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ABSTRACT

The energy cost of goods and services is computed, and

applications are discussed. The method utilizes the data base

of input-output economics, but entails additional analysis.

Applications range over consumption options for individuals, busi-

ness, industry, and government; from the total energy cost of bus

vs. auto travel to the national import-export balance.
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1 . INTRODUCTION

When anyone consumes anything, he consijmes energy. Since

energy reserves appear to be finite, and since every type of energy

implies some kind of environmental impact, it is of interest to know

the "energy cost" of the whole spectrum of goods and services produced

by the U. S. economy. By energy cost we mean the total amount re-

quired to support all activities necessary for delivery of the product

—from mining to final fabrication. In this paper we describe a

method for computing energy costs, based mainly on the data from

input-output analysis but with additional analysis. In an appendix

we discuss a similar method for computing "labor cost", the total man-

hours required to produce a product.

One motivation for determining total energy cost lies in the

magnitude of "direct" and "indirect" energy requirements. For

example, only about 30^ of America's energy is used in the private

sector, that is, in homes and private transportation. An additional

kO% is supplied to commerce and industry to be demanded by consumers

through the purchase of non-energy products. The remainder is

utilized for governmental activities and exports.

Indirect energy requirements are thus extremely important. Consider

an example from manufacturing: less than 10^ of the energy needed

to make an automobile is consumed directly by the manufacturer. Over

90^ is required to produce the steel, glass, rubber and other necessary

inputs. We seek a method that accounts for these inputs explicitly.

To determine energy cost, we must model the physical flow of



materials and energy through a system: the U. S. economic system.

Data collection for this large, complex system is extremely costly

and time consximing; therefore limited. This lack of data is the

binding constraint, since in modeling physical systems the state of

the art is quite advanced. In this paper we have chosen not to

start -with a general theoretical development and simplify to accom-

modate data constraints. Instead, we begin with this constraint

and basic physical principles and develop a model of increasing

complexity. Since this approach maximizes use of existing data and

provides immediate answers to a subset of policy questions, we believe

it provides a useful framework for convincing government of the

marginal utility of additional data required for more sophisticated

models. The interested reader may refer to a set of papers outlining

general theoretical approaches to problems such as this [l, 2, 3j ^]s

and will note several conceptual similarities shared with the method

developed in this paper. In particular, Krenz [h] has used an

approach somewhat similar to ours. However, he assiimed that energy

is sold to all customers at the same price, which we have found leads

to errors of at least a factor of two.

Our methods of analysis are described in Section 2. In Section 3

we discuss attempts, empirical and theoretical, to verify the accuracy

of the approach. Section h contains applications which cover such

diverse subjects as the energy cost of an electric mixer and the energy

impact of federal public works projects.

2. COMPUTING ENERGY COST

To determine the energy cost of a specific product, a detailed
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study of its manufacture, "vertical analysis", is often usefiil.

Performing vertical analyses for a whole spectrum of products becomes

too large a project to handle, so we sought a more all-encompassing

approach which would probably sacrifice some accuracy. In Section

2.1, after giving a brief description of vertical analysis, we present

connections between the two techniques and discuss possible com-

plications.

2.1 Vertical Analysis

Vertical analysis is best described by example. Suppose you want

to know the energy cost of producing a car. First you would obtain

the energy bill of the car manufactiirer , which you would allocate on

a per-car basis. In addition, you woiild need to know the non-energy

inputs to the car manufacturer, which you could also allocate on a

per-car basis. Next, you woiild obtain the energy bill of the manu-

facturer of each of these inputs (steel, glass, tires, etc.), allocat-

ing those on a per unit basis (ton, gallon, etc.). It would also be

necessary to determine their manufact\iring inputs (iron ore, sand, etc).

There are many stages through which the original product must be traced.

Theoretically this process covild go on for an infinite number of steps.

Practically speaking, however, the series can be trioncated after

several steps, but with some loss of accuracy. The error would' be

difficvilt to evaluate.

Vertical analysis can be used to treat very specific products.

The actual physical quantity used to allocate energy can be selected

as appropriate to the particular step in manufacture. These two

advantages must be weighed against the problem of truncation along
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with the fact that vertical analyses are tedious and time-consuming.

2.2 Energy Intensity of Goods and- Services

Rather than laboriously performing a vertical analysis for each

individual product, ve will use a method for simultaneously treat-

ing all goods and services in the economy. It will be seen that the

data base required is no different (with certain assumptions) from

that required for vertical analyses, and the method is more tractable.

Consider an economic system composed of N sectors, each producing

a unique output. We assume there Is an energy intensity Cy measured

in Btu/unit output, associated with the output of each sector j.

Our data base is an N x N matrix of interindustry transactions

^, a vector of total outputs X, and a vector of energy extraction

(mining) data E. An element T, . of the transactions matrix represents

the amount of product i sold to sector j during a given time period

(typically one year). The total output X. of a sector is the sum of
J

its sales to other sectors plus its sales for final consumption, Y .

J

N
X ,

= Z T., + Y, (2-1)

With these data, we can now construct an energy balance diagram

for each sector. Shown in Fig. 1, it simply states that the energy

embodied in a sector's output is equal to that embodied in its inputs,

plus energy extracted from the earth by that sector.

Based on Fig. 1, we can write a set of N energy balance equations.

J, ^"ij * "j = ^/j <^-^'
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Converting to matrix notation and solving, we have

£ = E (X - T)"-"- (2-3)

vhere X, denotes a diagonal matrix with the elements of the vector X

along the diagonal. Hereafter, the symbol '^ over a matrix will in-

dicate such diagonalization of a vector.

2.2.1 Relation to input-output theory

It is sometimes convenient to define a new matrix A :

A, = ^ {2-k)
^ X.

J

Eq. 2.3 now takes the form

£ = E i"-^ (i - A)'""" (2-5)

The elements of a column of A are said to specify the

"technology" of sector j. Each coefficient A., represents the amount

of i p\irchased hy sector j per unit output of j produced. In econ-

omics, a sector's production function is sometimes specified in terms

of these fixed technological coefficients. A.., and called an input-

output production function. Under the rather restrictive assumption

that the matrix A is constant, independent of scale and time (the

fundamentals of static input-output theory), an element (i - A,)..

represents the amount of i required directly and indirectly per unit

of j delivered for final consumption [l].

The similarities with input-output (I/O) theory are apparent,

but there are several key differences. First, the units of A in

most applications of I/O theory are expressed in the -units: dollars

worth of i per dollar's worth of j . In our work we defined a set
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of N energy intensities, e_ (one for each sector) and in Fig. 1

allocated these energies proportional to transactions X and

outputs X. Thus we are free to define energy intensities in terms

of physical units (e.g. Btu per ton of steel, cubic yards of concrete,

etc.) or any other units expected to he the best allocators of

embodied energy.

The second major difference is the severity of assumptions made.

In I/O problems, one is usually interested in obtaining N results,

the elements of {L - A) • It is therefore necessary to assume the

entire matrix A to be constant, independent of scale and time. Such

a restrictive assumption is merely sufficient, not necessary, to

obtain the vector e_ from eqs. (2-3) or (2-5). In owr problem, we

need only assume that vector e_ obtained for the base year is

independent of scale and time. That is, we require that a product

has the same total energy intensity from one year to the next; not

that all aspects of every production process remain identical.

Actually, the first calculation of energy intensities for

360 sectors of the U. S. economy was based on I/O theory [5]j utiliz-

ing the published dollar-based inverse matrix [6]. Subsequent en-

hancements have removed difficulties associated with using redundant

(physical and monetary) energy allocation data; Btu units have re-

placed dollars in the energy sector rows of X- We proceed with a

review of these and other enhancements, continuing from Fig. 1 and

Eq. (2-5).

2.2.2 Extension to several types of energy

Up to this point, we have spoken in terms of total energy intensity*

-6-



the amount of energy that must be extracted from the earth per unit

of product j delivered for final consumption. If we define "coal

intensity" in an exactly analogous way. Fig. 1 and the energy balance

equations still apply—coal inputs to each sector equal coal outputs.

Thus, the solution generalizes to

L = EL'^ (I - 4)""^ (2-6)

where an element e of £ now represents the "energy of type k
kj

intensity of a unit of j". Similarly, the- extraction data K .

represent the (primary) energy of type k extracted from the earth by

sector i. This is nonzero only for i = k, and its magnitude is equal

to X., the total output (Btu) of sector i. Therefore, the product

-_1 \ / 1 >
i = J = primary energy sector

/
I

> otherwise

The multiplication in eq. (2-6), therefore, extracts the energy sector

rows from the inverse matrix, and identifies them as energy inten-

sities ^.

In reality, some energy sectors process various types of energy

into another form, such as electricity. Such "secondary" energy

sectors do not extract input energy from the earth but receive it

embodied in their purchases from the primary energy sectors. To

determine the "electricity intensity" of goods and services, we simply

extract the electric sector row of (l^ - A ) . Mathematically this is

equivalent to imagining an artificial extraction of electricity directly

from the earth by the electric sector.

Obviously, primary and secondary energy intensities cannot be

summed directly to obtain total primary energy intensities; coal used
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to make electricity wovild be double-counted. The model contains

5 energy sectors: coal, crude oil and gas "wells, refined petroleum,

electricity, and utility gas. The first two are primary sectors;

but electricity is mixed because it includes hydropower and nuclear,

which are considered primary energy resources. We calculate the total

primary energy intensities e_ from the matrix ^ using the fonniala

'j = 'IJ
*

'20 •'^^l.J (2-8)

where f is the fraction of electricity produced from hydro and nuclear

sources, and t\ is the efficiency of converting fossil fuels to elec-

tricity. This follows the established convention of defining the

primary energy content of nuclear and hydro electricity as their fossil

fuel equivalents

.

2.2.3 Relation to vertical analysis

To understand the relation between the energy intensities obtained

by vertical analysis and those found through matrix inversion, consider

the series expansion:

(X - A)"^ =l+4+A^+A^+ ... (2-9)

For this expansion to be valid the spectral radius (the maximum of

the absolute values of the eigenvalues) of A must be strictly less

than unity [7]. This condition is satisfied in our model. (Our A

does not possess a column norm <_ 1 with at least one col\imn sum < 1;

this condition is sufficient, but not necessary.)

Terms on the right hand side of Eq. 2-9 can be seen to represent

successive terms in a vertical analysis. As a simple example, suppose
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Sector 1 is coal mining and Sector 2 is auto manufacturing. Then

the second element of the first row of the inverse matrix "will "be

the coal intensity of autos. Now consider each term on the right

hand side contributing to this total. The first term is zero; the

second term is the coal consumed directly by the auto sector per car

produced; the third term represents coal used directly by the auto

sector's suppliers to produce non-energy inputs (steel, glass, tires,

etc.); the fourth term adds the coal used to produce each of their

input s , et c

.

In practice we often desire more detail than this affords - for

example, differentiating a specific auto manufacturing line from the

larger aggregated sector, "motor vehicles and parts". A "hybrid"

analysis is used, replacing the first few stages of the expansion

with more detailed problem-specific data, and using our average

coefficients for the remainder. Thus, from the identity

(1 - A)"-^ =1 + 4 + 4^+...+ A^"^ + (X - 4)"^ A^ (2-10)

we calculate

e' = E X"^ [I + A' + (A')^ + ... + (A')"""^ + ^l ' L^~^ (^')"] (2-ll)

where the primes denote problem-specific data which may be expressed

in physical \inits, or in dollars. Accuracy will depend on the choice

of n.

2.3 Treatment of Imports and Exports

When we export goods, we export energy embodied within them.

Imported goods on the other hand can be viewed as implied energy

imports, displacing the need to consiirae energy domestically. We wish
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to construct o\ir model in such a way that we obtain "domestic"

energy intensities. This will permit us to apply the results to

a variety of foreign policy issues and "the energy balance of trade".

Data from Ref . 6 include transactions and outputs of imported

goods, as well as those domestically produced. We correct the data

by subtracting imports from total outputs so each sector's energy

use is allocated only to domestic outputs. Solving the equation

implied by Fig. 2 gives

£,= !(£-£- T)"'^ (2-12)

A A

where Q, represents that portion of ^ composed of imported goods. The

energy intensities ^ now reflect the true energy intensity of products

made exclusively from domestically produced inputs.

Some practical problems arise here because there are two classes

of imported goods. Competitive imports are defined as those goods

for which there are domestic counterparts, and are counted as part of

the total output of the corresponding domestic sector. For example,

in Ref. 6, the total output of the auto manufacturing sector, X ,

cars

includes Volkswagens as well as Chevrolet s. Fortunately, the vector

Q^ is also recorded so the two types of outputs are distinguishable

and eq. (2-12) can be solved.

The other category of imports, noncompetitive, is defined as.

that for which no domestic coimterpart exists. Examples include

diamonds, bananas, and coffee. In Ref. 6 these products are not

identified by type. Since they comprise only 20^ of all imports,

and only 1% of GNP, we ignore them in our analysis.

Exports are treated as part of final consumption, along with

-10-



personal and government expenditiares. The energy intensities of

exported goods are likewise given by eq. (2-12).

¥e can now construct a complete picture of energy flow through

the U. S. economy. We assign to competitive imports the energy con-

tent of their domestic counterparts; this is equivalent to assuming

that if we didn't import them, we'd produce them here at that energy

cost. Figure 3 shows the energy balance under this assumption.

The U. S. economy receives energy in three ways:

1. Primary energy (coal, crude, hydro, nuclear) extracted

domestically.

2. Imported energy (almost exclusively petroleum) with the

associated embodied energy penalty due to losses in

extracting, refining, etc. carried out abroad.

3. Energy embodied in other competitive imports.

Taking the product of energy intensities with total final demands,

we obtain the total energy required to sustain that level of cons\imp-.

tion,

4 Y = e (2-13)

where e_ is a vector of total requirements for each fuel type. This

total can be decomposed into its components, domestic extraction and

energy embodied in imports (including energy imports):

where the subscript k indicates fuel type and Q. are competitive
J

imports. Remember that noncompetitive imports have been neglected in

this analysis

.
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2.k Secondaiy Products

All interindustry data described thus far are collected from

individual establishments and aggregated to N sectors. We have

spoken of sector outputs as homogeneous quantities. In this section

we shall discuss the realities of the situation, since outputs are

not homogeneous.

If an establishment produces primarily automobiles (its primary

product), it is placed in the automobile sector. It may also produce

secondary products, items that are the primary outputs of other sectors.

Therefore, a unit of output from sector i is not necessarily equivalent

to a unit of (primary) product i; the output X. may represent a

heterogeneous mixture of products. This raises serious problems for

applications, since we wish to know the energy intensity of goods and

services, not sector outputs.

2.U.1 Activity-based analysis

The ideal solution to this problem would be to define a set of

activities, one associated with each product. To define these activi-

ties, consider an establishment in the automobile sector whose output

consists of 90^ autos and 10^ airplanes. We say that this single es-

tablishment engages in two activities: a primary activity (making cars)

and a secondary activity (making airplanes). If the establishment's

accounting practices do not distinguish between purchases of inputs

(say electricity) for making cars and making planes, it is not possible

to construct a precise "activity-based" transactions matrix.

2.U.2 Makeup of the transactions matrix

To gain a thorough understanding of the secondary product problem

-12-



and other aspects of this large and valuable data base, we present

a brief outline of the method for assembling the data. Then we

retiorn to activity-based analysis

.

Actually the transactions matrix of Ref . [6] is obtained by

STmming four N x W matrices:

^ = 2A + ^ + MPT + m (2-15)

DA is the direct allocations matrix. Its elements DA.

.

represent direct sales of primary product i to the purchasing sector

j. The sum of elements of the airplane sector row of M* plus total

final demand for airplanes equals the total sales of airplanes, re-

gardless of whether produced by the airplane sector, auto sector, or

any other.

TF is the domestic transfers matrix. Its elements TF. . represent

the value of j , a secondary product, produced by sector i. Thus, the

value in producers' prices of airplanes produced in the auto sector

would appear in the auto row and the airplane column of ^_. It is

important to note that if one looks only at the ^matrix (eq. 15), the

transferred output from the auto sector to the airplane sector is in-

distinguishable from the Chevys that Lockheed bought as fleet vehicles

(the latter is a direct allocation).

MDT is the matrix of margins on domestic transactions. It has

no direct bearing on secondary products, but is explained here to aid

in understanding Section 2.6. It contains nonzero elements only in

the trade, transportation, and insurance rows. An entry represents

the sum of domestic costs of distribution (transport, trade, insurance)

associated with all of the inputs purchased by the consixming industry.

-13-



It is important to note that the purchase of an airplane ticket for

a GM executive appears as an entry in M^, while the sum of all air

freight charges on GM's purchased inputs appears in MPT . The two

types of purchases are indistinguishable in X» appearing only as a

transaction from the air transport sector to the auto sector.

IM is the transferred (competitive) imports matrix. It contains

nonzero entries in one row, indicating the foreign port value of

competitive imports. Note that this matrix would be deleted from

eq. (2-15 ) in accordance with the methods outlined in Section 2.3.

But in the soiirce data, when ^ is used to calculate ^, competitive

imports are effectively "transferred" to the corresponding domestic

sector in a manner identical to the treatment of domestic transfers.

There is one more feature of ^; it also has nonzero entries in the

trade, transportation, and insurance rows. These fictitious purchases

effectively bring the purchaser's price of imported goods to domestic

port value. Summing the columns of ^yields the Q^ of Section 2.3.

2.U.3 Secondary product a5.justments

Utilizing the above data, several approaches have been proposed

for determining the energy content of primary products. The first

was used by Herendeen [5] to allocate a sector's energy cons\imption

over only its products (primary and secondary), excluding that portion

of its output produced as secondary products by other sectors. The

advantage of this method was that it permitted use of the already pub-

lished {^ - A) matrix, avoiding costly inversion of an altered matrix,

Its main disadvantage was that it did not attempt to allow for sec-

ondary products requiring more or fewer energy inputs.
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Another method sometimes employed in econometric analyses [8]

is based on the assumption that each product is produced vith pre-

cisely the same technology (input proportions), regardless of the

sector in which it is produced. This approach is more complete,

since it corrects for transfers out of a sector as well as transfers

into a sector. Its main disadvantage is that the assumption is

evidently physically unrealistic because it resu].ts in numerous nega-

tive entries in the total requirements matrix (L - A) • Such values

are physically impossible and demonstrate that the assximption is too

strong.

Remembering that our earlier calculation of energy intensities

of sector outputs was possible under an assiimption much less restric-

tive than that normally employed in input-output theory, we are able

to make a similar assumption here: that the energy intensity of each

product is independent of the sector in which it is produced. This

does not require identical production technologies, only that the

energy embodied directly and indirectly in the final product be the

same. While this assumption is strong, it is not nearly as restrictive

as needed in input-output analyses and it is the weakest possible within

existing data constraints. Figure h shows the energy balance for a

typical sector (a group of establishments) under this assumption.

Solving the energy equation corresponding to Fig. U, we obtain

the energy intensity of products, rather than sector outputs.

e_=E[Y + £-DA + £- m^ - ^ + lE*^]"-^ (2-16)

where Y_ is a diagonal matrix whose elements are domestic final demands,

and the elements of diagonal matrices D, M, and TF. are the row sums
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of DA, the row sums of MPT , and the column sums of W^, respectively.

The superscript t denotes transpose.

In the absence of specific data, ve cannot verify our assumption

that a product's energy intensity is independent of its sector of

origin. A sufficient indication that our assumption is in error

would he the occurrence of negative values in e_, a physical impos.si-

bility. In terms of Fig. h^ this can occur if the energy ascribed

to secondary products by our assumption exceeds energy embodied in

inputs. In preliminary results with a 92 sector model, this

happened for only two sectors. For both of these sectors, over 90%

of outputs are secondary products, and it is not yet clear whether

the source of the difficulty lies in our additional assumption, or

slight inaccuracies in those sectors' direct energy input data. Work

is currently underway to resolve this question, and alternative

assvunptions and methods of solution are being evaluated [9]* Accord-

ingly, the numerical results presented here are derived from estab-

lishment-based data, pending refinement of the above methods for

secondary product adjustments.

2.5 Capital Purchases

Since I/O tables are assembled only once every four or five years,

and since their usefulness depends on the stability over time of the

1. The solution (2-l6) requires that the NxN matrix be well-

behaved. This requires that a unique primary output be associa-

ted with each sector. Actually this is not the case, since

Ref. [6] contains several "dujrany industries" (e.g. office supplies)

in which no production occurs; all outputs are transferred in from

the primary producing sector (dummy industries result from data

acquisition constraints). The result is more equations than un-

knowns; the energy intensities of dummy sector outputs are linear

combinations of other energy intensities. Eliminating such sectors,

and adding their outputs to those of the appropriate primary sectors,

we obtain a tractable system of simultaneous equations.
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technological coefficientc A, the transactions matrix is constructed

exclusively from current account data. Thus, interindustry transactions

exclude flows of capital goods, partly because they could cause erratic

annual fluctuations in the 4, matrix.

Therefore, capital purchases are normally listed as a component

of final demand, not as interindustry purchases. In Fig. 1 the

purchase of (say) machinery for manufacturing does not appear on the

input side. Intuitively, ve sliould expect it to bo there; other-

vise the energy to produce it does not contribute to the final product.

To correct this pi'oblem, we would like to allocate capital purchases,

away from final demand, to interindustry purchases. Tliis would require

construction of a complete capital flow table, and separation of growth

and rejilacement ("depreciation") components. In section 3.1 "we discuss

an example calculation.

2.6 Producers' vs. Rxi-chasers' Prices

The energy intensities obtained here are in terms" of producers'

prices - the price at the end of the assembly line. Tlie actue,! price

paid by a consumer jncJ.udes margins ("markups") for transportation,

insurance, and wholesale and retail trade. Each margin has its

associated energy'- intensity. (For the energ;^^ sectors, whose output we

measure in Btu, not dollars, we can state it this way: there is an

additional energy penalty from marketing.)

In the normal fina]. demand vector, transportation and trade margins

are lumped with direct sales (i.e. final demand "buys" some retail trade

services). If we want the total energy intensity of a product sold

to final demand, we must use independent data to allocate margins on

-17-



these sales to the appropriate products. Energy intensities in terms

of purchaser's prices have been calculated for over 360 types of goods

and services [lO].

3. APPLICATIONS: CHECKS ON ACCUR.\CY

Questions relating to the accuracy of our approach fall into

these classes:

a. Conceptual problems persisting from the use of economic

accounting data. Examples: the aggregation and capital

problems

.

b. Using dollars to allocate embodied energy, or actual

errors in dollar data.

c. Technological change over time.

While ve have not performed a comprehensive erroi- analysis to

answer all these questions, ve will discuss these: For class a, we

have incorporated a capital flow matrix, described in section 3.1.

For classes b and c, two approaches have been used. First we have

compared our results for energy cost of certain products with results

of independent vertical analyses (section 3.2). Second, work is in

progress to determine the sensitivity of energy cost to errors or

time variation in the direct coefficients matrix A (section 3.3).

For empirical checks, we shall sometimes refer to our published

results of calculations of energy intensity [5]- This earlier work

used a method qualitatively similar to that offered in Section 2, but

differing slightly quantitatively. We shall indicate which method is

used in each comparison. Example values for energy intensities are

listed in Table 1.

3.1 Capital Correction

The philosophy of energy cost implies that capital purchases, at
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least those for replacement, should be part of the interindustry

transact j.oiis. The energy to produce them would no longer "be viewed

as being delivered to final demand, but instead would be part of the

products they help produce. From the standard I/O data base we know

the sum of all capital sales by selling sector (e.g., all airplanes

sold as capital stock). We do not know who bought the planes. How-

ever, the Bureau of Economic Analysis of the U, S. Department of

Coirarierce has independently produced a table of interindustry capital

flows cojTipatible with its 82 sector table [ll]. We have expanded thij

to 92 sectors, and calculated the effect of including the capital

flows

.

With capital flows. Fig. 2 is modified as shown in Fig 5- Ti^e

effect i« to increase or leave unchanged, (but not to decrease) the

e, . . C. . is the replacement capital flow, which is some fraction of

the C. . given in the cai^ital flow table.

In our calculation [20I "we assum.ed that half of each capital

transaction that year was for replacement of obsolete or depreciated

equipment. Because capital flow data are less reliable than current

account transactions, and the \mcertainty over the "typicalness" of

1963 capital flows, we consider this only an exercise in ascertaining

an idea of the distribution of errors.

In Table 2 we list the distribution of changes in primary energy

intensity resulting from including the capital flows. The dollar

value of the replacement flovrs was about h.'^% of the GUP; this is

roughly the expected average increase. The average appears close

to this value. Only six of the 92 sectors show changes exceeding

12!^. These are ngricultural or service sectors.
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3.2 Comparison with Results of Vertical Analysis

In Table 3 we compare energy costs computed from vertical

analysis with our results. Comparisons are listed as the ratio (other

study)/(our study). Performing this comparison is complicated by these

factors:

a. Matching the economic sector exactly with the specific

product is usually not possible. E.g., metal containers

includes paint cans and buckets in addition to beverage

cans (this is the aggregation problem).

b. Primary/ secondary product ratios are often low,

thus casting doubt on the. accuracy of establishment-

based energy coefficients.

c. Price data (implied or actual) are often unavail-

able. Prices are needed to bridge the gap between

our dollar-based approach and the usual physical

basis of vertical analysis

In theory, the ratio above should be <_1, since our approach

is analogous to an infinite vertical analysis. (Neither method

included a capital correction.) The results for 13 independent

verifications yield an average value of 0.92, a spread of from

0.52 to 1.23, with a standard deviation of 0.23.

3.3 Sensitivity of Results to Errors in 4

Eq. (2-6 represents a nonlinear operation on the matrix A.

A is constructed from empirical data and is subject to error. We

ask what errors are thereby implied in e_.

•
—
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Attempts to ottain a closed form solution lead only to a

a rather weak inequality demonstrating that we cannot be sure

that there is less than a factor of 5 (the condition number of the

360-order 4 matrix) multiplier on errors in 4= [13]. We expect

that errors in A ^^^ ^'^ least +10^, probably higher; this gives

a least upper bound of + 30% for errors in e, which we consider

unacceptably high.

Work is now in progress [lU] using numerical methods to improve

these early estimates; these involve actual inversions of pertvirbed

matrices under two assumptions: first, that the errors in A act in

concert to give the worst possible error in (l, - A) , and second,

that the errors in A vary stochastically. In addition, the work includes

sensitivity analyses to identify important input data. All of these

methods can be used to determine the effects of errors in published

data [6] and to evaluate effects of expected technological change.

Since we are dealing with N technological coefficients (where N may be

as large as 36o), a systematic updating process must await development

of these techniques.

k. APPLICATIONS: SELECTED RESULTS

Almost all of the applications presented here are based on con-

ceptually isolating some group—citizens, an industrial sector, the

federal government—as a constimer, and analyzing the energy impact of

changes in that group's consumption.

We first illustrate the idea of total energy cost for two family

items, the private auto and an electric mixer (to indicate the range

of applicability!). We then discuss resiilts of this type of analysis,

applied to l) consumer's choice on urban transportation (bus or car),
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and overall family spending pattern, and 2) federal government choice

of alternative public works projects (highways vs. mass transit).

We also use energy costing techniques to analyze an industry's total

energy dependence through its inputs of goods as well as energy and

apply this notion to the nation's total import-export energy balance.

Finally, we calculate the price impact (on all products) resulting

from a tax on energy.

k.l Total Energy Cost of an Automobile and an Electric Mixer

Results for the average automobile are listed in Table h. Every

auto-associated expenditure is converted to energy terms. This re-

quires allocating each expenditure to the appropriate sector and mul-

tiplying by the corresponding energy intensity. The net effect is

that the actual fuel in the tank accounts for only about 51% of the

total. An additional 13^ goes to the "energy cost of energy" (refin-

ing losses, etc.), which leaves 30^ attributable to manufacture of the

car, parts, maintenance, road construction, etc. Thus a multiplier

of about l.T must be applied to the direct gasoline energy to obtain

total impact. This same approach must be applied to other transpor-

tation modes before a true energy-per-service-mile comparison can be

made

.

Table 5 shows the total energy cost of an electric mixer. We

account for the energy of manufacture and sale, and the expected service

lifetime. Assuming that the mixer (125 watts) is used 13 minutes per

week, we find that the operational energy must be multiplied by I.58

to yield total energy impact. This factor varies for different

appliances. For the big users of energy such as refrigerators, stoves,
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etc. the in\iltiplier is less than 1.1.

k.2 Energy Impact of Urhan Bus and Auto Transportation

This question has "been treated by Hannon and Puleo [15].

National average figures for all cars and buses were not adequate, so

the specific urban transportation systems had to be analyzed indivi-

dually by the hybrid technique. Expenditures and fuel consumption data

for 38 xirban bus systems were obtained and converted to energy terms

as described; likewise for the car, with attention to the relatively

poor gasoline economy in city traffic. Additionally, average load

factors were used, leading to the results in Table 6.

We mention a problem associated with this comparison: the two

options differ in their total expense to the consumer. Therefore,

the total energy comparison "should" include the energy impact of

spending of the saved money. There are two tacks. One is to try

to predict consiirner spending, a task we have foregone. The other

is to compute the effective energy intensity of the saved money

Btu
(—r— ) , and present the consiomer with a list of spending alternatives

rated according to their energy intensities. These are listed in Ref. 15

k.3 Total Energy Impact of a Family's Expenditures

Herendeen [16] has computed the energy impact of all expenditures

by American families as a fionction of income. Personal consumption

expenditure data from the Bureau of Labor Statistics were converted

to energy terms. Fig. 6a shows some of the expenditures, illustrating

that direct energy consumption such as gasoline seems to level off with

increasing income, while purchases of education and transportation

other than the car (normally not considered energy purchases) do not.
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These have been converted to energy terms in Fig. 6b. The energy-

impact of energy purchases indeed does level, but that of non-energy

pTirchases does not. For the lowest income group, energy purchases

account for 2/3 of the total, while for the highest income group, the

fraction has dropped to 1/3. This suggests that estimates of the

effects on consumers of energy shortages will be quite misleading if

based on direct use only, especially for the more affluent.

These resiilts are averaged over geographical location, age, race,

education and size of family. A question which arises here is:

are there different spending patterns, resulting in significantly dif-

ferent energy impacts within the same income class? (Remember that

even savings or investments have an energy impact—they help build

shopping centers.) So far this question is unanswered.

h.k Energy and Labor Impacts of Government Spending

As we show in the Appendix, we can derive "labor intensity"

analogously to energy intensity. Knowledge of the two allows one to

search for ways to conserve energy while not causing a decrease in em-

ployment. Bezdek and Hannon [IT] have analyzed several federal govern-

ment "public works" programs this way. The problem is to break down

the program into expenditures compatible with the model's sectors, and

then apply energy and labor- intensities. In Table 7 'we list their

results for the highway trust fund and several programs which have been

suggested as alternatives.

There are several programs which reduce energy impact, yet don't

decrease (and sometimes increase) employment. Even if money is given

back to individual consianers through tax relief, and then is spent by

-2k-



them in an "average way, energy requirements decrease.

h.'^ Industrial Energy Dependence

With the concept of energy intensity, an industry's dependence

on energy is seen to involve material and service inputs as well as

actual energy. An industry may find that the effect of an energy

shortage is to interrupt its supply of a critical energy intensive

material more drastically than its intrinsic supply of energy. Or,

if energy conservation is a goal, greater results may he obtained from

a policy of conserving energy intensive materials (e.g. aluminum) than

hy turning down thermostats.

The method we have described in Section 2 is adaptable to this

sort of energy analysis of inputs. Referring to Fig. 2, we write:

e T
_ ki ij _--

g, . . is defined thus: of the total amount of energy of type k required
K.1 J

to produce 1 unit of product J, a percentage g, -^ entered through J's

purchase of i.

N K . X 100

The g . . are calculated from base year data. It is attractive to

treat them as constants, independent of X.. Since we have already
J m

required that the e, . be constants, this requires that —r;—tt" l^e constant

This is the constant technology assumption of input -output theory. The

assumption was not necessary to compute energy intensities e, ., but it
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is necessary to attach significance to the g, ... Table 8 presents

an energy input analysis of two industries. The input sectors have

been aggregated for simplicity, but the receiving sectors are at the

360 sector level of detail. For both receiving sectors (motor

vehicles and parts, and seeds and feed grains) we see that energy

inputs from energy sectors are sometimes smaller than those from

certain materials inputs (e.g., primary metals for cars) [I8].

Such an accounting suggests access points for energy conservation,

but the actual conservation potential depends on the nature of the

industry's dependence on that commodity.

In Table 8 we see that a large energy input appears to come from

"self-sales". This is a consequence of aggregation. It may represent

an actual "self-use", but more likely it resiilts from the sales between

dissimilar firms (preliminary and final assembly plants, for example)

grouped in the same sector. This large self-energy is not that

troublesome, however. First, it is somewhat arbitrary; the actual

value of self-sales does not affect the value of ^. Second, the

relative values of energy inputs from all other sectors (except self-

sales) are not affected.

k.6 National Import-Export Energy Balance

Once we have obtained the energy intensities for all sectors we

can quantify the import-export energy balance. Recalling Fig. 3, we

note that there are 3 ways for energy to enter the economy through

imports.

1) Btu content of imported energy. This is Just

Z Q , where i runs over the energy sectors

.
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2) Implied primary energy penalty on this imported

energy. This is E (e^-l)Q^.

3) Embodied primary energy in imported goods. This

is Z £. Q.

.

Analogous terms apply to exports. All quantities are known,

leading to Fig. 7« Imports and exports are expressed as a percentage

of the total U. S. energy budget, which we define consistent with the

approach here, as the sum of domestic and all imported energy, actual

and embodied.

We see that while the U. S. was a net importer of actual energy,

it was a net exporter of energy embodied in goods . The combined

effect is that the U. S. was still a net energy importer.

This suggests an interesting way to look at foreign trade policies.

If energy embodied in exports exceeds that of imports, domestic energy

supplies are being depeleted by trade. As our economy becomes more

open, the energy flux associated with trade will grow. A framework

which explicitly recognizes this flow will be necessary for evaluating

policies directed toward energy self-sufficiency.

U.T An Energy Conservation Tax

It has been suggested that a tax be levied on energy use, to

encoiirage conservation and to raise the revenue needed to solve energy-

related problems [19]. Under the assumption that all taxes are passed

through 100^ in the form of consumer price increases, it was fovind that

an energy tax (20(^/million Btu) could raise very large amounts of

revenue (about $15 billion) and wo\ild result in only slight price
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increases .for most goods and services. However, tax impacts would

be distributed in such a way that prices of some energy intensive

products would rise substantially compared to their less energy inten-

sive competitors.

It was determined that a "per Btu" tax would be substantially

less regressive than an ad valorem tax, which would reflect inequities

in utility rate structures. Revenues would be adequate to provide

per capita income tax credits in an amoimt equivalent to a subsistence

energy use level, thus transferring the burden of the tax to heavy

energy users.

The method was based on resxilts of Ref. 5» and the "per Btu"

tax was taken to be directly proportional to energy content of goods

and services. In an analogous manner, monetary data on energy use

from Ref. 6 were used to calculate the "energy value content" of

goods and services for determining the impact of the ad valorem tax,

assuming that each sector passes on its increased dollar costs. Dur-

ing the computation, those elements of the matrix product corresponding

to flows of secondary (already taxed) energy were taxed only on their

"energy value added" (e.g. energy burned in refineries) to avoid double

coiinting. Estimated price increases on some goods and services under

the two taxing schemes are presented in Table 9. The 20(^/million Btu

tax was compared to an l8^ ad valorem tax because it could raise equal

revenue

.
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APPEND.IX: LABOR INTENSITY

In Section U, we mentioned labor intensity of goods and services.

The concept is analogous to energy cost e.; energy enters the economic

system as it is extracted from the earth, while labor enters directly

from the domestic labor force. The "labor balance" of a sector is

shown in Fig. 8. Here X is the labor intensity (total man-years,

direct and indirect), per unit of X.. L is the man-years used

directly in industry J . Embodied labor is thus allocated by trans-

actions of X as before. There is a question whether dollars or
J

Btu's are better allocators of embodied labor for the energy sectors

(perhaps the high price of residential electricity reflects more labor

intensive sales, promotions, and service). In the example quoted [l?],

dollars were used for all T. although it is not necessary.

Solving the equation implied by Fig. 8 gives:

A_ = L (Z, - £ - T) (A-1)

Eq. A-1 resembles eq. (2-12). The main difference is that while

the matrix E has only a few non-zero entries (primary energy out of

the earth), the vector L has non-zero entries for almost every sector;

every industry receives output from the labor force, which is a part of

final demand and not one of the N industrial sectors.

Secondary product and capital corrections can be included in the

labor intensity calculation; the methods are analogous to those

for energy.
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TABLE 1

3

Example Energy Intensities (lO Btu/$)

Source: Ref. 5. 360 Sector Model

Primary Aliminum 380

Fertilizers 180

Airlines 152

Glass 101

Motor Vehicles TO

Cheese 62

Apparel k6

Hospitals 38

Computing Machinery 27

Banking 19

U. S. Average 82



TABLE 2

Effect on Energy Intensities of Including Capital Flovs

Source: Ref. 20. 92 Sector Model

Percent Change of £ Number of Sectors

0-3 18

3 - 6 k9

6-12 19

12 - 18 5

18 - 2k 1

> 2k

92



TABLE 3

Comparison of Energy Cost Computed by Our Technique
and by Independent Vertical Analysis

Source: Ref. 12. 36O Sector Model

Subject

1. Auto (manuf .

)

2. Finished
steel

3. Primary

Ratio (other
Result /Our Result)

.81

r
.89'

^ 1.00

copper .52

h. Primary aluminum 1.11

5. Rolled & drawn
^ 1.23aluminum

6. Aluminum
castings

.95

T. Bread 1.09

8. Glass containers .67

9. Raw paper .63

10. Newspapers .72

11. Metal containers 1.13

N
1

\

S

i=l
(x.-x)^

Mean = 0.92, standard deviation =
N-1

= 0.23



TABLE h

Energy Cost of the Average Private Car, 1963

Source: Ref. 5

^^^^^0^7 % of Total Energ-v

Fuel

Content
Refini
Retail

Oil

57.2
Refining, etc.

2-l_.9

1.3

Content
Retail

Car

Manufacture
Retail

Manufacture
Retail

Insurance

0.5
0.2

9.9
3.i|

Repairs, parts, maintenance 3.3

Parking
3^g

Tires

0.8
0.2

2.7

Highway construction (taxes) 14.8

100.0



TABLE 5

Energy Cost of an Electric Mixer

Based on 360 sector model

E^ ,
= E + E „ /t

tot op mrg

where

E = total primary energy for year

E = total primary energy to operate per year

E „ = total primary energy to manufacture and sell
mfg

T = lifetime In years

(Maintenance and disposal energies are assumed negligible)

E is obtained from industry data (l25 watts, 10 KW hr./yr. [21]). It is
op

converted to primary terms by dividing by the energy efficiency of

electricity generation [5]. E is obtained by multiplying purchase

price ($20 [22]) by the energy intensity for appliances, converted to

purchasers' price [10].

Thus:

E = 10 KW hrs. x 3^12 Btu/KW hrs. x 1/.256 = 1.33 x 10^ Btu/yr.
op

E ^ = 1.08 X 10 Btu
mfg

We assume t = 14 years: hence E ^ /t= 7.71 x 10 Btu/yr.
mfg

5 h
E^ ^ = 1.33 X 10^ + 7.71 X 10
tot

= 1.33 X 10^ (1 + 0.58) Btu/yr.



TABLE 6

Energy Impact of Urban Car vs. Urtan Bus

Source: Ref. 15

Energy Intensity
(Btu/pass. mile) Car Bus

Direct fuel 5500 2600

Total energy 89OO 5300

Trip length (av.

)

8.3 mi. 3.8 mi,

Passengers (av.

)

I.9 (incl. driver) 12



TABLE T

Energy and Employment Impact
of Several Federal Spending Options

Data normalized to unity for highway construction
Source: Ref. IT

Program Energy per $(1963)

Highway Construction 1.00

Rail & Mass Transit 0.38

Waste Treatment Construction O.58

National Health Insi^rance O.36

Tax Relief 0.77

Jobs per $(1963)

1.00

1.03

1.01

1.65

1.07



TABLE 8

Energy Input Analysis of Tvo Sectors

Source: Ref. l8. 360 Sector Model

Feed Grains

Input Sector %.,'«

Refined petroleim
,

51

Electric utilities 3

Agriculture 11

Construction 1

Chemicals, paints 20

Heavy machinery 1

Finance, insurance 5

Other 8

Motor Vehicles.

100

Input Sector ^iy^"'

Coal mining 3

Electric utilities k

Gas utilities 2

Chemicals, paints 5

Stone, clay, glass 2

Primary metals 28

Fabricated metal products 9

Heavy machinery h

Motor vehicles 3^

Other 9_
100



TABLE 9

Potential Price Impacts of Energy Tax Schemes
(Cents Per Dollar Delivered for Final Consumption, I963 Producers' Prices)

Source: Ref. 19

Btu Tax Ad Valorem Tax

Electricity 11.5 23.7

Plastics h.5 2.5

Air Transport 3.1 2.3

Metal Cans 2.8 l.k

Motor Vehicles & Parts 1.^ 1.1

Hospitals :8 1.0

Doctors, Dentisits .3 .k
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Figure 2. Energy balance for a domestic sector.
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