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1. INTRODUCTION

The main purpose of this paper is to prove the existence of a

random (Nash) equilibrium for a game with a continuum of players.

Moreover, we show how such a random equilibrium existence result can

be used to obtain a Bayesian equilibrium existence theorem for a game

with a continuum of players.

In a seminal paper Nash (1951) introduced the notion of a non-

cooperative equilibrium for a game with a finite number of players.

In particular, according to Nash, a game consists of a finite number

of players, each of whom is characterized by a strategy set and a pay-

off (utility) function, i.e., a real-valued function defined on the

Cartesian product of the strategy sets of the players. A noncoopera-

tive equilibrium for such a game is a strategy vector having the

property that no player can deviate from his/her optimal strategy and

increase his/her payoff. Nash (1951) and subsequently Debreu (1952)

proved the existence of such an equilibrium, using f inite-dimensioaal

fixed point theorems of the Brouwer-Kakutani type.

Three main extensions of the Nash-Debreu results have been ob-

tained in the literature. The first one is due to Glicksberg (1952),

who allowed the strategy set of each player to be a subset of an

infinite-dimensional linear topological space. This equilibrium re-

sult necessitated an infinite-dimensional version of the Kakutani

fixed point theorem [see also Fan (1952) or Browder (1968)]. The

second extension is due to Schmeidler (1973). It allowed for the set

of players to be an atoraless measure space. This development was



-2-

motivated by economic problems [see for instance Aumann (1964) among

others]. In particular, economists are interested in perfectly com-

petitive outcomes, that is, in situations where each player's effect

is "negligible" (which means that he/she is assigned measure zero in

the model). In Schmeidler's approach the strategy sets are finite-

dimensional. Khan (1986) extended this to the infinite-dimensional

case. This work, together with that of Khan-Papageorgiou (1988) and

Yannelis (1987), allowed each player in addition to have a preference

correspondence (instead of the original utility function) which need

not be transitive or complete and therefore may not be representable

by a utility function. The present paper is involved with the third

of the extensions mentioned above. The value of such an extension is

supported by empirical studies, which show that in many instances

players do not behave in a transitive way [see also Shafer-

Sonnenschein (1975) or Yannelis-Prabhakar (1983)]. We present results

which do not only include the three main extensions of the work of

Nash and Debreu, but which also allow for incomplete information. In

particular, our first and main result is an equilibrium existence

theorem which allows the preference correspondence of each agent to

depend on the states of natures of the world, that is, it allows for

random preference correspondences. This result is then used to obtain

an equilibrium existence theorem for a Bayesian game with a continuum

of players.

Our paper is organized as follows: Section 2 contains some pre-

liminary notation and definitions. In Section 3 we state the main

theorem, whose proof, which involves new ideas and techniques, can be
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found in Section 5. In Section 4 we discuss the assumptions of the

main theorem. Section 6 contains an equilibrium existence result for

a Bayesian game with a continuum of players. Some concluding remarks

can be found in our closing Section 7.

2. PRELIMINARIES

We begin by introducing some notation:

2 denotes the set of all nonempty subsets of the set A.,

con A denotes the convex hull of the set A,

/ denotes the set theoretic subtraction,

int denotes interior,

dom denotes domain.

If X is a linear topological space, its dual is the space X' of

all continuous linear functionals on X, and if p e X' and x £ X the

value of p at x is denoted by <p,x>.

Y
Let X, Y be topological spaces. The correspondence $ : X + 2 is

said to be upper semicontinuous (u.s.c.) if the set {x £ X : <J>(x) C V}

is open in X for every open subset V of Y. Let (T,t) be a measurable

space and
<J>

: T * 2 be a correspondence. We say that the graph of
<J>

,

i.e., the set of all (t,x) £ T x X with x £ 4>(t), is measurable if it

belongs to the product a-algebra T © 8(X), where 6(X) denotes the

Borel a-algebra on X. Moreover, $ : T •* 2 is said to be lower

measurable if for every V open in X the set {t £ T : 4>(t) C\ V * 0}

belongs to t. If
<J>

has closed values then lower measurability of
<J>

implies that its graph is measurable, [Castaing-Valadier (1977, III)];

conversely, if <{> has a measurable graph and t is the a-algebra of all

universally measurable subsets of T (in particular, if t is complete
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with respect to some a-finite measure on T) then
<f>

is lower measurable

if it has a measurable graph, [Castaing-Valadier (1977, III)]. Let

(E,ll»ll) be a separable Banach space and let E' be its topological

dual. The weak topology a(E,E') on E will be referred to as the

w-topology; thus, we speak of w-closed, w-compact, etc. There exists

a countable subset {x.} which is dense in E' for the topology a(E',E),

[Castaing-Valadier (1977, 111.32)]. Correspondingly, we define the

weak metric d on E by

00 _. |<x-y,x.>|
d(x,y) := I

2" 1 2-T-
i=l 1 + |<x-y,x.>|

i " i i

Note that the d-topology, induced by d on E, is weaker than the

w-topology. Hence, it coincides with the w-topology of any w-compact

subset of E. Note also that the Borel a-algebras 3(E,d), 8(E,w) and

3(E,II»U) coincide, since

i<x, x :>i
Uxll = sup ,

ieN II x.V
l

where 11*11' stands for the dual norm on E ' . Let (T,x,y) be a finite

E
measure space and let X : T * 2 be a correspondence. The set of

(equivalence classes of) all u-integrable functions from (T,x,y) into

R[E] is denoted by L_[L_], [cf. Diestel-Uhl (1977)]. We say that the
R E

correspondence X is y -integrably bounded if there exists a y-

integrable function g e L_ such that for y-a.e. t e T

llxll <^ g(t) for all x e X(t).
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Correspondingly , we define

Lv := {x e L_ : x(t) e X(t) y-a.e.}.

The usual L -norm on L^ is defined by
E

II x II

x

:= /T
llx(t)ll y(dt).

1
°°

The topological dual of (L_,l«l.) is homeomorphic to the space L , [E]

of all scalarly measurable essentially bounded (equivalence classes

of) functions from (T,T,y) into (E ' , II • II '

) , [see for instance Ionescu- -

1 °°

Tulcea (1969)]. The topology a(L_,L_,[E]) will be referred to as the
E ti

weak topology on L , [Diestel-Uhl (1977)].
E

3. THE MAIN THEOREM

Below we introduce the notion of a random game with a continuum

of players. This notion of a game extends the ones of Khan (1986),

Khan-Papageorgiou (1988), Schmeidler (1973), Yannelis (1987) by allow-

ing the preference correspondence of each player to depend on the

(random) state of nature. The random game with a continuum of players

is described as follows:

Let (T,T,y) be a complete finite measure space, where T is the

set of players , t the set of all possible coalitions, and y is the

set function assigning to each coalition its "weight" for the game.

Let E be a separable Banach space, the set of possible decisions (or

moves) for the players. The players are restricted in making their

decisions as follows: Let X : T * 2 be a given correspondence; then

we require that y-alraost every player t selects his/her decision from
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the set X(t), the strategy set of player t. (The exceptional set would

represent a null coalition of players, whose erratic behavior does not

carry any weight.) Let (ft, J/>p) be a complete probability space,

where ft stands for the possible states of nature
, \fl for set of all

the outcomes, and p for the probability distribution of the outcomes.

Let L denote the set {x e L : x(t) e X(t) u-a.e.}. Let
X E

P:TxftxLv
.-)*2 be a correspondence revealing the individual

preferences of the players. We require that P(t,w,x) C X(t) for all

t e T and weft. For y-a.e. player t e T the set P(t,u),x) consists

of the decisions which he/she strictly prefers to his/her own decision

x(t), given that u) is the state of nature and given that the decisions

of all participating players modulo null coalitions are represented by

x e Ly (the implicit assumption that the players take their individual

decisions- in a measurable way is standard in this context). Thus,

each player's preference pattern is influenced by the decisions of the

other players (modulo null coalitions) and by the realized state of

nature. However, each player must make his/her decision independently

after having observed the realized state co of nature. Thus, the

resultant of the players' actions (even though they act independently

and noncooperatively ! ) can be modelled as a decision rule f : ft * L ,

which prescribes, for each possible state of nature, the decisions of

all players, modulo null coalitions. For reasons of analytical

tractability we require that the decision rule f be (j/£,B(L ))-
x

measurable. Summing up, a random game with a continuum of players is

formally a quadruple T = [(T,T,y), (ft,Jfc,p), X, P] , where the measure

space (T,T,y), (ft,jL,p) and the correspondences X, P are as described
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above. The game T is said to have a random (Cournot-Nash) equilibrium

if there exists a decision rule f* : ft * L such that for p-a.e.
A

o) e ft

P(t,co,f*(a))) = for y-a.e. t e T.

Thus, with probability one there is at most a powerless null coalition

of players having "something left to be desired" under the equilibrium

rule f*: no player t outside the null coalition disposes of a decision

which he/she would strictly prefer to his/her actual decision f*(co)(t)

prescribed by f*. Clearly, the above definition is a generalization

of the usual notion in economics and game theory, [see, e.g., Khan

(1986), Khan-Papageorgiou (1988), Schmeidler (1973), Yannelis (1987)].

[We especially recommend the excellent survey of Khan (1985).]

We now state the conditions needed for the proof of our main

theorem. A detailed discussion of these is given in Section 4.

(CO) the a-algebra T is countably generated,

(CI) X has nonempty convex w-compact values,

(C2) X is y-integrably bounded and has a x Q 3 (E)-measurable

graph,

(C3) dom (con P) is a T O Jt® 8(L )-raeasurable subset of
A.

T x Q x L ,
a.

(C4) there exists no decision rule f : ft * L
y

such that for p-a.e.

u e Q, f(u))(t) e con P(t ,a),f (to) ) for y-a.e. t e T.

We also require the existence of a correspondence

p
a : dom (con P) •* 2 with measurable graph and nonempty values, such

that for every t e T, u e ft,
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(C5) a(t,a),x) C con P(t,u>,x) C X(t) for every x e L
,

X.

(C6) a(t,u),») : Lv * 2 is u.s.c. with w-closed convex values,
A

(C7) dom (con P(t, &),•)) is w-open.

Our main result, whose proof is deferred to Section 5, can now

be stated.

Main Theorem : Let T = [(T,t,u), (ft, j^,p), X, P] be a random ga

satisfying the conditions (C0)-(C7). Then V has a random equilibrium.

As a corollary of our Main Theorem, we can obtain an extension of

the results of Khan (1986) and Schmeidler (1973) by allowing the

utility function of each player to be random. In particular, let

G = [(T,x,y), (ft,J£,p), X, u] be a random game with a continuum of

players as defined above, with the exception that each player t in T

is now equipped with a random utility function u : ft x X(t) * LY + R.
t a

The game G is said to have a random Cournot-Nash equilibrium if there

exists an (Jt,3(L ))-measurable function f* : ft + L such that
A A

u (o),f (u)),f*(co)) = max u (a),y , f *(a>) )
C t

yeX(t)
t

for u-a.e. t e T and p-a.e. to e ft.

Now we can state the following corollary of our main theorem:

Corollary 3.1 : Let G = [(T,T,y), (ft,jt>P^> x » u ^ ^e a rariclom game

with a continuum of players satisfying the conditions (C0)-(C2) and

in addition:

(Nl) The set {(t,u>,y) eTxftxE :y£ X(t), u (u),y,x) _< 6}

belongs to T ®jt® 3(E) for every 6 e R, x e L
,
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(N2) u (oj,*,x) is quasi-concave on X(t) for every t e T, « E 8,

(N3) u (to., • , • ) is continuous on X(t) x L for every t E T, ai e ft.

Then G has a random Cournot-Nash equilibrium.

Proof ; Define the correspondence P:TxftxL->-2 by

P(t,u,x) := {y e X(t) : u (<u,y,x) > u
t
(a>,x(t) ,x)}

.

Then in view of Remarks 4.4, 4.5 in the next section it is easily seen

(given the conditions (N1)-(N3)) that the correspondence P satisfies

all the conditions of the Main Theorem. The resulting random equi-

librium is easily seen to form a random equilibrium for G.

The above Corollary will be used in Section 6 to prove the exis-

tence of a symmetric Bayesian equilibrium. In the next section we

will discuss the conditions used in the Main Theorem.

4. DISCUSSION OF THE ASSUMPTIONS

In this section we discuss a number of cases where the technical

conditions of the Main Theorem are fulfilled. The conditions of the

first two cases presented here are not attractive from a more prac-

tical standpoint, but in the third and fourth case the conditions are

of a rather standard nature. The key instrument there is formed by

recent Caratheodory selection results of Kim-Pikry-Yannelis (1987,

1988).
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Remark 4.1 : Condition (C4) is obviously weaker than

(C4') for p-a.e. to £ ft there does not exist x e Lv such that

x(t) e con P(t,u),x) for y-a.e. t £ T.

Condition (C3) is weaker than

E
(C3 f

) con P : T x fl x L + 2 is a measurable correspondence.

Remark 4.2 : Suppose that

-x*
2 ' --—X

(El) con P : T x Q x LY
- 2 has a x ®J£® 8(L x E)-measurable

graph,

E
(E2) con P(t,o), # ) : LY

-> 2 is u.s.c. and has nonempty w-closed
A

values for every t £ T, oo £ ft.

Then conditions (C5)-(C7) hold.

Proof : Define a := con P; then (C5)-(C7) hold trivially.

Remark 4.3 : Suppose that (El) holds and that

E
(E3) con P(t,o),») : Lv + 2 is l.s.c. and has w-closed values

A

(possibly empty) for every t £ T, w e ft,

(E4) the a-algebra T &j£ is complete with respect to y x p.

Then conditions (C5)-(C7) hold.

Proof : By the definition of lower seraicontinuity , (E3) implies

that (C7) holds. Also, it follows from (E3)-(E4) that the Caratheodory

selection result of Kira-Pikry-Yannelis (1987, Thm. 3.1) obtains.

Hence, there exists a (t ®,J£® 3(L ), 3(E) )-measurable function

a : dom (con P) * E such that for all t e T. and oo £ ft

a(t,u), # ) is continuous on dom (con P(t,u),»)) and

a(t,w,x) £ con P(t,w,x) for all x £ dom con P(t,w,»).

Therefore, a(t,co,x) := (a(t,o),x)} satisfies (C5), (C7).
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In (E2) and (E3) the correspondence con P is required to have

w-closed values. In view of condition (C4) this is hardly satisfac-

tory, since P(t,u,x) represents for player t the decisions which

he/she would strictly prefer over x(t) under the state of nature a).

Fortunately, in the following cases the values of con P need not be

closed.

The following case is a variant of the one above. It follows by

applying the variant in Kim-Pikry-Yannelis (1987, Thm. 3.2) of the

Caratheodory selection result used above. The proof in this case

remains exactly the same.

Remark 4.4 : Suppose that (El) and (E4) hold and

(E5) con P(t,o),») : L »• 2 is l.s.c. for every t £ T, u e ft,
A.

and at least one of the following two conditions are satisfied:

(E6) E is finite-dimensional,

(E6* ) int (con P(t,w,x)) is nonempty for every (t,to,x) £ dora (con P).

Then conditions (C5)-(C7) hold.

Remark 4.5 : Suppose that (El), (E4) hold and that for all t £ T

and to £ ft

(E7) con P(t,u,«) (x) := {y £ L : x £ con P(t,to,y)} is weakly
A.

open for every x £ E,

(E8) rel int con P(t,oj,x) is nonempty for every x £ dom (con P(t,co,»)),

where the relative interior is taken with respect to X(t).

Then conditions (C5)-(C7) hold.



-12-

Proof : The proof is entirely similar to the proof of Remark 4.3;

only this time we invoke to the Caratheodory selection result of

Kim-Pikry-Yannelis (1988, Main Theorem).

5. PROOF OF THE MAIN THEOREM

We begin by proving some preparatory results that are needed for

the proof of our main theorem.

The compactness part of the following result is commonly referred

to as Diestel's theorem. This was given by Diestel (1977) for a

"dominating" correspondence X(t) which did not vary with t. In its

present form the theorem was first stated by Byrne (1978, Thm. 3),

[see also Balder (1990) for an extension involving a.e. convergence of

arithmetic averages]. Note also that the nonemptiness part of the

result below is a direct consequence of the von Neumann-Aumann

measurable selection theorem, [Castaing-Valadier (1977, III. 22)].

Theorem 5.

1

: Suppose that conditions (C1)-(C2) hold. Then L is

a nonempty convex and weakly compact subset of L .

Proposition 5.2 : Suppose that conditions (C0)-(C2) hold. Then

the weak topology of L coincides with the topology induced by the
A

weak metric D of L .

E

Proof : By (CO) the Banach space (L , 11*11 ) is separable. Thus, LEl E

has a well-defined weak metric D (see the definition given in Section

2). By (CI), (C2) Lv is a weakly compact subset of L_ (apply Theorem

5.1), so by what was said following the introduction of the weak

metric, the weak topology and the D-topology coincide on Ly .
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Let (Y,p) be a separable metric space, and let y : T x ft * Y -*- 2

be a given correspondence such that Y(t,w,y) C X(t) for every t e T,

weft. Correspondingly, we define iji : fl x y ^ 2 ^ by

4»(u,y) := {x £ L : x(t) e Y(t,u>,y) y-a.e.}.

The first part of the next result is well-known [see for instance

Khan-Papageorgiou (1987) or Yannelis (1987, 1989)]. We give a new

proof, which matches the proof of its second part.

Proposition 5.3 : Suppose that (CO), (CI), and (C2) are valid. If

Y(t,uj,») : Y + 2 is w-u.s.c. with w-closed, convex values

for every t £ T, co e ft,

then

iJKw , •) : Y > 2 ^ is weakly u.s.c. for every weft

If in addition

Y has ax® $,$ 8 (Y x E)-measurable graph,

then there exists a correspondence ip ' : ft x Y + 2 x such that

^ ' (w , • ) = «|/((0,«) for p-a.e. to e ft, and

ty ' has a (7u® 3(L )-measurable graph.

Proof : To prove the first statement, it is enough, in view of

Theorem 5.1, to prove that for arbitrary fixed u) e ft the corre-

spondence <J;(w,«) has a closed graph in Y x L [Aubin-Cellina (1984,
A
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Cor. 1.1.1)]. To this end, let {y } converge in Y to y, and let

{x, } converge weakly to x in L , x, e ^(w,y, ). Define

m:TxftxYxE->- (0,-H») by

m(t,u),y,x) :
=

if x e T(t,w,y)

+00 if not ,

Since w e ft is fixed, we shall abbreviate as follows:

l(t,y,x) := m(t,w,y,x).

The desired conclusion x e ^(^,y) follows now immediately from apply-

ing a classical lower semi continuity theorem to the outer integral

functional I. : Y x r > {0,+°°}, given by

^(y.x) := J T
l(t,y,x(t)) y(dt),

Note that for every t e T the function l(t,»,«) is l.s.c. on Y x (E,w),

since the graph of Y(t,oj,«) is a closed subset of Y x X(t). Note also

that the function l(t,y,») is convex. Thus, all the conditions of the

lower semicontinuity result in Balder (1984, Thm. 3.1) hold, and we

obtain

I.(y,x) _< lim inf I i^Yk »\)
= °-

(Note the y 's act as constant functions on T,' which converge Co the

constant function y. ) In view of the definition of outer integration it

follows immediately that y-a.e. l(t,y,x(t)) _< 0, i.e., x(t) e y(t,o),y).

For the proof of the second part we employ a very similar argu-

ment, which is based on the key observation that the Borel a-algebras
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8(14,1*1.) and 8(L ,D) coincide (as was noted following the definitionEl E

of the weak metric). Note first that raeasurability of the graph of y

is actually equivalent to x ® Jl ® 3(Y x E)-measurability of m,

defined above. Also, as we already saw above, l(t,*, #
) := m(t,u,»,«)

is l.s.c. on Y x (E,w)—hence a fortiori on Y x (E,ll»ll) for every

t £ T, ti) e ft. Thus, ra is a so-called normal integrand on

T x n x y x (E,ll«ll). By the construction given in Balder (1984,

Appendix) there exist a nondecreasing sequence {m } of

t ® Jt® 3(Y x E)-measurable functions m rTxftxyxE-*- [0,-H»)

and a T ©^-measurable subset N of T x Q , (y x p)(N) = 0, such that

for every (t,u) e T x fi, n e N

In (t,w,y,x) - m (t ,w,y' ,x' ) I < np(y,y') + nllx - x'
n n —

for all y e Y, x e E and for every (t,co) e (T x Q) / N, n e N

lim m (t,a),y,x) = m(t,w,y,x) for all y e Y, x e E.
n n

From the second property it follows immediately, by the monotone

convergence that for p-a.e. oj e R for all y e Y and x e L

(5.1) lira + I (u,y,x) = I (u),y,x),
n m m J * *

n

where the integral functionals 1,1 : ft x Y x J. > [0,+°°] are
m' ra X

n

defined by

I
m
(u),y,x) := / m(t,o),y,x(t)) u(dt),



-16-

etc. (note that there is no longer need for outer integration). By

the Lipschitz continuity property of the {m } it follows elementarily

that for every n £ N

I (u),»,«) is continuous on Y * (LJI*!!,) for every co e ft.
m El
n

Also, it is a basic fact, [e.g., see Neveu (1964, III)] that for

every n e N

I (• ,y,x) is ,/c -measurable for every y e Y, x e L .
in A
n

Therefore, it follows from Castaing-Valadier (1977, III. 14), in view

of the separability of Y x (L„, II • II
, ) , that for every n e N

I is Jl® B(Y x L)-measurable.
m X
n

Hence, by (5.1)

I is Jt® 3(Y x I. )-raeasurable.
ra X

Finally, it remains to define
(Jj

'
: f! x Y + 2 A by specifying its graph

to be the set

{(w,y,x) e 8 x Y'x L : l ira + I (u),y,x) < 0};
X n m —

n

then the proof is over, in view of (5.1) and the definition of m.

Remark 5.4 : An alternative proof of the measurability part of

Proposition 5.3 can be given using Castaing-Valadier (1977, III. 15).

In contrast to the proof given above, one then has to exploit the fact

that y has convex values.



-17-

We are now ready to complete the proof of our Main Theorem.

Proof of the Main Theorem : To begin with, note that by Theorem

5.1 and Proposition 5.2 the space (L ,D) is raetrizable, compact and

hence separable for the weak topology. (This space will play the role

of (Y,p) in the previous section.) We define the correspondence

F : T x B x L
x

2
E

by

F(t,u,x) :=

a(t,to,x) if x e dom (con P(t,to,0)

X(t) if not.

From the definition of upper semicontinuity it follows from (C5), (C6)

that for every t e T, to e ft, F(t,u>,») : L^ * 2
J

is upper semicon-

tinuous; also, F(t,oo,») has w-compact convex values in X(t) for every

t e T, oj e ft by (CI), (C5) and the properties of a. Therefore, by

Proposition 5.3 the convex-valued correspondence B : ft x L * 2 x
,

a.

defined by

B(a),y) := {x e L : x(t) e F(t,o»,y) for y-a.e. t e T}
,A

is such that for every weft

B(oo,») : Ly
* 2 x is weakly u.s.c.

Also, for every go z ft, y e LY the correspondence F(»,oj,y) has a

measurable graph and nonempty values, by (C3) and the definitions of

a, F. Hence, the values of B are nonempty by the von Neumann-Aumann

measurable selection theorem [Castaing-Valadier (1977, 111.22)]. By

Theorem 5.1, L is a nonempty convex weakly compact subset of L .



-18-

Hence, it follows from the Fan-Glicksberg fixed point theorem [Fan

(1952), Glicksberg (1952)] that for every u e ft

(5.2) there exists x e L such that x e B(to,x).
X

By (C3) and the definitions of a , X the correspondence F is seen

to have a t ® Jf, ® 3 (L x E) -measurable graph. Hence, by Proposi-
x

tion 4.3 there exists a correspondence B' : ft x LY
»• 2 *" with

A.

Jfc ® 3(L x L )-measurable graph such that B'(u),») B(to,») p-a.e.
x x

Therefore, it is immediate that the graph

G := {(o),y,x) e ft x l x L : y = x, x e B'(o),y)}
x x

of the correspondence $ f) B' is also i/£® 3(L x L) -measurable,
X X

where $ : SI x L + 2 ^ is defined by $(w,y) := {y} (note that the
x

graph of $ is measurable by virtue of the fact that L is separable
x

and metric). By (5.2) we have that for p-a.e. weft the section of G

at to is nonempty. Hence, by the von Neumann-Aumann measurable selec-

tion theorem [Castaing-Valadier (1977, III. 22)] there exists a

( Jt ® 3(L ), 3(L x L ))-measurable function h : ft + L x L suchXXX a. X

that

(a) ,h. (co ) ,h ?
(o)) ) e G for p-a.e. to e ft

,

where h , h_ stand for the coordinate functions of h. In particular,

this implies the following

h„(o)) e B' (a) ,h„(a)) ) for p-a.e. to e ft.
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By the definition of B' and B, this implies that for p-a.e. u £ fl

h„(o»)(t) £ F(t,oj,h
2
(u))) for p-a.e. t e T.

If there were a set C etffc. , p(C) > 0, such that

dora (con P(t,oj,h (w))) # p-a.e. for every u e C, then by the defini-

tion of F for every u e C

h (co)(t) e a(t,u,h (oj)) e con P(t,to,h (cj)) for p-a.e. t e T.

This would contradict (C4). Thus we conclude that for p-a.e. co e ft

P(t,w,tu(a>)) C con P(t,co,h
2
(w)) = for p-a.e. t e T,

which proves that h
9

is the desired rule to achieve a random equi-

librium for the game I

.

6. THE EXISTENCE OF A SYMMETRIC BAYESIAN EQUILIBRIUM

We now show how our main result can be used to prove the exis-

tence of an equilibrium for a Bayesian game with a continuum of

players. For somewhat similar finite player Bayesian games, existence

results have been obtained by Balder (1988), Harsanyi (1967), Milgrom-

Weber (1985) and Yannelis-Rustichini (1988).

A symmetric Bayesian game with a continuum of players is a

sextuple B =
[ (T,t ,p ) , (ft

, Jt,p) ,X, u, J ,q], where (T,x,p) is the

measure space of players , (^,(/£,p) a probability space denoting all

the possible states of nature , whose probability distribution p may be

unknown, X : T + 2 the decision correspondence from T into the

separable Banach space E, u : 0. x X(t) x L_ •* R the random utility
t A.
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function of player t in T, 2) a sub-o-algebra of JU representing the

information pattern available to the players (supposed to be the same

for all players; hence the adjective symmetric for the game), and q

a transition probability from (ft
, 3 ) into (tt,Jt) representing play<

t's a posteriori belief about p : the realized weft, (by means of the

possibly incompletely known distribution p) gives rise to player t

observing an outcome S in J> ; then q (u);») represents player t's

belief about p, based on the observed u. A symmetric Bayesian equi-

librium for B now consists of an 3 -measurable function f* : ft •*• L
A.

such that

v
t
(u,f*(o)),f*(u»)) = max v (w,y,f*(u>)

)

yeX(t)

for y-a.e. t e T and p-a.e. weft.

Here we define player t's a posteriori expected utility function by

v
t
(w,y,x) := JV u

t
(u)',y,x) q

t
(u;du>')

The result below may be seen as an extension of Theorem 3.3 in

Yannelis-Rustichini (1988) to Bayesian games with a continuum of

players.

Corollary 6. 1 . Let B =
[ (T,t ,y ) , (ft

, (JXT, p ) ,X, u, ^ ,q ] be a Bayesian

game with a continuum of players satisfying the conditions (C1)-(C2),

(N1)-(N3). Moreover, suppose that

3* s countably generated,
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and that for every t e T, co e Q

u (co,»,«) is q (a) ; • )-integrably bounded.

Then B has a symmetric Bayesian equilibrium.

Proof : By the dominated convergence theorem it follows immediately

from (N3) that for every t e T, oj e Q, v (co , •
,

• ) is continuous on

X(t) x L„. Moreover, it is easily seen that v is measurable in the

sense that the set {(t,o,y) eTxft*E:ye X(t), u (w,y,x) _< 6}

belongs to T ®S £> 3(E) for every 6 e R, x e L . It follows from
A.

(N2) that v ((i),«,x) is quasi-concave on X(t) for every t e T, oo e fi,

x e L . We can now consider the Bayesian game B as a random game

[ (T,t ,\i ) ,
(ft

,
jt ,p) ,X,v] . This random game satisfies all the condi-

tions of Corollary 3.1, so there exists an 3 -measurable equilibrium

decision rule f* : ft + L for the random game. This rule is precisely
A

the desired symmetric Bayesian equilibrium rule for B.

7. CONCLUDING REMARKS

Remark. 7.1 ; The Main Theorem as well as Corollary 3.1 can be ex-

tended in a straightforward manner to random abstract economies, that

is, abstract economies as defined in Khan-Papageorgiou (1988) or

Yannelis (1987), with the only exception that preference correspondences

as well as constraint correspondences are now allowed to depend on the

states of nature of the world. Obviously, such results can be used to

obtain equilibrium existence results for either random or Bayesian ex-

change economies.
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Remark 7,2 : The form of the Bayesian game with a continuum of

players described in Section 6 can be generalized by replacing the

random utility function u : ft x X(t) x L + R of each player by a
t A

random preference correspondence P : T x 8 x L + .2 , In this new
A

setting the a posteriori preference correspondence of player t is now

defined by

n(t,u),x) := !Q q (ujdw') P(t,co',x),

where the integral of the correspondence P(t,»,x) is defined in the

usual way [see for instance Yannelis (1989)]. By setting in Theorem

6.1, E = R and replacing the assumptions (N1)-(N3) by:

(Nl ' ) con II(»,»,») is lower measurable,

(N2') for each measurable function x : ft + Ly ,

x (a)) i con II(t ,a),x(oj) ) for almost all t in T and for

almost all a) in ft,

(N3') for each fixed t in T and w in ft, P(t,u),») is l.s.c,

P is integrably bounded and it has a measurable graph,

then one can prove the existence of a symmetric Bayesian equilibrium

for this more general form of a Bayesian game. In particular, by

Theorem 3.3 in Yannelis (1989) for each fixed t £ T and weft,

H(t,u),») is l.s.c. Hence, (in view of Remark 4.4) it follows from the

Main Theorem that there exists an
J)
-measurable function f* : ft + L

such that for almost all t in T, II(t ,w, f *(to) ) = for almost all weft,
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