Equations 1 Simple Equations

Equations 2 Applications of Simple Equations

Equations 3 Combining Two Relationships

INTRODUCTION

You are about to use a programmed text. You should try to use this booklei where there ore no distractions-o quiet classroom or a sfudy area at home, for instance. Do not hesitate to seek help if you do not understand some problem. Programmed texts require your active participotion and are designed to challenge you to some degree. Their sole purpose is to teach, not to quiz you.

This book is designed so that you can work through one program at a lime. The first program, Equations l, runs page by page across the top of each page. Equations 2 parallels it, running through the middle part of each page, and Equations 3 similarly across the bollom.

[^0]
Directors of Project Physics

Gerald Holton, Department of Physics, Horvard University
F. James Rutherford, Chairman, Deportment of Science Education, New York University
Fletcher G. Wotson, Harvard Graduate School of Education

Copyright (C) 1974, Project Physics
Copyright (c) 1971, Project Physics
All Rights Reserved
ISBN: 0-03-089641-X
$012008 \quad 98765$

Project Physics is a registered trademark

A Component of the
Propect Physics Course

Distribused by
Hols, Rinehapi and Winston. Ine.
New York - Toronto

Equations 1 SIMPLE EQUATIONS

In physics and many other subjects it is useful to be able to handle simple algebraic equatians. The purpose of this first program is to help you review the basic operations necessary to solve equations.

Equations 2 APPLICATIONS OF SIMPLE EQUATIONS

In this program you will gain practice in opplying the bosic algebroic operations you learned in Equations 1 to equations actually used in physics.

Equations 3 Combining Two Relationships

You saw in Equations 2 that relationships among physical quantities may be represented by equations and with the help of operations developed in Equations 1 you gained experience in solving these equations for some particular quantity or variable.

Often in physies we find a particular quantity in more than one relationship. For example, the quantity F occurs in each of the two equations $F=m a$ and $W=F d$.

In this program we ore going to see how two relarionships having some quantity in common may be combined into a new relationship. For example, we can combine the two equations above and find an expression for W in terms of d, m, and a.

Often in this program more than one frame is used to solve a certain problem. We have followed the practice of repeating the problem in a box ot the top of each of the frames concerned.

INSTRUCTIONS

1. Frames: Each frame contains a question. Answer the question by writing in the blank space next to the frame.

Frames are numbered $1,2,3, \ldots$
2. Answer Blacks: To find an answer to a frame, furn the page. Answer blacks are numbered $A 1, A 2, A 3, \ldots$

This booklet is designed so that you can compare your answer with the given answer by folding back the page, like this:

3. Always write your answer before you look at the given answer.
4. If you get the right answers to the sample questions, you do not have to complete the program.

INSTRUCTIONS: Same as for Equations 1, above.

INSTRUCTIONS: Same as for Equarions 1, above.

Introductory Frame A

Answer Space

Adding and subtracting. Study a, b, and c; then write down the results for d, e, and f.
a. $6 b+4 b=10 b$
d. \square
b. $4-10=-6$
c. $p+2 q-5 p=2 q-5 p+p=2 q-4 p$
d. $6 k+3 k=$
e. $4 t-10 t=$
f. $-x+2 y+x=$
e. \square
f. \square

1
Answer Space
In physics we often represent physical quantities by symbols and then represent relationships amang physical quantities by equations.

For example, suppose a car which is moving with an initial speed v_{i} is given an occeleration of magnitude a and thus acquires a final speed of v_{f} in time t. The equation which describes the relationship among these four quantities is

$$
v_{f}-v_{i}=a t
$$

(i) How many symbols representing physical quantities appear in the above equation?
(ii) List the symbols.

Answer A
d. $9 k$
e. -6 t
f. $2 y$
A)
(i) four
(ii) v_{f}

Introductory Frame B

Multiplying and dividing. Study a, b, and c; then write the results for d, e, and f.
a. $(-1)(+3)=-3$
b. $(-5)(-a)=+5 a=50$
c. $\frac{6 a}{-6}=-a\left(\right.$ Note: $\left.\frac{6 a}{-6}=\frac{-6 a}{6}=-\frac{6 a}{6}=-a\right)$
d. $(-1)(-3 b)=$
e. $(4)(-2 p)=$
f. $\frac{-2 a}{-a}=$

2
First operation: If we add the same quantity to both sides of an equation, both sides will still be equal to each other.
Example:

$$
\begin{aligned}
a-b & =4 c \\
a-b+b & =4 c+b \\
a & =4 c+b
\end{aligned}
$$

Note that by adding b to both sides, we get a olone on one side of the equation, that is, we hove solved the equation for a.

Solve the following equation for v_{f} in the same woy:

$$
v_{f}-v_{i}=o f
$$

1

If $m=2 p$ and $p=3$, what is the value of m ?

Answer B
d. 36
e. $-8 p$
f. +2

A 2

$$
\begin{aligned}
v_{f}-v_{i} & =\text { of } \\
v_{f}-v_{i}+v_{i} & =\text { of }+v_{i} \\
v_{f} & =\text { of }+v_{i}
\end{aligned}
$$

Al
$m=2 p$
$m=(2)(3)$
$m=6$

Introductary Frame C

Answer Space

Operofions with parentheses. Study a, b, c, and d; then write results for e, f, and g.
a. $3(a+2 c)=3 a+6 c$
b. $3(a-2 c)=3 a-6 c$
c. $-3(a-2 c)=-3 a+6 c$
d. $-(p+q)=-p-q$
e. $5(k-2 m)=$
f. $-(t-5)=$
g. $-4(2 a+b)=$
e. \square
\square
g. \square

3

Second operation: If we subtract the same quantity from both sides of an equation, both sides will still be equal to each other.

Example:

$$
b+4=0
$$

$$
\begin{aligned}
b+4-4 & =a-4 \\
b & =a-4
\end{aligned}
$$

Note that by subtracting 4 from both sides, we get b alone on one side of the equation, that is, we hove solved the equation for b.

Solve the following equation for v_{i} :

$$
v_{i}+a t=v_{f}
$$

2

If $v_{1}=4 v_{2}$ and $v_{2}=2$, what is the number which v_{1} represents?

Answer C

e. $5 k-10 m$
f. $-1+5$
g. $-8 a-4 b$

A3

$$
\begin{aligned}
v_{i}+o t & =v_{f} \\
v_{i}+o f-o f & =v_{f}-o t \\
v_{i} & =v_{f}-o f
\end{aligned}
$$

A2

$$
\text { but } \begin{aligned}
v_{1} & =4 v_{2} \\
& =2 \\
\text { so } \quad v_{1} & =(4)(2) \\
v_{1} & =8
\end{aligned}
$$

Introductory Frame D

More dividing! Study a, b, and c; then write results for d, e, and f.
a. $\frac{6 a-9 b}{3}=2 a-3 b$
b. $\frac{6 a+9 b}{-3}=-2 a-3 b$
c. $\frac{6 a-9 b}{-2}=-3 a+\frac{9 b}{2}$
d. $\frac{4 a+2 b}{2}=$
e. $\frac{4 a-2 b}{-2}=$
f. $\frac{3 a+b}{-3}=$

Answer Space

d. \square
e.

f. \qquad

4
Third operation: If we divide both sides of an equation by the same quantity, both sides will still be equal to each other.
Example:

$$
\begin{aligned}
& c=4 a \\
& \frac{c}{4}=\frac{40}{4} \\
& \frac{c}{4}=a
\end{aligned}
$$

Note that by dividing both sides by 4, we have solved for a.
If we return to the physics relationships we have been using and if the initial speed v_{i} is equal to 0 , we have this relationship between v_{f}, a, and t.

$$
v_{f}=o t
$$

Solve for v_{f} as in the example above.

3

If $v_{1}=4 v_{2}$ and $v_{2}=4 k$, what is the value of v_{1} in terms of k ?

Answer D
d. $2 a+b$
e. $-2 a+b$
f. $-a-\frac{b}{3}$

A4

$$
\begin{aligned}
& v_{f}=o i \\
& \frac{v_{f}}{t}=\frac{a t}{1}
\end{aligned}
$$

$$
\begin{aligned}
\frac{v_{f}}{t} & =0 \\
\text { or } \quad a & =\frac{v_{f}}{f}
\end{aligned}
$$

A3
$v_{1}=\Delta v_{2}$
but $v_{2}=4 k$
so

$$
v_{1}=16 k
$$

1

The equal sign (=) in an equation means that the symbols on one side represent the same quantity as the symbols on the other side. For example,
$2+4=3+3$
$a+4=b+3$
$(3)(4)=(2)(6)$
$3 m=2 n$
$2,3,4$, and 6 are called numerals. a, b, m, and n are called variables and may be reploced by numerals.

In the equation (4) $(3)=b+2$, what numeral will replace b so that both sides of the equal sign represent the same quantity?

5

Fourth operation: If we multiply both sides of an equation by the same quantity, both sides will still be equal to each other.

Example:

$$
\frac{a}{4}=b
$$

(4) $\frac{(a)}{4}=(4)(b)$
$a=4 b$
Note by this operation we hove solved for a.
Solve the following equation for v_{i} in the same manner:

$$
a=\frac{v_{f}}{f}
$$

4
In the previous frame we began with two equations $v_{1}=4 v_{2}$ and $v_{2}=4 k$, and we obtained a new equation $v_{1}=16 k$.

Note that the new equation does not contain v_{2}. We have eliminated the quantity v_{2} which is common to both of these equations. I

How was v_{2} eliminated? By taking the value of v_{2} given in the second equation and substituting it for v_{2} in the first equation.

Let us consider two other equations: $F=m a$ and $a=\frac{v^{2}}{R}$. What quantity is common to both of these equations?
since the left side (3) (4) is equal to 12 , and the right side will equal 12 if b is replaced by 10 .

A 5
$0=\frac{v_{f}}{f}$
$(0)(t)=\frac{v_{f}}{f}(t)$
of $=v_{f}$
or $v_{f}=$ of

2

We can write a new equation by adding the same quantity ta both sides of a given equation. For example,
$a=b$
then
$a+2=b+2$
and, in general, $a+k=b+k$
Change the equotion

$$
a-4 b=c
$$

into a new equation by adding $6 b$ to both sides.

6

We can apply any or all of these aperations to manipulate symbols of an equation to express a given relationship in a more useful form.

For example: the equation $F=m a$ describes a relationship among d the amount of net force F applied ta an object, the mass m of the object, I and the amount of acceleration a acquired by the object. We can shaw how this acceleration depends upon the mass and the farce by solving the equation $F=m a$ for a.

Divide both sides by $m, \frac{F}{m}=\frac{m o}{m}$

$$
\begin{aligned}
\frac{F}{m} & =a \\
\text { or } \quad a & =\frac{F}{m}
\end{aligned}
$$

Now salve $F=m a$ for m in a similar way.

5

In the two equations, $F=m a$ and $a=\frac{v^{2}}{R}$, we may substitute the value of a in the secand equation for a in the first equation, and by daing so get a new expression for F.

What is this new expression for F ?

A3

$$
\begin{aligned}
x-y & =c+d \\
x-y+y & =c+d+y \\
\text { but }-y+y & =0 \\
\text { so } \quad x & =c+d+y
\end{aligned}
$$

A7

$$
\begin{aligned}
v & =\frac{2 \pi R}{T} \\
v T & =\left(\frac{2 \pi R}{T}\right)(T) \\
v T & =2 \pi R
\end{aligned}
$$

A6
-

This is the vorioble which is common to the two original equotions.

Note that in answer frome A 3 by adding y to both sides of the equation we get x alone on the left hand side. Later we shall see an advantage in getting o variable by itself on one side of on equation.

What would you add to both sides of the equation

$$
k-20=6
$$

so that k will be alone on the left hand side?

8

Now solve the new equation $\vee T=2 \pi R$ for T by dividing both sides by v .

Final speed v_{f}, amount of acceleration a, and time t are three characteristics of the motion of an object. For an object starting from rest, these are related in two equations:

$$
v_{f}=\text { at and } d=\frac{1}{2} v_{f} t
$$

Combine these two relationships into a new equation by eliminating v_{f}. This will give us an expression for d in terms of a and t.

A4

$$
\begin{aligned}
& \text { Add } 20 \text { to both sides } \\
& \text { Thus } k-20=6 \\
& k-20+20=6+20 \\
& k=26
\end{aligned}
$$

A8

$$
\begin{aligned}
& v T=2 \pi R \\
& \frac{v T}{v}=\frac{2 \pi R}{v} \\
& T=\frac{2 \pi R}{v}
\end{aligned}
$$

A7

Substitute the value of $v p$ in the first equation (thot is, of) for v_{f} in the second equation

$$
d=\frac{1}{2}(0 t)(t)
$$

or $d=\frac{1}{2} a t^{2}$

5

Subtracting the same quantity fram both sides of an equation also gives a new equation. For example,
if

$$
\begin{aligned}
a & =b \\
a-4 & =b-4
\end{aligned}
$$

then
and, in general, $a-c=b-c$
Make a new equation by subtracting 2 fram both sides af the equation

$$
x+2=y
$$

Another equation which describes circular motion relates speed v, radius of path R, and acceleration toward the center of revalution ${ }^{\circ} \mathrm{C}$ is

$$
\sigma_{c}=\frac{v^{2}}{R}
$$

Saive this equation for the variable R. You can follow the same steps used in the previous two trames.

8

Given the two equations $a=\frac{v^{2}}{R}$ and $v=\frac{2 \pi R}{T}$, find a in terms of R, T, and π.

A5

$$
\begin{aligned}
x+2 & =y \\
x+2-2 & =y-2 \\
x & =y-2
\end{aligned}
$$

Note that by subtracting 2 from both sides we got x by itself on the left hand side of the equation.

A9

$$
a_{c}=\frac{v^{2}}{R}
$$

Mulsiply both sides by R :

$$
\begin{aligned}
o_{c} R & =\frac{v^{2} R}{R} \\
\text { or } \quad o_{c} R & =v^{2}
\end{aligned}
$$

Divide both sides by ${ }^{\circ} c$:

$$
\begin{gathered}
\frac{a_{c} R}{a_{c}}=\frac{v^{2}}{a_{c}} \\
R=\frac{v^{2}}{a_{c}}
\end{gathered}
$$

A 8

$$
\begin{aligned}
0 & =\frac{v^{2}}{R}=v^{2}\left(\frac{1}{R}\right) \\
\text { but } v & =\frac{2 \pi R}{T} \\
\text { so } 0 & =\left(\frac{2 \pi R}{T}\right)^{2}\left(\frac{1}{R}\right) \\
0 & =\frac{4 \pi^{2} R^{2}}{T^{2} R} \\
\text { or } 0 & =\frac{4 \pi^{2} R}{T^{2}}
\end{aligned}
$$

We can make a new equation by multiplying both sides of an equation by the same quantity. Here are three examples to study.
(i) If $a=b$, then $5 a=5 b$
(ii) If $p=(q+r)$, then $2 p=2(q+r)$

$$
\text { or, } 2 p=2 q+2 r
$$

(iii) If $\frac{m}{2}=4$, then (2) $\left(\frac{m}{2}\right)=(2)(4)$

$$
\text { or, } \quad m=8
$$

Make a new equation by multiplying both sides of the equation

$$
\frac{1}{3} a=b+2
$$

by 3 .

10

Suppose we wish to solve the equation

$$
a_{c}=\frac{v^{2}}{R}
$$

for v.
First solve for v^{2} by performing the necessary operation.

Let us loak at a situation which requires an additional step.
If $v=a t$ and $F=m a$, find an expression for F in terms of m, v, and t. In ather wards, combine the equations to eliminate a.
To da this we can
(i) solve one equation for a, and
(ii) substitute this value for a in the remaining equation.

To solve the first equation $v=$ of for a, what operation would you perform?
$\frac{1}{3} a=b+2$
$\frac{3}{3} a=3(b+2)$
Note that $\frac{3}{3}=1$
and $3(b+2)=3 b+6$
so $\quad a=3 b+6$

A 10

$$
a_{c}=\frac{v^{2}}{R}
$$

Multiply both sides by R :

$$
\begin{aligned}
o_{c} R & =\frac{v^{2} R}{R} \\
o_{c} R & =v^{2} \\
\text { or } \quad v^{2} & =o_{c} R
\end{aligned}
$$

A9

7

$$
\text { Make } c-b=3
$$

into a new equation by multiplying both sides by -1 .

11

If $v^{2}=o_{c} R$,
find an expression for v, that is, solve this equation for v.

10
OUR PROBLEM: If $v=$ of and $F=m a$, find F in terms of m, v, and f.

When we divide both sides of $v=$ of by t, we get

$\frac{v}{f}$	$=\frac{a t}{t}$
$\frac{v}{f}$	$=a$
or $\quad a$	$=\frac{v}{t}$

Now substitute this value for a in the second equation, $F=m a$.

A7

$$
\begin{aligned}
c-b & =3 \\
-1(c-b) & =(-1)(3) \\
\text { Note that }(-1)(c) & =-c \\
\text { ond }(-1)(-b) & =+b \\
\text { so }-c+b & =-3 \\
\text { or } b-c & =-3
\end{aligned}
$$

All

$$
v^{2}=o_{c} R
$$

Take the square root of both sides:

$$
\begin{aligned}
\sqrt{v^{2}} & =\sqrt{\sigma_{c} R} \\
v & =\sqrt{\sigma_{c} R}
\end{aligned}
$$

If you are not familiar with square roois, osk your teacher for help.

A 10

$$
\begin{aligned}
F & =m a \\
\text { but } a & =\frac{v}{t} \\
\text { so } F & =m\left(\frac{v}{f}\right) \\
F & =\frac{m v}{t}
\end{aligned}
$$

Dividing both sides of an equation by the same quantity gives a new equation.

Make a new equotion by dividing both sides of the equation $3 b=12$
by 3 .

12

In the equation

$$
2 d=\sigma t^{2}
$$

d represents the distance on object moves from rest in time t when given a constant acceleration a.

To solve this equation for t, solve first for t^{2} and for t.

11
In the study of electricity you will become familiar with power P, voltage V, current I, and resistance R.

Suppose we are given the relationships represented by the equations $P=V I$ and $I=\frac{V}{R}$ and we w ish to find P in terms of I and R.

What two steps would you perform?

A8

$$
\begin{aligned}
3 b & =12 \\
\frac{3 b}{3} & =\frac{12}{3} \\
b & =4
\end{aligned}
$$

A 12

$$
2 d=a t^{2}
$$

Divide both sides oy a :

$$
\begin{aligned}
& \frac{2 d}{a}=\frac{a t^{2}}{a} \\
& \frac{2 d}{a} \\
& \text { or } \quad t^{2} \\
& t^{2}=\frac{2 d}{a}
\end{aligned}
$$

Toke the squore root of both sides

$$
t=\sqrt{\frac{2 d}{a}}
$$

All

(1) Solve $I=\frac{V}{R}$ for V.
(2) Substifuie this volve for V in $P=V I$.
(Aliernaitively, it is possible to solve $P=V /$ for V and io subsfitute this value in $I=\frac{V}{R}$. This would no: be os direci o method, however.)

Make a new equation by dividing both sides of the equation

$$
2 b=c-4 a
$$

by 2 .

13

Consider again the equation:

$$
v_{f}=v_{i}+a t
$$

If we wish to find on expression for t, we must get at alone on the right hand side of the equation. How can we da this?

12

OUR PROBLEM: If $P=V I$ and $I=\frac{V}{R}$ find P in
terms of I and R.

Periorm the two steps listed in onswer All.

$$
\begin{aligned}
2 b & =c-4 a \\
\frac{2 b}{2} & =\frac{c-4 a}{2}
\end{aligned}
$$

$$
\begin{aligned}
b & =\frac{c-40}{2} \\
\text { or } b & =\frac{c}{2}-2 a
\end{aligned}
$$

A 13

Subtraet v_{i} from both sides of the equotion.

A12
If $\quad I=\frac{V}{R}$
then $I R=V$
or $\quad V=\mathbb{R}$
Substifute this volue for \mathbf{V} in $\mathbf{P}=\mathbf{V} /$:
thus $P=(I R)$ (I)
or $\quad P=1^{2} R$

The two sides of an equation will still be equal to each other if we do any of the following:
(i) add the same quantity to both sides
(ii) subtract the same quantity from both sides
(iii) multiply both sides by the same quantity
(iv) divide both sides by the same quantity.

These four operations which you have learned will be used many times in this program. Use one of the se operations to change the equation

$$
c+b=3
$$

so that c is the only symbol on one side of the equation; we call this "solving the equation for c."

14
Subtrocting v_{i} from both sides of the equation

$$
v_{f}=v_{i}+a t
$$

gives us:

$$
\begin{aligned}
v_{f}-v_{i} & =v_{i}+a t-v_{i} \\
v_{f}-v_{i} & =\text { ot } \\
\text { or } \quad \text { at } & =v_{f}-v_{i}
\end{aligned}
$$

Now soive this new equation for t.

13

We are going to use the following equations to introduce one further step in combining two relationships:

$$
\begin{aligned}
& \text { If } \quad 5 v+2 t=k, \\
& \text { and } \quad v+t=m,
\end{aligned}
$$

find an expression for v in terms of k and m.
First of all, what quontity should we eliminate?

To get calone on the left side of the equotion, subtrac: b from both sides.

$$
\begin{aligned}
c \cdot b & =3 \\
c \cdot b-b & =3-t \\
c & =3-b
\end{aligned}
$$

You hove thus solved the equation $c+b=3$ for c.

Al 14

$$
o t=v_{i}-v_{i}
$$

Divide both sides by a:

$$
\begin{aligned}
& \frac{\partial_{1}}{o}=\frac{v_{i}-v_{i}}{o} \\
& 1=\frac{v_{i}-v_{i}}{o}
\end{aligned}
$$

11

Chonge the equotion

$$
v_{1}+v_{2}^{\prime}=6 h
$$

so that v_{2} is the only symbol on one side of the equation; that is, solve the equation for v_{2}.

15
Here is another equation similar to the one which we just solved:

$$
v_{f}^{2}=v_{i}^{2}+2 a d
$$

Use similar steps to solve the equotion for d.

14
OUR PROBLEM: If $5 v+2 t=k$ and $v+t=m$
find on expression for v in terms of k and m.
To eliminate t we first solve one equation for t. Which equotion should we select so that solving for t will require the lest number of steps?

All

$$
\begin{aligned}
v_{1}+v_{2} & =6 h \\
v_{1}+v_{2}-v_{1} & =6 h-v_{1} \\
v_{2} & =6 h-v_{1}
\end{aligned}
$$

A 15

$$
v_{f}^{2}=v_{i}^{2}+2 a d
$$

Subiract $v_{i}{ }^{2}$ from both sides:

$$
\begin{aligned}
& v_{f}^{2}-v_{i}^{2}=v_{i}^{2}+2 a d \\
& v_{f}^{2}-v_{i}^{2}=2 a d
\end{aligned}
$$

Divide both sides by $2 a$:

$$
\begin{aligned}
& \frac{v_{f}^{2}-v_{i}^{2}}{2 a}=\frac{2 a d}{2 a} \\
& \frac{v_{f}^{2}-v_{i}^{2}}{2 a}=d \\
& \text { or } \quad d=\frac{v^{2}-v_{i}^{2}}{2 a}
\end{aligned}
$$

Al4

The second equation, $v+t=m$

To solve for t we subtract v from both sides.
To solve for t in the first
equation, $5 v+2 t=k$, we must first subtract $5 v$ from both sides and then divide both sides by 2 .

To solve the equation

$$
x-y=3
$$

for y, we may first change the equation so that $-y$ appears alone on the left side. How can we do this?

16

$$
\text { If } \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

write an equation to show how T_{2} depends on the other variables.
We want to write an equation in the farm $T_{2}=$ \qquad . To get
T_{2} on top, begin by multiplying both sides of the equotion T_{2}.

15

OUR PROBLEM: If $5 v+2 t=k$ and $v+t=m$, find an expression for v in terms of k and m.

Salve the second equation for t.

Subtract x from both sides.

A 16

$$
\begin{gathered}
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \\
\frac{P_{1} V_{1} T_{2}}{n_{1} T_{1}}=\frac{P_{2} V_{2} T_{2}}{n_{2} T_{2}} \\
\frac{P_{1} V_{1} T_{2}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2}}
\end{gathered}
$$

A 15

Subiract v from both sides

$$
v+1=m
$$

$$
t-m-v
$$

13

When x is subtracted from both sides of the equation

$$
x-y=3
$$

we get
$x-y-x=3-x$
or
$x-x-y=3-x$
so

Now solve this new equotion for y by multiplying both sides by (-1).

17

In A16, note thot T_{2} is multiplied by $P_{1} V_{1}$ and divided by $n_{1} T_{1}$. To solve for T_{2} we must multiply both sides of the equation by n_{1} and T_{1} (or by $n_{1} T_{1}$) and then divide both sides by P_{1} and V_{1} (or by P, V_{1}).

First multiply by $n_{1} T_{1}$.

16

OUR PROBLEM: If $5 v+2 t=k$ and $v+t=m$, find on expression for v in terms of k and m.

Substitute this volue for t in the first equotion.

A13

$$
\begin{aligned}
-y & =3-x \\
(-1)(-y) & =(-1)(3-x) \\
y & =-3+x \\
\text { or } y & =x-3
\end{aligned}
$$

A 17

$$
\begin{array}{r}
\frac{P_{1} V_{1} T_{2}}{n_{1} T_{1}}\left(n_{1} T_{1}\right)=\frac{P_{2} V_{2}}{n_{2}}\left(n_{1} T_{1}\right) \\
T_{2} P_{1} V_{1}=\frac{P_{2} V_{2} n_{1} T_{1}}{n_{2}}
\end{array}
$$

A 16

$$
\begin{gathered}
5 v+2 t=k \\
\text { but } \quad \begin{array}{c}
5=m-v
\end{array} \\
\text { so } 5 v+2(m-v)=k
\end{gathered}
$$

14

Use the two steps described in frames 12 and 13 to solve the equation

$$
s_{2}-s_{1}=3
$$

for s_{1}.

18

Now divide both sides of the equation in $A 17$ by P, V_{1} to give on expression for $\boldsymbol{T}_{\mathbf{2}}$.

17

OUR PROBLEM: If $5 v+2 t=k$ and $v+t=m$, find on expression for v in terms of k and m.

Finolly solve the equation in onswer frame Al6 for v.

Al4

$$
s_{2}-s_{1}=3
$$

Subiract s_{2} from both sides.

$$
\begin{aligned}
s_{2}-s_{1}-s_{2} & =3-s_{2} \\
-s_{1} & =3-s_{2}
\end{aligned}
$$

$$
-s_{1}=3-s_{2}
$$

Mulsiply both sides by (-1).

$$
\begin{aligned}
(-1)\left(-s_{1}\right) & =(-1)\left(3-s_{2}\right) \\
s_{1} & =-3 \cdot s_{2}
\end{aligned}
$$

or

$$
s_{1}=s_{2}-3
$$

A 18

$$
\begin{aligned}
\frac{P_{1} V_{1} T_{2}}{P_{1} V_{1}} & =\frac{P_{2} V_{2} n_{1} T_{1}}{\left(P, V_{1}\right) n_{2}} \\
T_{2} & =\frac{P_{2} V_{2} n_{1} T_{1}}{P_{1} V_{1} n_{2}}
\end{aligned}
$$

A 17

$$
5 v+2(m-v)=k
$$

Remove porenthesis:

$$
\begin{array}{r}
5 v+2 m-2 v=k \\
3 v \cdot 2 m=k
\end{array}
$$

or
Subiraci $2 m$ from both sides

$$
3 v=k-2 m
$$

Divide both sides by 3 .

$$
v=\frac{t-2 m}{3}
$$

15

Dividing both sides of the equation

$$
3 b=3 c-c
$$

by 3 will get b alone on the left hand side of the equation.
Solve the equation for b by performing this operation.

19

Returning again to the equation

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

Use the steps we used in the last three frames to solve this equotion for T_{1}.

18

Let us review the steps we hove been studying in combining two relationships to obtoins the value of a particular variable.
(i) Examine the two equations to see which quantity should be eliminated -the quantity we are not interested in for the mament.
(ii) Select one of these equotions ond solve far this quantity.
(iii) Substitute the value you obtained for this quantity into the other equation.
(iv) Solve the new equation for the variable whose value is desired.

Check these steps carefully and loak back at previous frames if necessary to see where we applied each step.

$$
\begin{aligned}
3 b & =3 a-c \\
\frac{3 b}{3} & =\frac{3 a-c}{3} \\
b & =\frac{3 a-c}{3} \\
\text { or } b & =a-\frac{c}{3}
\end{aligned}
$$

A19

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

Multiply both sides by T_{1} :

$$
\frac{P_{1} V_{1}}{n_{1}}=\frac{P_{2} V_{2} T_{1}}{n_{2} T_{2}}
$$

Multiply both sides by $n_{2} T_{2}$:

$$
\frac{P_{1} V_{1} n_{2} T_{2}}{n_{1}}=P_{2} V_{2} T_{1}
$$

Divide both sides $P_{2} V_{2}$:

$$
\begin{aligned}
& \frac{P_{1} V_{1} n_{2} T_{2}}{P_{2} V_{2} n_{1}}=T_{1} \\
& \text { or } T_{1}=\frac{P_{1} V_{1} n_{2} T_{2}}{P_{2} V_{2 n_{1}}}
\end{aligned}
$$

16

It is not necessary of course that the symbol being solved for always appear alone on the left side of the equation; the right side will do as well. For example, an alternative way to solve the equation |

$$
s_{2}-s_{1}=3
$$

for s_{1}. would be to add s_{1} to both sides:

$$
\begin{aligned}
s_{2}-s_{1}+s_{1} & =3+s_{1} \\
s_{2} & =3+s_{1}
\end{aligned}
$$

and then subtract 3 from both sides:

$$
\begin{aligned}
& s_{2}-3=3+s_{1}-3 \\
& s_{2}-3=s_{1}
\end{aligned}
$$

Solve the following equation for x in a similar way:

$$
6-x=y
$$

20

Examine carefully the equation

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

and then write down the two operations which you would perform to solve for V_{2}.

Consider these two equations describing uniform acceleration from rest:

$$
v=a t \text { and } d=\frac{1}{2} a t^{2}
$$

(i) If we desire to find a in terms of v and d, what quantity would you eliminate?
(ii) Which equotion would you select to solve for this quantity most easily?
(iii) Solve this equation for the quantity to be eliminated.
(i) \square
(ii) \square
(iii) \square

A16

$$
\begin{aligned}
6-x & =y \\
6-x \cdot x & =y \cdot x \\
6 & =y+x \\
6-y & =y+x-y \\
6-y & =x
\end{aligned}
$$

A 20
(i) Mulfiply both sides by $n_{2} \boldsymbol{T}_{2}$
(ii) Divide both sides by P_{2}

A 19
(1) $\quad 1$
(ii) $v=0$ i
(iii) Divide boih sides by 0 .

$$
\frac{v}{a}=1
$$

or $\quad 1=\frac{v}{a}$

17

Here is onother similar equation:

$$
5 k=5 t+15 s
$$

Solve this equation for k.

21
Perform the two operations listed in A20 to solve the equation

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

for V_{2}.

20

OUR PROBLEM: If $v=a t$ and $d=\frac{1}{2} a t^{2}$,
find a in terms of v and d.
Substitute the value we have found for t into the second equation, and do any necessary simplification.

A 17

$$
\begin{aligned}
& 5 k=5 t+15 s \\
& \frac{5 k}{5}=\frac{5 t+15 s}{5} \\
& k=1+3 s
\end{aligned}
$$

A 21

$$
\begin{aligned}
\frac{P_{1} V_{1}}{n_{1} T_{1}} & =\frac{P_{2} V_{2}}{n_{2} T_{2}} \\
\frac{P_{1} V_{1} n_{2} T_{2}}{n_{1} T_{1}} & =P_{2} V_{2} \\
\frac{P_{1} V_{1} n_{2} T_{2}}{n_{1} P_{2} T_{1}} & =V_{2} \\
V_{2} & =\frac{P_{1} V_{1} n_{2} T_{2}}{P_{2} n_{1} T_{1}}
\end{aligned}
$$

A 20

$$
\text { but } \begin{aligned}
d & =\frac{1}{2} a t^{2} \\
\text { so } & =\frac{v}{a} \\
d & =\frac{1}{2}(a)\left(\frac{y}{a}\right)^{2} \\
d & =\frac{1}{2}(a) \frac{v^{2}}{a^{2}} \\
\text { and } \quad d & =\frac{v^{2}}{2 a}
\end{aligned}
$$

18

We can solve the equation

$$
\frac{b}{5}=2 a+c
$$

for b if we multiply both sides of this equation by 5 .
Solve this equation for b.

22

Solve $\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$ for P_{1}.

21

> | OUR PROBLEM: | If $v=$ of and $d=\frac{1}{2} a t^{2}$ |
| :--- | :--- |
| | find a in terms of v ond d. |

Finolly solve the new equation in the onswer block $A 20$. for 0.

A18

$$
\begin{aligned}
\frac{b}{5} & =2 a \cdot c \\
\frac{5 b}{5} & =5(2 a+c) \\
b & =10 a+5 c
\end{aligned}
$$

A22

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

Multiply both sides by $n_{1} T_{1}$:

$$
P_{1} V_{1}=\frac{n_{3} T_{1} P_{2} V_{2}}{n_{2} T_{2}}
$$

Divide both sides by V_{1} :

$$
P_{1}=\frac{n_{1} T_{1} P_{2} V_{2}}{n_{2} T_{2} V_{1}}
$$

A21

$$
d=\frac{v^{2}}{20}
$$

Multiply both sides by 0 .

$$
o d=\frac{v^{2}}{2}
$$

Divide both sides by d -

$$
0=\frac{v^{2}}{2 d}
$$

19.

We wish to solve the equation

$$
3(a+b)=c
$$

for b.
To solve for a quantity within parentheses, we can first remove the parentheses by performing the indicated operation.

Remove the parentheses in the equation

$$
3(a+b)=c
$$

by multiplying out $(a+b)$ by 3 .

23
An expression for kinetic energy E_{k} in terms of mass (m) ond speed (v) is

$$
E_{k}=\frac{1}{2} m v^{2}
$$

Solve this equation for v.

22

Rewrite this relotionship as an expression for v instead of a.

That is, solve $\quad a=\frac{v^{2}}{2 d}$ for v.

A 19

$$
\begin{aligned}
3(a+b) & =c \\
3 a+3 b & =c
\end{aligned}
$$

A 23

$$
E_{k}=\frac{1}{2} m v^{2}
$$

Multiply both sides by 2 :

$$
2 E_{k}=m v^{2}
$$

Divide both sides by m :

$$
\frac{2 E_{k}}{m}=v^{2}
$$

Take the square root of both sides

$$
\begin{gathered}
\sqrt{\frac{2 E_{k}}{m}}=v \\
\text { or } \quad v=\sqrt{\frac{2 E_{k}}{m}}
\end{gathered}
$$

A22

$$
0=\frac{v^{2}}{2 d}
$$

Multiply both sides by 2 d :

$$
2 a d=v^{2} \text { or } v^{2}=2 a d
$$

Take the square root of both sides:

$$
v=\sqrt{2 o d}
$$

Now we wish to solve the equation

$$
3 a+3 b=c
$$

for b. First get $3 b$ by itself on the left hand side.

24

Our last equation is one which you will study in connection with Newton's Law of Gravitation:

$$
\vec{F}=\frac{G m_{1} m_{2}}{R^{2}}
$$

Solve this equation for R.

23
We could use the same two equations

$$
v=\text { of and } d=\frac{1}{2} a t^{2}
$$

to find d in terms of v and t.
Remember to (i) decide which quantity should be eliminated;
(ii) select one equation to solve for this quantity; I
(iii) substitute this value into the other equation;
and (iv) solve, if necessary, to get the required variable olone.
Now find d in terms of v and t.

A 20

$$
3 a+3 b=c
$$

Subtract $3 a$ from both sides.
$3 a+3 b-3 a=c-3 a$

$$
3 b=c-3 a
$$

A 24

$$
\vec{F}=\frac{G m_{1} m_{2}}{R^{2}}
$$

Multiply both sides by R^{2} :

$$
\vec{F} R^{2}=G m_{1} m_{2}
$$

Divide both sides by \vec{F} :

$$
R^{2}=\frac{G m_{1} m_{2}}{\vec{F}}
$$

Take the square root of both sides:

$$
R=\sqrt{\frac{G_{m_{1} m_{2}}}{\vec{F}}}
$$

A 23

Eliminote a by solving the equation $v=$ of for a

$$
0=\frac{v}{i}
$$

and substifuting its value in
the equation $d-\frac{1}{2}$ ati:

$$
d=\frac{1}{2}\left(\frac{n}{f}\left(i^{2}\right)\right.
$$

$$
d=\frac{1}{2} v t
$$

21

Now divide the equation

$$
3 b=c-3 a
$$

by 3 to solve for b.

This is the end of Equations 2. The last program in this series, Equations 3 Combining Two Relatianships, starts at the front of the book.

24

Here is a sequence of three equations

$$
\begin{align*}
W & =F d \cdots \cdot \cdot(1) \\
F & =m o \cdot \cdot \cdot(2) \\
d & =\frac{v^{2}}{2 a} \cdots \cdots \cdot(3) \tag{3}
\end{align*}
$$

relating to work W, farce F, distance d, acceleration a, and speed v (for motion beginning from rest).

We want to find the amount of work W required to get a body of mass moving at speed v. That is, we want to find W in terms of m and v. First, combine the equations (1) and (2) to eliminate F, a term we are not presently interested in.

A 21

$$
\begin{aligned}
& 3 b=c-3 a \\
& \frac{3 b}{3}=\frac{c-3 a}{3}
\end{aligned}
$$

$$
\begin{aligned}
b & =\frac{c-30}{3} \\
\text { or } b & =\frac{c}{3}-0
\end{aligned}
$$

A 24

Substifute the value of F in equation (2) into equation (1):

		W	$=F d$
bu:		F	$=\operatorname{mo}$
so		W	$=(\mathrm{mo})(d)$
or		W	$=\bmod$

Here is another equation with o quantity in parentheses:

$$
5(x-3)=5
$$

Solve for x following the three steps used in the last three frames.

25

OUR PROBLEM: $W=$ Fd............. (1)
$F=m a \cdot \ldots \cdot(2)$
$d=\frac{v^{2}}{2 a} \cdots \cdot \cdot \cdot(3)$
Find W in terms of m and v.
Combine the new equation $W=\operatorname{mad}$ with equation (3) above and solve for W in terms of m and v by eliminating d.

$$
5(x-3)=5
$$

Remove porentheses by multiplying $(x-3)$ by 5 .
$5 x-15=5$
Get $5 x$ olone on one side of the equotion by odding 15 to both both sides.
$5 x-15 \cdot 15=5 \cdot 15$
$5 x=20$
Divide both sides by 5 .

$\frac{5 x}{5}-\frac{20}{5}$
$x \quad 4$

A 25

$$
\begin{aligned}
W & =\bmod \\
d & =\frac{v^{2}}{20} \\
\text { so } W & =\operatorname{ma}\left(\frac{v^{2}}{20}\right) \\
W & =\frac{\operatorname{mav}}{20} \\
\text { or } \quad W & =\frac{m v^{2}}{2}
\end{aligned}
$$

Suppose yau are asked to salve the equation

$$
3 a+4 b=a+b
$$

for b. Note that the quantity b appears on both sides of the equation.
To solve for a quantity which appears more than ance in an equation, begin by changing the equation so that this quantity appears only an one side.

Change

$$
3 a+4 b=a+b
$$

sa that b appears only on the left side; that is, subtract b from both sides.

One final problem. For an object revolving around a central paint, the amount of centripetal force F_{c} and centripetal acceleration a_{c}, the mass m of the object, its speed v, the radius of revolution R and the time of one revolution T, are related by the se equations:

$$
F_{c}=m a_{c} \quad v T=2 \pi R \quad a_{c}=\frac{v^{2}}{R}
$$

Find an expression for F_{c} in terms of m, T and R.

A 23

$$
\begin{aligned}
3 a+4 b & =a+b \\
3 a+4 b-b & =a+b-b
\end{aligned}
$$

$$
3 a+3 b=0
$$

A 26

$$
F_{c}=\frac{4 \pi^{2} m R}{T^{2}}
$$

If you got this answer, you con feel confident of your ability to hondle simple equations. If you missed this problem, review fromes 24 and 25 , ond then try again. Should you still have trouble, osk your teocher for help.

24

Now solve
$3 a+3 b=a$
for b, thot is, get b alone on one side of the equation.

You hove now reviewed simple equations and the combining of two relationships. You should hove little difficulty in understanding the development of many relationships found in your study of physics.

You moy want to review the se programs at some time later. Just toke some blonk poges and place them over your former onswers and record your answers ogoin and compare with the answer blocks.

$$
3 a+3 b=a
$$

Subiract $3 a$ from both sides.
$3 a+3 b-3 a=a-3 a$

$$
3 b=-2 a
$$

Then divide both sides by 3 .

$$
\frac{3 b}{3}=\frac{-2 a}{3}
$$

$$
b=-\frac{20}{3}
$$

25

Here is an equation with q on both sides of the equation:

$$
2(p-q)=3 h+q
$$

We want to solve this equation for q. First remove the parentheses and get q on one side of the equation.

A 25

$$
2(p-q)=3 h+q
$$

Remove porentheses.

$$
2 p-2 q=3 h+q
$$

Subiroct q from both sides:

$$
2 p-3 q=3 h
$$

$$
\begin{aligned}
2 p-3 q & =3 h \\
2 p-3 q-2 p & =3 h-2 p \\
-3 q & =3 h-2 p \\
\frac{-3 q}{-3} & =\frac{3 h-2 p}{-3} \\
q & =\frac{3 h-2 p}{-3} \\
\text { or } \quad & \\
\text { or } \quad & =-h+\frac{2}{3} p \\
\text { or } & q=\frac{2}{3} p-h
\end{aligned}
$$

Following the steps described in frames 25 and 26, solve the following equation for s :

$$
3(r-2 s)=r+3 s
$$

Note: As was pointed out before, equotions can be solved by isolating the symbol being solved for on the right hond side of the equation. Thus, on alternative woy to solve for s after removing brockets from

$$
3(r-2 s)=r+3 s
$$

would be to (i) add $6 s$ to both sides, or (ii) subtroct r from both sides, and then (iii) divide by 9 .

$$
\begin{aligned}
& 3 r-6 s=r+3 s \\
& \text { (i) } 3 r=r+9 s \\
& \text { (ii) } 2 r=9 s \\
& \text { (iii) } \frac{2 r}{9}=s
\end{aligned}
$$

$$
3(r-2 s)=r+3 s
$$

Remove brockets.

$$
3 r-6 s=r+3 s
$$

Subtract $3 s$ from both sides.

$$
\begin{aligned}
3 r-6 s-3 s & =r+3 s-3 s \\
3 r-9 s & =r
\end{aligned}
$$

Subtract $3 r$ from both sides.

$$
\begin{aligned}
3 r-9 s-3 r & =r-3 r \\
-9 s & =-2 r
\end{aligned}
$$

Then divide both sides by -9 .

$$
\begin{aligned}
\frac{-9 s}{-9} & =\frac{-2 r}{-9} \\
s & =\frac{2 r}{9} \quad \text { See note at leff. }
\end{aligned}
$$

We shall conclude this program with a few simple equations to solve.

Solve $\quad 6 p-2 t=s$

for p.

A28

$$
6 p-2 t=5
$$

Add $2 t$ to both sides.

$$
6 p=s+2 t
$$

Divide both sides by 6 .

$$
\begin{aligned}
p & =\frac{s+2 t}{6} \\
\text { or } \quad p & =\frac{s}{6}+\frac{t}{3}
\end{aligned}
$$

Solve
$m-\frac{1}{2} n=8$
for n.

A 29

$$
m-\frac{1}{2} n=8
$$

Subtroct m from both sides.

$$
-\frac{1}{2} n=8-m
$$

Multiply both sides by -1 .
$\frac{1}{2} n=-8+m$
or $\quad \frac{1}{2} n=m-8$
Multiply both sides by 2 .

$$
\begin{aligned}
n & =2(m-8) \\
\text { or } \quad n & =2 m-16
\end{aligned}
$$

$$
\begin{aligned}
2(3 a+b) & =a+7 b \\
6 a+2 b & =a+7 b \\
6 a-a+2 b & =7 b \\
5 a+2 b & =7 b \\
50 & =7 b-2 b \\
5 a & =5 b \\
a & =b
\end{aligned}
$$

You have now completed Equations 1 and are able to handle the main algebraic aperatians. You can practice this skill in the context of physics equations by going through the pragram Equations 2. It begins at the front of this book just below this program.

[^0]: This publication is one of the mony instructional moteriols developed for the Project Physics Course. These moterials include Texts, Handbooks, Teocher Resource Books, Reoders, Progrommed Instruction Booklets, Film Loops, Transporencies, 16 mm films and laborotory equipment. Development of the course hos profited from the help of many colleagues listed in the text units.

