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PREFACE

In many Colleges of Engineering, the need is felt for a text-

book on Differential Equations, limited in scope yet comprehen-

sive enough to furnish the student of engineering with sufficient

information to enable him to deal intelligently with any differen-

tial equation which he is likely to encounter. To meet this need

is the object of this book.

Throughout the book, I have endeavored to confine myself

strictly to those principles which are of interest to the student of

engineering. In the selection of problems, the aim was con-

stantly before me to choose only those that illustrate differential

equations or mathematical principles which the engineer may
meet in the practice of his profession.

I have consulted freely the Treatises on Differential Equations

of Boole, Forsyth, Johnson, and Murray. I am indebted to two

of my colleagues. Professors N. C. Riggs and C. W. Leigh, for

reading parts of the manuscript and verifying many of the

answers to problems.

D. F. CAMPBELL.
Chicago, III.,

September, 1906.
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A SHORT COURSE
ON

DIFFERENTIAL EQUATIONS

CHAPTER I

INTRODUCTION

1. There are various definitions given for a function of one

variable. We shall here adopt the following :

If to every value of x there corresponds one or more values of

/(a;), then /(a;) is said to be a function of x.

This definition includes a constant as a function of x, for if

f(x) is constant, then for every value of x, f(x) has a value,

namely, this constant.

A definition of a function of two variables is the following :

If to every pair of values of two variables x and y there cor-

responds one or more values off(^x, y), then/(a^, y) is said to be

a function of x and y.

This includes a constant or a function of one variable as a

function of x and y.

A function f(x) of one variable x is single valued when for

every value of x there is one and only one corresponding value

of Ax).

A function f(x) of one variable x is continuous for a value

X = a if/(a) is finite, and tj - :Z ^ ^y

iT5 [/(« + h)] = iTU/(« - '^)1 =/(«)• ^ +'/

A function f(x, y) of two independent variables x and y is

single valued when for every set of values for x and y there is

one and only one corresponding value of/(a;, y).

1



2 SHORT COURSE ON DIFFERENTIAL EQUATIONS

A function /(:/•, y') of two independent variables x and y is

continuous for a sec of values x = a, y == h if /(a, 6) is finite,

, ar-d /
. ; ;

•

' liiliii r "1

j^

= 0l/(a + A, h+h)\ =/(a, 6)

no matter how h and A; approach zero. •<

The following definitions are given in almost any work in

calculus :

If f{x) is a single valued and continuous fiinction of x, given

by the equation y = f{x), then
£^x and ^y denote the increments of x and y respectively,

dx
__ limit r^i

If /(rr) is single valued and continuous, and dy/dx is contin-

uous, then

dx^ dx\dx/'

In general, if f(x) is single valued and continuous, and the

preceding derivatives are all continuous, then

daif^ dx\ dx'

If f(Xy y) is a single valued and continuous function of two

independent variables x and y, given by the equation z =f{x, y),

then dzjdx is the derivative of z with respect to x when y is held

constant ; dzjdy is the derivative of z with respect to y when x is

held constant.

2. In a single valued and continuous function /(a;) of one vari-

able X, given by the equation y =zf(x)y whether x is the inde-

pendent variable or a function of some other variable or variables,

we have



INTRODUCTION 3

d^x = d{dx) ; dJ'x = di^d^x) ;
• - •

;
^"« = d^^d^^'^x)

;

cZ^y = (^(cit/) ; d'y = d(ciV) ; . . .
; 6i"i/ = d^d^-'y).

Definitions. The differentials dx^ d\ d^x, • • •, ci% or

dy, d'^y, d^y, • • •, (Z"!/ are called the first, second, third, • • •, nth,

differentials respectively.

3. Derivation of d^y and cPy when no assumption is made re-

garding X being independent or a function of some variable or

variables.

By taking differentials in succession any differential may ulti-

mately be found.

4. In the differentials of the preceding article, if x is an inde-

pendent variable, it can be assumed without loss of generality,

that Ao:, or what is the same in this case, dx, is constant. That

is, it can be assumed that x changes by equal increments. Under

this supposition, therefore, d'^x and all higher differentials of x

can be taken zero. Therefore, under this supposition,

The place which a derivative or differential occupies in the

succession of derivatives or differentials, indicates the order of the

derivative or differential. Thus, a second derivative or differ-

ential is said to be of the second order, a third of the third order,

and so on.
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5. The only functions usually considered in elementary works

in calculus are functions of a real variable. Such functions with

one exception are the only ones considered in the following pages.

The exception is e* where 2 is a complex quantity.

The student is already familiar with the definition of e* where

X is real. He is, however, probably not familiar with the defini-

tion of e* when 2 is a complex quantity. A definition of this

function will now be given.

The infinite series

where 2 is a complex quantity, can be shown to have a determi-

nate, finite value for every value of z. It also reduces to the

infinite series

when z becomes real and equal to re, and this series, if will be re-

membered, is equal to e' for all values of x. It therefore appears

that the infinite series in z would be satisfactory as a definition

of e^. We shall define e* by saying that it is equal to the infinite

series

l+^ + [2+[3 +
---

for all values of 2.

From this definition, the following theorem can be established :

Theorem. If zz=zx+7jj where x and y are real, and j = V— 1,

then

e* = e*(cos y +j sin y).

Proof.

e' = l-f2 + |2^ + 7^-f---,by definition.

(a; 4- yjy (x + mY
= l + (x + yrj)+HV^ + Tq +
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Consider all the terms containing x"". These are found from the

terms

They are

^Fi + w +MlVW, M*, M\ ...1
[r L^+2»+ |2 + |3 + |4 + ^ +

J'

or

^Ti+w- t_tl,t,ti 1

[rl^+^ |2 |3+|4+|5 J-

Separate the real terms from the imaginary and there results,

or

of
I^Ccosy+isiny].

Let r take all positive integral values in succession from 0.

In this way we get all the terms of the development e^. Then

1 + ^ + j2- + ps-
+ * *

-J
l^^^y +isiny]

The theorem is therefore proved.

Examples, e'''^ = e"*(cos Sx + j sin 3x)

EXERCISES

1. Given y = log x, find dy, d^y, dhj :

(a), on the assumption that x is the independent variable
;

(6), making no assumption with regard to x.

In the results of (6), substitute x = cos ^ and show that the

results are the same as those obtained by first substituting the

value of X in log x and then taking the differentials.

2. Given y = e^' where x = cos 0, express dy, d^y, d^y in terms

of 6 without substituting the value of x in the equation y = (f.
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3. Given 1/ = log a; where x = sin 6, express dy, d^y, (Py in

terms of without substituting the value of x in the equation

y = log X.

4. Prove that e*"^ = e'(cosy —j sin y),

5. Prove that e'+«^e'+«^ = e'+'+^y^^^^ where x, y, z and w are

real.

ANSWERS

^ . . T d^ 75 da? ^ 2dx^
1(a). dy = _ ;

d»2/ = ~^ ; ^2/ = -^.

.,. , ^^ , J2 xd^x—dx^^ „ a;^(fa;— 3a;(^a;cZ^ic+2cifa;^

2. dy=z- sinO e^^'^^^dO
;

(^^2/ = - sind e««s^cZ'^ + (sin'^ _ cos^)e*^°«^c?^
;

d^y z=^ sin^ e««sa^3^ _^ 3(sin'^ _ cose)e''''^^ded'0

+ sin^(l + 3 eos^ - sin'^)e^°«^rffl'.

3. rfy = cot^ dO ; c?*y = cot^ d'O - cosec'^ d^^'

;

d^y = cot^ (f^ - 3 cosec'^ dOd'O + 2 cosec'^ cot^ dff^,

6. Definition of differential equation. A differential equation

is an equation involving derivatives or differentials with or with-

,
out the variables from which these derivatives or differentials are

derived.

The following are examples of differential equations :

g+2,| + ^ = 0. (3)
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dz dz ^ .^.

7. In examples (1) to (4) inclusive of the preceding article

it will be noticed that differentials enter the equation only in de-

rivatives. It is conceivable, however, that there might be an

equation containing differentials other than those in the deriva-

tives, as for example,

but there is no need of entering into a discussion of such equa-

tions, and we shall not do so. In what follows, we shall assume

that if the equation is written in differential form, the differen-

tials can all be converted into derivatives by the process of

division.

8. Classes of differential equations. Differential equations

are divided into two classes : ordinary and partial.

An ordinary differential equation is one in which all the

derivatives involved have reference to a single independent

variable.

A partial differential equation is one which contains partial

derivatives and therefore indicates the existence of two or more

independent variables with respect to which these derivatives

have been formed.

Thus, in Art. 6, equations (1), (2), (3) and (4) are ordi-

nary differential equations, and equations (5) and (6) are par-

tial differential equations.

Chapters I to VII inclusive are devoted to a discussion of ordi-

nary differential equations. Chapter VIII contains a short

treatment of some partial differential equations.

9. Order and degree of a differential equation. The order of

a differential equation is that of the highest derivative or differ-

ential in the equation.
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Thus, in Art. 6, equations (1) and (4) are of the third order,

and (2) and (3) of the second order.

The degree of a differential equation is the degree of the deriv-

ative or differential of highest order in the equation after the

equation is freed from radicals and fractions in its derivatives.

Thus, in Art. 6, equation (1) is of the second degree, equa-

tions (2), (3) and (4) of the first degree.

10. Solutions of a differential equation. Let us consider the

differential equation in each of the two following examples, and

see if, from the equation, we can get a relation connecting x and

y and not involving derivatives, such that, if the value of y in

terms of x be substituted in the equation, the equation is satisfied.

Example 1.
dx~

By integration, we get

Example 2. Sh-, = o.

Multiply the equation by 2dy/dx and integrate.

•(i)v»-=»-

..-£!,. = ±i.

,\y =z db Vc sin (re + Cj), or y = ±: Vc cos (x + c^).

In example 1, if Ja;^ -}- c be substituted for y in the equation,

there results x"^ = x^. The equation is therefore satisfied.

In example 2, if ±^lc sin (x -{- c^)^ or i Vc cos (x -\- cj be

substituted for y in the equation, there results, in the first case,
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q: Vc sin {x -f Cj) =fc Vc sin {x + cj = 0, and in the second case,

=p Vc cos (^ + C2) ± Vc cos (a; + Cj) = 0. In either case the

? equation is satisfied.

I

Definition. A solution of a differential actuation is a relation

(between the variables of the equation and not involving deriva-

\ tives, such that if the value of the dependent variable be substi-

jtuted in the equation, the equation is satisfied.

Thus, y = ^o(? -\- c of example 1, and y = =b Vc sin (re + c^)

[of example 2, are solutions of the equations.

j
In this book we shall not concern ourselves with the question

\ of whether every differential equation has a solution but shall be

i content with finding solutions in the few special cases discussed

I

here.

I 11. A solution of an ordinary diflferential equation may be

tone of three kinds: general, particular and singular.

A general solution is one which contains arbitrary constants

equal in number to the exponent of the order of the equation.

Thus, in example 1, Art. 10, the number of arbitrary con-

stants is one and the exponent of the order of the equation is 1,

and in example 2 of the same article the number of arbitrary

constants is two, and the exponent of the order of the equation

is 2. In either case the solution is the general solution of the

equation.

A particular solution of a differential equation is a solution

lobtained from the general solution by giving one or more of the

constants particular values.

Thus

of example 1, Art. 10, or y z= mix, y= 2 sin a;, or 2/= —3 cos re,

of example 2 of the same article, are particular solutions of the

equations.

A singular solution of a differential equation is a solution with-

out arbitrary constants which cannot be derived from the general

solution by giving the constants particular values.

2
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Singular solutions will not be considered in this book.

12. A solution of a differential equation is not a general solu-

tion unless the constants are in number equal to the exponent of

the order of the equation, and cannot be reduced to a fewer

number of equivalent constants.

Thus, y = ce^'^°-y c and a arbitrary constants, although it con-

tains two arbitrary constants, is not the general solution of a dif-

ferential equation of the second order, as can readily be shown.

The equation y = ce*"*"* is the same as 3/ = cV. Now c* is equiv-

alent to only one arbitrary constant because an arbitrary con-

stant can have any value and thus all the particular solutions

got by giving c and a all possible values can be obtained. There-

fore y = c°-e^ is equivalent to a solution y z= Ae', A arbitrary, and

cannot therefore be the general solution of a differential equation

of the second order.

13. Let y =f^(x), y =f^(x'), • • •, t/ = f^(x) be solutions of a

differential equation.

Definition. If the c's cannot be chosen, not all zero, such that

^1/1 (^) 4- ^2/2(^) + • • • + ^nfn(^) ^^ identically zero, then the

solutions are said to be linearly independent.

Thus, 2/ = =t a/c sin (ic 4- c^) and y= =±= ^lc cos (x -f c^) of ex-

ample 2, Art. 10, are such that no values Cj and c^, not both

zero, can be chosen such that =b c, Vc sin (rc+Cj) =t c^ a/c cos (o^+Cj)

is identically zero. The solutions are therefore linearly inde-

pendent.

14. Derivation of an ordinary differential equation. Let

^(x, y, c,) = (1)

be an equation containing x and y, and the arbitrary constant c^.

By differentiation of (1) there results

Equation (2) will in general contain c^. If between (1) and
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(2), Cj be eliminated, the result is a differential equation of the

first order of which <^(a;, y, c^) = is the general solution.

Example. Find the differential equation of which
u — ^

is the general solution.

ax *

Eliminate c^ between the equations. Therefore

is the differential equation of which

2/ = 2 + ^1^

is the general solution.

Sometimes the arbitrary constant is so involved that it disap-

pears in the equation which results from the differentiation. In

^uch a case this equation is the desired equation.

Example. Find the differential equation of which y^ = 2e^x

s the general solution.

Divide both sides of the equation by x.

•• X

By differentiation there results

.2«,.

svhich is the desired differential equation.

Let

<l>(x, yre„ c^) = (1)

oe an equation between x and y, and two arbitrary constants Cj

md c,.
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By differentiation of (1) there results

Equation (2) contains dyjdx and will in general contain c^ and

Cj also. Eliminate one of the constants between the two equa-

tions. Suppose the constant Cj to be eliminated. The resulting

equation contains dyjdx and in general Xy 2/ and c^. Call it

By differentiation there results

Equation (3) contains d^yjdx^ and will in general contain c^.

Eliminate c^ between (2) and (3). The result is a differential

equation of which <^(.t, t/, Cj, c^ = is the general solution.

Example. Find the differential equation of which

is the general solution.

Differentiate y z= c^x + ^.

Eliminate c^.

' dx- '" x''

dy 2c,

Xy-'s-
Differentiate. / 'cl'

m '

' ' dx'~ a^' '^

Eliminate c„ between

^^ = -^ and v--x^y^-\
dx^ x^ ^ dx X
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^d^y dy ^

whicli is the desired differential equation.

15. It is seen from the preceding article that one constant can

be removed after each differentiation. From this it would be

expected that, starting with the differential equation, an arbi-

trary constant might be introduced every time the order of the

differential equation was lowered by unity. Then, since lower-

ing the order of a differential equation of the nth order by unity

11 times would result in a solution of the differential equation, it

would be expected that a solution would contain not more than

n arbitrary constants.

It is a theorem that a differential equation cannot contain a

solution having more arbitrary constants than the exponent of

the order of the equation unless the constants are such that they

can be reduced to a fewer number of equivalent constants. This

will be assumed without further discussion.

It is also a theorem that a differential equation cannot have

>more than one general solution. This theorem will be assumed

iwithout discussion.

16. A genera] solution may have various forms but there is

ialways a relation between the constants of one form and those of

lanother. Thus, the general solution of example 2, Art. 10, may

be written y = A^mx -\- B co^x instead of y= ± Vc sin (a;+Cj).

This latter form of solution is i/=± Vc cos c^ sin x± Vc sin c^ cos x,

so that A = ±^^lc cos Cj, and B = ± ^Jc8m Cj.

EXERCISES

1. Determine the order and degree of the following equations.

«•§=«{> + (I!)'}-
'(•)• i=«{'^(l)T
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In each of the seven following exercises determine the differ

ential equation of which the given equation is the general soki

tion, given that c^, c^ and c are arbitrary constants.

2. y = c^ sin mx -\- c^ cos mx. 5. y = ex -\- c — c^.

3. V = c^ cos (mt + Cj). 6. xy = c^e^ -f c^e"*.

4. (a; - cj^ + (t/ - c^)' = m^ 7. 2/' - 2^0; - c' = 0.

8. 2/(l+^y =c, + log
^_^^;^^,^^

.

9. Show that

is a solution of

10. Show that

, is a solution of

11. Show that

is a solution of

12. Show that

2/ = ^1^ + ^ + ^3

42/ = 3^ + c/ + c,a;

dx' dx"^ ^ x

y = tV + «ie~'' + c^e-''

g +4 + %-^«"-

is a solution of
cPi> 2 dv

ANSWERS

2.g.-»y — jn.'i>.
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+ i",^y =dx^i+x'"- xii+x'y
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CHANGE OF VARIABLE

17. Interchange of Variables. It is sometimes desirable to

transform an expression involving derivatives of the function y,

in 2/ = /(x) where x is the independent variable, into an equiva-

lent expression involving derivatives of the function x, given by

the same equation, where y is the independent variable.

The formulas for such a transformation can be readily estab-

lished as follows:

dy limit \
^y'

dx^ ^^ = Ol^x\
- limit

" 1
"

Arc

_ 1

~ dx'

d^y d / dy\

dx^ " dx\dx)
•

Ay

.

dy

d /dy\ dy
" dy\dx) '

dx'

d 1 l\
^

1
"" dy dx dx'

\dyj dy

by

d'x d}x

&y' 1
"" '^ /dxV' dx-

\dy) dy

d^y d /d^y\ d

ds?^dx\d^) ^dy'
i

"(

d'x

df
dxV
dy) J

1

dx

dy

(1)

dz
since -Y- =

dx

dz dy

dy dx'

by substitution from (1).

(2)

16
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- \dy) d^ +^ W) \dy) -dfdy+'^W)
/dxV

~
/dxV

\dy) \dy)

(3)

The method of procedure for higher derivatives is evident.

The transformations to which these formulas apply are called

change of the independent variable or interchange of variables.

Example. Change the independent variable from x to 3/ in

the equation

ydx^ / dx dx^ dx^\dx)

Substitute from (1), (2) and (3).

df

d^x dx / d^xV

/dxV dx (dxV
\dy)} dy \dy}

.
dy^

/dxV /dxV
\dy) \dy)

= 0.

((Pa; d?x \dx

df + df)dy='^-

18. Change of the dependent variable. Suppose that y is a

function of x and at the same time is a function of some other

Variable z. The derivatives of y with respect to x can then be

expressed in terms of derivatives of z with respect to x.

As a function of z, let y = <t>(z). Denote differentiation with

respect to z by primes. Then

dy dydz d^(^z) dz dz

dx~~ dzdx'^ dz dx~' ^ dx'

d'y d/dy\ d4>\z)dz d^z ..,(,Jdz\\.,..d?z
d^ = dx\dx} = -d^Tx +'^ (') 5^ =*^ ^'^ [dx) +'^ (') d^-
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dx'

Similarly for higher derivatives.

The above transformation is called change of the dependent

variahle.

Example. In the equation

change the dependent variable from y to z where y = ^an z,

dy , dz
-f = sec'2J-y-.
dx dx

^, = 2sec^.tan.(^^j+sec^.^.

Substitute in the equation.

.*. 2sec*2tan2f -T-| +sec* 3-7-3 —(2 tang— 1) sec^gf-y-
J

+ 3a; sec* 2 -7- = 0.
dx

' dx

d'z

+
/dzV ^^dz_^
\dx / dx~

19. Change of the independent variable. Suppose that y is

a function of x where re is a function of some other variable z.

The derivatives of y with respect to x can then be expressed in

terms of derivatives of y with respect to 2.

As a function of 2 let a; = 4^(z), Denote differentiation with

respect to z by primes. Then

dy dydz dy 1 dy 1

dx'" ^zdx'^ dzdx~ dz<l>'(^zy

dz

d /dy\ d/dy 1 \1 1 (fy <t>'\z) dy
"" dx\dx)~' dz\dz <t>'(z))dx~' {<l>'(z)ydz''' {<l>'(iz)ydz

dz
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d?y d/d'y\ dT 1 d'y <i>"{z) dy'\ \

dx^~ dx\dx') - dz[{<t>X^)y dz'"' {<l>'(z)y'dz\dx'

dz

_ ___L_ ^'2/ o r(^) d?y

- {^\z)y dz^
""

{<t>\^)Y dz'

<t>\z)r'{z)-Hriz)y dy

{</>'(^)}^ dz.

Similarly for higher derivatives.

The above transformation is called change of the independent

variable.

Example. In the equation

^ ^ dy y
dx'~ l-^x' dx'^1 -a?--^'

change the independent variable from x to 2, where x = cos 2.

dxi dy dz dy
-7^ = -f -7- = — cosec z -f,
ax dz ax dz

da^ dx\dx ) dz\ dz ) dx

dz

2 X ^2/ i
d^y= _ cosec zcotz-f-^ cosec' z -74.

dz dz'

Substitute in the equation.

^ d'y 9 j^
dy * . dy , ^

.
•

. cosec 25 -T^ — cosec zcotz-^+ cosec' s cot 2 —+ cosec 2 y=0.

When changing either the dependent or independent variable

to a third variable, it is better to work out each derivative in the

particular case considered rather than use the derivatives ex-

pressed in the general case as formulas.
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EXERCISES

In each of the four following exercises, change the independent

variable from x to y.

dx'

doi? dx -(s)'-'S(iy-Kiy-Ki)'--
In each of the two following exercises change the dependent

variable from y to z,

where y = tan z,

where 2/ = e*.

In each of the four following exercises, change the independent

variable from x to z.

7. x^^^4-x-f' -^y = Oy where re = e*.

dx^ ' dx *
'^

d^n dii

8. (1 ^ x^) -j--^ — X -— =z Oy where x = sin z,

9. a;3 _|_ 2a;2 _|. ^ ^ 0^ where a; = e*.

^^ d\ 2x dv V AT-
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11. Transform the formula for radius of curvature,

, h(t)T

into polar coordinates, the equations of transformation being

X =1 r cos 0, y = T sin B,

ANSWERS

dd'



CHAPTER III

ORDINARY DIFFERENTIAL EQUATIONS OF THE FIRST ORDER
AND FIRST DEGREE

20. An ordinary differential equation in one dependent vari-

able, of the first order and first degree, may be represented by

the equation

Mdx + JSfdy =

where M and N are functions of x and y and do not contain

derivatives.

The equation Mdx 4- Ndy = cannot be integrated in the

general form. There are certain particular forms of it, however,

which can be integrated. Some of these will now be investigated.

21. LINEAR DIFFERENTIAL EQUATIONS OP THE FIRST ORDER

Definition. An ordinary linear differential equation of the

first order is an equation in the form

where P and Q are functions of x and do not contain y or deriv-

atives.

The general solution of the equation

can be found as follows :

Multiply both sides of the equation by eJ^"^',

22
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If tlie substitution u = yeJ ^^"^ be made, the left hand member of

the equation reduces to dujdx.

du ^ fpdx

.
•

. ye/^^^ = J qef^^^'dx + c.

. •
. 2/ = e-Z^^^jQe/^'^^c^a; + ce-f''^\ (1)

which is the general solution of th©^ equation.

In the original equation, if P is zero, the equation reduces to

the familiar form dyjdx = Q, and the general solution is

y = c -\- jQdx.

If Q is zero, the equation becomes

and the general solution is t/ = ce~J^'^.

When Qf in the equation

is zero, the equation is called the ordinary linear differential

equation of the first order with the right hand member zero.

Example. Find the general solution of the equationy^
/-I

Multiply both sides of the equation by e^ « '.

dy fUx . \^rfU* \ , rle»
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Let u = ye-i »'''.

.
•

. ^ = a:'e/i^. .
•

. M = /a^'e/^-^da; + c.

Now ef'"^" = e'°«' = x

/,

,

«* 1 / «* \ a;' c
a:'cia; + c=^ + c. .•.2, = -(^^ + ej=j+-.

It is usual to solve an ordinary linear differential equation of

the first order by substituting directly in formula (1). Thus,

in the above example, formula (1) becomes

22. EQUATIONS REDUCIBLE TO THE LINEAR FORM

A form easily reducible to the linear form is

|+p. = %»

where P and Q ^^^^ functions of x and do not contain y or deriv-

.

atives.

Divide by t/^

Let 2/-**+' = u,

•••(-" + 1)2' a.= d.-

•••i:^rTi5^ + ^'=^-

.•.g+(l-n)P«=Q(l-n),

which is linear and can therefore be solved by' the methods of

Art. 21.



t,
^ "

EQUATIONS OF FIRST ORDER AND FIRST DEGREE 25

Example. Find the general solution of the equation

^

Divide by y^.

•••^-'1 + -.^-' = ^-
' '

Let y-^ = u.

--'y-fx-%
du 2 ^ ,

aa; x

'.u=. - 2efl^'Jx''e'fl^''dx + ce/^^'= - 2a;' + ca:*.

Therefore — 2a;y + ca^y = 1 is the general solution of the

equation.

23. VARIABLES SEPARABLE

Sometimes the equation Mdx + Ndy = can be brought to

the form Xdx + Ydy = where X is a function of x alone and

F is a function of y alone. In such a case the general solution

is evidently

fXdx+fYdy = c, .

c being an arbitrary constant.

Example. Find the general solution of the equation

a; Vl — y^dx + 2/ Vl — ^^dy = 0.

Divide by VT^^ ^Jl^^^^,

mq. . y^y

j \jrzrj -
-'•

Therefore Vl — a:^ + Vl — ^^ = c is the general solution of the

equation. '

^.
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The process of reducing the equation Mdx + Ndy = to the

form Xdx -f Ydy = is called separation of the variables.

24. EXACT DIFFERENTIAL EQUATIONS OF THE FIRST ORDER
AND FIRST DEGREE

Definition. The ordinary differential equation Mdx + Ndy=
where i^f and iVare functions of a; and y, is said to be exact when

there is a function u(^x, y) such that du = Mdx -f Ndy.
j

Example. The equation 2xydx + x^dy = is said to be

exact because u = x^y is such that du = 2xydx -f x^dy.

When there is a function u(x, y) such that du = Mdx -\- Ndy,

then u = Cy where c is an arbitrary constant, is the general solu-

tion of the equation Mdx -f Ndy = 0.

Condition that the equation Mdx + Ndy = be exact. If

the equation Mdx -f Ndy = be exact, then, by definition, there

is a function u^x, y) such that du = Mdx + Ndy. Now

, du , du J

from the definition of the differential of two independent variables.

.'.M:-t -^
dy

dM d'u , 8N 8'u
•

• dy dy dx dx dxdy

dM dN
' ' dy

'"
dx'

That the equation Mdx 4- Ndy = be exact, it is therefore

necessary that

dM dN
dy

"""
(^•*.

Conversely, the condition is suffi|ient. il:lat is if

dM to .J
dy

""W^
then Mdx + Ndy = is an exact differential equation.
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Proof: Let f Mdx = P, .
•

. ^^= if.

d'P dM dN
' dydx dy dx

'

' ' dx ~ dydx~ dx\ dy /' '
' ~ dy

"

.•.Mdx + Ndy = ^^dx + ^dy + F(y)dy = d{P + Qiy)},

where Q(y) is such that dQ(y) = F{y)dy.

Therefore, if

dM^dN 9M ^'^

the left hand member of the equation Mdx + Ndy = is an

exact differential and therefore the equation is an exact differential

equation.

To find the general solution of the equation Mdx + Ndy =
when the equation is exact.

Let u(xj y) be a function whose differential is Mdx 4- Ndy.

Since ^r- = M.
ox

Since ^r- = iVl
dy

.', u =zfMdx + F(^y).

.f-^.N-^fMd..
dy dyj

.'.F(y)=f(N^^^fMdxyy.

.' . u = I Mdx + j
f JV—^ j Mdxjdy.

The general solution of the equation is i* = c where c is an

arbitrary gonstant.
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Example. Find the general solution of the equation

(x^ + 2xy + y)dx + (y^ + ^' + ^)^2/ = 0.

This is an exact differential equation. Therefore the general

solution can be obtained by the above method.

Since —- = if,
dx

.'.u=J (x^ + 2xy + y^dx + F(y) = 4 + ^'v + ^V + F(y).

Now -^= N.
dy

•*•
a^ {I + ""'^ + "^^ + ^^^^j =f + ^' + ^'

r.a^ + x + ~-^ = f + x' + x.

r.-^=f. .•.i^(2/)=|.

•
•

. « = 4 + ^ 2/ + a=y +
f-

Therefore - + x^y -^ xy + — = c is the required general solution

of the equation.

25. INTEGRATING FACTORS

It sometimes happens that the differential equation

Mdx + Ndy =

is not exact but becomes so when it is multiplied by some quan-

tity. Thus,

of Art. 21, is not exact but becomes so after multiplication by
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Definition. A factor which changes a differential equation

into an exact differential equation is called an integrating factor

of the equation.

Sometimes an integrating factor can be found by inspection.

Example. Find the general solution of the equation

(a;V — y^)dx + 2xydy = 0.

The equation is not exact as it stands but becomes so on multi-

plication by Ijx^.

Multiply by 1/a;'.

. •

.

^-^ dxA-—dy = Q.
x^ X ''

.'. e'dx ^^^dx + -^dy = 0,
X X

r . e^ +- =zc. .' . if =z^ xe" + ex.

Therefore y^ = ^ xe' -\- ex is the general solution of the equa-

tion.

Eules have been devised for finding integrating factors in

many cases where they cannot be found by inspection. For a

discussion of them, the student is referred to Boole's, Murray's,

or Johnson's Differential Equations.

26. EQUATIONS HOMOGENEOUS IN X AND y

Definition. If M and N of the equation Mdx + Ndy =
are both of the same degree in x and y and are homogeneous, the

equation is said to be homogeneous.

To find the general solution of the equation Mdx + Ndy =
when the equation is homogeneous.

dy M
dx^ ^W
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M .

Divide both numerator and denominator of — -^ by a; raised to

the power indicated by the degree ofM or N.

Then every term in M and N is constant or in the form of a

V
coefficient multiplied by some power of -

.

Then

Let y = vx.

Therefore

dy

dx=^©-
dv .. .

dx dv

X f(v) - v'

an equation in which the variables are separated, and can there-
'

fore usually be integrated without difficulty.

Example. Find the general solution of the equation

(a;^ _^ y^^dx ~ xydy = 0.

dy _
x' -^ y^

dx xy

Let y = vx,

dv 1 ^ v^ dv \ -X- v^ 1
.

•
. i; -i_ a; -7- = —— . .

•
. a; -^ = —— — 1; = -.

' dx V dx V V

, dx
,

•
. vdv = —

.

X

.
*

. v^ = 2 log ex.

Therefore y^ = 2x^ log ex is the general solution of the equation.

dy a,x + Ly -f c,

27. EQUATIONS OP THE FORM f = ^ ^ 1^ ^ 1

ax a^x
-f-

o^y -j- c,

Thgjigerieral solution of an equation in the above form can be

foufra as follows :

Let X = x' -\^ x^y and y = y' -{- y^, where x' and t/' are new

variables, and x^ and y^ are constants.
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Change the variables to x' and y'.

(1)

Case I. If x^ and
3/^,

can be determined such that

«i^o + ^1^0 + ^1 = ^» and a^x^ + 6,2/0 + ^a = ^>

then, on determining them such, equation (1) becomes

dy' ^ a^x' + h^y'

dx' a^x' + h^"

which is homogeneous and can be solved by the method of

Art. 26.

Case II. If Xq and y^ cannot be determined such that

^1^0 + KVo + ^1 = 0, and a^x^ + h^^ + c, = 0,

then, as was seen in algebra,

a^ h^ 1

«2
""

^2
~ ^'

By substitution, the original equation becomes

dx ~ m(ajX + 6ji/) + c,*

Let a^x + 6j2/ = '^'

- dy dv
•*•«• +

^'5^ = d^-
Therefore

dv V -u e.
j- = a. + b.—-^—

^,
dx ^ ^mv + c^

an equation in which the variables are separable.

Example 1. Find the general solution of the equation

(2a: + 3y-6)g = 6r.«2y-7.

dy 6x — 2y -^7

dx "=
2a? + 3y - 6'
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Let X = x^-\-x', y = y^ + y' where

6^o-2i/,_7 = 0, and 2x, + Sy,^6 = 0,

i ,
dy' ^x'-2y'

.
.dv^_ 6-2i; _ 6 - 4i; - 3^

(2 + ^v)dv ^ d^
* 6 — 4v — Zv^ ~ a;'

*

. • . — log c^a/ = log (Zv^ + 4i; — 6)^.

.-.^=(3.;^ + 41; -6)^.

Therefore 3y* + 4,xy — Ga:^ — 12t/ + 14a; = c is the general solu-

tion of the equation.

Example 2. Find the general solution of the equation

This comes under case II.

Let6x_22/ = v.
_ 6_2^_*i

dx ^ dx'

^v -\- 4 ax

dv 2v -\- 76

*c?a;
""

V -|- 8
'

i; + 38

. •
. V - 30 log (v + 38) = 2a; + c^.

.• . 4a; - 2y -30 log (6a; - 2i/ + 38) = c,.
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Therefore 2x — y — 15 log (Zx — y -\- 1^) = c \b the general so-

lution of the equation.

EXERCISES

Find the general solution of each of the thirty-six following

equations.

1. -^ + -
2/ = 1 — a:*. 2. ~ + cot a;^/ = cosec^ x,

(XX X (XX

^ dy X 1
5- £ + T-v^y =

6. xil-a^)p^+i^-l)y = ^.

7. ~ -{- cosxy z= ^ sin 2x,

8. <1 -- a:^ I + (20;^ - l)i/ = a^\

9. ^ + sinojt/ = 2/'^sina;. 10. (1 ^ x^) -~ — xy = axy^

.

11. -^ + cosxy = y'^ sin 2a;. 12. 3^^ -^ + y' = a: — 1.

13. -^ — tan xy z= y* sec a;.

14. 2/ V^^ — 1<^^ + ^ V^/'' — 1% = 0.

15. (e^ 4- 1 ) cos a; cZa; -|- e^ sin xdy = 0.

16. V2a2/ — y^ cosec xdx + y tan xdy = 0,

18. (ar" _ Sa'y + 5a:2/' - 72/')<^a;

+ (2/* + 22/' - x» + Sa;'^ - 21a^')rfy = 0.
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19. {x^ -\-^xy + f)dx + i^x' -\-2xy + 4y')dy = 0.

20. sin X cos ydx + cos x sin ydy = 0,

X
21. (^x^ + log y)dx + -dy = 0.

22. x(x - 2y)dy
-f- (a;' + 2i/')cZa; = 0.

23. 5an/c?i/ - (x' + 2/')(Za; = 0.

24. (i?;' + 3a;i/ _ 1/'^)% _ 32/^(^0; = 0.

25. (rc^ + 2xy)dy - (Sx' ^ 2xy + f)dx = 0.

26. bxydy — (4a;^ + y^)dx = 0.

27. (a;' - 2xy')dy + (re' - Sxy + 22/')c;a; = 0.

28. Sx'dy + (2a;' _ Sy')dx = 0.

29. (3a; + 2y -^ 7)^ = 2x - 3y + 6.

30. (6a;-52/ + 4)^ = 2a;-2/ + l.

31. (5a;-2i/ + 7)^ = a;-32/ + 2.

32. (a; -32/ + 4)^= 5a; -72/.

33. (a;-32/ + 4)g=2a;-6i/ + 7.

34. (5a; -- 2y + 7)^ ==10x - 4y + 6.

35. (2a; -22/ + 5) ^1 = 0; -2/ + 3.

36. (6a;-42/ + l)^ = 3a;-22/ + l.

The following formulas, derived in almost any work in cal-

culus, are inserted here for convenience of reference :
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The subtangent and subnormal at a point {x, y) on a curve

whose equation is expressed in rectangular coordinates are

dx dii

y -T- and y ~- respectively. The polar subtangent and polar sub-

normal at a point (r, B') on a curve are r^ -^ and -^ respectively.

The angle between the radius vector to a point (r, ^) and the

tangent line to the curve at the point is

tan-^:^.
dr

dO

The equation of the tangent line to the curve y =f(x) at the

point (ojj, i/j) on the curve is

dy

y-y^=Tx (x - X,),

The area enclosed between the curve y =f(x)y the a;-axis, and

the ordinates whose abscissas are x^ and x^ respectively is

ydx

provided the curve does not cut the a;-axis between x^ and x^

The length of the arc of the curve y = /(a:) between the points

(^o» 2/0) ^^^ (^p Vi) ^^ *^^ curve is

£Mt)'--
37. Determine the curve whose subtangent at a point on it is

n-times the abscissa of the point. Find the particular curve that

goes through the point (3, 4). Plot the curve (a), for n = \,

(6), forn = 2.

38. Determine the curve whose subtangent at a point on it

is 71-times the subnormal at the point. Find the particular curve

that goes through the point ( V^, 2). Plot the curve when
n = 4.
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39. Determine the curve whose subtangent is constant and

equal to a. Plot the curve, (a), when a = 1, (6), when a = 2.

40. Determine the curve whose subnormal is constant and

equal to a. Find the particular curve that goes through the

point (1, 2).

41. Determine the curve which is such that the length of the

perpendicular from the foot of the ordinate of any point on the

curve to the tangent line at that point is constant and equal to a.

Determine the particular curve when c = a. At what angle

does this curve cut the ^/-axis ?

42. Determine the curve which is such that the area between

the curve, the a;-axis, and two ordinates, is equal to the arc

between the ordinates.

43. Determine the curve which is such that the perpendicular

from the origin upon any tangent line is equal to the abscissa of

the point of contact.

44. Determine the curve in which the angle between the radius

vector and the tangent line is n-times the vectorial angle. Plot

the curve when n = ^,

45. Determine the curve in which the polar subnormal is pro-

portional to the sine of the vectorial angle.

46. Determine the curve in which the polar subtangent is pro-

portional to the length of the radius vector.

The equation for a circuit containing induction and resistance is

-di ^,

•- %. 4^-- dt
^

where e is the electromotive force [E.M.F.] impressed upon the

circuit, R the resistance offered by the circuit, L the coefficient

of induction, i the current, and t the time during which the cir-

cuit is in operation. In each of the four following exercises,

determine the current in the circuit after a time t supposing that

the resistance and induction are constant.

47. The E.M.F. is zero. Solve subject to the condition that

i z= J when t = 0.

48. The E.M.F. is constant and equal to E.

c. - u
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49. The E.M.F. is a simple sine function of the time,

= E sin (d where E is the maximum value of the impressed

E.M.F., and w is the angular velocity, equivalent to 2irn where

n denotes the number of complete periods or alternations per

second.

50. The E.M.F. is the sum of two components each follow-

ing the sine law, that is, e = E^ sin <ot + E^ sin {biot -j- 0).

The equation for a circuit containing resistance and capacity is

di i 1 de

di^EG^Rdi

where e is the E.M.F., R the resistance, C the capacity, i the

current, and t the time during which the circuit is in operation.

In each of the two following exercises determine the current

in the circuit after a time t, supposing that the resistance and

capacity are constant.

51. The E.M.F. is constant and equal to E,

52. The E.M.F. is a simple sine function of the time,

= E sin (d.

The equation for a circuit containing resistance and capacity is

^dt + G-^
where e is the E.M.F., R the resistance, G the capacity, q the

quantity of charge in the conductor, and t the time during which

the circuit is in operation. In each of the three following exer-

cises determine the charge in the circuit after a time t, suppos-

ing that the resistance and capacity are constant.

: 53. The E.M.F. is zero. Solve subject to the condition that

q = Q when t = 0,

54. The E.M.F. is constant and equal to E.

55. The E.M.F. is a simple sine function of the time,

= J^sin wt

ANSWERS

1. Axy =z 2x^ — ic* + c. 2, y sin x = log tan - -|- c.
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3. y = X — 1 -]- ce~', 4. y = x -^ 1— taii~^a;+ce*'"'''"'

X
6. y=—^hg(l—x^)+cx, 7. y = sin x — 1 + ce^^"".

S, y = ax -\- cx^l — x^, 9. - = 1 + ce"^'"'.

y

10. - = _a + cvni^.

2

12. 2/' = ^ - 2 + ce-*.

13. 2/~' = — 3 sin a; cos'^ .i; — sin*^ x -\- c cos^ a;,

14. V^^ — 1 — sec~^a; + V^/^ — 1 -- sec~^y = c.

15. (e^ + 1) sin a; = c.

16. cosec X + ^2ay — 2/^ — avers" - = c.

17. 2i/' + 62/ - 9 log (2^/ + 3) = 4x' + c.

18. j-x^y + ^xY^7xf + f + ^f = c.

a;*

19. ^4- 2a;'y + ^V^ + 2/* = ^- 20. cos xcosy = c.

3

a;* ?y

21. -o + ^ log 2/ = c. 22. x^e' = c(:c + yy.

23. (4t/' - a:')'^ = ex'. 24. y'' = c (^-^|)'.

25. c(,^ + Sxy - 3.^) = .
f^y-^(S^M)x^^

^' ^ ^ l22/+(3 + V21>J

26. (a;^ - fy = ca;^ 27. y = x log -.
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28. c. = p-(3-fV33>ja
[62/_(3-a/33>J

29. (2/ -W + 3(:. - ^^){y _ ft) - (^ _ ^)« = c.

30. {by - 2a; - 3)* = c(4i/ - 4a; - 3).

(2(2/ - ,%) - (4 - Vn)(a; + \i)r'\2f - V/i/

3^
~8a:y + a:^ + f|a:j-H|) _^

{2(2/ - A) - (4 + Vl4)(a; + H)}^^'"

32. (32/ -- 5a; + 10)' = c(2/ _ a; + 1).

S3. 152/ - 30a; + c = 3 log (bx _ 15y + 17).

34. 4a; - 22/ + c = 16 log (5a; -2y + 23).

35. 22/ — a; + c = log (a; — 2/ + 2).

36. 2y -x + c = l log (12a; - 82/ + 1).

37. y'' = cx\y'^ = fx. 38. y=-=.x+c\y=.—.x+\,

39. 2/'' = c^.

40. 2/^ = 2aa; + c
;

2/* = 2aa; + 4 — 2a.

c / — a' — —

\

a — —

—

41. 2/ = 2 V +?^ " ); 2/ = 2(^* + ^ ")5: zero.

42. 2/ = ^ (e'"* + c'e^*). 43. ^ + f =^ ex.

44. r** = c sin nO. 45. r = c — ^ cos 0,

46. r = ce^/*. 47. i — le ^ .

48. t = -^ + ce -^
.

49. i = —
L

-7-^j r- 1 -_- Sin <i)t — 0) COS wH + ee * .
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F / N \
50. i = —7-T)2~ r ( > sin w< — w cos wt

)

+ —j-^ r Y sin (6a)<+5) — 6(i>cos (hid+6)

51. { == ce ^<'*.

—>,« Ci^OJ
52. ^ = ce -^^ + :: "

/72~2 (cos a)< + -RCcosin.w^).
1 -|- -Zt G 0)

53. 5 = Qe ^c-
. 54. 5 = (7^+ ce ^^

OF ^

55. 2 = r-

—

p2fi2-i (sin mt ^ RCay cos wi) + ce~^<=' .



CHAPTEK IV

ORDINARY LINEAR DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

28. Definition. An ordinary linear differential equation is

a differential equation in one dependent variable which is linear

in the dependent variable and its derivatives.

We saw in Art. 21 that the type of an ordinary linear differ-

ential equation of the first order is

where P and Q are functions of x, and do not contain y or de-

rivatives.

In general, the type of an ordinary linear differential equa-

tion is

^ d^ dr^y p - X
d^^ + ^' d^' + ' dx^^' + • • • + ^ny - ^

where P^, P^, • • • , P^, and X, are functions of x, and do not

contain y or derivatives.

In this chapter the only cases considered are those where

Pj, Pj, • • • , P„ are constants and real. Two forms of this equa-

tion present themselves, namely, when the right hand member is

zero, and when the right hand member is not zero.

RIGHT HAND MEMBER ZERO

29. We shall first prove a theorem used in the investigation

of equations in this form. It is :

Theorem. If y = y^, y z= y^, " -
, y = y^, are solutions of the

equation

4 41
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then

y = Ci2/i + c,!/a -f • • • + cj/n» Cj, c,, . . . c^,

arbitrary constants, is also a solution of the equation.

Proof. Substitute y = Cjt/, + c^y,
-f-

. . . -f cj/^ in the equa-

tion.

+

Now each expression in brackets is zero, since

y=-yvy = yv"'yy = yn>

are solutions of the equation. Therefore

y = Ci2/2 -4- ^22/2 + • • • + <^nyn

is a solution of the equation. ^

Cor. lfy = Cji/j + c^y^ + • • • + c^2/^ is a solution of the equa-

tion, then y = c^y^, y = c^y^, • • • , i/ = e^y^, are solutions of the

equation.

If y = y^, y = y^, - » -, y = y^ are linearly independent solu-

tions of the equation, then y = c^y^ -|. c^y^ + • • • + c^y^ is the

general solution of the equation (see Art. 13).

30. To find a solution of the equation

in the form y = e*"*.

Let y = e""' and substitute in the equation. If 2/ = e"" is a

solution of the equation, then
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Since e*"* cannot be zero for any value of m, then must

Therefore, if 2/ = e*"* is a solution of the equation, it is necessary

that

?/i" + F^mT-' + F^'inT'^ + • • • + P^ = 0.

Conversely, if m has a value 7?ij such that

m," + P^m,"-^ + F,7n;^-' + • • • + P, = 0,

then 1/ = e'^'i^ is a solution of the equation. This is obvious be-

cause on substitution ofy = 6'''i^, the equation reduces to ^

e"^i%m,^ + F,m,^-' + F^m^"-' + • • • + PJ = 0.

Therefore the necessary and sufficient condition that equation (1)

has a solution in the form y = e"^ is that m be such that

m" + F^m'^'^ + P/zi"-' + . .
. + P^ = 0.

Definition. The equation

m~ + F^m''-^ + P.m**-' + • • • + P^=:

is called the auxiliary equation of

31. To find the general solution of the equation

When the auxiliary equation has distinct roots. Denote the

roots by m^, vi^, • • •, m,^. Then 7i linearly independent solu-

tions of the equation are y = e"'!^, y = e*^*, • • •, ?/ = e^^^*, and

the general solution is y = CjC'^i* + CjC'^* -f • • • + c^e"^^ (see

Art 29).
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Example 1. Find the general solution of the equation

Let y = 6^.

.
•

. e"«(m' _ 3m - 4) = 0. .
•

. (im - 4)(m + 1) = 0.

Therefore y = c^e*' + c^e~^ is the general solution of the equation.

Example 2. Find the general solution of the equation

Let y = e"**.

.
•

. e""(?n,^
-f.
m + 4) = 0.

Therefore y = c^e a "* + c^^e a * is the general solution of

the equation.

This solution may be written as

y = c,e~^* cos—^ x + c^e"'* sin —^- a; (see Art. 5).

When the auxiliary equation has multiple roots. Suppose

that the auxiliary equation m'' J^F^""'^ -\-P^i''~'^ -f • • . +P„ =
has the roots m^, m^, m^, • • • , m^

.

At first suppose that two roots are equal. Suppose for defi-

niteness that m^ = m,. Then a solution of the differential equa-

tion is

i/ = (c, + cje"^!^ + C3e"'3x _|_ c^e^^x^

Since c,
-f-

c^ is equivalent to only one constant, this solution con-

tains only n — \ arbitrary constants and is not therefore the gen-

eral solution of the equation.

To find the general solution in this case :
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Suppose that the differential equation is such that its auxiliary-

equation has the roots m^, m^-\- h, m^, • • • , m^. The general

solution of this equation is

Expand 6** by Maclaurin's Theorem to n terms and the re-

mainder.

.-.6*^ = 1 + A:r +^^+ ... + ";
,
+^^--^6^,^ ^ |2 ^ ^ |?i~ 1 ^ [ii

*

Substitute in the above equation.

Since c^ is arbitrary, A may be chosen such that c^h is any con-

stant B for all values of h. Since c, is arbitrary, c^
-f-

c^ may be

chosen such that c^^ c^ = A, Then

2/ = ^^- + ^a:.-^^[l + y + • • • + ^S" +^^^
I + C36'-3^ + . .

. c,e^»^, (1)

where J^ and ^ are arbitrary constants.

Let h approach zero. As h approaches zero, the assumed

auxiliary and differential equations approach identity with the

given ones, and (1) approaches the general solution of the given

differential equation.

Now
limi

h

Therefore the general solution of the differential equation is

y = (^ + Bx)e^^'' + 636*^3* + . . . -j. c^e'^"^
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or, as we shall write it,

In a similar manner it can be shown that if three roots of the

auxiliary equation are equal, the general solution of the differen-

tial equation is

and, in general, if r roots are equal, the general solution of the

equation is

If a pair of imaginary roots occur twice, the part of the general

solution derived from these roots is

= (c^+c^x)e^(cos Px-\.j sin ^x) 4- {c^J^c^x)e'^{cos fix-^j sin ^x)

= e^[(^i + jBjO;) cos jSo; + (^A^ 4- ^^a?) sin fix'].

Example 1. Find the general solution of the equation

d^^ + '^dx + y-^'

The auxiliary equation is m^ 4- 2m 4- 1 = 0, or (m 4- 1)'' = 0.

The general solution is therefore 2/ = e~'(Cj 4- c^x).

Example 2. Find the general solution of the equation

^
The auxiliary equation is m* — 4??i* 4- 8m* — 8m 4- 4 z= 0, or

{(m_l_i)(m_l+i)r = 0.

The general solution is therefore

y = e*{(^i 4- B^x) cos a; 4- (A^ 4- J5j,a:) sin a;}.

32. As a physical application of the above principles, con-

sider the following discussion (see Emptage, Electricity and

Magnetism, page 180) :

M
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In a galvanometer in which resistance is offered to the motion

of the needle, the equation of motion of the needl^ for small

oscillations may be written as -^4. - /
*'"^'* ^"

f+24v<o'(^-a)=o;"' (1)

where is the angle through which the needle turns in the time

t, k is Si constant depending on the resistance offered to the mo-

tion of the needle, w^ is a constant depending on the moments of

the restoring forces on the needle, and a in the angle which the

needle at rest makes with the line from which angles are meas-

ured. Let — a = $\ and substitute in (1).

This is a linear differential equation of the second order with

constant coefficients and right hand member zero. The auxiliary

equation is m^ -{- 2km -\- (o^ = 0. The roots of the auxiliary

equation are m = — Z; =h V^^ — <»>^.

Case I. If ^ > 0).

In this case, ^ - a = c,e(-*+^*^=^)' + c/-*-^*'^=^)' is the

general solution of (1).

Case II. If k = 0).

In this case 6 — a = {c^ + ^2^)6"** is the general solution of

(1).

Case III. If k<(D.

In this case — a = e~^^[G^ cos ^l<a^ — k^t -[- e^ sin V^^ — k^ t]

is the general solution of (1).

In cases I and II the motion is not oscillatory. The needle

can go through the position of equilibrium for one value of t,

after which it reaches a position of maximum deflection and then

continually approaches but never reaches the position of equi-

librium. In case III there are oscillations in equal times, the

periodic time being

y^ 27r_
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EXERCISES

Find the general solution of each of the following equations.

d'y o^'y , 2^_0 4 2-^4--'^ 4^ Sv-0

^•^:?-2' = "- ^-
d«* + 25:«» + 2' = ^•

ANSWERS

1. 2/ = e,e-'' + e,e-'.

'^

2. y = e,e-"+*'^'' + c,e-'»-''*)'.

3. 2/ = c,e' + c,e" + c,. ^ 4. y = e-'(c^ + c^) + c,eK ^

5. 2/=e"(c, + c,a; + c,a;').

6. y = Cje" + e~*'(Cj cos a; + c, sin «).

7. y = e^e~^ -\- e*(Cj cos a; + c, sin a;).

i

8. y = Cjg* ^ CgC * + Cg cos a;
-f-

c^ sin ^ «/

^^ = (Cj + c^x) cos a; + (Cg + c^^) sin a;.

RIGHT-HAND MEMBER NOT ZERO

33. Symbolic form of equation. The equation, when the right

hand member is not zero, is

where P,, P.^y • • • P^, are constants, and Xis a function of x but

not of y.

Let

dx - ^'
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and the equation may be written,

Suppose that y is treated as an algebraic factor of the left hand

member of the equation. On this supposition, the equation

becomes

(Z)« + P,D-' + F,D^-'+^ .
. + FJy = X

Suppose also that D^ + P^D""-^ + PJ)""-^ + . .
. + P^, factored

as an algebraic expression in J), is

(i)_m,)(2)_m,)...(i)-mj,

and that the equation is written

(i)-m,)(D_m,)-..(Z)_m„)y = X. (2)

Equation (2) is not equivalent to equation (1) except in a

symbolic sense. Let us see what conventions must be made in

order that equation (2) be equivalent to equation (1).

Let us make the convention that (jD — m)u where it is a func-

tion of X is equal to

du—- _ mu,
ax

Also, let us agree that we shall begin at the right of the left

hand member of (2) and work towards the left, evaluating

according to the preceding convention at each step. Then

(D^mJy = -£ -m^y,

iD^m^_,){D^m^)y^{D^m^_,)(^^£^m^y^
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and finally,

(D-7^J(D-m,)...(Z)-mJy

Now -(mj+ m,+ . .
. + m^)=P„ • •

., (_1)X^, • • • ^n=A,
since the factors of i)^ + F^D^-'^ + P,D~-' h + P„, treated

as an algebraic expression in D are D— m^, D--m^, • • •, D-^m^,
This expression is therefore the same as the left hand member of

equation (1). Therefore, with these conventions, equations (2)

is equivalent to equation (1).

Example. With the above conventions, the equation

g + P.I + P^-X

may be written in the equivalent form (D—mj)(D—m^)y = X,

where D — m^ and D — m^ are the factors of the expression

D^ + PyD + P, treated as an algebraic expression in D, For,

(^m,)y = J_ w^i^.

d^y . \ dy

Now — (wij + m^) = Pj, and m^m^ = P,. Therefore the second

form of the equation is equivalent to the first.

Definitions. When equations in the form (1) are expressed

in the form (2), they are said to be expressed symbolically, or

to be expressed by means of symbolic factors.

When a symbolic factor D — m and a function u are applied

du
to each other so as to give (D — m)i6or--^_ mu, the function

u is said to be operated upon by D —- m, or the factor D — m to

be multiplied symbolically by u.
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The factor D — m is called the symbolic operator, or more

briefly, the operator.

34. Theorem. The order in which the symbolic factors in the

equation of the last article are taken is immaterial.

Consider in illustration the equation of the second order.

Let the equation be taken in the form

(D^m,)(D_mOT/ = X
Then

(D - m^)y = £- m^y,

and

(D - m;)(^D - mj2/ = (i) - m,) ^£ - m^y^

d^y . .dy

Therefore (D — m^){D — m^^y = X is equivalent to

g + P.g^P^.X

Also, (Z> — mj)(Z) — mjt/ = X is equivalent to

S+^'l + ^^ = ^- (See Art. 33.)

Therefore, in the case of the equation of the second order, the

order in which the factors are taken is immaterial.

The proof in the general case is left as an exercise to the

student.

35. First method of solution of the equation

(i)_mO(i)_m,)2/ = X.

Let (^D — m^y = u. The equation then becomes

(D _ m^u = X or -, — m^u = X.
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The general solution of the equation

du

is (see Art. 21)

.
•

. (D — m^)y = e^^i* f e-^i*X<ia; + c^e*"!*

This is the general solution of the given equation.

Example. Find the general solution of the equation

d^y ^dy .

j4 — 3 -/ + 2?/ = cos a;.

Write the equation as (D — l)(i) — 2)^/ = cos x.

Let (D — 2)i/ = u. The equation then becomes

(D — l)ii = cos a; or -y- — -m = cos x.

,' ,u = e' J e~" cos X dx ^ c^e'

= J(sin X —. cos a;) + c^e'.

.
•

. (D — 2)i/ = J(sin X — cos ic) -j- c^e*.

.
•

. y = Je'^* re"^''(sin a; — cos x)dx -\- c^e^""f e~'dx + c^e^'

= y^^ cos X — y\ sin a;
-f-

c^e* + c^e^*.

This is the general solution of the given equation.

36. To solve the equation

(D - m.^CD - m,) . . . (D ^ mjy = X,

we may proceed as follows :

First, let (Z) — m^) • • • (b — i^n)y = '^- The equation then

becomes (D — mjw = X.
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From this equation, u can be determined as in the case of the

equation of the second order. Let

Then , 7^ ^
(i> ^ m^)v = u.

From this equation v can be determined in the same manner as

u was determined before. After n — \ such steps there results

(D — m^)y — z where 2 is a known function of x.

The general solution of the equation (D — m^)y = z is the

general solution of the original equation.

37. The following theorems concerning the symbolic operator

will now be established :

Theorem I. A constant factor in a function may be written

in front of the operator.

Proof: Let au be a function containing a constant a as a fac-

tor. Let D — m be the operator. Then

(D — m)aii = -7— — mau, by definition

/du \

= a(D — m)u.

Theorem II. The result when the operator is applied to the

sum of a number of functions is equal to the sum of the results

found when the operator is applied to each of the functions

separately.

Proof: Let u-\-v~\-w-{-'''+zhe the sum of a number of

functions. Let D — 7nhe the operator. Then

(2) — m) (i* -f V -f w;
-f-

• • • +2)

d(u M V -{- w -\- ' ' ' -^ z) . ..
=

dx
-m(u + v + w+'"+z)

du dv dw dz

UiUj U/U/ {JUJj U/Jy

?= (^D'-m)u+ {D—m)v + (D — m)w +... + (£) — in)z.
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38. The equation {D — m^) (D ^ m,) ••.(/) _ m^)y = X
may be written in the form

In the first form the symbolic operators

D ^m^, D — m^, • • • , D ^ m^

applied in succession give X, Moreover, by the theorem of

Art. 34, the order in which the operators are applied is imma-
terial. If the second form, therefore, is to be the same as the

first, the symbolic expression ^^c r-y^r r -r^ ^ X
must be such that, when operated upon by

D — m^ D — m^, • • • , Z) — m^,

in succession in any order, the result is X
Definition. The symbol -r^^ ;—yr . ' ,^ ;- is

called the inverse symbolic operator, or, more briefly, the in-

verse operator.

39. Let
1

y =

be a linear differential equation where the symbolic factors viewed

as algebraic factors are distinct. Break up ^-=r --^—
(JD — mJ(D ^m^)

into partial fractions as if it were an algebraic expression in D.

Then

Let

X = u and — ^=r X = v.

Theorem. The result of operating on u -{• v with

(D_mJ(i>_mJ isX



LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS 55

Proof: Operate on u -\- v with (Z) — m^)(D — m,).

(D — m^)(D — m.J(u -{-v) = (D — m^)(D — m^)u -f

(D _ m^)(D — m,)v, by theorem II, Art. 37.

i
Now

i 1 1

CD — m,)u = X, and CD — mjv = — X^ 1^ m^ — m^ ^ m, — m^

by definition and theorem I, Art. 87.

.*. (D — m^)(D — m.^)(u -\- v)

= (D - m,)^—X+ (D - mj
f

^ x)

^ [(D - mJX- (D - mJX] = X
m, — m.

40. When the symbolic factors D — m^ and Z> — m^, viewed

as algebraic factors, are distinct, the result of operating on

2, _ .^ j;^ _ . _ ^ X

with (D — mJ(D — m^) is X, by the preceding article, and the

result of operating on
1 ^

with the same factors is X, by definition. Therefore when the

symbolic factors D — m^ and D — m^, viewed as algebraic fac-

tors, are distinct, the inverse operator of

1 _
iD-mJ(D^mJ

may be broken up into partial fractions the same as if it were an

algebraic expression in D, and the result of operating with

(D _ m^(^D — m^) on the expression formed by multiplying

each of the fractions symbolically by X, and taking the algebraic

sum of the results, is X
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In general, when the symbolic factors

viewed as algebraic factors are distinct, the inverse operator of

1 ^
2'-(i)_m,)(i)^m,)...(2>_mJ

^

can be broken up into partial fractions the same as if it were an

algebraic expression in D, and the result of operating with

(D — m^) (D — m^) • • • (D — m^ ), on the expression formed by

multiplying each fraction symbolically by X and taking the

algebraic sum of the results is X.

The proof of this theorem is left as an exercise to the student.

41. Second method of solution of the equation

1 ^
2/
=
(D-mJ(D-m,)

Break up -r^ ^r^r ^ into partial fractions the same as

if it were an algebraic expression in D.

...
1 ^-J_/_l__^_^

Let
1 1 T and V

1 1
V/ — m^D — m^ — '^

m^ — m^D — mj,

Operate on u with D -^niy

du
' ' dx^ m,u = —

Operate on v with D — m^

dv

'''dx"
m^v = — 1 X

X

i 1 r
^1 — ^2 */
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. • . w = e'^i^ Ce-^^''Xdx — e"^^"" Ce-'^'^'^Xdx
^ m^^m^ J m^^m^ J

which is the general solution of the equation.

Example. Find the general solution of the equation

Write the expression in the form

Break up -rj^ TVTn oS ^^*^ partial fractions the same as if

it were an algebraic expression in D.

1 1

Let

cosx = u and ^^^—^ cos x z= v.

j)_l------ — 2) -2

Operate on u with D — 1,

du
. • . ^r- — ii = — cos a?.

dx

. •
. 1^ = ^ cos :c — ^ sin ic + c^e*.

Operate on v with Z> — 2.

^^ o
.

• . -7- — 21; =-4- cos X,
dx

^^

. • . v = — f cos a; + ^ sin a; + c^e^',

which is the general solution of the equation.

This method does not apply when the symbolic factors viewed

as algebraic factors are not distinct.

5
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42. It will be noticed in the example of the preceding article

that the result is the same as that found by applying the method

of Art. 35 to the same equation. This will be the case in any

linear differential equation with constant coefficients to which

both methods apply.

The first method of solution will apply in all cases where the

left hand member of the equation can be factored into linear fac-

tors in D. The second method will also apply if the linear fac-

tors in D are all distinct. If two or more factors are equal, and

the inverse operator be broken up into partial fractions, the term

or terms corresponding to these factors may be evaluated by the

first method.

Usually the second method is easier of application than the

first.

43. An examination of either method by which the general

solution of a linear differential equation of the nth order with

constant coefficients and second member not zero is derived shows

immediately that the general solution consists of the sum of two

parts, one containing terms not involving arbitrary constants,

the other containing terms involving such constants. Moreover

the arbitrary constants are involved so that when any one is zero,

the term in which it appears vanishes.

Definition. The part of the general solution of a linear dif-

ferential equation with constant coefficients and second member

not zero which contains the arbitrary constants is called the com-

plementary function of the general solution of the equation.

EXERCISES

Find the general solution of each of the fourteen following

equations.

Q <^'y l^y^2y-x 4 ^ A-^^y v-e^- dx^-^dx^^y-'^' ^- dx'^'^dx^y-^'
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6.
^y .d'y dy

dx" -6xi + ll/-6y = a..

dx"

dx?

,dy
' dx

dx

„ d^y ^dy

\^ d'y

da?
9J -,—J + y = cos «.

y

8- xr2-^3:; + y =
da;' da;

10. ?-uS-4!-4K-
(^a;»

"^
c?^^ cZa;

1 n ^'!/ ._ d^y d^y dy
12. j4~- j^+ /— 2/=cosa;.

dx^ dx^ ^ dx ^

13.
d'y Q^'y

,
Q^2/

(Za;«
-^^ + ^:r^-y = ^'

dx" dx

14 ^ ^^^*

In each of the six following exercises, find the equation of the

elastic curve of the beam from the given differential equation,

determining the constants of integration. Find also the deflec-

tion of the beam. In these equations, E is the modulus of elas-

ticity, I is the moment of inertia of a cross section of the beam

about a gravity axis in the section perpendicular to the applied

forces, and I is the length of the beam.

15. The beam rests on supports at its ends. It is supposed

weightless with a weight P at its middle point.

^^ da?- 2\2-'')-

c '

r

< ^
:.c ..-.„^. < 2 ^

it^^
. o

>

X
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16. The beam rests on supports at its ends. It is supposed to

be of uniform cross section and of weight w per unit of length.

Yl

-i-l(^4
• 17. The beam rests on supports at its ends. It is supposed to

be of uniform cross section and of weight w per unit of length,

and to have a weight P at its middle point.

18. The beam is a cantilever fixed horizontally in the wall.

It is supposed weightless with a weight F at its extremity.

Y

^^S=-^(^-^)'

19. The beam is a cantilever fixed horizontally in the wall.

It is supposed to be of uniform cross section and of weight w per

unit of length, and to have a weight P at its extremity.

Y

§r-
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20. The beam is vertical. It has rounded

ends. It is supposed weightless. It is de-

flected a small amount a and a load P is

applied at its upper end just sufficient to hold

it in position.

^lg = P(a-,).

The equation for a circuit containing re-

sistance, induction and capacity in terms ot

the current i is

(Pi B di i

df'^Ldi'^LG'' L dt

in terms of the quantity of charge q is

9 1d^q R dq

Ldt'^ LG = -pe

where e denotes the E.M.F., R the resistance, L the induction,

C the capacity, and t the time during which the circuit is in

operation. In each of the three following exercises, determine

the current and quantity of charge in the circuit after a time t,

supposing that the resistance, induction and capacity are constant.

-- 21. The E.M.F. is equal tof(t). Solve when R^G^ AL.

22. The E.M.F. is constant and equal to E,

23. The E.M.F. is a simple sine function of the time,

= E sin wt Solve when R^G ji£ 4L,

ANSWERS

1. y = -^^e'' + c^e-' + c^e-''.

2, y = ^x' - p' + Ifa; + c, + c^e" + c.g"''.

(3—vTSjx (8+V^18)x
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5. y = ^x' _ ^a; + c,
-f-

c^e'" + c,e-''.

6. 2/ = - ^^^ + c.e' + e/' + c,e\

7. y^e'C^x' + c. + c^x). 8. y = x + 2 + e'Cc, -{- c^x).

^ xsmx
d. y = —^— + Cj cos X -\- c^ sm x.

10. 1/ = - Jo; + i + c,e-' + c,e-^^ + c,e\

a; cos a;

11. 2/ = — —^— + Cj cos ^ + Cj sm a;.

12. 2/ = J(cos a; — re sin a? — a; cos a;) + Cj sin a: + c^ cos a; + CgC*.

13. y = eXK + ^^ + c,a; + C3).

14. 2/ = — a;* — 24 -f c^e* + c^e""' + Cg sin a; + c^ cos x,

15. 4jEr2/ = -^-a;'' — -q-^^ Deflection = to r^

'

16. 8jE;Ji/ ^-^x' ^^x\ Deflection =
334;^-

17. 2i;iy = -^^ - 5.* + (W +^'^ _ W'^_

Deflection = ^-gj + 33^^.

P 1 P/'
18. 2EIy = - Pfo' + ^a'. Deflection = 5^^...

o o Mil

19. 2i:jy = f^ - 5-* - P^^' + 1':^^ - 4^.

Deflection = of>^^^ + 8^"^^**

20. x^J^vem-''^.
\ F a

Deflection = a vers \/ ev9 ' ^^^ .
*

.
P =
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where
2LC , rp 22>(7

T, = — and 21

:

RC-^B'G'-4LG RC+^R'C'-4LG

The value for 5 differs from that for i only in having /(<) instead

of /'(<)•

JKC- >Ji22 C2-42i (?
^

EC+Jli2C2-4ZC

22. 1 = c^e 2^^ + c^e 2zc
^

wheni^^(7>4Z.

I = c,e cos^
2XC + ^'^ ^^^ 2LG

wlieni^^C<4Z.

whenR'C=4L,

2L

whenjR^(7>4X.

/.I7 -^' ^4LC-R'C\
q = CE+ c,e

2Zi
cos

^^C

+ c,e '^ sin
2XC '

whenE^C<4Z.

whenR'C=4L.

23. 1= -^^j ^ sm (ot-\ ^-p. ^2 cos o}t

RW+ (~ -IxoM RW+ (^ -ZcoM
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where T^ and T^ have the values given in exercise 21.

^=
71

r-2COso)<+
^-—

I

^sin<o«



CHAPTER V

HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS. EXACT
LINEAR DIFFERENTIAL EQUATIONS

HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

44. Definition. A homogeneous linear differential equation is

an equation of the form

where p^, p^^ • • •
, Pn-v Pn ^^® constants, and X is a function of

X but not of y.

This equation can be transformed into an ordinary linear dif-

ferential equation with constant coefficients by changing the inde-

pendent variable from x to z, the equation of transformation be-

ing a; = e*. The equation^-that results from the transformation

may be solved by the methods of the last chapter. If a solu-

tion is y =f(z)y the corresponding solution of the original equa-

tion is 2/ = /(log x)

.

45. The transformation and general solution of a homogene-

ous linear differential equation in the general case will not be

considered here. We shall merely consider them in a particular

example.

Example. Find the general solution of the equation

a? -^^ 4- 4x^ -^. — 2x^ ^ 4y = log x.

Let X = e*. .• . Z z= log X,

^^ dy dz 1 dy

dx ' dz dx ~ X dz'

d^y

dz'-

d n
' dx\x

dy'

dz,)--:
dy 1 d^y dz 1 / d'y

65

x^ dz X dz^ dx 9? \ dz^

dy\
~ dz)'
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d^J^dn/d^ dy\\_l/d^ od^_^^dy\
~dz''^dx\x'\dz''^dzjj - x'\dz' " dz'

'^ dzj'

dx dz'

^2
d\y ^d^_dy
dx^ dz^ dz'

^d^^d^_^d^ 2^
dx^ dz^ dz^

~^
dz'

Substitute in the equation.

'

' dz'-^ dz' -^dz-^^y-""'

The general solution of this equation can be found by the

methods of the last chapter. It is

y = - i^ + i + Cje"" + c,e-2^ + c/\

The general solution of the original equation is therefore

2/ = - ilogo; + J + J + J,
+ C3a;^

EXACT LINEAR DIFFERENTIAL EQUATIONS

46. Definition. A linear differential equation

d^'y dr^y p ^ P ^ P ^ P ^T

is said to be eyact, when, if the left hand member be represented

by V, the expression Vdx is the exact differential nf ^nmp fnnrj-^

tion Z7 which dopfi not (contain an integral of y.

The expression U is evidently an expression actually contain-

ing a derivative of order n — 1,

47. To find the necessary and sufficient condition that the

equation of th^ preceding article be exact, and a method of solu-

tion of such an equation.
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Multiply each term by dx and take the integral of each term.

Now

fP^dy =fP^ydy identically.

And, by integration by parts,

fP.-,^J^ = fP"„-^dx - P'„_,2, + p„_y,

Jp„_,gdx = - fP"'^dx + P"„_32/ - P'„-y + ^»-32/".

where the primes denote differentiation with respect to x,

.
•

. fXdx + c = /(P„ - P'„_. + P",_, - P"'„_, + • .
. )ydx.

+ (Pn-. - i"„-, + P".-s - • • • )y

+ (i^«-.--P'„-3 + )y'

+ (Pn-^- )y"

+

Write the expression in brackets as §„, Q„_,, • • •
, Qa respec-

tively.

.-.fxdx + c =fQ„yd^+Q„-,y+Q.-y+- • • + §«^- (1)

Now in order that the equation be integrable there must be no

term in the right hand member of (1) containing an integral of

y. The necessary and sufficient condition for this is that Q„= 0.
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Therefore the necessary and sufficient condition that the equation

be exact is that Q„ = or

When this condition is satisfied the equation reduces to

Qo'^^r + ---+Qnj£+Qn-.y = fxdx + o. (3)

If the coefficients in (3) satisfy a relation in Q similar to (2)

in P, equation (3) is exact and the above process may be re-

. peated.

Example. Solve the equation

Here P„ = 2, - P'„_, = 2, P"„_, = _ 10, - P"'„_, = 6.

.••P„-P'«-. + P"„-,-P'V, = 0.

The necessary and sufficient condition that the equation be exact

is therefore satisfied.

Q^_^ = - 2^+10a;-.6a: = 2x, Q„_, = 1 __ 5a;^- 1 + 3.1;'= -2x\

The equation therefore reduces to

a.(l-.;')g-2a.'^^ + 2.:2/ = 3a:» + c,.

In this equation, P„ = 2x, - P'„_j = 4x, P"„_, = - 6a;.

' P -^ P^ A- P" —

The necessary and sufficient condition that this equation be exact

is therefore satisfied.

Q„_, = _ 2*' + 3** - 1 =^ - 1, Q„_, = xO- - ^).

The equation therefore reduces to

*(1 - a^) J + («* - l)y = ^ + Cja^ + c,.
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This equation is not exact. It is however an ordinary linear dif-

ferential equation of the first order, and can therefore be solved

by the method of Art. 21. The general solution is

c ^
2/ = _ \x\og (1 - re*) + 2'^logJ—^,

which is therefore the general solution of the original equation.

EXERCISES

Find the general solution of each of the following equations.

^- "^
da^ + ^''

d:>^ + ''dx-y-^

"• "^
dx' •^^dx-'^''- ^- '^d^-^'dx+y- ^*'^*-

.^ d^y ^ dy .

10. —^cotx-^JU cosec xy z= cosx,
dx^ dx^ ^

11. (.^-x)g+(3.-2)|+, = 0.
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12. ix + Zx^) ^1 + 2(1 + 6^) I + 62/ = sin x.

13. (0^+ x^- 3^ + 1)g + (9x^ + 6^-9)g

14. a;'^ + 5a;-^ + 4^=--
da^ dx''^ dx a?

+ (18a; + 6)|+62/ = a;«.

ANSWERS

1. y = \(}ogxy-^(\ogxy + ^\ogx + c, + '^ + ^.
•

2. y= -\x^ c,x' + ^.

3. y = ^x^ log :?; .— fo;^ + c^x + c^a;^ -j- c^x^.

4. 2/ = ilog:c + J + c,a; + C2a;' +
c.

7. 2/ = log a; 4- 2 + c^x log a; -j- c^a?.

8- U/ 0,0/ "^2

ic^ _ 1 ^ a;^ _ 1 ^ 0;=^ _ 1-

9-1 X c.x c«

1 + a;^ ^ 1 + a;=^
^ 1 + rc^*

10. y = X sin re -|- c^ sin x log (cosec a; — cot x) + c^ sin x,

11. 2, = |log(x_l)+J.

12. (a; + Sx^)y == — sin :r
-f- c^a; -|- c^.

13. (:i;« + o;^ - 3a; + 1)^/ = yi^a;^ + c, + c^rc + Cgic'.

14. 2/=2i(loga;)^ + c, + Jlog:r + ^».



CHAPTER VI

CERTAIN PARTICULAR FORMS OF EQUATIONS

48. An equation in the form ^-^ =/(^).

An equation in this form is exact and can therefore be inte-

grated by the methods of the preceding chapter. It can also be

integrated by direct integration.

The first integration gives

where a^ is an arbitrary constant.

The second gives

where a^ is an arbitrary constant.

After n integrations there results

y = /// • • • //(^)('^*)" + ".*""' + V"' +••• + "»

where Cj, c^, • • • ,c^ are arbitrary constants.

49. An equation in the form -y^ z=f{y).

An equation in this form can in general be integrated only

when n = 1 and n = 2.

When 71 = 1 the equation is

71
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To integrate, separate the variables.

• ^ -dx

/' dym
When n =z2 the equation is in the form

To integrate, multiply by 2 —-,

cy
dy d'y , dy

Now

dx dx^ dx\dx/'

Suppose that 2ff(y)dy = if/^y).

.'.^--M= = dx.

dy

50. An eqLuation that does not contain x directly.

Such an equation is of the form

^ y' dx' ' dx") -
"•
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Let
dy

Then
d^y dp dpdy dp

^

dx^
~' dx~ dy dx ~ -^ dy

*

d^y d / d^y\ d / dp\ d / dp\dy
dx^

~~ dx\dx^ /
~~ dx \ dy I

~~
dy y dy / dx

,d'p /dpV

and so on.

The equation then becomes a differential equation in p and y

of order ?i — 1. Suppose that it can be solved and that the solu-

tion is^ z=zf(y). Then a solution of the original equation is

51. An equation which does not contain y directly.

Such an equation is of the form

[''' dx' ' dx-j-^-
Let

dx ^

The equation then becomes a differential equation in p and x

of order n — 1. If the equation can be solved for p and the

solution is^ =zf(x)y sl solution of the original equation is

y + c = ff(x)dx.

52. An equation of the first order solvable for y.

In such a case, when solved for y, the equation becomes

y=.F(x,p). (1)
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Differentiate with respect to x.

This equation does not contain y explicitly. It is an equation of

the first order in p and x. If it can be integrated as an equation

in p and x, there results on integration an equation between x, p
and an arbitrary constant. From the resulting equation and

(1), if ^ can be eliminated, there results an equation between

X, y and an arbitrary constant, which will be the general solution

of the equation.

53. An equation of the first order solvable for x.

In such a case, when solved for x, the equation becomes

^j(^= jP(2/, p). Differentiate with respect to y.

•i='^(^'^'l)-
The method of procedure from this point is similar to that in the

preceding article.

EXERCISES

Find the general solution of each of the twelve following

equations.

1 d'^y o dy
2. j-^ = cos X.

da?

3.:^g = log..
^•S--"-'-

5
'^'y 1 V «-S-(l

7 y^'y-(^X-i

8.(1 + ^)2-1-m-= 0.
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13. Find the curve whose curvature is constant and equal

to K.

14. If a sphere of radius E^ is surrounded by a concentric

shell of radii E^ and i^g, the potential function, F, at a point

either in the space between the conductors or outside the outer,

satisfies the equation

dit^ r dr
'~ '

where r is the distance of the point from the center of the sphere.

Solve the equation given that V^ is the potential on the sphere

and Fg on the spherical shell.

15. If a circular cylinder of radius R^ is surrounded by a cir-

cular cylindrical shell of radii R^ and R^, both of very great

length, the potential function, F, in the space between the con-

ductors, is such that

di^ r dr '

where r is the distance from the point to the axis of the cylinder.

Solve the equation given that F^ is the potential on the cylin-

der and Fj on the spherical shell.

ANSWERS

^- 2/ = -n^^Tj- + «!«""' + V'"' + • • • + Vr

2. y = — cos a; -f c^x -f c^.

S, y = -\ogx- |(log xy + c^x + c,.

4. y = Cj sin (^ax -|- c,).
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5. ± « + c, = -^ Vci2/ - 2 + - log ( V^ + ^c^y - 2).

6. 2/ = Cj^^^"'-

7. zhx + c^ = ^-log (C2/ + Vcy - 1).
c

9. 2/ = fo;^ + J + c,. 10. y^c^ = ix'-x + ce^

11. Ja; + Cj = =F V:c - 2/ - log (1 =f V^ - y),

12. V =z ex — c^, 13. A circle of radius -.

'^- ^-R^-R^ r + R,-Ry '



CHAPTER VII

ORDINARY DIFFERENTIAL EQUATIONS IN TWO DEPENDENT
VARIABLES

54. So far, the differential equations considered consisted of

two variables, one independent and one dependent. We shall

now consider equations in three variables. These may be divided

into two classes : those in which there is only one independent

variable, and those in which there is only one dependent vari-

jLble,_ The first comes under the class called ordinary or total

differential equations : the second, partial differential equations.

This chapter is taken up with a discussion of a few forms of ordi-

nary differential equations. The next chapter is devoted to

partial differentia] equations.

! 55. If f(Xy y) is a single valued and continuous function of

the two independent variables x and
2/,

given by the equation

z = f(^Xy y), and ^and ^are continuous, then, by definition,

J dz J dz J

or

,. = 'J^d.^'J^dy. (1)

If /(rc, y, z) is a single valued and continuous function of the

three independent variables x, y and z, given by the equation

u = f(x. V, 2), and ^r-, ^- and ^r- are continuous, then, by defi-
•'^ "^ ^ dx ay oz

nition,

^^^ ef(^,y, ^) d^^ g/(^; y> 'hy +
^^^'^'y' 'hz. (2)

dx * ay ^ oz

77
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r^^ 56. Equation (1) of the preceding article has, as a special

case when 2 = 0, the equation

dx ^ dy ^

That is, the equation is true for the equation /(re, y) = where

X and y are independent variables. If y in f{x, i/) = is a

single valued and continuous function of x, the equation holds

true for all values of x for which 2/ is a single valued and con-

tinuous function, for in this case y is merely restricted to values

which it could assume, as well as others, in the more general

case where it is independent.

This can be seen more clearly perhaps by a consideration of

the geometrical representations of the equations.

The equation z =f{x, y) when x and y are independent vari-

ables represents a surface. If 2 = 0, the surface is the ^y-plane,

^/ and the equation

dx
^"^ + dy

"^y-^

^ holds true for every point in the plane. If t/ is a single valued

O and continuous function of x, the equation /(ic, 3/) = repre-

*^ sents a curve in the a;t/-plane in which the equation expressed in

/ the form y = <i>{x) gives a single valued and continuous function

of X, and since

holds true for all sets of values of x and y in the plane, it holds

true for all sets of values which together determine a point on

the curve in the plane.

yy bl. Equation (2) of Art. 55 has as a special case when z=G,

the equation

a/(^, y,
'^) ^ dfjx, y, z) dfjz y, z)

^^ ^ ^
dx ^ dy dz

<r
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By reasoning similar to that employed in the preceding article

in the case of two dependent variables, it may be seen that

this equation holds true when 2; is a single valued and continuous

function of x and y,

58. An integral relation in Xy y and 2, equated to an arbitrary

constant c, say <^(a;, y, z) = c, can always be expressed in the

form
Pdx + Qdy + Rdz = 0,

where P, Q and E are functions of x, y and z, and do not con-

tain the arbitrary constant c.

For, the result of taking the differential of each member of

the equation <f>(Xy y, z) = c is, by the preceding article,

a^ •"
a^^ ^^ + dz

"^^ = ^'

and this equation is in the specified form.

Example. The result of taking the differential of each mem-
ber of the equation :ii^y — xz^ -{- y^z = c where c is arbitrary, is

(2xy - z')dx + (x' + 2yz)dy + (y' - 2xz)dz = 0.

This equation is in the form Pdx + Qdy + Rdz = 0.

The resulting equation Pdx + Qdy + Edz = is such that P,

Q and E are proportional to

dS 06 , d<l>
-^, -^ and ^,

respectively.

Conversely, however, an equation of the form

Pdx + Qdy + Pc?25 =

where P, Q and E are functions of a;, y and 2;, does not neces-

sarily give rise to a solution of the form <^(a;, y, 2) = c. This

can be seen immediately because an equation of the form

Pdx + Qdy -f Edz =
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which gives rise to a relation <j>(Xj y, z) = c must be such that

F, Q and B are proportional to

dx ' dy dz*

respectively, and these relations cannot hold for all values of P,

Q and R,

59. To determine when an equation of the form

Pdx + Qdy + Edz =

has a solution of the form cl>(x, y, z) = c.

If it be assumed that Pdx -j- Qdy -\- Rdz = has a solution

<t}{x, y, z) z= c, then P, Q and R must be proportional to

respectively, or

dx ' dy dz'

jy d<f> d^ d<i>

.

^^ = dx^ ^^=dy^ ^^-dz^

where /«. is a certain unknown function. From the first two of

these equations there results

or

Similarly, by using the first and third equations we get

''(S-l?)=4:--|.
and by using the second and third.
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Multiply equations (1), (2) and (3) by R, Q and P respec-

tively, and add.

-(f-i)+«(l!-f)+C-lf)-»-w
Therefore, if the equation Pdx -\- Qdy + Edz = has a solution ,^

<l>(Xy y, z) = c, equation (4) must be satisfied.
|

"p 0^ i t

Conversely, if equation (4) is satisfied, the equation 1"^ '"^ "^

Pdx + Qdy + Rdz = 1"^ ^ %
has a solution (l>(x, y, z) = c. The proof of this theoreni is some-

what long and will not be given in this book.* The theorem

however will be assumed in the subsequent work.

Definition. Equation (4) is called the condition of integra-

bility of the equation Pdx + Qdy + Edz = 0.

60. To solve the equation Pdx -f Qdy + Edz = when the

condition of integrability is satisfied.

Suppose at first that z is constant so that the equation becomes

Pdx -j- Qdy = 0. Solve this equation. Suppose that the solu-

tion is f(x, y^ z) = a constant. Let u =f(x, y, z). Find a

quantity ix such that

du

^^=dx'

du

Multiply the equation Pdx + Qdy + Edz = hy fi,

.

•

. fji(Pdx + Qdy -f Edz) = 0.

This equation may be written in the form du + Sdz = where

u and S are in general functions of x, y and z. In the equation

du -j- Sdz, change the variables from x, y and z to x, u and z by

means of the relation u = /(re, y, z) . The equation then be-

* For a proof of this theorem and also that S^ of Art. 60 does not con-

1
tain Xj the student is ijieferred to Forsyth, A Treatise on Differential Equa-

twns, Art. 152. {3iK^vU^x. p *->>^ 7 7



82 SHORT COURSE ON DIFFERENTIAL EQUATIONS

comes du
-f-

S'dz = 0. It can be shown that /S' does not contain

X, Assuming that it does not, the equation du -f S'dz can be

integrated as an equation in u and z. The general solution of

the equation is the general solution of the original equation.

-Example. Solve the equation

yz
• dx — -^ 3 dy — tan ^~dz = 0,

^ + f x' + y ^

Suppose that z is constant. The equation then becomes

—^—
j,
dx — —^ 2 dy = or ydx -^ xdy = 0.

x" + 2/' x' + y'

The solution of this equation is

y

- = a constant.
y

du 1

\dx "^
y

Let /*P = -.

y

Multiply the original equation by —^p^.

Now
y

du = -dx =dy.

y y

Substitute

, du ^""^^tfin-'^-dz = 0.
y z X

X
y^7.
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in this equation, y being derived from the equation

X
U=: -.

y

,' . du ———— tan~^ -dz = 0,
z u

Separate the variables.

du dz ^
+ — =0.

Let tan ^ - = t;.

u
dv dz ^

.
— + — = 0.
V z

, VZ z= c.

Therefore

z tan"^ ^ = c.

ztan"^- = c

is the general solution of the original equation.

61. Suppose that in the equation

Pdx + Qdy + Rdz =

the condition of integrability is not satisfied. Then there is no

relation <f}(x, y, z) = c which satisfies the equation. In such a

case a relation

ip^x, y, z) =0

is assumed arbitrarily and a relation <^(rc, y, z) = e is sought

which, together with \(f(^x, y, z) = 0, will satisfy the equation.

By differentiation of ip^x, y, z) z= there results

-J^dx-^ ^dy + ^dz = 0.
dx ^ dy ^ ^ dz

From this equation and (1) suppose that z and dz be eliminated.

Then there will result an equation of the form P'dx + Q'dy =
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where P' and Q' are functions of x and y the values of which

depend upon ij/^Xj y, 2). Suppose that a solution of this equation

containing an arbitrary constant is found and is <^(a;, y, z) = c.

Then this solution and \f/{x, y, z) = together give a solution

of the equation.

As an illustration consider the following example :

The equation

considered in exercises 47 to 50 inclusive, Chapter III, for special

cases of e, does not satisfy the condition of integrability if e, i

and t are variables independent of each other. For, the equa-

tion may be written as

Ldi + (Ei - e)dt ^ - de = 0,

By application of the condition of integrability there results

r dljRi - e) do

or

1—ar--F(} + (^*'-«>(l?-|f)

Since L is not zero, the equation does not satisfy the condition

of integrability. Assume e =/(<), however, and the equation

becomes an ordinary linear differential equation of the first order.

The solution is

i=j- J e^'f(t)dt+ce ^\

From this solution the results of exercises 47 to 50 inclusive,

Chapter III, may be found by substitution.

62. The cases considered thus far consisted of one equation in

two dependent variables. Another important class of equations

is the case of two total differential equations in two dependent
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variables where each equation is of the first degree with constant

coefficients. The method of solution of this class of equations is

as follows :

By differentiation and elimination, obtain one equation in one

unknown. This equation may be solved by methods previously

discussed. The solution found must be a solution of the original

equations. Another solution is found by substituting the one

just found in the equations. The complete solution consists of

two linearly independent relations between the variables.

Example. Solve the equations

|_2, + . = 0. (1).

|-6y + 5« = 0. (2)

Difierentiate (2) with respect to x.

Multiply (1) by - 5, and add to (2) and (3).

This is a linear differential equation of the second order with con-

stant coefficients and right hand member zero. It can therefore

be solved by the methods of Art. 31.

.•.2/ = c,e^ + c/^ (4)

Substitute this value of y in (2) and solve for z,

.•.2 = c,e^ + ^^6^ (5)

Equations (4) and (5) together constitute a set of solutions of

the given equations.
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EXERCISES

In each of the seven following equations, show that the condi-

tion of integrability is satisfied. Solve the equation.

1. (2/ + z)dx + (2 + x)dy + (x + y)dz = 0.

2. (2x^y + 2xy^ + 2xyz + l)dx + (u^ + ic^y _(- x^z + 2xyz

+ 2fz + 2yz' -H \)dy + {xy' j^fj^fzJ^ l)dz =

3. (2xy + z^)dx + (x^ + 2yz)dy + (t/' + 2a;2!)(Z2; = 0.

4. (a + 2)yc?^ -j- (a _|- 2)a;c?i/ — ic?/c^0 = 0.

5. (2/+ 6)(2 + ^)c?:r+(rc+a)(3+Z;)c?i/+(a;+a)(t^+6)cZ2= 0.

6. {yz + 2a;)c?:c + (0:2 + 2y)dy + (rcy + 2z)dz = 0.

7. (2rc2/0 + y'^z + t/^^c^rc + {x^z + 2a;2/2! + a;2;^)(Zy

+ (^'2/ + ^2/' + ^xyz)dz = 0.

Solve the following sets of equations.

^-
Tx + '^y-^'-^' 7^ + 632,-362 = 0.

11. | + 3y+2. = 0. 1+2,-4-0.

12. |-3,-2. = 0, | + ,-2..0.

13.
dy dz ^ ^

14.
dz dy * -

£ + £+«»-" = x + ^, % + 2y-z = e.
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15. | + , + 3. = e-, |+3y + 4. = e-.

16. J-3, + 2..^. 1 + 2,-. = ^.

18. 1 + 7,-9. = ^, |-.-3.==e^.

19. |_2y-2. = en | + 52,-2. = e-

ANSWERS

1. a;^/ + 2/2 + 2a; = c.

2. x'y + i/'^a! + log(a; + t/ + 2) = c.

3. ic^i/ + 2/^2 + z^x = c. 4. xy = c(a + 2).

5. (x + a) (i/ + 6) (2 + ^) = c. 6. 0:2/2 + ic' 4. 1/' + 2' = c.

7. xyz(x + y + z)=c.

8. 2/ = c,e-^ + c^xe-'% 2 = ^^ e"^ + || e"^ + ^«a;e-^

9.2/ = Cj6-* + c,e-^ 2 = c,e-^ _ ^« e"^.

10. 2/ = c^e"^ + e^e-^', z = Sc^e"'^ - c^e'^'.

11. y = c^e^ + c,e 2 *^

2 = -
I (7 + V66)e-^ " _ 4' (7 + V65)e~^ '.

12. y = e^ei" cos -^^ » + c^et* sin -^ x,

/V7c, e,\ V7 /c, V7e,\ . . V7
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13. y = c^e~^ cos ^x -f-
c./~'' sin V^^,

2 = — Cj V5e~* sin V5a; + c, V5e~* cos VSa;.

14. y =z — X — ^xe" -\- c^e* + c^e""',

25 = — 1 — 2a; — fe' - fa;e* + Sc^e" + c^e''.

15. 2/= ^Ve^^-j6^+c,e-»+c,e-n ^= -^V^^^+i6^-|6-+|v^

16. y = ^e'^ + i^ + c,e-''~'' ^^" + 0,6"^^+^ ^^^

17. 2/ = ~ Th + t\^ + e,6-^-^'->^ + c,e-^^^'^%

z = ^
-j-VV + tV^ - c,(3 + Vn)e-^^-^-)« _

_ 0,(3 - Vl4)e-^^+^^*>'.

18. 2/ = 7-^* — i^^' + ^i^^'
cos VSo; -j- c^e^'^sin ^5x,

z = - y^^ + (^' + ^^).^'cos ^x

+ {''--^)e^'^n^5x.

19. 2/ = -^e" + ^e*'' + Cje'" cos VlOa; + c^e'"^ sin -yjlOx.

z = - TVe'"'+ 4-6*^+-^?^ e'' cos VlO^c - ^^ e'' sin VTOrc.



CHAPTER VIII

PARTIAL DIFFERENTIAL EQUATIONS.

63. So far we have considered differential equations in which

there is only one independent variable. We shall now consider

equations involving two independent variables. Such equations

belong to the class called partial differential equations:

In this book, the independent variables will be denoted by x

and y, and the dependent variable by z. The partial derivative

of z with respect to x and with respect to y will be denoted by p
and q, respectively.

Definition. A linear partial differential eauation of the first

order is an equation of the form . y

Pp-\-Qq = R,

where P, Q and R are functions of x, y and z, and do not con-

tain p or q.

64. If there are two equations containing x, y and z, p and q,

which can be solved for jp and 5, the result may be substituted in

dz = pdx -f qdy

thus giving an ordinary differential equation. Usually, however,

there is only a single difierential equation given.

65. Derivation of a partial differential equation.

(a) By the elimination of constants. Let <^(a;, y, z, Cj, Cg) =0
be a relation between x, y, z and two arbitrary constants c^ and

Cj. By differentiation of <^(a;, y, z, c^, cj = with respect to x

holding y constant there results
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By differentiation with respect to y holding x constant there

results

By means of these two equations and <^(a;, y, z, c^, c^) = 0, Cj,

and Cj can be eliminated. The result is an equation

F(x, y, z, p, q) =

which is a partial differential equation of the first order.

Example. Let x^ -^ y^ -{- z^ -\- c^x -{. c^y = be an equation

between x, y and 2, and two arbitrary constants c^ and c^. By
differentiation with respect to x holding y constant there results

2a; + Cj + 2zp = 0.

By differentiation with respect to y holding x constant there

results

22/ + c, + 2zq = 0.

By elimination of Cj and c^ between the three equations there

results

x^ -{-y^ —z^ + 2xzp + 2yzq = 0.

This is a partial differential equation of the first order.

(6) By the elimination of an arbitrary function. Suppose

that u and v are functions of the variables x, y and 2, and that

€l>(u, v) = where <^(i^, v) is an arbitrary function of u and v.

The differential of </)(tt, 1;) = is

du ov '

Now
^ du J du Jdu = ^^ ax -^ z:r- dz

ox ^ dz *

when y is constant, and
, du ^ du ^

^""^dy^y + rz^'"

when X is constant, and similarly for v.
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Therefore the partial derivatives of the equation <^(w, v) =
with respect to x and y, respectively, are

and

d<b [ du du ~\ dS [ dv dv 1 ^

d<j> r du du

]

d<t> r dv dv

"^dv I'dy'^'^^dz ]=„.

Eliminate and ;^- from these equations.
du dv

fovI du du \ /dv dv \ I dv dv \ I du du \

When arranged in powers of ^ and q and the coefficients ex-

pressed as determinants, the equation becomes

du du du du du du

dy dz

dv dv
V +

dz dx

dv dv
9 =

dx dy

dv dv

dy dz dz dx dx dy

This may be written in the form

Pp+Qq = B

P Q
where

(1)

R
du du

dy dz

dv dv

dy dz

du du

dz dx

dv dv

dz dx

du du

dx dy

dv dv

dx dy

This is a partial differential equation of the first order. There-

fore from the equation <^(i^, v) = a partial linear differential

equation of the first order can be formed which does not contain

the arbitrary function <l>(u, v).

Example. Suppose that u = x -\- y -\- z and v = a?+ y'^
-\- 2?'.

Let <^(it, v) = be an equation connecting u and v where

<i>{u, v) is an arbitrary function of tt and v.
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By differentiation of <^(it, v) = with respect to x and with

respect to y there result

and

respectively. By elimination of ^ and -^ from these equations

there results

1 1

P +
1 1

9 =
1 1

2. y X z y *

or

(2/ - ^)P + (2! - ^)5 = a; - y.

This is a partial linear differential equation of the first order

which does not contain the arbitrary function

<jb(a; + t/ + 0, x' Jrf J^z'),

66. We have seen that a differential equation with two inde-

pendent variables can be derived from an expression containing

two arbitrary constants or from an expression containing an arbi-

trary function of two independent functions of the variables. We
see therefore that a differential equation with two independent

variables may involve in its solutions, arbitrary constants or an

arbitrary function of the variables.

Definitions. A relation between the variables of a differential

equation with two independent variables which includes two arbi-

trary constants is called a complete integral of the equation.

A relation between the variables of a differential equation with

two independent variables which involves an arbitrary function

of two independent functions of these variables is called a general

integral of the equation.

There is another class of solutions called singular integrals but

these will not be considered here.
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67. Consider the two equations u = c^ and v = c^ where u and

V are functions of x, y and z, and c^ and c, are arbitrary con-

stants. By differentiation of 'm = Cj and v = Cj,, there result

and

respectively.

dv J dv , dv ^ ^^Jx+^ydy + ^^dz = 0,

Multiply (1) by^. (2) by -^ , and subtract.

% = 0.

du du du du

dz dx
dx-

dy dz

dv dv dv dv

dz dx -d-y dz

Multiply (1) by g, (2) by
du

dy'

du du du du

dx

dv

dy

dv
dx-

dy

dv

di

dv

dx dy dy d~z

and subtract.

dz=zO.

dx dy dz

du du du du
""

du du

dy dz dz dx dx dy

dv dv dv dv dv dv

dy dz dz dx dx dy

(1)

(2)

Now i>(u, v) = is a general integral of the equation

if
Pp+Qq = R,

p Q R
du du du du

~
du du

dy dz dz dx dx dy

dv dv dv dv dv dv

dy dz dz dx dx dy

See Art. 65.
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Therefore <l>(Uj v) = is a general integral of the equation

Pp -^ Qq = Eifu=zCj^ and v = c^ are solutions of the equations

dx dy dz

68. From the investigations of Arts. 65 and 67 the following

rule for finding a general integral of the linear partial differential

equation Pp -{- Qq = B is determined.

Solve the equations

dx dy dz

Suppose that u = c^ and v =z c^ are two independent integrals of

these equations. Then <^('W, v) = where <!>(% v) is an arbi-

trary function of u and v is a general integral of the equation

Pp+Qq = B,

Definition. The equations

dx dy dz

P^Q^B
are called the subsidiary eauations of Pp -\-Qq = B. They are

also sometimes called Lagrange's equations.

69. As illustrations of the method of solution of a linear par-

tial differential equation of the first order, consider the following

examples.

Example 1. Solve the equation x^p + xyq -|- ^' = 0.

Write the subsidiary equations

dx dy

x" ^ xy^
Solve the equation

dx dy

l^"^ xy

Solve the equation

xy

dz

X

'¥'
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From

y
'

substitute the value of x, and the equation becomes

y

X '

A general integral of the original equation is therefore

Example 2. Solve the equation Qy — z)p-{-(z^x)q= x—y.

Write the subsidiary equations

dx dy dz

y — z z — X X — y

From a familiar theorem of algebra, if

ace
h^d^r

then la -\. me ^ ne = Ih -\- md -\- nf where Z, m and n are any

multipliers whatsoever. Application of this theorem to the sub-

sidiary equations gives

dx + dy + dz = 0, (1)

when I = m = n, and

xdx + ydy + zdz == 0, (2)

when I = X, m = y, n z= z.

Solve equations (1) and (2). Therefore x -\- y -{- z = c^ and

x^ -]- y^ -\- z^ = c^ are solutions of equations (1) and (2), and

therefore of the subsidiary equations. A general integral of the

original equation is therefore <l>(^x + y + Zy x"^ -{. y^ + z^) = 0.
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EXERCISES

Determine the partial differential equations of which the four

following equations are complete solutions, c^ and c^ being arbi-

trary constants.

1. 2 = Cjic + Cjt/. 2. z^ — c^x^ 4- c^y^.

Eliminate the arbitrary function from each of the four follow-

ing equations.

5. <f>{xJry-z, x^+y^-z^)=0. 6. ^fyi^x + y + z, z) = 0.

7. z = ^<i>{x + y). 8. z=f(^x'^f).

Find a general integral of each of the following equations.

9. xzp — yzq = xy. 10. x^p + y^q — 2^ == 0.

11. rc'^i/j^ -\- yq = x^z. 12. xp ^ yq t= x ^ y.

13. (2/^ ~ 2^);> + (2^ - x')q + (i/^ - x^) = 0.

14. (22 - 3i/)j9 + (3a; -- 4^)^ = 4^/ - 2x.

ANSWERS

1. xp -j- yq = z, 2. xp -\- yq = z,

3. pg = 2. 4. a;2p -j- yzq — 2^ + a' = 0.

5. (y^z)p^(z-^x)q=y—x. 6* p — q = 0.

7, p — q = — z, 8, yp — xq = 0.

9. * (.3/. log
2/ + 2^)= 0. 10. ^(J-1,^1-J)=0.

12. <^(a^, a; + 2/ - 2) = 0-

13. <j>(x + y +.3, ar" + y» + 3») = 0.

14. ,^(4a; + 2y + 3^, a;* + y' + 3') = 0.
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