestic cattle. Indeed, the natives are disposed to consider him as in some bort their protector, bs he saves their crops from destruction by the wild animals on which he feeds. But when ence be develops a taste for human bloed, then the slaughter he works becomes truly formidable. The confirmed man-eater, which is generally an old beast, dissbled from overtaking his usual prey, seems to accumulate his tale of victims in sbeer cruelty rather than for food. A single tiger is known to have killed 108 people in the course of three years. Another killed an average of about 80 persone per annum. A third caused thirteen villages to be abindoned, and 250 square miles of land to be thrown out of cultivation. A feurth, so late as 1869, killed 127 people, and stopped a public road for many weeks, until the opportune arrival of en English sportsman, who at last killed him. Such cases are, of course, exceptional, aed generally refer to a period long past, but they explain and justify the superstitious awe with which the tiger is regarded by the natives. The favourite mode of shoeting the tiger is from the back of elephants, or from elevated platforms (machans) of boughs in the jungle. In Central India they are shot on foot. In Assam they are semetimes speared from boats, and in the Himilayas they are said to be ensnared by bird-lime. Rewards are given by Government to native shikuris for the heads of tigere, varying in time and place accerling to the need. In 1877, 819 persens and 16,137 cattle were reperted to have been killed by tigers; on the other side of the acconnt, 1579 tigers were reported slain, and $\mathcal{L} 3777$ was paid in rewards. Leopard The leopard or panther (F. pardus) is far more commen than the tiger in all parts of India, nud at least equally destructive to life and property. The greatest length of the leopard is about 7 feet 6 inches. A black variety, as beautiful as it is rare, is sometimes found in the extreme south of the peninsula, and also in Java. The chectah or hunting leepard (Gueparda jubata) must be carefully distinguished from the leopard proper. This animal appears to be a fative only of the Deccan, where it is trained for hunting the antelepe. In beme respects it approaches the dog more nearly than the cat tribe. Its limbs are long, its bair rough, and its claws blunt and only partially retractile.

The speed with which it bounds upen its prey, when loesed from the cart, excecis the ewiftncss of any other mammal If it misses its first attack, it scarcely ever attempts to follow, but returns to its master. Among other sprecies of the family Felide feuod in India may be nentiened the unnce or snow leopard (F^{\prime}. uncia), the clouded tiger (F. macroscelis), the marbled tiger cat (k. murmoratu), the jungle cat (F. chaus) and the common viverrine cat (F. viverima).
Welves (Cunis lapis) abeuad throughout the open wolf country, but are rare in the wooded districts. Ther tribe. favourite prey is sheep, but they are also said to run down antelopes and hares, or rather catch then by lying in ambush. Instances of their attacking man are not uncommon. In 1827 upwards of thirty chilldren were carried off by wolves in a single pargana; and the story of Romulus and Remus has had its counterpart in Inclia within recent tines. The Indian wolf has a dingy red-dish-white fur, some of the bairs being tipped with black. By some naturalists it is regarded as a distinct species, under the name of Canis putlipes. Three distinct vafictice, the white, the red, and the llack wolf, are fond in the Tibetan Himálayas. The Indian fox (Vulpes bengatenss:) is comparatively rare, but the jackal (C. aureus) abounds everywhere, making night Lidcous by its never-tu-bicfergetten yells. The jackal, and not the fos, is usually the animal hunted by the packs of hounds occasionally kept by Eurepeans. The wild dog or dhole (C. dhola) is Dos. found in all the wilder jungles of Iudia, in. Iding Assam and British Burmah. Its claracteristic is that it hunts in packs, sometimes containing thirty dogs, and does not give tengue. When once a pack of wild dogs has fut up any animal, whether deer or tiger, that animal's doun is sealed. They do not leave it for days, and finally bring it to bay, or rus it down exhausted. These wild dogs have sometimes been balf douesticated, and trained to hunt for the use of man. A peculiar variety of wild dog exists in the Karen hills of Burmah, thus deseribed from a specimen in confinement. It was black and white, as hairy as a skyeterrier, and as large as a medium-sized spaniel. It had an invariable habit of diggiug a hole in the ground, inte which it crawled backwards, remaining there all day with only its nose and fercty cyea visible. Among other dogs of India are the pariah, which is merely a mungred, run wild and balf starved ; the poligar dog, an immense creature peculiar to the senth; the grey-hound, uscd for coursing ; and the mastiff of Tlibet and Mhutín. The striped hyena (Hycena striata) is common, being foum wherever the wolf is alsent. Like the wolf, it is very destructuve both in the floeks and to children.

Of bears, the common black or sloth bear (lirsus labuthes) Eear is common throughont India wherever rocky hills and forests occur. It is distinguished by a mhite borse-shoe mark on its breast. Its fued consists of ants, honey, and frit. Wheu disturbed it will attack man, and it is a dangerous antagenist, for it always strikes at the face. The Mimalayan or Tibetan smn hear (U. Aibthmes) is found along the north, from the l'unjal, to Assam. Danu; the summer it remains high up in the mountains, near the limit of snow, but in the winter it descends to 5000 feet and even lower. Its congener, the Malayan sub bear (Helarctos malayanns), is foond in British Burn:lh, where else there is a smather speries (II. curyspilus), and a very large naimal reported to le as big as the American grizzly.

The elejhant (Elephass indicus) is found in many parts Ele. of India, though not in the nerth-west. Contrary to what phamt might be anticipated from its size and from the habits of its African cousin, the Indian elephant is now, st any rate, an inhabitant, not of the plains, but of the hills; and even on the hills it is usually found anong the higher ridges and plateaus, and not in the valleys. From the peninsula of

India the elephant has been gradually exterminated, being only found now in the primæval forests of Coorg, Mysore, and Travancore, and in the tributary states of Orissa. It still exists in considerable number along the tarai or submontane friage of the Himálayas. The main source of supply at the present time is the confused mass of lills which forms the north-east boundary of British India, from Assam to Burmah. Two varieties are there distinguished, the gunda or tusker, and the makna or hine, which has no tusks. The reports of the height of the elepLant, iike thuse of its intelligence, seem to be exaggerated. The maximum is probably 12 feet. If hunted, the elephant must be attacked on foot, and the spart is therefore dangerous, especially as the animal has but few parts vulnerable to a bullet. The regular mode of catching elephants is by means of a kheda or gigantic stockade, into which a wild herd is driven, then starved into submission, and tamed by animals already domesticated. The practice of capturing them in pitfalls is discouraged as cruel and wasteful. Elephants now form a Government monopoly everywhere in India. The shooting of them is prohibited, except when they become dangerous to man or destructive to the crops; and the right of capturing them is only leased out upon conditions. A special law, under the title of "The Elephants Preservation Act" (No. VI. of 1879), regulates this licensing system: Whoever kills, captures, or injures an elephant, or attempts to do so, without a licence, is punishable by a fine of 500 rupees for the first offence; and a similar fiae, together with six months' imprisonment, for a second offence. In tho year 1877-78 a total of two hundred and sixty-four elephants were captured in the province of Assam, yielding to Government a revenue of $£ 3600$. In the season of 1873-74 no less than fifty-three were captured at one time by Mr Sanderson, the superintendent of the Kheda Department in Mysore, who has made a special study of the Indian elephant, as Sir S. Baker has of the same anmal in Ceylon. Though the supply is decreasing, clephants continue to be in great demand. Their chief use is in the timber trade, and for Government transport. They aro also bought up by native chiefs at high prices for purposes of ostentation. Of the rhinoceros, four distinct varietics are enumerated, two with a single and two with a double horn. If most familiar is the Rhinoceros unicomis, commonly fonnd in the Bralmaputra valley and in the Sundarbans. It has but one horn, and is covered with massive folds of naked skin. It sometimes attains a height of 6 feet; its horn, which is much rrized by the natives for medicimal purposes, seldom exceeds 14 inches in length. It frequents swampy, shady spots, and wallows in mud like a pig. The inveterate antipathy of tho rhinoceros to the eleplant seems to bo mythical. Tho Javan rhinoceros (A. sonduicus) is found in the same localities. It also has but one horn, and mainly differs from the foreroing in being smaller, and having less prominent "shields." The Sumatran rhinoceros (I. sumetrensis) is found from Clittagong southwards through l'urmah. It has two horns and a bristly coat. The hairy-eared rhinoceros (L. lusiotis) is only known from a specimen captured at Chittagong.

The wild hog (Sus scrofa, var. indica) is well known as affording the most exciting sport in the world-"pigstickigg." It frequents cultivated situations, and is the most misohievous enemy of the villager. A rare animal, called the pigmy hog (Porcalia salvi(ania), exists in the ture of Nepall and Sikkim, and has been shot in Assam. Its height is only 10 inches, and its weight does not excced 12 it .
Wild ass.
The wild ass (Asinus onager) is confined to the sandy deserts of Sind and Kachloch (Cutch), where, from its speed and timidity, it is almost mapproachable.

Many widd species of the sheor, and goat tribe are to ba
found in the Himalayan raages. The Ovis ammon and Stwar O. poli are Tibetan rather than Indian species. The urial and and the shapu are kindred species of wild sheep, found fosts. respectively in ${ }^{T}$ adakh and the Sulaimin range. The former comes down to 2000 feet above the sea, the latter is never seen at altitudes lower than 12,000 feet. The barhal, or blue wild sheep, and the markhur and tahr (both wild goats) also inhabit the Himalayas. A variety of the ibex is also fonnd there, as well as in the highest ranges of southern India. The sarau (Nemorhadus rubidä), allied to the chamois, has a wide range in the monntains of the north, from the Himalayas to Assam and Burmah.

The antelope tribe is represented by comparatively fer Ansaipe species, as compared with the great number peculiar to Africa. The antelope proper (Antilope bezoartica), the "black buck" of sportsmen, is very geherally distributed. Its special habitat is salt plains, as on the coast-line of Guzerat and Orissa, where herds of fifty does may be seen, accompanied by a single buck. The doe is of a light fawn celour, and has no horns. The colonr of the buck is a deep brown-black above, sharply marked off from the white of the belly. His spiral horns, twisted for three or four turns like a corkscrew, often reach the length of 30 inches. The flesh is dry and unsavoury, but is permitted meat for Hindus, even of the Brahman caste. The nilgai or blue cow (Portax picte) is also widely distributed, but specially abounds in Hindustan Proper and Guzerat. As with the antelope, the male alone has the dark blue colonr. The uilgai is held peculiarly sacred by Hindus, from its fancied kinship to the cow, and on this acconat its destructive inroads upon the crops are tolerated. The four-horned antelope (Tetraceros yuadricornis) and the gazelle (Gazella bemetti) are also found in India. The chiru (Pantholops hodgsoni) is confined to the Himalayan plateaus.

The king of the deer tribe is the sambhar or gerau ($R u s a$ Deer. aristotelis), erroneonsly called "elk" by sportsmen. It is found on the forest-clad hills in all parts of the country. It is of a deep-brown colour, with hair on its neck almost like a mane; and it stands nearly 5 feet high, with spread. ing antlers nearly 3 feet in length. Next in size is the swamp deer or bara-singha, signifying "twelve points" (Rucervus duvaucelli), which is common in Lower Bengal aad Assam. The chital or spotted deer (Axis-maculata) is generally admitted to be the most beautiful inhabitant of the Indian jungles. Other species include the hog deer (Cervus porcinus), the barking deer or montjac (Cervulus ruginalis), and the monse decr (Meminna indica). The musk deer (Moschus moschiferus) is confined to Tibet.

The ox tribe is ropresented in India by some of its Bison nublest species. The gaur (Fibos gaurus), the "bison" of sportsmen, is found in all the liill jungles of the country, in the Western Ghats, in Central India, in Assam, and in British Durmah. This animal sometimes attains the height of 20 hinds (close on 7 feet), measuring from the hump above the shoulder. Its short curved horns and skull are cuormously massive. Its colour is dark chestnut, or collee. brown. lrom tho difficult maturo of its labitat, and from the lerocity with which it charges no enemy, the pursuit of the bison is no less dangerous and no less exciting than that of the tiger or the elephant. Akin to the gaer, though not identical, are the gayal or mithan (B. frontalis), coulined to the hills of tho north-east frontier, where it is domesticated for saerificial purposes by the aboriginal tribes, and the tsine or banting (B. somduicus), found in Burmah. The wihl buftalo (Bubales (emi) difiers from the tame Buta butfalo only in being larger and more fierce. The finest specimens conie fron Assam and Burmah. The horns of the bull are thicker than those of the cow, but the borns of the cow are larger. A head has been known to alcasure 13 fret 6 inches in circumference, and 6 fest 6 inches
between the tips. The greatest height is 6 feet. The colour is a slaty black; the hide is immensely thick, with acanty hairs. Alone perbaps of all wild animals in India, the buffalo will charge unprevoked. Even tame buffaloes seem to have an inveterate dislike to Europeans.

The rat and mouse family is only too numerous. Conspicuous in it is the loathseme bandicoet (Mus bandicota), which sometimes measures 2 feet iu length, including its tail, and weigha 3 fl . It burrows under houses, and is very destructive to plants, fruit, and evea poultry. More interesting is the tree rat (M. arboreus), a native of Bangal, about 7 inches long, which makes its nest in cocoa-nut palms and bamboos. The voles or field mace (genus Arvicola) occasionally multiply so exceedingly as to diminish the out-tura of the lecal harvest, and to require special measures to be organized for their suppression.
Birds.-The ornithelegy of India, thougb it is not considered so rich in specimens of gorgeous and variegated plumage as that of other tropical regions, contains many spleadid and curious varieties. Some are clothed in nature's gay attire, others distioguished by strength, size, and fiercenes3. The parrot tribe is the most remarkable for beanty. So varions are the species that we cannot even enumerate them, and must refer for details to the acientific werks on the subject. ${ }^{2}$ Among birds of prey, four vultures are feund, including the common scavengers (Gyps indicus and G. bengalensis). The eagles comprise many species, but none to surpass the golden eagle of Europe. Of falcons, there are the peregrine (F. peregrinus), the shain (F. peregrinator), and the lagar (F. jugger), which are all trained by the natives for hawking; of hawks, the shikara (Astur badius), the sparrow bawk (Accipiter nisus), and the crested geshawk (Astur trivir. gatus). Kingfishers of various kinds, and herons are sought for their plumage. No bird is more popular with vatives than the maina (Acridotheres tristis), a member of the starling family, which lives contentedly in a cage, and can be taught to pronounce the name of Krishas. Water-fowl are especially numerons. Of gamebirds, the fleriken (Sypheotides auritus) is valued as much for its rarity as for the delicacy of its flesh. Snipe (Gallinago scolopacina) abound at certain seasons, in such numbers that one gun has been known to make a bag of eighty brace in a day. Pigeons, partridges, quail, plover, duck, teal, sheldrake, widgeon-all of many varietiescomplete the list of small game. The red jungle fow (Gallus ferruginesis), supposed to be the ancestor of our own poultry, is not good eating; and the same may be ${ }^{\text {said }}$ of the peacock (Pano cristatus), except when young. The pheasant dees net occur in India Proper, though a white variety is found in Burmah.
Reptiles Reptiles.-The serpent tribe in India is numcrous, they :swarm in all the gardens, and intrude inte the dwellings of the inbabitants, especially io the rainy seasen. Most are comparatively harmless, but the bite of others is peedily fatal. ${ }^{2}$ The cobra di capelle (Naga tripudians) he name given to it by the Portuguese, from the appearance of a hood which it produces by the expanded skin about the neck-is the most dreaded. It seldom exceeds 3 or 4 feet in lengtb, and is about an inch and a quarter thick, with a small head, covcred on the forepart with large smooth scales ; it is of a pale brown colour above, and the belly is of a bluish-white tinged with pale brown or yellow. The Russelian snake (Daboia russellii), about 4 fect in length, is of a pale yellowish-brown, beautifully variegated with large oval spets of deep brown, with a white edging. Its bite is extremely fatal. Itinerant showmen carry about these serpents, and cause them to
${ }^{1}$, See especially Jerion aud Gould.

- Sce Sir J. Fayter'' Thanatophilia
assume a dancing motion for the amusement of the spectators. They also give out that they render snakes harmless by the use of charms or music, -in reality it is by extracting the venomous fangs. But, judging from the frequent accidents which occur, they sometimes dispense with this precaution. All the salt-water snakes in India are poisonous, while the freshwater forms are whelly ingocueus. Sir J. Fayrer has demenstrated that there is no cure for the bite of the cobra, if the snake is fullgrown, and if its poison fang is full and is net interfered with by clething. The most hopeful remedy in all cascs of suake bite is the injection of ammonia. The loss of life from this cause in India is painful to contemplate, ner does any meaus of dimimshing the evil seem feasible. It is impossible to exterminate poisonous snakes altogether, even in England. In India the impossibility is yet more evident, from the greater number of the snakes, the claracter of the ceuntry, and the scruples of the people. Something, however, is being effected by the offer of rewards. Ie 1877 a total of 16,777 persons are reported to have been killed by snakes, as compared with only 819 by tigers. In the same year, rewaids to the amount of $\mathfrak{£} 811$ were given for the destruction of 127,295 snakcs.

The other repules include two varieties of crocodile (C. porosus and C. biporcatus) and the gavial (Gavialis gangeticus). These are more ugly in appearance than destructive to human life. Scorpinns also abound.

Fishes.-All the waters of Indin-the sea, the rivers, Fishes and the tanks-swarm with a great varaty of fistes, whicb are caught in every conceivable way, and furnish a coesiderable proportion of the food of the poerer classes. They are eaten fresh, or as dearly fresh as may be, for the art of curing them is not generally practiscd, owing to the exigencies of the salt monopoly. In Burmah the favourite relish of nga-pi is prepared from fish, and at Geilandá, at the junction of the Brahmaputra with the Ganges, an important station has recently beco established for salting fish in bond. The indiscriminate slanghter of fry, and the obstacles opposed by irrigation dams to breeding fisb, are said to be causing a sensible dimmation in the supply in certain rivers. Measures of conservancy have been suggested, tout therr execution would be almost impracticable. Among Indian fisbes, the Cyprenide or carp family and the Siluride or cat-fishos are best represented. From the angler's point of view, by far the finest fisb is the makser. found in all hill strcams, whetber in Assan, tho Punjab, or the South. One has been canght weighing 60 lt , which gave play for more than seven hours. Though called the salmon of India, the mahsir is really a species of barbel. The most recent authority on Indian fishes and their cconomic aspects is Dr Francis Day.

In this connesion may be mentioncd the susu or Gangctic dolphin (Platansta gangetica), which is often erroneously calted a porpose. Both tho structure and habits of this animal are very singular. It measures from 6 to 12 feet in length, and in colour is sooty-black. Its bcad is globular, with a long, narrow, spoon-shaped snout. Its eyes are rudimentary, like those of the mole; and its zar-orifices are no bigger than pin-holes. Its dentition, also, is altogether abnormal. It frequents the Ganges and Indus from their moutbs right up to their tributaries wthin the hills. A specimen mas been taken at least 1000 miles ahove Calcutta. Ordinarily its movements are slow, for it wallows in the muddy bed of the rwer, and lut rarely comes to the surface to blow. The susu belongs to the order Cetacea; and inquiries have reeently been directed to the peint whether its blubber might not be utilized in commerec.

Insects. - The insect tribes in India may be truly said to be innumerable, nor has anything like a complete classification been given of them in the nost scientific treatiscs.

The heat aud the sains give :ncredibie activity to noxious or troulesome insects, and to others of a more showy class, whose large wings surpass in brillianey the most splendid colouns of art. Stinging musquitoes are innumerable, and moths and ants of the most destructive kind, as well as others equally noxious and disagreeable. Amongst those which are useful are the bee, the silk-worm, and the insect that produces lac. Clouds of locusts occasionally appear, which leave no, trace of green behind them, and give the conatry orer which they pass the appearance of a desert. Dr Buchanan gas a mass of these iasects in his joarney from Madras to the Mysore territory, about 3 miles in length, like a long narrow red cloud near the horizen, and making a noise somewhat resembling that of a cataract. Their size was about that of a man's finger, and their colour reddish. They are swept north by the wiad till they strike upon the outer ranges of the Himalayas.

The People.

Populs. The population of India, with British Burmah, amonnts
to 240 millions, or, as already mentioned, exactly double the number which Gibbon estimated for the Roman erupire in the height of its power. But the English Gorerament, like the Roman, has respected the rights of native chiefs who are willing to govern peaceably and well, and one-third of the country still remnins in the hands of hereditary rulers. Their subjeets (including Mysore) make up 54 millions, or over one-fifth of the whole Indian people. The British territorics (ineluding Mysore, temporarily under British administration), therefore comprise orly two-thirds of the area of India, aud less than four-fifths, or 191 millions, of its inhabitants.
For the first time in the history oi Iudia an attempt was made in the years 1871-72 to ascertain the population of the country by actual counting. The results obtained on that occasion, though in certain points they leave much to be desired, may be aceepted generally as a tolerable approximation to the truth. Prior to this census, occasional euumerations had been made, with varying degrees of nccuracy, in sone of the provinces'; while in others nere conjectural estimates had been allowed to pass uncriticized. In Bengal, for example, where statistical inquiry was in a backward state, the Government had year by year accepted a loose estimate of 42 millions for the population under its coatrol, and based upon this all its calenlations for legislation and finance. The census of 1872 disclosed a total of nearly 67 millions for Bengal and Assam, being an increase upon the estimate of more than one-lialf. In Berar, or the dssigned Districts of Hyderabad, a census had been taken in 1867, in the Punjab in 1868, and in Oudh in 1869. In' these provinces, therefore, it was considered impolitic to trouble the people by a fresh enumeration. Throughout all the rest of India under British administration, including the native state of Mysore, a general census was effected on unitorm principles, which may be said to lave begun in November 1871 and ended in August 1872. So far as possible, the work was done in a single night; but in certain remote and uncivilized tracts it was of neeessity prolonged over several months. Considering the absolute novelty of the undertaking, at least in some provinces, and the seanty means at the disposal of the anthorities, the general accuracy of the results may bo regarded with not a little satisfaetion. Subsequent Incal investifations tend to show that the numbers were under rather than overstated. In a few cases paid cnumerators were enguged; but gencrally the work was left to tho orbinary staff of each district, assisted by the police, the landlords, ned their agents. The total expenditure throughnut all Pritish India was only $£ 82,203$, leing at the rate of less than half a farthing per larad. The suspicions of the
ggnorant villagers were naturally aroused by the counting, which they imaghed to be prelimiuary to some fresh exaction by the Sarkar or Goverament. Only in two or three cases was any real opposition offered; and there is littlo reason to believe thatany naterial evasion was accomplished.

The total population of British India was ascertained to General amount to $191,096,603$ persons, on an area of 898,381 resuls. square miles, being an average of 212 persons per square mile. Deducting the frontier province of Assam and British Burmah beyond the sea, the average is 243 persons per square mile. The population of the several native states is returned, partly from actual enumeration and partly from mere guessing, at 49,155,746 persens, on an area of 555,265 square miles, being an average of 85 persons to the square mile. The French possessions have an area of 178 square miles and a population of 271,460 persons ; the Portuguese possessions, 1086 square miles and 407,712 persons. The aggregate figures for all India, iherefore, are $1,474,910$ square miles and $240,931,521$ persons, or an average of 163 persons per square mile.

The following tables exhibit the results of the census of 1872 in a tabular lorm, arranged according to provinces and aggregates of native states, as presented to Parliament in 1879 in the Statistical Abstract for British India, No. XIII. for 1877-78. For certain details the Memorandum on the Census of $18 \boldsymbol{z}_{2}$ presented to Parliament in 1875 bas been used. No really important changes in the returns will be made till the next census, but slight alterations or adjustnents are from time to time effected

Arce and Population of India under British Administration. .

	Area In Sq. Miles.	Population.	$\begin{gathered} \text { Persons } \\ \text { ner. } \\ \text { Sq. } 111 \mathrm{e} \end{gathered}$
Under Governor-Gंnerul-			
Ajrair	2,711	396,889	146
Berar	17,711	2,227,654	126
Mysore ${ }^{1}$	29,325	5, 055, 412	172
Coorg	2,000	168,312	84
Under Governors-			
Madras..	138,856	31,672,613	228
Bombay (including Sind)......	123,142	16,349,206	132
Uniler Li+utenant-Governors-			
Bengal	156,200	60,502, 597	$38 \mathrm{~S}^{3}$
North-Western Provinces....	81,403	30,781,204	378
Punjab............................	104,975	17,611,498	168
Uniler Chief-Comnissioners-			
Oudh ${ }^{2}$...........................	23,992	11,290,282	468
Central Proviuces	84,208	8,201,519	97
Eritish Burmah.................	88,556	2,747,148	81
Assam	45,302	4,162,019	99^{3}
Total	898,881	191,096,603	212

	dica in Sa. Milles.	Population.	
Under Governor General-			
Central India and Bundel-	89,095	8,300,531	93
Rajputina ${ }^{\text {a }}$...	130,989	10,192,871	77
${ }^{1 / 4}$ deralad (Iaidarabail, $\}$	80,000	9,000,000	119
Baroda.....	4,899	2,000,225	454
Manipur	7,584	126,000	16
Under Mengal	37,988	2,328, 440	61
,, North.Western l'rovinces	5,125	6657,013	128
., C'unjab............	114,742 29.112	$5,367,042$ $1,0.9$	46 36
-. Central Provinus	29,112 9,818	$1,049,710$ $3,259,392$	-36
". Dombay	66,410	6.784,482	102
Total	575,265	49,155.740	85

I If ysnro will be handed back In 1881 to the alministration of lie native raja Goill is Incopporated for move purposas whth the N.W. l'oninces.
3 The alea nt the with combtry bu wheh the population is not reckoned ba

Tokal Area and Population of All India.

	Area in Sq. Mites.	Population.	Density per sq. Blale.
Under British admini. stration \qquad	898,381	191,096,603	212
Native States	:75,265	49,155,746	85
Portuguese Possessions	1,086	407,712	\} chienly
French Possessions	178	- 271,960	
Grand total	1,474,910	240,931,521	163

Density According to the relort of the registrar-general upor oi pupu-the English census of 1871, "any density of a large \therefore Hioo. country approaching 200 to a square mile implies mines, manufactures, or the industry of cities." But in India a density of thrice this limit, or 600 to the square mile, is often attained throughout large districts which are entirely dependent upon agriculture. Sáran, for example, in Nortb Behar, with an area of 2654 square miles and no town exceeding 50,000 inbabitants, has an average density of 778 to the square mile, with a maximum of 981 in the purely agricultural thánd or police cirele of Mashrak. Taking the valley of the Ganges as a whole, from Sabáranpur down to Calcutta, tho average density is about $£ \hat{\cup} 0$ to the square mile, or nearly double that of tho United Kingdon.

This high density is obtained without the presence of many large towns or centres of manufacturing life. Of the tutal number of 493,444 towns and villages in British India, only 44 are returned as laving more than 50,000 inlabitants, 374 as having from 10,000 to 50,000 , and 1070 as having from 5000 to 10,000 . The 44 tomns with more than 50,000 inhabitants have an aggregate urban population of a little more than $5 \frac{1}{2}$ millions, or less than 3 per cent. of the total population of British India; whereas the 34 towns in England and Wales exceeding the same limit have an aggregate urban population of nearly $7 \frac{1}{2}$ millions, or 32 per cent. of the tutal. Taking a lower limit, there are 139 towns in British India with more than 20,000 inhabitants, having an aggregate of $8,484,066$, or less than $4 \frac{1}{2}$ per cent. of the total.

Toluns with more than $100,000^{\prime}$ Inhatitants.

Calcutar	776,579	Bangalore 142,513
Bombay ${ }^{2}$	64,405	Amritsar.............. ... 142,381
Atalras ${ }^{2}$.	.397, 5,52	Lahore².......... 123,441
Lucknow	284,779	Сауйриг_................. 122,770
Benares	175,188	Poona 118,886
Delhi ${ }^{2}$	160,553	Ahmadábal................ 116,873
Patná	158,900	Rangoon 108,000
Agri	149,008	Surat 107,149
Allaliabad	143,693	Bareilly............. 102,982

In. The total number of inhabited bouses enumerated in British India habited is 37,041,259. The averaga number of houses per square mile is 41 , liowses. ranging from 102 in Outh to 6 in British Burmah. The averago number of persons per house is $5 \cdot 15$, heing pretty uniform throughout. Contmry to the experience of the Uated Kingdom it is found that the uumber of inmates to each house is lower in the towny than in the conntry, the reason assigned being that the shopkecpers do not bring their families into the torns with them. Tho houses are grouped into a total of 493,444 villages or townships, giving an average of 75 houses and 386 persons to each. The overage area of each village or township is 55 of a square mile. The villages seem to be largest in Jombay, with $6 t 4$ inhabitants each, and smallest in British Burmah, with 195 inhabitants.
Ane and Ont of the total of 191,096,603 persons in British India, 98,055,381 ses. are returned av males and $92,5 \$ 0,886$ as females, leaving $\$ 00,336$ of whom the sex was unspecified. The proportion of males to females is thus as 100 to 94 . In Englond the females outnumber the males in the proportion of 105 to 100 , an excess attributed mainly to emigration. In India, whence there is practically no emigration, it minhlit be expected tbat this excess of females would disappear, und tho two sexes be found on an equality. In the two grest provinees of Bengal and Madras this is practically the case, the excess of females being not greater than 1 per cent., ond tho proportion being maintained uniformly throughout the districts But in Oudh the excess of males is 7 per cent., in Bombay 8 per

[^151]${ }^{2}$ With suburbs.
cent, in the Nortli-Western Provinces 12 pe cent, and in the Punjab as high as 16 per eent. We have 10 renson to supinse that the approximate equality of boys and girls dues not hold good in tho births throughout India, as in other countries; and therefore this great excess of males can only be assignell to two causes-(1) defective registration of females, especially of girls, and (2) female infanticide tormerly, and carelessness of infant female life at the present day. Of the existence of these causes we possess independent testimony. In 1870 an oct of the legislature was passed applying sjecial regulations to villages or tracts suspected of infanticide, which is the besetting sin of eertain high easte tribes of Rájputs. In ono tribe of Neerut disirict only 8 girls under 13 wero found to 80 boys. The act is put in force wherever tlwe are less than 54 girls to 100 boy's, but the exaet limit is at the diseretion of Government. The crime is now almost stamped out.

The returns according to age throw some light upon this question. Children under 12 number altngether $66,969,764$, and odults above 12 number $123,200,022$, leaving 926,817 unspecified. The propor: tion of children to adults is, therefore, os 54 to 100 , the corresponding proportion in England being 41 to 100 . The highest proportion of children (62 to 100) is found in the Central Provinces, where tha aboriginal tribes are strongest ; and the lowest proportion (50 to 100) in the North. Western Provinces. An examination of the Bengal returns, district by district, olso lends to the conclusion that the aboriginal tribes are more prolifie than the llindus proner. Subdividing these returns according tosex, we discover an extraordinary disparity. Of tho adults, 62,022,461 are males and 61,197,561 ore females. The proportion of male adults to lemales is, therefore, about 100 to 99 , as compared with 100 males to 94 females in the general population. But on turning to the children under 12, we tind as many as $35,737,564$ boys to only $31,1 \leqslant 2,200$ gitls, or 100 boys to only 87 girls. This arises from the defective registration of girls, ferales under 12 being often returned as women.

The following table shows the pepulation of British Religious India as roughly subdivided according $\% 0$ religion. division. Broadly speaking, it may be said that at least nincteen out of every twenty people in India are either Hindus or Mahometans, and that there are seven of the former to two of the latter.

Population according to Religion in British India.

Ruligion.	Number.	Per cent.	Tracts wherc most numerous.
nindus	139,343,620	7307	South; and Cepper Volley of Ganges.
Mahometons	$40,867,125$	21.459	Sind, Junjob, Eastern Dengat, and Notht West Piownecs.
Duddhist and Jalns	2,832,851	1.43	Butish Burnati only.
Sikhs....................	1,171.436	Cf	lunjabinty.
Chrishlins	897.682	47	
Othcrs ${ }^{\text {a }}$..................	$5.417,304$	\bigcirc	Cental Provmes and Eombay.
Unspeciffed............	561,069	22	

The schedules of the census fail entirely to give a satis- Ethuleat faetory classification of the races among which the vast division. population of India is divided. Using languago as our criterion, the people might perhaps be arranged in five classes:-(1) The old races of the south, known as the Dravidian stock, which includes, not only the great peoples using the literary languages of Tamil, Telugu, Malayalam, and Kanarese, but also scattered tribes speaking dialects of the same family, who are found as far rorth as the hills of Clutia Nagpur; (2) the liall tribes n! Central India, from the Blifls of Dombay to the Santals of Bengal, whuso plysical characteristics are negroid, and whose family of languages has received the name of Kolarian; (3) tho tribes of Indu-Chinese origin, who inhalit the contitern slopes of the Hinalayas, the greater bart of tac Assam valley; and the whole of Burmah;-it seems proballe that: the semi-Hinduized low castes of Northern Tengal alse -belong to this stock ; (4) high-caste Miaik, or hat onshoot of the august Aryan rac which has inposed its language, its religion, and is name upon the greater part of the enuntry; (5) succesive waves of Mahometan conquerors, Arab, Afghán, Yughal, and lersian, who form in the aggregate but in infmitesinal clement in the general population. Whether pure Aryaus are now to be traced in any other class than that of the Brahnans

[^152]mey perhaps be disputed. Even the so-cilled Rajputs have F =obably a considerab admisture of Seythic blood. The Vaisya or third easte of Mann's eystem is admitted to be almost extinet, whle his Sudras are to be fonad is the pre-existing now-Aryan population.

Principal Divisions of the Populetion.

Race, sc	Number.	Tracts where most Dumerons.
$\begin{aligned} & \text { Hindus. } \\ & \text { atins } \end{aligned}$	10,131,541	N.-W, Provioces, Ourth Beded, Madras.
Rxijpots	6,641,138	N.-W Proviocea, Bental, Oudh, Ponjab.
Ouf astes	8.712,998	Madras.
Al ginsl tribea	17.716,825	Benga, Central Prorinces, Assam.
Native Cbristiana Harometare	695,815	Sonth add West.
Moghals	219,755	Panjab
Afghsne op Patbins.....	1,841,693	Do
Sayyids	790,984	
Shatikh Forelgners.	4,700,320	
Pgrals	69,000	Bombay cty and Surst
Nepslts.....	31,000	Bengal.
Maniperis	12,000	Assam.
Arahs ..	8,300	Bombsy.
Persians ...	8,500	Do.
Armeolans	1,280	Rengal.
Chiness	13,300	Burmab
Malsys	1,600	Do.
Jews	7,600	Bambay.
Earasians and 3 rodoPortuguese	108,000	Calcotta, Madras, and Bombay citics.
Eurupeans	121,600	of whom $\mathbf{7 5 , 7 0 0}$ are Btitish.

Among Mahometans, who number in all $40,227,552$, fuur classes are commonly distinguished. Mughals, or the descendents of the last conqueriag race, Dumber only 219,755, of whom nearly half are to be found in the Punjab. Afghans or Pathans on the other hand, from their proximity to the froatier, are mueh more strongly represented, numbering $1,841,693$ in all, ehiefly in the Punjab nad in the Rohilkhand division of the North-West. Sayyids, whe c-iin to be lineally deseended from the prophet, number 790,984 ; and Shaikhs, 4,700,320. The remainder are unsp eeifid, but the following tribes or classes among Indian Musalmans are worthy of notice. In Bengal the vast majority of the Mahometans manifestly belong to the oamo race as the lowest eastes of Hindus. They are themselves subdivided into many ciasses, whieh in their devotion to hereditary occupations are searcely to be distinguished from Hindu castes. Of late years a reforming spirit has arisen, leading them to abandon the polytheistic customs and festivas which they shared with their Hindu fellow-villagers. In the Punjab, besides the Pathán immigrants from across the frontier, Islam bas, taken a strong hold of the native population. The census returned upwards of $1,300,000$ Játs, 700,000 Rajjputs, and 424,000 Gujars among the Musalmans. Here, again, the Mahometans are not atrongly. distinguished from their Hiddu bretbren. Baluchis from beyond the frontier number 235,000 in the Punjab, and 145,000 in Sind. Bombay pessesses three peculiar classes of Musal níns, each of which is specially devoted to maritime trade,--the Memons, numbering 49,000, ebiefly in Sind ; the Borahs, 86,000 , mainly in Guzerat ; the Khojahs, nearly 18,000 , of whom half live in the island of Bombay. In sonthern India tho majority are known as Dakhani Musalmáns, being deecendants of the arnies led by the kiags and nawabs of the Deccan. But tho twe peeuliar races of the south are the Moplas $(613,000)$ nod the Labbays $(312,000)$, bath of which are seated along the coast and follow a seafaring lifo. They are deseended from the Arab traders who settled thero in very early times, and have been recruited partly by voluntary adhesions and partly by forcible conversions during the persections of Ilyder All and Tipu Sultan. The Moplas of Malabar aro notorious for repeated outbreake of bloody fanaticisn.

The Juarenotans are most numerous, as might bo
expeeted, arong the valley of the Indus, from Karachi (Kurraehee) to Peshawar. In the Bombay province of Sind they number-78 per cent. of the total population. In the Punjab generally the proportion is 53 per cent., rising to 93 per cent. in the frontier district of Peshawar. In the North-Western Provinces and also in Oudh the proportion of Mabometans nowhere exceeds 23 per cent., though that part of the country was the seat of successive Musalman empires for many centuries. Ln Lower Bengal, on the other hand, the faith of Islam has exereised a more permanent effect upon the population, especially in the valley of the Brabmaputra. The average of Mahometans in the whole province is 33 per cent., rising to 80 per cent. in the deltaic distriets of Bogrà and Rajsháhi. Here, egain, it is found that the Mahometans are not most numerous in the neighbourbood of the great Musalman eapitals, Gaur, Rájmahál, Dacea, and Mursbidábád, but in the densely populated agricultural traets, where the semi-aboriginal tribes appear to have willingly embraced Islam in preference to remaining outcasts beyond the exclusive pale of Hinduism.

The Sikhs are almost entirely confined to the Punjab, fikbe. where they rumber only 6.50 per cent. of the population. Their stronghold is the country between the rivers Ravi and Sutlej (Satlaj), ${ }^{\text {ineluding the historical eities of Lahore, }}$ Amritsar, Ambála (Umballa), and Jalandbar. In do dıs. triet do they form more than 17 per cent.
Of the total number of 897,682 Christians, about Chrie:sa 250,000 are believed to be Europeans or to have European blood in their veins. The south of India is the only part where the exertions of the missionaries can be said to be visible in the statistics of population. In the Madras presideney generally, Christians number 533,760 , or 1.71° per cent. of the total. Of these, about 416,000 are returned as Roman Catholics, and abeut 118,000 as Protestants. Nearly ooe-fifth of all the Cbristions are found in the single distriet of Tinnevelli, and they are numerically next strongest in Madura, Tanjore, Triehinopoli, South Kánara, and Malabar. Christianity has been known in southera India for many centuries. A Peblevi inseription in the ancient eburch of the St Thomas' Mount near Madras eity indicates a settlemeut of Manichæans or Persian Chris. tians on the eastern coast, as well as on the west ; and tradition speaks of the preaching of the apostle St. Themas in Madras, Tinnevelli, and Malabar. The adherents of the Syrian ehureh in Malabar, Travancore, and Cochin are the most ancient Cbristian community in the south. After these come the Ruman Catholics, who trace their origin to the teaehing of St Xavier and the Madura Jesuits. The Protostant eburehes date only from about the begianing of the present eentury, but their progress since that time has been considerable. In Bumbay there are 126,063 Christians, of whom nearly 83,000 , ehiefly Indo-Portuguese, are returned as Romann Catholics. In Bengal the Christians number only 90.763 , but since the date of the ceneus missionary effort has been very suecessful among the hill tribes of Chutia Nágpor. In the North-Westera Provinces there are 22,196 Cliristians, in the Punjab 22.154, in the Central Provinces 10,477, in Mysure 25,676, in Coorg 2410, and the remainder are seattered over Assam, Berar, and Ajmir. In British Burmah the Christians are proportionately more numerous than io any other provinee, amounting to 52,299 , or $1 \cdot 90$ per cent., chicfly converts frem the hill tribo of Karens. It should be remembered that the above figures are exclusive of the native states, in which the Christians amount to about 700,000 , making a total in round numbers of $1 \frac{1}{2}$ taillions for all India.
An attenpt avas made at the timo of the census to ascertain me Oce ps professions and occupations of the male adults, but the results tions cannot be accepted as even approsimately accurato. Tho totals
however, are hera given tor what they may ue worth. Out of a classified total of about $62,000,000$ adult males, $2,232,000$, or $3 \cdot 6$ ner cent., were returned as professional or in Government service ; $3,844,000$, or 6.2 per cent., as in domestic service; $34,844,000$, or $50^{\circ} 2$ per cent., as agricultural ; 3,224,000, or 5.2 per ecpt., as cornmercial ; $8,122,000$, or 13.1 per cent., as industrial ; $7,626,000$, or 12.3 per cent., as labourers; and $2,108,000$, or 3.4 per cent., as independent and non-productive.

A:1 attompt was also made to collect statistics of persons ablicted witl certain specific infirmities, but here again tho results possess litle value. The number of insane persons and idiots was returned at 67,000 , or 1 in 2700 of the population, being less than $\frac{1}{5}$ th of the ate pravailing in England. The deaf and dumb numbered 134,000 , or 1 in 1340 , a proportion ahout half as great again as in Eoglaud; the blind numbered 354,000 , or rather less than 110500 , which is double the English rate; the lepers numbered 96,000 , or t in 1875.

Returns of both births and deaths are now regularly collected over almost the entire area under British administration. lu towns the returns are furnished through the municipalities, while in the rural tracts the agency employed is the police. The figures thus obtained are for the most part so evidently inadequate that it would only be misleading to reproduce them in this place. Suffice it to say tha: tho aanitary commessoner accepts as approximately correct a calculation which estimates the average duration of life in India at thirty years and eight months, whec is equivalent to an annual death-rate of 32.57 per thousand. During 1877. the year of famme, the ascertained death-rate in Madras rose to $53{ }^{\circ} 2$, whilo the ascertained birth-rate fell to 16.3 per thousand. Both these rates are. of course, mere approximations to the trath, but thay serve to indicate how famine attacks a people from two sides. In 1877 the deatl-rate among European troops in India was $12 \cdot 71$ per thousand, being the lowest ever recorded; among native troops, 13.38 per thousand; and in the public jails, $81 \cdot 95$ per thousand, rising to 176.01 per thousand in the jails of Madras.

Agriculture.

The cultivation of the soil is the vccupation of the Indian people, in a sense which is difficult to realize in England, and which canoot be adequately expressed by figures. As the land tas forms the manstay of the imperial revenue, so the rayat or cultivator constitutes the unit of the social system. The organized village community contains many other members besides the cultivators, but they all exist for bis benefit, and all alike are directly maintained from the produce of the village fields. Even in considerable towns, the traders and handicraftsmen almost always possess plots of land of their own, on which they raise sufficient grain to supply their families with food. The operations of rural life are familiar to every class. They are enveloped in a cloud of religious sanctions, and serve to mark ont by their recurring periods the annual round of common life. According to the returns of the general census of 1872, the number of adult males engaged io agriculture amounts to nearly 35 millions, or 56.2 per cent. of the total. To these ought to be added almost all the labourers, aa additional $7 \frac{1}{2}$ millions, or 12.3 per cent.,thus raising the grand total of persons directly supported by the land to mere than two-thirds of the entire number of adult males, besides those indirectly or incideatally connected with it.
But though agriculture thus forms the staple industry of the country, its practice is pursued in different provinces with infinite variety of detail. Everywhere the same perpetual assiduity is found, but the inherited experience of generations has taught the cultivators to adapt their simple methods to differing circumstances. For irrigation, native patience and ingenuity have devised means which compare favourably with the colossal projects of Government. Manure is copieusly applied to the more valuabie crops whenever manure is available, its use being limited by poverty and not by ignorance. The rotation of crops is not adopted as a principle of cultivation ; but in practice it is well known that a succession of exhausting crops canot be laken in consecutive seasons 'rom the same field, and the adcaatage of fallows is widely ; cognized. The periodicity of the seasona usually allows t ro, and sometinnes three, barests in the year, but not necessarily, ner indeed usually, on
the same fields. For inexhaustible fertility, and for retentiveness of moisture in a dry year, oo soil in the world can surpass the regar or "hlack cotton-soil" of the Deccau. In the broad river basins, the inundations deposit aunually a fresh top-dressing of silt, thus superseding the necessity of manures.

The name of rice has from time immemorial been so Rice closely associated with Indian agriculture, that it is diffcult to realize how comparatively sinall an area is planted with this crop. If we except the deltas of the great rivers aud the long strip of land fringing the western coast, rice may be called an occasional crop throughout the remainder of the pemasula. But where rice is grown, it is grown to the exclusion of all other crops. In British Burmah, out of a total cultivated area of $2,833,520$ acres in 1877-78, as many as $2,554,853$ acres, or 90 per cent., were under rice. Independent Burmah, on the other band, grows no rice, but imports largely from British territory. For Bengal, unfortunately, no general statistics are available. But taking Rangpur as a typical district, it was there found that is million acres, out of a classified total of a little nver $1 \frac{3}{4}$ million acres, or 88 per cent., were devoted to rice. Similar proportions hold guod for the province of Orissa, the deltas of the Godavari, Kistna, and Káveri (Cauvéry), and the lowlands of Travancore, Malabar, Kanara, and tho Concan. For the North-Western Provinces and Oudh, again, no agricultural statistics are available; but thougb rice, grown in damp localities, or with the heln of irriga. tion, forms a favourite food for the upper clesses, the local supply requires to be supplemented by importation from Bengal. Throughout the remainder of the country, except in Assam, which is agriculturally a continuation of the Bengal delta, the cultivation of rice oceupies but a subordinate place. The average out-iurn per acre in Bengal has been estimated at 15 maunds, or 1200 fb , of cleaned rice. In the years 1877-78, when famine was raging in southern India, the total exports of rice from Calcutta amounted to more than 16 million cwts. In British Burmah there is but a single rice barvest in the year, corresponding to the áman of Bengal. The grain is reddish in colour and of a coarse quality; but the out-turn is much higher than in Bengal, reaching in some places an average of 2000 and 2500 fb per acre. The annual exports of rice from Burmah amount to about 12 million ewts. Besides being practically the sole crop growu in the deltaic awamps, rice is raised in patches in all the hill-valleys, from Coorg to the Himalayas.

Wheat is grown to some extent in almost every district; Wheas but, broadly speaking, it may be said that wheat does no, thrive where rice does, nor, indeed, any where south of thes Deccan. The great wheat-growing tract of India is the Punjab, where, in 1877-78, nearly 7 million acres, or 37 per cent. of the total cultivated area, were under this crop. For the North-Western Provinces and Oudh, iu default of actual statistics, it has been estimated that the total area under wheat is as large as in the Punjab, though the relative proportion is less. Wheat is also grown in Behar and in the districts of Bengal that lie south of the Ganges. In the Central Provinces, iu 1875-78, wheat was grown on 23 per cent. of the cultivated area, being the chief crop in the districts of Hoshangabad, Narsiohpur, and Sagar. In Dombay the corresponding proportion was less than 5 per cent., and in Sind 12 per cent. It has been conjectured that the total area under wheat in India is equal to the area uader the same crop in the United States. Nor is the general out-turn contemptible, averaging abnut 13 bushels per acre in the l'unjab, as compared with an average of $15 \frac{1}{2}$ bushels for the whole of France. The quality, also, of the graiu is high enough to satisfy the demands of English millers; and "Calcutta Club No. 1" commands a price in Mark Lane not much below that of the
finest Australian or Cahifornian proutice. Lutortanately, when a prosperuus trade with Europe seemed on the point of estabhishing itself, the terrible year 1877-78 superveued, and India will now bave to fight against the position of vantage occupied by the United States. According te the oystem of classification in Upper India, wheat ranks as a rabi or spring crop, being reaped at the close of the cold weather in April and llay. Wherever pessible, it is irrigated; and the extension of canals through the Gangetic Doib has largely centributed to the substitution of wheat for inferiur cereals.

Taking India as a whole, it may be affirmed that the staple food grain is neither rice nor wheat, but millet, which is prubably the most prolific grain in the world, and the best adapted to the ricissitudes of a tropical elimate. Excluding the special rice-growing tracts, varieties of millet are grown more extensively than any other crop from Madras, in the south, at least as far as Majputana, in the worth. The two most common kinds are great millet (Holcus Sirghum or Sorghame vulgare), known as joár or jowarit in the languages derived from the Sanskrit, as jonna in Telugn, and as cholam in Tamil; aod spiked millet (Molcus spicatus vel Penicillaria spicatu), called bijira in the north and kambu in the soutly. In Sysore and the neighbouring districts rágí (Eleusine coracana), called utichani in Bumbay, takes the first placc. Accerding to the Madras system of classification, those millets all rank as "dry creps," being waterd only by the local rainfall, and sown uader either monsoon; farther north, they are classed with the kharif or autumn harvest, as opposed to wheat. Iodian corn is cultivated to a limited extent in all purts of the country; barley, in the upper valley of the Ganges, throughout the Punjab, and in Himalayan valleys; oats, only as an experimental crop by Europeans. Joar and rajz, but not bájra, are invaluable as fodder for cattle.

Oil-seeds also form an important crop in all parts of the conotry, being perhaps more universally grown than any other, as ail is necessary, according to native customs, for application to the person, for food, and for burning in lampa. In recent years the cultivation of oil-seeds has recoivel an extrandinary stimulus owing to the demand for expert to Eurnpe, espocially to France; but as they can be grown after rice, de., is a secund crep, this increase has hardly at. all tended to diminish the production of food grains. The four chief varicties grown are mustard or rape sced, linseed, til or gingelly (sesamum), and castor-oil. Bengal and the Nurth-Western Provinces are at present the thicf sources of supply for the foreign demand, lut gingelly is largoly exported from Marlray, and, to a smaller catent, I fom Burmah.

Veretables aro everywhere culturated in gardea plots for houscheld use, and also on a larger seale in the neighhourlood oi great towna. Among favourite native vegetables, the followitis may be mentioned - the egg-plant, callel brinjel or teisan (S'olanum Mclongenta), potatoes, cabbiares, cuuliftower, radishes, onions, garlic, turnips, yams, and a oreat varicty of cucurbitaceous plants, including Cucumis tations, Cucurbth maxima, Lagrmarie vutgaris, TrichosInthes dimice, and Benincest ceriferct. Of these, potatoos, cabhagez, and turnips aro of recent introduction. Almost bll Inctish vegetables can be raised by a careful gerlener. Potatues thrive best on the higher devations, such as the khast hills, the Nilgiris, tho stysore uplands, and the slopes of the lImmatayas; but they are also grown cren in kowland districts. Fhoy were first introlueed into the Khas hills in 1830, and they now constitute the prinejpal arop, the annual export to the Calatta market being more than 7000 tons, valued at $\mathbb{L} 50,000$.

Among cultivated fruits are tho followng:-Mango (Mangifra indica), plantain (. Must paralisiaca), pine-aplo
(Ananassa sativa), pomegranate (\mathbf{F} inica Granaiuin), guavis (Psílium poniferum et P. pyriferum), tamariad (T'ama rindus indica), jack (Artocarpus integrifolia), custard-npple (Anona squamusa), papaw (Carica Papaya), shaddock (C'itrus decumana), and several varieties of fig, melon, orange, lime, and citron. According to the unjversal verdict of Europeans, no native fruits can compare with thuse of Eag. land. But the mangocs of Bombay, of Múltan, and of Maldah in Bengal, and the cranges of the Klasisi hills, enjoy a ligh reputation; vihile the guavas of Madras are made into an excalleat preserve.

Among spices, for the preparation of curry and other ipices hot dishes, turmeric and chillies hold the first place, beiug very generally cultivated. Next in importance come ginger, coriander, aniseed, black cummin, and fenugreek. Pepper proper is confined to the Malabar coast, from Kanara to Travancore. Cardamoms are a valuable crop ir the same locality, and also in the Nepallese Himalayas. Pún or betel-leaf is grown by a special caste in most parts of the cuuntry. Its cultivation requires constant care, but is bighly remunerative. Betel-nut or areca is chicfly grown in certain favoured localities, such as the deltaic district: of Eengal and the highlands of southern India.

Besides betel-nut (Areca Catechu), the palms of India in- Palma clude the cocoa-nut (Cocos nucifera), the bastard dato (Phoenix sylvestris), the palmyra (Borassus flabelliformis), and the truc date (Phonix dactylifera). The cocoa-nut, which luves a sandy soil and a moist elimate, is found in greatest perfection alung the strip of coast-line that fringes the west of the peninsula, where it ranks nexi to rice as the staple product. The bastard date, grown chiefly in the country rouod Calcutta and in the northeast of the Madras presidency, supplies both tho jaggery sugar of commerce and intoxicating liquors for local consumption. Spirit is also distilled from the palmyra, espe cially in the neighbourhood of Bombay and in the south cast of Madras. The true date is almost cunfincd to Sind

Sugar is manufactured both from the sugar-cano and Eupas. from the bastard date-palm, but tho total production is inadequate to the local demand. The best cane is grown in the North-Western Provinces, on irrigated land. It is an expensive crop, requiring much attention, and not yielding a return within the year, but the prefits are propertionately large. In Bengal the manufacture of sugar for cxportation has declined during the century; but in Jessor district the preparation of date-sugar is o thriving and popular industry. The manufacture of sugar is everywhere in the hands of natives, except in the case of tho Asko factory in the Madras district of Ganjim, and tho Ashtagrám factory in Mysore. Both these factorics, which use sugar. cane and not date, have reccired honourable notice at exhibitions in Europe.

Cotton holds the first place among agricultural products Cotloa grown for export. From the carlicst times, cotton has bera grown in suflicient quantities to mect tho local demand, and even in the last century there was some slight export which was carcfully fustered by tho East India Company. But the present impertauce of the crop dates only from tho erisis in Lancasbire eansed by the American War. J'rior to 1860 the expurts of raw cotton from India used to average less than 3 millions sterling a ycar; but after that date they rose by leaps, until in 1866 they reached the enermous total of 37 millions. Then came the crasl:, cansed by the restoration of peace in the United Suites, and the caports-fell, until they now averace littlo more than 8 millions a year. The fact is that Indian cotton has a short staple, and er mot compete with the best American cotton for spinni g the finer qualities of yarn But while the cettoo famine was at its height, tho eult, vators were intelligent enough to make the most of then
opportunity. The area under cotton increased enormously, and the growers managed to retan in their own hands a fair share of the profit.

Tho prinespal cotton-grnwing tracts are the plains of Guzerat and Kathiawir, whence Indian cotton has received in the Liverpool market the historic name of Surat; the highlands of tho Decean; and the deep valleys of the Central Provinces and Berar. The hest native varieties are ionad to the Central Provinces aod Beiar, passing under the trade names of Hinganghat and Amrioti. These varieties have been successfully introluced into the Botobay district of Khandesh. Experments with seed from New Orleans have been conducted for several years past on the Govemment farois in many parts of Iadia, but it cannot be satd that they thave resulted in success except in the Pombay district of Dhirwir, where exotic "otton has now generally supplaoted the iodigenous staple. in 1875-76 the total area under colton in the Bombay presidency, including Sind and the native states, amounted to $4,516,587$ acres, with a yield of $2,142,835 \mathrm{cwts}$. Uf this total, 583,854 aeres, or 13 per cent., were sown with exotic cotton, including that from the central Provinces aud atso that from New Orleans, with a yicid of 218.767 cwts. The average yleld was about 53 Ib of cleaned cotton fier acre, the highest beng in Sud and Guzerat, and the towest in the snuthern Marhatti country In the same year the total exports were $3,857,805$ cwts., valued at $210,673,761$. In $1877-78$ the area under cotton in the Central Provinces was 837,083 acres, or 5 per vent. of the total cultivated area, cluefly in the districts of Wardhi, Niggur, and Raipur. - The average yiell was about 59 th per acte. Ihe total exprorts to Bombay, includiug re-exports from Berar, were about 300,000 cwits., chicfly in compressed bales, valued at $£^{2} 632,000$. In the same year the area under cotton in Berar was $2,078,273$ acres, 32 per cent. of the total cultivated area, chiefly ia the two districfs of Akola a ad Amrioti. The average yield was as high as 67 tb of cleaned cotton per acre. The rotal export was valued at $£ 2,354,946$, almost entirely railway-borme. in Madras tho average area under cotton is about $1,500,000$ acres, chiefly io the upland districts of Bellary and Karnúl, and the low plains of Kistua and Tionevelli The total exports in 1875-76 were 733,480 ewts., valued at $£ 1,652,849$. In Beogal the cultivation of cotton is on the decline. The local demand is satisfied by imports from tha North. Western Proviaces and from tha bordericg hill tracts, where a very short-stapled variety of cotton is extensively cultivated. ,The total area undor cotton 10 Bengal is estimated at only 162,000 neres, yielding 138,000 cwts. of cleaned cotton. Of this, 31,000 acres ware in Stran, 28,000 in the Chittagoag hill tracts, and 20,000 in Cuttack. Thronghout the North-Western Proviuces, and also tha Punjab, sufficient cotton is grown to meet the wants of the village weavers. - The total exports of raw cotton from ladian ['orts in $1878 \div 79$ were $2,966,569$ ewts., valued at $£ 7,914,091$, besides cotton twist and yara to the vilue of $£ 937,698$, and cottou manufactures valued at. $£ 1,644,125$.

Jute ranks next after cotion as a fibre crop. The extension of its cultivation has beed equally rapid, and it is yet more limited in its area, betog confined to northern and castern Bengal. In this tract, which extends from Purwah to Goalpara, north of the Ganges for the most part, and along both banks of the Brahmaputra, jute is grown un almost every vancty of soil. The chef characteristie of the cultivation is that it remans entirely under the control of the cultivator. Practically a peasant proprietor, he increases or diminishes his cultivation according to the state of the market, and keeps the profits in his own hands. The demand for jute in Europo has contributed more than any administrative reform to raise the average standard of comfort throughout eastern Bengal. [n 1872, when speeulation was briskest, it is estimated that about 1 million neres were under jute, distributed over sixteen districts, which had a total cultivable aren of 23 million acres. The total export from Calcutta in that year was nbout 7 million corts, valued at $£ 4,142,548$. Both quantities and prices have since somewhat declined, but the business remans on a stable fuoting. In $1878-79$ the total export of riw jute from India was $6,021,382 \mathrm{cwts}$., valued at $£ 3,800,426$, besides jute manufactures to the value of $£ 1,098,43$ t.

Indigo, though relatively of less importanco than formerly, is still the forcmost staple grown by European cajutal. In Eengal Proper its cultivation bas greatly declined since the early years of this century. English planters have abandoned the districts of Hughl (Hooghly), the Twenty-faur Parganâa, Dacca, Faridpur, Rangpler, and Pabna, which are
dotted with the sites of ruincd factories. In Nadiya, Jessor, Murshidábad, and Maldah, the industry $1 s$ still carried on, but it has not recovered from the depression caused by tho indigo rots of 1860 , and the emanerpation of the peasantiy by the Land Act of 1850. Dye of superior quality is manufactured in Midnapur, alonst the frontier of the hill tracts. But indigo cultivation on the old scale still flourishes in North Behar, from which is derived one-half of the total exports from Calcutta. No accurate statistics of nrea are avalable; but in Tirhut alone there are fifty-six principal concerns, with seventy outworks, producing annually about 20,000 maunds of dye ; in Sáran, thirty principal concerns and twenty-fivo outworks, producing about 12,000 maunds, in Champáran, seven large concerns, producing also 12,000 maunds. ${ }^{1}$ It has been estimated that the total amount of money annually distributed by the planters of North Delar cannot be less than 1 million sterling. Across the border, in the North-Western Provinces, andigo is grown and manufactured to a considerable extent by native cultivators. In the Punjab, alsn, indigo is an important crop, especially in the districts of Múltán, Muzaffargarh, and Derá Gházi Khân. In Madras, where it is grown and manufactured entirely by the natives, the total area under indigo is about 300,000 acres, chiefly 10 the north-east of the presidency, extending along the coast from Kistna to South Arcot, and inland to Karnut and Cuddapal. The exports of indigo from all India in 1878-79 anounted to $105,051 \mathrm{cwts}$., of the value of $£ 2,960,463$.

The oprum of commerce is grown and manufactured in Ophem two special tracts,-(l) the valley of the Ganges round Patna and Benares, and (2) a fertile table-land in Centrnl India, corresponding to the old kingdom of Malwá, for the most part still under the rule of native chiefs, among whom Sindhia and Holkar rack first. In the latter of these fwo regions the cultivation of poppy is free, and the duty is levied as the opium passes through the British presidency of Bombay; in the former, the cultivation is a strict Government monopoly. Opium is also grown for local consumption throughout Rajputána, and to a very limited extent in the Punjab and the Central Provinces. Throughout the rest of India it is absolutely prohibited. In the Ganges valley, the cultivation is supervised from two agencies, with their hendquarters at Patns and Ghazipur, at which two towns alone the manufacture is conducted. In 1872 the total area under puppy was 560,000 acres; the number of chests of opum sold was 42,675 ; and the sum realized was $£ 6,067,701$, giring a net revenue of $£ 4,259,376$. The whole of this was exported from Calcutta to China and the Straits Settlements. The amount of opian grown in native states and exported from Bombay is about equal, thus raising tho average exports of opium to about l2 millions sterling, of which about $7 \frac{1}{2}$ millinns represent net profit to Gosernment. In $1578-79,91,200$ chests of opium wero exported, of the value of $£ 12,993,985$, of which $£ 7,700,000$ represented the net profit to Govermment.

Under the Vengal systeñ annual cogagements are entered into Engal by the cultuvators to sow a certain quantity of land with popipy ; system and it is a fundamental principlo that they may ngree or reluse to engage as they please. As with most other lmbian industries, a pecuniary advance is made to the cultivator befure he commences operations, which is balancet when ho delivers over the opinm at the subordinate arencies. Ite is compelted to deliver his whole prodnce, hems paid at a fixed rate according to quatity In the beginming of April the cultavators ling in their opinm to the subordinate Government agencies, where it is examined and weighed, and the accounts abo settled. The final process of preparing the drug in balls for the Chinese matket is conducted at the two central Govermment arencies at Pathis nud Ghazipur. This generally lasts until the end of July, but the balls are not drs cuourh to be jacked in clests until Uetober.

Tobacco. Tobacco is grown in every district of India for local consumption. The soil and climate are favourable; but up to the present time the quality of native-cured tobacco is so inferior that it fiads no market in Europe. The principal tobacco-growing tracts are Rangpur and Tirhut in Bengal, Kaira in Bombay, and the delta of the Godávari and Coimbatore and Madura districts in Madras. The two last-mentioned districts supply the raw material for the well-known "Trichinopoli cheroot," almost the only form or Indian tobacco that finds any favour with Europeans; the produce of the lankas or alluvial islands in the Codá vari is manufactured into "coconadas." The tobacco of northern Beagal is largely exported to British Burmah, for the Burmese, who are great smokers, do not grow sufficient for their own needs. In the year 1876-77 the total registered imports of tobacco into Calcutta were $400,000 \mathrm{cwl}$., valued at $£ 26 \mathrm{l}, 000$, of which more than half came from the single district of Rangpur. Tobacce is also grown for export in the hill tracts of Chittagong. The tobacco of Tirhut is chielly exported towards the west. The total area under tobacco in that district is estimated at 40,000 acres, the best quality being grown in pargané Saressa of the Tajpur subdivision.

Since 1875 a private firm of capitalists, backed by Government empport, has begun to grow tobacco and manufacture it for the European market. The scene of operations is two abandoned studfarms at Ghazipur iu the North-Western Provinces, and at Pusa in the Bengal district of Tirbut. Io the year 1878-79 about 240 acres in all were cultivated with tobacco, and the total crop was abont $160,000 \mathrm{ft}$. No less than five English or American curers were employed. Some of the produce was exported to England as "cured leaf"; but the larger part was put upoe the Indian market in the form of "roanufactored smoking mixture." This mixture is in denaad at regimental messes and canteens, and has already found its way to Australia. The enterprise may now be said to have passed beyond the stage of experiment, and has probably opened a new sphere alike for Indian agriculture and European capital. The one essential condition of success is skilled supervision in the delicate processes of tebacco-curiog. Tobace to the value of $£ 128,239$ was expartell from India in 1878-79.

The cultivation of coffee is confined to southern India, though attempts have been made to introduce the plant both inte British Burmah and into the Bengal district of Chittagong. The coffice tract may be roughly defined as a section of the landward slope of the Western Ghats, cxtending from Kanara in the north to Travancore in the extreme south. That tract includes almost the wholc of Coorg, the districts of Kidur and LIassan in Mysore, and the Nilgiri hills, enlarged by the recent annexation of the Wainad. Within the last few years the cultivation has extended to the Shevaroy hills in Salem district, and to the Palni lills in Madura.

Unlike tea, coffeo was not introluced into India by European enterprise; and even to the present day its cultivation is largely followed by the matives. The Dlalabar coast has always enjoyed a direct commerce with Aratia, and at an carly date gave many converts to lslám. One of these converts, Bába Budan by name, is said to have gone on a pilgrimago to Mceca and to have brought back with him the coffee berry, which he phanted on the hill range in Mysore still called after him. According to local tratition this harpencel about two ceaturies ago. ' The shrubs thus sown lived on, but the cultivation did not spread until the beginning of the preseat century. Tho state of Mysore ame the Baba Budan rango also witnessed the first penemg of a coffee-garden by an English fonnter about 18:0. Thu sucerss of this experiment led to the extensum of coffee cultivation into the neighbauring tract of Manjaribhd, also in Mysore, and into the Wainad subdivision of the Madras distriet of Malaliar firom 1810 to 1860 the anterprise mide slow progrens; but sinee the latter date it has spread with great rapidity along the whole line of the Western Ghats, clearing away tho primicul forest, amb opming a new era of prosperity to the labonr= ing classus. Thas following stutistics show the area moder cotheo 10r the year 1877-78:--in Mysore, 129,438 acres, almost codined to the two districts of Hassan and Kadar; in Madras, 58,988 acres, hicily in Malabar, the Nilgiris, and Salem: in Coorg, 45,150 zury, wat, 232.576 aeres, exclusive of 'Truvaneme. The averago pore of produce is estimated ut about 3 ewts. per acre of mature whnt. The totnl export of coffee io 1878-79 was $3 \cdot 12,263$ evts. ralurd at $51,549,481$

The cultivation of tea in India commenced within the memory of men still living in 18E1, and the industry now rivals iudigo as a field for European capital. Unlike coffeeplanting the enterprise owes its origin to the initiation of Government, and has never attracted the attention of the natives. Early travellers reperted that the tea-plant was indigenous to the southern valleys of the Himalayas; but they were mistaken in the identity of the shrub, which was the Osyris nepalensis. The real tea (Thea viridis), a plant akin tu the camellia, grows wild in Assam, being commonly found throughout the hilly tract between the valleys of the Brahmaputra and the Bárak. There it sometimes attains the dimensions of a large tree; and from that, as well as from other indications, it has been plausibly inferred thit Assam is the original home of the plant, which was thence introduced at a prehistoric date into China. The real progress of tea-planting in Assam dates from about 1851, and was greatly assisted by the promulgation of the Waste-land Rules of 1854. By 1859 there were already fifty-one gardens in existence, owned by private individuals; and the enterprise had cxtended from its original headquarters in Lakhimpur and Sibságar as far down the Bmbmaputra as Kámrúp. In 1856 the tea-plant was discovercd wild in the district of Cachar in the Bárak valley, and European capital was at once directed to that quarter. At about the same time tea-plauting was introduced into the neighbour- Teahood of the sanatorium of Darjiling (Darjeeling), among the growios Sikkim Himálayas. The success of these undertakings tractu. engendered a wild spirit of speculation in tea companies both iu India and at home, which reached its climax in 1865. The industry recovered but slowly from the effects of this disastrous crisis, and did not again reach a stable position until 1869. Since that date it has rapidly but steadily progressed, and has been ever opening new fielda of enterprise. At the head of the Bay of Bengal in Chittagong district, side by side with coffee on the Nilgiri hills, on the forest-clad slopes of Chutia Nagpur, amid the lowlying jungle of the Bhután Dwars, and cren in Arakan, the energetic pioneers of tea-planting bave established their industry. Different degrees of success may have rewarded them, but in no case bave they aband ned the struggle. The market for Indian tea is practically ineshaustible. There is no reason to suppose that all the suitable localities for its growth have yet been tried; and we may look forward to the day when India shall not ouly rival but supersede China in her staple product.

The following statistics, unless it is otherwise stated, refer to the year 1877-78:-
The total area taken up for tea cultivation in Assam, including Area and both the Brahmaputra and the Bairak valleys, was 736,082 acres, of sut-tum which 538,961 acres were fit for cultivation; the total number of sepa- of, ifa. rate estates was 1718 ; the total ont-turn was $23,352,298 \mathrm{tb}$, at the average rate of 286 lb per acre under mature plant. In lengal, the area taken up was 62,642 acres, of which 20,462 aeres were under mature plant, includiag 18,1:0 acres in the single distriet of Dirjiling: the nmmber of gardens was 221; tho out-turn was $5,768,651 \mathrm{lt}$, at tho rate of 282 lb per acre under maturo plant. In the North-Western Y'rovinces, thele were, in 1876, 25 estates in the districts of Kumáun and Garhwabl, with an nut-turn of $578,000 \mathrm{H}$, of which 350,000 to were sold in India to Central Asia merehonts; and in 1871. 10 estates in Delma Dun, with 2024 acres under tea, and an out-turn of $297,828 \mathrm{lb}$. In the l'unjol, there were 10,046 acres under tea, almost entirely confined to liangra districe, with an out-tura of $1,113,106 \mathrm{tb}$, or 111 lb per acre. In Madres, tho area ueder tea on the Nilgiris was 3160 acres; the exports from tho presidency were $183,178 \mathrm{tt}$, valued at $\mathrm{f} 19,308$. Excluding the figures just given for Madras, the whole of the ladian tea is shipped from the prort of Calcutta, and almost the whole is sent to tho United linglom. The total exports for $1878-79$ were $34,800,027$ th, valued at $\sum^{3} 3,170,118$. Of the total supply, about $26,000,000$ to came from Assam, ahout $8,000,000$ to from Bengal, 787,000 to from tho North-Westera Provines, and 684,000 16 from the Pumjab. In the previons year the experts of tua from the I'unjab to Central Asia wero returnm at $1,217,840 \mathrm{hl}$, valued at $\ell 181$, 63 , being a cmasiderahlo decrease on the year betore.

Approximale Area in Acres occupicd by the Principal Crops in some Indian Provinces in 1877-1878

	Madras.	$\begin{gathered} \text { Bombay } \\ \text { (exclud.Siad) } \end{gathered}$	Sind.	Pranjab.	Cential Provinces.	British Butmals.	Mysoio.	Beray
Rice	4,600,000	1,195,000	512,000	400,000	4,550,000	2,555,000	540,000	31,000
Wheat.	16,000	561,000	354,000	7,000,000	3,600,000	...	11,000	525,000
slillets and inferior grains	10,600,000	5,80n,000	934,000	6,000,000	$\} 5,1+0,000$	\ldots		$\{2,760,000$
Pulses	1,600,000	830,000	115,000	3,200,000	$\} 5,110,000$	\cdots	3,400,000	$\left\{\begin{array}{l}180,000\end{array}\right.$
Oil-seeds	800,000	62S,000	180,000	800,000	1,360,000	15,000	130,000	460,000
Cotton.	1,000,000	1,350,000	70,000	660,000	840,000	10,000	15,000	2,080,000
Tobacco.	60,000	35,000	6,000	80,000	48,000	17,000	19,000	17,000
	120,000	14,000	10,000	110,000	,	-700	19,	
Sugar-cane	21,000	50,000	4,000	380,000	100,000	- 4,000	13,000	5,000

The introduction of the quinine-yielding cinchona into
Iadia is a remarkable example of success rewarding the indefatigable exertions of a single man. When Mr Clements Markham undertook the task of transporting the seedlings from South America in 1860 , cinchona had never before been reared artificially. But the novel experiment in arboriculture has not only been successfully codducted, but has proved remunerative from a pecuniary point of view. A cheap febrifuge bas been provided, in the form of the mixed einchena alkaloids, for the fever-stricken population of the Indian plains, while the aurplus bark sold in Europe more than repays interest upon the capital expended. These results have been produced from an expenditure of about $£ 100,000$. The headcuarters of ciachona cultivation are on the Nilgiri bills, vibere Government owns several plantations covering an aggregate of about 1000 acres, with about 570,000 fullgrown plants. From the Government plantations cinchona seeds and plants are annually distributed to the public in large quantities; and there are now aeveral private plantations rivalling the Goverument estates in area, and understood to be very valuable preperties. The varieties of cinchona most commonly cultivated are C. officinalis and C. succirubra; but experiments are beiag conducted with C. Calisaya, C. pubescens, C. lanceolata, and C. pitayensis. When the euceess of the enterprise was secure, Government somewhat curtailed the extent of its own operations. No fresh land was taken up, but the plantations were kept free from weeds. The quioolugist's department was abolished, and the bark sold in its raw state. From the central establishment on the Nilgiria cinchona bas been introduced into the Palni hills in Madura district, into the Waiond, and into the atate of Travancore. Plantations have alse been successfully opened by Goverament near Merkara in Coorg, on the Baba Budan bills in Mysore, and in Sitang district in Britist Burmah. Failure has attended the experiments made at Mahabaleshwar in the Bembay presidency, and at Noagklao io the Khást hills, Assam. But the success of the Goveroment plantation at Darjiling, in northern Bengal, rivals that of the original plantation on the Nilgiris. The area has been gradually extended to mere than 2000 aeres, and the bark is manufactured into quinine on the spot by a Government quinologist. The species mostly grown is C. succirubra, which supplies a red-colonred bark, rich in its tetal yield of alkaloids but comparatively pour in quinine proper. Efforts are being made to increase the cultivation of C. Calisaya, which yiolds the more valuable bark, but is difficult to propagate.
The followiog are the financial resulta of the tre Government plactatioas in 1877-78. Oo the Nilgiris the crop was 138,808 lt, of which 132,951 tt were shipped to Englaad, and the rest supplicd to the Madras and Bombay medical depsitments. The total receipts were $£ 35,875$, and the total expeoditure $£ 6977$, thus showing e net proat of $£ 28,898$. At Darjiling the crop amounted to 344,22516 of bark, which was all handed over to the quinologist, and yictuled 5162 to of the febrifuge. The total receipts were 59707 , of which $\mathcal{L 6 1 8 8}$ represents the amount debited to Government departments for the sale of febrifuge and bask, whilo $£ 3519$ was derived from sales to the public. The total sxpenditure was $£ 8554$, of which
£5790 was expeeded upen the plaatation, and $£ 2764$ on the quine. logist's department. The oet profit, therefore, was $£ 1153$, whicb is expected shortly to rise to $£ 4000$ a year, as more of the young plants come into bearing.

Silk.-Sericulture in India is a stationary, if not a declining, industry. The large production in China, Japan, and Silk the Mediterranean countries controls the European markets, and on an average of years the imports of raw silk into India now exceed the exports. The East India Company from the first took great pains to foster the production of silk. Δ s early as 1767 , two years after the grant of the financial administration of Bengal had been conferred upen the Company, we find the governor, Mr Verelst, persoaally urging the zamindars, sathered at Murshidabad for the ceremony of the pinya, "to give all possible encouragement to the cultivation of mulberry." In 1769 a colony of reelers was brought from Italy to teach the system followed in the filatures at Novi. The Grst ilk prepared in the Italian method reached England in 1772 , and Bengal silk soon became an important article of export. Similar efforts started at Madras in 1793 were abandoned after a trial of five years. Sericulture is said to have been introduced into slysore by Tipú Sultía, and for many yeare continued to prospor. But recently the worms have been afflicted by a mysterious epidemic; and despite the enterprise of an Italian gentleman who imported fresh broods from Japan, the busidess bas driadled to insignificance. Bengal has always been the chief seat of molberry cultiva. tion. When the trading operations of the Company ceased in 1833 , they owned eleven head factories in that province, each supplied by numerous filatures to which the cultivators brought in their cocoons. The annual export of raw silk from Calcutta was then about 1 million 1 b . But in those days the weaving of silk formed a large portion of the business of the facteries. In 1779 Rennel wrote that at Kasimbázár (Cossimbazar) alone about 400,000 th ware consumed in the several European factories. In 1802 Lord Valentia describes Jangipur as "tho greatest silk station of the Company, with 600 furnaces, and giving employment to 3000 persons."

When the Compary abandonel trade on its own account, sericulture was forthwith taken up by private enterprise, and it still elings to its old beadquarters. At the present time the cultivation of the mulberry is mainly ennfined to the Rajsháhi ar' Bardwan divisions of Lower Bengal. That branch of agriculture, together with the rearing of the silk-worms, is conducted by the peasantry themselves, who are free to folluw or abandon the business. The destination of the cocoona ia twofold. They may either be sent to small native filatures, where the silk is roughly wound before being consumed in the hand-leoms of the country; or they may be brought to the great European factories, which generally use steam machinery and consign their produce direct to Europe.

The eultivation of the mulberry is chiefly carried on in the districts of Rajshâhi, Rogra, Maldah, Murstidabad, Birbhúm, Bardwán, and Midnapur. No accurate statistics are available, but in Rajohioh alune the nrea under mulberry is estimated at 80,000 acres. The variety
grown 43 food for the silk-worms is not the fruit-tree that is common in England, but a comparatively small strub.
Besides the silk-rorm proper (Bombyx mori), fed upon the mulberry, several other species of silk-yielding worms abound in the jungles of India, and are utilized, and in some cases domestisated, by the natives. Throughout Assam especially, an inferior silk, produced in this way, has from time immemorial furnished the common dress of the people. These "wild silks" are knomu to commerce under the generic name of tasar or tusser, but they are really the produce of several distinct varieties of worm, fed on many different trees. The worm that yields lasar silk in Chutiá Nagpur has been identified as the caterpillar of Antheraca paphia. When rild, it feeds indiscriminately upon the sál (Shorea robusta), buer ($Z_{i z y p h u s ~ J u j u b a), ~ a n d ~ o t h e r ~ f o r e s t ~ t r e e s ; ~ b u t ~ i n ~ a ~ s t a t e ~ o f ~}^{\text {of }}$ semidomestication it is exclusively reared upon the dsan (Terminalia alata), which grows conveniently in clumps. The cocoons 2re sometimes collected in the jungle, but more frequently bred Irom an earlier geberation of jungle cocoons. The worms require constant attention while feeding to protect them from crows and other birds. Thes give three crops in the jear-in August, November, and May-of which the second is by far the most ininortant. The tasar silk-worm is also found and utilized throughout the Central Provinces, in the Lills of the Bombay presidency, and along the southern slope of the Himalayas. During the past treenty years repeated attempts hare been made to raise this industry out of its precarions condition, and to introduce tasar silk into the European market. That the rav material abounds is certain, but the great difficulty is to obtain it in a state that will be acceptable to Curopean manufacturers. Native spin silk is only fit for aative hand-looms. In Assam two distinct qualities of silk are made, known as erida and mugá. The former is obtained from the cocoons of Phalena cynthia, and the worm is fed, as the native name inplies, upon the leaves of the castor-oil plant. (Nicinus communis). This variety may be said to be entirely domesticated, being reared indoors. Muga silk is obtained from the cocoons of Saturnia assamungis. The moth, which is remarkable for its size, is found wild in the jungle, but the breed is so far domesticated that cocoons are brought from ono part of the province to another, and the sum tree is artificially proparated to supply the worms with food. Rav silk was exported in 1878-79 to the extent of $1,534,715 \mathrm{lt}$, valued ot $£ 623,87 \mathrm{I}$, besides manufactured silk of the value of $£ 195,897$.

The collection of lac is in a somewhat similar position to that of tasar silk. The lac insect abounds on certain jungle trces in every part of the country, and from time immenorial it has been collected by the wild tribes in order to be worked up into lacquered ware. European enterprise has tried, with small success, to place the industry upon a stable and remunerative basis. Though lae is to be found everywhere, the foreign exports are almost entirely confined to Calcutta, which draws its supplies from the hills of Chutia Nágpur, and to a less degree from Assam and Mírzapur in tho North-Western Proviuces. Lac is known to commerce both as a gum (shellac) and as a dye. The total exports in 1879 were $91,983 \mathrm{cwts}$, valued at \&300,072.

Farming.-The efforts of Geverument to improve the native methods of agriculture, by the establisliment of model farms under skilled European supervision, lave not been generally successful. ${ }^{1}$

Stock:-Throughout the whole of India, except in Sind and the westeru districts of the Punjab, horned cattle are the uly beasts used for ploughing. The well-known humped breed of cattle predominates everywhere, being divided

[^153]into many varieties. Owing partly to unfavpurable conditions of climate and soil, partly to the insufticiency ol grazing ground, and partly to the want of selection it. breeding, the general condition of the cattle is miserably poor. As cultivation advances, the area of waste land available for graziog steadily diminishes, and the prospects of the poor beasts are becoming vorse rather than better. Their only hope lies in the iatroduction of fodder crops as a regular stage in the agricultural course. There are, bow. ever, some fine breeds in existence. In Mysore the amrid mahal, a breed said to have been introduced by Hydea Ali for military purposes, is still kept up by Government. In the Madras districts of Nellore and Karaúl the iadigeoous breed has been greatly improved under the stimulus of cattle shows and prizes, founded by Britisli officials. In the Contral Proviaces there is a peculiar breed of trotting bullocks which is in great demand for wheeled carriages. The large aod hisndsome oxen of Guzerat in Bombay and of Hariana in the Punjab are excellently adapted for draning leavy loads in a sandy soil. The worst cattle are to be found always in the deltaic tracts, but there their place is to a large exteut taken by buffaloes. These last are Buffalees more hardy than ordinary cattle; their character is main. tained by crossing the cows with wild bulls, and their mille yields the lest $g h$, or clartfied butter. In British Burmah, the returus show that the total nuinber of buffaloes is jus; equal to that of cows and bullocks, being about 700,000 . Along the valley of the Indus, and iu the sandy desert Camel. which stretches into Râjputána, camels supersede cattle for agricultural operations. In the Punjab, the total estimated number of camels is 170,000 . 'The breed of Horsea horses has generslly deteriorated since the demand for military purposes has declined with the establishment of British supremacy. In Bengal Proper, and also in Madras, it may be broadly said that horses are not bred. The chief breeds in Bombay are those of the Deccan and of Kathiawár, in both of which provinces Government maintains establishments of stallions. The Punjab, however, is the chief source of remounts for the cavalry regiments, the total number of horses in that province being returned at 80,000 , in addition to 50,000 porics. Abous the begianing of the present century, a stud department was organized to breed horses for the use of the Bengal army, but this system was abolished as extravagant and inetficient under the governor-generalship of Lord Mayo. Remounts are now obtained in the open market; but the Government of the Punjab still maintains about 130 stallions, including 60 imported fiom England and 10 Arabs. The best lonrses are bred by the Balucht tribes along the western frontier. The best ponies come from Burmah, Manipur (the original bome of the now wellknown game of polo), and Bhután. Four great horso fairs are beld in the year-at Ráwal Pindi, Ilera Gházi Kihán, Jhange, and Derá Ismáil Kihán-at which about 4500 horses were cxhibited in $1877-78$, and a total sum of ahout $£ 1300$ was awardedto prizes; the average price given for native caralry remounts was only $£ 17$. In recent years much attention has been yaid in the Punjab to the brecding of mules for military purposes; and the value of Miles these animals was ennspicuously proved in the course of

be profitably cultivated for fodder at all sensans of the yeur. These most

 strongly recommended are yellow cholam (Norghum rutyare), gumen grass (Panicum jumentaccum), and horsegram (Itelichus uniflarus). Sugar-cane and vico also yielil excellent fodder wheu cut green. Attention las nlso been given to subsoil drainge, deep pbughing, the fertiluzing powers of various manures, nud the puper utiluation of inigation water. It has been decided to establinh a achoot of aguculture ut Snidnpet io connexion with tho model form, with subordinate branclies in the disticta, so as to diffuso as widely an possible tho agriciltural iessons th it linve bipen niready learned. In the year 1877-78 the total expenditure at Saidapet oo both farmand onhan of daririlitaro was about 66000.the operations in Afghánistáo in 1879-S0. Gevernment maintains about fifty donkey stallions, of which four wero imported from Spaid, twenty-cight from Arabia, and t welve from Bukhara. Some of the mules bred reach the height of 15 hands. The catching of elephants is now a Government mouopoly or under Government supervision, except in Malabar and Travancore where the old proprietors retain the right. The chief source of suppiy is the north-east frontier, especially the range of hills rundiag
between the valleys of the Brahmaputra and the Barak (see ante, p. 742). Sheep and goats are commonly reared in shoep the wilder parts of the country for the sake of their wool and Both their weight for the butcher and their yield of wool soas are exceedingly low. In Mysore, and with considerable success at the Saidapet farm, nttempts have been made to improve the breed of sheep by croesing with merino rams. Pigs of great size and most. epulsive appearauce are reared, and eaten by the lowest of out-castes. Approximate Numbers of Agricultural Stock and Implements in some Indian Provinces in 1877-1878. sock

	Madras	Bombay and Silud.	Punjab.	Central Provinces.	Bratlsh Bermah.	Mysore.	Berar.
Bullocks	3,500,000	3,300,000	6,570,000				0
Cows .	3,000,000	2,380,000	6,570,000	5,200,000	\} 174,000	2,300,000	1,400, 000
Butfaloes	1,332,000	1,630,000			,662,000		1,
Horses.	21,500	\} 150,000	\{ 85,000	12,000		4,900	6,500
- Pontes.	18,000	$\} 150,000$	(52,000	82,000	\} 5,800	14,000	26,000
Donkeys	128,000	90,000	290,000	22,000	,	37,000	17,000
Carnela ...	45 604	...	170,000	7	
Elephants	604	1,324	...	\ldots
Sheep..	$4,600,000$ $2,700,000$	$\{3,300,000$	$3,850,000^{\circ}$	641,000	20,000	1,590,000	386,000
Pigs.	250,000			132,000	102,000	32,000	2,700
Carts	284,000	380,000	98,000	286,000	194,000	83,000	89,000
Plouglus.	2,023,000	1,080,000	1,747,000	764,000	293,000	558,000	115,000

forests. The forests of India, both as a suurce of natural wealth and as a department of the administration, are beginning to reveive their proper share of attention. Up to a recent date the destruction of forests by timber cutters, by charcoal burners, and above all by nomadic cultivation, was allowed to go on everywhere unchecked. The exteasion of cultivation was considered as the chief care of Government, and no regard was paid to the improvident waste gning on on all sides. But as the pressure of population on the soil became more dense, and the construction of railways increased the demand for fuel, the yuestion of forcst cooservation forced itself iato notice. It was recognized that the inheritance of future generations was being recklessly sacrificed to satisly the immoderate desire for profit. And at the same time the importance of torcsts as affecting the general meteorology of a country was being learned from bitter experience in Europe. On nany grounds, therefore, it became necessary to preserve what remained of the forests in. Iodia, and to repair the mischief of previous neglect cven at considerable expensc. In 1844 and 1847 the snbject was actively taken up by the Governments of Bombay and Madras. In 1864 Dr Brandis was appointed inspector-general of forests to the Goverament of Iodia, and in the following year an act of the legislature was passed (No. VII. of 1865). The regular training of caodidates for the Forest Department in the schools of France and Germany dates from 1867. In the slort interval that has since elapsed, souod principles of furest administration bave bcen gradually extended. Indiscriminate timber-cutting has been prohibited, the hurniog of the jungle by the hill tribes has been confined within bonods, large areas have been surveyed and demarcated, plantations have been laid uut, and, gencrally, furest cooservation has become a reality.

From the point of view of administration, the forests are classified as "reserved " or "oped." Tha reserved forests are thoso under the immediate control of officers of the Forest Department ; they are inanaged as the property of the stata, with a single eye to conservancy and their future development as a sourco of nationol wealth Their limis aro demarcated after survey, nomadic cultivation by tho hill tribes is prohibited, cattle are excluded from grazing, destruetive cruepors are cut down, and tho hewing of tim. Eer, if permitted at all, is placed under stringent regulations. Tho open forests are less carefully guarded; but in them also certain kinds of timber-trees are presefred. A third class of forest lands consists of plontations, on which large sums of money are spent unmally. It is impossible to present in a singie view the entira result of the labours of the Forest Department. In 1872-73 the
total area of reserved forests in Indie,was estimated at more than $6,000,000$ acres; and the area has probably been doubled since that date. In the same year the total forest revenuevwas $£ 477,000$. as compared with an expenditure of $£ 295,000$, thus showing a surplus of $£ 182,000$. By 1877-78 the revenue had increased to £664,102, of which $£ 160,308$ was derived from British Burnah. and $£ 126,163$ from Bombay. The forest exports in that year in-cluded-teak, valued at $£ 406,652$; lac and lac-dye, $£ 362,008$; caoutchouc, $£ 89,381$; add gums, $£ 183,685$. But no figures that can ba given exhibit adequately the inbour and the beneats of the Forest Department, which is gradually winning back for the country the fee-simple of her forest wealth, when it was on tha point of beiug squandered beyond possibility of redemption.
The practice of nomadic'cultivation by the lill tribes Nomedio may conveniently be described in connexion with forest tulivalia conservation, of which it is the most formidable enemy. In all the great virgin forests of Iodia, in Arakan, on tho north-east frontier of Assam and Chittagong, throughout the Central Provinces, add alung the line of the Western Ghats, the nboriginal tribes raise their crops of rice, cotton, \&c., in this manoer. A similar system has been found to prevail in Madagascar ; and indeed, from its simplicity and its appropriateness it may fairly be called the most primitive modo of ngriculture known to the human race. Known as zoungya in Burmah, jum on the aerth-east frontier, dahya in Ceotral India, kil in the Himálayas, and :kumari in the Western Ghats, it is practised, without any material differences, by tribes of the must diverse orlgia. Its essential features are the burning down of a patch of forest, and sowing the crop with little or no tillage on the clearing thus formed. The tribes of the western coast break up the cleared soil with a sort of hoe-pick and spade or even with the plough; in other parts the soil is merely scratcled with a knife, or the seed is scattered on, its sur. face without any cultivation at all. - In some cascs a crep is taken off the same clearing for two or even thrce years in succession, but more usually the tribe mevcs off every year to a fresh field of operations. To these nomad cultivators the words rheturically used by Tacitus of the primitive Germans are strictly applicable-Araa per annos. mutant ; et superest ager. The wanton destruction thus. wrought io the forests is simply incalculable. In addition. to the timber-trees delibcrately burncd down to clear tha soil, the fire thus started not unfrequently runs wild through the forcst, and derastates many square miles. Wherever timber has any value frum the prosimity of a. market, the first care of the Forest Department is to pro-
hioit thess firse, exd to assign heary penalties for any infringement of its tules. The success of a years operations is mainly estimated by the degree in which the reserves hare been sarea from the flame.

Bnt vast tracts of country yet remain in which it would be aynally reseless and impossible to place restraint upon-nomad cultiration, which is admitted to yield a larger profit than ordinary cultivation with toe plough. A virgin soil, manured many-inckes dieep with ashes cnd watered by the full burst of a tropical rainfoll, returns forty end firtt-fold of rice, which is the staple grain thus raised In addition to rico, Indian corn, millet, cil-seeds, and corton are sometimes grown in the same clearing, the seeds being all ihrown into the ground togetaer, and each ciop ripening in succession at its own season. Except to the eyes of a forest officer; a patch of juim cultiration is a very picturesqne sight. Men, women, and caildren all worl together with a will, for the trees mast be felled and burned, and the seed somn, before the xonsoon breaks.

- Irrigation is everywhere dependent upon the two supreme considemtions of water supply and land level. The sandy desert that extends from the lills of Rájputanna to the basin ot the Indus is more absolutely closed to irrigation than the confused system of hill and valley in Central India Farther west, in the Indus valley, irrigation becomes passible, and in zo part of India bas it been conducted *ith greater perseverance and success. The entire province of. Sind, and hardly less the lower districts of the Punjab, icre absolutely dependent upon the floods of the Indus. Sind las been compared to Egypt, and the Indus to the Nile ; but, in truth, the case of the Indian prorince is the iuss favourable of the $t w o$. In Sind the average rainfall is barely 10 ioches in the year, the soil is a thirsty sand, ciad, above all, the river does not rum in confined banks, but wanders at its will over a wide valley. The rising of the Nile is a beneficent phenomenon, whose effects can be calculated with tolerable precision, and which the industry of countless generations has brought under control for the purposes of cultivation. In Sind the inuadation is na uncontrolled torrent, which oftentimes does as much turm as good. Broadly speaking, no crop can be grown in Sind except under irrigation, and therefore the total cultiFated area of about 3 million acres may bo regarded as entirely dependent upon artificial water-supply. The enpply is derived from the river by two main classes of canals -(1) inundation channels, which only fill when the Indus is in tlood, and (2) perennial channels, which carry off erater by means of dams at all seasons of the year. The former are for the most part the wort of ancient rulers of the conntry, or of the cultivators themselves; the latter Lave been constructed since the British conquest. In both cases care las been taken to utilize abandoned channels of the river. It is impossiblo to present a complete vier ot the results of irrigation, for in some provinces, as in Sind, it is treated as a dcpertment of land administration, while in others it is almost eatirely couducted by privato enterprise.

In $1876-77$ abont 900,000 acres in Sind were returnod as irrigated from works for which capital and revenue accounts are kept, the chici being the Ghár, Eastern and Western Náŕa Sakhar (Sulkur), Phuteti, and Pinyari; the trtal receipts were about $£ 190,000$, almost entirely credited ander the head of land revenue. In the same year ebsit 445,000 acres were irrigated from works of which revenue necients only are kopt, yieldiog about $£ 75,000$ in land rovenue. Thronghout the remainder of the Bombay presidencey irrigation is conducted on a comparatively kmall acale, and mainly by nivivate enterprise. In the Conend, along the coast, the heary local rinnfall and the annual flooding of tho puraerous amall creeks permit nce to be grown without artificial sid \ln Guzerat the supply is drawn from wells, and in the Deccan from tanks; but both thesu sre liablo to fail in years of deficient ruinfull. Government has now undertaken a few comprehensivo schenes of irrigation, which noostly conform to a common typo-damming up tho ond of a hill valley so as to form an immenso reecryoir, and then conducting the wather por the fields by channels, which are in somo cases of considerall fe 1 ngth. In 1876-77 the total area in Pombay (excluding Sind) imgnod from Government works was about 180,000 acres, yicluling a revonue of about $\mathrm{C} 42,000$. In the same year the total expouliture
on intigation (inclusive oi Sind) was $£ 235,000$ - $£ 65,000$ under tina head of extraordinary and $£ 1 \% 0,000$ of ordinary outlay.

In some parts of tio Punjab irrigation is only ade degree less necessary than in Sind, but the sonrces of supnly are more sume. rous. In the northern tract, under the Himalayas, and is the upper valleys of the rivers, water can be obtained by digging wells trom 10 to 30 feet below the surface. In the south, towards Sind, inundation channels are usual; while the upland tracts that rise between the basins of the main rivers are now in course of being supplied by the perennial canals of the Government. According to the returns for 1877-78, out of a grand total of $22,640,894$ acres under cultiration, $5,000,481$ were irrigated by private individuals and $1,618,854$ by public channels, giving a total under irrigation of $6,619,335$ acres, or 29 per cent of the cultivated area. The principal Government works are the Western Juma canal, the Bari Doab canal, and tha Sirhind, the last of which, with the largest expenditure of all, is still incomplete. Up to the close of $1877-78$ the total outlay had been $£ 3,645,189$; the total income in that year was $£ 263,053$, of which $£ 171,504$ mas classified as direct and $£ 91,549$ as indirect; the total revenue charges on works in operation were $£ 224,316$, of which $£ 146,419$ was for maintenance and $£ 77,897$ for interest, thus showing a surplus of $£ 38,737$. On the Western Jumna canal alone the net profit was £ 83,112 .

The North-Western Provinces present in the great dodb, or high land between the Ganges and the Jomna, a continuation of the physical features to be found in the Upper Punjab. The local rainfill, indeed, is higher, but before the dafs of artificial irrigation occasional deficiency repeatedly resulted iu terrible famines. It is in this tract that the British Government has been perhaps most snccessfol in averting the calamity of drouglat. In Sind irrigation is an absolute necessity ; in Lower Bengal it may be regarded ${ }^{\text {almost as a luxury; but in the great river basins of Upper India }}$ it serves the trofold object of saving the population from the vicissitudes of the season and of introducing more valuable crops and a hicher stage of agriculture. Concerning private irrigation from wells in the North-Westerin- Provinces no information is available. The great Government works are the Ganges canal, the Eastern Jumna canal, the Agra canals, and the Lower Ganges canal, tho last of which is not yet complete. Up to the close of 1877-78 the total outlay had been $£ 5,673,401$. The gross income in that year was $£ 438,135$, of which $£ 337,842$ was derived from water ratee and $£ 100,294$ from enhanced land revenue; the work. ing expenses amounted to $£ 143,984$, leaving $£ 294,152$ for surplus profits, or 677 per cent. on the total capital expended on works in operation. The total area irrigated was $1,461,428$ acres, of which more than two-thirds were aupplied by the Gaages canal. Of the total area, 415,659 acres were under wheat and 139,374 under sugar-cane:
Into Ondh no irrigation worke have yet been introduced by Government. A tolerable local rainfall, the annual overflow of the rivers, and an abundance of low-lying swampa combine to furnish a water supply that is ample in all ordinary years. According to the settlement returns, out of a total cultivated ares of $8,276,174$ acres, $2,957,397$ acres, or nearly 36 per cent., are irrigated by private individnals; but this figure must include low lands wotered by natural overflow.
Throughout the greater part of Bengal there is no demand for artificial irrigation, but the solicitude of Government has undertaken to construct works in those exceptional tracts where experieuco has shown that oceasional drought is to be feared In the lower valleys of the Ganges and the Brahmaputra, and aloug the deltaic reaboard, flood is a moro formidable enemy than drought, and embankments there take tho place of canals. The Public Works Department has altogether abont 2500 miles of embankments undor its charge, upan which £79,105 was expended in 1877-78, either as direct outlay or in advances to landowners. The broad strip of Dorthera Beagal und Behar, stretching betwcen the Misnihayas and the Ganges, is also rarely visitad by drought; though, wheo drought does conie, the excessivo density of the populatiou brings the danger of famine very near. In Siran alone it has becu foand necessary to carry out a comparatively small scheme for utilizing the discharge of the river Gandak. The great irrigation works in Bengal are two in auruber, and belong to two different types. (1.) In the delta of Orisia an extenaivo eystem of canals has been constructed on the pattern of those lower down on the Coromandel coast, which are intended to avert the danger of both drought and flood, and alsn to be useful for navigation. In average seasons, i.e., in fivo yesry out of six, the local rainfall is sufficient for the rice crop, which is there the sole staple of cultivation; and therefore it is not to bo crepected that theso canals will be directly remuncrative. But on the other had, if they save the province from a repetition of the disastroua year 1565-66, the money will not have beed expended in vain. (2.) In South Dehar the flow discharge of the Son las been iutercepted, after the system of enginecring followed in the Nortli-West, so ns to irrigate a comparatively thirsty strip of land extending slong the south bank of the Ganges, where distronn heas cres now been screrely felt. In this caso alsu, the expenditurs
must be regarded rather as an insurance fund against famine than is reprodnctive outlay. Tho works are not yet complete, but tha expericnee already gained proves that irrigation is wanted even in ordinary seasons. Up to the close of 1877-78 the tatal expenditure on capital account for all the irrigation warks in Pengal was £ $4,653,903$; the gross income for the year was $£ 49,477$; the working expenses were $£ 70,286$; and the estimated interest on eapital, at $4 \frac{1}{3}$ per cent., amounted to $£ 203,971$, thus showing a net Seficit of $£ 224,780$. The area irrigated was about 400,000 acres.
In the Madras presideney, and generally throughout sonthern India, facilitics for irrigation assumo a decisive importance in Setermining the character of agriculture. Crops dependent on the rainfall are distinguished as "dry erops," comprehending the large slass of millets. Rice cau only be grown on "wet land," which means land enpable of being irrigated. Eacept on the Malabar or western eoast, the local rainfall is nowhere sufliciently ampla or sufficiently steady to secure on adequate water supply. Everywhere else water has to be brought to the fields from rivers, from tauka, or from wells. Out of the total cultivated area of Madras, only 15 per cent. is classifiod as "wet land;" the rest is at the mercy of the monsoons. From time immemarial an industrious population has mado use of all the means available to store up the rainfall aod direct the river floods over their fields. The upland areas are studded with tonks, which sametimes cover square miles of graund; tho rivers are crossed by innumerable anicuts, or dams by which the floods are diverted into long aquednets. Jost of these works are now the property of Government, which annually expends larga sums of maney in maintenauce and repairs, looking for remunera. tion only to the nugmented land revenue. The average rate of assessment is 9 s .6 d . per acre on irrigated laud, as eompared with only 2s. 3d. per acre an unirrigated land. It is, therefore, not only the duty but the manifest advantago of Government to extend the facilities for irrigation wherever the physical aspect of the country will permit. Tho deltas of the Godavari, the Kistna, and the Káveri (Ciavery) have within recent sears been traversed by a network of canals and thus guaranteed ngainst any risk of faminc. Smaller works of a similar naturo have been earricd out in other [aces; while a private company, with a Government guarantee, has undertaken the more diffieult task of utilizing on a grand seale tho waters of the Tungabhadra amid the hills and vales of the interior. According to tho latest statistics, the total irrigated area of the presidency is about 5 million acres, yielding a land revenue of about 2 millions sterling. Of this totaI, $1,680,178$ acres, with a revenue of $£ 739,778$, are irrigated by eight great systems, for which revenue and capital accounts aro kept. The minor works consist of about 35,000 tanks and irrigation canals, and about 1140 anicuts or dams ecross strearns.

In Mysore, tanks, anicuts, and wells dug in the dry beds of rivers afford the means of irrigation, but wet cultivation is there even rarer than in Madras. After the disastrous famine of 1876-78 some comprehensive schemes of throwing embankments across river valleys were undertaken by Government. In tha Central Provinces irrigation still remains a matter of private enterprise. According ta the settlement returns, out of a total cultivated erea of $13,610,503$ aeres, 804,370 acres, or 6 per cent., are irrigated by private individuals. The only Government wark is a tank in the district of Nimár. In British Burmah, as in Lower Rengal, ernbankments take the place of canals, being classed as "irrigation worka" in the annual reports. Within the last few years Government hes spent about $£ 318,000$ under this heading, in ordor to save the low rice-fields aloug the Irawadi from destructive inundation.
Tho following figures, applying to India as a whole, partially show how the Government has performed its duty as a landiord in undertaking productive public works. During the ten years ending March 1878 a total sum of $£ 10,457,702$ was expended on irrigation under the budget heading of "extraordinary," as compared with $£[8,636,821$ expended on state rallways in the same period. In tho twelve months ending at the aame date irrigation yielded a gross income of $£ 495,142$, as compered with $£ 548,528$ derived from s:ato railways; while $£ 370,747$ was charged to revenue account against irrigation and $£ 420.751$ against state milmays.

Internal Commumication.
Raileays. -The existing systom of railway communaca. Railpays tion in India dates from the administration of Lord Dalhousic, who brought to bear upon this question an experience gained at the Board of Trade when railway speculation in England was at its height. Tho first Indian line was projected in 18.13 by Sir Macdonald Stephenson, who was afterwards active in forming the East Iudia Railway Company ; but that premature scheme was blighted by the financial panic that followed soon afterwards in England Bombay, the city that has most benefited by milway enter prise, sas the first sod turned in 1850, and the first line ol 3 miles to Thiú (Tanna) opened in I853. The elaborati minute drawn up by Lord Dalhousio in the latter yeas still faithfully represents the railway map of India at the present day, though modified in detail by. Lord Nayo\%: reform of 1869 . Lord Dalhousie's scheme consisted of a few trunk lines, traversing the length and breadth of the peninsula, and connccting all the great citics aud uilitary cantonments. These trunk lines were to be constructed by private companies, to whom Governiuent should guarantce a minimum of 5 per cent. interest on their capital expended, and from whom it should demand in return a certain measure of subordination. The system thus sketched out was promptly carricd into execution, and by 1871 Bumbay was put into direct railway com munication with the sister presidencics of Calcutta and Madras. The task Lord Mayo had to undertake was the development of traffic by means of feeder which slould tap the districts of production and thus open up tire entire country. The means he determined to adopt was the construction of minor lines by tho direct agency of the state, on a narrower gauge, and therefore at a cheaper rate, than the cxisting guarantecd railways,

The guaranteed lines, including the East Indian, which was transferred to Government in 1879 in necordance with terms applicable to all alike, comprise the following:-the East Indian, running up the valley of the Ganges from Calcutta (Howrah) as far as Delhi, with a braneh to Jabalpur; the Great Indian Peninsular, which starts from Bombay and sends one arm north-cast to Jabilpur, with a branch to Nagpur, and another south-east tn the fronticr of Dadras; the Madras line, with its terminus similarly at Iladras city, aud two arms running respectively to the Great Indian Peninsular junction at Raichur and to Beypur on the npposite coast, with branches to Baugalore and Bellary; the pegudh and Rohilkhand, connecting Lucknow and Moradabad with Cawnur and Benares; the Bombay, Baroda, and Central lndia, which runs due north from Bombay through the fertile plain of Guzerat, and is destined ultimately to bo extended across Rajputáns to Delhi; the Sind, Punjab, and Delhi, consisting of three sections, one in Lower Sind, arother from Delhi to Lahore, and the third from Lahore to Díltán; the South Indian (the only one on the narrow gauge), in the extreme south, from Cape Comorin to Madras eity; and the Eastern Eengal, traversing the richest portion of the Gangetic delta. The state lines are too numerous to be described singly. They in. clude the extension from Lahore to Peshawar ao the north-west frontier, which at prescnt stops short at Jhelum; the "missiug link," from Múltán to Hyderabad, thus bringing the Punjabintc direct connerion with its natural scanort at liarachi (opened throughout in 1878); the liue up the valley of the Irawadi from Rangoon to Prome; and several short lines which have been censtructed entirely at tho expense of native states.

Statistics of Tndian Railucays for 1878.

	Mlles. Open.	Capilal Expended.	Number of Passcogers.	Tons of Goods and Mincrala	IIcad of Live Stock.	Gross Recolpts.	Groes Expeoses.	Nut Earaings.
Guaranteed railways State railways \qquad - \qquad Tatals \qquad	6044	$£ 95,430,863$	32,206,570	7,160,205	-	£9,503,721	¢4,501,693	£5,002,028
	2171	19,028,591	6,289,173	1,005,412	\ldots	901,032	705,245	195,787
	8215	£115,059,454	38,195,743	8,171,617	504,249	£10,404,753	¢5,206,938	¢5,197,815

[^154]of 5 feet 6 inches; the state lines follow as a rule the uarrow or metre geuge of 3.251 feet.

Roads.-As tho railway system of India approaches ite comulction, the relative importance of the roads maturally

Foos, diminishes. From a military point of riew, rapid communication by rail has now superseded the old marching routes as completely as in any European country. Like Portsmonth in England, Bombay in India has become the national harbour for the embarkation and debarkation of troeps. On Inding at Bombay, all troops proceed for a short rest to the Lealtiy station of Deolali on the plateau of the Deccan, whence they can reach their ultimate destimations, however remote, by easy railway stages. The Grand Trunk Foad, running up the valley of the Ganges from Calcutta to the north-west frontier, which was first planned in the 16 th century by the Afghan emperor Sher Sháh and was brought to completion under the administration of Iord Geerge Bentinct, is now for the most part untrodden by troops. But though the railway system occupies the firsi place for military and commercid purposes, the aetual mileage and econonic importance of roads have greatly increased. They do nut figure in the imperial balanee-sheet, nor do they strike the popular inagination, but their constraction and repair constitute two of the most important duties of the district official. A few lines, such as the continuation of the Grand Trunk Road in the Panjab, are still substitutes for the railways of the future. Others, which climb the passes of the Himalayas, the Westera Gbats, or the Vilgiris, will probably never be superseded. The great : najority, bowever, are works of local utility, serving to remote that ease and regularity of communication upou which the existence of civilitation so largely depends. The substitution of the post-cart for the naked runder, and that of wheeled traffic for the pack-bullocts, are sitent revolutions effected under British rule

The more important roads are all earefully metaller, the materill employed in most provinces being kankar or calcareous limestone. In Lower Bengal and other deltaic trâcts, where no" kind of stone exists, bricks are roughly burnt and then broken up to supply metal for the roads. The minor streams are crossel by permanent bridges, with foundations of stone, and not unfrequently iron girders. The larger rivers have tempurary bridges of boats throrn across them during the dry season, which give place to ferries in time of Hood. Avenues of trees afford shade and material fer limber. Most of these main lines are under the charge of the Public Works Department. The burden of maiotaining the minor ronds has, by a reeent administrative reform, heen thrown upon the local authorities, who rlepend for their peemniary resources upon district committees and are eften compelled to aet as their own engineers. No statistics are available to show the tatal mileage of roads in British India, or the total sum expended on their maintenance.

Inland navigation is almost confined to the four great rivers, the Ganges, the Brahmaputra, the Indus, and the Irawadi. These all flow throngh broad valleys, and from time immemorinl have been the chief means of conveying the produce of the interior to the sca. South of the Gangetic basin there is not a single river that can be called navigable. Most of the streams in that tract, thongh mighty torrents in the rainy season, dwindle away to mere thireads of water and stagnant pools during the rest of the year. Tho Goditvari and the Narbadk, whose volume of water is ample, are both obstructed by roeky rapids which cngineering skill has hitherto been unable to orereone. A total sure of $1 \frac{1}{2}$ millions sterling has been in vain expended upon the former river. Indeed, it may be doubted whether water earriage is able to componte, as regarls the more valuable ataples, with communisation by rail. After the last Indian Railway was opened, steamers ceaseld to ply upon the Gianes; and the steam fotilla on the Indus similarly shrank to insignificanes when through communication by rail became possible between Mültín and kirithi.

On the Brahmaputra and its tributary the Bárak, and or the Irawadi, steamers still run secure from competition. But it is in the Gangetie delta that river mavigationattains its highest development. There the population may be regarded as half amphibious. Every village can be reached by water in the rainy season, and every family keeps its boat. The main channels of the Gaoges and Brabmaputra and their larger tributaries are navigable all the year through. During the rainy months road-earriage is altogether superseded. All the minor strenms are swollen by the rainfall on the bills, and the lecal domnpour; while fleets of boats sail down with the produce that bas accumulated in warehouses on the river banks. The statistics of this subject belung rather to the department of internal trade; but it alay be mentioned here that the number of laden boats registered at certnin of the river-stations in Bengal io thre year 1877-78 was 401,729.

The great majority of the Bengal rivers require no attention from Government, but thé system known as the three Nadiya rivers is only kept open for traffic by close supervision. A staff of engineers is constantly empleyed to watch the shifting bed, to assist the scouring action of the current, and to advertize the trading community of the depth of water from time to time. In the year $1877-78$ a total sum of $£ 9522$. was expended on this account, while an income of $£ 32,494$ was derived from tells.

The artificial mater channels of India may be divided into two Canats, classes-(1) thosc confined to navigation, and (2) those primarily constructed for purposes of irrigation. Of the former class the most important examples are to be found in the south of the peninsula. On both the Malabar and the Coromandel consts the strip of lowland lying between the mountains and the sea affords natural facilities for the construction of an iuland canal rumning parallel to the shore. In Malabar the salt-water lagoons or lakes, which form such a prominent feature in the local geography, merely required to be supplemented by a few cuttings to suphly continuous water communication from the port of Caticut to Caje Comorin. On the cast coast, the Buckingham canal, runuing north from Madrae city as far as the delta of the Kistma, has been completed without any great engiucering difficulties. In Bengal there are a few artificial canals of old date, but of no great magnitude, in the neighbourhood of Calcutta- The principal of these form the system known as the Calcutta and Eastern canals, which consist for the most part of natural channels, artificially deepened in order to allorid a safe boat route through the Sundarbans. ITp to the close of the year 1877-78 a capital sum of $£ 360,332$ had been expended by Government on these canals, and the gross incone in that year was £ $4,1,1 ? 0$; after deducting rost of repairs, \&c., chargel to revenuo nicount, aud interest at the rate of $4 \frac{1}{2}$ per cent., a net profit was left anounting to $£ 8748$. The Hijili tidal camal in Midnapur district, which ente off a difficult corner of the Hughl (Hooghly) river, yielded a net revenue of $£ 3171$ in the same year.
Most of the great irrigation works, both in northerm and southern India, lave been so construeted as to be available also for navigation. The feneral features of these works have been already dcseribed. The works of the Malras Inrigation Company on the Tumghbadta were not made available for navigation untit 1879. Ascheme is now under the consideration of the Bengal Governmert for joining the Midnapur and Orissa canal systems, and extending the line of water communication further southward through the Chilkí Lake ns far as Goniám, 400 miles from Calcutta.

Commerce.

The trade of India may be considered under fonr beads: -(1) sea-borne trade with foreign countries; (2) consting trade; (3) frontier trade, chielly across the northern mountains; (1) internal traflic within the limits of the cmpire.

Scaborne Trade-Witl an cxtensive seaboard, India Sea-lnme has Lut few ports. Calcutla monmplizes the commerca, not traile. only of Lower Bengal, but of the entire basins of the Ganges and the Brabmaputra. Bombay is the sole ontlet for the agricultural wealth of Guzerat, the Deccan, and the Central Trorinces; while Karachi (Kurachee) performs a similar oflice for the Inlus, and Rangoon for the Imwadi. The natural value of these four ports has been permanently confirmal by the construction of the main lines of railway communication. In the south of India only is sea-borne
irade distributed along the coast. Tho western side has a succession of tolerable harbours, from Goa to Cochin. On the cast there is not a single safe roadstcad nor a navigable river, but ships anchor some distance off the shore at Madras, and at other points, gencrally near tho mouths of the rivers. Of the total foreign trade of India, Calcutta and Bombay control about 40 per cent. each; Madras has 6 per cent., Rangoon 4 per cent.; and Karíehi 2 per cent., leaving a balance of only 8 per cent. for all the remaining ports of the country. Calcutta and Bombay may be calleत the two centres of collection and distribution, to a degree without a parallel in other countries; and the growth of their prorperity is identical with the development of Indian conmerce.

Forcign Trade of India for Forty Years, elassified according to Quinquennial Periods, in Millions Sterling.

Perioda.	Arerage Imports			Avciage Exports.			
	Cotton Yasufac- tures.	Total Merchandiso.	Trea. aure.	$\begin{gathered} \text { Raw } \\ \text { Cotton. } \end{gathered}$	Total Merchan. dise.	Treasure.	Balance of Trade including Treasure.
1880-44	$8 \cdot 19$	769	276	$2 \cdot 34$	$14 \cdot 14$	0.48	+4.17
1845-49	876	914	307	1.68	15.68	$13:$	+ 479
1850-64	$6 \cdot 15$	11.06	4.79	814	19.02	100	+ 4.17
1855-58	6.84	15.58	11.27	8.11	24.93	092	-1100
1860-64	10.32	23.77	1709	15.56	4215	1.02	+ $2 \cdot 11$
1865-68	15.74	31.70	17.62	25.98	65.86	1.80	+ 8.34
1870-74	17.58	38.04	$8 \cdot 26$	$17 \cdot 41$	5625	1.59	$+16.54$
1875-79	18.83	38.36	986	11.52	60-32	2.81	$+1491$
General Average.	10.27	21.32	924	10.09	26.04	$1 \cdot 37$	$+6.75$

The preceding table, which las been compited from materials furnished by the Parliamentary Abstract for 1879, demands a few words of explanation. The average of quinquennial periods has been taken in order to coun. 'teract, as far as possible, aceidental fluctuations. The two columas giving the imports of treasure and the exports of raw cotton both show exceptional increases between 1855 and 1869, due mainly to the effeets of the Matiny and of the American War. Far more instructive are the three columns giving the imports of cotton maunfactures and of total merehandise and the exports of total merchandise. Each of these threc, without exception, exhibits a progressive inerease in every one of the eight quinquennial periods. In the full poriod of forty years the value of cotton goods imported has multiplice sixfold; the value of total merchandise imported has multiplied fivefold; and the ralue of total merchandise exported has multiplied more than fourfold.

Beforo examining in detail the history of some of the chief staples of trade, it may be convenient to givo in this place the statistics of a singlo year, -1877-1375, which was a year of inflation, despite the ineidence of fanine in southern India. In 1877-78 the aggregate volume of foreign aca-borno trade excecded 126 millions sterling in value. The trangactions of Government show an import of $\mathcal{£}, 135,182$ and an export of $£ 3 \mathcal{6}, 615$. The imports of merchiandise wcre $£ 39,336,003$, and of treasure $£ 17,355,460$; total imports, £56,691,463. The export9 of merchandise were $£ 65,185,713$, and of treasure $£ 2,155,136$; total exports, $£ 67,340,849$. Theso $\mathbf{f g h r e s}$ show an excess of exports over imports (ineluding treasure) a mounting to $28,494,250$, and an excess of treasure imported to the nonount of $£ 15,200,324$. The total number of vessels that entered nad elcared was 12,537, with an aggregate of $5,754,379$ tons, or an average of 459 tong each. Of the total tonnage 76 per cent. was British, 7 per cent. British Indian, 4 per eent. native, and 13 per cent. foreign,-American, Italian, and Freneh being best repreaented in the latter class. There was also a land-horne frontier trale estimatel at if milliona-imports into India 41 millions, exports $3 \frac{1}{2}$ millions. The grand total of the land-bome and sea-borne foreign trade of India in 1878, was 134 millions.
The following tables give the principal itetss, together with the totals, of import and export for 1877-78, showing the quantities wherever possible, as well as the valucs :-

[^155]Forcign Trade of British Indiatin 1877-78. Impart.

	Quanilies.		Value.	
Apparel.			\pm	$\underset{587,697}{\mathcal{L}}$
Cont and coke................... tons	...	601.159		1,007,982
Cotlon twist and yarn... 16	...	86,194,125	2,850,403	
Colton plece-goods-				
Grey yds.	\cdots	992,537.579	11,562,858	
Whre ${ }^{\text {coub }}$		215,624,860	2.930 .109	
Cutoured..........................	\ldots	150,548,713	$2,444,103$ 362,218	
Total cotton gouds.	\ldots		20,172,716
Hardware and cuthery		448,228
Liquots-	. 8.	-	...	
Ale, becr, porter guls.	1,323.077		313.070	
Spirltş	733.714		647,661	
Wines and liqueurs... .-	496.733		436,020	
Other sorta.............. *	14, 100		4,808	
Machinery, \&c.	2,30,064		$\begin{array}{r} 1,401,559 \\ -850,997 \end{array}$
Metals-			\ldots	
Copper................... ewts.	320,103		1,498,175	
Iron..................... ."	2,437,201		1,435.561	
Other sorts.............. .-	330,789		671,798	
Total metals		8,088,613		8,605,464
Railway plait........................	\cdots	-...	\cdots	907.002
Saft tons	\therefore	254,231		401.385
Silk, гаw.................. ${ }_{\text {b }}$...	2,102,930		678,069
Silk, manufectired yds.	...	8,344, 716	...	804.883
Splees ${ }^{\text {a }}$ t	...	83,123,167	\ldots	488,894
Sugarcwis.	...	475.105	...	798,038
Woollen movds yds.	...	7,069,693		782,791
Miscellancous'.	...	8,671,693
Total merclandise. Trensure..............................				$39,336,009$ $17,355,460$
Goveroment atores	2,138,182
Grand total				58,829,645

	Quan	nthles	Value.	
			£	£
Coffec..................... \quad B	.-.	$33,300,624$...	1.533,499
Cotton, 1aw............. y ${ }^{\text {cot }}$		387,416,624		9,383,334
Cotton plecc-goods yds.	..*	17,546,591	...	448,286
Cotion Lwistewts.	...	15,600,291	...	652.058
Other dyes................	735,839	..	406,660
Graln-				
Rlce.....................	18,429,386		6,950,276	
Wheat................... "	6,360,150		2,45\%,990	
Other sorts ${ }^{\text {To.......... }}$ (tal gran.	883,806		326,83:	
Total grain.e.t...... "̈,		25,648,342		10.134,100
Mdes and Bxins no.	\ldots	22,916,317	\ldots	3,756,487
Jute, rawcwts	\cdots	3,450,276	...	3,518.114
Jute, manufactured			...	731,127
Lac, cxcepting lac-dyo cwis.	\cdots	95,075	\cdots	333,039
				371
Opismchests	...	92, S20	...	ST4.335
Saltpetre................... cw es.	...	389,002	...	379,002
Sceds-	7,198,918		1.224,429	
Rape	3,193,4-3		1,918,438	
Gingelly wr tif	1,158,802		848.296	
Other sorts	635,512		309,191	
Total seeds...........		12,187,020		7,360,204
Silk, raw.................... "nt.	-	1,512,819	\ldots	703.349
SIlx, manufactured..... yds.	...	1.533,458	...	131.080
Splecso................ m	...	[3, 803,035	...	210, 515
Sugar cwis.	...	84.4.12\%	...	745,861
Tea......................... n_{0}	...	33,439.075	...	2, 044.381
Tinber, teak.............. tons	...	56,939	...	in6,652
Tobacco		11,102,233	...	93,037
Wool, ravs\|	...	$23,1075,333$...	943.645
Woollen manufactures........		...		$\begin{array}{r}207,53 \\ 1.874 .9 \\ \hline\end{array}$
Misceljaneous	-..	\cdots	...	1.574,029
Total Indinn produce	\ldots	...	61.143 .833
Fnrcish merelandisc...........		$2,042.180$
Trcasure		...		2,135,138
Goucrnment btores.		...	\cdots	36,615
Grand total	67,370,404

As regards the imports, the first thing to notice is the Prinsipal enormons predominance of two items--cotton goods and impotw treasure. On an average of the last forty years, cotton goods form 33 per cent., or exactly onc-third of the total, and treasure an additional 30 per cent. Next in order come metals. (copper, which is largely used by native smiths, slightly execeding iron) ; Government stores, ineluling munitions of war, boots, liquor, and elothing for soldiers, and railway 1"ant ; liquors, entircly for European consimption; coal, for the use of the milways and mills; railway plant for the guaranted companics; provisiens,
machuery and miti-work, carl manufactured silk. It will thus be seen that, rith the eingio exception of Mauchester goods, no articles of European manufacture ere in demand for nakirc consumption, wut ouly for the needs of the civilizad admiaistration, and no raw produce, except copper, irco, and salt.

Considering that England's export trade with India thus mainly depends upon piece-goods, it is curious to recollect Le history of cotton manufacture. In the beginning of the iTh century the industry had not been introduced into England, and whatever demand there was for cotton in that country was satisfied by circuitous importations from ?ndia itself, where cotton-weaving is an immemorial industry. In 1641 "Manchester cottons," in imitation of Indiau calicoes and chintzes, were still made of wool. Cotton is said to have been first manufactured in England in 1676 . To foster the nascent industry, a succession of statutes were passed prohibiting the wear of imported costons ; and it was not until after the inventions of Arkwright and others and the application of steam as a motive power had secured to Manchester the advantage of cheap production that these protective measures were entirely removed. In the present century Lancashire has rapidly distauced her instructors. During the five years 1840-45 the annual inport of cotton manufactures into India averaged a littlo over $£ 3,000,000$ sterling. In each subsequent quinquenaial period there has been a steady increase, until in the year $1877-78$ the import reached the unprecedented total of $£ 20,000,000$ sterling, or an increase of more than sixfold in less than forty years.

The importation of treasure is perhaps still more extra. ordinary, when we bear in mind that it is not consumed in the using, but remains permanently in the country. During the same period of forty years the net import of treasure, dedneting export, has reached the enormous aggregate of just 319 millions sterling, or more than £1, 6s. 6 d . per head of the 240 million inhabitants of the peninsula. Of course, by far the larger portion of this was silver, but the figures for gold are by no means inconsiderable. During the ten years ending with 1875, when the normal value of silver in terius of frold was but little disturbed, the total net imports of treasure into India amounted to just 99 millions ; of this total $62 \frac{1}{2}$ millions were in silver and $36 \frac{1}{2}$ millions in gold, the proportion of the latter metal being thus considerably more than one-third of the whole. Ou separating the re-cxports from the imports, the attraction of gold to India appears yet more marked. Of the total imports of gold only 7 per cent. was re-exported, while for silver the corrosponding proportion was 19 per cent. Roughly speaking, it may be concluded that Iudia then absorbed about $£ 3,000,000$ sterling of gold a year. The supply is drawn chiefly from China, Ceylon, Great Britain, and Australia. The depreciation of silver that bis eince taken placo has cansed an enormons increase in the import of silver and a corresponding increase in tho export of gold. The figures since 1876 do not show the normal state of things. But even in 1877-78, when the valuo of silver was at its lowest, though India drew upon its. hoards of gold for export to the amount of moro than l million sterling, it yet imported more than 1 f millions, showing a net import of half a million of gold. It has been estimated that the gold circulation of Iudia amounts to about $1,620,000$ gold mohars, as conipared with $£ 158,000,000$ of silver and $£ 2,900,000$ of copper. In addition, 10 milion sovereigns are said to be hoarded in India, mainly in tho Bombay presideney, where the impression of St Georgo and the Dragon is valued on roligions gronnds.
tapont. When wo turn to the exporta, the chsenem that have taken place in relativo magailude demadi nutice.

In 1877-78 raw cotten for the frist time for many years falls in:o the second place, being surpassed by the aggregate total of food grains; oil-seeds show as a iormidable competitor to cotton; jute surpasses indigo, and tea comes close behind ; while cotton manufactures are mearly as valuable as coffee. The imports on sugar, in value though not in quantity, exceed the exports; the trade in raw silk is about equally balanced; while spices, oace the glory of Eastern trade, were exported to the value of ooly $£ 226,515$, as compared with imports more valuable and also twofold larger.
The expert of raw cotton has been subject to excessive variations. सuw At the close of the last century cotton was sent to England in cullon. small quantities, chiefiy the produce of the Central Provinces, collected, at Mirzápur and shipped at Calcutta, or the produce of Guzerat, despatched from Surat. Jn the ycar 1805 the total export of cotton from Surat was ralued at $£ 108,000$; in the same year the Eoglish returns show only 2000 bales of East Indian cotton imported into Great Britain. But this figura Was far below the average, for by 1810 the correspouding number of bales had risen to 79,000 , to $\sin k$ arsin to 2000 in 1813, and to rise to 248,000 in 1818. Bombay did not begin to participate in this trado until 1825, hut has now acquired the practical monopoly, since the railway has diverted to the west the produce of the Central Provinces. In 1834, when the commerce of India was first thromn open, $33,000,000$ to were exported. Analysing the exports of cotton during the forty years since 1840, we fiod that in the first quinqueanial period they averaged 21 millions sterling in ralue, and did not rise perceptibly until 1858, when they first touched 4 millions. From that date the incrense was steady, cven beforo the Araerican exports were cut off by war in 1861 . India then made the most of her opportunity, though quantity and quality did not keep pace with the augmented price. The hifhest figures of value was sttained with $37 \frac{1}{2}$ millions sterling in 1865 ; and the highest figure of quantity with $803,000,000$ it in 1866 . Thenceforth the decline has been constant, thougb somewhat irrcgular, the lowest figures both of quantity and ralue being those of 1878-79. The most recent feature of tho trade is the comparstively small amount shipped to the United Kingdom, and the cven distribution of the rest among Continental ports. The export of raw cotton in 1878-79 announted to $57,914,091$, and of twist and cotton goods to $£ 2,681,823$.

Second in importance to cotton as a raw matcrial of British manu- Jath facture comes jnte, the trade in which is a creation of less thon thirty' years. At tho time of the London Exhibition of 1851 jute fibre was practically uatried and unknown, while attention was even then actively drawn to rhea or China grass, which remains to the presest day unmanageable by any cheap process. From time immemorial jute bas becn grown in the swamps of Eastern Bengal, and has been woven into coarse fabrics for bagg and ereu clothing. As carly as 1795 Dr Roxburgh called attention to the commercial value of tho plant, which he grew in the Botanical Gardens of Calcutta and named "jute," after tho langwage of his Orissa mardeners, the Bengali word being pat or koshta. In 1828-29 the total crports of juto were only 364 cwts ., valued at $£ 62$. From that date the trado sterdily grew, until in the quiaquennial period ending 1847-48 the exports averaged 234,055 cwis. The Crimeau war, which cut off the supplies of Russian flax and hemp from the Forfarshirs meavere, made tho reputation of jute. Taking quinquennial periods, the export of jute rose from an avcrage of 969,724 crits. in 1858-63 to $2,628,100 \mathrm{cw}$ ts in $1863-68$ and $4.858,162 \mathrm{cwts}$. in 1868-73. The highest fgures reachod were in tho ycar .1872-73, with 7,080,912 critc., ralued at $£ 4,142,548$. The export of rear jute in $1878-79$ reached $£ 3,800,426$, and of manufactured jute $£ 1,098,434$.
The export of grain, as already noriced, is uow in the aggregato larger than that of cotton. The two chief itens are rico and what. Rice and lice is cxported from British 13urmah, from Bengal, and from whent. Madras. From the point of vicw of the English producc market rice means only Burmese rice, which is anvually exported to the large amount of about 12 million cowts., valued at 3 miltions sterling. In tho Indian tables this is all cutured as consigned to t?.c United Kingdom, though, as a matter of fact, tho rice floets from Burmah ouly call for onders at Falmonth, and are thenco diverted to various English or Continental perta. Inulia has a practical monopoly of the Enropean makket. An eyport daty is levial ou rice in lodia at the rate of 3 dindos per nazued, or about gul. per ewt. A sinoilar duty ou wheat was reprand in 1875 , and that trade has siuco conspicuously advanced. In 1874-75 the export of wheat was ahout 1 million cwis. Forthwith it iucreased year ly year, matil in 1877-78 it excceded of million cwts., valned ut uearly 3 nitiliong sterling. In tho lollowing year the quantity fell awny to almost nothing, owing to the general failure of the harreat in the producfug districts. The l'unjao is the prineipal wheat-growing fract in India, liut hitherto the clief supplips have come from the North Westera Provinces and Oudh, being collected at Cartuptr amd theno defpatehed by ruil to Checutta. Tho tetal expert of graina ia 1879 was valuel ut $50,802,863$.

Oil-seeds, alio, were freed in 1875, the duty previona to that late Ol-been Laving hoen 3 per cent. cul valorich. Tea years ticforn, the ofinge
export was only about 4 million cwts a yeat ; but the fiscal change, coincuding with an augmented demand in Enrope, has caused an increase of threefold. In 1875-7s the tutal expont amounted to $12,197,020$ cwts., valued at more than $7 \neq$ millious sterling. Of this Eengal contributed $7,799,220 \mathrm{cwts}$, and Bombay $3,179,475 \mathrm{cwts}$. Linsed and rape are consigued mainly to the United Kingdon, while France takes almost tbe entire quantity of ell or gingelly: The export of oil-seeds in $1878-70$ was valued at $\dot{x} 4,682,51$?.
In actual amount, though not io relative muportance, indigo holds its own in the face of competitnon from oniline dyes. The export of $1877-78$ amounted to $120,605 \mathrm{cwts}$., valued at $£ 3,494,334$, being the highest figures on record. Of this total Bengal yiulded 99,402 cirts, and Nadias 16,899 cwts. In 1878-79 the export of indigo amomoted to $105,051 \mathrm{cwts}$, valued at $£ 2.960,463$. The most noticeable feature in this trade is the diminisling nroportion sent direct to Eagland, and the wide distribution of the remaiuder. Of other dyes, saftlower has greatly fallen aff, being now only in demand for a rouge in China aod Japan; the export in 1877-78 was 3698 ewts., valned at $£ 14,881$. The export of myrobalans, on the other hand, was greatly stimuiated by the Russo-Turkish war, which interrupted the supply of valonia and galls from Asin Mmor. The quantity rose from 286,350 cwts. in $1875-76$ to 537,055 cwts. in 1877-78, valued in the latter year at $£ 230,526$. Practically the whoie s sent to the United Kingdom. Turmeric, also, exhibits an increase to $146,865 \mathrm{cwts}$. in $1877-78$, valned at $£ 123.766$, of which the United Kingdom took about one-half. Lacerlye, like other kinds of lac, shows a depressed trade, the exports in 1875-78 haviug been 9570 ewts., valued at $£ 29,009$.
No other export has made such steady progress ns tea, which has nultiplied more than fourfold in the space of ten years. $\ln 1807-68$ the amount was only $7,811,429$ it ; by $1872-73$ it had reached
$, 920,439 \mathrm{lb}$, and in 1873-79, without a single step of retrogreson, it had furtler risen to $34,800,027 \mathrm{th}$, valued nt $£ 3,170,113$. -adian tea has now a recognized position io the Loudoo market, generally areraging about 4d. per to higher in value than Chinese tea, birt it has falled to win necertance in most other countries, excepting Australia. The exports of coffee from India are stntionary, if oot declining. The highest amount during the past ten yeara was 507,296 cwts. in $1871-72$, the lowest amonut 298,587 cwts. in 1877-78, valued at $£ 1,338,499$. In $1878-79$ the export was 342,268 ervts., valued at $£ 1,548,481$. Cotton Of manuactured goods, cotton and jute descrve notice, though
and jute $\mathrm{t} \boldsymbol{\mathrm { y }}$ far the greater part of the produce of the Indian mills is conmanufac sumed locnlly. The total value of cotton gools exported in $1878-79$

tures.

 was $£ 1,644,125$, being an incrense of nearly threefold as compared with 1874-75. The exports of twist and yarn, spun in the Bombay mills, increased from 3 million to in $1874-\overline{5} 5$ to $15 \frac{1}{2}$ million it in 1877-i8, valued in the latter year at £6\$2,058. The chue \int places of destination were-China, 18,762,133 th: Aden. 1,181,120 to ; and Arbbia, $393,871 \mathrm{th}$. The export of twist and yarn in $1878-79$ was valued at $£ 937,698$. Piece-goods belong to two classes. Coloured goods, woren in hand-looms, are exported from Mikiras to Ceylon and the Straits, 10 the annual value of about $£ 230,000$, the quantitybeing about 8 million yards; whilo in 1877-78 groy [ads from the Bombay mills were sent to Aden, Arabia, Zanaikar, and the Brekran coast, emounting to orer 10 million yrods, and valued at £141,503. Jute manufactures consist of gunny biger gunny cloths, and rope and twine, almust entirely the produes ol the Calcntta mills. In all of these the value of the exports is is creasing faster than the quantity, having multiphied nearly fourfold in the hast tive years. In 1877-78 the total export ef jute mannfactures was valued nt $\pm 751,127$, and in 187809 as £1,098,434. Gundy bags, for the prackang of wheat, rice, ar-l wool, were exported in 1877-78 to the number of more than $26 \frac{1}{2}$ millions, valued at $£ 729,669$. Of this totel $£ 298,000$ (incliol ing by far the most valuable bags) was sent to Australia, $£ 162,000$ to the Straits, $£ 80,000$ to the United States, $\pm 77,000$ to Egrlit. $£ 32,000$ to Chiua, and $£ 81,000$ to other countries, this comprising a considerable quantity destined for Encland. In 1378-79 tl:3 export of gunny bags had inereased to $45 \$$ millions, valued at a million sterling. Of munny cloth io pieces wearly 3 million yards were exported in 1877-78, almost entirely to the United States, valned at $£ 35,610$; in $1878-79$ these exports had increased to thr wards of 4 million yards, Of rope and twine 4428 cwts. Wern exported, valued at $\mathfrak{£} 543$.

The following tables, being taken from ludian returns, do not in all cases show the real origin of the imports or the ultimate destination of the exports, but primarily the conntries with wheh India has direct dealings. London still retains its histoneal preeminenco as the first Oriental mart in the world, whither buyers flock from the other conntries of Euroje to satisfy their wants. Germans go thele for wool, Frenclimen forjute, and all nationsolike for raredyes, spuces, and drugs. Thongh the opening of the Suez Camal has restorpd to the maritime cities of the Meditermanean some share of the business that they once monopolized, yet, on the other hand, the adrantage of prior possession, the growing use of steamers, and the certainty of being able to obtain a return freight, ali tend to favour trade with England carried in English bottoms. As the result of these conflicting influences, the trade of ladio with the L..ited lingelom, while in actual amonnt it remains pretty constant, shows a lelatwe decrease us compared with the total trade.

Distrimution of Principal Erports of Raw Proluce in 1877-78,

 in Cuts.| | Cution. | Jute. | Rice. | Wheat. | Indigo. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unuted honsitum ...- | 1.411,100 | +493,483 | 10,488,198 | 5,71t, 619 | 81.641 |
| France | 111.000 | .. | 20.117 | 110,674 | . 20,9:13 |
| Germasy | 109.041 | | 68.839 | | |
| Ausita | 410.000 | | | - | 6.618 |
| Uraly | +34,unle | 84,310 | | | 1,392 |
| Egypt ... | | 83,510 | | | 12.415: |
| Persis | | | 126.824 | | 4.1.1 |
| Maurtus | | | 1,401.931 | 154.888 | |
| | 211,000 | | | . | -. |
| Stroits Sctilements.. | .. | ... | 1,022,431 | .. | |

Distribution of Forcign Trade of Indir in 1877-1878 (cxeluding treasurc).

	tnited Kingdom	France.	Italy.	United Stares	Australa.	China and Hong-Konge.	Stralts Setticments.	Ceylon.	Maunthes.
Imparts..		451,105	¢ 349,220	279,717	$\frac{2}{298.298}$	$\stackrel{\mathcal{L}}{1,403,673}$	$\begin{gathered} \stackrel{£}{1,079,702} \end{gathered}$	$\stackrel{\text { 2 }}{530,555}$	642.47)
Exports...	29,298,152	5,963,057	1.867.690	1,930,340	449,740	12,634,935	2,343,285	2,496,823	1,117,975
-ral	$61,509,455$ 49	$6,114,162$ 5	$2,216,919$ 1.8	$\begin{gathered} 2,210,057 \\ 1 \cdot 8 \end{gathered}$	748,038 6	$14.038,608$ 13	$\frac{3,420,087}{3}$	$3,028,8.8$ 2.6	$\begin{gathered} 1, \pi 60,446 \\ 14 \end{gathered}$

The opening of the Suez Canal in 1869, while it has stmulated every department of trade into greater activity, has not rasterially cbanged its character. As might be anticipated, the amports, lemg for the most part of small bulk and high ralue, first felt the adrantageg of this route. In $1875-76$ as innch as 85 percent. of the umports from Europeand Egypt (excluding treasure) passed through tbe conal, bu: ooly 29 per cent. of the exports. In 1878-79 the proportion of imports was substantially the same, whle clat of exports had risen to 64 per cent., showing that such bulky conmodities os cotton, gram, oil-seeds, and jute were beginning to participate in the advantages of rapid traffic. The actual values of canal trade in 1877-8, the year of its greatest development, were 29 millions storling for imports, and 23 millions for exports it is estimated that the canal has reduced the length of the royare from london to India by the equivalent of thirtv-six days, the rente round the Cape leing more than 11,000 miles, that through the canal less thas 3000 miles.

In 1873-74, which may be regarded as n normal year, though the fegures are not altogether frue from suspicion, the total number of vessels engaged in the coasting trade thist cleared and entered wus 2: 1,374 , with an aggregate of $10,379,862$ tons; the total valuo of
both exports and imports was rethned at $434,540.445$. Of the total ausnber of vessels, 250,213, with $4,843,665 . t o n s$, were nativo eraft. Bombay and Matras divide butween thern nearly mill the nature craft ; while in Beagal and Burnalua large and increasing proportion of the coasting tratic is carraed in British steamers. In 1877-78, the year of famme, the fumber of slups increased to 819,624, the innnago to $15,732,216$ tons, and the value to $x^{6} 67,814.446$. By far the largest 1 tem was grain, of which in total of $1,137,690$ tons, ralued at 13 millions sterling, was thrown mo the famino-stricken distriets from the seaboarl. Next in importanco come raw coton and cotton goods. The trade in raw cotton amonnted to 387,438 cwts., valued at $£ 957,900$, muth of which was nerely transshipped from one port to nnother in the Bombay presideney. Cotton, trist, and farm smounted to $17,425,093$ its valued at $\pm 965,038$, of which the greater part was sent from Bocibay to Bengat and Madras. The total ralue of the cotton piecegoods was $\mathscr{L}^{2} 20.866$, including nbout 24 million yards of grey goods sent from Bombay to fengal and to Sind in nearly equal proportions, and about 2 million yards of coloured goods from sladras Stimulated by the activity of the grain trade, the exports of grang boga figm Calcutta coastwise rose to a total value of dearls.
£960,000. The trade in betel-nuts amounted to nearly 44 nillion th, yalued at over $£ 500,000$. Burmali consumes most of these, obtaining its supplies from Bengal ; while Bombay gets considerable quantities from Madras, from the Conean and Goa, and from Bengal. Sugar (refined and unrefined) figures to the large amount of $£ 900,000$, of which the greater part cane from Bengal. The movements of treasure coast wise show a total of just 5 millions sterling, being exceptionally augmented by the conveyance of silver to Burmah in payment for rice supplied to Madias.
Fonter The following table exhibits the totals of the trade conducted cacie. along the landward frontier of the Indian empire, so far as figures are avanlable:-

Registercd V'rontier I'rade of India in 1877-1873.

	Imports.	Exports.	Tutal.
Afghánistan and adjoin•• ing lill tribes, \ldots.	$\frac{\varepsilon}{671,000}$	$718,000$	$\stackrel{\&}{1,389,000}$
Kashmír, Ladajkh, and Tibet	630,000	374,000	1,004,000
Nepil	1,054,000	633,000	1,687,000
North-East Frontier tribes	77,000	30,000	107,000
tndenendent Burmah.......	1,664,000	1,762,000	3,426,000
Siam.....	69,000	1, 57,000	126,000
Total	4,165,000	3,574,000	7,739,000

Internal
trade.

In any community raised above primitive barbarism the aggregate volume of its iuternal trade must be far greater than that of its foreign commerce; but, from the nature of the case, it is impossible to estimate its umount or even to describe adequately its geaeral character. On the one hand, there is the wholesale business connected with foreign commerce in its earlicst stages-the collection of agricultural produce from a thousand little villages, its accumulation at a few great central marts, and its despatch to the seaboard; in return for which manufactured articles are distributed by the same channels, though in the reverse direction. On the other hand, there is the interehange of commodities of native growth and manufacture, sometimes between neighbours, but also between distant provinces. With a few unimportant exceptions, free trade is the rulo throughout the vast peninsula of India, by land as well as by sea. The Hindus possess a natural genius for commerce, as is shown by the daring with whicli they bave penctrated into the beart of Central Asia, and to the cast coast of Africa. Among the benefits which British rule has conferred upon them is the removal of the innumerable shackles that a short-sighted despotism had imposed upon their talents.
Trading

Broadly speaking, the greater part of the iuteraal trado remains in the hands of the aatives. Europeans control the shipping business, and have a share in the collection of some of the more valuable staples of exports, such as cotton, jute, oil-seeds, and wheat. Jout the work of distribution and the adaptation of the supply to the demand of the consumer naturally fall to those who are best acquainted with native wauts. Even in the presidency towas the retail shops are generally owued by natives. The Vaisya, or trading caste of Manu, has no longer any separate existence; but its placo is occupied by several well-marked classes. On tho western coast the Parsis, by the bolducss and extent of their operations, tread close upon the heels of the most prosperous English houses. . In the interiur of the Bombay presidency, business is mainly divided betreen two classes, the Baniyas of Guzerat and the Marwirls from Lajputím. . Each of these profess a peculiar form of religion, the furmer being Vishnuvites of the Vallabhithari sect, tho latter Jains. In the Decean their place "taken by Lingifyats from the south, who again follov thei own form of Hinduism, which is an heretical species of 3° va worship. Throughout λ fysore, and in the nuth of Siadras, Lingíyats are still found, but along the cabtern sea board the predoninating classes of traders are those namid Chetties and. Komatis. In Lengal many of
the upper castes of Sudras have devoted themselves to general trade ; but there again the Jain Mârwâris frum Hiajputaua and the North-West occupy the front rank. Their head-quarters are in Murshidabad district, and their agents are to be found throughout the valley of the Brahnaputra, as far up as the unexplored froatier of China. They penetrate every where among the wild tribes; and it is said that the natives of the Khasi hillo are the only Lillmen who do their own bueiness of buying and selling. In the North-Western Provinces and Oudh the traders arc generically called Baniyas; and in the Punjub are found the Khatris, who have perbaps the best title of aniy to regard themselves as descendants of the origial Vaisyas. According to the general census of 1872 , the total number of persons in all India returned as connected with commerce and trade was $3,224,000$, or 5% per cent. of the adult males.

Local trade is conducted either at the permanent bazers tocal of great towns, at weekly markets held in certain villages, wiudo at annual gatheriags primarily held for religious purposes, or by means of travelling brokers and agents. The culti, vator himself, who is the chief producer and also the chief customer, knows little of the great towas, and expects the dealer to come to his own door. Each village has at least one resident trader, who usually combines in his own person the functions of money-lender, grain dealer, and cloth seller. The simple system of rural economy is entirely based upon the dealings of this man, whom it is the fashion sometimes to decry as a usurer, but who is really the ona thrifty person among an improvideat population. Abolish the money-lender, and the general body of cultivators would have nothing to depend upon but the harvest of a single year. The money-lender deals chiefly in grain and in specie. In those districts where the staples of export are largely grown, the cultivators commonly sell their crops to travelling brokers, who re-sell to larger dealers, and so on until the commodities reach the hands of the agents of the great shipping houses. The wholesale trade thus rests ultimately with a comparatively small number of persuns, who have agencies, or rather corresponding firms; at the great central marts. Buying and selling in their aspects most characteristic of India are to be seen, not at theso great towns; nor even at the weekly markets, but at the fairs which are held periodically at certain spots in most districts. Religion is always the origiaal pretext of theso gatherings or melas, at some of which nothing is done beyond bathing in the river, or performing rarious superstitious ceremonies. But in the majority of eases religior has become a mere excuse for secular busiuess. Crowds of petty traders attend, bringing all those miscellaneous articles that can be packed into a pedlar's. wallet ; and tho neighbouring villagers look forward to tho occasion to satisfy aliko their curiosity and their household wants.

It is, of conrse, impessibie to cxpress accurately in figures the Provio extent of interial trade, but the following statistics will serve in elal somomeasire to show both its recent development afd its actual brado. amount. Thoy are basad upon the registration returos that have bean collected for sonie years past in certain provinees. In 1863-64 the total external trade of the Ceutral Provinces, both export and import, was estimated to amount to 102,000 tous, valued at $2 \times 3,909,000$. By $1868-69$, niter the opening of the Jabalpur through railway, it lad increased to 209,000 tons, valued at L'6,795,000. th 1877-78, tho jear of famine in southern India, the corresponding fiyures ware 635,000 tons and $£ 9,373,000$, showing an increase in fourteen years of more than sixfold in quantity, and considerably more than twofold in value. The compratively fimal inerenso in value is to be attributed to the exclusion from tho later returns of opium, which merely passes through in transit from Málwí. In 1874-75 the total external trade of the Punjab amounted to abont 600,000 tons, valued (but probably overva, jod) at nbont $£ 16,000,000$. In $1877-78$ it had increased to nearly $\$ 00,000$ tuns, valued at $£ 17,500,000$. The total trade of Belar in
1877.78 was valued at $£ 16,000,000$. Uut penhaps the significance of such enormous totals will beconte plainer if we take the ense of a single mait, Patna, whicli may clain to be considered one of the most important centres of inland traffic in the world. Favourably situated on the Ganges, ucar the confluence of the Son ond the Gogra, where the priacipal trade rontes branch off to Nepal, it has become a great changing station for the transfer of goods from river to rail. In the year $1876-77$ the total registered trade of Patni (exclading the Government monopoly of Opium, and prohably omitting a good deal besides) was valued in the nggregate at if millions sterling. Many articles are includell twice over, both as exported and imported, but the imports nloue amounted to more than 4 millions. Among the principal itens on one sitle or tho other may be mentioned - European jiece-goods, $£ 1,217,060$; indigo, $£ 789,000$; oil-seeds, $£ 557,000$; salt, $£ 389,000$; sugar, $£ 274,000$; food grains, $£ 255,000$; hides, $£ 185,000$; saltpetre, $£ 156,000$.

Manufactures

Though Inda may be truly described as ain agrteultural and not a manufaeturing country, yet it would be erroneous to infer that $i t$ is destitute of the arts of civilized life. It has no swarming hives of industry to compare with the factory eentres of Lancashire, nor a large mining population, living under the soil rather than on it. In stort, it has not reached that modern stage of industrial derelopment whiels is based upen the use of coal and the discoreries of plysieal seience. But in all manufactures requiring manyal dexterity and artistic taste Iodia may claallenge comparison with England in the last century. The organization of Hindu society demands that the neces. sary arts, scich as those of the weaver, the potter, and the emith, should be practised in every village. The pride and display of the rival kinydoms, into which the country was forinerly divided, gave birth to many arts of lusury that hare not yet been entirely forgotten in the deeayed capitals. When the first European traders reached the coast of India in the IGth eentury, they found a civilizalion amons both "Moors" and "Gentoos" at lenst as highly advaneed as tueir own. In arehitecture, in fabrics of cotton and silk, in goldsmith's work and jerellery, the people of India were then unsurpassed. Bat while the East has atood still, or rather retrograded (for, in the face of keen competition, to stand still is to retrograde), the West bas odvaneed with a gigantic stride which bas no parallel in the history of buman progress. On the one hand, the downfall of the niative courts has deprived the skilled workman of his cbief market, while, on the other, the English capitalist has erlisted in his service forees of nature against which the village artisans in vain try to sempete. The fortunes of India are bound up .wth those of a country whose mamufacturing suprenney depends upon s great export trade. The tide of eircumstances, more insxorable than artificial enactments, has compelled the weaver to exchange his loom for the plough, and has erustied out a multitude of ninor handicrafts. Politieal ceonomy, juadging only by the single test of cleaphess, may alpprove the result ; but the philosopher will regret the increasing unifornity of social conditions, and the loss to the world of artistie tendencies which ean never be restored.
Historically the most interesting, and still the most impartant in the aggregate, of all Indian industries are those conducted in every rural rillage of the land. The IIindu village system is based upon division of labour quite as much as upon hereditary caste. The weaver, the potter, the blacksinith, the brazier, the oil-presser, are eaeli members of a community, as well as inheritors of a family occumation. On the one hand, they hove a secure market for their wares, and, on the other, their employers have a guarantee that their trades shall be well learned. Simplicily of life and permanence of employment are here happily combined with a high degree of excellence in design and honesty of execution. The stage of eivilization helnw these village industries is represented by the hill
triu:s. especially those on the north-east Irontier, where the weaving of elothes is done by the women of the family,-a practice whieh also prevails throughout Burmalh. A higher stage may be found in those villages or towns which possess a little colony of weavers or braziers noted for some specialty. Yet one degree bigher is the ease of certain arts of luxury, sueh as ivory catving or the making of gold lace, which chance or royal patronage has fised at some eapital now perbaps falling into decay. One other form of native industry owes its origin to European interference. Many a village in Lower Lengal and on the Coromande! coast still shows traces of the time when the East India Company and its European rivals gathered large settlements of weavers round their little forts, and thus formed the only industrial towns that ever existed in India. But when the Company abandoned its manufacturing business in 1833, these centres of industry rapidly deelined; and the once celebrated muslius of India have been drisen out of the market of the world by Manchester goods.

Cotton wearing may be called the oldest indigenous in- Cotton dustry of India. The Greck name fur cutton fabrics, sia- weaving don (aưóve), is etymologically the same as that of India or Sind; in later days Calicut on the Malabar coast has given us "calico." Cotton cloth, whether plain or ornaniented, has always been the single inaterial of elothing for both men and women, exeept in Assam and Burmab, where silk is preferred, perhaps in reminiseence of an extinct trade with China. When European adrenturers found the way to India, cotton and silk always formed part of tho rich cargoes they brought home. The English, in especial, appear to have been careful to fix their carliest settlements anid a weaving population-at Surat, at Calicut, at Masulipatan, at Hooghly. In delieacy of texture, in purity and fasthess of colour, in grace of design, Indian cottons may still hold their own against the world; but in the matter of elicapness they have becu unable to face the competition of Manehester.
In 1870 the Madras Board of Revenue published a valuable report upon hand-loom weaving, from which the following local figures are tnken. The total number of looms at work in that presidency, with its general population of 31 millions, was returned at 279,220 , of whech 220,015 were in villages and ef, 205 in towns, showing a considerable increase upon the corresponding number in 1861, When the mohtarfo or assessed tax upon looms was abolished. The total estimaled consumption of twist was $31,429,712$ th, being at the rate of 112 m per loom. Of this amount, about onethird was imported twist nad the remainder country-made. Tho total value of the cotton goods wowch was aetuncd at $3 \frac{1}{2}$ nillions sterling, or $£ 12,10 \mathrm{~s}$. per loom, but this was beleved to be much unler the truth. The export of country-made cloth in the samo. year was about $£ 220,000$. In the Central Provinces (population 8 millions), where hand-loom weaving is still fairly maintained, and where statistics are more trust wortliy than in other parts, the numher of looms is returned at 87,588 , employing 145,896 wenvers, with an annual out-turn valucd at $£ 828,000$. In 1878-79 the export of Indian Jicee-goods from the Central Provinces was valued at t162,642. As regards Bengal, hand-loom weaving is generally on the decline. The average consumption of piece-gools throughome the province is estimated at about 5 s. per heal, and the returns of registereel trade show that European piece.goods are distributed from Calcuttat the rate of about 2 s . 5 d . per heal. In Midnapur, Niadiyá, and Bardwin the native weavers still hold their own appears from the large imports of European twist; but in the eastern districts, which lave to balanee their large exjorts of jute, rice, and oil-seeds, the imports of European cloth ife to the ligh figure of 2s. Td. per head. No part of India has suffered more from English competition than Gombay, where, however, the introthetion of steam machinery is beginning to restore the lalance. Twist from tho lombay milts is now generally used ly the hand-loom weaters of the presidency, ant is largely exported to China. But it is in tho finer fabrics proluced for expent that the west of India has suffered most. Takill Surat alone, the export by sea of pice-goods at tho heginniny of the century was valued at $£ 360,000$ a year. By 1845 the value had dropped to $£ 67,000$, rising again to $£ 131,000$ in 1859 but in 157.4 it was only filss.

Silk wearing is also a common industry everywhere, silk si"e fabrics, or at least an admisture of silk in cotton, being wasios
universally affected as a mark of wealth. Throughour Buitish Burmah, and also in Assam, silk is the common material of clothing, being made up by the womed of the bousehold. In Burmah the bulk of the silk is imported frum China, generally in a raw state; but in Assam it is obtained from two or three varieties of worms, which are generally fed on jungle trees and may be regarded as semi-donesticated. Bengal is the only part of India where sericulture, or the rearing of the silk-worm proper on mulberry, can be said to flourish. The greater part of the silk is wound in European filatures, and exparted in the raw state to Europe. The native aupply is either locally consumed, or sent up the Ganges to the great cities of the North-West. A considerable quantity of raw silk, especially for Bombay consumption, is imported from China. Tasar silk, or that obtained from the cocoons of semi-domesticated worms, does not contribute much to the supply. As compared with cotton weaving, the manufacture of silk fabrics may be called a town and not a village industry. These fabrics are of two kinds-(1) those composed of pure silk, and (2) those with a cotton warp crossed by a woof of sils. Both kinds are often embroidered with gold and silver. The mixed fabrics are known as nashru or sufi, the latter word, meaning "permitted," being used because the strict ccremonial law will not allow Mahometans to wear clothing of pure silk. They are largely woven in the towns of the Punjab and Sind, at Agra, at Hyderabad in the Deccan, and at Tanjore and Trichinopoli. Pure silk fabrics are either of simple texture, or highly ornamented in the form of hinkhabs or brocades. The latter are a specialty of Beuares, Murshidábád, Ahmadâbád, and Trichinopoli. Printed silks are woren at Surat for the wear of Parsi and Guzerati women. Quite recently mills with steam machinery have been established at Bombay, which weave silk fabrics for the Burmese market, chiefly lingyes, tamains, and patsofs. The silk manufactures exported from India consist almost cotirely of the handkerchiefa known as bendannas and corahs, with a small proportion of tasar fabrics. The trade appears to be on the decline, the total exports having dcereased from 2,468,052 yards, valued at $£ 238,000$, in $1875-76$ to $1,451,256$ yards, valued at $£ 147,000$, in $1877-75$. But in 1859 the value had asoan risen to 1195,897 ; and the returns for $1874-77$ were unusually high.
1350i:
luoh rs: cediag pararyhs. cotton, wool, or leather. The ormament is woven in the loom, or sewn on afterwards with the needle. Muslin is embroidered with silk and gold thread at Dacca, Patná, and Dolhi. Sind and Cutch (Kachisch) have special embroideries of coloured silk and gold. Leather-work is embroiderce in Guzerat. In some of the historical capitals of the Deccan, auch as Gulbargah end Aurangibad, velvet (makhnal) is gorgeonsly embroidered with gold, to make eanopics, umbrellas, and housings for elephants and herses, for use on state occasions. Not only the goldsmith, but also the jewellor lends his aid to Indian cmbreidery.
Carp:
wew.ug cottor and that and satranjis and deris, are mado chielly in Bengal and northern India, and appear to be an indigenons mamifacture. The woollen or pile carpets known as katin and kalicha are those which have recently attained so much popularity in England, by reason of the low price at which the outturn of the jail manufactorics can be placed in the market. The ert was probably introduced into India by tho Brahometana. The historical seats of the industry are in Kathoir, the Punjab, and Sind, and at Agra, Miraipur, Jala!pur, Warangal in the Deccan, Malabar, aud Masuliphiad. Velvei carpets ore also mado at Denares and
hursidadáad, and silk pie carpets at Tanjore and Salem. At the London Exhibition of 1851 the finest Indian ruge came from Warangal, the anciect capital of the Andhra dynasty, about 80 miles east of Hyderabad. Their characteristic feature was the exceediogly fine cuuct of the stitches, about 12,000 to the square foat. "They wert also perfectly harmonious in colour, and the only examples In which silk was used with an entirely satisfactory effect" (Birdwood). The price was aot less than $£ 10$ yer square yard. The common rugs, produced in enormous quantities in the jails at Lahore, Jabalpur, Mirzápur, Benareś, and Bangalore, sell in England at 7s. 6d. each.

Gold and silver and jewels, both from their colour and deurter's their intrinsic value, have always been the favourite material of Oriental ornament. Even the hill tribes of Central India and the Himalayas have developed some skill in hammering silver into brooches and torquea Imitation of knotted grass and leaves seems to be the origin of the simplest and most comm:a form of golu ornament, the early specimena consisting of thick gold wire twisted into bracelets, \& \& c. A second archaic type of decoration is to be found in the chopped gold jewellery of Guzerat. That is made of gold lumps, tither solid or hollow, in the form of cubes and octahedrons, strung together on red silk. Of artistic jeweller's work, the best known examples come from Trichinopoli, Cuttack, Delli, and Kashmir.: Throughout southern India the favourite design is that known as swomi, in which the ornamentation consists of figures of Hindu gods in high relief, either beaten out from the surface or fixed upon it by solder of screns. The bammered repoussé silver work of Cutch (Kachhch), though now entirely naturalized, is satd to be of Dutch origin. Similar work is done at Lucknow and Dacca. The goldsmith's art contributes largely to embroidery, as has already been mentroned. Guld and silver thread is made by being drawn out under the application of beat. The operation is performed with such vicety that one rupee's worth of silver will malee a thread nearly 800 yards long. Before being used in the loom this metallic thread is generally twisted with silk.

Preciuus stones are lavishly used by Indian jewellers, who care less for their purity and commercial value than for the geueral effect producal by a blaze of splendour. "But nothing can excced the skill, artistic feeling, and effectiveness with which gems are used in Indra both in jewellery proper and in the jewelled decoration of arms and jade" (Birdwood).

Iron Work.- The chicl duty of the village smith is, of 1 ms course, to make the agricultural implements for his fellow. wor. villagers. But in many towns in India, often the site: of former capitals, iron werk, especially in the manufacture of arms, still retains a high degree of artistic excelleace.

Cutlery. - The blade of the Indian taluetr or sword is Cutlery sometimes marvelluusly waterch, and engraved with date and tre and name, sometimes seulptured in half-relicf with hunting ${ }^{\text {aturs }}$ scencs, sometimes shaped along the edge with teeth or notclies like a saw. Matchlocks and other tirearus are made at several towns in the Punjab and Sind, at Monghyr in Bengal, and at Vizianagaram in Madras. Chain armour, fine as lacework and said to be of Persian origin, is still mannfactured iu liashmir, Rajputana, add Cutch (Kachhch). Ahmadnagar in Bombay is famous for its spear-heads. Both firearms and swords are often damaaceacd in gold, and covered with precions stones. In fact, tho characteristic of ludian arms, as opposed to those of other Oriental conatries, is the elaborate goldwork hammered or cut upon them aud the unsparing use of geas. Damascening on iron and ateel, k nown as huft, is chiefly practised in Kiashmir, and at Guzerat and Siatkot in the Punjab. Jomascening in silver, which is chiefly duac upon bronze,
is innown as bidarz work, from the rumed capital of Bidar :In the nizám's dominious, where it is still chielly carried on.

Brass and Copper.-'lhe village brazier, like the village smith, manufactures the necessary vessels for domestic use. Chief among these vessels is tho lota, or globular bowl, miversally used in ceremonial ablutions. The form of the hta, and even the style of ornamentation, has been banded d Jwo unaltered from the carliest times. Benares enjoys the first reputation in India for work in brass and copper. In the south, Madura and Tanjore have a similar fame; and in the west, Ahmadábád, Poona, and Nasik. At Bombay itself large quantities of imported copper are rrought up by native braziers. The temple bells of India are well known for the depth and purity of their note. In many localities the braziers have a special repute cither for a peculiar alloy or for a particular process of ornamentation. Silver is sometimes mixed with the brass, and in rarer cases gold. The brass or rather bell-metal ware of Murshidábád, known as khagrai, has more than a local reputation, owing to the large admisture of silver in it.

Pottery is made in almost every village, from the small ressels required in cooking to the large jars used for storing grain, and occasionally as floats to lerry persons across a swollen stream. But, though the industry is universal, it has hardly anywhere risen to the dignity of a fine art. Sind is the unly province of India where the pettcr's craft is pursued with any regard to artistic considerations; and there the industry is said to have been introduced by the Mahometans. Sind pottery is of two kinds, encaustic tiles and vessels for domestic use. In both cases the colours are the same,-turquoise blue, copper green, dark purple, or golden brown, under an cxquisitely transparent glaze. The usual ornament is a conventional flower pattern, pricked in from paper and dusted along the pricking. The tiles, which are evidently of the same origin as those of Persia aod Turkey, are chiefly to be found in the rumed mosques and tombs of the old Musalman dynasties; Gut the ondustry still eursives at the little towns of Saidpur and Bubri Artistic pottery is made at Hyderabad, Karach, Tatta, and Hala, and also across the border, at Lahore and Múltion in the I'unjab. The Madura pottery also deserves mention from the elegance of its form and the richness of its colour. Tho North-Western Provinces hisve, among other specialties, an elegant black waro with designs in white metal worked into its surface.
vale anm aighest
rarvag ow memonals of Buddbism. Borrowing an impulse from Greek exemplars, the Buddbist sculptors at the commence--nent of our era freed themselves from the Oriental tradition which demands only the gigantic and the grotesque, and mitated nature with some success. But with the revival of Brabnanism Hiodu sculpture agaio degenerated; and so far as the art can still be said to exist, it possesses a rehgous rather than an æsthetic intcrest. In the cities of Guzerat, and in other parts of India where the houses are built of wood, their fronts are crnamented with elaborate carving. Wood-carving, an important industry in Western India, is said, perbaps erroneously, to owe its origin to Jutch patronage, though the models of the carvers are cvidently taisen from their own temples. Tha favourite materials are black wood, sandal-mood, and jack-woed. The supply of sandal-wood comes from the forests of the Western Gháts in Kánara aod Mysore, but some of the fiaest carving is done at Surat and Abmadabad. Akin to eandal-wood carving is the inlaying of the miscellaneous articles known as "Bombay boxes." This art is known to be of modern date, having been introduced from Shiraz in Persia tuwards the close of the last century. It consists of sinding together in ceometrical batiterns stripsof tin-mim,
sandal-mood, ebony, ivory, and stag's hurn. It Tizaganatam, in Madras, similar articles are made of ivory and stag's horn, with scroll-work edged in to suit European taste. At Mainpuri, io the North-Western Provinces, wouden bexes are inlaid with brass wire. The chief seats of irory-carving are Amritsar, Benares, Murshidabad, and Travancore, where any article can be obtained to order, from a full-sized palanquin to a lady's comb. Human figures in clay, dressed to the life, ate principally made at Krishnagar in Bengal, Lucknow, and Poonis.

It remains to glve some account of those manufactures proper, Cotto conducted by stean machnery and ander European supervision, mills. which have rapiolly spung mpin eertain parts of Indin during tho past few years. These comprise cotton, jute, silk, and beer.

The first mill for the manufacture of cotton yarn and cloth by machmery worked by steam was opened at Bombay in 1854. The enterprise grew with scarcely a check, until by 1879 tho total number of mills throughout India was 58 , with about $1 \frac{1}{3}$ million spindles and 12,000 looms, giving employment to upwards of 40,000 persoas-men, women, and chijdren. Of thas total, 30 mills, or more than half, were in the island of Borabay, which now possesses a busymanufacturing quarter with tall ehimney stalks, recalling tho abpect of a Labcashive town; 14 were in the cotion-growing distncts of Guzerat, also in the Bombay presidency; 6 were in Calcutta and its neighbourhood; 3 at Madras; 2 ot Cawapar in the North. Westen J'rorinces; 1 at Nagpar in the Central Prorinces; 1 at ladore, the capital of Ilolkar's dominions and 1 at Hyderabad, the resideace of the nizan. Like the jute mills of Bengal, the cotion factories of Bombay have suffered of late years from the general depression of trade.

The ladian mills are, alroost without exception, the property of joint-stock companies, the shares in which are largely taken up by natives. The overlookers are skilled artisans bre ght from England, but natires are now beginaing to qualify theraselves for the post. The operatives are all paid by the piece; and, as compared with other Indian industrics, the rato of wages is high. In 1877, at Bombay, boys earned from 14 s . to $f!$ a mouth ; women, Irom 16 s . to $£ 1$; and jobbers, from $£ 3$ to $£ 6,10$ s. Several members of one family often work together, earning among them as much as $£ 10$ a month. The hours of work are from six in tho moraing to six at night, with an hour allowed in the middle of the day for meals and smoking. A Factory Act, to regulate the hours of work for children and young persons and to enforco the tencing of dargerous machinery, \&ic, is now (1881) under the consideration of the legislative council.

Besides supplyiug the local demand, these mills are gradually beginaing to find a market in foreign conntries, especially for their twist and yarn. Between 1872-73 and 1878-79 the export of twist from Bombay. increased from $1,802,863 \mathrm{lb}$, valaed at $£ 97,162$, to $21,271,059$ tb, valued at $£ 883,665$, or an increase of nearly twelvefold in quantity and nincfold in value. Within tho samo period of eight years tho export of grey piece-gocils increased from $4,750,834$ jards, valued at 275,495 , to $14,093,336$ yards, valued at $£ 108,380$. The twist and yarn are mostly sent to Clina and Japan, the piece-goods to the coast of Arabit and Africt The figures for the coasting trade also show a corresponding growth, the total value of twist carrjed from port to port in 1878-79 having been éSO4,9.96 and of piecc-goods (incinding hand-loom goods) $\pm 654,553$. Ni O'Conor, who has devoted much attention to the matter, thus summarizes his opinion regarding the future of the ladian cotton mills in his Review of Indian Trade for 1877-78:-" Whether wo can hope to secure an export trado or not, it is certaia that there is a sufficient outlet in ladia itself for the manafactures of twice fifty mills; and, if the industry is only judiciously managred, the toanufactares of our mills must inevitably, in course of time, supersede Maruchester goods of the coarser kinds in the Indian market".

The jute mills of Reagal havospung up to rival Dundee, just as Jnte Bombay competes with Manchester; but ia the former case the capi- mille tal is mostly supplied by Europeans. They cluster thickly round Calentta, extending across the river into llooghly district; and ono has been planted at Sirajgrani, far away up the Brahmaputra in tho middle of tho jute-producing country. In 1879 tho total number of juto mills in India was 21 , of which all but two were in Bengal, and the number is anmually increasing. The weaving of jute into gunay cloth is an indigenous indastry throughout northern Bengal, chiefly in tho district of lumiah and Dindipur. Tho gunay is made by the seni-aboriginal tribo of Koch, Rajhansi on Pali, both for clothiag and for bage; and, as with other indusfries practised by non-Mindu races, the weavers are tho women of the family, and not a distinct caste. In 1877-78 just threo million bags Wero imported into Calcutta from Pabna district, being the product of too Sirajgenj milla. The total exports by sea and land of both power-loom and hand-malo larg nambered 80 millions, of which not moro than 6 millions wero hand-made. The Fast Iadian Lail.
way took 20 millions for the era:n marts of Behar and the North Western Provinces (chiefly Patna and Cawnpur) ; and 1 million went as far as Ludhiona in the Punjab. The tot:] exports lyy sea exceeded 57 millions, of which 32 millions represent interportal, and 25 millions forcign tralle. Bombay took as many as 16 millions, and British Burmah 12 millions. In fact, Calcutta supplies bagging for the whole of India. Tho foreign trade may be given in greater detail, for gunny weaving is perhaps the single Indian industry that aims at a foreicn market. The total export of jute manufactures (both bags and elotb) in 1872-73 was valued at $£ 200,669$. By 1878-79 the value harl risen to $£ 1,098,434$, or an increase of fivefold in six years. Within the same period tho exports to the United Kingdom alone increased from 21, 20n bags, valued at $£ 585$, to 7 million bacs, valued at $£ 184,400$. The other countries which take Indian gunny bags are tife following, with the values for $1877-78$:-Australia, $£ 293,186$; Straits Seftlements, £161,772; United States. £79,795; Egypt, £76,726; Chiua, £32,121.

Brewing has recently become established as a prosperous business at the large hill stations on the Himalayas. There are now aknut twelve breweries in India, ancluding five in the Punjab and North. Western Provinees, at Mari (Murree), Simla, Kasauli, Masuri (Mussoorie), and Naini Tál, and two in the Madras presidency, at Utakamand and Bellary. The total quantity of beer brewed was returned at 2,162,888 gallons in 1877 and $1,522,760$ gallons in 1878, the diminution being due to the termination of a contract between the Commissariat Denartment and one of the Masuri breweries. The total quantity of beer imported in $1878-79$ was 2 million gallons by Government and 1 million gallons on private account, so that the Indian breweries now satisfy just one-third of the entire demancl. At Simlit imported beer sells at over 18s. ber dozen, while that from the local brewery can be obtained for 11 s . per dozen. The hops are entirely imported, for the experimental plantation of 100 aeres established by the raja of kashnir has not yet proved a prace. tical shecess. Ille imports of hops slow a stemly increase from 1529 ewts. in 1875-76 to 1807 ewts. in 1876-77, and 2135 cwts. in 1877-78.

The steam paper-mills established in the neighbourbood of Calcuttia and at Sombay have almost entirely destroyed the local namuacturcs of paper which once existet in many parts of tlee country. The hand-made article, which was strong thnugh coarse, and formed a Mahometan specialty, is now no longer used fir official purposes. Bosides mauffurturing monitions of war, the Government possesses a large leather factory at Cawnum, whinh turns out saddlery, sc., of excellent quality. Indeed, leather mannfactures are an important local industry in Ouih and the North. Western l'rovinces, and are conducted on such a senle as to preclude the import from Englamb, exeept in the case of artictes de luxe.

Minerals.

The Indian peainsula, with its wide area and diversified features, supplies a great storo of mineral wealth, characterized both by variety and unusual richness. In utilizing this wealth, English enterprise has met with many rebulfs. Much capital has been expended with no other result in masy eases than disappointment. But the experience has not been thrown away; and the mining julustry, now established on a sure lmsis, is rising into an important position in a country which ought gladly to weleome any employment other than the umiversal [ursuit of agriculure.

Iron.-In parity of ore, nud in antiquity of work'ng, the iron depesits of India probably rank first in the world. They are to lo found in every part of the country, irom the northera mountains of Assam and Komann to the extreme south of the Madras presidency. Wherever there are hiils, iron is found and worked to a greater or less extent. 'The inligenous methods of smelting the ore, which are cyerywhere the same, and have heen thanded down m. changed through eountless generations, yicld a metal of tho finest quality in a form well suited to mative wants. But they require an extravagant surply of charcoal; and eve with the cheapness of native labour the preduct canno: compute in price with imported iron from England. Eure pean enterprise, attracted by the rielmess of the ore ane the low rate of wages, has repeatedly tried to estallish iren works on a larges seale; but hitherte every one of these attempts has ended in failare, nliko in Madras, in the Central lrovieres, in the Rañganj coral-field, and in Kimann. At the present time iron is manufactured only
by peasant families of smelters, each working on a very small scale; and even this industry is languishing under the competition of English imports. The initial diffieulty in India is to find the three elements of iron workingvamely, the ore, the flux, and the fuel-sufficiently near to each other; the second difficulty is the choking of the furnaces from the excessive quantity of ash in the coal.

Con] has been known to exist in India since 1774 , and is Coab said to have been worked as far back as 7775 . There are now altugether fifty-eight collieries in the conntry, with an annual cut-tura of about I million tons. In India, as elsewhere, coal-mining and railway extension have gone hand in hand. Coal is comparatively worthless unless it can be brought to market by rail ; and the price of coal is the chief element in determining the expenses of railway working. The history of coal in India has, on the whole, been cne of continual progress. The first mine, at Rániganj, dates from 1820, and has been worked regularly up to the present time. In 1878 its output was 50,000 tons. For twenty years no new mine was opened; but the commencement of tle East India Railway in 1854 gave a fresh impetus to the industry, and since that date collieries have been opened at the rate of two or three every year. The largest number of additions was seven, in 1874. By 1878 the total number of collicries io connexion with the East Indian system was filty-siv. From these are supplied, not only the railway itself, but also the jute mills of Calcutta, and the river stcamers of Lower Bengal. In $1877-78$ the railway used 305,000 tons of coal from its own collieries at Karlarbári and Srirámpur, and sent exactly the same quantity to Calentta. In that year the imports of coal into Calcuta by sea were only 80,000 tons, so that. Calcut ta now uses about 80 per cent. of Indian to 20 per cent. of foreign coal. Bembay, on the other hand, and also Dadras are entirely supplied with coal Ironı England. The collieries in the Central Provinees, which are the only others worked on a large seale, are limited to the supply of the Great Indian Peniasula Railway. They are two in number, - (I) the Warora colliery, under the management of the Palile Works Department, and (2) the Mohpanf collicry, which las been leased to the Naruadí Coal Company. The total area of the Raniganj coal-field has been estimated at 500 square miles. In this " black country" of India, which is dotted with tall ehimney-stalks, six European companies aro at work, besides many native firms. At first coal was raised from surface quarries, but regnlar minmrg is now carried on, neeording to the system of "piliar aml stall." The seams are entirely free from gas, so that the precantions usnal in lingland arainst explosion are fomm unnecessary. The miners are all drawn from the ahoriginal low-castes, chicfly Santals and Bauris, who are noted for their enduranee and doeility. Baurís work with the pick, but Santails will consent to use no other tool than the crowbar. Wages are high, and the men look well-fed, though they waste theit surplus carnings in drink. Tha great drawback of Indian conl is its large proportion of ash, varying from 14 to 20 per cent., as against 3 to 6 per cent. in English conl. 'Ihis places it at a great disadvanfage alike for iron-smelting and locomotive purpeses. But it has been proved that, with effeient firegrates and proper manipulation, 135 b of Warora coal will do the work of 100 lb of English coal.

Salt, an article of supremo necessity to the Indiun Salt pensint who eats no meat, is derived from three main sources, exclusive of importation from Europe:-(I) by congoration from son-water aloug the entire double line of seaboard from loombay to Orissa, but especially in Guzora: and on the Coromnadel eonst ; (2) by evaporation from inland lakes, of whieh the Simbliar Lako in Pajputína affords the elicic camulo; (3) by quarrying solid lills of salt in
the north-east of the Punjab. The last is the unly case in shich salt can be said to exist as a mineral. It occurs in solid cliffs, which for extent and purity are stated to have no rival elsewhere in the world. The chief of these has
ricts of Jhelume (Jhilam) ond Shibpur, from the bant of the Jhelum river to Kakáágh in Bannu district. Similar deposits are found beyond the Indus in Kohát district, where the salt is of two kinds, red and green, and in the hill state of Mandi bordering on Kangrád district. The salt is found in the red marls and sandstones of the Devunian group. In some cases it can be obtained from open quarries; but more gencrally it is approached by regular mining by pick and blasting, through wide galleries. The principal mine is at Keora in Jhelum district, now called after Lord Mayo. The total annual out-turn in thee Punjab is returned at about 50,000 tons, yielding a revenuc
 actual figures of revenue were-(1) from the Salt Range, $\mathfrak{£} 426,000$, (2) from Kohat, .. $£ 8000$, (3) from Mandi, $£ 6000$.

In southern India salt made by evaporation is almost universally consumed, Lowar Bengal, especially eastern Bengal, uses salt imported from Cheshire at low rates of freight, and paying the exeise duty at Calcutta or ther port of entry. In Orissa aud south-western Dengal both imported salt and salt made by solar evaporation are consumed, the lattor being alune considered pure for religious purpeses or for the priests

Saltpetre.-At one time India had almost a monopoly of the supply of saltectre upon whieh .Europe depended for its gunpowder. In combination with other saline substanees it occurs as a white efflorescence upan the surface of the soil in many parts of the country, esprecially in the upper valley of the Ganges. Its preparation leayes common salt as one of the residuary products: aud consequently fiscal reasons have tended to limit the manufacture to the mast remunerative region, which is found in Nurth Behar. The manufacture is simple, and entirely in the hands of a special caste of natives, called Nuniyts, who are conspicuous for their capacity of enduriug liard werk. As is the case with most Indian industries, they work under a system of moncy advances from middle-men, who are themsolves sub-contractors under the large houses of business. In former times the East India Company engaged in the manufacture on its own acevont; when it abaydonel all private trade, its works were taken over by European firms, but theso have in their turn retired from the business, which is now in a state of deeline, partly owing to the general fall in price, and partly to the restrictions imposed by the salt preventive department. The exports of saltpetre from Calculta are fairly constant, averaging about 450,000 ewts. a year, of which one-balf gocs to the United Kingdom. More than two-thirds of the total conses from Belar, chiefly from the districts of Tirhut, Saran, and Champaran, though Patna is the railway station for despateb to Calcutta. - Cawnpur, Ghizzipur, Allahábad, and Beuares, in the North-Western Provinces, send small quantities, while a little comes from the Punjab.

Gold exists in many parts and probably in considerablo quantities. Herodotus affirms that the Indians were the only nation who paid their tribute to Darius in gold ; and there is some reason for believing that the "Ophir" of King Solomon is to be identified with the Malabar coast. Nearly every hill stream is washed for gold, whether in the exterme south, in the central platean, or on the nerth-east and north. west frontiers. It is true that gold-washing is everymhere a miscrable business, allording the barest livelihood; but yet the total amount of gold obtained in this way cannot be insignificant. : In recent years altention bas been
prominently drawn to the possibility of estracting gold from the quartz formation of southern Iudia, which bears many points of rescmblance to the auriferous quartz recfs of Australia. The principal localities are in the Wainad (Wynaad) subdivision of the Nilgiri district and in Lolar district-of Mysure. Gold-washing bas always been practised there; and the remains of old workiogs show that at some unknown period operations have been conducted 01 a large scale.
From about 1875 to 1880 iudividual pioncers wero prospecting in tbat regiol. Crushing the quartz by rude native methods, they proved that it contained a larger pupportion of gold than is koown to yield a profit in Australia. These experiments on the southern ends of sis reefs yielded an average of 7 duts. per ton of quartz, rising in oue ease to 11 dwts. Tho best assay of the geld showed a fineuess of stightly over 20 carats. 1a 1879 Government sum. niozed a practicil mining engineer from Australia, whose report was eminenily hopeful. He described the quartz reefs as of great extent and thickness and lighly auriferons. One reef in Kolír, laid bare 100 feet longitudinally, gave an average of 1 oz. of gold per ton. In order to attract capital, Governmeat proposed to grant mining lenses at a dead rent of Rs. 5 (10s.) p aere, subject to no royalty or further tax. Up to 1850 the enterprise lad seareely rassed beyond the stage of laboratory experimeats. If the results of actual working with elaborate machinery realize the promiso held out by competent investigators, gold-miniug will be estabished a3 an injportant industry in sontheru ladia.

Copper is known to exist in many parts of the country Copper. in considerable quantitics. The richest mines are in the lower ranges of the Himalayas, from Darjiling west ward to Kumiun. The ore occurs in the form of copper pyrites, often accompanied by mundie, not in true lodics, but disseminated through the slate warl schis ${ }^{\circ}$ The miners are almost alway's Nepalis, and the remoteness of the situation has deterred European capital. The extent of abandoned workings proves that these mines have been known and worked for many years. The best scams show a proportion of copper slightly above the average of Cornish pre, but the ordinary yield is not more than about 4 per cent. The mines resemble magnified rabbit-holes, meandering passages Leing excavatcd throngh the rock with little system. The tools used are an iron hammer and chiscl, and sometimes a small piek. After extraction, the ore is pounded, washed, and suelted on the spot. Tlie price obtained for the metal is Ris. 2.8. 0 per 3 sers, or at the rate of ahout 10 d . a pound. Copper-ore, of fair purity and extending over a considerable area, also occurs in Singblaur district of Chutíh Nágpur, where there are many deserted digginga and heaps of scoric. In 1857 a company was started to. re-open the workings at these mines; but, though large quantities of ore were produced, the cnterprise did not prove remuncrative, and ewas finally abandoned in 189t. A similar attenpt to work the copper found in Nellore district of Madras also coded in failure.

Lead occurs in thic form of sulphuret or galena along Leah the Llimalayas on the Punjab frontier, and has been worked at one place by an English company.

Cin is confined to tho Burmese poninsula. Very rict deposits, yielding about 70 per eent. of metal, occur over a largo extent of country in iergui and Tavoy districts of the Tcnasserim region. The ore is mashed and snelted, usually by Clinese, in a very rough and unscientific way. P.ccent experiments made by a European firm scem to show that the deposits, though rich and cextensive, aro not sufficiently deep 10 repay nore claborate processes.

Autimony, in the form of surmá, which is largely used by the natives as a cosmetic, is chicfly derived from the modsa hill states of the Iunjab. It is also found in Mysore and Burmalh. The minctals of Rajputana, which hare not yet been thoroughly aseertaincd, include an ore of cobalt used. for colouring enamel.

Petroleum is produced chichy in Independent Burm but it bas also been foud on Lritists se:ritnry in Pegu

Mioeral

Asogm, and in the Punjab. Near the village of Ye-nangyaung in Upper Burmah, on the basks of the Irawadi, itere are upwards of one bundred pits or wells with a deptle of ribout 250 feet, from which petroleum bubbles up in in. exhaustible quantities. The annual yield is estimated at 11,000 tons, of which a considerable quantity is exported. Potroleum wells are also found in the British districts of Akyab, Kyouk-hpyu, and Thayet-myo, which first attracted British eqpital with most promising results in 1877 . In Assam petrolenm occurs in the neighbourhood of the coalfelds in the eouth of Lakhimpur district, and was worked in conjunction with the eoal by a European eapitalist in 1366. In the Punjab petroleum is worked by the Public Works Deparment at two spots in Rawal Pindi district. In 1873-7t the total yield was only 2756 gallons.

Stone.-The commonest and also the most nseful stene of India is konkar, a nodular form of impore lime, which is found in alnost every riser valley, and is used universally for metalling the roads. Lime for building is derived from two sources,-(1) from burning limestone and kankar, and (2) from the little shells so abundantiy found in the marshes. Calcutta derives its ehief supply from the quarries of the Khasi hills in Assam, known as "Sylhet lime," and from the Susonia quarries in Bankura district. The Gangetic delta is destitute of stone, nor does the alluvial soil afford good materials for brick-making or pottery. But a European firm has recently established large pottery-works at Riniganj in Bardwan, which employ about five hundred hands, and carry out contracts for drainage pipes and stoneware. The centre of the peninsula and the hill country generally abound in building-stone of excellent quality, which has been used locally from time immemorial. Among the finest stones may be mentioned the pink marble of Rajputína, of which the historical buildings at Agra were constructed, the trap of the Deccan, the sandstone of the Gudáari and the Narbada, and the granite of southern India. Quarries of slate are scattered throngh the peninsula, and are sometimes worked by European capital. Mica and talc are also quarried to make oroaments. Among the hills of Orissa and Chutia Nagpur household ressels and ornameots are skilfully carved out of an indurated variety of potstonc.

Precious Stones.-Despite its legendary wealth, which is really due to the aecumulations of ages, India canoot be said to be naturally rich in precious stones. Under the Mahometan rule diamonds were a distinet source of state revenue; and Akbar is said to have received a royalty of $£ 80,000$ a year from the mines of Panna. But at the present day the search for them, if earried on anywhere in British territory, is an insignificant oecupation. The aame of Golconda has passed into literature; but that city, onee the Musalman capital of the Decean, was rather the home of diamond-eutters than the source of supply. It is believed that the far-famed diamends of Golconda actually came from the sandstone formation which extends across the south-east borders of the nizim's dominions into the Madras distriots of Ganjâm and Godívari. A few worthless stones are still found in that region. Sambalpur, on the upper channel of the Mahanadi river in the Central Prosinces, is another epot onco famous for diamonds. So late as 1818 a stone is said to have been found there weighing 81 grains and valued at $£ 500$. The river valleys of Chutiá Nagpur nre also known to have yiclded a tribute of diamonds to their Mahomotan onnqueror. At tho present day tho only place where the seareh for diamonds is pursued as a regular industry is the native state of Panna (luunah) in Buadolkhand. Tho stones are found by digging down through several strata of mravelly soil and washing the carth. liven there, however, the pusuit is understoud to bo unremunerative, and has failed to attract European
capital. About other gems little information is available. Othe: Turquoises are said to be found dear Múltán in the Pun gena jab, though far inferior to the Persian stones. Independent Burmah yields many valuable gems; and some excitement inas been caused by the discevery of sapphire mines just across the Siamese frontier. Poor pearl fisheries exist off the coast of Madura district in the extreme south, and in the Gulf of Cambay; but the great majority of Indian pearls come either from Ceylon or from the Fersian Gulf. In the year 1700 the Dntch obtained a lease of all the pearl fisheries along the Madura coast, and sublet the right of fishing to native boatmen, of whom seven hundred are said to have taken liecnces annually at the rate of 60 écus per boat. The town of Cambay in Guzerat is celebrated for its earving in carnelian, agate, and oayx. The stones come from the neighbourhocd of Ratanpur, in the state of Rajpipla. They are dug up by Bhil miners, and aubjected to a process of burning before being carved. The most valued colour for carnelians is red, but they are also found white and yellow. Lapis lazuli is found in the mountains of the north, and freely used in the decoration of temples and tombs.

Famines.

As the agriculture of India is mainly dependent upon the bounty of ature, so is it peculiarly exposed to the vicissitudes of the seasons. In any country where the population is dense and the means of communication backward, the failure of a harvest, whether produced by drought, by flood, by blight, by locusts, or by war, must always cause much distress. Whether that shall develop into famine is merely a matter of degree; depending upon a combination of circumstances-the comparative extent of the failure, the density of the population, and the practicability of imports.

Drought, or an inadequate supply of rain, is undoubtedly Cause of the great canse of wide-spread famine. No individual fanine. foresight, no compensating influences, can entirely prevent these recurring periods of continuous drought with which large provinces of India are afflicted. An average rainfall, if irregularly distributed, may affect the harvest to a moderate degree, as also may flood or blight. The total failure of a monsoon may result in a general scarcity, sufficiently serere to arouse the solicitude of Government. But famine proper, or wide-spread starration, is caused unly by a succession of years of drought. The cultivators of India are not dependent upona single harvest or upon the erops of one year. In the event of a partial failure, they can draw for their food supply either upon their own grain pits or upon the stures of the village merehants. The first sufferers, and those who suffer most in the end, are the class who live by daily wages. But small is the number that can hold out, either in eapital or eredit, against a second year of insufficient rainfall; and not impossibly a third season may prove adverse. All the great famines in India of which rie have record have been caused by drought, and ustally by drought repeated over a series of ycars.

This being so, it beeomes necessary to inquire into the Water water supply, which varies extremely in different parts of surply the country. It can be derived only from three sources(1) Iocal rainfall, (2) natural inundation, and (3) artificial irrigation from rivers, canals, tanks, or wells. Any of these sourecs may exist separately or bogether. In only a few parts of India can the rainfall be entiroly trusted, as both sufficient in its ameunt and regular in its distribution. Thoso favoured tracts inelude the wholo strip of coast beneath the Western Gháts, from Bombay to Cape Comorin; and the greater part of the provinces of Assam and Burmah, torether with the deltaic distriets at the head of tho Bay
of Bengal There the annual rainfall raraly, if ever, falls below 100 inches; artificial irrigation and famine are alike unknown. The whole of the rest of the peninsula may be described as liable, mere or less, to drought. In Orissa, the scene of one of the most severe famines of recent times, the average rainfull exceeds 60 inches a year; in Sind, which bas been exceptionally free from famine under British rule, the average falls to less than 10 inches. The local rainfall, therefore, is not the only element to be considered. Broadly speaking, artificial irrigation has protected, or is now in course of protecting, certain fortunate regions, such as the eastward deltas of the Madras rivers and the upper valley of the Ganges. The rest, and by far the greater portion, of the country is still exposed to famine. Nor is it easy to sce any remedy. Meteorological science may teach us to foresce what is coming; but it may bo doubted whether it is in our power to do more than alleviate. Lower Bengal and Oudh are watered by natural inundation as much as by the local rainfall; Sind derives its supplies mainly from canals filled by the floods of the Indus; the Punjab and tho North-West Provinces are dependent largely upon wells; the Deccan with the cutire south is the land of tanks and resersoirs. But in all these cases, when the rainfall has failed over a series of years, the artificial supply must likewise fail after no long interval, so that irrigation becomes a snare rather than a benefit. Water works on a scale adequate to guarantee the whole of India from drought are nut only above the possibilities of finance; they are also beyond the reach of enginecring skill.

Taking the example of the famine of $187 \mathrm{C}-78$, the most wide spread and the most prolonged that India bas yet known, we may say that the drought commenced in Mysore by the failure of the monsoon in 1875, and that all fear of distress in the North-West Provinces did not pass away uotil 1879: But it will alwaya be known in history as the great famine in the south. Over the entire Deccan, from Poona to Bangalore, the south-west monsoon failed to bring its usual rainfall in the summer of 1876. In the autumn of the same gear the north-east monsonn proved deficient in the south-eastern districts of the Madras presidency. The main food crop, therefore, entirely perished throughout no immense tract of country; and, as the harvest of the previous year had also been short, prices mapidly rose to famine ratcs. In November 1876 it was firat officially recognized that starvation was abroad in the land, and that Goveroment must adopt measures to keep the people alive. From that time until the middle of 1878 , a period of more than eighteen months, the campaign against famine was strenuously conducted, with various ricissitudes. The summer monsoon of 1877 proved a failure; somo relief was bronght in October of that year by the autumn monsoun; but all anxiety was not removed until the arrival of a normal rainfall in June 1878. Meanwhile the wave of drought had reached northern India, where it found the atocks of grain much depleted to mect the famine demand in the aouth. Bengal, Assam, and Burmab were the only provinces that escaped scot free in that disastrons year. The North-West Provinces, the Punjab, Rajputána, and the Central Provinces alike suffercd from drought through all the summer of 1877, and from its consequences well into the following year. When once famine gets abend of relief operations, all is over. Tho fiood of distress bursts through the embankment. Starvation and all the attendant train of famine diseases sweep, away their thousands. The total expenditure of Governmient upon famine relief on this oceasion may be estimated nt about 8 millions sterling, not including the indirect loss of revenue nor the amount debited against the state of Mysore. For this large sum of money there is but little to show in
the way of works constructed. 'Whe largest nuuber of persons in receipt of relief at one time in Madras was $2,55 \cdot, 900$ in September 1877 ; of these only 634,581 were nominally employed on works, while the rest were gratuitously fed. From cholera alone the deaths were returned at 357,430 for Madras, 58,648 for Mysore, and 57,252 for Bonbay. Dr Cornish, the sanitary commissionet of Madras, well illustrated the effeets of the famine by contrasting the returns of births and leaths over a series of years. In 187C, when famine witu its companion cholera was already beginning to be felt, the births registered in Madras numbered 632,113 and the deaths 680,381 . In 1877, the gear of famine, the births fell to 477,447 , white the deaths rose to $1,556,312$. In 1878 the results of the famine showed themselves by a still further reduction ol the births to 348,346 , and by the still bigh number of 810,921 deaths. In 1879 the births recovered to 476,307 , still considerably below the avcrage, and the deaths diminished to 548,158 . These figures are, of course, not accurate; but they servo to show how long the results of famine are to be traced in the vital statistics of a people. ${ }^{1}$
The first great famine of which we have any trustwerthy re- Preriors cord is that which devastated the lower valley of the Ganges in famines. 1769-70. One-third of the population is credibly reperted to have perished. The frevious season had beco bad; and, as not ancommonly bappens, the break-up of the drought was accompanied by disastrous Hoods. Beyond the importation into Calcutta and Murshidibid of a few thousand maunds of rico from the fortunate districts of Bákarganj and Chittagong, it does not appear that any public measures for relief were taken or proposed. TV next great famine was that which aflicted the Carnatic from 1780 to 1783 , and has been immortalized by the genius of Burke. It was primarity caused by the ravages of Hyder Ali's army. A public subscription was organized by tho Madras Government, from which sprang the "Monegar Choultry," or permanent institution for the relief of the native poor. In 1783-84 Hindustan Proper suffered from a prolonged drought, which stopped short at the frouticr of British territory. Warren Hastiogs, then governor-gencral, advocated the construction of enormous granaries, to be opencd only" in times of necessity. One of these granaries or golis stands to the present day io the city of Patná, but it was never used uutil the scarcity of 1874 . In 1790-92 Madras was again the scene of a two years' famine, which is memorable as being the first occasion on which the starving people were employed by Goverament on relief works. No useful lesson of adminastrative experience is to to learaed from the long list of famines and scarcities which afllicted the several provinces of India at recurring periods during the first half of the present century. In 1860-61 a serious attempt was made to alleviate an exceptional distress in the North-Western Proviaces. About half a million persons are estimated to have been relieved at an expenditure by Goverament of about three quarters of a million sterling. Again, ia 1865-66, which will crer be knewn as the year of the Orissa fomine, the Government nttempted to organize relicf works and distribute charitablo funds. But on neither of these oecasions can it he said that the efforts were successful. In Orissa, especially, thic admitted loss of one-fourth of

[^156]The population proves the danger to which an isolated province is exposed. The people of Orissa died because they had ne surplus stocks of grain of their own, and because impertation was absolutely impracticable. Passing over the prolenged drought of 1868-70 in the North. West Provinces and Rijputana, we come to the Behar scarcity of 1873-74, which first attracted the interest of England. Warned by the failure of the rains, and watched and stimulated by the excited sympathy of the public at home, the Goreronent carried out in time a comprebensive scheme of relief. By the expenditure of $6 \frac{1}{2}$ millions sterling, and the importation of one million tons of rice, all risk even of the loss of life was prevented. The comparatively small area of distress, and the facilities of communication by rail and river, aloue permitted the accomplishment of the feat, which remaios unparalleled in the annals of tamioe. Duriog the recent famine in southern India the authorities warked with no less saergy, and charitable bounty was far more conspicnous, yet the conditions of the ease prede tined failure. The stricken tract was many times larger than Behar. No early warning was given. The rainfall failed, not ence, but fer three successive seasons, and, above 311, adequate importation and distibution of grain were physical inpossibilities. The people were dying while the grain that could have kept them alive was ratting on the beach of Madras or on the railway sidinys of Upper India. What admionstrative enterprise can aecomplish where the cireumstances are within the compass of human control may be learued from the case of Bombay. In that presideney the famine affected about 34,000 square miles of country, with a pepulation of about $5,000,000$ souls. The highest number of persons in receipt of relief at one time was 529,000 in Junc 1877, of whom the.great majority were emplayed on remunerative works. The importation of grain was left entirely free; and withia twelve moaths 268,000 toas were brought by rail and 166,000 tons by sea ioto the distressed districts. The total gross cost to Government was estimated at $1 \frac{1}{2}$ millions, of which about 1 million will be returned.

Administration.

The supreme authority over all British India, both fer executive and leg:slative purposes, is vested by a series of Acts of Parliament ${ }^{1}$ in the viceroy or gevernor-general-in-council, sulyect to the ultimate sanction of the secretary

Ereca- of state in England. Every executive order and every legislative statute runs in the aame of the "Governor General-in-Council"; ${ }^{2}$ but in certain exceptional classes of cases ${ }^{3}$ a power is reserved to the viceroy to act independently of his conncil. This council is twofold. First, there is the ordinary or executive council, ${ }^{4}$ usually composed of about six official members besides the viceroy, which may be compared with the cabinct of a constitutional country. It meets regularly at short intervals, diseusses and decides upon questions of foreign policy and domestic administratien, and preparcs measures for the legislative council. Its raembers divide-among themselves the chicf departments of state, such as those of forcign alfairs, finance, war, public works, \&c. ; while the viceroy contines in his own person the duties beth of ceastitutienal sovercign and prime miniscenstitnted by the same members as the preceding, with the addition of the governor of the province in which it may be held, und official delegates from Mardras and Bomtay, together with ecrtain nominated members representing the nen-efficial native and European commnnitics. The meetings of the legislative souncil are held when and

[^157]es required. They are open to the public; and a further guarantee for publicity is insured by the provisa that draft bills must be published a certain number of times in the Gazette. As a matter of practice, these draft bills have usually been first subjected to the criticism of the several provincial governments. In regard to the supreme judicial authority there is no such uniform system. The presidenciea of Madras and Bonibay, and also two of the three great provinces which have been created out of the old presidency of Bengal, and are now known as the lieutenant-governorships of Bengal and the North-Western Provinces, have each a high court, ${ }^{6}$ supreme both in civil and crimir business, with an ultimate appeal to the judicial commistea of the privy ceuncil in England. Of the subordinate provinces, the Punjab has a chief court, with three judges the Central Provinces, Oudb, Mysore, and Berar have each a judicial commissioner, who sits alone; while in Assam and British Burmah the chief commissioner, or supreme executive officer, is also the highest jndicial authority.

The law administered in the Indian courts consists mainly of (1) the enactments of the Indian legislative councils above described and of the bodies which preceded them, ($\underset{\sim}{-}$) statutes of the British parliament which apply to Indis, (3) the Hiadu and Mahometan laws on domestic inheritance or other cases affecting the Hindus and Mahometans, and (4) the customary law affecting particular castes and races. Much has been done towards consolidating individual sections of the Indian law; and in the Indian penal code, together with the codes of civil and criminal procedure, we have memorable examples of such efforts.

But, though the governor-general-in-conncil is theoreti- Proviscally supreme over every part of India alike, ${ }^{7}$ his actual authority is not everywhere.exercised in the same direct manner. For ordinary purposes of administration British India is partitioned into provinces, each with a government of its own; and certain of the native states are attached to those provinces with which they are most nearly connected geographically. Theso provinces, again, enjoy various degrecs of independence, in accordance with the course of their historical developmeut. The two sister presidencies of Madras and Bombay still retain many marks of their original cquality with Bengal. They each havo an army and a civil service of their own. Thes are each administercd by a governor appointed direct from England, with an executive and a legislative council, whose functions are analogons to those of the councils of the gevernorgeneral. ${ }^{8}$ They thus posscss a domestic legislature; and in administrative matters, slso, the interference of the viceroy is a somewhat remote contingency. Of the other proviuces, Bengal, or mither Lorer Bengal, occupies a peculiar position. Like the North-Western Frovinces and tho Punjab, it is administercd by a single official, with the stylo of lieutenant-governer, who is controlled by no executivo council; but, unlike those two prorinces, Bengal has a legislative council, so far presersing a sign of its early preeminence. The remaining provinces, whether muld by a licutenant-governor or by a chief commissioner, may be regarded from an historical point of view as fragments of the or: zinal Bengal presidency, which as thus defined would be ce-cxtensive with all British Iudia that is not appropriated cither to Madras or to Bombay. The lieutcnant-governors and most of the chicf commissioners are chosen from the covenanted civil service. In executive matlers thoy are tho practical rulers; but, excepting the lieutenaut-governor of lengal, they lave no legislative authority. To com-

[^158]plete the total area of territory under British administration, it is necessary to add ecrtain quasi-provinces, under the immediate control of the viceroy. These consist of Ajmir (Ajmere), transfcrred from Fajputána; Berar, or the districts assigned by the nizam of IIyderabed; the state of Mysoro, to be restored in 1881 upon terms to its native raja; snd the tiny territory of Coorg, in the extreme south.

Another differenes of adruinistration, though now of less importance than in former times, derives its name from the old regulations, or uniform rules of law and practice which preceded the present system of acts of the legislature. These regulations, originally intended to be universal in their application, have been from time to time withdrawn so far as regards certain tracts of country which from their backward state of civilization or other causes seemed to require exceptional treatment. In non-regulation territory, broadly speaking, a larger measure of discretion is allowed to the officials, both in the collection of revenue and in the administration of civil justice; strict rules of procedure yield to the neccssities of the case, and the judicial and executive departments are to a great extent combined in the samo hadds. Closely connected with this indulgence in favour of the personal element in administration, a wider field is also permitted for the selection of the administrative staff, which is not confined to the covenanted civil service, but includes military officers on the staff and also uncovenanted civilinas. The title of the highest authority in a non-regulation district is not that of collector-magistrate, but deputy commissioner; and the supreme authority in a non-regulation province is usually styled, not lieutenantgovernor, but chief commissioner. The Central Provinces and British Burmah are examples of non-rogulation provinces; bat non-reguletion districts are to be found also in Bengal and the North-Western Provinces, where their existence can always bo traced by the office of deputy commissioner

Alike in regulation and in non-regulation territory the noit of administration is the district,-a word of very definite meaning in official phraseolagy. The district officer, whether-known as collector-magistrate or as deputy commissioner, is the sole responsible head of his jurisdiction

Upon his eaergy and character rests ultimately the efficiency of flan Iadian Goverument. Not ouly are his own special duties 60 nomerous and so vast as to bo bewildering to the outsider, but tho work of his subordiantes, Europeau and native, largely depends apon the stimulus of his personal example. His position has been compared to that of the Fronch preffet; but $6 u c h$ a comparison is unjust in many ways to tho Indian distriet offiecr: he is not a creature of the Home Ofies, who takes his colour from his ehice and represents only officialism, but na active worker in every department of popular well-being, with a large measure of individual initistive. As the very name of collector-magistrate inplice, bis main fuactions are twoluld. He is a fiscal officer, charged with the eollection of the reverine from land aod otler 60 urees; aud he is a civil and criminal judge of first instanco. But this explanation of his titla by no means exhnusts his multifarious dutics. Ho does in his local ephere all that the home secretary is cupposed to do in ling. land, and a great denl more ; for he is the represeatative of a paternal and not of a coustitutional government.' Police, jeils, education, municipalitics, roads, sanitation, dispensaries, are all to him matters of daily enncern; wlile, in addition, ho is expected to mako himself acquainted with every phase of the sociallife of tho natives and with each natural aspect of tho country. Desides being a lawser, an accauntant, and u clerk, he ought also to possess no mean knowledge of agriculture, political ceonorny, and engincering.

Districts
The total number of districts in British India is two and sub- hundred and thirty-eight. They vary greatly in size and in districts. number of inhabitants. . The average area is 3778 square miles, raugiug from an average of 6612 square miles in Madras to an average of 1990 squaro miles in Oudh. The aterage population is 802,927 , similarly ranging from an average of $1,508,219$ in Madras to an average of 161,507 in Burmah. Tho Madras districts aro thus
bot's tio largest and tue most populous. In every province but Madras, the districts are grouped into larger areas, known as divisions, each under the charge of a commissioncr. But these divisions are not properly units of administration, as the distriets aro. They are aggregates of units, formed only for convenience of supervision, so that an intermediate authority may exercise the universal watchfulness which would be impossible for a distant licuteuant-governor. The districts are again partitioned vut into lesser tracts, which ere strictly units of administration, though subordinate ones. The system of partitioning, aud also the nomenclature, vary in the different prorinces; but generally it may be said that the subdivision or tahsil is the ultimate unit of administration. The double name indicates the twofold principle of separation: the subdivision is properly the charge of an assistant magistrate or executive oficer, the tahsil is the charge of a deputy-collector or fiscal officer; and theso two offees may or may not be in the same hands. . Broodly spcaking, the subdivisioth is charaeteristic of Bengal, where revenus duties are in the background; and. the tansil of Madras, where the land settlement requires attention ycar by year. There is no administrative unit below the subdivision cr tahsil. The thand, or police division, only exists for polico purposes. The pargana, or fiscal division under native rule, has now but an historical interest. : The village still remains as the agricultural unit, and preserves its independence for revenue purposes in certain parts of the country. The towaship is peculiar to Burmal.

The judicial jurisdictions coincide fc . the most part with the magisterial and fiscal boundarics. But, except in Madras, where the districts are large, a single civil and sessions judge, i.e., the supreme judicial officer under the high court, sometimes exercises jurisdiction over moro than one district. As has been already mentioned, in non-regulation territory judicial and executive functions are combined in tho eame hands.
The preceding sketch of Indian administration rould be incomplete without a refercace to tho secretariat, or central offec, which in some sense controls sad gives life to the whole. From the secretariat aro issued the orders which regulato or modify the details of administration; into the secretariat come all the multifarious reports from the local officers, to be there digested for futuro referenco. But though the secretaries may cnjoy tho advantarges of life at tho presideacy eapitals, with higher salaries and better prospects of promotion, it is recognized that the efficiency of the empiro rests ultimately upon tho bhoulders of the district officers, who bear the burden and heat of the day, with few opportunities of wioning fame or reward.

Land Scttement.-As the land furnishes the main source cana of Indian revenuo, so the assessment of the land tax is tho setto main work of Indian administration. No tcelinical term ment, is more familiar to Anglo-Indians, and nono more strange to the English public, than that of land ettlement. No subject has given rise to more voluminous controversy. It will be onough in this place to explain the gencral principles upon which tho system is based, and to indicato tho chasf differences of application in the scveral provinces. That the state should appropriate to itself a direct share in the produce of the soil is a fudamental maxim of Indian finance. that has been recognized throughout tho Eest from tims immenorial. The germs of rival systems can be trecca in the old military and other service tenures of Assam, and in the poll tax of Burnah, dec. Tho exclusire derelopmeat of the land system is due to two conditions, - a compara. tively high state of agriculture and an organized plan of administration, -both of which aro supplied by the primiijo village community. During the lapso of untold genera. tions, despito dumestie anarehy and furcign conquest, the Hindu village has in meny parts prescrved its simple customs, written in the imperishable tablets of tradition. The land was not beld by private owners, but by nccupicis under
the petty corperation; the revenue was not due from individuals, but from the comnunity represented by its headman. The aggregate harrest of the village fields was thrown into a common fund, and before the general distribution the head-man was bound to set aside the share of the state. No other system of taxation could be theoretically more just, or in practice less obnoxious to the people. Such is an outline of the land system as it may be found at the present day throughout large portions of India both under british and mative rule; and such we may fancy it to have been universally before the Mahometan conquest. The Ifusalmann brought with them the avarice of conquerors, and a stringent system of revenue collection. Under the Murthal empire, as organized by Akbar the Great, the share of the state was fixed at one-third of the gross produce of the snil; and a regular army of tax-collectors was permitted to intervene between the cultivator and the supreme government. The entire vocabulary of the present land system is borrowed from the Mughal administration. The zamindar. himself is a creation of the Malometans, anknown to the early Hindu system. He was originally a mere taxcollector, or farmer of the land revenue, who agreed to furnish a lump sum from the tract of country assigned to bim. . If the Hindu village system may be praised for its justice, the Mughal farming system had at least the merit of efficiency. Sháh Jáhán and Aarangzeb extracted a larger land revenue than the British do. When the government was first undertaken by the East India Company, no attempt was made to understand the social system upon which the land rerenue was based. The zamindar was conspicuous and useful; the village community and the cultivating rayat did not force themselves into notice. The zamindar seemed a solvent person, capable of keeping a contract; and his official position as tax-collector was confused with the proprietary rights of an English landlord. The superior stability of the village system was overlooked, and in the old provinces of Bengal and Nadras the village organization has gradually been suffered to fall into decay. The eonsistent aim of the Fritish authorities has been to establish private property in the soil, so far as is consistent with the punctual payment of the revenuc. The andual Goverament demand, like the succession duty in England, is universally the first liability on the land; when that is satisfied, the registered landholder has powers of sale or mortgage scarcely more restricted than those of a tenant in fee-simple. At the same time the possible hardships, as regards the cultivator, of this absolute right of property vested in the owner have been anticipated by the recognition of occupaney rights or fixity of tenure, under certain conditions. Legal rights are everywhere taking the place of unwritten customs. Land, which was before merely a source of livelihood to the cultivator and of revenue to the state, has now become the subject of commercial speculation. The fixing of the revenue demant has conferred upon the owner a eredit which he never before possessed, by allowing him a certain share of the uncarned increment. This credit he may use improvidently, but none the less has the land system of India been raised from a lower to a higher stago of civilizntion.

The means by which the lami revenue is assessel is known as buthenent, and the asseseor is styled a settlement otheer. In BenF.l the assessment has leen aecomplished onco and for all, but thennhout the grater part of the rest of India the process is contimually going on. Thodetails vary in the different provimees; but, Droadly speaking, asctlement may he described as tho ascertain. sumt of the agricultural mpacity of the lamt. Prior to the settlemont is the work of survey, which tirst determines the area of every vilape anil frequently of every fidd also. Then comes the settle. inemit of ocer. whose duty it is to estimate the character of the soil, the kius of crop, the "piombunties for irrigation, the means of com. mancatan and their probable heverpment in the fature, and alt
other circumstances which tend to affect the value of the produce. With these facts before him, he proceeds to assess the Government demand upon the land according to certain general principles, which may vary in the several provinces. The final result is a settlement report, which records, as in a Domesday Book, the entire mass of agricultural statistics concerning the district.

Lower Bengal and a few adjoining districts of the North-Western Provinces and of Madras have a permanent settlement, i.e., the land revenue has been fixed in perpetuity. When the Company obtained the diwami or tinancial administration of Bengal in 1765, the theory of a scttlement, as described above, was unknown. The existing Mahometan system was adopted in its entirety. Engagements, sometimes yearly, sometimes for a term of years, were entered into with the zamindárs to pay a lump sum for the area over which they exercised contrul. If the offer of the zamindar. was not dcemed satisfactory, another contractor was substitnted in his place. But no steps were taken, and perhaps no steps were possible, to ascertain in detail the amount which the country conld afford to pay. For more than trenty years these temporary engagements continued, and received the sanction of Warren Hastings, the first titular governor-general of India. Hastings's great rival, Francis, was among those who urged the superior advantages of a permanent assessment. At last, in 1789, a more accurate investigation into the agricultural resources of Bengal was commenced, and the settlement based upon this investigation was declared perpetual by Lord Cornwallis in 1793. The zamindars of that time were raised to the status of landlords, with rights of transfer and inheritance, subject always to the payment in perpetuity of a rent-charge. In default of due payment, their lands were liable to be sold to the highest bidder. The aggregate assessment was fixed at sikk k Rs. $26,800,989$, equivalent to Co.'s Rs. $28,587,722$, or say $2 \frac{3}{4}$ millions sterliog. By the year 1871-72 the total land revenue realized from the same area had increased to Rs. $35,208,866$, chiefly owing to the inclusion of estatcs whieh had escaped the original assessment for various reasons. While the claim of Government against the zamindars was thus fixed for ever, it was intended that the rights of the amindars over their own tenants should be equally restricted. But no detailed record of tenant-right was inserted in the settlement papers, and, as a matter of fact, the cultivators lost rather than gained in security of tenure. The same English prejudice which made a landlord of the zamindar could recognize nothing but a tenant-at-will in the rayat. By two stringent regulations of 1799 and 1812 the tenant was practically put at the mercy of a rack-renting landlord. If he failed to pay his rent, however excessive, his property was rendered liable to distraint and his person to imprisonment. At the same time the operation of the revenue salc law bad introduced a new race of zamindárs, who were bound to their tenants by no traditions of hereditary sympathy, but whose sole object was to make a profit out of their newly purchased property. The rack- Land rented peasantry found no protection in the law courts until law 1859, when an Aet was passed which restricted the land- of 185Ω lord's powers of enhancement in certain specified caises. The zamindar is the only person recognized by the revenue law; but in a large number of cases the zemindar has in effect parted with all his interest in tho land by means of the creation of perpetual leases or patnis. These leases are usually granted in consideration of a premium or lump sum paid down, and thero is nothing to prevent the patnidar fram erenting an indefinite serics of sub-tenures beneath bis own. The permanent settlement was not preceded by any systematie survey. But in tho course of tho past thirty jears the whole of Bengal has beeu subject to a professional survey, which determined the buundaries of every village. and issued maps on the scale of 4 inches to the mile.

This survey, however, has only a topographical value: No statistical inquiries were made, and no record obtained of rights in the soil. Even the village landmarks then set up have fallen into decay.

The permanent settlement was confined to the three prorinces of Bengal, Behar, and Orissa, according to their boundaries at that time. Orissa Proper, which was conquered from the Marbattas in 1803, is subject to a ternporary scttlement, of which the current term of thirty years will not expire until 1897. The assessment is identical with that fixed in 1838, which was based upion a carcful field measurement and upon an investigation into the rights of every landholder and under-tenant. The settlement, however, was male with the landholder, and not with the tenant, and in practice the rights of the cultivators are no more secure than in Bengal. In Assam Proper, or the valley of the Brahaaputra, the system of settlement is simple and effective. The cultivated area is artificially divided into mausás or blocks, over each of which is placed a native official or mauzadar. Every year the mazadár ascertains the area actually under cultivation, and then assesses the fields according to their character, at a certain preseribed rate.

The prevailing system throughout the Madras presidency is the rayatuari, which takes the cultivator or peasant proprietor as its rent-paying unit, somewhat as the Bengal ystem takes the zareindar. This system cannot be called indigenous to the country, any more than the zanundari of Bengal. If any system deserves that name, it is that of village assessment, which still lingers in the memories of the people in the south. When the British declared ther selves heir to the nawáb of the Carnatic at the opening of the present century, they bad no adequate experience of revenue management. The authorities in England favoured the zamindari system already at work in Bengal, which appcared at least calculated to secure punctual payment. The Madras Government was accordingly instructed to enter inio permanent engagements with zamindars, and, where no zamindars could be found, to create substitutes out of eaterprising contractors The attempt resulted in failure in every case, except where the zamindars happened to be the representatives of ancient lines of powerful chiefs. Severa! of such chiefs exist in the extreme south and in tine north of the pmaidency. Their estates have been guaranteed to them on payment of a peshkash or permanent tribute, and are saved by the custom of primogeniture from the usual fate of subdivision. Throughout the rest of Madras there are do zamindars either in name or fact. The influence of Sir Thomas Munro afterwards led to the adoption of the rayatuâri system, which will always be associated with his name. Aceording to this system, an assessment is made with the cultivating proprictor upon the land taken up for cultivation year by year. Neither zamindar nor village efficer intervenes between the cultirator and the state, which tskes directly upon its own shoulders all a landlord's responsibility. The early rayatwdrí settlements in Msdras were based upon insufficient experience. They were preeeded by no survey, but adopted the crude estinates of native officials. Since 1858 a department of revenue survey has been organized, and the old assessments have bcen everywhere revised.
Nothing can bo more complete in theory nnd moro difficult of exposition, than a Madras rayatceari settlement. First. the entire area of the distriet, whether cultivated or uneultivated, and of each field within the district is accurately measured. The next step is to calculate the estimated produce of ench fickl, having regard to every kind of both natural and artificial advantnge. Lastly, a mate is fixed upon every feld, which may bo regarled ns roughly oqual to one-third of the gross and one-half of the nut produce. The elaborate nature of these inquiries and calculations mny be inferred from the fact that as many ns thiry'five difiereut rates are some-
uncs struck for a single district, ranging from $6 \mathcal{L}$ to $\mathcal{E 1}$, 4s. per acre. The rates thus ascertained are fixed for a term of thirty years; but during that 1 reriod the aggregate rent-roll of a district is liable to.be afticeted by several considerations. New laud may be taken up for cultivation, or old land may be abandoned; and occasional remissions are permitted unler no less than eighteen specificd heads. Sucb matters are discussed and dccided by the collector at thee jamabandi or court held crery year for définitely ascertaining the amount of revenue to be paid by each τ dayat for the current season. This annual inquity has sometinces beca mistaker" by cascless passers-by for an annual reasscssment of each reyalt's holding. It is not, however, a cbange in the rates for the land which he already holds, but an inquiry into and record of the changes in lis former holding or of any new lagd which he may wishl to take up.

In the early days of British rule no system whatever prevailed throughout the Bombay presidency; and even at the present time there are tracts where something of the old confusion survives. The modern "snrvey tenure," as it . called, dates from 1838, when it was first introduced into one of the talukas of Poona district, and it bas since been gradually extended over the grater part of the presidency. 3 its nsme implies, the settlement is preceded by survey. Each field is measured, and an assessment placed upon it aceording to the quality of the soil and the erop. This assessment bolds good, without any possibility of nodification, for a term of thirty years. The average rate varies from a maximum of 4 s . 6 d . an acre in the rich black soil lands of Guzerat to a minimum of 10 d . an acro in the barren hills of the Concan.
The primary characteristic of tho Dombay system is its sim. plicity. The field is the unit, and its actual occupier is the only person recognized by the revenue law. He knows exactly what ho will have to pay, and the state knows what it win rec vo, during the currency of the term. The assessment is, in fact, a rent-clarge liable to be modified at intervals of thirty years. Sccondly, the system is characterizod by its fairness to the tenant. He possesses "a a rensferable and heritable propcrty, continuable without question a .re expiration of a settlement lease, on his consenting to the revised rate." To borrow a metaphor from English law, his position has been raised from that of a villein to that of a copylholder. In exchange for the mele leave to exist and till the soil hic hass reccived a right of property in the soil he tills, and he stands forth a freo man. If the Bonibay peasants have not reared all the adyantages from this system that night have becn hoped for, the fault rests, not with the system, but with themselves. They were unequal to tho responsibilities of property which they had not wou by their own exertions, but which the state (perlagjs prematurely) cast upou them.
The North-Western Provinces and the Punjab have a similar land system. In that part of India the village community has preserved its integrity mare completely than elsewhere. Government therefore recognizes the village, and not the zamindar's estate or the rayat's field, as the unit of land administration. Throughout the NorthWestern Provinces, indeed, the village is commonly orned by proprictors with the title of zamindar, whereas in tho Punjab the community is still the proprietor. But this is a distinction of tenure rather than of administration. In both cases alike the state recognizes only the villare, and makes its arrangement with the owners ofs the nllage, whether they be one or many, whether they be individuals, a corporation, or a bluayáchara (brotherhood). The snrvey. there becomes a more comprehensive undertaking thas in Madras or Bombay. In addition to measurement, and agricultural appraisement and calculation, it ineludes the: dnty of drawing up an exhaustive record of all rights and sob-tenures existing in every village. The proprietors are alone responsible for the revenue; abut, when the state limits its elaims against them, it is no less carcful to defino at the same time the rights of other partics interested in the soil. The term of settlement both in the NorthWestern Provinces and in the Ponjab is thirty yesrs. The prineiple of assessment is that the Gevermment revenus shall be equal to one-balf of the improved rent, leaving the other half as the share of the landlord, who is liable for due payment. and has the trouble of colleeting it from the
cultivators. ! The arerage rate of nssessment is aiout 2s. Ild. per acre in the Nerth-Western Provinces, and 1s. 4d. in the Punjak

The Cudh talukdars resemble English landlords even more closely than do tho zamindars of Bengal. In origin the majority were net revenue-farmers, but territorial mag. nates, whose influerce was decived from feudal authority as muci as from mere wealth. Their present logsl status dates from the pacification thst followed on the mutiny of 1857. The engagement then entered into bas been described as a political treaty rather than a revenue assessment. The great talukdars were invited to become responsible each for a gross sum payable from the territory over which he exercised feudal rights. This sum was fixed in perpetuity; and the exceptional pesition of the talukdars was recognized by conferring upon them, not only the right of succession by primegeniture, bat also the privilege of bequest,-a privilege unknown. alike to Hindu and Mahometan law. Land not comprised in talukdari estates was settled in the ordinary way with its proprietors or zamindars for a term of thirty years. The whele of Oudh has since been accurately survejed.

The Central Provinces contain many varieties of land tenure, from the feudaterics, who pay only a light tribute, to the village communities, who are assessed in the usual manner after survey. Population is sparse and agriculture backward, so that the incidence of land revenue is everywhere low. The survey was condacted geuerally on the Panjab system, adopting the village and not the field as the tait of measurement. The current settlement for a term of thirty years will expire in 1897.
Land revenue.

In 1573-74 the tetal land revenue realized from territery under British admiaistration in India amounted to $£ 20,919,256$, which is raised to $£ 22,708,144$ by the iurlusion of certain local rates and cesses levied on land. This latter figure shews an average of $9 \cdot 4 \mathrm{~d}$. per acre of gross area and 2s. 47 d . per hesd of total population. The highest rate of assessment appears to be that in Bembay, whici is 3 s . 10.4 dd . per head : the 1 owest, 1s. 2.7 d . per lcad in Beogal and Assana,
Salt ad-
Sall Administration.-Nexi to land, salt contributes the ministra- largest share to the Indian revenue; and, where salt is locally ticn. manufactured, its supervision becomes an important part of administrativedoty. Up to withinquite recent times the tas levied npon salt vericd extremely in different paris of the country, and a strong preventiva staff was required to be stationed along a contiuuous barrier hedge, which almost cut the peoinsula into two fiscal sections. The reform of Sir J. Strachey in 1878, by which the higher rates were reduced and the lower rates raised, with a view to their ultimate equalization over the rhole country, offectually abolished this old engine of oppression. Communication is now free; and it has been found that prices aro absolutely lowered by thus bringing the consumer nearer to hia market, cren though the rate of taxation be increosed. In the Punjab and Majputina salt administration has thus become, as in Loner Bengal, a simple watter of weighiag quautities and levying a uniform tas. In Lombay, also, the manufactare is now conducted wilh a minimum of expense at largo central depots in Guzerat under a thoroug'a eystem of excise. supervision. Along the wectern coast, howerer, from Orissa to Cape Comorin, the process of eraperating sea-pater is cverywhere carried ou as a privato industry, though on Government accouut. As with poppy cultivalion in Bengal, the manufacture of sutt is a monopoly, Which can only bo defeuded by the peculiar circumstances of the case. No one is compelled to manufacture, and rights of property in a salt-pan are strictly respected, while the otate contrives, by meaus of a carcful staff of supervisurs, to obtain the maximum of profit with a minimum of iutcr.
ference. The system as at present carried on has been giaduslly developed out of the experience of nearly a century. The manufscturers belong to the same class as ordinary cultivstors; and, as a rule, their condition is sorcewhat more prosperous, for they possess an hereditary privilege with a cummercial value. They do net work upen a system of advances, as is the case with so many other Indian industries; but they are paid at a certain rate when they bring their salt to the Government depôt. This rate of payment, known as kudivaram, is at present fixed at an average of 1 anna 5.8 pies per maund of $82 \frac{2}{7}$; ; the other expenses of the salt department, for supervision, dc., raise the total cost to 3 annas $5 \cdot 6$ pies per maund. The price now charged to the consumer by the Madras Government is Rs. 2.8 .0 per maund, the balance being net profit. The equal rate of salt duty which will ultimstely prevail throughout all India is Rs. 2.8.0 per maund, or 73. a cwt. This rate is already (1881) levied in Madras, Bombay, the North-Western Provinces, and the Punjab, but in Bengal a higher rate is provisionally in force of Rs. 2.14 .0 per maund, or 8s. a cwt. In British Barmah only 3 annas per maund, or 6 d . a crit., is charged for lecal consumption, and a transit duty of 1 ver cent. and valorem for salt sent across the froutier.

Excise.- Hixcise, uкe salt, is not only a department or revenne Excisen collection, but also to a great extent is branch of the execntive. In other words, excise duties in India are not a mere tax upon the consumer, levied for convenience through the manufacturer and retail dealer, but a species of Government monopoly. The only excisable articles are intoxicants and drugs; and the avowed object of the state is to check consumption not less than to raise revenne. Details vary in the different provinces, but the general plan of administration is the same. The right to manufacture and the right to retail are both monopolies of Government permitted to private individuals only upon terms. Distillation of aountry opirits is alloved according to two systems, -either to the highest bidder under strict supervision, or only upon certain epots set apart for the purpose. The latter is known as the sadr or central distillery system. The rightit of sale is also usually farmed out to the highest bidder, subject to regulations fixing the minimum quantity of liquor that may be sold at one time. The brewing of heer from rice and other grains, which is universal among the hill tribes an 1 other aboriginal races, is practically untaxed and unrestrained. The European brewerics recently established at several hill stations pay a tax at the rate of 6d. a gallon. Apart from apirits, excise dutiea are levied upon the sale of a number of intoxicating or stimulant drugs, of which the most important are opium adil ganja or bhang. Opium is issued for local consumption in India from the Government manufacteries at Patoíand Beaares, and sold through privato retailers at a monopoly price. This drug is chiefly consumed in Assam, Burmab, and the Pumjab. Ganju is an intoxicating preparation made from the flowers and leaves of Indian hemp (Cannabis sativa, var. indica). Tho cultivation of hemp for this purpose is almost conlined to a limited area in Rajshíhi district, Bengal, and to the farther valleys of the Himilayas, whence the drug is inported under the name of charas. Its abuse is sometimes a cause, not only of crime, but also of insanity. Gevernment attempta to check con-cumption-first, by fixing the retail duty at the highest rate that will not encourare smuggling, and, secondly, by continually raising that rate as experience allows. Scientifically speaking, gdnja consists of the flowering and fruiting licads of the female plant; bhang or siddhi, of the dried leares and small stalks, with a few fruits; while charas is the resin itsclf, collected in various ways as it naturally exudes. No duty whatever is now levied upon tobacco in any part of India. The plant is universally grown by the cultivators for their own smoking, and, like everything clsc, was subject to texation under native rule; hat the impessibility of aecurate exelse supervision has caused the British Goverouent in abandon the impost.
The municipalities at present existing in Indic̈are a creation ormaned the legislaturo and a branch of the general system of udministration. palitien Their origin is to be traeed, not in the native panchdyal, but in the neeessity for relieving the district oflicer of some of the detaila of his work. The panchalyat or elective council of five is one of tho instiutions most deeply rooted in the Hindu mind. By it the villago community was governed, the liead-inan being only the oxecutive official, not the legislator or judge; by it all casto dis putes wero settled; ly it traders and merchants were organized into powerful guilds, to the rules of which even European ontsiders havo had to submit ; by it the Sikh army oí the khilsu was despotically goverucd, when the costralized ajstem of Ranjit Sinla fell to piucca
ci his death. But the Hindu village organiantion had been greatly boken up under Mughal rule. The modern municipal conmittee is a body appointed by Government, on the nomination of the collector, to assist lim in the discharge of his local dutics, and to assess new zodes of taxation. Police, roads, and sanitation are the three main objects for which a municipality is constituted. Outside a municipality these objects are (in different provinees) the care of the collector, of some member of his subordinate staff, or of a local fund board. Within municipal limits they are delegated to a committee, who practieally derive their authority from the collector's sanction, implied or expressed. Except in the great towns, the municipalities cannot be said to enjoy any of the ettributes of corporate life. However, as eflucation advances, and with it the desire and capacity of self-government, the municipal committce will doubtless form the germ from whiel free local institutions will in the future be developed. In 1876-77, exelnding the three presidency capitals, there wero altogethor 894 municipalities in British India, with 12,381,059 inhabitants, or just 7 per cent. of the total population. Out of an argregate number of 7519 members of municipal committecs concerning whom information is available, 1794 wero Europeans and 5725 matires; 1863 were ex-offio, 4512 nominated, and 1144 elected, - the last class boing almost confined to the North. Western end central Provinces. The financial
Imperial Finance.-lt is impossiblo to present a concise view of Indian finance, such as shall be at once eccurate and intelligible. In the first place, the aggregate figures of revenue and expenditure are officially returned according to a system which, though nceessary for purposes of account, nswally mislcads the English financier. The whole syetem of administration is based upon the view that the British power is a paternal despotism, when owns, in Ω certain oense, the entire soil of the country, and whose duty it is to perform
tho various functions of a wealthy and cnlightencd rronnetor. In addition, it takes on itself the business of a manufacturer and trader on a grand seale, as in the caso of puium ond salt. All these con. siderations tend to swell the totals on both sides of the balanec-sheet with large items, which, on strict annlysis, ought to be eliminated as mere matters of account. The actual taxation on the people of British India for 1878 , as will be shown below, was $34{ }^{3}$ millions, or under 3s. 8d. per head of the population. In tha second place, the methods of kecping the public aceounts have been subjected to frequent changes during recent years, to such an cxtcut as to render comparative statements of totals valueless.

The following table, whick has been compiled from the ParFiamentary Abstract for 1877-78, exhibits the gross imperinl revenue and cxpenditure of India for that year, according to the system of accounts adopted at the time. For the reasons alrcady given, it is practically impossible to analyse these statements in such a way as to show the actual amount raised by taxation, and the actual nmount returned in protection to person and property, It is equally impossible to compare the totals with those for previons years. The only profitable plan is to take some of the items and explain their real meaning.

Gross Rivenue. - Land reventie $20,026,036$	
Land reventie Tribatcs and contriuntions...	$\begin{array}{r} 0,026,036 \\ \mathbf{6 7 5}, 120 \end{array}$
Farest	601.102
Fxcise	2,457,075
Asscssed taxes..................	86,110
jrovinciol tates	238.504
Castoms	2.622.290
Sult	6,400,082
Oplım	0,142,729
Stamps	2,993,483
dint	443,86?
Post effice.	847,604
Telcarapli.	389.439
Law nnd justled	$813.2 \% 1$
Public works (ullarary)	371,539
Irrigation.	405,142
Statornilways.	5.18.528
Guaranteed rallwayn (nct)	0,129,765
Milscellanceas	3,4is, 59.3
Total..........	8,909,301

"eflejeney of grose revenuo

 nt carnjured with grossoxpenditure.............. $£ 3,513.087$

Revenue. - It will be seen from the above statement tlat the larger portion of the gross revenale is not deriver! from taxntion at all. Public works, including raiways, alone yield about $7 \frac{1}{3}$ millions sterling, or nearly 13 per cent. of the total. If we adel the items of post ollice and telegraphs, which also reprosent payment for work dono or services supplied, the proportion rises to nearly 14 per cent. Then the sum of 9 millione gross, or $6 \frac{3}{2}$ millions net, derived from opium, being somewhat moro thau an additional 15 per cent. of the gross revenue, is admitted to be no charge upon the mative tax-payer, but a voluntary contribution to the Indian exchequer by the Chinese consumer of the drug. Nearly one-third of the total gross revenue is thus accounted for. The land revenue, nmounting
to just 20 miltions in an execptionalls bad year, cannot bo pased over 80 lightly. Whether it should be properly regarded as a tax, or only as rent, is an abstruse problem for political cconomists to settle; but, in any case, it is paid without question, as an immemorial perquisito of tho state, It yields 34 per cent, or moro than one-third of the eross revenne. The importance of tbe land tax from the point of riew of administration las been considered in a prevous section. Setting aside provincial rates and assessed taxes aro left witant in their amount and variable in their incidenee, we stamps, -which together conctitings, -excise, customs, salt, and people. The together constitute the indisputablo taxation of the millions, being nearly Salt alone yields $6 t$ millions, or 11 per one-jourth of the whole. tion of 191 milions, the ons, or 11 per cent. Ont total popnla. cidence of 6 s , 1 d per heal. The sente of 50 minions shows an in of 2 s .11 d . per head, the four taxes proper of 1 s .6 td . per The wholo revenue of British India of the nature of actust toxa tion, including land revenue, excise, assessed taxes, provincial rates, customs, salt, and stamps, amounted in 1878 to $£ 34,533,586$, or 3s. $7 \frac{1}{4} d$. per head. The rate was about 48 . per head in 1880 .
Of the four items, excise and stamps are both almost entirely creations of British rule. Excise is simply a tax upon intoxicating liquors and deleterious drugs, levied both on the mandacturaadd on the sale, according to diflerent systems in different provinces. Like the corresponding disty in England, it is voluntarily ineurbed, and presses hardest upon tho lowest classes. But, milike the English excise, it can hardly be called an elastic source of roveuue, for the rate is intentionally kept so ligh as to discourage consump* tion. No duty whatever is levied upon tobacco. Stamps, as in England, is an ambignous item. The greater part is derivid from fees on litigation, and only a comparatively trifling amount from stamps proper on deeds of transfer, \&c. Customs are divided jightered and export duties, both of which hare been so greatly be considered recent years that their permanent mantenance must usually at the rate of 5 , At the present time (1881) import duties, comparatively long list of commodities, of which the chief a cotton goods above a certain degree of tineness. All cuties on exports have now been removed, with the single exception of that on rice, which brings in about $£ 500,000$ a year. That is levied at the rate of 3 dnnas a mrund, or a bout 6d. per curt., being equivalent Burmah ad valorem rato of about 10 per cent. Inlin, including Europe, and therefore the tax falls upon the consumer rather the the upon the native producer. The salt tax is a matter of more iuport ance and of greater difficulty. As an impost upon an articie of prime nceessity, and as falling with ercatest severity upon the lowest classes, it violates the elementary rules of political cconomy. On tho other banl, it may be urged that this tax is familiar to tho people, and levied in a manner which aronses no discontent, and that it is the only means nvailable of spreading taxation proper incidence of the salt tax liecent reforms have tended to equalize the result of abolise salt tax over the entire country, with the immediato a view to its ultimate reduction.
Expendilure. -l’utting nside the eost of collection nad civif Fxpenadministration, which explain thenselves, the most imbortnut items difire. of expenuliture are army, interest on debt, famino relief, loss by exchange, and public works, to which may be added the complex item of pyments in England. Military expenditure nverages fully 16 millions a year, being thas considerably more than the wholo amount obtainel from raxation proper, Of this total, about 12 millions represent payments in lndia, and 4 millions paments in England. On non-effective services nearly 2 millions are expended in England and less than ejo0,000 in India. Regimental pay accounts for neally 7 millions, the commissarat for alont 2 millions in Inelin, and stores for another million an Englama. In 1s:7-78 the totnl capital of the Indian debt was retimath at orer 1463 millions sterling, being just 1 fis. 41. por hear of the mopulation. The total charge for interest was 5 millions, being nt the rate of $£ 3,14 \mathrm{~s}$. 4 l . per cent. ; but thisexelules the interest to be credited aginst expenditure on rejroductive public wobs, which is entered rader noother heading. In 1840 the deht amounted to only 30 millions, but it gralually increastu to 52 millions in 185?. Then enme the Mutiny, which addel samillions of debt in four years. The rate of increase whe atoin gradual but slow till alnout 1874, when famine relief conspired with public wotha to cause a rapint
 debt contrated in that alybantation is the larger propertion of debt has risen only 10 millions, whereas the golil debt has risen es millions. No charge las recently pressed harder upon tho Indian cxeliequer than that of famine relief. Ajart from loss by reducent revenue, the two famines of 187 and $187-78$ have caused a direct expenditure one haritable ant relief works, amounting in the aggre. gate to nearly 25 millions. Loss by exchange is an item which has
only tately taken its place in the accounts, and is due to the circum. stance that large payments in gold require to be made in England by means of the depreciated rupe. It is, of course, aot a matter of expeoditura proper, but merely the result of a peculiar mode oif book-keepiag, which estituates the rupee at the arbitrary value of 2s. Io 1889-70 the loss by exchange was more than balauced by in equally uominal eutry of gain by exchange on the other side of the Colger. Io 1976-77 this item attained its maximum of nearly if million net. The expenditure on public works is provided from three sources-(1) the capital of private companies, with a Govern. ment guarantee, (2) loans for the construction of rallways and caoals, (3) curreat reveoue applied towards such works as are conaidered to be not directly remunerative. In 1877-78 the total capital raised by the guaranteed railway companies was 95 millions, and the net carnings were 5 millions, thus showing on the averago n satisfactory balance-sheet. In the ten years endiag with 1873 29 millions were expended under the secoad head upon works classed as reproductive or extraordnary, of which 19 millions wero apropriatad to state railways and 10 mallions to irrigation. The amount spent from reveque upon ordioary public works in 18:7-78 was nearly 3 millions. The division of the expenditure into that paid in India and that paid in England becomes of importance when it is ramembered that the latter portion requites to be provided in gold. In 1877-78, out of the total exjenditure of $62 \frac{1}{2}$ millions, $48 \frac{1}{4}$ millions, or 78 [er cent., were paid in India, and 14 mrllions, or 22 per cent., in Englagd, includiag the guaranteed interest of the railway compradies.

Loxal Finnoci--lndependent of inperial finance, and lilsewise
independent of certana sums annually transierrad from the imperiat Local exchequer to be expended by the provincial governments, there is lif wice. aoother ludian budget for local revenue and expenditure. That consists of an income derived maialy frona cesses upon land, and expended to a great extent upon minor public works. Fo 1877-78 lucal revenue and expenditure were each returaed at about 34 millions.

Municipal Finance. - Yet a third budget is that belonging to the dinut municipalities. The three presidency towns of Calcutta, Madras, cipal and Bombay had in $1576-77$ a total nunicipal iacome of $£ 668,400$, finauce. of which $£ 519,322$ was derived from taxation, being at the rate of 7s. per head of population. In addition, there were 894 minor municipalities, with a total population of $12,381,059$. Their aggregate income was $£ 1,246,974$, of which $£ 979,088$ was derived from taxation, being at the rate of 1 s . 7d. per head. In the presidency towns, ratts upon houses, \&c., are the chiel source of income; but in the district municipalities, excepting Bengal, octroi duties are nore relied upon. Oo the side of expeuditure the chief items are conservancy, roads, and police.

Army. - At the presedt time (1881) the entireconstitution of the Army. Indias army is under the consideration of a commission. The existing organization is based upon the historical division into the three Iresideocies of Bengal, Madras and Bombay There are still thre Ildian armies, each composed of loth European and native tmops, with their own commaders-in-chiel and separate statf, though the commander-in-chiefin Bengal exercises a supreme authority over the other two. There is also a fourtharmy, known as the Punjal) fron tirr force, which, though on the Bengal establishment, is under tho immediate orders of the licutconat-governor of the province.

Estabitishal Strength of the Indian Amy in 1377-78.

	Natwe Troops.						European Troops.						${ }_{\text {Grand }}^{\text {Total }}$
	Arthery	Cavalry	Engiacers	Iniantry.	Rody Gund	Total.	Arthlery	Cavalry	Engineers.	Infantry	Staff, \&c.	Total.	
	748	13,016	1,241	48,506	122	63.933	6,879	2,895	2321	29.420	854	40,283	104,216
Mubias		1,743	1,401	31,091	8	34,293	2,511	966	57^{1}	8,271	628	12,733	47,026
Lombay ,	153	3,587	537	22,290	72	38,355	2,549	483	68^{2}	8,271	339	11,710	38,355
Totals	901	18,346	3,239	162.153	202	124,871	12,239	4,347	353^{1}	45,962	1,821	64,726	189,597

polare--Excluding the village wateh, which is still maintained as a mulowinry fonce 18 many parts of the constry, the tota! regular molice of all knols in Eritish India in 1877 consisted of a total stucngth of 157,999 oflicers and men, being an average of one policewas to every i $\$$ square miles of total area or to every 1096 of the total population. The total cost of maintenance was $£ 2,511,704$, of which $\{2,165,073$ was payable from imperial or provincial revenues. The forme: figure pives an average cost of $£ 3$ per square mile of area and 3.l. per head of population. The average pay of each constable was 7 rupees a month, or $£ 8,8 \&$ a year.
Jails. - In 1877 the tatal mumber of places of confinement in lbritish tudia, including central and dictrict jails and lock-ups, was 635 ; the total number of prisomers admitted dusing the year, or remaining over from the previous year, was 587, 288 ; the daily everaze was 118,456-113,087 males and 5369 females. These figurea show 1 male prisoner to every 868 of the male population,
 prisoner to every 1618 of the total mpalation of woth sexes. Tho places of tranymirtation for all britioh lmatare the Andarnan and Nicolar Islinds, where there are two priml extablishaments; these containced io 187% a duily averoge of $911^{\circ} 5$ convects

LDUCATRON.

The existing system of education in India is mainly lependent upon tho Government, being directly organized by the state, at least in its higher uepartments, assisted throughout by grants-in-aid, and under careful inspection. But at no period of its history has India been an altogether menlightened eountry. The origin of the Deva-Nígari diphabot is lost in antiquity, theugh that is genera!ly ad. mitted not to be of iadigenous invention. Inseriptions on stone and copper, the pism-leaf records of the temples, and n later daya the wide-spread manufacture of pater, ath alike indiate, not only the general knowledge, but also the comgun 12se, of tho ert of writing. Firom the earliest times be ceste of Brahmans has proserved, by oral tradition as well an in MSS., a literature unrivalled alike in its entignity and in the int. Ilectual subtety of its contents. The Ashometan invaders introduced the profession of the hastarion, which reached a high derere of excellence, "y.".
as compared with contemporary Europe. Through a!! changes of gevernment vernacular instruction in its simplest form has always been given, at least to the children of respectable classes, in every large village. On the ont hand, the tols or seminarics for teaching Sansk rit philosephy at Benares and Nadiys reeall the schools of Λ thens and Alexandria; on the other, the importance attached to in. struction in accounts reminds us of the pieture whicb Horace has left of a Roman educatien. Even at the present day knowledge of reading and writing is, owing to the teaching of Buddhist monks, as widely diffused throughout Burmah as it is in some conntries of Europe. English efforts to stimulate education have ever been most surcessful when based upon the existing indigenous institutions.

During the early days of the East India Company's rule tho prometion of education was not recognized as a duty of Government. The enlightened mind of Warren Hastings did indeed anticipate his age by founding the Caleutta madrusu for Makometan teaching, and by afferding steady patronage alike to LIidu paadits and European students. But Wellesley's selumes of imperial dominion did not extend beyond the establisment of a college for English oflicials. Of the Calentia colleges, that of Sanskrit was feunded in 1824, when Lord Amherst was governor-general, the medical collego by Lord William Sentinck in 1805, the lIooghly mudrasa by a wealliy mative gentleman in 1836. The Sanskrit cellege at Shenares had been established in 1791, the Agra cullege in 1823. Mcanwhile tho missionaries made the field of vernacular elucation their own. Discocraged by the oflicial authorities, and ever liable to banishment or deportation, they not only devoted themselves with courage to their special work of evangelization, but were also the first to study the vernacular dialects spoken by the common people. Just as two centuries enrlier tho Jesuits at Madum, in the
extreme suth, composed worls in 1amm, which are still acknewledged as classical by native authers, so did the Baptist mission at Serampur, bear Calcutta, first raise Bengali to the rank of a literary dialect. The interest of the missionaries in education, which has never ceased to the present day, though now comparatively overshadowed by Government activity, had two distinct aspects. They studied the vernacular, in order to reach the people by their preaching and to translate the Bible; and they taught English, as the chaunel of nou-sectarian learning.

At last the Government awoke to its own responsibility in the matter of cducation, after the long and acrimonious contreversy between the advocates of English and vernacular teaching had wern itself out. The present system dates from 1854 , being based upon a comprehensive despateh sent out by Sir C. Wood (afterwards Lord Halifax) in that year. At that time the threo universities were founded at Calcutta, Madras, aud Bombay; English-teaching schools were established in every district; the benefit of grants-jn-aid was extended to the lower vernacular institutions and to girls' schools; and public instruction was erected into a department of the administration in every province, under a director, with a staff of inspectors. In some respects this scheme may have been iu advance of the time; but it supplied a definite outline, which has gradually been filled up with cach succeeding yoar of progress. A network of scheols has now been spread over the country, graduated from the indigenous village institutions up to the highest colleges. All alike receive some measure of pecuuiary suppert, which is justified by the guarantee of regular inspection; and a series of scholarships at once stimulates efficiency and opens a path to tho university for children of the poor. In 1877-78 the total number of educational institutions of all sorts in British India was 66,202 , attended by an aggregat of $1,877,942$ pupils, showing an average of one school to every 14 square miles, and nine pupils to every thousand of the population. In the same year the total expenditure upen education from all sources was $£ 1,612,775$, of which $£ 782,240$ was contributed by the provincial governmeuts, $£ 258,514$ was derived from local rates, and $£ 32,008$ from municipal grants. These items may be said to represent state aid, whileendowments yielded $£ 37,218$, subscriptions $£ 105,853$, and fees aod fines $\mathscr{\sim} 277,039$. Tho degree in which education has been popularized and private effort has been stimulated may be estimated from the fact that in Bengel the total of roluntary payments now exactly balances tho total of Gevernment grants.
U: iversi. Universitics.-The thrce universities of Calcutta, Madras, and
ti s. Bombay were incorporated in 1857, on the model of the university of London. They are merely examining bodies, composed of a chancellor, vice-chancellor, and scnate, with tho privilege of sooferring degrees in arts, law, medicine, and civil engineering. The goveroing body, or syndicate, consists of tho vice-chancellor and certain members of the sevate. Quite recently a fourth university, on the same plan, has been founded at Lahore for the Punjab. Though not themselves flaces of instruction, the universitics control the whole course of higher cducation by means of their examinations. The entrance examination for matriculation is open to all; but when that is passed candidates for higher stages must earol thenselves in one or other of the affiliated colleges. In the ten years ending 1877-78 9686 candilates successfully passed the entrance examination at Caleutta, 6381 at Mailras, and 2610 at Bombay. Many fall ofl at that stage, and very few procerd to the higher degrees. During tho same ten years 952 graduated B. A., and only 254 M. A., with honours, at Calcutta ; 496 If A. and 14 M. A. at Madras; 217 B. A. and 28 M. A. at lombay: Calcutta possesses by far the majority of graduates in law and medieine, while Bombay is similarly distinguished in enginecring, In 1877-78 the total expenditure on the fonr universities was 22\%.093.

The colleges or institutions for higher instrurtion may be divided into two classes, - those whicb teach the arts course of the uaiversities, and those devoted tospecial branches of knowledge. Aceording to another principle, they are classified into those entiraly snp-
fricet by Government and those which only receive granto-m-aid The latter class comprises the missionary colleges. In 1877-78 the total number of colleges, includirg medical and enginecring colleges and Malbonetina nadrasas, was 82, attended by 8894 students. Of these, 25 colleges with 3848 students were in Bengal proper, and 21 colleges with 1448 students in Madras. In the same jear the total expeoditure on the colleges was $\mathrm{f186,162} \mathrm{}$, at the rate of $£ 21$ per stulent.
Boys' Schools.- This large class includes many varieties, whieh may be subdivided either according to the character of the instruction given, or according to the proportion of Government aid they receive. The higher sehools are those in which not only is English taught, but that lauguage is also the medium of instruction. They educate up to the standaril of the cntrance examiontion at the universities, and train generally those candidntes who seck croployment in the upper grates of Govermnent service. As far as possible one of these schools, known as the zilit or district school, is established by Government at the head-quarters of every district, mi many others receive grants-in-aid. The middle seliouls, as thur name implies, are intermediate between the higher and the primary schools. Gencrally speaking, they aro placed in the smaller towns and larger villages, and they povide that measure of instructios which is recognized to be nscful by the middle classes themselves. Some of them teach Eaglish, but others only the vernacular. This class includes the tahsili schools, established at the headquarters of every tahsil or subdivision in the North-Western Provinces. In 1877-78 the total expenditure on both higher and middle schools was $£ 478,250$. The lower and primay schools complete the serife. They present every degree of efliciency, from the iadigenous ant unaided village school to tho vernacular schools in the presidency capitals. Their extension is the ehiet test of the success of the edueational system. No noiformity prevails in this matter throughout the seremal provinces. In Bengal up to the last few years primary instruction was satly neglected; but, since the veformis inaugurated by Sir G. Campbell in 1872, by which the bencfit of tho grant-in-aid rules was exteoded to the prithsildis or village sehools, this reproach has been removed. Iu 1871-72 the total number of primary schools under inspection was only 2451, attended by 64,779 pupils. By $1877-78$ the number of $8 \mathrm{~S}^{6}$ ools had risen to 16,042, and the number of pupils to 360,322 , being an increase of about sixfold in six years. lo the latter year the total expenditure from all sources was $£ 78,000$, towands which Government contri. buted only $£ 27,000$, thus showiog how state aid stimulates pheato outlay. The North-Western Provioces owe their system of $\mathrm{p}^{\text {rimery }}$ instruction to their great lieutenairt-Guemor, Dr Thomason, whose constructive filent can be traced in every department oif the administration. In addition to the tahstio midde schools already referred to, ho drew up a scheme for establishing halkabandi on primary schools in every central village (whence their mame), to which the children from the surrounding laralets might resort. His scheme has since been largely developed by means of the ed:acational cess added to the land revenuc. In Bombay the primary schools aro mainly supported out of local funds raised in a similar manner. In British Burmah, on the other haud, primary education is still left to a great extent in tho hands of Buddhist monks, who receive no pecuniary support from Gorermment. Tho monastic schools are only open to boys, but there are also lay teachers who ndmit girls to mixed classes. Govermment has hardly nny sehools of its own in limmah, tho deficiency being supplied hy several missionary bodies, who obtain state aid. In many parts of the Madras presidency, also, the missionaries possess Ω [ractical monojoly of education at the present day. In 1877-78 the anount of money expended upon lower and primary schools in laritish India was $\mathcal{\ell} 406,135$, or just one-lourth of the total edueational budget.

Girls' Schooks.-Of late years something has been done, thubugh not much, to extemb the almantages of edncation to girls. In thin, as in other educational matters, the missionaies havo heen the pioneers of progress. In a tww exceptional jlaces, sueh as Tinnevelli in Madras, the Khisi hills of Assam, and among the Karen tribes of burmaln, female education has a real existence, for in these places the missionaries have inlance enough to owremo the prejudices of the prople. l'ut elsewhere, even in the large towns and among tho English-speaking classes, all attempts to develop tho intelligence of women are regarded with scarcely disguised aversion. Throughout the North-Western l'rovinees, with their numerous an! wealchy cites, and a tinth female population of 15 millions, only 0650 girls attended school in 18i7-78. In Bengal, with just double the inhabitunts, the corresponding number was less than 12,000. Madras, Jritish Burmah, and to a small desree Bombay and the l'mjab, are the only provinces that contribute to the following statistics in any tolerable propotion:-Total girls' schools in 1577-78, 2002; number of pupils, 66,615; mixed schuols for boys. and ciuls, 2955 ; pupils. 90,915 ; total amount expendel on girls schonis, $\overline{\ell 7}, 720$, of which $£ 27,000$ was devoted to tho 12,000 girls of Frengal.

Normint and nether Spreial Schun/s, \&c.-In 1877-78 the normat and technical schools maberell 135, with a total of 686t studer. t .
cone total expenditure $\mathbf{w} 2 \mathbf{2} £ 5 \pm, 260$, or an average of nearly $£ 7$ per student. School mistiesses, as well as masters, are trained in these institutions; and there also the missionaries have slown themselves active in anticipating a work which Government subsquently took up Of schools of art, the ollest is that fommel by Dr A. Hunter at Madras in 1850, and taken in charge by the Etueation Department in I856. This school, as also those at Cabutta umit Pominy, las been very successfnl in developing the indnetmal watanties of the people, and training workmen for nublic emplyment. :inseums have been established at the provincial capita!s and many uther large rowns. Schools for Euromean and other forign races have also stracted the attention of Government. In $1 \times 37-73$ the ulumber of such institutions was 104 , with 9121 ןuphl; the capmiature from all sources was $£ 80,197$, or an average of wealy 29 ["י pupil. Foremost among these aro the asylums for the outhans of Britinh solders, established at bill stations (c.g. Utakamand and Sanawar) in memory of Sir Henry Lawrence.
News
\therefore Neuspapers and Books. - Closely connected with tne subject of education is the steady growth of the vernacular press, which is ever busy issuing both newspapers and books. The nuissonaries were the first to cast type in the vermacular languiges, and to employ native compositors. The earlicst newspaper was the Bengali Simachar Darpren, which was issued in 1835 by the Baptist Mission et Serampur. For many years the veruacular press preserved the marks of its origin, by being limuted almost absolutely to theological controversy. The missionaries continued their work ; and they were encountered with their own weapons by the theistic sect of the Brihma Samaj, and also by orthodox Hindus. So late as 1850 the majority of newspapers were still sectarian rather than polntical, but during the last twenty years the vernacular press has guadually risen to become a powerful encine of political discussion. The number of newspapers regularly published in the several vernaculars at the present time is said to reach the formidable total of 230. The aggregate number of copies issued is estinated by Mr Roper Lethbridge at about 150,000 ; but the circulation proper, that is, the actual number of readers, is infinitely larger. In Bengal the vernacular press suffers from the competition of English news. papers, some of which are entirely owned and written by natives. In the north-west, from Lucknow to Lahore, about 100 news. papers are printed in Hindustini or Urdu, the vernacular of the Alahometans throughout India. Many of these are conducted with considerable ability and coterprise, and may fairly be described as representative of native opinion in the large towns. The Bombny journals are almostëqually diviled between Marathi and Guzerathi. Those in the forther language are characterized by the traditional independence of the race of Sivaji; those in the latter langunge are the organs of the Parsis and of the trading community. The hewspapers of Madras printed in Tamil and Telugu are politically mamportant, being still for tho most part devoted to religion.

As regards hooks, or mother registered publications, in the verrucular langiages, Bengal takes the lead; while the Punjab, L'ombay, the North-Western Provinces, and Madras follow in order. In 1877-78 the total, number of registered publications was 4890, of which $54 t$ were in English, 3064 in nne of the vernaculars, 719 in a classical language of India, and 563 hiningual. Of the vernacular works, 709 dealt with religion, 663 with poctry and the drama, 330 with language, 195 with science, 181 with fiction, 146 with Law, and 95 with medicinc. ${ }^{\text {a }}$

Histor

Non-Aryan or Aboriginat

Ahori
kinal
triber
was to them unknown. The sole works of their hanaw which have come down to us are the rude stone circles and upright slabs or mounds beneath which, like the primitise peoples of Europe, they buried their dead. From thesc we only discover that, at some far distant but unfixed period, they know how to make round pois of hard, thin earthenware, that they fought with iron weapous, and that they wore ornaments of copper and gold. The coins of imperial Rome have been found in their later graves. Earlier remains, lying in the upper soils of large areas, prove that these ancient tombbuilders formed only one link in a chain of primxal races. Lning before their advent, India was peopled, as far as the depths of the Central Provinces, by tribes unacquainted with the metals, who hunted and warred with polished flint ases and other deftly-wrought implemente of stone similar to those dug up in northern Europe. And even these were the successors of jet ruder beings, who have left their agate knives and rough flint weapons in the Narbadi valley. In front of this far-stretehing background of the Bronze and Stone Ages, we see the so-called aborigines being beaten down by the newly arrived Aryan race.

The struggle is commemorated by the two names which the vietors gave to the early tribes, namely, the Dasyus, or "enemics," and the Dasas, or "slaves." The last remains to this day the family name of mullitudes of the lower class in Bengal. The new-comers from the north prided themselves on their fair complexton, and their Sanskrit word fes " colour" (varna) carne to mean "race " or "caste." Their earliest poets, at least three thousand and perhaps four thousand years ago, praised in the Rig-Veda their gods, who, "slaying the Dasyus, protected the Aryan colour," who "subjected the black skin to the Aryan man." More. over, the Aryan, with his finely-formed features, loathed the squat Mongeliau faces of the aborigines. One Vedie singer speaks of them as "noseless" or flat-nosed, while another praises his own "beauliful-nosed" gods. The same unsightly feature was commented on with aegard to a non-Aryan Asiatic tribe, by the companions of Alexander the Great on his Indian expedition, at least a thousand years later. The Vedic h_{r}, mins abound in scornful epithete for the primitive tribes, as "disturbers of sacrifices," "gross fecders on flesh," "raw-eaters," "lawless," "notsacrificing," "without gods," and "without rites." As time went on, and these rude tribes pere driven back inte the forest, they wers painted in still more hideous shapes, till they became the "monsters" and "demons" of the Aryan poet and priest. Their race-name Dasyu, "enemy," thus grew to signify a goblin or devil, as the old Teutonic word for enemy bas become the English "fiend."

Nevertheless, all of them could not have been sarages. We hear of wealthy Dasyus, and even the Vedic bymms speak much of their "seven eastles" and "ninety forts." In later Sanskrit literature the Aryans make alliance with aboriginal prinees; and when history at lengll dawns on the scene, we find some of the most powerful kingdoms of India ruled by dynasties of non-Aryan deseent. Nor were they devoid of religious rites, nor of cravings after a future l.ie. "They allorn," says a very ancient Sanskrit treatiss, ${ }^{2}$ "the bodies of their dead with gifts, with raiment, with ornaments, imagining that thereby they shall attain tho werle to come." These ornaments are tho bits of bronce, enjler, and gold, whieh we now dig up from bencalh theis ruvie stone monuments. In the great Sanskrit epic which marrates the advance of the Aryans inte southern India, o nom Aryan chief describes his race as " of fearful swiftness, myilliling in lattle, in colour like a dark blue-cloud." ${ }^{3}$

[^159][^160]Our earliest glimpses of India disclose two races strughad lately entered by the north-western passes-a people of Aryan (literally "noble") lineage, speaking a stately language, worshipping friendly and powerful gods. The other was a race of a lower type, who had long dwelt in the land, and whom the lordly new-comers drove back hefore them inte the mountains, or reduced to servilute on lie plains. The eomparatively pure descendants of these tru races in India are now nearly equal in number, there heing nbout 18 milliuns of each; their nixed progeny, sprung chictly from the ruder stoek, make up the mass of the present Indian population.

The lower tribes were an obscure people, who, in the absence of a racename of their own, are called the nomAryans of nhorigines. They have left no written reforde ; indeed, the use of letters, or of the simplest hieroglyphies,

Thrust back by the Aryans from lie piains, these primtive peoples have lajn hidden away in the recesses of the mountains, like the remains of extinct animals which zoologists find in hill-caves. India thus forms a great museum of races, in which wee can study man from his - west to his highest stages of culture.

Among the radest fragments of mankind are the isolated Andaman islanders in the Bay of Bengal. The old Arab and Europeon voyagers described them as dog-faced man-eaters. The English olficers sent to the islands in 1855 to cstablishl a settlement found themsalves surrounded by quite naked camibals of a ferocious type who daubed themselves when festive with rod earth, and mourned in a suit of olive-coloured mud. They used a noise like weeping to express friendslip or joy, hore only names of common gender, which shey received before birth; and their sole conception of a god was in evil spirit who spread disease. For five years they repulacd every effort at intereourse by showers of arrows ; but the officers slowly brought them to a better frume of mind by building sheds qear the settlenent, where these poor beings might find sheleer from the tropical rains, and receive mediciues and food.
.The Anamalai hills, in sontbern Madras, form the refige of a. whole series of broken tribes. Five hamlets of long-baired wildlooking l'uliars live on jungle products, mice, or any small animals shey can catch, and woiship demons. Another clan, the Nundavars, shrink from contact with the outside world, and possess no fixed dwellings, but wander over the innermost hills with their cattle, shelteing themselves under fittle leaf-sheds, and seldom remaining in one spot more, than a year. Tho thick-lipped smallbodied Katers, "Lords of the Hills," are a remnaut of a bigher ruce. They filo the front teeth of the upper jaw as a manriage ceremony, live by the chase, and wied some intuence over tho ruder forest-folk. These hills, now very thinly peopled, abound in the great stone monuments (kistvachs and dolnens) which the primitive tribes used for their dead. The Nairs of south-western India still practice polyandry, according to which a man's property descends not to his own but to his sister's children. 'llat system also appears among the Himalayan tribes at the opposite extremity of ludia.

In the Central Provinces the aboriginal races form a large proportion of the population. In certain districts, as in the feudatory state of Bastar, they amount to threceffifths of the inlabitants. Thi most important race, the Gonls, have made some advances in civilization; hut the wilder tribes still eling to the forest, and live by the chass, and some of them are reported to have used, within a few years back, flist points for their arrows. The Mariais wield bows of great strength, which they holit with their feet while they draw the atring with both hands. A still wilder tribe, the Maris, fy from their grass-built huts on the approsch of a stranger. Once a year a neessenger comes to them from the local rajii to take their tributo of jungle products. He does not enter their lamentes, but beats a drum ontside, and then hides himself. The sliy Dláris creep forth, place what they lave to give in an appointed spot, add run lack again into their retreats.

Further to the north-cast, in the thibutary states of Orissa, there is a poor tribe, 10,000 in mumber, of Juangs or Patuas, literally the " leaf-wearers," whose women formetly wore no clothes. Their only vestige of covering was a few strings of beads round the waist with a bunch of leaves ficd before and behind. Those under the Britisli influence wero clothed in 1871 by order of Government, and their native chief was persuaded to do the same work for the others. This leaf-wearing tribe had no knowledge of the metals till quite lately, when foreigners came among them, and no word exists in theinative language for iron or any other metal. But.their cuantry abounds with tlint weapons, so that the Juangs form a remmant to our own day of the Stone Age. "Their huts," writes the office: who knows them best, "are among the smallest that human beings ever deliberataly constructed as dwellings. They incasure about 6 feet hy 8 . The head of the family and all the females hudde together in this one sleell, not much larger than a dog-kennel." The loys and the young men of tho village live in one large building apart by themselves; and this custorn of haring a common abode for the whote male youth of tho hamlet is found among many of tho aboriginal tribes in distant parts of Indin. The Kendhs of Orissa, who kept ap their old tribal ritual of human sacrifice until it was put down by the British in 1835-45, and the Santals in the west of Lower Bengal, who rose in 1855, are oxamples of powerful ond highly developed non-Aryan tribes.
Yroceeding to tho northern boundary of India, we find the slopes sind apurs of the Ilimalayas poopled by a great variety of rude tribes. Aa a rulo they are fiarce, black, undersized, and ill-fed. They formerly cked out a wrutched subsistence by plundering the noro civilized hamlets of the Assam valley,- a means oflivelihood which they are but slowly giving up under British rule. Some of the wildcst of them, such os the independent Abars, are now employed as \& sort of irregular police, to kepp the peace of the border, in return
ior a yearly gift of cloth, hoes, and grain. - Thelr very namea bear witness to their former wild life. One tribe, the Akas of Assam, is divided into two clans, known respectively as "The eaters of a thousand hearths," and "The thicres who lurk in the cottonfield."

Whence came these primitive peoples, whom the Aryan invaders found in the land more than three thousand years ago, and who are still scattered over India, the fragments of a prehistoric world? Written records they do not possess. Their oral.traditions tell us little, but such hints as they yield feebly point to the north. They seem to preserve dim memories of a time when the tribes dwelt under the shadoir of mightier hill ranges than any, to be found ou the south of the river plains of Bengal. "The Great Mountain" is the race-god of the Santáls, nud an object of worship among other tribes. The Gonds, in the leart of of Central India, have a legend that they were created at the foot of Dewalagiri Peak in the Himalayas. Till lately they buried their dead with the feet turned northwards, so as to be ready to start again for their aucient home in the north.

The language of the non-Aryan races, that record of a Nonnation's past more enduring than rock inseriptions or tables Aryn of brass, is being slowly.made to tell the secret of their lanorigin. It already indicates that the early peoples of Indin guage belonged to three great stocks, known as the Tibeto- Tiben Burman, the Kolarian, and the Dravidian. The Tibeto. Burmesa
Burman tribes cling to the skirts of the Himalayas and their north-eastern offshoots... They crossed over into India by the north-eastern passes, and in some prohistoric time had dwelt in Central Asia, side by side with the forefathers of the Mongolians and the Chinese. Several of the hill languages in Eastern Bengal preserve Chinese terms, others contain Mongolian. Thus the Nagâs in Assam still use words for three and vater which might almost be understood in the streets of Cantou.

The following are the twenty principal dialects of the Tibeto-Burman group:-(1) Cáchárí or Bodo, (2) Garo, (3) Tripura or Mrung, (4) Tibetan or Mhutia, (5) Gurung, (6) Murmi, (7) Newar, (8) Lepcha, (9) Miri, (10) Aka, (11) Mishmi dialects, (12) Dhimsl, (13) Kanáwari dialects, (14) Mikir, (15) Singplıo, (16) Nága dialects, (17) Kuki dialects, (18) Burmese, (19) Khyeng, and (20) Manipuri,
"It is impossible", writes Mr Brandreth, "to give even an approximate number of the speakers included in this group, as many of the languoges are either across the frontier or only project a short distance into our own territory. The languages included in this group bave not, with perhaps one or two exceptions, both a cercbral and dental row of consonants, like the South-Indian langueges; some of them have aspirated forms of the surds, but not of the sonants ; others havo aspirated forms of both. The langrages of this group, even thoye which most diverge from each other, have several words in common, and capecially numerals and pronouns, and also some resenblances of grammar. In comparing the resembling worda, the differences hetween them consist often less in any modification of the root-sylable than in the rarious ndditions to the root. Thus in Burmeso we have nd, 'ear;' Tibetan, ma-ba; Magar, ua-hep; Newar, nai-pong; Dhimal, nd-hdthong; Kirantí dialects, $n d \cdot p r o, n d-v i k, n d-p h i k ;$ Nága languages, tc-na-ro, te-narang; Danipuri, na-kong; Kupui, ka-nd; Sak, aka-nd; Karen, $n a-k h u$; and so on. It can hardly be doubted that such additions as these to monosyllabic rootsare principally determinative ayllablea for the purpose of distinguishing between what would otherwise have licen monosyllabic words having the same sound. Theee determinatives are generally affixed in the languages of Nepal and in the Dhimal language; prefixed in the Lencla language, and in the Innguages of Assam, of Manipur, and of the Clittagong and Araknn hills. Woids arc also distinguisled by differenec of tone. Tho tones aro generally of two kinds, described as the abrupt or short, and the pausing or heasy ; and it has beca remarked that those languages whicli are most given to alding otber eyllables to tho root make the lesst use of the tones, and vice versa; where the tones most prevail tho leat recourso is had to determinative ay llables.'

The Kolarinns, the second of the three non-Aryan stocks, Firt seem also to have entered Bengal by the north-eastero ans
passes. They dwell chiefly in the noth, and along the north-castern edge of the three-sided table-lind which covers the soutbern hif of India. Some of the Dravidians, or third stock, appear, on the other hand, to have found their way into the Punjab by the north-western passes. Thay now inhabit the southorn part of the three-sided table-land, as fur down as Cape Coniorin, the southernmost part of IndiaIt apmers as if the two streams of the Kolarian tribes from the nortl-cast and the Dravidians from the north-west 1ad converged and crossed each other in Centrai Indin. The Dravidians prosed the stronger, broke up the Kolarians, thrust aside their [racsments to east and rest, and then rushed forward in a mighty body to the south.
It thus happened that, while the Dravidians formed a vast mass in soutbern India, the Lioiarians survived only as isolated tribes, scattered so far npart as soon to forget their common origin. One of the largest of the Kolarian races, the Santals, dwells on the extreme eastern edge of the three-sided table-iand of Central India, where it slopes down into the Gangetic valley of Lower Bengal. The Kurkus, a broken Kolarian tribe, inhabit a patch of country about 400 miles to the rest, and have for perhaps thousands of years been cut off from the Santáls by monntains and patluess forests, and by intervening races of the Dravidian and Aryan stocks. The Kurkus and Santals have no tradition of a common origin; yet at this day the Kurkus speak a lauguage which is little else than a dialect of Santáli. The Savars, once a great kiolarian tribe, mentioned by Pliny and Ptolemy, are now a poor wandering race of woodcutters ol northern Madras and, Orissa Yet fragments of them have lately been found deep in Central India and as Iar west as Rajputina on the other eide.

Th: ane principal languages of the Kolarian group are-(I) Santáli, (2) Mundári, (3) Ho, (4) Bhumij, (5) liorwa, (6) Kharria, (i) Juang, (8) Kurku, and perhaps (9) Savar. Some of them are separated only by dialestical differences.
"The Kolarian group of Janguages," writes Mr Brandreth, "has uoth the cercbral and dental row of letters, and also aspirated forms, which last, accoming to Caldwell, did not belong to carly Dravidian. There is also a set of four sounds, which are perhaps peculiar to Santili, called by Skrefsrud semi-consonants, and which, when followed by a vowel, are chansed respectively into a, j, d, and 4 . Gender of nouns is onimate and inanimate, and is distingoished by difference of pronouns, by difference of suffix of a qualifying naun In the genitive relation, and by the gender being denoted by tha verb. As instances of the genitive suffix, we have in Santéli inren loopon, 'my son,' but in-ak orad, 'my honse.' There is no dis. tinction of sex in the pronouns, but of the animate and inanimate gender. The dialects generally agree in using a short form of the third persenal pronoun suffixed to denote the number, dual and [1] ural, of the noun, and short forms of all the personal pronouns ere added to the verb in certain positions to express both number and person, both as regards the arbject and object, if of the animato gender, - the inanimate gender being indicated hy the mission of these suffixes. No other group of languages, apparently, has such a lorical classification of ita noans as that shown by the genders of both the South-Indion grouns. The genitive in the Kolarian group of the full personal pronouns is used for the possessive pronoun, which again takes all the post-positions, the fenitive relation beisg thes inficated by the genitive anffix twice reperated. The liolarian languages cenerally express grammationl relations by suftios, and edd the prost-positions directly to the root, without the intervention of an oblique form or Eenituve or other suffix. They arree with the Dravidian in havang inclusive and exclusive forms for the phat of the first personal pronoun, in using a relative pmoticiple instead of af relative pronom, in the pasition of the governing weral, and in the possession of a true cansal form of the verb. They hawe adnal, which the Dravilians have not, but they have no negative poice. Connting is by trenties instem of by tons, as in the Dravidian. The Santali verh, according to Ekrefirme, hins fwenty-three tenses, end for every tense two forins of the participle and figerund."

The rompact Dravidians in the south, altherigh in afterCuysubluch by the higher civilization of the Aryan race vhich focsash in ameng thew, wero never thas hroken
into facymonts. Their purc descendants consist, indeed. of small and scattered tribes; but they have given their languages to 46 millions of people in southern India. That some of the islands in the distant Pacific Ocean were peopled either from the Dravidian settlements in India, or from an earlier common source, remains a conjectural iaduction of philologers, rather than an established ethnological fact. ${ }^{1}$ The aboriginal tribes in southem and western Australia use almost the same words for I, thou, he, we, you, de., as the fishermen on the Madras const, and resemble in many other wirs the Madras hill tribes. as in the use of their national weapon the boomerang.

Eishop, Caldwell recognizes twelve distinct Dravidian lan-guages:-(1) Tamil, (2) Malayalim, (3) Telugu, (4) Kanarese, (5) Tulu, (6) Kudugn, (7) Toda, (S) Kota, (9) Gond, (10) Khond, (11) Uráon, (12) Rajmahêl.
"In the Dravidian group," writes Mr Prandreth, "there is." rational and an irratioual genler of the nouns, which is distinguished in the plural of the nouns, and sometimes in the singular also, by affixes which appear to be fragmentary pronouns, by cortesponding pronouns, and by the agreencut of the verb with the noun, the gender of the verb being expressed by the pronominal suffixes. To give an instance of verbal gender, we have in Tamll, from the root scet, 'to do,' scyd-dn, 'he (rational) did;'-scyd ad', ' abe (rational) did ;' seyc-adu, 'it (irrational) did;' seyd- κ r, 'they (the rationals) did;' seyd-a, 'they (the irrationals) did;'-the full pronouns being araz, 'he ;' aral, 'she;' adu, 'it ;' aver, 'thes;" arci, 'they.' This distinction of gender, though it exists in inost of the Dravidian languages, is not always carried out to the extent that it is in Tamil. lu Telngu, Gond, and Khond it is preserved in the plural, but in the singular the femioine rational is merged in the irrational gender. In Gond the gender is furtber marked by the noun in the genitive relation taking a different suffix, according to the number and gender of the noum on which it depends. In Urion the feminine rational is entirely merged in the irrational gender, with the exception of tho pronoun, which preserves the distiaction between rationals and irrationals in the pleral; as as, ' he,' referring to a god or a man; αd, 'she,' or 'it., referriag to a woman or an irrational object; but dr, 'they;' applies to both uen and women; abri, ' they,' to irrationals only. 'Ihe rational gender, besides human beings, includes the celestial and infurnal deities; and it is further subdivided in some of the languages, but in the singular only, into masculine and feminine. An instance of this snudivision in the Tanil verb was given above.
"The grammatical relations in the Dravidian are generally expressed thy suffixes. Many nouns hare an oblique form, which is a remsrkable oharacteristic of the Dravidian group; still, with tho majority of nouns, the post-positions are added directly to the nominative form. Other features of this group are-the frequent use of formatives to specialize the meaning of the raot ; the absenr? o. relative pronouns, and the usc instead of a relative participle, which is usually formed from the ordinary participle by the same suffix as that which Dr Caldwell considers as the oldest sign of the genitive relation; the adjective succceding the sulustantive; of two substantives, the determining preceding the determised; and the verb being the last member of the scntence. There is no true dunl in the D.avidian languages. In the Dravidian languages there are two forms of the plual of the pronoun of the first person, one including, tho other excluding, the person addressed. As regards the verbs, thero is a negativo voice, but no passive voice, ond there is a causal form.

We discern, therefore, long beace the dawn of history, masses of men moving uneasily orer lndia, and violently pushing in among still earlier tribes.. They crossed the snows of the Himalayas, and planged into the tropical foreste in search of new homes. Of these ancient races fracments now exist in almost cxactly the same stage of hmman progress ns they were when deseribed by Vedic poets over three thousand years ago. Some are dying out, such as the Andaman islandera, among whom only ono family in 1869 had so many as three children. Others are increasing, like the Santalls, whe have doubled themselves under Mritish rule. Taken as a whole, and including ecrtain half-ILinduized branches, they number 17,716,825, or say 18 millions, equal to threc-quarters of the population of England and Wales. Put while the bolder or more
'See the anthoritics in Bishop Caldwell's Comparative Grammar of the Zrawdian Languages, pr. 78-80, \&c. (ed, 1857).
isolated of the aborigioal races have thus kept themselves apart, by far the greater portion submitted in ancient times to tho Aryan invaders, and now make up the mass of the Hindus.
Ia Bengal and Assam the aborigines are divided into nearly sisty distinct races. Iu the North-Western Provinces sisteen tribes of aborigines are eaumerated in the census of 1872. In the Ceatral Proviaces they number $1 \frac{3}{3}$ millions,- the aacieat race of Gonds, who ruled the central table. land before the rise of the Marhattas, alone amounting to $1 \frac{1}{2}$ miltions. In British Buraaly the Karens, whose traditions have a siagularly Jewish tinge, number 330,000 . In Oudh the nationality of the aboriginal tribes has been stamped out beaeath successive wa ves of Rajput and Mahometan invaders. In ceatres of the ancient Hindu civilization, the aboriginal races have become the low-eastes and out-castes on which the social fabric of India rests. A few of them, however, stull preserve their ethuical identity as wandering tribes or jugglers, basket-weavers, and fortune tellers. Thus the Nats, Bediyas, and other gipsy clans are recognized to this day as distiact from the surrounding Hindu population.

The aboriginal races on thy plains have supplied the hereditary crimiaal classes, alike under the Hindus, the Mahometans, and the British. Formerly organized rolber communities, they hare, under the stricter police adminis. tration of our days, suak into petty pilferers. But their existence is still recognized by the Criminal Tribes Act, passed in 1871, and decasionally enforced within certain localities of northern India.
The non-Aryan hill races, who figured from Vedic times downwards as marnuders and invaders, bave ceased to le a disturbing element. Maay of them appear as predatory clans in Mahometan and early British India. They sallied forth from their mountaios at the ead of the autuma harvest, pillaged and burned the lowland villages, and retired to their fastaesses ladea with the booty of the plains. The measures by which many of these wild races have been reclaimed mark snme of the most honourable episodes of Anglo-Indian rule. Cleveland's Hill-Rangers in the last century, and the Bhils ond Mhairs in more recent times, are well-koown examples of marauding races being turned iato peiceful cultivators and loyal soldiers. An equally salutary transfurmation has taken place ia many a remote forest and hill tract of India. The firm order of British rule has rendered their old plundering life no longer possible, and at the same time has opened up to them new outlets for their energies. Their character differs in many respects from that of the tamer population of the plains. Their truthfulness, stardy loyalty, and a certain joyous bravery, almost amountiag to playfulaess, appeal in a special manner to the English miad. There is scarcely a siagle administrator who has ruled over then for any length of time without fiading his heart drawn to them, and leaviag on record his belicf in their capabilities for rood.

Primitive IIinduism.

We havo seen that India may be divided into three regions. Two of these, the Himalayas in the north and the three-sided table-land in the south, still ferm the retreats of the non-Aryan tribes. The third, or the great river plaias, became in very ancient times the theatre on which a nobler race worked out its civilization.
That race belonged to the splendid Aryan or IndoGermanic stock, from which tho Rréhman, the Rájput, and the Englishman alike descend. Its carliest bome seems to have heea in Central Asia. Frem this common campingground certain branclies of the race started for the east, others for the west. Oae of the western offshoots founded
the l'erstan kingdon; another built Athens and Lacentemon, and became the Greek nation; a third went on to It thy, and reared the city oa the seven hills which grew into imperial liome. A distant colony of tho same race excavated the silver orcs of prehistoric Spain ; and, when we first catch a siggt of ancient England, we sce an Aryan settlement fishing in willow canoes, and working the tinmincs of Cornwall. Meanwhile other branches of the Aryan stock had gone forth from the primitive home in Central Asia to the cast. Powerful bands fouarl their way through the passes of the Ilimalayas isto the Punjab, and spread theaselves, chiefly as Erallmans and Rájputs, over India.

The Aryan offshonts to the east and to the west alike asserted their superiority over the earier pooples whom they found in possession of the soil. The history of ancient Europe is the story of tho Aryan settlenents around the shores of the Meditermanean; and that wide term, modern civilization, merely meaas the civilization of the western branches of the same race. The history und developaent of India consist of the history and developacent of the eastern offshoots of the Argan stock who settled in that land. 'Io the west, the Aryan speech has supplied the modern languages of Europe, America, aad Eagland's island empires in the southern Pacific. In the east, Hiaduism and Buddhism, the religions of the Indian branch of the Aryans, have become the faithe of more than onebalf of the whole hunan race, and spread Aryan thought and culture throughont Asia to the utmost limits of China and Japan.

We know little regarding these nolde Aryan tribes in its home their carly camping-grouod in Central Asia. Froms words in Crnpreserved in the languages of their loag-separated descend- tral Asin. ants in Europe and India, scholars infer that they roamed over the grassy steppes with their cattle, making long balts to rear crops of grain. They had tamed most of the domestic animals, were acquainted with some metals, understood the arts of weaving and sewing, wore clothes, and ate cooked food. They lived the hardy life of the temperate 20xe, and the feeling of cold seems to bo one of the earliest common remenbrances of the eastern and the western branches of the race. Ages afterwarts, when the Vodic singers in hot India prayed for long life, they asked for "a hundred winters." Tho forefathers of the Greek and the Tomaa, of the Englishman and the Hindu, dwelt together in Asia, spoke the same tongue, worshipped the same gods. The languages of Europe and Iadia, although at first sight they seem wide apart, are merely different forms of the original Aryan speech. This is especially true of the common words of family life. The names for father, mother, brother, sister, and widow are the same in must of the Aryan languages, whether spoken on the lanks of the Ganges, of the Tiber, or of the Thames. Thus tho word denghter, whish occurs in nearly all of them, has been derived from two Sanskrit ronts meaning "to draw milk," and preserves the menory of the tiane when the danghter was the little milk-anaid in the primitive Aryan houschold.

The ancient religions of Europe and India had a similar origin. They were to some extent made up of the sacred stories or myths which our comanon aacesters had learned whilo dwelling together in Coutral Asia. Some of tho Vedic gods were also the gods of Grece and Rome; and to this day the Deity is adored by mames derived from the same old Aryan root by Dríumans in Calcutta, ly Protestaat clergymen at Westminster, and by Catholic pricsts in Peru.

The Vedic hymans exhibit the Indian branch of the velas. Aryans on its march to the south-east and in its new homes. The earliest songs disclose the race still to the
north of the Khyber Pass, in Cabul; the later ones bring it as far as the Ganges. Their victerious adrance castWards through the interniedinte tract can be traced in the Vedic writings almost step by step. One of their famous rettlements lay between the two sacred rivers, the Saraswati and the Drishadvati,-supposed to be the modern Sarsuti near 'Thanesar, in the Punjab, and the Ghaggar, a day's marel from it. That fertile strip of land, nut more than 60 miles long by 20 broad, was fondly remembered by them as their Holy Land, "fashioned of Cod, and chosen ly the Creator." As thsir numbers increased, they pushed castwards along the base of the Himalayas, into what they afterwards called the Land of the Sacred Singers (Brahmarshilesha). Their settlements practically iacluded the five rivers of the Punjab, together with the other great riversystem formed by the upper courses of the Jumaa and the Ganges. In them the Vedic hymns were composed; and the steady supply of water led the Aryans to settle down from their old state of wandering pastoral tribes into communitics of husbandmen. The Vedic poets praised the rivers which enabled them to make this great change-perlaps the most inpertant step in the progress of a race. "May the Indus," they sang, "the far-famed giver of wealth, hear us,-(fertilizing our) broad fields with water." The Himalayas, through whose passes they had reached India, and at whose southern base they long dwelt, made a lasting impression on their menory. The Vedic singer praised "Ilim whose greatness the snowy ranges, and the sea, and the aerial river declare." In all its long wanderings through India the Aryan race never forgot its northerr home. There dwelt its gods and holy singers, and their eloquence descended from lieaven among men.

The Rig. Veda forms the great literary memorial of ine early Aryan settlements in the Punjab. The age of this venerable hymnal is unknown. The Hindus believe, withont evidence, that it existed " from before all time," or at least 3001 y'ars n.c., -nearly 5000 years ago. European scholars lave inferred from astronomical dates that its composition was goiag on about 1400 b.c. Put these dates are themselves given in writings of later origin, and might have been calculated backwards. We ouly know that the Vedic religion had been at work long before the rise of Buddhism in the 6th eentury e.c. Neverthe. less, the antiquity of the liig. V'eld, although not to be expressed in figures, is abundantly established. The eirlier hymns, exhibit the Aryans on the r.ath-western frontiers of India just starting on their long journey. Defore the embassy of the Greek Megasthenes, at the end of the 4th eentary n.c., they had spread their influence as far as the delta of Lower Dengal, 1500 miles distant. At the time of the Periplus the sunthermost pinint of India liad beceme a seat of their worship. "What a series of centuries mast have elapiscil," writes Weher, "Lefore this boundless tract of country, inhabited by wild and vignrous tribes, could lave been brought over to Práhmanism!"

The Brahmans dechare that the Vedic liymms were directly inspired ly God. Indeed, in our own times, the great theistic church of Dengal, which rejects Dhíhmanical tcaching, was rent into two sects on the question of the divine antharity of the ledra. As a maller of fact, the lymns were composed ly eertain families of hishis or psalmists, some of whose names are preserved. The Rithreda is a very old eallection of 1017 of these short lyrical poems, chiefly addressed to the gols, and contzining 10,550 verses. They show us the Aryans on the banka of the Indus, divided into varions tribes, sonetimes at war with eaeh other, sometimes mited against the "black-skimed" hberigines. Caste, in its later sense, is maknown. Ench father of a family is the priest of his own houselwotd. The
chieftain acts as father and priest to the tribe; but at the g -eater festivals he chooses some one specially learned in holy offerings to conduct the sacrifice in the name of the people. The chief himself seems to have been elected; and his title of Vis-pat:, literally "Lord of the Settlers," survives in the old Persian Vis-paiti, and as the Lithuanian Wiéz-patis in central Europe at this day. Women enjored a high position, and sonne of the most benutiful hymns were composed by ladies and queens. Marringe was held sacred. Husband and wife were both "rulers of the lionse" (lampati), and drew near to the gods together in prayer. 'The burning of widows on their hosbands' funeral-pile was unkoown, and the verses in the Veda which the Brahmans afterwards distorted into a sanction for the practice have the very opposite meaning. "Rise, moman," says the sacred text to the mourner; "come to the world of life. Come to us. Thou hast fulfilled thy duties as a wife to thy husband."

The Aryan tribes in the Vede are acquainted with most Early of the metals. They have blacksmiths, coppersmiths, and Aryan goldsniths among them, besides carpenters, barlers, and life. other artisans. They fight from chariots, and freely uso the horse, although not yet the eleplant, in war. They have settled down as husbandmen, till their fields with the plough, and live in villages or towns. But they also cling to thcir old wandering life, with their herds and "cattlepens." Cattle, indeed, still form their chief wealch, the coin (Latin, pecunia) in wlich payments of fines are made; and one of their words for war literally means "a desiro for cows." They have learned to build "shijps," perhaps lirge river-beats, and seem to have heard something of the sea. Uulike the modern Hindus, the Aryans of the reclu ate beef, used a fermented liquor or beer made from the soma plant, and offered the same strong meat and drink to their gods. Thus the stout Aryans spreid eastwards through northern India, pushed on from behind by later arrivals of their own stock, and driving before them, or reducing to bondage, the carlier "black skinned" races. They marched in whole communities from one river-valley to another, each lense-father a warrier, husbandman, and priest, with lis wife, and his little ones, and cattle.
These free-learted tribes had a great trust in theniselves ond their Early n gods. Like other conquering races, they believed that both then- haion. sclves nud their deities were altogether superior to the people of tho land and thir poor rude olyjects of worshijh. Inderd, this notlo self-confidence is a great diil to the sucess of a nation. Their divinities-in Sanskrit, Decata, literally "the Slinining Ones"were the grvat powers of nature. They allored the Father-heaven, (Dymush-pilar, the Dies.pitcr or Jupiter of Rome, the Zcus of Grecee, the how German Dous, and, through the old Fremel godedemon Dus-ins, the Deztec of English slang), together with Mother-carth, nuld the Encompassing Sky (Verena in Sanskit, Uranus in I.atin, Ouranos in Greck). Hudn, or the aqueons vappour that brings taclo matuma the precions main oa which plenty or tamme still sepends, reecived the hargest mumber of lyyns. By degrees, ns the sethers realizel nome ant more keenly ine importance of the periodical mins in their new life as lastandmen, le became the chief of the Xedice gols. "The gods do not reach unto thice, O Indra, nor men ; thou orerconest all crealures in strength." Agni, tho Goud of hiro (Latin igni-s). ranks perlups next to ludra in the mumber of hymns alitressel to himen as "the youngest of the gols," "the loril nad giver of wealth." The Maruts are the Storm Gods, "who make the rocks to tremble, who tear in picees the forest." Ushas, "the 1tighrhora Dawn " (Greck, Ees), "shintes upon us liko a young wift, rousing every living being to go furth to his work." Thie Astius, or "Fleet Outimiters" of the Dawn, are the first rays of smurise, "Lords of Lustre." The Sun limself(Surjya), the Wind (Wiyu), the Fiicndly Day (Mitra), the nnimating feimented ynico of 'the sureficial I'lant (Soma) nud many ollers, are involied in the Fald,--in all about thity-three gods, "wto are eleven in heaven, dlewn on earth, and elevin dwelling in glary in midenr."
Tho terriblo blaol-lininking deities of modern Hinduism oro searcely kinown in the Fedra. Bulfalocs aro indeed offered; nud ono hyman puints to a symbolism based on human sacrifices, on enrly prastive npparently extinet before the timo of the V edic singers. The great horse sacrifice was substituten for the flesh and blood of a man. But, as a whole, the hymne aro addressed to bright,
friendly goot:. Rudra, whe was destined to become the Siva of the Hindus, nud the thind persen, or Destroyer, in their Thiad, is only the god of Roarins 'Tumpests in tho V'edr; Vishnu, the secone person, or I'veserver, in lhe Mindu 'riad, is but slightly known ns the deity of the Shining Firmoment; while Brohma, the first person, or (reator, has no sepmante existence in these simple hymus. The mames of the dreadful Mahadern, Dirga, Káli, and of the gentler Krisha and Rima, are equally unknown in the lig. Veda.
W While the nboriginal ritees buried their dead under rude stone monuments, the Aryan-alike in Iutia, in Greece, and in Italymale use of the funcral-pile as the most solemn method of seveling the mortal from tho immortal part of nam. As he derived his natural birth from his parents, and a partial regeneration, or second birth, fiom the qrerfurmance of his religious futies, so the firo, by setting freo the soul from the body, completed the thind or heavenly birth. His frivods stood round the pyre os round a uatal bed, and commonded his eye to go to the sun, his breath to the wind, his limbs to the earth, - the water and plants whence they had been derivet. Bat "as for his unborn part, do thou, Lord (Agni), quicken it with thy heat ; let thy flame and thy brightness quicken it; convey it to the world of the righteous." The doctrine of transmigration was unknown. The circle round the funeral-pile snng with an assuranee that their fricnd went direct to a state of blessedness and reunion with the loved ones who had gone before.

The hymns of the Rig-Veda were composal, as we have seen, by the Aryans in their colonies along the Indus, and on their marcll eastwards towards the Jumna and upper Ganges. The growing numbers of the settlers, and the -arrival of fresh-Aryan tribes from behind, still compelled them to advance. From the Land of the Sacred Singers Manu describes them as spreadiug through "The Midille Land" (Madhyadesha), comprising the whole river systems of Upper India as far east as Oulli and Allahábád, with the Himálayas as its northern and the Vindhyá ranges as its southern boundary. The conquest of the vast new tracts thus inchrded seems not to have enmmenecd till the close of the Rig-Vedic era, and it must bave been the work of many generations. During this adrance the simple faith of the Rig-Vedic singers was first adorned with stately rites, and then extinguished beneath them. The race progressed from a loose confederaey of tribes into several well-knit nations, each bound together by the atrong ceatral furce of kingly power, directed by a powerful prierthond and crganized on a firm basis of caste.

Whence arose this new constitution of the Aryan tribes into nations, with castes, priests, and kings? We have seen that, although in their earlier colonies on the Indus ench father was priest in his fanily, yet the chieftain, or lord of the settlers, called in aone nana specially learned ia holy offerings to conduct the great tribal sacrifices. Such men were highly honoured, nud the famous quarrel which runs throughout the whole Vedu sprang from the chaias of two rival sages, Vashishtha and Visvamitra, to perform one of these ceremonics. The art of writing was unknown, and the hymns and saerificial words had to be handed down by word of moutli from father to son. It thus happened that the families who learned them by heart became, ns it were, the hereditary owners of the liturgies required ot the most solemn offerings to the gods Members of these Louselolds were chosen ag.in and agaia to conduct the tribal sacrifices, to chant the battle-hymn, to implore the divine aid, or to pray away the divine wrath. Even the Rig-Yeda recogaizes the importnnce of these sacrifices. "That king," says a verse, "before whom marches the priest, he alone dwells well-established in his own house, to him the cople bow down. The king who gives wealth to the pricst, bo will conquer, him the gnds will protect." The tribesmen first hoped, then belicred, that a hymn or prajer which bad once acted sucecssfully, and been followed by victory, would agaia produce the same results. The hymns became a valuablo family property for those who had composed or learned them. The Rig-Veda tells how the prayer of Vashistha provailed "in the battle of the ten kings," nnd bow that of Visvámitra "preserves the tribe of the Bhárats."

The potent prayer was termed bratha, and he who offeren it Urealman. Woo to all who despised cither! "Whoso. ever," says the lig. Veda, "scoffs at the praycr (bralma) which we have male, may hot plagues come upon him, may the sky burn up that hater of Brillumans " (brailma-dvish). Certaio familics thus came to have, not only an hereditary claim to conduct the great sacrifices, but also the exclusivo knowledge of the ancient hymns, or at any rate of the traditions which explained their symbolical tneaning. They naturally tried to render the ceremunies solemn and int. posiog. By degrees a vast array of ministranta grew up around each of the greater sacrifices. There were first the oficiating priests and their assistmts, who prepared the sacrificial ground, dressed the altar, slew the victims, an! poured out the libations; second, the chanters of the Vedic hymns; third, the reciters of other parts of the service; fourth, the superior priests, who watched over the wholo, and corrected any mistakes.
Meanwhile other castes had been gradually formed. As the Aryans moved eastwards from the Indus, sume of the warriors were mure fortunate than nthers, or received larger shares of the conquered landa. Such families had not to till their fields with their owa hands, but could leave that work to be done by the aborigiaal races whom they subdued. In this way there grew up a class of warriors, freed froni the labour of lusbandry, who surrounded the chief or king, and were olways ready for battle. It beems likely that these kinsmen nad "companlons of the king" formed an important class omong the early Aryan tribes in India, os they certainly did among the ancient branches of the race in Eurupe, and still do at the petty courts of India. Their old Sanskrit names, Kshattriya, Rajanya, and Rajbansi. mean "connected with the rayal pnwer," or "of the royal lino"; their usual modern name Rajput means "of royal descent." . In process of time, whea the Aryans aettled down, not as mere fighting claos, but as powerful aations, in the middle land along the Jumne ond Ganges, this watrior class grew in numbers and in power. The black races had been reduced to serfdom, or driven back iuto the Himalayas and the Vindhyas, on the north and the south of that fertile tract. The incessant fighting, which had formed the commoa lot of tho tribes on their actual migra. tion eastwards from the Indus, ceased. A section of the people laid aside their arms, and devoted themselves tn ugriculture or other peaceful pursuits. The sultry heats of the Middle Land must also have abated their old northern caergy, and led them to love repose. Those who, from family ties or from personal inclination, preferred a soldier's life had to go beyoad the frontier to find an eneny. Distant espeditions of this sort could be undertaken much less conveniently by the husbandman than in the ancient time, when his fields lay on the very border of the enemy's country, and hod just been wrested from it. Sucle expeditions required and developed a class of regular aoldiers whose presence was not constantly needed at home for tilliug the land. The old warrior companions and kinsmen of the king formed a nucleus round which gathered all the more daring spirits, and leid the foundation'of a military caste. The Aryans on the Ganges, in the "Middle Land," thus found themselves divided ioto three classes-first, the priests, or Brâhmans ; second, the warriors sod king'a companions, called in encient times Kshattriyas, at the present day Rajputs; third, the husbandmeo, or agricultural settlers, who retaiocd the old name of Vaisyas, from the root wis, which in the Vedic period had iocluded the whole "penple." These threo classes gradually became distinct castes; intermarriage between them ceased, and each kept moro and mare strictly to its hereditary employment. Dut they were all recognized as belonging to the "twice-bner" or Aryan race, were all present at the great national
sacrifices, and all worshipped the same bright gods. Beneath them was a fourth or servile class, called Suidras, the remnants of the vanquished aburiginal tribes whose lives lind been spared. Thesc were "the slave-bands of black descent," the Disas of the Teeld. They were distieguished from ther "twice-born " Aryan couquerors as being only "unce-born," and by many contemptuous epithets. They were not allowed to be preseat at the great national sacritices, nor at the feasts which followed then. They could never rise from thair scrile condition, and to them was assigned the severest toil in tho fields, and all the hard and dirty work of the villaga conmunity. Of the four Indian caster, three hed a tendency to increase. As tho Aryan coaquests spread, more aburiginal tribes were reduced to eerfdom as Stidras. Tho warriors, or Kshattriyas, nould constantly receive alditions from tho more wealthy or enterprisiug members of tho cultivating class. When an expedition or migration went forth to subdue new territory, all the colonists would for a time lead a military life, and their sons rould probably all regard thenselves as Kishattriyas. In ancient times entire tribes, aud at the present day the mass of tho population throughout large tracts, thus claim to be of the warrior or Rajput caste. Moreover, the kings and clief fighting-men of aboriginal races who, without being conquered by the Aryans, entered into alliance with them, would likely assumo names of the warrior or Kshattriya rank. We see this process going on before our eyes among many of the aboriginal peoples. The Bralmans, in their turn, seem at first to have received ioto their body distinguished families of Kslantriyan descent. In later times, too, we find that sections of aboriginal races were "manufactured" into Bralmans. The Yaisya or cultivating caste did not tend in this manner to increase. No ono felt ambitious to win his way into it, except perhaps the poor Sudras, to whom any change of condition was forbidden. Tho Vaisyas thenselves tended in early times to rise into the moro honourable warrior class, and at a later period to be mingled with the labouring multitude of Sudras and mixed descent. In many provinces they have almost disappeared ns a distinct caste from the modern population. In ancient India, fis at the present day, the three conspicuous castes were (1) the priests and (i) warriors, of Aryan birth, and (3) the serfs or Sidras, the remnants of earlicer races. The Kishattriyas or Rijputs, at any rate in some parts of India, seem to represent a quite separate ethincal movement from that of the brihumins-that is to say, either a different Aryan migration into India, or an altogether distinct race of perhaps Scythic origin. Tho Sudras had no rights, and, once conquered, ceased to struggle against thicir fate. But a long contest raged between the priests nand warriors for the chief place in the Aryan conmonnealth.

In order to understand that contest, we must go back to the time when the priesta and warrius wero simply retlow tribesmen. The pricstly or Brahman caste grew slowly out of the families of Risbis who complosed the Vedic hymns, or were chosen to conluct the great tribal sicrifices. In after times the whole Brihman population of India pretended to trace their descunt from seven Rishis. But the composers of tha Velie hymas were sometimes kings or distinguished warriors rather than priests; the Veda itself speaks of these royal Jishis (R(ijershis). When the Bralmans put forward their claim to the bighest rank, tho warriors or Kishattriyas were slow to admit it ; and, when the Brahmans went a step farther, and declared that only members of their fanilies could be priests, or g:all admission into the pricstly caste, the warriors disputed Heir pretensions In later ages the Brahmans, having the exclusive keeping of the sacred writhugs, effaced from them, us far as possible, all traces of the struggle. Thev
taught that their caste had come forth froin the mouth of God, divinely appointed to the priesthood from the begin. ning of time. Nevertheless, a large body of Vedic rerses and Sanskrit texts has now been brought to bear upon tho etrugsle between the Brihnaus and Kshattriyas for the liighest rank. ${ }^{1}$
In many of the Argan tribes, lowever, the pricsts failed to establistr themselves as an exclusive order. Indecd, tho four castes, and especially thic Brahman caste, scem unly to liave obtained then full development amid the plenty of the Midalle Land (Machlyadesher), watered by the Jumna and the Ganges. The earlier Aryan settlenents to the west of the Indus remained outside thic caste system; the later Aryan offshouts to the south and east of the middle land only partially carried that system with then. But in the Middle Land itself, with Delli as its western capital and the great cities of Ajodhya and Benares on its eastern frontier, the Bráhmans grew by degrees into a compact, learned, and suprenely inflnertial body, the makers of Sanskrit literature. Threir language, their religion, and their laws became ia after times the standards aimed at throughout all India. They naturally denounced all who did not submit to their pretensions, and stigmatized tho other Aryan settlements who had not nacepted their caste systenn as lapsed tribes or outcastes (1'risishalas). Among the lists of such fallen races we read the name afterwards applied to tho Ionians or Grecks (Yavanas). The Bralmans of the middle land had not only to euforce their supremacy over the powerful warriors of their own kingdons, but to extend it among the Aryan tribes who bad never fully accepted the caste system. That must have been the slow work of ages, and it seems to have led to bitter feuds. See Brahmanisa, vol. iv. p. 201.
White the Brahmans claimed religion, theology, eind philosophy Brauas their specini domain, and the chief seienees and arts as supple- manical muntary sections of their divinely-iuspired knowledge, they sccured law their social supremacy by codes of lav. Their eniliest Dharma-codes stistras, or legal writings, beiong to the Sintha preriod, or scliolastio development, of the $V_{\text {cda. }}$ But their two grent digests, upon wlieh the fabric of Hindu jurisprudenee has been built ul, are of later date. The first of these, the code of Namu, is separated from the Vedic era by a senies of Brihmanical developments, of which we possess only a few of the intermodiate links. It is a compilation of the custonary haw current probably about the 5 th century B.c., anl exhibits the social organization which tho Brilhmans, after their

[^161]
 a livine orisin, aml aseribull them to the inst Mam, on Aryan man, (3) millious of jeary ago. liut, manaster uf Eact, the laws of Mma are the result of a scrius of attempts to coulify tho usages of sman not very extenivivo centre of Brihmanism in mothem hulia, -a metrival digest of local customs combensal by derrees from a legesduy mass of 100,000 cumplets (sfokes) into 268 f. I'hcy, may jows subly lazo been reducel to their hinal fonm of a fritten code wieh a vicw to securmir the system of castraganst tho pophlar movericut of IBudilhism, and thes giving a rigin hatity to the privileges of the lirilimans.

The second arcat code of tho ttindus, that of lifinavalkya, berongs to aperind when Buhthesm had estahlished itself, and probahly to a territory where it was begimnneg to stacenmb to the Buahmanical reaction. It repucsents lib Brihmanical sile of the great controversy (althongh in section of it deals with the organization of monnsterics), refers to the execution of deeds on metal phates, and altogether marks an advance in logal precision. lis compilation belongs to a period appareatly not carliel than the $2 d$ ecutury A.D., anil certainly not hater than the 6th or 7 th.

These codrs deal with llimdu lavin three brancles, namely-(?) domestic ond civil raglats ond duties, (2) the administration of justice, (3) ןnivification and penance. They stercotyned the unwrotten usages which regulated the family life and social organiza. tion of the ohl Aryan commanities in the midullo land. They did not pretend to suplly it borly of law for all the numerous races of Indix, but only for Hinda communitiea of the Bralmanical type. It is do:lhfful whether they quite aceurately represent the actual customary lave even in sach communities, for they were apparently drawn up with a view to assering asd maintainiog the suecial privileges of the Brihmans. This they effect by o rigil demareation of the employments of the peopto, each caste or division of a caste haviag its owa bercditary ocenpatiou assigucd to it; by strinment rules against intermingling the castea hy mariago ; by for hidhing thes higher castes, under aevero penaltics, to eat or drink or hold social intercourse with the lower; and by punishiag the lower castea with atilf more eruel peannces for defiling by their tonch the higher castes, or in any way infringing oa their privileges. They cxhibit tho Hiadu community in the four ancient divisiona of priesta, warriors, cultivators, and serfs (sudras). But they disclose that this old Aryan classification failed to repreacut the actual facts evea of tho Aryan communities in northern India. They admit that the mass of the peopledid not belong to any one of tho four castes, and ascribe its origin to mixed concubinage or illicit connexions. The ancient Brilhmanical commmaties in northern ludia, as revealed by the codes themselves, consiated-first, of an Aryan element divided into priests, wariors, and cultivators, all of whom bore the prond title of the twice-born, and wore the sacred thread; second, of the subjegnted racea, " the once-born" Sudras; and third, of the vast resilue of the Varns-sankara, literally tho "mingled colours," a great but uncertain number of castes to whom was assigned a mixal drseont from the four recognized classes. The same division exista to this day. According to the census of 1871 , the separate tribics and eastes in Lower Bengal do not fall short of a thousand ; in the North. Westera Provinces tho Hindu population was arranged under two hundred and ninety one apecificd castes besides nimerous sub. Civisions. Tha distinctly recognized "mixed castes" throughout British India camot he estimated at less than three hundred, nod prabably annount to many more.

As the Bralhmans spread their influence eastwards nnd southwards from the Middle Land, they carricd their codes with them. The number of their sacred law books (Dharma-sdstras) amounted to at least fifty-six, and separito seliools of Hindu law sprang up. Thus the Dayabhága version of the law of inheritance prevoils in Dengal while the Mitikshard commentaly on Yajanvalkyn is current in Madras and throughont southera and western lndia But nll modern recensions of Hindu law rest upon the ancient codes; sud these codes, as we havo scen, only recorded tho usages of certain Brahmanical centres io the vorth, and jerhape did not fairly record even them. As tho Brabmans gradually monlded tho popmation of ladia into Hinduism, such codes proved too narrow n basis for dealing with the rights, duties, and aocial orgavization of tho people. The later findu legislators, accordingly, iseulcated tho recognition of tho loeal usages or land-law of cach part of tho conatry, and of each class or tribe. While binding together and preserving the historical unity of tho Aryan twicc-borm castes by oyatema of law founded on their ancient codes, they made provision for the customs and diverso stages af civilization of the rader peoples of ladia, over whom they established their asceadency. By alich provisions, olike in religion and law, the Brahmons incorponted the Indian races into that loosely coheront mess known as tho Iliudn population.

It is to this plastic element that Hinduiam owes its success; and it io an olenaent which Engliah administrators have sometimes overlonked. The races of British India extibit many starges of domestic inctitetinng from the nolyandry of the Nairs ta tho jolygamy of
thu: Kinlin linilamans. 'Ine slancture of their iudustrial onganization varies, from the nomadic husbaynly of tho lsurusese to the long rhain of temnes which in liengal stretches from tho proprietor thronerlia smits of midule-men to the actual thller of the soil. Every st:ge ith lnmarn progress is mpescinted, from the hanting tritus of the contral platean to the rugid trale-gnilis of Guzerat. The
 social devilophacnt had its own usages and commona liw. Friba.
 castes, and tribes, the s are to he peserved; othemise thic peopte are ogitated." Devalia sajes : "What goda there are in any country, ... and whatsoever bo the custom and haw anywhere, they are not to be despised thew; Ho law there ss such." Vavilamiliva suys: "The custom of the comntry is linst to be considered; what is the rule in each comery, that is to lo done." The must learned Eng. lish scholar in southem India bas tin!s sumaned up the matter:
 of others than Brihmans [only ruc-thintecth of the population of Madras], and cven in the case of Bribluans it is very often superseded ly custom."
'fte English, on assumag the gowernment of Inda, wisely de. clared that they would administer justice according to the customs of the people. But the high courts enfurce the Bibibmanical codes with a comprehensweness and precision unknown in ancient Indin. Thus in Bengal the custon of sagai, by which deserted or divorced wives among the lower cestes marry agitio, was lately tried necording to "the spirit of Hindu law"; while in Malras learned judges have pointed out a divergeace between the hlindu law as now ad. ministered and the actual usages of the people. Those usages are unwritten and vacertain. The Hindu law is printed in many accessible forms, nod Hindu banisters are ever pressing its principles upon the courts. Efforta nt comprehensive codification in British India are thus surrounder by specral dilticulties, for it wonld be improper to give the fixity of a cade to all tho unwritten hotf-fluid usages current among the three-hundred unhomegencous castes of Hindus, while it might be fraught with fatnoe iugustice to exclude any of them. Each ege laa the gift of adjusting il untitutions to its actual wants, especially anong tribes whose eustons have not been reduced to written law. Many of those customs will, if Jeft to themselves, die ont; others of then, that prove suited to the new social developments under British rule, will live. But the procesa of natural aelection minst be, to some extent, the work of tinie, and not a single act of consciona legislation. This has been recognazed by the ablest of Anglo-Indian codifiers. They apply the word code to the asstematic arrangement of the rules relating to some wellmarked aection of juristic rights, or to some execulive department of the administration of juatice. "In its larger sense," write tha Indian Law Commissionera, 1879, "of a goneral assemblage of all the lawa of a community, no attempt has yet been sade in this comntry to sntisfy the conception of a code. The tume for its reali. zation has mouifestly not arrived."

The Brahmans were not merely the depositaries of tho sacred books, the philosuphy, the science, and the laws of the ancient Hindu commonwealth; they were also tho creators and custodians of its secular literature. They had a practical monopoly of Vedic learning, ond their policy was to trace back every branch of knowledge and intellectual effort to the leda.

In order to understand the long aommation of the Brabmans and the influence which they still wield, it is necessary to keep in mind their position as the great literary caste. Their priestly supremacy has been repeatedly assailed, and was during a space of several hundred gears overtbrown. But throurhout twenty-two Rrhman centuries they have been the counsellors of Hindu prinecs clvilizaand the teachers of the Findu people. They represent ${ }^{\text {tion }}$ the early Aryan civilization of India; and the cssential history of the Hindus is a narmative of the attacks upon the continuity of that civilization,- That is to say, of attacks upon the Brármanical system of the Didatlo Land, and of the modificatious and compromises to which that system has had to submit. Thoso attacks rango them. selves under six cpochs:-first, the religieus uprising of the half-Brahmanized Aryan tribes on the east of the Middle Land, initiated by the preaching of Buddha in the 6th century b.c., culminating in the Budduist kingdone
Dr Burnell's Daya- Tibligha, latrod. p. xv.; see also The Hindu
Law as adminigtered by the Jigh Court of Judiature at Mahtes, by Lave as adminietered by the Migh Court of Judicature at Matics, by (Melras. 1877).
about the conasencement of oir cin, null mating inio modern IInduism about the Sth century A.D. ; secund, warlike inronds of non-Brihnanical Aryans or other races from the west, commeneing with the Greek invasions in the 4 th century B.c., and continuing under the Greco-Dactrian empire and its successors to probably the 3 d or 5 th century A.O. ; third, the induence of the non-Aryan tribes of India and of the nou-Aryan low-castes incorpumated from them, -an influcuce ever at work, indeed by far the most powerfol argont in dissolviugr Brálmanism into Ilinduisın, lut represented in a special monner by the non-Aryan lingdoms about the 7 th and Sth conturies A.D.; fourth, the renction against the low belicfs, priestly oppression, and bloody rites which resulted from this compromise between Bribninnism and aboriginal worshil, a reaction which received an inpetus from the preaching of Sankar-Acharjyn, who founded a philosoplical Sivaite sect in the 8 th or Gth century, and reecived its full development under a line of great Vishnuvite reformers from the 19 th to the l Cth centuries A.D.; fifth, Mahometan iuvasions and the rule of Ishinn, 1000 to I765 A.D. ; sixth, the English supremacy, and the great popular upheaval which it las produced in the 18 th and $19 t h$ centuries.

> Duddhist Period.
(Gtli century B.c. to Stb century A.D.)

The first great solvent of Brahmonism was the toaching of Buddha. The life of this celebrated man has three sides,-its personal aspects, its legendary developments, and its religious consequences upon mankind. In his own person Buddha appears as a priace and preacher of ancient India. In the legendary devclopments of history Buddha rauks as a divine teacher among his followers, as an incarmation of Vislnu among the Hindus, and apparently as a saint of the Christian church, with a day assigned to him in both the Greek and Roman calendars. As a religious founder he left behind him a system of beliefs which has gained more disciples than any other creed in the world, and which, after a lapse of twenty-four centuries, is now professed by 500 millions of people, or more than onethird of the human race.

The life of Buddha is related at length under Buddism, vol. iv. p. 424. In this place it is unnecessary to give more than a brief sketch of the history of Buddhism in India.

On the death of Budtha, five hundred of his disciples met in a cave ncar Rajagriha, to gather together his sayings. This was the first council. They chanted the lessons of their master in three great divisions--the words of Buddha to his disciples, hiss codo of discipline, and liis system of doctrine. These beeame the three collections of Buddha's teaching, and the word for a Buddhist council means literally "a singing together." A ccutury afterwards, a second council of seven hundred was held at Vaisali, to settle disputes between tho more and the less strict followers of Buddhism. It condemned a system of ten "indulgences" which had grown up, but it led to tho separation of tho Buddhists into two hostile partics, who afterwards split into cighteen or more sects.

During the next two hundred years Yuddhism sprcad over northern India, perhaps receiving a new impulse from the Greek kingdoms in tho Punjab. About 214 B.c. Asoka, the king of Magadha or Behar, became a zenfons esnvert to Buddhism. He is aid to have supported $\mathbf{C}, 000$ Buddhist pricsts; he foundeld many religious houses, and lis kingdom is called the Land of the Monasteries (Vihira or Jichar) to this day. IIe died for Buddhism what Constantine afterwards effected for Christianity ; he organized it on tho basis of a state religion. This he aecomplished big five means-by a conneil to settle the faith, ly edicts yrowalgatine ita principles, hy a state department to watch

Des its uriity; by massumanes to spread its doctrincs, and by an authoritative cullection of its sacred books. In est d.c. Asokn convened at Patna the third Buddhist council of one thousand clders. Evil men, taking on them tho yellow robe of the order, had given forth their own opiaions as the teaching of Buddha. Such heresics were now corrected; and the Euddhism of southern Asin practically diatcs from Asokn's comucil. In a number of ediets, both Asolia's 1.cfore and after the synorl, ha published throughout India edicts. the grand princi;iles of the faith. Such edicts are still found graven decp up,ou pillars, in caves, and on rocks, from the Yusafzai valley beyound P'shatwar on the north-western frontier, through the heart of LIindustin, to Kithiaínír and the Central Provinees on the south and Orissa in the east. Traditiou states that Λ sula set ap 61,000 memorial columns or topes ; and the thirty inscriptions estant in our own day show how widely these royal sermons were spread over India. In the year of the comncil, the king also founded a stato department to watch over the purity and to dircet the spread of the faith. A minister of justico and religien (Dharma Mahanaitru) directed its operations; and, one of its first duties being to proselytize, he was specially charged with the welfare of the aborigines amonge whom its missionarics were sent. Asoka did nut think if enough to convert the inferior races without looking after their material interests. Wells were to be dug and trees planted along the ruads; a system of medical aid was established throughout his kinglom and the conquered pro. vinees, as far as ceylon, for buth man and beast. Officers werc appointed to watch over domestic life and public morality, and to promote instruction amung the women as well as the youth.

Asola recognized proselytism by peaceful means as a state duty. The rock inscriptions record how he sent furth missionaries "to the utmost limits of the barbarian countrics," to "intermingle among all unbelievers" for tho spread of religion. They shall mix cqually with Brahmans and beggars, with the dreaded and the despised, both within the lingdom "and in foreign comtrics, teaching better things." Conversion is to be effected by persuasion, not by the sword. Buddhism was at once the most intenscly missionary religion in the world and the most tolerant. This character of a proselytizing faith which wins its victories by peaceful micans, so strongly inpuressed upon it by Asokn, has remained a prominent feature of Buddhism to tho present day. Asoka, however, not only took measures to spread the religion; he also endeavoured to sceure its orthodoxy. He collected the body of doctrine into an authoritative version, in the Magadhi language or dialect of his central kinglom in Behar,--a version which for two thousand years haseformed the canon (uitakas) of the southern Buddhists.

The fourth and last of the great councils was lield under King Kanishka, according to one tradition, four hundred years after Buddha's death. The date of Kanishka is still uncertain; but, from the evidence of coins and inscriptions, his reign has been fixed in tho Ist century after Christ, or, say, 40 a.d. Kanishki, tho most famous of the Sakia conquerors, ruled over north-western India and the adjoining countrics. His autherity had its nueleus in Kashmir, but it extended to both sides of the Ilimalayas, from Yarkand and Khokan to Agra and Sind. . His council of five hundred compiled three commentatics on the Duddhist faith. These commentaries supplied in part materials fir the Tibotan or northern cmon, drawn up at a subsequent period. 'Tho nerthern canon, or, as the Chinese proudly call it, the "greater rehislo of the law," includes many later corruntions or develoments of the Indian faith originally cmbodied by Asoka (alt jec.) in tho "leat vehicle," or canou of the southern Euddhists.

The Kianishka commentaries were written in the Sanskrit language, perhaps because the Kashmir and northern priests who formed his council belonged to isolated Aryan culonies, which had been little influenced by the gruwth of the Indian v racular dialects. In this way Kenishka and his liashmir council (140 A.D.) became in some degree to the northern or Tibetan Buddhists what Asoka and his Patná rouncil (24t n.c.) had been to tho Buddhists of Ceylon and the south.
The missionary impulse given by Asoka quickly bore fruit In the year after lisis great council at Patníh his son Mahindo carried Asoka's version of the Buddhist scriptures in the Magadhi language to Ceylon. He took with him a band of felluw missionarics; and soon afterwards his sister, the princess Sanglamitta, who had entered the order, followed with a company of nuus. It was not, however, till six hundred years later (410-432 A.D.) that the holy books were rendered into Pali, the encred language of the aouthern Buddhists. About the same time missionaries from Ceylon finally established the finith in Burmah (450 A.D.). The Burmese themselves assert that two Buddbist preachers landed in Pegu as early ns 207 в.c. Some indeed placo their arrival just after the Patná council (244 b.c.), and point out the ruined city of Tha.ton, between che Tsi-tang and Salwfn cstuaries, as tho scene of their pious labours. Siam was converted to Buddhism in 638 A.D. ; Java reecived its missionaries direct from India between the 5 th and the 7 th centuries, and spread the faitl to Eali and Sumatra. While soutbern Buddhism was thus watted across the occan, another strean of missionaries had found its way by Central Asia into China. Their first arrival in that empirs is said to date from the 2 d century b.c., although it was not till 65 A.D. that Buddhism there becanie an established religion. The Greeco-Bactrian kingdoms in the Punjab and beyond it affurded a favourable soil for the faith. The Scythian dyanstios that succeeded them accepted it, and the earliest remains which recent diseovery lias unearthed in Afgbanistau are Buddhist. Kanishke's council, soon after the commencement of the Christian era, give a fresh impetna to the faith. Tibet, south Central Asia, and China lay along the great nissionary routes of niothern Buddhism; the Kirghis are said to have carried Buddhist settlements as far west as the Caspian ; on the cast, the religion was iatroduced into the Korea in 372 A.D., and thence ioto Japan in 552.
Buddhism never ousted Rríhmanism from any large part of India. The two $\begin{aligned} & \text { ystems } \\ & \text { co existed as popular religions }\end{aligned}$ during more than a thousand years (244 д... to about 800 A.D.), and modern Hinduism is the joint product of both. Certain kings and certain eras were inteisely Buddhistic ; Sut tha continuous existence of Bribmanism is abundantly proved from the time of Alcesander (327 s.c.) downwards. Tho historians who clronicled lis marel, and the Greek aumbassador Megasthencs, who succeceded then (300 D.c.) in their literary labours, bear witness to the predominanco of the old faith in the period immediately preceding Asoka. Inscriptions, loeal legonds, Sanskrit literature, and the drama disclose the surrival of lr hlman influence during tho next six centurics (244 n.c. to 400 A.D.). From 400 A.D. we havo tho evidence of the Clinese pilgrims, who toiled throngh Central Asia into India as tho birthrace of their faith. Fa-llian entered India from Afghianistín, and journeyed down the whole Gangetic valley to the Bay of Bengal in 399-413 A.D. He found Brilhman priests equally lonourcd with Buddbist mooks, and temples to the Indian gods side by sido with the religious houses of bis own faith. 1 wen Tsang also trarclled to India frona Clina by the Central Δ sia route, and has left a fuller record of the atate of the two religions in the 7th centurg. His
journcy extended from 629 to 645 A.D., and everywhere throughout India he found the two faitha eagerly competing for the suffrages of the people. By that thee, indeed, Brahmanism was beginning to assert itself at the expense of the other religion. The aionuments of the great. Buddhist monarchs, Asoka and Kanishka, confronted him from the time he neared the Punjab frontier ; but so aloo did the. temples of Siva and his "dread "queen Bhimh. Throngh. out north-weatern India he found Buddhist coavents and monks surrouaded by "swarms of heretics." Tho polition power was alsu divided, although the Buddhist eovereigns predominated. A Buddbist monarch ruled over ten ling. doms in Afghanistan. At Peshawar the great monastery built by Kanishka was deserted, but the populace remained faithful. In Kashmir king and people were devout Buddhists, under the teaching of five bundred moasteries and five thousand monks. In the country identified with Jaipur, on the other hand, tho inhabitante were devoted to heresy and war.

Buddhist influence in northern India scems, during the 7th century A.D., to have centred in the fertile doab or plain between the Jumaa and the Ganges. At Kanauj (Kanyakubja), on the latter river, Hwen Tsong found a powerfal Buddhist monarch, Siláditya, whose influence reached from the Punjab to north-eastern Bengal, ard from the Himalayas to the Narbada river. There flourished one hundred Buddhist conveats and tea thousand monks. But the king's eldest brother had been lately slain by a aovereign of eastern India, a hater of Buddlism ; and two hundred temples to the Bráhman gods reared their heads under the protection of the devout Siladitya himself. This monarch seems to have bece sn Asoka of the 7th ceatury a.D., and he practiscd with primitive vigour the two great Buddhist virtues of apreading of the faith and charity. The former he attempted by means of a geperal council in 634 a.d. Twenty-one tributary aovereigns atteaded, together with the most learned Brabman and Buddbist monke of their kingdoms. But the sole object of the convocation was no longer the undisputed assertion of the Buddhist religion. It dealt with the two distinct phases of the religious life of India. First there was a discusaion between the Buddhists and Brahmans, espocially of the Sánkhya and Vaiseshika schools, and then followed a dispute between the two Buddhiat secta who followed respectively the northern and the southern canons, known as "the greater and the lesser vehicle of the law." The rites of the populace were of as composite a character as the doctrinea of their teachers. On the first day of the council a statua of Buddha was installed with great pomp; on the aecond, an imago of the sua-god; on the third, a tigure of Siva.

Siladitya held a solemn distribution of hia royal treaaures every flve years. Here Tsang describes how on the plain near Alahabad, where the Gaogee and the Jumns unite their waters, all the kinge of the empiro, and a vast multitude of people,-wero feasted for aeventy-fivo daya Slladitya brought forth the stores of his palace, and gare thear aray to Bráhmana and Buddhists, monks and herctics, without diatinction. At the end of the featival he stripped off his jowels and royal raiment, gare them to the bystanders, and, like Buddha of old, put on the rags of a beggar. By this ceremony the monarch commemorated the Great Renunciation of the founder of the Buddaist faith, and at the sama tiroe practised the lighest duty inculcated aliko by tho Buddhist and Brahmanical religione, namely, almagiving. Ilwon Tsagg describes a distribution on a amallerscale in the weatero kiogdom of Valabhs (circa 636 a.d.). "For aeren days every year the king bolds a great assembly at which ho distributes to the multitude of recluses choice diabee, the three garments, medicine, tho seven precions things, end rare objects of
great valoe. After giving all these in alms he buys them back at double price." The intellect of this king, we are told, was weak and narrow. ${ }^{1}$ Similar "fields of charity" seem to have been held by many Buddhist princes in memory of the Great Renunciation. The rast monastery of Nalanda in Behar formed a seat of learning which recalls the universities of medirval Europe. Ten thousand monks and norices of the eighteen schools there studied theology, philosophy, law, science, especially medicine, and practised their derotions. They were supported from the royal funds.
Ifwen Tsang travelled from the Punjab to the month of the Ganges, and made journeys into southern India. But everywhere he found the two religions mingled. Gaya, which holds so bigh a sanctity in the legends of Buddba, had already become a great Bráhman ceutre. On the east of Bengal, Assam had never been converted to Buddhism. In the south-west, Orissa was a stronghold of the faith; at the seaport of Tamluk at the mouth of the Húgli (Hooghly), the temples to the Brâhman gods were five times moro numerous than the convents of the faithful. On the Madras coast Buddhism flourished; and indeed throughont southern India the faith seems still to have been in the ascendant, although struggling against Bráhman heretics and their gods.

Decliire
of Bud. dhism.

During the nest two centuries Bráhmanism gradually became thie ruling religion. There are legends of persecutions instigated by Bríhman reformers, such as Kumarila Bhatta. and Sankar-Achariya. But the downfall of Buddhism seems to bave resulted from natural decay, and from new, movements of religious thought, rather than from any general suppression by the sword. Its extinction is contemporaneous with the rise of Hinduism, and belongs to a subsequent part of this sketch. In the 11 th century, only outlying stztes, such as Kashmír and Orissa, remained failfful; and before the Mabometans fairly came upon the scene Buddhism as a popular faith had disappeared from India. During the last ten centuries Buddhism has been a banished religion from its native home. But it has won greater triumphs in its esile than it could ever have achieved in the land of its birth. It has created a literaturo and a religion for more than a third of the buman race, and has profoundly affected the beliefs of the rest. Five hundred millions of men, or 35 per cent. of the inbabitants of the world, still follow the tcaching of Buddha. Afghanistan, Nepál, Eastern Turkistín, Tibet, Mongolia, Manchuria, China, Japan, the Eastern Arcbipelago, Sian, Barmab, Ceylon, and India at ono time marked the magnificent circumference of its conquests. Its shriocs and monasteries stretehed in a continuous line from the Caspian to the Pacific, and still extend from the confines of the Russian empire to the equatorial archipelago. During twenty-four centuries Budthism has encountered and outlived a series of powcrful rivals. At this day it fornis one of the three great religions of the world, and is more numerously followed than either Christianity or Islém. In Ludia its influence has survived its sepratate existence. It not only loft behind it a distinct sect, but it supplicd a basis upon which lirahmanism finally developed from the crecd of a caste into the religion of the people. This Buddbistic influenee on Ifinduism will be afterwards noticed. The distinct sect is known as tho Jains ($2, \frac{2}{}$), who number nbout half a million ${ }^{2}$ in India The nollest survivals of liudlaism in India are to be foumb, not among any peenlitr body, but in the religion of the people; in that principle

[^162]of the brotherhood of man, with the reassertion of which each new revical of Hinduism starts; in the asylum which the great Hindu sects afford to women who hare fallen victims to caste rules, to the widow and the out-casto; in that gentleness and charity to all men, which take the place of a poor-law in India, and give a high significance to the balf-satirical epithet of the "mild" Hindu.

Greek-Roman Period.

The external bistory of India commences with the Greck Greek incasion in 327 b.c. Some indirect trade between India iovasiou and the Levant seems to have existed from very ancient times. Homer was accuainted with tin 3 and other articles of Indian-merchandise by their Sanskrit names; and a long list bas been made of Indian products mentioned in the Bible. ${ }^{4}$ But the first Greek historian who speaks clearly of India was Hecatæus of Miletus ($549-486$ b.c.); the knowledge of Herodotus (450 B.c.) ended at the Indus; and Ctesias, the physician (40I B.c.), brought back from his residence in Persia only a few facts about the products of India, its dyes and fabrics, monkeys and parrots. India to the east of the Indus was first made known in Europe by the historians and men of science who accompanied Alexander the Great in 327 b.c. Their narratives, although now lost, are condensed in Strabo, Pliny, and Arrian. Suon afterwards Megasthenes, as Greek ambassador resident at a court in the centre of Bengal (306-298 b.c.), had opportunities for the elosest obserration. The knowledge of the Greeks and Romans concerning India practically dates from his researches, 300 в.c. ${ }^{3}$

Alexander the Great entered India early in 327 b.c., Alexcrossed the Indus abore Attock, and advanced, without a ander. struggle, over the intervening territory of the Taxiles ${ }^{6}$ to the Jhchum (Hydaspes). He found the Punjab divided into petty kingdoms, jealous of each other, and most of them inclined to join an iurader rather than to oppose him. Onc of these local monarchs, Porus, disputed the passage of the Jhelum, with a force which, substituting guns for chariots, exactly equalled the army of Ranjit Sinh, the ruler of the Punjab in the present cenlury. ${ }^{7}$ Plutarch gives a vivid description of the battle from Alexander's own letters. Having drawn up his troops at a bend of tho Jhelum, about it miles west of tho modern field of

[^163]Chilianwala, ${ }^{\text {, }}$ the Macedonian general crossed under slelter of a tempestuous night. The chariots hurried out by Porus stuck in the muddy bank of the river, and in the general engagement which followed his elephauts refused to face the Greeks, and, wheeling round, trampled his cwn army under foot. His son fell early in the onset ; Porus himself fled wounded, but, on tendering his submission, was confirmed in his kingdom, and became tho conqueror's trusted friend.
Alexander built two memorial cities on the seene of his victory,-Bucephalia on the west bank, near the modern Jalaivur, named after his beloved charger slain in the battle, and Niciea, the present Mong, on the east side of the river.

Alexander alvaneed southeast through the kingdom of the younger Porus to Amritsar, and, after a sharp bend backward to the west, to fight the Cathei at Saogala, be reached the Beas (Hyphasis). There, at a spot not far from the modern battlefield of Sobrion, he balted his victorious standards. ${ }^{2}$ He had resolved to march to the Ganges; but his troops were worn out by the heats of the Punjab summer, and their spirits broken by the hurricanes of the south-west monsoon." The native tribes had already risen in his rear, and the conqueror of the world was forced to turn back before he bad crossed even the frontier province of Iadia. The Sutlej, the eastern districts of the Punjab, and the mighty Jumna still lay between him and the Ganges. A single defeat might be fatal to his army; if the battle on the Jhelum had not gone in his favour, not a Greek would bave reached the Afghan side of the passes. Yielding at length to the clamour of his tronps, he led them back to the Jhelum. He there embarked 8000 of them in boats previously prepared, and floated down the river; the remainder of his army marched in two divisions along the banks.

The country was hostile, and the Greeks Leld only the land on which they encamped. At Mültán (Mooltan), then as now the eapital of the southern Punjab, he had to fight a pitched battle with the Malli, and was severely wounded in taking the city. His enraged troops put every soul within it to the sword. Farther down, near the confluence of the five rivers of the Punjab, he made a long halt, built a town,-Alexandria, the modern Uchch, -and received tho submission of the neighbouring states. A Greek garrison and satrap, left there by Alesander, laid the foundation of a lasturg influence. Having constructed a new flect suitable for the greater rivers on which he was now to einbark, be proceeded southwards through Sind, and follored the curse of the Indus until he reached the ocean. In the apex of the delta he founded a city-Patala-which remains to this day under the name of Hyderabad, the capital of Siod. ${ }^{3}$ At the mouth of the Indus Alexander beheld for the first tume the majestic phenomenon of the tides. One fart of his army be shipped off under the command of Nearclus to coast along tho Persian Gulf; the other he limself led through southern Baluchistín and l'ersia to Susa, where, after terriule losses from want of water and famine on the march, Le arrived in 325 b.c.
buring his tro years' campaign in the Punjab and Sind, Alexander captured no province, but be made alliances, founded cities, and planted garrisons. He bad trans-

[^164]ferred much territory to chicis and confederacies deruted to his cause ; every petty court had its Greek faction: and the detaelments which he left behind at various positions, from the Afghín frontier to the Eeas, and from near the base of the Ilimalayas to the Sind delta, wero visible pledges of Lis return. At Taxila (Deri-Shahan) and Nicica (Mong) in the northern Punjab, at Alexandria (Uchch) in tho southern Punjab, at Patala (Hyderabad) in Sind, and at other points along bis route, to established military setticments of Greeks or allies. A large body of his troops remained in Bactria; and, in the partition of the empiro which followed Alesander's death in 323 b.c., Pactria and India eventually fell to Seleucus Nicator, the founder of the Syrian monarchy.

Meanwhile a new power bad arisen in India. Among the Indian adventurers who thronged Alesander's camp in the Punjab, each with his plot for winning a kingdom or crushing a rival, Chandra Gupta,an exile from the Gangetic ${ }^{\prime}$ valley, seems to have ylayed a somewhat ignominious part. He tried to tempt the wearied Greeks on the banks of the Beas witu schemes of conquest in the rich south-eastern provinces; but, having personally oftended their leader, he had to fly the eamp (326 b.c.). In the confused rears segadia which followed, ho managed, with the aid of plundering kitiglom hordes, to form a kingdom on the ruins of the Nanda dynasty in Magadha, or Behar (316 b.c.) ${ }^{4}$ He seizeał tho capital, Pataliputra, the modern Patná, established himself firmly in the Gangetic valley, and crmpelled the north-western principalities, Greeks and natwes alike, to acknowledge his suzerainty. ${ }^{6}$ While, therefore, Selecticus was winning his way to the Syrian monarchy during the eleven years which followed Alexander's death, Chanira Gupta was building up an empire in northern IndíaSeleucus reigned in Syria from 312 to 280 e.c., Clandra Gupta in the Gangetic valley from 316 to 292 b.c. In 312 e.c. the power of both had been consolidated, and the two nevs susereignties were soon brought face to face.
In that year Scleucus, having recovered, Babylon, proceeded to re-establish his authority in Bactria and the Punjab. In the latter prosinee be found the Greek inflience decayed. Alexander bad left bebind a mixed force of Greeks and Indians at Taxila. No sooner was Le gone than the Iudians rose and slew the Greek governer; the Macedontans massacred the Indians; a new governor, sent by Alexander, murdered the friendly Punjal prince, Porus, and was himself driven out of the country by the advance of Chandra Gupta from the. Gangetic valley. Selencus, after a war with Chandra Gupta, determined to ally himself with the nem power in India rather than to oppose it. Iu return for five hundred elephants, be eeded the Greek settlements in the Punjab and the Cabul valler, gave his daughter to Chandra Gupta in marriage, and stationed an ambassador, Megasthenes, at the Gangetic court (circa 306-298 b.c.). Chandra Gupta became familiar to the Greeks as Sanulrocotus, king of the Prasii ; his capital, Pataliputra, or Patní, was renidered into Palibothra. On the other hand, the names of Greeks and kings of Grecian dynasties appear in the reck inscriptions, under Indian forms. ${ }^{\text {T }}$

Megasthenes has left a life-like piulure of the ludian people. Viega Notwithstanding some striking ervora, tho oliservations which lie thenca jotted down at Jatni, three hundred years before Clirist, give as

[^165]eccurate an account of the social organization in the Gangetic valley as any which existed when the Bengal Asiatic Society commenced its labours at the end of the last century (1785). Up to the time of Megasthenes the Greek idea of India was a very vague one. Their historians spoke of two classes of Indians, -certain mountainous tribes who dwelt in northern Aighanistin under the Caucasus or Hindu Kush, and a maritime race living on the coast of Baluchisting. Or the India of nodern geographylying beyond the Indus they practically know nothing. It was this India to the cast of the fudus that Mogasthenes opened up to tho Western warld. Ila describes the classification of the pcople, dividing them, however, into seven eastes instead of four, ${ }^{1}$-namely, philosophers, husbandmon, shepherds, artisans, soldiers, inspectors, and the counsellers of the king. The philesophers weve the Brahmans, and the preecribed stages of their life are indicated. Megasthencs diraws a disfinction between the Brihmans (Bpoxuaves) and toe Sarmanx (Eapuavai), from which some scholars have inferred that the Buddlist Sarnlanas were a recognized class fifty years betore the council of Asola. But the Sarmane also inciude Brahmans in the first and third stages of their lite as students and forest recluses. ${ }^{2}$ The inspectors ${ }^{3}$ or sixth class of Merasthenes have been identified with Asoka's Mahamatra and his Buddhist inspeeters of morals.

The Greck ambassador observed with admiration the absence of slavery in India, the chastity of the momer, and the courage of the nen. In valour they excelled all other Asiatics; 'they required no locks to their doors; above all, no Indian was ever known to tell a lic. Sober and industrious, good Carmers, and skilful artisans, they acarcely ever had recourse to a lawsuit, and lived peaceably under their native eliefs. The kingly government is portrayed almest as described in Manu, with its hereditary castes of councillors and seldiers. Megasthencs mentions that India was divjded into one hundred and eighteen kingdoms; some of which, such as that of the Prasii under Chandra Gupta, exercised suzerain powers. The village system is well described, cach little rural unit sceming to he an in. dependent republic. Megasthencs remarked the exemption of the lusbandmen (Vaisyas) from war and public services, and enumeTates the dyes, fibres, fabrics, and products (animal, vegetable, and mineral) of India. Husbandry depended on the periodical rains; and forecasts of the weabor, with a view to "make adequate provision against a coming defieicncy," formed a special duty of the Brihmans. "The philosopher who elrs in his predictions observes

Before the year 300 b.c. tro powerful monarchies bad thus begun to act upon the Brahmanism of northern India, from the east and from the west: On the east, in the Gangetic valley, Chandra Gupta (316-292 B.c.) firmly consolidated the dynasty which during the next century produced Asoka (264-223 r.c.), established Buddhism lihreughout India, and spread its dectrines from Afghánistân to China, and from Central Asia to Ceylon. On tho west, the heritage of Scleucus (312-280 b.c.) diffused Greek

Praco Bartrisa sonquests influences, and sent forth Greco-Bactrian expeditions to the Punjab. Antiochus Theus (grandson of Seleucus Nicator) and Aseka (grandson of Chandra Gupta), who ruled these two monarchics io tho 3 d century b.c., made a treaty with each other (256). In the next contury Eucratidcs, king of Pactria, conquered as far as Alesander's royal city of l'atala, and possibly sent expeditions into Cutch and Guzerat, 181-161 i.c. Of the Greco-Bactrian monarchs, Menander advanced farthest into North-Western India, and his ceins aro found from Cabut, near which he probably had his capital, as far as Muttra on the Jumna. The Duddhist dynasty of Chandra Gupta profoundly modificd the religion of northern India from the east the empire of Selcucus, with its Dactrian and later off shoots decply influenced the science and art of Hindustinn from the west.

Qreck bufucac on art.

Brallman astronomy owed much to the Grecks, and what the Tuldhists wero to the architecture of northern India, that the Grecks were to its sculpture. Greck faces and profices constantly oecur in ancient Buddhist statuary, and enrich almest alt the thrger museums in

[^166]India The parest specimens have been found io the Punjab, where the Ionians settled in greatest ferce. As we proceed eastward from the Punjab, the Greek type begins to fade. Purity of outline gives place to lusciousness of forn. In the female figures, the artists trust more and more to swelling breasts and towering chignons, and load the neck with constantly accumulating jewels. Nevertheless, the Greciau type of countenance long survived in Indian art. It is perfectly, unlike the present coarse conventional ideal of sculptured beauty, and may even be traced in the delicate profiles on the socalled sun templo at Kanarak, built in the 12th century A.D. on the remoto Orissa abore.

It must. suffice to indicate the ethnical and dynastic Erhnleal influences thus brought to bear upon India, without isतuattempiting to assign dates to the individual monarchs. ences The chronolegy of the t welve centuries intersening between the Greco-Bactrian period and the Mahmetan conquest still depends on a mass of conficting evidence derived frem inscriptions, legendary literature, unwritten traditions, and coins. ${ }^{4}$ Four systems of computation exist, based upon the Vikramáditya, Saka, Seleucidan, and Parthian eras. In the midst of this confusion we see dim masses moving southwards from Central Asia into India. The Grece-Bactrian kings are traced by coias as far as Muttra on the Jumba; and Sanskrit texts have recently rerealed their advance through the Middio Land of the Brahmans (Nadhyadesha) to Saketa (or Ajodhya), the capital of Oudh, and to Patna in Bebar. ${ }^{5}$ The credentials of the Indian embassy to Augustus in 22-20 в.c. were written on skins,a circumstance which indicates the extent to which Greek usage had overcome Brabmauical prejudices. During the century preceding the Christian era Scythian or Tartar hordes began to supplant the Greco-Bactrian influence in the Punjab.

Scythic and Non-Aryan Infiuences.

About 126 b.c. the Tartar tribe of Su is said to have Expnl. driven out the Greek dynasty from Bactria, and the Greco- sion of Bactrian settlements ia the Punjab were overthrown by the Tue.Chi. ${ }^{6}$ Tho Scythian migrations towards India culminated in the empiro of Kanishba, who held the fourth Greco Bactrian dypasty. Buddhist council, circa 40 A.D., and practically became the royal founder of northern Buddhism. The Scythic element Scyplayed an important part in the histery of northern India. thiand Under Kanishka and his suecessors a connexion was established with the Buddhist nations of central and eastern Asia, traces of whicl survived to the time of Hwen Tsang (629-645 A.D.) in the name of China-pati, about 10 miles to tho west of the Beas river. ${ }^{7}$ China-pati is said to have been the town which Kanishka appeinted for the residence of his Chinese hostages. It has becn suggested that the Astamcdha, or great horse sacrifice, in some of its Indian developments at any rate, was based upon Scythic ideas. "It was in effcct," writes Mr Edward Thomas, "a martial chatlenge, which consisted in letting the victior who was to crown the imperial trimmph at the year's cnd go free to wander at will over the face of the carth, its sponsor beiug bound to follow its hoofs, and to conquer er conciliato" the chiefs through whose territories it passed. Such a prototypo seems to him to shadew forth the life of tho Centrai Asia communities of the horseman class, "among

[^167]whom a steed captured in hostile forays had so frequently to be traced fromeamp to camp, and surrendered or foughit iur at last." ${ }^{1}$
An effort has been made to trace Butldhz himself to a Scythic origin. IIo belonged to a royal stuck of Sakyas; and the Chinese records supply an internediate link between his birthphace in Dengal and tho supposed home of his race in Central Asin. It is inferred from theni that a branch of the Scythian hories who overran western Asia about 625 b.c. made its way to Patala on the Indus, the site selected ly Alesander in 325 b.c. for his headquarters in that delta, and still the capital of Sind under the name of Myderabad. One portion of theso Patala Scythians went west wards by the Persian Gulf to Assyria ; another section eventually moved north-east into the Gangetic valley, and becamo the Sakyas of Kapilavastu, among whoin Buddba was born. ${ }^{2}$ His dying command, that he should be buried according to the old custom of his race, and a mound erected over his remains, is opposed to the Indo-Aryan form of obsequies by cremation; but it is essentially in accurd with the Scythian mode of disposing of the dead. In the topes or funoral mounds of Duddhisnt is seen a reproduction of the royal Scythian tombs of which Herodotus speaks. ${ }^{3}$ It is therefore argued that tho Cbristian fathers trace back, by no accident, the Manichean doctrine to one "Scythianus," whose disciple Terebinthus took the name of Buddha. ${ }^{4}$

Whatever may be the value of this conjecture, the influence of the Scythian dynasties in northera India is an historical fact. The northern or Tibetan form of Buddhism, represented by Kavislika and his council in 40 A.D., made ite way down to the plains of Hindustan, and during the next six centuries competed with the esrlier Buddhism of Asoka. The Chinese pilgrim in 629-645 a.d. found both the northern or Scythic and the southern forms of Buddhism in full vigour in India. He spent fourteen months at Chide-pati, the town where Ksoishkn had kept his Chinese 'hostages in the Puojab; and he records the debates between the nortbern and eouthern sects of Buddhists in Oudh, Behar, Káthiáwár, and at other places. The Scythic biffuence in India was a dynastic as well as a religious one. Thoevidence of coins and the unmes of Indian tribes of reigning families, such as the Sakas, Huns, and Nagas, point to Scythian settlements as far south as the Ceotral Provincess ${ }^{5}$

Many scholare believe that tho Scythians poured down upon Indis in such masses as to supplant the previous population. The Jits or Jata, ${ }^{6}$ who form nearly noe half of the inlabitants of the Punjab, are identified with the Getx; their great subdivision the Dhe, with the Daha,

Scylhian

aclle.
raents
the side of each other in Central Asia, and who may bave adranced together during the great Scythian movement towards Indin on tho declino of tho Ractrian empire. Without pressing such identifications too closely in the service of particular theorics, the weight of authority is in favour of a Scythian origin for this nost numerous and most industrious section of the population of the Punjab. ${ }^{9}$ Λ similar deseent has been assigned to certain of the Rajput tribes. Culonel Tod, still tho standard historian of Rijásthán, strongly insisted on this proint. Sone relationslip between the Jats and the Rajputs, although obscure, is neknowledged; and, although the jus conzubii no longer exists between them, an iuscription shovis that they intermarried in the 5th century A.D. ${ }^{10}$ Professor Corell, indeed, regarded the arguments for the Scythic descent of the Rajputs as inconclusive. ${ }^{11}$ But the whole evidence now collected was not before hin ; and authorities of great weiglit have deduced nlike from lucal investigation ${ }^{12}$ and from Sanskrit literature ${ }^{13}$ a Scythic origin for the Jats, and for some at jeast of the Rajput tribes. We shall see that the Scythian -hurdes also supplied certain of the Nom. Aryan or so-called aboriginal races of India,

The Scythic settloment was not effected without a struggle. As Clandra Gupta advanced from the Gangetic valley, and rolled back the tide of Greco-Bactrian conquest (circa 312-300 b.c.), so the Indian heroes of the first century befure and after Christ nre native princes who stemmed the torrent of Scythinn invasion. Vikramaditya, Fing of Ujjain, won his paramount place in Indian story by driving out the invaders. An era, the Sumput, beginning in 57 Bc . was founded in honour of his achievenients. Its date ${ }^{14}$ seems at variance with his legeodary victories over the Scythian Kanishka in the first century nfter Christ ; ${ }^{15}$ but his very name suffices to conmemorate his struggle against the northern hordes as Vikramáditya Sakári, or the enemy of the Scytbians. His reign forms the Augustan ers of Sanskrit literature ; and tradition las ascribed the lighest efforts of the Indian intellect during many centuries to the pects and philosophers, or nine gems, of hia court. As Clandra Gupta, who freed Iodia from the Greeks, is celebrated in the drama Mudrá-radshasa, so Vikramáditya, the vanquisher of the Scythians, forms the central roysi personage of the Hindu stage.

Vikramaditya's achicvements, however, formed no final deliverance, but merely an episole in a long struggle between the Indian dynasties and new races from the north. Another popunar era, the Saka (literally the

[^168]Scythian), takes its commeneement in 78 A.D. ${ }^{2}$ and is supposed to commemorate the defeat of the Seythians by

Exity smlisn dyises.
dyos. dies. a king of soutbern India, Saliváhad.? During the seven ceeturies which followed, three powerful monarehies, the Sahas, Guptas, and Valabhis, established themselves in northern and western India The Sáhs of Suráshtra are traced by ceins and inscriptions from 60 or 70 B.c. to after 235 A.d. ${ }^{3}$ After the Síhs come the Guptas of Kanauj, ${ }^{4}$ in the Nortt-Western Provinces, the Middle Land (Madhyadesha) of ancient Bráhmanism. The Guptas ittroduced an eta of their own, commencing in 319 в.c., and ruled in paraon or by viceroys over nerthern India during one hundred and fifty gears, as far to the south-west as Káthiáwâr. The Gupta dynasty was overthrown by foreign invaders, apparently a new influx of Huns or Tartars from the north-west ($450-470$ A.D.). The Valabhts sueceeded the Guptas, and ruled over Cutch, the north. western districts of Bombay ${ }^{5}$ and Málwá, from 480 to after 722 A.d. ${ }^{\text {b }}$ The Chinese pilgrim gives a full necol $7 t$ of the ceurt and people of Valabhi ($6.30-640$ A.d.). Buddhism was the state religion, but heretics (Bráhmans) abounded; and the Buddhists themselves were divided betreen the northern school of the Scythian dynasties and tho southern or Indian sehool of Asoka. The Valabhis secm to have been overthrown by the early Arab inväders of Sind in the 8th century.
1 The relations of these three Indian dynasties, the Sábs, Guptas, and Valabhis, to the successive herdes of Seythians who poared down on northern India are obseure. There is abundant evidence of a long-continued struggle, but the attempt to assign dates to its chief episodes has not yet 8 :odaced results which can be accepted as fiasl. Two ไikramáditya Sakaris, or ranquishers of the Scythians, are 2equired for the purposes of ebronology; and the great battle of Korúr, near Múltan, at which the Scythion hosta perished, bas been shifted backwards and forwards from 78 to 544 A.D. ${ }^{7}$ The truth seems to be that, during tho first six centuries of the Christian era, the fortunes of the Seythian or Tartar races rose and fell from time to time in northern India. They more than once sustained great defeats; and they more than once overthrew the native dynasties. Their prescnce is abundantly attested during the century before Christ, represented by Vikramáditya (57 b.c.) ; during the first century after Christ, represented by the Kanishka family (2 b.c. to 87 A.D.); aud thence to the time of Cosmas Indicopleustes, about 535 A.D. The latest writer on the subject ${ }^{8}$ belicves that it mas the White Huns who overthrew the Guptas between 465 and 470 A.d. He plaees the great battles of Korur and Maushari, which "freed Iodis frem the Sákas and Húnis," between 524 and 544 a.d. Cosmas Indicopleustes, who traded in tho Red Sea about 535 A.D., speaks of the Huns as a powerful nation in northern India in his days. ${ }^{9}$

[^169]While Greek and Scethic influenees bad thus been at Non. work in northern India during nine centuries (327 в.c. to Aryan 544 A.D.), another element was profoundly affecting the dimas future of the Indian people. In a prerious section we have traced the fortunes, and aketehed the present condition, of the non-Aryan "aborigines." The Brabmanical Aryans never effected anytbiag like a complete subjugation of these earlier races. The tribes and castes of non-Aryan origin still number about 18 millions in British territory; the castes who claim a pure Argan descent are under 17 millions. The non-Aryans have influenced the popular: dialects of almost every proviuce, and in southern India lave given their speech to 46 millions of people. The Vedic settlements along the five rivers of the Punjab were merely colonies or confederacies of Aryan tribes, who had pushed in among a non-Aryan population. Wheu an Aryan family advanced to a new territory, it bad often, as in the case of the Pandava brethren, to clear the forest and drive out the aborigiaal people. This double process constantly repeated itself; and so late as 1657 A.D., when the Hindu raji founded the present city of Bareilly, bis first work was to cut down the jungle and expel the Katheriyas. The ancient Bráhmanical kingdoms of the Middle Land, or Madhyadesha, in the North-Western Provinces and Oudh, were surrounded by non-Aryan peoples. All the legendary advances beyond the centre of Aryan civilization, narrated in the epic poets, were made into the territory of nenAryan races. When we begin to catch histeric glimpses of India, we find the most powerful kingdoms ruled by nonAryan prinees. Thus the Nandas, whom Chandra Gupta succeeded in Behar, were a Súdra or nen-Aryan dynasty; and, according to one account, Chandra Gupta and his grandson Asoka came of the same steck. ${ }^{10}$
The Buddhist religion did much to incorporate the nonAryan tribes into the Indian polity. During the leng struggle against Greeo-Bactrian and Seythian inroads (327 B.C. to 544 A.D.), the Indian aboriginal races must have had an ever-increasing importance, whether as enemies or alties. At the end of that struggle we diseover them in some of the fairest tracts of nerthern India. In almost every district throughout Oudh and the North-Western Provinces ruiced towns and forts are ascribed to aboriginal races who ruled at different periods, according to the local legends, between the 5 th and 11 th centuries A.D. When the Mabometan conquest supplies au historical footing after 1000 A.D:, nen-Aryan races were in possession of some of these districts, and had been lately ousted from others.
The statistical survey has brought to light many traces of these obscure peoplcs. It weuld be impossible to follow that survey througa each locality; but we propose, with the utmest brevity, to iudicate a few of the results, Starting from the west, Alexander the Great found Riwal P'indi district in the hands of the Thkkas or Takshaks, from whom its Greek name of Taxila was derived. This people las been traced to a Scythian migration about the 6th century b.c. ${ }^{11}$ Their settlements in the th century b.c. seem to have extended from the Parppamisan range ${ }^{12}$ in Aighinistin deep into northern India. Their Punjab capital, Takshasila or Taxila, was the largest city that Alexander found between the fulus and the Jhelum (327

[^170]B.c.) ${ }^{1}$ Solihávana, from wnom the Sáka or Scythian era took its commencement (78 A.D.), is held by some anthorities to Lave been a Takshak. ${ }^{2}$ In the 7th century A.D. Taki, ${ }^{3}$ perhaps derived from the same race, was the capital of the Punjab. The Scythic Takshaks are supposed te bave been the source of the great serpent race, the Takshaks or Nagis, who figure so prominently in Sanskrit literature and art, and whose name is still retaiaed by the Nagit tribes of our own day. The words Naga and Takshak in Sanskrit hoth mean "a snake," or mythological tailed monster. The Takshaks are identified with the Seythian Takkas, and the Nágás have been connected with the Tartar patriarch Nagas, the second sen of El-khin. ${ }^{4}$ The two names, Lowever, seem to liave been applied by the Sanskrit writers to a varicty of non-Aryan peoples in India, whose religion

Non-
dryang of narth orn
linita. was of an anti-Aryain type. We learn, for example, how the four Pandu brethren of the Mahabharata turned out the snake-king Takshaka from his primæval Kháadava forest. The Takshak 3 and Nagas were the tree and serpent worshippers, whose rites and objects of aderation have impressed themselves so deeply on tho architecture and seulpture of India. The names were applied in a confused manner to different rsces of Scythic origin ; and the greatest authority on tree and serpent wership in India has deliberately seleeted the term" Scythian" for the antiAryan elements which entered so largely into the Indian religions bath in ancient and modern times. ${ }^{5}$ The Chinese recerds give a full account of the Naga geography of ancient India. They eoumerate numerous and powerful Nígh kingdoms, from which Buddhism derived many of its converts. The Chinese chroniclers, indeed, classify the Nagi princes of India inte two great divisions, as Buddhists and non-Buddhists. The serpent worship which furmed se typical a chnracteristic of the Iodo-Seythic races led the Clinese to confound them with the objects of their adoration; and the Indian Nagas and their rites seem to have supplied the Dragon races of Chinese Buddhism and of religious and secular art in China.

As the Greek inpaders found Ráwal Pindf district in possession of a Scythic race of Takkss in 327 b.c., so the Musalmán conqueror found it inhabited by a fierce nonAryan race of Chskkars thirteen hundred years later. The (Chakkars for a time imperilled the safety of Mahmud of Ghazni in 1008 a.d. Ferishta describes them as sarages addicted to polyandry and infanticide. The tide of Mahometen conquest rolled on, but the Ghakkars remained in possegsion of their submontane tract. In 1205 they alew the secend Mohometan cenquerer of India, Mubammad Gilori, in his tent, and ravaged the Punjab to the gates of Lahore; and, in spite of conversion to Islian by the sword, it was not till 1525 that they made their submission tu Babar in return for a grant of country. During the nest two centuries they rendered great services to the Mughal dynasty against the Afghín usurpers, snd roso to high influence in the Cunjab. Driven from the plains by the Sikhs in 1765, the Ghakkar cliefs maintained their independence in the Murreo (Marri) Hills till 1830, when they wero crushed

[^171]after a bloody struggle. In 1849 Ráwal Piadí passed, with tho rest of the Sikh territories, under British rule. But the Ghakkars revolted four years afterwards, and threatened Murree, the summer capital of the Punjab, so late as 1857 . They now number only 10,153 persons, described by the British oflicers as "a fine spirited race, gentlenen in ancestry and bearing, and elinging under all reverses to the traditions of noble bloed."

We have selected the inhabitants of Ráwal Pindí district to illnstrate the long-continued presence and vitality of the non-Aryan races in India. We shall deal more briefly with other parts of the conntry. Proccediog inwards to the North-Western Provinces, we find traces of on early Buddhist civilization having been orerturned by rude nonAryan races. In Barcilly district, for example, the wild Ahirs from the north, the Bhils from the south, and the Bhilo. Bhars from the west seem to have expelled lighly dereloped Aryan commuaities net long before $1000 \mathrm{~A} . \mathrm{D}$. Still farther to the east, all remains of prebistoric masonry in Ondh and the North-Western Provinces are assigned cither to the ancient Buddhists or to a medieval race of Blars. The Bbare Bbars appear to lave pessessed the north Gangetic plains in the centuries coeval with the fall of Buddhism. Their kingdoms extended over most of Oudh, and lofty mounds covered with ancient groves still mark the sites of their forgotten cities. They are the mysterions "fort-builders" to whom the peasantry ascribe any ruin of unusual size. In the western districts their power is said to have been crushed by the Sharki dynasty of Jounpor in the end of the 14th century. In the eastern districts of the north Gangetic plain, the Bhars figure still more prominently in local traditions, and an attempt has been made to trace their centinueus history. In Gorakhpur district a movement of aberiginal Tharus and Bhars seems to Lave overwhelmed the early outposts of Aryan civilization several centuries before Christ. They afterwards became vassals of the Buddbist kingdom of Behar on the southeast, aad on the fall of that porer, about 550 , the Bhars regained their independeace. The Chinese pilgrim in the 7th century comments on the large number of monasteries and towers in this region-the latter probably monumeats of the struggle with the aboriginal Bhars, who were there finally crushed between the 7 th and 10 th centurics.

As we advance still farther castwards into Bengal, we find that the non-Argan races have within histericsl time supplied a large part of the Hindu pepulation. In the north the Koch established their dominion upon the ruins Eob. of the Aryan kingdem of Kímrúp, which the Afgain king of Bengal had overthrown in 1489 . The Koch gave their name to the native state of Kuch (Cooch) Behor, and their descendants, together with these of other non Aryan tribes, form the mass of the peoplo in the neighbouring Iritish districts. Some cluded the effects of their low origin by becoming Musalmáns, and thus oltained that social equality which Iskím grants to all mankind. The rest have merged more or less into the 11 indu population : lut masses of them claim, in virtue of their position as an old dominant race, to belong to the lishattriya caste. They call themselves Rajbansis, a term exactly correspond ing to tho Rajputs of western India. The rajas of Kuch Behar lay claim to a divine origin, in order to conceal their aboriginal descent; and all remembrance of the Koch tribe is carefully areided at court.

Preceeding still eastwards, we enter the adjacent valley of Λ ssam, until last century the seat of another non-Aryan ruling race. The Ahams entered Assam from the south- Abame cast about 1350 (?), had firmly establisbed their power by 1063 , gradually yielded to Hinduism, and were overpowered by fresh invasions from Burmsh between 1750 and 1820, when the valley wes annexed to British India

By the Burmese the Ahams have been completely crushed as a dominant race, and their national priests, to the number of 179,000 , have been forced to till the soil to gain their living. But the people of Assam are still so essentially made up of aboriginal races and their Hinduized descendants that not 65,000 persons of even alleged pure Aryan descent can be found in a population exceeding: 4 millions.

Non.
Aryans
outh
of the
Ganges.

We have hitherto coafined our survey to the conntry on the north of the Ganges. If we pass to the southern Gangetic plain, we find that almost every tract has traditions of a non-Aryan tribe, either as a once dominant rate or as lying at the root of the local population. The great division of Bundelishand contains several crushed peoples of this class, and takes its name from the Bumdelas, a tribe of at least semi-aboriginal descent. As we rise from the Gangetic plain into the highlands of the Central Provinces, we reach the nbiding home of the non-Aryan tribes. One auch race after another-Gaulis, Nágás, Gonds, Ahirsruled from the Sátpura plateau. If we turn to the lower proviaces of Bengal we find the delta peopled by masses of non-Aryan origin. One section of them has merged into low-caste Hindus; another section has sought a mare equal aocial organization by accepting the creed of Mahomet. But auch changes of faith do not alter their ethnical type; and the Musalman of the delta differs as widely in race from the Afghán as the low.caste Hiudu of the delta differs from the Bráhman. Throughout southeru India the non-Aryan elements make up almost the eatire population, aad have supplied the great Dravidian family of languages, apoken by 46 millions of people.

Mahometan Period.

At the very time that Buddhism was being crusned out of India by the Brahmanic reaction, a new faith was being born in Arabia, destined to supply a youthful fanaticism which should aweep tho country from the Himalajas to Cape Comorin, and from the western to the eastern sen. Muhammad, commonly known as Mabomet, the founder of Islám, died at Medina in 632 a.D., while the Chinese Mahome pilgrim Hwen Tsang was atill on his travels. The first lan in. Mahometan invasion of India is placed in 664, only thirty"asions. two years after the death of the prophet. The Punjab is said to have been ravaged on this occasion with no permaneat results. The first Mahometan conquest was the outlying province of Sind, which from the point of view of geology may be regarded as a continuation of the desert of Baluchistán. In 711, or seventy-nine ycars after the death of Mahomet, an Arab army under Míulammad Kásim invaded and conquered the Hindus of Sind in the name of Walid I., caliph of Damascus, of the Benc-Umygch tine. In the same year Roderic, the last of the Goths, fell before the victorious Saracens in Spain. But in India the brnvery of the Rajputs and the devation of the Brahmana soem to havo afforded a stronger natioual bulwark than existed in western Europe. Ia 750 the Hinilus rose in rebollion und drove out the Musalman tyrant, and the land lad rest for one hundred and fifty years.

The next Mahometan invasion of Iadia is associated with the namo of Sultán Mahmad of Ghazni. Mahmúd was
Ghazni. the eldest son of Sabuktagin, surnamed Nasrud-din, in origin a Turkish slave, who had established his rule over the greater part of modern Afghánistín and Khomsin with Ghazni as his capital. In 977 Sabuktagin is said to lave defeated Jaipnl, the Hindu raja of Lahore, and to have rendered the Punjab tributary. But his son Mahmud was the firat of the great Musalmán conquerors whoso names bitll ring through Asia: Mahmud succeeded to the throus in 997. During his reign of thisty threo years he extended the limits of his father's kingdom from l'ersia on the cast
to the Ganges on the west; and it is related that he led bis armies into the plains of India no less than seventeed times. In 1001 he defented Rajá Jáipal a second time, and tuok him prisoner. But Anandpal, the son of Jaipal, raised agaiu the standard of national independence, and gathered an army of Cajput allies from the furthest comers of Hindustan. The decisive battle was fought in the valley of Pesháwar. Mahmud won the day by the aid of bis Turkish horsemen, and thenceforth the Punjab bas been a Mahometan province, except during the brief period of Sikh supremacy. The most famous of Mahmúd's invasious of India was that undertaken in 1024 against Guzerat. The goal of this expedition was the temple dedicated to Siva at Sumath, around which so many legends have gathered. It is reported that Mahmúd marched through Ajmir,' to avoid the desert of Sind; that he found the Hindus gathered on the neck of the peninsula of Somnath in datence of their holy city ; that the battle lasted for tro days; that in the end the Rajput warriors fled to their boats, while the Brahman priests retired into the inmost shrine; that Mahmud, introduced iato this shrine, rejected all entreaties by the Brahmans to spare their idol, and all offers of ransom; that he smote the image with his club, and forthwith a fountann of precious stones gushed out. Uatil the British invasion of Afgatuistán in 183?, the club of Mahmúd and tha sandal-wood gates of Somnâth were preserved at the tomb of the great coaqueror near GhaznL. The club has now disappearerl, and the gatez carried back to India by General Nott are recognized to be a clumsy forgery. To Mahometans Mahmud is known, not only as a champion of the faith, but as a munificent patron of literature. The dynasty that he founded was not long-lived. Fourteen of his descendants occupied his throne within little more than a century, but none of them achieved greatness. A bloodfeud arose between them and a line of Afghán princes who had established themselves among the mountains of Ghur. In 1152 Bahram, the last of the Ghaznivide Turks, was overthrown by Allah-ud-din of Ghor, and the wealthy and populous city of Ghazni was razed to the ground. But even the Ghoride conqueror spared the tomb of Mahmúd.

Khusru, the son of Bahrint, fled to Lahore, and there established the first Mahometan dynasty withia India.' It speedily ended with his son, also called Khusru, whom Muhammad Gheri, the relentless enemy of the Gbaznivide house, carried away into captivity in 1186.

The Afghans of Ghor or Ghur thus rose 0 power on the downfall of the Turks of Ghazal. The founder of tha family is said to have been Izzud-din al Husain, whose son Allah-ud-din destroyed Ghazni, as already mentioned. Allah-ud-din had two nephers, Ghiyas-ud-din and Muiz-ud-din, the latter of whom, also called Shahab-ud-din by Musalmán chroniclera, and generally known in hiatory ns Muhammad Ghori, is the second of the great Mahometan cenquerors of India. In 1176 he took Múltán and Uichch; in 1187 Labore fell into his hands; in 1191 he was repulsed befure Delhi, but soen afterwards he redecined this disaster. IXindustán Proper was at that period divided between the two Rajput kingdoms of Kanauj and Melhi Muhammad Ghori achieved lis object by playing off the rival kings against each other. By 1193 he had extended his conquests as far east as Benares, and tho defeated Rajputs migrated in a body to the hills and deserts now known as lájputána. In 1139 one of his lieutenanto, named Bakhtiyar, nilvanced into Bengal, and expelled by an audacious stratagen the last Hindu raja of Nadiys The entire northern plain, from the Indus to tho Brahmaputra, thus lay under the Mahometan yoko. But MuhammadGhori ncver acttled himself permanently in India. His favourite residence is said to have been the old capital of Ghaznf while he geverned his Indian conquests through the agener
of a favourite slave, Kutab-ud-dfo. Muhammad Ghori died in 1206, being assassinated by some Ghakkar tribesmen while aleeping ia his tent by the bank of the Indus; on his death both Ghor and Ghaznl drup ont of history, and Delhi first appeary as the Mahometan capital of India.
On the death of Muhammad Gheri, Kutab-ud-din at once laid aside the title of viceroy, and proelaimed himself sultan of Delbi. He was the founder of what is known as 81 save the slave dynasty, which lasted for nearly a century dyasty. (1206-1288). The name of Kutab is preserved in the minar, or pillar of victory, which still stauds amid the ruins of ancient Delh, towering high above all later atructures. Kutab Limself is said to have been successful as a general and ao administrator, but none bf bis successors bay left a mark in history.

In 1294 Allah-ud-din Khilji, the third of the great Mahometan conquerors of India, raised himself to the throne of Delhi by the treacberous assassination of his uncle Firoz II., who bad himself aupplanted the last of the slave dyoasty. Allab-ud-din bad already won military renown by his expeditions into the yet unsubdued south. He Lad plundered the temples at Bhilsa in central India, Which are admired to the present day as the most intercsting examples of Buddbist arehiteeture in the country. At the head of a small band of horsemen, he had ridden as or south as Deogiri in the Deccan, and plundered the Mlarhattá eapital. When once established as sultán, he planned mora extensive scbemes of conquest. One ariny was sent to Guzerat under Alaf Kbán, who conquered and expelled. the last Rajput Eing of Anbalwár or Pátan. Another army, led by the sultian in person, marehed into the beart of Rajputána, and stormed the rock-fortress of Chitor, where the Rajputs bad taken refuge with their women and elildren. A third army, commanded by Malik Kafür, a Hindu renegade and iavourite of Allab-uddin, peoetrated to the extreme south of the peninsula, scattering the unwarlike Dravidian races, and stripping every Hindu temple of its accumulations of gold and jewels. To this day the name of Malik Kafur is remembered in the remote -distriet of Madura, in association with irresistible fate and every form of sacrilege.

Allah-ud-dín died in 1316, having subjected to Islám the Deecan and Guzerat. Three of his deseendants followed him upon the throne, but their united reigns extended over only five years. In 1321 a successful revolt was beaded by Ghiyas-ud-din Tughlak, governor of the Punjab, who is said to have been of Turkish origin. The Tughlak dynasty lasted for about seventy years, until it was swept away by the invasion of Tiounr, the fourth Mahometan conquerer of India, in 1398. Gliyas-ad-din, the founder of the line, is only known for having removed the capital from Delhi to a epot about 4 miles further to the enst, which he called Tughlakábad. His son and suc-Muhani- cessor, Mubammad Tugblak, who reigned from 1325 to wasi 1351, is deseribed by Elphinstone as "one of the most ragblak. accomplished princes and one of the most furious tyrants that ever adorned or disgraced human nature." He wasted the treasure accumulated by Allab-ud-din in purchasing the rotirement of the Mughal Lordes, who had already made thcir appearance in the Punjab. When the internal circuitation failed, be issued a forced curreney of eopper, which is said to have deranged the whole commeree of the country At one tine be raised an army for the invasion of Persia. At anether he actually despatebed an expedition against China, which perisbed soiscrably in the Ilimálayan passes. When Hindustán was thus suffering from his misgovernment, he conceived the project of transferring the seat of empire to the Decean, :und compelled the inhabitauts of Delhi to remove a distance of 700 miles to Ficogiri or Daulatábád.' And yet during the reign of this
sultán both the Tughlak dyoasty and the eity or Delhi are said to have attained their utmost growth. Mubammad was succeeded by his cousin Firoz, who likewise was not content without a new capital, which he placed a few milea north of Delhi, and called after his own name. Meavwhile the remote provinces of the cmpire began to throw of their allegiance to the sultans of Delhi. The independence of the Afghan kings of Bengal is generally dated from 1336 when Mulammad Tughlak was yet on the throne. The com. mencement of the reign of Allah-ud-dn, the founder of the Babmani dynasty in the Deccan, is variously assigned to 1347 and 1357. Zafar Khin, the first of the Ahmadatad kings, aeted as an independent ruler from the time of his first appointment as governor of Guzerat in 1391. 'These and other revolts prepared the way for the fourth great invasion of India under Timurr (Tamerlane).

Aecordingly, when Timúr invaded India in 1398, he Tinur'b eneountered but little organized resistance. Malumud, the invasion last of the Tugblak dyuasty, being defeated io a battle outside the walls of Delli, fled juto Guzerat. The eity was sacked and the inhabitants massacred by the victorious Mughals. But the invasion of Timúr left no permanent impress upon the history of India, except in so far as its mennory fired the imagination of Babar (Baber), the founder of the Mugual dynasty. The details of the fighting and of the atroeities may be found related in cold blood by Timur himself in the Malfuzat - - Timeiri, which has been translated in Elliot's Mistory of India as told by its oun Historians, vol. iii. Timúr marched back to Samarkand as he had eome, by way of Cabul, and Mahmuid Tughlak Tatured to return to his desolate capital. - He was sueceeded by what is known as the Sayyid dynasty, which beld Delbi añd a few miles of surrounding country for about forty years. The Sayyids were in their turn expelled by Beloli, an Afghan of the Lodi tribe, whose sucepssors removed the seat of government to Agra, whiel thus for the first time became the imperial city. In 1525 Babar (Baber), the fifth in deseent from Timúr, and also the fifth Mahometan conqueror, invaded India at the instigation of the governor of the Punjab, won the victory of Paminat over Ibrihhim, the last of the Lodi dynasty, and founded the Mughal empire, which lasted, at least in name, until 1857.

Before entering upon the story of the Mughal empire, it tynasule, is desirable to give a short sketch of the condition of of someth. southern India at this periocl, whieh marks a turning ero India point in Indian history. The earliest local traditions: agree in dividing the extreme south into four provinees, Kerala, Pandya, Chola, and Chera, which together made up the country of Dravida, oceupied by Tamil-speaking races. Of these lingdoms the greatest was that of Pandya, with its capital of Madura, the foundation of which is assigned on high authority to the 4th century B.C. Other early southern cities whose sites can be identified are Combaconum and Tanjore, the suecessive capitals of the Chola kingdom, and Talkad in Mysore, now buried by the sands of the Kaveri (Cauvery), the capital of the Cherio kingdon. The loeal Purana, or chronicle of Madura, gives a list of two Pandyan dymastics, the first of which has seventy-three kings, the sccond forty-three. Parakrama, the last king of the second dynasty, was overthrown by the Mahometan invader, Malik Kafur, in 1324; but the Musalmanns never established their power in the extreme south, and a series of Mlindu lines ruled at Madura into the 18 th eentury. No other Draridian kingdom ean boast such a continnous suecession as that of Madura. The elironicles enumerate fifty Chera kings, and no less than sixty-six Chola kings, as well as many minor dynasties which ruled at various periods over fractions of the south. Little confidenee, however, ean be placed in Hindu genealogies, and the carly history of the Dravidian races yet
remains to be deciphered from mouldering palm leaves and the more trustworthy inscriptions on copper and stone. Authentic history begins with the Hindu empire of Vijayangar or Narsinghs, which exereised an ill-defined Borereignty over the entire south from the 12 th to the 16 th century. The foundation of the city of Vijayanagar is assigned to the year 1118, and to an eponymous hero, Rajá Vijaya, the fifth of his line. Its extensive ruins are still to be traced on the right bank of the Tungabbadra riser within the Madras district of Bellary. The city itself has not been inbabited since it was sacked by the Mahometans in 1565, but vast remains still exist of temples, fortifications, tanks, and bridges, haunted by beasts of prey and venomous reptiles. The empire of Vijayanagar represents the last stand made by the national faith io India against coaquering Islam. For at least three centuries its sway over the south was uodisputed, and its rajás waged wars and concluded treaties of peace with the sultans of the Deccan on equal terms.

The earliest of the Mahometan dynasties in the Deccan was that founded by Allab-ud-din in 1347 or 1357, which Las received the name of the Babmani dynasty from the supposed Brâhman deseent of its founder. The capital was frst at Gulbargah, and was afterwards removed to Bidar, both which places still possess magnifcent palaces and mosques in ruins. Towards the close of the 1 tith century the Bahmani empire fell to pieces, and five independent kingdoms divided the Decean among them. These were(1) the Adil Shabi dynasty, with its capital at Bijapur, founded ia 1489 by a son of Amorath ll, sultinn of the Ottomans ; (2) the Kntab Sbáhi dynasty, with its e.pital at Golconda, founded ia 1512 by a Turkoman advent irer; (3) the Nizám Sháhi dynasty, with its capital at Ahmadnagar, founded in 1490 by a Brabman renegade, from the Vijayanagar court ; (4) the Imad Sháhi dynasty of Berar, cith its capital at Ellichpur, founded in 1484 also by a Hindu from Vijayanagar ${ }^{\text {(}}$ (5) the Barid Sbahi dynasty, with its capital at Bidar, founded avout 1492 by one who is variously described as a Turk and a Georgian slave. It is, of course, impossible bere to trace in detail the bistory of these several dynasties. In 1565 they combined against the Hindu raje of Vijaynnagar, who was defeated and slain n the decisive battle of Talikota. But, though the city uas sacked and the supremacy of Vijayanatar for ever sestroyed, the, Mabometan victors did not themselves advance intu the 6outh. The Naiks or icudatories of Vijayanagar everywhere asserted their independence. From them are descended the well-known Palegars of the south, and also the present raja of Mysore. One of the bloodroyal of Vijayanagar fled to Chandragiri, and founded a line which exercised a preregative of its former sovereignty by granting the site of Madras to the English in 1639. Anotber acton claiming the same high descent lingers to the present day near the ruins of Vijayanagar, and is known as the rijá of Anagundi, a feudatory or the nizam of Hyderabad. Despite frequent internal strife, the nultáns of the Deccan retained their independence until cenquered by the Mughal emperor Aurangzeb in the latter half of the 17 th century. To completo this sketels of India at the time of Babar's invasion it remains to say that an independent Mahometan dynasty reigned at Ahmadabid in Guzerat for nearly two centuries (from 1391 to 1573), until conquered by Akbar ; and that Bengal was similarly independent, under a line of Δ fghan kings, with Gaur for Mughal their capital, from 1336 to 1573 When, therefore, Babar
dyuasty. invaded Iadia in 1525, the $\mathrm{g}^{\text {rester par }}$ of the country was Mabometan, but it did not recognize the authority of the Afghán sultan of the Lodi dynasty, who resided at Agra, and also ruled the historical cepital of Dethi. After having nod the battle of Pánipat, Bábar was no more acknowlodged
as emperor of India than his ancestor Timúr had been Bábär, however, unlike Timúr, had resolved to settle in the plaina of Hindustán, and carve out for bimself a new empire with the help of bis Mughal followers. His first task was to repel an attack by the Rajputs of Chitor, who seem to have attempted to re-establish at this time a Hindu empire. The battle was fought at Sikri near Agra, and is memorabls for the vow made by the easy living Babar that be would never agsio touch wine. Babar was again victorious, but died shortly afterwards in 1530 . He was succeeded by his son Humáyún, who is chiefly known as being the father of $\Lambda \mathrm{kbsar}$. In Humayun's reign the afgho subject Afgháns rose in revalt noder Sher Sháh, a native revult of Bengal, whe for a short time establisbed bis authority over all Hindustán. Huraáyún was driven as an exile into Persia; and, while he was tying through the desert of Sind, bis son Akbar was born to him in the petty fortress of Umarkot. But Sher Sháb was killed at the storming of the rock-fortress of Kálinjar, snd Humáyún, after many vicissitudes, succeeded in re-establishing his authority st Lshore and Delhi.

Humáyún died by an aceident in 1556, leaving but a akbar circumseribed kingdom, surrounded on every side by active foes, to his son Akbar, then a boy of only fourteen sears. Akbar the Great, the real founder of the Mugbal empire as it existed for two centuries, was the contemporary of our own Queen Elizabeth (1558-1603). He was born in 1542 , and bis reign lasted from 1556 to 1605 . When bis fatber died he was absent in the Puajab, fighting the revolted Afgháns, under the guardianship of Beirám Khán, a native of Badakshán, whose military skill largely contributed to recover the throne for the Mughal line. For the first seven years of bis reign Akbar was perpetually engaged in warfare. His first task was to establish his authority in the Punjab, and in the country around Delhi and Agra. In 1568 be stormed the Rajput stroaghold of Chitor, and conquered Ajmir. In 1570 he obtained possession of Oudh and Gwalior. In 1572 Le marebed in person inte Guzerat, defeated the last of the independent. sultíns of Ahnadabad, and formed the province into a Mughal viceroyalty or subah. In the same year his generals drove out the Afghâns from Bengal, and reunited the lower valley of the Clanges te Hindustan. Akbar was then the undisputed ruler of a larger pertion of India than had ever before acknowledged the sway of one man. But be continued to extend his conquests throughout his lifetime. In 1578 Orissa was annesed to Bengal by his Hindu general Todar Mall, who fortbwith urganized a revenue survey of the whole province. Cabul submitted in 1581, Kashmir in 1586, Sind in 1502, and Kandahar in 1594. At last be turned his arms against the Mabometan kings of the Decean, and wrested frum them Berar; but the pernanent conquest of the south was reserved for Aurangzeb.

If the history of Akbar were confined to this long list of conquests, bis name would on their account alone find a high place among those which mankind delights to remember. But it is as a civol adninistrator that his reputation is cherished in India to the present day. With regard to the land revenue, the essence of bis procedure was to fix the amount which the cultivators should pay at one-third of the gross produce, leaving it to their option to pay in moncy or in kind. The total land revenue received by Akbar amounted to about $16 \frac{1}{2}$ millions sterling. Comparing the area of his empire with the corresponding area now noder the British, it has been calculated that Akbar, threo hundred years ago, obtained $15 \frac{1}{2}$ millions where they obtain only $13 \frac{1}{2}$ millions,-an amount ro. presenting not more than one-half the purchasing poxer of Akbar'a $15 \frac{1}{2}$ millions. The distivetion between khaiso
land, or the imperial demesne, and jagir lands, granted revenue fres or at quit rent in reward for servlces, also dates from the time of Akbar. - As regards his military system, Akbar invented a sort of feudal organization, by which every tributary rija took his place by the side of his own Mughal nobles. 'In theory it was an aristocracy based only upon military cemmand; but practically it accomplished the object at which it anned by incorporating the bereditary chiefships of lajjputana among the mushroor. .eeations of a Mahometan'despotism. Musalmáns and Hindus were alike known only as mansabdars or commanders of so many berse, the highest titlo being that of amir (ameer), corrupted by European travellers into umrah or omrah. The third and last of Akbar's characteristic measures wero those connected with religious innovation, about which it is difficult to speak with precision. The necessity of cenciliating the proud warriers of Rajpotana bad taught bim toleration from his earliest days. His favourite wife was a Rajput princess, and another wife is said to bave been a Christian. Out of four hundred and fifteen of bis mansabdars whose names are recorded, as many ns fifty-one were Hindus Start ing from the broad ground of general toleration, Akbar was gradually led on by the stimulus of cosmopolitan discussion to questien the truth of his inherited faith. The counsels of his friend Abul Fazl, ceinciding with that sense of superhuman omnipotence which is bred of despotic porwer, led him at last to promulgate a new state religion, based upen natural theology, and comprising the best practices of all known creeds. In this strange faith Akbar himself was the prephet, or rather the bead of the church. Every morning he worshipped the sun in public, as being the representative of the divine soul that animates the universe, while he was himself wershipped by the ignorant multitude.
Akbar died in 1605, in his sisty-tbird year. Hè lies buried beneath a plain slab in the magnificent mausoleum which be had reared at Sikandra, near his capital of Agra. As his name is still cherished in India, so his tomb is still honoured, being covered by a cleth presented by Lord Nurthbrook when vieeroy in 1873.
\checkmark-adngif. The reign of Jabangir, his son, extenaed from 1605 to 1627. It is chiefly remarkablo for the influence esercised over the emperor by his favourite wife, surnamed Núr Mabal, or the Light of the Harem. The currency was struck in ber name, and in her bands centred all the intrigues that made up the work of administration. She lies buried by the side of her busband at Lahore, whither the seat of government had been moved by Jahangir, just ns Akbar had provlously transferred it from Delhi to Agra. It was in ithe reign of Jabángir that the English first established themselves at Surat, and also sent their first embassy to the Mughal court.
Shah Jahangir was succeeded by his son Sháh Jahán, Jahỉn. who had rebelled against his father, as Jáhangir bad frebelled against Akbar. Sháh Jahan's reign is generally regarded as the peried when the Nughal empire attained its greatest magnificence, though not its greatest extent of territory. He founded the existing city of Delbi, which is still known to its Mahometan inhahitants as Jabánábád. At Delli also he erected the celcbrated peacock threne; but his favourite place of residence was Agra, where his name will ever be associated witb the marvel of Indian architecture, the Táj Mahál. That most chaste and most ornamental of buildings was ereeted by Sbâh Jahin as the mausoleum of his favourite wife Mumtaz Mahál, and be himself lies by her side. It is said that twenty thousand workmen laboured on the werk for twenty years. Besides the Taj, SLáh Jabân also built at Agra within the old fort the falace and the pearl mesque, both of which, like the

Taj, havo been preserved to be objects of ammration to the present day. Sháh Jahán had four sons, whose fratricidal wars for the succession during their father's lifetime it would be tedious to dwell uper Suffice it to say that Aurangzeb, by mingled treachery and violence, supplanted or overthrew Iis brothers and proclaimed himself emperor, in 1658 , while Sháh Jahán was yet alive.

Aurangzeb's long reign, from 1658 to 1707, may be aranuzes regarded as representing both the culminating point or Mughal power and the beginning of its decay. Unattractive as his character was, it contained at least some elements of greatness. None of his successors on the throne was anything bigher than a debauchce or a puppet. He was the first to conquer tho independent sultáns of the Deccan, and to extend his authority to the extreme south. But even during bis lifetime two new IIindu nationalities were being formed in the Marhattas and the Sikhs; while immediately after his death the nawabs of the Deccan, of Oudb, and of Bengal raised themselves to practical independence. Aurangzeb had indeed enlarged the empire, but he had not strengthened its foundations. During the reign of his father Sháh Jahán he had been viceroy of the Deccan or rather of the northern portion only, which had been annexed to the Mughal empire since the reign of Akbar. His early ambition was to conquer the Mahometan kings of Bijapur and Golconda, who, since the downfall of Vijayanagar, bad been practically supreme over the south. This object was not accomplished without many tedious Iise of campaigns, in which Sivaji, the founder of the Marhattá Marho:t confederacy, first comes upon the scene. In nume Sivaji ${ }^{\text {power. }}$ was a feudatory of the house of Bijapur, on whose behalf he beld the rock-forts of his native Ghats; but in fact he found his opportunity in playing off the Mahometan pewers against one another, and in rivalbing Aurangzeb himself in the art of treachery. In 1680 Sivaji died, and his son and successor, Sambhaji, was betrayed to Aurangzcb and put to death. The rising Marhattí power was thus for a time checked, and the Mughal armies were set free to operate in the castern Deccan. In 1686 the city of Bijapur was taken by Aur.ngzeb in person, and in the following year Golconda also fell. No independent power then remained in the south, though the numerous local chieftains, known as palegars and naiks, never formally submitted to the Mughal empire. During the early rears. of his reign Aurangzeb had fixed his capital at Delbi, while he kept his dethroned father, Shál Jahán, in close confinement at Agra. In 1682 he set out with his army on his victorious marcl into the Deccan, and frem that time usti] his death in 1707 he never again returned to Delhi. In this camp life Aurangzeb may be taken as representative of one aspect of the Mughal rule, which has been $p^{\text {ictur- }}$ esquely described by Eurepean travellers of that day. They agree in depicting the emperor as a peripatetic sovereign; and the empire as held together by its military highways, no less than by the strength of its armies. The great road running neross the north of tho peninsula, from Dacea in the east to Lahere in the west, is generally attributed to the Afghán usurper, Sher Sháh. The other roads branching out southward from Agra, to Surat nind Burhanpur and Golconda, were undoubtedly the work of Mughal times. Each of these roads was laid out with avenues of trees, with wells of water, and with frequent sarars or rest-houses. Constant communication between the capital and remote cities was maintained by a system of foot-runners, whose aggregate speed is said to have surpassed that of a horse. Commerce was conducted by means of a caste of bullock-drivers, whose occupation in India is hardly yet extinct.

On the death of Aurangzcb in 1707, the decline of the Dectireal Mughal empire set in with extraordinary rapidity. Tec ymyise_
emperors after Aurangzeb are enumerated in the chronicles, but nene of them lmes left any mark on history. His son and suceessor was Bahadur Sháh, who reigned only five years. Then followed in order three seas of Babadur Sháh, whose united reigns oceupy ouly five years more. In 1739 Nadir Shath of Persia, the sisth and last of the great Mahometan conquerurs of India, swept like a whirl. wind over Hindustan, and sacked the imperial city of Deihi. Thenceforth the Great Mughal (Mogul) beeame a mere name, though the hereditary succession continued uabroken down to our own day Real power had passed into the hands of Mabemetan courtiers and Marhattá generals, both of whom were then carving for themselves kingdoms out of the dismembered empire, until at last British autherity placed itself suprense ever all. From the time of Aurangzeb ne Misalmán, hewever pewerful, dared to assume the title of sultan or emperor, with the single exception of Tipu's brief parexysm of madness. The name of nawab, cerrupted by Enrepeans inte " nabob," appears to be an invention of the Mughals to express delegated authority, and as such it is the highest title cenferred upen Mabometans at the present day, as maharaja is the highest title conferred upon Hindus. At first nawabs were only found in important cities, such as Surat and Dacea, with the special function of administering civil justice; criminal justice was in the hands of the kotwal. The correspending officials at that time in a large tract of country were the subahdar and the faujdar. But the title of subabdár, or vieeroy, gradually dropped into desuetude, as the paramount power was shaken off, and nawab beeame a territerial title with seme distinguishing adjunct. During the troubled perind of intrigue and assassination that fellewed on the dedth of Aurangzeb, two Mahometan fereigners rose to high position as conrtiers and generals, and succeeded in transmitting their power to their sens The one was Chin Kulich Khan, also called Asof Jah, and still more commonly Nizàm-nl-Mulk, who was of Turkoman origin, and belouged to the Sunni sect. His independence at Myderabad in the Decean dates from 1712. The other was Satdat Ali Khán, a Persian, and therefore a Shil, whe was appeinted subabdar or nawab of Oudh in 1720. Thenceforth these two important provinces paid ne more tribute to Delbi, though their bereditary rulers continued to seek formal recognition frem the emperor on their succession. The Marhattís were in pessession of the entire west and great part of the centre of the peninsula; while the rich and unwarlike province of Bengal, thengh governed by an hereditary line of nawibs founded by Mnrshid Kuli Khín in 1704, still centinued to pour its wealth into the imperial treasury. The central autbority never recovered from the invasion of Nádir Sbáh in 1739, who carried off plunder varionsly estimated at from 8 to 30 millions sterling The Marbattís closed round Delbi from the south, and the Aighans from the west The victory of Pánipat, won by Almad Shâh Duráni over the united Marbattá confederacy in 1761, gave the Mahometans one mere cbance of rula But Abmad Shíh had no ambition to found a dynasty of his own, ner were the Britislı in Pengal yet really for territorial cenguest. Shath Alam, the lineal heir of the Mughal Line, was thus permitted to ascend the throne of Delhi, where the lived during the great part of a long life as a puppet in the hands of Mabadaj! Sindllia JIe was succeeded by Akbar IL., who lived similarly under the shadow of Iritish protection Last of all came Bahádur Sháh, who atomed for his association with the mutincers in 1857 by hanish. ment to Burmah. Thus ended the Mughal line, after a history which covers three hundred and thirly years. Mahometan rule remodelled the revenue system, and has left behind forty millions of Musalmans in British India.

Early European Settlements.

Mabometao invaders have always entered India from the nerth-west. Her new conquerors appreached from the sea and from the south. From the time of Alexander to that of Yasco da Gama, Europe bad enjoyed little direct intercourse with the East. An occasional traveller brought back steries of pewerful kingdoms and of untold wealth; but the passage by sea was unthought of, and by land many wide deserts snd warlike tribes lay between. Comweree, indeed, never ceased entirely, being carried on chiefly by the Italian cities on the Mediterranean, which traded to the ports of the Levant. But to the Europeans of the 15 th century Iodia was practically an unknown land, which porerfully attracted the imagination of spirits stimulated by the Renaissance, and ardent for diseorery. All the learning on this subjeet bas been colleeted by Dr Birdwood in his admirable Report on the Old Records of the India Office (1879), from which the present seetion is largely borrowed. In 1492 Christopher Columbus set sail under the Spanish flag to seek India beyond the Atlantic, bearing with him a letter to the great khan of Tartary. The expedi- $\mathrm{Y}_{\mathrm{asco}}$ do tion under Vasco da Gama started from Lisben five years Game. later, and, doubling the Cape of Good Hope, cast aneher off the city of Calicut on the 20th May 1498, after a prolonged voyage of nearly eleven menths. From the first Da Gama encountered Lostility from the "Moors," or rather Arabs, who monopolized the sea-borne trade; but he seems to have found favour with the zamorin, or Hindu raja of Malabar. It may be werth while to recell the centemporary condition of India at that epech. An Afghán of the Ledi dyoasty was on the throne of Delhi, and anotber Afglán king was ruling over Bengal. Ahmadabad in Guzerat, Gulbargah, Bijapur, Ahmaduagar, and Ellichpur in the Decean were each the capital of an independent Maliometan kingdem; while the Hindu rajjí of Vijayanagar was recegnized as paramount over the entire south, and was perhaps the mest powerful monareb to be found at that time in all India. Neither Mnghal nos Marhạttá bad yet appeared abeve the pelitical horizon.

After staying nearly sis months on the Malabar coast, Da Gama returned to Europe by the same route as he had come, bearing with bim the following letter from the zamorin to the king of Portugal ; "Vasce da Gama, a nobleman of your housebold, has visited my kingdom and has given me great pleasure. In my kingdon there is abundance of cinnamen, cleves, ginger, pepper, and precious stanes. What I seek from thy country is gold. silver, coral, and scarlet." The arrival of Da Gama at Lisbon was celcbrated with national rejoieings searcely less enthusiastic than had greeted the return of Columbus. If the West Indies belonged to Spain by priority of discovery, Portugal might claim the Fast Indies by the same right Territorial aubition conspired with the spirit of proselytism and with the greed of commeree to fill all Portuguese minds with the dream of a mighty Oriental enipire. The early PortuPortuguese disceverers were not tradeís or prisate adven- guese ex. turers, but admirals with a reyal commission to conquer peditions territory and promote the spread of Christianity A second expedition, consisting of thirteen slips and twelve hundred soldiers, únter the command of Cabral, was despatehed in 1500. "The sum of his instructions was to begin with preacling, and, if that failed, to proceed to the sharp deternination of the sword." On his outward vayage Cabral was driven by stress of weather to the ceast of Brazil. Ultimately he reached Calicut, and establisbed faetaries both there aud at Cochin, in the face of aetive lostility from the natives. In 1502 tho king of Portugal obtained frow Pope Alezander V 1 . a bull constituting him "lord of the navigation, conquests, and trade of Ethiopia,

Arabia, Perssa, and India." In that year Vasco da Gama asiled again to the East, with a fleet numbering twenty vessels. He formed an alliance with the rajkis of Cochin and Caeanore against the zamorin of Calcut, and bombarded the latter in bis palace. In 1503 the great Alionso d'Albuquerque is first heard of, as in command of oue of threo expeditions from Portugal. In 1505 a large fleet of twenty-two sail and fifteen thousand men was sent under Francisco do Almeida, the first Portuguese governor and viceroy of India. In 1509 Albuquerque succeeded as goveraor, and widely extended the area of Portuguese influence. Having failed in an attack apon Calicut, he seized Goa, which has ever since remaiaed the capital of Portuguese India. Then, sailing round Ceylon, he captured Malacca, the kay of the navigation of the Indian archipelago, and opened a trade with Siam and the Spice Islands. Lastly, he sailed back westwards, and, after penetrating into the Persian Gulf and the Fied Sea, returned to Goa only to die in 1515. In 1524 Vosco da Gama came out to the East for the third time, and be too died at Cochin. For exactly a century, from 1500 to 1600 , the Portaguese enjoyed a monopoly of Oriental trade.
"From Japan and the Spice Islands to the Red Sea and the Cape of rood Hope, they were the sole masters and dispensers of the treasures of the east; while their possessions along the Atlantic coast of Africa and in Brazil complete their maritime empire. But they never commanded the necessary resourees either of mifitary atrength or persenal character for its maintenance and defence. They were also in another way uaprepared for the commerce of which they thus obtaioed the control. Their national charaeter had been formed in their aecular contest with the Moors, and above all things they were knights errant and crusaders, who lookod on every pagan as an coemy at once of Portugal and of Christ. It is impossible for any one who has not read the contemporary narratives of their diseoveries and conquests to conceive the grossness of the auperstition and the ernelty with which the whole history of their axploration and aulojugation of the Indies is atained. Albnquerque alone endearoured to conciliate the good will of the natives, and to live in friendsbip with the Hindu princes, who were naturalty better ploased to have the Portuguese, as governed by him, for their neighbours and allies than the Mahometans whom he had expelled or sublued. The justice and magnanimity of his rule did as much to cxtend und coufirm the power of the Portuguese in the East as the conrage and success of his military achievements; and in anch veneration ras bia mexiory held by the Hindus, and even by the Mabometana, in Goa thet they were accustomed to repair to his tomb, and there atter their complaints, as if in the presence of his alade, and call apon God to deliver them from the tyranny of his ancecssors. The aruelties of Soarez, Sequeyra, Menezes, Da Gama, and ancceeding viceroys drove the natives to desperation, and encouraged the princes of weatern India in 1567 to form a league against the Portuguese, in which they were at once joined by the king of Achin. Their undisciplined nrmies were net able to stand against the reteran aoldiers of Portugal, 200 of whom, at Malacea, utterly ronted and put to flight a force of 15,000 of the enemy. When, in 1578, Malacea was again besieged by the king of Achin, tho amall garrison of Portoguese sueceeded in inflicting a loss on him of 10,000 men and all his caanen and junks. Twico again, in 1615 and for the last time in 1628, it was besieged, and on each orcuaion tho schinese were repulsed with equal bravery and good forrune. But these incessant attacks on the Portuguese evinced tho faciine of their empire, while the increased military forces sent out In the East proved an iosuppertable drain on the revenues and population of Portugal.
'In 1580 the crown of Pertugal, consequent on the death of King soosastian, became united with that of Spain, onder l'hilip II., -an evert which proved the last fatal blow to the maritime and commercim supremacy of Portugal. It proved fatal in many ways, but chselly becanse the interests of Portugal in Asia were anbordinated tr ahe European interests of Spain. In 1640 Portugal agaia becamo a meparate Lingdom, but in tho mean while the Duteh and English hai appeared in the Fastern Seas, and bofore their indomitable compention the Portuguese trade and domiaion of the Indica withered awny na rapidly na it had sprung up. The period of the higheat development of Portugucse cemmerce was probably from 1590 to 1810, on the ere of the subversion of their political power by the Dutch, and when their political administation in India was at its lowest depth of degradation. At thia period a aingle fleet of Portaguese merchantmen sailing from Goa to Cambay or Surnt wenld number as many as 150 or 250 'carracks.' Now only one Portu. guese ship sails from Lisbon to Goa in tho year."

The onty remaining Portugucse possessions in tadia are toan; Daman, aud Din, all on the west coast, with an area of 1086 square miles and a population of 407,712 sonls. The general census of 1871 also returned 426 lortuguese dwelling in British India, not inctuding those of mised deseent, of whom about 30,000 are found in Borabay and 20,000 in Bengal, chiefly in the neighbourhood of Dacea and Chittagong. Tho latter are known as Firinghis; aud, exeepting that they retain the Roman Catholic faith and European sumames, are senrcely to be distinguished either by colour or by habits of life from tho natives mong whom they live.

The Dutch wero the first European nation to break nutch through the Portuguese monopoly. During the 16 th cen- settlotury Bruges, Antwerp, and Anisterdam became auccessively ments the great emporia whence Indian produce, imported by tho Portuguese, was distributed to Germany and even to England. At first the Dutch, following in the track of the English, attempted to fiod their way to India by sailing round the north coasts of Europe and Asia. Williars Barents is honourably known as the leader of three of these arctic expeditions, in the last of which he perished. The first Dutchman to donble the Cape of Good Hope was Cornelius Houtman, who reached Sumatra sad Bantam is 1596. Forthwith private companies for trade with the East were formed in many parts of the United Provinces, but in 1602 they were all amalgamated by the states-general into "The Dutch East India Company." Within a few years the Dutch had established factories on the continent of India, in Ceylon, in Sumatra, on the Persian Gulf, and on the Red Sea, besides having obtained exclusive possersion. of the Moluccas. In 1618 they laid the foundation of the; city of Batavia in Java, to be the seat of the supreme government of the Dutch possessions in the $\mathrm{E}:$ Indies. which had previously been at Ambeyna. At about thes same time they discorered the coast of Australia, and ins North America founded the city of New Amsterdam or Maohattan, now New York. During the 17th century the Dutch maritime power was the first in the world. The massacre of Amboyna in $1623^{\text {l }}$ led the English East India Company to retire from the Eastern scas to the continent of India, and thus, though indirectly, contributed to the foundation of the British Indian empire. The long aaval wars and bloody battles between the English and the Dutch within the narrow geas were not terminated until William of Orange united the two crowns in 16sty. In the far East the Dutch ruled without a rival, and gradually expelled the Portuguese from almost all their territorial possessions. In 1635 they occupied Formosa; in 1640 they took Malacca, a blow from which the Portuguese never recovered; in 1651 they founded a colony at the Cape of Cood Hope, as a balf-way station to the East; in 1658 they captured Jaffapatan, the last stronghold of the Portuguese in Ccylon; in 1661 they wrested from the Portnguese all their earlier settloments on the pepper bearing coast of Malabar. The rapid and signal downfall of the Dutch colonial empire is to be explained by its short-sighted commercial policy. It was deliberately based upon a monopoly of the trade in spices, and remained from first to last destitute of the true imperial spirit. Like the Phenicians of old, the Dutch stopped short of no acts of cruelty towards their rivals in commerce ; and, like the Phonicians, they falled to introduce a respect for their own higher civilization among the natives with whom they came in contact. The knell of Dutch supremacy was sounded by Clive, when in 1758 he attacked tho Dutch at Chinsurah both by land and water, and forced them to an ignominious capitulation. In the great French war from 1781 to 1811 England wrested from inolland every one of her colonics, though Java was restored in 1816 and Sumatra in exchange for Malacea in 1824. At the prosent time the Dutch flag flies nowhere on the mainland of India, though the quaint honses and regular canals at Chinsurah, at Negapatam, at Jaffnapatam, and at
many petty ports on the Coromandel and Malabar coasts, remind the traveller of familiar scenes in the Netherlands. In the census of 1872 only seventy Dutchmen were enumerated throughout the whole of India.

English, maritime arjealitions.

The earliest English attempts to reach India were made by the North-Whest Passage. In 1496 Henry VII. granted letters patent to John Cabot and his three sons (of whom one was the better known Sebastian) to fit out two ships fur the exploration of that route. They failed, but discovered the island of Newioundland, and saited along the coast of America from Labralor to \cdot Tirginia. In 1553 the ill-fated Sir Hugh Willoughby attempted to force a passige along the worth of Europe and Asia, the successful accomptistument of which has been reserved for a Swedish savant of our own generation. Sir Hugh perished miserably, but his second in command, Chancellor, reached a barbour on the White Sea, now Archangel. Thence be penetrated by land to the court of the grand-duke of Moscow, and laid the foundation of "the Russia Company for earrying on the overland trade between India, Persia, Bokbara, and Moscow." Many subsequent attempts were made at the North-West Passage from 1576 to 1616, which have left on our modern maps the imperishable names of Erobisher, Davis, Hudson, and Baffin. Meanwhile, in 1577, Sir Francis Drake had circumnarigated the glebe, and on his way bome had touched at Ternate, one of the Moluccas, the king of which island agreed to supply the English nation with all the cleves it produced. "The first Englishman who actually visited India was Thomas Stephens, in 1579, unless there be any foundation in fact Eor the statement of William of Malmesbury, that in the year 883 Sighelmus of Sherborne, being sent by King Alfred to Rome with presents to the pepe, proceeded frem thence to the East Indies to visit the tumb of St Thomas at dylapmre (Mailapur, also called Saiat Thomé, a suburb of Madras), and brought back with him a quantity of jewels and spices. Step bens was educated at New College, Oxford, and was recter of the Jesuits' College in Salsette. His letters to his father are sail to have ronsed great Overland enthusiasm in England to trade directly with India. In exiredi- 1553 three English merchants, Ralph Fitch, James Newtions. berry, and Leedes, went out to India overland as mercantile adventurers. The jealous Portugnese threw them into prison at Ormoz, and again at Goa. At length Newberry settled down as a shopkepier at Goa, Leedcs entered the service of the Great Mughal, and Fitch, after a lengthened peregrination in Coylon, Bengal, Fegu, Siam, Masca, and other parts of the East Iodies, returned to England."

The defeat of the "Invincible Armada" in 1588, at Which time the crowns of Spain and-Fortugal were united, gave a fresh stimulus to naritime cuterprise in England; and the snccessful veyage of Comelins Hontman in 1596 showed the way reund the Cape of Gicull 11 ppe intu waters Litherto monepolizod by the Portuguese

East
Intia
Cult
pus.

The foundation of the English East In lia Company mas on this wise:-"In 1502 the Dutch, who harl now finnly" established their Erace in tho East, laving raisel the price of peprer against us from 2s. Forst to 6s. and 8s. the metchats of London ladd a merting on the ged september at lounders 1 ball, with the lod mayn in the fhair, ond agreed to form an association for the purpose of trading direchly with ladia. Queen Elizabeth also sent Sir John Mildenladi by Constantinoplo to the Creat Mughal to apply for privileges for the fimelish company, for which she was then prepring a charter, aud on tle 31st Decernier 1600 the Finglish East Inmin Conpany was inworporated by royal chater undet the title of "lhe Govemot and Cumpuny of Durchants of 1 ,ondon traning to the East Budies." " The original company had omly one hundred and twenty five share. Julfers, and a capital of $£ 70,000$, which was raised to $\ell 400,000$ in 1612 when voyares wore first undurtaken on the joint-stock acconnt. Comten's association, known also as "The Aesala Mewhants," from a fartaty fundeal by them in Madagascar, was estmbliched in 1635, Dut, ufter a puriod of interneciue livalry, united with the London

Company in 1650. In 1655 the "Company of Merchant Adver. turers " obtained a chatter from Cronwell to trade with lndia, but united with the original company two years later. A more formidable rival subsequently appeared in tbe English company, or "General Society trading to the East Indies," which was incorporated under powerful patronage in 1698 , with a capital of 2 millions sterling. Accurding to Evelyn, in his Diary for March 5, 1693, "the old Last India Company lost their business against the new comprany by ten votes in parliament, so many of their filends being absent, goiog to see a tiger baited by dogs. "However, a conpromise was speedily effected through the arbitration of Lord Godolphin in 1702, and the London and the English companies were fimally amalgamated in 1709 , under the style of "The United Company of Merchants of England trading to the East Indies." At the same tine the Company advanced a loan to the slate of $£ 3,190,000$ at 3 per cent. interest, in consideration of the exclusive luivilege to trade to all places between the Cape of Guod Hole aud the Struits of Magellan.

The early voyages of the Company, from 1600 to 1612 , are distinguished as the "sepmate voyages," twelve in number. The sub. Suribers individually bore the expenses of each voyage, and reaped the whole profits. With tlie exception of the fourth, all these separate voyages wero highly prosperous, the profits hardly eser falling below 100 per cent. After 1612 the voyages were conducted on the joint-stock account.

The following chronologieal sketeh of the progress of the Company in the East is quoted almost verbatim from Dr Birdwood's valuable report:-
"The English were everyinhero opposed from the first, as the Enginh Dutch had been, by the Portuguese; but James Lancaster succeeded sett:ein the first voyage (1602) in establishing commercial relations with ment. the king of Achin, and at Priaman in the island of Sumatra, and with the Moluceas, and at Bantan, where he settled a factory or 'House of Trade' in 1603. In 1604 the Company undertook their second royage, commanded by Sir Henry Middleton, who extended their trade to Banda and Amboyna. The suecess of these voyages was so great that it induced a number of private merchants to endeavour to obtain a participation in the trade; and in 1606 James I. granted a licence to Sir Edward Nicbelborne and others, to trade 'to Cathay, China, Japan, Corea, and Cambaya, Miehelbornc, however, on arriving in the East, instead of exploring new sources of commerce as the East India Company were doing, followed the pernicious example of the Portuguese in pluadering the native traders among the islands of the Indian Archipelago. He in this way secured a considerable booty, but brought great disgrace on the British name, and much himdered the Company's busincss at Pantans. In 1608 Captain D. Middleton, in command of the fifth voyage, was prevented by the Dutch from trading at Banda, but succeeded in obtaining a cargo at Pule Way. In that year also Captain Hawkins in the thid voyage, conmandel by Captain Keeling, proceeded from Surat ns envoy from James I. and the Eost India Company to the court of the Great Mughal. He was gracionsly received by the emperor (Jahángir), and remained three years at Agra. In 1609 Captain Sharpey, who had conducted the foustly voyage, obtained the grant of free trade at Aden, and a cargo of repper at Iriamau. In that year also the Company constricted the dockyand at Deptford, - which was the begimning, obsetves Sir William Monson, of the increase of great ships in England. In 1011 Sir Henry Miduleton, in command of the sixth vojage, arrivel before Cambay, and resolntely fonght tho Portugnese, who tied to beat him off, and obtained some important concessions from tho native powers. In 1610-11 also Captain llipron, commanding tho seventh voyage, succecded in establishing agencies at Masuli. patam and in Sian, and at Patania or l'atany on the Malay neninsula, and a factory at l'ettipollec.
"In 161% tho Company's llect, of the tenth voyage, under Captain liest, was attacked off Swalley, the port of Surat, at tho mouth of the river Tapti, by an orerwhicming force of Portugucse, who were utterly defeated in fun successive engagements, to thu great astonishment of the natives. Who had hitherto considered them to be invincible, Tho first fruit of that decisive victory was tho Surat settlement of a factory at Surat, with suburdinate agencies at Gogra, factory. Ahmaditad, and Cimbay. 'Jrade was also opened with the Ferrian Gulf In Itili an agency was established ly Mr Edwards of the Sumt factory at Ajmir. In 1615 Sir Thomas lioe was sent out by lames I. as ambissador to the court of Juluingir, and succecded in placing the Company's trade in He Mughal dominions on a moro fovourable footing. The factory at Surat was the chicef sent of tho Company's government in western India until the presidency was thansfermed to lombay in 1685 . In 1618 the English ostablisheal a factory at Mocha, whilo the Dutch compelled them to resign atl pre. tensions to tho Spice Islands. In that. jear also the Company failed in its attempt to open a trado with Dabul, Baticola, and Calicut, through a want of sincerity on the part of the zamorin. $1 n$ lite it was permitted to settle a factory nud build a ton at Jask, in tho l'ersimin Gulf.
'In 1619 also the 'Treaty of Defenen' with the Duteh, to provent

Outch disputes between the English and Dutch companies, was ratified. When it was proclained in the East, hoatilities solemnly ceascu for the space of on hour, while the Dutch and English fleets, dressed out in all their flags and with yards manned, aaluted each other ; but the treaty ended in the smoke of that stately salutation, and perpetual and fruitlesa contentions batween the Dutch and English companies went on the same as ever. Up to that time the Eaglish company did not possess any portion of territory in sovereign right in the Indies, excepting in the island of Lantore or Great Banda. That island was governed by a commercial agent of the Company, who had under him thirty Europeans as clerks, overseers, and warehonsemen; and thesc, with two hundred and fifty armod Malays, constituted the only force by which it was protected. In the islands of Banda and Pulo Roon and Rosengyn the Company possessed factories, in each of which were ten agents. At Macassar and Achin also they possessed factories or agencies, the whole beiag subordinate to Bantsm. Such was the precarious situation of the English Company in the East at the commencement of their long struggle for commorcial equality-with the Dutch, whose ascendency in the Indian Archipelago was already firmly established on the basis of territorial dominion and authority. In 1620 the Dutch, notwithstanding the Treaty of Defence concluded the previous year, expelled the English from Pulo Roon and Lantore, and in 1621 from Bantam. The fugitive factors attempted to establish themselves first at Pulicat and afterwards at Masulipatam on the Coromandel coast, but were effectnally opposed by the Dutch. In 1620 also the Portuguese made an attack upon the English fleet under Captain Shillinge, but were again defeated with great loss, and from that time the estimation in which the Portuguese were held by the natives of India steadily declined, whila that of the English was proportionately raised. In that year the Company eatablished agencies at Agra and Patná In 1622 the English, joining with the Persians, attacked and took Ormuz from the Portuguese, and obtained from Shah Abbas 3 grant in perpetuity of the customs of Gombroon. This was the tirat time that the English took the offensive against the Portuguese. Ia the same year the Company succeeded in re-establishing their factory at Masulipatam.
"On the 17 th Febraary 1623 occurred the "Massacre of Amboyna;' and from that timo the Duteh remained masters of Lantore and the neighbouring islands, and of the whole trade of the Indian Archipelaro, until these islands were recaptured by the English in the great naval wars which commenced in 1793. In 1624 tho English, unable to oppose the Futch, withdrew nearly all their factories from the Archipelago, the Malay peninsula, Siam, and Japan. Some of the factors and agents retired to the island of Lagundy in the Strait of Sunda, but were forced, by its anhealthi. ness, to abandon it.
Eaglinh "In 1625-26 a lactory was established at Armagaon on the Cororactories. mandel coast, subordinato to Masulipatam; but in 1628 Masulipatam was, in consequence of the oppressions of the native governor, for a tine abandoned in favour of Armagion, which then monnted twelve guns and had twenty-three factors and agents. In 1629 the factory at Bantam was re-established as an agency subordinate to Surat; and in 1630 Avmagaion, reinforced by twenty soldiers, was placed under the presidency of Surat. In 1632 the factory was rerestablished at Mlasulipatam, by a firman, known as the 'Golden Firman,' from tha king of Golconda. In 1634, by a firman dated February 2, the Company obtained from the Great Mughal liberty to trado in Bengal, without any other restriction than that their ships sere to resort only to Pippli in Orissa. The Portugucse were in the same year expelled from Bengal. In 1634-35 Bantam was again raised toan indapendent presidency, and an agency was established at Tatta, or 'Scindy.' In 1637 Courten's Association (chartered 1635) settled agencies at Gos, Baticola, Kárwár (Carwar), Achin, and Rajápur. Its ahips had in 1636 plundered some native veszels at Surat and Diu, which disgraced the Company with the Moghal authorities (who could not comprehend the distinction between the Company and the Associstion), and depressed tho English trade with Surat, while thatwof the Dutch proportionately increased. In 1638 Armagaion was obandoned as unsuited for commeree; and in 1639-40 Fort St George, Maderaspatam ('Chince. patam'), was founded by Francis Day, and the factors-at Armaraon were at once removed to it. It was made subordinate to Bantam, until raised in 1683 to the rank of a presidency. In 1640 the Company established an agency at Bussorah, and a fartory at Kírwár. Trade having much extended, the Company's yaril at Deptford was found too small for their ships, and they purchased some copyhold ground at Blackwall, which at that time was - waste marsh, without an inhabitant ; and there they opened another dockyard, in which was built the 'Royal George,' of 1200 Jougbly tons, the largeat ahip yet seen in England. In 1642 the factories tactory. at Balasore and IIugh (IIooghly) were established. in 1645, in consequence of aervices rendered by Dr Gabricl Broughton, surgeon of the 'Ilopowell,' to the emperor Sháh Jahan, additional privileges wore granted to the Company; and ir 1640 the governor of Bengal, who had also been professionally bencfited by Broughton, made concessions which placed the factoriea at Batasore and IJooghly on a
more favourable footing. In 1647 Courten's Association established its coloay at Absada, in Madagascar. In 1652 Cronnvell declared war against the Dutch on account of their accumulated injuries against the Company. In 1653 the Company's factory at Lucknow was withdrawn. No record has been fonnd of its establishment. In 1658 the Company established a factory at Kisimbazár (Cossimbazar, 'Castle Bazair'), and their establishments in Bengal wera made subordinate to Fort St George ingtead of Bantam.
'In 1661 Bombay was ceded to the British crown as part of the A_{cq} unst dower of Catharime of Braganza. It was not delivered up by tho tion of lortuguese until 1665, and was transferred to the East India Com- Borubay pany in 1668. The seat of the western presidency was removed to it from Surat in 1685. At that time the Company's establishments in the East Indies consisted of the presidency of Bantam, with its dependencies of Jambee, Macassar, und other places in the Indian Archipelago; Fort St George ond its dependent factories on the Coromandel coast and leagal; and Surat, with its affiliated dependency of Bombay, and factories at Broach, Ahmadaibid, and other places in western India, and at Gombroon and Bussorah in the Persian Gulf and Euphrates valley. In that year also (1661) the factory at Biliapation was founded. In 1663 the factories which had been estahlished at Patná, Balasore, and Kisimbazar were ordered to be discontinued, and purchases made only at Hooghly. In 1664 Surat was pillaged by Sivaji, but Sir George Oxenden bravely defended the English factory; and the Mughal emperor, in admiration of his conduct, granted the Company an exemption from customs for one year.
'In 1681 Bengal was separated from Madras, and Mr Hodges appointed 'agent and governor' of the Company's affairs 'in the Bay of Bengal, and of the factories subordmate to it at Kásimbazar, Patná, Balasore, Maldah, and Dacca. A corporal of approved fidehity, with twenty soldiers, was to be a guard to the agent's person at the factory of Houghly, and to act against iaterlopers.' In 1683 FortS: George (Madras) was constituted a presidency. In 1684 Sir Johr Child was made 'captain-general and admiral of Iodia,' and Sir John Wyborne "vice-admiral and deputy governor of Bombay;" and in 1685 the seat of the presidency was tranaferred from Surat to Bombay. In 1686 the factory at Hooghly was much opprecred by the governor of Bengal, and the Company's business in India renerally suffered from the wars of the Mughals and Marhattís. Sir John Child was therefore appointed 'governor-general,' with full power in India to make war or peace, and ordered to proceed to inspect the Company's possessions in Madras and Bengal, and arrange for their safety. On the 20th of December the Company'sagent and council quitted the open factory at Hooghly, and retired to Sutanati (Cal. - cutta). Tegnapatam (Fort St David) was first settled in this yeas (1686), and definitively established in 1691-92. In 1687 the Company retired from all itafactories ond agencies in Bengal to Madras, but established the settlement of Fort York at Bencoolen. In 1689 the Company's factories at Vizagapatam and Masulipatam were seized by the IIahometans, and the factors massacred. It was in 1659 also that at last the Company determined to consolidate thoir position in India on the basis of territorial aovereignty, in order to acquire the political status of an indenendent power in their relations with the Dinghals and Marhattis. To this end they passed the following resolution for the guidance of the local governments ir India:- 'The increase of our revenue is the subject of our care, as much as our trade; 'tis that must maintain our force when twenty nccidents may interrupt our trade; 'tis that must make us a nation in India; without that we are but a great number of interlopers, united by His Majesty's royol charter, fit only to trade where nobody of power thinks it their interest to prevent us; and upon this account it is that the wise Dutch, in all their gencral advices that we have seen, write ten paragrapla concerning their government, their civil and military poticy, warfare, and the increase of their revenue, for one paragraph they write concerniry gada.

It will be convenient to refer in this place to the other Furopean nations who attempted at various times to open trade with the East. The Portuguese at no time attempited to found a company, hut always maintained their Eastern trade as a royal monoply. Tho first incorporated company was the English, established in 1600 , which was quickly followed by the Dutch in 1602 . The Dutch conquests, however, werc made in the uame of the state, and rank as national colonies, rut as private possessions. Next came the French lirench, whose first East Indin Company was formed in 1604, the and second in 1611, the third in 1615, the fourth (Richelieu's) in Danish 1642, tho fifth (Colbert's) in 1644. The sixth was formet by factoried the union of the French East and West India, Senegal, and China companies under the name of "The Company of the Indies," in 1719. The exclusive privileges of the company were, by the king's decree, suspended in 1769 , and the company was tinally abolished by the National Assembly in 1796. The first Danish Dast India Company was founded in 1612 , and the second in 1670. The settlements of 'lronquelar aiml Serampur were both founded in 1616, and acquired hy the English by purchase from Denmark in 1845. Other Thnish settlementa on the mainland of India were Porte Novo, and Fiduova and llolcheri on the slalabar coast. The com.
pany founded by the S cotch in 1695 may be regarded as having been atill-bora; and the "Royal Company of the Philippine Islands," incorporated by the kiag of Spaia io 1733, had little to do with Iodia proper; of more importance, though bnt short-lived, was "The Ostend Company," incorporated by the emperor of Austria in 1723 , its factors being chiefly persons who had served the Dutch and English companies. But the opposition of the maritime powers forced the court of Vienna in 1727 to suspend the company's charter for aeven years. The Ostead company, after passing through a very trying existeace, proloaged through the desire of the Austrian Govemment to participate in the growing East India trade, became bankrupt in 1784, and was finally extinguished by the regulations which were prescribed on the reaewal of the Euglish East India Company's charter in 1793. The last nation of Europe to engage in maritime trade with ladia was Sweden. When the Ostend company was auspended, a number of its servants were thrown ont of employment, of whose special knowledge of the East Mr Henry Koning, of Stackbolm, took advantage, obtainiag a charter for the "Swedish Company," dated June 13, 1731. This company was rearganized in 1806. The extent to which foreign nations now carry on direct dealings with India may be inforred approximately from the followiog figures, taken from the census report of 1871. There were thea in British India about 8000 inhabitants of cootidental Europe; but of these the nationality of only 2628 was more particularly specified, chiefly iu Bengal. Germans uumbered 755, Freach, 631 : Portugucse, 426 ; Italians, 282 ; Greeks, 127 ; Swedes, 73 ; Russians, 72; Dutch, 70 ; Norwegians, 58 ; Danes, 45 ; Spaniards, 32 ; Belgians, 20 ; Swiss. 19 ; Turks, 18.

British Empire (1765 to 1881)

The political bistory of the British in India begins in the 18 th ceutury with the French ware in the Carnatic. Fort St George, the nucleus of Madras, was their earliest iesritorial possession, properly so called, in India, having buen founded by Themas Day in 1639. The land on which it atood, with an area round of about 5 mifles in lengtia by 1 mile in breadth, was purchased from the rajáa of Chandragiri, who claimed to be the lineal descendant of the Hindu emperors of Vijayanagar. The French settlement of Pondicherri, about 100 miles lower down the Coromandel coast, was established in 1672, and for many ycars the English and French traded side by side, without either active rivalry or territerial ambition. The English, especially, appear to have been submissive to the native powers at Madras no less than ir Bengal. They paid their annual rent of 1200 pagodas (say $£ 500$) to the deputies of the Mughal empire when Aurangzeb annexed the south, and on two several occasions bought off a besieging army with a heary bribe.
On the death of Aurangzeb in 1707, the whole of southern India became practically independent of Delhi In the Deccan Proper, the Nizám-ul-Mulk founded an independent dynasty, with Hyderabad for its capital, which exercised a nominal wovereignty over the entire south. The Carnatic, or the lowland tract between the central platean and the eastorn sea, was ruled by a deputy of the nizam, known as the nawab of Arcot, whe in his turn asserted claims to hereditary sovereigaty. Further enuth, Trichinopeli was the capital of a Hindu raja, and Tanjore formed another Hiadu kingdom under a degenerate descendant of the line of Sivaji. Inland, Mysore was gradually growing into a third Hindu state, while everywhere local chieftains, called palegars or nuiks, wero in eemi-independent possession of citadels or bill-forts.

Prench

and
Engilas
TwTs.

In that condition of affairs the flame of war wes kindled between the English and the French in Europe in 1745. Dupleix was at that time governor of Pondicherri, and Clive was a young writer at Madras. An English fleet first appeared on the Coremandel coast, but Dupleix by a judicions present induced the nnwab of Arcot to iuterposo and prevent bostilities. In 1746 a French squadren arrived, under the command of La Bourdonnais, Madras surfondered almost without a blow, and the only settlement left to the English was Fort St David, a fow miles aouth of Pundicherri, where Clive and a few other fugi-
tives sought shelter. The nawáb, faithful to his policy of impartiality, marched with 10,000 men to drive the French ont of Madras, but he was signally defeated by a French force of only four hundred men and two guns. In 1748 an English fleet arrived under Admiral Boscawe and attempted the siege of Pondicherri, while a land force co-operated nuder Major Lawrence, whese name afterwards became associated with that of Clive. The French successfully repulsed all attacks, and at last peace was restored by the treaty of Aix-la-Chapelle, which gave back Madras to the English (1748).

The first war with the French was merely on iucident in the greater contest in Eurepe. The second war had its origin in Indian politics, while England and France were at peace. The easy success of the French arms had inapired Dupleis with the ambition of founding a French empire in India, under the shadow of the existing Mahometan powers. Disputed successions at Hyderabad and at Arcot supplied bim with the opportunity that be lacked. On both thrones he placed nominees of his own, and for a short time posed as the supreme arbiter of the entire south In beldness of conception, and in knowledge of Oriental diplomacy, Dupleix has had probably no rival But be was no soldier, and be was destined in that sphere to encounter the "heaven-bern genius" of Clive. For the English uf Cure Madras, under the instinct of self-preservatiou, were compelled to maintain the cause of another candidate to the threne of Arcot in opposition to the neminee of Dupleis. This candidate was Muhammad All, afterwards known in history as Wala-jab. The war that then ensued between the French and English, each with their native allies, has been exhaustively described in the pages of Orme. The one incident that stands out conspicuously is the capture and subsequent defence of Arcot by Clive in 1751. This beroic feat, even more than the battle of Plassey, established the reputation of the English for valour throughout India. Shortly afterwards Clise returned to England in ill-bealth, but the war continued fitfully for many years. On the whole, English influence predominated in the Carnatic, and their candidate, Mubsmmad All, maintained his position at Arcot. But the Frencb were no less supreme in the Deccan, whence they were able to take possession of the coast tract called "the Northern Circars." The final struggle was postponed until 1760, when Colonel (alterwards Sir Eyre) Coote won the decisive victory of Wandewash over the French gencral Lally, and preceeded to invest Pondicherri, which was starved into capitulation in January 1761. A few menths later the bill-fertress of Gingee (Chenji) alse surrendered. In the werds of Orme, "That day terminated the leng bostilities between the two rival European powers in Coromandel, and left not a single ensign of the French nation avowed by the authority of its Government in any part of India."

Mcanwhile the interest of history shifts with Clive to Bengal. The first English settlement in that part of India was Pippli in Orisse, to which the East India Company was permitted to trade in 1633 , six years before the foundatiol of Madras. The river on which Pippli atood bas since silted up, and the very site of the English settlement is now unknown and undisceverable. In 1642 factories wero opened at Balasore and Hugli (Hooghly), and in 1681 Bengal was erected into a presidency, as yet subject to Madras. The name of Calcutta is not heard of till 1686, Caleutls when Job Charnock, the chief at Hooghly, was expellicd by the deputy of Aurangzob, and actlled lower down the river on the opposite bank. There he acquired in grant of the three petty villages of Sutanati, Gobindpur, and Kalighat (Calcutta), and founded the original Fort William in 1696.

At the time of Aurangzeb's death in 1707 the newab or Bengal governor of Bengal was Murshid Kull Khan. known also nawibe
in Eurepean Listory as Jafar Khián. By birtl a Eráhman, and brought up as a slave in Persia, be united the administrative ability of a Hindu to the fanaticism of a renegade. Hitherto the capital of Bengal had been at Dacea on the eastern frontier of the empire, whenee the piratical attacks of the Portuguese and of the Arakanese or Maghs could be most easily checked. Murshid Kul(Khán transferred his residence to MursLidábad (Moorshedabad), in the neigbbourhood of Kásimbazar (Cossimbazar), the river port of all the Ganges trade. The English, the French, and the Dutch bad each factories at Kásimbizir, as well as at Dacea, Painá, ond Maldah. But Calcutta was the beadquarters of the English, CLandarnagar of the French, aod Chinsurah of the Dutcb, all three towns beiog situated close to each other in the lower reaches of the Hooghly, where the river is navigable for large ships. Murshid Kull Khán ruled veer Gengal prospervusly for twenty-one years, and left his power to a son in-law and a grandson. The bereditary successiun was Lroken in 1740 by All Vardi Khán, who was the last of the great nawábs of Bengal. In his days the Murbattí hursemen began to ravage the country, and the English at Calcutta obtained permission to erect an earth.work, which is bnown to the present day as the Marbattí ditch. Alu Vardi Kbáu died in 1756, aod was zucceeded by bis grandson, Siraj-ud-Dauli (Surajah Dowlab), a youth of only eighteen yeara, whose ungevernable temper led to a rupture with the English within two months after his uccession. In pursuit of one of bis own family whe had escaped from his vengeance, he marebed upon Caleutta with a large army. Many of the Englisb fled dewn the river in their ships. The remainder surrendered after a feeble resistance, and were thrown as prisoners into the "black hole" or military jail of Furt William, a room abuut 18 feet square, with only two snall windows barred with irun. It was the month of June, in which the tropical heat of Calcutta is most oppressive. When the duor of the prisen was opened in the murning, only twenty three persons out of one hundred and furty-six were found alive.
The news of this disaster fortunately found Clive returned to Madras, where alsu was a squadron of king's ships under Admiral Watson. Clive and Watson promptly sailed to the menth of the Ganges with all the troops that could be got together. Calcutta was recovered with little fighting, and the nawab consented to a peace which restored to the Cumpany all their privileges, and gare them compensation for their losses of property. It is possible that matters might have ended bere if a fresh canse of hostilities had not suddenly arisen. War had just been declared between the English and French in Europe, and Clive, following the traditions of his early warfare in the Carnatic, attucked and captured Chandarnagar. Siríjuel Daulá, esasperated by that breach of neutrality within his own dominiens, took the side of the French. But Clive, ngain acting upon the policy he Lad learued from Dupleis, bad provided himself with a rival candidate to the thronc.
Bxtele of Undaunted, he marched out to the battlefield of Plassey
Plassey (Palasi), at the head of abeut 1000 Eurercans and 2100 sepoys, with 9 pieces of artillery. The Mahometan army is said to have consisted of 50,000 foot, 18,000 horse, and 50 pisees of cannon. But there was a traitor in the Maliometan camp in the person of Mir Jafar, who had married a sister of the late nawib, All Vardi Khan. The battle was short but decisise. After a few rounds of artillery firo, Suraj-ud-Daula fled, and the road to Murshidabád was left opeu.

The battle of Plasey was fought on June 23, 1757. an anniversary afterwards remembered when the mutiny was nt its Leight in 1857. History has agreed to adopt this date as the beginning of the British empire in the

East; but the immediate results of the rictory were comparatively small, and several more bard-won fights were fought Lefure even the Bengalis would admit the superiority of the British arms. For the moment, however, all opposition was at an end. Clive, again following in the steps of Dupleix, ylaced his nominee, Mir Jafar, upon tha masuad at Murshidabad, being careful to obtaia a patent of iovestiture from the Mughal court. Eaermous suns were exacted from Mir Jafar as the price of his elevation. The Company claimed $10,000,000$ rupees as compensation for losses; for the English, the Indian, and the Armenian inhatitants of Caleutta there were demanded the suras of $5,000,000,2,000,000$, und 700,000 rupees ; for the squad ron 2,500,000 rupees, and an equal sum for the army The members of the council received the following amounts -Mr Drake, the governor, and Colenel Clise $280,00 \mathrm{u}$ rupees each; and Mr ljecker, Mr Watts, and Major Kilpatrick 240,000 rupees eacl. The whole amounted to $£ 2,697,750$. The English, deluded by their avarice, still cherished extravagant ideas of Indian wealth ; ner would they listen to the ungrateful truth. But it was found that there were no funds in the treasury to satisfy their inordioate demands, aud they were ubliged to be contented with onebalf the stipulated sums, which, after many difficulties; were paid in specie and in jewels, with the exception of 584,905 rupees. The shares of the council were, however, paid in full At the same time the nawib made a grant to the Company of the zamándaŕ rights over an extensive tract of country round Calcutta, now known as the district of the Treuty-four Parganas. The area of this tract was about 882 square miles, and it paid a permanent revenue or quit rent of about $£ 23,000$. The gross rentar at first payable to the Company was $£ 53,000$, but within a period of ten years it had risen to $£ 148,000$ Originally the Com. pany pussessed only the zamíndari rights, i.e., revenue jurisdiction. The superior lordship, or right to receive the quit rent, remained with the nawib; but in 1759 this also was parted with by the Delli emperor, the nominal suzerain of the nawab, in favour of Clive, who thus became the lindlord of bis own masters, the Company. At that time also Clive nas enrolled among the nobility of the Mughal enpire, with the rank of commander of 6000 foot and 5000 berse. Clive's jugir, as it was called, subsequently became a matter of inquiry in England, and on bis death it passad to the Company, thus merging the a amindari in the proprietary rights.

In 1758 Clive was appointed by the court of directera the first governor of all the Company's settlements in Beagal. From two quarters troubles threatened, which perbaps Clive alone was capable of overcoming. On the west the shahtada or imperial prince; known afterwards as the emperor Slâh Alam, with a mised army of Afgháss and Marbattís, and supported by the nawáb wazir of Oudh was advancing bis own elaims to the provinee of Eengal In the south the influence of the French under Lally and Bussy was overshadowing tho British at Madras. But the name of Clive esercised a decisive effect in both directions. Mir Jafar mas ansious to buy off the shibzida, who had already invested Patná. But Clive in persuo marched to the rescue, with an army of only 450 Europeans and 2500 scpoys, and the Mughal army dispersed withnut striking a blow. In the same year Clive despatehed a force southwards under Colonel Forde, whieh recaptured Masulipatam from the French, and permanently established Eritish infuence throughout the Northern Cirears, and at the court of IIyderabad. He next attacked the Dutch. the eole Eurepean nation that might yet be a formidable rival to the English. He defeated them both by land and water and from that time their setticment at Clinsurah existed only on sufferanco.

Infuence From 1760 to 1765, while Clive was at home, the bistory of E.LC. of the English in Bengal contains little that is creditable. Clive had left behind him no system of government, but merely the tradition that unlimited sums of money might be extracted from the natives by the mers terror of the English name. In 1761 it was found expedient and prefitable to dethrone Mír Jafar, the Englieh nawab of Murshidábád, and substitute his son-in-law, Mir Kásim, in bis place. On that occasion, besides private donations, the Englist received a grant of the three districts of Bardwin, Midnapur, and Chittagong, estimated to yield a net rovenue of Lalf a million sterliug. But Nlir Kásim proved to possess a will of his own, and to cherish dreams of independence. He retired from Murshilábbad to Monghyr, a streng position on the Ganges, which commanded the only means of communication with the west. There be proceeded to organizo an army, drilled and equipped after European models, and to carry on intrigues with the nawab wazir of Oudb. The actual untbreak of hostilities with the English happened on this wise. The Company's servants elaimed the privilege of carrying on private trade thronghout Bengal, free from inland dues and all other imposts. The assertion of this claim caused frequent affrays between the customs' officers of the nawab and those traders who, whether falsely or not, represented that they were acting on behalf of the servants of the Company. The nawaballeged that his civil authority was everywhere being set at nought. The majority of the council at Calcutta would not listen to his statements. The geveraor, Mr Vansittart, and Warren Hastings, then a junior member of council, attempted to effect some compromise. But the controversy had become teo bot. The nawáb's officers fired upon an English boat, Qassacre and forthwith all Bengal was in a blaze. A force of 2000 of Pavar seproys was cut to pieces at Patná, and about 200 Englishmen in various parts of the proviuce fell into the hands of the Mabometans, and were subsequently massacred. But as soon as regular warfare commenced Mir Kásim met with no more successes. His trained regiments were defeated in two pitehed battles by Major Adams, at Gheriab and at Udha-nála, and he himself took refuge with the nawáb wazfr of Oudh, who refused to deliver him up. This led to a prolongation of the war. Sháh Alam, who had now sueceeded his father as emperor, and Shuja-ud-Daula, the nawtb wazfr of Oudh, united their forees, and threatened Patna, which the English had recovered. A more formidable danger appeared in the English eamp, in the form of the first sepoy muting. This was quelled by Major (afterwards Sir IIector) Munro, who ordered twenty-four of the ringleaders to be blown from guns, an old Mughal punishment. In 1764 Major Munro won the decisive battle of Baxár, which laid Oudh at the feet of the conquerors, and brought the Mughal emperor as a suppliant to the English camp.

Meanwhile the council at Calcutta had twice found the opportunity they dosired of selling the government of Bengal to a new nawab. But in I765 Clive (now Baron Clivo of Plassey, in the peerage of Ireland) arrived at Calentto, as governor of Bengal for the second time, to settle. the entire system of relations with the native powers. Two objects stand out conspicuously in his policy. First, be sought to acquire the substance, though not the name, of territorial jower, by asing the authority of tho Mughal emperor for. so much as he wished, and for no more; and, secondly, he desired to purify the Company's acrvice by prohibiting illicit gains, and at the same time guarantceing a reasomable remuncration from honest sources. In neither respect were the dutails of his plans carried out by his successors. But the legimning of our Indian administration dates from this second governormhip of Clive, just as the origin of our Indian empire dates from hia victorvat Plassey. Clive's Grstatep was to hurry
up from Calcutta to Allahábad, and there settle in person the fate of nearly half India. Ondh was given back to the nawíb wazfr, on condition of his paying half a million sterling towards the expenses of the war. The provinces of Allahábad and Kora, forming the greater part of the Doáb, were handed over to Shath Alam himself, who in bis turn granted to the Company the diucant or finaucial administration of Bengal, Behar, and Orissa, and also the territorial jurisdiction of the Northern Circars. A puppet nawáb was still maintained at Murshidábád, who received an annual allowance of about half a million sterling; and half that amount was paid to the emperor as tribute from Bengal. Thus was constituted the dual system of government, by which the English received all the revenues and undertook to maintain an army for the defence of the froutier, while the criminal jurisdiction vested in the nawáb. In Indian phraseology, the Company was diwán and the nawab was nizám. As a natter of general administration, the actual collection of the revenues still remained for some years in the bands of native officials. In attempting to reorganize and purify the Company's service, Clive undertook a task yet morc difficult than to partition the valley of the Ganges. The officers, civil and military alike, were all tainted with the common corruption. Thoir legal salaries were absolntely insignificant, but they bad been permitted to augment them ten and a hundrediold by means of private trade and gifts from the native powers. Despite the united resistance of the civil servants, and an actual mutiny of two hundred military officers, Clive carried through his reforms. Buth private trade and the receipt of presents were absolutely prohibited for the future, while a substantial increase of pay was provided out of the monopoly of salt.

Lord Clive quitted India for the third and last time in Warren 1767. Between that date and the arrival of Warrell Hastinge. Hastings in 1772 notbing of importance oceurred in Bengal beyond the terrible famine of 1770, which is officially reported to bave swept away one-third of the inbabitants. The dual system of government, however, establisherl by Clive, had proved a failure. Warren Hastings, a tried servant of the Company, distinguished alike for intelligence, for probity, and for knowledge of Oriental manners, was nominated governor by the eourt of directors, with express instructions to carry out a predetermined series of reforms. In their own werds, the court had resolved to "stand forth as diwan, and to take upon themselves, by the agency of their own servants, the entite care and administration of the revenues." In the execution of this plan. Hastings removed the exebequer from Murshidábad to Calentta, and for the first time appointed European of eers, under the now familiar title of eollectors, to superintend the revenue cellections and preside in the civil courts. The urgency of foreign affairs, and subsequently internal strife at the council table, hindered IIastiugs from developing further the system of eivil admimistration, a task linally accomplished by Lord Cornwallis.
Though IIastings always prided himself specially upon that reform, as well as upon the improvements he introduced into the collection of the revenues from salt and opium, his name will be remembered in history for the binldness and suceess of his forcign pwlicy. From 1772 to 1774 he was gevernor of Beugal; from 1774 to 1785 lie was the first titular geverner-reneral of India, presiding over a council itominated, like himself, not by the Company, but by an Act of larliament, known as the Regulating Act. In his domestic policy he was greatly hampered by tho oprosition of Fraucis; but, so far as regards external relations with Oudh, with the

Marhattis, and with Hyder Ali, he was generally able to compel assent to bis own measures. His treatment of Oudh may here be passed over as not-being material to the general bistory of India, whilo the personal aspects of his rule have been fully discussed in a sejarate articlo (vol. xi: p. 512). To explain his Marhattí policy, it will be necessary to give a short retrospective sketel of tho history of that people.

Sivaj! the Great, as already mentioced, died in 1680, while Aurangzeb was still on the throae. The family of Sivaji produced no great names, either among those who continned to be tho nominal chiefs of the Marhattí confederacy, with their capital at Sátará, or among the rajás of Kolhapur and Tanjore. All real power passed into the hands of the peshwa, or Brahman minister, who founded in his turn an hereditary dynasty at Poona, dating from the beginning of the l8th century. Next rose several Marhattí generals, who, though recognizing the suzerainty of the peshwa, carved out for themselves independent kingdoms in different parts of India, sometimes far from the original home of the Marhattá race. Chief among these gencrals were the gaikwár in Guzerat, Sindhia, and Holkar in Málwa, and the Bloonslá rajá of Berar and Nágpur. At one time it seemed probable that the Marhattí confederacy would expel the Mahometans even from northern India; but the decisive battle of Pánipat, won by the Afgháns in 1761, gave a respite to the Delhi empire. The Marbattá chiefs aever again united heartily for a common purpose, though they still continued to be the most furmidable military power in India. In especial, they dominated over the British settlement of Bombay on the western coast, which was the last of the three presidencies to feel the lust of territorial ambition. For more than a bundred years, from its acquisition in 1661 to the outbreak of the first Marhetta war in 1775, the English on the west coast possessed no terrilory outside the island of Bombay and their fortified factory at Surat.

The Bombay Government was naturally emulons to to she to she pany. follow the example of Madras and Bengal, and to estab lish its influence at the court of Poona by placing its own nomince upon tho throne. The attempt took form in 1775 in the treaty of Surat, by which Raghunath Rac, one of the claimants to the throne of the peshnta, agreed to cede Salsette and Bassein to the English, in consideration of being himself restored to Poona. The military operations that followed are known as tho first Marhatta war. Warren Hastings, who in his capacity of governor-goneral claimed a right of cantrol over the decisions of the Bombay Government, strongly disapproved of the treaty of Surat, but, when war once broke out, he threw the whole foree of the Bengal army into the ceale. One of his favourite officers, General Goddard, marched across the peninsula from sea to sea, and conquered the rich province of Guzerat almost without a blow. Another, Captain Puphaas, stormed the rock-fortress of Gwalior, which was regarded as the key of Hindustín. Those brilliant successes stoned for the disgrace of the convention of Wargaum io 1779, when the Marbattís dictated terms to a British force, but the war was 1,otracted until 1782. It was then elosed by the treaty of Salbye, whieh practically restored tho status quo. Reghunáth Iáa, the English elaimant, was sct aside; Guzerat was restored, and only Salsette and some other small islands were retainod by the English.

Meanmbile Warren Hastings had to deal with a more formidable enemy than the Marhattí confederacy. The reckless conduet of the Madras Guvernment had roused the hostility both of Hyder Ali of Mysore and of the nizóm of the Deccan, the two strongest Musalmán powers in Iadia, who attempted to draw the Marhattas into an
alliance against the English. The diplonacy of llastings won over the nizam and the Marbatta raja of Nagpur, but the army of Hyder Ali fell like a thunderbolt apon the British possessions in the Carnatic. A strong detachment under Colonel Baillie was cut to pieces at Pollilure, and the Mysure cavalry ravaged the country unchecked up to the walls of Madras. For the sceond time the Bengal army, stimulated by the energy of Hastings, saved the honour of the English name. Sir Eyre Coote, the vietor of Wandewash, was sent by sea to relieve Madras with all the men and money available, while Coloncl learse marehed south e"erland to overawe the raji of Berar and the nizan. The war was hotly contestod, for Sir Eyre Coote was now an old man, and the Mysore army was well-disciplined and equipped, and also skilfully handled by Hyder and his son Tipú (Tippoo). Hyder died in 1782, and peace was finally concluded with Tipu in 1784, on the basis of a mutual restitution of all conquests.

It was Warren Hastings's merit to organize the empire which Clive founded. He was goverhor or governor-general for thirteen jears, a longer period than any of his suceessors. During that time the English lost the American colonies, but in India their reputation steadily rose to its highest pitch. Within a year Hastings was succeeded by Lurd Corn. Cornwallis, the first English nobleman of rank who under- *allis. took the office of governor-general. His rule lasted irom 1786 to 1793, and is celebrated for two events-the introduction of the permanent settlement into Bengal, and the second Mysore war. If the foundations of the system of civil administration were laid by Hastings, the superstructure was erected by Cornwallis. It was he who first entrusted criminal jurisdiction to Europeans, and established the Nizámat Sadr Adálat, or supreme court of riminal judicature, at Calcutta; and it was be whe separated the functions of collector and judge. The system thus organized in Bengal was afterwards transferred to Madrasand Bombay, When thuse presidencies also acquired territorial sovereignty. But the achievement most familiarly associated with the Perasname of Cornwallis is the permanent settlement of the land revenue of Bengal. U_{p} to his time the revenue had been'collected pretty much according to the old Mughal system. Zamindars, or Government farmers, whose offico alrays tended to become hereditary, were recognized as having a right of some sort to collect the revenue from the actual cultivators. But no principle of assessment existed, and the amount actually realized varied greatly from year to year. Ilastings had the reputation of learing hard upon the zamindars, and was absorbed in otber critical affairs of state or of war. On the whole he seems to have looked to experience, as acquired from a succession of quinquennial settlements, to furnish the standard rate of the future. Francis, on the other hand, Hastings's great rival, deserves the credit of being among the first to advocate a limitation of the state demand in perpetuity. The samo siew recommended itself to the authorities at home, partly because it would place their finances on a more stable basis, partly because it seemed to identify the zamindir with the more familiar landlord. Accordingly, Cornwallis took out with him in 1787 justructions to introduce a permanent settlement. The process of assessment began in 1789 and terminated in 1791. No attempt was made to measure the fields or calculate the out-turn as had been done by Akbar, and is now done when occasion requires in the British provinces ; but the amount payable was fixed by reference to what had been paid in tho past. At first the settlement was called decennial, but in 1793 it was declared permanent for ever. The total assessment amounted to sikika Iis.26, 800,989 , or about $2 ?$ nillions sterling. Though Lord Cornwallis carricd the scheme iato exechtion, all praise or blame, so far as details are concerned, wust
belong to Sir Joho Shore, afterwards Lord Teignmouth, whose knowledge of the country was unsurpassed by that of any civilian of his time. Shore would hare proceeded mere cautiously than Cornwallis's preconceived idea of a proprietary body and the court of directors' haste after fixity permitted.

The second Mysere war of 1790-92 is neteworthy on two accounts: Lord Cornaallis, the geverner-general, led the Eritish army in person, with a pemp and lavishness of supplies that recalled the campaigns of Aurangzeb; and the two great native powers, the nizin of the Deccan and the Marhattí cenfederacy, ce-operated as allies of the British. In the result, Tipú Sultan submitted when Lord Cornwallis had conmenced to beleaguer his capital. He agreed to yield one balf of his dominiens to be divided among the allies, and to pay three millions sterling tewards the cost of the war Those conditions he fulfilied, but ever afterwards he burned to be revenged upes his Englisb cenquerers

The period of Sir Juba Shere's rule as gevernor.geueral, from 1793 to 1798, was uneventful. In 1798 Lord Mernington, better knewn as the marguis of Wellesley, arrived in India, already inspirell with imperial projects that were destined to change the map of the country. Meroingten was the friend and faveurite of Pitt, frem whom he is thought to bave derived the comprehensiveness of his political visien and his antipathy to the French name. From the first be laid down as his guiding priaciple that the English must be the one parameunt power in the peninsula, and that native princes could only retain the insignia of severeignty by surreadering the substance of independence. The subsequent political history of India bas been but the gradual development of this pelicy, which received its finishing teuch when Queen Vietoria was proclaimed empress of India in 1877 .

To frustrate the pessibility of a French iavasion of Iedia, led by Napeleoa in persen, was the governing idea of Wellesley's fereign pelicy; for France at this time, and for many years later, filled the place afterwards occupicd ty Russia in the imagiaation of English statesmen. Nor «as the possibility sn remote as might now be thought. Freach regiments guarded and overawed the nizim of Hyderabad. The seldiere of Sindhia, the military head of the Marhatta confeleracy, were disciplined and led by French adventurers. Tipú Sultinn carried on a secret cerrespendence with the Freach directerate, and allowed a tree of liberty to be planted in his dominions The islands of Mauritius and Bourben afforded a cenveaient balf.way heuse beth for French intrigue and for the assembling of a hostile expedition. Above all, Napoleon Buemaparte was then in Egypt, dreaming of the cenquests of Alesander; and we man knew in what direction he might tarn his hitherto uncenquered legions. Wellesley first aldressed himself to the nizian, where his policy prevailed without serious opposition. The French battaliens at IIydcrabad were disbanded, and the nizion beund himself by treaty net to take any Eurepean into his service without the consent of the English Gevernment, - a clause sinee inserted in every engagement entered into with native powers. Next, the whole weight of Wellesley's resources was turned against Tipu, whom Cernwallis had scotched but not killed. His intrigues with the French were laid lare, and he was given an epportunity of adhering to the new subsidiary system
Thim. On his refusal war was declarel, and Wellesley came dowh Mysore in state to Madras to organize the expedition in person,
was stormed, died fighting bravely in the breach. Sitre the battle of Plassey no event so greatly impressed the native imagination as the capture of Seringapatam, which wen for General Harris a peerage and for Wellesley an Irish marquisate. In dealing with the territories of Tipu, Wellesley acted with unusual moderation. The central pertion, ferming the old state of Mysore, was restored to. an infant representative of the Hindu rajas, whom Hyder Ali bad dethrened, while the rest was partitioned betweer the nizin, the Marbattis, and the English At about the same time the province of the Carnatic, or all that large pertion of southera Iadia ruled by the nawab of Arcet, and also the principality of Tanjore, were placed under direct British administration, thus censtituting the Madras presideacy almost as it bas esisted to the present day.
The Marhattás had been the nominal allies of the English Marhatu in beth their wars with Tipu, but they had never given eonactive assistance, nor were they secured to the Englioh federacy. side as the nizím now was. The Marhattá powers at this time were five in number. The recegnized bead of the cenfederacy was the peshwa of Poona, whu ruled the hill country of the Western Glats, the cradle of the Martatta race. The fertile province of Guzerat Nas annually barried by the hersemen of the giikwar of Baroda. In Central India twe military leaders, Siudhia of Gwulior and Felkar of Iadia, alternately held the preeroinency Towards the east the Bhonsla rijay of Nagpur, spruag from the same stock as Si aji, reigned from Berar to the coast of Orissa. Wellesley tried assidueusly to bring these several Marhattá powers within the net of bis subsidiary eystem. At last, in 1802, the necessities of the peshra; whe had been defeated by Holkar, and driven as a fugitive into British territery, induced bim to sign the treaty of Bassein, by which he pledged himself to beld cemmunications with no other power, European or native, and ceded territery for the maintenance of a subsidiary force. This greatly ex tended the English territerial influence in the Bombay presidency, but led directly to the secound Marbattá war, for neither Sindbia nor the rijá of Nágpur weuld telerate this abandonment of Marbattá independence. Tho waro campaigns that follewed are perbaps the most glorious with in the history of the British arms in India. The general phan and the adequate provision of resources were due to the marquis of Wellcsley, as alse the indomitable spirit anr rajs that could not anticipate defeat. The armies were led by Sir Arthur Welfesley (afterwards duke of Wellington) and General (afterwards Lerd) Lake. Wellesley operated in the Deccan, where, in a few short months, he won the decisive victeries of Assaye and Argaum, and captured Ahmadnagar. Lake's campaign in Hindustan was no less brilliant, theugh it has received less netice from historians. He wen pitched battles at Aligarh and Laswari, and eaptured the cities ol Delhi and Agra, thus seattering the lirench trenps of Sindhia, and at the sanae tinue coming ferward as the champion of the Mughal eaperor in his hereditary capitals. Befere the year 1803 was out, beth Siadhia and the Bhensla raija were glad to sue fer peace. Sindbia ceded all clalms to the territory north of the Jumna, and left the blind old emperor Sháh Alam onee more under Buitish probection. The Bhonsla furfeited Orissa to the English, who bad already occupied it with a flying column, and Berar to the nizam, who gained a fresh addition by every act of complaisance to the British Govermment. The freebooter, Jaswant Lín LIlkar, alune remainel in the field, supperting his tronps ly ravages through Malwa and Rajputana. Tho rencluding years of Wellesley's rule were occupicd with a serics of operations against IJolkar, which brought na crelit on the British name. Tho disastrons retreat of Coknel Mkonson through Central India recalled memorios of the convention of Wargaum, and of the destruction of Colunel

Baillie's force by Hyder Ali. The repulse of Lake in person at the siege of Bhartpur (Bhurtpore) is anemorable as an instance of a British army in India having to turn back with its object naccomplished.
The ambitious policy and the continuous wars of Lord Wellesley exhausted the patience of the court of directors at Lhome. In 1804 Lord Curnwallis was sent out as governorgeneral a second tine, with instructions to bring about peace at any price, while Iolkar was still unsubdued, and Sindhia was threatening a fresh war. But Cornwallis was now an old man and broken down in lealth. Travelling up to the north-west during the rainy season, he sank and died at Ghazipur, before he had been ten weeks in Barlow! the country. His immediate successor was Sir George Barlow, a civil servant of the Company, who, as a locum tenens, had no alternative but to carry out faithfully the orders of bis employers. He is charged with being, under these orders, the only governor-general who diminished the area of British territory, and with riolating engagements by abandoning the Rigjut chiefs to the tender mercies of Holkar and Sindhia. During bis admiuistration also occurred the matiny of the Madras sepoys at Vellore, which, though promptly suppressed, sent a shock of insecurity throughont the empire.
Lord Mintu, governor-general from '1807 to 1813, consolidated the coryuests which Wellesley bad acquired. His only military exploits were the occupation of the island of Mauritius, and the conquest of Java by an expedition which he accompanied in person. The condition of Central India continued to be disturbed, but Minto succeeded in preventing any violent outbreaks without himself baving recourse to the sword. The Company had ordered. him to follow a policy of non-intervention, and be managed to obey bis orders withont injuring the prestige of the British name. In his time the Indian Government first opened relations with a now set of foreign powers, by seading embassies to the Punjab, to Afghanistan, and to Fersia The ambassadors were all trained in the school of Wellesley, and formed perhape the most illustrious trio of "politicals" that the Indian service has produced. Metcalie was the envoy to the court of Ranjit Sinh at Lahore; E!phinstone met the sháh of Afghanistan at Pesháwar ; and Malcolm vas despatched to Persia. If it cannot be said that any of these inissions were fruitful in permanent results, at least they introduced the English to a new set of diplomatic rolations, and wideued the sphere of their intluence.
Marnuts The suecessor of Lord Minto was Lord Moira, better known if Hast- as the marquis of Hastings, wha governed India for the long period of nine years, from 1814 to 1823 . This period was marked by two wars of the first magnitude, the campaigns against the Gúrkbas (Goorkhas) of Nepal, and the third Gúrkha and last Marhattí war. The Gürkhas, the present ruling origin. The indigenous inhabitants, called Newars, belong to the Indo.Tibetan stock, and profess Buddbism. The suvereignty of the Gurkhas dates only from 1767, in which year they overran the valley of Khatmandu, and gradually extended their power over all the hills and ralleys of Nepal. Organized upon a sort of military and feudal basis, they soon became a terror to all their neighbours, marching east into Sikkim, west into Kumaun, and south into the Gangetic plains. In the last quarter their victims were British subjects, and at last it beeame imperatively necessary to check their advance. Sir George Barlow and Lord Minto had remonstrated in vain, and nothing was left to Lord Moira but to take up arms. The campaign of 1814 was little short of disastrous. After overeoming the natural difficulties of a malarious climate and precipitous hills, the sepoys were on scveral oceasions fairly worsted by the
unexpected bravery of the little Girkhas, whose hec py knives or Zukris dealt terrible esecntion. But in 1815 General Ochterlony, who conmanded the arny operating by way of the Sutlej, stormed one by one the hill forts which still stud the Himalayan states, now under the Punjab government, and compelled the Nepál darbar to sue for peace. In the following year the same general advanced from Patná into the valley of Khatmandu, and finally dictated the terms which had before been rejected, within a few miles of the capital. By the treaty of Segauli, which defines the English relations with Nepál to the present day, the Gürkhas withdrew on the one hand from Sikkim, and on the other from those lower ranges of the western Himálayas which have supplied the bealth giving atationa of Naini Tal, Massuri, and Simla. Meanwhlle the condltion of Central India was every year becoming more unsatisfactory. Though the great Marhattá chiefs were learning to live rather as peaceful princes than as leaders of predatory bands, the example of lawlessuess they bad set was beiog followed, and bettered in the following, by a new set of Pindfreebooters, known as the Pindiaris. As opposed to the basta Marhattís, who were at least a nationality bound by some traditions of a united guvernment, the Pindharris were merely irregular soldiers, corresponding most nearly to the free companies of medieval Europe. Of no common race and of no conmon religion, they welcomed to their ranks the outlaws and broken tribes of all India,-Afglans, Marhattás, or Jats. Their headquarters were in Malwá, but their depredations were not confined to Central India. In bands, sometimes numbering a few hundreds, sometimes many thousands, they rode out on their forays as far as Malabar and the Coromandel coast. The most puwerful of the Pindhárl captains, A mir Kbán, bad au organizul army of many regiments, and several batteries of cannon. Two other leaders, known as Chitu and Karim, at one timo paid a ransom to Sindhia of $£ 100,000$. To suppress the Pindhári herdes, who were sumported by the sympathy, more or less open, of all the Marluattit chiefs, Lord Hastings (1817) collected the strongest British army that bad been seen in India, numbering nearly 120,000 men, hali to operate from the nurth, half from the south. Sindhia was overawed, and remained quiet. Amír Khán consented to disband bis army, on condition of being guaranteed the possession of what is now the principality of Tank. The remaining borlies of Pindhárís were attacked in their homes, surrounded, and cut to pieces. Karim threw himself upon the mercy of the conquerors. Chitu fled to the jungles, and was killed by a tiger. In the same year (1817) as Thirr Mar that in which the Pindharis were crushed, and almost in the $\underset{\substack{\text { liath } \\ \text { war. }}}{\substack{\text { and }}}$ same month (Novenber), the three great Marhattí poners at Poona, Nagpur, and Indore rose against the English. The peshwá, Jajii Rato, had long been ehafing under the terms imposed by the treaty of Bassein (180?), and the subsequent treaty of Poona (1817), which riveted yet closer the chains of dependence upon the paramount power. Elphinstone, then resident at his court, foresaw what was coming and withdrew to Kirkee, whither be had ordered ap a European regiment. The next day the residency war burned down, and Kirkee was attacked by the whole army. of the peshwa. The attack was bravely repulsed, and the. peshwá immediately fled from his capital. Almost thr: same plot was enacted at Nagpur, where the bonour of the British name was saved by the sepoys, who defended the hill of Sitabaldi against enormous odds. The army of Holkar was defeated in the fullowing munth at the pitched. lattle of Mebidpur. All open resistance wae now at an end Nothing remained but to follow up the fugitives, and deter mine the conditions of the general pacification. In both these duties Sir John Malcola played a prominent part The dominions of the peshwa were anoered to the Bombay

Annexa- presidency, and the nucleus of the present Central Erotion of, vinces was formed out of the territory saved from the peshwa's Pindbárís. The peshwá himself surrendered, and was pe:minions. mitted to reside at Bithúr, near Cawnpur, on a pension of $£ 80,000$ a jear. His adopted son was the infamous Níná Sahib. To fill the peshwa's place to some extent at the head of the Marbatti confederacy, the lineal descendant of Sivaji was brought forth from obscurity, and placed upon the throne of Sátárá. An iofant was recognized as the heir of Holkar, and a second infant was proclaimed rajá of Nágpur under British guardianship. At the same time the several states of Rajputana accepted the position of fendatories of the paramount puwer. The map of India, as thus drawn by Lord Hastiags, remained substantially unchanged until the time of Lord Dalhousie. But the proudest boast of Lord Hastings and Sir John Malcolm was, not that they had advanced the pomerium, but that they had conferred the blessings of peace and good goveraruent upon millions who had suffered unutterable things from Marhattá and Pindhárl tyranny.
Amherst. The marquis of Hastings was succeeded by Lord Amherst, after the interval of a few months, durigg which Mr Adaı, a civil servant, acted as governor general. Lord Amberst's administration lasted for five years, from 1823 to 1828. It is known in history by two promineat events, the first Burmese war and the capture of Blartpur For some years past the nortd-east frontier had been disturbed by the restlessness of the Burmese. The country that fringes the western shore of the Bay of Ben jal and runs up the valley of the Irawadi, with a people of Tibeto-Chinese origin, has a history of its ows, parallel to, but not altogether independeat of, that of India. Tradition asserts that its early civilization was introduced from the opposite coast of Coromandel, by a people who still preserve a trace of their origin in their name of Talaing (cf. Telinga and Telugu). However this anay be, the Buddbist religion, professed by the Burmese at the present day; certainly came direct froon India at a very early date. Many waves of invasion from Siam in the south and from the wild mountains in the north have passed over the land. These conquests were marked by that wanton and wholesale barbarity which seems to characterize the Tibeto Chinese race, but the civilization of Buldhism survived every shock, and flourished around the ancient pagodas. European travellers in the 15 th century visited Fegu and Tenasscrim, which they describe 28 Hourishing marts of maritime trade. During the period of Portugucse predominance in the East, Arakan became the resert of loose European adventurers. With their help the Arakanese extended their power inland, occupied Clittagong, and (under the name of the Maghs) became the terror of the eatire delta of the Ganges. About 1750 a new dynasty arose, fonoded by Alaungphaya or Alompra, with its capital at A va, which still rales over Indepeadent Burmah. The successors of Alompra, after having subjucated all Burmah, and overrun Λ ssam, which was then an independent kingdom, began a series of eneroachments upon British territory in India. As all peaceful proposals were contumeliously rejected, Lord Amberst was compelled Firat to declare war in 1824. Little military glory could be Burmese gained by beating the Burmese, who were formidable only war from the pestilential character of their conntry. One expedition with gumboats proceeded up the Brahmaputra iutc Assam; another narehed by land through Chittagong into Arakan, for the Bengal sepoys refused to go by sea; a third, and the strongest, sailed from Malras direct to the mouth of the Irawadi. The war was protracted over two years. At last, after the loss of about 20,000 lives and an expenditure of $£ 14,000,000$, the king of Avo consented to sign the treaty of Yandabu, by which lie abandoned all claim to Assara, and ceded the proviuces of Arakan and Tenasserim,
which were already in the military oceupation of the British. He retained all the valley of the Irawadi, down to the sea at Rangoon. The capture of Bhartpur in Central India Capture by Lord Combermere in 1827 wiped out the repulse which of Bhart Lake bad received before that city in Jannary 1805. A pur disputed successioa necessitated British intervention. Artillery could make little impression upon the massive walls of mud, but at last a breach was effected by mining, and the city was taken by storm, thus losing its general repu tation throughout India for impregnability, which bad threatened to become a political danger

The next governor general was Lord William Bentinitk, Beotiock who had been governor of Madras twenty years earlier at the time of the mutiny of Vellore. His seven years' role (from 1828 to 1835) is not signalized by any of those victories ur eatensions of territory by which chroniclers delight to measure the growth of empire. But it forms an epocb in administrative reform, and in the slow process by which the bearts of a subject pepulation are won over to venerate as well as dread their alien rulers. The modern bistory of the British in India, as benevoleat administrators ruling the country with a single eye to the good of the natives, may be said to begin with Lord William Bentinck According to the inscription upon lis statue at Calcutt,n, from the pen of Macaulay, "He abolished cruel rites; be effaced buruiliating distinctions; he gave liherty to the, expression of public opinioa; his constant study it was to elevate the intellectual and moral character of the nations committed to his charge." Fis first care on arrival in Iadia was to restore equilibriuan to the finances, which were tottering under the burden imposed upon them by -the Burmese war. This be effected by reductions in per manent expenditure, amounting in the aggregate to $1 \frac{1}{2}$ millions sterling, as well as by augmenting the revenue from land that had escaped assessment and from the opium of Malwa. He also widened the gates by which educated natives could enter the service of the Company Some of these reforms were distasteful to the covenanted service and to the officers of the army, but Lord William was always staunchly supported by the court of directors and by the Whig ministry at home.

His two most memorable acts are the abolitior of sate Satl (suttee) and the suppression of the Thays (Thugs). At this (suttee) distance of time it is difficult to realize the degree to wbich these two barbarous practices had corrupted tbe social system of the Hindus. Eurepean research has clearly proved that the text in the Vedas adduced to antherize the immolation of widows was a wilful mistranslation. But the practice had been engrained in Hindu opinion by the authority of centuries, and had acquired the sanctity of a religious rite. The emperor Akbar is said to have probibited it by law, but the early English rnlers did not dare so far to violate the traditions of religious toleration. In the year 1817 no less than seven hundred widows are said to have been burned alive in the Bengal presidency alone. To this day the most holy spots of Hindu pilgrimage are thickly dotted with Iittle white pillars, each commemeratiug a sati. In the teeth of strenuous opposition, both from Europeans and natives, Lord William carried the regulation in council on December 4, 1829, by which all who abetted sati were declared guilty of "culpable bomicide." The bonour of suppressing Thagi must be shared between Lord William and Captain Slecman. Thecyi was an abnormal exerescence Thagt upon Sinduism, in so far as the bands of secret assasside (Thuge were sworn together by an oath based on the rites of tho ism). bloody groddess Kall. Between 1826 and 1835 as many as 1562 Thags were apprehended in different parts of Britist fndia, and by the evidcuee of approvers the moral plague spot was gradually stamped out.

Two other bistorical events are connected with the
administration of Lord Williarn Bentinck. In 1833 the charter of the East India Company was renewed for twenty years, but only upon the ternis that it should abandun its trade and permit Europeans to settle freely in the country. At the same time a legal or fourth member was added to the governor-general's council, who might not be a servant of the Company, and a commission was appointed to revise and codify the law. Macanlay was tho first legal member of council, and the first president of the law commission. In 1830 it was found necessary to take the state of Mysore under British administration, where it has continned to the present year (1881), and in 1834 the frantic misrule of the raja of Cnorg brought on a short and sharp war. The raja was permitted to retire to Benares, and the brave and proud inhabitants of that mountainous little territory decided to place themselves under the rule of the Company, so that the only ennexation effected by Lerd William Bentibck was "in consideration of the unanimous wish of the people."
Netcalfe Sir C'tarles (aftermards Lord) Mctcalfe succeeded Lord William as seoier member of council His short term of whice is memorable fur the measure which his predecessor had initiated, but which he willingly carried into execution, for giving entire liberty to the press. Public opinion in ledia, as well as the espress wish of the court of directors at home, pointed to Metcalfe as the most fit person to carry out the policy of Bentinck, not prosisionally, but as governor-gencral for a full term. Party exigencies, hewever, led to the appointment of Lord Auckland. From that dato commences a new era of war and coaquest, which may be said to have lasted fer twenty years. All looked peaceful until Lord Auckland, prompted by his evil genius, attempted to place Stáb Shujá upon the throne of Cabul, an attempt which ended in the gross mismanagement and annibilation of the garrison placed in that city. The disaster in Afghánistán was quickly followed by the conquest of Sind, the two wars in the Punjab, the second Burmese war, and last of all the Mutiny. Names like Gnugh end Napier and Colin Campbell take the places of Malcolm and Metcalfe and Elphinstone.
nothan For the first timosince the days of the sulting of Ghazni *tiors and Ghor, Afghânistán bad obtained a national king in 1747 in the person of the Abmad Sháh Duráni, who found his opportunity in the confusion that followed on the desth of the Persian conqueror, Nádir Shâh. Before his death in 1773 Ahmad Sháh had conquered a wide empire, from Herat to Pesháwar and from Kashmir to Sind. His interrention on the field of Panipat (1761) turned back the tide of Marhatts conquest, and replaced a Mughal emperor on the throne of Delbi. But Abmad Sháh never cared to settle down in India, and kept alternate state at bis two natienal capitals of Cabul and Kandabir. Tho Duráni kings wero prolific in children, who fought with one another fer the succession to the deatb. At last, in 1826, Dost Mubammad, head of the powerful Barakzai family, succeeded in establishing himself as ruler of Cabul, with the subordinate title of amir (ameer), while two fugitive brothers of the Durini line were living under British protection at Ludhiana, on the frontier of the Punjab.

The attention of the English Government bad been directed to Aighàn affairs ever since the time of Lord Wellesley, who feared that Zaman Shâh, then holding his court at Lahore, might follow in the path of Nádir Sháh, and overrun Hindustín. The growth of tho powerful Sikh kingdom of Ranjit Sinb effectually dispelled any such alarms for the future. Subsequently, in 1809, while a Freach inrasion of India was still a possibility to be guarded against, Elphinstove was sent by Lord Minto on a mission to Sháb Shuja to form a defensive alliance. Before the year was out, Sbáh Shujá had been driveu
into exile, and a third brother, Mahmúd Sháh, was on the throne. In 1837, when the curtain rises upon the drama of English interference in Afglánistán, the usurper Dost Mubammad Darakzai was firmly established at Cabul His great ambition was to recover Peskhwar from the Sikhs; and when Captain Alcsander Burnes arrived on a mission from Lord Auckland, with the ostensible object of opening trade, the Dust was willing to promise everything, if only he could get Peshatwar. But Lord Auckhand liad anuther and more important object in view. At this time the Russians were adyancing rapidly in Central Asia, aud a Persian army, uot without Russian support, was besieging Herat, the traditional bulwark of Afghánistán on the cist. A Russian envog was at Cabul at the same tume as Burnes. The latter was unablo to satisfy the deuraiuds ef Dost Muhammad in the matter of Peshawar, and returned to India unsuccessful. Lord Auckland forthwith resolved upon tho bazardous plan of placing a more subservient ruler upon the throne of Cabul. Shíl Shuja, one of the tro criles at Ludhiína, ras selected for the purpose. At this time both the Punjab and Sind were independent kingdons Sind was the less powerful of the two, and First therefore a British army escorting Shâh Shujà made its Afghan way ly that route to enter Afghánistín through the Bolín Pass. Kandabár surrendered, Glazni was taken by stormr, Dost Muhammad fled across the Hiadu Kusb, and Shid Stuja was triumplantly led into the Bala Hissar at Cabul is August 1839. During the two years that followed Afghanistan remained in the military occupation of the British. The catastropbe occurred in Novcmber 1841, when Sir Alexander Burnes was assassinated in the city of Cabul. The troops in the cantonments were then under tho command of General Elphinstone (not to be cor..ounded with the civilian Mountstuart Elphinstonc), with Sir William Macnaghten as chief political adviser. Elphinstone was an old man, unequal to the responsibilities of the position. Macnaghten was treacherously murdered at an interview with the Afghán chief, Akbar Kbân, eldest son of Dost Muhammad. After lingering in thic cantonments for two months, the British army set off in the depth of winter to find its way back to India through the passes. When they started they numbered 4000 fighting men, with 12,000 camp followers. A singlo eurvivor, Dr Brydon, reached tho friendly walls of Jalalibad, where Sale was gallantly holding out. The rest perisled in the defiles of Khurd, Cabul, and Jagdalak, either from the knives and matchlock of the Afghans or from the effects of cold. A few prisoners, mostly women, children, and officers, were considcrately treated ly the orders of Akbar Khín.

Within a month after the nens reached Calcutta, Lorl rylenAuckland had been superseded by Lord Ellenborough, herough whose first impulse was to be satisfied with drawing of in safety the garrisons frem Kandahár and Jalalábád. But bolder counscls prevailed. Pollock, who was marching straight through the Punjab to relieve Salc, was ordered to penetrate to Cabul, while Nott was only too glad not to be forbidden to retire from Kandahar througb Cabul. After a good deal of fighting, the two Englisb forecs inet at their common destination in September 1812. The great bitar at Cabul was bluwn up with gunpowder, to fix a stigma upon the city; the prisoncrs were recovered; and all marched back to India leaving Dost Muhammad to take undisputed posscssion of his throae "The drama closed with a bombastic proclanation from Lord Ellonborough, who had cansed the gates from the tomb of Mabmud of Gbazni to be carried back as a memorial of "Somnatth revenged."

Lerd Ellcnborough, who loved m:litary display, had his tastes gratified býtwo more wars. In 1843 the Mabometan rulers of Sind, kunwn as the " meers" or amirs, whose only

Con.

quest of

 sind.iault was that they would not surrender thicir judependence, ere crushed by Sir Charles Napier. The victory of Miani in which 3000 British troops defeated 20,000 Baluchis, is perbsps the most brilliant feat of arms in Indian history; bnt an honest excuse can searcely be found for the anvexation of the country. In the same jear a dispnted succession at Gwalior, fomented by feminine intrigue, resulted in an outbreak of the overgrown army which the Sindhia family had been allowed to maintain. Peace was restored by the battles of Mabarajpur aed Punneab, at the former of which Lord Ellenborough was present in person.

Hard.

In 1844 Lard Ellenborough was recalled by the court of directors, who differed from bim on many points of administration, and distrusted his erratic geoins. He ras succeeded by Sir Heury (afterwards Lord) Hardinge, who had sersed through the Peninsular War and had lost a hand at Ligny. It was felt on all sides that a trial of streugth betweeu the British and the Silbs was at hand

The Sikhs were not a patiooality like the Marhattós, but a religious seet bound together by the additional tie of military disciplioe. They trace their origin to one Naoak, an excellent and suecessfui preacher, who was born in the neighbourhood of Lahore in the latter half of the I5th century, before the arrival of either Mughals or Portuguese in India. Nabak was a religious reformer, like others that arose in the country about that time, who prached the abolition of caste, the uoity of the Godnead, and the obligation of leading a pure life. From Nimak ten gurus or apostles are traced down to Govind Sinh in 1705, with whom the succession stopped. Suffering continual persecution from the suling Mahonetans, whieh enlminated in the reign of Aurangzeb, the Sikh religion maintained itself with extraordinary teuncity. At last the down fall of the Muchal empire transformed it into a territorial power, which possessed the only organization remaini.ng in the Puniab. Even before the rise of Kanjit Sinh, offshoots from the Sikh misls or confederacies, each led by its elected sardar, had car:ed out for themselves feudal princlpalities along the banks of the Sutlej, somo of whieh have endured to the present day. Raojit Sinh, tho founder of the Sikh kingdom, was born in 1780 . Io his twentieth year he obtained the appointment of governor of Lahore from the Afghín eniperor, and from that time he set timself to the task of basing a personal despotism upon the religious fanaticism of the Sikhs. The khalsd or "the liberated" were organized into ao ariny under Earopean officers, which lor steadiness and religious fervoul has had no parallel since the "ironsides" of Cromwell. From Lahore as his canital he extended his conequests south to Miltan, west to - Peshewar, and north to Kiashmír. On the cast side alone he was hemmed in by the Sullej, up to which river the anthority of the British Government was advanced in 1804. Till his death in 1839 Raojit Sinh was ever loyal to the engagements which he bad entered into vith Metcalfe in 1809. But he left no son capalle of mielding his sceptre. Lahore was torn by dissensions between rival generals, ministers, and queens. The only strong power was the army of the khalsa, whieli since the disaster in A/ghánistán burned to measure its strength with the British schoys. The Freneb generals, Avitable and Court, were foolishly ousted, ond the supremo military command was vested in a scrics of panchoyuts or eloctive committees of five.

In 1845 the Sikh army, mumbering 60,000 men with 150 guns, crossed the Sutlej and invaded British territery. Sir Lugh Gougl, the commander-in-chief, together with the governor-general, burried op to the frontier. Within three weeks four pitched battles were fonmit, at Moodkee, Ferozshab, Mliwal, and Sobrion. The British loss on each ocoasion was heavy ; lout by the last victory the Sikis were fairly driven into and across the Sutlej, and Lahore surrendered to the British. Dy the terms of peace then dictated the infant sen of Ranjit, Dhulip Sinh, was recog. nized as raja; the Jalandhar Doab, or tract between the Sutlej and the Rivi, was annexed; the Sikh army was limited to a specified number; Major IIenry Lawrence was appointed to be resident at Inhore; and a British foree was detailed to garrison the Pumab for a period of cight years. Sir Il. Hardinge received a peerage, and returned to Fingland in 1818.
professedly a man of peace, be ras compelled to fight two wars, in the Punjab and in Burmah. These both ended in large acquisitions of territory, while Nagpur, Oudb, and several minor states also came under British rule. But Dalhousie's own special interest lay in the advancement of the moral and material condition of the country. The system of administration carried out in the conquered Punjab by the two Larrences and their assistants is probably the most successful piece of difficuit work ever accomplished by Englishmen. British Burmah has prospered under their rule seareely less than the Punjab. In both eases Lord Dalhousie deserves a large share of the credit. No branch of the administration escapeal bis reforming hand. He founded the public works department, to pay special attention to roads and canals. He opened the Ganges Canal, still the largest work of the kind in the country, and be turned the sod of the first Indian railway. He promoted steam communication with England via the Red Sea, and introduced cheap postage and the electric telegraph. It is Lord Dalhousie's misfortune that these benefts are too often forgotten in the vivid recollections of the Mutiny, which avenged his policy of annesation.

Lord Dalhousie bad not been six months in India before Secon' the second Sikh war broke out. Two British officers were Sikh treacheronsly assassmated at Múltán. Unfortunately war. Henry Lawrence was at home on sick leave. The British Anoexa army was not ready to act in the hot weather, and, despite Punjan the single-handed exertions of Lieutenant (afterwards Sir Herbert) Edwardes, this outbreak of fanaticism led to a general rising. The hhalsa army again came together, and once more fought on even terms with the British. On the fatal field of Chilianwala, which patriotism prefers to calla drawn battle, the British lost 2400 officers aud men, besides four gans and the colours of three regiments. Before reinforcements could come out from England, with Sir Cbarles Napier as commander-in-chief, Lord Gougb had restered his own reputation by the crowning victory of Guzerat, which absolutely destroyed the Sikh army. Múltán bad previously fallon ; and the Afghán horse under Dost Muhammad, who had forgotten their hereditary antipathy to the Sikhs in their greater hatred of the British name, were cbased back with ignominy to their uative hills. The Punjab henceforth beeame a British provimee, supplying a virgin field for the administrative talents of Dalhousio and the tro Lawrences. Raja Dhulip Sinb received an allowance of $£ 50,000$ a year, on which he retired as a country gentleman to Norfolk in England. The first step in the pacifiention of the Pumab was a general disarmament, which resulted in the delivery of wo less than 120,000 weapens of various kinds. Then followed a settiement of the land tax, village by village, at an assessment much below that to which it had been raised by Sikh exaetions, and the introluction of a loose but equitable cole of cival and criminal procedure. Roads and cauals were laid out by Colonel Robert Napier (afterwards Lord Napier of Magdala); and the security of British peace and the personal influence of British ofticers were felt to the furthest corners of the province. Thus it happened that, when the Mutiny broke ont in 1857, the l'unjab remained not only quiet but loyal, after only eight years' experience of Euglish rule; white the North. Western I'rovinces, which had been Dritish territory for more than lalf a century, rose in retellion. The second secomb Ihurmese war of 1852 was causeal by the ill-treatment of Burmene European merchants at langeon, and the insolence offered war. to the captain of a frigate who had been sent to remonstrate. The whole valley of the lawadi, from langoon to Prome, was occupied in a few months, and, as the king of Λ va refused to treat, it was annexed, under the mame of Pegu, to the provinces of Arakan and Tenasserim, which had been arquired in 182G. Since annesation the inhabitants of

Rangoan have increased tenfoldi in number, and that port now ranks third io British India, being surpassed ouly by Calcutta and Madras. Lord Dalhousie's dealings with the feudatory states of India can only be rightly appreciated as part of his ganeral policy. That rulera only esist for the gaod of the ruled was his supreme axiom of governmeat, of which be gave the most conspicuous esample by the practice of his owa daily life. That British adminis. tration was better for the people than native rule fallowed from this axiom as a necessary corollary. He was thus led to regard native chiefs fronu somewhat the same point of view as the Scotch regarded the hereditary jurisdictions after 1745, as mischievous anomalies, to be abolished by every means practicable. Gand faith must be kept with rulers oo the throne and with their legitimate heirs, but un false sentiment should preserve dynasties that bad forfeited all consideration by years of accumulated misrule, or prolong those that harl no natural successor. The "doctriae of lapse" was merely a special application of these principles, though enmplicated by the theary of adoption. It has never beea doubted that, accordiag to Hiadu private law, ao adopted son entirely fills the place of a natural son, whether to perfarm the religious obsequies of his father or to inherit his property. In all respects he continues the persona of the deceased. But it was argued that the successinn to a throne stood upou a different fonting. The paramount power could not recognize such a right, which might be used as a fraud to hand over the happiness of millions to a bise-born impostor Here came in the maxim of "the gnod of the governed." - The material benefits to be conferred through British admiaistration aurely weighed heavier in the scale than a superstitious and frequently fraudulent fiction of inheritance. The first state to escheat to the Britislı Goverament in accordance with these principles was Sátárá, which had been recons tuted by Lord Hastings on the downall of the peshwain 1818. The last direct representative of Sivaji died without a male heir in 1848, and his deathbed adoption was set aside. In the same year the Rajput state of Karauli was saved by the interposition of the court of directors, who draw a fine distinction between a dependent principality and a protected ally. In 1533 Jhansi suffered the same fite os Sátérí. But the most conspicurus application of the doctrine of lapse was the case of Nagpur The last of the Bhoaslas, a dynasty older than the British Government itself, died without a son, natural or adopted, in 1853. That year also saw British administration extended to the Berars, or the assigned districts which the nizim of Hyderabad was induced to cede as a territorial gnarantea for the subsidies which he perpetually kept in arrear Three ınara distinguished names likewise passed away in 1853, though without any attendant accretion to British territery. In the extreme south the titular nawab of the Carnatic and the titular rijik of Tanjore both died without heirs. Their rank and their pensiuns died with them, thnugh compassionate allowances were continued to their families. In the north of India, Baji Ráo, the ex-peshwa whon had been dethroned in 1818, lived on till 1853 in the enjny. ment of his annual pension of $£ 80,000$. His admpted son, Nána Sáhib, inherited hiz accumulated savinģ, but could obtain no further recngnition.

The annexation of the prosince of Oudl is to be de. Annexa lion of Ourlh.
which naturally flow from irresponsible power. Their only redeening virtue was steady loyalty to the British Government. Oudh has been called "the Garden of India" by an author ${ }^{1}$ whe endeavours to show that the evils of native rule were never so black as they have been painterl. L:ut at any rate that fair corner of the Gangetic basin, which now supports a denser pupulation than any eq al area on the surface of the globe, had been groaning for generations uader anarchy for which each successive governor-general admitted that be was partly responsible.• Warning after warning had beea givea to the nawabs (who had assumed the title of shab or king aince 1819) that they must put their housa in order. What the ben :volent Bentinck and the soldierly Hardinge lad only theatened was reserved for Lord Dalluousie, who united huaesty of purpose with decision of character. In this determination he had the full support of the court of directers at home. In 1856, the last year of his rule, be issued orders to Geueral (afterwards Sir James) Outran, then resident at the court of Lucknow, to assume the direct administration of Oudh, on the grouod that "the British Government would be guilty in the sight of God and man, if it wert any longer to aid in sustaining by its countenance ar administration fraught with auffering to millions." Th, king, Wajid Als, bowed to irresistible force, though he ever refused to recognize the justice of his deposition. After a mission to England, by way of protest and appeal, he settled down in the pleasant suburb of Garden Reach near Calcutta, where he lived in the enjoyment of a pension of $£ 120,000$ a jear.' Oudh was thus annexed withuut a blow ; bat it may be doubted whether the one measure of Lord Dalhousie upon which he looked back himself with the clearest conscience was not the very one th : most alarmed native public opiaion.

The marquis of Dalhousie resigoed office in March 1856, being then only forty-four years af age; but he carried home with him the seeds of a lingering illness which resulted. in his death in 1860. Excepting Cornwallis, he was the first, though by no means the last, of English statesmer who have fallen rictins to their davotion to India's needs. He was succeeded by his friend, Lord Canning, who, at canaing the farewell banquet in England given to him by the court of directors, uttered these prophetic words: "I wish for a peaceful term of office. But I cannot fnrget that in the sky of India, serence as it is, a amall clour may arise, nc larger than a man's hand, but which, grawing larger and larger, may at last threaten to burst and overwhelm us with ruin." In the follawing year the sepoys of the Rengal army mutinied, and all the ralley of the Ganges from. Patna to Delhi rose in open rebellion.

The various montives assigned for the Mutiny appear Muting. inadequate to the Eurnpean mind. The truth seenis in be that mative opinion throughout India was in a ferment, prodisposing men to beliese the wildest stories, and to act precipitately men their fears. The influeace of panic in an Oriental prpulation is greater than might bo rearlily believed. In the first place, the palicy of Lord Dalhousic. exactly in propnetion as it lad been dictated by the monst honourable consideratinns, was utterly distasteful to the native mind. Repeated anrexations, the spread of educatinn, the appearance of the steam engine noil the telegraph wire, all alike revealed a consistent determination to substitute an English for an Indian civilization. The Bengal sepoys, especially, thmught that they could see into tho future farther than the rest of their countrymen. Nearly all men of high easte, and many of them recruited from Oudh, they drealed tendeneies which they deemed to be denationalizing, and they knew at first band what annexation

[^172] by ti. C. Irwin, Lomion, 1880.
meant. They believed it was by their prowess that the Tunjab had been conquered, and all India was held quiet. The numerous dethroned princes, their heirs and their widows, were the first to learn and take advantage of the spirit of disaffection that was abroad. They had heard of the Crimean w r, and were told that Russia was the perpetual enemy of England. They had money in aboudance with which chey could buy the assistance of skilful intriguero. They had everything to gain, and nothing to lose, by a evolution.

In this eritical atate of affairs, of which the Government had no afficial knowledge, a rumour ran through the cantonments of the Bengal army that cartridges had been sersed out greased with the fat of animals unclean alike to Hindu and Mahometan. After this, nething conld quiet the minds of the sepoys. Fires occurred aightly in the native lines; officers were insulted by their men; all confidence was gone, and only the form of discipline remained. Ou the afternoon of Sunday, May 10, 1857, the sepoys at Heerut (Mirath) broke into open motiny. Their first mad freaz: marked by its excess the change from their usually quiet manners and orderly habits. They broke into the jail and then ran through the cantenments, cutting down every Eurepean they met. At last they streamed off to the recighbouring eity of Delbi, to stir up the native garrison and the criminal population of that great city, and to place themselves under the authority of the diserowned Mughal amperor Meerut was the largest military station in India, with a strong European garrison of foot, horse, and guns, sufficient to overwhelm the mutincers before ever they reached Delhi. But just as the sepoys acted in irrational panie, so dill British officers in but too many eases act with equally irrational indecision. The news of the outbreak was telegraphed to Delhi, and nothing more was done that night. The next morning the Mabcmetans of Delhi rose, and all that the Europeans there could do was to blow up the magazine. A rallying centre and a traditional name was thus giren to the revolt, which forthwith spread like wildfire through all the North-Westem Provinces and Oudh down into Lower Eengal. The same narrative nust suffice for all, though each episode has its own peculiar story of sadness and devotion. The sepoys rose on their officers, without warning, and sometimes after protestations of fidelity. The Enropeans, or persons of Christian faith, were masssered, sometimes also women and children. The jail was broken open, the treasure plundered, and then all marched off to aome centre of revelt, to join in what had now become a national war. Only in the Punjab were the aepoys anticipated by the stern measures of repression and disarmament adopted by Sir John Lawrenee and his liautenants, among whom Edwardes and Nicholson were Loyslty conspicuous. The Sikh population never wavered. Crowds of sikbs of willing reernits cause down from the Afghin hills. And thus the Punjab, instead of being itself a source of danger, was able to furnish a portion of its own garrison for the siege of Delhi. In Lower Bengal most of the sepoys mutiuied, and then dispersed in different directions. The native armies of Madras and Bombay remained true to their colours. In Central India the contingents of many of the great chiefs aooner or later joined the rebels, but the Minhometan state of IIyderabad was kept loyal by the authority of its ablo minister Sir Sálar Jang.

Tho main interest of the sepoy war gathers round the three cities of Cawnpur, Lacknow, and Delhi. The cantonments at Campur contained the largest native garrison in India; and in the immediate neighbourhood, at Bithor, was the palace of Dandhu Panth, the disinherited heir of tho last peshwa, whose more familiar appellation of Nána Sahib will over be handed down to tho infamy of history. At Girat the Naua was profuge in his professions of logalty,
but as soon as the seposs mutinied he put himself at their head, and was proclaimed peshwa of the Marbattás. The Europeans at Cawnpur, who numbered more wonen and children than fighting men, strut themselves up in improvised entrenchments, where they sustained a siege for nineteen days under the sun of a tropieal June. At last, trusting Cawnto a safe conduct from the Nána as far as Allabábád, they purmas surrendered their position, and to the number of four *acra hundred and fifty indiriduals embarked in boats on the Ganges. Forthsith a murderous fire was opened upen them from the riser bank. Only a single boat escaped, and but four men, who swam across to the protection of a friendly raja, ultimately survived to tell the tale. The rest of the men were massacred on the spot; the women and children, numbering one hundred and twenty-five, were resersed for the same fate a few days later, when the arenging army of Harelock was at hand. Sir Henry Lawrence, the chief comonissioner of Oudh, had foreseen the coming storm with a prophetic ey'e. He had fortified and provisioned the residency at Lucknow in good time, and thither be retired with all the European inhabitants and a weak British regiment on July 2. Two days later he was mortally wounded by a shell. But bis example siege of inspired the little garrison to held out under unparalleled Luck. hardships and agaiust enormons odds, until relieved by now Havelock and Outram on September 25. But the relieving foree was itself invented by fresh swarns of rebels, and it was not till November that Sir Colin Campbell, afterwards Lord Clyde, cut his way into Lucknow, and effeeted the final deliveranec of the garrison. The siege of Delhi began on June 8, just one month after the original outbreak at Mecrut. Siege in the proper sense of the word it mas not, for the British army, encamped on the historic ridge, never exceeded 8000 men, while the rebels within the walls were more than 30,000 strong. In the middle of August Nichelson arrived with a reinforcement from the Punjab, but bis own eueouraging presence was more valuable than the reinforcement be brought. On September 14 the Storm w assault was delivered, and after six daya' desperate fighting Delbi in the streets Delhi was again won. Nicholson fell at the bead of the storming party. Hodson, the intrepid leader of a corps of irregular horse, bunted down and brought in as prisoner the old Mughal emperor, Pahadur Sháh, and then in cold blood shot down the eniperor's sons with his own hand. After the fall of Delthi and the final relief of Lucknow the war loses its dramatic iuterest, though fighting went on in carious parts of the eountry for eighteen months longer. The population of Oudh and Rohilkhand, stimulated by the presence of the begum of Oudh, the nawáb of Bareilly, and Nana Sihib himself, had jeined the mutinous sepoys en masse. In this quarter of India alone, it was the revolt of a people rather than the mutiny of an army that had to be quelled. Sir Celin Campell in person conducted the campaign in Oudh, which lasted through two cold seasons. Valuable assistance was lont by Sir Jang Bahadur of Nepal, at the head of a numerous army of Gurkhas. Town after town was oceupied, fort Suppres after fort was stormed, until at length the last gun bad been sion of recaptured and the last fugitive had fled across the rutiny frontier by January 1859 In the meanwhile Sir Hugh Liose (afterwards Lord Strathnairn), with another army from Bombay, was couduetius an equally brilliant eampaign in Central India Ilis most formidable antagonists wero the disimberited rínl of Jhánsí, and Tantia Topi, whose military talent had previously inspired Nana Sihib with all the eapacity for resistance that he ever displayed. The rini died fighting bravely at the head of lier troops in Juno 1858 ; Truntiá Topl, after doubling back wards and forwards through Central India, was at last betrayed and run down is April 1859.

4istosy.]

The Mutiny sealed the fate of the East India Company, after a life of more than tre and a half centuries.

The Company received its original charter of incorpora-

Cim.
pany's inariers. tion from Elizabeth in 1600. Its political powers, and the constitution of the Indian Goverament, were derived from the Regulating Act of 1773 , passed by the ministry of Lord North. By that statute the governor of Bengal was raised to the rank of governor-general ; and, in conjunction with his council of four other members, he was entrusted with the duty of superintending and controlling the governments of Madras and Bombay so far as regarded questions of peace and war ; a supreme court'of judicature was appointed at Calcutta, to which the judges were appointed by the crown; and a power of making rules, ordinances, and regulations was conferred upon the governor-general and his council. Nest came the India Bill of Pitt (1784), which founded the board of control, strengthened the supremacy of Bengal over the other presidencies, and first authorized the historic phrase "governor-general-in-council." The Act which abolished the Company's monopoly of trade (1833) also introduced several reforms into the constitution of the Indian Government, and added to the council an additional member, who might not be chosen from amoug the Company'a servants, and was entitled to be present only at meetings for making laws and regulations; it gave the authority of Acts of Parliament to the lars and regulations so made, subject tn the disallowance of the court of directors; it appointed a law commission; :and it gave the governor-general-in-council a control over the other prasidencies in all points relating to the civil or military administration. The charter of the Company was renewed for the last time in 1853, not for a defnite period of years, but only for so long as parliament should ordain. On this occasion the number of directors was reduced, and their patronage as regards appointments to the civil service was taken away, to make room for the principle of open competition.
Transfer The Aet for the better government of India (1858), which worown. finally transferred the entire administration from the Company to the crown, was not passed without an eloquent protest from the directors, nor without acrimonious party discussion in parliament. It enacts that India shall be governed by, aud in the name of, the sovercign of England through one of the principal sccretaries of state, assisted by a council of fifteen members. The governor-general reccived the new title of viceroy: The European troops of the Cumpany, numbering about 24,000 officers and imen, were amalgamated with the royal service, and the Indian navy was abolished By the Indian Councils Act (1861) the governor-general's council and also the councils at Madras and Bombay were augmented by the addition of non-official members, either natives or Europeans, for legrslative purposes only; and by another Act passed in the same year high courts of judicature were constituted out of the existing supreme courts at the presidency towns.

It fell to the lot of Lord Canning both to suppress the Muting and to introduce the peaceful revolution that followed. As regards his execution of the former part of his duties, it is sufficient to say that he presersed his equanimity undisturbed in the darkest hours of peril, and that the strict impartiality of bis condnet incurred alternate praise and blame from the fanatics on cither side The epithet then scornfully applied to him of "Clemency" Canning is now remembered only to his honour. On November 1, 1858, at a grand darbar beld at Allah:ofod the royal proclamation was published which announeed that the queen had assumed the government of India. This document, which has been called the Magna Clarta of the Indian people, went on to explais the policy of political justice and religious toleration which it was her royal pleasure to pursue, and granted an amaesty to wll except
those who had directly taken part in the marder of British subjects. Peace was proclaimed throughout India on July 8, 1859 , and in the following cold weather Lord Caming made a viceregal progress through the upper provinces, to receive the homage of loyal princes and chiefs, and to guarantee to them the right of adoption. The suppression of the Mutiny increased the debt of India by about 40 millions sterling, and the military changes that ensued augmented the annual expenditure by about 10 millions. To grapple with this deficit, Mr James Wilson was sent out from the treasury as finaneial member of council. He reorganized the custous systcm, imposed an income tas and licence duty, aud created a state paper cnrrency. The penal code, origiaally drawn up by Macaulay in 1837, passed into law in 1860, together with a code of civil and criminal procedure.

Lord Canning left India in March 1862, and died before Recen: he had been a month in England. His successor, Lord adminas. Elgin, ouly lived till November 1863, when he too fell a trativu victim to the excessive work of the governor-gencralship, dying at the Himalayan station of Dbarmsadh, where he lies buried. He was succeeded by Sir John Lawrence, the saviour of the Punjab. The chief incidents of his administration were the Bhuttan war and the terrible Orissa famine. Lord Mayo, who succecded him in 1869, carried on the permanent British policy of moral and material progress with a special degree of personal energy. The Ambala (Umballa) darbar, at which Shere Ali was recognized as amir of Afghánistan, flough in one sense merely the completion of what Lord Lawrence had begun, owed much of its success to the persoaal influence of Lord Mayo himself. The same quality, combined with sympathy and firmness, stood him in good stead in all his dealings both with native chiefs and European officials. His exampie of hu.d work stimulated all to their best. While engaged in exploring with his own eyes the furthest corners of the empire, he fell by the band of an assassin in the convict settlenent of the Andaman Islands in 1872 . His successor was Lord Northbrook, whose ability showed itself chiefly in the department of finance. During the time of bis administration a fanine in Lower Bengal in 1874 was successfully obriated by Government relicf and public works, though at an euormons cost; the gaikwar of Daroda was dethroned in 1875 for misgovernment, and disloyalty, while his dominions were continucd to a nominated child of the family, and the Prince of Wales made a tour through the country in the cold weather of 1875-76. Lord Lytton followed Lord Northbrook in 1876 On January 1, 1877, Qucen Vietoria was proclaimed Empress of Tndia at a dárber of unequalled magnificence, teld on the historic "ridge" overlooking the Mughal capital of Delhi. But, while the princes and high officials of the conntry were Hocking to this gorgeous scene, the shadow of famine was already darkening over the south of India Loth the monsoons of Famire 1876 had failed to bring their due supply of rain, and the $187 \mathrm{c} . \mathrm{F}$. season of 1877 was little better. The consequences of thes prolonged drought, which extended from the Deccan-to Cape Comorin, and subsequently incaded northern India, were more disastrous than any similar calamity since the iotroduction of British rule. Despite unparallcled inporta tions of grain by sea and rail, despite the most strennous exertions of the Government, which incurred a total expenditure on this account of 11 millions sterling, the loss of life from actual starvation and its attendant traid of discases was lamentable. The total number of deaths from disease and want in the distressed tracts in excess of tho normal mortality for the two ycars 1876-78 is estimated to have raiseu ue death-rate by 40 per cent., or $5 \frac{1}{\text { millious. }}$ In the autumn of 1878 the atlairs of Afghanistiun again fored themselves into notice. Stere $\lambda \mathrm{ll}$, the amir, who
had been hospitably entertained by Lord Mayo, was found to be favouring Russian intrigues. A British embassy was refused admittance to the country, while a Russian mission was received with honour. This led

Afighan carl- tn a declaration of war. British armies advanced by three ruutes,-the K̈laibar (Khyber), the Kuram, and the Golan, and without much opposition occupied the inner entrances of the passes. Shore Ali fled to Afghan Turkestan; and there died. A treaty was entered into with his son, Yakub Khán, at Gandamak, by which the British frontier was advanced to the crests or further sides of the passes, and a British officer was admitted to reside at Cabul. Within a few months the British resident, Sir Louis Cavagnari, was treacherously attacked and massacred, together with his escort, and a second war became necessary. Yákub Khán abdicated, and was deported to India; Cabul was occupied in force, and an Afghan chief of the Durini line was placed in the government of Kandahar with the title of wall At that crisis of affairs a general election in England resulted in a defeat of the ministry. Lord Lytton resigned with the Conservative ministry, and the marquis of Ripon was nominated as his successor in 1880. Since then, a British brigade received a defeat between Kandahar and the Helmand river from the Herati army of Ayub Khan, a defeat promptly and completely retrieved by the brilliant march of General Sir Frederick Roberts from Cabal to Kandahar, and by the total rout of Ayúb Khan's army on September 1, 1880. Abdurrahman Khan, the eldest male representative of the stock of Dost Muhammad, has now been recognized as amir of Cabul.

Governors-General of India under the East India Company, 1765-1858.
1765. Lord Clive.
1767. Harry Verelst.
1769. John Cartier.
1772. Warren Hastings.
786. Lord (afterwards Marquis) Cornwallis.
793. Sir John Shore (Lord Teigrmouth).
1798. Sir Alured Clarke (pro lem.).
1793. Lord Morniogton (Marques Wellesley).
1805. Lord Cornwallis again.
1805. Sir George Barlow (pro ct m.).
1806. Earl of Minto.
1813. Earl of Moira (Marquis of Hastings).
1823. John Adam (pro Lem.).
1823. Lord Amherst.
1828. Lord William Cavendish Bentinck.
1835. Sir Charles Metcalfo (Lord MLetcalfe).
1836. Lord Auckland.
1842. Earl of Ellen borough.
1844. Viscount Hardinge.
1848. Earl (afterwards Marquis) of Dalhousie.

1856. Earl Canning

Viceroys of India under the Crown, 1858-1881.
1858. Earl Canning.
1862. Earl of Elvin.
1864. Sir John Lawrence (Lord Lawrence).
1869. Earl of MAyo.
1872. Lord Northbrook.
1876. Lord Lytton.
1880. Marquis of Ripon.

Bibtioprnphy of india ,-(1) Ilistory Orme's Indostan. Wilsan'sedtion of Mill's Ilistory of India. 9 vols, $1840-48$, is att the standard work on the genernit history of India: but it is practically superseded, with regnal to special periods, is a of India : but it is manically superseded. With regard to perls periods by a number of less known works. Monathiuart Elphinstone o history of had (Prolessor Cowell's edition, 1866) deals with the shambetial period. Sir flinty Elliot history of hits (8 vols, 1867.77) treats of the cartier centuries of tint

 Journey through shatabav and hamarn ne the best general works with regard to
 with reference th the great tract of when fitreats. also tho process of subdivision han taken place, on differing periods or aspca: are now treated elaborately by specialist (${ }^{(2)}$ Althison a Tresses and Engage hent. 7 vols., require a place by thernoelves. (3) The following are the leading works on the various periods, provincon, and ruces:-M Climates ancient india of Hegasthenes and Arran, and his Narigation of the E"ythriran Seas Dr J. Murks
 Literature, 1R78; Professor Max Miller's hIstory of Sanskrit Llicraisur, and darius work and essays ; Protchaor Dowson a Classrai hictronaty of Mince Hythowap. 1879: Sharing h hindu Tribes and Cases. Fergastenn Thee and Serpent Worship. Malian Architecture, Cave Temples. Sc: The Reports of the Arehseloglenal Survey, by General Cniningham and Mr burgess, Beamed sedition of Sir II. Kilts Races of India; Wards /hindi ; Along Dubuls sumner a amd

 on milan Subecle, 2 vols, 1830 , and uther works apecialy on Nipa and Titer: Motion Cakevelin Comparative grammar of the Drartann Lamondyrs. thu atandurd nothorlty on south rit India; Colonel hapten a Ethnology of beng as: K
 Works of a mure local character:-The Statistical Account of Bengal and assam,

With the Gazetteers or District Mammals tor Bombay, Madras, the North. West, the Central Provinces, Rajputana, Mysore. Brush Burmalh, Ajmer, and other provinces; Colonel Mallesun's and Mr Muckay's works on the native states and princes; Mr Level Griffin's Punjab Rajas; Stewart's History of Bengal; Dr Hooker's Himalayan Journals; Vigne's Travels in Kashmir, and Giozni. habit, and Afghanistan; Ferrier, History of the Afghans; Conoliy s Overland Journey to India; Sir Alexander Barnes's Cobol; Dr Bellew's reports; Wheeler'a Afadras in the Olden Time, and his other valuable works; Mullesth't History of the French in India, Hunter's Annals of Rural Bengal, Orissa. ant Indian Sfusal. mans. (5) Among works beaning on British rulo-The fut Report on the Affairs of the East India Company; selections from the Calcutta Gazette in the last century; Kaye's Administration of the East India Company; Rene's Fall of the Mughal Empire: Owens India on the Eve of the British Conquest; Theme's War in India, 1802-1806; Malcolm's India, 1811: Prinsep's British India, 1813-18: kaye's Sepoy Mar, and continuation by Malleson; Facet's Indian Finance. (6) Short works on Indian history and geography, by Roper Lethbridge Pope, Marshman, Wheeler, and Meadows Taylor. (7) Bingaphleg of Cite, Warren Hastings, Sir Philip Frances, Lord Telgmouth, Malcolm, Mho, Metcalfe, Combermere. Sir Henry Lawrence, and Sur Herbert Edwardes; also the Wellington Despatches referring to India, by Sidney Owen; Lord Ellenborough's Letters, and Kaye's admirable Indian biographies. (S) In fiction and poetry. Edwin Amolda Light of Asia stands first. Meadows Taylor's Confessions of a Thug, and Jura; Pandurang Mari: 11. Cunningham's Dustypore; and The Afghan Knife Form well-known examples of the Anglo-Indlan novel. (9) Indian offlelal reports:Annual Admanistrufion Reports of the varinas presidencles and provinces; District Settlement Reports in the Noith-Western Provinces, Oudh, and the Punjab; General Reports of the Board of Revenue, Madras; Survey and Settlement Reports of Bombay: Census Reports for the various presidencies and provinces !n 1871-72, and their condensation, The Memorandum on the Census of British India (1871-7), presented to parliament in 1975: Annual Reports on the Trade and Navigation of British India; Report of the Bengal Royal Commission, 1880, (10) Parliamentary Blue Books:-That Annual Statistical Abstract relating to British Nadia: Annual East Indian Finance and Revenue Accounts; Statements on the Afuterial and Sforal Progress of India. (V. W. H.)

Index.

Aborigines, 776.
Administration, 768
Afgbsu wars, 807. 81 Agriculture, 747. Akbar, 794.
Alexander the Great. 786.

Amherst, Lord, 806, Animals, wed, 741. Antelopes, 742. Antimony, 865. Area, 731.
Army, 774.
Aurangzeb, 795.
Bears, 741.
Bentinck, Lord Wuliam, 806.

ELude, 743.
Black Hole, 801.
Books, 776.
Brass-work, 763
Brewing, 764
British empire, 800.
Buddhistu, 784
Buffaloes, 342.
Bráhmaalsm 782
Burman, British, 734
Canals, 756.
Canatng. Lord, 809
Carpets, 762.
Carving, 763
Castes, 745, 781.
Cattle rearing, 762
Cinchona, 751
Climate, 738.
Clive, Lord, 800
Coal fields, 737 ; mooting Tc.
Coffee, 750. 759
Colleges 775.
Commerce, 736
Conıрллу, East India, 298
802, 811 .
Copper work, 763; mines 76.5.

Comwallis, Lord, 803, 805
Cotton, 748 ; export. 764 manufacture, 763. Criminal population, 784. Cutlery, 762.
Dalhousie, Lord, 808 Decern, 333.
Dells, ancient, 730
boga, wild, 7.41 .
Duplex, 800
Dutch actlemerses, 797.
Eon Indian Company. 798 102, 811.
Eat ladies (manic), 781
Education, 77
Elephants, 711, 753
Emlimitery, 267.
England sethenenta, 708.

Excise, 772, 7 73.
Expenditure, 773
Exports, 757, 758.
Famines, 766, 81L
Fauna, 741
Fcadallsm under akbar, 795.

Flounce, 773.
Fishes, 743.
Flora, 740.
Forests, 753.
French settlements and wars, $800,804$.
Gama, Vasco da, 796 Geology, 735.
Ghats. 733.
Gold and silver work 762.

Gold mines, 765.
Corerament, 768.
Greek tavaston, 780.
Hastiags Marquis 805.

Hastings, Warren, 802
History, 736.
Ihmanyos. 732
Hinduism, 779.
Hindustan (name), 73L
Hog, wild, 742
Horses, 757.
snyder Ali, 803.
Imports. 157.
Indigo, 749, 759. Infanticide, 74J.
Insects, 243.
Iron, 737, 761.
litigation, 734
Jails, 784.
Jewellery, 762
Jute, 743 : export 738 manufacture, 763 Late, 752
Land settlement 769
nuder Akbar, ${ }^{294}$.
Lnoguages, 745, 73?
Law, 765, 753.
Lend, $76 b$.
Alahometan invasions
792
Sabbath power, 795 :
wats, 803-805.
Manufactures, 762
Meteorology, 738.
Minerals 7 mb .
Mints, Lord, 005
Mogul empire, 703 Muublatng 781
Mughal empire, 703.
Mulberry, 751.
Munimpalitice 772, 774.
Mutiny of 1857, 800.
Newspapers, 776.
Nomadic cultivation. 733. Tombs 1nunntina, 73

Observatories, 789
Oll-seeds, 74s, 758. Opluna, 749. Oudh, anoexation of. 809
Ox, wild, 742.
Panclayat, 772.
Paper-making, 764. Permanent settlement, $730,803$.
Petroleum, 765 Police, 274.
PopulatIon, 744
Portuguese actilemeats 796.

Pottery, 763.
Precious stones, 762. 768 Prisons, 774.
Punjab, anoexation of. 808.

Quinine, 751
Races, dative, 745, 777.
Railways, 755.
Rainfall; 739.
Religions, 745, 785.
Reptiles, 743.
Revenue, 773
Rice, 747, 758.
Rig Vein, 750.
River navigation, 750
Rives plains, 782.
Roads, 756.
Salt, 764 ; administration 772.

Saltpetre, 765
Schools, 775.
Scythian dynasties, 882
Serpents. 743.
Sheep, wild, 742
Sikh war, 808.
Silk wearing, 761
SIlk. worm, 75 L
Spleens, 748.
Sugar, 748.
Suttee, 800.
Talukdírs, 772
Tea, $750,759$.
Thugs, 800
Tigers 741
TImur, 782
Tin, 763.
Typo. 803.
Townie, chief, 745
Trade, 750.
Univorsitlea, 775.
Vedle hymns, 730
Vindlyat mountains iss
Wellendoy, Lord, 804
Wheat, 747.
Wolves, is 1
Zamiodifiti 73a

of.

+

Lonpitas so wout Armin Grementint 86

INDIANA.

INDIANA is one of the central states of the American union, lying belween the parallels of $37^{\circ} 46^{\prime}$ and 41° 46^{\prime} north latitude and the meridians of $84^{\circ} 49^{\prime}$ and $88^{\circ} 2^{\prime}$ west longitude. It has a length of 275 miles, a breadth of 135 miles and an area of $: 3,809$ square miles or $21,637,760$ acres. It is bounded on the north by Lake Michigan and the state of Michigan. The coast line ia about 60 miles long. On the east it is bounded by the state of Ohio, from which it is divided by a line drawn aue north from the mouth of the Great Miami river; on the aouth by the Ohio river. Which separates it from Kentucky; on the west by Illinois, the boundary extendingalong the meridian of $8 i^{\circ} 30^{\prime}$ west, until that meridian strikes the Wabash river, and thence through the middle of the main channel of the Wabash river as far as itsentrance into the Ohio. The state is divided into 92 counties, containing each about 400 square miles. The capital is Indianapolis, near the center of the State. The most important towns are Evansrille, of which the population in 1880 was 29,280 ; Fort Wayne. with 26,880; Terre Haute, 26,040; New Albany, i6,422; Lafayette. 14.860; South Bend, 13,279; Richmond. 12.743; Loganaport, 11.198; Jeffersonville, 10,422. Indianapolis contained 75,044 inhabitants.

Surface. - The state is level, gently undulating or occupying a broad table land, and containing no mountains, nor bills of any considerable leight, except what are termed river hills, along the Ohio, where the Eurface has been deeply cut by the affluent streams. The highest elevation is 683 feet above the level of the Ohioat the mouth of the Wabash river. This elevation is in Randoloh county, and is 1,253 feet above sea level. Perhaps a butte in Brown county should be reckoned, which is somewhat bigher, but it is ooly an isolated peak. The lowest altitude, at the mouth of the Wabash river, is 370 feet above sea level. The mean eleration is estimated at about 735 feetabove sea level. The bighest parts of the state are on its west and east sides. Bome of the river hills along the Wabash reach the height of 600 feet above the sea. From these hills the slope is gradual down to the Ohio below the falls near Louisville. The table lands of the interior are either great level prairies, interspersed with groves of ash, oak and other trees, or undulating. with occasional hilla. The country is well watered, and the principal river valleys are exceedingly productive. The Wabash, the largest river that flows mainly within the atate, has a course of 600 miles. This river rises in the western part of Ohio, and after flowing first in a northwest and then in a southwest direction, turns south at the boundary of lllinois and emptice into the Ohio. The Wabash, with its alluents, drains about three-fourths of the atate, and the valleys of theee streams cover an area of over 12.000 sfuare miles. The Ohio river valley, with that of the White Whter river, covers anarea of about 5.500 square miles in the state. The length of the boundary of Indiana along the Ohio river is 380 miles. It was originally lined with dense forests.

The other important rivers of Indiana are tributaries to the Wabash. Of these the principal river is the White, having a course of about 100 miles below the junction of the east and west forks, which are respectively about 200 and 300 miles long. The valleys of theae rivers cover a tract of about 9,000 square miles. The valley of the Maumee river formed hy the St. Joseph and St. Mary covers ar area of about 2.000 square milea in the northeastern part of the state, and slopes gradually toward Lake Erie into which the Manmee empties its waters.

Geology.-Few geological formations are found in Indiana. The lower Silurian strata are the oldest lu the state. They are seen in the extreme northwestern and southeastern parts of the state, dipping under the unper Silurian and Devonian rocks, which occupy with their
formations adoh; three-ffths of the surface of the state. The lower Silurian strata have a thickness of 800 feet; the apper Silurian, of 200 , and the Devonian, of 180 feet.
The coal measures cover an area of about 7,i00 stuare miles, extending across the southwestern part of the state from the Wabash river to Craw ford county. The three principal kinds of coal nined are the cannel, the bituminous and the block coal. The cannel coal is found along the Ohio river in the southern pari of Perry county, and at other points along the river. The hituminous coal is found along the Wabash river and the Erie canal, porth of Evansville. The biock coal is mined from measures, covering about 600 square miles between Speucer and Clay counties. This coal receives its name from the quadrangular blocks in which it is taken from the mines. Its quality is excellent, nond it is superior to any other coal now known, and even to cbarcoal for use in smelting pig iron and steel. on sccount of the very small amonnt of phosphorus in the coal and the entire absence of sulphur from it. This renders the coal peculiarly fit for the production of the best Bessemer steel. In 1881 the number of coal mines was 216. The maximum capacity of yearly production was $3,110,183$ tons. The actual product of the mines was $1,449,496$ tons. The total depth of the coal measures is from 600 to 800 feet, and they present from 12 to 14 distinct seams, ranging from one foot to 11 feet in thickness. Bog iron ore, suitable for mixing with the purer ores of Missouri, exists in the northern part of the state. Peat is also found in the northern part of the atate and salt springs along the borders of the coal measures.

Climate. - The climate of Indiana is liable to extreme and saddea chagges, especially in the northern part, where the range of the thermometer each month is rery great. In the southern portion the climate is morc equable, aud throughoat the state it is generally healthfal. The heat in summer, though at timen inteose, is modified by the winds which sweep over wide tracts without obstraction But the wiuds, for this reason so grateful ia summer, are old and piercing in the winter. In 1850 the mean anaual barometer was 30.030 iaches; the mean anaual thermometer was 54.4°; the mean annual relative bumidity was 6 . 4 per ceat. The maximnm tem perature was 99^{2}; the ninimam temperatire, - 13°. The prevall. perature was 91^{2} the minimam temperatnre, - 13°. The prevaft-
ing direction of the wind was west. The number of days on which rain or soow fell was $1 \nmid k$. The total anouat of rain and snow dur ing the year was 50.99 jnches.
Tegetotion and soil.-Indiona was formerly largely covered witb forests. But they have been rapicily disappearing ia late years, and little is being done to preserve the forest trees os to cultivate a new growth. About one-third of the state is stitl in forest. There are a few native pinc, hemlock and spruce trecs in the state, but for the most part the trees are deciduous. Among them are the oak, hickory, black walnut, beech, aslh, sagar maple, fycanore, linden. poplar, clm and the whitewood or inlip. About one eighth of the state is prairie land: the bent lands are the loottoms on the Wibash, white and Whitewater rivers. The soil of the state is rich and loany, hat a frequeat rotation of crops is required to field best results. Both climate and soil are admirably adapted for the cultivation of cora. Good land. with the jroper preparation and care, will in a fair beason produce from serenty to ninety bushels to the acre. All the cereale, fruito, grasepa and Vegctables of the temperate zone are growo in Indiana. Tobacco is also extensively cultivated.
Agricultural Products.-Corn is the great staple of Indiana, and in its production the state takes a wry bish rank anong the gralr growing states. In 18 in there were 1 if. 013 farms in the state wite
 738 acres. The valne of farms, jocluding laved, fences and build ings, was sum, 933.111 . The valac of farming int plements and nachinery was 20,4 ri,ges. The value of live stock was si.0.0-ija The cost of building and repairing fencers in 1xin was $3.301 .24 G$ The cost of fertilizers purchased durtag thesame year was \&3k. 58 The estimated value of all farm productione (solit or consumed of
 took sisth rank among the siatrs of the lenion.
The following rable tives the princibal veremble prodactlous for 18vu, as given by the Euited stater census reports:

Bnakwheat
49.508

$1,361,043$ tone
llopa
6,223,246 bnahcis
Potatocs, sweet
.944,950 buebela

The wheat and corn crops, in 195:, were as follows:

Arres. 3.5% ? 4	$\begin{aligned} & \text { Besnels. } \\ & \text { T1. tuo, } 100 \end{aligned}$	Value. $\$ 32,130,000$
Wheat.................... $2,20,43$	37,805,000	25,236, 66
In :3ss the yield was as follows:		
\therefore cues.	Brsuels.	V゙ALIEE
Corn. 3.606,100	125,474.000	\$38.898.100
Wheat.......................2, 214,000	28.870.000	27,206,000
Tobacco................... 18,000	16,553,000	1,131,000

Manufactures. - Manquactaring indastry, although of slow erowth in ludiana, has steadily increased hurine the last forty yeare, 8 a is llown by the following table compiled from the Coifed Ytates census of 1880 :

Finances.-OD November 1, 1856, the atate debt was $86,006,608$, all of which was funded. The amount raised by taxation for the atate the previous year was $\$ 1,421,350$. The amonat of tasable property was: Real, 8

 ln 1×40 the agscased valuation on real property was : $23,683,239$; no personal property, $\$ 189,131,892$. The taxation was as follows: State, 42433,463 ; connty. $\$ 4.031,429$; city, town, village and sehool district, $\$ 4,318,638$; total, $\$ 10,843,630$.

Mistory.-Indiana originally constituted a part of the French posseriona. Jesuits visited the country in 1672. In 1 ros thare Were large accesaions to the popnlaion, and setthanent were made at Vincennes and other poiuts. The thritory enst of the Mississippi ant north of the Chin was reded to the Enslinh in 1763. at the cloge of the Frobeh war. In 1755 Cnlogel Giturge Rogers Clark visited Indiana and llinoid, with a view of having the. $\frac{n}{}$ annexed to Virginia. In lïs, affur bringing the settlements of llinots under the juriadiction of Virimina, he took porceally possessiou of Vincemea, and unfurled the Americm thag over the fort. By the treaty of 2 is3 the whole northwert tarritory, of which lndiana was a part, was transferred to the Uuital statis. As the territory now fieluded within the limita of the state of Indiana trolonged by conquent to the sthte of Virginin, the latter wate acthgy upou that rec. ommendation of congrew, resolved to crede to the United States all rant, thtle and claim which th held to the territory morthwost of the Ohio. The tranfer was ellected in 1rkt. In the ajring of the shane year the subject of the finture government of the trrilory war reforred to a commitce consisting of Mowsen Deiferanh, Chase and llowell. The riport of the committee, with fuw ehanges, wha adepted by congreus, and the temporary fovernment of the territory organized. "lhe ordinance for the pariwancut Lovernment of the northwast teritory wan passed by eongress in 176 . The territorial government of Indiana wan organized in isw). At this time the turitory whe but a wilalerness. The territorial atatutere ware
 ereh made mainhable by cleath. In the latter part of the year 1 mog

Silurntion.- By the whte monatuthon, adopted in 1852, a com-

 all forfoimere: and of cerratis other funtu. The primelpai ot thas

diminished, and the income was to be appropriated to the suppoit of common schoole, and to no other purpose whatever. The fund available in 1854 amounted to $82,460,600$. This had increased in 1573 avainble 10 son mounted to $\$ 2,40,503$, and in 1880 to $\$ 9,200,708$. In 1884 there were 11,623 schools in the state, of which 2\%5 were reported as high achoola. There were $9,6: 9$ separate school buildings. The total raloe of school property was $\$ 11,90 \pi, 541$. The tetal reccipts were $\$ 7,26 \pi, 700$; and total expenditures, $\$ 4,504,40 \%$. The whole number of teachers was 11 , ihth 2, of whon 6.862 were male and 4,923 fenale. There wert 512,341 pupils, and the average daily attendance was 320,577. In 1025-80 the estimated number of children between six and 14 yeara
 average alaly attendance was 36,5 . 5 . The average daration of school in days was 120. There were it aniversities and colleges, containiog in prepmratory departments to instructors and 1,235 sta. dents: in collegiate departmenta, 152 instructors and 1.411 students. There were 97,500 volumes in the college libraries. The school age is from gix to 21 years. The indiana state ubiversity is at Bloomington, Monroe county. Besides a classical, scientific and preparatory department, it has a law school connected with it. The state normal achool is located at Terre llante, Vigo county. The building is one of the fineet of its kind in the United States, having a capacity of accommodating over a thensand pupils. A rehool of industrial seiences is also situated in Terre liante. The statecontains annmber of nniversities, or, more properly colleges, under sectarian control. Anong these are Wabash College, Ianover College, the trol. Among these are Uabash college, Northwestern Christian Liversity, Ashbury University, Buther Cniwersity, Eariham College, and the Coiversity of Notre Dame. A
Lutheran theological seminary is connected with llartsville Uniren: atty. The Indiana State Agricultural College, known as the Purdue University, is located at Lafacette, Tippecanoe connty. It is nnned after the founder, the llon. John Purdue, who has contributed liberally to its support. The percentage of illiteracy in the state on the hasis of reading is 4.8 ; on the basis of writing, 7.5 of the entire population.

Administration.-The legislature concists of a senate of 50 members, chesen for four years, one-half elected every second year, gud a house of representatives of 100 members, elected biennially. The legielature meete in January of the odd years. The governor and lientenaut-governor hold office for four years, the other otticere for twe years. The jndiciary consists of a nipreme court of five judges, elected hy the people for a term of sis years; of 38 circuit conrte, meeting in their several districts, the judges of which are elected for aterm of six years, and of euperior conrta, consisting of three judges, elected for a term of four years, in countiea containing a city of 40,000 inhabitants. Marion county, containing Indian. apolis, the state capital, is the only oue to which this provision ia applicable. Every male citizen 21 years of age or over, who has lived in the state six montha, has the right to vote. The divorce laws, which for many years were disgracefully lax, have been re vised and made more stringent. The state is represented in con gress by 13 members in the house, and two members in the senate.

Population and Principal Cities-Indiana ranks as the sixth state in the Uuion, aceording to the Lnited Staten census of 1850 . Following in a table showing the population at intervals of ten years since 1800, compiled from the United States census for 1880:

year.	Number.
	5,641
1810.	24,520
1820.	147,178
180	. 343,031
1×10.	685,866
1 SH	9188, 416
18t(${ }^{\text {a }}$)	. 1,350),428
180	1,681,697
1850.	1,978,301

Percentage of increase in papulation, 18.0 1850, 17.7.
In 15×5 the popalation was divided as followe: Male, $1,010,361$,
 1,924, 978 ; colored, $212,208$.

In isto the State linane Asylum at Indimapolis contained 200
 ber in the workhonsw was 14 . The total number of prisoners vien 1. Ris: of thea 1 , 品's were penitentiaries. The total mmber if paupers was 3, than.
(E. 11, F.)

INDIANAPOLIS, the capital of Indiana, is situsted at anmost the exact geographical centre of the State. in $: 10^{\circ} 47^{\prime}$ N. lat., $86^{\circ} 6^{\prime}{ }^{\prime}$ W. long., 834 miles W. of New York by rail, and 19.4 miles s. E. of Chicago. It stands Fin feet above the sentered, and 148 above Lake Eric.

On the admission of Indiana as a State into the Teateral Uniom in 1816. Congress presented 4 square miles of public lands for its seat of govermment, io he selected by the shate. The hocation was made in 2800 at the contlumes of Fall Creck and White River. The sit clusen was in the milst of the unlroken forest, 60 tuiles distant from the borders of civilization, and only reached by Indian trails. The name Indianapois Was given hy an act of the Legislature on January 6 . 18:2 ; and Alexander Raston was appointed to lay out the city. Selecting a dight mound near the
middle of the ground as the eentre of the proposed capital, Ralston laid out the torn after the manaer of Washiogton city, which be bad helped to surrey.

Four avenues radiate from the ceatre to the four corners of the city. The streets and arenues are 90 fer wido, arcept Washington, the main street, which is 120 . The city has nur outgrown its original limits, ard estends 4 miles io length and 3 in width. It is built upon a level plain and surrounded by a fertile cuuntry. lt was incorporated in 1836, and received a city charter in 1847. Its growth is shown by the following table:-

Year	ropalation.	Asseased Value of Pioperty
1850	8,090	$52,326,185$
1860	18,113	$10,700,000$
1870	48,244	$25,985,267$
1880	75,074	$50,254,934$

In 1847 the first railmay entered the city. Within a few years thereafter other lines were constructed, until now twelve main lines coaverge in the Union Depôt. About one hundred passenger trains, connected with every part of the country, enter and depart daily. The numerous tracks being on a level with the surface of the streets, the obstruction and danger at the numerous erossiogs became very great on account of the increase of railway traffic, 80 that in 1877 a loop line, callen the "Belt," hat to be made passing round the city, to connect the various railt-ads. By means of it the "through freight cars" are conveyed past the city without blocking the traffic.

Indianapolis is in the centre of the swine-producing region, and pork packing is one of the chief industries of the city. The number packed in 1877 was 420,000 head; in $1878,766,000$; in 1879, 677,809. It is also largely engaged in the grain trade. The railways bave been of greatest service to Iodianapolis, compensating for its want of water transit. The manufacturing and mercantile interesta, which are large and jacreasing, are the natural result of the city's extensive railroad connexions.

A system of graded free schools is maintained all the year. The city school property is valued at $\$ 1,041,000$.
In 1871 a public library was established, and is supported by taxation, which now contains 36,461 volumes, and is rapidly increasing. The masonic temple, oddfellors' hall, post-office, U. S. arsenal, and chamber of commerce are handsome buildings. The Marion county court-house, standing on a public square in the heart of the city, was completed in 1877 at a cost of $\$ 1,411,524$. The exterior is of Indiana limestone, the interior of iron and marble, with froscoed walls and ceilings. Its dimensions are 150 by 286 feet, and 240 fect to the top of the dome. The principal benevolent institutions of the State, viz., the institution for the education of the bliad, that for the deaf and dumb, and the Lospital for the insane, are located bere; they are handsome and commorious buildings, the last having accomonodation for 1313 patients. The State refurmatory for women and girls, where all female oftenders aro imprisoned, adjoins the city. The institution is under the management of a board of control, composed of women chosen by the governor of the State. In 1877 the State began the erection of a new State house, to be cnmpleted in 1888 , at a cost of $\$ 2,000,000$. This will be one of the mest imposiag capital buildings in the United Statel

By law the power to incur permanent dobt is limited to a sum not exceeding 2 per cent. upon the assessed value of the property within the city; and the rate of invation ia limited to 90 cents per $\$ 100$ for aunicipal purposes, 20 cents for public schools, and 2 cents for free limaries.
(A. c u)

INDIAN AICHIPELAGO. The East Indian Arclipelago or Malay Archipelago, the largest island cluster in the world, lies to the south-east of Asin and to the north and north-west of Australia, and bears the impress in many of its most important characteristies, butb natural and bis. torical, of this twofold relation. ${ }^{1}$

As the archipelagu does not form a politicel unity, Fositian different writers assign it very different limits. pecouruing as and they are induenced by one set of cis: Jiuc.ations or another. exteut New Guinea to the east and the Philippines to the oorth are sometimes included and sumetimes escluded; Sumatra is sonetimes regarded as the most nestern member of the group, and sometimes that position is given to the Nicobar or the Andaman Islands. From the following aurvey of
 Guinea are excluded, but the Andame:. islands are admitied as having at least an ethongraphical claim. The Balintong Strait, about the 20 th parallel of N. lat., may be taken as the northern limit; and but for a small portion of the islands Timor and Sumba (Sandalwood Island), with their insiguificant adjacencies, the southern limit might he stated as the loth of S. lat. The Andaman Islands take us as far west as $93^{\circ} \mathrm{E}$. long., the Aru Islands as far east as 135°. The equator passes through the middle of the archipelago; it successively cuts Sumatm, Boroco, Celebes, and Jilolo, four of the most important islands. To adopt Mr Wallace's graphic sentences (noting that he embraces New Guinea and the Solomon Islands), the archipelago "includes two islands larger than Great Britain; and in ove of them, Borneu, the whole of the British Isles might be set down, and would be surrounded by a sea of forests. Sumatra is about equal in extent to Great Britain; Java, Luzon, and Celebes are each about the size of Ireland. Eighteen more islands are on the average as lorge as Jamaica; and more than a hundred are as large ns ine Isle of Wight."

The statistics of the area and population of the several islands can only be given approximately. The following table is based on statements contained in the sixth number of Behon and Wagner's Die Bevölkerang der Erde (Gotha. 1890):-

	Aren	Population.
1. Andaman and Nicobar Ishands....	$\begin{aligned} & \text { Sq miles. } \\ & 3,1 \varrho 2 \end{aligned}$	20,000
II. Suuda and Molucea lshands ${ }^{\text {²,.... }}$	655.720	27,343,000

(3) Juva group \ldots...........	\ldots	\cdots
(1) Lesser Sunda group... 35.15 \% ..	\ldots	\ldots
(5) South Western $\mathrm{g}^{\text {a }}$ ap 2.021	-	
	,
(i) Moluccas,0. $20.519{ }^{\text {a }}$
III. Philippine Islands. ...	114.096	7,450,000
Total	733,003	34,813,000

The total area is thus rather less than that of Dritish India, and the population rather more than that of Great Britain and Ireland.

The islands of the archipelago nearly all present bold General and picturesque profiles against the herizon, aod at the apper apea
I For more detailed information respecting the several islands and groups of the archipelago the reader is referral to the separate articles Borneo, Java, Sumatra, Phllfptse Islands, sc.
${ }^{2}$ Varions subdivisions have been suggested of tho great Suda and Molucea gromps, which may be described as the Indian Archipelago par excellence. Mr Wallace orranges them thus:-The Indo-Sfalay Islands-Bornco, Java, and Sumatra; the Timor group-Timor, Flores, Sumbawa, anl Lombok; Celebes, with the Sulu talands and Buton: the Afoluccan gronp-Buru, Ceram, Batchian, Jitnin, and Morty, with the smaller islants of Ternate, Tidore, Makian, Kaiós Amboyna, Banda, Goram, and Matabello. The Kic and the Aru Islandy he treats along witb New Guibed.
same time the character of the scenery varies from island to islaud and even from district to district. The mountaios arrange themselves for the most part in lines running either from north-west to south-east or from west to east. In Sumatia and in the islands between Sumatra and Borneo the former direction is very distinetly marked, end the latter is equally noticeable in Java and the other southern islands. The mountaias of Boraeo rise rather in short ridges and clusters from the plain, like islands from the sea; the arrangerment represented on even what are considered authoritative maps being, like much else in the cartography of the archipelago, the product of imagination. Nothiag in the general physiognomy of the islaods is more remarkable than the number and distribution of the volcanoes, active or extinct. ${ }^{1}$ Ruuning south-east through Sumatra, east through Java and the southern islands to Timor, eurving north through the Moluccas, and again north from the end of Celebes through the whole line of the Pbilippines, they form as it were the rin of a great atoll (to use Dr Schneider's phraseology), rudely resembling a horseshoe narrowed towards the peint. The loftiest mountain in the archipelago would appear to be the finous Kıpa Bulu in Borneo; the loftiest of the volcanic peaks are Indrapura in Sumatra (12,255 feet), Semeru ill Java (12,238), Gunneng Agong in Bali (11,726), and Tamboro in Sumbawa (9324 feet).

An important tact in the phessical gengraphy of the archípelago ia that Juva, Bali, Sumatra, and Borneo, and the lesser islanda between them and the Astatic nainland, all rest on a great submerged bank, nowhere more than 100 fathoms below the surface of the sca, which may be conaidered a continuation of the contiment; while to the enst the depth of the sea bas been found at various places to be from 1000 to 2500 inthoms. As the value of this fact has been particularly emphasized by Mr Wallane, the limit of the shallow water, which passes through between Buli and Lombok, and atrikes north to the east of Borneo, bas rightly received the name of Wallace's line. The Philıppines, on the other hand, "are almost aurrounded by deep sea, but are connected with Borneo by means of two narrow submarine banks." ${ }^{2}$
orology. The geology of the arclipelago has net been investigated even with the completeness attained in regard to the zoology and botany; but there is a very considerable collection of materinl in the publications of the mining engineers of the Dutch Government (Jaarloek Mijnuezens Ned. O. Ind.), and for the Philippines a valuable "Memoria geologicominera" has been printed in the Botetino of the Commission of the Ceological Map of Spain (Madrid, 1876). The results obtained lyy the Dutch engineers have been summarized by Dr Schncider, "Geologische Uebersicht iuber den holläod.-ostind. Arehipel," in Jahrbuch al. K K Geolig. Reichsanstalt, Vienna, 1876, Bd. xxvi. Thure is a wide and varied repreacntation of the azoic formations-gnelss, nuca-achist, hornblende, dc., in Timor (which it nay be remarked is geologically one of the best known of the iglands), Ceram, Billiton, Banka, \&c. Silurian rocks are fand in Banka (where they contain the famous tin-mines), Bulitan, and the Linge and Riouw archipelago, car boniferous limestone oceurs in the north of Timor, the coal of Batehian is apmarently similar to that of tho English Carboniferons measures; and the Coal-measures of liorneo are thonght by Van Dyk to be also Palmozoic. The Sumatran coal is of unascertained age. Permian rocks nre present in Timor, Celehes, Pulo-Laut, end Sumatra. Of Secondary formations we fiud both Triassic and Jurassie

[^173]rocks, the latter represented by Oolites in Timor, by a coralline limestone in Celebes. Cretaceous rocks occur in both these islands and in Celebus. Thronghout the whole archipelago the Tertiary formations have a wide development bath in their Eucene and their Miocene divisiona. The latter is represented by furaminiferuus limestone, and the former by aummulitic limestone. Lignite is freely distributed throughout the Tertiary strata of Jeva, Sumatra, and Nias. Anwug the rocks of economic importance may be mentioned granite of numerons kinds, ssenite, serpentine, porphyry, marble (at least in southern Java), sandstones, and marls. Coal is worked successfully in Sumatra, Borneo, and Labuan. Diamonds are obtained in Borneo, garnets in Sumatra, Batchian, and Timor, and topazes in Batchian; antimoty in Borneo and the Philippines; lead in Sumatra, Banka, Flores, and the Philippines; and copper and malachite in the Philippines, Timor, Bornee, and Sumatm. Iron is pretty frequent in rarions forms, and in some places might be successfully worked. Gold is not uncommon in the older ranges of Sumatra, Banka, Celebes, Batchian, Timor, and Boriso. Manganese could be readily worked in Timor. where it lies in the carbonferuus limestone. Platinum is found in Landak and other parts of Borneo, and mercuiy in small quantities in Java.

The meteorology of the arclipelago has bithertg been Motecn studied only in a rery vague manner. Fur Batavin, in- logy deed, there esists a wass of observations; and the observatorv there is extending the region of its investigations. At the close of 1579 it had one hundred and twenty-five rainfall stations A msgnetic survey of the islands bas been made by E Van Rijekevorsel, whose repert is pub. lished by the Academy of Sciences of Amsterdam. The most striking general fact is that, wherever that part of the south-east monsoon which has passed over Australia strikes, the climate is comparatively dry, and the vegetatien is less luxuriant and luscions. The east end of Jova, e.g, has a less rainfall than the west; the distribution of the rain on the north coast is quite different from that on the south, and a similar difference is observed between the east and the west of Celebes. According to Dr Bergsma's Rainfall of the East Indian Archipelago, Fiur Year, 1879 (which, like other publications of the Bataviar. meteorological office, is printed in English), at thicty-three stations out of fifty nine the annual rainfall exceeded 100 inches, and at five stations 200 inches. The highest registration was 282 inches, at Padang Pandjang (Sumatra). The north-west monsoon, beginning in October and lasting till March, brings the principal rain season in the archipelago. The midday heat of the sun, it need hardly be said, makes itself powerfully felt. Exposure to its direct rays in Timor, for example, "at any time between 9 a.m and 3 P.M.," says Mr Wallace (Tropical Nature), "rould blister the skin in a few minutes almost as effectually no the application of scalding water," and Mr Moseley mientions that on wading into the sea at the Aru. Islanda he fonnd the heat of the water actually greater than was at all pleasant. But at the same time the general climate cannot be said to be oppresaive or unhenthy.

Most of the islands of the arehipelago belong to that Vegetagreat forest-belt which, in the worda of Mr Wallace, tion. "girdles the earth at the equator, clothing lill, ploin, and mountain with an evergicen mantle." In islands and districts where homan civilization has been at work for centuries, the natural eovering has in large mensure given place to artificial tilth; and in Timar and several of the south-eastern islands the characteristics of Now Guinea-luxuriant lierbage and open park-like rooul-lands-are more or less strikingly predominant. ${ }^{3}$ The

[^174]field fur botanical rescarch in the archipelago is still vast ead alluring. Among the very giants of the ferest the unregistered species must be numeraus; and, if we desceud to the miner forms, it is a very poer cellection that does nut yield something absolutely new to science. The ferns, tho pitcher plants, and the orchids are especially numerous, and have attracted particular attention. "The velcane of Pangerango in Java is said to harc, for exauple, yielded three bundred spectes of ferns;" and Mr Burbidge, in a short excursion in Bernee in 1879, found upwards of fifty species that bad not been previously obtained io the istand.
For detailed information in regard to the flora, the reader may
 den Insely des Ihl. Archupels, Berlin, 1828; Belanger, Botuniquic du Foygac aus Iutes Orichtulcs, 1825-1829, Paris, 1832; the various works of C. L. Blume . Ihesermi Lotanictun Lugd -Bat., Leyden, 184951; Collection des orchidecs, Amster., 185s, de.); W. H. de Vriese, Diourelles Recherchics sur la fiver des posscssions Necerland. aux Indes Or., Anst., 1815; 1tasskarl, Cutaloyish plantarrum in horto boterrico Bogorienst chllarim, Bert., 1844; F. Dozy and J. H. Aulkenbocr, Bryolognt Jutanca scu deserpptio masconvm frondossrum Arech. Ind, Leyden, 18.4-58; II. Zollinger, System. Verecichniss der im Ind. Arch. 1842-1848 gesammeltch. .. Pfanzen, Zurich, 1854; Miquel, Flora vurn Acalcrlandsch Indië, Amst., 1855, Amuales Musci Boturnici Lugduno-Batavi, 1869, and Illustrations de la florc de ${ }^{\prime \prime}$ 'Ar. chipel Indich, 1871 (continued by Suringar).

If we turn to the economical aspect of the vegetation, whether natural or cultivated, we cannot fail to be iappressed ty its varied resources. The list of fruits is a very extensive one; though unfortunately it is only with a very feiw of them that the untravelled European can have any practical acquaintance. Besides the orange, the mange, the mangostees, the pomato or shaddock, the guava, the papaw, and the jack fruit, we have the rambutan, the tarippe or trap, the jintawan, the tampu, the bilinuling, the mamhangan, the hangsat, the rambi, and the jambosa. The name at least of the durian is now well-known (see Durian), and nearly as strange is the bawagutan (Scordoprasum borneense), of which the fruit, the leaves, and the branches have all a strong odeur and flavour of oniens. ${ }^{1}$ Of what more distinctively deserve the name of food-plants the variety is equally nutable. Not only are rice and maize (usually callcd djagong in the archipelago), sugar and coffee, among the widely cultivated crops, but the cocoa-hut, the bread fruit, the banana and plantain (usually called pisang in the archipelago), the sugar-palm (Arenga succharifera), the tca-plant, the sage-palm, thececoatree (which curiously yields the favourite beverage of the Sulu archipelago), the ground-nut, the Caladium esculentum, the yam, the cassava, and others besides, are of practical innportance. The cultivation of sugar and coffee owes its development mainly to the Dutch; and to thenalse is due the introduction of te. They have greatly encouraged the cultivation of the cecoa-nut ameng the natives, and it now flourisbes, especially in the coast districts, in almost every island in their territory. The oil is very largely employed in native coukery. The sago-palas is most abundant in the island of Ceram, but is also found growing wild in Dornee, Celebes, Timor, and other islands of the Moluecas, in the Linga archipelago, and in parts of Sumatra. The product is mainly prepared for export. Pepper, nutmegs, and cloves were long the objects of the most important branch of Dutch commerce; and camphor, dammar, benzoin, and other products of a similar kind have a place among the experts. India-rubber and gutta percha are ne longer obtained to the same extent as formerly. ${ }^{2}$

To the naturalist the Indiae archipclago is a region of the highest interest; and from an carly period it bas attracted the attention of explerers of the first rank. And

[^175]yet the list of its living forms is far from being completely ascertained. The best Anown district is vestern Java, and Tinor, the Meluccas, and the Papuan Islands have for the mest part been well explored. Only parts of Sumatra, Borneo, and Celcbes have becn worked, and most of the other islands have yet to be dealt with. ${ }^{3}$ Zoologically the archipelago belongs to two distinct regions-the eastern or Papuan, and the western or Malay or Indian. This latter region, according to August von Pelzeln ("Ueber dio Malayische Säugethiere-F'auna" in Feslschrift zur Feier des Fïnjundzuanzigjährigen Bestehens der K.K. Zool.-Bot. Gesellschaft in Wien, Vienna, I 76), comprises southern China, Tibet, the Himalaya, and Further India, as well as the islands of the archipelage up to Wallace's line. Ile finds six genera of the Quadrmmana, fourteen of the Chiroptera, five of the Inscctivora, fourteen of the Carmivora, six of the Rodentic, of the Edentata one only (Manis), five of' Rumieants, and three of Pachyderms. Sunatra indicates a connexion with the Malacca peninsula by Nemorhodus, the eleplant, Gymnura, and the tapir. Pithecus, I'arsius, and Ptilocercus seem peculiar. to the Sunda Islands. The Philippines have Semmopithecus, Macacus, Cynoputhecus, Galeopithecus, Pteropus, Taphozous, Vesperlilis, Viverra, Parado.curus, Pteromys, Mus, Rusa, and Cervulus.

In his varions works Mr Wallace has made the English reater familiar with the nust striking features of zoologicat distribution in the archipelago; and in his Island Life, especially, the ornithology'reccives particular attention. For details in regard to the mammals and birds, see Horsfield, Zoological Rescarches in Java and the Ncighbouring Islands, 1834 ; Van Temminck, Monographics de Man. mologic, 1827-1829 and 1835-1841; Ferhandelingcn over de notuurlijkic geschiedenis der Nederlandsche overacesche besiltingen, containing papers by S. Suller and H. Schlegel ; zoological appendix 10 Belcher's Voyage of H. M. Ship" "Samarang," Lond., 1550 ; 1t. Schlegel, Museun d'hist. naturclle des Pays-Bas:: Rcvuc meth. et ervit. des Collections, Leyden, 1863-76; Id., Mem. sur les quadrumanss ct les cheiropteres de l'archipel indicn, Amst., $1864 ; 11.1$ Do Vogels van Arderlandsch Indié beschreven en afgcbecld, -rydel. 1876 ; Von Rosenberg, "Overzichtstabellen voor' de Oruithologie van den Indischen Archipel" in Acta Scicnt. Ind. Accrland., part v.; T. Salvadori, "Catalogo sistematico degli uccelli di Bornco," in Annali di Genora. To the herpetology of the archipelago valu. able contributions have been made by P. Bleeker, A. C. J. Edeling, and A. B. Mcyer. Like so nuch else of value, thein parers aue niainly to be found in the Nat. Tijds. van Ned. ImL. For the fishes the great modern authority is Bleeker, whose principal work, however, was left unfinished (Atlas ichthyologique des Indes oricn. tales $N_{\text {corlandaises), }}$ and whoso smaller contributions are seattered through more than a dozen periodicals.

The ethnology of the Indian archipelago dous not lack Etino its difficult problems; but some outstanding features are logy. easily described. There are at least two main native races, the brown long-haired Malay nnd the darker-skinned frizzly-haired Papuan. And to thesc more recent caplora. tions make it almost certain that a third aod probably anore thoroughly aboriginal race-the Negrito-must be added, though even specialists who have had opportunities of direct observation are not unanimous in regard to this noteworthy eloment. The Malays are subdivided into an immense number of tribes and peoples in the most various stages of civilization, and broadly differenced from each other by physical and linguistic characteristics. Of chief nete nre the Malays proper, the Javancse, the Bugis, the Tagalas, and Bisayas, the people of the Noluccas, the Dayaks (mainly in Bernco), the Battaks of Sumatra, the Sulu islanders (closcly similar to the tribes of northern Bernee). The Japuan race is chicfly to be found in the castern section of the archipelago. Besides these three races, whose first connexion with the archipelago dates from before the dawn of history, we have a variety of intrusive elements, traccable by more or less strictly historical

[^176]documents. A Hiddu strain is evident in Java and others of the westero islands; Moors and Arabs (that is, as the names are used in the archipelago, Mabometans from sarious countries between Arabia aud India) are found more or less amalgamated with many of the Malay peoples; and the Chinese form, in an economical point of view, one of the dost important sections of the community in many of the more civilized districts. Chinese bave been established in the archipelago from a very early date : the first Dutch inraders found them settied at Jacatra; and many of them, as, for instance, the colony of Teraate, have taken so kindly to their new home that they have acquired Malay to the disuse of their native tongue. Chiaese tombs are among the objects that strike the traveller's attention at Amboyna and other ancient settlements.

For the ethnology ol the archipelago, see Meinicke, "Ueher die Volkerstamme des Ind. Archipplagus,"' in Anmalen der Erdkunde, 1837 ; Spencer St John, "'The Population of the Ind. Arch.," in Juurmal of the Inch. Archipelayo, 1849; G. W. Earl, The Native Races uf the Fuld. Arch.: Papuans, Lond., 1853; Logan, "On the Ethnology of the lod. Arch.;' in Jour. of Inut. Arch., 1847, 1850, 1851, 1853. 1854; and the tich collections in the Tijdschrift v. Ind. T. L. en V. Kunle. An excellent summary of the sulject by A. H. heane will be found as an alprendix to Wallace's Sustralasia (Stanforl's Compendium of Geography and Travel), Lond., 1879. See also the same writer's papers in Aature, 1881.

There is a vast field for philological csplorations in the archipelago. Of the very great number of distinct languages known to exist, few have been studied scientifically. The most widely distributed is the Malay, which has not only been difused by the Malays themselves throughout the coast regions of the various islands, but, owing partly to the readiuess with which it can be learned, has become the common medium between the Europeans and the natives. The most cultivated of the vative tongues is the Javanese, and it is spoken by a greater number of people than any of the others. To it Sundanese stands in the relation that Low German holds to High German, and the Madurese in the relation of a strongly individualized dialect. Among the other languages which bave been reduced to writing and grammatically analysed are the Balinese, closely connected with the Javanese, the Battak (with its dialect the Toba), the Dayak, and the Maenssarese (see the writings of R. van Eek, H. N. van der Tuuk, A. Hardeland, and B. F. Matthes). Alfurese, a vague term neaning in the mouths of the natives little else than pagan, is more particularly applied by the Dutch philolugists to the native speech of certain tribes in Celebes. The commercial activity of the Buginese eauses their language to be pretty widely apoken,-little, however, by Europeans.
A gereral sketch of the languages of the archipelago will be found in De Oids, 1864, from the pen of Trofessor Veth. See also 1obert Cust, Sketch of the Modern Languages of the East Indies, 1878. A bibliograthy of this department will be fourd in Boele van Neusbrock, Ie beocfening der oostersche talen in Nederland en zijuc oreresecsich bevittingon 1800-74 (Leyden, 1875).

The statistics of the population are, with the exception of those for a few limited areas, such as Jara, of the most unsatisfactory character The estimate of Behm and Wagner in 1880 has been already stated, $-34,813,000$. This gives the comparatively sparse proportion of 45 to the equare mile. The distribution, too, is extremely unequal. In Java we have as much as 364 to the square mile, and in the Puilippines about 65, so that for the remaining islands the average is only about 15 . It would appear that when left in their natural savage or semi-savage condition the natives increase very slowly in numbers, and in eome casses bardly maintain their ground.
state of Sarawak. The Dutch are by far the mast influen: tial power in the archipelago. The Spanish ahthority is confined to the Philippines and the Sulu archipelago,--the latter reodered tributary to them by the native sultan in August 1878 in retura for an anaual subsidy of 2400 dullars. The English, if the island of Singapore be considered as belonging rather to the Malacea Peniosula, possess ouly the island of Labuan (19,350 acres), acquired in 1847 ,-though the establishment of the British Boraean Company in the north of the island may prove the beginning of a new acquisition. To the Portuguese are subject part of Timor and the island of Kambing, in all 6192 square niles. The Dutch on the other band claim, besides an area of 149,820 square miles in westera New Guinea, a total territory in the archipelago of 566,383 square miles, or forty-four times as much as the governing couatry. Of the really independent ative states the largest is that belonging to the sultan of Brunei (Borneo) ; it is estimated to have an area of about 88,000 square miles

The Dutch divide their territory into two great divisions-(1) The Java and Madura, and (2) the Outer Possessions. The former, Dutch whiel comprises also Bali and Lombok, is administratively divided territory, into twenty-three residencies, which are subdivided into departments or assistant residencies. The Onter Possessions are orgaoized in a similar manner, but several portions of them-the West Coast of Sumatra, Celebes and its dependencies, and Achin or At.jh-constitute gorernments with resideneies under them. Of the other residencies the principal are those of the East and South-East coasts of Sumatra, Riouw and its dependencies, the island of Banka, Western Borneo, Suuthern and Eastern Boraeo, Menado in the north of Celebos, Timor, Amboyna, and Ternate, the last being nominally the most extensive of all, from includiog an unasually large preportion of native territory.

The aecusation frequeotly made against the Dutch that they furnished little infonmation about their East Indian possessions has long eeased to have any foundation in fact. The Government publishat Bataria a lage annual Regerings Alinanah voor Nederlandsch Indië (that of 2880 contilins upwards of 1200 pages) ; and every year there is presented to the Dutch parliament a voluminous Kolonianl Verslag, contaiuing elaborate details on all deprartments of the administration. The Tijdschrift woor Nederlandsch Indie of Dr W. R. Baron van Hoëvell, couticued by a society of statessaca and scholars (Zaltbommel), the Bijdragen tol de Taul-Land- en Volhcoliunde can Nederlandsch Indic of the Royal Institute at the Hagne, the Indischo Gids (Amsterdam), and the Madische Mercuur (Harlem), a monthly organ of trade, show the interest taken ia Hollind in the East Indian possexions. . Of the numerous periodicals puhtished at Batavia it is enough to inention the Statistiek van den Handel, the Verslag van's lands plantentuin te Euitensorg, tho Tijdschrift van het Kon. Instituut roor Ingenieu's; the I'erhandlingen of the Batavian Society of Arts and Sciences, and the same society's Tijdschrift voor Ind. Tant-Land-en Volkenkunde ; the Ind. Militair Tijdschrift, the Natuurkundig Tijdseh:, the Gencesikundig Tijidsch., and Tijdsch. voor Nijucricid en Landloww. Another Tijdschrift of the Ind. Agricult. Soc. is published at Samarang.
The population subject to the Dutch is partially indicated in the following table:-

	1877	$\begin{gathered} \text { Males } \mathrm{in} \\ 1877 \end{gathered}$	1879
Java and Madura.			
Enropean	28,672	15,586	29,998
Chinese	198,233	103,269	200,303
Arabs	9,379	5,115	8,839
Other Eastern forcigners ...	3,961	20:7	-4,115
Natives..	18,567,075	8,987,999	18,824,574
Out	18,807,320	9,114,046	19,067,829
Europeans	7,688	3,958	8,023
Chinese	126,710	90,415	119,534
Arabs	4,631	2,209	4,708
Other Eastern foreigners ...	7,405	5,681	9,150

How rapidly the Chinese clement is inctasing is aloown by the fact that in the fivo years $1574-78$ permission to roside within butch territory was granted to 13,302 Chinese; whila similar per

1 No accurate data are known for the uative tribes of the Outer. lossesabus.
mission was abtained by only 749 "Europeans" (ineluding Armenians and Persians) and 1121 Arabs. Slavery was abolished in the Mrictly Dutch portions of the lndies on the lst of Jsauary 1860, and unler Duteli influence it is being abandoned by the native states.

The functions of the governor-general of the Dutch possessions niay brielly bo deseribed as those of a viceroy. He bas command over the land and sea forces, and supreme supervision of all parts of the general administration. His also is the right of declariag war and peace, and of concluding treaties with the native princes ond peoples. No sentence of death can be executed in time of peace without his authority, and he enjoys the right of mercy and anmesty within certain defuito limits.

The governor-general is assisted by a council (Raad van Nederlaitdsch fuclie), consisting of a vice-president and four members (all named by the king), assisted by a secretary. In relation to the executive the comncil is an advising body; but in the exercise of the legislative functions, and in certain defaite cases, if the goveruorgeneral disagrees with his council, he must appeal to the king for direction. The comeil has itsseat at Batavia, and meets every Friday.

The governor-general has besides a eabinct called the "general secretaniat," tha head of which is the general secretary (assisted by two Government secretaries), who aets as referes and adriser of the administration. Besides lis strictly sceretarial duties be combiles the Stautshlad van Nederlandsch fudië and the Regcrings Almanah roor Nederlandsch Indië (published since 1816). A general chamber of accounts for the Dutch East Indies, consisting ol a president and six members, has its scat in Bataria.

The administrative departments lave undergono considerablo clanges from time tu time. At present there are five directors-(l) of inland alministration, (2) of eclucation, religion, and industry, (3) of fubliccivil works, (4) of finances, and(5) or justice, tholast added ir. 1869: To the department of justice belong, not only the supervision of the courts and law busizess, but that of the wecskaners and locdel. kutmers or chambers of wardship and legacies, the granting of right of residence, the control of the press, and the right of publie meeting. The suprenc court has its scat at Batavia, and there is mellaborate and intricate system of subordinate courts of justice, European and native. It is only the chief officials that aro Europeans, in aecordance with the dominant policy in the whole constitution of the departments of inland administration and justice, that the relations of native witl native should be left as much as possible in the hands of native courts. "In all about two hundred native prinees are tributary to the Dutch authorities.

To the department of finance belong (1) the taxes and resources of the colony, farmed or unfarmed, so far as they do not depend on some otber department ; (2) the control of public auctions; (3) the mint; and (4) various duties connected with the colonial budget and the colonial treasury. Tho custom of farming a large part of the revenue has long been in vogue, and despite the theoretical objections to the system, it has one great advantage, it pays. The sale of opium is one of the pincipal Govermaent "farms." The cultivation of the popy is absolutely forbidten in the archipelago, and the demand is satisfied by ionports from British India and tho Levant. From the Government supply so obtained the contractor is obliged to take a certain definite quaitity at a high fixed price; begond this he msy purehase at ordinary cost price what he finds retuisite. The total fain from this monoply was $£ 1,259,212$ in 1879, though the local authoritics are instructed to do all in their power to prevent the spread of opium-eating. The whole of what are called "the lesser resaurecs" of the Government, consisting of a curous misecllany of taxes, do not yield a third of the opium revenue. Of the branches of the revenue not farmed, the chicf ore the .ustoms or import and export doties. The average these yielded for the five years $1874-78$ was $£ 720,378$. Two important taxes, known as the personal tax and the inconic tax, both leried on Europeans, were introduced in 1879.

The most striking feature in the administration of the Doteh East Indics is undoubtedly this that, instead of being a drain on the resources of Holland, the colony pays annually a most important contribution into the national exchequer. When these possessious were taken over by the mother country they were burdened with a largo debt, and the financial state of the colony remained very unsatisfactory for many years; but on the introduction of the culturu system in 1830 the aspect of affairs was speedily changed, and in the fourtecn years from 1865 to 1878 there was a clear gilin of about $£ 18,000,000$ from the colonial administration.

On December 31, 1878, the strengtie of the military forces in the Fast Indies was 38,106 men, of whom nearly one half were Europeans. This, however, does not include the militia corps, which were established in certain places. At the same date the East Indian navy comprised 27 ships and 154 carnon. The strength of the military marine was 2934 Europeans and 969 natives, while the vessels were manned by 2630 Europeans and 1012 nadive:

Thero is an elaborate department of education, public worahip,
Tho technical use of this name extends st to all exeept Arabs, Moors. Chineso
sod geocraliy all Binliometulls and pugens, who are collectively clasesd as natives
and industry ; but it isvastonishing haw little has hitherto been sceamplished in the Europetn iastruction ond Christianiziag of tha natives.

The educational organization consists of two departmeats-a Educs.
European and a native; but it is only within recent years that tion. the latter has begun to attract the active interest of tbe Gorernment. For secondary European education the great institution is the Gymnasium Willem 1ll. at Batavia. In 1878 there were 68 Govermment primary schools for Euroneans in Java and Nadura, and 28 in the Outer Possessions, with a total attendance of 2223 children. With the exception of ecrtain medical colleges, all the institutions in the native department are for primary instruction. At the end of 1878 these seliools numbered $376 ; 214$ of then wer in the Outer Possessions. In Java and Daduria there is a grand tutal of 28,000 native chiidron receiving vernacular education, and if the Outer Possessions aro. included the number must be more than donbled. There are nome training schools for native teachers, most of them establisbed since 1870 ; and in 1879 four sehools wer opened for sons of the native priaces and aristocracy.

The Protestant churches of the Dutch lindies compose a ehurch Religion union, administered very much necording to Presbyterian usage. The number of preachers and assistant preachers is hmited by Govermment, the former to 35 and the latter to 21 , by a royal deerec of "1863. The Roman Catholies are under a viear-a postolic, who is also bishop of Batavia, and 20 of their eccelesiasties are paid by the state. Christianify has not as yet made much progress anoag the natives, the returas for 1878 showing only 174,462 mative Christians, of whoa 225 were Clinese. In Java and Madura the Christians do not number so much as 1 in 2300 of the popuration. Mabometanism is the religion of a large proportion of the natives, and is at present making more advances in relation to the heatben propulation than Christianity. The Duteh Government grants passes for about a shilling each to those who wish to mako the pilgrimage to Meeca; and the numbers who set out in 1877, 1878 , and 1879 respectively, were 6893,5632 , and 5438 , besides about 1500 from the native states.

The administration of the department of public works shows Public that the Dutch bava not belied their European reputation for civil works. engineering and industrial activity in their Indian colony. The roads aud bridges, cauals and irrigation works, which they have executed in their central island wid the admiration of i feign risitants. Java is the only island which has even the begmong of a railway system, but considerable progress has been mado tbere; and the postal and telegrapb services are being rapidly developed.
The total imports of private trode (including specie) amounted Imparts in 1876 tu $116,392,762$ floxins (1 florin $=1 \mathrm{~s}$. Sd.), and in 1877 to $126,066,462$; and at the same time $5,118,938$ florins and $27,637,954$ florins respectively were imported in aame of the Guvernment. Of the $109,177,+2 \&$ florins of geacral imports (excluding specic) in $1876,47,694,270$ florins were from Holland, $33,042,854$ from other countries outside of the arehipelago, and no less than $27,632,204$ from Singapore alone ; and of the Government imparts 2,207,611 florins were from 11 olland and $2,033,910$ from Singapore. In 1877 cotton manufuctures figure anong the general imports for $43,566,127$ florins, and yarns for $3,325,323$; ric For $7,798,318$; jetroleum, $5,430,103$; cigars, $2,892,369$; tea, 2,405,51]; cuals, $2,268,520$; and iron and irongoods $2,362,525$. The opium is the most extensive of the Government imports.

T'he general exports (specie excluded) were $154,229,384$ florins for Exports. 1876 and $161,863,449$ for 1577; those of the Goverament, 51,168,108 and $57,116,672$. In 1876 the more important articles showed as follows:-coffee (private trade) $34,347,870$ florins, (Goverament) $54,208,868$ florins; sugar, 62,583,16.5 florins; tobaceo for the Eurojean market, 27,794,755 florms; gambir, 2,086,592; gutta percha, 1,651,292; benzoin, 582,581; dammar, 1,025,737; indiarubber, 83,171 ; gum cupal, 128,075; indigo for the Enropean market, 3,686,942; nutmegs, 2,815,787; cocoa-nut oil, 1,220,682; Jelper, $1,883,349$; rice, $2,292,907$ florins.

The lortuguese were the first Europeans to visit the Indian Ifistory, arehipelngo. Prior to their appearance off Sumatra in 1509 under Dingo Lupez la Sequiera, a Iindu eivilization, having its chief seat in Java, had flourished and waned, and Mahometanism had suceceded to a considerable share of its inheritance. In 1521, when the Portuguese namo had become familiar in the islands, tho Spaniards under Magellan mada their alpearance from the cast. Hostilities cosued, which continued till the ereaty of 1529 by which tha boundory between Spaniards and Portuguese was fixed at $17^{\circ} \mathrm{E}$. of the Moluceas,-a line which afterwards proved matter of dispute. The two powers wero undisturbed except by an un. important Freach expedition till $\mathbf{5 E 8}$, when the Duteh reached what was destined to be the seene of their greatest colonial achicve. ments. In that year Cornelis Houtman appeared before Bantam, the chief town of a powerfulkingdom in Java, and his expedition was but the precursor of many others from Holland. The commercial sueecss of these enterprises led in 1602 to the establishment of the Dutch East Indian Company, which obtaided by Govemment
charter the mooopoly of the Dutch trade of the countries between the Straits of Dagellan and the Cape of Good Hope, with the right of concluding treaties, appointiog governors, \&c. The first theet sent out by the aew Company under Van der Hagen was instrumental in capturing the Portuguese fort of Amboyna, aud the peace of Treves in 1609 set the Dutch free from iaterference on the part of the Spaniards. In the same jear the atates-general appointed - goveroor-general of the East lodies, giving the Company the right of appointing his euccessor, subject to their approval.

The instructions given to Pieter Both, the first guvernor, struck the key-mote of that policy which has brought so mach oblequy on the Datch name, and prevented the better features of their colonial administration from being appreciated. He was to "give ell eadeavour in order that the commerce of the Moluccas, Amboyna, and Banda should beloag to the Company, and that no other nation in the world should have the least part." When be came into power there were already Dutch forts at Jilolo, Teruate, and Batchian, and the people of Banda bad granted the Duteh the monopoly of nutmegs. It was to the fourth governor (J. P. Coen, 1619-23 and 1627-29) that the Company were most indebted for their territorial aggrandizement. He was the founder of Batavia (1620), and the first to introduce a regular system of accounts io the dfaits of the Company. Duriag his rule a treaty was concladed between the English aud Dutch companies, but unfortunately the goodwill which might have resulted from it was not of long dura. tion. Specx (1629-32) gave a start to the trade with Japan, which afterwards grew to vast and various issucs. The gavernorohip of Van Diemen (1636-45) was signalized by a series of successes over the Portaguese, and the intraduction of the first code of laws. The Dutch power in the archipelago extended rapidly during the latter part of the century. Peace was made with the Portuguese (166I), and various native kiagdoms acquired. In the beginning of the 18th century the expense of the accessary military operations and general administration, with other causes, brought the colony into fioancial difficultics, and in the latter part of the centary it was greatly damaged by the rapidly grew. ing predomiannce of the English in India and Ceylon. Ithe loss of their possessions in India, however, caused the Dutch to give more attention to the archipelago, and they continued to increase their territory. At the same time tho state of the finances grew worse and worse, leading to the complete abolition of the Coapany's authority in 1800, when their possessions and liabilities were both appropriated by the uation. During the term of office of H. W. Dacndels (1808-11), the English, who some years before had threatened Batavia and captured Teroate, made themselves masters of the Moluccasy and his successer' Janssens was obliged in 1811 to surrender the colany and its capital to Lord Minto. ${ }^{1}$ The British occupation lasted for five years, and during most of this timo the post of gevernor-getheral was behl by Sia Staraford Raflles, who acted perhaps too much on the supposition that tho English occu. pation woald be permanent, and was mudoubtedly biased by strong prejudice against the Dutch, but at the same timo did not forget Lord Minto's advice "to do as much good as he could." To the Dutch themsolves this temporary government by the English did ultimate service. The example set by Ralles, when he showed so keen an interest in all that related to tho country and the people, proved a stimulus to his Dutch successors; and the wholo relntion of the Government to scholarship aul investigation has been [ilaced on a more liberal and Enropean foating. The restorntion of the East Indian possessions to the Duteh was decited by the treaty of 1814, but was not carried out till 1816, when Buren van der Capellan became governor-general. ${ }^{2}$ A variety of local disturbances fohowed the change of gorernment, and a more serieus war in Java (1825-30) required a epecial expedition from Holland. The year 1830 saw the beginning of that famous "culture" bystem, under Van den Boseh, to which so much of the financial success and peaceful administration of the modern Dutch gavernment must be aseribed. In 1846 a new code of laws was introduced. The recent history of the colony may be briefly describod as a graduad but steady extension of the authority of the Dntch Governmeat, marked by a suecession of revolts, disturbances, expeditions, skirmishes, and subjugations; a gradual but stealy endeavour to develop the resources of the country; ant, it may happily be adiled, an endeavour growing ever strengor and more enlightened to improve the condition of the subject races.

1 See Lifa of Lord Minto.

${ }^{3}$ The following la a list of the Doteh poveruors from that date :-Godert \boldsymbol{A}. 6. P. Baron van der Capellan (10th Anguat 1818 to ist Jantary 1820); Itendtlk Mercua do Knck (Heमt.-Nv..Gen., 1826 to 16th Jununry 1830); Count Johames van den Hoach (1830 to 2d July 2833); Jean Chrettrn Binud (1833 tu. 29th Febiuary 183A); Domaniquo Jucques de Eterens (JA3G to Ifto, ded 3oth May); Careds. W.

 May 1esi); Georgo Iarac lituco (dloul beforo hila departure): Albertus Jucol

The ifterature connected with the East Indian archiperago is a rast and rapldiy ncreasing one. or general information we have 3 . chand of Archipalago Singo, 1837 . p R Volkencurd, Amsterdam, $1845-57$ t 10 , van Nederlandsch Indië, Arnsterdam 1869 to which erest zan Alphen, and other specialists were ioportant contiturs Of work wich contain the results of Wallace. The Sfa'ay Archiplaia 3i ed Lonlon 1573 . Porenber trchupel Leipsic 1878 . of the archipelaro are found in several a eive any details is the Italion traveler Lodovice dive the The Eurcan to can be placed in his ceda's Historia de descobrimento lishon lv33. Gaspar Cocumentos castan genda. De Baros Asia. Faria y Sollsa Asia parupara, Lisbon l6Ge ar Le de Morga The Philppine slands Molu, ranslaged from the Span, Hakluyt Socluty 1858 eloy early history: a crillcal resume of which fiom the pen of p. Tlele is be found in B, A. Tete, is to be 1978. in buduagen ot de ruat- Land-en orkensunde van ... The Hague, isfo. Facite princeps emons oider Duteh warks is Valentijn s voluminous aserictly wore estrictedy with the Dutch ealony are G. Laut s deschedenis van de vestiging,
 . Ind, Goit, 1812; Gellach, Fastes matares des n. Or., Zaltoommel, 1859; Du Bals, Fies des gouverneurs-generaur, Lague, 1763 , with same good plans and , olumes Volumes of Bijdragen from his pupers, publislied in 1863 and 1874; P. Slyer, Terzameling van instrudien, ordonnancien, de., voor de regering o. Ned. Ind., bat., 1848, Bondewijnse and an Goesh, De Wo-Nedand haariem and Batavin, 1 it6-79, E. de waa, Nederlandseh lidie en de stalen Generaal sed. de grondtet 0. 1814, Tague, 1860-61. A blbliography of the Dutch adies was compled by J. A, van der Chijs, Proere eener . Vederlandsch Indisch bibliografue, 1659-1870, Batavia, 1875.

indian corn. See Malze.

INDIAN OCEAN, This designation is given to the portion of the oceanic area which estends northwards from the groat southern water-zone, between the eastern const of South Africa and the western boundary of the partially submerged Malayo-Australian continent. But whilst the Atlantic and Pacific extensiens from the southern ${ }^{\circ}$ water-zone-the one dividing South Africa from South America, and the other forming the wide expanse of ocean between the western coast of Sotth America and the eastern side of the Malayo-Australian continent-are prolonged into tho land hemisphere as far as the north polar area, the Indian Ocean does not extend itself northwards beyond the Tropic of Cancer, where it is abruplly closed in by the great land mass of the Asiatic continont. The north-western boundary of its bayin is formed by the south-eastern coast of Arabia, its north-eastern by the western coast of Burmab. But, between these two parts of its border, its basin is encroached on by the southward projection of the Indian peninsula, and is thus divided into two deep gulfs, of which the western is distinguished as the Arabian Sea, and the eastern as the Bay of Bengal. Now, looking to the fact that these gulfs must have been united, at no remote perionl, by a transverse band of sca, covcring what is now the continueus alluvial plain of Northern India, we may consider the real northern border of this basin to be the great Himaliya range, the southern slope of which must havo once formed its shore-line. It is remarkable that nearly the whole of its land-border is of considerable elevation,-bcing formed on the west by the mountainous ridge that flamks the great table-land of South Africa, on the north-west by the corresponding ridge which forms the south-eastern border ol tho clevaled platenu of Arabin, whilst near its eastern margin there is a nearly continuous mountain range, that exteuls sonthwards from Assam to the extremity of the Malay Penin. sula, and is thence prolonged through Sumatra and Jaya

The Indian Ocean lias no definite southern limit, but is considered to terminate at the parallel (about $38^{\circ} \mathrm{S}$.) which stretches between the southernmost points of the African and Australian continerts,-ncar which, about midwav between these tivo cxtremes, lie the volennic islands of St Paul nad Ansterdun. And this scems the natural bower of its basin, the sea-bed (as will presently appear) sbowing a distinct rise to the sonth of this parallel along a considerable part of it. The Iudian Ocean is often spoken of as divided by the oquator into a northorn and a southern portion ; and this division it will be convonient to adog t in the description of its c irrent-system

Depth and Islands.-The main basin of the Indian Ocean has an average depth of about 2500 fathoms, increasing to 3000 fathoms in the angle betreen Java and north-western Australia, which is the deepest part of it yet sounded. Its oouthern border is formed by a submarine plateau, which rises in some parte to within 1500 fathoms of the surface, and which forms the common foundation, not ooly of the ishands already mentioned, but also of the Crezets, the Kerguelen group, Prioce Edward's Islands, and the Heard Islands, all of which seen to have bad a volcanic origin. This platean, however, does not shut iu the south-eastern portion of the basin; for a suuthward extension of the depression already described follows the trend of the western and sonthern coasts of Australia and the western coast of Tasmania, and is continuous with the deep channel (in some parts exceeding 2500 fathoms) between Australia and New Zealand. The western and north-wcsteru parts of the basin, on the other hand-as the number of their island-groups would lead us to anticipate-have a much less uniform depth. In the first place, the western border of the basin is encroached on by the great island of Madagascar, which must be considered as an outlying extension of the continental platform of South Africa, the Mozambique channel beiug comparatively shallor; and, although the bottum, at

Plan showing Depths of the Indian Occan.
To 1000 fations, whise; 1000 to 2000 fathoms, light slading more than 2000 futhoms, dalk sladith.
no great distance from its eastern coast, rapidly decpens to 2000 fathoms or more, yct this is only in a clannel that separates Madagascar from a platiorm of about half that depth, on which are based the woleanic Mascarene Islands (Mauritius, Bourbon, and Redriguez), aud of which a northern estension forms the lase of the Segchelles group. This platform then curves to the south-west, so as to pass romend the north of Madagascar, furning the base of several coral islands, and thus comes into continuity with tho bod of the Mozambique Chanacl, from which the Comero group arises. To the north of this platform, the 2500 fathom line follows the trend of the African coast as far as Cape Gardafui, keeping outside the island of Suentra; and a bottom of more than 2000 fathom; (crossed by the tcle-grapl-cable between Adcn and Bombay) extcuds into the Arabian Sca as far as $15^{\circ} \mathrm{N}$. lat. On the eastern side of that gulf, howerer, the declivity from the Indian coast-line to the decepest part of the basin is much more gradual ; the Madive and Laccadire groups of ceral islands rising from I comparative shallow, which extends itsclf a little to the south of the equator. And about half way between this phatform and that of the Scychelles the bottom rises into. the bank which bears the Chagos archipelago, and which tivides the communication between the deeper portion of
the general basin and that of the Arubian Sea into two chanuels of no great width. Though the 2500 fathom line doee not enter the Bay of Bengal, a cunsiderable portion of it has a depth exceeding 2000 fathoms. Here, again, the declivity is more gradual along the eastern margin of the galf; and the Addaman and Nicobar Yslands arise from a comparatively shallow platform that stretches between the delta of the Irawadi and the north end of Sumatra.
Surface and Bottom Temperature. -The aurfacr cemperature ot the Indian Ocean is higher than that of eitber the Atlantic or the Pacific; and this differeace showa itself eapecially in ita northern division, on which the proximity of tropical laod exerta an important thermal influence. For the mean anaual temperature of the portion which lies betreen the equator and the Tropic of Cancer, including the Arabian Sea and the Bay of Bengal, is considerably above 80°, whilst that of the correaponding part of the aonthern division-lying betreen the equator and the Tropic of Capricornranges from 80° to 70°, the arerage maximnm temperature io the celutre of the Arabian Sea being 83°. In July the thermal equator noves considerably to the north, aod the surface-tenperature sometimes rises in the Arabian Gulf aod the Bay of Bengal to abovo 90°. In January, when the thermal equator lies to the aouth of the geographical, the temperature of these two gulfs falls below 80°, while that of the vast expaase which lies between the parallel of 10° N. and $25^{\circ} \mathrm{S}$., has a temperature of 80° or upwards. In the seuthern hemisphere the Jannary (sumger) isothern of 70° and the July (winter) isotherm of 60° correspond pretty closely with the berder of the Iudian Ocean,-the rage of its tumperature being thus very molerate.
The bathymetrical isotherms of the Iadian Occan have not yet becu systematically worked out by tonperature-scundings; but there is adequate evidence of the extension of the Antaretic underflow orer the deeper portion of its aea-bed, evea to the north of the equator. For the "Hydra" line of souadiogs betreen Aden and Bombay gare a bettom-temperature of $35^{\circ} 5$ at a depth of 1800 fathonis, the surface-temperature being 75°, while ia the decp depressioo on the eastern side of the basia, slmost immediately beacaih the cquater, Commander Chimmo met with a bottom-temperature but little above 32°.

Surface-Lcvel.-A very remarkable effect is produced upco the coast-level of part of the northera divisiou of the Iodian C ana, by the attruction of the great mountain-masses and bigh table-lands of Central Asia, uncompensated by that of any elwated land-aiam to the southward, nearer than that which may lie behind the Antarctic icc-barrier. From the resulte of the great geodetical survey of India Archdeacon Pratt was able to deduce the very remarkable fact that the level of the sea at the month of the Iadus is no less than 515 feet higher than at Cape Comorin.'
Curronts. - The current-system of the Indinn Occan is clearly dejendent upen the winds which prevail over its several parts, - the seasonal resersal of the monsoons io the northern part of its area producing a cortespending modification in the direction of the surface-movencont of its water, whilst in the southern division the constancy of the sonth-cast thade-wind keeps ur through the whole year a strong westerly equatorial current. The non th-east monsoon has, of course, while it lasts, the same effeet as a nerth-east tradewind would cxert, in producing a general sunth-westerly drift over the northern division of the linlian Oceab, which manifests itself in a southerly flow along all the shores it meets, viz, the southeast coast of the Indian peninsula, the sonth-cast ceast of Arabia, and the cast coast of Central Africa. Desiles this, a special currentmovement is produced by the action of the northeast monsoon on the surface-wnter of the China Sea, hy the drift of which to the sonth west it is forced into the chanacl bebween the Malay Penin. sula and Sunatra, whence it issues into the Indian Ocean, through the Strait of Malacea, as a current that crosses the Bay of Bengal and impinges against the Coromandel coast of India. By this it is deflected southwards, along with the general drift already mentioned, and then courses round the southern angle of the great peainsula, partly between Ceylon and the mainland, and partly along the outer coast-line of C ylon,-into the Arabiau Sea, where it merges into the gencral drift of the surface-water towards the African coast. The average rate of this current, as it issues from the Strait of Malacea, is 30 miles ner day; along the south-cast coast of India, 24 miles; on the east coast of Ceyloa, 40 miles; and along the Arabian coast, 18 miles. Thut whea the north-east givea place to the south-west monsoon, atwat the vernal equinox, the whole of this morcment is reversed. The drift then commences from the African and Aratian coasts, and sets across the Arabian Sea, at the rate of about 24 miles a day to the Malabar const of India, along which a eurrent flows in a suutherly alircetion at the tate of about

[^177]30 miles a day. This corteat rounds Cape Comorin and the aonthern coast of Ceylon, where it sometimes attaina the rate of 45 miles a day, and passes into the Bay of Bengal, reinforcing the general Dorth-east movement of its orn water, circulating round the head of this gulf, sad then underguing a deflexion by the coastline towards the entrance of the Strait of Malaces, intowhich it flows at the rate of from 20 to 24 miles per day When the sua crosses the equator towards the south at the autumnal equinax, so that its heating power is exerted on South Africa, the indraught of air towards that continent reproduces the north-east moosom; and this restores the westerly drift, which extends over the lodian Ocean as far as $5^{\circ} \mathrm{S}$. lat., giriog place at about that parallel to the equatorial counter-current.
The surface of the southerd Iodian Ocean, between the parallel of $10^{\circ} \mathrm{S}$. and the Tropic of Capricorn (the precise limits varying anth the season), is pretty constantly (raversed by the south-east trade-wind, which gives a steady restward movement to its water, known as the south equatorial current, whose average rate is about 14 miles per day. This meets the eastern coast of Madagascar, and that of continental Africa to the porth and south of it ; and, its onward flow being thus checked and deflected southwards by the tread of the land, it forms a strong curtent which sots along the Natal coast towards Cape Colony. The atrength of this current varies according as the north-east or the south-west monsoon is hlowing; for the movement produced by the former reinforces it, while that produced by the latter weakens it, by deflectiug northwards a portion of the water which the southern equatorial current brings to the coast of Africa, anil drifting it towards the lndian peniosula. When flowing rith its greatest force and velocity, the Natal curtent ${ }^{\text {a }}$ is scarcely, if at all, inferior to the Gulf Stream where it issues from the Florida Strait. When passing Cape Corrientes, at the aouthern extremity of the Mozambique Chaqael, it is said to have a rate of 80 miles per day, and has beeo eveo said to rush, under a rare combination of impelling forces, with a velocity of 140 miles per day. Its rate gradually diminishes, however, until, off Cape Colony (where it is known as the Agulhas cortent), it has a velocity of about 50 miles per day. The warmth it carries bas a very import. ant influence in ameliorating the climate of Cape Colony; for this would otherwise auffer from the importation of the low temperature brought by the Antarctic current which there meets it. ${ }^{2}$ When the Agulhas current ia at its strongest, it carties a temperature of 79° as far weat as the meridian of $15^{\circ} \mathrm{E}$. But when the drift of the monsoon wind countervails that of the south-east trade, instead of reinforcing it, the temperature of the Agulhas current is lower and its fores less. Whilst a portion of this current rounds the Cape and becomes a tributary of the South African curredt of the Atlantic (thus carrying away the excess brought into the basio of the Indian Ocean by the Malacca current), the principal part of it is deflected to the gouth and east, partly by the agency of the Antaretic current, but chiefly uuder the influence of the westerly winds or "anti. trades," that prevail throughant the southern watcr-zono mhich almost contiuuously girdles the globe betreen the parallels of 40° and $60^{\circ} \mathrm{S}$. Thus there is here a pretty constant retrograde set of aurface-water (corresponding with the southern connecting current of the South Atlantic), at the rate of about 24 miles a day, towards the western coast of Australia; and since, notwithstanding the reduction of its temperature, tho water which has circulated in the Indian Ocean is still much warmer than that which forms the keneral mass of the easterly drift, it is probally through this excess (imparting a corresponding excess of vapour to the atomosphere above, which is condensed ngain by contact with the colder laud) thot the fogs are generated, for which the ishauls that lie in the course of thia tlow aro notorious. On arriving it the shores of Australia, this drift is divided by the south-west projection of its coast.line into two streams, one of which coutinues its eastward course along the eouthern coast, whilst the c:her, turning northwards, forms the West Anstralian current, of which the freater part, when it reaches the head-water of the southern equatorind current, is drawn into it, nud thas completes the circulation of the aouthern Indiaa Octan

Between the marallel of 5°, to which the influence of the monsoon winds extonds, and that of $10^{\circ} \mathrm{S}$., which is the usual northero linat of that of tho southern tral!., there is a "luelt of calms." wherein there runs ari equatorial conuter current, which corresponds to that if tho Atlantio, and is, lake it, to be considered as n back-water flowing towards tho aouree from which the currents to the north and south of it drrive their supplies.
(W, B. C.l
I This in commooly tormod the Mozambique current: but, as the oyal noutherly direction of thu surface flow in the Mozambiqua Chamet ia liable to reverial with the ehange from tho north-east to the bont bewest monsoon, or even under the influence of locnl winds, the term Natal curtent (suggested by Mr Laughtoa) seems decidedly preforable.
${ }^{3}$ Sotno very curious temperaturo phenomena aro prodnced on the Agulhan bank by the splitting op of the coll and warm currents, which form disfinct badis abit atrata that du not mix for some time.

INDLANS, American The application of the oame Indians to the datuve peoples and tribes of the New World is an errodeous usage, onginating in the belief of the Spaaish discoverers of America that they had reached the eastern shores of Asiatic countries already partally k oown As it happeas, the aame 18 now, even apart from the addition of American, eustomarily applied to the abon gines of the restern bemisphere, while it is used with far less frequency as a collective name for the inhabitants of the great country of the East knows from the remotest times as India.

Various questions in regard to the American Indians bare beca discussed in the article America. It is here sateaded to treat more particularly their ethographical postion, and to give what may be called a working classification of the races. This is iollowed by a separate notice of the present distribution and condition of the North Amertcan Indians.

It may be asserted mith some confidence that there is nothing in the physical and mental condition of the aboriginal Americans which requires us to postulate for them a foreign crigin. If man was evolved orignally from several centres, America assuredly included one at least; if he sprang from a single pair, then we can even conceive that pair to have been first established in the New World, and the arguments brought forward in aupport of as Asiatic origin of the American would not lose their point if adduced in farour of an Americas origin of the Asiatic peoples.

Andreas Retzins, the founder of scientific crantology. arguing on insufficient materials, grouped all the American aborigines in two great divisions-(1) a western or high land, occupying the main raages of the Rocky Mountains and Andes, with the intervening lands thence to the Pacific and (2) an eastern, unainly lowland, whose doman stretched from the western uplands to the Atlantic scaboard The former, being characterized by brachycephalous or round heads, he felt disposed to connect with the brachycepbalous Mongelians and Malays of Asia and Australasia The latter, being of a decided dolichocephalous or long Leaded type, he traced to possible Berber and Guanche migrations from north west Africa and the Canary Islands, doubtless because the historical arrival of the dollebucephalous Norsemen in the New Work was of too recent date to serve his purpose. But Virchow ("Authropologie Amerika's." in Perhardlungen der Gesell fiur Authropologie, 1877. p 144-56) bas and 1 y shown that the classification is untenable, and at will be seca further on that there are long and round headed types often intermingled in every part of the costinent. Virchow hmself, while denying the clam of the American race to be considered autochthonous, dechnes to commat himself as to the probable regions whence they may have reached then present habitat The theory of an Asiatic immagration ma Belarmg Strat has been somewhat revived since ethoologists have, so to say, rediscovered tho lost Tchuktchis of the nerth-east coast of Sibera through Nordenskjold's Swedish polar espedition of 1878-9 These Tchuktchis are supposed to form the connccting lank between the races of the two worlds, and the supposition is strengthened by the innention of an American branch of the tribe. Professor Nordenskjoild hamself remarks that "this race, settled on the primeval route between the Old and the New World, bears an unuristakable stamp of the Mongols of Asia and Eskimo and Indians of Americu* (Petermann's Mitheilungen, 1879, 1. 330). But Lieutenant Palander of the same expelition says that they undonbt. edly deseend from the Greenland Eskimo' (ib.), whicb would at once deprive them of all value as a connecting link, whilo Peschel (Races of Man, p. 391) much more probablv allies them to the Itelmea (Kantchadales), the
two languages being "as closely related as is Spanish to Portuguese." W. H. Dall (Contributions to American Ethnology, vol. i., Washington, 1877) further points out that the Innuit (Eskimo) tongue, said to be spoken by the Tchuktchis, is merely a trading jargon, a mixture of Koriak, Tehuktchi, Innuit, Euglish, Hawaiian, and others. It is also to be noted that the Samoyedes and other Asiatic Aretic peoples, assumed by many to be the progenitors of the Eskimo, are of Mongoloid stoek and distinctly brachycephalous, while the Eskino are the most dolichocephalous race on the globe next to the Kai Colos of Fiji (Flower). Thus the Eskimo, instead of being a connecting link, form an anthropologieal barrier between the populations of the two hemispheres at the very point geographically most convenient for effecting the transition.

Nor would the question be much furthered by allowing the arrival of a few barbarous tribes aria Behring Strait in prehistoric times. Their presence would leave the Aztec, Mayan, Peruvian, and other local cultures unexplained, except as independent developments. And moro recent historic migrations of Clinese, Japanese, and other civilized peoples, otherwise involved in tremendous difficulties, would leave equally unexplained the primeval moundhuilding raees of the Ohio valley and the still more ancient Brazilian races of the Santa Catharina and Santos shellheaps. Because a stray vessel has been cast asbore on the western seaboard since the diseovery of America, Virehow suggests the possibility of similar arrivals in remoter times.
But if the Chinese arrived so recently as even 8000 years ago (an extreme supposition) in sufficient numbers to build up a civilization in Central America, the Chinese origin of such a cirilizatiou would to this day bo as self-evident as is the Chinese origin of the neighbouring Japanese civilization. The foreign founders of these communities would necessarily have brought with them their arts, their domestic animals, their more useful plants and cereals, without which they nust have themselves speedily perished or been absorbed in the surrounding native populations. But no trace of these things was found in the New World on its discovery. There was neither the rice of the Chinese, nor the wheat, barley, oats, or rye of the Western nations, nor the iron now proved to have been known to the ancient Assyrians and Egyptians, nor tho horse, camel, ox, sheep, pig, dog, or poultry of the eastern hemispherc. Instead of these, there war little beyond one cereal (maize), one esculent root (potato), one feeble beast of burden (llama), limited to the uplands of the southern Cordilleras, one speeies of dog elsewhero unknown. Most of the useful plants and animals of the East have since been introduced, and Hlourish vigorously even in the wild state, a sufficient proof that they would have been propagated had they been introduced at an earlier epoch. The knowledge of 'metals was limited to copper, both wrought and, in Wisconsin, apparently east (J. S. Butler), bronze, lead, gold, and silver. Otherwise most of the nations were at the discovery still in the Stone Age; and, although Virchow's assertion may be true that the most practised archrologist will fail to detect any material difference between the stone implements of tho two hemispheres, this merely implies that the arts of Palco: lithic and Neolithic man wero pretty much the same everywhere.
Nor is there anything in tho religions, aystems of government, architecture, and other arts of the native Anjericans, by which they can be connected with the cerresponding gystems of the East. That the Toltec builders of the low obtruncated Mexican pyramids were a different people from the pyramid builders of the Nile valley, and that the mummies of the Ancon necropolis and other parts of Peru were of a different stock from the Egyptian mummies, is
suffieiently evident trom the texture of the bair alouc. The hair of the old cultured races of America was the same as that of all the later American races, unifornly lank, because cylindrical in seetion. The hair of the old Egyptians, likg that of the modern Fellahin, is, on the contrary, uniformly wavy, because more or less oval in section. The religions, again, of the Red Man, we are told by Carl Schultz-Sellack, Oscar Leew, and other good observers, are "essentially astrological, based on star, sun, and moon worship," with which was ofteu associated an intricate method of measuring time built on a series of twenty constellations" (Zeitschr. für Ethnologie, 1879, p. 209). "The sun," says Loew, "is the god of most Indian tribes. 'He diffuses warrath and nourishment for us aud our animals; why shall *e not worship him?' observed to me on one oceasion Masa. yamtiba, a Moqui Indian (New Mexico)" (ib. p. 265). This Masayamtila was a better philosopher than thuse ethnologists who seek for the origin of such a simplo eult in the remote corners of the globe, rather than in the bencfeial intuenee of the heavenly bedies which shine alike for all mankind. The four great gods of the Mayas, the "props of the heavens," answered to the four great Mexican gods of the four quarters of the compass, all heing associated with the four elements of wind, water, fire, and earth. But to what does either system answer in the polytheistic creeds of the Hindus, Assyrians, Kabylenians, or other nations of antiquity? There is something similar in the Neo-Buddhistie teachings; but Buddlism, even of tho oldest type, is much too recent to explain anything in the religivis worlds of Mexico or Yucatan. The hare is associated in America, in Asia, and even amongst the Bushmen of South Africa with the moon. . But this association was obviously suggested independently by tho spots which, especially in the first quarter of the toon seem to present the outlines of a hare on its form. Waitz (Anellropology, p. 255) well observes that a common belief in a universal flood, or in the periodical destruction of the world, whether by fire, water, storms, or earthquakes, and analogous or paralle lines of thought-taken indi-vidually-afford no proof whatever in favour of affinity, and even resemblances in several points possess only a secondary importance; for they may partly, under like conditions, arise spentaneously among peoples who have always lived in a state of separation, or may have partly resulted from periods of short intercou., between two different peoples.
In any ease, these slight eoincidenees are of littlo aeceunt when weighed against tho argument based on diversity of speech. The tremendous foree of this argument, as applied to the American aborigines, is scareely realized by antliropologists such as Waitz or Virchow, who have not cultivated philologieal studies, and it is signifieant that, in tho already quoted paper by Virehow on the "Anthropology of America," the linguistic element is not even referred to. On the other hand, it has been greatly depreciated and even brought into contempt by the vagaries of certain etymologists, who diseover affinities where there is nothing but the vaguest verbal resemblance. ${ }^{1}$ Science las demenstrated beyond all eavil that, while differing widely among themselves, tho American languages not only betray no

[^178]affinuty to any ather tongues, but betong to an absolutely distinct order of speech. They are neither isolating or monosyllabic like the Inda-Chinese group, agglutinating like the Ural-Altaic, Bantu, or Dravidian, ner inflexional like the Sematic and Aryan. They come nearest in structure to the Basque, which is the only incorporating language of the Old World, but differ from it essentially inasmuch as ther capaeity of meerperating words in the sentence is net restricted to the verb and a few pronominal elements, but estends in prineiple to all the parts of speech. Tbis faculty, which, wath one or two doubtful exceptions, seeme to be characteristic of every American idiom from Behring Strat to Cape Horn, has recelved the name of polysyathesis, laterally "a much putting togetber." 1 Hence, in a comprehensive classification of articulate speech according to its inner mechansm, a spectal place must be reserved for the American group, and, if we assume as the most probable theory that all speech has slowly evolved from a few sumple beginnings, passing suceessively from the state of crude roets to the isolating condition, and so onwards to the agglutinating and other orders, then in such a scheme the Arnericaa will stand apart in some such position as under .-

Here it is not untended to imply that American derives from Malayan or Dravidian, but only from some now estunct agglutinating forms of speech of which Malayan or Dravidian may be taben as still surviong typical instances. The disappearance in America of all such assumed forms, unlese the Otomi of Mexice is to be accepted as a solitary lingering specimen, argues bath a very great antiquity and an indepeadent evolution of the American languages. And as the course this evolution has taken differs entirely from that pursued by the idioms of the Old World, it follows that the first peopling of America, if from the Old World, must be thrown baek to a time when all speech itself was In its infaney, to a time when slow diffusion might be concerved as equally probable from an eastera or a westera starting peint. It is this feuture of polysynthesis that gives the American race ite first and greatest claim to be regarded as truly autuchthooous, in the same sense that we regard the Mongolian and Cuucasian races as truly autochthonous in Asia.

There 18 a general consensua amongst aathropologists that on the western centinent we are in prescnce of two distinet original types, the brachycephalous and dolichocephalous. Put these are no looger confined to separate gemgraphical areas, as letzius supposed. The very general practice of artificially flattening or otherwise deforming the skull has maturally eaused less value to be attached to the craniological test in America than elsewhere. The practice has been traced back even to prehistoric times, and a elay figure recently found associated with

[^179]the remans of a child by Keiss and Stuibel in a grave in Ancon puts in a clesr light the method adopted by the ancient Peruvians (The Necropolis of Ancon, Berlin and Lenden, 1881, plate 90). Still, careful investigations have placed it beyond doubt that the nermal skull both in North and in South America is now mesaticephalous, or of a type intermediate between the two extremes, a fact supposed to imply a general intermingling of the two primevsl stocks. On the other hand, Virchow (loc. cit., passim) shows perfectly nermal ancient and recent crania from both sides of Greenland, from El Carmea on the Rio Negro, Patagonla, from the Botecudo tribe, East Brazil, from a tumulus of Santa Fé de Bogeta, and even a Peruvian mummy exhumed at Pancatambo, all of which are distinctly, in some cases extremely, dolichocephalic. In the same way he produces brachycephalic skulls from the Brazilian shell-mounds of Sautos and Santa Catharina, from the barrows of the Ohio valley mound-builders, frorn the Carib and Araucanian tribes, and from the Pampas of La Plata, the last mentiooed of an extreme type, ia close proximity to the extreme dolichocephalous specimens from Patagonia. Were it safe to argue from the analogy of Britain, where the dolichocephalic builders of the long barrows seem to have preceded and afterwards become intermingled with the brachycephal:e builders of the round barrows (Dr Thurnam), the western continent might be suppased to have been successively occupied first by a long.beaded and then by a round-headed race, which kept aloof in a few places, while mare generally beceming fused in a normally mesaticephalic type. But we havo in Americs no guide to the relative priority of the twe forms of head, ner are there now any long-headed races on the eastera Asiatic seaboard whose ancesters might be taken as the precursore of the correspending element in the West. The obrious alternative also remains, that the twe forms may have become differentated on the American continent, just as similar differentiations must, by those wbo do not accept the dectrine of fixity of species, be assumed to have taken place in Asia. For such an evolution America offered a more ample field even than Asis, for it is not confined to the northern hemisphere, but stretrhes from the Arctic nearly to the Aatarctic Circle, presentiog in this wide range almost every conceivable variety of climate, atmosphere, seil, and temperature.

We thus see that the twe crantal forms do not necessarily militate against the pessible primerdial unity of the homa Americanus. This unity beems on the other hand implied in certain physical and mental festures, common to all the native races. Of the physical traits the most important and uniform are-(1) the hair, which is always black, coarse, glossy, and long, like a horse's mane, round in transverse bection and persistent to extreme old age; ${ }^{2}$ (2) elight beard, but always stranght, never wavy; ${ }^{8}$ (3) eyes small, black, somewhat deep-set, alwaya horizontal ; ${ }^{4}$ (4) eyebrews narrow, very arehed, and black; (5) promirpat cheek bones and nose, the latter often very long and aquilinc. ${ }^{5}$

The native American being popularly spoked of as "The Red Man," it might be suppesed that colour should ba ineluded in this brief list of commen characteristics. But, notwithatanding the gencral impression, there is perhaps no

[^180]ther region of the globe where so great a varicty of coluur prevails. The more general tints are a coppler or cinnamon grown, and olise yellow; but the subjoined table of tribes, yrouped according to their colour, shows that the extremes
of a decp brown almost approaching a true black, and of a light or fair huc almost approaching a true white, also uccur, altogether independently of Ictitude, climate, or elevation of the land:-

Leother Brown, Coppery, Cinnamon.	Dark Drourn to blachish.	Otive-Droun and Seltorish	Fair to Whitish
lionuols: New Yoik, Cathada. Algonquins - north cast Stales, U S	```Charruav: Lraguay```	Guaranl: Brazil, Puraguay. Coloados (women): Minus Gerses Puris (women): Rio Janerru.	Tocontonas: Beri fiver, Bollsia
Chirigwanas (settled): Plicomayo river Corondos (mea): Minas Gelaes. Puris (men) R Rio Janelru.	Cosst Arawaks. Gulana. Qulchuas Peru Aymaras: Bolvilao uplands	Aucas: Chili, cast slopes ol Andes Rangueles: Chithon pambas Chiquitos: between Paraguay aod liver Nesto.	Mydas: Queen Chatotte Islandy Cayawas: thu brunco, rivel \$anrore Bruzil Pammas: Madelfa rucr. Brazh
arauranians. Chill Fuentans: Tlerra del Fuego Malaguayas Gian Chaco	Payaguas: Paragnay Yaros: east side ol Uruguay river Cbas ruas: Vadaguay	Otakes aorth east Bolvils Tupl \quad Tupioartan $\}$: nortb cost arazil	
 Vilclas Vermejo river. La Plata	Puclehes. Pampas, La Mata. Tehuelches. Patafonla. Clangos: coast of l'eru.		Chisifunnas (nidd) lilcomayo rives Yuracarcs: Buliviau plains Tucanas: Beni rivel, Bulivia
$\begin{aligned} & \text { Ibocobls } \\ & \text { Fouls Gran Chaco } \\ & \text { Ablpooes West buok of upper Parana } \end{aligned}$	Alacamentos: Tarapaca, Peru Quichés: Guatemala lowlands Gulibl: Gutana	Botocudas Brazilan coast radge $\underset{\text { Seminoles }}{\substack{\text { Timueva }}}\}$: Floilda	Backfoct: Saskatchewan ther Mandans: Mivele Misoun Guarayos Mosos, Lulwia
Dakolas: Ĺpper Missour Apaches Nuth Mexicu, Arzona Quichés Guatwruala uplands.	Minuanes: between tivers Paiann and Uruguay. aolanes: Lower Uruguay river	Eskimo: Apetle aenbuard $\left.\begin{array}{l}\text { Unalaskans } \\ \text { Abbhas }\end{array}\right\}$ Alcutian Islands	Hosetenos mer [fen], authits Guarives Venczuda. Sirlones: Soxor Dowvia

Similar tables might easily be drawn up of stature, -arying from the d warfish Eskimo, Fuegian (mean 5 ft .1 In), and Peruvian (mean 4 ft .9 in .) to the gigantic Patagonian, the tallest race on the globe.
Nu less varied are the other physical traits, while the wide divergenco of mental eapacity is sufficiently indicated on the one hand by the Cherokees of the southern Allegbanies, who in 1824 invented a complete syllabic writing system, and who can reckon to a million and upwards, and on the other by the Chiquites of the Eolivian luwlands, who, D'Orbigny assures us (op. cit, ii. p. 163), "cannut get beyond one (tana), after which they bavo nothing but terms of comparison." The only real intellectual faculty commun to all the American races is that implied by the peculiar polysynthetic mechanism of their speech. But beneath this general morpholegical structure, the substance of the languages themselves varies greatly in all that concerns their phonetic systems, vocabularies, relational forma, syntas, and methods of combination. While, for instance, the Thlinket of the extreme nerth-west Pacific seaboard, the Apache of Arizona, the Quichua of Peru, and the Aymara of the Bolivian uphands are amongst the very harshest and most guttural tongues in the world, the Otuke of the Bolivian plains, the Mehave of Arizona, the Chiguten of the upper Paraguay basin, the Samucu on the north frontier of Gran Chace, and many Aolazonian dinlects are distinguished by great sultness, uften rivalling in eupheny the mest musical languages of the eastern hemisphere The lingustic families differ from each other, not only in the measure to which their polysynthesis has heen develpped, but even in its very character, so that while sume have searecly yet urrived at a clear difterentation of verb and noun, cithers, like the Iroquois, have a purely verhal, others again, such as the estinct tinucua of Florida. an exclusively numinal inflesion In the samo way some are partial th prefises, some to suffises, sonve In intixes Many of the Californian idioms seem to be alll verging on the agglutmating stage, while the just mentioned Timucua, tho Aztec, Chnetari, Shoslone, Cree, Motalinca, and others of the Amaluac table land, bave reachert the very acme of pulysyrithesis, in which all the parts of the sentence often becume by indefinite composition and syneupe fused into one interminable "bunch word" of frum ten to fifteen syllables and upwards. As these language: nlso differ entirely in their socabularics, often pos. sessing not u single root in common, it follows that they can be no nowe classed towether than can for instance the various agglutinatiog tongues of the Caucasns or the Scodan

It thus appears hnpeless to look for any unity of details in the mental and physical faculties of the Americas aborigines. What they have in common is reducibly to one physical and one mental quality, the universal testure and black colour of the bair, and their polysynthetic speech. These two properties point directly at primordial unity of origin; the endless varietics of detail argue a prodigious antiquity and an independent development of the race on the American continent. The variety renders the work of classification a labour of extreme difficulty end uncertainty. Amidst all these endless points of diver. gence, it seems impossible to find any common basis round which to group the various tribes and races, and the problen becomes further complicated by the fact that, r hile many of these tribes difer in speech, though evideni.y of oue racial stock, others belonging to the same linguistic cunnexion present the widest physical discrepancies. Thus the Chiquitos and the Moxos peoples of Bolivia, obviously of one ethnical type, speak several fundamentally distinct languages. The same is true of the Moqui, Queres, Istetta, Tegua, Zuñi, and other New Mexican Pueblos, while the reverse phenomenon is presented by the Montagnais and Nasquapres of Lahradur, both of whom speak closely related Cree dialects, yct differ so much in appearance that, "judging from their exterior, one would suppose them to belong to diferent families of the human race" (1Iind's Labrador, i. p. 332). Within comparatively narrow areas occurs occasionally cvery conceivable eleunent of confusion, as in California and the south-western States, occupied by the morally debused and physically degraded Toh.Utes, the tall and manhy Nohaves, the ferocious Apaches, the mild and intellectual Indians of the New Mexican l'uebles, some fishers and bunters, some living on roots and berries, some skilled agriculturists, all speabing fundamentally distinct languages.
It is evidently impossible in such a case to adbera throughout to any one method of classification, and the following tentative survey is cousequently based partly on the linguistic and partly on the ethnical elements, but partly also on mere geograpbical grounds. Fortunately therc aro in all the divisions of the continent a fow great families, occupying vast regions, in which the ethnical and linguistic ments largely ceincide. Foremost amongst these aro the sub-aretic races and the Athabascans, Al. gonguins, and Dakotas in the north, the Maya-Quiché in the centre, and in the south the Caribs, Quichua-Aymara, and Guaranis. These eight stocks cover jointly an ar a of not less than 11 millions of square miles, with a tot $ل$
aboriginal population of about four millions. But the seren millions of pure and mised Iadians oceupying the remainder of the fand, 5 millions of square miles in extent, are divided into a multiplicity of tribes, whose racial and linguistic affinities present problems the solution of which must long tax the utmost ingenuity of science. The total number of distinet languages alone is estimated at about 760 , of which 430 are in the north and 330 in the south. In the northern division Balbi feckons, exclusive of California, thirty-two stock languages, far too low an estimate, while Rivero and Tschudi consider that of the southern idioms as many as four-fifths are radically distinct. But all such calculations are mere rague guesses at the truth; and in the present state of our knowledge it is impossible to form an estimate of the actual number of languages still current in Gran Chaco, Chiquitos, the Amazon valley, Central America, Mexico, California, the Columbia basin, regions where an extraordinary complexity of speech prevails. Nevertheless language forms on the whole perhaps the most convenient basis of elassification, and without its aid it would have been inpossible to determine the affinities of many wide-spread races, such, for instance, as that of the Arizona Apaches mith the Canadian Chipperwyans, or on the other hand to separate nations apparsutly closely selated, like the Iroquois from their Algonquin neighbours, or the Araucanians'fram the Peruvians. The true relations of many tribes are, on the other hand, still doubtful, because of uncertainty regarding the languages they speak. Such are the Cheyennes, Blackfect, and Arapahoes, classed by some with the Dakotas, by others more probably with the Algonquins. Such also are the so-called Diegucños (Kiza, Netela, and Kechi) of Suntlı California, oscillating between the Shoshone (Snake) and Yuma connexions, and the Pawnees of Ncbraska and Kansas gronped by Bancroft with the Shoshone, but by Morgan regarded as an independent race. So close is the physical resemblance in these and many other cases that the question must ultimately be decided by a more exhaustive study of their languages.
The American races may be conveniently grouped under the folluwing eighteen divisions:-

1. Hyprocborcan Races.- This division may on the whole be ragarded as posscessing a certain cthnical, linguistic, and geograp hical minity. Still the Aleutians differ so greatly in langunge, and in some respects in troe from the Eskimo proper that it sfens desir"Wle to class them semarately. The Exkimo or "Innuits," as they call the assolves) are thus distri, hutcil by Dall :-

The list-mancl. the Uesidenzs of the Russians, call themselves Chilkhatmut, and are unlupultenly true Liskimo, although frequently confoumed with the Thlifkects, on whase domain they converfo. The few Inanit tribes cast of the Mackinzie have not been classificd, hat two of them, the Netchillik ame Uquisiksillik, were met by Lient. Schwatka in 1879 , who reeciverl from then some particulars ragurding the emains of the Franklin expalition.
Of the " Alents, whose collective same is "Ungungna," or "leeplde," there are twa divisions:-

2. Thlinkects. - These forn a distinct ethuical and linguistio group, occupying a compnet geopray wisal aren along tho lacifie Bonst from atout sumbt it bias to tho simpson river, nind inchudlne Sitka and the other adiacent islands. They are often called "Whololues," a term of devilitful orign, but the national name is "Tliaket," " mann," or "T"linketantilikan," " 2nou twilowiug in All villnes"," The tribal divisions are :-

The Thinkeet language seems to be completely isolated, abowing nothing beyoud the faintest verbal resemblance to the Alent auf more southera Hydah. It has a plural in k, and an instrumental $^{\text {lon }}$ form in tch or tsh, the combination of which produces a heaping up of final consonants, which none bot the natives can pronounce. Thus ass, tree; asstsh, by a tree; isk, trees; asskish, by trees. (See "Notes on the Sitkakwan Dialcet," by J. Furghelm, in Oon. tributious to American Ethnology, vol. i.)
IIL Columbian Raccs. - The general grouping of thess is purely geographical, the main divisions largely ethnical and linguistic ; the area, British Columbia, Qucen Charlote aod Vaneouver Isiands, Washington, and Oregon. Here are five stock races speaking an immense number of dialects, which, owing to their extrencly evan. escent character, it is rery diffieute to classify. The Puget Sound district, in the uorth-west of Washington, is in this respect specially remarkable. But great light las recently bcen thrown on this Babel of tongues by the labours of G. Gibbs, published by Dall, in North A merican Elhnoloyy, vol. i. p. ${ }^{240 \text {. The five stock races with }}$ their chief tribal subdivisions are as follows :-

1. Hyduhs-The Kaigant of Pifice of Walcs Islands and north const of Quech Charlotie Istands; the Klae, liddan, Ninstence, Skid-a-gate. Skid-a-gatee, Cuna she-was, and Chut-sin-ni of Queen Charlotte Islands; and the Tsimsians, fucludiny the Kispachiobt of Fort Simpson, the Kl'kuskumoluk of river Ners, and the Kiblistzu, llailzzikh, Bilikfta, and Kwa-Kiusl of Milbank Sound. 2, Nuitas.The Ahts, including Porfinalit, Nuinaht, Olyaht, Howclouklisaht, Klab-oh-quaht, Manohsaht, Nishquayalit, Ayhuttisaht, and Khahossht, on the west coast of Jin, couver Island, in their order going northwards; the Maka or Elasset, about Ca.'s Flattery; and the Quoquoulth, Komus, Kowitchan, Klallum, I'kletas, Sok : Pachina, and Sankaulutuch, of the east const of Vancouver Island. 3. Selish oo Flat Ifeads.-The liwantlum and Haitlin or Tast, Fruser iror below Fort iale the lialispelm, Quarlpi, Spokane, Pisqnonse, Soalallpi, of midtle Columbia busin the Nisqualli (including the Skokomish, S'Lotlmamish, Suwamish, Segaallitst Puyailupabraish, Dwamish, Snohemlsh, Snokwalnu, Yakama, Skagı, Lummí, und Skiallam) of Poget Sound; the Chihalis of Tsihatis, Grey Harbour ; and the Shushwaps (Inc. ding Shewhapmuch, Kutenais, and Okanagan) of Upper Columbl!, 4. Sahapians ore Ncz Perés.-The Taitimapaun, right bank of Columbia to Adarg' Mount ; the Klikatat, about Mount St llelens; the lakima, Yakiraa Valley; tby Wulla Walla, Palouse, Taitli. Caguse, and Molnle of upper Clear Water and
Snake rivers; and the knmai and Lapwni of Idaho reserve. 5. Chinuks-Tbu Snake rivers; and the Knmai and Lapwni of IUaho reserve. 5. Chinuks.-Tbu Watlala, Skiliut, Kathlamer, "Fakiakum, Flatsop, Klakama, Ealapaya, Yambally;
and Killamuk of lower Columbia basin, mostly extioct. Speech radically distinob and Killamuk of lower Columbia basin, mostly ext
but now represented only by tha Chinuk jargon.
The names of Nos 1 and 2 are purely conventional. Hydah on Haida was originally applicd by Francis Poole to the Queen Charlotow tribes, and was afterwards extended to all the menbers of thav family. Nuttka, from Nutha Sound, west coast of Vancouver Island. came gradually into use as the collcective name of the enstern Yan. couver tribes, and of some peoples on the opposite mainhand othai. cally related to them. But the langunges ditter so widely that they cannot be reduced to a common root. Though possessing greal intelligence aod even considerable artistic skill, shown espccially in their wood and bone carvings and plastic works, these north:western nations betray an absolute incuracity for adapting themselves to civilized institutions. Sproat tells us that mauy of those who have becn settled, under the most farourable circumstances, in difteren parts of Vancouver, simply die out through inanitiou, or frodo suddea change of life.
IV. Californiau Ruces.-This is mainly a geographical grouping, hut with three large ethuical and linguistic finilies-the Klamatho, Pomo, and Runsien. Mans of the otlers belong to the Shoshonc, Athabascan, and Yuma councexions. But the rest form a chaos of tribos, generally of a dehascel rhysical and moral type, and speaking rude halects which ballc all attempts at elassificition. They no all rapidly disuppearing int the "rescreses," or off the face of the land. The Klumuthe family; in the Klamath river basin, and thence eastwards to Nevala, comprises the Lutuami or Klamaths proper, the Calirocs and Liurocs ""Upper and Low: liocs "), tho Modocs, Yacons, Shastas, Weitspeks, Wisloosk9, Wallics, Yukas, ant others stretching south to the YI wibbuldt river. South of them aro the Pomos, or "People," mainly in the Poter ralley, including the Kuhto, Cloom, Chandela, Kinlamet, Shebalno, Iama, Comneho, Socon, Sanel, and the Callinomero of the Russiad lifere. Stull further south are tho Runsicns of Monterey Bay, with lingulistic allinities streteling all along the const northwards to Sas. Frincisen, anil sonthwaris beyond Cule Coucepcion to the islands of Sul Migucl anal Sta Cruz. The chicf members of the gronp are thr Fislenes, Ullones, Mipacmace, Yolos, Talluehes, Waclics, Powello, and others aloont Lako Tulare. In tho Napa valley is a small family incluling the Ulakas, Suskols, Kalayommes, Myacomns, an. 1 Ciymns; and in the Sucramento vallyy aro the Sccumne, Kosumbe, Yasumuc, Ochecumuc, Chuyuman, anid some twenty others, whoso tribal names all ema in umpe, and who may peethajs be regarded as forming a distinct linguistic groupr; But they will havo vanished before the roint can bo settefit ${ }^{1}$ s.
[^181]V Shoshonc and Iawnee Femilics.-Theso frrm one cthnical, but apparently two liaguistic groups, for L. H1. Morgan regards tho l'awnee as distinat not unly from the Shoshode but from all other languages.
The Shoshone or Snake fanuly occupies a wide domnin, including most of Idaho, Utah, and Wyoming, besides parts of Oregoo, Nevada, West Montana, Arizuna, Nortb Texns, Suutlı California, and New Bexico. There are six distinct grouls:-
t. Wininath, nr Testern Shoshancs, Orecon and Idaho. 2. Bennack, Oregon, Wlaho Nevalh. 3. U'ahs or Ctes. with numerous subdivisions (Utes proper, Washoes, Pah-L'tes, Gosh-Lftes, 1'l-Edes, \&e.). Colorado, Utuh, Nerada, Asizoua, and ionth Califomla. 4. Comanches or letans, three brancbes (Paducos, Yammaraks, and Tenawas), North Texas. Now Jexico, Norti Mexico. ©. Moqui, New bexico; all the seten Sloqul pucblos except the Orelbe (llaro), lo which the Tegua angarge ly curtent. 6. Diequeno (Kizh, Kechl, and Netela), about S. Dicgu, the wuth-west cotmer ol Callornia; but by Gatsehet these are now anmaicd to tho ruma stuck (Zentachr. Sir Einnologie. 16;7. p. 365). Tho Beneme abd Cuba
The Pawnce (Pani) area is confined to Lansas ond Texas, besides the Pawnce rescrve, Indiua territory, with three main divisions:-

1. Pacnees proper, including the Chäne. Elakän Skldt and Petähänerot, Kansas and Pawnee rescive, Indan Tertitory. 2. Ardierces or Rikarees, fortncrly in the Hissourl Valley, $47^{\circ} \mathrm{N}$ 3. Wichitas, upper course of Red and Canadian livers, fexas, with whom should be grouped the Kichel, Waccoc, nad perhaps the Towtok. Somakonl, Wacho, and Caddo of Texas and Louiniana. To thesame connexion propably belonged the extlinct Adaize, Nachltoch, Chetmach, Attacapa, and othera if Loulsiana. Aguring to Gallatin'a sy nopsis as stock languages (Schoolcratt, uh. ; 401).
VI. New Mexican rucblas. -This is a strictly ethnical family secupying a compact area in New Mexico, but according to W. C. Lone (Schooleraft, v. p. 689) speakiag six̣ distinet languages sprung of one original stock, as under:-
2. Queres, current in tise deoma, Cóchillmb, Kiwomi Laguna, and four other pueblos. 2. Tegua or Toycengh, current in the Nambe. Tesuguc, San Juan, and Hiree other pueblos, besides the Havo, a Moqui pueblo. 3. Picoti or Enaghmagh, curtent in the licuri, isletta, Taos, nid five other pucblos. 4. Jemez, curreat in Jemez and Pecos only. ${ }^{3}$. Zuñ., corrent in Zntion only. cad sald to le a radically Hoqu pueblos except IJaro.

One of the most remarkable of existing linguistic phenomena is the number of widely diverging laoguages spoken in these trenty. dix New Mexican pueblos, where the uniformity of institutions, agricultural habits, town life, and social intercourse might be supposed to establish a community of speecb.
VII. Yuma Slock. -This linguistic and ethnical group in South Arizona and Soutl: California is anmed from the typical Yuma tribe formerly at the junction of the Gila aud Colorado rivers. The lomily bas becn learnedly treated by A. S. Gatschet (Zcilsch, f. Éhnologic, 1877, pp. 341 and 366), who regards the Yuma as funda. mentally distinct from all the surroundiog forms of speech. The tribes are low mostly gathered in the threc rescries of the Colorado aver (right bank, 34° N.), San Carlos, Gila river, south-east Arizona, and Pinia and Maricopa, Soutb Arizona, with a joint population of 5249 , to which must be added about 750 for those who are still independeat, making 6000 for the whole racc. Cbict tribes:-
 t Konino or Casntno, San Fiancise Mountains; said to be extinct. 3. Tonto or
 rinto-spaches of Athabascan stock. 4 Araricopa or Coramaricoza. nildulo tourse of tbe Gila 5. Hualapai or Wallapai, between the Colotado and Black tountains. G. Mohave or Mfojave. properly Ifamuhh-habi ("Three lills"), largest of all the Yama tribes, both sides of the middle and lower Colorado. 7. tuma or Nutehan, at Junction of Cotorado and Glia rivers. 8. Cocona or Cucafa, at mouth of the Colorado. 9. Comoye or Quemeya, edliectlve nume of all the luma
 Cochet) tho Dirgueños (4ce V, Nin. G), and the Kilisi near Sun Tomas mission. 10. Cochimi, Perucui sha Guaicuri of lowel Californin. Probably to the wame lamily telonged the "xunct Cujuenches. Cuca
AUpras, ond otbers of South and Eust Arizona.
VIII. Alhebasran or Tinncy Family. - This is the most wide. opread ethuical and linguistic group in North America, comprising: most of Alaska aod the Canadian Dominion fron the Eskimodomaio to the Churchill river north and south, and from the Rocky Mountains to Hudson Bay west and cast, besides isolated enclaves in Oregon, Arizona, New Mexico, Colorado, and North Mexico. The term Athabascan is gcographical, from Lake Athabasen, a preat rallying point of the northern tribes, while Tinn Petitot, variously pronounced Tinné, Thynné, Déné, Telra, Itynai, Tanai, Dtinné, \&c., and meaning "People," is the geneml tribal name. About the spelling, sound, and identifiration of the indi. vidual tribalmames, the greatest confusion prevails. Thus Kemai, used by Francis Muller as the collective nome of n distinct groul, is cupposed to be on Innait word by Dall, who says that it should consequently be applied to no tribes of Tinney race. Folchaina or Koishane, figuring in most tahles as a special tribe, nppears to be a term vaguely applicd by the Russians to all the interior Tinneys of Alssika, obout whon they knew little or nothing. The Chippewyans of Lake Achabasca are constantly confused with the Alronquin

[^182]Chippewas of Upper Canhla, just as tho Tonto-A paches of Yuniz storkare with the Tonto-Apaches of Athabascan stock. The Alanha division especially was in a chootic state until Dall (op. cil.) survesed the field anew, aud supplied the subjoined corrected and appareatly complete list:-
Kaiyulikhotion, lower Yuk on and Kuskowim rivers; Koygkukhotana and Wiakhotina, right bank of lower yukon; katchins or "t'ophe" (including tho Tcnan- Kutchin. Tananath river watershed; tennuth Kotchin and Tawath Kuthin. Letween the Yokon rapids and mouth of the Porcupine, extinct ; Kurela- Kutchn. nbout junction of Yuson gnd Porcupine: Natsit-Kuleha, from the doocupine 10 Soroanzoff Mountulns: Vunta-Kutclaio. foom the Iopapine to the Atclie fnnuits: Tukkuth-Kutchio, heat-waters of the Forcuphe: Jan-Kurchin. Yukon rlwer above kotlo ruver; Tuthone-kutehin, about White fiver; Telantn-Kut chin, Kenal Penlnsula; Abuato-Tenu, lelily and Mas Milan rivers; ehounces, about source of Pelly river; Achuto-Thnelh, head-waters of Llard river; Daho Tena or Sikanees, Llard. rive : Tatho-Thneh, Lewis rivel Uasia; Cbilkalu-Tena Lowls and Lebarge ifvers; Ahtens, dtoa river busin.

The other members of the Tinncy family may be grouped in [ous gcographical divisions as under:-

1. Sfactenzie Dasin: Sawessaw Tinney (Chippewn nns). Lake Arliabasca; Tant
 Sbeep, Brustawood, and others enumelated by Pethot, whuse theorits ore wild, but whose facts form a substantlal conertution to science. 2. Neer Catedona the Tabkali or Taculics, Mackenzies Naguicrs, add the Carriery of the Cana. dian trappers liclude the Naseutio, Nathiautin, Chicotin. Toltotin, and sewiai of hers. 3. Oregon: the Umpquas on the Umpqua Tiver, the Tlaskanal of the lower Columblaz and the Hoopahs near the north fiontice of Culifurnia. \& South
Westent Stotes: the Apaches and Narajos, ubo roam over elie recion between Westen Sioles: it
IX. Algonquin Family.-This ethaical and linguistic Eroup, next in extent to tho Tioueys, but far more, itmportant historically ood numerically, stretches from the Tinney domain sunt?wards to the latitude of South Carolina, and from the Atlantic to the Rocky Mouotains. Most of the tribes on the Athantie seaboard have eithes disappeared, migrated westwards, or been collected into the reserves. But many hava acquired such celebrity in the stirring reculds ol Indian warfare that the more noted with their original geographinal domain wall be included in the subjoined list of all the Algonyuin races.
2. Northern Branch: Chippewas or Ojlbways, Upper Canada and Michican ; Oltawas, Othawa river valley (some now in Mantoulln Jsland, Lake Haun, ofleers In lodian Telitory); Nasquapees, interior of Labrador; Munlagnais. south coast of Labrador; Crecs or Knistencaux, between Lakes Winnipeg and Ahas basia north and sourti, eund frum Rocky Moumalny to liudsen's Imay, west ano east. 2. Easfern Branch: Avemahls, Naine. New Hompshise (later on, Jowel Canada) ; Mikmaks, Nova Scolia. Now Brunswick, and Lower Canada, Tarianines New Brupswick; Etchemios or Ailicetes, New Brunswick and Nhime; Pcnobseots, P'enobscot rirer, Daine; Phssamoquoddies, East Maine; Amariscogeina New llampshire ; Solicans or Suhlegans, Connecticut and New York; Nolles, Massaclavetts (speech survives in Eliot's bible): Pequods, Massach etts, west of Cape Cod; Adirontacks, New York highlands; Manhattans, Manhattan Island, site of present city of New York: Lenl-Lemnappes or Delawarcs, Delawarc, now In Indian Territory 3. Soulhern Branch: 「owhattans, Virginla nad Maryland. Accomacs. Accomac ri ir. East Virginia; Rappahandocks. Rappahannock riser Virginia; Panticocs, Nintil Curolina, southernmost of all the Algonquin iribes. Slawnces, Tanosylvanio, lieniacky, and Ohlo, now in Indan Territory. Western Draneh: Lilinois, Ilinofy river basla; Miamls, Great Miami river basin, Tottawatlamles, Michigan; Kaskasklas, Kaskaskia river, Dllinois, now in Indiao Terihory : Diehigamies, soblh whore of Lake Blichigan, mamed from them, Sace or Sawhee and Foxes or Opthgauml, middic coursc of Misslssippl, now in indiun Territory and Nebraska reserved; Cheyennes, Lake Winnipeg (iater on. Mbsourl
 Saskatelewsin forks, bouth to daria's river: Ahabmelins, Milk aiver, Mentana.

The linguistic nffinties of tho four last named are somewhat doubtful, but Albert Gallatin shows good grounds for conoecting them with the Algonguin group.
X. Wyaulot-Iroquots Family - This is a distinct aod historically fomous group, allicd ethnically to the Algonquins, and linguistically, Durgan thinks, remotely to the Dakotas. Their area is Uppen Conadn, abont the great lakes, New York, and the Virginian high linds; they nowhere reach the Allantic const, and are cuerywhers surroundicd by tribes of Algouquin stock. There are three maid divisions:-

1. Wyandots or Hurons, including the Enics or Erlats, Ahrendahronns. and Attwandoronk or "Noutral Nation." Canada "Rogrohs, or "Sis Nithens."
 Onguehonere, or "Suncrior Men;" and compasing the Molawh Oneidas, Onon dogas, Senceas and Cayugat. besides the Tuscaroras, whe jobles the trague from
 confederacy:
XI. Dnkote or Sioux Family -This is an independent and spread ethoical and linguistic group, whose poper domain is the western prairieg between the Mississipg and Kocky Mountains east ond west, aod stretching from the Saskatehowan southwards to the Red liver of Texas. The chicf divisions nse:-
2. Datofus proper of the Miscourl basin. This teem means "Avica, ane Inciudes the Inantics. Pantons, Tectons, and Sisectors, cach whith several aub divisions. 2_{2} Ansmboimes or stome humans, konwn to the pakotas as "Iloha.
 in the Aasintbolne river basln 3 Winnctagocs ("l'uans" of the Canadians)
'Aparse, fie., "tlie men" (raot apa man) is a Yuma word, applied to ithe
 the enithe che an mbermy has been mate by retmin ctymphatsta in conneet these peophe whth the Joctrbe, Iluiltiche, and other ratngono. Chthan tribed whose names end in tho sime syllalite. Hut here the is the Arnucanian "gan, wherens In Yuma che is the delinite nitele suhze Of the Apaches the elibd

parent stock of the Omahas, Iorsa, Kamsna, Quappas or Arkansas, and Oexices of the modle and lower Missourl basin, 4. CPsurodis or Crous, of the Yellowstone billey. S. Minnetares, /hiuntsid, and Misnians, of the uppersissouri, of doubtful linguistic affimties, but by Morgan reganded as intermediate between the | bakulas and . Appabiachians. W. W. Statherws also affliates the Hidatsa language to the Datiota fanily.

Xll. Appalachian ritecs-These form an ethnical aod geo. graphical grouping, including four distinct languages, which, however, according to Morgan, are remotely related to the Dakota; area, the south-cast corncr of the United States, westwards to Arkansas and Louisiana, nortlivards to Teonessee and South Carolina, all inclusive; mane pmrely conveotional, from the Appalachian or southern spurs of tho Allcgbanies. Here was a large lingoistic fimily forming a powerful confederacy, of which the Afuscogecs or Ciccirs of Alabama were tho centre. The other nembers were tho seminoles of South Alabania and Florida; the Chichasaws of Dlis. sissipm; the Mobiles of Flor:la West ; the Choclau's of the lower Mississippi; the Colusas or Coosades, Alibamotw, Appalaches, Uches, मul I'mucuas (') of South Carolina and Georgia. Of distinet speech were the Natilez of the lower Dlississippi, who were said to havo byoken three langunges; the CHerohecs or Chelekecs, of the Appalachian sopes, and the faturbus of South Carolina, supposed by some to Lue the Fries, or the nentral mation who disappeared from the lale rugion about 1656 . All these races are eitherextinct, or have ber n nmover to the reserves of Indian Tenitory, where two of the stock Iungracts (Churokee aml Creek) aro still current. Natchez and Catasba are extinct. Special interest attaclics to the extinct 'Vimucua languare, formerly curent along the east coast of Georgia and Florida southwards to and beyond Cape Cañarent. It is a hirgly synthetie form of sןecch, reganded by Gatschet (" Volk umb Sprache der Timacua," in Zcitseh. f. Ethmologic, 1877, p. 245) as a stock language, and possessing io the grammar, diciooary, and catechisms of Pareja, [ublished in $1612-13$ in Mexico, the oldest uritten records of any native tongue east of tle Rocky Jountains. Catscher gives a full acconnt of its structure, which philologists will find extremely interesting.

XllI. Meciern Races. -This is a gcographical grouping, the region comprising an exceptional oumber of radieally distinct hainguares, and alparently three or furr ethoical types. There is one large and imfortant linguistic family, the Aztec-Sonora, which stretches southwards to Nicaragna, and for which Buschmann das sought affuities as far north as the Shoshone group. Ity chief neinbers are :-

1. Aztec or Merican proper, midely diffused throughout the Nahua ecepire, nvorthrown by Curtez 2. Cora, in the stute Jalisco. 3. Tarahumara, In ChinaInta and Sonora. 4. Cahifa, In Similomant Sunown. S. Niquitun, of Nicaragua, 6. Tlascaltec, of San Sulvalins. With these are plobably rulatud the Pima and Opata of Sonors and Sioaloa, tbe Acaree of Duango, and the Tubas of Chl hushua.

The other chicf stock or at least not yet classified Dlexican tongues are the Miztec and Zapotec of Oajaca, Tarasco curreot in the old kingilom of Nlichoacan, Matlalainca oorth of Anahane, Ceres and Cochita of Sonora, Tepreano of Jalisco, Zacatec of Zacatecas, Tamu. lipee of ' lamaulipas, amd Otomi, an interesting form of speech still almost in the monosyllibic state, eurrent in the mountains enelosing the Anahuac table-land. This is the more remarkable that most of the other Dlexican languages are highly polysynthetic; bnt tho atempt made to connect Otomi with Chimese has merely served to place their fundamental diffetenco in a clearer light.
XIV. Central 1 merican liaces. - Like the Eoregning, this is a geo. graphical grouriog, with onu wide-sIread linguistict and ethnical Ianily, the Maya-Zuxche of Y nuatan nod Gualemnala with an out ying branch in Yera Cruz and Tamaultins, Of this fumily the clieft menbers are tho Maya, still gencrally current in Yueatra; Zendel and Zotzil of Chiapos; Mam and Poloman: á: yra l'uz, Guatemala; Ifuaster of Vera Cruz and Tamaulipas; Totowns of Vera Cruz; Quiché, Chol, and Zudugil of Guatemala. Tho Mryos, like the Aztecs, possessed a writing systam, of which threo ooenments still Eurvive,-the Dresten Colex, published fon Jorl Kingsborongh's collection as an Aztec MS., the Bexican MS. No. 2 of the Paris National Library, aod the Troano MS. Bn Mindrid. Bishop Landa even ercdited them with the invention of an alphabct; but all nttempts to interpret these docaments by the key lelt by bim have fitherto failed

In Nicaragua and Monduras, besitles the Azter Ninuiran, Squier (, Ficaragua, ii. P. 30s) reckons thret distinct linguistic groups:1. Melehora. Inchwinge the Walwa, Rama, Toaca, Poya, and Wakna ob Btosco (Mosquite), colzectivily known as Iravos, Jobably of En: bbock, but what a mixture of Nrigo bimd. 2. Choronegh, wimbing the Difman, betwecntakosictr:
 In Costa Rica anil tho treninsula of Prnama there are a multipheily of unclassified tribes, anonget whom aro current at least. five stock languages:-
(1) borachon Veracuas; (2) Sammeric: (3) Bayano, filo Chapo, racife coast;
 hinlect, has ucen comparel, bat on slentel keound?, whe somo West Afilcan congues.

XV New Granabla and Fuirma Faces. - The confusion of tribes s contiungl soutliwaris into the Culumbiun and Venczutina Con
dilleras; but, as me procsed eastwards along the Orinocn plains and through the Guianas, greater order seems to prevail. In New Granada itself there is at least one marked ethnical and linguistuc group, the Chtbeha or Muisca of Boguta, a civilized people. noted for their remikable taste and skill in the exceution of guld onnaments. Some of these works recently discovered and ealihhted by ir Powles at a meeting of the Anthopological listitute, London, ercited universal surprise and admiration. This little known but extremely interesting people formed on inportant link in the chatn of civilized and agricultutal natious stroteling nlong the western up. Iands from tie New Mexican Pueblos, through the Aztecs uf Mexico, May'as of Yucatan, Dorachos of Veraguas, Chibchas of Bognta, and Peruvian Quichuas, to the Aymaras of holivia. Filsewheuc to A ew Granada the tribes are almost past counting. In the sumthem province of Popayaualone ninety four distinct languages were reckoncd at the time of the cooquest; and, although most of these are extinet, tho unclassified races both here amil in the north are still vely numerous. The only large lioguistic group is that of tho Salivi, including the Betois, Eles, Yararas, Atures (extinct), Quaquas, Macos, and others about tho westen head-streams of the Orinoco and in the Popayao highlands. Further east is the Barré family, iocluding the Maypuri, Eaniwa, Achegua, and manyothers in Venczuela and Guiana, bosides some tribes as far south as Moxos in Bolivin. From the recent ethnological researehes of Everard F. im Thurn (British Guiana Muscum: Georgctown, 1878), there appear to be at least four independent linguistic groups in the Guianas:Warais and Arawack in the const region, Wapiuna or Napisana, with Alorais, in the savannah icrion, and Carib cverywhere. At the time of the discovery the Casiths represented the conquering element in the West Indies, whence they have since disarpeated, nuless a few survive in Domintica (Vivien de Saint Martin). But they are still oumerous, either pure or mixed with Negroes and others, from Houduras round the coast to the Amazon delta. They are represented in Freoch Guiana chicfly by the Galibi, Oyapok, Emcrillon, Nreragwe, and Rucuycnncs, the last-mentioned on both sides of tho Tumac-Humac range (Dr J. Crevaux in Tour du Monde, June 28, 1879). In British Guiana the Carib tribes are the Ackatats and Caribisi of the coast and forest regions, the Arecumas and Macusis of the savamah region. On the upper Orinoco are the Cerinas or Calinas; in Dutch Guiana the Kirikiricots, Acuria, Sarmmacea, Aukan, and Mataarie; in Brazilian Guiana the Fianghotlos, Parcchi, Daurais (extinct ?), Mradaucas, Masacas; io Venezuela tha Tiverigotes, Guaraunos, Guayanos, Tamanacs, Ararigotes, Acherigotes, Piritus, Palencas, Chaeopatas, and many others. On the atfinities of the Carib race great mnecrtainty prevails, some regarding them as an independent stock, some tracing them across the islanis to tha Allighewis or Alleghans, who are supposed to have been driven by the Algonquins from the Mississippi regions in the 10 th century, while others, with D'Orbigny (L'homme Anacricain, vol. ii.), alfiliato them with some show of probability to the Guarnis of Bracil.

XVI, Peruvian and Bolivian Raccs.-Here the groming is strictly ethnical and linguistic in the Cordilleras and upland phateans, which are mainly oceupicd by one great historical and civilized race, with two well-delined branches-Quachaa of Pera and Aymara of Dolivia. Under the lncas Quichua, one of the most highly cultivated but also one of the harshest of Amelican tongues, was corrent along both sides of the Cordilleras, from Quito on the equator southwaris to the Arancanian domain alout $30^{\circ} \mathrm{S}$. but interrupted between 13° and $20^{\circ} \mathrm{S}$. by the Aymara, ubih. like tha northern Quiteño, seems to be an older and ruder form of the com. mon stock language. Still more primitive forms were probably tho extinet Cara and Puruha of Ecaador. But in this nerthern province, which was the last added to the empire (under the twelfth Inea IInaina-capae), there weressid to be at the conquest forty other nations, speaking as many distinct languages, with three l:urdied different dialects. Of thess a considerabla number still people tho baoks of the Yapura, Pulurayo, l’astassa, Nafo, and other norlhwestern head-sticams of the Amazons, the most noteworthy leeing the Jivaros of tho Pastassa, the Zapatos of the upper Napo, tho inguteras and Orejones of the lower Napo, the Colorados and Capayas of tho uplonds east of Quito, and the Coranes af the unitr Aguarico. The sceret langnege of tha treas was apparently tha Aymara of Lake Titicaca, the ciadlo of their rase a and remotely connected with the same branch are prolobbly the Olipe or A tacameno, let ween 19° and $22^{\circ} \mathrm{S}$, and tha Cfang. betwsen 22° and $24^{\circ} s$, al though R. A. I'hiliypi (Reisedurch die It', sle Alacama, Halle, $180^{\circ} 0$) regads this latter as fundamentally dirtiact both from the Quinhas and the Aymara.
Antisuyo, the enstern division of the old empire, stretching alonz the enstern slopes of the Peruvian and Pimbinn Andes between 10^{2} and 19° S., is oceupied by five nationa, the Y'urucures, Nocelone., Tacanas, Maropas, anl Apolistes, whom D'Orbigny (op. cit, vol. i.) collectively colls Antisicns, allihating liem to the Quichua-Aymara fumily, from which, however, they diller in speceh and physique as profunndly as they do from each other. Hence tho socealled Anlis or Antisians of raore recent anthroplogical works have no inhisical or linguistic unity, and, hive Chinchasuye, Candisuyo, and

Collasugo, i.e., northern, west m, and sonthern province, the term Ancisuyo itself is purely geographical.

As we descend to the Bolivian lowlagds, the confusion of races reaches its climas in the provinces of ©foxos, Chiquitos, and Gran Chaco. Notwithstandiag the disabrearance of many tribes in recent years. E. D. Matthews (Up the Ahazon and Madeira, 1879) still fuand in the Beni Missioas, Moxos, besides the above-meationed Maropas, six distidet tribes-Caynbabas, Molimas, Mojeños, Canichanas, Itonamas, and Bau.es-"each having a language of its owa." But the Baures would seom to be a bracch of the Mojeños, who ore again affliated to the Maypuri of the Barre family (see XV.). Other nations in Moxos with distinct speech are tho Chapacuras in the south-east, and the Pacaguaras and Ienes in the north.
Chiquitog is occupicd by elevea distiont oations, all apeakiog radically different lannuages, but presenting a uniform physical typo:Chiquitas in the centre; Samucus, Curavas, Tapis, and Corabccas originally in the south-east; Saravecas, Otukes, Curuminacas, Covarecas, Curucanccas, in the north-east; and Paiconccas in the north-west. The language of the Chiquitos, of whom there are endless subdivisions, is one of the richest and most widely dillused in South America, serving, like the Tupi in the east, as a sort of liagua franca in the"Bolivian lowiands aded the northern parts of Gran Chaco. The numorous tribes of this latter region aeem to form an ethnical group ralated to the Chiquitos peoples, ead like them speaking a great variety of distioct lenguages. The greatest confusion still prevails as to their mutual relations; but the main lioguistic groups seem to be the Mocobi-Toba of the Salado and Veranejo rivers; the Mataguaya, includiug the Vilela, Lule, and Chanes between the Pilcomaye and Vermejo; the Abipone, oo the right bank of the Parana, betreèn $28^{\circ}-30^{\circ} \mathrm{S}$. ; and tbe so-called Lengua (properly Jwiaje) in the centre of Grao' Chaco, surrounded by Dlocobi tribes. Here were also the extinct Guaycurus (probably skia to the Tobas), noted for their skill in horsemanship. Hence the term Guaycuru came to be applied generally to all the mounted Indians of Graa Chaco, and, theugh oo longer the name of any particular tribe, it centinues to figure in ethoographic works as a racial designation, increasing the confnsion in a region already overburdeued with obsolete or erroneous ethnical nomenclatire.
XVIl. Brazilian Raccs.-Here the grouping, with one great execption, is still mainly geographical. The exception is the wide spread Tupi-Guarani ethnical and linguistic family, rivalling in cxteot the Δ thabascan and Algenquin of the northern continent, and including, besides a great part of Brazil, all Paraguay, about half of Uruguay, large encleves in Bolivia, and, if the Carib is to be regarded as a brooch; nearly all the Guianas and Venezuela of this race the two main divisions are the Guarani, from about the neighbourhood of Monte Video to Goyaz bouth end north, and otretching west and east from the Paraguay to the Atlantic, ond the Tupi theoco northwards to the Armazon and Rio Negro. The aouthern division way be regarded as ncarly compact, but the northera everywhere encloses a number of races apparently of different stocks, while along the Amazon and its great tributaries the tribes are as numerous as thay are diverse in speech and often in physique. Over 15 distinct peoples are mentioned on the Xinga river alone, 20 on the Tapajez, as many on the Ucayali, 50 on the Japura R S. Clouglı (The Amazons, 1872) gives lists of 33 on the Purus, sad of 37 on the Naupes,' a tribntary of the Rio Negro; over 100 different dialects are current on the Rio Negro itself (Martius), and as otany as 234 tribal names occur in Milliet de Saint-Adolpho's Diccionario Gcographico do Imperio de Brazil (Paris, 1863). Here the oaly means of commuoication is afforded by the Lingoa Goral, or " general laoguage," which is based on the Tupi, and which has gralually become eurrent throughout the empire.
Of the Guarani-Tupi stock the most represeatative raccs are the Tupinambas, formerly dominant on the const of Pare ; the Tupiniquins of Espirito Sadto; the Petiguares of the Paraiba; the Tupuias of Bahia; the Tobajares of Meranlano ; the Coctis of Ceara; the Obacatuaras of the Kio S. Francisco; the Afundrucus, Apiocos, and Mauhes of the Tapajos; tha Tappes, Patos, and Minuanos of Rio Grande do Sul ; tho Piturunas of tho river Curitiba; the GuanLunaris of the Parana; the Guarayos and Chiriguarios of the upper Memoré, Bolivia; the Omaquas of the Yapura; the Manaos, Juris. Terccumas, Caripunas, and nine others in the Rio Negre basin.
The Non-Guerani element in Brazil, often collectirely knowd to the Topis as Tapuyas, i.e., "etrangers" or "enemiea," has hitherto Lamed all attempts at.classification. The best known groups, mostly linguistic, are the Aimore or Botocudo of the Aimoro coast range ; the Pamacan, widely diffused in Bahia and Minas.Gerees ; the Curys, with many subdiviaions in Rio Jancire, Espirito Santo, and Sions-Geraes; the Canecran, with five branches in Para and Goyar: the Caitiri or Kiriti, a large nation in the Borboroma mouetains, with two branches (Velhos and Novos) in Pernambnce, Pars. hiba, and Ceara, grouped by Martins with the Moxos of Bolivia, the Cunamares of the Jurna, the Majurunas of the Jarary, the Manaos of the Sia Negro, and many others under the cullective name of
 Cran-GA Paycoch Pontaca-Ges \&c.! in Maranhzo and Para, with
 dos Gamelleiros ou T'imbiras," M. de Saint-Adolphe, i. p. 384); the Voure of Matto Grosso, now united with the Choco, Lipian, and Uman, all of like sprech; the Carijos, formerly very powerfol in province São Paulo, now laostly fused with others; the Carajas and Chanbioas of rivers Araguaya and lower Tocantins, Geyaz, and Para; the Goya, very numerous in Goyaz, to which province they give their name ; the Charruas, formeny very powerful in the extreme sout.': and in Uruguay, grouped by D'Orbigny with the Pampas Indians, and described by hino as "peut-étre la nation Aimericaine que l'in. tedsité d la couleur rapproche le plus du noir" (ii. p. 85); the Bororos, formerly domianat over a vast region in Matto Grosso.
XVIII. Austral Races.-These occupy four geographical areas, to whice correspond four distinct ethoical and linguistic groupa:-

1. Auca or Araucanian, Chilian and Patagonian Cordilleras; type very uniform, and by D'Orbigoy affiliated to the Perurian ; speech entirely distinct from all others, and apoken with little dialectic variety throughout the whole erea. The numerous branches are generally indicated by a geographical termioology, as Picunche, "northern people," Puelche, "eastern people," Huillichc." south. ern people," ze., the final syllable che signifyiog "peap,1e." But the official coilian divisions are :-(a) Moluche, or Arribanos, i.e., "highlanders," and Abajinos or "lowlanders," between rivers Malleco and Cautin; (b) Lavquenche or Costinos, i.e., "coast people," hetween rivera Lebu and Imperial; (c) Huilliche, or " southeruers," in two divisions, sauth of rivers Cantin aod Tolten. Total population, 24,360 unmixed Araucanians (Eduuard Sive, Ls Chili tcl qu'il est, Valparaiso, 1876).
2. Puelehe, occupying the Parepas region from the Saladille to tho Rio Negro; hence knomn to the Spaniards as the Pampas ladians. Puelche or eastern people is their A raucaniaa name, answering to the Patagonian Yonec and Penek. There is great uaiformity of type and speech, the latter, like Araucanian, being, distinct from all others. No well-recognized tribal divisions exist. The raco is dying out or becoming absorbed in the general mass of the Argentine population.
3. Patagonian, the Tchuelche, Chuclche, or Huilliche (i.e., "southerners") of the Araucanians; national name Tsoneca; srea, Patagonia from the Rio Negro to Magellan Strait, and from the Cordilleras to the Atlantic. This is the tallest race oo the globe, with mean height 5 feet 11 inches (Topinard, Anthropology, p. 320), and otherwise differing widely from all the American types, with which they have nothing in common except the structure o the hair and the polysynthetie form of their speech. The present race ogaia secms distinct from the prehistoric in this region as represented by the skulls recently found by Moreno at El Carmeo on the Rio Negro. These are highly dolichocephalous whilst DrA. Weissbacb (Zcitschr. für Ethnologie, 1877, r. 8) represents the modern Tehuclches as amongst the most brachycephalous on the globe, approaching in this respect nearest to the chimpanzee type.
4. Fucgians, the Pcscherais of same writers, Tierra del Fuego ; no recogaized collective national or tribal names; one ethuical tyle, entirely different from the Patagonian, and by D'Orbigny allied to the Araucanian ; two apperently distinct lagoages, a northern and a southern variety, with no known affinities to any on the mainland or elsewhere. They probably occupy the lowest scale of culture in the American division of maokind,-in this respect corresponding to the Negritos and Bushmen of the eastern bemisphere.
Bibliography-Laftean, M/curs des Saurages Americains, Sc. Paris, 1723; A von IIUmboldt and Bonpland's Trarels is the intertor of America. 1799-1804, Paris, 1807; A. Balbi, Atlas Ethnografheque, Paris, 1826; Dis Sils anil Marius, Reise in Brasilice, Slunich, 1831; Pedro de Angells, Cofeccion de obras y decumentos rela. Bivos a la hishorid antiguay moderna de las protincias ded frode ia Plata, vols, Indians, Boaton 1837° D.Ork, iographyand historin Paris, 1s39; Dr C. Martug, "Dlo Vergangenhelt und Zukunft der Amerikantachen Menschicit." is Deutsch. Vierteljahresschryt, 1839, p. 235; Capt. Fremont, Erplerting Expledition t. the ñocky Afountains, London. 1846 ; F. Halc, Ethnologyand i'hilology, Philadelphla, 1846: E. Buschimann. "Spuren der Aztekischen Sprache im nörcil. Mexico," In Afemoirs of the Derlin Academy, 1854; Holumber, E'thograjhischa Shisecn wer die Folter dir Russ. Amerza, llelslngfors, 19s5; Schooleraft, Fist, ands Sut. Information respecting the Hist., dec, of the Induan Trubes of the linted Shates, a vols., Phlladelphia, 185t-7 (336 pl.): Squier, Niearagua, 1882, and states of Central America, New York, 18s8; Cl. R. Marklam, Expeditions into tha Folley of the Ama:ons, 1539, 1540, 1639, Lendon, $18: 9$ (IJakinyt Society); J. J. von Tachudl, Reise durch die Andin, Gotin, 1560 ; A. S Taylor, Bibhographia Calfornica, Sacrumentn. 1863; Muhint do Saint-Atolphe, Diecionario Grographico da /mperio do Brazt. Paris, 1863; H. Y. Hande, The Labrudor Pemnsthio, London, 1863; Dr Th. Waliz, Anthropologie der Naturbölker, Lelysc, JAG4; Nic. Verrot, Affmoire sur les marurs, coulumes, et yeligions des Sautages de ramerique Segtrno
 Lelpste 1867: R. G. Latham, "Pape 9 on the South Amertcan Races," In Hic South American Missionary Afaga:ine, 18f8: G, M. Sproat, seenes and Studes of SGmage Laft Londen, 1868: P. Marcoy, Voyage a trarers l'Amerique du Sud, Parts, 1868. W. Schultz, "Natur- und Culturntulien uber Sut-Amerika und selns Newohncr, Rul. of the Dresden Geogr. Soc., 1868: CI. R. Markhato. "The Tibes of the Emblry withe Inens," in Jour. R. Geogr. Soc., wol. x11, 15i1: 11. H. Bancroft. The Native Rase, of itc If die Stmes of North Ancrica. London, istós Jas. Orion, The Andes and int

 "Anthromingle Amerkas." in I'chandiungen der Berliner Gesellscheft /ür AnthroCologic, 1577. p. $114-6$ if: J, W. Fowell, "On the Yhiopophy of the North American dus Etats-Uns" In Rut, the Ia Soc. de Groguaphe, ruria, vol, xvh, isis: Schate

 Nancy. 1878, V Dumac Les hedens Porus Roures, Puis, lsiq. E. von lless

 Frinting Ottec, Thit-ri, numponaq other papera on the Americish liwes andian-

 New lusk la the Stuly of the Indion Langughes, Washangwa, isso. (A. H. K.)

Modern History and Present Distribution of Nuith American Indians.

At the date of European settlement in the American Continent. the indian population of the present area of the United States was variously estimated, and as low as $1,000,000$. In Mr. Jefferson's time: it was theught that there were 600,000 to $1,000,000 ;$ in 1822, Rev. J. D Morse estimated them at 471.136; in 1832 Drake placel the number at 313,000 , and in 1840 at 400.000 . In 1855, the Commissioner of Indian Alfairs reported 350,000 then in the United States; 306,475 in 1866. By the census of 1870 there were 383,577 , and by that of 1880, 255.938. In 1886 the commissioner of Indian affairs estimated the numberat 24\%.761. The conclusion is that the Indians are gradually deereasing in mumbers. For the last eighteen years the average decrease of the "civilized" or "partially civilized" Indians has been a little less than 2,000 a year. The number of molians in Canada at the present time is estimated at 130,050 .

The following table, prepared from the report of the comnissioner on Indian affairs for 1884, shows the number and loca.ity of the present tribes, and may be relied upor es being as corrcct as the nature of the questior $w \cdot 11$ permit:

states and Territorlea.	Number of Agencies.	Pouna. tion.
Arizoniz.		18,699
Califurnia 4^{4}	4,736
Colorado	... 1	991
Dakots.	... 9	32,111
Idatho.	... 3	3.678
Indian Territory	6	18,334
Indiun 'lerritory (tive civilized tribes)	... 1	64,040
lown.....	.. 1	3 T 4
Kaners	.. J	976
Maine	.. 0	410
Michigan. 1	9,577
Minne ${ }^{\text {ata }}$ 1	5,287
Mtontana.	...	15,333
Nebrakka, inclading at attached to K but atil livirg in N(braka..........		3,602
Nevuda,............ 8	5,018
New Mexic 3	33.043
New York. 1	5,407
North Curolina	.. 1	3.116
Oregon	. 5	4,255
Texas	.. ${ }^{4}$	88
Utah.. ${ }^{2}$	2,319
Wualington	... 6	10,546
Wieconmia	...	6, 偍4
Wyoming	... 1	1,855
Indiana and Florida.	... 0	518
Total	. 61	246. 265
* Indians in charge of a United Statem oftcer.		
british america.		Fojuration.
Ontario........................... 16.sid
Nova scotin. .. 2117		
Prame Lidward Imland		..
Alhubarat		
MeKıh\%te Dintrict.		300
tepurt'e Land, Labrador and Arctic co	6t.	O1P
Totat...		131,859

When the Confederation of States was forme... 组 Indians became a charge of the Cougress, aud passed under its control. In 1785 an ordinance for the egulation of Indian affairs was passed by Congress. By thic tordinance all the official intercourse between the lndian superintendents and the Indians was to be "held, transacted and done at the outposts occupied by the troops of the United States." The War Depariment thus came in charge of Indian affairs. From 1788 to 1834 Indian superiuteadents, agents and traders were appointeri by the President. The act of 1818, how. ever, ordered that they be confirmed by the Senate. This form of management held in force until March 3, 1849, when the Indian office was transferred to the newly created Department of the Interior. The Indian oftice is now in the Department of the Interior, with a commissioner under the general charge of the secretary. President U. S. Grant, during his tirst term, inangerated several changes in the Intian poliey, franght with more good to the couutry and to the Indian than all the measures of the years past. Under his administration the Indian Peace Commission was organized, and Congress ordered, by act, that no more treaties be made with Indians as Nations.

The system of coutracts for supplies, the method of distribution of both supplies and rations at the agencies was changed and made more exact, and the Iudian superintendeucies of agencies in the states and territeries abolished. The ageuts were made to report directly to the commissioner of Indian affairs, who was given a corps of inspectors to observe their work. To Gen. Grant the Indian of the Uuited States is indehted for his present adranced condition in the matter of his relation to the nation. The policy of Gen. Grant beeame known as the Peace Policy. He was aided in this movement by various religious bodies, who first met the Board of Indian Commissioners at Washington, on January 13, 1880. The entire Indian population was apportioned out, and the scveral religious denominations asked to name certain agents, who were then appointed by the President. These denominations* were as follows: Frieuds, Methodist, Catholic, Baptist, Presbyterian, Congregational, Protestant Episcopal, Unitarian, United Presbyterian and Evangelical Lutheran. According to the existing Indian polies, an Indian is a person, within the meauing of the laws of the United States. Still by law and by the Department of the Interior. he is consilered a ward of the nation, and so treated. All Iudians are to be placed on reservatious, and rations are to be issued at stated times. All the Iudians are uot. however, subsisted by the government. Farming, manufacturing and berding are to be eneouraged as far as possible, so as to make all the Indians cventally self-supporting. To this end farm. ing implements, tools aud eattle are purchased and given into the charge of the indians, under direetion of the agents. Dhlucation, elemuliness, thrift and morality a e also tansht and enfureed Monogamy is insisted upon. Clothing is furnished under judicions regulations of the Indiin Department. Sehools for the young, and medieal attendance are provided by the government, and the religions denominations are free to teach and instruct them in their ereeds.
St is the policy of Congress that the Indians shall become citizuns of the United States upon renouncing their tribal relations. Depredations anon whites by Imdians are compensated for out of annuities. To the Indian, abso, has been extemted the benetit of the homesteal law, but the land so acpuired ean not be alienated, withont the consent of a United States judge, for twenty-tive years The Unite: Stotes recognizes no tribal government, and the appmatment or election of chiefs must be approved by the agent or Department. There are also provided, by the government. Indian courts and police. The putchase of supplies for the Indian service is made in open market, and the contracts are awarded to the lowest bidder. The proper
plactag and distribution of such supplies devolve on the Commissioner of Iudian alfairs

The policy in Canada is similar in almost every respect to that of the United Slates, but the results have not heen the same. Canada has never had any trouble with the Indians, while the relation between the United States government and the red man has been one of almost constant warfare. This is in part due to the fact that the agents of the Dominion of Canala remain in office during life and are trosted by the lndians, while under the United States government the agentsare constantly changing. Moreover in the United States they are appointed by the churches, and a:e often unfit for the position.

Treaty after treaty, made with the lndians in the past, has heed violated by the government, and the lndians finding their confidence misplaced. hare. on their part, neglected to adbere to the requirements of the faws. In Canada the aborigines have not been driven from their huoting grounds. They have been treated more homanely, and in consequence of all this, they have remained in or near their old homes. The land which embraces their old huntiug grounds has not been in demand from the whites yet, nor are the Indians as numerous as in America. They number only about two fifths as many as are in the United States and are over a larger territory, which has a white population of only one teuth of that of the United States.

The Indian allies of Great Britain have been most devoled alluerents of the crown, in war and peace. A state of dependence in many things seems to be congenial to the Iudian character. Many of these Dominion Indians were formerly residents of the lands now embraced within the United States, and several of these bands are offshools from portions of tribes now resident within the Republie, notably the Six Nations, Chippersas and Pothawatomies.

The Iudian population of the Republic of Mexico in 1884 was ubout 3.500 .000 and steadily on the decrease. They are sometimes left to the control of the states in which they reside, but generally are left to themselves. as land is plenty and common. The lack of immigra tion, the slight demand forland, and a bomiteous Natire. making food and clotbing easily obtainable. are great aids in Mexico in the control of the Indian. In the past, the Roman Catholic church has been largely interested in their management and improvement, and at the present time different churches in the United States are establishing missionary stations among them.

Location of Indians in the Dominion of Canada.-In the province of Ontario there are the Aleonquins, Chippewas, Iroquois, Mohawks, Oneidas, Ojibhewas ud Six Nations. In Quebec are Algonquins, Amalictites, Hurons, Iroquois, Mienars and Naskapees. In Nova Sentia there are the Micmacs. In New BransWiek the Micmacs and Amalicties; the Nicmacs also resite in Prince Edward lsand. In Manitoba are found prineipally the Chippewas and a few Sionx.

Tine Distinitutions of Jndians in the ['Nited States.
I Johegans.-This trioe are the remaloa and all that are left of the once mownoful and celobrated tribe of Pequots of Maseachneetts. In thelr wars and fliscensions with the white a considerable portion of the tribe moved off undor the command or a risal chilef, and estalifubed a separate tribe or band and tonk the name of Mo-heecon neaha, which they have proserved ontil the present day, the rest of the tribe having loug fince been extinct. Thes reside on a tract of iand near Winnebago lake, Wisconsin, giren them by the government. The tribe numbers 400 or 500 .
reguods or Slochbridges.- Of the Ave principal nations of New Encland in 16ft, the Pequodt or Mohegans, the two bejng coneldered an ofle. Were tribes of con-iderable influence and strength of numbers, claiming authorlty over all the Jndians of the Comme. ticut Valber, Eiliot's Iranstation of the Bible is in a particular danlact. The Stockbridges, no named from the place of thele refl. derace, were artginally apart of the Ilou*stonic irithe of Maseacho. setta, to whinm the leglalamre of thatstategranten a section of land in 1733. They weresubsuquently removed to diew Stockhridge and Bro:herton, in Wewtern New York. They bad gon'l lands and fine farma, and were rapldy becoming worthy of clizenahtp, when, in 1857, they were removed to a reservation near Green Bay, Wisconain, where they now remain, on which tbelr acent reported no White mar, coold obtain a comfortable divelibood by farming. Tbe tribe has 138 membera remalning.

The Delazares are the remains of a bold, daringfund nomerons tribe, forinerly of the statee of Pennsylvania and Delaware, and the terror of all the eastem tribes. In 1616 , the Dutch began tranlag with them, buying so much of their land that they had to move inland for game and furs. Afterwards William Penin bought hate tracts of land from them, but the Indians clamed to have been defrauded. With the assistance of tbe Indiannof the Six Nutions, the anthorities compelfod the lelawarea to retire, until in ling there were none east of the Allephanics. By quaty in 1asa, hands were reserved to them between the Mami and Cuyahogit rivers, and on the Muskinguan, in Ohio. In 1818, the Delawares ceded all their lands to the government, and remosed to Whte River, Missnuri, to
 and Misoori rivers: the re-t went annth to lidriver. They furnished $1 \pi=$ soldiers to the Injon army in the civil war. In lo 0 tbey sold their land on the white and Minsouri rivers to the rail road crossing jt, and bought a tract of the Cherokect. In lat 5 wes oumbered only ges.
The sharanees or Sharanoes are an pratic tribe of Algonqoin atock, supposed to have bere one primarily with the kickajoos. They werefirst discovered in Wisconsin, hot movell entwird, aud were driven to the bank of the Cumberland riser. Some passed Thence juto sonth Carolina and Fiorida, aud by the karly phert if the efghteenth econtary had sprod iuto Penn-ylvavia nod zew iorl: At the close of the Englifh and Spanish wars, those in Florilla emigrated and joined the vorthern havda, sud were driven hy the Jro. quois, whohal before forced them sonth, imo omio. Thaty aided the Engli-b during the IRevolutionary war. In 17\%, ibe main houg of the fribe were on the Scioto river; some bad already crossed the Of the fribe were on the sciotoriver; Rome bad aready crosef the lands to the government in 1855. and those in ohio in 1631 , for lands to the government in less, and thone in ohio in 1831 , for severalty. The eavtern Shawnees are those who enigrated dire from Ohio: they number 97. The Abetnte Shawnees are the Mie. sonri branch, and number 583. Both divisious nre io a highly pros peroos condition
Tbe Muskogee or Creek Indians, orisimally accupied the greater part of Georgia, Alabama nind Florida. They took an active part in the war of Revolution against the Americana. Twouty four thousaud five hundred and ninety-four were removed to the Indian Territory, only it remaining on the oha hatiag groumt. Juring the eivil war the trihe was dividet in tis allegianrn ta the luion, and engeaged in pitched battes with "acls other. the l nionists suf fermg badly. They worelsongbt ingether aqain aft. r the war on a reservation of 3 , ino, 0 a) acres in the Indian Tertitary. At present they namber aboot $14,(\mathrm{mn}$, including 3 (an) of mixed bioods. The ξ rank among the first of the civilized tribes.

Chactaus.- It the time of DeSoto's visit in 15月) the Choctave Were living west of the Croeks. They were purcably dishaw and were a nation of farmers. Duibicg the civij war fury jow it first the enase of the sonth and then of the lonion, lonitg a
deal nf property. They wereafterwards roduced deal of property. They were afterwats roduced papmintio ire
 belong to one of the "Five Civilized Tribes.
The Dakatas or Siaur mutil within a few yeare ocenpind the larger fortion of the country bounded on the east by the great lakes, on the north by the British Postessions, on the we b by the the Rocky Mountainand on the sumb by the Plathe river. Ac cordiog to their raditions they came eastward from the pracific. L'p to Act othe Dukotas were divided into two prinepal divisions, which were known as the Minnewota or Mississippif bat otas, con posed of four bands: The M'dewakantmas, the Wa-perktes, the Frab-je-tons and the siscetont. The maseacre of the whitre in 1 a62 was inangurated ly the M'dewakantons; the Wrabpetons and Sisertons afterwarts jointur them.

Along the Histouri, bat living mostly on the matern side, wete the Shanktonwan (Vanksons), inhabiling originally the valley it the Siosx, Des Moines und dacgues rivers, and living now princl pa ly about the mouth of the Ve mathon. All of the sions mew
 tana and one in Nelora-kis. sereral band of the sious are fermi civilzad. Some remain "hanket Indinns," but fow, if nog, are ronmers. The civilizing proces is prograsing fairly well. They have becn, in the past, the fertor of the West and S゙orthwest, bit are now far from tho warlike ravige that they once were. Sions are now far from the warme ravis were frequent, bat are now 1 m -
 probathe. Sitting buis maintimed as The agande of sinox revila on reservations adjacent io their oricinal country, and thla has probably aided in contenting theon with the preserit system. They now unmher 35 , civi sonla, but it is belfeved tbat they are elowly de. cteastig in numbere.
The Cheyennes, a braneh of the Algonquin family, are n emall bot very valiunt ribe, which lised next to the stomx on the west. betwen tbe biack hills oud the leocky monntaliz-. They are f Yery tall race nfmen, second in stature to the ()-nave. This nh then has received a variety of names from travele and the la wh
 Shawnaya, Shar-has, Shai-cn-a, or shatem. Wuth the blackfert, lhey are the most western branch of the frent A'pouguin family. When fret known they were living on the Cheremue river. bot it The close of the last achtiry were driven wot of the Mikaniby

 marratary divimina of the Misanorl. The northotn Cheventan ferce and warlike band, were ennetantly on ralrlangainat dbewh tes In the jears up to 18.6. In 18.6 they joined siting 18111 and watw In the masuare of Custer and bis men on the Rome Rud, in Ituly 18ib. In 18% they enrreadered to tbe Uulted States, and were nrat
gent is Fo:t Rohimson, neb., and finally placed on a reservation in the Indian 1 'erritory, at Furt Reno, August 8, 1877 . After several cultreake the nost noted of which was that of 1885 , they were gettied ist Arapubo Agency, Indian Territory. On June 30, 1885, there Vur. 3. 4 josuthern Cheyennes at this last named agency and at Chey, Lhe, In lobt there were 500 northern Cheyennes at Pine Rice Acency, Dus. They are nncivilized, with the manners, Way - c"ustoms and sujerstitions which have heen attached to their the for generations. They are insolent, headstrong and domineering. "Tbry bate never been whipped," gays the agent, "und hoast that they could defeat the Anserican army at any time. The Arapabus and Cheyennes, at the Cheyenne and Arapahoe Agency, namber 3.800 .

The Usiges in 1673 lived on the Missouri. Near the close of the last century they were driven down to the Arkansas. At the opening of the cuvil war 1,000 of them jomed the Confederacy. Treatiea
 trust to the (nited states, and their removal to the indan Territory, where thay hase been placed under the care of the Society of Frieids. In 1 fis they numbered 1,547, of whom 1,170 were full bued.

Tle Kaw, Kansas or Konzas tribe of the Dakotas are an offeboot of the Geage. In $16 \begin{gathered}\text { ins } \\ t\end{gathered}$ ey were on the Mnsouri river. At the time of the cession of Lousisana they were on the river Irrasas, at. the month of the Saline, where they bad been driven by the Sioux. In IN 45 they were assigmed a restruation of $80,000 \mathrm{acres}$, and from there Fere finally muved to a new bome among the osigesin Indian there were finally moved to a new bome mmong the Osiget in indan
Terriory. In 1850 they numbered 1.300 ; in 1560 , 800 ; in 1535,516 , Terriory. In 1850 they numbered 1.300
and in les5 they had dwindled to 25.
The Crou's were originally one with the Minatarees or Gros Ven tres. In 1575 they were located on the Crow resersation, in Montana. They are now divided by local asage jnto the Sonntain and River Crows. The River Crow's were for a long time a separated band, a portion of tbem heiag at or near Fort Belknap Agency, while many roamed at large. They are now all on the Crow reservation. In 1883 they were removed from the western part of their reservation to the whlleye of the lbir und Little Ilorn rivers. Many hold their land in aeveralty. In $18 i 3$ they numbered 3,202 . By occopition they are farmergand berders, and own more iban 15,000 horses.

The Sars, Sunks or Usankes were tirst discovered eettled about Grean Bay, Wis. They arenow one nation with the Foxes, and, broken in their tribal relations, are living on several diferent res ervations. They occupy the Sac and Fox reservation in the Iudian Territory, sac and Fos reservation, Iowa, Tama Connty, Pottamatomieand Great Nemaba Agency reaervation, Mo., and some are winnering hands in Kansas. In all they number $1,2 i b$.

The Gros Ientres and Mandans.-The Gros Ventres are undoubt. edly a fart of the tribe of Cruws. At nome time they becane fep. grated from them and joined the Jandans, retaining, however, grated from them and joined the Jandans, retaming, however,
the 'row language, even to this dity. They were made reservation Inedians aftr lsib, and located at Fort Berthod Agency, Diak. Thuy are on bot sidee of the Miseonri river, living with the Man. dintam Arickarees, There is a band of 200 (iron Ventres and Dlanduns locaten at Bufford. and one of 8iz at Fort Belknap Acency, liont. The total number represented by these three smafl tibles w'29 1, 2Ni, in 1685.
The binnebagoes are a hranch of the great Dakota family. In iost Warquette journal plices them near the ead of Winnehay lake, Wiscomein, ou the west side, In 18:0 they numbered about $4,5 x)$, and were liviug in hive villnges on Winmebago lake and in fourtern on Iock River. Hy a troty in 1829 and ik3s they ceded all tbir iamlssonth of the ivisconsin and Fox rivers, for a seser. vation on the Minsissippi, above the Lpper Iowa. Afterwards they were resuoved from this place on a remervation further up the river, then to Crow rivar, in 1886 they wete removed to Blue Earth. Ainm., thence to Crow Crects, and fiamlly lo a reservation it the Onath lands sud placed undwr the care uf the Friends. They occapy the northern partion of this Omahareservation, and number $1, \because 14$.

The otoes, calling tbemselves Watonhtatah, were originally a part uf the Missourias, nemp with the Iowam, elaim to have migrated to the Miswouri with the Winnelongors. They have loag resided with the Minsourian on the eanth id of the latte river
The Jisonorias arm a tribe of Jitkota dercent. With the Otes lhey nimbur abont $2 \% 4$.
The Poncos wore originally part of the Omaha tribe and lived on the Rud Kuver of the North. Tlucy wer" driven south acrans the
 a remsration nenr the lanktons, in Dibkota. I naler a trenty ol

 that he wns malndan, mod therefore not aman, by finyingthat be wha it man, althongh deal hal made his mkit in haother hue, Elandthe Buar was relemmed, wid he with ! for of him prople cathe

 Lury

 1 dismany treation have beon mande with them, always necompanier

there were 1, 167 Omahas at Omaha and Winnebago agency, Ne braska, in the "Black bird" country.
Iroquois.-They were one of the moat numerous and powerfal tribes that ever exieted in the nortbern part of the United States and now one of the most completely annihilated. The few remnante of them hare long since merged into other tribes. The whole of the Six Nations bave by some been denominated Iroquoia.
Six Natioro. Firet called the "Five" and afterwarde tbe "Six" Nations. The Five Nations were the Senecas, Mohawka, Oneidas, Onondagas and Cayugas. After 1712 the Tuscaroras hecame membera of the leagae, ana it became known as the Six Nationa. They fought against the coloniea in the Revolutionary war, They live now in New York, for the most part. A few are in Indian Terrt. tory, others in Wisconsin, at Green Bay, and quite a large portion in Canada. Tbey number in all ahout 5,110 .
Chippeuas. -Tbis tribe nigrated from the east ahout the opening of the seventeenth century, settling first at the Falls of Saint Mary, and then abont the beadwaters of tie Mississippi and the Red riven of the north. They sided with the English in lijb, and again in isna. They are extensively intermarried with the Ottawas, and art thrifty and worthy citizens. They are scattered over thirteen re servaitons in Wisconsin, Michigan and Minnesota. The total numa ber in Inet was 18,445.
The Menomonies were known to the French as early as 1640. They were then living on the Dlenomonie river, in Wisconsin. Thit is one of the few tribes in the United States which have never been removed from their old bome, and are still residing on the same spot where they were brst known. In 1831 , they hegan ceding thcis spot where they were hrst known. In losi, they hegan ceding taci
lands to the government. for money payments unin, in 1854 , thes were located in their present rescrvation, in Shawano connty, Wia consin, consistiug of 331,680 acres of very poor land. August 1_{1} 1845, they numbered 1,308 .
The Ottaucas, when firet discovered by the early French explorers, were sesiding on the nortb abore of the peninsula of Ilfchigan. After the defent of the Hurons in 1649 they thed before the Iroquols heyond the Mississippi, but were forced liack by the Dakotas tc Mackinaw. They fongbt with the English during the Revolution and on 1512. In 1033 those in Michiogn ceded their lands and moved south to the II issuuri river. In 18to some who were in Ohio mold their land and renoved to the Indian territory. They moved agair in $18 i 0$ to a new reservation of 25,000 acres, near the shawneea, in 1870 to a new reservation of 25,000 acres, near the Sbawnees,
where they now live. A large namber of Ottawas are liying on the Ehores of Lake

The Potturatomies are the remains of a tribe which was once very nomerous and warlike, In 1600 they occupied the lower peninsula of Michigan. Therlands were conveged away little by little, until in $183 s$ a reservation was allotted them on the Missonri, tc which 800 were removed. The whole tribe then numbered aboul 4, (000. A portion of them left their reservation on the Miscouri anring the civil war and went to Insico, but retarmed to the Fox ing the civil war mod went in Ansico, but retarned to the fox agency, Indian Territory, in 188%, where there are at preaent 550 .
There are 70 more ander the care of the Indian Burean, in MichlThere are to more under the care of the Indian Burean, in Michi-
gan, some in Mesico, and a few nre Wandering about, Onaccount gan, some in Mesico, and a few are wandermg about, On accoan
The Seminoles cormorly inhabited the puninsula of Florida, and belonged to the fami,y of $\$ 1$ uscogees. In attempting to move them westward a war wus brougly ahout which Iasted from 1835 to 1840. At that time nearly 9,000 of them had bern removed, leaving 300 ln Floridu. The e jojned the western band in 1858 . They bad much trouble in getinir settled upon a revervition, but finally located on atract of sho, who acen bonelit of the (reets about 1842 . The loca. tion of the 'uminkes is now knows as Luion Ageacy, Indian Ter. ritory. They unmber 3, (WW)
Comanches, shonhones or snakes are a roving, warlike and preds. tory ribe uf 5 ombne descent, who renmed over much of the great prairie conntry from the llatie to Mexico. At one time they wers on a remerration in Texas, but wercidrivenout of the state, and *incu that tirue they have been unrelentimg encmes of the people of that state. Culur the treaty of iwhi the gowernmeat set apart for them a roservation in the westurn part of the ladian Territory. There las betola atart mate in furming, amd a few bave been in duced to serd therrehilifre to school. On Anyust 31, 1885, there were 1,544 Comanchun at Kiowa, Comanche and Wichita ayency, Indian Territury, including 1tis Penetheka Comanches. Theirnambers are rrmbanly alocrenung.
The Paunce Picts adjuined the Comanches on the nortb. They are now at kiowa, Comanche nud Wichita aqeney, Indian Territory, Thuir numbers are few and gradually decreasing.
Tle Kiouas, or "Drairie Nen," are one of the tribes that compose the shombonu family. They are a what and roving people, occopy: for the conntry nhont the headwaters of the Arknnegs, but alao formerly ranging ower all the comntry between the Jlatte and tha Rio cramde. "The first kuowledgi of them was thronyb Lewis and that with them until lsion, when they made a treaty, and agreed to

 ovir lisee sud a hanf milluna of acres, with sonme Comanches and Aphehes, but they were rosive and wnacttled. In 18, ander
 1:35, there were $1,15:$ Kiowne at kiown, Comanche and W'jebits agency, ludinn Terriony. Thay have bern on their reeervation ten yéara, inut nre yet callerl bhanket ludinne.

 phous along the river. In lrize they wore locatel $1,500 \mathrm{mllem}$ ahow the manth of the Minstari river. They then bed nine vilagen
 thenn thembleq furthrr up tha river ho only two vilangew, nud nea
 of the Indian race, amall pux, came avoug them aid almast eis

ermparea them．＇l the survivors took refuge With tue Arickerees． They ase now at or near Fort Berthold agencs，Dakola，and num． ber auoul tiv．
．lez lercis or Sahaptins，inhabited Idaho，Oregon and o asbing． twh．Earty it thas century they nombered about 8,000 ，snd in 1838 wu•1．a nissun was estabtisbed nmong tiem，ubont 4，000．In 1877 Iroable broke out betwetn this tribe and the whites．A raid was ＂．，by their chlef doseph，which，for its length，the march of the rroups，ind the thet displayed by Joseph，forms ane of the mosi eviraordinary chapters in the long history of Ludian ontbrake －Itwre are $1,3 x y$ Nez Jerces at Nez Perce nerency，Sapwai，Torliert hado，und 2h九木 at Ponca，Pawuce and Otoe ageney，Jidian Territory
ae Rla dfeet ure a branch of the Algonkin family．Tiaeg Por． os rly inluabited the whole of the counlry ahout the sources of the Bu－siuri，from this place to the Kocky Mountaius．They are now at．a Aver＂aticn in the vicinity of their original roaning gronnd blu wear bricish colambia．Their history since the early part of the century is embraced substantially in that of the Sionxiribee， and the Crows and Flatheads．The Blackfeet Sioux Lave no con－ anction with the Blackteet bere mentioned．The former is a Dakutalribe，the latter belons to Algonkin Etock．TbeF are o cated at inackfeet ngency，Montana，hut heir number is ancertain．

Nasiastia．－Tbis the umme of a branch tribe of the Algoukins， which formerly occupied a vist tract of conntry lying on the east －itle of the Mississippi，and betweeu its banke and the Ohio，and now forming a considerable portion of the state of llinois．Per． hups there bas been no other tribe on the continent of equal pawer with the liaskaskias，which have sn swddenty sunk down to com－ Hete uothinguess and disappeared．The remanant of this tribe nerged into the tribe of Peorias of Illinois．It is doubtinl whether a single Kaskaskinu ludinn of pure blood is now living．The united bloodsare liwint at unupaw acency，Indiun Territory，con follerated with the Peorias，Piankeshans and Weas．

The Senecas beloug to one or the nive（afterward sis）Iroqnois מationsin wertern Stw Cork，comprising originally the Sinnehss as the Dutch call thern hewce lue word Senecas），Onondagas，Mo buwks，Cayngus and lneidns：When first known to the French liey were diving on the sonih side of Lake Ontario，and engaged in a flerce war with their Algonkin neighbors，By conquest several ofher tribes became incorparated winh them．Missions were estab． lisled amnng them by the French as early as 103 ．In．In 1763 the Seuceas alone，of the Six Nations，joined in Pontiaces league to ex－ tiroate the Engliah．Daring the Ievolution they sidud with the Enslish．but made a peace in 1784 ，sud during the eecond war re－ majned loyal．Early in the centiry part of the iribe setaled in Ohio，afterward resuoving to the judian lerritory in l8is，where they how are，to the number of 240 （in $1 \$ 5,2 \pi 5$ ．The new Iork seue cas still occupy the Alleqhany，Cattarallirasand Tonamandu resurve of（ib，000 acres．Where they all live in good houses（in 1845 ，ahont 2，18）in mumber），nnd have large，well cultivated farms，and are in every way a civilized and well regulated clacs of people．There were al Quapaw agency，Indjan Territory，in 1844．ins：in 1865
 rancan remerve，N．I．，in $184.1,310$ ；in 185．1，393；Coruplanter re
 Euncoas in Vew lork atate are civilized，and those at Qunpar fairly so．They ure farmers and herders．Tbey are annoity In－ dians；some few of them are of pure seneca blood
Gauas are a tribe of Indians inhabiting originally the interior of he state by that usime．The first treaty was made winh them in 1815．In is3 the tribe mumbered about 1,000 ，and were at this time rernoved to the west bauk of the Missonri．In 1801 the tribe，then rcduced to about 300 ，ceded all their land except 16,0 on neres．In 1869 they shared the remsini，g portion with their old friends，the Sacs and Foxes．They are now located at Potawatomie and Great Vemana agency，kan．They are for the most part civilized，and are urmers，mechinieg and burlers．They number in all abont $2 \mathbf{n}^{2} 0$ ．
The Five Citilized Tribes are under the charge of the Union Agency，which is located at Maskogce，as being the most central，easily accessible point in its jurisdic－ tion，which extends over the Crcek，Cherokee．Chicka－ saw and Seminole Nations，and the strip west of 96° known as the＂Cherokee Outlet：＂the whole agyregat－ ing in round numbers $90,000,000$ acres of land．This is occupied hy about 20.000 ladians of full blood， 32,000 of mixed blood，and 13，000 adopted whites and freed－ men，and a foreign population of more than 100,000 whites and other non citizens，divided as follows：

Cr cka，hatives and ndopted freedmen．．．．．．．．．．．．．．．．．．．． 14,900
Cheroki＇cs，natives，adopted whites，other Indinne and
froedinen．
24.100

Chon＇刀⿰㇒⿻二丨冂刂灬，matives，Bdopted whites and freedmen．．．．．． 18,000

Seminoles，nitives adonted whltesand freedmen．．．． 2,600

Total citizes．popaiatho
Farm lahorers ssd mezhanite bover permit an their famblice．
Llcan＊ed iruler．．．800 railroade and minea and their familif＇s．．．．．．．．．．．．．．25，000 Jnterfopers und eriminalls，princlpally ratugree frome

 Thatal popaiation，fnlly． （\％．40） It wally he diffirult if not impossiblic in find qual population anywhere with greater dier ra：－af
nationality，education，occupation ana creed，ana wro fewer interests in common．

GOVERNMENT
The political condition of the five tribes 13 comples， and must necessarily so continue as long as the preaent tribal autonomy exists．Each of the nations bas ite own lical government，a constitution and laws，and i divided into executive，legislative and judicial depart． meats，each of which is in as periect operation as the average state government．Each nation has a princl－ pal and second chief and treasurer，and the maiority have auditors，attorneys and secretaries．

Reliques of the Indians．－For the most part the In－ dians have vanished away and left scarcely a siga of their presence behind them．Along the Atlantic snd Gulf coast there are often found heaps of shells，and all over the country it is common to pick uparrow heads and many rude implements of war．In the southwest are found remains of once apparently popu－ lous cities．The houses are built of stone and mortar， and show signs of quite adranced civilization．These towns are found in southwestern Colorado，northweet－ ern New Mexico，in Arizona and southern Ciah．

E．C．H．

INDIAN TERRITORY．

INDIAN TERRITORY is a tract of land reserved by the government of the United States for the lia－ dian tribes which were removed west of the Mia－ sissippl river，and for those living there．It extends between the parallels 33° and 39° north latitude，and 94° and 100° longitude west from Greenwick．It is 370 miles long，and 220 miles wide，with an area of about 64,215 square miles．It is bounded on the noth by Kansas，on the east by Arkansas，on the south by Texas，and on the west by Texis．The Red river forms the boundary line between Indian Territory and Texas on the south．

Soil．－Indian Territory is a beautiful country，abound－ ing with rast and fertile plains．The eastern pormon is particularly rich，agricullurally，and well watered， The average annual rainfall is about 45 inches，and the mean temperature about 60° Fahr．The territory is watered hy the Red river and its branches，the Arkan－ sas and ita branches，besides innumerable small streams．

Surface．－Through the western part of the Terri－ tory extends a belt of timber 40 or 60 miles in breadth， running its entire width．This belt，known＇as the ＂cross timbers，＂marks the outbreaking of the carbon－ iferons formation．As for the rest of the Territory，the surface presents，in the main，a rolling prairic．Along the rivers there are broad stretches of fertile landa， covered wiih a natural growth of timber．The aouth－ ern and southeastern parts of the Territory are cov－ ered with hills，which vary in height from 300 or 400 to 1.500 feet above the surrounding prairic．These hills are，properly，branches of the Ozark Mountains． and are known as the Wichita Mountains，Shawnee and San Thois Hills．
In the castern portion，there are outcroppings of granite：also，to some extent，in the Wichita Mount－ ains．The eastcrn portion is，with this exception，the carboniferous formation．The central and western parts of the Territory are covered，in the main，with the triassic and jurabsic formations．While it is not certainly known，there is every reason for boliesing that there are extcusive deposits of coal，and．perbaps． of the precious metals，in the hills and mountains of this cxtensive Territory．

Climate．－The climate is genial，and fitted for the production of cotton，tobacco，wheat and fruis．The portion west of the＂cross timbers＂dilfers v．ry mucb irmm that on the east．The climate is dry：thonerage rainfall being only about 25 inches．as againat 45 inches is tac exal．while the mean annual semperaiure s

Rivers.-The principal rivers are the Red river and the Washita in the southern part of the state. The Arkansas. with its branches, the Neosho, the Salt and Red Forks, the Canadian and the North Fork water the northern and ceutral portions. In the west, irrigstion must be practiced to make agriculture successful. None of the rivers are of any consequence for navigetion.
Fegetation.-The vesetation differs as widely in the east from that in the went as due the soil aad climate. The western part 18 covered with such thara no are peculiar to the extensive western plans, white etate of the "cross thmbers" the vegetation is almost saberopical, and is very abundant. Here are found the oak, cypresto cedir, walnat und gam trees. Among the wild frits growpress plentifully are peruimmons and grapes. In the west the growth is mostly of the nature of butfalo graes, cactus, yncea and artemi-ia.
dnimals.-Ha the east are fouod dcer, hears and wild turkeys. Thene are beconing extinct as the country becomes more thickly settled. In the west constantly diminishing berds of antelopes and bsou roatu over the plains, and, in as few instances, wild horses. Gronse, owls, sage hens, prairie dogs, rattlesnakes, and gophere are numerous.
gophabitants. - The white popnlation in Indian Territory ls very small. It is made up. nlaost +ntirety, of the agents upon the dif ferent reservations, the warrisuos at a frw military posts, and employes of the railroads which crosy the Territory. The larger portion of the population is now made up of tribes or parts of triber whicb the United States government bre from time to time moved there and placed upon rescrvations. These Indians are treated ae wards of the governuent, which holds in trust for them money Wards of the governuent, Which holds in rust for hem money
that has been realized from the sale of their former hunting that has been realized anless huabands of Indian women, are not allowed to settle in the Territory, nor are Indimas allowed to go away, except on a pase from the agent of the revertation. This conatry is not an organized territory, and for judicial purposes it is attached to the western district of trkansas. The Indians retain their tribal organization for the most part, though many have orgavized simple forms of local government, adopting codes of law and conrts to enforce them.
The Report on Cndian Affaira for 1889 contains the estimates given in the following table, which shows the condition of the given in the following

Chickasaws, natives, adr ptied π bites and freedmen
Seminoles, natives, adr oted whites aud freedmen.. 6,000 -2
Farm laborers and mechanics nuder permit and their families 45,600 Licensed traders, government employes, employes of rail roads and mines, and their families.

25,000
Interlopers and criminale, principally refngees from border
states, and their famidies, fully
35,000
 Sojoaruers, prospectors and visitors 3,0k0
Total popalation fully.
$17 \%, 200$
The political condition of the five tribes is complex, and must neceasarily so continue as long as the present tribal autonomy exists. Each of the nations has its own local goverament, a coa stitution and laws, and is divided into executive, legislatire aud judicial departments, each of which is in as perfect operation as the average state government. Fach nation inas a principal and sec ond chief and treasnrer, and the majority have anditors, attorneys and secretaries.
The following statistice will give some idea of the growth of the press in this country

name.

WHERE PCBLISUED. POLITICS, ETC.
perion circu-

		Republican		2.50
Republic	do	Democratic..		2,500
Elevator	Fort Sil	do	We	1,300
Joural.		Republican		1,100
Ady	legua	Cheroke	do	1.300
Journal.	Fufaula.	Creek	do	800
Chieftain		Cherokee and Ropublican	do	100
Brotherin		Methodis	do	1,300
Missiouary	Atantil	Baptist	do	1,000
Pheroix.	Muskogee, 1	Republican and Creek..	do	1,350
		Cheroker.	do	960
Enterp	Paul's 'alley,	Chickasa	do	00
erizen	Atoka, I. T	Cho	do	$6{ }^{610}$
Registe	Parcell. I.	Ch	do	817

Quite a nambur of newfupers, magazioes, and religions jonrnals tuat have a considerable circulation thronghont the "five tribes.

Name of reservation.	atenct.	NAME OF triae occepring reservation.	anea in Acnes.	squane miles.	populaTION.
Cheyennc and Arapaho	Cheyenne and Arapaho'	Sonthern Arapaho, and Northerv and Southern Cherenne	4,207, 271	6,715	3,609
Cherokee	Union....................	Cheruke.	5,031,351	7,881	23,000
Chickssam-............	do	Chickasaw........... ..	$4,650.9135$ $6,68 \times$ (1)0	10,267	6,000 18,000
Choctaw..	do	Choctas (c'bahta)...	6,6isi(0)	10,451	14,000
Creek.	do M....	Creek...... .	S-548	4.357	14,080
Yowa..	Sac and Fox	lansar or liaw.	104, 137	15612	225
Kickrpoo	Sar und Fox	Mexican Kickipoo	296,466	3~2!	346
Kiowa and Comanche..	Kiown, Comanche, and Wichita..	Apache, Comanche (Komanteu), Dednware, and kinwa..	2,968,883	4,339	3,103
Modac.	Qиярнт	Modoc.........	4, 040	6	94
Oakland or Nez Percé.	Ponst, Pawnee, nud Otoc....................	Tonkawa..	00,011	142	982
Onage.	Onge	Grent and Littlc Osage, and Quapaw....................	1,4\%0,059	2,247	1,672
Otoe..................	Ponca, rawnee, and ()toc.		129,113	202	286
Ottawa		Ottama of Blanchard'e Fork, and Roche de Bruf.......	14, $\times 60$	23	J17
Pawnec.	lonca, Pawnee, nid Otue	Pawnee (Pani)......................	283,020	442	1,045
Peoria.	Qинрьw................	Liakakkia, Miami, Peoria, Piankasba, nnd Wea.........	50,301	75, 1	200
	Ponct, Pawnee, nid ()toe .-.................	Ponca.	101,394	159	674
Pottavatomit..........	Sac mid Fos	Abarntee Sbawnee (Sbawano), and Pottawatomt	5\%5, 45	900	1,260
			50,685	$88: 2$	62
Sac and Fox...........	Satc and Fox...........	Otor. Ottawa, Sac (Sank), and Fox of the Minnouri and of the Missinsipht (including Mokohokn's band)......	479,687	750	1,126
Seminole.............	¢nion..	Seminole	370.100	686	3,000
Striecta.	Qnmpaw.	Somera.	51.988	${ }_{0}^{1}$	239 69
Shawnee................	do	Chatern Shawne (Shewnno)	13.148	21	69
Wlchita.................	Kiown, Comanche, and Wichita..............	Comatach (Kamintan), Delaware, Lon-ie, Kaddo, Ki"\&nt, "Tnwakuny, Wako, and Wichitn.	743810		1,034
Wrandotto............	Quapaw..................	Wyandotte.....................	21.40%	$331 / 8$	251
					79,409
				3,5c2	
		Ünoccupled Cherokee lands.................................	$\left\{\begin{array}{r} 103,150 \\ 3,133 \%, T \% \end{array}\right.$	(165	
		Creek landx in Cheyonne mud Arapahoe treaty reserve.	683, 138	1.1047	
		Tnocrupitd crock mad Seminole landa........	1, 1110	1.1889	
		Unocenjicd Clackarmw had Choctaw lmade.............	1,511,506	2,36\%	
Total			41,102.546	64,233	

 anawn and seminolen, havi made con-iderathe proserean in civiliza.
 port for i4sa, gives womac itlen of their progreme:
Crirkm, intiverand mapted frommen.
Cherokper, ua, iren, ndopted whites, other indiuns and froed men.
Choctaws, nativer, adopted whiter and freedmen.

The cesaion of the Credk and seminold pquity in the landaknown as okluhona, hy which there lidinam rulized sercral millions of dolhare, is condidered an excelhant crade for the Indians The ceded

 tonal comprnanton. In 1804 and 188% Congrisa nimost derelnred the frdian tltie ertinet and the lands gpen to homestind meitle ment without rllowlag the Indiane fartbër compensation, but ma
tiplomatie precentation of that reace the（reek and Semmole inli＊．

 The following talhe giv，Aos eacacational ider of the echool al Isalagen in the Territory，and the nec mate of them．

103003	capac 	ITI．			AVE ATT AN 定	13 F バリ E． $\underset{\Xi}{\Xi}$	0. 0 0 0 0 0 0 0 0 0 0 0 0 7
Fonca，Fanuee，and Otoe Agency： Равие＂Busrhag．			15	0			12
Ponca boardaro．．．	100		13	$8: 1$	7		12
Ofeo lisarding．			6	51	4		12
（2дарам bearding．．．．．． seneca，shawnee，und Wyandotte Boarding．	51）		7	53 91	68		10 10
Miami buy．．．．．．．．．．．．		30	1	13		t	4
Modoc Day			1	16		10	10
Bac and Fox Acracy：							
Absentee Shawnee B＇d＇g．	80		12		4		10
Sac aud fox bonrding．．．	60 160		4	6	1：		10
Ckrocco：Chiluce＇Traming．	950		2	203	15		12
Cbeyenue aud Arapatio Agency：							
Arapahn Boarding．．	100		13	99			10
Cbeyenne Buardins ．．．．	12．，		1：	79			10
Memonitt Boarding			11				10
Memmanite Boarding （cantonment）．．．．．．．．	90						10
Eiown．Comanche，and and Wichita Ageney； Siowa Boarding	100						10 10
Wichita leardw．g．．	0.1		12		61		10
Oance Agency：							
Kaw hoarding．			12	50	41		10
O－age 13oarding	1.0		17	1 lim	117		10
St．Loula lioarding				81	62		7
St．Jobn＇s Mission				31	30		7
McCabe Boarding（Paw． buska）							7

In $1^{20 g}$ there were more than soneo busbels of wheat raised by
 and about 10,000 inno of hay．In lhe sfime zat the Indians owned 6n，invanad of horsas and zionom head of cathe．IE．C II．）
INDIA－RUBBER，or CAOUTchove，consists of the diried coagulated milky juice of various trees and shrubs，belong－ ing chiefly to the natural orders Enthorbiacer，Moracer， Artocarpacer，and Apocynacece．Although a milky juice is found in plants of many other families，it does not in all cases yield caoutchoue，nor do different species of the same genus yiehl an equal quantity or qualits of that substanee． On the other band，there are many plants which afford a good rubber，but have not yet been sought out for com－ mercial purposes．The milky juice of plants furnishing caoutchoue is contained chielly in the middle layer of the bark，in a network of mioute tubes known to botanists as laticiferons vessels．In the Aprocynacece these vessels are found also in the inner bark，or bast layer．The milky juice above mentioned possesses the properties of a vegetable emulsion，the eaoutchoue being suspended in it in the form of minute transparent globules，averaging，according to Adriani， $1 \frac{1}{2} \frac{1}{2} 50$ inch in diameter．Like other emulsions，it is casily coagulated by the addition of an acid or saline solution，－alum or salt water being commonly used for this purpose；but it is said by Mr Bruce Warren not to be coagulated by alcohol．The eaoutchoue appears to be kept in suspension in the juice by means of ammonia；at least in some eases the fresh milk exhales an ammoniaeal odour． Probably it is on this account that the nddition of liguid ammoria prevents the juiec from coagulating for a con－ aiderable length of time；and the ammonia is in certain districts added when the milk has to be carried some distance from the place of collection．The addition of
salt water to the juice is to ho deprecated，as it reuders the caoutchoue very bygroseopic．The best rubber known is obtaiued by careful evaporation of the recently straincd juice at a oroderate beat．Trees are known to contain caoutchouc by tbe bark on incision yielding a milk that when rubhed between the fingers coagulates into an clastic fibre．The deicu bark of such plants when broken shows between the two fracturel surfaces of bark a number of silky fibres which cau be stretched for some distaneo without breaking．

Caoutchoue differs from other vegetable produets of like origin by possessing eonsiderable elasticity，by lueing insoluble in water or alcolsol，alkalies，and acils（with tho exception of concentrated nitric and sulphurie acids）． Athough apparently simple in constitution，it contains，not only the elastic substance to which its commereial value is due，but a small quantity of an osidized viscid resinous body soluble in alcohol．This latter substance raries in çuantity in different kinds of rubber，thuse containing the smallest amount，such as the lara and Ceara，being considered the mostrvaluable，while thoso in which it is present in greatest proportion，such as the Guatemala and African rubbers，are the least esteemed．Lapid evapor－ ation of the juice，or any meaus which prevents oxidation， tends to prevent the formation of this viscid resia．

The first notice of india－rubber on record was giren nearly five hundred years ago by Herrera，who，in the second voyage of Culumbus，observed that the inhabitants of Hayti played a game with balls made＂of the gum of a tree，＂and that the balls，although large，were lighter and bounced better than the wiud－balls of Castile（Herrera， Mistorid，dee．i．lib．iii．cap．it．）．Torquemada，however secms to hare been tho first to mention by name the tre yielding it．In Lis De la Monarquia Indiana，published at Maulrid in 1615 ，tom．ii．，cap．xliii．p．663，he says， ＂There is a tree which the［Mexican］Indians call Ulequa－ huitl ；it is held in great estimation and grows in the hot country：It is not a rery high tree；ihe leaves are round and of an ashy colour．This tree yields a white milky substance，thiek and gummy，and iu great abundance．＇ IIe further states that the juico was collected and allowed to settle in calabashes，and mas afterwards softened in hot water，or the juice smeared over the body and rubbed off when sufficiently dry：The tree mentioned byTorguempda has usually been identified as Castillor elastica，Cers．，but the above account cannot apply to it，as that tree is de－ scribed by Cervantes as one of the loftiest forest trecs of the north－east coast of Mexico，and its leaves are not round but oblong－lanceolate．Torquemada mentions also that an oil was extracted from the＂ulli，＂or rubiber，by heat，pus－ sessing soft and lubrieous properties，and of especial effect in removing tightacss of the ehest．It was also drunk with eocua to stop，hemorrhage．Even at that carly date the Spaniards used the juice of the ule treo to waterproof their eloaks．This fact，however，apparcnely did not attract attention in the Old World，and no rubber seems to have reached Europe until long afterwards．The first accurate information concerning any of the caoutchoue trees was furnished by I，Coudamine，who was sent n 1735 ly the Prench Government to measure an are of the meridian near Quito．

In 1751 the researches of M．Fresnan，an engineer re－ siding in Guiana，were published by tho Freach Academy， and in 1755 M ．Aublet described tho species yielding caoutehouc in French Guiana．Nevertheless india－rubber remained for some time unknown in England execpt as a curiosity，for Dr Priestley，in the preface to his work on perspective，called pmblie attention to it as a novelty for erasing pencil marks，and states the＂it was sold in cubical pieces of $\frac{1}{2}$ inch for $3 s$ each．India－rubber was not lnown
as a product of Asia until 1798, when a plant, afterwards named Urceola elastica, losb., was discovered to yield it by Mr J. Howison, a surgeon of Prince of Wales Island, and soon afterwards Assam rubber was traced by Dr Rosburgh to Ficus elastica, Roxb. It was not, buwever, until the beginniog of the 18 th century that the indiaruober industry really commenced. The rapid progress which this has made during the last twenty years may be perceised by a glance at the following table -

lupported into	England in the year	1830,		wrts.
, ,	," ..	1840 ,	6,640	',
.,	,	1850.	7,616	,
.	'. .'	1870,	152,118	"
	'' ${ }^{\prime}$	18.9	150,601	"

It has been computed that in 1870 there were in Europe and America more than 150 manufactories, each employ. ing from 400 to 500 operatives, and corsuming more than $10,000,000 \mathrm{th}$ of caoutchouc. 'the ik ure into the United States bave largely increased during the last few yeat

Botanical Sources, Modes of Preparateon, de.

Notwithstandiog the fact that caoutchoue yielding trees are found in a large belt of countries around the globo, including at least 500 miles on each side of the equator, yet the demand for the best qualities of india-rubber is in excess of the supply The sarieties which are almost exclusively used when great elasticity and durability are required are the Parí, Ceara, and Madagascar rubbers.

The prinespal forms of caoutehouc which are imported into Great Britain may be grouped under four heads, the order in which they are bere placed indicating their respective values:-South Americot-Pará, Ceara, Pernambuco, Maranhãu, Cartagena, Guayaquil; Central American-West Indian, Guatemala; African-Madagascar, Mozambigue, West African; Asiatic-Assam, Borneo, Rangoon, Singapore, Penang, and Java. Of all these, the most important is the Pari, the imports of which, according to Messrs Hecht, Levis, \& Kahn, have increased from 1670 tons in 1857 to 8000 tons in 1879. Fur this rubber and the Mozambique variety the demand injncreases every year, -an unerring indication of tbeir value.

1. Enert Asprican. - Porf rabler is obtaimal chingy from
 upwards of 60 leet in haight, lranching from the lase, aml having
trifoliate leaves, the leallets being lanceolate and tapering at both ends (figs. 1, 2). Other species of Hevea, as well as Micrandra siphonoides and M. minor, Beoth., all of which grow abundantly in the moist stcamy valleys of the Abazen and its tributaries, aro also used iodiserimioately by the natives te furnish Pará rubler. These trees are found in different distriets, but all flourish best on rich alluvial clay slopes by the side of rivers, where there is a certain amount of draidage, and the temperature reaches from 89° to 94° at noen and is oever cooler than 73° at night, while rain is rarely absent for ten days together. The genus Herea was forbierly called Siphonia, and the tree named Pao de Xerringa by the Portuguese, from the use by the Omaqua Indians of squirts or syringes made from a piece of pipe inserted in a hollow flask-shaped ball of rubber.

The caoutchouc is collected in the so-called dry season betreen August and February. The trees are tapped in the evening, and the juice is collected on the following moroing. 'To obtain the juice a decp horizontal incision is made near the base of the tree, and then from it a vertical one, extending up tbe truok, with others at shart distances in an oblique direetion. Small shallow chps made Irom the clayey soil and dried in the sun are placed below the incisions to receive the milk, each cup being attached by sticking a piece of suft clay to the tree aod pressing the cup against it. The juice, of which each tree yields only about 6 ounces in three days, has a strong ammoniacal odour, "hich rapidly goes off, and in consequence of the loss of ammenia it rill not keep longer than a day unchanged, hence when it bas to be carried to a distance from the place of col lection 3 present of liquid am mooia is added. The juice is said by Bruce Warren to yield half its weight of eatit. chouc, bul 32 je: ceut. apjears to be the usu, quantity Tool. tain the rubber the juice is heoted in the following man ner A pirece of
 wood about 3 feet lung, witlu a llat. tuned chay moulit at one end of it, is dipped in the nulk, or thos is pourcd over it as evenly as pos. silule The milk is then carefully dried lyy turning
 the nowld roumi
 White vapour of- flower both thlaged, and with the doral envilope to tuined by heating certain oily pahin nuts, those of Altalat execla being much preforral, and the vapour heing confind within certain limits by tho anrrowness of tho neck of the pot in which the muts are heated. Ench lujer of ruhter is allowed to lweome firm before adding another, a practised hand can make 5 or 6 tb in an hour. From whatever "ause. the ruhtwed thas prepared is the finest that canbe obtained. The eakes when completed ate, in order to remove them from the mould, slit open with a sharp knife, which is kept wet, and ard hume up to dry. The flat rounded cakes of rubber made in this manaer are known in the Londen market as "biscuits." They rarely contain more than 15 per cent of moisture. The scrapings from the tree, which contain frigments of woon, are mixed with the residues of the collecting yots and the refuse of the vessels employcd, and are made up into largo roumbed taills, which fom the inferior commereial quality called " nerrohenl," and often contain 25 to 35 per cent of impurity. An intemediate quality is known as "contre. fire " lara rubber is sail to he sometimes adulorated with the juite of the Magandaruha tree (Mimusops elata), which might account for the great dideremes that have treen occasionally observed in the behavionr of lari rubliker in cestain stages of mannfacture, the cougnlated juice of the Jimusogs genus resembling gutta percha rather than caontchow

Previous to 1860 l'arí rulumer was exported only in small ques tities, and then chichly in the furm ot shoes; this varicty cessed to be sent ower in 1 Es, Occasiunally " nugrohead" has been inn. ported in grotespun forms of animals, \& c, and the bether qualit :s in the shane of small butthes monded in sult clay which bas ben afiem wards washod out by water.

In British Guiana ruhber is ohtained from Merca paucifolia, Mi!!. Arg.; in Fredelh Guiana from M. Gutancueis, Aubl., whero it is known as "hevo," "siringa," or "eahoutchon,"一the last bejer tha probablo origin of tbe name caontchonc; and in Venezuela from II. Brasiliensis, thera called dapi or dapiche. None is exported to England from any of these loenlities. Small quantities of rubber intermediato in character between that of Pari and Pernambuco are occasionally imported from Mrarahhāo. On account of its great value as a source of caontchone, the cultivation of the lara rubber tree has been attempted in India; but it has been found to be too tropical a plant for cultivation in northern and central Iodia, although suitable for Ceylon, Malatar, aad South Burmah, according to receut reports. The seeds, which are about the size of a damson (fig. 2, d), soon loso their vitality, nad euttings do not thrivo unless taken from tho young wood.

Ceara rubber is consilered almost next to the Parit in value, as it is a "dry" rubber, very elastic and freo from stickiness; but it often contains a quantity of wood and foreign matter arisiog from the mode of collecting it, the loss io washing previous to mallufac tureamounting sometimes to 25 per cent. It is the produce of Manihol Glaziovii, Miill. Arg., a euph. orbiaceous tree common in the proviaco of Rio Janeiro, about 30 feet high, with a rouaded licail of foliage, and greyish. green 3- to 7 -lobed palinato leaves, some what resembling tho leaves of the cantoroil plant in shapo and size (figs. 3, 4, 5). The trees aro tapped, necording to Mr li. Cross, when the trunk attains a
 diameter of 4 to 5 Fio. 3.-Maninot Glazioria. (After II. Trinen, Journ. inches, i.c., when they are about two years old. The mode of collecting the rnbber is as follows. After brushing awny the loose stones nud lirt from the root of the tree by means of a handful of twigs, the collector lays down large leaves for the arilk to drop upon. He then slices off the outer layer of the bark to the height of 4 or 5 feet. The milk, which exules in many tortuous courses, some of it ultimatcly fallingon the fround, is allowed to remain on the tree for several days, until it becones dry and solid, when it is pulled off in strings, wbich are either rolled up into balls or put into bags in loose masses, in which form it enters commerce under the namo of Ceara "scrap." The amount of Ceara rubber imported in 1879 amounted to 500 ewt. The attempts which have been rocently mado to cultivate this rubber plant in Iudia have been attended with signal success. In Rio Janciro it grows in a rocky or stony arid region, where a short underscrub is the only vegetation, and the atmospinere is bot and dry, tha temperature raging from 82° to $90^{\circ} \mathrm{Fahr}$. It is, therefore, suited for cultivation where the Iferer will not grow. In Ceylon it has been found to thrivo at an nltitude of from 200 feet to 3000 feet above tho sea level. At Zanzibar and Calcutta also it succeeds Fell. Tho seeds (fig. $5, c$), which have n hard thick cont, take a year in germinating, unless the edges near the end bearing the caruncular projection are rasped off. Cuttings, provided they hava a siagle bud, strike readily.

Pernambuco or Nangabcira rebber is obtainel from Hancornia spcciosa, Gom., an npocynaccous treo common on the South American plateau in Brazil from Pernambuco to Rio Janciro, at a height of 3000 to 5000 feet above the sea. It is about the size of an ordinary npple treo, with small leaves like the willow, and a drooping habit like a weeping birch, ant has an edible fruit called " manciba," for which, rather than for the rubber, the tree is cultivaterl in some distriets. Only a small quantity of this rubber comes to England, and it is not much valued, being a "wet" rubber. It occurs in "biscuits" or "sheets." The caoutchoue is collected io the following manner. About eight oblique cuta are made all round the trunk, but only througlt the bork, and a tin cup is fistened at the bottom of each incssion by means of a pieco of soft elay. The cups when full are poured iato a larger vessel, nond solution of alum is ndded to coagulate the juice. In two or three minutes coagulation takes place, and the rubher is then exposed to the air on sticks, and allowed to drain for cirght days. Dbout thirty
days afterwards it is sent to makkel. Permambuco rubber, as is tho case with most rubbers coagulated by saline solutions, contains a large quantity of water.

Fig. 4-dfani/hot Cla:ionii. Young leat (half natural slze); Inforcsecnce (about half natural size); hal(-ripe capsule (teal size).
Cartagena rubber comes from New Granada in the form of black shects ${ }^{3}$ inch thick, having a somewhat rourh or "chewed" appear. aoce, and is more or less "tarry" or sticky. It also oceurs in tho form of strips or small pieces pressed together in bags. Its

Fic. b.-Wfanihot Olaziovii. a, male fower ; b, femole fower ; e, ned ; d, section of seed. (All natural size.)
botanical source is not known, but is thought to be n piunate-leared tree, a portion nt least heing derivel, it is supposed, from Castilloas elastica. It loses 35 per cent. of moisture when dach. The importation of Cartagena ruber into Great Britain has declined from 3518 ewts. in 1875 to 1679 cwis. in 1879.

Guayaquil rubber is imported from Ecualor in inge flakes or lumps, of a whitish colour in the best kinds, the inferior sorts leing porous and filled with a foetid black liquid, having ao odour of cowdung, ond staining the knife ond hands. It is believed to loo obtained Crom Castilloa clastica. The amonnt imported into Britain has diminished from 3815 cwts. in 1875 to 482 ewts in 1879. In washing for manufacture it sometimes loses up to 40 per cent. of its weight. The bulk of the two last-mentioncd rubbers is ex. porte it the United States.
11. Centhal A meincañ. - The source of all the principal rubbere exported from Central Anerica is Castilloa elastica, Cury., a iofty
artocarpaceous tree, with a truok 3 feet or more in diameter, and large hairy oblong lanceolate leaves often 18 inches long and 7 inches wide, these subteuding the young brauchee beiog much smaller and more ovate (Gig. 6). The treegrows most abuodiutly in a sporadic manuer in the dense moist forests of the basin of the kio Sau Juan, where the rain falls for nine moutbs in the jear. It prefers rich fertile seil on the banks of watercourses, but does not flourisb in snamps. It is funud also in Costa Rica, Guatemala, Honduras, Mexico, Cuba, and llayti, aud in Panama in company with another species, C. Murh. hamiana, Collins, and on the west coust of South America down to the slopes of Chimborazo, the Cordilleras of the Andes separating the Cilutilloge from the Hevec of Brazil, according to Mr R. Spruce.

Nicarayza rubber.-lo Nicaragua the juice is collected iv April, whon the old leaves begio to fall aod the new ones are appearing, duriog which time the milk is rickest. The tree is tapped either in the same wanmer as the Hevea, or by eucircling the tree with a simple

Fio 6.-Castilloa clastica. a young len§ (ntisher real size); b, sceds (natural
 lurged).

Epiral cut at an inclination of 45°, or by two spirals in oplosite diructions if the tree be large. At tho bottom of the spiral an irou ${ }^{8}$ punt about 4 incheg long is driven into the tree, and the milk is reccivet in iron pails. A tree 20 to 30 feet lighto its frst brimeles, aul about 4 feet in diameter, is expected to yield 20 gallons of milk, each gathon giviog about 2 t of rather. In tho evening the milk is strained through a wire sievo mind transferred to barrels. Tho milk is coagulated by tho addition of the juice of the "tucheté" Hunt (fpomare bume-nox, L.) or of another plant called "consso." Tho struined juice of either of these phants, obtained by bruising tho moistaned hort mad subsequent oxpression, is addel to the milk in the proprtion of abont 1 pint to the pallon. If these plans nre mit procuralde, two parts of water nre ndided to one of the milk, nud the mixture allowed to stand for twelve heurs. Tho congulam is next flatened out by a wooden or iron roller to get rid of tho cavities containing watery lignid, and the shewts nre then hung up for fourtorn days to dry, when they weigh about \& H , the shects being usmally fo the inch thick anT 20 inches in diaurter. When emagunted by wator, the mas is fhaced ir vale in the gromen and athowed to dry, this taking firse in nbout of fortaight. It is then rollem intu lalla. That whith dries an the incisions in the towe is called looh or haracha, um insain to he hiphly phred in New Yofk. The
 is exportul chin? from sad Juan del Eforte, or Cirey Town, and the
larger proportion goes to tho United States. The Castilloa sppears to be suitable for cultivation only in districts wbere the Pará rubber would growequally well. The deciduons lateral shoots if planted will never grow erect.

West Indian rubber is the variety usually imported into England, but in comparativcly snall quantity only. It uccurs in the form of blocks, the fioest quality consisting of thin separable sheets, and the secoud of " scraps," nsually conglomerated and containing fragments of bark. It is the best description of Central American rubber known. It is not, as its name seems to imply, produced io the West Iodies, but derives its appellation from beiug brought over in West Indian steamers.
Horuluras rubber rarely comes over to England; it is of good quality, and free frem "tarry" matter.

Mexican rubber is ionported into Liverpool it small quentity ooly. The imports of Mexican caoutchouc decreased from 1295 crits. in 1875 to 158 corts. in 1879.

Guatemala rubber is a very inierior kind and very unequal in quality; the best varieties are whitish, and the "lower" are black with a "tarry" appearance. It eccurs in the form of sheets compacted together, from between whinh when pressed n thick resinous Hud exudes. This when evaporated learcs a hard resinous enb. stance noaffected by hot water or steam. The mbber is collected from the trees as in Nicaragua, bnt it is poured on mats to dry, and the thin abeets are subsequently peeled off, folded into squares, and subjected to pressure to remove as much as possible of the contained moisture. The imports of iodia-rubber into England from the whole of Ceutral America amounted only to 2080 ewts. in 1879, having decreased from 5809 cwts in 1875 . The greater propertion of Central Armerican rubber is cxported to New York, especially that from Nicaragua and Pauama

Siphocampylus Caoutchouc, Don., and S. Jamesonianus, D C., Central American plants belonging to the natural order Lobeliacece, are also stated to yield rubber of good quality, and at the Philadelphia exhibition a rubber called Durango caoutchouc, obtained from a composite plant, was cxhibited

IIl. AFRICAN. - Iudia-rubber is produced throughout equatorial Africa, the chicl districts of export being the Gaboon, Congo, and Benguela on the west coast, aud Dladagascar, Mozambique, and Mauritius on tho east. The Madagascar, Mauritius, and Gaboon rubbers are, it is believed, chicfly exported to France. Those whieh enter into British commerce are known as Mozarobique, Madagascar, and African, although the imports are described as cuming fron the following districts in the blue bouks:-Senegambia and Sierra Leone 3808 cwts., West Coast 11,307 ewts., East Africa 7621 cwts , Cape of Good Hope 4241 cwts., Mauritius 570 cwts., Gold Corst 12 crts . The above imports, which are for 1879 , show an increase during the past five years, except in the caso of Mauritius, Mada. gascar, nod tho Gold Coast. Africa, in respect of the large amount exported, may now be cousidered as taking the secoud place as an indin-rabler prodacing coutincat.

Mozambique rubber, which is one of the most important rarieties, occurs in the form of balls alwut the size of an orange, and "sausages," or spindle-shnjed pieces, made up of slender strings of rubber wound aromed a piece of wool, which is crentunlly removed; or sometines it oecurs in smooth pieces of irregular sizo known as "cake" or "Jiver." Madayasear rubber consists of two qualities, the best of a pink and tho inferior or "lower" of a black colour, and occurs in shapeless pieces.

The other kinds inchaded under tho general name of African ara amnrphous lumps ealled "knuckles" from Congo; small "negroLeads" or "balls" of scrap, mat smooth cakes from Sicrm Lcone; small syume pieces like dice called "thimbles," and others more irregular in shap called "nuts," and "small negroheads" from the lorturuese colonies; "tongues," consisting of flat pieces, usually wetund sticky, from the Gaboon; and "balls"from Liberia Africnn rubluer as a rule possesses more adhesiveness nud tass elastheity than lard rubber, nud is inferior io value. Comparatively little is known of the phants yielding caoutchoue in Aftica or of tho mode of cenlection. In Angola, necording to I)r Welwitsch, tho natives either cut off a piece of burk, and nltew tho milky juice to run into a hoie in the gromed, or placing the hamd ugainst the trank of the tre jermit tho milk to trickle down there arms, foing from tree tes tree mutil the arm is covered, when tho rubber is rolled hack towards the thad in the form of a ring. 'iho woid of some of the thees, necurding to Mr Cullins, contans a ghm which, if the incision penctrates brlow the lurk, mines with the rubher nud deterionates it. In Madnemsenr, necording to M. Coiguet, rubber is obtaned from the "Vrablere" or "Voa-canja," V'uher matayastaricnais, Bos., the "Vub-hime, V. comorensis, lioj., nad frem V. gummifcra, Lam. In Senegmbin it is ohtained from the "Anjounn," Vahca senequicusis, $\boldsymbol{A} .1$. C. In Munitins Fillughbcia clulis, Roxb. (which is fomml also in Madagascar, and in Chiftngong and Sithet in India), appenty to lu the chaf soume of rubler. All tho above are climb. ing shrubs with "Il
In C'metri Airies, from lilerim on the onc side to Zanzibar on

to Vahica, a few only of the species bing known to botanists. In Angole, under the name of "Licomgue," in Golungo Alto and Cazengo, it is collected from Landolphia owariensis, Pal. do Beauv.; from L. forida, Benth., in Angola and Liberia, and front L. Hendelotii, D. C., in Sencgal. At Kew there slso exists a specimen of india-rubber from the west const of Africa obtaiucd from an undegeribed species of Carpodinus with hairy leaves and stems. In the basin of the Gaboon and Congo it is obtsinet, according to Du Claillu, from a climbing plant called N^{\prime} 'dambo, which gives its name to dsmbonite, \& peculiar subetance contained in this kind of rubber (see p. 840). That some African caoutchone is yielded by species of Ficus there can be no doubt. In Sierra Leone it is collected from Ficus Brasii, R. Br. In Liberia, according to Mr Thomas Christy, the finest rubber is obtained from Urostigma Vogchii, Miq.. a tsll tree with largo handsome leaves, and lower qualitics of rubber from other species, and'from Landolphia fiorida, Beath. In Angola on the west, and st Inbambane on the east ceast, rubber is also obtsined from species of Ficus. In the island of Réunion esoutchouc is said to be obtained from Periploca graca, L .
IV. Asiatic.-The rubbers which enter English commerco from Asia include tho Assam, Borneo, Rangoon, Singapore, Penang, and Jave kinds.

Assam rubber is imported chiefy from Calcutta in baskets made of split rattans, weighing about 3 cwt . esch, sod covered with B gunny bag. The rubber is glosss, of a bright pink colour and motlied appearance, and oceura in the form either of small balls pressed together or of irregulsr masses called "slabs" or "loaf" rubber. The former, being moro liable to adulteration, are less in demand by manufacturers. The imports into Liverpool in 1379 were 7000 cwts. Assam rubber is obtained from Ficus clastica, Rosb., a plant too well known as a window ornament to need de. scription: A portion also is collected from Urosigma laccifera, Miq. Ficus elastica grows in the tropical rocky valleys of the Himalsyas, between 70° and $80^{\circ} \mathrm{E}$. loog., where there is almays a hot moist atmosphere, the temperature rising to $98^{\circ} \mathrm{F}$. in the shade. The trees are tapped in the most careless manner. Int lower portion of tho tree sud in the lerge serial reots, diagonai cuis penctrating to the wood are made, from 6 to 18 inches long, and in an elliptical form so ss to be sbout 3 inches aeross the centre. The milk is received either in holes made in the ground or in leaves folded in the form of a funnel, tbst from the smaller euts on the branches (for the collectors scsrify every portion within reacli, being allowed to dry on the tree. About 50 oz . of the milk collected in August gives 15 oz. of caoutchouc, but the percentage sometimes falls as low as 10 per cent. From Februsry to April the milk is more scanty, but richer in caoutchouc, and is consequently best collected at that time. The milk is coagulated by pouring it into boiling water and stirring it until it is sufficiently firm to lo carried about without being clammy ; sometimes it is pressed, again boiled, and dried in the sun. In this way the "loaf" rubber in irregular masses is formed. The small "balls" aro formed of the strings of rubber which have been allowed to dry on the tree.

Assam rubber, although fairly elsstic, is much depreciated in value by the careless modo of collection, end often loses, by washing at the manufactory, as much as 35 per cent. of dirt, consisting of clay, sand, or bark. The exportation of caoutchonc from British lndia, exelusive of the Straits Settlements and Ceylon, in 1879 amounted to 9973 cwts., of which 7000 are estimated to have been produced in Assam. A bout three-fourths of the rubber exported frem Indis goes to Grest Britain, snd tho remsinder to the United States.

In consequence of the reckless destruction of the trees, the cultivation of Ficus clastica bas been commeneed in Assam. It is ealculated that the treescan be tapped at the age of twenty-fivo years, and that siter fifty years they will yield 40 fb of caoutchouc cach (worth £3, 4s.) every threo years, it being injurious to their health to tap them more frequently.

Palay rubbcr is the product of Cryploslegia grandifora, R. Br. sn asclepiadaccous plant common on tho coast of Indis; and from Willughbeia edulis, Roxb., end W. martabanica, D. C., a rubber is obtained in Chittagong; neither of these, however, is known in Britain as a commercinl variety.
Borneo rubber comes to the Liverpool market in the form of halls. or shapeless masses, internally of s white or pinkish colour, and very porous and spongy, the pores being usually filled 'with salt water, in consequence of which it often loses 20 to 50 per cent. of its weight in drying. The imports into Great Pritain amounted in 1879 to 5000 ewts. Although Bornco rubler was first male known in 1798, it was not imported into Englend as an article of trade till 1864, when it appeared under the name of gutta susu, i.c., in Malaynn, milk-gum. The plant which yields Dorneo rubber was idsatified by Raxburgh as Urceola elastica, Roxb., an apocynaceous climbing plant with a truok as thick ss a man's bolly, and hoviog a ooft thiek berk. Mr F. W. Purbidge, who recently visited the island, states that there are three ratietics of the rubber plant, known to the natives as "yctabo," which yichds the finest caontchote; "menoongan," which yields the largest quantity; and "serapit," from which the commouest rulber is obtained. The petabo variety,
arcording to specimens at Kew, is referred to a species of Leuconotis The rabber is obtained by cutting the plant into picces yarying from a few inches to 2 or 3 feet loag, and allowing the juice to drain into buckets or jars, heat being sometimes apphicd to one end of the picees rhen the juice flows slowly. The milk is coagulated by ealt water. The Borneo rubber plant is probably one of tho plants that would repay cultivation, es it grows rapidly, yields a aupply of sap in three years, sod after planting requires no attention.

In Sumatra, csoutchowe is obtained from Willughbeia firma, end is exported to Holland, but this variety is not known in Eagland. Malacea rubber, which is not met with in English commerec, is said to be obtained from I/rceola elastica, lioxb.

Rangoon rubber, and those of Penang and Java, are imported into Engiand in small quantities only, and are irregular in appesrance. From its physical charocters, a portion at least of Rangoon rubber is beliered to be the produce of a species of Ficts, probably F. hispida, L. Another caoutchone-yicldines plant, UTccola \{Chavannesia) cseulenta, Benth., belonging to the Apocynacec, has, however, been receritly discovered in Burmal, some specintens of which at the age of five years have stems 6 inches in diameter, while the crown covers 8 a area of 200 square feet. It has beed recommended for plaatations as an available source of rubber, the cost of cultirstion being very slight after the first year, and the profit commencing in seven years, at which age the yied is calculated to be $3 \frac{1}{3} \mathrm{Hb}$.

Penang rubber in character resembles the Assams, and may be also supposed to he obtained frem a species of Fices. Dr Wallich, however, has stated that its source is an asclepiadaccous plant, Cynanchum ovalifolium, Wright.

Java rubber is stated by Dr De Vrij to be obtained from Ficus clastica. Like the Assam rubber it is dark nal glossy, but it is of a deeper tint, and has ocessional reddish streaks. It is said to be prepared by allowing the juice to dry on the iucisions made in the tree. Singapere, Java, and Penang rubbers sre much alike in character, aud msy be elassed with the Assan robber, having a firm texture, mottled sppesrance, and bright polislicd surface, but varying in colour in a single ssimple from light yellowish-whito to daik bromn. Java rubier is also exported to France.

Caontchone is obtained in the Malay archipelsgo from Alstonia costulata, Miq.; and Alstonia scholaris, 12. Br., is likewise reported to yield 'it. In Fiji it has been obtained from Alstonia plumosa, Labill. In North Australia eaoutchoue has been prepared from Ficus macrophylla, Desf., and F. rubiginosa, Desf. ; the last-gamed plant bas been recemmended by Baron Mifler as suitable for cultivation, being a bardy species. None of the above rubbers are as yet known in British conmeree as regular articles of trade.

Biblingraphy.-Collins, in Journal of Botany, 1868 ; Journ. Soc. Arts, vol. xviii. P. 86 ; Bevan, Dritish Manufocturing Industrics, 1877, p. 97-105, and Report on Ccoutchoue, 1872; Markham, in Journ. Soc. Arts, p. 475, 1876 ; L'Ingenticur Uniacrsel, vol. ii. p 187 ; Bernardin, Cllassification do 100 Caoutchoucs et Guttaperchas, Ghent, 1872; Christy, New Commercial Plants; Lurz, Forest Flora of Brilish Burmah, vol. ii. 1. 184.
(E. M. H.)

Chemistry, Manufacture, and Industrial Uses.

The remarkable body knorn as india-rubber is composed of carbon and hydrogen alone, but its exact chenaical nature is not by any means known with certainty. Tho analyses of Faraday indicato that its ultimate composition is 87.5 per cent, of carbon and 12.5 per ceut. of bydrogen; but there appears to be good ground for regarding the substance as a polymer of tho group $\mathrm{C}_{10} \mathrm{H}_{5}$ or as $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)_{5}$ There are, however, no data for estimating the value of x in this case. It will bo noticed, too, that tho formula given reqnires considerably less lyydrogen than the proportion indicated by Faraday's an:alysis; but the difficulties of obtaining such a body as caoutchouc in a fit condition for analysis aro so great as to render this discrepancy a matter of comparatirely small import. The action of cold and leat on india-rubber presents many points of interest. When exposed to a temperature approaching $0^{\circ} \mathrm{C}$., it gradually loses its softness and ready extensibility, and finally becomes rigid and inclastic; but its normal condition may be restored by submitting it either to a temperature of 35° or $40^{\circ} \mathrm{C}$., or to a tension suflicicat to stretch it to about trice its natural length. In tho latter case it is probable that the change is really duo to heat arising from the physical disturbance consequent upon the act of stretching. The effects of lieat are more complex and varied than thoso of cold; and with caoutchouc at an
ordinary temperature, say $15^{\circ} \mathrm{C}$., the primary effect of heat is to increase its flexibility and elasticity. This is well illustrated by the fact that a strip of rubber stretched by a reight contracts when it is heated to a temperature of about $40^{\circ} \mathrm{C}$. This diminution as regards length is, however, accompanied by a more than corresponding increase in thickness, on account of the expansion in volume due tn an clevated temperature. When caontchouc is exposed to a temperature ranging between 100° and $120^{\circ} \mathrm{C}$., it becones considerably softened, and almost entirely loses its clasticity; but, if of good quality, it slowly recovers its former condition under the influence of a moderate degree of cold. When, however, the heat is 1^{m}, hed to 150°, it becomes viscous, and at 200° it fairly melts, forming a thick liquid which possesses the same composition as ordinary caoutchouc, but has no tendency to resume its original condition even when exposed to cold for a prolonged period. At a still higher temperature, caontchouc yields a varicty of volatile bydrocarbons; and, on subjection to dry distillation in a retort, its conversion into these bodics is tolerably complete, only a trifing carbonaccous residue remaining behind. Among the most notable volatile products resulting from the dry distillation of caoutchoue may be mentioned caoutchin, an oil-like body having a composition and vapour volume corresponding to the formula $\mathrm{C}_{10} \mathrm{H}_{3}$, and boiling at $171^{\circ} \mathrm{C}$.; and isoprene, snother hydrocarbon oil identical in composition with caoutchin and with caoutchouc itself, and boiling at $38^{\circ} \mathrm{C}$, Other hydrocarbon oils are also formed, as, for example, heveene and caouthene,-these being menbers of the $\mathrm{C}_{n} \mathrm{H}_{2 n}$ serics. The former boils at 223°, and the latter at $14^{\circ} \cdot 5$. The mixed products of tho dry distillation of caoutchouc, often described under the name caoutchoucin, form an excellent but rather expensive solvent of this body. When cxposed to the air, caoutchouc gradnally oxidizes and undergoes deterioration; the oxidation is often much favoured by exposure to sunlight or to alternate conditions of dampness and dryness. The deteriorated caoutchouc is cither somewbat soft and deficient in tensile strength, or brittle and resinous in its nature. Spiller found 27.3 per ecnt. of oxygen in a resinous product resulting from the decsy of caoutchonc. Ozone rapidly attacks and .lestroys the substance.

Dilnte acids or alkalics lave little or no action on caoutchouc, but strong and hot sulphuric acid chars, and eoncentrated nitric acid rapidly oxidizes and destroys it. The moderate action of cither chlorine, bromine, or iodine hardens or vulcanizes it ; but, if allowed to act frecly, thicy completcly destroy it. The action of sulphur will be considered below.

Canotchouc, when pure, is odoulcss and nearly white, and possesses a sprecific gravity of 915 . It is porous and cellular in texture, and absorbs from 10 to 25 per cent. by weight of water when long soaked in it. Aleohol is similarly taken up. Up to this point caontchouc has becn referecd to as if it consisted of oue substance only; but as a matter of fact all ordinary samples contain two distinct modifications, viz., the hard or fibrous and the soft or viscous. These two caontehoues are identical in composition, and similar as regards general properties and reactions. On subjecting a piecc of raw caoutchouc, hoverecr, to the action of such a solvent as cold benzol, the essential difference between the two forms manifests itself. The fibrous or hard constituent mercly swells nu to many times its original bulk, but lhe riscons yields a true solution. In a high class rubber, such as that importerl from the province of Pari, the former modification is the priucijnl factor; in a caontchouc of low quality, such as "African tonguc," the latter. Freshly cut surfaces of caoutchonc unite together firmly, and this circumstance is
due to the presence of the viscous varicty; pulcanization, by hardening this, destroys the alhesive property.

Certain liquids, such as benzol and its homologues, carbon disulphide, petroleum, ether, volatile oils, chloroform, and melted naphinalene, dissolve caoutchouc more or less perfectly; but unless the substance has bcen subjected to the process of mastication, its fibrous constituent appears, not to dissolve in the strict sense of the term, but rather to swell up, forming a paste aualogous to starch which has been acted on by hot water. Carbon disulphide and chloroform, however, exercise a more powerful solvent action on the fibrous parts of india-rubber than benzol or essential oils; and Payen has found that carbon disulphide to which 5 per cent. of absolute alcohol has been added forms one of the best solreats. One part of masticated caoutchouc dissolved ia thirty parts of this solvent forms a liquid which can be filtered through paper, and which leaves a film of exquisite tenuity and purity when allowed to dry on a level glass plate.

Most fatty matters exercise a remarkable destructive action on caoutchouc, causing it to become first soft, and afterwards hard and brittle. It has often happened that traces of fatty oils in the liquids employed for dissolving india-rubber, or fatty matters in the textile basis, have led to the destruction of waterproof goods. A like cause has in many cases led to the rapid deterioration of the caoutchoue threads in clastic webbing.

In the industrial working of india-rubber, the first matter to be attended to is the removal of the various iupurities present in the crude material. These are in some cases natural products which have originated with the caoutchouc, while in other cases they owe their presence to carelcss collection or to adulteration. Among the impurities of the former class may be mentioned various gum-like or mucilaginous matters, and acid products arising from their decay or oxidation. A remarkable volatile body, which is probably of the mature of a polyatomic alcohol, has been discorered by Gerard in the crnde caoutchouc from the Gaboun. This substance, called by the discoverer dambonite, has a composition corresponding to the formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{5}$, is swectish to the taste and soluble in water, and crystallizes in necdles which melt at $190^{\circ} \mathrm{C}$. and volatilize between 200° and 210°. The admixtures may range from fragments of bark or wood to stones or large lumps of clay, suth ns are sometimes introduced into negrohead rubber,-hny or a similar substance being also placed inside to make the mass about equal in specific gravity to the genoine article. Alum and sulphuric acid are often cmployed to effect the coagulation of the juice; and traces of the latter remaining in the rubber appear, in some instances, to work mischicf.

All the nbove-mentioncd impuritics are in actual practice very efficicatly removed by the following process. The lamps of crude caoutchouc are first softened by the prolonged action of hot water, and then cut into slices by means of a sharp knife, -generally by band, as thus any large stones or other forcign substances can be removed. Tho softened slices are now repatedly passed between grooved rollers, known as the washing rollers (fig. 7), a suplly of hot or cold water being made to flow over them. Solhe impurities speedily beconce crushed, and aro carried away by the water, while the ruliber takes the form of an irregular sheet perforated by muncrous holes. The washed probluct contains in its pores a notable proportion of water, which is removed by hanging the rubber for some days m a warm room. It is now ready either for incorporation

[^183]with sulpher aad other solid bodies, or for agglomeration into solid masses by means of the masticating machine, -an apparatus whieh consists of a strong cylindrical castiron casing, inside which thero revolves a metal eylinder with a fluted or corragated surface. Some of the rubber having been placed in the annular space between the inner cylindec and the outer easing, the former is made to revolve; and the continued kneading action to

Fta 7 - Poller of Washing Machine
which the rubber is subjected works it into a solid mass, something like a gigantie sausage. Before eommeneing the mastication it is generally necessary to wara the apparatus by means of steam; but as the operation proceeds the heat produced requires to be moderated by streams of cold water flowing through channels provided for the purpose. The inner eylinder is geuerally placed somerhat excentrieally in the outer casiag, in order to render the kneading more perfect than would otberwise be the case.

To convert the masticated rubber iuto rectangular blocks, it is first softened by heat, and then foreed into iron boxes or moulds. The blocks are cut into thin sheets by means of a sharp knife, whieh is caused to more to and fro about two thousand times per minute, the knife being kept moisteued with water, and the block fed up to it by mecbanical means. Cut sheets are largely used for the fabrication of certain classes of rubber goods, -these being mado by cenenting the sheets together with a solution of rubber in eoal-naphtha or benzol. Mostarticles made of cut oheet rubber wonld, however, be of very limited utility were thes not hardened or volcanized by the action of sulphur or some compound of that element. After vuleanization, rubber is no longer softened by a moderate bent, a temperature of $160^{\circ} \mathrm{C}$. searcely affecting it, nor is it rendered rigid by cold, and the ordinary solvents fail to dissolve it. It must, however, be distinctly understood that it is not the mere admixture but the actual combination of sulphur with inda-rubber that causes vileanization. If an article made of eut sheet be iamersed for a few minutes in a bath of melted sulphur, maintaived at a temperature of $120^{\circ} \mathrm{C}$., the rubber absorbs nbout onetenth of its weight of that element, and, although somewhat yellowish in colour from the presence of free solphur, it is still unvuleauized, and unaltered as regards general properties. If. however, it be now subjected for an hour or so to a temperature of $140^{\circ} \mathrm{C}$., true combination sets in, and voleanized caoutchoue is the result. When a manufactured article has been satorated with sulphur in the meltedsulphur bath, the heat neeessary for ruleanization may be obtained either by high-pressure steam, by heated glycerin, or by immersion in a sulphur-bath heated to about $140^{\circ} \mathrm{C}$. In this last case absorption of the sulphur and its iatimate combination with the rubber oceur simultaneously. Cut shects, or artieles made from them, may be saturnted by being laid in powdered sulphur maintained for some hours at about $110^{\circ} \mathrm{C}$. Sheets sulphured in this way caa be made up into articles and joined together cither by warming the parts to be united, or by means of india-rubber solution; after which the true vulcanization, or "euring." as it is termed, can be brought about in the usual way. Another method of vulcanizing articles made from cut sheet rubber eonsists in exposing them to the action of chloride of sulphur. Either they are placed in a leaden eupboard iato whiel the vopour is intruduced, or they are dipped for a
lew seconds in a mixture ot one part of cbloride of sulpbur and forty parts of earbon disulphide or purified light petroleum. Vulcanization takes place in this instance without the action of beat; bot it is nsual to subject the goods for a short time to a temperature of $40^{\circ} \mathrm{C}$. aftes their removal from the solution, in order to drive off the liquid whick has been absorbed, and to ensure e sufficient action of the chloride of sulphur. Treatment with a warm alkaline solution is afterwards advisable, in order to remove traces of hydrochlone acid generated during the process. Another very excellent method of vulcanizing eut sheet goods consists in placing them in a solution of the polysulphides of ealcium at a temperature of $140^{\circ} \mathrm{C}$. Rubber employed for the manufacture of cut sheets is often coloured by soch pigments as veraniliou, axide of chromium,

Fig. 8-The Slixing Rollers
ultramarine, orpiment, antimony, lamp black, or oxide of zinc, incorporation being effected either by means of the masticator or by a pair of rollers heated internally by steam, and so geared as to mose in contrary directions at unequal speed (fig. 8). Most of the rubber now manufactured is not combined with sulphur when in the form of sheets, but is mechanically incurporated with about one-tenth of its weight of that substance by means of the mixing rollers, any required pigment or other matter, such as whiting or harium sulphate, being added. The mised rubber thus obtained is readily softened by heat, and cau be very easily worked iuto any desired form or folled into sheets hy an apparatus known as the calendering machine. Vuleaniza. tion is then ensured by exposure for half a hour or more to a temperature of $135^{\circ}-150^{\circ} \mathrm{C}$., usually in closed iron ressels into which high-pressure steam is admitted (fig. 9). Tubes are generally made up around mandrels, and allowed throughout the euring to remain imbedded in pulverized Freneh chalk, which nf. fords a useful support for many artieles that tend to lose their shape during the process. Of late years a considerable amount of reamless tubing

Fig $9-1$ Vuscantzer has been made, much in the same way as lead piping, by foreing the mixed rubber through a die, and curing as above. The ealendered sheets are generally cured between folds of wet cloth, the markings of which they re'ain ; anis hollow articles, sueh as playing balls or injectirn boltlefe are vuleanized in iron or brass moulds, tinned inside s.?:"
very slightly greased. Before it is put in, the article is roughly put together, and the expansion of the iacluded air furces the rubber into contact with the interial aurface of the mould, or a little carbonate of ammonia is enclosed. Belting intended for driviog machinery is built up of cancas which has becu thoroughly frictioued with the soft mised rubber, and is cured by placing it in a kind of press kept by means of steam at a dry heat of about $140^{\circ} \mathrm{C}$. Packing for the stuffing boxes of steam engines is similarly prepared from strips of rubber and frictioned cauras, as also are the so-called iasertion sheets, in which layers of rubber alternate with canvas or even wire gauze. Indiarubber stereotypes are now extensively made use of as hand stamps, and attempts have been made to introduce them for press and machine printing. A'plaster cast of the type is, when dry, saturated with shellic raroish and redried. I ubber mixed in the usual way with about 10 per cent. of sulphur is now softened by heat, forced into the mould, and retained there by pressure during the operation of curing, which is usually effected in an iron box beated over a gas burner to $140^{\circ} \mathrm{C}$.

The ordinary macintosh or waterproof cloth is prepared by spreading on the textile fabric layer after layer of indiarubber paste or solution made with benzol or coal-oaphtha. If cottuu or linee is used, it is usual to incorperate sulphur with the paste, and to effect vulcanization by steam heat; but, when silk or wool is emplojed, no sulptur is added to the paste, the dried coating of rubtor being merely brought iuto monentary contact with the mixture of chloride of sulphur and carben disulphide already mentioned. Double testure goods are made by uniting the rubber surfaces of two pieces of the coated material. Air goods, such as cushions, beds, gas bags, and so forth, are nade of textile fabrics which have been coated with mixed rubber either by the spreading process above described, or by means of heated rollers, the curing being then effected by steam heat. The manufacture of overshoes and fishing boots is an analogous process, only the canvas base is more thickly cuated with a highly pigmented rubber of low quality. The urticles are first fashioned by joining the soft material; they are then varnished, and afterwards cured in ovens heater to about $135^{\circ} \mathrm{C}$. The finc vuleanized "spreal sheets" are toade by spreading layers of india-rubber soiution, alrealy charged with the reguisite propertion of suhpur, on a textilo base previously prepured with a mixture of paste, glue, and treacle. Vulcanization is then effected by steam heat, and, the preparation on the cloth being seftened by water, the sheet of rubber is readily remover. The required thickness of the spread sheet is very often secured by the rubber-faced surfaces of two cloths being united before curing. The threarls used in making elistic webbing are usually cut from sjread sbeets. The manufacture of springs, valves, and washers ducs not re'quite any very special notice, these articles being generally fashinned out of mixed rubber, and vulcanized either in moolds or in powdered lirench chalk. Rullers are mado to udbere to thicir metal spindles by the intervention of a layer of cloonte, and after vulcanization they are turned. In order to make spongy or porous rubber, sume material is incorperated which will give off gas or vapour at the vulcanising temperature, -such as carbonato of ammonia, crystallized alum, and finely ground damp sawdust. Uncombined sulphur is injurious, and often leads to the decay of vulcanized gnods; but an excess of sulphur is generally required in order to ensure perfect vuleanization. Sometimes the excess is partially removed by boiling the finished goods with a solution of caustic soda, or some oher solvent of sulphur. In other cases the injurions effects of free sulphur are ohwiated by using instead of it a motallic sutphite, -generally the orange sulphide of
antimony; but, for the best resulta, it is occessary that this suould contain from 20 to 30 per cent. of uncombiou: sulphur.

When the vulcanization of rubber is carried too far-say from the presence of a very large proportion of aulphur and an uncluly lung action of heat, the caoutchouc becomes hard, born-like, and often black. Rubber hardeoed by over-vulcanization is largely manufactured under the aame of ebonite or vulcanite. It is usually made by incorporating about 40 per cent. of sulphur with purified Berneo rubber by means of the usual mixing rollers, shaping the required articles out of the mass thus obtained, and heating for six, eight, or ten bours to from 135° to 150° Ebonite takes a fiee polish, and is valuable to the electrician on account of its insulating properties, and to the chemist and photographer because vessels made of it are ueaftected by nost chemical reagents. A kind of vulcanite which contains a very large proportion of vermilion is used, under the name of dental rubber, for making artificial gums.
The following list of works and papers on the rubber industry enumerates the wriungs which are calculated to be especially useful to the enquirer:-Charles Goodyear, Gum Elastic and its Varicties, New Haven, U.S.A., 1853; Fiiedrich Harzer, Gutta-Purchet uud Kiautschuk, ihr Vorkommen, dc., Weimar, 1853; Paulin Desormeaux, Noureau manuel compled du jabricant d'oljels en caoutchone, en gutta-percha, et en gomme fautice, 424 pR , Paris, $1855 ; \mathrm{C} . \mathrm{H}$. Schmidt, Der Fabricant von Kautschuh und Gulta-Percha Waaren, $207 \mathrm{lp} .$, Wemar, 1856; Thomas Hancock, Origin and Progress of the Indian-Rubber Monufacture in England, London, 1857; Heinrich Leysserling's edition of Friedrich Harzer's Gutta-Percha und Kautschuk, 273 PT . and atlas, Weimar, 1864 ; Abridgments of Sprcififations rolating to the Preparation of India-Fubber and Gutta-Percha, 1791-1866, 262 pp., printed by order of the Commissioners of Patents, London, 1875; "India-Kubber and Gutta-Percha," a series of articles in the Universal Enginecr, vol. ii., Manchenter, 1879 ; Franz Clouth, Lhe Kautschuk Industrie, 76 Pp., Wcimar, 1879 ; T. Bolas, Cantor Lectures on the India-Rubber and Gultia-Perchas Indastrics, London, 1880; M. Maigne, Noureau manuel comples du fabricant d'objets cn caoutchouc, \& \& . 2 vols., 506 pp., Paris, 1880.
(T. B.)

INDICTMENT, in English law, is a formal accusation in writing, laid before a grand jury, and by them prescuted on oath to a court of compictent jurisdiction. It is thus distinguished from a mere presentment by the grand jury made on information within their own koowledge, and from an Infommation (q.v.), by which a prosecution is instituted at the suggestion of a public officer without the intervention of a grand jury. The grand jury hears in provate the witnesses in suppert of t'e application, and, if it considers that a prina facie case has been made out, it is its duty to find the indietment "a true bill." Otherwise it sends the indictment into court torn up, which is a fioding of "no bill." In this case tho indictment is said to be ignored, Ao iadictment is said to consist of three ${ }^{\prime}$ ruts-the com . menceuent or eaption, the statement of the facts constituting the crime, and the conclusion. In each part appropriate and highly techaical language is still used, but verbal procision is not so essential as it onco was, and departure from the ordinary formalities, if it involves no misapprehonsion or mistake, docs not make a flaw in the indictment. The formal commencement of an indictment is after the following style:-" Middlesex to wit. The jurors for our lady the Queen on their oath present," de. The name of tho county and district in the margin is the "venue," and it should in general be the cousty in which the offence was committed, or the district over which the jurisdiction of the court extends. An indictment concludes with the words "against the peace of our lady the Qucen, her crown and dignity," if the offence is a criane at common law. If tho oftence is a crime by statute, the indietment must also use the worls "against the form of the statute in such caso made and provided." In tho "atatement "great care must be taken to set forth thu facts of tho case with certainty
and precision. It may bo mentioned that in the Criminal Code Bill, which has been drafted on behalf of the crown by Mr Justice Stephen, and rerised by a judicial commiasion, it is proposed to substituto for the existing formalities a aimple statement of particulars, with a reference to tho aection of the code defining the offence. An indictment lies "for all treasons and feloniea, for misprision of treasons and feloniea, and for all misdemeanours of a public nature at common law." And if a statute probibit a matter of public grierance, or command a matter of public convenience, all acts or omissions to the contrary, being misdemesnours at common law, are punishable by indictment if no other mode of proceeding is pointed out by the statute. The statement of the offenco is called a count, and an indictment alay consist of aeveral counts. But only one offence ought to be charged in esch count, and offences of a different nature, e.g., murder and burglary, should not be charged in the same indictment. Until recently it was thought improper to charge theft in one count and receiring in another of the aame indictment; but tbat-is now made possible by statute. So a prisoner may be charged as accessory before the fact in one count, and as accessory after the fact in another. At common law an indictment may be preferred at any time after the offence committed; but various periods of limitation have been fixed by statute in special cases. For example, certain kinds of treason must be prosecuted within three years.

Prosecutions by indictment in the United States generally resemble those of English lavz, the offence being charged as "against the peace and dignity of the state or comnonwealth," unless it is a statutory offence, when the conclusion "against the statute," \&c., is used.

INDIGO is a well known and exceedingly valuable blue dyeing material. The substance has been known among Western communities from an early period, being mentioned by Dioscorides as Ivotcór, and by Pliny as Indicum ; when it made its appearance in England it was called indico. As all these names show, the material in its origin and production is closely rclated to India, among the commercial commodities of which it has always occupied a distinctive and important place. It was not, however, till after the establishment of the Cape route to India that indigo came to be largely used in the dyeing establishments of Western Europe, woad having in earlier times been utilized for purposes to which indigo was subsequently applied.

Aa a commercial substance indigo is entirely obtained from the vegetable kingdom, although it may be produced, in minute quantity, from a principle contained in urine. nod its synthetical formation has also been sccomplished. The number of plants from which indigo may be procured is known to be large, but only from a very few is it. prepared in practice. These are various species of the leguminous genus Indigofera, especially the four species I. tinctoria, I. Amil, I disperma, and I. argentea; and it is said that in China Polygomum tinctorium and other nonleguminous plants are used as the source of lan or Chinese indigo. The woad plant, Isutis tinetorin, owes its value as a dye to the presence of indigo matter, although indigo is not actually prepared from it. The most important source of indigo, and that most generally cultivated, is I. tinctaria, which ia an herbaceuus plant growing 3 to 5 feet high, and hasing bipinnate leaves. It is in the leares that the indigo-gielding principle chiefly resides, and these are most gorged with it at the period when the flower-buds are about to open. It is then that the plant is cut down; and in some regions the same stock yields in one year a second and even a third crop of atems.

Two principal methods of preparing indigo are pursued, -dried leaves being operated on in the one, while the fresh green stalks and leave's are used in the other. It will be
sufficient to describe the latter, the more important process, as it is conducted in Bengal, where the most highly esteemed varieties of indigo are made. The cut leaves and stems are tied up into small bundles and conveyed at once to tho factory, in which there are two rangea of large tanks or vats, one series being at a lower level than the other. In the upper or fermenting vats the bundles are sub. merged ; aud cross-bars are fixed over the vats. A fermentation more or less rapid ensues, its completion occupying, according to the temperature, from nine to fourteen hours. The progress of the operation is judged by the tint assumed by the water, which under favourable eonditions should at the end of this stage be of a fine clear yellow colour. In this condition the liquid is run off into the lower vats, in which it is necessary to maintain it in a state of violent agitation. For this purpose a number of men, armed with long bamboos, enter the vats and lash the water incessantly for two or three hours, thus constantly exposing new surfaces to the air. Gradually the liquid assumes a green colour, and indigo appears in broadish takes, which as it forms begin to sink. After this transformation 18 complete, the liquid is allowed to settle, and as the indigo sinks the clear liquid is drawn off in a series of disclarges by pipes at different heights in the rat. The deposit of indigo is then placed in a boiler, and, to prevent any further fermentation, is raised to the boiling point. After resting for about a day, it is boiled for three or four bours, and then filtered over a thick filtering cloth, sid the paste is dried by pressure. The cakes formed during the pressing are then put away to dry gently in the shade, and in a few days are ready for packing.

Bengal indigo of good quality forms a porous earthy mass, light and easily pulverized; and when newly fractured it has that brilliant purple-blue colvur distinctively known as indigo, with a kind of coppery Justre. Experts distinguish upwards of forty qualities of Bengal indigo, principally characterized by varying shades of colour,-the inferior qualities being dull in hue, with greenisli or greyish toues, hard, dense, and not readily broken. The varieties of iodigo which come into the European markets are classified according to their sources: the classes most frequently met with are Bengal, Oude, Madras, Manila, Java, Egypt, Guatemala, Caraccas, Mexico, and Brazil. Tho best qualities are the Bengal, Java, and Guatenala

Tho condition in which the indigo-yielding principle exists in tho fresl plants has been a subject of some speculation and controversy. Dr Schunck has investigated the leaves of the woad (Isatis tinctoria), the Cbinese indigo-plant (Polygonum tinctorium), and others, and from all these bas isolated a glucoside body indican, which, under the influence of dilute mineral acids, is decomposed, forming indigotin or indigo-blue and a variety of glucose which ha calls indiglucin. It bas been assumed that the sanse principle resides in Indigofera as in these other plants, and is the efficient sotree of the dye-stuff from that genus. In the decomposition of indican there are formed-in addition to indigo-blue-indigo-red (indigo-rnbin or indigo-purpurin) isomeric with the bue, indigo-brown, and indigo gluten, all of which, forming part of the precipitate, nodify the colour of the product, and render commercial indigo a compound body. Indigo also contains a certain amount of inorganic matter and other non-tinctorial constituents, so that the proportion of indigo-blue may vary from about 72 down to 12 or 14 per cent. of the mass. Pure indigo blue or indigotin, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$ is a neutral body of a deep blue colom, destitute of taste and odour, and insoluble in water, dilute acids, and alkalies, and in cold alcohol and etber. Boiling alcohol, cther, and aniline dissolve it, as do also petrolcum, benzene, cbloroform, nul phenol, melted spermaceti and stearic aeid, and reveral oils. It sublimes at
$290^{\circ}-300^{\circ}$ C., giving off violet vapours which cendense into right rhomboidal prisms possessing a brillisnt coppery lustre. By destrnctive distillation, indigetin fields, among other products, aniline, - circumstance to which that now well-known body owes its name (from the Sanskrit nili through the Portuguese anil, indigo). Treated with oxidizing agents, indigotin takes up oxygen, and is converted into isatin, thus:-

$$
\underset{\text { Indigotin. }}{\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}}+2 \mathrm{O}=\mathrm{C}_{18} \mathrm{H}_{\text {Isatin: }} \mathrm{H}_{10} \mathrm{~N}_{4} ;
$$

and by furtber oxidation sitro-salicylic acid and picric acid are evolved. The most visluable character, however, of indigotin is found in its behaviour under the influence of hydrogenizing or reducing agents. In the presence of nascent hydrogen indigetin absorbs that element and is converted into white indigo, a colourless body which is readily solnble in alsoline or earthy alkaline solutions, and by simple exposure to the air re-oxidizes and reverts to its original blne condition indigotin. The reduction to white indigo is thus formulated :-

$$
\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}+2 \mathrm{H}=\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}
$$

Advantage is taken of these properties in dyeing with indigo as detailed nader Dyengg, rol vii. pp. 576-7. See also Calico-printing, vol iv. pp. 689-90.

Indigo when dissolved in strong sulphuric acid, forms with it two acid compounds, both of which have limited industrial applications. These are (1) sulphiadigotic acid, $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{SO}_{3} \mathrm{H}\right)_{2}$, known also as sulphate of indige or soluble blue indigo, and (2) sulphophœnicic acid, sulphepurpurie acid, or indigo purple, $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{SO}_{3} \mathrm{H}\right)$. These bodies are formed together in the sulphuric acid solution of indigo ; but, as the second is insoluble in weak acids, it precipitates when the solution in which it is formed is largely dilnted with water. Both these acids are soluble in water. The first was formerly used in dyeing Sason-blue on wool and silk, a style now little known; and the sodium salt of the second is known as red indigo carmine.

The synthetzeal preparation of indigo is a subject which bas long occupied the attention of chemists, as obviously any means by. which the substanec might be artificially obtained on a commercial scale could not fail to be of great industrial value. The numerens efforts made in this direction appear at last (1881) to be crowned with suecess; and there is now little doubt that artificial indige will soon become a commercial product. It is to Professor Adolf Baeyer of Munich that the measure of success already attained in manufacturing indigo is due. For many years he has patiently investigated the molecular constitution of indigotio and its deripatives. From isatin, prepared by the oxidation of indigotin, Baeyer and Knob produced sucecssively di-oxindol, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$, oxindol, $\mathrm{C}_{16} \mathrm{~L}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$, and indel, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2}$. Baeyer at a later period, with the assistance of Emmerling, succeeded in produciog indol from cinnamic acid, and as that body can be prepared from coaltar a new conneeting chain was established between indigo at one extreme and coal-tar at the other, mecting in indol just as at a much carlier date they had similarly met in aniline. The task remained of reconverting these derivatives of indigotin into that body, and towards that, in 1870, Bacyer and Emmerling, by heating isatin with phosphorus trichloride, acetyl chloride, and phosphorus, succceded in obtaining a mixture of indigotin and indigorubin. In 1878 the further steps necessary to complete the cyele were accomplished by Baeyer, when from phenylacetic aeid be prepared oxindol. Acting on oxindol by nitrous acid he produced nitrosoxindol, which in its turn, by treatment with nascent hydrogen, was transformed into amidozindol, a boly which on oxidation yiclded isatin. Thus the series of transformations was complete; but thing
were effected by a process so roundabout and eluborate as to preclude all hope of any commercial issue from the method. - Quite recently Baeyer, coming back to the use of cinnamic acid, has derised the much simpler and more direct process which now promises to become, and indeed slready is in operation as, a method for the commercial preparation of indigo. By treating cinnamic acid with nitric acid, ortho-nitro-cinnamic acid is prepared, which on exposure to bromine vapour readily combines with that bedy, forming ortho-nitro-dibrom-hydro-cinnamic acid. This substance when trested with caustic alkali is converted by the loss of the bromine into orthe-nitro-phengl-propiolic-acid, which, lastly, when heated in an alkaline solntion of grape sugar develops into indigotin The steps in the process are therefure represented thus:-
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{COOH}+\mathrm{NO}_{3} \mathrm{HO}=\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right) \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$.
Cinoamle acid. Ntric acid. .Nitro-cinnamic acid.
(2) $\underset{\text { Nifrocinamic acid. }}{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{3}\right) \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{COOH}} \underset{\text { Bromin. }}{2 \mathrm{Br}}=\underset{\text { Nitro-dibrom-cin amaic acid. }}{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right) \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2} \mathrm{COOH}}$
(3) $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2} \mathrm{COOB}+\underset{\text { Cnnstic }}{2 \mathrm{NaOH}}=\mathrm{C}_{6} \mathrm{E}_{4} \mathrm{NO}_{2}\right) \mathrm{C}_{2} \mathrm{COOH}+2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{O}$. Cnostic Nitro-propiolle goda. acid.
(4)

$$
\begin{aligned}
& \underset{\substack{\text { Nutro propiohic } \\
\text { acid. }}}{2 \mathrm{C}_{9} \mathrm{H}_{3} \mathrm{NO}_{4}}+2 \mathrm{H}_{2}=\underset{\text { ladigotio. }}{\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \hline
\end{aligned}
$$

The nitro-propiolic asid is now being manufactured by the Badische Anilinfabrik as a material for indigo printing. The acid has simply to be printed on the cloth with a thickening containing grape sugar and alkali, and, by steaming, indigo is developed in the fibre. This reaction is in itself a matter of no small importance, seeing that the printing of indigo direct is an extremely troublesome operation. Hitherto indigo in mass has not been produced, but there can be little doubt that the remaining difficulties, amoag which is the present expensiveness of cinnamic acid, will soon be overcome, and that artificial indigo will take its place among ordinary chemical manufactures.

> (J. PA.)

INDIUM, a metal discovcred with the aid of the spectroscope in 1863 by Reich and Richter whèn testing certain specimens of Freiberg zioc-blende for thallium. Instead of the brilliant green line characteristic of this latter metal, they observed an intense indigo- Uluc liue occupying a position different from that of any known line, and were thus at once led to suspect the presence of a previously unknown elemen-. The name indium was chosen for the metal, when theysucceeded in isolating it, onsccount of this circumstance. It has since bcen detected in blendes from various sources, but always in extremely minute anount, and still remains one of the rarest of the elements. Indium is best prepared from crude zinc made from indium-containing blendes. As it is less positive than zine. if the crude zine is treated with insufficient hydrochlorie acid to dissolve it completely, a residue .3 obtained contuinng all the indiun together with several other metals also present in small quantity in the zine. The properties of indium have already been partially deseribed (vol. v. p. 533). Its flame spectrum exhibits, besides the indigo-blue line (w. l. 4509), a violct line of w. 1. 4101. Lockyer has stated (Royal Socicty Proceedings, 1878 , xxviii. p. 177) that the strongest line in photograplas of the spectrum of indium in the electric are is, as already recorded by Thalen, the h line of hydregen, the hydrogen line near G being, however, absent. He argucs that this is not to be explained by the supposition that the indium contains ocelnded hydrogen, since none of the hydrogen lines become impressed on the plato when palladium-lydrogen is volatilized in the are. Indium is commonly regarded as closely allied to aluminium, on account of the general resemblance of corresponding compounds of the two metals, and eipecinlly on acceunt of the existence of an indium alum isorierphous with ordinary
nlum. Hence indium chloride is usually represented by the formula $\mathrm{In}_{2} \mathrm{Cl}_{0}$, the forinula of aluminium chloride being $\mathrm{Al}_{2} \mathrm{Cl}_{6}$. V. and C . Meyer hisve recently found, -however, that the density of its vapour at a bright red heat corresponds with the formula $\left[{ }_{n C l}{ }_{3}\right.$, indicating that indium is a triad and not a tetrad like alumionm and iron. Aluminium and irnn (ferric) chloride boil readily at a temperature belew that at which sulphur or mercury boil, but indium chloride does not volatilize in the vapour of perchlorodiphenyl, which boils considerably above $440^{\circ} \mathrm{C}$., and only slowly sublimes in the vapour of phospherus pentasulphide (b.p. 530°). It evaporates by no means rapidly at a dull red heat, but is mementarily converted into vapour at a bright red heat, furnishing a gas which behaves normally. It is notewerthy that aluminium chluride decemposes entirely at a temperature very little abeve that at which it gasifies. The issue raised by the Meyers' observation is of considerable theoretical interest, and the subject demands further investigation.

INDORE, or the Territories of the Mahárája of Holkar, is one of the priacipal pative states in India, under the Central Iadia Agency. The name of the state is taken from that of the capital Iodore, $22^{\circ} 42^{\prime} \mathrm{N}$. lat., $75^{\circ} 54^{\circ} \mathrm{E}$. long. The territory consists of many isolated tracta; but aince 1861 arrangements have been made to concentrate tha state as much as possible, and lands which were formarly held by Helkar in Abmednagar district and in the Deccan have been exchanged for districts and pairganas hordering on the Nerbudda (Narbada) river and the tract in which Indere town is situated. The area of the whole of Holkar's territories is estimated at 8075 square miles. Of these districts, those situated to the oerth are drained by the river Chamhal and its feeders, those to the south by the Nerbudda. The tracts are fertile, producing in abundance excellent wheat and otber grains, pulse, sugar-cane, cotton, and opiun. The poppy is so generally cultivated that, when in bloom, it gives the country the appearance of a vast garden. Tobacco 1 also grown to a great extent, and is of admirable quality.

The great Vindhya range traverses the southern division of Hel'iar's dominions, in a direction from east to west, a small portion of the territery lying to the nerth of the mountains, but by much the larger part to the south. The latter is a portion of the valley of the Nerbudda, and is bounded on the seuth by the Satpura mountains. Basalt and other volcanic formations predominate in both ranges, although there is also much sandstone. The Nerbudda traverses Indore from cast to west; and the ralley at Mandlesar, in the central part of the district, is between 600 and 700 feet above the sea. The general appearance of the country is that of an undulating valley intersected by low rocky ranges, in some parts thickly clothed with stunted jungle, which also covers considerable tracts in the plains. The forests of the state form two belts, the suuthern and the northern. The former, which is considered unbealthy, burders on the Satpura range, and the latter, a healthy tract, on the Vindhya bills From its inter-tropical position, the climate of Jndore is sultry, the thermometer rangiag from 60° to 90° Fahr. in the house. For aome months frem the close of the perindical raius, malaria is so deadly in the jungles that wo European ventures into thern.

Besides the ruling tribe of Marhattís, the pepulation comprises many other classes of IIindus, a few Mahometans, and a cousiderable nuaber of Gends and Bbils. The Vindhya and Sátpura ranges are peculiarly the country of tho Bhils, who are considered to have been the earliest occupiers of the soil. This race is one of the wildest in Iedia, its people living for tho most part on vegetables and game, or on the plunder of their more civilized neighbours.

They have, howevcr, of late years been breught into more peaceful habits of life. The pepulation of Holkar's territories was estimated in 1875 at 635,450 . The reveoue in 1875-76 amounted to $£ 459,800$, and the disbursements to $£ 405,100$. The number of schools in 1876 was 77 , atteoded by 3235 pupils, costing the state $£ 3000$. The principal educational establishrnent is the Rajkumár college, for the education of the seas of the chiefs and nobles of Central India. The institution is maintained by the Bratisb Government, and is located within the grounds assigned for the purpeses of the "Resideacy." The goveraor-gencral's agent for Central India bas bis headquarters at lidore town. A branch line from the Great Indian Peniosula Railway, knewn as the Holkar State Railway, runs from Khandwa juoctien to Indore. The priacipal engioeeriog works are the ascent of the Vindbya range and the brilge over the Nerbudda river. From Iadore the line is taken up by the Neemuch Railway through part of Sindhia's dominions, connecting Indore with Nasirábád, and finally with Delhi and Agra. The chief means of communication are the Bombay and Agra Trunk liuad, which runs through Iudere, with branches at Mhow and Dhar, \&c. ; another road, 80 miles in length, joins Indore with Khandwa, crossiog the Nerbudda by ferry.

There are cetton mills at work in the state, which have proved a regular source of inceme. as they tura out cloth for which there is a ready market. In 1878 the number of spindles was 10,000 . Indore city contains a charitable and leper's hospital, and a dispensary. Cholera frequently prevails.

Mistory.-The feunder of this dynasty was Malhar Rao, the sun of a shepherd, who lived in the village of Hol, in the Deccan, whence he derived the surname of Holkar, the adjunct "kae," "kar," or "kur" signifying inhabitant. Disdaining his father's occupation, he enlisted in a troop of horse ; his rise was rapid, and he eventually became oue of the most distioguished leaders in the first Marbatta invasion of nerthera lndia, and obtained many pessessions nerth of the Nerbudda and about Indere by grant from the peshwí. At his death he was succeeded by his grandson Malli Ráo, who died shortly after lis accession. Alis Bai, the mother of Malli Ráo, then took the management of affairs, and appointed as commander of ber army Malhar Túkaji Helkar, a chief of the same tribe as, but in no way related to, Malhar Rato. Alia Bai died in 1795, and was not long survived by Túkaji Ráo, after whose death the pewer of the house of Holkar was nearly extinguished by family quarrels and the dissensions which distracted the Marhatta confederacy at the close of the last century. The fortuncs of the family were, however, restored liy Jeswant Ráo, an illegitimate son of Tukaji Helkar, whe, after a signal reverse from the army of Sindbia, employed European officers to introduce their discipline into his army, and in 1802 defeated the united forces of Sindhia and the peshria at the battle of Poona. Trice IIolkar attacked British territory, but was totally routed, and finally was forced to sign a treaty on the banks of the Bias, by which he was stripped of many of his conquesta. IIe died insauc in 1811, and was succeeded by his son Mallar Rao, during whose minority the state was torn by the mest violent disseasions, and overrua by Pindáris. The army mutibicd, and British intervention became necessary to restore the government. Malbar Rao dying in 1833 without issue, his wife and mother adopted Martaud Ráo Helkar as his successer. He was summarily deposed by IIarí Ráo, a cousio of Malhar Ráo, whose accession was welcomed by the troeps. His rule was a tissue of intrigue and disurder. He dicd in 1843, and his adopted aon, who succeeded him, died in a few months, leaving no heir. The succession was declared to rest with
the British Government, and Túkaji Ráo (the present ouahárájâ), at that time eleven years old, was selected and placed on the vaili. Helkar maintains a military establishment of 3100 regular and 2150 irregular iufantry, 2100 regular and 1300 irregular cavalry, and 340 artillerymen, with 24 field guns equipped.

INDRE, a department of central France, cousisting of parts of the old provinces Bas-Berry, Orlénais, and Marche, is bounded N. by the departments of Iudre-et-Loire and Loiret-Cher, E. by Cher, S. by Creuse, Haute-Vienne, and Vienne, and W. by Vienne and Iudre-et-Luire. It lies betwean $46^{\circ} 22^{\prime}$ and $47^{\circ} 15^{\prime} \mathrm{N}$. lat., and between 0° $52^{\prime \prime}$ and $2^{\circ} 13^{\prime \prime}$ E. long., being 60 miles iu length from north to south sad 54 miles in breadth from east to west. It derives its name from the river Indre, which flows through it from south-east to north-west. The Creuse, Claise, and Vienne, tributaries, like the Indre, of the Loire, are the other priacipal streams. The aurface forms a vast plateau, sloping from south to nerth, aud divided into three districts, the Bois-Chsud, Champague, and Brenne, varying with the charscteristics of the soil. The Bois-Chaud is a large well-wooded plain, cemprising seveu-tenths of the ontire area, sud covered with a sandy and stony soil. In the river valleys, however, the soil is oxtremely fertile. The Champagne, s bare though fertile district to the northwest, produces abundant cereal ctops, and affords excellent pasturage for large numbers of sheep, celebrated for the fineness of their woel. The Brenne is an unhealthy marshy district to the couth. The climate of Indre is mild and temperate, though moist. On the southern heights the cold is often severe, and throughout the department the crops suffer much frem hsilstorme. The growth of cereals in Indre exceeds the requirements of the :nhabitants; the pasturage is good and abundant; and there are namerous valuable forests of oak, elm, beech ${ }_{2}$ and other timber. Frait-troes are plentifal, and ararket-gardening is a flourishing industry. The vino is cultirated to a small extent, and yields a medioere red wine. Chestnuts, petatues, turaips, beetroet, hemp, and colze are also grown. The rearing of berses and herned catcle is csrried on in the Bois-Chaud, and of sheep in the Chsmpagne. The mineral resuurces of the department include large quantities of iron, besides marl, sandstone, limestene, marble, lithegraphie and mill-stenes, granite, and other stones. The chief industry is the working of the iron; tobacce, paper, parchment, cloth, woullen goods, leather, felt, pottory, porcelain, bennets, scythes, and tilos are alse manufactured. Indre has considerable trade in its nataral productions and manufactured articles, and in wool, horses, and usen. The department is divided into the arrondissenents of Châteauroux, Le Blane, La Châtre, and Issoudun, with 23 cantous and 245 communes. The chief town is Chitesuroux. The total area is 2624 square miles. and the pepulation in 1866 was 277,860, nad in 1876281,248 .
iNDIRE-ET-LOIIRE, a department of central France, consisting of parts of the old provinces Touraine, Orléanais, Arijou, and Marche, is boanded N. by the departments of Sarthe and Leiret-Cher, E. by Loir-et-Cher and Indre, S. and S.W. by Vienne, and W. by Maine-ot-Loire. It lies between $46^{\circ} 45^{\prime}$ and $47^{\prime} 43^{\prime}$ N. lat.; and between 0° 4 and $1^{\circ} 18^{\prime}$ E. long., being 70 miles in length from north to south and. 59 in breadth frem cast to west. It dorives its name from the Loire and its tributary the Indre, which flow through it. The other chief alluents of the Loire in the departament are the Leir, Cher, and Vienne. Indre-ctlwire is generally lovel, and convenicitly divides itself into the following districte, necording to tho eharacteristics of thes soil: the Gatine, a flate eterito region to the north of the Leire, with some forests; the Varenno, a rich and fertile distriet between the Loire and Che: : he Cham.
peigne, a chain of vine-clad slopes, separating the vallegs of the Cher and Indre; the Veren, between the Loire and Vienne, the most highly cultirated district, but subject to inundation by the former river; the plateaus of Ssinte Maure, a bare billy region, the most unproductive of the department; and the Brence, between the Claise and Creuse, formiug part of the marshy territery which extends under the same name inte Indre. The valley of the Leire in this depsrtment, from its beauty and fertility, receives the name of the Garden of France. The climate of Indre-et-Loire is singularly agreeable and equable, aveiding extremes of both beat and cold. About two-thirds of the entire ares is suited for cultivation, but the south for exceeds, the north in fertility. Cereals of all kinds are grown in greater abundance then is required by the inhabitants. Vines are cultivated to a considerable extent, and yield excellent white sind red wines, experted chiely to Holland and Belgium. Vegetables, petatces, fruits (plums especially being cultivated for the trade in praneaux de Tours), hemp, liquorice, coriander, anise, truffles, wslnuts, and mulberries are also produced. Owing to the deficiency of well-watered pasture, domestic animals are fuw. Agri culture has been for some time in a backward state, from the conservative adherence to old systems and implements by the small peasant proprietors, who hold much ol the land. The mineral resources of the depsitment are unimportant. Iron, marble, linestone, millstone, lithographic stone, and various kinds of marl are worked. Copper, though found, is not worked. The presence of clay, suituble for bricks and puttery, bas encoursged the manufacture of these articles. The chief industry is the manufacture of gunpowder at Ripsut nesr Tours. Silk-weaving, formerly very Huurishing, is again beginuing to revive. The refining of hectrvet sugar and the preserving of fruits occupy many hands. Cloth, carpets, flew, woollen guods, psper, and basket work are made in the department; and there is a oonsiderble tride in many of the manufactured articles. Indre-et-Leire is divided inte the arrondissements of Tours, Loches, sad Chinon, with 24 cantens snd 282 commanes. The chief tuwn is Tours. The tutal area is 2360 equare miles, and the pepulation in 1866 was 325,193 , and in 1876324,875

INDULGENCE, in Roman Catholic theology, is defined as the remission, in whele or in part, by ecelesiastical authority, to the peaitent sinner, of the temparal punish. ment due for sia. ${ }^{1}$ The word (frum indulyeo, snd perbaps counected with dulcis) in its classical use has the meaning which it atill bears, in ordiaary parlance; but by postclassical writers it is often employed in a more special sonse to denote a remission of tazation or of punishmeat. The Codex Theodosianus has twe titles "De indulgentiis debitorum" (lib. xi. tit. 28) and "De indulgentiis eriminum " (lib. ix. tit. 38). In this seuse it was taken up by ecclesiastical writers; thus Ambrose says "nemo recte egerit ponitentiam nisi a Deo per Christum speraverit indulgentism;" and Augustine (Con.Jul., i. 3) quetes Reticius of Autun (313 A.D.) te the effect that "bar.tism is the priocipal indulgeace bnown to the chureh." The natural and netual synonyans of the werd are "gratia," "veois," "relaxatio," and "remissio."
The penitential discipline of the ancient chureh was very severe in its treatment of a large class of scandalous offences; sud in tho canonical punishments or penances (which frem a very carly date began to be determined with considersble precision) time was alwass a promineut element. But a certain power of showing leniency (ϕ clav日pwaia) or the

[^184]reverse, in the way of shortening er lengthening the prescribed duration of the period during which ecelesiastical penance was to be done, was always left to the discretion of the bishop. An early and explicit proof of this is found in the fifth canon of the council of Ancyra (314). ${ }^{1}$ This discretionary leniency was sometimes, as a ${ }^{\text {ppears }}$ from the writings of Cyprian, granted by the bishop on the intercession of thuse who were witnessing for the truth in prison; sometimes alsu at the iostance of the civil magis. trate. The episcopal power was occasionally exereised, not only in a shortening of the canodical duration of the penance, but in some mitigation of the nature of the peualty itself (Syn. Ancyr., can. 2). We find indications at a very early period that some of the minor ecclesiastical uffences ceuld be readily and canonically atoned for by almsgiviog (Aug., De Fid. et. Op., c. 19); thas gradually arose, by steps which can readily bo conjectured, a regular system of commutations (redemtiones, commutationes), set forth in "libri penitentiales," offering striking analogies to the provisions made by the various criminal codes by which the Theodosian was supplanted throughout Europe. In the Penitential of the Groek Theodore of Canterbury, for example (690), which is to be found in Migne's Patrologia, a canenical fast ef days, weeks, or years may be redeemed by saying a proportionable dumber of palma, or by payiog an adequste fins. For more than four centuries this work held a position of great authority all over Europe. At the time of the crusades, to go to Palcstine and take part in the struggle against the infidel was held to be a work of such extraordinary merit as to render unnecessary any other penitential act on the part of the sinner who engaged in it. Thus st the council of Clermont, held under Urban II. (1095), it was decreed "iter illud pre omni penitentia reputetur." The great schoolmen were the first to reduce to s theery the praxis which had gradually thus sprung up within the Western Church. That theory may be said to resolve itself into the two positions-(1) that, after tho remission of the eternal punishment due for sin, there remains due to the justice of Ged a certain amount of tmporal pain to be undergene, either before death in this world, or after deatb in purgatory; (2) that this pain may be remitted by the application of the superabundaut merits of Christ and of the saiuts out of the treasury of the church, the administration of which treasury is the preregative of the hierarchy. A characteristically elaberate statement and defonce of these theses will be found in the supplement to the Summa of Thomas Aquinas (p. 3, qu. 25) and in the Sumuma of Aloxander Halesius (p. 4, qu. 23. art. 2, membr. 5). In their Tridentine ferm they occur in sess. 6, can. 30, and sess. 14, can. 12-14. With theso passages must be compared the cendemnation of the syned of ristoia by Pius VI. in 1794.

Indulgences are either general or particular, i.e., either open to the whole church or confined to particular localities. The most general of all is that which is proclaimed in the yesr of jubilee. Indulgences again are either plenary or noa-plenary, the former being a tetal remissien of all the temporal purishment which may have been incurred by the recipient. It must carefully be berne in mind that, in Leman Catholic orthedoxy, indulgence is never absolutely gratuitous, and that those obly can in any circumstances volidly receivo it who aro in full communon with the church, and have resorted to the sacrament of penance, in which alone, nfter due contrition and confession, provision is made for the remission of the graver penalty of sin. The doctrino of indulgences, however, is singularly open to misunderstanding; and in its practical applications it has too

[^185]often been used to sanction the mest flagrant immorality. The scandalous abuses connected with the "pardeber's" trade, and in particular the reckless conduct of the hawkers of the papal indulgence granted to those who should contribute funds for the completion of St P'eter's, Rome, were, as is woll known, very prominent among the proximate causes of the l'rotestant Refurmation. In the 14th article of the Church of England the doctrine of the "thesaurns meritorim" er "thesaurus superergationis perfectorum" is by implication rejected; and in art. 22 "the Romish doctrine concerning purgatory and pardons" is expressly condombed. It is hardly necessary to add that "the power of the keys" is inseparable from the idea of a clurch, and that in this power is plainly iuvolved a certain discretion as to the time and manner ir which discipline shall bo administered. This discretion is clsimed by every organized body of Christians.

See Amort, De Origine, Progressu, Falme, at Fructu Indutgenliarum, Vienna 1735; and Hirscher, Die Lehre tom Ablass Tribingen, 1844

INDUS, one of the three greatest rivers of nerthern Iddia, rises in unknown regions on the northerd slopes of the sacred Kailas Mountain in the Himálayas. On the south of this same hill rises the Sutlej, the great feeder of tho Indus, which unites with it after a separate course of ahout 1000 miles. The Indus rises in $32^{\circ} \mathrm{N}$. lat. and $81^{\circ} \mathrm{E}$. long., enters the Punjab in $34^{\circ} 25^{\prime} \mathrm{N}$. lat. and $72^{\circ} 51^{\prime} \mathrm{E}$. long., leaves the Tunjab in $28^{\circ} 27^{\prime} \mathrm{N}$. lat and $69^{\circ} 47^{\prime}$ E. long., coters Siad in $98^{\circ} 26^{\prime} \mathrm{N}$. lat. and $69^{\circ} 47^{\prime}$ E. long., and fually falls into the Arabian Sea in $23^{\circ} 58^{\prime}$ N. dat and $67^{\circ} 30^{\prime}$ E. long. The basin of the Indus is estimated at 372,700 square miles, and its tutal length at a little over 1800 miles.
The first third of its course lics outside of British territory. It at first flows north-west for about 160 miles under the name of "Sinh-ks-bab," until it receives the Gar. Sbortly after this junction it enters Kashmir. Near Iskardoh in Little Tibet is tho wonderful gorge by which the river bursta through the western ranges of the Himálayas, said to be 14,000 feet in depth. For about 120 miles the river passes south-west through the wilds of Kehistán until it reaches the Punjal frontier near Derbend. Λ littlo way alove Attock, in Rawal Pind district, it receives the Cabul river, which brings down to it the waters frem Afghínistín via Jalálíbád and the Khyber Pass. The two rivers have about the same velume ; both are very swift, and are bruken up with rocks. Their junction during fleods is a scene of wild confusion of waters. At Attuck the river las fallen from its elevation of 16,000 feet at its source in Tibet to under 2000 fect. After leaving Attock, tho Indus flows almost thoo south dewn the western side of the Punjab, parallel to tho Sulaimín hills. Just above Mithankot, in the south of the Derá Gházi Khán district, the Indus receives tho accumulated waters of the Punjab. Between the Indus and the Jumna (Jamunâ) flow the five great streams from which the P'unjab (Panj-ab, literally "The land of the five rivers") takes it ${ }^{\text {namo. These are the Jhelum, the Chenáb, the }}$ Ravi, tho Biás, and the Sutlej. After varions junctions these rivers al! unite to furm tho Panjoad, literally "The five rivers." The J'anjnad marks for a short space the boundary between the Tunjab and Eahawalpur, and unites with the Indus near Mithankot, about 490 miles from the sea. The breadth of the lndus above the conlluence is about 600 yards, its velocity 5 miles an heur, its depth from 12 to 15 feet, and its estunated discharge 91,719 cubic feet per second. The breadth of the Panjuad above the point of junction is 1076 jards, with a depth of 12 to 15 feet, but a velocity of only 2 miles an hour. Its estimated discharge is 68,955 cabic feet per secend.

Below the junction the united stream, under the name of the Indus, has a breadth which varies from 2000 yards to several miles, according to the season of the year. The whole course of the river through the Punjab is broken up by islands and saudbants. The Indus enters Sind in 28° 26° N. lat. and $69^{\circ} 47^{\prime}$ E. long., and empties itself by many mouths into the Arabian Sea, after a generally south-westerly course in this province of 580 miles. Its average width during the low season is 680 yards; its depth varies from 4 to 24 feet.. Its velocity in the freshes averages 7 koots per hour, at ordinary times 3 knots. The discharge per second varies at the two periods from 446,086 cabic feet to 40,857 . The average temperature is 10° lower than that of the air.

The delta of the Indus covers an area of about 3000 square miles, and extends along the coast-line for 125 miles. It is almost a perfect level, and nearly destitute of timber, the tamarisk and mangrove alone supplying fuel. Ic the marshy portions good pasturage is obtained, and in
the drier rice grows luxuriantly. The climate of the delta is cool and bracing in the " winter". months, excessively hot in the "summer," and most healthy during the foods.

The Indus begins to rise in March, attains its maximum depth and width in August, and subsides in September. The registered rise at Gidu-Bandar is 15 feet. Fish abound,-at the mouths, the salt-water varieties, notably the Clupea neowhii, a species of herring; the chief of the freshwater varieties is the pala. The local consumption and export of the dried pala are buth very large. The boats of the Indus are the dúndhi and zaurak (cargo boats), the kauntal or ferry-boats, and the dundo or fishing boats. The aggregate burthen of the native craft on the river in 1861-62 was as follows:-up-stream to Sukkur 20,232 tous, and beyoud that town 16,317; down-stream to Sukkur 7694 toes, and beyond it 11,456 . In 1874 the number of steamers plying was fourteen, and of barges forty-three, with an aggregate barthen of 10,641 tons; the receipts amounted to $£ 8370$.

APPENDIX

AMERICAN REVISIONS AND ADDITIONS

TO THE

ENCYCLOPEDIA BRITANNICA
 (NINTH EDITION.)

A DICTIONARY OF
ARTS, SCIENCES AND GENERAL LITERATURE

BY
W. H. DE PUY, DD., LL.D.,
agsisted by a corps of tralned writerg,

CHICAGO
R. S. PEALE COMPANY

1892

American Revisions and Additions, Vol. XII.

HIPPURITES-H0AR

HIPPURITES, a remarkable genus of fossil bivalves, peculiar to the Cretaceous strata, and so abundant in some of the Lower Chalk beds of the Pyrenees that the series has received the name of hippurite limestone. The external form of the shell is so anomalous that some have called the genus a coral others an annelid, others a barnacle, and so on, though the majority held it to be at least a mollusk. Investigation has shown that the hippurites were divergent bivalves. The right valve is very large, and elongated into a cone, while the left ralve is inconspicuous and perforated by radiating canals. Including allied genera or sub-genera-for example, Radiolites and 'aprinellathere are over a hundred species, all restricted to the Chalk and Chalk-marl.

HIRSCH, Morris, Baron de, a Hebrew capitalist and philanthropist, born in Bavaria. Originally a cattle merchant, he gained a considerable amount of wealth, and then associated himself with the European banking-house of Bischoffsheim \& Goldsmidt. A large portion of his fortune was made by his connection with the railroad leading from Buda-Pesth, in Hungary, to Varna, on the Black Sea. Baron Hirsch has founded and maintained many schools in Egypt, and in European and Asiatic Turkey, and in 1890 established in the United States the fund, known as the Hirsch Fund (q. r.) for the help of needy IIebrew immigrants.

IIIRSCH FUND. Tine, was created by Baron Hirsch, of Paris, France, who executed, before the American Consul in Februars. 1891, a trust deed to a board of trustees in New York City, convering to them $\$ 2,400,000$, to be invested in the United States, and the net income (estimated to be $\$ 10,000$ a month) to be loaned to needy Ilebrew immigrants from Russia and Roumania, who have come to this country within two years. haron IIirsch, during the year 1890 , contributed $\$ 10,000$ monthly for the benefit of such Hebrew families. The specific purpose of the fund is to furnish mechanics with tools, toach them easy trades, pay their entrance lees into trades-unions, and, in exceptional cases, to lend the immigrants small sums to help them to become self-supporting. During the last six months of 1 sim the trustees of this fund provid. ed situations in New York Cits for 2,585 immigrants.

HISCOCK, FrsNk, a lonited States Senator, born in 183t. Ite was almitted to the New York har in
 ney of Onondaga comnty. He was a member of all the Congresses from the forty-tifth to the fiftieth, inclusive, and in 1 ssi touk his seat in the United Statos Senatua a hopuldican. llis term of servien will evpire Warch 3, 18:3.
 Anerican general and andhor, horn at Vergennes, Vi. Aftergraduating at West loint in 1817, he was assistant instrmetor in tattics there till 1809 , and from that time till is33 he was commandant of cadets. In the Mexican war lie was inspector-
general under Scott. Becoming colonel in 1851, he was placed in command on the Pacific coast. When the civil war broke out he was appointed majorgeneral of rolunteers in the Union army in February, 1862 , and soon afterwards made commissarygeneral of prisoners. He retired from service in October, 1867, and died at Sparta, Ga., Aug. 5, 1870.

Hitchcock, Rostrell Dwight (1817-87), an American theologian, born at East Machias, Maine. He studied theology at Andover, and was ordained pastor of the first Congregational Church at Exeter, N. II., in 1845 . Afterward he spent a year at the Universities of Halle and Berlin in Germany. In 1852 he was professor of natural and revealed religion at Bowdoin College; in 1855 professor of church bistors in Union Theological Seminary, New York; and in 1880 he became president of that seminary. In 1866 he visited Italy and Greece; in 1869 Egypt and Palestine, and in 1885 he again went abroad. He received the degree of D.D. from Bowdoin College in 1855, and of LL.D. from Williams College in 1873.
HITT, Fobert Roberts, a United States Congressman from Ohio, born in 1837. From 1874 to 1881 he was first secretary of legation at Paris, and chargé d' affaires ad interim; was assistant secretary of state in 1881, and in 1882 was elected to the 47 th Congress. He was rec̈lected a member of the 4 th, 49 th, 50 th and 51 st Congresses as a Republican.

HIVITES ("villagers," or "midlanders"), a Canaanitish people, the main body of which liced in the region irom Leloanon and Hermon to Hamath, but who had colonies, apparently isolated, in southern Palestine, as at Gibeon.
hoAR, Ebexezet Rockwoon, an American jurist, born at Concord. Mass.. in 1816. Ile was admitted to the bar in 1840. In 1849 he became judge of the court of common pleas, but resigued in 1855 . Soon after he ras appointed a judge. of the Supreme Court of Dassachusetts, and held this office until 1869, when President Grant appointed hin Attor-ney-General of the United States. Mr. Hoar was a member of Congress from 1873 tels75.
hoar, George F., a United States Senator, born in 1826. He was admitted to the Massachusetts bar in 1845, and in 1860 was city solicitor of Worcester. In 185:2 he was a member of the State house of representatives, and of the State senate in 1857. Ile was a member of the 41 st. 4 "nd. 43 rd and $4+\mathrm{th}$ Congresses, and in 1877 took his seat as a Repmblican in the United States Senate. In 1883 and 1889 he was reclected.
HOALI, SAMyel, an American statesman, born at lincoln, Mass., in 172A, dind at Coneord, Mass., in 1856. Being armitted to the bar in 1805, he soon became eminent in his profession. He was a member of Congress in 18in-in, and a State councilor in 1845-th. The State of Massachuset ts sent him to South Carolina in 18.t. to test the constitutionality of acts of the latter state. by which free negro sailors were seized and imprisoned on entering its
ports．But on December 5th，oi the same year he was driven from Charleston by a mob，and the State legislature anthorized the goternor on the same day to expel him from the State．

Hobirt，Jonn Hexry，bishop in the Protestant Episcopal ehurch，born at Philadelphia in 1775. died at Auburn，N．ľ．，Sept．10，1830．Ite stndied theology in 1796－98，while he was a tutor at Prince－ ton College．He was ordained deacon in 1798；priest in 1801；assistant rector of Trinity church，N゙ew York，in 1812，and rector in 1816．In the latter year he became bishop of New York，and in 1821 profes－ sor of pastoral theology and pulpit eloguenee in the general Theological Smminary of New York． Bishop Hobart published Compenion for the Altar； Apology jor Apostolie Order；State of the Departed．and left some memoirs which were published in 1833 ， and arain in 1834 and 1836.

HOPART PASHA，the IIonorable Augustus Charles Hobart Hampden，third son of the Farl of Buekinghamshire，born at Waltham－on－the－Wolds， in Leicestershire，April 1， 1822 ，died at Milan，June 19，1586．He entered the British navy in 1836， served first against the slavers in Brazilian waters， then in the Baltic in the Crimean war，and at the outbreak of the civil war in America became known as the commander of a blockade－rumber．In 1867 he entered the service of Turkey，and for his distin－ guished scrviees in checking the Greck blockade－ ranners to C＇rete was raised to the rank of pasha， and in 1874 made admiral of the Ottoman fleet．He commanded the Turkish Black－sea fleet in 1878，and was in 1881 made Turkish marshal．He wrote Skethes from IIy Life（edited by his widow，1887）； and a book entitled Vever Caught（1867），giving an account of his exploits during the eivil war in America．

IIOBHOUSE，Jonn Cam，English statesman，born June 27，1756，died June 3，1869．LIe was educated at Cambridge，entered parliament in 1820 as an ad－ vanced Liberal，and was successively［rish secte－ tary，commissioner of woods and forests，and presi－ dent of the board of control．Ne was ereated Baron Broughton in 185 ．Author of fowmey Through Albemia unel Other Provinces of Trukey with Lorl Byron， 1813 ；and Ittely， 1859.

HOBOKEN，a eity and port of entry of Hadson eounty，N．J．，on the west bank of the liudson Fiver，opposite New Jork City，and immediately above Jersey City．It has an extensive trade in coal， being one of the principal depots from which New Fork and its shippings are supplied，and three lines of European steamships start from this port． The principal industries of the place are connceted with these steamships and the coal docks．Popu－ ？ation，1870，20，297；1880，30，999；1890，43，561．

HOCHHEDI，a town of Prussia，in Hesse－Nas－ san，on the right bank of the Main，three miles east of Mainz．IIcre is produced the white wine known as Mochheimer．

HOCHKIRCH，or Hocmmancues，a vilhage in Saxony，a fow miles east by south from Bantren， was the seene of a battle between the Anstrians：md Prussians，Oct．14，1758，during the seven years＇ war．

IIOCKTIDE，or Hoketine，a popular anniver－ sary formerly eelehrated in England on the Mon－ day and Tuesday following the second Sunday after Easter．The eustom goes hack to the thirtenenth cen－ tury，hut authorities differ as to its origin．

HODGE，Aacmbalin Alexinner，an Ameriean theologian，born at Princeton，N．J．，in 1823．He graduated at Princeton Theologieal Semmary in 1817．Went as missionary to Allahabad，Intia，but returned in 1850 on account of his wite＇s mpaired bealth．After that he was pastor of a Presbyterian
ehureh at Lower West Notlingham，Md．，till 1855； then at Fredericksburg，Va．，till 1861，and after－ wards at Wilkes Barre，Pa．，for a year．In $186 \pm$ Hodge became proiessor of didaetic，historical and polemie theology in the Western Theological Semi－ nary at Alleghany，la．In $18 \sigma^{2}$ he succeeded his father is professor of dogmatic theology in the Princeton Theologieal Seminary．He has jub－ lished Outlines of Theolog！；The Alonement；Commen－ tary on the Conjeosion of Fuith；Presbyterian Doc－ trine Briefly Stated；Lije of Charles Hodge and Manual of Forms，all from 18 fto to 1883.

HODGE，MugM Lixix，an American physieian， born at Philadephia，in 1796，died there Feb．23， 1873．He studied medicine at the University of Pennsylvania，taking his degree in 1817．He ac－ quired an extensive pratiec in Philadelphia．In 1835 Doctor Hodge was made professor of obstetries in the University of Pennsylvania．Aiter twenty－ eight years＇service he became professor emeritus in 1863．Hodge published System of Obstetries，and Diseases Peculiar to llomen，both of which passed through several editions．His son Mugh Lenox Hodge（1833－82），was a noted surgeon．

HOFFMANN，Charles Fenso，an American anthor，born at New York City，in 1806，died at Harrisburg in 1884．When 11 years old his leg was erushed，and had to be amputated above the kneo．After studying law at Columbia College he was admitted to the bar in 1827 ．In 183 ．he was the chief editor of the＂Kniekerbocker Magazine，＂ After a trip throngh the West he wrote 11 IVater in the Mest，and IWild Seenes in the Forest and the Prairie，and a novel Greyslaer．He also wrote poetry．The first volume is called The Vigil of Fuith，and the second，Borowed Notes jor IIome Cir－ cutation Amental disorder，which attacked him in 1849，closed his literary carcer．

HOFEMAN，DAYm，an American jurist，born at Baltimore，in 1784，died suddenly at New York， Nov．11，1854．Ife was an eminent lawyer，and in 1517 became professor of law in the University of Maryland．In 1836 he resigned；after that he went twice to Europe for his health．Ilis best writings are：Course of Legal Study；Legul Outlines；Thonghts on Men，Monners and Things．ly Anthony Grim－ bler；riatur，or a leep in $1 / y$ 广otebook；Chronicles Selected from the Originals of Cumtaphilus，the Han－ dering Jew（2 vols）．

HOFFMANNS ANODY゙NE LIQUOR，a mixture of ether，alcohol，and ethereal oil．It is preseribed with lamamum to prevent the mansa exeited by opium preparations．

IOFMANN，JUGUSTUS Wilmam，a German chemist，horn at Giessen，April S，1s18．After ob－ taining the degree of doetor of philosophy，he he－ came assistant to liebig in the houratory at Gies－ sen；and，on the establishment of the lioyal（college of Chemistry in London in 1845，he was mate superintendent of the newinstitution．From 1850 to 1860 he was chemist to the royal mint，and in 186as accepled an appointment as profnsor of chem－ istry in the University of Berlin．He has made im－ portant discoveries in ehemistry（see Asumse， Iritamiea，Vol．II，p．48），and has contributed numerous papers to the transactions of seientitic seeieties－for the most part on the highest depart－ ments of orsanic chemistry．At Liebig＇s death he beeame editor of the＂Ammben der Chemie＂＂ Ile was entrobled on his seventieth birthday in － 188.

HOG－GUM，or GivM－Hoci，a kind of gram employed in the West Indies as a substitute for piteh．It is of uneortan origin，being probably colleeted from barmus trees which yiefd resinons substances of similar qualities．

HOGMANAY，a name applied in Scotland to the last day of the rear，often celebrated in connection with New Year＇s Day．In the Scotland of former days it marked the commencement of a holiday of uproarious joviality．
HOG PLUM，a name given in the West Indies to the fruit of certain species of Spondias trees and shrulis of the natural order Anacardiacx．S．pur－ purta and S．Iuticu are the species called hog plum in the W＇est Indies，because their fruits are a com－ mon food of hogs．The pulp of the fruit of S．tuber－ osa affords a beverage used in fevers．
HOGSILEAD，an old English measure of capacity no longer in use，but equivalent for wine to six－ ty－three gallons，for ale and beer to fifty－one gal－ lons．In the United states the word now signifies a large cask．
HOKIANLA，a river of New Zealand，enters the Southern Ocean on the west const of the North Island，in lat． $355^{\circ} 30^{\prime}$ S．，and long $173^{\circ} 26^{\prime} \mathrm{E}$ ．
holacantules，a genus of fishes of the family Chictolontidx，remarkable for the beanty and sym－ metry of their colors，and for their excellence as articles of food．They have the compressed form and other general characteristics of the Chatodon－ tidx，a single dorsal fin，and a large spine on the gill－cover．They are natives of the seas of warm climates．II．imperator is me of the esteemed fishes of the East Indies，rivaling the salmon in flavor．
MOLBROOK，John Ebwards，an American nat－ uralist，born at Beaufort，S．C．，in 1794，died at Nor－ folk，Mass．，Sept．8，1871．After receiving his de－ gree of M．D．，from the University of Pemnsylvania， he went to Europe to continue his medical sturl－ ies there，especially at Paris．In 154 he was made professor of anatomy in the Medical College of Sonth Carolina，which position he held for more than 34 years．During the civil war he was com－ pelled to serve as surgeon in a South Carolina regi－ ment．His most important published works are Ahweriern Iterputology，or A Description of the Rep－ tiles of the United States（5 vols．）；and Ichithyology of Somith Carslinat．
HOLD，the interior compartment of a vessel throughont her lengil which is nearest to the keel．From the lavermost deck it extends to the bottom of the ship：it is always below the water－ line，and dependent on the hatehways for ventila－ tion and what litte naturat light it obtains．In merchant－vessels the greatest portion of the cargo is stored in the hoth．
HOLDEN，a railroal janclion of Johason coun－ t5，Xfo．，whore timber，haidding－stone and coal are tw he obtained in abundance．
 ican mombgist．In 1sfio he cutered the United States army，and was surgeon－in－charge at tho Inited states military prison in Tortugas，Fla， until lephand then was assistant just－surgeon at Fortress domme，Va．hisio he was made curator of invertebrate zoulngy，ichthyolagy，and hergetolngy in the American musemm of hatural history，Noat York．He was the author of History of the North American Pauna（15＊＇s）；Ifistory of the Stlentic

HoldmNe，a torm used in Seots law to denote the manner in which heritable estate is holdenand corrmpmondine th troure in English law．
 ematy，Vab，It bat watur works，hoard of trade． fommery mathine shops and at folohome exchange．
HolimXr，a holy day；a day set apart in eothmermatan of some historical exent or in homer of sman prem；at religions on secular fes－ bival，on which hations is lepally susponded，amb the time spent in relaxatina and ammsement．

Also a time when usual occupations are suspend－ ed；a vacation．
HOLIDAYS IN THE UNITED KINGDOM． The general holidays in Great Britain and Ire－ land are as follows：Banks of England and Ireland，and the Exchequer，Good Friday，Easter Monday，Whit Monday，First Monday in August， Christmas－day and following day；or，if that be Sunday，then the bank is closed on Monday． The Stock Exchange，in addition to the Bank holidays，is also closed on May Ist and November 1st．At the Custom－house，Inland Revenue Office， and the Docks，the day appeinted to be kept as the Queen＇s Birthday；and at the Docks，Coronation Day（June 28）and the Prince of Wale＇s Birth－ day（November 9 ）in addition．In Scotland：New Year＇s Day，Good Friday，First Monday in May， First Monday in August，and Christnas－day．
holidays，Legal，in the United States．
Jan．1．Newryear＇s Day：In Alabgma，Arkansas，Califóa－ nia，Colorado，Connecticut，Florida，Georeia，Idaho，Illinois， Indiaua，Iowa，Kansas，Kentucky，Louisiana，Maine，Mary： land，Michigan，Mississippi，Missouri，Nebraska，Nevada， New Jersey，New York，North Carolina，Nortb Dakota，Obio， Orecon，Peunsylrania，South Carolina，Tenvessee，Texas， Utah，Vermont，West Virginia，Wisconsin，Washington and Wroming． In Lonisiana．
Jhn．19．Lee＇s Birthdar：In Georgia and Virginia．
Fer．10，1891．Mafingers：In Alabama nad Louisiama
Feb．22．WAshingrox＇s Birthidy：In Alabmm，Califor－ nia．Colorado，Connecticut，Florida，Georgia，Idaho，Inlinois， Indiana，Kansas，Kentucky，Louisiana，Maine，MaryIand， Massachusetts，Michigan．Minnesota，Missouri，Montana， Nebraska，Nevada，New Jiampshire，New Jersey，New York， North Carolinit，North Dakota，Ohio，Pennsylvania，Rhode I land，South Caroliua，Texas，Utah，Virginia，Wisconsin， W＇ashingtou and Wroming．

March 2．Anniversary of Texan Inderendence：In Texas．

Marcif 4．Firemex＇s Anviversary：In New Orleans，La．
Marcif 27，IN91，Good Fridar：In Alabama，Lonisiana，Mary－ land，Pennstlyaniand Temnessee．

Afril．1，18\％1．State Election Dhy：In Rhode Ishand．
Arril oll．Anviversary of the Battle ofsan Jacinto： luTexis．
Aprili．20．Memorial ifat：In Alabama and Gcorgia．
May 10．Mrmonal Duy：In North Carolina．
 Bute IEALARATION OF INDEPENDENCE：In North－Carolina．

May eo．Deconation Iby ：In Culifornin，Colorndo，Con－ necticut．Dakota，Iowa，Illinois，Indinna，Kansas，Kentucky， Mane，Massachusctts，Mfobigah，Minuesota，Montana，Ne－ lornska．Nevadn．Niw Ilamphire，New Jersey，New Jork， North Dakoth．Ohio．Oregon，lehnsylyanin．Rhode Island， Tennessee，Utah，Vermont．Wlsconsin，Washiugton and W yoming．

Jutiry．Indepexinesce．Diy：In all the States．
 Massachusetts，Nehraska，New Jersey，New lork，Obio and I＇ennsylrania．

Novbmber－．Gfokand Finetion Dax：In Arizona，Call－ formia．Katsas，Indimat．Mary land．Missonri，New Ihamp－ shite，New Jursey，New York，NorthDakota，Ohio，Oregon， sonth carolina，Fhode Islami，Tennessee，Texns，Washing－ ton，Wisomsin and wromine．In thestates which holdelec－ tions in Noyember，asin，clection day falle on the Bd instant．
 the States．Chomeh in some it is not astatutory holiday．
Dece 25．Chmismas Inty：In nll the stater，and in South Carolba the two smecerling days in aldition．
shminys and $\mathrm{F}_{\mathrm{as}} \mathrm{d}$ Days（whenever apointed）are legnl holitinys in nearly all the states．

ARtok Hay is ilegal holiday in ldno knasas，and Wjo－ ming，the day being set by the（iovernor，in Nebraska，April 2ed，and in Colormio on the third Frhay in April（aprifit， 1soi）．Nibor laty ds also at legal holiday din khode Island，on aday set lay the（iovernor，but does not affeet the pryment of motes，ete．
Iu Mimnesota，Weashinton＇s 【irthday and Memorlal Day ure the only general hollings axpesily provided by law，As to the matarlity of hills and notas，the followng days are by hmplication molidays：Thanke fying l）ay，foot fridar， （＇hristmas．Tamany let and duly 1 th：na to sehools，Chrlst－

 stathte，and in INlaware hostato homays．
 がい Jork．
There in no mathoml holinay，mot even the Fonrth of Inly．
 hut there ds to gateral luw ont the abjoct．The proclama－ thon of the laresident deskantige a day of Thankegivag only
makes it a holiday in those states which provide by law forlt.

HOLLAND. See Britannica, Vol. NII, pp. 59-95; also Netherlands, in these hevisions and Additions. HOLLAND, city of Ottawa county, Mieh., in Holland township, containing banks, churches, schools, Hope College and iron-smelting furnaces mills and tameries. The town is largely populated with llollanders, and four weekly newspapers in Duteh are published.

HOLLAND, Joshan Gilbent, an American journalist and author, Jorn at Belehertown, Mass., July 24,1819 , died in New Jork City, Oct. 12, 1881. After graduating at Berkshire Medical College, Pittsield, Mass., he becamesuperintendent of publie schools at V'iekshurg, Iliss. In 18.19 Doctor Ilolland was associate editor of the "Springfield Republican." His published works are: Histom of IVestem Massachusetts; The Bay-l'ath, a Puritan romance; Bittersucet, a poem; Miss Gilbert's Career, a realistic novel; Timothy Titcomb's Letters to Somat People; Gold Foil Ifammered jrom Popular Proverles; Letters to the Joneses; Arthar Bonnicustle, published in Scribner's Magazine, whose chief editor he was; The Mistress of the Manse, and Gurnered Sheaves, a collection of his poems.

HOLLAND, New, the name formerly applied to the island or continent of Australia.

HOLLDDAY, DEN. (1S10-87), an American expressman. During the Mexican war he was an army contractor, and a few years later established Holliday's mail and overland express, which for ten years was the connecting link between the frontier States and the Pacitic. He was also the establisher of the fast pony express, and of a line of steamers from Alaska to Nexico. Ite built in Westehester county, N. Y., a house that cost $\$ 1,000,000$, but which he lost after several years of jitimation.

HOLLIDAYSBURG, the county-seat of Blair county, Pa., on a branch of the Jumiata liver, and at the junction of several branches of the Pennsylvania railroad. It has furnaces, foundries, rollingmills, nail factories and a female seminary.

HOLLISTER, the connty-seat of San Benifo county, Cal., 94 miles south of San Francisco. Much tobaceo is raised in the vicinity, while coal and quick-silver are found in the surrounding mountains.

HOLLJSTON, a manufacturing town of Middlesex county, Mass., 26 miles southwest of Boston. It produces boots, shoes, nails, wrenches and pumps.

HOLLOW A COLLEGE, an institution founded in 1853 by Thomas Holloway, dealer in patent medicines. It is situated at Mount Lee, on the southeastorn limits of Windsor l'ark, near London, England. It was established for the purpose of affording a suitable education to women of the middle classes. and is the largest female university hitherto founded. The buidting, which is constructed in the French Vienaissance style, was opened by the Qutern in 1886. It is of great arehitectural merit, and is surrounded by extensive grounds. The institution is liberally endowed, and the management is vested in the hadds of twelve trusters.

IIOLJY, a post-vilage and railroad jnotion of Oakland conty, Mich., 52 miles from Dol roit. Ice is shipped from here, and among the artieles manufactured are furniture, llour and castings.

HOLISY SbliLSGS, a city, milroad junction and connty-seat of Marshall county, Miss., noted for its educational institutions. Rust University and the State normal school and ather schools are loeated here. It is a great eotion shipping point. and manuiactures hubs, spokes, wagons, and contains potteries and marble works.

HOLAAN, Wilham S., a United States Congressman, bornin 182.. He was admitted to the Indiana bar, and from 1843 to 1846 was judge of the court of probate. From 1817 to 1849 he was proseenting attorney; was a member of the legislature in 1851, and was a judge of the court of eommon pleas from IS5a to 1856 . Ho was a Demoeratic member of the successive Conrresses from the $36 \mathrm{H}_{1}$ to the 5lst, except the foth and theth.

HOLM OAK, or Hows Onf, a beautiful evergreen oak, Quereus iter, native of Sonthern Europe and Northern Airica. It allords excellent timber.
HOLAES, Abrel ($1763-1537$), an Amprican elergyman. In $7 \pi \mathrm{si}$ he beame tutor at Yale, and in 1785 was made pastor in Midway, Ga. From 1792 to 1832 he had charge of the tirst parish in Cambridge, Ilass. He wrote -Imals of America (1805).

HOLMES, Geonge Fhememick, an American educator, born in 1820. Ne was a teacher in Virginia, Georgia and South Carolina, and in 1842 was almitted to the South Carolina bar. In 18.5 he became professor in lichmond College, Va.; in 18t6 president of Mississippi University; in 1847 prolessor of political economy, history and international law in William and Mary College, and in 1857 was made professor of history and literature in the University of Yirginia. Jle has written a series of text books used in Southern schools.

HoLMES, Ohvier Wexdill, an American physieian and anthor, son of Abiel Holmes, born in 1809. In 1839 he became professor of anatomy and physiology at Dartmouth, and in 3847 was closen to a similar position in the Nedieal Selool of Harvard. Lle has eontributed 10 many periodieals in cyery kind of literature, and has published, among other works: The Autocrat of the Brealfost Table (1859) ; The Professor at the Brrakfast Table (1860); The D'oct at the Brokljust Tohle (1872); Elsip Vemer, a Romance of Destiny (1s6i), and The Cruardian Angel (1868) ; Soundings From the Athantic (1864); Mechenism in Thouqht and Morals (1871): A Mortal Antipathy (1885); and Our Iluntrad Days in Europe (1857).

HOLOPTYCDIlUS (Gr. holos, "all." and ptyché, "wrinklי"), an extinet genus of ganoid fishes from Deronian and Carboniferous strata, type of a fimily the members of which are remarkable for their senlptured or wrinkled seales and labyrinthine tooth structure.
holst, Mmmasn Edunid von, a German historian, born in Fellin, Livonia, in 184, and emigrated to the United states in 18io. In 187:2 he became professor of history in Strasburg University, and in 187 at freiburg. Subsequently he returned 1o the United States, and lectured at Johns Ilopkins University. IJe wrote Louis XJV (186\%) ; I'rfassung und Demokrath der J'mimigton Stuton von Amerike (187:); and The Constitutional Lave of the United states of Amorica.

IIOLSTERE, cases for pistols aflixad to the pommel of a saddle. They were froqumty eovered with wool or far, to prevent injury to the rider in the event of his heing thrown forward upon them.

IOOLNON RJPER, a branch of the Temessee, formed by the north and sonth forks, which rike in Yirginia and anite near Kingsport, Tun. It flows sonthwest to Kingston, where it unites with the Clineh. It is about 900 miles in hongth, and is navigable for lisht-draft boats the entire distanow, and for hare steamers to Knoxville during the greater part of the year.
HOLD', dospri, an American jurist, born in 1807. How was admitted to the kentueky har in ISe8; in 150\% was appointed commissioner of patents; became postmaster-general in 1859, and in 1860 as.
sumed charge of the war department. In 1862 he was made judge-adrocate-general of the arms, and in 1864 was put at the head of the bureau of military justice. In 1865 he was brevetted major-general, United states army, for "faithful, meritorious and distinguished services in the bureau of military justice during the war," and in 1875 , at his own request, was retired.

HoLTON, a eity and county - seat of Jaekson county. Kan., 56 miles west of Leavenworth. It manufactures flour, and has excellent fruit, good timber and building stone.

HoLTZENDORFF, Fraxz yon, a German jurist, born at Vietmannsdorf, in Brandenburg, Oct. 14, 1829. Educated for the law, be practiced in the courts at Berlin till 1897, when he became a lecturer on law at the University. Made professor there in 1861, he was in 1873 called to Munich. He is known as an able writer on several braneles of law, and especially as an adrocate for the reform of prisons and penal systems.

HoLTZMANN, Adolf, born at Carlsruhe, Mas 2, 1810, died at Heidelberg, July 3. 1870. He first studied theology at Berlin, then Old German under Schmeller at Munich, and afterwards Sanskrit under Burnouf at Paris. In 185° he was appointed professor of German language and literature at Heidelberg. Among his numerous contributions to philology are: Ceber den griceh. Trspring des Ind. Tierkreises (1844); Int. Sugon (1845-17) ; Kelten und Germanin (1555); and Cotersuchumgen ӥber das Niebelungentict. After his death Holder edited from his papers Cirmmen-Altertumer (1573); Deutsche Mythologie (1874); and Die Altere Edelu (1575).

HOLTZMANN, Heinrici Julius, theolugian, son of the Germanist Adolf Holtzmann, horn at Carlsruhe, May 17, 18:2. In 1861 he became extraordidary, in 18tio ordinary professor of theolegy at Heidelberg, and in 1874 accepted a call to the theological faculty at Strasburg. Among his writings are Konom und Tandition (1859); Die Synoptischrn Eramelirn (1863); Kritik dir Epheser und Kolossmbriffe (1872); Plie Pestnctluriefe (1881); and an introduction to the New Testament 1885. Besides these he prepared the New Testament portion of Bunsen's laihelureli; and, in eonjunetion with G. Welser, published Gesrhichte des Folkes Isrurl. and, with Zoplfel. the Lexirom fïr Theologir und Kirnemussm. Ile las also contrihuted extensively to the theological reviews

HOL, CO.NT OF TREVEA. See Treves, Britamica, Vol. XXILI, p. m 3.
 Roman Catholic chureh, as the Congregation of Canons liegular of the Holy Cross, foumded by Theodore de Celles in 1211; Comgregation of the Holy Cross, ath association of regnlar clerks, founded by the Ahme Horean in 1831, :1md introduced into the United statesin iste; and thosisterhood of the Holy Cross, atso founded by Abse Moreat in 18.3.

Hold FAMHLY, the name givon, in the langnage of art, to every representation of the Infant sioviour and hisatendanks. In the early part of the Mithar Jges, when the ohjeet in view was 10 excita devotion, tho Virgin and Child ware usually the ouly prenens represented. At a later period, deseph, lifizatheth, st. Anna the mother of the Virsin), and dohn the beptist were inelurled.

IlobVilEAI ISLAND, lying west and forming part of Aupleseg, Wales, is eight miles longr hy three and a hali broad. It is separated from Anglesey by a narmow strait, crossed hy a canseway along which run the llolyhead road and tho Chiober \& Holyhead Railway. The surface is mostly rocky
and barren. On the northwest coast are two islets, the North and South Stacks, the latter with a light-honse, whose light is seen for twenty miles. Area. 9.6ă8 acres. Population (1881), 10,131.

HOLY LEAGUE, a name applied to various European alliances, as that of 1511 , betmeen the Pope, Julius II, Spain and Yenice against France, or that of Nuremberg in 1538, between Charles V and the Catholic princes of Germany against the League of Schmalkald. For the league of 1576 against the Huguenots, see Fraxce, Britannica, Tol. 1ベ, p. 562.
HOLYOAKE, George Jacob, an English reformer, born at Birmingham, April 13, 1817. He taught mathematics at the Mechanies' Institute in his native city, acted as secretary to the British contingent that went to the assistance of Garibaldi; was for many years editor of "The Reasoner;" was chietly instrumental in securing the passage of the bill legalizing secular affirmations, and has taken a prominent part in various public movements. Holyoake was the last person imprisoned in England on a charge of atheism, 1841. He was president of the Carlisle Congress of the Coöperative Societies, 1887. On the subject of eooperation he has written History of Coäperation in Rochdale, 2 parts (185i-72); History of Coöperation in England, 2 vols. (1875-79); and Self-Melp a Hundrat Years Igo (1888). Other works from his pen are: The Limits of Atheism (1861); Trial of Alheism (1877); Life of Joseph Ramer Stephens (is81); Hostile and Generous Toleration; a Mistory of Mildlesborough, and Sixty Teare of An Agitator's Life (1890.)

HOLYOKE, a city of Hampden county, Mass., and a railroad center, S miles north of Springfield and 9 miles south of Northampton; finely situated on the side of a hill, and surrounded by the Connectient River on all sides except the west. The river falls 60 feet in the course of a mile and affords immense water-power. Large quantities of paper are made here in 26 mills- 120 tons daily. There are also cotton, woolen, silk, lumber, eutlery, wire, machine and other mills and shops. The city is well lighted, and supplied with water; street railways run on the principal thoronghfares. Population in 1890, 35,637 . See Britamica, Vol. NII,]. 105.
hoty ROOD, or Thur Cross. See Cross, Britannica, Vol. V1, pp. 610-11.
lloLY SEl'ULCller, Orners of the. (1) Canons Regular and Canonesses of, an Augustinian ogler, founded at Jerusalem in the I2th century, spreal throughout Europe, and ceased to exist in the 17 th entury. (2) Kinghts of the Holy Sepulcher, an order of knighthood instituted, probably hy lope Alexander VI, for the guardianship of the Holy Sepuleher, and the relief and protection of pilgrims. On the recapture of Terusalem hy the Turks, the knights retired to Italy and setiled at lerngia. After a temporary union with the Ilospitallers the order was reconstituted in 1814 both in Framee and in Poland.

11OLY SPIRIT PlaN'P, or Dove PLaNt, the peristerin finta, an orehid of Central Ameriea, having white symmetrical foral emvelones, and the stamens and pistil unitad into a column which curiously resenthes a white dove with expanded wings.

HoNALOPTERA, the name given to a small orter of inseets which has heen more generally regarded as a division of the order Dipleru. Some of The Homaloptere are wingless, and all are parasites. The forest-ty is an example of this order. See Britamica, Vol. Xlll, p. 150.

IlOMFOPATlly. The membership of the Amerb iean Institute of Hommopathy, on Jan. 1, 1891, num-
bered nearly one thousand, and represented nearly every State in the Union. The number of new members received during the previous year was 12s. At that date the statistical summaries were reported as follows: Number of physicians (variously estimated), 10,000 to 12,500 ; colleges, 13 ; students in attendance last year, 1,175 ; number gradtated last year, 369 ; alumni of 13 colleges, 8,422 ; professors and lecturers, 251 ; value of college properts, 1750,000 ; State societies, 99 ; aggregate membership, 3,080 ; local societies, 90 ; aggregate membership, 4,543 ; hospitals, general and special, 62 ; total number of beds, 5,89 ; patients treated last year, 35,242; value of hospital property, $\$ 6,950,700$; journals published, 25 . The otficers of the American Institute of Homwopathy, at the opening of 1591, were as follows:

President-1)r. A. 1. Sawyer, Monroe, Mich.
l'ice-I'resident-Dr. Chester G. Higbee, St. Paul, Minn.

Treasurer-Dr. E. M. Kellogg, New York city.
General Secretary-1)r. Pemberton Dudley, Phila. delphia, Pa.
Provisional Secretary-Dr. T. M. Strong, Ward's Island, New York.

The office of the general seeretary was at the southwest corner of Fifteenth and Master streets. Philadelphia, Pa. The following were chairmen of the scientific bureaus conneeted with the institute: Materia Medica, Dr. E. O. Kinne, Syracuse, N. Y.; Clinical Medicine, Dr. J. W. Dowling, New York city; Ohstetrics, Dr. T. Griswold Constock, St. Louis, Mo.; Sanitary Seience, Dr. T. Y. Kinne, Paterson, N. J.; Gyneecolozy ; Dr. S. P. Hedges, Chiicago; Piedology, Dr. Clarence Bartlett, Philadelphia; Surgery, Dr. Charles M. Thomas, Philadelphia; Anatomy, Plysiology and Pathology, Dr. J.T. O'Conmor, New York city; Mental and Nervous Diseases, Dr. A. P. Williamson, Middletown, N. Y.; Ophthalmology, Otology and Laryngology, Dr. James A. Campleell, St. Louis, Mo.; Organization, Registration and Statistics, Dr. T. Franklin Smith, New York city. For general history of Ilomœopathy, see Britannica, Yol. XII, pp. 126-29; also see Hamemann, Britamica, Vol. Nl, p. 379.

110 MER , a city of Champaign county, 1ll., 273 miles southrest of Toledo, Ohio. It has a flour mill and is a shipping point for fruit and grain.

HOMER, a raîlroad junction of Calhoun county, Mich., containing a furnace and flour mills.

HOMER, a village of Cortland county, N. Y., 27 miles south of Syracuse. It contains foundries and flour mills.

HOMER, Winslow, an American artist, born in 1836. From 1854 to 1856 he was a lithographer in Boston, and then went to New York, where he made drawings for a publishing house. In 1860 he became interested in painting, and has since devoted his entire attention to that work. Among some of his most popular pictures are : Ilome, sirwet Home; The Last Gioose at ruletown; Snap the Whip; The American Type; Country School Room; I:tting Hatermelon: Cotton Jiekers; Song of the Lavk; The Foner-Leaved Clover; Darl's Coming; In the F'idds; The Trysting Place; Flowers for the Teacher; The Life Lime, and Endertow.

HOMESTEAD LEGISLATION. See Homestend. Britamica, Vol. XII, pp. 12n-2t.

HOMHNE REPLEGIASVOO, an old writ in English law, meaning to bail a man out of prison; now disused.

HOMOGANGLIATA, the name given by Owen to the Artimbuta of Cuvier. Each segment of the lowest homognomlint? contains a pair of ganglia with nerves proceeding from them; all, however, communicating by nervous tilaments, and consti-
tuting a continnous chain. In the higher forms there is a more evident allotment of the ganglia of particular segments to particular functions.

HOMOLOGATION, a scotch law term, denoting an act which confirms or approves of something which otherwise might be invalid. Thus an informal deed, though useless in itself, yet if acted on by one or both parties will be set up and made valid as against the party homologating.

11OMOLOGOUSQUANTITIES, or magnitudes in geometry, are sueh as correspond, or are like to another. For example, in similar triangles, the homologous sides are those which are opposite to corresponding angles.

IIONDURAS, Britisir. a erown colony on the Caribbean Sea, south of Yucatan, and ion miles west from Jamaica. Area, 7.5132 spuare miles. population in 1857, 27,452 . Capital, Balize, with a population of 5,500 . Balize is noted for its production of mahogans and logwood. Sehools (1587), 27; pupils, 2.612 (1,086 Roman Catholic, 1,199 Wesleyan); goverament grant, $\$ 11,023$. Detachments of the 2d West India regiment are stationed in the colony.

Imports in 1889, £200,089; cxports, £300,000; revenue. $£ 50,000$; expenditures, $£ 45,487$.

Chief sourees of revenue: Customs-duties, excise, lieenses, land-tax, etc.; alsosale and letting of erown lands. Expenditure mainly administrative and the yarious services. Debt, $£ 16,650$.

In 1887 mahogany exported, 4,191 ,264 cubic feet; logwood, 20,018 tons ; fruit (chiefly to New Orleans), £25,000; sugar, 953 tons. The transit trate greatly increases the traffic of the ports, especially in India rubber, sarsaparilla, coffee, ete. Besides the staple products, mahogany and logwood, there are sugar, coffee, bananas, plantains, cocoa-nuts, ete.

In 1888 , tonnage of vessels entered and cleared, 253.152 , of which 135,464 was British.

Number of letters, newspapers, ete., passed through the post-office, 1887-international, 97,355 ; inland, 22,697.

Currency, chiefy Central American silver dollars. MONDULAS, BAy or, a wide inlet of the Caribbean Sea, having Guatemala and Monduras on the south, and Balize and Yucatan on the west. It receives mauy streams, of which Balize and Montagua are the largest, and contains the Bay Jslands, and a multitude of islets and reefs.

IlONEOYE liALAS, a village of Monroe county, N. Y., 16 miles south of Rochester. Flour, plaster, pumps, axe-handles, and woolen gools are made here.

IIONESDALE, count y-seat of Wayne county, Pa., and railroad junction. Glass, edge-10ols, boots, shoes, pottery, leather, lumber, canal-hoats and steam-engines are made here.

HONESTY (Lunariz), a genus ol plants of the natural order Crueifera, of which two species, natives of the south of Enrope, L. cmmu. or bipmis, and L. redivim, have long been cultivated in Britain. Their large llat seed-pouches (silieules), which are very persistent, resemble polishad film of mother-of-pearl, and are frequently used as ormaments. The early English reckoned the plant amone herbs potent for magic.
11ONEV-ANT, an ant of the genus Ifymmeorystus, inhabiting Mexico, New Mexion, and Arizona. In one form of the workers the abdominal eavity is found in smmer distended with honey until the ants resemble small, spherical, pollacid grapes. Later in the season, when food is scarce, these lising stores of honey are devoured by the other members of the colony.

1IONEY-13UZZARJ) or Pee-Kite (lemmis apivorus), one of the Falconida, allied to kites and buz-
zards. It has a thick feathering on the sides of the head down to the base of the bill; it winters in Airica, and breeds in the wooded districts of North Europe, ranging, however, as far east as China and Japan. The honey-buzzard plunders the nests of bees and wasps for the larve, and also the honey. The nest is situated on some leafy tree; and the eggs, nsnally two, are laid in June. The genus inchmes a few other species.

HUNEYCOMB MOTH, or Pee-Moth, a moth of the genus Galloria, which infests beehives. There it deposits its eggs, and the larvie when hatehed feed on the honejcomb. There are two broods in the year, and the later pupe sleep through the winter. The best known species are G.ceronea and (f. cleperict. It appears that neither moths nor larvie are ever stung by the bees. When they occur in numbers they are very injurious, or even quite fatal to the hive.

HONEY-DEW, a viscid saceharine exudation, often found in warn dry weather on the leaves and stems of trees and herbaceous plants. It is often, but not always, associated with the presence of insects which feed on the juices of plants, and its How is ascribed to their punctures; but the rupture of the tissues from any other cause seems also to produce it, and warm dry weatherseems to produce in the sap that superabundance of sugar which is thus thrown off. Aphides themselves exude a fluid called honer-dew, which probahly differs eonsiderably from the direct exudation of the plant, but mingles with it where they abound. Different kinds of manna are the dried honer-dew of certain plants. But generally this exudation, as it dries, coats the surface of leaves and hranches with a clamms film, on which molds and other small fungi soon grow, and thus the pores of the plant are elogged and its health is impaired. Garteners are therefore eareful to wash off honey-dew. Orange and lemon plantations sometimes suffer great injurs from the abandance of honey-dew, as have the cotree plantations of Ceylon.

HONG-KONG, a crown colony of Great Britain, and formerly a part of China. For history, Eovernment and early statistics, see Britannica, Vol. XII, pp. $1+1,1 \ell^{2}$. The latest reportet official census was that of 1581 ; but an estimated census of leec. 31. 1889, gave the following ligures: Area, es spuare miles. Popalation, 194t*o. ot the colored poputation there were 130, 168 Chinese, one-thirl of the latter being Britishsuhjects hy hirth. The governor has an annual salary of $\$ 3 ? 000$, including a"table allowance" of $\$ 7,000$. In LSse there wera 106 sehouls (subject to government supervision) with f(ait phpils, involving an amoal expenditure of $\$ 3.3$; also 107 private schools, with 2,022 pupils. Thre revenue in 1889 amountrid to $\$ 1,8: 3,549$, and the expenditure to $\$ 1,159,167$; the puldic delot, to abmit $\$ 1,000,000$. There was an impurial garrison of 1,300 . HongKong is the hedeluateres of the (hima squadron. consisting of en wiseds in 18.0 . The mumber of vessols entoring that prote in 1880 was 3.500 , of 4,518, 51 1 tons.

HoOn), Joas lemb (1831-7!), a Confombato sol-
 p. $74 . \%$

HOOF- 1 hla, Thentmant of. Special carm is maded at eertain times, to guard arainst the disama of eows' feet known as hat-ail. This disatas eonsistz of vestenlar inthamathon of tha skin hetmon the claws of the hoof and if this is moglectent alomer furm, which at leugth become doep able ponetratr the fort, at dimes chasine the hoofs to fall off. It
 ows, that the disuta beromes virulent, and the puy esuaping from the surca beconts contagious,
and the more severe foot-rot is established in the herd or tlock. The beginning of it occurs when the animals are forced to wade in swampy pastures or in muddy yards. The mud excoriates the feet, and causes the inflammation by which resicles or watery pimples are formed on the skin. The chafing of the sores by the grinding motion of the claws in the acts of movement very soon produces the deeper sores, and the filth poisons the hood, when in time the contagious form of the disease occurs. Prevention is easy, while a cure is troublesome. Dry pastures and clean yards aud stables prevent the tronble. When, however, negleet has produced its inevitable result, the sore feet must be kept elean and dressed with some antiseptic ointment, as a mixture of lard, eight parts; turpentine, two parts, and acetate of copper one part.
moOk, James Clarke, an English painter, was born in 1819. He commenced his artistic career by painting pictures based on Seriptural and poetical subjects. Afterwards le produced many excellent paintings, whose subjects were pastoral or modern. In 1 sito he was eleeted a Royal Academician. Consecuent upon the success of his well-known Lnffi, Boy! Mr. Ilook has more recently devoted his talents to marime pictures, and is a regular contributor to the Hoyal dcademy. Three paintings by Mr. Hook attracted much admiration at the academy ot 1 s!o.

HOUK Eli, Charifs E., a United States Congressman, horn in South Carolina. Alter he was admitted to the bar he returned to Mississippi. In 1800 he was elected district attorney of River district, and to the legislature in 1859. In 1865 he was made attorney-general of the State, and recected in 1868. He was elected to the tith, 45th, t6th, fith, $50 t h$ and 51 st Congresses as a Democrat.
hooker, Sir Josepi Dilton, a son of Sir W. J. Hooker (1755-1565), was born at Halesworth, in Suffolk, June 30, 1817, and was educated at the lligh Sehool and University of Glasgow, graduating M. D. in 18%. He soon afterward joined the antarctie expredition of the Erehus and Temor. Returning after four years' absence, he acled for some time as substitute ior Professor Graham in the chair of botany at Edinburgh University; in 1st6 was appointed botanist 10 the geological surver of Great Britain, and in the following year undertook a botanical expedition to the Himalayas, which ocenpied him for three years. lin 187 he made an expedition to Mornceo, ascending the great Atlas, the summit of which had never belore been reachod by a European. In 187 h heaccompained Doctor Asa Gray in a seientilic tour through Colorado, Utala and California. Doctor Hooker became director of Kew Gardens in 18tib, was president of tae British Association in 1Sis, and from 1873 to 18.8 was president of the layal society. lle was made C. B. in 1s(\%, and K. U. S. I. in 18゙ন. Ile has published a number of valuable works, of which one of the best known is studont's Flom mi he Jritish Islamels (IS70); and the most important, the Genera l'lantamm, in conjumet ion with George liontham (3 vols., $1 \mathrm{sin}^{2}-83$).

1100kEL, Womrmingtos (1s06-67), an Ameriean physician. In 1 sad he heogan the practiec of mediche in Norwich, Mass., and from 1 Riv to his denth was profrssor of the thenry and practice of medicine in lale. Among his writings are sevemal seientitic books for the yonng, and also profossional works, including masiciten and frthent (LSt9); TOMa'opothy: am Jaminntion of its Dectrines and

Itooks ANbEVES. Those dress-fastomers were formorly thate hy hant, hat for matiy fears they have been made by machine. liy one kind of
machine the wire is first drawn off a reel, next ent to the required lengtin; then by a sinker forced into a slot, by which it is bent, and at the same time the two ends are formed by eams into the lateral loojs. A hook requires an additional bend, and this is produced by another slot and sinker.

HOOK-SQUID, one of the ceplalopod mollusks of the iamily Onyohotenthidiax, remarkable for its long hooked tentacles and snekers, which are employed to seize its prey. It sometimes attains a length of six feet, and is mueh dreaded on aceount of its voraeioushabits. It ranges through most seas.

IIOOPESTOS, a vilhage of Vermilion county, 1 H . situated at the junction of the Chicago, Danville © Vincennes Railroad, with the Bloomington division of the Wabash Lailroad, 104 miles south of Chicago. It has elevators and eonsiderable traftic in grain.

HOOSAC RTYER rises in Laneshoro, Berkshire county, Mass.; Gows north, crosses a corner of Vermont northwest into New York, entering the Itudson abont it miles above Troy. It affords eonsiderable water-power, and in New lork is called Moosick River.

HOOSICK FALLS a village of Rensselaer county, N. Y., Do miles northeast of Troy. It has manufactories of lunber and mowing machines. and eontains malleable iron works.

IIOPE, a post-village and railroad jumetion of Hempstead eounty, Ark., situated II2 miles from Little Rock, and 33 miles from Texarkana, on the St. Louis, Iron Mountain \& Southeru Railroad.

HOPE-SCOTT, JAMEs, third son of the Honorable Sir Alexander ILope, and grandson of the second Earl of LIopetoun, born at Marlow in 1812, died in London, April 29,1873 . He was educated at Eton and at Clirist Church, Oxford, and, admitted to the bar in 1834, soon made a great parliamentary practice. Mis life, by Robert Ornsly (2 vols., 18si). is specially interesting for the glimpses it gives of men greater than himself, as Cardinal Jewman and Mr. Clatstone.

HOP-FLEA, or Tontu-Legged Beetle (Phyllotreta, or Italtica concinnel, at very small coleopterous insect, which of en in the spring devours the tender tops of young shoots in hop plantations. It is of the same genus as the turnip-tly (thyllotrete nemorsm).

HOP-FLX (.1phis, or Phorodon humuli), a species of aphis, or plant-louse, important on account of the injury it intliets on the hop plantations. The general eolor is pale-green. Both larvee and adults ruin the plants. No efficient method of preventine the ravages of this pest has jet been disenvered; but the beneficial service to man of lady-birds and other natural foes of this fly has been long and widely recognizet.

HOPELNS, Alabert J., a United States Congressman, born in 1×34. Ite ras admitted to the Illinois bar, and began practice in Aurora, 111. From 1572 to 1876 he was State's attorney of Kane county, and from 1878 to 1850 was a member of the Republican State central committee. Me was elected as is Repuhlican to tho fith, $\overline{0} 0 \mathrm{th}$ and 5Ist Congreses.

HOPKINS, EnWARD ($1600-5 \%$), an English statesman. Ife emigrated to Toston, Masm, in 1637, and shortly afterward removed to IIartford. Firom 1640 to 16.54 he was governor of tho coluny every even year, alternating with John llayes. IVe then returned to Fingland and hecame warden of the fleet, commissioner of the admiralty, and momber of parliament. At his deatli he lefit $\$ 3,200$ to edncational institutions in New England.

HOPKINS, Esfk (1718-1802), an American naval officer. In li7n he was commissionned hy the Continental Congress commander-in-ehief of the navy,
and, in February of the following year, fut to sea with the first squadron seat out by the colonies. He was olitially eomplimented for his success in several engagements, lut in 1777 was dismissed from the service for neglecting a cilation to appear in Philadelphia. Subseduently he settled in Rhote Island, and several times was chosen a member of the general assembly.
 can P. E. bishop. In 1818 he was admitted to the lennsylvania har, and gained an immense practice, but five years later became a priest in the Protestant Ryiseopal church. In 1832 he was made bishap of Vermont. Among his writings are: Christianill l'indicated (183:); The lrimitiep Creed (18:34); The Primilive Churdh (1835) ; Essay om (inthic Archifecture (1836); The church of Rome in Hoc Primitive Purity Compered II ith the Chureh of Rome at the Present Dety (1837) ; The Nordties Hhich Disturb Our Peace (1841); The JIistor! of the Confirsional (1850); The End ad Coutomersy Pionirorerted (185t); A Seriptural, Mistorical, ami Esclosiestical l'iew of Slemery (1864); The Lan of lituntism (1866) : The Mistory of the Church in lerse (IE67), and The Pope Not the Anlichrist (1868).

HOPKIAS, DLuk ($1802-87$), an American educator. In 1830 he accepted the protessorship of moral philosoply and rlstoric at Williams College, and from 1836 till he resigned in 1s7: was president of the college. He retained the pastorate of the college chureh montil 1883 . Among other works he is the author of The Lazo Lore, und Love as a Latu; or, Christian Ethe"s (1869); -1" Outline Study of Mon (1873); Strength ant Heauty (1874); seriptural Idea of Man (1883).

HOIKINS, STEIMEN ($1707-85$), a signer of the Declaration of Independence. De was a statesman of high rank, and held mmmerous important public otfices. For many years he was a member of the lihode Ishand assembly; was justice of the peace, and judge of the court of common pleas; was governor of the colony, and was a member of sevCral Congresses. Hewrote Mistory of the Flanting and Firouth of Providence (1 Tis).

HOPFINSON, Josem (1720-1842), an American jurist. In 1 iol he was admittod to the lennsylyania har, and in 1814 was clected a representative to Congress. In 1 Kigs he was appointed Cnited States. Iudge for the eastern tistriet ui lemnsylvania. Mr. Ilophinsun was the author of the national song, Mail. Colmbliet.
IIOFKスNSTILAJ, a city and county-seat of Christian county, kiy.. situated 71 miles northwest of Jashville, Teme. The locality is very fertile, and produces tobaceo, eoal and iron. The eity con1ains South Kentucky College, two seminaries. a State insane asylum, and manfatories of carriages and plows.
HOPLEGNATIJID.E, a family of weanthopterous fishes, limited, so far as knuwn, to the single genus. Inophomethes. It is eharacterized by having a cont immas lateral line perfect ventral lims. and intermaxillary and maxilliry lones provilded with a trenehant edge. with whicl, the teelh are eontinnons. Several speries are known as inhabitants of the Paeitic Ocran.
IOPl'lNi, fames Mases, an American educator,
 School, and in 1 at from Indover Therolugical Sem-
 pregational chureh at Salem, Mans, and two years Tater became professor of homilotics in liale. He

 and IItor\% af the roristien Ministry (latis); Homitet ics (1881), ant lustoral Theotegy (18st).

HOPS, the produce of a peremial diocious plant of the natural order cmmatinucer, the only species of its genus. See Britannica, Vol, XII, pp. 156-58; Bremrir, Vol. IV, p. 2?:•
HOP-TREE, or SmRubby Trefoll, a North American shrub, Ptilea trifoliata, belonging to the Rue family. The leaves are trifoliate, with leaflets orate, minted and downy when young. The flowers. horne in terminal eymes. are greenish white and not conspicuous. The fruit is Tro-celled and two-sepded, having a broad wing; is intensely bitter, and is a poor substitute for the true hop.
HOLIDE[N, a term that has been applied to a substance which can be extracted from barley (Lat., horderm). It is merely a mixture of starch cellulose and a somerhat nifrogenous matter.
behavior towards certain re-agents (as the caustic alkalies and the mineral and acetic acids) and their percentage composition.

HORODENTA, a town of Austria, in East Galicia, a hundred and six miles southeast of Lemberg. Pupulation, 10,226 .
11OROLOGY, the science which treats of the construction of apparatus for measuring and telling the time. On the construction of ordinary clocks, see Crocks, in Britannica. Vol. VI, pp. 1335: and on the construction of ordinary watches, see Watch, in Britannica, Vol. NXIV, pp. 394-48. The improvements in the escapement and the pendulum of the elock bring the mechanical perfection of this time-keeping instrument to the point which it has attained at the present day. But the

Holidera TOAD, a lizard of the genus Phemosomm, Lee Britannit:o, Vol. NIN,]. $73 t$.

IIORNITOS, or lhanos, the mame given to the low wen-sha\}ed hillocks which emit smoke and rapors, and which occur in ereat mumbers on the sidfes and in the meighlorhood of the large volcabues of South America.
boliny flsslicn were fommerly regarded as "atremely simple in their structure. Weenat inwosligat ions, however, whow that the parts which ermsint of horny tissum, ats the persistent horns of the ruminants, the claw and homfs, whalebone, torthise shell, ace, have a smmewhat complicated strueture, although they are so far amalogous to one another that they procend from macleated cells Whinh are mot momphologically developed like the
 vien they atso plasely rasemble one another; for, Whon compared with othartixan+w, they all contain и larem amantity wilphor, in mmhination with a

art of horology would be ineomplete unless there were some stantard, independent of individual mechanical contrivances, by which the errors of each maty be daily corrected. This standard is supplied by ohservatories. The lig Naval Observatory at Whashington determines, and gives away to any one who chooses to ask for it, absolutely correct time at noon cach day. Experts padid by Unele Sam make the computation and pressa button at procisoly 12 oblock, thas commmicating the hour to the varinus depart ments in the city. The Westarn Thion Telegraph eompany is permitted to have its instruments in the room whenee the messagn is sent, with an attachoment to the button, so that the mews is flashed direetly from the observafory, whont even the aid of an operator, all over the thited states, readhing eben so distant a puint as san Franeised within the space of not more than omt Sth of as seenod-lor such is the utmost I winkling required for the passage of an eleetric sumk through 3,000 miles of wire. To neemmplish this tho holegraph company is obliged to lake all
other business off the wires, each day just before 12 o'eloek. Three minutes and a half before noon arrives, operators in all parts of the country cease sending or receiving messages and devote their attention to attaehing wires in such a manner as to establish unbroken connections from Washington with points in every section. of the Union to which the lines extend their ramifications. A dozen seeonds hefore the time-bell is to strike, a few warning ticks come flashing along, and at the very moment when the sun passes over the seventy-fift 1 meridian a current gires a single throb from Maine to Florida, and from the Atlantie to the Paeific, informing an expectant nation of the time of day. The noon signals sent out from Washington serve to indicate 11 A . s. for Chicago, 10 s m . for Omaha. and 9 A. m. for San Franciseo. In this manner the Western Union Telegraph Company keeps corrected by electricity to absolute solar-time not less than 7,000 elocks in the eity of New York alone, and in all the United States perhaps as many as 70,000 . As each elock is charged $\$ 15$ a year for this service, the company derives an income of about one million oi dollars from this source. The elocks that are set every noon in a thousand eities and towns by a single pressure of a button in Washington are equipped with a peculiar electrical contrivance by means of which the galvanic eurrent passing through it springs the hands of each timepiece simultaneously to the point of 12 , if in the eastern time-belt ; to the point of 11 , if in the central time-belt; to the point of 10 , if in the mountain seetion; and to the point of 9 , if in the Pacific section. The United States Government avails itself gladly of this ehance to extend the courtesies of the hour to 63 millions of people, especially in all important seaport towns, where the noon time balls are dropped in order that the mariners may be able to correet their ehronometers. This last was from the start the prime objeet of the entire serviee. The Naval Observatory does not reckon its time by the sun, but by the fixed stars, which are so far off that their position with relation to the earth does not change appreciably within a few months or even years. Star-time is therefore, the only true time. The operator looks through his large telescope and watches for a given star which he knows to cross the plane of the 75 th meridian west of Greenwieh. Its time was adopted for the Distriet of Columbia by aet of Congress, approved Mareh 13, 1884. The observer has a star-time elock and a printed table that shows him at what second the star in question must actually have crossed the meridian. He corrects the observed time, if neeessary, by the table, whieh is always correct, and reduces it to sun-time. Since the star-year is one day longer than the sun-jear, the reduction of the star-time to sun-time requires considerable figuring. A suntime or "standard" elock stands close by, and by the amount that this varies from the caleulated or true sun-time, the clock indications are at once changed. The noon-stroke is sent all over the comitry aceording to this enrrected sun-time. At the observatory all the chronometers made for the navy are tested and regulated before they are sent out on vessels. It takes 21 weeks of testing to properly regulate and prove one of them. A part of the trial consists in subjecting the instrument to the action of cold in an ieebox, and again to heat as communieated through steam-pipes. Each chronometer, when given out to the nary, is aecompanied ley a chart telling just how mueh it will vary under eertain temperatures.
Tile New Standard of Time in tife Uniten States is established in the following way: The
country is divided into four "time-belts," baséd on the $75 \mathrm{th}, 90 \mathrm{th}$, 105 th and 120 th degrees of longi. tude. This makes just an hour's difference in clock-time between any two nearest ones of the four meridians mentioned. On each side of these lines the same cloek-time extends for about $7 \frac{1}{2}$ degrees longitude. This plan went into effect Xov. 18. 1883. The change to this new standard eansed but unimportant differences anywhere, save in places where two belts meet. Thus, in Pittsburgh, Pa., a passenger coming into the eity on a train from the east and going directly west, should his train leave immediately, will find that there is just one hour's difference in elock-time or train-time between the moment of his arrival and that of his departure; while in fact there is not a minute's difference of real time. His wateh will be an hour ahead of the time used on his departing train. On going east his watch will be an hour behind, as an hour ean be more easily reckoned than an uneven number of minutes.
Tbis plan of dividing the country into belts about 15° wide is more practicable than it would be to divide it into narrower belts. Besides, a passenger Irom Portland, Me., to Chareston, S. C.. for instance, or irom Chicago to New Orleans ean make the entire run without changing bis watch. This division into hour-belts has been adopted by all important clties, and by the railroads thronghout the United States.

1. The following citics hare noon at the same moment. Albany, N. Y.: Augnsta, Me; Baltimore, Md.; Bangor, Me.; Boston, Mass.; Brooklyn, N. Y.: Bnfialo, N. Y, Burlington, Vt.; Charleston, S. C.: Cleveland, O.; Concord, N. II. Hart-
iord, Conn. Sew Haven, Conn.; New Iork, N. V. PhiladeI. iord, Conn, New Haven, Conn; New lork, N. V. P PhiladeI.
phia, Pa, Pittsburgh, Pa, Portland, Me. Providence, k. Fha, Pa, Pittsburgh, Pa, Portland, Me, Providence, R.l.;
Richmond, Va.: Savannah, Ga.; Wasbington, D. C.; Wilmington, $\mathrm{N} . \mathrm{C}$.
2. When the cities mentioned under 1 have noon, the following have 11 oclock, A. M.: Atlanta, Ga. Chicago, Ill.: Cincinnati, O.; Columbus, O. Jetroit, Iich.: Dibnque, Iowa; Galyestón, Texas; Hannihal, Mo.; India, polis, Ind.: Kansas City, Mo.; Little Rock, Ark.: Iouisville, Ky.: Mem. phis, Tenn.i Milwaukee. Wis.: Mimneapolls, Minn.: Mobile, Ala. Nashville. Tenn. New Orleans, La.: Omaha, Neb. Fen Ala. Nashrile, Lenn. New Orleans, La, Omaha, Neb. Pensaeola, Fha Quiney, Th, ; Sinn. Terre Haute, Ind. Ficksburg, Miss.
3. When the cities mentioncd under i havenoon, the following places have $100^{\circ} \mathrm{elock}, \mathrm{A} . \mathrm{M} .:$ Denver, Col.: Salt LakeCity: U'tah City, TVah; Santa Fé, New Mexico; and
4. The following citles have9a. M. : Boise City, Idabo; Portland, Oreg. San Diedo, Cal.; San Francieco. Cal.; Seattle, Wash: Virginia City, 大iev.
The bonndary limes of the time-belts coincide with the lines of the meridians only in a very general way. In the necom. panying mup the three heavy end irregular north and south lines are these dividing lines. The one dividing the enstern aud central belts passes through Ifetrolt, Jicb.. Buffalo, N Y.. Pitshurgh, Pa.; through the western fortions of Virginia, W'est Virginiannd North Carolima to the city of Athana, Ga.. arid thence enstward to Charleston, C. The boundary line Letwen the central and mountainbelts rinsmearly due south Ward through Bismarek In North Dakota to Jodge City in Kansus: and thence sonth-westward io El Paso. Texas. Ind thedividing line betwecn the monntain and Pacifichelts runs along the boundary lime between the Stales of Montana and Idsho. thencedue south to Ogden, Vtah; and thence to Juma, Arizona, at the head of the Gulf of California.
HORSE, a hoofed quadruped of the genus Equus, and raluable to man for its strength, speed, docility and courage. See Britannica, Vol. XII, Py: 173-205.
HORSE, a miner's term, applied to any intruded material which is the apparent cause of a sudden interruption in the continuity of a material that is being quarried. With vein-miners, a detaehed mass of rock or spar which fills the vein receives this name, while colliers apply the term to the shale whieli oeeupies a natural but sudden thinning out of the coal-bed, as well as to such interruptions as seem to have been the ehannels of small streams, and which were subsequently filled up by the elay that formed the roof of the coal.
IIORSEHEADS, a post-village and railroad junction of Chemung eounts, N. Y. It containe a woolen mill, saw mill, and a yery large briek gard.
HORSE ISLAND, an island in Lake Ontario, and in Jefferson county, N. Y., two miles from Sackett'e Harbor. It has a light-house. Area, 37 aeres.

HORSE-RACING. According to the " Baltimore Sun Almanac" for 1891, the fleetest horses on record are:

ATRE*NNING:

Time.
$0: 211^{1}$
$0: 315$
$0: 46$
$0: 59$

1:1014
$1: 26$ - 5
1:232
$1: 3$
1:458
$1: 39^{11}$
I 161,1
1:51,

When the question is asked how the "thme" of faces run In Fingland compares with that of tho races rna in America, the only unwer that can be givens ha that races are not ollicially thand in bmghad. and that the distances aregener. uly "about" ono mile. and the berby is about amile and a halr. The thate remorter! for cight years is as follows: 158 s , Afralare 2:13: fist, Mury Hampton $2: 4: 3$ 1ssio Ormonde

 timed finster than e: 2 :

Fonstina, yearllag, by Sldney, :3:

Axtell, \%-yenr-old, ly Whamm I...2:19.
ABED DOMSRS.
Guy, by Kenturky Prbace, a : 10 or
scambonl, by sulan, w:12
P'ulo Alto, by wisetionoer, 2:12
Helle Inmalla, liy Almont, Jr.. i:12,

Seluon, hy Young lealfer 2:14.
Siote. - Immediately after ixtell hat trotted haw:12, he Whanold to a symblente at Torio IImate for $\$ 105,000$. C. II.
 for that stullon Nelsomiof whied be owns threequarters.

Maud S. by IIarold, at Cieveland, O., July 30tn, 1885, $2: 083 / 4$ Note.-Wm. H. Vauderbilt owned Maud S., and sold her to Robert Bowner for $\$ 40,000$, before she bad made a record of $2: 05^{3}, 4$; refusing an offer of $\$ 100,000$ for her, because he did got want ber to go into the hands of those who would bave "backed" her round the country at exhibitions. $2: 08 \%{ }^{\prime}$ is the best trotting time ever made
Jay Eye See, by Dictator, at Provideace, R. I., Aug. 1, 15st, 2:10.
st. Julien, by Volunteer, at Hartford, Conn., Aug. 27, 1500, 2:11
ding. by Kentacky Prince, at Cleveland, O., Oct. 29, 1588. 2:12.
Maxie Cobb, by Happy Mediam, at Providence, R. T., Sent.
30. 1:sta, $2: 13^{1}$. . 18:8, 2:13
Harry Wilkes, by George Wilkes, at Sacramento, Cal., April
2, 1857, 2:19\%
Belle llamlin, by Almont, Jr., at Cleveland, O., Sept. 16 , 857. 2:13.4

Phallas, by Dictator, at Chicago, 1ll.. July 14, 188t, 2:133/4. Clingstone, by Rysdyk, at Clevelanel, O., July 2S, 18s2, Goldsmith Maid, by Abdallah, at lloston, Sept. 2. 1574, 2:14.
Trinket, by Priuceps, at New York City, Sept. 22, 1881, a:1.1.
Patron, by Pancoast, at Cleveland, O., July 29, 1887, $2: 11^{1}$.
Losalind Wilkes, by Conn's Harry Wilkes, at Poughkecpsie, N. Y.. Aug. $24.25 .185,214 \%$
llopeful: by Godirey's Patchen, at Minneapolis, Minn., sept. b, 1s, $2: 1+\frac{1}{4}$.
l'rince Wilkes, by Red Wilkes, at Cleveland, O., Aug, 3, 1888, 2:143/4.
Stamboul, hy Sultan, at San Francisco, Cal., Oct. 24, 1858, 2:143
Arab, by Arthurton, at Sau José, Cal. Sept. 29, 1888, $2: 15$.
Favonia, by Wedgewood, at Buffuto, N. Y., Aug. 10, 1888,
Lulu, by Alexander's Norman, at Buffalo, N. Y., Aug. 9 $15 \% 5,2: 1 \%$
Majolica, by Startle, at Proridence, R. I.. Scpt. 5. $\mathbf{1 8 8 5}$ $2: 15$.

trotting by teams.

Mnud S., by Marold and Aldine, by Almont, driven by Wm, H. Vanderbilt to road wagon over the then Fleetwood track, New York, 1883, $2: 15 \%$
Maxie Cohb ami Nicta Medium, both by Hapry Medium, to skeleton wagon, driven by Joha Murphy, Fleet wood track, New lork, $1884,2: 103$.
Edward, ly Masterlode, and Dick Swiveller, by Walkill Chief, to slicleton wagon, at l'rovidence, R. 1., 1sst, $2: 16 \frac{1}{4}$
Aldine and Early Tose, both ly Almont, to road wagon, at
Flectwood, New York, 1s, 2, 2lfo
Cleora, by Menclans, mulimdependence, by Gen. Knox, to sulky, at Hartiord, Comn., 1883, $2: 163,2$

is a race.

Arab, by Arthurton, and Conde, by Abbotsford, driven by

 time evermade hy teams in a race.
At fucisg.

Johnston, by Joo linssett, at Chicago, Hll., Oet. 3, 1884, 2:06íde Brown Jug, by Tom lat, at Hartford, Cone., Aug 24, 1N:L, 2:113.4.
Slecpy Tom, by Toun Rolfe, at Chicago, Ill., July 25, 1579 , 2:12himalo Girl, by Pocahontas lloy, at l'ittsburgh, Pa., July 27, 188: 2:121
Riehhall, by King Phornoh, at Pittslmrgh, Pa., July 27, 18s, Brown fial, ly Tom Ifal, at Lexington, Ky., Alug. 81,1857 , 2:1:3.
Arrow, by A. W. Bichmond, at Clerehnd, O., Aug. 1, 1888, $2: 13!1$.
Gosisip, Jr., by Gossip, at luffalo. N. Y., Aur. S, 1888,

Fnller, by Clear (irit, at Maysille, Ky., May 17, 1883, atis.10, by Tom Rolfe, at Rochester, N. Y., Ang. 17, 18s3, 2:1,
 Kowns
1571. $2: 104$

Wicimolit, by Almont, at Providence. 1:. I., Sept. 11, 1584, 2:1.8.i.
towett, ly Allie West, at Alhany, N. I.. Aug. 27, 1886 2:11. Sored ban, by Red Huck, at buflulo, N. Y., Aug. 6, 1880, 2:11.
2:11. Falo Mall, by Alex Button, at San Francisco, Cal., Oct. 13, 1584, 2:15.

PACIKG BYTEANS．
Dalsy D．，by Black Star，nud Sllver Tail，by Tempest．Jr．，at East Sucinuw，Mich．，1057，＂：1si
Rlehball，by King Pharaoh，aud Westmont，by Atmont，at 2：19．

PACISG WITH RUNSING MATE，AGANST TME．
Westmont，DS Almont，at Cluleago，Ill．，July 10．1sis， 2：015 ${ }^{5}$ ．
Minine R．by ．．C．Breckioridge，at Chicago．11J．．Oct．．． 1854，2：0314．

PACANG UNDER SADDLE．
Billic Boyce，by Corbean，at Buffalo，న゚．Y゙．，Aug．1，iscs， $2: 141 /$

pacing to wagon：in abace．

Johaston，by Joc Bassett，at Detroit，Mich．，July 21，1857， ：141
Pocinhontas，by lron Cadmus，ut L゙nlon Course，J．I．，Jume 21，1555，2：1719．

AT HEAT RACING

1／Mlie Heals，－Sleepy Dick，凡ged，at Kiowr，Kan．，Oct．19，

suspender，aged，at Los Angeles，Cal．，Aprij 10．1883，0：233／4． $0: \% 2 / 4$ Slle llents．－lbogns，aged，by Ophir， 213 los．，at Helena， Mont．，Aug．2n．1858，0：4＊；0：48．
IIda Fergusou，at lone City，Cal．，Aug．$s, 18 k s, 0: 15$ ； $0: 18^{3}$ G．
Gladstone，${ }^{\text {Gears，by Rerelle，at Sam Diego，Cal．，Oct．}}$ $21,1855.0: 151 / 2 ; 0: 481 / 2$
Red Onk，ured，$\overline{\text { i }} 4 \mathrm{lhs}$ ，nt Curson City，Nev．，Sept． 16 ， 1479．0：48 1 2；0：49．
Type Setter， fears，by Hock llocking 100 lbs ．，at Los An－ geles．Cul．Aprlll 11，1803，0：143；0：4！．
 Iunia．Cal．，Aug．2s，1893， $0: 4912: 0: 5012 ; 0: 43 \%$
56 Mile llents．－Kittie lense，j years，by Jack Hardy，szlus．， at Dallas，Tcxas，Nov．2， 1857,1 ：00； 1 ：（t）
Sadle NeN゙ary， 3 yenrs，by Enquirer，os lbs，at Chiengo， 111. Julr $2,1853,1: 0: 2 / 4 ; 1: 031, \ldots$
IMcia， 3 years，by，Great Tom， 90 Jbs．，at Memjbis，Tean．， April 17，18is， $1: 02 \%: 1:\left(r^{2} \mathrm{j} .1\right.$.
3－4 Mile 1feats．－lizzie S．． 5 years，by Wanderer， 113 lus．，at Loulsville，Ky．，Sept．is， $1 \times x, 1: 131$ ， $1: 1: 0^{1},{ }_{2}$
Grover Cleveland，yents．by Monday，ió lbs，at Oaklaud， Cal．，sept．10，1857，1：131／2；1：141 2 ．
Joe Howell，aged，by Bonnie Scotiaud， 115 lbs ．，at San Francisco，Cal．，Nov．15， $1582,1: 111$ ： $1: 1515$.
Boanie Lizaie， 3 years，by hinrrah， 101 los．，at Saratoga，N． 1．．．Alse， $16,15 \$ 1,1: 151,4,1: 13 / 4$.
shotover，years，Ly lhanter， 113 lhs．，at Washington yark． Chleago，I11．．July $2,1885,1: 151 / 4 ; 1: 15^{2}$
Tulte，t reurs，by longfellow，dua Jos，at West side Park， Chicaco，1ll．，July 2h．1845， $1: 15 ; 1: 17$.
3 mile heats，is in 5 －6leaner，ured，by Glenely．il2 lus，at
 Hindeo Rose， 3 years，dy ilindoo．99 lhs．，at Washiugton Park，Cancago，111．，JuIy 4，1887， $1: 17: 1: 161 \frac{1}{4} ; 1: 16!12$.
\％＇s mile heats－horujpe，\＆years，by，sh．Mungo，jojibs．．at West side lurk，Chieago，In．．July 19， 1888 ， $1: 30 ; 1$ ： 30.
Cille，dyears，ly Longfellow，10t lhs．，at West side Park， Chicago．111．，Alıg． $9,1865,1: 80 ; 1: 31$.
Estrula． 4 yenrs，by Kutherford，lis liss，at Kansas City，Mo．， Nor．15．2int， $1: 30 ; 1: 31$.
1 mile beats－bounce， 4 yents，by Bonnie Scothand， 90 ats．， at Sheupshead Bay，N゙．Y．．Sept． $7,1881.1: 42 ; 1: 111 / 2$
Kadl． 6 yuars，by Lexligton，about 90 lus．，at liartford， Co111．，Sept．2，1885，1：121 $2: 1: 41 \frac{1}{4}$ ．
Gabriel， 5 years，by Aarm， 11^{5} lus．，at St．Lonls，Mo，Jume 13．1M1， $1: 1206 ; 1: 11^{3} 4$.
Wan Sparling， 4 years，by Glenelp， 106 Ius．，nt sheepshead Bay，x Y，supt． $30,1880,1: 12: 1: 4^{3}$ ．
1 mile heats， 3 in 5 －rhad．Stevins，aged，by Longford， 100

1．．Argentine， 6 ycars，liy War Dance， 1 İ lhs．ath St．Louls， Mo．．Janto 11，1879，won the 1st， 3 ded nad thentis， $1: 13: 1: 14 ;$ 1：1才象。
1 i．lif malle heats，sllpalong， 5 fears，by Longellow， 115 lls．，

Ben dor，5．Years，by buekden， 177 Ibs, nt louisvlle，Ky゙．， May $25,152.2 .1: 49 ; 1: 51^{2}$
1 $1-86$ inlle heats， 3 in＇s－Dnse Donglas， 5 gars，by leinster，
 1 ：．51：．
11／mblle heals－Gabrlel，years，by Alarm， 112 Jios，at Sheeps－ bend Bay，N．Y．，Sept．23， 1 S0 0， 1 ，Wh； $1: 50$ ．
Ferlda，5 veara，ly（bleacle，jus lhs．，at Sheepshead Bay，

I＇f mlle heat－Glenmore， 5 tears，by Glen Athol，IId Jhs．． 2t Thepshend Buy，‥ Y．，Scpt，25，1，80，2：10；2：11．
semo mile leats－Keno， 6 years，by Chilleothe，it Toledo，O．， Sepr．，1f，1kv1， $451312 ; 2: 45$
\％mile hents－liradamunte， 3 yars，ly Wur Bauce， 87 los．， at Juckson，Mism．，Nov．17，1577．3：82；3：29．

Mlss Woodiord，\＆years，by lillet， 1071 lbs．at sheepshend

3 mlle hents－Norfoll： 4 yeurs，by Lexington， 100 lbs．，at
Sacrameuto，Cul．．Sept．23， $1865,5: 27 \frac{1}{2} ; 5: 29 / 2$.

Brown Duke， 3 Years，by Margrayc， $86 \frac{1}{2}$ lbs．，at New

daile hents－Ferida，tyears，hr Glenelg， 105 lbs ．at Sheeps－

Lexington， 4 years，by bostou， 103^{3} liss．，nt New Orleaus，

Glenmore， 4 yenrs by Glen Atbol，los lbs．，at Baltimore， Md．，Oct．，25，1579， $7: 301+7: 31$ ．
The weights mentioned under＂heat racing＂are loads Which the horses were made to curs in order to retard their progress during the heats．and equalize the ehances of their progress duriug the heats．nind echanize the ehances ot following table gives the present scule of weights for the United states：

JAN゙UARY．

distance．	2YEARS．	3 YEAFS．	4 Yedrs．	5 years．	$\begin{gathered} \text { fivars } \\ \text { ANDUP. } \end{gathered}$
$1 / 3$ mile	71	104	116	120	1：0
处	71	101	119	122	12
$1{ }^{1}$	7	104	119	124	114
11／2 miles		101	120	124	125
		99	119	125	126
¢12 ${ }^{1}$		9	119	126	127
$3{ }^{2}$		！ 1	118	125	127
4 ＂		31	118	120	127

FEBJL゙Aにら

MASCH

mile．	80
3：4	29
$1{ }^{1}$	75
11吅miles	
21.	
3 ＂	

104	119	123	123
119	120	123	123
1001	120	104	124
104	120	125	126
100	120	126	127
99	120	117	18
98	120	124	129
97	120	128	129

MAY．

2fmile．	\＄1	1111	122	125	195
3	S0	110	122	121	124
1 ＂	79	14i	123	$1: 0$	126
1^{1} 2 miles．		104	122	127	128
込		1住	122	128	129
		101	128	129	130
$3{ }^{-}$		164	120	130	1 SB
＇		93	122	181	132

linile．	S 9	111	120	18．］	121
	81	111	1220	121	121
1	79	14	129	121	126
1＇miles．		10，	122	1217	127
！－		119：	122	127	125
－1号 6		1 ti	122	129	129
$\because{ }^{\circ}$		101	12	$12: 3$	130
$1{ }^{1}$		116	128	130	1：3

1 m milc．	89	113	122	129	122
374	－ 4	11：\％	129	12.1	121
$1{ }^{1}$	79	100	123	121	12.1
1^{1} omiles		317	$1 \stackrel{18}{218}$	128	2ili
		10%	129	1210	127
21吅		104	122	127	128
3^{-}		103	120	128	$1: 9$
＂		10：	122	129	130

1／6mile．	93	11.1	1201
， 4.	85	11.1	120
$1{ }^{-1}$	81	111	1：0
11／2miles．		10.	129
$2 \cdot$		10%	12
$21 / 2$		192i	120
$3{ }^{3}$		110．7	122
＂		104	122

AでGじST．

122	124
120	122
121	124
121	12.
105	226
126	127
128	124
128	129

DISTANCE．	2 SEAFS．	3 YEARS．	4 VEARS．	5 years．	$\begin{aligned} & 6 \text { YEAF: } \\ & \text { ASDUP. } \end{aligned}$
16mile	96	115	1\％2	120	122
3．${ }^{\text {a }}$	$!1$	116	1：39	12\％	12：3
1^{*}	－	112	1：1－2	12．2	10．1
132mile3	．9	116	112\％	124	1：12
$9 \times$.		109	122	124	12\％
$2^{1}{ }^{6}$		107	$1-10$	1：5	126
$3{ }^{4}$		100°	112\％	1：1；	127
4 ＊		10.5	129	12	1\％
OCTOBER，NけV゙EMBER AND DECLMLA．					
16mile	99	117	1303	122	122
374．	91	117	11ㅡㄴ	12：	122
$1{ }^{\prime \prime}$	4	118	12－2	120	12.
112 miles．．．	8	111	13	124	124
2 ．．．．．．	79	11.1	12：	124	124
21́＂		115	122	124	125
3^{*}		105	120	125	123
4 ＂${ }^{\text {a }}$	，	10 i	12	126	107

In racus of intermediate leugths，the weights for the shorteraistance are to be carried
In races exelusively for f－year－olds the weights shall be 122 lbs.
In races exclusixely for 3 －ye：tr－olrls the weights shail be 1221 bs
In races exclusively for a－year－oles the weights shall be 11s lbs．
Except in handieaps and races where the weights are fxed absolutely in the condilions．
s－year－old filles shill be allowed ？llis．
B－year－old fillies Rnd upwnrd，before stept．1，shall be allowed 5 lbs ．
3 yearold fillus and uprard，after sett．1，shall be al－ lowed 3 lbs．

AT HURILE RACES

1 mile，orer \＆hurdles－Suannanoa，aged，hy Fed Buck， 120 lbs，at hrightom Beach，\therefore ．Y．．．July $16,1601,1: 0$
Judith， 5 years，by Glevele， 145 los．，at Brightou Beach， N．Y．，July 1＇～，1880，1：51．
1 I－16 niles，over 4 hurdles－Judge Jackson，aged，by Buck－ den． $138165 .$, at Latonia．Ky．．May 29，Isoi， $1: 594$
1b miles，over 5 hurdles－W゚inslow， 1 years，by Ten broeck

1lamilea over in humblem－bunrke Cockran， 4 Fears，by War

1\％miles，over riarduc－Kittie ciark， 3 years，by Glenelg， 130 fhsen at brighton Buach，N．Y．，Ang．28，14n1，2：47．
Speenlation，y yearis，by Inniel Boome：les lbs．．at Rrighton Beach，N．Y＇．．Jıly 19．｜xal，2；17．

 toga，N．Y．，Aur．T，Ins，刀illi．
 Monmouth fark，N．f．July l＊，isx ：：：17．

 ont taklar into eunsiduratlon the quation wimeight rarricol． 135．WINさEESS ON 18！日．

Horse．	Ouner．Amow
Sir John． 3	Duper Bros．．．．．．．．．．．．．． 17590
Chatham， 2	J．A．and A．H．Morri＊．．．17，560
EOu， 4.	Dwyer Bros．．．．．．．．．．．．．17，360
Ambulane	J．A．und A．H．Morris．．．16．450
Kingston，	Ewver Bros．．．．．．．．．．．．．． 16.310
Eurus	J．Huggins ．．．．．．．．．．．．．16，100
Her Highness， 3.	A．Belmont．．．．．．．．．．．．．16，100
Gascoh， 2.	Bashford Manor ．．．．．．．．15，495
Firenzi，${ }^{\text {a }}$	3．В．Jaggia．．．．．．．．．．．14．260
King Eric．	D．b．Withers．．．．．．．．．．．．13，050
Sorcerer， 2.	D．D．Withers．．．．．．．．．．． 13,050
Demuth， 3.	s．S．Brown ．．．．．．．．．．．12，657
Voluutwer，a	F．Geblard ．．．．．．．．．．．12， 12.635
Nellie Blr．2	E．J．NcElmeel．．．．．．．．．． 10.440
Kentroorl， 3.	W゙albanth．．．．．．．．．．．．．10，345

Or 31 individual horses have won $\$ 794,222$ ，or about 50 per cent．of the total anount of moner competed for．
Remarks．－The trotter is a distinctive American strain or breed of horses．Its special gait has been developedin this country to an extent not equaled anywhere else，and its surperior qualities are acknowledged everywhere．F．A． Walker，the former superintendent of the Census，says：＂Two generatious ago the trotting of a horse in 2 minutes 40 seconds per mile was so rare as to give rise to a proverbial fhrase siruifitig something extraordinary．It is now a com－ mon ocenrrence＂＂Buta few years ago，＂Wrote Prof．Brewer， in 1876 ，＂the syeed of a mile in $2: 30$ was unheard of；now perhaps five or six hundred horses are known to have trotted a mile in that time．＂The mumber of such horses is to－dny nearer 1．000 than 600．American horses hare pressed the limft of mile－speed steadily downward within the last few years，matil the astonishing！ low figures of $2: 08$ s，and $2: 10$ have ticen reached by Maud S．and Jay Eye Bee，respectivels．Trainers even expect to lring the limit of trotting speed down to 2 minutes．

Racing has in this country fallen into decadence since $\mathbf{1 8 5 0}$ being replaced hy trotting．Yet American rummers hare recently beaten the best English thoronghtreds on their own soil．In regard to pacing，which is a faster cate than the trot．the lest record is $2: 00^{1}+$ in harness by Johnston，and $2: 013,4$ by Westmont，with rumning mate．

HORSE－RADISH TREE，the Moringa Pterygo sperma，a tree common in India and Irabia，and cultivated in various other tropieal countries． The fruit is eaten as a regetable or piekled，and its seeds are important as furnishing the commercial oil of ben．The fresh root has an odor and taste resembling that of the horse－radish．

Horse－slloEiNg．Farbieny，A horse used for drawing burdens heavier than his own weight upon liard ronds or for fast riding，requires to be shod from time to time．If left unshod his hoofs break and wear away more rapidly than they are renewed by the addition of horny material from within，and heeome tender and sore．This is aroided by properly paring the loofs and nailing on iron plates，or iron bands，called horseshoes．

The hoof of the horse eonsists of three portions，which are sorbesely mnited $上$ to seem but one．These are the wall or crust，the sole，turd the frog．

Tha wall is all that part of the hoof that is visible below
 the ferm ni neylinder cut norosabhtiquely at the top．It ls

 on tha lanek shar ate it extemas around tha fort．It has an
 the witalde wf tha bothom of the foot．＂pont the intuer slde of the foot the wall is thaner than whon the ontside．

The illustration will show the relative parts: Ground surface of hoof, a, toe; $a 1$, inner toe; a_{2}, onter toc: 61 , jnper quarter; b 2, outer quarter; $c 1$, inner heel; c 2 , outer heel; d, d, d, sole; c, e, wall of the hoof; j, f, the bars; g, g, the commissures; h, k, l, the frog; h, part under the uavicular joint; k, boundary of the elcft; $i, 2$, the bulbs of the heels. The wall is divided into toe, quarters, heels and bars.

The toe constitutes nbout two thirds of the wall, and is sometlmes subdivided into toe, inner toe, and outer toe. It is the deepest and thickest part of the wall, and stands at an angle of about forty-five degrees. When the angle of inelinatlou is much greater than this the feet are dosiguated as tlat and weak. Flat and weak leet uswally obtain in large and heavy anlmals, and it has been thought that as the foot is flattened the anterior wall will be drawn down by the weight, at length becoming fixed.
Thequarters are the portions on each side, midway between the toe and the heels, and are designated as the inside and outside quarters. The flbers composing them run obliquely upward and backward, parallel to those of the toc. The quarters slope dowaward aud backward, and become thluner as they approach the heels.

The heels are the two protuberant portions of the wall by which it is terminated posteriorly. The wall here is shortest and thinuest, the fibers being only about an inch in length, and not exceediug the fourth of an inch in thickness, While, in its natural state, there is some degree of elasti. elty in the entire wall, there is much more in the portion that covers the heels.
The bars are reficetions of the wall in toward the center of the foot, on its ground surface. They gradually approach each other, and come together a little in iront of the center of the foot. In the natural, healthy foot, that has nerer been shod, the bars appenr as sharpened prominences.like braces, between the center of the foot and the heels. They are well adrpted to keep the heels opeu, and prevent contraction of the hoof. In the unshod foot, the bars have a bearing upon the ground second only to that of the edge of the wall.

The sole fills the space between the wall and the bars. It is in the form of an irregular arehed plate, the concavity being toward the ground. It is firmly attached, by its outer convex edge, to the inner border of the wall, while its inner straight edges are attached to the bars. Throughout its whole extent the bars intervene between the sole and the irog. The eenter of the sole is the thinnest portion of it, and it also constitutes the summit of the arch. The lower circumference of the areh, which is also the thiekest and strongest, everywhere abuts nguinst the sides of the wall.
The frog is a wedge-like mass filling the angulnr space between the bars, and consists not of solld horn, as might at first seem, bit of a series of elastie arches. It has been not inaptly compared, to an elastic keystone received into an clastle areh, communicating io some cases, and admitting in all, the springing movements of which such an areh is capable. The base of the frog lies between and councets the posterior curved portions of the hoof, limiting to some extent their action. The sides are conmeeted with the bars by their upper edges, leaving upon the ground surface two deep channels between the lower Lorder of the bars and frog, channels between the over border of the bars and frog, Which have been terned the commissmrenols the ing. The areh of the commissures. In the center of the frog as we look upon its ground surface, ts a deep, uarrow depression, the eleft of the frog, which extends rurther into the soft ths: sues of the foot than the commissures. This eleft is arehed over in a similar manner, and the cone-like mass, as viewed on its inaer upper surface, has received the name of frog,stay or bolt. Looking upon both the exterlor and interior surface of the frog. we see that with the bars it forms three clnstic foldings, which act as springs to kecp the heels apart and the foot well spread. In the natural, unshod foot, the frog thongh protected to some degree by the inner border of the wall and by the sharp prominences of the bars, must still receive pressure at each step.
The first question in scientifichorse-shoeing is. "IIow must the hoof be dressed in order to bring those parts of its inferlor surface upon the shoe, whichure by nature intended to be the prineipal welght-bearers ?" and the next question is, "IIow mast the shoe be fashioned and applied to the sole?"

A leading French farrier, Ia Fosse, maintained that the frog, or ceutral promjuence of the hoof, ls the main welghtbearer, in conmeetion with the wall, and should therefore be placed squarely and firmly upon the ground, but the foremost Italan farrier, Fiascbi, says the frog must not be [iaced upon the ground on a level with the lower surfinee of the shoe at the beels, because it is not the primary weight. bearer.
In the feet of colts running freely over upland pastures, the hoois are marked with quite a downward prowth at the licels, a less actlye growth at the quarters, and a much mave rapid downvard growth at the tocs. The upturned hoofs show plaloly that the walls at the beels bear the weight on landlng, but on springing from the ground the wall at the toes bears the welght at every step. The quartersare clevated, as the hollow of the human foot is arehed above the ground. That the entire weight of the horse rests upon the toeend of the hoof was demonstrated br Dr. Coleman, professor of the Royal Veterinary Colleg., of London, us carly as 1799. IIe re-
-and tbeu walked nud irotted him: and even caused bim to kick with both hind fcet in the air, so that the entire weigh of his hody was violently conceutrated upon the bared frout feet, yet the iutemal structure did not dencend to the least perceptible degree.
Subsequent examination of the fect of colts sbowed also. that thear irogs are more sponge and elastic than the front and side walls. And it was also noticed that there is a uatural expansion of the hoofs at the heels when the feet press upon the ground, and that a contraction to the normal dimensions follows when the hoof is lifted and freed from pressure. This lateral expmusion of the boofs at the beels every time when a horse's foot is coming down upon the ground breaks the force of the great concusston produced by a run or gallop of the animal. While the hoofs expand the slightly elevated froms and soles descend far enough to come fr contact with the ground, but with a gentle pressure only.
'revious to these observations the walls of horses' hoofs were often softencd with lotions, poultiees, or wet swabs. A leather, rubber, felt sponge, or other chshion was sometimes placed betwech the shoe and the bottom of the foot. Thls is all wrong execpt in the case of bruised soles. As the wall in front and at the heels earries the entire weight of the animal it must afford a firm, unyiclding snpport for this weight: whereas the frog is yielding by virtue of its spongy texture, and thus nentralizes the last vestige of coneussion.
Modera farriery is gulded by these observations and considerations. They furnish the only correct datafor paring and shoeing both the normal and abnormal hoof

The wall should be prerfectly level; that is, both becls must measure the same distance from the ground surface to the corouet, where the hair and hoof nuite. Then, at equidistaut points, on the ground surface of the wall, from the heels, the quarters must measure the same height from the ground to the coronet. Then the wall, around the forward arches of the toe, must measure, at corresponding points, the same from the ground surface to the coronet. Then, and ouly then, will the foot wall he purectly level. and the action of the foot will be comfortable and correct. For then will the hoof land squarely upon even heels. revolve evenly over equal quarters, and spring straight and troe from the toes.
2. The hoof must be balanced, that is, the hoof and quarfog. This balaneing prevents undue welght on either side, and therefore enables the tendons to carry the hoof straight both in clevating it from the ground and carrying it out strnight and true without any interference with the other foot and limb. Moreover, it equally distribute's the pressuro by equalizing the sections of the foot on either side of the irog.
3. It was found that most foot maladies resulting from horse. shocing are due to an uneven aud unbalanced wall in connec-
tion with an undue height of the hecls. If the heels are altion with an undue height of the hecls. If the heels are alIowed to grow too high, the grenter part of the weight is thrown forward mon the bone structire of the limb, and the bones of the foot are forced forward against the wali in front. Inflammation of the feet and sorencss in the joints
and bones soon follow such a course. If the toes, on the and bones soon follow such a course, If the toes, on the ance of weight is thrown mpon the flexor tendons, whieh are on the bafk sicle of the foot, and these tendons become in flamed. The hoofs must therefore he pared in sucb a way that the weight of the animal is equally distributed between the bones und flexor tendons. If one heel is permitted to grow higher than the other, bruses on the high heel. ealled corns, with result
4. Formerly farriers erronconsly maintained that the sole should be pared till it vields to the pressure of the thamb. The sole is naturally only from $\frac{1}{6}$ to 3 of an inch thick. It must in all eases, when in a matiral condition, be so pared as to approximate the coneave form it possusses in colt-bood. $11 n$ no instance should it press upon the shor, except where the wall is so thin and weak as unt to he able to
bear the weicht of the borse without pain. The frog must ouly be pared to remove the ragyed edges. Some prominent farriers even maintaln that the frog should verer be tonehed, allering that nature sheds the surplasage of horny material at the proper seavons.

Iforses with weak, tender, or brulsed soles may for a thme require leather or waterproof pads, but as the sole grows the e shonld be discontimed they are never required in
healthy feet where the sole, whid is the best mit most natheal ing feet where the sole, wheh is the best mat most thatknife. liorses with corns should have their shoes made with a wide inside weh, which resta uthon the bars, or havo for a thme n har shoc. The last mall on the luslde should also he dispensed with, and the sem of the corn or bruise curesully bared out, but without Injuring elther the frog or burs. If. irom constant cuttinge the hars are unfit to aid shoe for a time with tips or haif whoes bevping the horse ns shoe for a time wht thpsor haitshoss kevpling the horse as growth of the foot. In troublesome cases of thrush such tips are also most serviceable, allowing the frog the natural healthy pressure for wheh it is lutended, and with astring. ents and clennliness grently expedithog a eure. Groggy horses shonld have the toe shortened, and turned up, and the shoes made licht and nicely fitted. Overreach, or jut thag of the heel of the forcfoot with the shoe of the hind, is
remedied by filing round the posterior edge of the offending toe, and keepring that shoe as far back as nossible on the foot.
Of the mayy recent patterns of horseshoes we mention the followins: The Pri-planter of Charlier is a narrow rim of the following an wide as the wall. The wall is eut away iron lorged at its lower marrais neaty inserted in the grnove thas made iron rim, which is neatlo insert of the wall be the eontact Its design is to prevent the wear of the wad that the entire With hard rouds. It is based upon the sole should come upon base of the linof-walls, bars, f
the ground at the same time.
The fonm-ankin shoe, invented by Robert Bonner, is one of the greatest improvements of modern farriery. Two of the calkins, made olotong, are welded onto the web of the heels of a platn shoe, while the other two are placed at the inuer edges of the forward arches of the quarters. It increases the articulation of the foot, prevents the danger of slipping, and protects the texor tendons.
The rolling-ball shoe of Dr. Darid Roberge is another valuable hospital shoe. it is solid at the bot tom, being round or convex in shape at the base. If there is any soreness in the joints, museles or tendons, the rolling-ball shoe will enable the horse to revolve and ease the foot in such a position as will relieve the strain upon the injured part.

A Solind Fohe-fogt piebiaibi fore the shoe.
Copied from stonehenqe's Horse in the shathe and the Firld.
A, A, the hecls of the erust; 13 , the toe mit onc to receise the elip; C. C, the ruarturs of the ernst: 1), 11. the bars as they whould be left, with the foll frod between them; E, E. the angles between the heels and birs, where eoms appenr; $\mathbf{F}^{2}, \mathbf{F}$, the conenve surface of the toe: \mathbf{G}, \mathbf{G}, the bulbous heels; ll, the cleft.

The wing-heeled contennial shoe follows the wall to the heels, and then tarns with the inflexion oi the wall and covers the burs. It has beenfound to relieve horses with weak huels or ruater-erneks and to be villable for sidule-horses that have to bear forehanded, the extra weight of the rider.
There are many other patterns, especially of rimmed shoes, gnme phan like the binglish bank, and some cormanted hke the American form of Mr. foodenough. But they fresent nothing nown either in thenry or denigrs.
The hoof-expmoier of 6. P. hoberge veterinary surgeon in Ne: York, consiats of a peembinty formed spring contrivanco: which is lintrodured into the ander portion of the honf. anid exorts a constant gentle bressure apainst the onter walls of the hool, therely prepenting contraction in form where there is a tendeney in that arevetion. From contaction, or
 corna, suld frequatly quarteremacks. The hoof, or loong ind lis apparently the same to the horse as a shoe fis to mant. When the horn of the shlowalls prexses ngininst the sensitive parta within the hoof corus-ire produced in the same why ans when we wear tight shoes. Soherge"s hool-expunder is internled to prevent this.

One of the ranin repuisites in forso-shoelng ts the greateat onsthole lightress of the shots consistent with the use of the horse, thele smallataze, and the lenst possuble mumber of rabls consiatent with their secure fastening to the wall of the hoof. It was shown by a Frembl hiphopathologist, Bhalicy, that am omere of artincial welght at the font ts equal to n polnd nt the shoulder. Lhesides, it has been fommethat
 are mucli logen net to fall off the fret. The nutls should uiso be
 thick, transworse hold, rather than extending hlgh tip, whleh Brifte the wnll.

The cruel practice of overheating the shoes and huraing the hools for a close fit, has been mostly discarded as an injury to the texture of the horn. The shoes are now only slightly heated, and in many cases, where they are carefully slightly heated, and in many cases,
made, they are fitted entirely cold.

Horseshoes made of rawhide, pressed into the proper shape and dried, have been recommended. Although they are hard enough to be serviceable and lasting they have never come into extensive use.
horvảth, Michael, Hungarian historian, born at Szentes, in the county of Csongrad, Oct. 20, 1809, died at Carlshad, Aug. 19, 1878. He studied the$\log y$ at the seminary of Waitzen, took orders in 1830, in $18+1$ became professor of the Hungarian language and literature in Vienna, and four years later bishop of Csanad. During the revolution of 1848 he held the appointment of minister of publie instruction and worship, and the deteat of the Hungarians drove him into exile. Under the amnesty of 1867 he was permitted to return. Of several historical works which he wrote, three deserve special mention: History of Hungary to 1823 (4 vols., 1842-46, and its continuations) : Tuenty-fiee Years of Hiengurian History (1823-48, 2 vols., 1863), and History of the Wrar of Independence in Hungary (3 vols., 1865).

11OSACK, DAYm (1769-1835), an American scientist. In 1791 he began the practice of medicine in Virginia, and four years later became professor in Columbia College, N. Y. In 1807 he was made professor of the theory and practice of medieine in the College of Physicians and Surgeons, and in 1830 was called to the medical department of Rutgers. He wrote extensively on medical and other scientific subjects.
hosmer, harriet, an American sculptor, horn in 18:0. She studied modeling for awhile in Boston, Mass., and in 1 s52 went to Rome, where she entered the studio of John Gibson, the English seulptor. Among her most popular productions are Conone; l'ach; H'ill-o'-the-llisp; Beatrice Cenci; Kemohin; Sleeping Fetm; Iieroine of Gä̈ta, and Wokiny Fitun.

HOSPICE, the name given to establishments for sheltering travelers maintained by monastic persons, usually in connection with monasteries. One of the host known inhospitable regions is that on the Alpine lass of Great St. Bernard, of which mention is made in 1125. Travelers are lodged and boarded gratuitously, but those who are able deposit a present in the alms-box. Similar establishments are found on the Simplon, the Lit tlo St. Bernerd, and the Dernina.

HOSDITALS in the Uniten States. See Mritamica, Vol. NII, pp. 30t-307; Dispexsary, in these Revisions and Additions.

HOST (Lat. hostif, "a victim"), the name given in the Ioman Catholic chureh to the consecruted bread of the eucharist, so called in conformity with the cloetrine of that chureh that the eucharist is a "sacritice," in the striet sense of the word, though, in the common languige of Roman Cutholies, "home" is used for the unconseerated altar-bread, and even so wecurs in the offertory of the Loman missal. The host in the Latin chureh is a thin wafer of unlearened bread, made of the finest flour
and bearing upon it the figure of the Crucifixion or some other emblematic device. In all ancient liturgical rites the consecrated host was broken before being consumed by the priest. In the Roman church the celebrant first breaks it in two, and then from one half detaches a frament which he drops into the chalice. In the (ireek and other Oriental churehes, as well as in various leotestant communities, the cncharist is celebrated in leavened bread. The use of unleavened bread is founded on the belief that Christ could only have used such bread when instituting the eucharist at the Paschal feast. Luther followed the Roman church on this point, but did not break the host.

HOSTAGE, a person given to an enemy as a pledge for the proper fulfillment of a treaty condition. Formerly the evasion of the terms of the treaty by one of the contracting parties was regarded as entitling the enemy to put to death the hostazes that had been given up to them.

HOTBED, a bed of fermenting regetable matter. usually surmounted by a glazed frame, employed in gardening for cultivating melons and cuenmbers, and tender ammals, propagating ercenhouse plants by cuttings, seets, or grafting, ritc. It is inexpensive and formerly it was an indispensable adjunct to the garden, but the almost universal employment of hot water as a heating agent for horticultural purposes has latterly greatly circumscribed its use. The size of the bed is regalated by the degree of heat required for the purpose in view. A bed of stable-dung with or without leaves intermixed, four feet thick, will for sometime after it is built maintain a temperature of from 75° to 90°, which is sufticient for most purposes. As the fermentation deelines the bed cools down, but heat is readily increased by adding fresh material to the sides of it. The bed shonld be made a few inches wider and longer than its frame, and from six to nine inches ligher at the back than the front, to secure a better angle for light. The farmer's hotbed is made, in its simplest and cheapest form, as follows: In northern climates choose early in the sear a dry place exposed to the south and protected from the north. Dig out a trench is inches deep and five feet wide. Set stakes around it, and nail boards for the frame as long as mar be needed -nine or 12 lect perhaps, and cover with a fiting sash. Then fill the pit with coarse horse manure; bank the earth up against the frome and leave it until about Mareh, when it will be time to fimish it. The end of the frame should be of this shape, sloping to the south:

HOTEL (Fr. hatel; Lat., hospitale), a superior kind of inn. One point of cliterence between the Enropean and the dinerican "plant" is that under the former, ixcept in the case of a table whote, the charge is for each dish ordered, while unter the American plan a fixed price is charged for the whole meal.

During the last few rears, hotels of large size and cost and many of them of much architeetural beanty havo been erected in large eities and towns and pleasure resorts thronghout the United States; and since the introduction of passenger elovators in American hotels, a considerable mumber of these structures have risen to very great height. The hotel "New Netherlands" now (May, 1s91) in pro-
cess of erection, by Mr. W. W. Astor, on the northeast corner of 5 th Avenue and 50th street, New lork City, is the most lofty of any yet erected in the world. The accompanying ilhustration will indicate its exterior architecture.

THE NEW ぶETIRERJANLS.
The plans were drawn by William II. II ume. They represent in building that will not only be interesting in its details, but more imposing than any other structure in the eity.

The site stand consists of five city lots, with a mean depth of 12 feet in Fity y-ninth street ind a frontage of 100 feet in Fifth avenus. Above the cellar and basement are to he erected 17 stories, making it the highest buidang in tho eity.

The style of architecture is of the modern Romanenque order, highty ormamented. The first four stories are to be of heavy rock-facel lielleville brown stone, forming a strong and massive base. The smperstructure is to be of hum brick, relieved With stone and terra cotta 1 rimmings. The 12th story is to be entirely of stone, forming the main eornice of the buibling and breaking the towering appearance of the structure. In the trentment of the fronts, also, the architeet lias broken the ap-
pearance of too great height by horizontal lines, or band courses, so disposed that while they separate the several parts they do not affect the union or disturb the blending of the various combinations. The main entrances are to be through richly sculpturel Roman arched doorwass in the Fifth avenue front.

Mr. Astor intends to have the structure as nearly fir -proof as modern ingennity can make it. The brick and stone walls are to be relieved of the strain or weight usually imposed on them by the ase of heary columns, which, with all the other columns and framework in the bnilding, are to be of steel.

In designing the interior the requirements of such an immense hotel trere carefully studied. The boilers of the steam plant are to be placed in a cellar vault under Fifty-ninth street, the boiler room proper embracing in height the cellar and basement stories.

In the cellar is to be the larger machiners hall, which is to be an interesting feature. The rest of the cellar is to be nsed for storace purposes, except a space for howl ing alleys. In the basement are to he the cale, billiard room, barber shop, toilet rooms. kitchen store-rooms, etc. In the first story is to he a magnificent dining room along the entire southerly front on Fifty-ninth street and part of the front on Fifth avenue. The usual offices, ladies reception rooms, and reading rooms are also to be in that story. The main ball and offices are to be a notable feature. They are to be covered by a dome extending into the second story. The grand staircase is to be of Numidian marble and tronze, which are also to be the materials used in the finish of the main hall and oftices.
The parlors are to ocenpy a part of the second story. The The parlors are to ocenpy a part of them show effectivent arrangements. plans for them show effective and conren and and is to be a large private dining room, with In that story also is to be a large private diming room, In the upper part of the building large rooms are to he arrauged for the convenience of families.
HOT SPRINGS, a city and county-seat of Garland county, Ark., 55 miles southwest of Little Rock. A United States Army and Navs general hospital and a Roman Catholic school and convent are located here. In the vicinity valuable mines of gold, silver and lead are worked. The city contains 72 thermal springs and these are visited by large numbers of health-seekers.
hottentol's blead, a kind of yam, Testudinurin elephentipes, native of South Africa.
Hot Walls, or Flem Wals: in gardening, walls furnished with furnaces and flues. in order to produce finer kinds of fruit than could otherwise lee expected in the climate. The thues are led as oblipuely and make as many turus from right to left :Ls are consistent with their drawing well, so that as little heat as possible may escape from the chimney, and as much as possible may be expended on the wall. The heat is applied chiefly during spring.

HoÜHN, Roberer, French conjurer, horn at Blois in 1805, died there in 1871. He studied mechanies, and, after winning a medal for his toys and automata at the Paris Fxhibition of 1sit, opened a serits of exhibitions, which he continued for ten yoars, retiring in lis. with a large fortume. In 18.f. it the invitation of the French government. ha went to Algeria and entered into competition with the miraclo-working priests. Ile was completely suceresful, and did much toward destroying their intlemer.

Ifot (ill, Frasklen Bramme (18w-1895), an American anthor. From ists to 18 sio he practiced medicide in Smmorville, and in Albany N . Y^{2}. At the beginning of the eivil war he entered the U. 5 . volunterer service as as surpeon and servel nine montlis. He then settled in towville, N. Y... and desnted the remainder of his life to literature. Among his published works are it Cutalogue of

Plants in Lexis and Franklin Counties, N. Y: (1St7); History of St. Laverence and Franklin Counties, N. 1. (1553); Illan for Seizing and Carrying to Nex Toriz William Goffe, the Regicide (1855) ; The Dtety of Gorernment in the Preservation of Forests (15i3); and Report on Forestry (1850).
HOUGHTOX, the county-seat of Houghton county, Mich., on Lake Portage. It is a coppermining center.
hoúghton, Riciard Monctos Milnes, Lord, an English author, born at Pontefract, June 19, 1809, died at Vichs, Aug. 11, 1885. He was educated at Cambridge, graduating in 1831. From 1837 to 1863 he represented Pontefract, first as a Conservative, but latterly as an Independent liberal. In 1863 he was raised to the peerage. He championed eppressed nationalties, liberts of conscience and the rights of women; and secured the passage of a bill for the establishment of reformatories. Author of several volumes of poetre and travels, ameng them Memorial of a Tour in Greece (1833); Poems of Many Years (is38); Palm Leaves (1S44); Good Night and Good Morning (1859); and Monoyrtephs, Personal and Social (1873).
HOLGHTON-IE-SPRING, a town of England. in the count y, and six-and-a-half miles northeast of the city of Durham. Its growth is mainly due to the neighboring collieries. The parish church contains the altar tomb of Bernard Gilpin, who founded a grammar school here. Population 6,041.
HoUk, Leoxidas Campbell, a United States Congressman, born in 1836. In 1859 he was admitted to the Temnessee bar and practiced until the beginning of the war, when he entered the Union army. He served till April, 1863; when he resigned on account of ill health. From 1S66 to 1870 he was judge of the 17 th judicial circuit of Tennessee, and in $18 i^{2}$ became a member of the legislature. IIe was elected as a Republican to the 47 th, 48 Sh, $49 \mathrm{th}, 50$ th and 51 st Congresses.
hoUlTON, the count-seat of Aroostook county, in the castern part of Iaine. The ehief prodnctions of the vicinity are potatoes, hay, starch, cedar shingles and hemlock bark.

HOUMA, a post-village. eapital of Terre Bonne parish, La... on a branch of the Texas \& Louisina railroad, 70 miles from New Orleans. It has a conrent and an academy.
HOUND'S TONGUE (Cynoglossum), a genus of plants of the natural order borvaginex, of which there are many species, all with small tlowers. The common hound's tongue (C. officinate) is a native of Europe. Asia, Africa and North America. It has downy leaves of a dull green, purplish red flowers, and a stem abcut two feet high. Its odor is yery disagreeahle. The root was iormerly administered in scrofula, dysentery, ete., and is said to ber an anodyne.

IlOUR, a measure of time equal to one twentrfourth part of an astronomical day. Hour circles, in astronomy, are any great circles whieh cut the poles.
HOLR-GLASS an instrument for measuring intervals of time. It is made of glass.and consists of two lulbs united by a narrow neek. One of the bults is nearly fillpil with dry sand, fine enongh to run freely throngl the orifice in the neek, and the quantity of sand is just as much as cau run through the orifice in an hour. The expansion or contraction of the oritiee, produced ly heat or cold, and the variations in the dryness of the sand, all produce deviations from thin true measurement of the time. The hour glass was almost uniwersally emphoyed in churches during the 16 th and 17 th conturies.

HOURI, among the Mohammedans, a nymph of Paradise. Whose companionship is to be one of the great felicities of the true belicvers.

HOURS, Tur: in Greek mythology, the goddesses of nature and the seasons of the year. They were believod to especially personify the pleasing eharacteristics of the seasons. In art and poetry they were represented as blooming nymphs, decked with flowers and jewels.

HOUSATONIC RIYER, TuE, rises in Berkshire county, Mass., follows a southerly course through Connceticut amid beautitul, wild seenery. and enters Long Island Sound after a course of 150 miles. Tide-water ascends the river for 14 miles.

HOUSE DOVES, in the laws of England and America, are protected like domestic animals.

HOUSE1IOLD TROOPS: in Great Britain, troops whose special duty it is to attend the sovereign and to guard the metropolis. They comprise three regiments of cavalry: the First and Second Life Guards and the Royal Horse Guards; and threc regiments of foot: the Grenadier Guards, of three battalions, and the Coldstream and Scots Guards, of two battalions each. See Army, in Britannica, Tol. II, pp. $5 \overline{7}$ s. 580.

HOUSEMADD'S KNEE, the term commonly applied to an acute or chronic inflammation of the bursa, or sac between the knee-pan and the skin. IIonsemaids were considered especially liable to it from their kneeling to scrub on hard floors. In its acute form it causes considerable pain, swelling and febrile disturbance, the swelling being very superficial and in front of the patella. The treatment in the acute form consists essentially in rest, and the use of leeches, fomentations and purgatives; if suppuration take place the sac must be freely opened and the pus evacuated. The chronic form may subside nnder rest, blisters, ete, or it may require incision or exeision for its cure.

IIOUSE OF CORRECTION, a jail not under the ordinary charge of the sheriff, hat governed by a keeper. The houses were originally intended for the detention of ragrants and convicted persons, compelling them to work. The persons who may be committed to them are prisoners convicted of felony or misdemeanor; persons committed on charge or suspicion of fclons, or of misdemeanor, and vagrants. Any justice may commit to the honse of correction persons arraiting trial and persons convieted of small offenses.

HOUSTON, a city and the county-seat of liarris county, Texas, on Buffalo Bayou, 49 miles northwest of Galveston, $16+$ miles east-southeast of Austin, and 152 miles south of Palestine. It contains many religious and educational institutions, and manufactories of engines, machinery, carriages, ete., besides cotton factories, machine shops, and planing mills. large quantities of cotton, maize and other produets areshipped here. Population, 1580, 16,513; 1890, 27.411.

HOUTZDILE, a pest-village of Clearfield county, Pa., situated on a branch of the Tyrone © Clearfield Railroad. It has a lumber mill, and much coal is mined in the vieinity.

HOVEY, Alval, an Anerican clergyman, born In 1820. In 1848-19 he was pastor of the liaptist church in New Gloucester, Ne., and from I819 to 180s held a professorshipin Newton Theologieal Institution. Since the last-named year he has been. president. Among his writings are: The State of the Impenitent Dend (1859); The Miraches of Christ as Astested In the Errangchists (186t); The Soriptural Luw of Divorce (1866) ; Corl Mith. Us; or, the Person and Work of Christ (1872); Religion and the State (1874), and The Doctrine of the Migher Christion

Sije, Compared with the Teachings of the Ioly Scriptures (18 -6).
$110 W A l i j$ CITY, a post-village and railroad junction of Montealm county, Mich., 33 miles north of Grand Rapids, where lumber and shingles are manufactured.

HOWARD UNIVERSITL. See Colleges, in these Revisions and Additions.

IOWAKD, Jons Eagers, an American soldier and statesman, born in Baltimore county, Md., in 1752, died at laaltimore, Oct. 12, 1827. He fought in the battle of White Plains, N. Y., in 1776 as captain in a Maryland regiment, and in $17 \pi 5$ he distinguished himself at Germantown, where he commanded a regiment. At the battle of Cowpens, Jan. 17, 1781 , Col. Howard commanded the Continentals, and led them in a bayonet charge which decided the fortunes of the day. At Eutaw Springs le was severely wounded. After the war he was in Congress 1757-85, and governor of Maryland from 1789 to 1792 . From 1725 to 1803 he was United States Senator from llaryland.
HOWALD, Oliver Otis, an American general, born at Leeds, Me., in 1830. Aiter graduating at West Point in $185 t$ he was made instructor in mathematics there. In 1861 he becane colonel of a regiment of Maine volunteers; and at the battle of Bull Run, July 21, of the same year, he commanded a brigade, and was soon after made briga-dier-general. At the lattle of Fair Oaks, June 1, 1862, he lost his right arm. Gen. Howard took part in the battles of Antietam, Chancellorsville, Gettysburg, Lookout Valley, Missionary Ridge, Chat tanooga; commanded the right wing of Sherman's army during its march to the sea and through the Carolinas; was made commissioner of the Freedmen's Bureau, May 12, 1865, and held that office until Jume 30, 1872, when it was elosed. In 1869 he was made president of Howard University, which had been established in Washington for the higher education of the colored people, but resigned in 1873 . In 1577 he condueted a campaign against the Nez Percés Indians, and pursued them for 1,300 miles, as retated in his book, Chief Josph. IIe also defeated the Bannacks and Piutes in 1878. In Mareh, 1886 , lie was promoted to be major-general, U.S. A., and succeeded Gen. Hancock in command of the Division of the Atlantic.

HOWE, Ellas, an Anerican inventor, born at Spencer, Mass., in 1S19. died at Brooklyn, N. Y., Oct. 3, IS67. While working in a machine-shop at Lowell, Mass., and afterwards in one at Boston, he developed his insention of the sewing machine, and, having eonstructed the first machine in May, 1845, obtained a United States ratent Sept. 10, 184t. lle tried in yain to introduce his invention in Fingland. On his return to Boston in 1sti he found that his patent had been infringed. For seren years he had to litirate to proteet his patent rights, until, in 1854, the principal manufacturers, after being defeated in the courts. agreed to pay him royalties on the sewing machines made by them. His yearly income from this source increased to $\$ 200,000$, and the total fortune derised from his invention amounted to two millions of dollars. Ho received many marks of distinction for the invention.
hoW E, Joserni, governor of Nova Sentia, horn at Halifax in 1804, died there Jume 1, 18i3. He was originally a printer: ln 18 ge he became editor and proprietor of the "Nova-Scotian." In 1810 he was a member of the provincial cabinet, hut resigned the seeretaryship in 1854 to superintend the construction of the dirst ralroad in Sova Scotia. After 187: he beeame lieutenant-governor of Nosia Scotia. llis Spechars ind Publir Letters appeared in two volumes in 185.5.

HoWe Jund Ward, an American poetes. wite
 wok a deep inturest in her henshand's philanthropic labors, and was a warm fiend of the anti-slayery canse. During the civil viar she worked zealoulsly with the Cnitel States sanitary commission. Ir ruice and pen she contrimated to many sucial refurms. It the Xew Orleans World's Fair in lat Mrs. Howe was the chief of the women's department. ller mptic firit found expessinn in
 The Hontrs Ur", and ITipmitus, two tragedies: Later Luthes (1hati, which comprised "Poems of the War. lypue wi the strent, Parables ank Poems of study." The most memoralle of her poms is the "Battle !lymn of the Republie," which gave expression to the deep moral porpose of the war. Mre. Itowe is alon a yealous worker in the cause of woman suffralue.
Honfe swimel inimery, an american philanthropist, hrin at Boton in lend died there in and Aiter studying medicine he went to Grepce in 1×2.2. where he served as surgeon in the war for independence, and was placed at the head of the surgiealservice, ln 1 and he assisted in ostamishing an asylum for the hlind in Bostun; was appointed superintendent of the instintion. and went afterwards to Europe to examine the schonls for the hlind. He also assisterl in founding a sehool fur training idiot.. Which was urganized is the liansachusetts schoul for didiots. In 150 the was sent by President Grant as a mernior of the conmission to risit san lomingo and report upon the alvisability of its annexation th the laited states. Howe putb-
 and a Reveder for the I:lime.
Howeleks. Whemm Dens, an American author. was born at Martinsville, Ohio, in 1×37. He learned the printer's trale bur he som began to write for the papers, hath prose and serse, and in 105n he was editur of the "ohmorate Journal." In liven he was appointed lonited state Consul at Vonice, and there he remaineo until fotio. Ilis Italian experiences are expressed in his Yenetion hite and lution Jomorge. After his return to the Thited states Mr. Howells beame plitur-in-dief of the "Athantic Anonthy" (1sil), and is noted for the faitlifil portrayal if 1 merican charader of the gresent day. I collectinn of his porms was publishod in
 charyn of an clitorial department in "Ilartur"s 3agazine."

 monker-, ramarkable for da diation of the hyoid home intu a hellow Irum whict communcates ith the haryan and Live proligions paw the the some, which can m harel two milon whe Thy live chiselly among the branehes ai tres, and taken extrant
 tha tail an madily an the hamdo. Thy are ure-

 The munker-ut this semm- have a haw intellisme.

nia to which the inhatitants of the surrounding plains repair on the approach of death to deposit their bones. Larwin and Fizzros first recorded this strange instinct of the people. The best known of these dying places are on the bank of the Santa Cruz and Galleos rivers, where the river ralleys are covered with dense thickets of bushes and trees of stunted growths.
HUBERTSDURG, a villageand castle formerly a royal hunting-seat of sasony, to miles from Leipzig. Wuilt in 1201 by Prince Frederick Sugustus, afterwards King August us 111. of Yoland, It was much injured during the seven Years War; and there. Feb. 15. 1;63, was signed the treaty by which that war was ended. since $18+0$ the castle has sorved as a prisom.a hospital, an asylum for the insane, and a refnge for idiot chindren.
HÜDNER, Joskpif Aemaner, baron, born at Vienna, Nor: 2b, 1st1. He was educated at Vienna, subserguently trareled in lady and on his return in 183 B , entered the service of the sorernment. His diplomatic career bugan at Paris in 123. After several minor appointments, he was ambassador
 Anstralian molasey at Rome, from 1 sifi to 1 Kibit. lossessed of consummate alfility and tact, he has managed many delicate and dithieult matters. He has twice risited the United states, the second time in 1sil, when he went aromen the globe. Author of a work in Pone sixtus \., Sichus der Fïmle (1sit: Fnglish translation 18:2), and an entertainine arcomt of his trip aronm the globe: Promentily futour du Homed (1573; English translation. 15: 4).
 painter, burn at Oel, in silesia, Jan. $2 \bar{a}$, 1seti, died at Loschritz, near bresten. Xor. \bar{i}. 1sse. II studical ar Dinsoldarf, in 1st1: was appointed professor of paning in the academy al Dresden, and was director of the phicture gillery from 1 ist. Among his picturesare: fob cumble frionds; Chetles T. in Sinn Eusto: Fothrich the (inct in suns-sonci; The (indten Ag, and Ther isisputic bitwenl luther and br. Erk. He alsw designed ulase frantings, including some for the erspt of © ilaceow Cathedral.

HUCK.LBACB, often shortomed to "huck," a coarse kind of limm choth furured somewhat like damask, mat nsenl especially for tahle-cloths and tweling.
 Mass.. 17 miles motheatio of Wherster. Shome and piamefortes ate mamfactured here
HIDSOX, a but-villase wi hatwer comm, Wich., 20 mikes whet of Tolthe, Ohtin. Carriages, - pokns and bator-tu!s are matmulactured hare.
 contry, Wis., on st. (roix Lake. IS miles eatet of st. lamb Mimn. It whtans what warehones, thour-mills, machine-shops, and manmiatories of phws and wasoms.
 bum at chrmall, Aldism comuty. V', in Islo. died at Cambidye. Mas... in bemp lle wrathand at Midhunery in 'xut and anght shlunilu kentucky

 sulted in the cudewnent of a promesurship of shate-

 was ordatacl daten of the Protestan Episeopal charch, and from wis bill twal has wetor of a

 sity. uf his latur puldivict worko we mention, A

Chupiain's Campaign with Geneval Butler; Studies in IIordsnurth; I School Shakespearr, and Shakespeare, lis Lire, Int and Characters.

11 UDSUS Bily, a gulf or inland sea, in the northeast of Jorth Ameriea. It is completely landloeked except on the north, where sonthampton Ishand and Fox Clannel lic between it and the Arctic Ocean, and where Fudson Strait, rmoning 500 miles southeast, connects it with the Atlantic. Including its southeastern extension, James's Bay, it measures about 1,000 miles in length, and dion in average width, and has an area of some 500,000 square miles. The eastem shore, called the Liast Main, is for the most part rocky, and is fenced with several small islands; the western shore, the West Main, is generally that. This sea is the great drainage reservoir of the Canadian northwest terrifories. Of late years a movement has been on foot for opening up a direct communication from England with dianitoba, and the northwest of Camada by way of Iudson Bay and strait. The scheme provides for a railway from Winnipeg to Fort Nelson, on the bas, a distance of 650 miles, of which 40 miles were constructed by the end of 1890 . The chieinbjection to the project is that the strait is only navigable for about three months ammally. This ronte would effect a saving of $\bar{i} \overline{0}$ miles as compared with the route by was of Montreal, and of $1,1: 00$ as compared with that by New York.

HUDSON STRAIT joins the Atlantic Ocean and Hudson Bay. It is 450 miles long. and 60 miles wide.
ILUERTA, Vicexte Garela de la, a Spanish poct and critic, born in 1730 at Zafra. in Estremadura. He spent the greater part of his life in Madrit, where he was lead of the royal library, and where he died March 12, 1787. His trasedy of Raquel (1778) was very popular, and is still esteemed one of the best of modern Spanish tragedies. His poems wure published in two volumes in 1758-79, and again in Bibliotect de tufores Espuntoles. Huerta edited the Tcatro 1 ispanal (17 vols.. $1785-86$), a collection of the best works of the older Spanish dramatists.
HUGER, Denthmin, an American general, born at Charleston. S. C., 1806. After graduating at West Point, he became a captain of ordnance in 1832, and was made chief of ordnance to Gen. Scott's army in the Mexican war. In 18j5 he heeame major U. S. A.; but in 1861 he entered the Confederate service as lirigadier-gencral and rose soon to bemajor-general. As such he commanded at Norfolk when the National forcos captured the place, May 10, 1862. Huger quickly withdrew, alter having fired the navy-yard, the Merrimet, and some other ressels. Subsequently he leal a division in the seven-days' tight infront of Riehmond. After the war he beeame a farmer in Virginia.

IIUGER, Prascre Kriocu, an American patriot, born at Charleston. ․ C.. in $1:-3$, diod there in 1855. He studied medicine and surgery in England under the celebrated Dr. John IInnter; became a surgeon, and was for it short time attached to the medical staff of the hritish army. While at Vienna in 1708 , he took part in Dr. Bollimann's atcmpt to biberate Gen. Lafayette from imprisonment in the Austrian fortress of Ulmutz. The rescue was successful, though hafayette was recaphred near the frontier. Hluger himself was arrested and taken to Olmütz, where he was harshly traated. Aiter eight monthe' imprisonment he was sont acress the frontier and returned to the Unitedsates. In the game year he was made a captain in the United ctates army. In the war of 1s12 he sorved on the otaff of Cien. Pincknes, and on April fi. 1813, he beviane adjutant-general, with the rank of colo-
nel. Subsednemily he served in both branches of the South Carolina Siate legishature.
HUGER, Isadc, a liesolutionary soldier, born on Simerick phantation.s. C., in 1742, died in 1797. In 1760 he served as liputenant in a battalion of colonial troops against the Cilieroke Indians. In the lierolntionary war he began as lientenantcolonel of a south Carofina reginemt, hat was in 1779 commissioned a brigadiar-wemmat. and participated in every battle fought by the -outhern army. During the siege of Charlaston ho wasemployed to cut off supplies from the mamy. but his ioree was defeated and dispersind. He then joinct the army of Gen. Green, and onmmanded the Virgmians at the battle of Guiford Court-house (1-81), where he was severely wounded.

HUGG1NS, Whming, an English astronomer and spectroseopist, hom in London, Feb, 7, 182-4, and edncated at the eity school and by private instructurs, giving much alfention to the experimental study of the physical sciences and to astronomy. In 1820 he was elected a member of the Jicroscopical Society, and was for suveral years engaged in the study of physiohory animal and regetable, with the mieroscope. In 155 she halt at private observatory at Upiper Tulse Ilill, near Lombon, and began what proved to be the principal work of his life-dme-his well-known spectroseopic obeervations and photographing of stellar spectra, the solar corona, ete. Mr. Huggins is a member of sarious scientilie societies; was president of the loyal Astronomical Society from 186 to 1878 , and president of the British Association fur 1891.
 Catholie archbishop. born at Anmanghan, Connty Tyrone, Ireland, in 1797. Aiter immigrating to America he worked first as a gardemer; then studjed theology at Mount St. 入lary's C'nllege, Emmitsburg, Md., where he sumported himachi by taking care of the college garden, and afterwards by teaching in the college. As priest he hat charge of some churches in Ihiladelphia till 1s:ss, founded St. John's Orphan Asylum, and established the "Catholic Ilorald." In 1st2 he became hishop of New York. lie now organized the lioman Catholics against New York's public schon srstem, and instituted a system of parochial schools. In 1650 the diocose of New York had so increased by immigration that llaghes was mate archlishop. During the war ho used his inthence in lyelalf of the integrity of the Union. Secertary soward sent him and Thurlow Weed to Eurnpe in 1stic. to set hefore the foreign govermments the true object in corsducting the war, and during the draft riots in 18 s. he urexd upon the excited population of New loak the duty of summission to the C'nited states diotermmont.

IILCHEEA, Thomss, aththor of Tom Bromen's selent Days, born at Cthineton, Borks. England. (oci. -3. tsois. The was educaled at liagly under the celebrated Dr. Arnokf. and at Oxfori. Callod to blie
 was in parliament from Lambeth from 1 sitionderis,
 assuciated with the work of social and samitary reform among the London poor, andtook a prominent part in the dobates relating to trato e-tmions mad the !and of mastor and servant. Dis fest known work. Tom lirownse shool Doge (lsint is a trullifil pieture of lile at father, wiftom from the anthor's own boyish impressions. If was followed ly 7%

 assistod in fommeng a sodfement in the Enited Shates, an areonnt if whirh hemblished under the title of limghe, Gramesser il Sl : He has also written
lives of Daniel Macmillan (1sis), and Bishop Fraser (1857).

HUGHES, Rev. Hegh Pince, M. A. the leader of the "Forward Dovement," of Wesleyan Methodism, a native of Wales, born in 154i. He was educated at the Richmond Theological College, and graduated II. A. at London University. Inges held appointments at Dover, Brighton, Tottenham, Dulmich. Oxiord, and Erixton. He has edited the "Methonsist Times" since 1885, and is the superintendent of the new London Mission to the VYest End. Recently he has published some of his St. James' Hall discourses in two vohumes, entitled Surin Christianity, and the I'hilanthropy of God.

11LGO. Victor Jabie, Vicomte, a French poet and romance writer, born at Besançon, Feb. 26, 1802 , died llay 22,1865 . His father being a general in Napoleon's army, young Hugo's childhood was chiefly spent in moving from France to Italy, and from Italy to Spain, but he received, nevertheless, an excellent education. At fourteen he produced a tragedy; at twenty published his first set of Odes et Butlults, and with the publication of Cromuell, in $182 \overline{3}$, his reputation was established throughout France. In 1831 he pullished Nötre Dame de Paris, and his best play, Murion Delorme. These were followed by Le Roi s'amuse (1832); Lucrèe Borgia. (1833); Ruy Blus (1835); and Mermemi (1839); and the two celebrated volumes of lyric verse, Lis Feuilles d'Automne (1831), and Lis Joir Intéricures, in 1837. After the publication of Les Rayons et les Ombres, in 1840, Hugo attempted but little in pure art for a number of years, devoting himself to the prursuit of politics and the pracise of oratory, journalism, and pamphleteering in prose and verse. Until 1830 he was a royalist; between 1850 and 1845 he was a Napoleonist with a turn for humanitarianism; and later, as a member oi the Assemblée Législative, threw in his lot with the Democratic Republicans. In 1552, after the coup d'etat, he withdrew to Jersey, and in his exile wrote Vapolion lo Petit; Les Chatiments, a great achievement in political and personal satire; Les Comtemplutions: Légende des Sizeles; and in 1862 his masterpiece in prose, Lefs Misirables. These were followed by llilliam Shakespeare, 186t; Les Chemsoms des Rues et des Bois, 1865; Les Travailleurs do le Uor, and Le IIomme qui Rit. After the 4 th of September, 18.0, Hugo returned to France, and a few montlis later was chosen to represent the department of the Seine, but soon resigned his seat. In 1576 he was made a senator. Among his later works are L'imme Trrible, 18:2; (quatre-Viagt-Treize, 187t; Historie d'un
 Quentre tronts id l'Séphit. 1ss1, and Torquenredu. 18si. Vietor llago's writings are open to the criticisms of wat of humor. and of dealing with abnormal sitnatims, peculiar presmages, and interests remote from experiener ; but genins is always genius, and the dinal impressim is nne nf misurpassed accomplishment. He died the foremost man of lettors wif his time, and was honored with a fumeral which was is b:at publie pageant. For further deseription of his works, ste lititanniea, Vol. $1 \times$, pp. (676-7.s.

HILIDA, or Hows, the friently: in old German legonda fondess of marriager a also the patroness of arriculture and domostic life. See Pritannea,

IIUILL, Isume (1773-148:), a Eniterd States nayal
 XY11, r. FS .

HIVIA, Whatam, an American Eromeral, born at

bridge as captain, iought at White Plains, Trenton and Princeton, and was then promoted to be major. Afterwards he was engaged at Ticonderoga, Stillwater, Saratoga, Mommouth and Stony Point. After the war he practiced law at Newton, Mass., and was prominent in the Massachusetts legislature. In 1745 he was appointed judge of the court of common pleas, and in F805 he became governor of Michigan Territory. At the outbreak of the war of 181? Huli commanded the northwestern army, consisting of raw militia. He had to vield up Detroit and the entire Northwest to the English. For this he was court-martialed and sentenced to be shot, but President Madison pardoned him on accomit of past services. In $1 s^{2}-4$ he published the Cawpaign of the Northerest Army. IIs Life mas published ly his daughter, Mrs. M. Campbell.

HULLAIl, Jons Pike, an English musical composer, born at Worcester, June 27, 1813, died in London Feb. 21, 1884. He studied at the Royal Academy of Ansic, and in 1840 began pepular singingclasses in London, continuing the work for over 20 years. He was for some tíme professor of rocal music in King's College, and from 18.4 to 188° was inspector of training-schools for the United Kingdom. His comic opera, The lilluge Coquette, was published in 1836. Of his songs, The Three Fishers and The Storm at tained wide popularits. He also published a Mistory of Modern. Musie (186:), and The Third Period of Musical History (1S65).

HUMANISTS (Lat. literx" humeniores, "polite letters"-whence the title Humanity for the professorship of Latin in Scottish universities; Ital. mmenista), the name assumed at the revival of learning ly those who looked upon the cultivation of classical literature as the most valuable instrument of education, opposing those who clung to the ancient methods of the Scholastics. In their modes of thought also the tendency of the humanists was to exalt paganism at the expense of Christianity. In the 1 sth century the name became a word of reproach for those who showed a blind zeal for the classies as the sole educational sulject.
humbert I, Renief Chirles Emmanuel Jean Marie Ferninino Eugene, King of Italy, borm March 14, 1s4t, being the son of Victor Emmanuel. He attended his inther during the war of ltalian independence in 5859 . In 1866, when Italy fought with Austria, the prince took the field as commander of a division in Gen. Cialdini's army, and was present at the disastrous hattle of Custozan, June 23, 1866 . After Rome was occupied in 1870 hy the Italian troops, he took up his residence there, and upon the death of his father, Jan. 9, 1878, succeeded to the threne of Italy. In Noremher of the same year an attempt was made to assasinato him, lint failed. When the would-be assassin was condembed todeath llumbert commuted his scotence to imprisomment at hard lahor. During the chonra epidemie at Naples he expsed himself fre quently in his andeavors $t 0$ alleviate the sulferings of the siok and dying. By these and other actions of kindness and sympathy the fing won the affection of the dalian people.

HEDASOLAT', a post-village of llumboldt comenty, lowa, the suat of lomhohlt college liquor and gambing saboons are rigidly exchaded from tho village.
llU心MOLJT, a cily of Allen county, Kan., situated on Nensho liver, st miles from lawrence. It is a railroatl junction and has various manufactories.
 un the lig Nemaha liver and on the Atehison \&
 Cits.

HUMBOLDT，a railroad junction of Gibson countr，Tenn．，situated 128 miles west of Nashville． It has mills and a foundre，and edueational insti－ tutions supervised by Odd Fellows．
HUMETTY，in heraldry，a eross or other ordi－ nary which is cat off and nowhere reaches the edge of the shield．
HUMAIELER，an implement or machine for re－ moving the hammel or awn from the grain，partic－ ularly barley，after it has been thrashed．See Turasming Macmese，Britanniea．Vol．I．p． $3: ⿹ 勹$ an．
humphrey，Hemas，an American elergyman， born at West Simsburr，Conn．，in 1779，died at Pittslield，Mass．，in 1861．Me studied theology at Yale College，and was a Congregational pastor at Fairfield，Conn．，from 1807 to 1817 ，and then in Pittsfield．From 1823 to 1545 he was president of Amherst College，to whose charaeter，growth and prosperity he largely contributed．He was an earnest worker in the temperance cause and a pro－ moter of religious rerivals．Among his traets were Prallel between Intemperance and the slave Trade， which was a strong indictment of slavery；Essays on the Sabbath；Tour in France，Great Britain and Belgium；Domestic Education；Sketehes of the History of Revivals；Letters to a Son in the Ministry；and Life and Tritings of Prof．Nathen II．Fiske．
HUMPHREYS，ANDREW ATKRSSON（1810－83），an American general and engineer，born at Philadel－ phia．As lieutenant of artillery he distinguished himself in the Florida war in 1535．In 1838 he be－ came first－lieutenant of Topographical Engineers． From 1845 to 1849 he had eharge of the Coast Sur－ vey office，and afterwards began the topographie and hydrographie survey of the delta of the Mis－ sissippi．This work he resumed in 1857，after he had examined the river deltas in Europe and studied the means employed there for protection against inundations．During our eivil war he be－ came a brigadier－general．was engaged at the bat－ tles of Frederieksburg，Chaneellorsville and Get－ tysburg．and commanded a corps in the siege and capture of Petersburg，and in the pursuit and cap－ ture of Lee＇s army．In 1866 Gen．Humphreys，now chief of Engineers，was again engaged in engineer－ ing work on the Mississippi．He pnblished The Ihysics and Hydrautics of the Mississippi River in 1867，and other valuable reports．
HUMPHREYS，DAYIn，an American general born at Derby，Conn．，in 1752，died at New Haven in 1815．In the Revolutionary war he was aid－ de－eamp to Gen．Putnam，and then to Gen．Wash－ ington．He distinguished himself at the siege of Yorktown in 1781．In 1784 he went to Paris and London as seeretary of legation to Benjamin Franklin，John Adams and Thomas Jeflerson，who negotiated treaties of commerce and amity with European powers．In 1790 President Washington appointed him minister to Portugal，where he remained till 1794．In 1797 he was transferred to the court at Madrid as minister plenipotentiary， where he stayed till 1802．On his return from Spain he imported 100 merino sheep，and for some time thereafter he engaged in the mann－ facture of woolens at Derby．In the var of 1812， Humphrevs commanded the Connecticut troops as brisadier general．Humphreys was noted as a poet and wit．He helped in prodncing the Anarchaid，and other satiric verse；he also pulb－ lished An．Jddress to the Armies of the t＇nited States， and other poems．
HUNGARIAN POLITICAL PARTIES．The leg－ islative power of Hungary is yested in the em－ peror of Austria as king of Hungary，the dele－ gations and a reichstar，consisting of a house of magnates and a house of representatives．

The former comprises 286 hereditary peers，some 50 high ecelesiastical dignitaries of the Roman Catholic．Greek and l＇rotestant eburches， 82 life－ peers，all the archdukes who have attained their majority，delegates from the diet of Croatia－Sla－ ronia，and others－ 40 magnates in all．The house of representatives contains $4 \bar{\jmath} 3$ members，eleeted by open voting and limited suffrage for periods of five Jears．The present house was eleeted in June，1857．The parties are distinguished as Liberals， Moderates．Independents，the Croatian delegates， who usually vote with the Liberals，and Xation－ alists，who vote now with one partr and nor with another．The Liberals number $2=0$ ；the 1 In － dependents，who aim at the liberation of IFun－ gary irom all but the monarchical tie with Aus－ tria，are 80；and the Noderates，numbering 56， aceept the constitution of＇67．Until last year 1．Tisza commanded the support of the majority in the chamber，but linding his authority wan－ ing after fifteen years＇leadership he has now re－ tired，and sits as a simple depnty，his place at the head of the ministry heing taken by his col－ league，Count szapary，who was minister of ag－ riculture in the Tisza cabinet．

HUNGARY WATER，a celelorated perfume made of rosemary blossoms and sage blossoms，with ree－ tified spirit．A hermit is said to have given the original receipt to a queen of Hungary．
HÜNINGEN（Fr．Muningue），a town of Alsace， on the left bank of the Rhine，two and a half miles north of Basel，celebrated for its fish breed－ ing estallishment．It was fortified by Yauban in 1679－s1，but the works were destroyed in $1 s 15$ ． Population，1，704．

HUXT，Michial Morris，an Ameriean arehi－ teet，born at，Brattleboro，Y＇t．，in 1828．He stud－ died at the Eeole des Beaux－Arts at Paris in 1843．Then he made a tour through Greece，Asia Minor，Egypt，and risited most of the art cen－ ters in Europe．After his return in 185 he was engaged on the extension of the Capitol at Wash－ ington．Among the structures since designed by him are the lenox library，the stuyyesant build－ ing，the Presbyterian hospital and the Tribune building，all in New York；the Yale Divinity Sehool，New Haven；and many of the finest res－ idences in Boston，Newport，and other American eities．
HUNT，Sanpford，an American M．E．clergy－ man，born in western New Fork in 1se⿹勹巳 ．ILe graduated at Allegheny College in 1847，and in 1571 received the degree of D）．D．from the same institu－ tion．During the war he was secretary of the Unit－ ed States Christian commission for Western New York，and twice went to the army for work among the soldiers．Ne spent nearly ten years in the of－ fice of presiding elder．Ho was trustee of Genesee College until its removal to syracuse，and since then has been a trustee of the Cienesee Wesleyan Seminary．In 1s7，he was chasen one of the＂heok agents．＂in charge of the Metholist publishing in－ terests at New York－a posit ion in which he hassince been retained（1891）hy sufcessive elections of the General Conference．For a number of vears Ifr． Hunt has been the general trasurer of the mis－ sionary soeicty of the Methodist Fpise pral elureh．
hUZTT．Thomas stmbx，an American ehemist and genlogist，lorn at Jorwich．Comn．．．in 1826．IIe studied chemistry under l＇rof．Benjamin Silliman at Yate College．In 1847 he mpered upon the duties of geologist and mineralogist in the geolog－ ieal survey of Canada nuder Sir William Logan． Whild holding this position he was for some years also professor of chemistry in IleGill College．iIont－ real．In 18：2 he became professor of geology in
the Massachusetts Institute of Technology. Prof. Hunt has published many important papers me chemistry, mineralogy, and geology, which have appeared in the "-Imerican Journal of Science," and in other seientific periodicals of both Europe and Americil.
HUNT, Himliny Holalan, an English painter, born in London in 1827 . Admitted a student of the Jinyal Academy in 1845, he exhibited his first micture in the following year. In his earher work he semerally took his sulbject from one of the mets. The first of his worl executed in the pre-haphaelite manner was a Comerten British Framily shiltring a Charistirn Missionery firom the Pusecution of the Draids. Other works are: OuEaglish Cousts (1553); The Lieht of the Hopld
 The result of speral prolonged visits to the East appeared in Thre Finding of Christ in the Temple (105t) : Ther Sluedene of Diath (18-4), and the Triwimphe of the Immonts, executed in two rersions (1850-50). In 1888-89 he painted The Choristers of Mayinton Colloge, Ozford, Singing the May-ltey Himm. An important mosaic ly Mr. Hunt, entitlod The Clild Jisus in the Temple, intended for Clifton College chapel, was exhibited in 1890.

IlC'NT, Willaly Moress, an American painter, brorn at Eratitelmoro, Yt., in 1824, died at Isles of shoals, N. H., in 1879. In $1 s 46$ he entered the Royal leademy at Inisseldorf, for the purpose of studying sculpture. But after a few months he removed to laris to hecome a pupil of Couture in painting. Maving returned to America in 1850, he opened studios loath at Boston and Newport, settling finally at Boston, where he taught paintjus with wreat sucess. Among his works we montion the portraits of chef fostice shou and
 Cull; The Pormur Trller; The Buthers, and the two allogorical mural paintings for the State capitol at Itheny, entitled The Flight of Nighe, and The Discurem

H1TNTEl:, Divm, an American soldier, horn at Winshangtan, 1). (., in 1s0., died there in ISA6, After he loeeame a cajotain of oragons in 1833 , the was assirmed to frontier duty, and twice crossed the phains in the lionky Monntains. In the Dexicon war (1sta) he was chich paymater of Ginn. Wumb's command. W'hen I'residenteelect Jinmoln went to Wiahington in February. Rsel, humbre accompanied him, and at linfalo his eullar bone became dislocated ly thes prossure of the erowal. Duriner the war he commanded a division at Bull lima, where ho was wombled. In August, kio, he hecante major-momeral of voluntreers, , and suceassivaly eommanded tha Wentern and Southern military departments. To provide for the fugisive shaves, Gen. Honter urganized tha lst south Camolina mbulteres, whinh was the first resiment wh latack tronpsin the National
 lanation doularin! llanter an outlaw, who, if cenpurach, shonld not ha trosted as a prisumer of war, but ledd in what eonfinoment and axoontod as: it felong. Ln llay, lsil, Ilantar wat placoll in
 deforated a Conferderate fores at liedmont on Jome 5) 1 sit.

the right of the slaveholder to carry his slaves to any tnited States territory. Being an active secessionist he became secretary of State in the Confederate cabinet, but was soon superseded by J. I. Benjamin. After this he was elected to the Confederate Senste, and became an opponent of Jell. Davis's administration. In 1885 he was appointed a collector of customs by the United States Government.

HUNTER, Sir Wilblam Wilsos, horn July 15, 18-10: educated at the Universities of Glasgow, Paris and Bom ; in 18ro entered the civil service of India, and, after filling the offices of secretiry to the govermment of Pengal and to the supreme govermment of India, was in 1871 appointed clirector-general of the statistical department of lndia. He was one of the tirst recipients of the order of the Star of India, in 1878 , and in 188^{-}was knighted. He published I mals of Rural Bengal and Comparative Dictionary of the Non-Atyan Languages of India and Miyh trio (1868); Orissa (1872); Fumme Aspects of Rengul Districts (18,4); Imperiul Guzetteer of India (1ss1); The Indiun Empire: Its Penple, History and Products (15sh). In 18:0 he undertook the editorship of a series, Multrs of Indiu, to which he himself contributed a Lifi of Dilhousie.

IRUNTISG. Stag-hunting, at one period so common in England, is now confined to twelve packs, with the addition of four in lreland. It cannot be said that fox-hunting has increased in popularity of late, notwithstanding that every hunt now has a fund to remburse farmers for any losses they may experience through the depredations of Reymard. llunting men strongly resent the harbed wire fencing which many farmers have lately adopted; and, as a matter of fact, several lives have been lost through the "thin line," whilst a number of valnathe hunters have also prematurely journeyed to the "happy hunting grounds" throngh the same cause. In England there are 154 packs of foxhomds, in Ireland 16, and in Scotland 9. England ahso boasts of 101 packs of harriers and per packs of heagles; Ireland possesses 25 packs of harriers; Scolland is content with b.

HITNTNG AND ($A M E L A W$ OF THE UNITE3) STATES. The "openseasons" for bunting the various linde of gitme in the several States,as given in the following paragraphs, have been carefully enmpiled from the latest published reports of the State laws.*
AbAbin:A, (Thronghout the state excent in the combties
 Kess. Cetoter 20 to May 1 ; turtho dovers. Angtist 1to Aprill; quail, september his Mareh lir: wild ducks, Oetober 1 to
 wild turkeys, Oiteher 1 to M1y 1; doves. Angust to Mureh 1_{i} quat, Getober 15 to Mareli bew ducks, Oetolner t to Mnsil: जhbu and robin, not protected. In freell and riokens

 (b)

 riblec, qual!, mbhit, scoptember] [o April t. I'ossession and

 dueks furbidhes.

 TH?

[^186]sheep, doe, spotted fawn, absolutely protected: Hetting quail, partrldge or gruase, prohlbited speckled tront, brook or sulmon trout, Aprll to November 1: salmon, except wheu noon ou Sunday, which is, in that event, close scasoni, september 1 to Jnly 31 ; shad. December is to Aprifl 1. Jossesslon of gane duriug elose season prolilbited.
COLORADO. Partridge, phensant, prairje ehicken and grouse, October 1 to November lis; elk, deer, infialo, antelope, October 15 to Jamuary 1 ; mountaln sheep, protected untilapril 7, 1595 : trout, or other food lish, Juty I to November 1 . Jossession of gamerestrjeted to open schison, but dealers may import irom other States. Netting or trapping game mimals or for its skin, forbidden: also the killiug of more mimals ihan are needed for food, forbildea. bircls, except the above uamed four, ure motected.
 October 1 to Jamury 1: whd dnck, geese, brant, september 1 to May 1 ; boholink, riee-bird, robin, lark, september 1 to February $1:$ rail. September 1 to Jaunary 1. In New Haven, Fairtleld and Litchfield comnties, August $? 9$ to January i_{i} tront, inty 1 to April 1. Fossesision of wame restricted to the open reason. Wood-cock, ruffed gronse mad quatilmust not be earried out of the State, it is nulawful to humt with gun and dos within the iuclosed premises of another, whetber persons or corporations, withont permission from the orner, agent or ocenpmit thercof, provided such owner shall hase placed six priuted signs or notfees, in six different conspicwolls places on said premises, chen bonrd motice to be at least oue foot square, and the letters to be plably made. §s. Any lerson volating section five of this act shall he deemed guilty of amisclemeanor, and shall be fancinot less thath $\$ 7$, nor exceeding ${ }^{2}$, exclusive of any damare by trespass.
Iusectivorous hirds, including robin, and lark, can be killed only on one's own land.
DELAWARE. Ortolin, rail, reed-bird, september 1 to January 1; phensants, quali, wool-cock, harcs, raluits, November 10 to February 1\%. In Kent, Sussex and Neweastle comitles, November 1.) to Tanamy lo. lossussion of game limited to onen season. Trausportation of purtridges, quail. State, forbidden. Siblat-shooting, nettiug or thapping game: use of ferrets, or of artifich light to eatch muskrats, forbidden. Non-residents may not kill game or game fish without Afcense from the Delaware Gane Protective Assochation. Any non-resfdent fomm trespassing upon any private property with either dos or gun, not having license from the Dehaware Game 1'rocective Association, js liable to be arrested where fouad trespassing, on a charge of misclemeathor, and thed $:=0$ foubd trespassing on a charge of mishembender, and thed wo, and in definit of payme

DISTKICI OF COLUXBAA. Partrige and yuail, November 1 to Pebruary 1; phensmat. Angnst 1 to Februnry' 1 : woorlcock. July 1 to February 1; putife ehicken, Fuptember 1 to February 1 supe and ployel, Scptember a to May 1: wila duck, wild goose, and wild bramt, september 1 to April 1 ; water-rails, ortolan, roed-bird mad liec-bird, September' 1 to February 1 : duer, August lij to Janumy 15 : shad and herrlug, Janvary to Jume 1. Possession of gance drint close seasou prohinited. huring dinhig season, viz., from Jan-
uary 1 to $\$ 1 a y$, there is a chose season every week, beuary 1 to anay go, there is at shose season erery week, be-Sunday-durimg which time nil nets, scines, ete., must be taken from the water. Trappime mad sharing of wild birds and water fowl: nse of gun other than shonlder gun for shootiug and killiug wild duck, wild goose, and wild lsant: killine or shootiug any hird or wild fowl in the nitht-time: shooting or carrybic agnm in the open air on sunday; takiug black bass and shmonly other menis than by hook and line, prohihited.*
Flo ORIDA. Deer, wild turkeys, quail, fart rimge, in all the counties wherein the county commissiomers have published the law, september 1 to dprif1. Sca-birds and hirds of plume, protected at all thmes. Non-residents desiring to funt game of ang kiud, must obtam liceuse from clerle of comnty where they wish to bunt, paying therufor \$2.3. Not more than six persons may be indmeled in one liednse. N'eo for eneh additional jerson, No. Noone, except a cilizen of the Unlted States, can kill birals for theip plamate on any lands or waters of the state or within n muribe luaguc of the coast.
*The Act of Congress of Juve 15, 1878, also provides as follows:

Sec. $1 . \overline{\text { r }}$ finacts that any person who shall kinwhaly tres. pass on the lmads of thother for the jurpoce of shooting or the following section by the owner or ocemput uf landa.shall be llable to snehowner or ocenpant in axemplary damases to an minount not exceeding $\$ 100$, antal shall also be linthle to an me of \$10 for each and every trespass so eommitiuch. The buscessumptive rvidence of the trespass.
Sec, 16 . That the notice referred to in the preceding secthon shall be glven by ereeting mat majntaintng sign boards at least 8 by $1:$ faches in dimensions on the borders of the promises, mind at least two such gign bonta for avery toncres.

It is unlawful to luyt or fish upon the lands of another, withuth permission of the owner or occupant, ander a penalty not to exceed $\$ 20$, or imprisoument, thongh teu days' notice by poster must be given, and such notice must be posted in three conspenous juaces around the premises soughit to be protected.
GEORG1.. Wild turkey, partridge. October 15 to April 1: summer ducks, doves, August 15 to April 1: wood-cock, Angust 15 to Jabury 1 : insertivorons hirds, Oetober 1 to
 ber 1 , doe, fawa, Juby 1 to Janhary 1 : snipe, October 1 to Mareh 1. l'ossession of game during elowe semsou, prolibited Truphing or smaribg of game or loirds, prohibited. In tbis state there are ummerons local has wheh affect particular counties, and which vary conswerably in their juro visions-so mucb so as to make it important that hanters sbould examiue the local law of the eomy embracing their sejected hanting ground.
ID.AHO. Wild duek and goose, August 1 to April 15; prairie chicken, sage-ben, grouse, whensant. July to to February $1 ;$ buffalo, clk, antelope, mountain shere, september 1 to January 1. In Ada connty, gronse, prairic ehinken mad duck,
September 1 to Marehi, Tuking fish, exect with rod or pole and hook and lime, probibited.
ILLINOIS. Deer, wild turkeys, September 1 to Jumary 15 ; plumated grouse, August 15 to Decentax' 1 i ruffed grouse, quail, October 1 to Jamunry 1 ; wood-cock, July 1 to Janurrs 1. Possession of game limited to five duys after sensou closes, Black and other bass. silmon and other game fish cun be caught with hook aud line only from lebrumy 15 to Jume 25. Cave of explosive or medicimal compounds to cateh fish, netting and trapping game hirds (except woud-cock), night shooting of wild fow forbidelen, No person who has not resided 60 days it the state may hill wild game. Nome but residents of Bend, Jiayette, Fflagham, Sharion, Clay, Richmond, Hamilton, Wayne, Warren, Itenderson and Jersey comnties.
INDLANA. Deer, October 1 to Jamary 1: guatl or pheasant, October 15 to December 20: wild tarkeys, November 1 to February 1: prarje hens or chickens, september 1 to February 1 , wood-cock, July 1 to Jaman's 1 ; whed enck, september 1 to April 15; tish (with gig or spear), January 1 to Mareh?. Fishing with hook uad line allowed at all times and all places. Possessiou of game limiterd to opela seazon, Fishing mithest. Joseph and Kankakee Rivers allowed funny mato ner between April 1 and luye 1. In the ohioniver without
any restrictions. Netting or trappiog quail, muensht, prairlechickeus or wild duck of nuy kind or rariety prohibited. Taking lish with net or sei ue, kun or traj of nuy kind, or set-net, wire, or pot in any of the latise, junds, rivers or small streanss (except in the ohio, st. Joseghand hankakee Livers probibited. Shooting at wikd pigeons at or withiv half mile of any pigeon roosting or nesting (when thes are
nesting) prohibiterl. Irespass on inelosed lads in phitishable by n fine.
IOWA, Pimuted gronse, September 1 to becember 1 , wood-cock, July 10 to Jammary 1; ruffed gronse, quati, widd turkers. October 1 to Jamuary 1: wild dneks. Ereac. brant,
 and wall-ered pike, Jme to April lisalmon and trout, Februnty 1 to Fosember 1. No fish but misnows may he caught from Juls 1 to October 1. Twenty-five of each kinct of game may he had for five days after senson closes. Tramportation of game reatricted to within the state, and one dozen in any one day from any one dertion to any other one. Trapping game, birds, deer or elk; use of any but shonlder fun ; use of poisou for birds or fish: sucuring or ghtine lish front Novemmore thau 25 each of filati, wood-cock, pruje chickens and more thant

KANSAS. Pinnated grouse, Septembir 1 to Jimmary 1 ;
 مlover, liper, bittern, beron, crmas and wood-pelser not pofected. l'ossession of game nlfowed ten days after semmon eloses. Sharing quail or grouse: lumting on ocepped or improved premises withont owners consent: killing fish ly exmosive substances formaco Alon

 mats; taking fish with net or other comtrivancercercet prot

 berland livers, belaw the month of lisekeantle Itiver, and hakes in the Ohio and Misshssiph lifer bottons prohibited.
*The Kentueky law also emarts that any person knowingly trexbsume mpon the lans of and her for the pripoge of hant-

LOUISIANA．Buck，doe，Iawn，October 1 to March 1 ；wild turker，October 1 to April 15；qunil．partridge，pheasant，Oe－ tober 1 to April 1．Possession and transportation of game during close season prohibited．［usectivorous and song birds protected，unless ther prove destructive to iruit or
grain eropz．Moose，deer，earibou，Oetober 1 to Janunry $1 ;$ mink，bearer，sable，otter，fisher，muskrat，October 15 to May 1；win，septenaber 10 ber 1 to May 1 ；rail，pinnated grouse，
 Aprill to July 15：with；hook nad line，to September 15 ； smelts，except br book and line，October 1 to April $1 ;$ land－ locked salmon，trout，togue．May 1 to Oetober 1；black bass，
Oskego bass，white perch，July i to April 1．Possession of Oswego bass，white perch，July i to April 1．Possession of ruffed grouse，or partridge，aud wood－cock allowed during September，Oetober aud November to be consumed as food； of laud－locked salmon，trout and togne during February， opeu season more thau one moose，two enribou or three deer． possession of over 50 pounds ollaud－locked salmon，trout or possession any one time for purpose of transportation prohib－ ited．Transportation of game，birds or fish during elose sea－ son prohibited．［a sianc there are local laws which apply to particular lnkes，ponds and rivers，and which require at－
tention only iu those localities．Ifuntiug or killing moose， tention only iu those localities．If untiug or killing moose，
deer or caribou with dogs；takiug of maekerel，berring，por－ gies and menhaden by use of purse or drag－seines in small bays，inlets，harbors or rivers，and other objectionable methods of taking otber kinds，mentioned in detail in the statutes，prohibited．No weir，hedge or set－net shall extend more than two feet depth of water at ordinary low water．Between Anril 1 and July 15 there shall be n weeky close of as hours between sunrise on each saturday morning timeno salmon，shad，slavines or bass shall be taken．Dur－ ing the close time nil seines or other morable apparatus shall be removed from the water；but this does not apply to the Kennebec，Androseoggin or Peuobscot Rivers，or their tributaries，or to st．Crois River below the breakwater at the ledge．Private fishing grounds may be protected by posting notices in the mann

MAKYLAND．Qunil partridge，November 1 to December 24；wood－cock．June 15 to February 1；Theasant，August 15 to January 1 ；rabbit，October 15 to Janmary 15；squirrel，Sep－ tember 1 to December 25 ；plover，sand piper，November 1 to January 1；mink，otter，muskrat，December 15 to 11 arch 15； Wild turkey，January 1 to September 15．Wild Water Fowl－ No persou shall，at any time，in，ou or orer the waters of the in foeks，either upon the feeding or roosting grounds of said water fowl，or elsewhere，or from any vessel，boat，float，cn－ water or any eraft of any kiud whatever；nor shoot at any wild water lowl from any booby blind，or artificial point erected at a greater distance than 100 Fards from the matumal shore from which the same be extended；nor shoot any water fowl while flyiug above their leeding grounds，or elsewhere over the waters aforesaid，Irom any vessel，hout，float，canoe or cralt ol any kind－reserving，nevertheless，to any citizen of any county hordering on the may extend the priviege，the right to shoot from boats other than sink boats or suenk boats．Possession of boats other than sink bonts or shenk uontse fosscssion of Game limitcd to open season，The above are suate indins． different counties．
MASSACHUSLETTS．Wood－cock，August 1 to January 1 ； ruffed grouse，October 1 to January 1 ，quatl，October to to Janumry 1；wood，or summer duck，black duck，or teal，or phinated frouse，frotected nt all times：plover，suipe，sand plper，rail or any of the so－called shore，narsh or beach piper，Jaly hi to May 1 ；wlld，or passenzer pigeon，gull and tern，October 1 to May l；gray aquirrel，hare，rabbit，Septem－ ber 1 to Mareh 1；salmon，May 1 to Angust $1 ;$ trout，April 1 to October 1；smelts，Junc 1 to March 15；land－locked samon， lake trout，Aprll 1 to September 1 ；black bass，Jnly 1 to De－ cember 1．Exception is mude in the npplication of these re－ strictions to the Connectleut River and its tributarles．Posses． slon of the above anlmals and birds prohibited during elose season，cxeept in case of ymall，which may be held in posses－ slon from October 15 to Xhy 1 ，and pininted gronse．wild plgeons，und any of the woealled shore，marst，or beach blfols，or any of the so－called duek speeies，at any senson，if not taken or killed within the state．Use of fertets，battery or swhel guns，toreli or juek－lights：netting or trapping game （exeept partrldge，hares or rabhles，betwern Suptember 1 and January 1 ，on one＇s own land or hy leave of ownerlikill．
may snfter by such trespass－presenee on the lands of an－ other with doges or lmplenatity of humting or Bshing is evi． denec of the purpose of treaphat．The notiee referred to shall be given by ercetlug und mnintalning sign boards at least one foot square in nt lenst two consplenons places on each sife of the prembers intended to le protected，such sign hoards to have therron tha word josted，and the name of the

any time prairie cbicken，except on one＇s own land，and placed there by land－owner；use of deleterious substances or other means than rod and line to eateh salmon，trout or bass， are forbidden．Owners of land may be protected by posting notices in the manuer preseribed by statute．
MICHIGAN．，Deer（in upper peninsula），August 15 to Norember 15：deer（lower peninsula），November 1 to Decem－ ber $1 ;$ wild turkeys，October 1 to January 1；wood－coek，Au－ gust 1 to January 1 ；ruffed grouse，wood，teal，mallard and gray dueks，September 1 to January 1；water fowl，snipe， Septcmber 1 to May 1 i quail，Norember 1 to January 1 ；pin－ uated grouse，September 1 to Norember 1 ；trout，May 1 to September 1 ；grayling，Juue 1 to November 1. ．* Possession of game allowed for eight days nfter season closes．No deer in red or fawn iu spotted coat，or any such skin of deer or fawn， can lawfnlly be possessed．Deer，ruffed and pinnated grouse， quail，and wild turkey，eannot be carried out of the State． Fish cannot be tiaken from fish lakes，Diamond and Stone lakes，or in auy lake in Westeryelt township from November 1 to May 1；nor in land lakes of Oceana county from January 1 to April 1 ；nor in lakes of Kalamazoo county from March 1 to Jnly 1 ；nor in Devil＇s Lake，Round Lake，Whitmore and Brace Lake，from December 1 to April 1 ．Spearing or shoot－ ing fish in these mentioued lakes；killing deer in the water or iu trap or pit－fall；netting or trapping game birds；use of of pigeon nesting，forbidden；trespass on inclosed lands pun－ ishable．
MINNESOTA．Elk，moose，deer，Norember；quail，ruffed grouse，September 1 to December 1；wild duck，goose，Sep－ prairie chicken，white breasted or sharp－tailed grouse，August 15 to October 1 ；aquatic fowls，September 1 to Mny 15 ； speckled trout，April 1 to October 1. Possession of game lim－ ited to opeu season．Night shooting prohihited．Transpor－ ation of game ont of state forbidden．Deer in Sicarn． connty can be taken only from November 15 to December 15 Fish can be taken in Stevens county by hook and line only， andin Lake kipley by hook and line only from March 1 to
June I．In Loon，Crystal，Lily，Madison and Miles lakes by June 1．In Loon，Crystal，Lily，Madison and Miles lakes by
hook and line only from March 15 to June 1 ．Game birds mnst be killed only by shooting；speckled，river，and brook trout must be taken with book and line．No fish except white fish from aus waters in the State except Lake Superior， the Mississippi，Minnesota，and St．Crois rivers can be taked te by hook and line，shooting or spearing．
MSSISSIPPI．Deer，Septemher $1 ⿹ 勹$ to February 1 ；wild tur－ kes，ruffed gronse，quail，Oetober 1 to April 1 ；turtle doves， starlings，September 15 to February 1 ．In Tate counts，open season lor all game November 1 to March 1 ；in Jasper，and some other counties，wild turkey unprotected．Possession and transportation of game restricted to open season．In Jasper and some other counties wild tnrkers are nnprotected． quail and partridge forbldden．
MISSOURI．Deer，Septemberl to January 15；wild turkeyp September 15 to M arch $1 ;$ piumated grouse，ruffed grouse． quall，Oetober 15 to February 1：wood－coek，July 1 to Janmary 1 ；turtle dove，meadow lark，plover，August 1 to February 1. Possession of game during close season，forbidden．Insect－ irorous birds protceted．Taking with traps，nets，pens or pits，piunated grouse and quail；or disturbing the eggs of wild birds or thelr nests（except by owner on bis own prem－ ises during open sason）；or polsoning waters：or ushugex－ Mosive substances for the purpose of takng nsi，or gill－net， trammel－net，set－nct，bag，weir，busli－drag，ans fish－net or dam，or any other device or obstruction（unless by owner in waters wholly on his own premisesh，prohibited，Non resi－ deuts are forbldden to hunt or trap deer，fawh，wild turkey， pinnated grouse，ruiled grouse，quili，wood－cock，goose，brant， duck or snipe for purpose of marketing or removing same－ out of state．Trespass by any one onclosed land punishable．
MONTANA．Butialo，moose，elk，black or white tailed deer，antclone，monntaiu sheep，kocks Mountaln gont， August 15 to Hecember $1 ;$ grouse，praire chicken，pheasmac， fool－hen，sage－gen，partidge，quaver，otter，marten，or fisher，October 1 to Aptil 1；wild 15：beaver，otter，marten，or and to May 15 ．Killing any of tho above birds for sale prohiblted．liounding deer，elk，moose， or mountnla sheep；catehing tish with other means than hook aud line（except In Msiourl klver below Three Forks and the Jellowstone RIver below month of Chrke＇s Fork） nid nse of explosive or polsonous substances，forbidden． canmot be taken ont of the terytory

NEMFASKA．Bnfalo．elk，deer，intelope，monntain sheep， thrkeys，and quall，October 1 to Jamary 1；gronse，Septem－
her 1 to Jannary ；mak and muskrat，februny 10 to April
 of ghme restrieted toojen season．＇Transportation of grouso， quall，turkeys，deer，buffalo，elk，and mountah sheep，at any timeprohilited．Insectivoronshirds proteeted．Decr hound Iug Iorbldelen lu hurt，whintugton，Douglas，surpey Cass， and hae，ase of other than shonlder gutus for wild fowl for－ bldden．Trespass on land to kill or thke nny nnlmal or blrd， and entchbug tish in

in aren．punishable．

NEVAll，fartrldge，placasnat，wood－cock，quall，whd goose，wood duck，tenl，mallard．or other ducks，snod hll
cranes, brant, swan, plover, curlew, sulpe, grouse, roblu, meadow lark, yellow hammer, bittern, September 1 to April 1: sage-eock, ben, ebicken (counties of IInmbolat, Eiko, Eureka, and Lauder, excepted), August 1 to April 1; deer antelope, elk, monntain sheep, goat, August 1 to September 1: trout, June 1 to Jauuary 1 ; but between Aprif 30 and October 1 cannot be taken for purpose of sale. l'ossession of game during close senson prohibited. Insectivorous birds protected. Traphing or wetting quail: catching ang fish otherwlso than with hook and line (except for sefentific purposes) prohibited. Protection to owner of grounds may be secured by postlng notiees in two places in town.

NEW HAMD'slitisis. Deer, moose, caribon, september 1 to December 1; mink, beaver, sable, otter, or fisher, October 15 to April 1; raccoon, gray squirrel, september 1 to Jannary 1: hares, rabibits, muskrats, september 1 to Ayril 1 ; plover, Yellow leg, sand piper, wood-cock, duck, rail, August 1 to February 1; ruffed grouse, partridge, quall, September 1 to February 1 land-locked salmon, lake trout, brook or speekled trout, April 30 to September 30 ; but during Jannary, Febrnary and March, lake trout may be taken with single hook aud lite only; pike, jerch or white perch, July 1 to May 1 ; black bass, Juue 15 to April 30; muscalonge, pickerel, pike, or grayllag, June 1 to April 1 ; possession of game during close season problbited; insect vorous birds protected.
tate hatching-house in Holdernessewasset river near the State hatching-house iu Holderness, anywhere between tho abutments of the upper dam of hivermore Falls in Comptou and extending one-half mille below the same, prohilsited.
Takiug of grouse, partridge, quatl, with trap or sure; of salmon trout, lake trout, land-locked or fresh wiater salmon, grayling, bass, pike, plke perch, white perch, pickerel, muscalouge, in any manner other than by ordinary way of angling with shagle book and line witi baft, artificial fly or spoon; of any fisk from jonds or streans used for breeding purposes, or polsoning the waters thercof, or blacing therein Without permission of owner or lessee any tish, or the roe,
spawn or fry of the same; of white fish, hinck bass, landspawn or fry of the same; of white tish, lhack bass, land-
locked salmon, grayling, pike, perch, or any other variety oif fish from any of the waters of the State, aud whieh have been placed or introduced tbercin by the fish commissioners, ior fise gears after the same have been so flaced therein; of brook or speckled tront less than tive inches, and of striped bass less than tifteen Inches in length, prohibited. Nonresidents are forbidden to take by seine or net any berring, hard-heads or mackerel from the waters of the State for the purpose of salting or barreling the same.
owners of any lauds may be protected by posting written or printed uotice; offenders subject to tine of \$1 per biri; tine to be paid to owner of ground.
NEW JERSEX. Hare, rabblt, ruffed grouse, November ito December 15; gray squirrel, November 15 to December $1 \bar{s}$; rail, reed-bird, Scpteniber 1 to December 15; wood-cock, July 1 to 31, and October 1 to December 15 ; English snipe, Mareh I to April 31, and October 1 to December 15; marsh-hen, Sepwood duck, September 1 to Deecmber 31 ; grass plover, August Wood duck, september 1 to December 31 ; grass plover, August 31 ; black bass and oswego buss May 30 to December l; brook trout, April 1 to July 15. Song birds, aud insectivorons birds, excepting English sparrows, are protected. Possessjon of game resirlcted to the open scason, except qual and pheasants, which may be retained five dias after season closes. Trausportatlon of game in close season forbidden, untess killed in anotber state. In liarnegat bay and its the whater tributardes north of llae irom Good Luck Boint to Band-house, duck, geese, closed until Oetober 15 to May 1 . Night shoot-
ing, sailiug for wild fowl, or shooting from boat staked ong, sailiug for wild fowl, or shooting from boat staked ducks nnd braut can be shot only between sunrise and sundown on Mondays, Wednesdays, and Fridays from september 1 to May 1 . Shoulder guns only to be used; trapuing deer. hares, rabbits, squirrels, quail, pheasants, woodecock, rall, reed-bird, lrairie chicten, plover or ducke; shooting within quarter of a mille of wild-pigeon nest ; catehing trout or black bass, except with hook and line; nsing deleterions substances in fishing, forlddden, Non-residents must obtain a licanse from the Game Protection society, if there be one whose jurisaletiou covers the connty wherein they fintend to hunt
(excent for wild fowl), or to fish for trout, black bass or sal mon. Owners of grounds may be protceted by posting notices.
NEW MBXICO Lik, huffalo, deer, anteloje, mountain sheep, wild tnrkey, grouse, quail, september 1 to May 1 : trout, May 1 to Deceraber 1 . Possession of game limited to open season, unless brongbt from mother state. Game may comp. Trout can be taken only by hook and line. No fish can be taken by pojsonous substances. Takling fish from a wrivate lake, pond, or stream used for propagatiou of fish without the owner's consent, punishable.
NEW YORK. Deer, Auglst 15 to November 1 , hares und rabbits, November 1 to Febrnary 1 ; moose, absolntelv pro-
tected; ducks, gecse, brant, September to May 4 squireals

[^187]Augnst 1 to February 1; quall, November 1 to Jauuary 1, and cannot set net, trap, or share for them; wood-coch, Auglast to Jantary 1, except in Oncida and Delaware connties. September 1 to Jamuary 1: ruffed gronse, September 1 to Janinary 1, except in Qucens and Suffolk counties, November 1 to Jan uary if pinmated gronse, september 1 to January 1 , netting prohibited; spruce grouse, no close season; wild birds, scang birds, absolntely protecterl, except English sparrow; irout, April 1 to September 1 ; $\%$ Lass, May 30 to Jamuary $1 ; t$ salt water striped bass, no restriction: wasealonge, Nay so to Junary I except in certain localities it is May 20 to Jamary 1: Fiekerel, bull heads, no restriction, weept Lake George, Which is closed between February 15 and July 1 ; plke, perch, Niver nonemay be taken above the Northern line of Westchester county, from sunset Saturday, to sunrise Monday, No one personshall take more than three deer during the open scason. Itares amd rabbits shall not bekilled or hunted by ferrets. shooting on Sunday tishing within eighty rods of state fisheries and fish ways; drawlag on water to eateh fish, pollution of water, and stocking the Adirondack waters with any tish except of the sabmon. and trout family, prolriblted. Game killed in Rockland connty cannot be carried ont of it, Sieckled samon and California trout caught in Forest l'reserve can be taken between Mas 1 and september 1 . Tres. passers on private gronnds linble for damages, and exemplary damages, not exceedin
NOR'II CAROLINA. Deer, Augnst 15 to February 15. In Clay, Cherokee, Macon, Jackson, Haywood, Transylvania, stokes, Forsyth, surrey, Vadkin, Cravin, Grech and rockingham eonnties, partridge, quail, doves, robins, mocking birds, larks, wild tirkeys, Oetober 15 to dprill. In Currituek county, partridge and quail, Jecember I to April 1; wild fowl, November 10 to March 10. In New hanover county, partridge, quail, marsh hen, wood-cock, snipe, doves, curlew, October 15 to Mpril 1 ; tront, in counties West of Blue Lidge, December 80 to October 15. Iu Clay. Cherokee, Jackson, Swain, Macon, Grabam, Transylvaita and flenderson connties, game birds are not protected. Shoulder gum only to be used for wild fowl, except in Pamlico, Dare, Carteret, Johnston. Tyrrell, Onslow and Colnmbus couutics. firchunting and night-shooting prohibited. Sunday-shooting of wild [ow] in Currituck and Dare counties, prohibited. Shooting wild fowl from iloating lanttery forbidden in Carteret connty. Non-residents shall not use or build blinds, boxes, batteries, or any wood decoys (ducks or geese), or live ducks or ceese for decors in Curritnck. Dare or lidde counties, for killing wild fowl violations of statute punishable by fine not excecding 4100 , or imprisonment not less than 30 days. Gronnds protected by posting notices.
NORTH DAKOTA. Deer, buffalo, elk, antelope, mountain sheep, September 1 to January 1 ; prairie chickens, grouse,
snipe, plover, curlews, August 15 to Janary 1 ; bass, musealonge, pike, pickerel and perch, May 1 to February 1. Killingor having for sale,or for any murpose but consumption withing the State, any plover, snipe or cnrlew forbidden. Fishlug, except witli hook and line, except in Mlssouri and Fed Rivers, and aus inlet or outlet of alake, forbidden from Anareh 1 to Octoler 1.
OSIO. Muskrat, mink, otter, Mareh 1 to April 15: quail, prairle chicken, November 10 to Jamury 2 ; wild turkey,
 ber 1 to April 10; woodeevel, July i to. animary 1; turtle dove, August 1 to January $1:$ squirrel. Jume 1 to Jununry $1 ;$ rabbit, October 1 to February 1 ; deer, Oetober 15 to November 20 ; brook tront, salmon, land-locked sammon, Cabiorala tront, March lif to December 14. Dossession of game during close season, prohibited. Insecthrorous birds protected. Trapplng or snariug of quall or Vitrginio partridgu: killing wild iowl by aid of swivel or punt gun, or any otber gun than a common shoulder gun, or by aid of artifieial light, or sink-lont, battery; taking any fish, except minnows, otherwise than by hook andmine from any of the waters of the state, excest in private lishing waters, Lake jole, Mercer and siking connty rescrwoirs, or waters of Lake Eitie West of Anm l'oint between June 1 and Oetoher , and East of Ann Point, between June 10 and October 10; in Mercer connty resurvor with trammel or peket net; shooting at wild pigeons within one-hali mile of nesting grommds. or taking or destroving thetr eges; use of ferret for eatehing rabhits, prohibited. Whoever discharges ming frearms on any lawn park or pleasure ground frecty ntpurtenant to or whthingun-sbot of any oceupled

Thxeept in the countles included in the Forest Preserve (which are Cllaton, lranklin, st. Lawreuec, Essex, Warren, Merkiner, Inmilton, Lewis. Fulton, sarntoga, Washington, Greene, Delaware, Uister and Sullivnil. Wherefalt is from
May 1 to Scitember 15. Canot be cancht except with
 wholly private waters No net, selne, set-line or set-pole can be used, excent In Lakes Outario aud Kenka. Cannot be canght through the tce nor the disturbed in thelr spawning bedt. except in Lake Ontario.
liscept in certain lomalities, where it is from say oo to lakes. July 1 to Janmary Manopac, Paradox and Skaneatles August 1 to January 1. Canmot be cangat of less than a half pound welght or less than 8 inches long.

872 HUNTING AND GAMELAWS-HUNTINGBURG

awelling-house, the properts of auother, or aoy charitable
 or maprisonment not more than thirty days, or both.

OREGON. Deer, July 1 to November 1: spotted fawn, absofutely protected. No deer shall be killed except for food Elk, mooze and mountain sheep. August 1 to January 1; kill ing them for their skios and hams, forbidden; swan and duek, September 1 to April 1; prairie cbickeo aud sage-hen, June 15 to April 1; grouse, pheasant, quail, July 15 to January 1: brook trout, April 1 to Norember 1. Yossession of ganie limited to open season. Traping game birds; eatehing trout. except with book and line, forbidden
 September 1 to May 15 ; plover, July 15 to January 1 ; wood-coek, July t to Jnouary i; quail, November I to December 15; rutiea grouse. pinuated grouse, October 1 to Jaunary 1; rail, reedbirds, September 1 to December 1; snipe, Wild pigeons. any time; elk, deer. Oetober 1 to Lecember 1 á : squirrels. September 1 to Jaunary 1 ; bare, rabbit, Notember 1 to January 1 ; speckled trout, April 15 to July 1s: shad uod herriag, January 1 to June 20 : lake tront, January 1 to October 1: pickerel. June 1 to December 1: black and rock bass, pike, May 31 to Janlary 1. lossession of elk, deer, antelope. October 15 to November 30: finuated or ruffed grouse, quail and woorlcock, 15 days after season closes. Sunday-hunting; boundiur deer, killing deer in the water if driven there by dogs; use of ferrets; of guns other than shoulder guns: of nets and trap for game and wild iowl; night-hunting for ruffed ant pinoated grouse: use of nets to cateh trout, biss or pickerel: shutting off water; use of explosive, ete., substances; taking trout less than five inehes long, are forbidden. Non-residenees must not trap or uet wild pigeons withont lieeuse of county treasurer.
KHODE ISLAND. Wood-coek. July 1 to January 1; ruffed gronse, robin, lark, wood-huck, black duck,gray duek, September 1 to February 1 ; rabbits, hares, gray squirrels, September 1 to January 1 :grouse, heath hens, November 1 to Jamary 1; 4uail, Oetober 15 to January $1 ;$ swallow, or box marteh, Ogtober 1 to May 1; grass plover, Ausust 1 to May $1 ;$ dusky. or black dack, snmmer duck, blue. or green winged tcal, September 1 to Mareh 1 ; wild pigeon (netted or trapped), August 10 to Janmary 1; tront, Mareh 1 to Auguat 15: black bass, July 15 to Mareh 1 ; insectirorous birds proteeted except from owner of land. Traphing quail and Tmi tridges; hunting rabbits with ferrets or weasels; using punt, battery, swivel, or plot guta for wild fowl; fisbing in stream or fresh pond except on one's own iand otherwise than with hook fud line: catehing black bass except with hook and line, forbidden. Trespass punishable

SGUTH CAROLANA. Deer, Ausust i to February 1; wild turkes, inartilise dore, wood-cock, pheasant, October 1 to Mareh 15; fishing in Black kiver, August 15 to Jnme 1. Fire hunting prohibiter. All persons who have not lived a yeat in the state, iorbiden to hunt or tish; but land owners may anthorize huntiug or fishiog on their own land.
sOUTH D.\&KOK. Deer. hufflo, elk, autelope, mountain sheep, September 1 to Jammary 1: praticic chickens, grouse, suipe, plover, carlews, August is to Janmary 1 ; bass, musea lomze, pike, pickerel, and pereh, May 1 to February 1. In Clay Inion and Yankton counties, quall, Ansust 15 to Jamuary 1 In Clay, Union, and Lincolin connties, decr, Octoher 1 to january 1: Killing or haviny for sale, or for any parpose but eonsumptlon within the territory, any plober snipe or car lew forbidden. The same provisions hs in North Dakota, What respect to fishing with hook and Time
TENSESCHE, In Henry, Dyer, Giles, Manry, Davidson, Murlisod, Ilsmilton, Bedford, and Wilson countles, deer, september 1 to March f_{i} pheasant, gronse, quail, martridge, wood cock, lark, gnd shipe, September 15 to March 1; wila turkey Sept. 13 to hay 1 . Montgonery Mnd Cheathan counties int sectivorons birds, partridge, quail, grouse, pheasnint, lark,
Oetolier 15 to Xarell 1 ; wooteoek, dove, wild turkey, August 1 to Mareh i: snipu, plover, duck, September 1 to Niny 1 . In Robertson, Davidson, Manry, Inncolu, and Shelby counties deer, widd tirkey, bartidg., quall, gronse, phemanat. wootcoek, sufpe, liwh ind inzectivorohs bircls, September 1 to Febrasary 1. In Ratheriont, Fayette, and Tipton eonnties, quan and partridge. Ochober I to dprif I. In Lake comaty, dear and illseetivoroms birls, sebtember 1 to Febranry 1; wilh-turkey hen, Oetober 1 tus Mareh I: wild thrkey, sepotember 1 to May 1: quall, september 1 to April ls, No persons except eitizelis of certain comaties named In statute permitton to hant gimme therela for brabt. Tinking fish otherwise than by honk and

 shonlh ennsult statales whth rufarenee to evempthans

 bown or by other menns than by hook and bine dexcept In VEli40NT. Miak, benver, Jahan
 partrake. September 1 to February i: whd geese and ducks,

September I to May l; trout. laud-loeked salmon, salmon tropt september 1 to way ; blaek bass, wall-ered pike, pike perch June 15 to september 1 ; white ish or lake shad, auy time from November 1 to 16 ; taking trout, laud-locked salmon, salmor trout, salmon, and pond piekerel, exeept by hook and land line, prohibited. Possession of game restricted to open season. Transportation of game for sale out of State forbidden. Insectiyorous birds proteeted. In Lake Champlain nud its inlets for ten miles from mouth, fishing with hook aud line allowed at any time. Persons engaged in artincial raising of fish may take them in his own waters when and bow he pleases, but must not sell them for food in close sessou. Use of explosives or deleterious substances to eateh fish: use of luets or traps to catch tront, salmon or bass; taking black bass less than ten inches long,forbidden. Local restrictions affect fishing iu Perch, Royal, Tuells, Luduw and Plymollth ponds inines eque and Lake Bornoseen.
ViRGINiA. West of Blue Ridge Mountains, pheasants wild turkeys, September 15 to February 1 : partridges, October 15 to January 1; deer, August 15 to Jauuary 1; elsewhere in the state, partridges, pheasants, wild turkers, Octoler 15 to Janaary 1; deer, August 15 to January 1; applying to whole State; wood-coek, July 1 to February 1: robia, Norember 1 to Aprill: wild water fowl, except wood and summer ducks, aud sora, september 1 to May $1 ;$ marsh beus, killing or taking its eggs later in the season than June 20, prohilited; willet, January 1 to July 20 ; gull, or striker, september 1 to January 1; its eggs, January 1 to July 1; mountain trout, April 1 to December 15 ; blaek bass, poud bass, July 1 to May 15 . Possession of game during close season prohibited. lusectivorone lirds protected. Netting or trapping of pheasants, wild turkeys, partidges, and all wild water fowl, exeept wood duek and sora, probibited; alzo taking mountain trout otherwlse thun by hook and line, shooting or spearing black bass or pond Lass; also netting and trapuing quail, prohibited, except in counties especially exempted by statute. Non-resilents are forbidden to fish in Chesapeake Bay. Hunters in virginia should examine local laws
WASHINGTON. Deer, elk. moose, August 15 to January $1:$ mountain sheep, prairie chickeds, sage-hens, swans, wild dueks, August 15 to April 15 ; grouse. pheasaut, partridge, Iugust 1 to January 1 : brook trout, April 1 to November 1 , loszession of game limited to open season. Deer must not he billed except for food. Killing elk, uuoose or mountain sheep for their skins, hams or entlets forbidden. Hounding Heer in Thurston, Cowlitz, Whatcome Island and Lewis connties: taking mountain brook or bull trout, except with hook and line: duck-shooting between 8 P. M. and 5 A. M.; use of sink-bonts, uattery, swivel or punt gun forbidden

WEST VIRGINIA. INecr, September 1 to Jamuary 15 ; quail October 15 to Jazuary $1 ;$ wild turkey, ruffed and pinnated rrouse September 1 to February 1; wild ducks, geese and Lrant. Noveraber 1 to April 1; Jack salmon, white salmon, dume 15 to May $1 ;$ brook tront, daod-locked salmon, January 1 to September 1. Possession of gane restricted to open season. Iusectivorous birds protected. Fish enn be eatught onty by hook and line from Mareh 1 to November 1. Explosive and poisonous substanees in fishing; sharing quail; use of any bit shoulder ghn for wild fowl; shootiug withiugunsiot of occupier house are forbidden. Trespass on inclosed grounds punishable
WISCONSIN. Deer, October 1 to Novenher 10; otter, mink, marten, fisher, muskrat, November 1 to May l; wood-cock. July 10 to December 1 ; quall, yartridge. pheasunt, pralrie Chicken, gronse, shipe, plover, wild fowl, September 1 to December 1. Possession of game limited to open sensou. Killfag deer, except for food, mad transporting them ont of State forbidalen. In Green lake eomaty it is manwful to use, in Wildfowl shooting, any cover, hlind or bough-honse ofer 18
iuches hish. Tronpling or tutting der, thme birds or wild iuches high. Tropping or betting deer, ghme birds or wild
fowl; using any but shonder guns; use of flont, snenk-boat, fowl; using my but shonlder gans; use of flont, snenk-boat,
satl or stennliont or flonting box or any ambush located in open whter beyond the natural cover of reedis, ete., in any lake. river, byy or inlet; honnaing deer; catching tront, excunt with hook mud line, forhidaten.
WVOMIN(i. Ionr, elk, moose, mountah sheep, mountain gont, antelope linfalo, september 1 to berember 1. Killing or eapturime sane by means of pit, pit-fall or trap prohibitmour mined
 the wame birds nbove ment foned prohibited. Avacet or other Mmber, or plover, Angust lin to April 1; wild duek, rout, goune, Alynst ho to sar 1 ; fish of all kinds, exechtrout, ality ito Savember I. all the above nuhmals mad bitds may he taken at may the for loreeding phatuses, lossexsion and transportation oi game or grame birds is limited to 30 days
 of open semann prohbiterl, exequt game in transit through the terion from otherstitesenth Territartes. sethng mad traphing of pame and gane hirds, wat of expost ve, posonlish, or of welr, dian or other arthleinl obstriction, or of net, wine or other devipe, expept book and tine, prohibited. Fiflinip fin strums or pomle stocked hy fish commission prohinhted for three years after pulbiteaton of notice of stockings same.

HLNTINGBURG, a post-village of Dubois county, Ind., situated in a region where tobaceo is
raised extensively, and where block and cannel coal, plumbigo, iron ores, potter's clay, mineral paints, lime and sandstone are obtained. Carriages, wagons, lumber, furniture, and saddlery are here manufactured.

HUNTINGDON, a post-borough, county-seat of Huntingdon, county, P'a., located on the Juniata River. Leatl, coal, iron, fireclay, limestone, and timber abound in the region. Brooms, boots and shoes and furniture are manufactured, and there are planing mills, a briek yard and several printing oflices in the vieinity:
hunting horn, or Bugle Horn, is a frequent bearing in hernldry.

HUNTINGTON, it eity and county-seat of Huntington county, Ind., built on both sides of Little River. This is the center of a large lime-burning region. There are several factories for working wood into various shapes, a woolen mill and other manufactories.
IUUNTINGTON, a post-village of Suffolk county, N. Y., on the Athantic Ocean, 3 s miles from New York City. Bricks, pattery and thimbles are made here, and the place is a fashionable summer resort.

HUNTINGTON, a city of Cabell county, W. Ya., on the Ohio River. It has several manufactories, a State normal sehool, and is the seat of Marshall College.

HUNTINGTON, Daniel, an Ameriean painter, born at New York in 1s16. He studied painting under Prof. S. F. B. Morse at the National Academy of 1 Design, and 1 roduced the Bar-Room Politicion, A Toper A sleep, and some landscapes in $183 \overline{3}$. In I839 he went to Italy. There he painted The Sibyl, Early Christiun Prisoners, and other works. After returning to New York he painted many portraits and some historical seenes, such as Quech Mary Signing the Death Jrarrant of Lady Jane Grey. He has worked in several departments of painting, and in all of them has shown great skill, true feeling and rare simplicity.

IlUNTINGTON, Fbederick Dan, a I'rotestant Episeopal bishop, born at Hadley, Mlass., in 1819. He was at first a Unitarian pastor of a chureh at Boston. In $185 \overline{5}$ he was chosen professor of Christian morals at Harvard College. IIis theological views then underwent a gradual change, and finally in 1860 he entered the Episcopal church. In 186 t he beeame reetor of Emmanuel church in Boston, and in 1869 he was elected and conseerated bishop of Central New York. Mr. Iluntington was one of the founders of the "Chureh Monthly," and has published some volumes of sermons: ITuman Socicty; Lessons on the Parables, and Steps to Licing Foith.
HÚNTINĞTON, Samuel, an American statesman, born at Windham. Comn., in 1732, died at Norwieh, Conn, in 1796 . We learned the trade of a cooper, but heame a hawyer in 1758, when he was made king's attorney anil also associate judge of the superior court of Comnocticut. In 1766 he was a dolegate to tho Continental Congress, and as sueh he signed the Deelaration of Independence. From 1799 to 1781 he whs president of the Congress, and in 1784 he beeame chief justice of Connectient. In 1785 Huntington was elected lien-tenant-governor of Conneeticut, and in 1786 he beeame governor of that State, which oflice he retained till his death.
IIUNTLS, a town of Scotland, county of Alerdeen. In the vieinity is the ruin of 1 untly castle, the seat of the earls and marquises of lluntly. Population, 3,519 .
HUNTSVILLE, a eity and eounty-seat of Madison county, Ala., ealled the "Queen City of the Mountains." It has a brass and iron foundry,
railroad maehine shops, a female seminary (Presbyterian), a female college (Mlethodist), and a normal school for colored pupils.
hUNTSVILLE, the county-seat of Randolph county, Ho. It has a college for hoth sexes, and in the vieinity are flour-mills, a woolen mill, machine shops and coal mines.
HUNTSV1LLLE, a city and county-seat of Walker county, Tex., 200 miles southeast of Austin. It contains a State penitentiary, Austin College (1'resbyterian), Andrew Female Seminary and Sam Houston Normal Institute. It is a cotton-shipping point, and manufactures furniture, eotton and woolen goods, boots and wagons.
HURA, a genus of tropical American plants of the natural order Luphorbiaceis. II. crepitans, the sand-box tree, is a large tree, having glossy leaves, inconspieuous flowers and fruit abont the size of an orange. It is remarkal) for the loud report with which the woody eapsule bursts when the seed is ripe.
HURDLES: in military affairs, straight flat reetangles of strong wieker-work, about six feet long; and two feet nine inehes higll. They are useful as feneing, as barriers, or, in fortification, in the construction of hurdle batteries. These last can lie eonstructed to any ground-plan, and with their aid a body of soldiers can entrench themselves in a few, minutes.
HURDY-GURDY, a very old musieal instrument of the stringed kind, something between a guitar and a lute in appearance. It has four or sixeatgut or wire strings attached to screw-pegs in the head; two of the strings streteh over the soundingboard to the tail-piece, and are sounded by a wooden wheel (under the eover a in the tigure) charged with rosin, which is turned by means of a landle with the player's right hand. The strings are

"stopped" by an ingenious arrangement of kejs, b, manipulated with the left hand. The remaining strings are stretehed out of reach of the keys, and are taned as atrones. The instrument has a range of two octaves from the tenor (i upwards. The rustic simplicity of its music made it at one time at great favorite among the peasantry of a great part of Europe (see Engel's Musical Instruments). The name hurdy-gurdy is also sometimes applied to the mechanical pianos familiar on the streets. The word was probably coined to express contempt of the instrument.

ILURON, the connty-seat of Beadle county, S. D. On acconnt of its situation and railroad facilitios it is a leading commercial center of the state. Tho region is rich and prosperous. The city has in excellent system of public schools, a complete etpipment of water works and electric lights, atul many handsome commercial buidings and private residemees.
llvidos. Lake, remarkable for the number and size of its isiands, which are mostly Canadian and very roeky, but well timberad. The commeree of the lake is facilitated by a number of gond harbors and roadsteals. At Sand Beach, Mieh.. the United States Govermment has construeted an irtificial harbor of refuge, having a breakwater parallel to
the shore and a pier or mole reaching out from the land at the north side．The principal natural ports on the United States side are those of Hammond＇s Bar，Nichael Bay，Presque Isle，Thunder Bay and Saginaw Eay．Among the town on the lake are Mackinaw（ity，Chehoygan，Alpena，Bay City and Fort lluron，all in Michigan．On the Canadian shore are Cullingwood，Southampton，Kincardine， Port Allert and Goderich．See St．Livimence， Britamnica，Vol，XXI，pp．178，18？

HURUN INDLANS，or Wyanots．See Inmans， Amerran，in these Revisions and Additions．

HUPist，Jons Fletcher，a Methodist Episcopal bishop，born in Dorchester county，near salem， Md．，in 1834．He studied theology at the Universi－ ties of IIalle and IIeidelberg，in Germany．Hav－ ing returned home in 1855 he was pastor of Metho－ dist churches in Passaic and Elizabeth，N．J．．till 18tib，after which he took charge of the Methodist missionary institute at Bremen，Germany．Here he remained for three years as teacher and direc－ tor of the institute．In 1871 he again returned to the United States，became professor of historical theology at the Drew Seminary in Madison，N．J．， and in 18.3 was made president of that institution， In 1880 he was elected bishop at the General Con－ ference at Cincinnati．He has published a History of Rationalism：Outlines of Bithe History；Marturs of the Tract Couse：Life and Literature in the Fu－ therland，and Bibliothere Theologica．

HUSBAND AND WIFE，Law Relating to． See Vols．XII，p． 400 ；XV，p．565．In America a husband has no right to enferce his will against the will of his wife．He is not allowed to restrain her movements and actions by force，or to forcibly compel her to reside with him against her will． The laws recognize the existence of two wills in husband and wife，neither of which can he subordi－ nated to the other and forced into summission by legai compulsion or penalties．Although the old common－law rule，that the services of the wife be－ long to the hushand，remains in force in some of the States，yet it is practically olsolete，hecause the wife employs her services in his behalf only as she may choose．As the wife has the power to make contracts on her own account．she may also make contracts with her busband，and may in some of the States sue him at law upon such contracts．She may also receive conveyances directly from her husband．But this rule is not without exceptions．

As to the custody of the children in case of clisa－ greement，the mother has acknowledged claims to all femate chitdren up to a certain atre，the limit of which differs in dilferent states．Infints belong to her by nature．A married woman＇s right to con－ trol her property independently of her busland＇s influence，to employ her serviees as she may choose regardtess of his wishes，and to have the chstody of lier chideren up to a certain are，removes her disa－ bilities so efrectually that she is her husband＇s egual in every point of law，and has in addition a rightful chain to his protection and her support． even if she should not choose to cont ribute at all to her own persomal maintenance．

IUUTCHINSON，a city，railroad conter ancl county－seat of Remo county．Kan．，situated on the Arkansas liber．It has a state reformatory，elee－ tric lights，Jolly water works．st reet railroads and a telephone system，It was funded in［8゙った．lop－ ulation in 184\％，x，ise．

HUTClliNsOX，AsNe（1501－Tht：），an American religions enthusiast，horn at Alford，Lincolnshire． Englamd，in 1sin，She was the daurhter of a clorgyman，and marriod lidward llutehinson．In
 tained that those who were in the covenant of
grace were entirely freed from the corenant of works．She gave lectures t wice a week，which were well attended．Her adherents were called＂Anti－ nomians．＂and included many prominent men，as Sir Harvey Vane，the gevernor，and the powerful preacher，Cotton，Boston was soon divided into two hostile theological camps．Mrs．Hutchinsor was then tried for heresy and sedition and ban－ ished from Massachusetts，along with several of her followers．She then bought for forty fathoms of wampum the island of Aquidneck from the Nar． ragansett Indians，and founded the town of Ports－ mouth．After the death of her husband in 1642 ， she leit Rhode Island and settled upon some land to the west of Stamford，Conn．，then suppesed to be within the territory of the New Netherlands． There，in the following year，she was cruelly mur－ dered by Indians，tugether with her family， 16 vic－ tims in all．
HUNLEY，Tifomas Henry，an English biologist， born at Ealing，Middlesex，May 4 ，15 2 ；commenced his education at the school in that place，and after－ wards studied in the Medical School of Charing Cross hospital．In 1846 he entered the medical service of the royal navy，and in the following year was appointed assistant－surgeon of H．M．S．Rattle－ suroke，which was commissioned for surveying ser－ vice in Australasia．Huxley devoted himself to the study of the marine animals collected during the service．making them the subjects of scientific papers，which were publisned by the Royal and Linntean societies．Soon after his return to Eng－ land in 1850．he was elected a Fellow of the Royal Society，and in 1854 was appointed professor of nat－ ural history，including palrontology，in the Royal School of Mines，and held that office，combined with the curatorship of the fossil collections in the museum of practical geolegy until his retirement from the public service in 1885 ．After his appoint－ ment to the school of mines his attention was chiefly directed to rertebrate morphology and to palsoontology．In 1856 he accompanied Dr．Tyndall on a visit to the glaciers of the $A l p s$ ，and his name appears as joint－atthor of Observations on Glaciers （185\％）．In 1859 his large work on The Oceanic Hy－ drozor was puhlished hy the Ray Society．He is author of numerous papers on the invertebrata， vertebrate morphology，palicontology，and of essays on topics of a philosophical and general character． Luxley has greatly interested himself in educa－ tional questions，and especially in scientific and medical education，and strongly adrocated Dar－ win＇s views．He has held the oftices of examiner in the University of London，of Fullerian protessor at the Royal lnstitution，of Hunterian professor of comparative anatomy at the Roval College of Sur－ geons，of president of the Ethoological Societ J° and of the Dritish Association．He has been president and secretiny of the Geological Society and of the Royal Socidy，and is a member of the American and lisussels Acadomios，a corresponding member of the fintitute of France，of the Berlin Academy， and of many ot her foreign societies．
1I MO1NTIL．See Britamica，Vol．III，pp．419，256．
HVICLNTHE，Dems．See Lorson，Charles，in these Rerisions and Additions．

MVIN゚IS，a post－village and seaport of Barn－ stable county，Mass．．on the south side of Cape Cod， and on a braneh of the Cape Cod（Old Colony） Railmad． $7!$ mikes from Boston．It has a high－ schoot，an iron foundry，a shoe factory and several charehes．Its outer harbor is protected ly a break－ water，and has a tixed lieht with an elevation of 70 feet above the level of the sea．
II Y＇b＇Tll）（from（ir．hylutis，＂a watery vesi－ ele＂），a term applied to the bladder－worn stage of
certain tapeworms，particularly to that of Tania echinococcus．The term hydatid is sometimes applied in medicine to scrous cysts which have mothing at all to do．with parasites．

HY゙DE PARK，an inclosure of nearly 400 acres extending from the western extremity of London， England，to Kensington Gardens．It derives its name from having been the manor of Hyde，belong－ ing to the Abbey of Westminster．See liritannica， Vol．SIV P．S24．

HY゙DE PARK゙，a village of Norfolk county，Mass．， on the Neponset River，and on the Boston，Hart－ fird \＆Erie and Boston © l＇rovidence railroads， 7 miles irom Boston．It has excellent graded schools，a public library and various manmfactories． It is chielly a place of residence for persons who carry on business in Boston．

HYONORA，a genus of parasitio plants belong－ ing to the order C＇yntinuces，which eonsists entirely of root－parasites．IIyduora ajicena is a sonth African species，parasitic on the roots of fleshy Eunhobix and other suceulent phants；it has a putrid smell，but is roasted and eaten by the natives，and is also used for taming．

HI＇DNUX，a genus of fungi belonging to the sub－order IIymenonycetes，order Busidionyretes，and having the under side of the pilens covered with soft spines which bear the spores．The species are numerous，one of them，H．reptutum，being common in some parts of Europe．It grows chielly in pine and oak woods．See Fungus，Britannici，Vol．IX．

HYDRA，a fabulous monster of the ancient world，said to have inhabited the marshes of Lernea，in Argolis．Acconnts vary as to its origin and appearance；some make it the issue of SIyx and the Titan Pallas．It is represented as having several heads，whieh immediately grew np again is often as they were eut off．The mumbar generally ranged from seven to nine，though some historians give it a hundred and more．
IIYDR．ISTIS，a genus of North American plants， of the natural order Rumunculacese．II．rememposix， the only known species，is a small perennial herb， sometimes used in dreing yellon；hence the com－ mon names yellow－root，golden－seal and jellow puceron．It is also used to some extent in medi－ cine．

HYDRAULIC ELASITORS are employed to lift persons by hydratulic pressure from one story of a building to another．＇The essential parts are a cylinder sumk in the earth．with a plunger descend－ ing into it and packed water－tight at the top．be－ low which witer is admitte：by a ralve，when the piston rises to the required height，and remains there by the elosing of the valve．The car for the conveyance of ptssengers rests upon the top of the piston．
HYDRAULIS FORGISG，shaping wronght iron and steel by the eontimons power of the hyilraulic prises instead oi the repeated blows of a hammer． Sme II mmen，Pritannica，Vol．XI，p．42t．

HI DROCELE（Gr．hylor，＂water，＂and kole，＂a swelling＇）．a dropay of the tumica vatinalis，the serons membrane investinc the testis．It oceurs as a smooth，par－shaped swelliner，painlest，but． sometimes ealnsing uneasimess from its weirht． The duantity of that in the sace may amonnt to firty ounces．Itydrocele most commonly eomes on without any apparent local eanse，and is most fre－ quently met with about or heyont the middle period of life．and generally in persons of ferble power；sometimes，however，it occurs in young children．The treatment may be palliative or curative．The palliative troatment ennsists in the ase of suspensory bandages，and tappint from time to time．The curative treatment consists in set－
ting up inflammation in the tumica vaginalis by the injeetion of tincture of iudine，so as to mblerate the cavity，or by excision of the whole or part of the sac．

HyIMROCOTYLE，a genus of umbehliferous plants，having simple umbels，entire acute petals， and fruit of two that orbicalar carpels，with five thread－like ribs，and no vitta．The species are nu－ merous，werally uore or less aquatic，and widely dist ributed．

HYDRODYNAMIC ENGINES．See Britannica， Vol．X11，pp． $520-21$ ．
HYDRGMI Y＇S，a genus of water mice found in Australia，Tasmania，and Sew Guinea，distin－ guished from all other rodents by the small num－ ber（2－2）of molars．They are called beaver rats in Tasmania；are noctural and very shy；inhabit the banks of fresh and salt water，and swim well，with the help，of partially webbed hind font．The larg－ cst species is twice the size of a common rat．

HYDROPHOBLA AND LiALILE are fully treated in Pritannica，Vols．XII，pp．545－5t7，ぶメ，190－02； and the reader is referred to those volumes for ex－ haustive accounts of the diseases and their eflects on man and beast．The researehes of M．Louis Pasteur in connection with fermentation the pres－ ervation of wines，and the propagation of zymotic diseases in silk worms and domestic amimals，led him to a series of experiments on the result of whieh he based his announcement to the French academy in 158t，that by inoculation with pre－ pared virus absolute protection against rabies and hydrophohia could he secured．He considers rabies a disease of parasitic origim，although the particular parasite has not yet been securely iso－ lated．His method of treating people bitten by mad dogs is as follows：

Lhe has found that，if he inoculates a number of rabbits from one to another in series with the virus from a mad dog－that is，if he inoculates one ral－ bit from the dog＇s virns，a second rablit from the virus of the tirst，a third rabbit from the virus of the second，and so on－and then exposes the spinal cords of these rabhits in ghass jars which have been free from all moisture by canstic polash，and are kept at a constant femperature of $23^{\circ} \mathrm{C}$ ．，these spinal cords lose in virulence with each day of such exposure until，after a period of lit ditys，no poison－ ous effect results from their inceulation into a healthy rablbit or dog．They will produce milder and milder symptoms the longer thase spinal cords have leen kept as abovedeseribed，till at last，when they have been kept for 14 days，they will upon in－ oculation produce no symptoms whatever．Next he has found that，if he daily inmeulates the same rablit with the virus of the montied spimal ents， beginming with the weakest virus and usint a stronger one mach sueceeding day，at the end of the series of inoculations the strongest virus will have no ill effects whatever．The strongest virus is that from the eord of a rabhit just dead of rabies．It will canse rabies in healthy animals in 7 days，if in－ oculated when fresh．

An animal bitten ly a mad doge it inoculatad daily with gradually sirongre and stronger virus taken from the spinal cords of rabbits，was，there－ fore proof acalust the outbratk of hyalrophohia． Fasteur comelnded that a persem thus treated must likowise low prool against the disease On July ${ }^{7}$ ． 18sion．when a boy．Jusph Morister，who had been red eondy bitten liy a mat dog．presented himself at his liboratory，be inoculated him tirst with weak virus．Fach suemeding day he inoculated him with it gradually stronger virus，ending this trat－ ment on the lith of Jume．The same virus that was used on the boy was tried every time on a
fresh, healthy rabbit, in order to test or "control" the inoculations. It produced rabies in the rabbits, which died in a few days; but it had no effect upon the boy, so that Pasteur considered him proof against hydrophobia from mad dogs. No deteterious effects of these graduated inoculations of the boy have since been reported.

Since that time Pasteur has performed hundreds of similar preventive inocułations. Many cases were sent to hins from America, and still more from the various states of Europe. It is generally stated that, of one hundred persons bitten by mad dogs, about is or 20 become rabid and die of hydrophobia. By Pasteur's treatment this percentage was reduced to ${ }^{1}$ or even less. Some physicians who are opposed to Pasteur, have maintained that there is danger of death being caused by his inoculations without reference to the effect of the dog's bite. An English commission has invest-gated this point, but could not find a single case of death from this cause alone. A mumber of wolf-bitten Russians have been sent to Paris to be treated by Pasteur. But it was found that the wolf-rirus is much stronger than that of mad dogs; and severat of the patients, therefore, died of rabies in spite of Pasteur's treatment. These cases must be considered as exceptional.

During the last lew years a large hospital. called the Pasteur Institute, has been established in Paris, where dog-bitten patients are treated under Pasteur's personal supervision. In this institute humdreds of victims have already been sared from a horrible death. Of the few who have succumbed to the disense it is asserted that there were other complications involved. In London a fund was raised in 1859 to enable indigent English patients to be taken to Paris for traiment at the Pasteur Institute. In 1890, a lasteur institute was opened in New York city for the preventive treatment of dog-bitten persons ly the same method of graduat ed inoculations

HYfliopilillacese a natural order of exogenons plants, containing about 80 known species, natives chiefly of the colder parts of America. The order inchudes sume small trees and bushes as well as herbaceons flants. They are often hispid, like the Borraginarere.

HYGHERA, or flyama: in Greak mytholngy, the goddess of health. She was worshiped at Athens, Curinth, Argos, and other important cities, and in works of art i - usmally represented as at virgin with a snake, the symbel of health, which drinks from a cap held in her hatad.
 Af. Costams ofr. Arrangements are mow in progress (Junt 1 sal) bur hofding this congress in London, from August both to both, Thill. The call was issued hy the buker Wi Westminster and the presidrants of leatings sebontite bodies in England. The I'rimen of 11 ablos promispl to preside.
The objest of tho wheress is 10 promote the interehange of knowiowte hetwedn thone persons in difurent conmtrise interestem in the stody of hygeneme and demondabliy. The Inake of Westminster gives six bramelues of inumiry: (1) The means of preventing commmanablhe disetases (2) then sciancer of hatariolngy in rolation thereto: (3) inchastrial duestions irom a halth point of view: (.t) the hymene of ehilathond: (5) the hyriene of homses and towns: (i) state hygiener, or the daty of the gevermment coward the nation in regard to heath, and the machinery needessury for exereising that duty.
"hamosraphy" is a word of mudern eoinage, inWondoul torpresent and include such themes as are here indicated.

The London "Times" speaks of this congress, and says it is likely to be useful, because some of the delegates to it will be sent by governments possessing power to carry into effect any reforms of the necessity of which their representatives may become convinced.

Delegates are to be sent to it from the United States by various scientific, collegiate and other corporate bodies. At the last session of this congress (held in Vienna, Austria) about 2,000 members were present.

HILID.E, the family to which the tree-frog belongs. See Britannica, Vol. IX, p. 796.

Hinlis. For the general history of hymons and hymnody, see Britamnica. Vol. NiI, p. 577 . In America comparatively little has been done in this field. Having the literature of England to draw from, there has seemed to be little need. Some of the productions of Bishop Doane, Dr. Mühlenberg, Mr. Thomas Mastings, Mr. Edmund H. Sears, Mrs. S. E. Miles, and Dr. Ray Palmer will, however, compare favorably with those of other countries. Among modern American hymn-writers may be mentioned Bishons Coxe and Burgess, and Dr. Crosswell, of the Protestant Episcopal church: Drs. W. Hunter, T. O. Summers, and T. H. Stockton, of the Methodist, and Ir. S. F. Smith. of the Raptist churches; L. W. Bacon, E. Mason, and Professors Mead and Rice, of the Congregationalists; and the Presbyterians have Drs. Robinson, Hatfield, Hitchcock, Schaff and Eddy: The popular Gospel Hymms fall under no denminational head. They gave currency to the productions of P. P. Bliss, Fanny Crosby (Mrs. Yan Alstyne), and many others. Formerly our collections for puhlic worship were largely composed of British hymns, but of late years hymns horn on American soil occupy larger and lirger places in the hymals. Nore attention is being paid to hymnology, and the improvement in this department of knowledge and worship is already apparent.
 "a sensation"," in the general sense of the word, denotes an excessivercitahility of the parts of the nervous apparatus which have to do with sensation. Abnormal spusibility to pain is, however, more correctly called hyperalgia, or hyperalgesia. See Torera, in britamica, Fol. XXIf, and Xevrabat, Vul. XVI. In this condition, as in ticdouloureux. the slightest stimulus may cause a paroxysm of pain, even a current of air, on a moise bringing on an attack; while, in hyperasthesia of the special senses, hashes of light may be seen, sounds mare be heard, and even smells and taste experienced. in the absence of any objective canse. Of the diseases predispmsing to hypherasthesia, hysteria is far the most frequent. The treatment is that of the morbid change on which it depernds; but the leval application of anorlrmes, iep, ar warm jonltiens, and sometimes the uses of electricity, may diminish the patient's suffering for the time.

IIV'ERBOREASE (dwellers begond the north wint), a name given by the ancients to a mythieal people supposed to dwell in the extreme northern parts of the world. As the favorites of Apollo, thes enjoyed an carthly paradise and ererlasting yout h ant health. In the modern science of anthropolory, the term hyertherans is sometimes used to designale eertain prophe, who dwell in the northeast of Asia and the northwest and north of North Ameriea, and who damut be classed either with the Indians or the people of the A siatie mlatean.
 order of ahout three hundred speeies, trees, shrubs and herbaceous plants, widely distributed and in very dilferent climates, hat partieularly numerous
in North America. The speeies of Vismin yield a substance resembling gamboge. Many of the Kyperiraees belong to the genus Iypericum.

HYPNOTLSA (from the Greek hymos, sleep; a condition of mental insensibility to some sense impressions combined with excessive sensibility to other impressions, and total absence of self-consciousness. It is similar to somnambulism, but is artificially induced. In order to hypnotize a person the hypnotizer or "mesmerizer" concentrates the attention of the subject upon some bright object of vision, as a shining piece of glass, or upon the operator's eye, while the operator makes a few gentle strokes over the subject's hair from the top of the head to the front, or makes some passes with lise hand hefore the eyes of the subject. Some mesmerizers merely fix their eyes firmly and steadily upon the sulbject's eyes, while they hold the subject by the hands. Each hypnotizer has his own particular method of produeing the hypnotic state. When a person becomes hypnotic he gradually loses the sense of taste, touch and color. He cannot distinguish between hot and cold, nor between white and black, ete. Next, the forms of oljects becume indistinct, and can no more be distinguished. Lastly, the eyes become immovable, and mothing is sem even if the eyes are open. But. curinus enongh, the ear never sleeps. The subject hears and believes everything said by the operator. and finally performs every act the operator commands him to do.

Magnets have often been used as aids in bringing about the hypnotic condition, especially permanent horse-shoe magnets of steel. They were apparently quite etheacious. But a Froneh mesmerizer made lately wooden horse-shoe magnets of the same size and shape as the steel magnets, and painted them exactly like the genuine ones. Upon making his strokes and passes with these psendo-magnets he was able to produce the hypnotic state in sensitive subjects just as easily as with steel magnets. This proves elearly that magnetism has nothing to do with hypnotism, and that it is merely the bellef of the person operated upon, and the submission of a weak will to a powerful will, that brings about the hypmotic elfeet.
A parallel case taken from the lower animals is reported by l'rofessor J. Czermak, of Leipzig, in the "Pophlar Science Monthly," of September, 1573, pp. BtS-27. He there relates the following incident: Athanasins Kireher, of Fulda, a celebrated savant and Jesuit. tied the feet of a hen together with ribLron, and laid the animal on the ground, where, after many cries and violent struggling, it became quiet. Then Kireher drew on the foor a chatk line diagonally from one rye of the hen to the other, loosened the ribon: and the hen, although left perfectly frec, remained immovable, even when he attempted to rmse her. Kireher atributed this immovability to the force of the hen's imagination.
Prolessor Carmak repeated the experiment first by tying a hen's legs with a ribhon and making a chatk line on the tloor, as Kircher had done. It succeeded. Then he hedd down a hen's neek and hoad upon a table, until the frightemed bird hecame quiet, and drew a chalk line on the dark surface of the table, beginning at the end of tho ben's beak, and left the hen after this entirely frec. Although breathing heavily, she remaned motionless on the table, and even allowed herself to he turned over upon her back. Lying on her back she remaned quiet until the elose of the leeture during which the experiment had been performed.

Afterwards Professor Czermat periormed the fame experiment with wild hens, geese, ducks, turkeys, and even with a timid, unruly swan; and in
every case he dispensed with the use of a chatk line, and also with the ribbon around the bird's feet. It consisted simply in holding down the neck and head of the hird fast upon the table, until the bird became quiet and convinced that all its struggling to escape was fruitless. The subject must be eonvinced that it has fonnd its master.

Jrofessor Ileidenhain conducted mmerous experiments with medical men and students as his subjects. He found that, in the tirst or last profound stage of hypnotic sleep, the subjeet on being awakened can remember all that has happened during that sleep. On awakening from the second or more profound stage, the patient ean only partially recollect what has happened; while, in the third or most profound stage. all power of subsequent recollection is lost. During the most profound stage he hears sounds and sees sights, ete. (that is, the power of sensory perception remains), without knowing that he hears the sounds and sees the sights, and he can therefore afterwards not recollect the impressions of sounds heard or sights seen. He is like a man whose attention is ahsorhed or distracted. The less profound stages of hypnotism are paralleled by the condition of reverie, in which a passing sight or sound, althongh not particularly noticed it the time, may be sulsequently recalled by an effort of will.

Heidenhain also found that, even when all memory of what has passed during the hypnotic sieep is absent on awakening, it may be aroused ly giving the subject a clew-just as in the case of a forgotten dream. This clew may consist of a single word. Again, he found that actions which have been previously rendered meehanical by long habit, as piano-playing, can in the hypnotic state be performed antomatically upon the command of the hypnotizer. When Heidentain hedd his fist before the subject's face the suhject immediately performed a like mosement; when he opened his hamb, the subjeet did the same.

Awakening from the hyprotic sleep may he effected by suddenly blowing upon the faco of the subject, slaphing the hand forcibly, sereaming into the ear. or by any, sodden change in the stimalation of the suljueet's nerves. For furthrr information on the subject of hypmotism the reader is referred to Magnettom, Anhma, Britamica, Vol.

HIODONTIDE, a family of tishes represented by the toothed herrings or moon-eges.
HYOGANOLDE, an order of tishes represented be the tmividri and lopidespoide Se Britamiea,

HYIXLIL a grnus of mosses helonging to the order Bryima. Arehrgonia and capsuhes an lorne on special lateral hramehes. The suxalurgansare formed in August and september, and the capsules take from tan months to a vear to ripen. Many species are remarkable for their leanty and are often used for decoratise purpuses. Their distri-
 Vol. N゙V゙1I, pp. 70-83.
HEPOCtifilts. a gonus of plants of the natural order Compositer, of which one speedes, M. radirater. is ermmon in meadows and pastures in tritatin. Its rough leaves sprat on the eromme, and rasemthe in form those of the dandelion; the stom is hranehed; the tlowers are like those of the dantle lion. lut smaller.
Hytordoboth, a curve whose course is generated hy a point in the circumferenee of a circle rolling on the comearo sidn of a fixple circle.

HYPOMHOEDHTES, potassimm, sodium and caleinm comhined with hymphoshorous acid.
HyPosfityc reson, a mion of natures or substances su, intimate as to constitute one undi-
rided person. The term is used to describe the mysterious union of the divine and human natures in Christ. See Monarmmisism, Britannica, Vol. XVI, p. 719.

HYPOSTASIS, the Greek term used to designate the distinct subsistence of the three persons of the Trinity.

HY゙POSULPHITE, a salt of hyposulphurous acid. See Britannica, Vol. XXII, p. 636.

HYloosulpll UROUS ACID, called also Hydrosubpucrors lemp, is obtained by the reduction of sulphurots acid. See Ipritamica, Vol. XXII, p. 636.

HYPOTHECATION, the mortgaging or pledging of property or goods to raise money for some critical emergency.

HYPOTHENUSE, the name of that side in a right-angled triangle which is opposite to the right angle. The well-known property of the hypothenuse, that the square described on it is equal to the sum of the squares described on the other two sides, is proved in the forty-seventh proposition of the first book of Euclid.

HYPOTHESIS, a supposition; a proposition supposed, or taken ior granted, in order to draw a cou-
clusion or inference for proof of the point in question.

HY゙PONANTHINE, called also Sarcine or Sarkine, a white crystalline powder found in the spleen, liver, muscles and other organs of man and in the spleen and blood of the ox.

HYRACEUAl, a blackish-brown viscid material, not unlike soft pitch, found in the crevices of the rocks of Table Dountain, Cape of Good Hope. It has an offensive taste, and is not unlike castoreum, for which it has served as a substitute in medicine.
HYRACIDE, the only existing family of the order Hyracoidea, of small size and rabbit-like form; the "cony" of the Bible. Hyrax Sinaiticus is the best known species.

HYRACOTHERIUM, a genus of fossil ungulates, established in 1839 by Owen for a small Eocene animal about the size of a hare, to which he afterwards gave the name of Pliolophus.

HIRIA, or HyRtum, an ancient city of Calabria in South Italy, spoken of by Herodotus as the metropolis of the Messapians, also mentioned by Strabo.

IabadIUS-IDAH0

IABADIUS, a large fertile island in the East Indies, described by Ptolemy. It was said to be near the Golden Chersonesus, and it produced much gold and grain. It is now thought to be mdentieal with Java, but Iumboldt took it to be Sumatra.

IACCIIUS (Gr. Iaklios), a name for the god Dionysus at Athens and Eleusis. On the sixth day of the Eleurinian Mysteries a decorated statue of lakehos was earried from Athens to Eleusis, where the votaries were initiated into the Iast mysteries. Some think that Lacehus is identical with the Roman Bacchus, the son of Zeus and Semele.

1BAGUE, or Ibaque, a town of the United States of Colombia, in the department of Cundinamarea, 70 miles west of Bogota. Population, 6,000.
$1 B E R A$, or Ybera, a cluster of marshy lakes in the province of Corrientes, Argentine Republic, between the rivers Paraná and Uruguay.

IBERVILLE, d' Pierre le Moy'ee, Sieur, founder of Louisiana, born at Montreal, Canada, JuIy 16, 1661, died at Havana, Cuba, July 9, 1706. He entered the French navy as midshipman when 14 years old. In 1690 he was one of the leaders in the retaliatory expedition against Schenectady. In October, 1694, he captured Fort Nelson, on Hudson Bay. In 1696 he took nearly all of Newfoundland from the British, whom he defeated in the naval fights of 1697. In March, 1699, he entered the Mississippi River, and ascended it as far as the mouth of the Red River. He then built old Fort Biloxi at the head of Biloxi bay. This was the first post established in Louisiana. After going to France and returning to Louisiana in 1701 he found the settlement reduced by disease, and thereupon transferred it to Mobile, thus beginning the colonization of Alabama. He also oceupied Dauphin or Massacre Island. After being made captain of a line-of-battle ship, he captured, in 1706, the isIand of Nowis from the English. He was suddenly struck with a malady of which he died.

IBSEE, Henalk, poet and dramatist, born at Skien in South Norway, March 20, 1828. In 1842 he was apprenticed to a chemist at Grimstad, but alsandoned that business to devote himself to literature. His earlier efforts were of little importance. In 1850 he became a student in Christiania University, but did not remain to complete the course. After two years of journalistic work he was appointed director of Ole BuIl's theater at Bergen, for which he wrote The Banquet at Solhang, (1856), and Lady Inger at Östrat (1857), his first works of note. In 1857 he undertook similiar duties for the national theater in Christiania. IJ is next dramas, The Warriors in Melgoland (1858), Lore's Comedy (1862) and The Rival Kings (1864), placed him in the first rank of Scandinavian dramatists. He left Norway in 1864, and has lived abroad since that time, ehiefly in Rome, Dresten and Munich. The Norwegian Parliament granted him a pension in 1866. In that and the following year appeared the lyric dramas, Brand and Pepr Gimt, in many respects the finest things he has done. Other works are: The Young Men's Leanue; Emperor and Galilean; Pillars of Society; A Doll's'Hone; Ghosts, An Enumy of the People; The Hild Muck; Rosmersholm and The Lndy from the Ser. His later plays aroused a storm of controversy in England in 18si?, as they
had done shortly before in Germany and in the Scandinavian countries. An linglish translation of lbsen's prose works in + vols. Was edited by Mr. Archer in 1890. See Rritannica, Vol. NVIL, p. 591.

ICELAND. Our latest information from lceland is to Feb. 1, 1892 . Since 1357 the King of Denmark has been the acknowledged sovereign of Iceland. The island has its own eonstitution and administration under a charter dated January 5, 1874, by which the legislative power is vested in the Althing, which is composed of thirty-six members, of whom thirty are elected by the people and six appointed by the crown. The highest Iocal authority is the governor or stiftamtmand. At the head of the administration is a minister appointed by the King of Denmark. This minister resides at Copenhagen and is responsible to the Althing.
iCHTHYODORULITE (Gr. Fisil-Spear Stone), the name given to fossil fish spines, not uncommon in stratified rocks.

IClCA, a genus of plants of the natural order Burseracer. The species are mostly natives of South America. I. altissime, the Guiana cedarwood, attains a great size, and is ralned ly the Indians for making canoes. It is also used by cabi-net-makers in the construction of bookeases, its odor protecting the books from being injured by insects. Another speeies, I. heptophilla, sields a balsam similar to elemi.

ICY CAPE, a headland of Alaska, discovered by Cook in 1778 . Lat. $70^{\circ} 21^{\prime} \mathrm{N}$.; long. $161^{\circ} 46^{\prime} \mathrm{W}$.

IDAHO SPRINGS, a post-town of Clear Creek county. CoI.. on the Colorado Central Railroad, 34 miles west of Denver. It is surrounded by beautiful scenery, and is well known for its hot and cold mineral springs, which attract a large number of visitors in summer. Gold and silver are found in the vicinity.

IDAIIO, State of. For general artiele on Id.ano see Britannica, Vol. XII, pp. 697, 69s. Idaho is an Indian word, meaning "Gem of the Mountains." The first white man known to have set foot upon its territory was Captain Lewis, of Lewis and Clarke's expedition. He crossed the main range of the Rocky Mountains frem IIorse Plains (Horse Prairie), Beaver Head county, Montana. Aug. 12, 1805. The Missouri Fur Company in $1 s 10$ established a trading post on Snake River, but soon abandoned it. Fort IIall was estahlishod as a trading post by a party of traders under Nathaniel I. Withe in 1834 . Gold in paying fuantities was discovered in Idaho in 1860 by Captain James l'ierce of Wastington Territory, and the first location was on Oro Fino Creek. The first permanent settlement was made at Mount Idaho in May, 1861.
Idaho was created a Territory by act of Congress March 3, 1863. and admitted as a state July 3, 1s00. Its territory was originally taken from parts of Dakota, Selraska, and Washington Territories. Later the Territories of Montana and Wyoming were organized by act of Congress, subtraeting from Idaho large portions of its territory and roducing its area to 84,500 square miles, as oflicially reported in the census of 180. Idahoextends from the Gritish Tossessions on the north to Utah and Nevada on the south, a distanee of ahout 410 miles,
and has a width from cast to west of from $4 \cdot t$ to 30612 miles.
The pormiation in 1880 was 32.610 ; in 1890 , S4.385, an increase during the decade of 51,755 . Its capital and chief city is Boisé City.

The following tigures give the population of the State by counties, as shown by the census of 1890:

Comaties.	1890.	1880.	$\underset{\text { crease. }}{\text { In- }}$
Ada	8.368	4,674	3,694
Alturas	2,529	1,1095	936
Bear Lake.	6,057	3,235	$2{ }^{2} 82$
bingham.	13,575		13,575
Boisé...	3,342	3,214	125
Cassia.	3.143	1,312	1,531
Custer	2,176		2.176
Elmore	1,570		1,870
Idaho..	2,955	2,031	924
Kootenai	4.108	518	3,590
Latub	9,173		9,173
Lembi.	1,915	2,230	
Iogan.	4,169		4,169
Nez Perce	2,8+7	3.965	
Oneida.	6,819	6,964	
Owshee	2,021	1,426	595
Shoshone.	5.352	469	4,913 2,957
Washingion.	3,836	879	2,957
	84,385	32,610	

Of the rugged mountains of the Bitter Root, Rocky and Wasatch ranges, the Bitter Root occupy the northern, the Rocky the central, and the Wasatch the southern links in the eastern boundary. The "spurs" of these ranges, especially the Wasatch, extend well over into Idaho, and they contain some of the hest mineral belts. Their highest peaks reach altitudes reaching from 9,000 to 13,000 feet. On the south and southwest are the Owy hee Mountains, which form an important link in the great divide between the waters of the Columbia and those of the Humboldt. The Sawtooth, Salmon River, Wood River and Boisé are among the prominent mountain ranges in Central Idaho. On the West are the Blue Jountains of Oregon and Washington. The interior of the State is a vast platean, varying in altitude from 600 feet above the sea in its lowest valleys to 10,000 on the tops of its highest peaks. The average elevation is from 2,000 to 3,000 feet less than that of Wroming, Utah, Nevada or Colorad". Its numerous mountain ranges rum in a variety of directions, the trend of the principal ones, lowever, being southeast to nortlowest. In the interior ranges are the mineral helts. which first altracted general attention to the territory.

The figures showing the principal elevations have been tabulated as follows:

N゙ame.	Elevation.
	Fert.
Allioa	4,400
Alturns lake	6,100
American Fally..	4,320
Athanta.	5,505
licar lake.	5
linllvor	5,200
Blackfoot City	1.54.3
Mrommington	5,965
Bolsé City..	\cdots
Bug Comas Prafole	5.1100
BIry Camas realrle	8.610
Bomunza City.	6.160
Jurke	8.940
Camasstation.	4.722
Criur liAleme Mlaston	2.200
Cralg Monntalu.	4.190
Custer Mountaln	8,740

Idaho has numerous and rapid rivers. With the exception of a comparatively small portion of southeastern Idaho, whose waters flow into the Basin of Great Salt Lake, the river system is entirely trilatary to the valley of the great Colnmbia River. There are three important rivers in Idahe which empty directly into the Columhia-namely, the Spokane, Clark's Fork, and the Snake. Snake River meanders through the eastern, southernand western parts of the State for over 1,000 miles, and, next to Niagara, boasts the most imposing calaract on the continent-the great Shoshone palls. It rises among the most marvelous scenes of the lellowstone National Park, within a few feet of the crystal fount from whiel springe that great tributary of the Dississippi, the Yellowstone, and within sight of the headwaters of that grand inlet of the Gulf of California-t the Lio Colorado. Here, at its
romantic start, the suake is also only a day's ride from its twin torrent of the North, Clark's Fork, hut soon sweeps southward 500 miles, as if to gather in the waters of wider and richer tields. Again, Howing majestically northward to mark the boundary between Idaho and Oregon, it unites, when within 400 miles of the Pacitic, with the Clark's Fork system to form the Columbia. Soundings of the Snake River in eastern Idaho, near the crossing of the Utah Northern Railway, fail to discover bottom at 940 feet.

Governor Shoupin, in his report for 1889, says that conservative estimates give Idaho $13,000,000$ aeres of agricultural lands. Others place the amount at $20,000,000$. It is safe to estimate it at $15,000,000$ to $16,000,000$ acres. Industrious pioneers have already brought under cultivation about 4 per cent., or 600 ,000 acres, expending $\$ 2,000,000$ in irrigating canals alone.
The altitude of the land governs, to a large extent, the character of its productions. The valleys of lSear Lake, Lemhi, and Custer counties are profitably cultivated at an elevation of 6,000 feet above tide water, and at 5,000 ieet, oats. wheat, potatoes, turnips, etc., are raised abundantly. Timothy and a iew hardy grasses flourish at these altitudes. At 4,000 to 4,500 feet all kinds of grain and vegetables are profitable, except a few tender garden products. In some localities fruit is grown successfully at 4,000 to 4,300 feet, and berries are abondant at 4,500 . The Boisé Valley, so prolific of all kinds of fruit, is 2,800 feet above the ocean, while the valleys of the Clearwater and Snake rivers, near Lewiston in the northwest, with an altitude of but 650 feet, revel in tropical vegetation. Thus Idaho, in addition to its invaluable mineral wealth, possesses a share of the best climatic influences of erery portion of the Union.

The soil in the valleys and on the plateans, in the eastern and southern parts of the State, is composed of vegetable matier mixed with mineral, and, in some localities, with sand and clay. On this class of soil sage-brush grows extensively. In the northwestern counties, dark loam of great depth prevails. In the gulches and near the mountains the soil is mixed with decayed rock. Alkali soil is limited to narrow strips, in widely separated localities, and rarely interferes with agriculture.

The rield of all kinds of cercals, when land is irrigated, is most gratifying, and is not surpassed by any Slate or Territory. The same can be said of all kinds of vegetables, while in many parts of the State tender vines produce abundantly. Fruits are excellent in quality and flavor. Apples, pears, peaches, plums, prunes, apricots, grapes, and all small fruits and berries are raised in great abundance. Huckleberries, gooseberries, and wild cherries grow wild in profusion on the mountainsides and foot-hills. The camas, which gives a name to several prairies in the State, is found in all sections. It is a bulb which is highly prized by the Indians for food.

Alternating and nestling among the mountain ranges are many valleys, large and small, affording in the aggregate a vast area of agricultural lands not exceeded in fertility by any in the world. The arable portions of the valleys lie from 600 to 6,000 feet above the sea, and they range in size from one to twenty miles in width, and from twenty to one hundred miles in length.

Traversing southern Idalo is the extensive volcanic belt on the basin of Snake River. This basin st retches far into nelghboring territories, being 800 miles in length. In Idaho it averages about fifty miles in width. Some of the best valleys traverse it, but it is more noteworthy as the great winter
grazing region of Idaho and adjacent territories. Its nutritious herbs and grasses fatten thousands of cattle and sheep anmually.

Idaho is in the same latitude as France. Switzerland, and portions of Italy, Spain and Portugal. It is subject to occanic intluences very similar to those countries, and necessarily has a somewhat similar climate. All this region is near enough to the Pacific Ocean to be very noticeably effected by its currents. By reference to any map whereon these ocean currents are shown, it will be seen that the great Japan current (Kuro Siwa)-that mighty stream of warm water-bears directly against the western shores of America. The temperature of the winds blowing over it is, of course, affected by its heat, and they carry their modifying influences inland hundreds of miles, even extending their genial influences upon the climate of Montana. The average or mean annual temperature at Lewistonin northern Idaho-is 56°, a milder showing by five degrees than is made by Ohio, milder by ten degrees than Iowa, and milder by twelve degrees than Maine and New Hampshire. Boisé City, in western central Idaho, with a much greater altitude than Lewiston, has an average temperature of 51°, the same as Ohio, and four degrees warmer than Connecticut.*

At this writing (1891) mining is a very large industry in Idaho. The total value of the metals produced in the state since 1862 is reported at $\$ 157,720,962,84$. The statistical returns, for the ten years closing with 1889, were as follow:

The rapid increase of the mining industry in this new State will he specially noted.

The values of the several metals mined in 1889 were: Gold, $\$ 3,204,500$; silver, $\$ 7,563,500$; lead, at 4 cents per pound, $\$ 6,400,000$; copper, at 10 cents per pound. $\$ 85,600$; total, $\$ 17,344,600$.

Wool-growing in the State is also largely on the increase. In 1880 there were about 50,000 sheep in Idaho; in 1888 the number was over 350,000 . Other industries also show large progress.

By the act of February 18, isरi, Congressgranted to Idaho seventy-two sections of public lands for school purposes, under certain restrictions. These, with the $3,000,000$ acres of school lands (sixteenth and thirty-sixth sections) allowed under the general law, form the basis of a sound, sulistantial schnol system. The reports of 1889 showed a total to date of 337 school districts, with 365 schools, and a school population of 18,506 . The Methodists, Presbyterians, Episcopalians and Catholics have also established academic schools and numerous. private sohools; some of a high grade of excellence are reported.
The following is a list of the Governors, with their dates of service:

Wm. H. Wallace.
Caleb ison
Invid W. Hallard.
luanc La Cibhs..
David W. Ballard Gllman Marston.
Thoman W. Bthnett.

J.	John I'. Iloyt.......... 15
18i-1-6ti	Mason Bra
1866-6,7	John N. Irwin........ ${ }^{\text {den }}$
1517-68	
70	George L. Shoup....... 1888
80-71	Norman IR. Wllley*1890-93
1871-75	Term explres Jan. 1,

The salary of the Governor of Idaho is $\$ 3,000$.

[^188]IDDESLEIGH, Earl of, an English statesman, better known as Sir Stafford Northcote, boril in Devonshire, Oct. 27, 1818, died in London, Jan. 12, 1887. He was educated at Eton and at Oxford, and began puplic life in 1843 as private secretary to Mr. Gladstone. In 1847 he was called to the bar, and four years later succeeded his grandfather as eighth baronet. In $185 \overline{5}$ he entered I'arliament as Conservative member for Dudley, was elected for Stamford in 1858 and in 1866 for North Devon, representing the latter constituency until 1885 . He was financial secretary to the ireasury in Lord Derby's ministry of 1859, and in 1866 was appointed by the same prime minister president of the board of trade. While at the India office in 1868 Sir Stafford Northcote had charge of the Abyssinian expedition, which under his management was carried to successful issue. In 1871 Mr. Gladstone appointed him British commissioner to the United States for the adjustment of the Alabama difficulty. He was chancellor of the exchequer in $187 t$, and when Mr. Disraeli went to the Upper House Sir Stafford succeeded to the leadership in the Commons. In 1885 he was raised to the peerage and appointed first lord of the treasury. He was foreign secretary in Lord Salisbury's second ministry, but resigned the post a few days previous to his death.

IDE, or In, a small fresh-water cyprinoid fish, Leuciscus idus or Idus melanotus of Europe. Its flesh is esteemed. A domesticated variety, colored like the gold-fish, is known in northern Europe as the Orie.

1DEALISM, the modern philosophical doctrine which maintains that all conceptions proceed from self-consciousness as distinguished from the doctrine that all knowledge begins with sensations. It is the opposite of "realism" and "sensationalism;" for it denies the reality of the outer world and its impressions, and maintains that all our knowledge finds its starting ground in abstract conceptions. The idealist doubts the existence of an external world, and relies solely upon an analysis of self (Eqo).

Subjective Inealism makes the innate faculties of the human mind the primary subject of investigation, and predicates a philosophical system from their intuitions and relations.

Modern Inealism started with Descartes (15961650), was pushed forward by Baruch Spinosa 1632-16i77), and was carried to extreme conclusions by Bishop Berkeley (1684-1753). The latter declared that the supposed existence of a material world was not only incapable of proof, but was also positively false. Idealism was horne to its highest visjins and most perfect realizations in Germany The most noted philusophers of this school are G W. Leipnitz (1646-1716), Immanuel Kant (1724180t), Fichte (1762-1814), F. W.J. Schelling (17751854), and G. W. F. Hegel (17a)-18:1). Kant, however, insisted that the material of our thoughts is in the external world.

IDELER, Chmatias lumwta, astronomer and chronologist, horn near l'erleherg. in l'massia, Sept. 21, 1766, diod Aug. 10, 1816. After holding various oflices he received a professorship at the University of berlin in 182l. He was anthor of sereral valuable works, which include Mistorisch IVtersuchungon ïber die astronomischen Beobochtungen der Alfin (Leipzig, Isnai), andIfambluch der mathematiselonen und technischen ('hromologir (Berlin, 18:20-26).

IIMOCY. Spe lNssivity, in these levisions and ddditions; also l'ritaonica, Yol. X111, pp, 95-l13.

InlOSYNORASV, n pecularity of physical or mental constitution or temperament. See Aswre Athr, in these Revisions and Adritions.

IDUN, or IboNA, the name of a goddess of Norse mythology. She was the danghter of the dwarf

Svald, but, being received among the Esir, she became the wife of Bragi.

IGLOOLIK, an island near the east end of Fury and Hecla Strait, in the Arctic Ocean, the place where Parry passed the winter of 1822-23.

IGNaTIEFF, Nicolaus Paulovitci, a Russian diplomatist, born at St. Petersburg, Jan. 29, 1832, and educated in the corps of pages. In 1849 he entered the guard, and in 1856 exchanged from the military to the diplomatic service. Appointed military attache of the Lussian embassy at London, he won the emperor's approval by a report on England's military position in India, and was in 1858 sent on a special mission to Khiva and Bokhara. In 1860, as ambassador at Peking, he negotiated a treaty advantageous to Russian interests. From 1864 he represented Russia at Constantinople, and in 1867 was made ambassador there, in which capacity he took a principal part in the diplomatic proceedings before and after the Russo-Turkish war of 1878. After the accession of Alexander III. Ignatieff was appointed minister of the imperial domains, and in 1851 succeeded Prince Loris Melikoff as minister of the interior. In this capacity he endeavored to stamp out Nihilism by forcible measures. He was dismissed from office at the end of the year.

IGNORAMUS (Lat., we do not know), the word formerly written by a grand-jury on the back of an indictment, meaning that they rejected it. The word is now used most commonly as a synonym for a blockhead.

IGNORANCE (Ignorantia juris) is held in law to be no excuse for any breach of contract or duty, nor for crime or other offense. It is absolutely necessary to start with this basis; otherwise, it would be quite impossible to administer the law, for if once a contrary maxim were allowed it would offer a premium to ignorance and would lead to endless and abortive inquiries into the interior of a man's mind. Ignorance of a fact is a different thing. In the case of petty offenses, however, and even in crimes, a judge always takes into consideration, when passing judgment, whether the prisoner or defendant is an ignorant or intelligent person. Another kindred maxim of the law is that every man intends the consequences of his own act. Thus, if he shoot at or give poison to a person it is presumed he intended to kill such person. So, if he leave a trap-door open in a street or thoroughfare it is held he intended that people should fall into it and be injured.
IKROPA, or lkiors, a river of Madagascar, about 270 miles long, rising in the province of Ankova, and falling into Bembatooka bay, on the northwest coast. It is navigable for about twenty-five miles from the sea.
ILICLN, the bitter principle of the holly, Iex aquifolium. It forms in yellowish-brown crystals, and is extremely bitter.

IlION, a thriving village of llerkimer county, N. Y., on the Nohawk Rirer. Nere is located a factory where firearms, type-writers, sewing-machines and farming implements are made.

IlANANTHIN, a yellow coloring matter contained in the leaves of the holly. It is used for dyeing eloth prepared with alumina or irom mordants.
hILICIUM, a genns of trees of the natural order Maynoliactir. The species are few, but widely distributed. The seeds of I. amisatam (Chinese anise) are useful in medicine; and I. religiosum is held swered by the Japanese. I. floridamiom, a tall evergreen shrub with large lowers and leaves rather lleshy. und I. purviftorum, are found in tho sonth of the United States.

ILILIOIS INDUSTRIAL UNIVEERSITY (since Jaly 1, 1885 , University of Illinots). at Urbana, capital of Champaigncountr, was established under acts of Congress of July, 1862, and July, 1566, and under acts of the legislature of Illinois Jan. 25, Feb. 28, and March 8, 1867, to "teach in the most thorough manner such branches of learning as are related to agriculture and the mechanic arts, including military taotics, and not excluding other scientific or literary studies." The University was opened in 1868 , and three years later women were admitted as students. It includes the following colleges and schools: College of agriculture and horticulture; college of civil, mechanical and mining engineering, and architecture; college of natural sciences, chemistry, and natural history ; college of literature and art; school of military science; and sehool of industrial art. The assets of the University are about $\$ 1,000,000$, with an income of about $\$ 25,000$.

ILLINOIS RIVER, the largest stream in Illinois, formed by the Des Plaines and Kankakee Rivers, which unite in Grundy county, and flow southwest, entering the Mississippia fer miles above Alton. The main stream is about 350 miles in length, and is navigable in favorable seasons as far as Peru, a distance of 250 miles. It is connected by canal with the lake navigation at Chicago.
illinois, State of. For early history, government, productions and earlier statistics of IIlinois, see Britannica, Vol. XII, pp. 703-06. The census of 1890 reports the area as 56,650 square miles. Population, $3,826,351$; capital, Springfield, with a population of 24,842 . The population of the State by counties in 1890 was as follows:

	Counties.	1890.	1830.
Jersey.		14,810	15,542
Jo Daviess		25,101	27,538
Johnson..		15,013	13,078
Kane.		65,061	44,989
Kankakee.		28.532	25,047
Kendall		12.106	13,083
Kıox		34.752	24,344
Lake.		24.205	21,296
La Salle..		50.798	70,403
Lawrence.		14,69\%	13,663
Lee.		26.167	27,491
Livtogston.		35.455	38,450
Logan....		?-3.489	25,037
McDonongh.		27,467	27.970
MeHenry		2fi.114	24,908
McLean...		กิ\% 3,036	60,100
Macon.		35,083	30,865
Macoupin		40,380	37,692
Madisom.		51,535	50,126
Marlon.		24,341	23,686
Marshall		13.653	15,055
Mason.		16,067	16.2 ± 2
Massac.		11.313	10,443
Menard.		13,120	13,024
Mercer		18,545	19.502
Monroe.		12,948	13,682
Mantgomery		30,003	28,078
Morgan.		32,636	31,514
Monltrie		14,481	13,699
Ogle		28,710	29,937
Peoria		70,378	55,355
Perry.		17.529	16,007
Piatt		17,062	15,583
Plke.		31,000	33,751
Pоре.		14,016	18,256
Pulaski.		11.355	9,507
Pıtasm		4,730	5,55-4
Randolph		23.049	25,690
Richland.		15.019	15.545
Rock Island		41.917	38,302
Salnt Clair.		66,571	61,806
Sallue.		19,342	15,940
Sangamon.		61,195	52,691
Schuyler.		16,013	16,249
Scolt.		10,304	10,741
Shelby		31.191	30.270
Stark.		9,980	11.207
Stephenson		31.23	31,963
Tazewell...		29,556	29,666
Union.		21.549	18,102
Vermilion		49,905	41,588
Wabash.		11, Nat	9,945
Warren		21.251	22,933
Washingtan.		19, $0^{\circ} 2$	21.112
Wayne.		23,606	21,291
White		25.005	23,087
Whiteslde.		30,854	30.4ヶ5
W111		62,007	53.422
Williamson		22, 2.206	1!, 20.4
Winmeluago.		39,4038	30.505
Wroodford.		21.429	21.620

The cities having a population of 9,000 and over were: Alton, 10,1St; Aurora, 19,634; Belleville, 15,360 ; Bloomington, $22,2+2$; Cairo, 10,044 ; Chicago. 1,098,576; Danville, 11,528; Decatur, 1ti,841 : East St. Louis, 15,156; Elgin, 17,429; Freeport. 10,159; Galesburg, 15,212; Jacksonville, 12,357; Jolict. 27,407; Moline, 11,905; Peoria, 40, 558 ; Quincy 31,478; Rockford, 23,589; Rock Island, 13,596; Springfield, 24, 55% La Salle, 9,904 ; Ottawa City. 9,971 . The city of Chicago, which ranked, in respect of population, as the 5 th eity in 1870 and the th eity in 1880, is now the 2 d eity in the United States. The state reported a population hy decades as follows: in 1810, 12,282; in $1820,55,162$; in 1830, $157,45 \%$; in 1840, 476,183 ; in 1850, 661,470; in 1860, $1,711,151$; in $1870,2,539,891$; in 1880, $3,077,193$; in 1890 . $3,526,351$.

The complete list of governors of the State，with their dates of official service，is as follows：

Territorial．
Ninian Elwards．．．1899－1815．
State．

Shadrack＇Bond	1818－22		
ian			
John H：			
Joseph buncan			
Thomas Forli	1842－16	Joln in Hamil	

Illinois was the second State in rank in the United States in the production of steel in IS80 and in 1890，Pennsylvania being the first．In Illinois the increase during the decade was $2+1$ per cent．The production in 1880 was 254,569 tons；in 1890 it was 86，250 tons
The number of pupils enrolled in the public schools of the state in 1590 was 778,319 ，a gain of 10.55 per cent．in ten years．In addition to those in the public schools there were 105,232 pupils in private and parochial schools．In the latter there were reported alont 47,000 Catholic， 24,000 Lutheran， 4,000 German Evangelical pupils and small num－ bers of Protestant Episcopal，Holland Christian Re－ formed，Dutch Reformed and German Presbyterian children．
The State reform school is located at Pontiac， and reported，in 15s0， 383 inmates．

The coal products of the state in 1590 were $12,104,272$ tons，valued at $\$ 11,755,203$ ，and were near－ ly double the products of the year 1880 ．The coal area of the State embraces about 37,000 square miles． The employes during 1490 numbered $2+, 323$ ；the wages aggregated $\$ 5,644,3+7$ ，and the grand total of expenditures in the coal business in that year amounted to $\$ 10,3$ tin， 063 ）．The coal is bituminous and is found in 19 counties；it is used for steam and heating purposes．Coke is manufactured in Gallatin and la salle commes．
In the value of the output of sandstone the State ranked 12 th in 1850 and 25 th in 1891－the state of Ohio in both eases ranking the highest of all the States．
Illingis is a small producer of petroleum，the out－ put being $I,+00$ barrels in 1 s 89 ，all of it ranking as lubricating oil．
ILAENIUA，a name given hy R．Hermann to an element which he supposed to be present in ore found in the llmen mountains in Siberia；he also supposed it to be present in some of her minerals． His conclusions have not been admitted by other chemists．
ILMINSTER，an ancient market－town of Somer－ setshire，England，on the river Iste，cleven miles southeast of Tauntun．The church in Ilminster is a noble examphe of propendicular architecture． Some manofactures of ropes，bricks and tiles are carried on：l＇opulation of parish（1891），3，2sI．

Mshey，Fist，ur Market Insiey，a market－ town of Burkshire，Fhgiand，situated amid heak downs，nint miles north of Nowbury and six and a half miles south of bideol．Its sheep markets are among the most important in the kingem．lopu－ lation，ith．Archhishop de Hominis（sep Rritannica， Yol．（11，p．35．was rector of Werst Insley，two milas morthwest．Population， 377.
IAITATION：in the seinnee of musieal composi－ tien，the reprating of the same passage，or the fol－ lowing of a passage with a similar one，in one or mors of the other parts or voices，and it may be
either strict or free．When the imitated passage is repeated note for note，and every interval is the same，it is called strict，and it may take place in the unison or octave，or in any other of the degrees of the scale，either above or below the original passage．Canon（see Britannica，Vol．X YII，p．82） is strict imitation carried on to some length．The progression of a passage may also be imitated by an inversion，or by revarsing the movement of the original，also by notes of a greater or of a lesser value．
IMMIGRATION INTO THE UNITED STATES OF AMERICA．For general article on this sub－ ject see Emigration，Britannica，Vol．VIII．pp．173－ 177；and Uxited States，Vol．XXIII，pp．731，754－ S21．The official returns made to the commissioners of immigration at the office of the superintendent up to June，1891，furnish the data for the following tigures：
The nationality of immigrants to the United States for the year ending June 30．1890，was as fol－ lows：Germans， 92.427 ；Euglish， 57,020 ；Irish， 53，024；Italians，52，003；Swedes， 29,632 ；＇Scotch， 12，041；Norwegians，11．370；Danes，9．366；Swiss， 6，993；French．6．555；Europe，not specified．112，764； total－Europe， 43.225 ；ali others， 12,077 ．of the whole number of immigrants who arrived within the above－named period， 364,086 came through the customs district of New York． 27,178 through Balti－ more，29，813 through Boston， 22,658 through Phila－ delphia，and 11,567 through all others．
The reported occupations of immigrants who ar－ rived during the jear ending June 30，1889，were as follows：Laborers， 110,809 ；farmers， 28,962 ；serv－ ants， 30,220 ；carpenters， 4,373 ；miners， $5,50 \overline{3}$ ； clerks， $4,00 \overline{5}$ ；tailors． 3,809 ；shoemakers，2，065； blacksmiths． $2,18 \overline{5}$ ．The total number of profes－ sional immigrants was $2 . S 15$ ；of skilled laborers， 50.457 ；of miscellaneous， $182,394$.

The following are the yearly official summaries since and including 1820 ：

Year．	Total Immigrants．	Year．	Total Immigrants．
1520	8．ぶ	1538.	119，001
1821	9.127	1859	118.116
	6.915		150，237
182：3		1861	89，724
1＊24	7， 112	1462.	89，007
1525	10，1199	1 x 63	174，521
1526	10，3：3	180.	193，195
1827	18，5\％	1815 \％	217，433
1sis	97．832		163，594
15：3	22， 320	Fiscal	ng June 30.
15：3．	23，3222	1867．	298，967
181	22，633	1868.	282，189
15322	（ti） 14×2	1866	352，569
1833		1870	357，203
1836	6．5．，运	1×71	321，230
	15.87	1572．	401．896i
1245	里里是	1873.	459，803
$15: 37$	79，3410	1574	313，339
1×35	3s， 914	1875	2927，198
1898	䘷，Mi9	15	169，988
1＊10	s1，013i	1 n 77	141，437
1542	M10Nu	$1{ }^{1075}$	13s．14is
1512	100．tuis	sim．	17206
151：	52．185	1 not	457，257
1×11	78．615	1 n 41	16，9，431
1815	111.41	154．2．	7＜4，993
1×12	1．7．111\％	120：3．	603，323
1×17	23418	1R4．	518． 992
1＊4＊	244．347	18ヶ\％	33，5，246
1819	997．121	193ti	334，203
1500	3619，1mi	12：	490， 109
1551	379，itia	1 she	546，549
185	3T， 11018	1459，	4 41.127
14.3	3tisatis	1590.	435，302
154.	1208		
18.50	M（1）， 47		15，281，009
1 sin	119.427	From	，es－
\＄57．	3．46， 914		250，000

In the above table immigrants from the Rritish North American Possessions and Mexico are not included since July 1 ， $1 \mathbf{N} 55$.

With regard to insane fersons, the new immigration law says that "aht idiots, insame persons, hatupers, or persons likely to heome a publite chareng shall be exeluded from admission into the ['nited states." This provision is a remactment of the law of Ang. 3. 14se, which prosided that "no convict, lumatic, itliot, mor any persom mahle to take care of himself or herself, without lneoming at pablic charge, shall be permitted to land."

Now, there is ample frow that since 15se hundreds of persons have gained atmission who ought to have hern oxchated acourding to the last-mentioned act. They were shipped to this country from Europe hy the ant horities of eities and towns, or by so-called benovolent societios. By the same agencies conviets have also been sent to us. A convicted murilarer, Nicholas biader, arrived at the port of New lork on April 23 , 1891 , having been shipurd to America by the atuthoritios of a town in Germany, where he liad been confined in prison for one gear and in an asylum fur the insane for 24 years. This case is now under the consideration of the Treasury Department. In a similar way Enropean city and town authorities have for years unloaded paupers and lomatios upon the taxpayers of this comiry, and especially upon those of the state of New lork. In Austria, many persons conricted of erime have been given the alternative of either going to prison or emigrating to Amerjea.

Since 1 sst the Board of Charities of the State of New York has sent hack to Europe more than 600 lumaties, imbeciles, and farble-minderl jursons who had been shipped to America by the authorities of their native citios or fowns, hy immigration sociteties, and " hemerolent" arganizatims, often also hy relatives, guardians, and fritmets. Two-thirds of these persons entered the state hy way of the port of New York. They were afterwards found in the asylums, hospitals, and almshouses of the state. In many cases they had come with through tickets te interior toms, where they at once breame public charges. In many instamers the senders of such persons even seleeted the asylum or almshouse in this State to which they should lie consigned. Of the 600 persons sent hack to their homes in Europe there was no eomplaint made in any single instance by the authorities into whose charge they fell after their return home. This shows that the action of the Bard of Charities had been proper and justified.

According to official statements the number of insane persons in the institutions of the state of New York were on Oct. 1, 1880, 9,587 , and on Oet. 1, 1890, 16,022 . This is an incretse of 6,455 persons in 10 years, or tis per cent. In the same to years the inerease of the population of the State was only 18 per cent. It is therefore the beliaf of the hoaril uf Charities-and this helief is based upon chose in-tuirius-that by far the greater part of this increase is due to the shipment of insane persons to this State from the countries of Europer.

Noittempt to enforce the law of dse on the Canadian boundary has been made, nor was it effectively enforend at the seaports. lint there is a commendable anergy shown to enfore the new baw a! the seraports, and especially at tha port of New Fork, where the evasion of the former law has imposed so heary a burden on the taxpayers and Buard of Charities. In view of the hearing the new Congressional act has upon the enneral guestion of immigration, as well as in view of the relief which it promises to lining to the eountry from the perils incident to indiscriminate and mirestricted immigration, we make roun for full text of the act which is as follows:

AN ACT in aneudment to the various act- relative to lamagration und the mantation of aliens under contract or aferee ment to preform labor.
 rmbth stutes of Amerem in tombress fanembled. That the fol. lowing elasos of mliens shatl be exeluded from admiswion into the lumblates, in meordunce with the existing acts requhating immitration, other than thonconcerning Chinese
 ly bobecomte mablic charka, acrsob-sufferiug fromn loath-
 beed convieted of a felons or olla'r infamons erime or misdenueanor involving moral turpitule polykernhets, and nlso

 less if is atlirmathely and satasiactorily shown on spechat inguiry that sueb persin does not belong to une of the foregoing excluded clases. ur to the clas of contrmet latorurs exchaded by the act of Fehruary twenty-sixth, einhtem handdred amd eights-bive: bat this aetion shall not he hold to exchade fersona livine in the Únited states from senting for u relative or friend who is not of the excluderl clases under such regulations the the secretary of tae Transary bay pre
 so apply to or exclote persoms combicted of a political offense. notwithstanding satit jubitienl offonse many bet wes
 fivolving moral tirpitude' hy the laws oi the land whence be came or by the conrt convinting
SEC. 2. That no suit or procecaing for rlohation of said net of Febranty twentysixth, eighicum hamdreal mad eighty-five, prohibitine the importation and mieration of fordentre mader contract or agreement to perform labor, whall he settled, compromised. or discontimmed withont the enenent of the conrt entured of recorded with reasons therefor.
Esec. B. That it shall he dewned a volation of said net of February twenty-six. eighteen hamdred athi cighty-live to assist or encourage the importation or immierntion of ang alien by promise of employment throush adverlisemututs Frinted and published in any foregn commory and any alien coming to this conntry in consenvence of subh an andertisement shall be treaterl as coming under of contrat as contem phatad by suchart: and the peralties by said act imposed
 Shall be applicahe insuch a ease: frombern thas section
 sumbsutes
sw. 4. Thist go stramship or transportution company or owners of wessels shall dirently or through agents, either by writing, मrinting, or oral represematations solicit, invite or encourage the lmmigration of any ulieu into tha fuited statesexcept by orbinary commereind lelters. cirenlars, adfertivemonts. or oral representations. stathe the suilings of their vessels and the terms and facilities of transportation therein aud for a violation of this provisionany such steam shifor transportation company, and any such owners of res. sula, nud the agents by them employed. shall be subjected to the penntties imposed by the thirt section of suid net of Febramry wentyosixth. eightem humdred and ciehtyote, for violntions of the provishom of the first section of sumact.
SEx. 5 . That ection tive of sain act of Fobramy tweaty sixth, ejghteen handred anil eighty five. shall be, and lereliy is, nmended by adding to the serond frowise in sad sertion the wores "nor to ministurs of any religjoms demoninntime bor peranus belonging to any recognizaif puftecion: wor brofossors for collew's und meminaries " and lis excludiug from the seoma proviso of safd section the words "or why relative or jersomit fromel."
Ger, That may person who shall hing into or land in the

 Whblent of immirration shall lic an stliere in the Trustery
 tary of the "trastury. . Whath he what make monal reports in writhge of the transurtohz oll his office gogether with

EFe. That whon the arrivat hew war at any place within
 dity of the rommantime ofer stan

 the laspectua offieers may ortur a tempurary remoral of
atuch aliens for examination at a designated time and place, and then and there detuln them until a thorough iuspec. tion is made. Hut surh remoral shall wot beconsidered a landing during the pendency of sum exanifnation. The medlcal examination shull be inade bs stirceons of the Marine Hospital serviec. In cases where the serviees of a Jarine Hospital Service, In cases where the services of a iarine
Hospital Surgeon canot be obtained without causing nuHosphat surgeon eannot be ohtained hithout cansing unamined hy a civil surgeon and the Seeretary of the Treasury shall fix the eompensution for such examination. Tlie inspeetion officers aud their mssistants shall have power to administer oaths, and to take and consider testimony touching the right of any such mliena to enter the United States, all of which shall te entered on record. Dnring such inspection after temporary removia! the superintelldent shall cause such aliens to be properly housed, fell, and cared for, aud also, in his diseretion, such as are delayed in procecding to their destinationafter inspuction. All decisions made by the inspection oflicers or their assistants tonehing the right of any alien to land, when adverge to sueh right, shall be final unless appeal be taken to the superintendent of immigration, whose action shall be subjeet to review hy the Secretars of the Treasurf. It shall be the duty of the aforesaid officers and agents of suoh ressel to ndopt dne precautions to prevent the landing of any alienimmigratit at any place or thme other than that designated ly the inspection officers, and
any such officer or ngent or persen in charge of such vessel Who shall either knowingly or negligently land or permit to land any alien immigrant at any place or time other than that derignated hy the inspection oficers, shall be deemed gullty of amisdemeanor and punished by a fine notexceeding one thousnnd dollars, or brimprisonment for a term notex. ceeding olle year, or by both such fine and Imprisonment.

That the secretary of the Treasury mas proscribe rules for inspeetion nlong the borders of Canada, British Columbia, and Mexicoso ms not to obstruot or unaecessarily delay, 1 m fede, or annoy passengers in ordinary travel between said eountries: Frorided, that not exceeding one inspector shall be appointed for each customs district, and whose salary shall not exceed twelve hundred dollars per year.

All duties imposed and powers eowlerred by the second section of the act of August third, eigkteen hundred and eighty-two, upon State commissiomers, boards, or offcers acting under contract with the Secretary of the Treasury shall be performed and exereised, as occosion may arise, by the inspection officers of the United States.
SEC. 9. That for the preservation of the peace and in order that arrests may be made for crimes under the laws of the States where the various United Statesimmigrant stations are located, the officials in eharge of sueh stations as occasion may require shalladmit therein the proper State and municipal officers charged with the enforcement of auch

aws. and for the purposes of thas pection the jurdadetion of surh ofticers und oithe lome rourts shatl extend over such strations.
SEs: 10 . That all nflene who may nulawfally come to the
 on the veesel hy wheh they were brought ins. The cost of thelr malutenume while on fubd, as well as the expense nf the retarn of surh nhens, shall be horne hy the owneror ownera of the vesand on whens sheh allens came: mad if any mas-
 ferelveback on bompl the versull wheh allens, or shall neglect
 them th the gort from whieh they coma. or to pay the enst of their mafatemane e while on that, sull mastar, ngent, con-
 sighee. efr owner qhal be de'mbd fridter of mindimednor,

 may sumh fine (a mind

If thant canmot be clone, then at the expense of the ['nited states; nnd nay nllen who heromes n publia charge within one yenrafter his arionl la the Conited States from canses cxastur brlor to has limding therein shmll be deemed to have come in volut on of luw mad shatl hereturated ts nforesnd
 strued to aftect any proweuthom or other proceeding, erimp mal or elvil. begun mathr nuy exlsting act or nis nets lereby nmenided, hut such prosecutin or other proceciliges, erimi min or ctill, shall proceed ns if thenet had not hem passed. SEE, 13. That the clrcuit nul dimplet courte of the Unlted Stuten are herelydavested with fult and concurrent jurlsilc-
 the wroblstons of this net: mad thls act shall golnto effect on the first day of Aprll, eighteen hamared and nimety-one.

Ajproved, Wareh 3, 1s:01.
The muhpolned chart, prepared ly, Rev. F. W. Hewes, of

 Thoir Politionl sociul and Juilustrial Develommenti, furalshes,
 thu l'alted states durlug tho dacude oudiug with the gear 1800.

Notes on the Chakt by Rev, A. W. Hews.-Periodicity. The culminating years of the peist decade are 1082 and 1368. as Indicated in the dlagram by the general tread of the charting jines.

The chlel causes producing fluctuations in the stream of immigration ate undonbtedly the comparative coudttions affectiug labor in this country and that from which the Immlgrant comes, adit is remarkable that a knowledge of favorable or unfarorable conditions tuecomes so quickly and generally known in the laboring communities of the Old World, from which the mass of 1 mm mgration flows.

Look at the chart and see how true it is that the prineipal Buropean countries reduced thelr exodus very greatly in 18s3. The two exceptions are ltaly and Hungary, and in the following year Hungary and Rusita. What else than the letfollowing year frlends lu the old conntry can glve the impulse that tere to friends in the old conntry canglye the impuse that
increases or decreases this living tide How these chart lines portray the judgment of fortign peoples as passed upon Jubor conditions herel

At the same time these chart lines serve to compare the various labor conditions of Europe. Since lssi, the Russian line shows a constant hicrease, indicating that, whatever the contemplating inmlgrants from other countries may have believed to be to their advantage or disadyantage, those in Kussia have seen advautage only, and have continued to come in undimlaished aunbers to a country which they befiered would give them better conditions. The year 2890 furnishes two other examples of the same kind; for while most countries decreased their contribution to our population, Inaly and Hungary greatly increased theira.
Increase. - It needs but a brief study of the chart lines to see that the three countries which are at present most persistent in their increase are the three just noted: viz. Italy, Russia and Hungary. The sons, clerks, miners, caryenters and jolners, and tailors.
Oi the unskilled or "'miscellaneous" occupations as are regorted, ranging from three "bird dealers" to 139,3i5 laborers. Others reporting at over 2,000 each are: $3 . t 37$ peddlers, 6.507 merchants, dealers; $28,6 \% 5$ servants (of which number ireland sends 10,113), and 29,246 farmers (of which number Germuny sends 8.409 .
Among the more numerous "professional occupations" are reported 491 clergymen, 578 musielans, 201 physicians and surgeons, 44 teachers, 109 sculptors, 158 lawrers, 105 engravers, $2-1$ artists, 169 actors, and (the least number) 5 lingulets.

One of the surprises coming to many who exsmine the chart wlll be the discovery that England alone (not even including Wales) has, sinee 1885 , sent a larger number of immigrants than I reland.

A few points showing what occupations these two nationalities hring with them are given:

Country,		室	\%		Servants.
England	18.719	2,4,9	20.583	1:207	3,042
Ireland	20,1:10	1.525	18.191	229	10,113

[^189]Gcrmanz.-As stated In the title of the chart, the German line is not shown, because it would reguire such a great increase in helght of the diagram. The German average for tho decade has been (In round numbers) 145.600 (double that of either English or irish), while in 1882 the number was 200,630, and in 10s6 it was 84,403. Like the records of other desirable immigrants, that of the Germans has since It 38 shown a decreuse, the figures beginulng with 1888 being 109,717, 99.5\% und 5.127^{-}.
Italians.-The total Itallan immigration for the five years $1076-30$ was 28,270 ; for the five years $1681-25$ it was 109,320 ; and for the five years 1 ksi- 90 it was 195 , 149 . There figures refer to the continental immigration alone wheh the chart litue portrays. The insular (sicily and Sardinia) for the three periods mamed was 420,181 , and 1 , Hati or 1 , wis, for the whole fitteen years, of which 1.14 came in the three years $1858-90$. (If this insular immigration were added to the continentai it would not move the chart line a halr's breadth except in 18ss-90, and in those yeurs its movement would be almost imperceptible.)
Hungarians.-[revions to 1880 less than 1,000 perycar.
Rusrians-Previous to 1 soo about 5 , into annually.
Sufdes-Previous to 1879 ahout 5,000 manually.
Occuprtions.-Of the total immigration of 1890 (455.802), 194,653 had no occupation, 44.50 were skilled operators. 211 . 750 unskilled or "miscellaneous,", $3,2 \% 6$ were reported as having "profersional occupations," and 1.117 as "occupation not stated.
The Officinl Report specifies 102 skilled industries. The number belonging to each of these judustrits ranges from 3"iron puddlers" to 3,879 "tailors." The eight reporting over 2,010 each are, in numerical order
IMMIGRATION STATISTICS. The total arrival of immigrants in the Unitoll States from foreign countries, other than British North America and Mexico, during the year ending June 30, 1591, amounted to 560,319 , against 45,302 during the preceding fiscal year, an inerease of 105,017 . The following table shows the number and nationalities of immigrants arrived in the United States during the years ending June 30, 1890 and 1591 :

Country of Last Per. manent Residence or Citizenship.	1890	1891	Increase.	Decrease.
Englaud	57,020	53.600		3,420
Ireland	53,024	55.706	2.6×2	
Scotland	12.011	12.5.7 7	516	
Great Britain, othe	669	448		231
Total Great Britain and lreland........	122,554	122.311		443
Germany.	92.427	113.504	21.127	
Italy...	52, 003	76.065	24,052	
Rnssia and Poland	46,671	74.923	28.252	
Austria-lungury	56,199 $41,(10) 2$	71,042 49,48	14,34:
Other hurope	32.169	36, 6 (h)2	14,393	
Chital.	1,710	2,840	1,120	
All other conntries	10,3ic	13,4:8		6.773
Total	450,302	560,319	105.107	

Including tourists and immigrants there was an increase in arrivals of 9,376 , or more than 22 per cent. over the previous year. The arrivals during the first four months of the present tiscal year (ending Oct.31, 1891) have been 189,758, an excess of 40.595 , or of more than 27 per cent. over the corresponding months of 1890 . This ext raordinary and progressing increase in the tide of alien immigration to the Uniled States, which does not include the inereased arrivals via Canada, has mot failed to at tract the attention of the whole country, and it will doubtless command the early consideration of Congress.

MMPIONISATORS, poets who, without f.evious preparation, compose on a given theme, and who sometimes sing and accompany the voice with a musiest instrument. The tillent of improvisation is found in races in which the imagination is more than usually alert, as among the ancient Greeks, the Arabs and in many tribes of negroes. Dowin to the present day the performances of improvisators constitute a favorite entertaimment of the Italians. Women have freguently exhibited this talent in a high degree.

IMPUTATIOX. a common technical expression in Christian theology. It denotes the transference of guilt or of merit, if punishment or reward. The doctrine of the imputation of sin, for example, is that all mankind are sharers in the fact and cunsequences of Adam's fall from innocence, and the correlative ductrine of the imputation of Christ's righteousness is that the merit or righteonsness of Christ is transferred to those who believe in Him; in other words, that they become sharers in His righteousness.
IN ARTICLLO MORTIS (at the moment of death), a legal phrase used in connection with the execution oi deeds by persons at the point of death.
INCARNATION, a term used in theology to denote the union oi the Divine nature of the Son of God with human nature in the person of Christ. See Jesus Christ in these Revisions and Additions; also Britannica, Vol. VIII, pp, $656-672$.
iNClideif PLANE, The, is reckoned one of the mechanieal powers because a man may, by rolling it up a plane, raise a weight, which he could not lift. The figure ABD represents an inclined plane, $A D$ is the plane properly so called; DB the height of the plane. BA its base, and BAD the angle of inclination or elevation. The power neeessary to sustain any weight on an inelined plane is to the weight as the height of the plane to its length; or as DE to DA. Hence a force which would, if applied

rertically, just lift 300 pounds will keep a rolling mass of $\boldsymbol{7} \mathrm{s} 0$ pounds in position upon a smooth inclined plane, whose gradient is five (height) in thirteen (sloping length); and a force exceeding this wonld pull the mass up the slope. In every practical case, however, there is a certain foree expended in overcoming friction, even on a dead level; in railway trains this is equivalent to vertically lifting alout 50 pounds for every ton of dead weight; and when a train leaves a level run to go up a slope of, say, one in eighty, the engine has for every ton of weight to do work equivalent to vertically lifting lifty pounds plus ine-eightieth of a ton, or seventyeeight pounds instead of the former fifty.
IN COEA DOMINI. a celebrated papal bull, which, with additions and modifications at various times, dates back to the Widdle dres. Its present form, however, is received from lopes Julius II, I'anl IIl, and, finally, in 16:7 from Urban ViII, from which year it continued for a century and a half to be published annually on Holy Thursday. It is a summary of ecclosiastical censures against heresy, schizm, sacrilege, ete. It also denounces piracy, phader of shipwrecked goods, and forgery. This bull cneountered in the serenterenth century the opposition of nearly all the courts, and in 1760 Clement XIS, elisemtinued its pullication.

1NCOME TAX, it tax levind in some eountries oil incone. Furing and following the civil war, the Thited states (ancernment levied (irom 1 sith to 1si2) a tax mincmes at the following rates: Dating in $18 i^{2}$, , incomes under ${ }^{2}, 000$ a year the tax was 5 prer cent. (expmpting \$ifon and paid louse-rent): on incomes of 杨, 0tt and not ower 810.000 . the per cent. and on those over $\$ 10,10010$, 10 per mont. withont exemptions. There wera semeral moditient ions: in

 states was abolishal. In the l'nited kinedom the
rate of ineome tax in 1890 and 1891 was rated as follows:
 able upon the first $£ 120$.

INCUMBENT, the rector, parson, or vicar holding an ecclesiastical benefice.

INDEBTEDNESS OF FOREIGS NATIONS. The figures and facts here given (and designed to present a comparative view of the indebtedness of nations in 1890), have been compiled from the detailed statements and reports furnished by the proper financial officers of the United States, as collated and published in the census bulletins of 1890. No special report from Spain and Mexico, and from some of the southern States had been received up to the date of sending these pages to press. In some cases where an increase of the indebtedness of a nation is shown, such increase is due to aid given to private corporations, or the direct expenditures in the constructions of railways or other public improvements, the value of which improvenents may be equal to that of the expenditures therefor, or perhaps in excess, but of which no account can well be taken in a summary of this character. (Sec table on following page.)

To show ehanges in the debt in any country between the two periods in question it has heen found necessary to adopt a like standard of value for each period, and for that purpose a nominal value in gold of the currency in which the debt was stated, has been used whenever known. Owing to the delay in making up the accounts some of the debts reported for 1510 were, in fact, for 1859 , and in a few cases for 1 sss; but in every case the latest date for which a report of the debt has been received has been taken. See Uxited States, Debt of, in these Revisions and Additions.

INDENTURE, the technical mame for a deed, under seal, entered into between two or more parties with mutual covenants. The edges were formerly indented, or notched, to correspond, for identification and security. Imentures of opprenticrship refer to the contract between an apprentice and a master.

1NIDEIENDENCE, a city and county-seat of Buchanan county, Jowa, on Wapsipincon River, dis miles west of Dubuque. It has a State insane asylum, three parks, expensive school-huildings. Population in 1890, 4,120.

INDET'ENDENCE, the county-seat of Montgomery county, Kan., located on the Verdigris Niver, 134 miles, by rail, south oI Lawrence.

INDEDENDENCE, a city and county-seat of Jackson county, Moy 10 miles east of Kansas City, and three miles from the Dississippi. It contains two colleges and several ot her institutions of learning. It was formerly the headyuarters of the overland routes to New Mexico, Oregon and California. Jopulation in 1sion, 6,373.
INllA. For gemeral article on this great ibritish empire, giving in ertenso its gengraphy, history, government product inns, commerec and earlier statistics, see Britannica, Vol. Xll, pp. T31-s12. The present area of the empire, without reckoning in baluchistan (130,000 square miles), which is to some extent dependent in, or foudatory to. India, reaches from the sth to the 35th degree of north latitude and from the 6 bith to the looth degree of longitule east of Grepuwich; Caleutta itself lying in siso R. longitude. The areas of Cashmere, dianipur, and of the recently annexed province of Up-

per Burma, with its dependent Shan States, bave never been surveyed. Cashmere, however, is estimated at 80,900 square miles, Manipur at 8,000 , Upper Burma at 90,000 , and the British Shan States at 90,000 . With these estimated figures, the total area of British India may be taken to be $1,648,9+4$ square miles, of which 765,947 square miles are under native and the remainder under British administration. The population of India, shown by the census in 1881, was $253,982,595$; but this did not include the figures for Cashmere, which in 1873 had a population of $1,534,972$, or Manipur with its population of 221,070 , or Upper Burma with its estimated population of $3,000,000$, and the Shan states with their estimated population of $2,000,000$. Adding in these totals, and allowing for a yearly increment of one-half per cent. to the census figures, the total population of British and feudatory India at the beginning of the year 1891 may be taken to be $273,533,000$, of whom $211,936,000$ are in British territory. From Peshawar, the northern frontier station, to Cape Comorin, the distance is 1,900 miles, and the same distance separates Kurrachee, the port of Sind, from Sudiya, the frontier post on the eastern border of Assam. The limit, yet undefined, of the states dependent on. Upper Burma stretches even further to the east than Sadiya, while British intluence in Baluchistan goes farther west than Peshawar. The province of Burma, including the country formerly independent, and now called Upper Burma, which was annexed to the Asiatic dominion early in 1886, lies to the east of the Bay of Bengal, and forms no part of the Indian Peninsula.

The English dominion in India dates from l600, when the first East India Company was incorporated by Queen Elizabetb. The act establishing the anthority of the British crown, and the "Proclamation to Princes, Chiefs, and Peoples of India," that Her Hajesty, Queen Victoria, assumed the government of all the territories of India, were dated Nov. 1855. It was not, however. till 1877 that the queen formally assumed the title of Empress of ludia. The home imperial government is intrusted to a " Secretary of State for India," assisted by a council of not less than ten members, the majority of whom must he persons who have served or resided ten years in India, and who have not left India more than ten years previous to the date of their appointment on the council. The office is held for a term of ten years, and any vacancy is filled ly the appointment of the "Secretary of State for India."

British India now (1891) embraces nine separate provinces, cach under its own civil govermment, but subordinate to the general and supreme gorernment. The resident chief execotive, the viceroyal governor-general, whose administration extends over all the provitces, is appointed by the crown. llis present ammal salary is $£ 25,000$ ($\$ 125,000$), with additional allowance of about £12,000. Ilis ordinary term of oilice is five years. The present mennbent (July 1,1891) is the Marquis of Lanstowne, who assumed oflice Dec. 10 , 1888. He is supreme in his executive authority, hut is assisted hy an expentive council of six members, inchuding the commander-in-chief. l'ower is reserved to him of overruling his council; but all acts of the grovernmont ron in the name of the " Governor-(ipneral in Council." This body, furming the supreme govermment in India, passes in review the entire administration in six separate departments - Finamer and Commerce, Foreign, Military, Publie Works, I Iome, and the lepartment of Revenue and Agriculture. Each department is under the charge of a secretary, and is also the
special care of a member of the supreme council. who has authority to deal with affairs of rourine and minor importance, and to select what is worthy of the consideration of the governor-general and his collective council. The governorgeneral specially superintends the political business of the foreign office. The department of fi nance and commerce looks to questions of finance, to stamps, excise; the postoffice, and anything involving a permanent charge on the state; also to questions bearing on the commerce of the country. The most important subjects coming under the attention of the department of revenue and agriculture are the land revenue, forests, and the agricultural development of the country. The bome department deals with the educational, medical, sanitary, ecclesiastical, judicial, municipalities, local govermment boards, police, and other matters, and has charge of the penal settlements of Port Blair and Nicobar. The foreign department conducts relations with Afghanistan, Nepanl, and other conterminous countries, and corresponds with the political agents of the numerous semiindependent native states of Rajputana and Central India, and with the residents of Mysore, Cashmere, Baroda, and Hyderabad. The marine service, as well as the army, is under the military department. The legal member takes charge of government hills in the legislative council, which consists oi twelve members (besides the seven members of the executive council), of whom one-half must be unconnected with the public service. As only Bengal, Madras, Bombay, and the Northwest Provinces pussess councils of their own, the legislative council of India legislates for those provinces which are umprovided with local councils, or on matters of exceptional importance affecting the empire.
Separate high courts lave been established for the provinces of Madras and Bombay and for the lieu-temant-governorship of Bengal (with jurisdiction also orer Assam), and of the Northwest Provinces. The Punjaul) has a chief court; the Central Provinces. Oudh and $11 y$ sore, have each a judicial commissioner, and Burma lias a judicial commissioner and a recorder.

The government of India is debited with the cost of the army for all India, with the interest on debt, and, generally, with all imperial as distinguished from provincial expenditure.

Since the close of the record in the liritamica, Vol. XII, the list of governor-generals has been as follows, with date of appointment: Marquis of Ripon, 1880 : Marquis of Intrerin and Ava, 1884; Maryuis of Lansdowne, 1888.
The mative states of Indin cover an area of 766,000 square milem, and contain an estimated population of $61,000,000$. The most important of native frimees in $1: 31$ are mentionedin the follow het talle:

tix. to 10 mpees, or about $\$ 5$.

The names of the various provinces, as arranged at present, with their population, as reported at latest dates, are as follows:

Provinces.	$\begin{aligned} & \text { Populationt } \\ & \text { 1asl. } \end{aligned}$	Chicil City.	Population.	Lt. (iovern's Salary.
(1) Beugal.	6ib,691,156	Caleuta	432,219	1.x. $8,3 \times 3$
(2) Northwest Provinees and Onde	41,107,869	Alluhatad	118517	8,433
(3) The Punjaub.	15, K50, 4.5	Lathore ${ }^{\text {La* }}$ (- 111	S.3,3
(1) Central Provfices	9,324,791	Nagpoor.	92.295	4,665
(5) Hurmah (Upper and Lower)....	$8,736,771$	Mandalay	150, (100) 134,176	6,606
(6) λ (ssam.	4,888, 12: 6	$\left.\begin{array}{l}\text { Ginuhuti } \\ \text { sybuet }\end{array}\right\}$		4,166
(7) Mudras.	30, i, 49,504	Madras...		10.000
(8) Bombry	116.489 .274	inombay	773.126	10,000
(9) Berar...	$2,672,673$	Fllichoror.	20,728	

* Chief city of Oude.

The present Nizam of Hyderalsad was installed in 1584. Cashmere was granted to Gholab Sing by Lord Hardinge, after the First Punjaub War. His son and successor, Rumbir Sing, died on September 12, 1885 , and was succeoded by the present Maharaja, l'ertab Sing, when also a British Kesident was appointed, and stronger pressure was brought to bear in favor of much needed reforms in the government. In 1859, in consequence of cowtinued misgovernment, the Daharaja was deprived of his powers, which were infrusled to a native council, assisted by the advice of the resident.
The most important recent act of the Indian legislation was a comprelensive act, passed in 1890, dealing with railways in that empire. Other aets dealt with probate and adminisiration in India, with the charge of charitable endowments, with the law relating to guardians and wards, with Indian cantonments, with the forests of luma, and with tenant right, land revemue, sanitation, and local self-govermment in the Central Provinces. Legislation was also passed to make penal the disclosure of oflicial secrets, to prevent cruelty to animals, to raise the duty on imported spirits and to tax Indian-brewed beer, and, lastly, to indemnify errtain witnesses who had incriminated themselves, on the promisc of indemmity, at the trial of a high government official in Bombay.

In the ycar 1889-1590, the foreign trade of India increased beyond the cotats of the previons year. During that year, excluding government merehan-
dise and treasure valued at Rs. 2,76,55,061, the forcign seaborne trade of British India (excluding Aden and its dependencies, of which the trade may be stated at about $7 \frac{1}{a}$ million tens of rupees) amounted to Rs. $1,80,25,52,000$, or $5 \% / 3$ per cent above the total of $1885-89$; of this amount Rs. $84,01,94,000$ represent imports and the remainder exports. The imports of treasure increased to Rs. 17, 46 lacs, and the exports to $1,90_{3}^{2}$ lacs.

All imports are free, excepting arms and ammunition, opium, liquors, pet roleum uil, and salt. An excise tax on Indian-brewed heer is under consideration. The duty on petroleum oil of 6 pies per imperial gallon was introduced in 1888, and in $1889-$ 90 realized nearly $161 / 4$ lacs. Notwithstanding the duty there has continued to be a large increase in the imports of oil, especially from Russia. The value of Indian cotton yarn and piece goods exported has increased from 74 laes in 1876 to $67+\frac{1}{2}$ in 1889-90. Each year sees a large extension of this industry. Ilaving wrested the markets of China and Japan to a large extent from England, the Bombay mill-owners are now successfully competing for the market of Eastern Africa, of Aden, of Ceylon, and of the Straits Settlements.

The following table gives the populations, with the religious census of the principal cities of India as reported in the census of 1881:

INDIAN AFFAIRS IN THE UNITEDETATES. For the general article on the Ameriean ladians, including the history and parlier statistics of the various tribes, brught down to a recent date, see Britamica, Vol. XII, pp. $8: 2-8: 35$. In these Revi-
sions and Additions it is only required that such facts and figures shall be given as are needed to furnish the latest important information. This information has been drawn cliefly from the elaborate annual report of the Hon. T. J. Morgan, Commissioner of Indian Affairs, made to the United States Secretary of the Interior, under date of October, 1890, and from the Official Census Reports of the United States for the year 1890 .

I, Supervision of Indian Affilis.-The law prescribes that the Commissioner "shall, under the direction of the Secretary of the Interior, and agreeably to such regulations as the President may prescribe, have the management of all Indian affairs, and of all matters arising out of Indian relations." He is charged with the annual disbursement of more than $\$ 7,000,000$ and with the purchase and distribution of great quantities of subsistence. clothing, agricultural, medical, and other supplies. He gives instructions to more than sixty agents, supervises their work, examines their accounts, decides perplexing questions arising constantly in the course of administration of agency affairs, and through them oversees in detail the various lines of civilization inaugurated among the tribes, farming, stock-raising. building of houses, Indian police and courts, social and sanitary regulations, etc. He determines upon the appointment and removal of over twenty-five hundred agency and school employés, and appoints traders and physicians. Licensed trade among Indians is under lhis exclusive control.

He considers and determines all questions of law arising in reference to ludian lands; the legal status of Indians with reference to each other and to white people; the conflicts lietween local or State laws and tribal customs, and hetween State and Federal laws; also questions of citizenship, guardianship, crimes, misdemeanors; the prosecution of persons for the sale of whisky to Indians; taxation; water rights; right of way of railroads; cattle grazing ; conveyances of land; contracts beiween Indians and whites; sales of timber on Indian reservations; allotment of land, ete. Many of these questions, especially those relating to lands, are of great intricacy, in polving interpretations of treaties and laws as far back as colonial times.
Ile is charged with the duty of organizing a plan of education with all which that implies; the erecting of schoolhouses; apmointing of teachers, and the keeping of a watchful oversight over all Indian school matters.

Bills relating to Indian affairs are usually referred by Congress to the Indian Burean for information and report, and before signing an act the I'resident generally refers it to the Commissioner for report as to the existomee of any reasom why it should not receipe Executive approval. Original bills and reports are alsu prepared by the Indian Oltice for transmission to (ongress.

Under the act of Marel 3 , 1ssen, the Commissioner examimes and reports to the sereratary of the \ln terior on all depredation elams, amomoting to many millions of dollars, which have luen filed in the Burata dariag the last farty yars.
 ny States.-At the dato of the ('omissionmers ammal report in $188!$ threr were $1: 3$ Indian reservations in the United States (commtine the small reserves of the Missim Inclians of Galiformia as one only, and the 19 Puohde reserves in Now Mexico alon as num? having an aggrogata area of about

 Natas combined, greater than the aigeregate area of
the States of Ohio. Indiana, Illinois, and Kentucky, and nearly equal to the combined area of the two Dakotas and Nontana. It islarger by half than the United Kingdom of Great Britain and Ireland, larger than Sweden or Norway, and nearly as large as either France or Spain. The total Indian population of the United States, exclusive of Alaska, was, by the census of $1889,250.483$, and exclusive of the five civilized tribes in Indian Territory, 185,283.
The following table shows the distribution of Indian lands and Indian population in the several States and Territories at the date above referred to:

State or Territory.	Area in acres.	Square miles.	Population.
Arizona	6,603,191	10.317\%	17,779
California	404,045	772	12,739
Colorado	1,094,400	1,710	1,814
North Dakota	3,188.480	4,982	8.252
South Dakota	22.910,426	35,7987\%	21.461
Idaho.	2.611,481	4,080	4.174
Indian Territors.	39,109,530	61.249	79,692
Iowa.	1,258	2	393
Kansas..	102.626	15916	989
dichigan	29, 819	42\%	7,428
Minnesota.	$4,547.941$	$7.419{ }^{\text {² }}$	7,979
Montana	10,591,360	16.549	11,214
Nebraska	136,947	214	3,701
Nevada.	954,135	1.4901/2	8,231
New Mexic	10, (4)2, 5.5	15.629	28,923
New York.	58.67	137	5,046
North Carolina	65.911	102	3,000
Oregon.	2,075,240	3,242	4,520
Texas			290
Utah	3,972,480	6,207	6,294
Washington.	4,045,284	6.321	9.789
Wisconsin	512,061	800	7,503
Wroming	2,342,400	3,660	1,945
Miscellaneous			1,302

III. Area. Popllation, ant Disbcrements by Agexcies. - The tahle on page 893 gives the names and State locations of the various Indian Agencies, severally showing the areas and Indian population with the government appropriation to cach, with salaries of the agents and the amount of the honds which the latter were reguired to execute severally for the fiscal year ending June 30, 1s!0.
IV. Settlef Government Policy. - On this important question the Indian Commissioner says: "It has become the settled policy of the government to break up reservations. destroy tribal relations, settle Indians upon their own homesteads, incorporate them into the mational life, and deal with them not as nations or triles or bands, but as individual citizens. The American Intian is to become the Indian American.
"A public sehool system is being rapidly provided. whereby every aceessible Indian boy and girl of school age is to le afforded an npportunty of acquiring the rudiments of an Englisheducation and the elements of an homorable calling. What progress has heen made in this direction daring the last year is discussed under the general topic of edmeation.
"The Indians themselyes are coming to underst and the present poliey of the Government and are showing an increasing readiness and even desire to adjust themsolves to in. Whand the year I have had personal interviews with prominent ehiofs and representative lndians from Wisconsin, North and South Daknta, Oregon, Arizona, New Mexico, Olilahoma, and Indian Territory, and I have ben much gratilied with their intelligent apprehension of the situation and with the willingress exhibited, as a gemeral thing, to except lames inseveralty with individhal eitimenship. Jmost without exception they have fleaded with me for more and better schools.

*Agent at Green Buy is required to file a specinl bond in the sum of $\$ 100,000$ to cover logging mones.
tat present la eharge of Army officer.
> "A nother fact of significance is the growing recognition on the part of Weslern people that the Indians of their respective States and Territories are to remain permanently and become absorbed into the popalation as citizens. While demanting the application of the principle of "home rute" in the selection of agents and other employés from the State or Territory in which the Indians are located. I think they also recognize the obligations which they thereby assume to recommend only suitable persons for appointment. If the Iudians of South Dakota, for instance, are to remain forever within the limits of the State, cither as a hurden and a menace. or as an intelligent, self-supporting, cooperative factor in Statelife, no others except the Indians themselves ean have so deep an interest in their practical status as to the people by whom they are surrounded.
"There is also a growing popular recognition of the fact that it is the duty of the Government, and of the several states where they are located, to make ample provision for the secular and indus. trial education of the rising generation, Jeaving the churches free to prosecnte with renewed vigor their legitimate work of establishing andmaintaining religions missions. By this harmonious and yet separate activity of the Govermment and the churches all of the Indians will eventually be bronght into right rolations with their whiteneighbors, and be prepared for the privileges and responsihilities of Ameriean Christian eitizenship."
V. Imbis Tramise Smools. - The United States Indian Department has given much attomtion to the suhiect of Indian ollucation and the schools have beren visited and insperted with increased care and thoroughness. Large and care-
ful expenditures have been made in repairing and enlarging school-houses and providing them with proper equipments, and new ones have been erected where most urgently demanded. A new and carefnlly revised system of rules, including a course of study, has been drawn up and a series of textbooks prepared.

Commissioner Morgan in his supplemental report of 1859 set forth quite in detail his views regarding Indian education. These views hare met with most gratifying acceptance, and have awakened a great deal of interest among all classes of citizens. The plan there outlined received the indorsement of Dr.W.T.Harris, United States Commissioner of Education, of General John Eaton, ex-Commissioner of Education, and was heartily approved by the National Educational Association, the American Institute of Instruction, the New York State Teachers' Association, and other leading educational bodies, besides receiving the warmest commendation of distinguished educators and philanthropic organizations, like the Nohonk Conference, the Indian Rights Association, etc.

Under the fostering care of the Government, a series of training schools has grown up more or less distant from the reservations where, in addition to the ordinary English education, Indian pupils are trained to habits of industry. The following table shows the list of these schools with their locations, date of opening, capacity, rate per annum, enrollment, and average attendance during the fiscal year ending June 30,1890 .

$\begin{aligned} & \text { on } \\ & 0.3 \\ & \text { ed } \\ & 0.3 \end{aligned}$	

 made liheralappropriations for these schomas which
will enable the office to put them on a broad basis, and thoroughly equip them for their important work. With the improvements now being made they will be able next year to care for not less than thirty-five hundred students.

Already a very considerable number have shown both the desire and ability to pursue higher studies. Several are now successfully teaching, or fitting themselves to teach, others are practicing medicine, some are preaching, and still others are preparing for the practice of law. The desire for these higher studies is steadily increasing and only needs a little fostering to be productive of the best results. A common school, industrial education for all, a liberal and professional education for the worthr few, with a fair field and free competition, is all that is asked for Indians as for others.

The outing system which brings lndian youth into intimate and vital relationship with civilized communities is now readily developing and is prodnetive of the most hopeful results. During the year 1890, Carlisle accommodated nearly $\$ 00$ pupils, more than half of whom hare had the advantage of living and working with Pennsylvania farmers and others. Their work was very satisfactory, and the school was unable to meet the demand made upon it for help. When the present plans for increasing its capacity are completed, not less than 1,000 pupils can be cared for at this one institution. Every Indian boy or girl who secures a place to work at fair wages has become a producer, and is practicably independent and self-supporting.

The superintendent of Haskell Institute wrote to the Commissioner that he expected to be able, when the present plans for that school are completed, to care for 1,000 students, and to provide homes for a large number of them among Kansas farmers.

Vl. Inmas Boarding and Day Schools.-The subjoined table shows the number of Indian boarding and day schools and arerage attendance for each year from 1882 to 1890 , both inclusive:

Vear.	Board'g sch.		Day schools.		Totals.	
	N゙o.	Average attendance.	No.	Average attendance.	No.	Average attendance.
1889.	71	2,755	54	1,311	125	4.002
$1 \mathrm{n} \times 3$	75	2,599	tht	1,443	136	4,046
1 knt	$8{ }^{\text {s }}$	+,35.	76	1,757	162	6,115
184.3.	114	6,201	sb	1,942	200	8,148
18×4	11.5	7,2tio	99	$\underline{1370}$	214	9,6830
18.47.	117	$8,(1200$	110	2.500	227	10.50
1.488	124	8,705	107	2,715	2ヵ:3	11.420
1,489.	136	9,146	103	2.406	239	11.552
1×10	140	9,865	106	2,367	246	12,2\%

Concerning the question of the education of Indian pupils in the mublic sehool wherever practicable, the Commissioner says: "Believing that the true purpose of the Government in its dealings with the ludians is to develop them into self-supporting, sidf-reliant, intelligent, and patriotic citi\%ons, and belitring that the public schools are the most effective means of Americanizing our foreign population, I am desirous of bringing the lndian school system intor relation with that of the public schoms. Not moly su, but wherever possible I am phating Indian pipils in the pullie schools. Vers fow are thus far enjoying these advantages, but in a lettor addressed to the superintendents of pulbic inslruetion in the several States and Territories where there are Indians under the care of the

National Government I have invited their co-operation, and have offered to contract with school districts for the tuition of Indian pupils at the rate of $\$ 10$ per quarter.
" I think this wim prove a very important feature of the work in hand, and confidently expect within a year to be able to report a great advance in this direction. Indian allotrees can be provided with educational facilities for their children in no more satisfactory manner, and the tuition paid by the Government aids the school districts to maintain schools in sections of the country where lands in severalty have been taken by the Indians."

The total annual appropriations made by Congress since the year 1876 for the support of Indian schools were an follows.

Vil. Medical and Surgical Service. - With the exception of five civilized tribes, all the lndians under governmental control are dependent upon the agency physicians for their services. Their own "medicine men" are ignorant, and often vicions, and their historic superstitious influence over the tribes is comparatively slight. The [hysicians employed at the agencies are, however. poorly paid as is shown ly the following table of physicians' salaries copied from the Commissioner's report for 1890:

No.	Offichal Designation.	Snlary.
1	Agency physician.	\$1,200
38do..............	1.200
25do..	1. 010
2do.	5
1	... do	700
2do.	300
2do	200
71	Average salary.	1,4tim

No.	Offictal Designation.	Salary
4	Phyrician at Schools	P 1,200
2	... do	1,1060
1	- . .do	(im)
2do..	(th)
1	do.	:(1)
1	do	240
11	Average falary.	82:
	Avarnge salary for the entire list Total cost for sularies	$\begin{aligned} 1,02 k \\ 4 \\ 4 \end{aligned}$

Vlle. Approphathos to Rehghots Dexhminaross fok Indan school Work. -The subjoined
table shows the amount set apart by the Government for the various religious denominations for Indian education for each of the fiscal years from and including the year 1886:

IX. Titles to Imblan Lands.-The civilized nations of Europe, who had acquired territory on the American continent, asserted in themselies, and recognized in others, the exchusive right of the discoverer to appropriate the lands occupied by the Indians. By the treaty of 1783 the l'nited states aequired all the rights to ihe soil which had previously been in Great Britian; and by its traty of 1803 with France, in its purchase of Lonisisma, it agreft to extecute and respect all treaties made and agred upon between Spain and the several tribes of Indiams resident within the conntry ceted. In the case of Johnson \& Graham, lessee, " \because, William II'Intosh, Chief-lustice Marshall said in effect (S Wheaton's Reports. p. 543) that there was no dount that either the United States or the several States had a clear title to al! the lands within the homalary lines deseribed in the treaty with Great Britian, or within the limits of the louisianit purchase, subject ouly to the lndian risht of occupancy. and that the exelasive power to extinguish that right, was yested in that govermment which might constitutionally exercise it.

It was further settled in the case of the Cherokee Nation r. The state of Georgia ($\overline{\text { P Peters, }} \mathrm{p}$. 1) that the Indians had an unduestionable and therefore an unguestioned right to the lands they occupied until that right of occupancy was extinguished by voluntary cession to the Government; that they occupied lande to which the Cnited States asserted a title, independent of their will, which must take effect in respect of possession when their right of occupancy ceased. Hence, the claim of the finternment to the lands of the Indien tribes extends to the complete ultimnetc title, chatuct with the Indian right of possession and tw the pechusive power of arquiring that right. (See Juhnson r. MIntosh, 8 Wheat, 543 ; Fletcher r. Peck, 6 Cranch, 87 ; Holden v. Joy, 17 Wall, 21 ; Beecher c. Wetherly. 95 U. S., 517.$)$
For an claborate and exhaustive discussion of the question of title of the Indian lands of the United states as affected by the Colonial laws, the laws of the thirteen original states, and the recognition of such title by the United States Government in treaty arrangements with the Indians and Congressional legislation the reader is referred to the Annual Report of the U. S.Commissioner of Indian Affairs for the year 1890.
Government Play of Conveying lanps by Al-Lornexr.-Where it is suitable for agricultnre or grazing purposes, it is the present policy of the Government to allot land in severalty to the Indians within their respective reservations - I60 acres to heads of families, 80 aeres to single persons over eighteen years of age, 80 aeres to orphan children under eighteen years of age, and 40 acres to each other single person under eighteen years of age-to patent these individual holdings, with a restriction against alienation for twenty-five years, or longer, in the discretion of the President, and to purchase from the respective tribes any or all of the surplus land remaining after the allotments have been made. The general law ior this is the allotment act uf Fehruary 8. 1857 (24 stat. p. 38s), applicable to all reservations, except those of the five civilized tribes and three others in the Indian Territory, those of the State of New York, and one in Nebraska adjoining the Pine Ridge sioux leservation, which was set apart ly Executive order for the purpose of suppressing liquor trathe with the Indians. In numerous instances, where clearly desirable, Congress has by special legislation anthorized negotiations with the Indians for portions of their reservations without waiting fur the slower process of the general allotment act, which involves the survey of the land, the allotment in severalty by special agents :ppointed by the l'resident for that purpose, and negotiations with the Indians fur the cession and relinguishment of their surplus unalloted lands.

It is catimitud that under sueh special legislation
 wession frum the Indians durine the past year; and there art atopoments mow peming before Comgress, throngh which, if ratilied, the (iuvernment will ae'fuire some 4, , (h) (hn) acres more; all of which will. under the uperation of these laws, he open to white settrmpht in the near future.
of the tand :urtally acquired, ahout $9,000,000$ arres are in North ant Sont Dakota, secured from the simux (act of Mareh ?. 1859, 25 stat., p, s48) and
 the (hippewas (act of damary 14, ses) wat, esp (ite),* The agreemputs mew prouline in (ougress

[^190]will, if ratified, restore to the public domain about I. 600,000 acres in North Dakota, in the Fort Berthold Reservation; ahout 660,000 agres in South Dakota, in the Lake Traverse (Sisseton) Reservation: about 185,000 acres in Idaho, in the Cour d'Aléne Reservation; about $1,095,000$ acres in Colorado, being the whole of the sonthern Ute Reservation, and about 941,000 acres in Oklahoma Territory, now embraced in the Pottawattomie, Lowa, and sac and Fux lieservations; a grand total of upwards of 17. 400,000 aeres, or about one-seventh of all the Indian lands in the United States.

Leaving ont the five civilized tribes and the Alaska Indians, it would take about $30,000,000$ acres of land to give to every Indian in the United States-man, woman, and child- 160 acres each. There would still remain, in round numbers, $6 h^{3}$,000.000 aeres of Indian land, (exclusive of the reservations of the five civilized tribes), which, at \$1 per aere, prohably a fair average, woud yield $\$ 66,000,000$. the annual interest on which, at five per cent, would be $\$ 3,300,000-\mathrm{a}$ sum sufficient to pay the entire cost of educating all the Indian children in the Cuited states. At the end of a few years, the principal sum might properly be distributed per capita among the rightial owners to assist them in improving their homes, when they could be left like other eitizens to eare for themselves.

Here is an immense landed estate belonging to the Indians, which, if judicionsly managed hy the Government, ought to place them on the high road to prosperity, and relieve the Govermment of a great thancial burden.

The general allotment act of Congress of Felbruary $8,185 \%$, confirms the Indian title in all existing reservations. It provides that in all cases where any tribe or hand of Indians has been or shall hereafter be located upon any reservation created for their use, "either by treaty stipulation or by virtue of an act of Congress, or by exteutive order, setting apart the same for their use," the Jresident of the United States may, whenever in his opinion any reservation or any part thereof is suitable for the purpose, allot the lands of said reservation in severalty to the Indians located thereon, in quantities as specified; and that after lands shall have leen so allotted, or sooner, if in the opinion of the I'resident it shall le for the best interests of the Indians, it shall be lawful for the secretary of the Interior to negotiate with such Indian tribe for the purchase and release by said tribe, in conformity with the treaty or statute under which such reserration is held, of such portions of its reservation not allotted as such tribe shall from time to time comsent to sell, "upon such torms and conditions as shall he eonsitered just and equitable between the United states and said tribe of Indians."
During the year elosing October, 1890, allotments. were made on various reservations as follows:
Yankion Reservaton in south Dukota,
1484.

Wimetumeo Imallums,
1.i2.
© Frmate Ronde, orevon,

263.

991.

(1n口jall.
26.
levil's Lake Veservalbon.

asmerthined how mush or just what partleular portions of

The total number of acres includest in the allotments is nearly if not quite $1+, 000,000$. This shows a most gratifying progress.
X. LaN's Aganst the Shle of Intomeating Laquors to lndmas.-The Indian Commissioner reports that one of the most dificalt things 10 eontend with in the administration of Indian alfairs is the vice of intemperance. A large profortion of the Indians leand a life of idleness, and are therefore liable to yield wo the temptations of drinking and gambling. The liguor supplies reach the avarice of white men. The commission has dismissel a number of white employés for intemperanee, and has reinsed to appoint any one who did not pledge himself to abitain from the use of intoxicating lipuors as a beverage.

Sections 2133 and 2140 of the United States Revised Slatutes provide as follows:

SEC, 2Jm, No mrdent sidits shall be intronlnced, under any pretense into the Indian country. Ejers ferson (extent min fudinn in the Indian eomatry) who sells. evelanayes, gives,barters, or disposis of may spirituous lingurs or wine to hiny Indian unater the chatige of any ladian superintendent or ngent, or introdnces or attennig to introduce any shinituous jifuor or wime lnto the Incilan eonntry, shall le punishable by imprisomment for not more thmativo years, umd by a time of not more than three humdred dollars. But it shall be a sulticient defense tomny eharga of introuluding or attempting to introduce liynom into the Indixn comatry that the nets ch:araed were done by order of of thaler untlarity from the Wiar lhepurtment, or any othcer duly authorized thereunto by the War Jevartment.

SEC. 2140. If any superinteudent of dualinn affairs, Indian agent, or sub-agent, or commanading ofticer of military post, has reason to suspect or is inforned that my white fiersou or Indinn is ubont to introduce or has introduced, anyspiritHous liguor or wine into the Indian country in viohition of taw, such mumerintemdent, agent. sub-agent, or commanding oflicer, may enilite the boats, stores, packnges, wagons, sleds, and places of dejosit of such person be seurched; and If any such liquor is found therein, the sume, together with the bonts, teami, wagons, and sleds uscd in conveying the the boats, teanm, wagons, and sleds usca in conteyng the 8on, shall be seized and delivered to the proper offeer, and shull be proceedcel agninst by libel in the jroper court, and forferted, one-linlf to the informer and the other half to the nse of the United States; and if surh person be n trader, his Ilcerne shall berevoked and his homd put in suit. It shall moreover be the duty of arny person in the qervice of the Cnitenl Stutes, or of any Indininto takeand destroy any arderat spirits or wine foumd in the Indinu country, except such ns may be introduced therein by the War Jupartincit. In all
 cases arising mater thas and t
shall be eompetent withesses.*

[^191]XI. Comets of limms Opresses.-Early in the year isse rules were formolated by the Indian linrean, wherely certain specified barbarous and demoralizing practices among the hodians should be restricted inm nltimately abolished. A system of Indian contts was organized, and a code of rules was preparal which enmmerated the crimes and offenses of which the courts should take cognizance, amel in several insiances mamed ther prombies which should be prescrihed. Finh court emsists of three judges to be apprinted hy the Indian of dice, upon the nominatinn of the respective ludian agents, for a term of one gear, but subject to removal at any time. The enurt was to hold regular sessions twice a month. The crimes and offenses named in the rules were lndian dances, plural marriages, practices of medicine men, theft, destruction of property belonging to another, payments or offers of payment for living or cohabitating with ludian women, drankemness and the introduetion, sale, gift, or harter of intoxieating liftuors.

The court also has jurisdiction wer mislemeanors committed by Indians belonging to the reservations, over civil suits to which Jndians are parties, and over any other matters which may be lirunght before it by the agent or with his apmoral.
The penalties prescribed are time, imprisumment, hard labor, and forfeiture of rations. Jncivil cases the court has the jurisdiction of a justice of the pence, and conforms, so far as practicable. to the practices of a justice of the peace in the state or Territory in which the court is lacated.

Without money, legislative authority, or precedent, these courts had, in 1sto. heen established and maintained for eight years, and in spite of their crudities, anomalies, and disadrantages, had reached a degree of dignity, intluence, and usefulness which could hardly have been expeeted.

1'rior to the tiscal year preceding July 1.1888 , owing to want of funds, the judges gave voluntary service or were seleeted from the jolice or paid themselver ont of the fines imposed and collected -incongruitios which the Indians themselves were not slow to recognize. During that year the $\$ \mathbf{j}_{0}, 000$ appropriated for the pay of the judges by Aet of
dian triles hy section 8 of the constitution of the Inated states, which seem to fully condirm its fower to prohibit the sale of lijucts to Indintis. whether within the territorind fimits of astate or not, hind transmittod a dranght of a lifl by which it is proposed to ament sections 2189 and 2190 of the kevised stathte's, so that they will rend as follows:
sfo, elan, Xo spirituous ormalt liquors or wime shall be Introduced, under may pretense, into the ladian conntry. Every peran who sells, texhanges, kives, hartera, or dis: poses of any suifithons or malt lighors or wine tomy InAhan, or introdnces or attempts taintrolace any spfrithonsor malt liquors or wine into the Indian conntry sliall le pmonshable by imprisomment for not more than two yenra, hand by atine of not more than threa humbred dollars.
 police, or commanding otherer of a millitary bust has ratasn tosuspect or fis informed that nuy jereon fi nbont to introduce or has introdnecd any spilfithons or malt llquors or wince or any intoxionting beverage whatscever into the Indian cointry in violatime of lav. sucha ngellt, sub-ngerth, ohlior of thatina polire, or commanting offlece of is millitary josit may panse the lionts, stores, parkages, wagous. sledt, nut phomes of deptest of sueli person to be searehed; and if any anch lipnor is fomm there-
 sledsused in conveying the shate, 1211 also the goods, phekake , und peltries of such jeremb shanll he seized and detivered to the proper othorer. and hatl he yroweded ngulast

 and if anch purson be a 1 rader hは lewase chall bor revoked and his bonat put in suit. It \&hall moreower be the duty of any person the the serviceof the tritionstates, ot if any Indan, to take amd acstroy any ardent spitite or wine found in the Indinn rountry. "xomptsheh as my he introdnced there-
 nud the precediag section lachans ahmall beompetent wit. nesses.

June 29， 1888 （25 Stats．，233），gave to the courts legislative recognition and to the judges small sal－ aries，ranging from $\$ 3$ to $\$ 8$ per month，during sev－ en months of the year．During the fiscal year clos－ ing in 1890 a similar appropriation of $\$ 5,000 \mathrm{had}$ been carefully husbanded and distributed；and by closing the court for one－third of the time，thus re－ stricting its sessions to eight months in the year， and by paying the ninety－three judges not exceed－ ing＊S per month，and in several instances reduc－ ing the pay to $\$ 5$ and even $\$ 3$ per month，the office was able to maintain the court at twenty－five agencies．

For the ensuing fiseal year an appropriation of $\$ 10.000$ was made，which would enable the office to maintain these courts during twelve months at twenty－six agencies and to pay the judges＇salaries as follows：Fifty－five judges at $\$ 10$ per month，ten at $\$ 8$ per month，twenty－three at $\$ 5$ per month，and ten at $\$ 3$ per month．

The importance，dignit 5 ，and，in many cases，un－ popularity of the position of an Indian judge，is such thai it should command a salary of at least $\$ 10$ per month；and the services rendered by the cuurt are of such value in promoting good order and good morals in the community，as well as in familiarizing Indians with the customs，practices， and ideas which they will hereafter neet in white communities，that courts ought to be established for nearly every agency．To enable the office to do this，the full amount asked for the year 1891 was $\$ 15,000$ ．

Nil．Indins Police System．－For several years a system has prevailed，in the Indian Department of appointing under the supervision of the Indian Bureau，a native police force，for administration severally on the reservations．In the Congression－ al Act of 1890 making appropriations for the fiscal year ending June 30,1891 ，the pay of the police was fixed at $\$ 15$ per month for each police officer，and $\$ 10$ per month for each private policeman．The following table shows the prevalence and cost of the system for the year ending June 30，1890：

Ageneles．	$\begin{aligned} & \text { 总 } \\ & \stackrel{y}{E} \\ & \end{aligned}$	突	－	$\begin{aligned} & \text { Total } \\ & \text { of } \\ & \text { force. } \end{aligned}$
Black Feet，Mont	2，293	2	17	19
Cheyenne and Arapaho，Okla－	3598	3	09	83
Cheyenue Rivar，S．mak．．．．．．．．	2．4if	$\stackrel{2}{2}$	25	27
Colorado liver，Ariz．．．	！		5	5
Colville，Wash．．．．．．	2.321	2	14	16
Crow．Mont．	$2.15 i$	2	14	16
Crow Creek，S，Dak	1.11 H	1	8	9
Devil＇s Lake．N．Dak	\％．：3\％	2	16	18
Flathead，Mont	2，018	1	14	15
Fort lelknay，Mont．	1.903	1	15	16
Fort Berthold，ぶ．Dak	1．14．7	1	7	8
Fort 1fall，Idaho	1，8i（\％）	1	14	15
Fort Feek，Mont．	1.891	2	17	19
Grande Ronde，Oregon．	：：7		5	5
Green Bhy Wis	$3 \mathrm{~B}=1$	1	10	11
Ioopa Valley，（al	476		2	2
Jichrilm，Now Mex	M11	1	7	8
Kıw，Oklahmons．	2111		4	2
Klown，Oklahomat	4.0148	\cdots	21	26
Klamath，Grekou．	！ 111	1	7	8
d，a lointe．Wis	4.718	1	16	17
leembl．Tdato	P0，	1	5	6
Lower Bralio，S．Dak	1．647	，	13	1.1
Mescalero，N．Stex．	17	1	10	11
Mlaglon，（Ca！	1.521		6	6
A \＃vajo New Mex	20.841	1	14	15
Neab 3ay．Whatr．	7：a	，	7	8
Nevnda，Nı\％．	！，	，	12	14
＊ezerercix．Idabo	1．151		5	6
Onaharad Winuelatgo．Neth	2,317	1	7	8
	1．4！4	1	4	5
Otor，Oklatoma．	334	1	5	6

Agencies．		cr		Total of foree．
Ouray，Utah	1，030	1	6	7
Pawnee，GLlahoma	851	1	7	8
Pima，Ariz．	11，518	1	10	11
Pine Ridge，S．Dak	5，611	3	35	38
Ponca，Oklahoma．．．．．．．．．．．．．．．	533	1	7	8
Pottawatomie and Great Nema－ ha，Kan．	989	1	11	12
Puyallup，Wash ．．．．．．．．．．．．．．．．．．	1．64		13	13
Quapaw．Ind．T	1，150	1	6	7
Kosebud，S．Dak	7.546	3	40	43
Round Valley，Cal．	531		5	5
Sac and Fox，Oklahoma	2，1\％0	1	8	9
Santee，Neb，	1，204		11	11
Shoshone，Wyo	1，945	1	12	13
Siletz，Oregon．	${ }^{604}$	1	7	8
Sisseton，S．Dak	1.487	1	5	6
Southern L＇te．Col．	1，013	1	12	13
Standing Rock，N．Dak	4，111	3	24	27
Tongue River，Mont．	867	1	7	8
Tulalip，Wash	1.233	1	11	12
Uinta，Utah ．	874	1	6	7
Umatilla，Oregon	983	1	9	10
Union，Ind．T．．．．	65，200	3	40	43
Warm Springs，Oreton	853	1	9	10
Western shoshone，Nev	477	1	7	8
White Earth，Minn．	6.239	3	22	25
Yakama，Wash．	1，675	1	7	8
Yankton，S．Dak	1.760	1	7	8
Total		70	700	770

XIII．Indian Farming．－The Congressional act of March 3， 1875 （ 10 Stats．449），requires that all able bodied Indians between the ages of eighteen and forty－five must labor for the benefit of them－ selves or of the tribe，in order to be entitled to ra－ tions．
The Indian agents in executive charge of the reservations are instructed to require every farmer to make monthly reports（for which blanks are fur－ nished at the Indian Bureau）as indicated in the following schedule：

Number of days occupied in the field during tho month．
Number of days at headquarters．
Number of lndians assisted and instructed．
Number of Indians who have been induced to be－ gin farming．
Number of acres plowed．
Number of acres planted．
The condition of stock．
The condition of agricultural implements．
Agents are also directed to state the most press－ ing needs of the Indians under their charge for such articles as lumber，seeds，agricultural imple－ ments，and stock．

From the reports，some of them covering only nine months，from October，1889，to June，1890，it is ascertained that during that time 35,000 Indians had been persomally assisted and instructed in farming；that 1,136 who never farmed before had heen induced to commence；that 40,000 acres had been plowed，and at nearly every agency the need of a greater supply of lumber，seeds，and agricul－ tural implements was very pressing．Ilad these reports been for the year，from all farmers em－ ployed，and exhaustive instead of partial，the fig－ ures would have leen largely increased．

Aceording to the year＇scensus for 1859，the entire Indian population on the reservation where farm－ ers were alluwed during the year，was only $10 \overline{7}, 283$. A close estimate as to the number of those who could le expeeted to work on a farm，would be one－ soventh of this number－ $15,3 \times 6$ ，whieh for the nine montlis in question would give 8 per cent as those who have been induced for the first time to com－
mence farming. If it is considered that nearly onehalf of the 15,326 had already made a commencement, the percentage would be at least twice as great.

In the act of March 2, 1889, making appropriations for the service for the fiscal year ending June 30,1890 , provision was made for the employment, in addition to the agency farmers, of farmers who should superintend and direct the work among such Indians as were making effort for self-support. To this act a clanse was added, requiring that no person should be so employed who had not been for at least five years engaged in practical farming.

The following table, prepared from the reports of the Indian agents, exhibits status of farming, etc., by Indians, exclusive of the five cillized tribes, up to July 1, 1890 :
Number of allotments made to date (July 1, 1889) under act of February $7,18 \times 7$.
9, 827
Number of farms or Indiun fromilies engaged in farm Ing.

Number of acres under cultwation (by Judians)....... 209,355
amount raised last yeai.
Bushels of whert.. 836,741
Bushels of onts and barley....................................... 529,790
Bushels of corn.
529,790
Bushels of corn.. 1:10,458
Tons of hay cit. 647,802
Tons of hay cht..
110,972

NUMBER AND KIND OF gTOCK OWNED BY INDIANS

NiV. Cash Payments to Indans.-During the fiscal year ending June 30,1890 , there was paid per capita to Indians (other than the five civilized tribes) the total sum of $\$ 37,268$, all regular annuities due in fulfillment of treaty stipulations, or interest on funds lield in trust by the Government -a sum nearly $\$ 130,000$ greater than the amount for the previous year. This is accounted for by a special payment made to the Pottawatomie Nation (viz: the Citizen Band and the Prairie Band of Pottawatomies, and the Pottawatomies of Iuron), in pursuance of the aet of Mareh?, 1859 (25 Stats., 988), by which the sum of $\$ 178,953.43$ was appropriated, with interest at the rate of 5 per cent. from the date on which it was decided by the commissioner appointed for that purpose that said sum was still due to the Pottawatomie Nation from the Government. The interest amounted to $\$ 182,728.61$, making in all the sum of $\$ 361,682.0+$.

The following paragraphs from the report of the Indian Commission for October, 1890, indicate the careful and wise methods observed in the payments of moneys to the Indians on the various reservations.

The Pottawatomics of Huron, who reside in the vicinity of Athens. Mich., are paid first, a special agent being sent for the purpose, with instructions to make a careful enrollment of the names of all who were living on the Ist of July. 1889. the day up to which the interest was computed, and on which the funds hecame available. This wasdone, the list was submitted to the scrutiny of the chiefs and head men, who, after examining it, certified that it was correct and complete, and the agent was directed to pay under the following rules: Each person of age to receive and receipt for his own share. This ineluded married women.

The father (or mother, if father is not living) to receive the shares and recelpt for the minor chil-
dren of the family, provided the parent was competent and properly qualitied to act for the children, and that there was no reasonable doubt of the children receiving the full benefit of their money.

In case the parents were dead or incompetent, or in any manner not properly qualified to aet for the children, then their shares were to be returned to the United States Treasury to await the children's coming of age.

The shares of all who had died since July 1, 1889 , to be returned to the United States Treasury unless legal representatives of the estates of the deceased were appointed by the proper court.

The Commissioner of Indian affairs quoting the opinion of one of his most experienced agents, substantially affirms that the Indians are as frugal as the average white man wonld be under similar circumstances, and that he believes they are far more easily controlled and submit more cheerfully to the laws that govern them than any other community of his acquaintance. Could the government but protect them successfully from the evil consequent upon too elose contact with degraded whites, their prosperity would greatly increase.

The following is reported as an official summary of the money earned by the Indians during the year ending June 30, 1890:

Paid to regular Indian employés at agencies
$\$ 91.500$
Paid to irregular Indian employés at agencies.......
Paid to Indian additional farmers.
Paid to regular Indian employes at Indian schools.
Paid to irregnlar Indianemployés at Indinn schools
Paid to Indian interpreters..
Paid to Indian policemen.
Paid to Indian jntlges of courts of Indian offenses.
Paid to Indians for hauling supplies.
54,500
9.1010

51,000
222,000
20,000
94,000
5,010
Paid to Indians for prodnce, huy, wood, and öng
supplies purchased from them, and for breaking
Paid to Indinns for logs ent aud banked by them.
66.010

Total...
If to this is added anunity, interest, etc.. It makes a grand total of $\$ 1,416,268$, paid in small cash payinents to Indians during the year.

INDIANA, the county-seat of Indiana county, Pa., 72 miles northeast of Pittsburgh. It contains a State normal sehool, planing-mills, foundries, and has a large lumber trade.

INDIANA, State of, for general article on Indiana see Britannica, Vol. XII, pp. S13, 814.

The census of 1890 reports the area at 36,350 square miles, the same as reported at the previous census. Of this total surface 40 square miles is water. The population had increased to $2,192.404$, an increase during the decade of 214,103 . The capital, Indianapolis, has a population of $107.4+5$, a gain during the decade of 32,371 . The subjoined table gives the population of the State by counties. as reported by the census of 1890

Counties.	1830.	1880.
Adams.	90.181	15,895
Allen	66.689	54,763
Bartholomew.	2:3,807	22.75
Benton.	11,903	11.108
Blackford.	10.461	8,020
Boone.	26.572	25,922
Brown.	10,304	10.204
Carroll.	20,021	14,835
Cnss.	81.152	27,611
Clark	30, 30	24,610
Clay	30.5int	35,551
Clinton	27 5n0	23.472
Crawford.	13.941	12,306
Daviess	20.227	21.552
Dearborn	23.364	26,671

The census returns for 1890 , give the population of the several cilies of 8,000 ininabitants and over, as follows: Anderson, 10,i59; Elkhart, 11,370; Evansville, 50,6̄4; Indiauapolis, 107,45 ; Jeffersonville, 11,27t; La Fayette, 16,407; Logansport, 13.798 ; Michigan City, 10,704; Muncie, 11,339; New Albany, 21,000; Fichmond, 16,849 ; South Bend, 21,780; Terre Haute, 30,287 ; Kohoma, $8,2-24$; Madison, 8,923 ; Marion, 8,734 ; Vincennes, 8,815 .

Indiana produced in the census year 1890, a total of $2,845,057$ tons of coal, valued at $\$ 2,887,852$ about double the product of the previous census year. The coal area of the State covers about 7,000 square miles. The coal is bituminous, and is adapted for steam and heating purposes. The State employed in the coal business 6.532 hands, and paid in wages $\$ 2,201,044$. The total expenditures in the coal business in the State aggregated $\$ 2,581,669$. The production of petrolenm 1859, amounted to 32,000 harrels of 42 gallons each, ranked as oil for fuel. In the out-put of sandstone. Indiana ranked 10 in the census of 1880 , and 21 in 1890 . In both cases Ohio ranked 1.1 linois ranked 12 in 1880 , and 25 in 1890 .

The following is a complete list of the governors of Indiana, both territorial and State, with the dates of service:

Wm. H. Harrison1800-11 John Gibson............... 1811-13 Thomas Posey $.1810-16$

State.

mathan Jennin	181i-202	Ashbel P. Willard.
Wm. Heudricks	1822-25	Oliver P. Morton....... 1861 -
Jumes B. Ray	1825-31	Conrad Baker........ . . . 1867-73
Noah Noble	1831-37	Thomas A. Hendricks..1870-77
David Wallace	1537-40	James D. Willinms..... 1s77-41
Sammel Bigser	1340-43	Albert G. Porter....... 1
Jumes Wbitcomb	1543-45	Isaac P. Gray
James C. Dunuing	1,48-49	Alvin P. Hove
Joseph A. Wrigh	$15+51$	

For numerous additional items of interest relating to the state of Indiana, see the article Lvited States in these lievisions and Additions.

INDIANAPOLIS, a city and capital of Indiana, and countr-seat of Dlarion county, situated on the West Fork of White River, 109 miles N. W. of Cincinnati, and 150 miles SS.E. of Chicago. Lat. $30^{\circ} 50^{\prime}$ N.. long. sit $\sigma^{\prime} \mathrm{W}$. The site is nearly level. The streets generally cross one another at right angles, except four wide diagonal avennes, which converge fore a circular park in the center of the city. Indianapolis contains a fine court-honse, the State institution for the deaf and dumb, the blind, and the insane hesides momerous other publie structures. It is the most proulous city of the State, and was selecend as the seat of government in IS:0. It is the terminus of 18 railroads rumning in atl directions. furnishing the best facilities for distrihuting the city manufactures throughout the eonntry. It is wear the eenter of the great cornbelt of the West, and is thus the natural market for an extensive arci. It has many grain-elevators, flouring-mills, and pork - packing establishments, and in the direetion of manufactures has made good progress, having extensive rolling-mills, malleable irom-works, carriage shops, foundries, and mathine shons; mannfactories of ngrieultural implements, ghas, organs, carriages, railroad-cars. sewing - machines, pianos, coton goods, woolen ghods, furniture, sash, hinds, ate There are upWards of thirty incorporated manufacturing companies, and there is an agregrate of alove $\$ 15,000,-$ OHO enpital invested. The eity has an exeehent fire department, and an ample water supply. The varims puints of the city are commented hy horse-

INDIAN CORN OK MAIZE, Uses of. For the history and description of this cereal see Mabze. Britannea, Vol. XV, pp. 309-310. Noother crop of our American farms supplies so many wants as Indian corn. It is very nutritive, contaning 11.6 per cent. protein, or tlesh-forming material, and 6.5 per sent. fat; whereas, what contains 11.7 per cent. protein, and 1.6 per cent. fat. The nutritive quality can be increased by enriching the soil.

For domestic uses, as a food-grain, corn is served in various forms, and is equally relished ly rich and poor. The sweet varicties furnish a toothsome dish, when the ears are taken green, boiled and the kernels eaten from the "cob" with butter. For "canned corn" the full grown kernels are cut from the cob while get in the milk, and then boiled, or boiled on the cob and cut afterwards, which latter method gives the better article. Sealed up in airtight tin-cans it can be kept for years. and always finds a ready sale in America and in Enrope. Another way of preparing corn for the market is by cooking it before it is fully ripe then taking it from the cob and kiln-drying it on revolving machines heated for the purpose. There are several million dollars worth sold annually in this way.
"Hulled corn" is prepared by hoiling shelled corn in lye made of wood ashes until the hall becomes loose. It is then weshed, the hull is rubbed off with the hands, and the grain is mashed again until the alkaline taste is remored. Then it is boiled until soft, and nsually served in milk. This affords a much relished dish in the farm house. Corn is often cracked in mills and the chalf removed by sifting. This is sold as "hominy" in the West and South, and is known as "samp" in New England. It requires considerable boiling to make it edible. It is usually served with milk.

Commeal contains more alhmmen than wheat flour, because less of it is removed with the bran than in the case of wheat. The famons" ludian pudding," "hasty pudding," "cornbretd," ete., are all made of cornmeal, and are healthfnl, patatable, and nutritions, and, moreover, as cheap as any other haman food. Cornmal hakes rather hadly, as compared with wheat Hour breanse it contains four times as much fat as the latter, and this richness in fat prevents its fermentation and rising. It is therefore often mixel with rye or wheat-tlour, and baked into "ryc-and-Indian bread."

Indian corn contains from 60 to 6 por pent. of starch, and "corn starch," which is manufactured from it on a large scale, is much uset for stiffening clothes and making cakes, custards, and puddings. Large quantites of corn-starch are comverted into gluense or grap"-sugar, which is now chiefly employed in beer breweries and confectioneries.

As leed for all kinds of stock, Indian corn takes the foremost place in winter. It is mostly fed in the ear, seldom shelled or ground, except when fed to poultry. Mileh cows give much rich milk when fed on corn, lweanse it contains somuch fat and oil. Cattle and hogs fatten rapilly on it, hecause of its large contents of starch, of which a portion is converted intoglucose in the animal system. The most economical way of feeding corn is hy cracking or grinding it, as a large pereentage of the grain passes whole through the intestines of eattle. But where hogs are allowed to rua loose they pick up the dropped grains. loultry do the same.

For "fodder-corn" the send is sown in Jume either in drills or bread-cast, and the erop is harvosted when the ears are developed, hat before they are ripe. It is cut and dried like grass and hay. Often the stalks and leaves are harvested while green. then cut fine by machinery and plared into chase wits in the ernumel. or in in air-tight compartments
on the suriace, called "silus." The exclusion of the air preserves the fodder from decomposition and enables the darmer to feed it all winter in the suc. culent state.
The stalks, hosks, and maves of com, which reman after the ears have been phucked off, are also used as food for cattle, and are usually designated by the term "fodder." They assist very largely in feeding the farm stoek during winter. Even the corn colsare eaten. They contain over three per cent. of protein, and are as mutritive as coarse hay.

For information as to the sugar contents of corn stalks, see S'Gar, also Comen Chor, in these Revisions and Additions.
INDIAN FIRE, or Inprotechiv, a bright white light produced by burning a mixture of sulphur, realgar, and niter.

INDIANOLA, the count y-seat of Warren county, Iowa, located 20 miles south of Des Xloines. It mannfactures farm-implements and is seat of Simpson (Methodist Episcopal) College.
INDIANOLA, formerly a village of Cahoun county, Texas, on the west shore of Matagorda Bay, 10 miles from the Gulf of Mexico. It was of considerable importance and contained in $1870,1,900$ people. It had a thriving trade in cotton, cattle, hides, and wool, but in sept. 15. 1875, a terrible storm caused the waters to rise and a large part of the village was swept away. Another storm in 1886 completed its destruction.
INDIAN RIVER, a narrow tidal chanmel parallel with the Atlantic coast, and lying in lirevard and Volusia counties, lila. It is about 100 miles long. and finds an outlet to the ocean at Jupiter inlet. It is navigable for boats drawing not more than 5 feet, aml as the climate of the locality is healthful, and lish almund in the river, this is a resort for invalids and sportsmen.
NSMMAX SLMMER, in the United States, a period of late antumn characterized by calm, dry, and ha\%y wather. The name is due to the fact that this condition was especially noticable in the region chistly occupied liy the Indians at the time the term was int roduced.

LNHIAN TERRITORY. For gencral article on the
 83\%. Area, as returned hy the U.S. Cemsus of 1840 , $31,+00$ square miles incluting too square miles of watur suriace. Population (including Indianscensus report 1890) $17,55 s$. The chief fown is Talorpua, capital of the Cherokee Country.
liy the act of Congress, approved by the President May 2,1800 , creating the Oklahoma Territory. the boundaries of the former lndian' Territory were ehangel, and the new lndian Territory was defined to comprise "all that part of the Cuited States whieh is hounded on the north be the state of Kansas, on the east ly the States of Arkansas and Missouri, on the senth hy the state of Texas. and on the west and morth hy the Territory of Oklahoma." In ether words, all that portion of the old Indian Territory occupied by the five civilized tribes and by the sevoral tribes under the jurisdiction of the Quapaw Agency, now compose the lndian Torritory. The area is less than half that of the ohd Indian Territory.

The satid act, in sections $2 f$ at sig. proceeds to limit the jurisdietion of the United States court in the Indian Territory established be the act of Harch I, 18s: (25 Stats., T83), to the Indian Territory as abore defined, and to enlarge the anthority confermen that court by the said act, giving it jurisdietion within the limits of the said Indian Territory over all civil cases therein, except those over whifh the tribal courts have exelusive jurisdiction.

The Indian Territory is divided into three judi-
cial divisions, and the court will be held for the first division, consisting of the country occupied by the Indian tribes in the Quapar Agency, the Cherokee country east of ninety-six degrees of longitude and the Creek country, at Museogee, in the Creek Nation; for the second division, consisting of the Choctaw country, at South Mcalester, in the Choctaw Xation; and for the third division, consisting of the Chickasarw and Seminole countries, at Ardmore, in the Chicasaw Nation.
The court is given probate jurisdiction, and certain of the general statutes of the State of Arkansas are extended over and put in force in the Indian Territory.
It is authorized to appoint not more than three commissioners for each judicial division, who "shall be er officio notaries public and shall have the power to solemnize marriages;" they shall also "exercise all the powers conferred by the laws of Arkansas upon justices of the peace within their districts."

Except as otherwise provided in the law, appeals and writs of error may be taken and proseented from the decisions of this court to the Supreme Court of the United States, in the same manner and under the same regulations as from the ciruit courts of the United States.
Much good is expected to result from the enlarged jurisdiction of the court, and especially from that provision of the law which gives the judge of the "United States court in the Indian Territory the same power to extradite persons who have taken refuge in the Indian Territory, charged with crimes in the States or other Territories of the United States, that may be mow exercised by the governor of Arkansas in that State." This power properly exercised will, it is expected, have the effect to purge the Territory to a great extent of the criminal element that for years is said to have found an asylum there, where pursuit and punishment seldom, if at all, found its way, and to which much of the introduction of whiskey and the moral degradation of many of the Indians is due.
popelations in limian Terbitory, Classifien.The following figures have been compiled from the figures reported in the official census of 1590:

	Indians	Colored	Whites	Total
Cherokee Country	25.357	4,242	27,176	54,975
Chickasuw Country.........	3,464	3.718	4.9 .144	54,606
Choctaw Country.............	9.99	4.401	27.991	42,388
Creek Conntry	9,291	5,341	3,280	17,912
Seminole Conntry	9,539	22	96	2.627
Quapaw Country	1,224		1,294
Chinese in Chlckasaw Natín		6		6
Total	51,471	17,730	107, 2×7	177,5.38

Indian citizenship in the first five tribes above (desiguated as "The Five Uivilized Tritns,") is regulated by tribal laws. Freedmen and other negroes hecome citizens of the several tribes under said laws.
The Eastern Cherokee tribe of Indians live on the Eastern Cherokee lieservation in North Carolina. Rations are not issued by the United States to these lndians. For additional important intormation concerning populations of this Territory, see R. S. Prale's edition of the Dritannica, Vol. XII, pe. \&2a-8:5. Also maps of the 1 ndian Territory and Oklahema in these levisions and Additions.
INDFGIRKA. a river of Siberia, in the government of Jakutsk. It rises in the Yahbonoi Houn-
tains, flows north for about 750 miles, through a frozen desert, and falls into the Arctic Ocean in latitude 71° north, and longitude 150° east.

INDORSED, EKDORSMD, or ADDORSED, terms applied in heraldry to two animals placed back to back.

INDORSEMENT, the term generally used to denote the writing of the name of the holder on the back of a bill of exchange or promissory note, on transferring or assigning it to another. Signing the rame "A. B." alone is a blank endorsement, and if the transferee is named it is an indorsement "in special," or "in full." The usual form is "Pay C. D. or order, (signed) A. B." When personal liability is to be avoided the words "withont recourse" are added, and in this case no demand can come back on the indorser, who would otherwise be liable.
INDULGENCE is generally detined as the remission by church authority of the temporal penances due for sins committed. But the writings of Tertullian (De Pudicitia) point to a primitive belief that the merits of the saints will be efficacions also in remitting the sins of the faithful before God; and the invocations of the saints' intercession before God, as practiced by the Roman Catholic chureh of to-day, shows that the remissions believed in are not only relaxations of canonical, that is external penances, but also forgiveness of sins by God himself. The Catholic church teaehes that it possesses a "Treasury of Merit" (Thesaurus Ecclesix) accrued from the sufferings of Christ and of the martyrs. and also from the good works of the saints. Based apon this treasury and superabundance of merit, the church claims the power of remitting-not the sin itself but-the guilt of sin, and, in consequence, also its external punishment. A "plenary" indulgence remits the entire satisfaction due to God; a "partial" indulgence only remits it in part. The jubilee is a plenary indulgence conferred upon all contrite confessors.
Indulgences are also applied to the souls of the departed by way of intercession. The living obtain the indulgence from the church and present it to God, who may or may not, remit the sins of the departed soul. The church assumes that He does accept it, and thus ratifies her action. The indulgence of the "privileged altar" was explained by the Sacred Congregation of Indulgences (July 28, 1840) to mean a plenary indulgence which forthwith liberates the soul from all the pains of purgatory. These altars are priviloged, "each time the eucharistic sacritice is offered, to possess, and set apart, a sullicient portion of the church's treasure of merits to ubtain from God, if it so pleaseth him, the relcase of the prayed-for soul from purgatory."
LNDUSIAL LINESTONE, a variety of freshwater limestone found in Anvergne, France and some ot her localities, formed of the cases (indusia) of caddice-worms, great heaps of which have been enerusted with carlonate of lime, and formed into a hard travertine.
INDUNTLIAL ENHIBITIONS. For the great industrial exhihitions held in Europe and America Infore 1876, see Britannica, Vol. Vill, pp. 803-805. Exhibitions of mechanieal arts have been periodical!y made in the United States by several institutions. l'rominent among these are the exhihitions of the American Institute of New York, the Franklin lustitute of Plifadelphia, and the Mechanics' liairs in boston. All of them have done much to stimulate invention and to awaken popular interest in the mechanie arts.
.

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

```
AE The encyclopa dis britmnica
5 9th ec.
E363
189?
v.1%
```

For use in the Library ONLY
-

[^0]: 1 The characters of the sevoral tissuca nod their varictis are best known as they occur in tho Vertebrata, and a descripten of them wrilt be found in the sriciele on Anatom.
 ${ }^{3}$ A hayer of cells which thus forme a menbrane by the a aion of the cells, with au inperceptible amount of intercellular cerneating substatre, would properly fall under the defnition of the term epitheliem, which was first apthed by Ruysch to tho cellular membrane covering the tifs, and has ever sluce beon used to desiguate membrenes than courrosed of celly alone.

[^1]: ${ }^{1}$ Exceptions to this general rule ure seen in the layer of cells which underlies the chitinons cuticula of anvelids (Claparede), aud in tho enamel orgau of the reveloping teeth of vertebrates (Kolliker), where tho cells, although epiticlial, oro ranisfied and nnited by their branehes into a network; andi, ill a far less degrec, iu many of the lower cells of a stratified epjlhelam, where it ead be sern with a high power that the edges auil surfaces of the cells are plovided with numetous elort projections which are upplied to those on andjascut cells.

[^2]: ${ }^{1}$ This turic scems, howeser, from its development to be an epithelisis atructure. although resembling in many respects conuective tissue.

[^3]: ${ }^{1}$ The tem newe-finte is here employed to rlenote the essentidd Iart of the urve, corresponding to the "axis-cylieder" "f vertelorate histolugy.

[^4]: 1 "Uther ein zu Demonatration gecignetes 7.entheilungs-Oniject," Sitenugshrichte der Jenotscherb Gescllschaft für Medicin und Naturwissenschaft, July 18, 1879.
 (2l al.), 1 33.

[^5]: 1 There are thee acconnts of llobbes's life, first published together in 1081, two years after his leath, by R. B. (Hichand Biack burue. a frend of llobhes's admirer, John Aubrey), etad reprinted, with consplomentary verses by Cowley and others, at the beginnang of Sir W Molesworth's collection of the Latin Woris:-(1) T. A. Aalinest. Vita (pp xiii-xxi.), written by llobbes luviself, or (as also reported) by T. Rymer, at his dictation; (2) Iito Hobnance Auctaraun (fpe xxit-hax.), turned into Latun from Aubtey's' English; (3) T. II. Malmesb. Vita carmane expressa (rp. Ixxxi.-xcix.), virituo by liobbes at the age of arhey-hou (finst pulblished by itself is 16S0). The Life of Mr T. If. of Salmesburic, prioted among the Lares of Emancrit $.1 / e n, 14!813$, from Aubrey's papers in the
 paticulars not luant ut the .tuflursmo.

[^6]: Wer, matlin by Thmenterles the sim पf Olarns, interperted with futh
 tiry to the the: timet of tricmashme, appared in 1028 (givetn ulst) the
 in the dentuation. It reapuramel in la3s, with the tate of the deth. catan almost, as if then menly writton. Thomgh lloblues clams in

 E. IV. Muheswatis collection of the Lantin Opert Chilosephicis is

[^7]: Wew the seren wombers of the Dubyshine Paki, were witten before

[^8]: 'The freo English alestrast of Aristolles. Ractoric, pulilished in 1681, after IIobbes's death, as The IThele Arl of Rheturic (E. IV. vi. pp. 423-510), corresponds with a Latur version dirtated to his young pipil. Among Ilobles'n pipers preserved at llandwie where tie fied, there remains the boy's dictation-book, iuterspersed with beadinds. oxamples, \&c., io 11 obbes's hand.

[^9]: Among the llardwitk papers there is peservel a ass. cefy of the work, muler the tille Elcmentes of Lato dirturall and Putitigut, with the thediration to the eall of Neweastle, wertten io Hobbes's own hamed, ant lated May 9,1610 . This dedieation was prellixed to the firy thirteen chapters of the work when printed by thetaselves, under th tite Mamas ivisure in 1050.

[^10]: "Described as "nnbilis Langendocianus" in l'il.; doubtless the samo with the "Dominus Verdusins, mobilis Aytitanke," to whom was dedieated thé Exam. et Ement. Moth. MTol. (L. 1F., iv.) in 1660. Du Venlus was one of Hohbes's potomulest ndmirers and nost fre* quent eorrespondents in later yeans; tlate are many of bis letebs umong lloblues's maters at Hardwick.

[^11]: ${ }^{2}$ The treatiye boro tha date, "hounn, Ang. :30, 165z," but it shond have boea 16th, as afterwards exjlained by hobles hansclf (E. H', v. p. 25).

 FA littie tract by Birhop Laney of Ely, directed against the cone cluding summary in Hobbes's original statement to Neweastle, was published in 1676, and callod fortha printad reply from llobbes, atitn mildrosed to Noweastle (who had pucarwhile becomo duke). Jhiw fetter is not reoriuted bs Nolaworth.

[^12]: ${ }^{3}$ Thistianslation, Concerning Body, though not made by Hubbes, was revised by him; but it is far from accurate, and not seldom, at catical places (eg. c. vi. 8. 2), qute misleadiog. Philosophion citations from the De Corpore should ahvars he made in the original Iatin. Melesworth reprints the Latin, ant from the 'rst edition of 165\%. but from the modilied editien of 1068 -modithed, in the nistice-

[^13]: ${ }^{1}$ Wallig's bideces were excludel from the collected adition of hia

[^14]: ${ }^{2}$ 'rise De Medio Animarrme Stath of Dluoms White a heterodor Cathalig priest, who contested the natural immortality of the soul. Winita (wh died 1676) and Ilobles were ficule

[^15]: ${ }^{1}$ E. W., vi. np. 161-418: Though Echemolh was kept back at the king's express desire it saw the light, without Hobbes's leave, m16i9, before his death

[^16]: 1 At Maestricht, however, a portion lies on the left bank of the river, measured, according to the treaty with Belgium, 19th April 1839, nat. 4, by an average radius of 1200 Dutch fathoms (7874 fect) from the outcr glacio of the fortress.

[^17]: ${ }^{2}$ Algemeene Statistick van Vedcrland, p. 61.

[^18]: ${ }^{1}$ Before the construction of the caual to 3 muiden.

[^19]: ' These figures bave refereuce to the Lowsr not to the Upier Rhine.
 ? Below Grava.

[^20]: The wadue of the tom imports, exports, and tramelt prate cannat be given
 If the furmathea if theal ruitarnton, in virtue of wheb tha quantites are is

[^21]:

 Lelloıkutade, 27,

[^22]: For the asserthons of the latonic Jinyarchus nad of Diegeses

[^23]: ${ }^{1}$ So Pausanias (ix. 30, 2), who supports his opinion from Inesiod, Theog, 31)-32. Aud so Aristophanes (Nvb., 1355-64) distinguishle's between singing an ode from Simonides and saying ($\lambda(\{a r)$ a j jiece of Eischylus In the becoud case tho myrtle brasch is taken instead of the lyre.
 2 The difficulty which bas been malo becman the title Δ wouk ${ }^{2}$ ous 'Aprofela is given in tho MSS. to the tifth book, whereas the quotation In question comes from the sirth is due to ath overaight. Putting nside the modern division into books, and looking to the narrative, we ses that the Arstena of Dionelele extends from the begianing of Book v . to ver, 311 in Book vi. See the Jurnal of Philalogy, vol ii p. 214.

[^24]: ${ }^{3}$ "The inchomts which, as we rean them in fomer, touch us as we aro whach ly a fairy tale" (Conington's b'itenl, " 1 . 11). This rabject st well tratorl by Me Mahafy in his Sural heve of Circece. ch. ii.

[^25]: s Comemporary Rever, vol. axiii. p. $218 \mathrm{~g} /$.
 3 The lact that the fllanician V'au (F) was retained in the Greck afratiets, and the vowel v adtled, shows that when the alphabet was mtraducet the somm? denoted by fo was still in full vigour. Otherwise fornht have hern used for the vowel u. just as the Phonician consonant Yol became the vowel a. But in the lowic tishect the sound of F ded out goun after llomer's time, if indeed it was stall provounced then. ft seems probable therefore that the introduction of the alohabet is not later than the composition of the Homeric poems.

[^26]: 1 The word $\sigma \hat{\eta} \mu a$ means the whole message or document. Hence otuara λ uypd are net "baneful marks" or "characters," but "a token which " (insteal of being ooe of friendly recommendation, as it [urported to be) " was a mossage of doath.'"

[^27]: ${ }^{2}$ On this point, seo Mr Glalstone's Jomeric Synchronisin, cl. (il.

[^28]: Die Composition der Odyssec, Berlia, 1869. A full diseussion of this book is given by Dr E. Kammer, Dis Eirheil der Odyssec,

[^29]: 1 "As a poet lloner mist he acknowhenged to exeel Shankespuare in the truth, the harmony, tho sutamed grandeur, the satisfying combletences of his imazes" (Shedley, Eissays, \&e., vol. i. p. 51, ed. 185.2)
 a trmaret, and thix is muels; but homer, but the fev artists in tha butul sls le, cat do more-they ean refine the raw utatural man, thes

[^30]: 1 By A. Römer, Die Exegetischen Scholien der Jias, p. vii.
 2 "On comprend que des chants populaires nês d'un événement celatant, victoire ou dénite, puissent contribucr à former la tradition, a en arrêter les traits; ils penvent aussi devenir le centre de legendes quise forment pour les expliquer ; et de la sorte leur substance au munns arrive au poëte épique qui l'introduit dans sa composition. Voilii co qui a min se produire pour de chants tris-courts, dont il est d'ailleurs aussi difficile d'affrmer que de nier l'existence. Nais on peut expliquer la formation des chansons de geste par une autre bypothese" (Meyer, Recherches sur l'Epopée française, p. 65). "Ce qui a fait naitre la theorie rles chants "lyrico-epiques" ou des enntilénes, cest le systéme de Wolf sur les poemes homérquics, et de Lachmann sur les Nibelungen. Nais, au moins on ee qui concerne ce fnaier poëme, le aysteme est detruit. . . . On tire encoro argument us :omatace espagnoles', ๆu', dit.on, sont Iles 'cantilines' mon encore

[^31]: ${ }^{1}$ See Philo, Quod omnis prohus luber, sec. 12 (ed. Mangey, ii. 459; f_{8} i. 630).
 = Sozomen (II. E. vii. 19) mentions that in Alexandria in his day the bishoo alone wo in the custom of preaching; but thes, he implies, was a very exceptional atate of ratters, dating only from the time of Arius.

 - To the more strictly exegetieal lectures the names isprinocs,
 pomular discourse delivered from the pulput eould ever be exclasively :apusitory and as on the other hamd every sermon professing to be

[^32]: An anciont Eiglish metrical homiliarion exists in the library of the unversty of Cambradee, of wheh earlof versons have exusted, bud a frorton of perhapy the earhest eopy, dating from abont the middle of the $13 t h$ century, was pmbhashed $\min 136 \mathrm{lig} \mathrm{Mr} \mathrm{J}. \mathrm{Small}$, flomenan to thas maversty of Edabogesh.

[^33]: ${ }^{1}$ According to a recent mriter iu Noks and Queries (6th 8. i. 171), Hone remarbed in conversation that he tnok the idea of the Rivery. day Book in 1814 from Defoc's Trime's Tclescope.

[^34]: ${ }^{1}$ Thes tema honoy in its varons forms is peculiar to the Tentonic group of languages, and in the Gothic Now Testament is wating, the Greuk worl heing there translated melith.

 2 Sur A. White, in A hn, and deteq. Nith. Hish, vii. 315, pl. 4.
 8 Wetherill (Chem. (duz. X1. 7: 185: calculates that the average wishte of the honey is 8.2 times that of the boly of the ant, or 0.3012 aratronea

 dacultyatorl worsut

[^35]: ' Memoires du diusehem, x1 313, 1824.
 ${ }^{2}$ Ib., xii. 293, pl. xii. fig. B, 1825 . The loney, eccordirg to Lrssaigno (ib., ix. 319). is almost entirety aoluble in alcohol.

[^36]: ${ }^{3}$ Foralist of fifteentreatisesconcerming heney, dating from 1625 to 18088 , aee Wariug, Bibl. Theran, ii. 559, Nice Syi. Soc., 1879. On eundry nacient uaes for Lonev, see Beckmann. If ist. of Inecat. i. 287, 184Q.

[^37]: ' Among them especially MrWallace, Geogr. Distr. Animals, ii. p. 275.
 It may le remarked that the young of this species has the thrnat sellow.

[^38]: 1 This name had been assumed in the previous century (1061-69) by Peter Cadalus; but bo never was recognized as in legitimate

[^39]: ${ }^{1}$ If Baeon was the anthor of The Christian Parndores, his philosn phical standpoint in reference to religion was not only less anvancer than that of llooker, hut in a sense directls opposed to it

[^40]: ${ }^{1}$ This imped is deried ly Namann, lat by him alone; and tho atatchunt in the text is confirmed hy unany cyewitnesses.
 "Under the name of Jukiputh, in the authorized version of tho Bible translatel "Lapwing" (Lev, xi. 19, Deut. xiv. 18), the lloopos was accounted unclean by the "Jewinh law." Arabs have a great tever: cnco for the lizd, imparting to at marvellous medicinal and nther quatities, aud making use of its leead in all their charms (cf. Tristrsin, Nad. Hist, of the bible, 19. 208, 209).

 * The genera Iihinopomastus and Itrisor are generally placed in the Family $U_{p^{p}}$ vida, but Dr Murie (l.c.), after an exhaustive evanination of their osteology, regards them as forming a group of equal ;eluo

[^41]: ${ }^{1}$ Issleib (Arehiv der Pharmacic, May 1880) has further elucidated the ehemical relationship of the constituents of the resin, essential on, and bitter principle.

[^42]: * Inciplt ex 1110 montes Apolia notos

 Ostentare mihi:"

[^43]: 'rf the line of Ennius, which Cicero compares to tho voice of ad orach-

[^44]: ${ }^{1}$ The date is determined by the poem on the denth of Quintiliua Varus (who died 21 B.c.), and by the reference in Ode i. 12 to the young Marcellus (dicd in autum 23 b.c.) as still alive. Cf. Wichham's Introduction to the Odes.

[^45]: 'If who maligns an absent friend's firir famw, Who says no word for him when others litame, Who courta a reckless lugh by randon hits, Just for the sake of ranking unong wits, Who feighs what he ne'er saw, r secret blako. Luware liur. Roraon! that man steals ur mibs."

[^46]: ${ }^{1}$ Such genera as Euryceros, Scythrops, and some others, together with the whole Family sfomotide, which had been at various times and by various aystematists placed among the Buccrotide, have evidently no real affiaity to them.
 ${ }^{2}$ Appareatly correlated with this structure is the curious thickening of the "prosencephalic median septum" of the cranium es also of that which divides the "prosencephalic" from the "mesencephalic chamber,' noticed by Professor Owea (Cat. Osteol. Ser. Mus. Roy. Coll. Surg. England, i. p. 287); while the solid horny mass is further strengthened by a backing of bony props, directed forwards and meetlag its base at right angles. This last singular arrangeneat, which is not perceptible in tho akull of any other apecies examined by the present writer, does ngt acem to bave been descrived.

[^47]: ${ }^{\text {a }}$ The noise made by the wiogs of some of the large species in their hight is compared by It Watlace, in an allairalle artiele on the Fanuly (Intellectual Observer, $1863,1 \mathrm{p} .310$ et scqg.), to the ymfling of a locomotive steam-engine when starting with a train, and can the heard a mile off.

 - Buffon, as was his manner, enlarges on the cruel injuctice done to these birds ly Nature in eucumbering the with this deformity, which

[^48]: 'Darwin, Voriation of Animals and Plants under Domestication, 1868, rul. i., chap. ii.

[^49]: Operu quacextant ennice, "Comment.," lid. i. enp. cxxii. p. int, Frankfort, 1698 , foh; of. Gerart, hirball, p. $1443,2 d$ ed, 1633 For
 Gurd. Chron.. 1875, 11. 53.

[^50]: ${ }^{2} \mathrm{Mr}$ Knight, an haquestionable ambonty, poposel a general pitch or elevation of 34° for the latitule of Lombon, the angle at which tho rays of the mid-day sun are pergendicular to the surface on the 20th of May and 21st of July. This wouhd aflorl four months, from the 20th of Apmit to the 21 st of August, durng which the angle of incilence at mideday would not at any time anount to 9°, while the deviation at the winter solstice woult be 43°, an! the loss of light from reflexion wonld be tittle more than 3t. The angle of 45° has becn recommended as a pitch extremely suitable for ealy vincricand pine stoves, In which case the midsummer deviation wonh be 19°, and the loss Jon $^{\prime}$ and the winter deviation 30°, the loss being nearly the same. Greater exactness, however, has been souglit in this matter than is at all neces. sary. The reduction of the opacity of the roof arising from the breadith and depth of rafters and astragals is of much more consequence. Tho massive rafters, framed snbles, and inferbor glass inserted in smalt fragments, with nuncrous ovrrlaps liable to be chuked with dirt, intercept a large proportion of the solar tight and heat in ordinary glass houses.

[^51]: ${ }^{1}$ On tbe general subject of Frucing fruit treos the reader may usefully consult 'Thompson's Gardmor's Assistant. Bríhaut's Modern feach Pruner, Forney's Jardiniet fruitier, Hamly"s Traits de ia Taile dis Arbres Frvitiers. and Dubreuil's Culture des Arbres ef Afturisscancs a Fruits de Top $\%$

[^52]: 1Somo writere, inciultiag D : Pusey, (lama later date for the book, identufying Shaman ia. .14 with Shabmaneser IV., the successor of Tiglath Pilesur. This identification is altogether arbitrary. If BethArbel ts Arbela beyond Jordan (Onom., ed. Lagarile, p. 88), tho poferenco, by Schrader has shown (Keilingchr. und A. T., p. 283), may bo equally woll to Shalmaneser III., or to a king Shalamana of Monb, who arpears on the monumenta as a tributary of Taplath Ibleser
 ${ }^{2}$ Seo on the whole chromoligy of tho perion, Schrolnt, beitin= echrifter und A. T., (ieqsen, 1872; ld. Neiliuschr!fon mel Grschiches-
 1475; Wellaman's article II , Hh, f. Devteche Thenh, 1875, dp. by? - 1 Oppert, whlowne et ses Successcurs, 1'aris, 1877.

[^53]:

[^54]:
 tirevina, 1873.

[^55]: ${ }^{1}$ These were alwas played at the reed-dance, which was commenced by a leader blowing on bis reed, with head bent forwarls, and stamping his feet violently on tha ground to beat time. He was folIowed by the other musicians, who, forming a circle, also stooped forward and stampeal. The women first ran round tho circle of reedplayers, clapping their hands and singing, and giving their Lorlies various odd twists. Then they got into the circle, and tho men atimperl and blew the reeds arnund them, and thus they continned fregnently s whole pight with but little interruption. OD some occusiuns tho performers described with appropriata action any incident of late oscurrence, and in doing so tho utmost poctical licence, ns w:ll as periect frteduto of speech, was peranitteh.

[^56]: ${ }^{2}$ The thief was bound hand and foot, and left on the grouod with. out food for a long time; then, if his offence was slighn, he received some blows with a kerrie or stick, but if the case was an eggravated one, he was severely beaten, and then unloosell and banished from tha kraml. The family of evea the woist criminal suffered nothing on his account in reputation, privilege, or property.

 * An interesting notice of this form of worship occurs in the journal of an expedition which the Mutch governor, Ryk van Tulbagh, sent to - the Great Namargas in 1752, which reached as far as the Kanob or Lion river (about $27^{\circ} \mathrm{S}$. lat.).
 * On the religun mad antiquities se, llalin's papers, "Graves of
 Hottentatische Zni-gent und cler Grieclusche Zus," in Zeits:hr. fur reogr.. Berlin. 1570.

[^57]: 1"Alout geven months ago," he writes to Dr Clephane, " 1 got a honse of nyy dun, and conpleted a regular fanily, coussting of a licad, viz., myself, and two inferior members, a maid and a cat. My sister has since joined me, and kecps me company. Wilh fangalucy I can reach, I fiod, cleandigess, wamith, light. flemy, and coutentment. What wonldyon tiave nicie? Indejx-nithice? I haveat in a supreme degree. Honions? That is mot altugether wanting. Grace ${ }^{\text {a }}$ That will come in time. A wife? That is none of the indisponsable requisites of life. Jooks? That is one of thent and lhave more than can use. Jo short, I cannot fiud any blesing of consefuence what a ain not pospesed of in a greater orlus digiee; and without any great effurt of philnonghy, I may be eny aud satisficil. As theie is no hagpiness without ocerpmion, 1 have begnt a work whech will employ me sevelal years, and which yinhls me much satisfaction. "Tis a hastory of Geat Britnin, from the Chion of the Cronns to the present time. I have already finisheet the reign of King Janes I. Wy frembls flatter me (by which 1 mean that they don't hather me) that I have succeedel. You know that there is no prost of honour in the Enghish Carnassus moro vacant than that of history. Style, jubignent, mpathaluy, care -everything is wanting in our histotians ; and cisen Rapm, durng this latter puriod, is extrencly deficient. I mahe my unth wely concise, afler the manner of the ancients. It divides moto three very moderate volumes: one to end with the dicath of Chartes the lirst ; the second at the Revolation ; the thitid at the Accession, for Iflare cone no neares the present times. The work with neither wease the duke of Bedfond nor James Frascr; Lut I hoge it will diease you and posters: Kotipa tis ás:

[^58]: ${ }^{\text {a }}$ We appead tho judgment of Macanlay on Humo's characteristic frult as no hastonan:- "1lume is an accomplished advoeste. Without posituvely asserting much wore than he can prove, he gives prominenco to all the circumstances which support his case; he glides lightly over those which are unfavourahbe to it; his own witnegsos aro applanded nod ebcousaged ; the statements which seem to throw discredit on them aro controverted; the conthadictions into which they fall no explaned awny; a clear nad counected atatract of their evidence is given. Everything that is offered on tho other sido is scrutinized with tho utmost severity; every suspicious circumstanco is a ground for argument and invective ; what cunot be denied is oxteaunted, or passed by without notico ; concessions oven aro soruetiones mule; but thas insulions candour only increases the effect of the vast' mass of aophstry."-Miscell. Writings, " IIistory." With this may bo urmpared the more favomble verdict by tho lato Prof. Brewer, In the Hefuce to lis edition of the Studext's IIume.

[^59]: "I live still, and must for a twelramonth, in my old houso in James' Court, which is very checrful, and even elegant, but too small to display my great talant for cookery, the science to which I intend to addict the remaining years of my lifo! I hava just now lying on the tablo before me a receipt for making soupe a la reine, conied with my own hand; for beef and cabbagr (a charming dish), and old mutton, and old claret, nobody excels me. I make also sheep-head broth, in a manner that Mr Keith spenke of it for eight daya after; and the Duc fle Niveroois would bind himself apprentico to my lass to learn it. I hava already sent a challenge to David Monerief; you will see that in a twelvemonth he will take to the writing of history, the field I hava deserted; for, as to the giving of dinners, he can now have no further preteasions. I should have raade a very had usa of my aboda io Paris, if I could not get the better of a mere provincial like him. All my fricods eocouraga mo in this ambition, as thinking it will redound verv much to my honour.".

[^60]: In the edition of Oviedo's work, pullished at Salamanea in 1547 the carliest the present writer has been able to see, the necounl (lib). siv. cap. 4| ruos thus:-" Ay assi mismo enesta ysla vnos paxaricos tan negros coma vo terciopelo negro may bueno \& son tan pequeños que ningunos he yo visto en Indias menoles/ exceplo el que aca se llama paxaro mosquito. El qual es tan pequeño que el bulto del es menor barto o assaz que le cabeça del dedo pulgar de la mano. Este no le hie visto enesta Ykla pero dizen me que aqui los ay : \& por esso dexo de hablar eacl pe to dezir dode los he visto que es en la lier ra firme quälo dells se trate." A modern Spanish version of this passare will be lound in the beautiful edition of Oviedo's works published lys the Acalomy of Madrid in. 1851 (i. p. 44t).

[^61]: See also Prof. Molley's Life of Girolamo Cardano (ii. pp. 152,153).
 ${ }^{3}$ Under this name Pliny perpetuated (Hist. Naturulis, viii. 25) the confusion that had doubtless arisen before his time of two very distiuct birds. As Sundevall remarks (Tentamen, p. 87, note), tpoxidos was evidently the name commody given by the ancient Greeks to the smaller Plevers, and was not improperly applied by Merodotus (ii. 68) to the species that feeds in the open mouth of the Cro-codile-the Pluzzanus agyptizus of modern orn:holegists-in whieh sense Aristolle (Hist. Animatiun, ix. 6) also uses it. But the received text of Aristotle has two other passages (ix. 1 and 11) wherein the word appears in a wholly different consexion, and can there be only take to mean the Wren-the usuml Greek name of whet would seem to be üpxidos (Sundevall, Oin Aristoll. Dunerarter, No. 54). Though none of his ellitors or commentators have suggested the possibility of such a thing, one can hardly help suspectmo diat in these passages some early copyist has subshituted tpoxinos for "pxidos, aud so laid the foundation of a cuitous error. It may be here remarked that the Crocodile of St Domingo is sail to have the like office dooe for it by some kind of bird, wheh is called ly Decsourtule (Voyage, iii. p. 26), a "Toducr," but, as Geolfr. St Ilihire obverves (Descr. de l'Egypte, ed. 2, xxiv. p. $44 n$), is more probally a Plover. Unfortunately it: fanna of Ilispaniola is not much better known now thad in Oviedo's days.
 *Thus Docimastes ensifor, in which the bill is longer thad botb bead and body together.

[^62]: ${ }^{1}$ Cf. Dr Max IIantken, In Keleti's Skize der Landeskunde Ungarne p. 13, Budapest, 1874.

[^63]: 'Strietly 1227 , the average, for the 16 years $1862-77$ inclusive, Letag $35 \cdot 3$ for winter, 307 for spiag, $29 \cdot 2$ for summer, and 27.5 for autuann-Budapest Melcorologina I'issonyma, issuod (IS79) liy the Foval thurarinu Centail Meteorolorical Intitutc.

[^64]: *The guantity of (Ricsling grape) wines proluced on the arcloluke Abrecht's cstates near Bíllye and Villiny is said to exceed $1,000,000$ botles ananally.

[^65]:
 91 million gailoms．

 ＊Gormenly，bae lucorrectly Cis－Tibisca．

[^66]: The civil population of Elungary Praper and Transs tranin at tho end of tsic wav 11,650,624.
 EIn $1 \times i 8$ the nnpulatina of Ruduprat, Ineludine milliary, was 303.208.

[^67]: ${ }^{1}$ He loat the onth in 1433 . but Frederink withletd the ci swo.

[^68]: ${ }^{2}$ The world-famed Bibliotheca Corvina is variously estimated to bave contained from 5000 to 10,000 volumes, chiefly manuscripts, many of thich were bonght from Greek scholars who had fled from Constantinople, or had been copied in different parts of Italy.

[^69]: ${ }^{2}$ In the Map Department of the British Musum thero is a carious old print by H. van Schoel (1602), taken from an engraving by A. Lafrery (1566). which represents one of the Turkich attacks upon this fortress

[^70]: ${ }^{1}$ The cliter son of Fertinand IIt., who in 16.17 hat been desigmated Ferdinand IV., dical in 165 L .
 ${ }^{2}$ Known ay "Palatine Wpaselemi's Ilot." The prlatine, huwever, dime in :

[^71]: See Count Géza Kultis "Letlerc Ungheresi." La Ruista Europea, anno rl.,
 vol. ti. fasc 8 , pp. $561-62$, Florence, 1875 .

[^72]: In the existing text of Plolemy (iii. 5. 25), whe wrote ebout the end of the 2 d ceotury after the Christian era, a trilie of Clumi (Xoivor) is placed botween the Basterax and the Roxoladi on tha Dnieper: Sclafarik, however (Slav. Alt., i. 322, 1842), suggests thne ches may be an folerpolated passage. Dionysins Periegeles (c. 200 A.D.) is sornctines quoted as haviog named the Huns among tho borderers on the Caspian in this ordor-Scytbs, Hues (OZvvot), Caspiani, Albani ; but the true reading appears to he Өouvvot or Auva (Zeuss, Die Deulschern u. d. Nachbarstimme, p. 727). Eratosthenes, as quoted by Strabo (p. 51 4), gives io the samo coouexion Atbani, Caspiani, and Koutrior, Kouivrial, or Oüttion

[^73]: ${ }^{1}$ The date is thus entered in the parish register, see Adams, Memoirs, Appendix, p. 203. The Hunteriso Oratioo, iustituted in 1813 by Dr Baillie and Sir Everard Home, is delivered at the Royal Collego of Surgeons on the 14th of Februsry, which llunter used to give as the andiverssry of his birth.
 ${ }^{2}$ Othley's date, 1738, is ivaccurate, gce Simmons, Account of . . "1'. Ihunier, p. 7. Huater's mother died Nov. 3, 1751, aged 66.
 ${ }^{-1} 11 u n t$. Oral., 1851 , p. 6. 4 Aunt. Orat., 1853. p. 7.

 - observations on the Life, Disease, and Death of J. H unler, p. 19 , 1555.
 ${ }^{8}$ See Oration before Huoterian Society, Afcd. Times and Gazelle, Match 1877, 1, 224.
 ${ }^{2}$ R Quain, Munt Orat., 1869, 1: 12

[^74]: ${ }^{8}$ So io llome's Life, p. xvi., and Ottles's, p. 15. Ilunter hinself (Treatise on the Blood, p. 62) mentions the date 1755.
 ${ }^{0}$ Ottley incortectly gives 1753 as the date. In the buttery brok for 1755 at St Mary's Hall bis admission is thas noted: "Die Jubii $5^{\text {to }} 1755$ Admissus est Johandes Hunter superions ordidis Connmeusalis." Hunter apparently left Oxford after less than two montha' residence, as the last entry in the buttery look with charges for battels sgainst his name is on July 25, 1755 . His name was, however, retaiued on the books of the Hall till December 10, 1756. The writer is iedehted to Dr Joho Griffiths, Keeper of the Arebive日, Oxford Uaiversity, for the fellowing record of Hunter's matriculation:"Tero Trie. 1755.-Junii 5 to Aul. S. Mor. Johannes Hunter 24 Johanuis de Killurile in Com. Clideadale Scotix Arm. AI."

 Life of J. Hunlet. D. 22.

[^75]: ${ }^{1}$ Treatise on the Blood, p. 21.

[^76]: ${ }^{5}$ Mrs Hunter died January 7, I821, in Holles Strect, Cavendish Square, London, in her seventy-ninth year. Sho wats a bandsome and accomplished woman, and well fulfilled the social duties of her position. Tho worls for Ilayln's Englisb canzonets wero supplied hy her, and wero mostly origimal poems; of these tho lines beginning is My mothor bids ano bind my hair "are, from the beanty of the accompanyiag music, among tho best known. (Sco R. Nares in Gent. Jag. xci., jit. 1, P. 89, guoted in Nichuls's Lil. Aucc., 2d ser., vii. 638.) n llunt. Orat., J8.12, p. 1 !s.
 7 The condition of this aniual during hiberaation was a subject of special interest to Hunter, who thus introduces it, even in a letter of comblence to Jenner in 1778 on a disappolntinent in love:-"But let her go, never mind hes. I shall employ youl with bedgehogs, for 1 do not know how far 1 may trust mine."

 See his ewdence al the trint of Captain Domellan, Horks, i. I95.
 "On tha discovery of the dyeing of homes by mader, seo Belchior, I'hu. Traus., vol. xxxix. 1736، yp. 287 nud 299.

[^77]: ${ }^{1}$ Essays and Observations, i. 55, 56. "May we not claim for him," says Sir Wm. Fergusson with reference to these experiments, "that he aoticipated by a hoadred years the scientific data on which the present Eystem of haman grafting is conducted "" (Bunt. Orat.; 1871, p. 17).
 ' Essays and Observations, i 115: ©f. Works, i. 391.

[^78]: ${ }^{3}$ The Transactions of the Socicty cootaio papers by Iluder on inflammation of veins (1784), iotussusception (1789), a case of paralysis of the muscles of deglutition (1790), and θ case of poisoniug during pregnancy (1794), with others writteo by Home, from materials supplied by him, oo Hunter's operation for the cure of popliteal aneurIsm, on loose cartilages in joints, on certain horny excrescences of the human body. and on the growth of bones.

[^79]: ${ }^{1}$ Bell lived with Hunter fourteen years, i.e., from 1775 to 1789, end was employed by him chiefly in making and drawing nnotomical preparations for tho museum. 110 died in 1792 at Sunatra, whers ho was assistant-surgeon to the Fast Iulia Company.
 ${ }^{2}$ O'brien, dreading dissoetion by llunter, hal shortly beforo his death arranged with several of his countrymen thint his corpse shoulil be conveyed by them to the sea, ond swimk in deep water; but his undertaker, who had entered iuto a pecuniary compact with the great anatnmist, managed that whito the escort was driuking at a certain staza on the march scawards, tho coffin should be locked up in n barn. There some men to had concealed spectily substituted nn equivalent weight of paviag-stones for tho hndy, which was at night forwariled to Hanter, mud by him takon in his carringo to Earl's Court, nod, to avoill risk of a discovery, immodiately nfter sulitalde division boiled to ontain tho bones. Seo Tom Taylur, Leicester Syate, clap, xiv., 1874; cf. Annual Register, xxvi. 209, 1783.
 ${ }^{3} \mathrm{Sm}$ C. M. Leslio ond Tom Tayior, Life and Times of Sir J. Sevnotle, ii. 474,1865. 4 Horkis, i. 265-26G.

 * A trasseript of n portion of Hunter's MSS., mate lyy Clift in 1723 hunt 1800, was elited hy Professor Owel, in two volumes with motes, 1t1 1361, under the tite of Assays and Obscrutioms in Natural His-
 Ping of Ulunter's pipera sec Clift's "Arquadix" in vol. ii. P. 497, ulso Parf. Flower, intrud. Lech. 7-9, 1870.

[^80]: ${ }^{5}$ In his Treatise on the Llood, p. 288, Hunter observes:-" Wo find it a common principlo in the nnimal machme, that overy part increases in somo degres uecording to the netoon required. Thus we find vessels become larger in proportion to the necessity of supply, aq for instance, in the grnvid uterus; the external carotids in tho stag, nlso, when his horms ure growing, ore much largor thasa at nny other time."

 See Professor Owen, "Joha IIunter and Vivisection," Brit. Med. Fourn. liclumary $22,1879, \mathrm{p} .28 \mathrm{t}$. In the fourth of his operations for popliteal meurism, llanter for the first timo did not inchado the vein in the hgature. His patient lived for fifty years afterwards. The rosults on tho arter of this operation are to bo seen in speelmea 3.1720 (Path. Ser.) in tho Hanterion Musenm.

 * Home, Trans. of Soc. for impr. of Mcd. and Chirurg. Fnowl, 147, 1793. Execss of heat in tho injured limb was noticed also in Huttir's second rase on the day after the nperation; nud in his fourth ease it rached $4^{\circ}-5^{\circ}$ on the first day, aud continued dumg, n lortnight.

[^81]: ${ }^{1}$ The recorl 'of Illuter's death in the $S \ell$ Janes Chronicle for October $15-17,1793,1$. 4, col. 4, nakes 2 no allasion to the immedhate cause of Humter's denth, but gives fle following statenent:"Joun Ifuntera-This eninent Surgeon and valuable man was

[^82]:

[^83]: TCinmour of the Royal College of surgens, iuly s. 1 sso.

 - Jow cleanly he he'd dios wew is seen in his remank (Treatse on the Blowe,

[^84]: Trenlise on the hrood. b. G3.
 Essays and Observations, 1. 113.
 3 Treatise on the Hood, p. 89.
 4 /b., r. po.
 "I'. P. Staple, willithe tour of whose votume of MS. nntes of Ifunter's "Chirurftroured by Di w. II. Bloudbent.

[^85]: ' Sce on this whote sulbject ch. viii. of Wilkinson's Ancient Egyptiens (ii. 78-92, ed. Birch, 1878).
 ? See Layarl' (+ + x_{3} ri. 6 , and Alhcn., xii. 9.

[^86]: 4 Hehn, Rulturphon:en u. Hansthicte, p. 327.

 - References will be found in Smill's Dictionary of Christian Antiputies, art. "Marratio"

 isunt." Tac:Lus, Cerin, 15.

[^87]: "takn from a maniseriptal paintung of the tha certury in the conton

 (ii. 3'1. Thuryes's tramsh.).

[^88]: 1 Curtesy or courtesy has been explained by lecal writers ns "arising by favour of the law of Eugland." The word bas nothing to do with eourtesy in the senso of complaisance.

[^89]: - Frem whoth the mame Huss, or more propely Ilus, an abbreviaLion aloputad by hisuself about $\mathbf{3} 36$, is cherved. Froor to that date he was invartalily know as Johand Ilussynecz, IJussincez, IIussenicz, or De [14...jnusez.

[^90]: ${ }^{1}$ Since the above was fublished, Mr Darwin has himself procured two of these lyy bring geese, and from them (brother and sister) saised five "extroncly fine birds from two hatehes." These five hylride." resembled in cycry detail their hybrid Iarents" (see Yature, Jan. i, 1880).

[^91]: ${ }^{1}$ The statement in the article Cnemistry, vol. v. p. 479 , that bydregon has nerer beca liquefied, was true at the date of publication.

[^92]: ${ }^{2}$ This bistorical sketeh of tho subject is a resised abridgment of tbat written by David Bucbanan, and prefixed to the article IYDroDrwavics in the 8th edition of this work.

[^93]: ${ }^{2}$ These nine aqueducts delivered every das 14,000 quinaris, or about $50,000,000$ cubic feet of water, or ebout 50 cubic fect for the daily consumption of each inhabitant, supposing the population of Fome to have been a million. From measurements of Frontinus at the close of the 1st century, the total length of channels of aqueducts was 285 Roman miles (Roman mile $=1618$ English yarls). The rupply measured by Frontinus amounted to 13,470 quinaries,-outside Rome 3164 , inside 10,306 . Measured st the head tho supply was 24,413 quinaries, the difference being due to waste, and to some of the channels having fallen into decay. Farker says :-"It has been compated by a French enginecr tbat the supply to Rome was 332,306,624 gallons daily. If we assume tbe population at a million, the rate wav 332 gallons daily per person. In our day we consider 40 gallons suff. cient, and many think this excessive." Modern supply varics from 24 to 50 gallons per head per day:
 ${ }^{3}$ Plin. xxxvi. See also Palladius, De Re Rustica, ix., xi.; IIorace, Epist., i. 10, 20; Ovid, Mel., iv. 122

[^94]: ${ }^{3}$ Hethathere auf Experimentegrgrandet, Leipsic, 1825 .
 ${ }^{2}$ Turin Mernoirs, vol. xxv.

[^95]: 'For examples of the difference between a soft solid and a very viscous fluid see Maxwell's Heat, chap. xxi.

[^96]: 1 Drawinge of the curvee of bonyancy mid of thetation, sud of the metarentric

 of Ruval Al hitects. Murela Isit.

[^97]: I For various exprestans for ψ, consult the articles by Wr W. M. Wteks in the Quariorlv fisunal ne Usifematics, vol. avi

[^98]: 1 Fot the anatogy between the motion of a hi, id In a rytinder and the torston

 Dhibloson"y. i 70 t .

[^99]: ifitot Arst allowed, in 1732, thnt the veloclty In a strenm diminishes from tho urfice dontwards; abolt sixty years after. Wotmann concluded that the larticas relocity curre wes a parabola.

[^100]: 1 Ib general, because whed the water leares the turbing wheel it ceases to act on the machine. If deffecting vancs or a whirlpool ale added to a turbine ot the discharging side, then v_{1} masy lo part depeev od v_{y}, and the statemient above is no longor true.

[^101]: 1 The drawingsuf this turline lave beentakenpatly from Meissucr.

[^102]: IIn Nicholson's Journal, va). iii p. 89, Citizon biuse be Salverte calls attuntion to the poem" "The Pomberibus et Munsuris" kenemally nacribed to Thematiua Famiua l'alamon, ant conserquontly 300 yoars ohder than lypatin, in which the hybuoneter is deacribed, and altribates to Archimedes.

[^103]: Cartur's hydrometor was very simllur to that of Beaumé, Cartier!

[^104]: 'In Ifydromaduan the inner layer of cella forms' hy delemination, In Soyphomeduar by invagination. In tho later caso the sac closea uf, and the mouth is formed by a new opening.
 ${ }^{2}$ It is prohatho that the numerous rows of celle dearribo" in tho endoularm of Tumularia abd Corymorpha by Allman, in his greae morn. graph of tho Thumarinn Mydroids, aro duo to a plication or the

[^105]: 1 The Einterozoa or Metazea ndmit of division into twe grades-(1) the Colentera, ineluding sponges, polyps, jelly-fish, and corals, and (2) the Crelomata, including all renaining foring.

 See, however, note to the pragraph headed Definition of the Hydromas, p. 555.

[^106]: - Thas redationship, demonatrated by the Hertwigs diseovery of the

[^107]: Quite recently the Bertwigs (Jenaische Zeilachr, bod vi., new beries, 1879) bave insisted that un the Hydromedurn the gemtalia (both cesa and testes) are developed frote the ectoderm, Whilat in the Syphomiduse and in the Anthorat they develon from the exdoderms On th: 3 account they propose to abaodon the grouping into Ifydrozoa add Anthomon of Cakintera nervatophora, ond suggest two groups, the Ectocarpear and the Eindocarpese-the former equivaleot to Dydromedisce, the latter embraciog sxyphemedusa sod Anchoza. The Anthoza exhbit ofurther predominance of the endodern' 3 its cx. tensive origimation in then of muscular fibre, which obt rately and io small quantity develops from endoderm in the IIydremedusar ar in tho - Cyphomeduser. The lleatwigs base their generatization on their own stulies of mednax. hut they bave ignorad the observatious of Van Bededea on llydractiaia aod of Cianician oo various Tubularians, in which the orign of ether spere erora from endorterm is establishud. Recently Fraipont has Tpeated an observation of Vao Beneden's on Companula-8, ard sinown conclusively that the ova in that form arise from e- Doderm. Weismann (Zologischer A nzeiger, May 1880) shows the same for Plumularido and Scrtularidar; the reader is referred to his daper.

[^108]: ${ }^{1}$ St yhemedtese (asúpos, a cup) are mednce whith are related hy

[^109]: 'The enormous development of the hind fermora ia chalis and Ieneaspis dons not appear to give theso ingects catra begping rower. Othor Chatedides which bave rot thiclicned fewora can leap cone:dere able diatances

[^110]: TThe wings, however, may be disthaginhel in the 1 mas af the necters, thas showing elealy that they have bee lost through disure.

[^111]: int Ajtrew Maveil (who dic: io 16\%s), in the proface to Captain 1'ha:man's edition (1776) of Marvell's I'urk:s Eui Bhe clamploes nat uppear to be aubstantiated. The editor hut not geme las remiters the th"?us of judaing as to the real age, character, of watue of a dianuacmpt t. Whath he refirral ; be dal oot say that these partions of it were in Vares!"s handwnting : he dut not even hanself molude them ameng "Iarveli's poems, as publistied in the hody of his chtion, and he ulvaneed a like clam on like grombas to two other poems, in very "iffereat styles, which hat heen pubhshed as there own by 'iackell and Whet. $t 6$ is eertan that ail the five lismas were birst male fuble

 ath have been expected if they were hy the ham wheh wrote thow 1.4nere. biti which wonld havo been mprolinhte, and murorthy u. Alaison, if lhey were minulishen wols of a writel of someli

[^112]:

[^113]: - A very diflerunt otymology is offered by Basque-Iberian ihworists M. Boudard, for example, elerives the namo from ibay-erri, tho country of the river.

[^114]: ${ }^{3}$ W．van Eys，for example，＂La langue Ibérienne et la lanc： 4 Basque，＂in Rerve de lingurstique，goes aganst llumholdt；but Pritice Napoleon and to a considerable extent A．Luchaire maintaid the justice of his method and the valua of many of h：3 resuits．See Luchaire，Les origines lingustipues de l＇Aquilaine，Paris， 18.7.
 －Ar Dawhins eveu accepts the very prestionable identufication of the Iheriane of Spein wist the lherians of the Caucasus
 ＊The consexicn of the therans with the Berhers was suggested by Eury de Sanut Viucent in Essai yéulognge sur lc gcurc humuizh

[^115]: I It lias been said to occur occasionally in Europe (Greece and southoru Fussia), but further evidence is needed before the asserthon can be taken as proved.
 ${ }^{7} \mathrm{Mr}$ E. C. Taylor remarkel some years ago (1bis, 1859 , p. 51
 dramomans to do duty for the "Sacred lhis," and this seemes to be o riovel fractice, sinco by it, or soucthing like ht, Hasselgenst has mite hel and through him Lima tia.

[^116]: 1 The suggestion that the "flying serpents" whose remains were seen thy Herodotus were locusts is pethaps plausible, hat there is consulerable difficulty in acceptiag it.
 ${ }^{2}$ The Ibis has moro tban once nested in the garilens of the Zoolo. Fteal Socioty, and even reared its young there (IVis, 1878, pp. 449-t51, $\mathrm{p}^{\text {l. }}$ xii.).
 ${ }^{3}$ Fur somen account of theso may be consulteld Dr Reichenow's paper in Journ. fur Ornithologie, 1877, pp. 143-156: Mr Ellint's in P'roc. Zool. Society, 1877, pp. 477-510; and that of M. Oustalet in Nour. Arch. du 17 ustium, ser. 2, i. pp. 167-184.
 -It is a popular error-especially among painters-that this bird was the Sacred lbis of the Egyptians. It was nf course utherly unknowu in the Old World until the deseovery of he New.

[^117]: B wall explan what to the ummetiated nay be a puzzle to state that the nane " /Urs" was sultected as the tithe of an ontitholngical magazine, frequently refertat to in this and other artulfes, which omade its firyt appearnuce in 1858, and hay niture coatamal to be published.

[^118]: ${ }^{1}$ P Josa do S. Antonio Moura previously published at Lisbon a Portiguese trabslation from a MS. obtaiucd by bim at Fez many yonrs before.

[^119]: By some scholars this surname is written lbn Khillikan; but his own antograph signature recenlly found upon a manuseript in the Utiversity Library, Cambridge, gives the usually accepted form.

[^120]: - Many of theac poeme ware lingllalatel In prome by the tranchutor of Malfer, by

[^121]: 2 This prose Edda (from which the Eddic Lays pot their nams) has been partly thined thto English by Sir G. W. Dhanot, by the tranalator of Mallet, and by Slr Anticana, and witl lwo funul irented of more at lencith under Enna

 ham מate untlrely funcifal and vislonary.

[^122]: - Firum ixeis, Ash, sudnóvos, dintrine or treatiac.

[^123]: ${ }^{1}$ As firet proposed by Haxley.

[^124]: ${ }^{2}$ Parker's nomenclature is alopted here.

[^125]: ${ }^{2}$ The richect materials for our knowledge of the teeth of fishes are contained in Owen's Odentegraphy, Lond, $1840,8 \mathrm{va}$

[^126]: 1 Thas mpliey only to iminahnaly growing up butcer normat compltione In II. A. Muju hay made observations on youmg hemugis.
 Thereth of 45 to 50 millimetres, whilst those reared from artilicially momite: onterl ova wro only from 30 to 35 millumetres fonge When
 pombonally marn rapidly in the following monthes so that at the ent of the ghth month they liad wandert the same length as their bethen in the sea, vis, 65 to 70 sullanetive

[^127]: These will probably be found.

 - We distinguish these sub-regions, because their distinction is ins. Ufied by olher classes of animals; as regards freshwater fimbes lies ine even less dintinct than Furope and northern Asia.

[^128]: 1 We hava left out of consileration here the Arinua and Cypmo. donts, which cata pass with imbunity throngh salt water, and are apread over mexh inger areas.

[^129]: ${ }^{1}$ Cope has discowered in a Tertary freshwater deposit at linho an extinet gernus of this group, Dhastichus. He considers this interesting fact to be strongly suggestive of contimuity of turritory between Asa and North Auricia- - 'rac. Am. Dhil. Soc., 1873, p. S. 5
 ${ }^{2}$ Lenly describes a silaroid (Bimotolus) from the Tertiary depasia of $W_{\text {yoning }}$ turritory. - Contrib. to the Ertanct Irrt. Fiana of the Hestern Terrut 1873. r. 193.

[^130]: the Study of Fishes, p. 2 So.

[^131]: The number of names by which this species was known th ancient thats-Chloris of Chlorion, Gulbuite (alin to Gmlgulus), Para, and

[^132]: Vireo-nay be readily explained by its being a very common and conopicuous bird, as well as one which varied in plamago according to age and sex (c/. Optowe). Owing to its general colour, chloris was in time traisferred to the Greenfinch (vol. xi. p. 165), while the names Galbula, Parra, and Vireo have since been utilized by ornithologists (ef. JACAMAB and JACANA).

[^133]: Unorganized, and attached to Nez Percé cunty.

[^134]: ${ }^{1}$ Porthes, Das Deutsche Staatsteben vor der Revolution, p. 202

[^135]: ${ }^{1}$ See Preller, Rön Mythologie, p. 10, \&c. 'The statement of Plutorch (Numa, 8), that for 170 years afier the foundation of the eity fmages were unknown, recurs in rany later writers.
 ${ }^{3}$ The statements of Treitns on this head, as well as those of later historians are disenssel very fully in Crimin's Ieutsche Mythologi, i. p. 03 s 7 .

[^136]: ${ }^{3}$ On the pre-Islamitie polytheism of Arabia, and the extent to which it consister in the worship of living animals or their images, see a sug* gestive paper by Prof. W. Robertson Snuth on "Animal Worship and Animal Tribes among the Arabs and in the Old Testaruent" in the Journal of Whilolngs, vol. ix. 1. 75-100 (1830).

[^137]: ${ }^{1}$ Thachit picturas in ecclosia esse non helore, ne quod colitur ed

 apmers; in the fore of the secome co neil of Nice.

[^138]: ${ }^{1}$ such workq as Latake's Kiunstgeschiche may he consulted in this
 Loventary Art.

[^139]: ${ }^{1}$ The allegation that it was taught by Aoselm of Csoterbury is based partly upon a spurious tract altributed to him sad partly on unnuthentie legend. His actual opinion is explicitly enough stated in the treatise Cur Deus Homo, c. 18:-"Virgo tamen ipea, unde assumptus est, est in iniquitatibus concepta, et in peccatis concepit eam mater cius.'

[^140]: ${ }^{1}$ Incensum (or incensur theris) fron incemtere; Ital. and Jortug. inceaso; Span. incionso; Fr. encens. The substantwe oceurs in an inscription of the Arcalian brotherhood (Marin, fili . $1 / l$ e . Monumenti dé fratelli A radi, p. 639), but is freguent only in enclesiastical Latin. Compare the classimal suffimentum and sufthes from sufto, for "incense" (litila (Iuke j. 10, 11) has retainod the Greck ovpiaua
 Höruc; Icel. Requalsi; Jan. Rajelst) seem to levong to the Chrisham Iminal (Grimm, Deatsche Wythotmgie, \mathbf{j}. 50).

 The etymokgical aftinities of ouw, ovos, thus, fiffo, fumbe, and the Sanskr. dhuma, are wall known. Sce Max Muller, Chass, i. 99.

 Classical Lating has bint one word (thus or tus) for all surts of in canse. Libanus, for framinemse, nceura only in the Vulate. Ewn
 was known to the Itomana as The torre (liny), athomoh they cabled
 of Thasian wine, also from its Iragrane, Lilutwios. 'I'hes Latimoharbaric worl Ohbanum (quasi Otrem Libani), thas common manu for
 IX. (1033). It myy lure har remarked that than mame "Furijem

[^141]: ${ }^{1}$ Brugsch, Boypt under the Pharaohs, 1. 77-81, 414-419.
 ${ }^{2}$ Plutarch, De Fide et Osiride, e. 52. In Parthey's cilition (Berlin, 18:0) other recipes for tho manfacture of kithi, by Galen and Dioscorides, are giren; also some results of the editor's own experiments.
 ${ }^{3}$ Wilkinson, Ancient Egyptians, $\therefore 493$; ii. 49, 393-400, 4I4-410.
 © Brugseb, L゙pynt under the Pharaohs, i., 303-312.

[^142]: ${ }^{5}$ See Lane, Moul. Eypptians, pe. 34, 41, 108, 157, 438 (ed, 1860).
 ${ }^{-}$See Wellhausen, Gesch. Israche, i. 00232 , who from Thilological and other data infers the late date of the introduction of incenso into the Jowish ritusl.
 ${ }^{7}$ According to Ptilo (Opera, i. 504, cd. Manzey), they symbolized respectively water, eath, air, and fro.
 ${ }^{9}$ Other accounts of its comprosition, drawn from Ralbinical sowreca, will be foum in warious works on Jewthantiquities; Ece, for example,

[^143]: ${ }^{1}$ I Trwe ant Short Decharation, Foth of the Gathering and Joyning tayelher of cor fuin Persous, anl also of the Limentable Brooch and Diuisiont wh fell amonyst them, D. C. This is to a certain degree autobiographical, a story of E'rowne's struggtes and failuro to realizo his ideal. Dut see Dexter's Congregationutisnt of the Lost Thres Hundred Ľarss, 1p. 82, 92 f.

 2Sco A Booke wh Shemeth the life and Maniners of all treo Christians, and howe talite they are unto Turles and I (qristes ant Ifatien Folke, \&e. (MiddleLvigh, 1582), defintion 35.
 ${ }^{3}$ Sa runs the subetitle of one of thestracts he pmblished white as Middteburg-A Tratise of Reformation welhoul Tarying for Anic (1582).
 "Thus," he says, "they (the magistrates) may doo nothing coneerning the Church, but onelie civilic, and as civile Stacistrates; that is, they have not lhat nuthoritic ouer tho church, ns to be Prophetes or 「riestos, or spirituall Kines, as ilicy ore Magistrates over the same: but onelic to rule the common wealth in all outwarde Justice, to malutaine the right welfare and honor thereof with outwarde power, bodils puaishment, and civill forcing of men." -4 Treathst of Reformation p. 12.

[^144]: ${ }^{3}$ Robinson, Works, il. 132
 4 Ibil. 1i. $223 . \quad 1$ loud. 449.

[^145]: - An Ifumble Supplication for Toleration, and Liberty to enjoy and observe the Ordinances of Jesus Christ in the Administration of his Churches in lieu of IIuman Constitutions (1609; no jheo or printer). In tho following gear Jacob published a work on The Divine Beginning and Institution of Christ's trice lisible or Ministerial Church; and in 1612 a senus to tho above, A Declaration and Plainer Opening of eertain Points (published at Middleburg). This latter is remorkablo as containing tho enrliest ute, in tho ecclesiastical sense, of tho word "Indegenlent." "Where each ordinary congregation giveth their free consent in their own government, thero certainly each is an entiro and inderondent bodjepolitic, nud eudued with power immediately nnder and from Christ, as every proper Church is, and ought to be," p. 13. It is interesting to nute that the abovo Supplication is tho earliest plea for toleration in tho Iinglish language, but a few yearg lutar affenred a much more thoroughgoing work, Religious J'acte, or a Plea for Liberty of Conscience (1614). Whis was by Leonard Busher, a Baptiat, and to this body belonga the honour of being the first to de. valop, the liberty impliwe in Independency. See Busher's and other tracts on "Liberty of Conacionce" in yublications of IIanserd linollys Society.

[^146]: 2"Of Reformation in England," lu. ii., W'orks, p. 14 (ed. 1834).
 3 "The Humble Lequest of His Majestius Loyall Sinhects, the Governour and tho Company lute gono for New England," 1630 ; referred te in Y"oung's C\%ron. Massach., pp. 295-299 (1816).
 ${ }^{4}$ Dexter, Congregational'sm of the Last Thric Lunelred Years p. 120.

[^147]: ${ }^{1}$ A nother old word occasionally used in the seose of an index is "pye." The lata Sir T. Duffus Mardy, in ome observations on the derivation of tho word "Pye-Book" (which Eost pmbably comes from tho Latin grica), nomarks that the earliest use he had noted of pye in this sense is dated 15.17 - " a Pyo of sll the names of such Balives as bcen in accompte pro anno regni regis Elwardi Sexti primo."

[^148]: ${ }^{\prime}$ Erardonim, Conc., ii. 940 ; Lablen', Conc., ii. 938-941. The wholo incument has nas been reprinted in Smith's Dict. of Chr. Antiz., art. 'Irohibited Locks."

[^149]: (For the atrove section on Gcology we are Indebed to $2 \boldsymbol{W}$ W. Topley of the lits-s,

[^150]: ' For a general sketch of the nora of India recourse must still ho had to the minnductory essay to the Flora indica, published by Honker and Thomson in 1855 * The FVora of Brilish Indaa, tho preparation of wheh is (1881) in progress ul Kew, wall compriso brief descriptions of all the sjuecica hown to scence up to the date of publication. But aithough no coniplete analyss of the vegetasior is yet possible, its genernf fietures are now tolerably well understood (For the atove section on the Flora wo are mideted to Mr W. T. T. Dyer ol Kew.

[^151]: ${ }^{1}$ With suburbs, but excluding Howrah.

[^152]: ${ }^{3}$ Professing tor the mor part various forms of aboriginal belief.

[^153]: 1 Molel farms have been abandoned in Bengal, in Assam, and in Hhe Punjab. In the North-Western Provinces valumble experiments aro prosecuted. In Bombay thero are three molel farms, and in tho Central Proviuces onn, on which tho common craps of tho country aro raised at n loss. The Saidapet farm, near the city of Madras, is tho only eatallisimentat whoh important experiments have beenconducted min ascale and with a perseverance sufficient to yield results of value. Illos farm was started by the govornor, Sir Williann Denison, in 1805, int las been for tho past nino years under the mangement of Mr Dapartsan. It now (1881) covera an area of $2: 10$ acres in n ring felice. M wy important experiments have been mate, of which ame have prodiactal encouraging roanlts, indicating the gencral direction in which improppmonta may be effected in tho agricaltaral practice of the presidency. It has been proved that many of the comman "drv crone" san

[^154]: These figures show 1 mile of railway to every 109 square miles of the arca of British India, or to every 179 squaro miles of the area of the entire peninaula. The arerage cost of construction jer milo is almost exactly $£ 14,000$. The guaranteed railways, embraciug the great trunk lines throughout India, are on the "broad gauge"

[^155]: The rius slm (+) alands for excese of experta, or so-called turourable balance of trade: the minus sign (-) utands for cxcess of imponts.

[^156]: ${ }^{1}$ With regard to the deaths caused by the famine and the discases connected with it, the Famine Commissioners thus report:-" It has been estimated, and in our opinion oo substantial greunds, that the mortality which occurred in the provinces under British administration during the period of famine and drought extending over the years 1877 nod 1878 nmeunted, on an population of 197 millions, to 51 millions in excess of the deaths that would have occurred had the seasons been ordinarily bealthy; nad the statistical relurus have ande certain what has long been suspected, that stirvation and distress greatly check the fecundity of the population. It is probable that front this cause the number of births during the same period has been lessencil by 2 millions; the total reduction of the jopulation would thas amount to nbeut 7 millions. Assunaing the ordmary death roll, taken at the rate of 35 per mille, on 190 millious of people, the abnormal mortality of the famine period may be regarded as laving increasel this total by nbont 10 percent." Jut when estimatch over a period of years the effect of faniue as a checl rupu the population is small. The Famine Commissioners caleulate that, taking the famines of the past thirty years, as to which alone an estimateof any valuecan be made, the abromal deathes caused by famine aul its diseases have been tess than 2 per mille of the Indian popmation per annum. As a matter of fact cultivation quickly extended after the famine of 1877-78, and there were in Bonliay and dadras 120,000 more acres under billoge aftur the tong pros tracted scarcity than before it.

[^157]: The chief of these dets are 13.Geo. JII. c. 63 ; 33 Geo. III. e. 52 ; 3 and 4 Will. IV. e. 85 ; 21 and 22 Vict. c. 106 ; aml 21 and 25 Vict. e. 67.

 $$
 \text { A style first authorized by } 33 \text { Geo. I1I. c. 52, § } 39 \text {. }
 $$

 - "Cases of high importance nod essentially aflecting the publie interest sud wolfare" (33 Geo. III. e. 52, § 17); "when any measure is proposed whercby the safety, tranquillity, or interests of the British posgessions in lada may in the julpment of the gavemor-gereral ba essentially affected" (3 and 1 Will. IV.c. $85, \$ 40)$; "cases of emergency " 24 and 25 Vict. c. 67, §232
 *The lingal descandant of the orizinal council erganized unter the charters of the Company, Arst constituted by prliamentary sametion in 1779 (13 Gra. IIL. с. 63,87).
 ${ }^{\circ}$ O.iginally identical with the executive council, upon whieh logishatios jowars were conferred by Is Geo. Ill. c. 63,830 . The distince tima betseen the two councils wan first recognized in the appointacat mif "the fourth member" (3 ard 1 Will. IV. c. $85_{i} £ \$ 0$.

[^158]: ${ }^{3}$ First constituted eut of the Suprctue Courts and the Sudder (Sud) Courts in 1801 (21 and 25 Vict. c. 10.1).

 73 and 4 Will. IV. c. 85,8539 aud 65.

 - 21 aud 25 Vict. c. 67 , 812.

[^159]: ${ }^{2}$ ("handngya Upunshad, quoted in Muir's Sansirit Tarta
 ${ }^{3}$ Inbulyana.

[^160]:

[^161]: ${ }^{1}$ The quarrel between the two sages Visvimitra and Vashishthn, which runs through the whole Peda, is typieal of this struggle, Visvianitra stands as a representative of the royal-warrior rank, who clams to perform a great public saenfiec. The white-robed Vashishtha represents the Bralunans or lereditary priesthood, and opposes the wartior's claim. In the end Visvinitra established hls title to eouduct the sacritice; but the Brihmans exptaio this by saylug that his virtues and nusterities won admission for him iuto tho priestly family of Blaigus. He thus beeame a Brehman, and eoud lawfully till the priestly onice. Vissianitia serves as a typieal link, not only between the priestly and the worldy eastea, but also between the sacred and the profano sciences. Ho was tho legendary founder of the art of war, and his son Sustr-fa is quoted ns the eartiest authority on tulian medicute. These two scieuces of war and medieino form upalidks, or supplementary scations of the divinely inspired knowlodge of the Brahmas. Another royal Rishi, Vitalavyg, " attained the condition of Brithanhiood, venerated by mankind," by a word of the santly Bhrigu. Farasu-Risua, the divine clinmpion of the Brihmang, was of warrior discent by bis mother's side. Nanu, tbeir legistator, sprang from the warrior caste; and his father is expressly calied "the seed of all the Kshattriyas." But when the Biahmans had firnily established their supremaey they beeamo reluctant tu allow the posslbility of cven princes finding an ontrance into their sacred order. King Ganata was nore learned than all the Brilhmans at his court, and performed terrible penancea to attain to Bralmmahiood. Yet tbe tegenda teave it doubtful whethor he gained his desire. Tho atill more holy but probably fater Matanga wore his body to skin and bone by a thousand years of austerities, nad was hecld from falling by tho hand of Indre himself. Nevertheless, he could not nttain to Brihmauhood. The reformor, Gautania Buldha, who in the 6th century before Christ overthrew tho Brihnam supremacy, and founded a new religion, was a pruce of warrior thesedt, perhaps born in too late an age to be adopted finto and ata'sud by tha Brahna easta

[^162]: ${ }^{1}$ ' Remoth of Arch. Sutrey, Westera hudia, for 1874-75. D. 83.
 " Keturnell by tho census of 1582 as 485,020 " Bubllusts" in Indua, besidea the 2, 147,831 Ruddhists in Burmah Except in a few spoth, thefly among the apurs of tho Ilimallayas and ill south-eastern Beagal, the I dedan liuddhists may be generally reckoned as Jaina

[^163]: ${ }^{3}$ Greek, Fassitercs; Sanskrit, Fastira; hence, subsequently, the name of Cassiterides given to the Scilly Ishands. Elcphow, ivory, through the Arahian eleph (from Arabic el, the, and Sanskrit ilha, domestic elephant), is also cited.

 4 Dr Birdwool's IIandbook to the British Indian Sction of the Paris Exhibition of 1578, 1p. 20-35.

 - The fragments of the Indica of Megasthenes, collecled by Dr Schwanbeck, with the first part of the Indica of Arrian, the Peripius Moris Lirythrei, and Arrian's Account of the loyage of Nearchus, have been translated in two most useful volumes by Mr J. W. M'Crindle, M.A. (Trubner, 1877 and 1879). The Indica of Ctesias, with the 15 th Book of Strabo, is also promised; and the dillicult sections referring to India in Ptolemy's Geographia, properly aonotated, would comgleten work of the highest valne to Indian history:
 - The Takhas, sad to be a Turanian race, were the earliest iulabitauts of Rawal Pindi district. They gave their name to the town of T'akshásila or Taxila, which Alexander found "a rich and large city, the noost populous between the Iudus and Hydaspes" (Arrian); it is identified with the ruins of Deri Shahan. Taki or Asarur, on the road between Lahore and Pind Bhatigho, was the eapilal of the Punjab in 833 A. D.

 7 Professor Cowell, who thinks that the Grecks probably exaggerated the numbers of the enemy, judiciously remarks:-" I'orus, one of several who ocenpied the Pubjab, is said to have had 200 eleghants, 300 chariots, 400 horse, nud 30,000 efficient infantry; whath, a* observed by Sir A. Burnes, is (subsituting gums for chariots) exactly the establishment of Ranjit Suh, who was master of the whole l'unjab and suveral othnr territories" (Cowell, App. iii. to Elphinstone's IIist. Thel., p. 262, ed. 1866). Geueral Cunningham, who has given a lucid aecount of the latle, with in excelleot map, Ane. Geog of Ludit, pp. 159-177 (cl. 1871), atates thearmy of Alexandernt "about $50,000 \mathrm{men}$, including 5000 ausiliaries under Mophis of Taxila."

[^164]: 'And about thirty mules southewest of Jledum town.
 2 The change in tho course of the Sutlej has altered the ohl position of that river to tho Beas at this point. Tho best small majp of Alexameres ronto is No. V. in Geacral Cunningham's Anc. Geog. of Indur, fr. 104 (ed. 1871)-6.1 miles to the inch.
 ${ }^{3}$ For its smecessive ajpearanees ill history, see Gereral Cunning. lani's Anc. Glog, of Luita, Fl: 270-287, under Patala or Nirankot. lle giwes an excellent map of Alexander's campaign in Sind at p. 248. I'atala (Pattala, I'tasila, or Pattale) was formerly identified with 1hatha, a town near to "liere the western arm of the Indus bifurcates im'Crindle, Commerce and D'avigation of tho Erythraun Sca, p. 156, ed. 1879).

[^165]: * Corpus Inscriplionus Indicteram, i. Jref. vit.

 8 For thu dynasty of Climuira Cipta seo N'inismake Outiontalia (Cejlon rasciculıs), 1p. 41-50.

 G Thu nowern Patni, or l'attana, means simply "tho city." For its jilentification with lotalimimpura and Mr livenshaw'scrucial discoverics sec General Cumninmhan's inc. Geeg. Iudia, p. 452 seg.

 7 Tho Grecks as Conas (Vívanas) are the 'Iáovs or Ioniane. In tho 13 th celict of Asoka five Greek Irinces nppear: Antiochus (of Syria), I'toleniy (Illiladelphus of Eeyju), Antigones (Conatus of Macedon), Magas (of Cyrene), Aloxander (IL. of Epirus).

[^166]: 'Ancient India as described by Megasthenes and Arrian, teing frompents of the Indika, by J. W. M'Crindle, Dt.A., p. $40(\mathrm{ed} .1873)$. ${ }^{2}$ Brahmachíring aud Vanaprasthas (ix\&Bot). Weher very properly dectiner to identify the Eappadar exclusively whis tho Budlbist Eamnama Mot. Ind. Dite, p. 23 (cid. 1878).

[^167]: ${ }^{4}$ The evidenee is well indieated in the Report of the Archaotogical Survey of Western India for 1S74-75, p. 49 (Mr E. Thomas'd monograph). -
 ${ }^{\circ}$ Weber, Ifist. Ind. Lit., p. 251-52, with his valuablo notes, quotlng Golldstucker (ed. 18i5).

 - Do Guignes, supported by Professor Cowell on the evidence of coing. Aprendix to Elphinstone'a Mistory of Jadia, p. 269 (ed. 1860). ${ }^{7}$ General Cunnlugham's Anc. Geng. Ind., 1. 200.

[^168]: ${ }^{9}$ It should be mentioned, however, that Dr Trump believes theme to be of Aryon origin (Zeitsch. d. Deutsch. Morg. Gesellsch., xv. F 690). See Mr J. Beames's ndmirable edition of Sir Henry Elliot's Glossary of the Races of the North-IIestern prozinces, vol. i. np. 103-137 (cd. 1869).
 ${ }^{10}$ Inscription discovered in Kotali state; No. 1 of Jnscription Appendix to Colonel Tod's Annals and Antiquities of Rajústhán, vol. i. P. 701, note 3 (Madras reprint, 1873).
 " Appendix to Elphiustone's Mist Ind., pp. 250 sel. (ed. 1556).
 ${ }^{12}$ Toits Rajasthan, rp. 52, 483, 500, \&c., vol. i. (Alairas repiot, 1873).
 ${ }^{13}$ Dr Fitz-Edward Ilall's edition oi Professor II. H. Wilson's Hishnu Prefina, vol. ii. p. 134. The llumag, according to Wilson, sere "tho White Huns, who were establishel ill the Punjaband alang the Indus, as we know from Arrian, Strabo, and Ptolelly, confirmed by recent discoverics of their coins and by inscriptions." "1 ann not prepared," says Dr Fitz-Edward Ilall, "to deny that the ancient Hindus when they spoke of tho llinas incluted the IIuns. In the Middle Ages, lowever, it is centain that a rice called llina was understood by the learmed of India to fom a division of the Kebattriyas."-Professor Dowson's Jict. Hind. dyythology, \&c., I. 122.
 "Samzalsara, "the ycar." Thie uncertainty which surrounds even this long aceepted fiager-post in Indian chironology may be seen from Dr J. Fermisson's paper "On the Sáka and Samvat and Gupta Eras," Journai koy. As. Noc., new series, vol. xit., esperially p. 172.
 is The llushka, Jushka, and Kanishka family of the Raja Taraogind, or elironicles of Kashmir, are proved hy inseriptions to beloag to the 4 th centary of the Seleucidan cra, or the dst century A. D.

[^169]: ${ }^{1}$ Monday, 14 th March, 78 A.D., Julian style.
 2 General Comninglam. See also Mr Ji. Thomas's letter, dater 16th September 1874, to the Actuleny, which brings this shato withun the: periot of the Kanishike family (2 в.c. to 87 A.D.).

 - IBy Mr Newton. SooMr E. Thomas, "Ontho Coins of the Sih
 Gusson, Journ. Wioy. As. Soc., 1880.
 "Now a town of only 17,000 inhahitants in Farmakiabial district, Lut with ruins extending over a semicircle of 4 miles in dameter.
 - lart-desn, including the collectomes of Surat, Broacli, Knisa, nud pares of Baroda territory.
 *The genealogy is worked ont in detail by Mr l. Thomns, ut switre, 11, 80-82.

 778 A.D. wiss tho populaily receivel date, conmemorated by tho
 (p. -81 of Journ. Roy. As. Soc., vol, xii.) in tho hatest discussion of tho auljuct iluring ISSO.

 - Dr J. Fergusan, ut suprt, lp. 282-291, \&c.
 - Topogrephia Christiania, Jib. גi. p. 339, Paris, 1707; apui E゙crgisson, ut supra.

[^170]: ${ }^{10}$ Tho Miudra-rakehasa repesments Chandra Gupta as reinted to tho last of the Nandas; the commentatos on the Fishnu Purana says ho Was the son of n Nunda by a low-caste womm. I'rofessor Dowson's Hict. Hindu Muthology, \&c., p. 68 ('Trubner, 1879).
 "Such dates have no pretenaion to be anything more than intelligent conjectures based on very inadequate evidence. With regard to the 'Takshnks, seo Culonel Tod and the authorities. which lie quotes, Rujas. than, vol. i. 53 passim; 23 seq. (Madras reprint, 1873).

 Iz Whero Alexandor found them os tho Pare-taco-pahari, or Hill Taca (3).

[^171]: ${ }^{1}$ Arvian. The Brathman mythologists, of conrsc, foumd no Aryan pedigree for so impoitant a persun as King Taksta, and make lyim tho bol of Blarata, anl nephew of Ráma-chandra I
 ${ }^{3}$ Tod, Rijisthan, i. 95 (cd. 1573).
 T Taki, or Asarur, $4 \pm$ miles west of tabione. General Cunninglam,
 sithealily to the south-east of the Takshisila of Alexamict's expedtion. -Tori, Rijitsuthis, i. 53 (cal. 1S73).

 - Dr J. Fergusson's Trec and Scrpene Iloorship, p. 71-72. (Inelia Musenm, \&to, 1868). For the resilts of more recent local research, see Mr Rivett-Camae'n papers lin the Jowne of the As. Soc., Bengal. "Tho Snake Symbol in India." "Ancient Sculpturings on Tocks," "Stone Carvings nt Mainpuri," \&e.; nud the IIon. Ráo Sahib Vish. vanidis Nirigan Mandhk's "Serpent Worship in Western fudia," aud othar essess, in the Bombey As. Soc. Journal.

[^172]: ${ }^{1}$ The Gurdra of Imilia, or Chapters on Oudh Hishory and Affairy,

[^173]: A valuntle list of theae will le foubd in Junglubn's Java, a work avhich enatums many details in regard to various parts of the archivelagn

 - 'Villacu. Indemd fifi. 1880

[^174]: ${ }^{3}$ Wallace, Malay Archipelago p. 8.

[^175]: I See Barbldge's interesting chapter in his Gardens of the Sun, 1880.

 * Commare Mlusschenbrock, Medeleelingen omtrent grondstofin wit

 123^{3}

[^176]: ${ }^{2}$ Sce Professor Veth's valuaile monograph, Oversichl van helysen, in lect bijzonder door Vederland, gelain is roor de Kenuis der Fauna van Scderlandsch Iutlĭ̈, Leyden, 1879.

[^177]: ${ }^{1}$ Phitosophica! Transuctions, 1859, p 795.

[^178]: I It many bo sufficieot to refer to the serics of papers by Mr Jolin Campbell of Moutreal on the "Hithtes in Ancrica," which have recently appeared in the Conadian Quartmeit fournal of Scimce, nod which on the most fanciful grounds connect the native idioms not only with each other but with most of the known hanguages of the uoiverse Thus Iroquois and Perusian are declared to be radically one, while the former is conbected with Basque, Dakotan with Circassian, Acend with Japanese, and a general kibita linguistic fannly is made to ibclude, besides all these, Choctaw, Cherokee, Aleutian, Fuegian, Aino, Kamtchadale, Tchuktchi, llaussa, Barabra, and many others in every part of the world

[^179]: ${ }^{1}$ Ahel [lovelacque (Ainguistigte, Paris, 1877) has caldoavouied to funt pulysynthemis with agglutination; but A II. Keane peatix to Stanford's Central ame south inerica, 1878) has - wn that the difference between the two is fumbamental, and l'rof. Suym (Xrimmen if Lenguage, 1880) has finally aduptod this view.

[^180]: ${ }^{2}$ During the many years that he lived to Soutlı America, D'Orbigny assures us that he " never met a bald native of full blood " (L'Homms Américain. i. P. 198).
 ${ }^{3}$ Tha only known exception are the Guarayos, a Guaranl tribe, originally from Paraguay, now in the Moxos missions, altogether a remarkable people, whose quasi European complexion and appearance are hightened ly a viry full but always perfectly straight beard.

 - Except amongst the Guaranis, the outer angle of whose oyea is gencrally pointed upwarda, givilg them a Mongolian cast.
 ${ }^{5}$ But this feature is uet constant, for the nose of many Pamr". ant Gubrani tribos is often very short, broad, and that

[^181]:

[^182]: In Chatles Leland's Fuzang: or the Disenvery of America bu Chinesp Buddhis Priests in the Fidih Century. Thenan compares words front sarions Califonntan diums with Japanese and Chincse, frigeeling that these two langunges them. aclves belone to two entirgly different nyl"rs of apeceh, and have nothuis is comanu x cyond colncideaces and borrowingy

[^183]: ${ }^{1}$ Compt. Rend., Ixiii. 1. E2O, and Zcilschrift fir Chen, 1809, r. 66.

[^184]: 1 "Fst auten indulgentia remikyio ponx temporalis adhue post ahonlutionen encramentalem ptecatis debita, in forp interno coram Deo valina, facta per applicationem thesauri ocelestie a sujerioro legetimo"

[^185]: ${ }^{1}$ Sco Bingham, Antl., xviii. 4 ; and Hefele, Conciliengesch.. i. 226, \&

[^186]:

[^187]: Except in Long Island waters. October 1 to May 1, and Chantanqua county, September 1 to February 1. Caunot be or other instrument and daylight, nor with any net, deviec, or other instrument than guns fred from tho shoulder, but
 lantern or other light must be used.

[^188]: *For a list of the mineral springe and pleasure reaorts of ldaho, see thome tojes In these Revisions and Additions.

[^189]: Chinese- The act excluding them hecame effective Angust 6, 1882. Between June in). 1 sig (the beginning of the fiscal year 1893), and Auemst 6, li,i13 of the m,031 Janded on our ghores. Since 1884 their record ranges from 10 in 1437 , to 279 In $188 i$. luting 1800 jumps to 1.716 , of which $1, x 2 y$ reported as merchants. Italian live has almost met the irlsh line. The Russan above both the Norwegian and Scotch.

[^190]:

[^191]: An important phrmze of the temperance question whs pre-
 Blame, Seeretary of state, transmitting to the ladinn jupartment a eopy of in mote dated Fets. 14, wat, from the britiab Mlnister askiag on hehalf of the kritish fiovernment to be adylsed whether this governmenthad the disposithon sin to anend the law in regard to the sule of intoxieants to indinend the law in regard to the sule of intoxicants to inporarily within the dmited stuted. He requested the views of the Anerienn Government as to the shitheience of the fresent law, and the practleability of a complinnee wht the wishas of Great Krituin by an imendment of the law, should such
 gan said:
 *This ollice wonlel favor man nomdment to the law bn questfon so as to make it npplienble to alf eases of farishbfingliquor to Indiuns within the fulted states, without respect to the relinthons sulidindinus hear tothis gosernment,
 nild to Whether they or their tribes
 Uniled states Indian agenl or bot.

 Sucham ammondment, bresibus heing a compliname with the wiwhes of the lirltish fiovernment wh the shliject, which apprats to be netanted by a hamane deslre to promeste the welfare of the Indians lin Cumadn, wonld cuatule thls cersererne mu*nt to extend lts protertion auninst the evifl effecta of Whlsky drimking, and the lermefonsinllueners of whle ment who furulsh bletn with whisky, to many of its own Jmbintis who are tot affected by exlatfig laws, aind is in my opinion mollele to be dealred.
 " F"urther, in my reprort of Ancist d, replylng to the lether

 the donlbt enterinimed liy that commiltoma* to the comstitin* tionnl power of Congipse los "prohilift the whie of llighor for Indians) Within the States." I referrerl to docisions by the Supreme Conrt of the Cnited states relatlve to the jower granted to Conserss over the subject of commerce with In-

