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In this paper, we discuss equilibrium and perfect equilibrium in a

simplified model of the supergame. We assume that players can observe

the mixed moves employed by all players at each previous stage. For

this model, we obtain a complete characterization of the set of equilibrium

outcomes, and a fairly weak sufficient condition for this set to coincide

with the set of perfect equilibrium outcomes. Inter alia , simple proofs

of the Folk Theorem and the result that the requirement of perfection

does not eliminate any equilibrium outcomes for the undiscounted supergame

are presented.





Equilibrium and Perfection in Discounted Supergames, I: Public Lotteries

I. Introduction

This paper deals with some results on the characterisation of pay-

offs sustainable by equilibria or perfect equilibria of infinitely-

repeated games with discounting. This work extends previous work on

supergames without discounting by Aumann (1976) , Aumann and Shapley, and

Rubenstein (1977) . In this paper, we work with a simplified model of the

supergame used by Roth and Rubenstein (1977), in which players can observe

the behavioral strategies used by their opponents at the conclusion of each

play. In a subsequent paper, we show that passage to the more general

model in which only the realisations of these strategies can be observed

does not materially affect the results.

In the undiscounted case, where players evaluate the infinite streams

of payoffs accruing to them by the limit of means, should it exist, it

has been demonstrated that any outcome that is feasible and individually

rational in the stage game can be sustained by a Nash Equilibrium of the

supergame. In this context, an outcome is feasible if it belongs to the

convex hull of the pure-strategy payoffs and is individually rational

if it yields each player a payoff at least as great as his minmax payoff

in the game. Moreover, it has been demonstrated that the additional

requirement of perfection does not affect the set of outcomes.

In the supergame with discounting, we shall find that neither of

these results goes through. In the first place, not all outcomes in the

convex hull of the pure-strategy payoffs are feasible. Of those out-

comes which are feasible, not all the individually rational ones can

be obtained as equilibrium outcomes for the discounted supergame, since



-2-

myopic players will not be deterred by the promise of eventual punish-

ment. Finally, not all equilibrium outcomes can be supported by perfect

equilibrium outcomes, although there are several sufficient conditions

that include many games of theoretical and economic interest.

The organisation of the paper is as follows: in the first section

we describe the model of the supergame we are using. In the second

section, we describe the set of attainable outcomes in the discounted

supergame. The third section characterises the set of equilibrium out-

comes, while the fourth section describes certain sufficient conditions

for this set to co-incide with the set of perfect equilibrium outcomes,

and provides a simple economic example of the possibility that these

sets may differ.

II. The model

The verbal description of the model is as follows : we begin with

a stage game in normal (strategic) form, with a finite number of players,

each of whom selects one of a finite number of pure strategies. This

game is to be played a denumerable infinity of times, and at each play,

the choices of the players are allowed to depend on the entire previous

history of the game. In particular, this means that each player is

allowed to observe the mixed strategy in the stage game used by each

of opponents at each previous stage. This is a strong assumption,

and requires some justification. One justification is that one might

think of this as a situation in which only pure strategies are allowed,

and where the stage game has a continuous payoff function defined

over convex, compact and finite-dimensional pure strategy sets

for each player. Another interpretation is that the players meet on
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successive days, but that play during each day consists of a sufficiently

large number of repetitions of the specified mixed strategies for that

day that each player can observe the mixtures used by his opponents with

probability arbitrarily close to unity. To this, we add the further

condition that discounting is done on a daily, rather than a continuous

basis, and that players' strategies are fixed during the course of each

day's play. A stronger justification will be provided in the sequel,

where we demonstrate that the only effect of relaxing the assumption is

to shrink the set of attainable outcomes, and that the restrictions of

the sets of equilibrium and perfect equilibrium outcomes found in this

paper to the new set of attainable outcomes form the new sets of equi-

librium and perfect equilibrium outcomes. The result of an n-tuple of

supergame strategies is an infinite sequence of n-tuples of mixed strat-

egies in the stage game; to this, we associate a corresponding infinite

random sequence of payoffs. There are various ways for the players to

evaluate these sequences, but we shall concentrate on the discounted

sum, normalised to lie within the convex hull of the payoffs in the

stage game.

2.1 Definition : The stage game is a triple [N,S,h], where N is a finite

set of players ; S = x S . is the set of n-tuples of pure strategies
i«N

X

(also finite), and h: S + R is the payoff function . We also define

the mixed extension of the stage game to be the triple [N,M,H] , where

N is as above; M = * M. is the set of mixed strategies , with generic
iSN

X

member

m = (m. , . . .
,m ) where, for each i
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m. £ A | S .
J

is a probability distribution on the members of S .

,

Thus, m is a probability distribution on the members of S, although not

all such probability distributions (called correlated strategies ) can be

represented as members of M. If m(s) is the probability that the n-tuple

of pure strategies s, will be played:

m(s. , . . . ,s ) = IT m. (s .)
1 n ._,, 1 l

we define the expected payoff H(m) by

H(m) = Z m(s)h(s)
s

It is clearly a continuous function, linear in each of the numbers m.(s.)

2.2 Definition : Let [N,S,h] = G be a stage game; G* = [N,F,P] is a

supergame of G if the following are satisfied: F = x F. is the space

i^N
1

of pure supergame strategies. For each member f. S F., we write

f. = (f.,...,f.,...), where
i l l

f
1
^ S.

l l

f
Z

: [S]
t_1

-» S,

and P = [P, ,...,P ] where each P. is a partial ordering on the space RIn i

of infinite sequences of real numbers. P. represents the preferences of

player i over the infinite streams of payoffs resulting from plays of

the supergame.
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2.3 Definition ; Let G* be a supergame, and f an n-tuple of pure

strategies for the supergame. We can calculate a sequence

s(f) = (s (f),...,s (f),...) of outcomes in the stage game as follows:

s
1
(f) = r

X
(f) = (f

1
f
1
) = f

1

1 n

s
C
(f) = (f

1

t
(r

t-1
(f)),...,f

t
(r

t"1
(f))) = fV1

^))
i n

r
t
(f) = (r^C^.s'Cf))

Thus, s (f) is the action specified by f for the t— play of the game

(if all previous plays have been according to f) , and r (f) is the cumu-

lative record of play up to and including the play on date t. To the

sequence s(f) we can associate a sequence of payoffs

g(f) = (g, (f) ,...,g^(f),...,

g

i
(f) ,...) in the obvious way, using the

pure strategy payoff function h from the stage game:

gj(f) = h
i
(s

t
(f))

and for convenience, we shall write g(f) - (g (f),..., g (f ),...) and

g(f) = (
g;L

(f),...,g
n
(f)).

2.4 Definition : A discounted supergame is a supergame where each player

i is characterised by a discount rate 6. £ [0,1], and has the preference

i t ] t °°

relation P. defined by (x ,...,x ,...) P. (y ,...,y ,...) (where x,y e R )

iff

oo

hj(x) = (1 - 6.) E 6
t_1

x
t
1 (1 - S

±
) Z &

t

±

~1
y
t

= h*(y)

t=i
1

t=l

By an obvious abuse of notation, we can define a payoff function

h : F ->R for the discounted supergame:
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hj(f) =iu(
gi

(f))

One of the nicest features of the discounted supergame is that with this

payoff function, the set of payoffs h (F) is a compact subset of CH(h(S))

and also that h (f) is continuous in f. There are other preference rela-

tions that have been used, including the first Caesaro mean of the pay-

offs and the overtaking relation. However, the first of these will not

give an answer for payoff sequences that are not Caesaro summable, while

the second cannot be represented by a payoff function. The next problem

is that of mixed strategies . Since these supergames are games of perfect

recall, it follows from Aumann's (1964) extension of Kuhn's (1953) theorem

that it is sufficient to confine our attention to behavioral strategies;

in this case, a behavioral strategy is a device which selects a mixed

strategy in each stage game.

2.5 Definition : Let G* be a supergame, and define F = x F. to be the

i€N
1

space of m-tuples of behavioral strategies for the supergame. The generic

member f. € F. is defined by:

I1 e m.
i i

IS [M]
t_1

+ M.
i

L l

For any n-tuple f of behavioral strategies, we can calculate a sequence

m(f) of mixed stage game outcomes as follows:

m
1
^) = (?*..,

f

1
) = I1 = r

L
(f)

1 n

mM) = (f!
:

(r
t" 1

(f)),...,f
t
(r

t" 1
(f))) -f^r^Cf))

1 n
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r
C
(f) = [r

t"1
(f),m

t
(f)]

Since the choices are independent at each stage, the expected payoff

sequence is well-defined by G(f) = [G.(f): i £ N, t = 1, . . . ] , where

G.(f) = H.(m (f)). The discounted-supergame "payoff function" resulting
00

from this definition is H
6

: ? •* R
n

, where H
6
(7) = I 6

t "1
G
t
(T).

1
t=l

It only remains to define equilibrium and perfect equilibrium for

the discounted supergame.

2.6 Definition ; Let f S F be an n-tuple of behavioural strategies for

the discounted supergame G*. We say that f is a Nash Equilibrium iff,

for each player i, and each behavioral strategy f! 6 F
. , we have

where?,., denotes the n-1 tuple (f", f
i-l'i+1' *

* '

'

f
n^

° f behavioral

strategies used by the other players. f is a perfect equilibrium iff,

for every t, and for every member m' of [M] , the "continuation strategy"

T'( :m') defined by:

f! (m ,...,m : m') = f. (m ,m , . . .
,m )

is an equilibrium in G*. As a further matter of notation, we shall de-

note the set of members of CH(h(S)) that can be achieved as H (f) for

some Nash Equilibrium f by e.p. , while the subset of e.p. that can be

achieved by perfect equilibria will be denoted p. e.p.
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III. The Set of Attainable Outcomes

This section concerns the observation that, for sufficiently small

values of the individual discount rates, it may happen that not all mem-

bers of CH(h(S)) can be achieved in behavioral strategies, let alone in

pure strategies. This is in sharp contrast to the situation for the

undiscounted game, where any point in CH(h(S)) can be achieved in pure

strategies, by playing the relevant pure strategy n-tuples of the stage

game with frequencies that correspond to the weights used in the convex

combinations forming CH(h(S)) .

For simplicity, we work with the case where &. = 6, for all i. In

any game [N,S,h], we can isolate three subsets of CH(h(S)), corresponding

to the outcomes that can be achieved using pure, mixed and correlated

strategies in each stage. Lett C = CH(S) be the set of correlated strat-

egies for the stage game, we define

3.1 Definition: D = {x e CH(h(S)) s.t. there exists an infinite sequence
P

(s ,...,s ,...) of members of S with the property that

00

x = (1 - 6) Z fi^hCs')}
t=l

5 It
D = {x e CH(h(S)) s.t. there exists an infinite sequence (m ,...,m ,...)
m

of members of M with the property that

00

x = (1 - 6) Z S
t"'l

E(,m
t
)

t=l

D = {x e CH(h(S)) s.t. there exists an infinite sequence
c

(c ,...,c ,...) of members of C with the property that

x = (1 - 6) Z 6
t"1

H(c
t
)

t=l
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Clearly, since H(C) = CH(h(S)), we have D = CH(h(S)) for all 6. More-

over, in cases where H(M) = CH(h(S)), as with Prisoner's Dilemma, we

have D = CH(h(S)). In general, the definition of the set of attainablem

points will hinge on the set of weights that can be obtained through the

use of the relevant strategies. For example, if the discount rate is

0.1, the first pure (or mixed) payoff will have a weight of 0.9; this

means that the eventual discounted sum must be close to one of the orig-

inal pure or mixed strategy payoffs for the stage game. To see what this

means in terms of D , let us observe that the weight given to a particular
P

pure-strategy outcome must be of the form

CO

(1 - 6) E a 5
t-1

t=l

where a = (a.. , . . . ,a ,. . .) is some infinite sequence of 0's and l's. If

we are taking convex combinations of m such pure-strategy outcomes, we

need a characterisation of the feasible convex combinations.

3.2 Definition : Let A e (0,1) , and let A be the standard m-simplex.

Define

A j. = {A € A : there exist sequences a.,..., a s.t.

i) a. = (a. , . .

.

,a., . „ .) , a. {0,1} each i,t1111
m

t
ii) for all t, Z a. = 1, and

i=l
X

00

iii) A. = (1 - 6) I a
t
6
t"1

}

t=l
i

This is the set of weights on pure-strategy payoffs available via the use

of pure strategies in the discounted supergame. We have the following

result.
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lt is clear that for all t, i, X. _> , and that for all i,

lim X. = 0. Moreover, from the construction it follows that for all T,

t-w»

A . XJ+1 + (1 - 6) Z aV1

1 X
t-1 "

which completes the proof. QED

When we turn to mixed strategies, we should expect some relaxation of

this condition. Indeed, in many cases we can achieve the entire set of

outcomes. We shall not continue with our characterisation of the set

of attainable outcomes, since there is insufficient generality to war-

rant it. However, we shall observe that there is a natural upper bound

for i that in most cases is less than the number of pure-strategy com-

binations. CH(h(S)) C R
n

, so that we need use no more than N+l pure-

strategy combinations. On the other hand, if N >_ 2 and |S.
| >_ 2 for

each i, then |s| > N+l so we obtain:

Theorem 2.^ : If 6 >_ 1 - — , then the set of outcomes obtainable via pure

strategies coincides with CH(h(S)).

We close this section with an example of a well-known game where

D t D
6

t D°: the Battle of the Sexes. This is a two-player game,
p m c

where each player has two pure strategies:

L R

T (2,1) (0,0)

B (0,0) (1,2)

To begin with, the following three figures show the stage-game payoffs

to pure, mixed and correlated strategies, respectively.
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3.3 Proposition : 6 >
m " 1

, iff A™ = A
m

.
* — m o

Proof : if a. = 1, then A. > (1 - 6), so a necessary condition for the

conclusion of the Proposition is that max X . >_ (1 - 6) for every X G A

But X S A implies that max X. > —, and this bound is tight, so we know
l — m

i

the necessary condition is only satisfied if

1 i <• t-
m - 1— > 1 - 6; or 6 >

m — — m

It remains to be shown that no further restrictions result from the choice

of subsequent weights. To do this, we shall exhibit a procedure by which

the a. can be calculated explicitly. To begin with, fix X S A . Let

in e argmax X.. We know that X. > — , so that by hypothesis, X. > 1 - 6.l.i 1, — m l, —
i 1 1

Therefore, let us set a. =1, and a. = for all i p i.. , and form a new

vector X by X. = X. for j r i, , and X. = X. - (1 - 6) . This new vector

belongs to

m
A° = {X G R°: Z X. = 1 - (1 - 6) = 6}
1

3-1
J

1 X

Once again, we know that max X . > — . The condition for us to be able to
l — m

2
X

1
choose a appropriately is that max X. >_ (1 - 6)6, so that this condition

i

is satisfied if

6 /, <.\ ,. . m — 1— > (1 - 6)6; or 6 >
m — — m

so that successive levels of choice of a introduce no new conditions.

We have now demonstrated the truth of the Proposition, since the procedure

begun above can be iterated by choosing i € arg max X. , setting

a
C =1 = 1- a

C
, all i + i , and letting X. = X. for j j= i , while

i 2 t J J t

,t+l ,t
fT, n x .

X. =a. «= o (1 - 6)

.
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\
•

pure mixed correlated

To construct the set of payoffs obtainable via pure strategies, given a

small discount rate, we first add a shrunken replica of the convex hull

of the original payoffs near each of the pure-strategy payoffs. The

final payoff must lie within one of these convex hulls; which one is

determined by the choice of the first-period strategy combination. Next

to this we have repeated the process within each of the nex convex hulls,

adding shrunken replicas to the vertices representing the pure choices

at the first and second stages. The process continues inductively, re-

sulting in a sparse nondenumerable set of payoffs.

i>

>

Stage 1

>
>A

Stage 2 Stage 3
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To construct D , the process is only slightly more complicated. For

each point in the set of payoffs obtainable via mixed strategies, there

will be a shrunken replica of that set, and we must take the envelope

of these attached replicas. In the following figures, we show a few of

these attached replicas, and the envelope of those replicas.

First stage ; some replicas the envelope

The next step is to repeat the process for each point added at the

second step: this means that we must remain within the envelope of the

convex hulls of the shrunken replicas added at the first stage: this

envelope, shown in the left-hand figure below, represents the maximum

area we can hope for. In the figure on the right, we have illustrated

the result of this second step,

The outer limit the second-stage envelope
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XXX
These pictures make it clear that D t D ^ D .r p m c

IV. Equilibrium in the discounted supergame

Any n-tuple of supergame strategies can be divided into two parts:

the specified sequence s(f) that results from adherence to the strategies

f , and various contingent sequences resulting from deviations from the

specified sequence. Since each player knows the strategy descriptions

of the other players in the equilibrium, each player can predict the

future course of play for any choice of his own actions.

One immediate consequence is that any n-tuple of supergame strat-

egies whose specified sequence consists of equilibria of the stage game,

and which makes the same prescription for any history is an equilibrium.

Thus, any sequence consisting of members of the set of stage-game equi-

libria can be sustained as the outcome of such an "open loop" equilibrium

for any monotonic evaluation relation.

In general we shall be concerned with outcomes that cannot be

achieved in this manner, so that we shall need to consider the concept

of punishment . In general, the worst punishment that can be inflicted

on a player in any single play of the game is that which holds him to

his minmax security level. There are two reasons for using this security

level rather than the (lower) maxmin level. The first is that the pun-

ishment to be used against a defector forms part of the declared strat-

egies of the other players, so that the defecting player can adapt his

"defense" to the specific punishment. The second is that in this game

all lotteries are public, so that there is no way that the other players

can use a correlated punishment against the defector. Of course, if they
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were able to use correlated punishments, there would be no difference

between the minmax and maxmin levels; both would co-incide with the value

of the two-person zero-sum game played between the defector (the maxi-

mising player) and the others (the minmising player), over the defector's

payoffs.

From this observation, it follows that the strongest punishment

that can be inflicted on a defector in the supergame is to hold him to

his minmax level in all plays following the detection of a deviation.

Such a punishment is called a grim punishment . We observe that a player

can be deterred from defecting from a particular specified sequence if

and only if the threat of grim punishment is sufficient to deter him.

4.1 Definition : Let [N,M,H] be the mixed extension of a normal-form

game. For each i € N, define p £ M, as follows:

p,.s £ arg min [max H. (m. ,m, .,. )]
(1)

&
1 x' (l)

m . . . m

.

(i) i

p ±
G arg max H^m^p^)

m.
i

This is the minmax punishment and defense to be used when player i de-

fects. Let v. = H.(p ) be player i's minmax security level .

—1 —

t

Let [m , . . . ,m ,...] be an infinite sequence of members of M. The grim

strategy supporting m = [m ,...] is the n-tuple f of supergame strategies

defined by

f . = m. for all i, and
l l
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'W iff there exists T < t s.t.

t' —t'
i) m = m for all t' < T

,t, 1 t-lv J . .s T -T - „ . , .

f . (m , . . . ,m ) = c 11) m, = m, for all kf j

T T
iii) m. ^ m.

\m. if not

In other words, the grim stategy plays according to the cooperative se-

quence until the first date when a defection occurs. If a single player

is responsible for that defection, then that player is punished forever.

In the undiscounted game, a player contemplating defection from a

grim strategy supporting a specified sequence m has the choice of two

outcomes: lim H.(m ) if he does not defect, and v. if he does. If the
i 1

t-*=°

first limit exists, i.e., if the sequence H.(m ) is Caesaro-convergent,

player i will adhere to the grim strategy iff the first of these numbers

exceeds the second. This is the "first Folk Theorem" of the undiscounted

supergame:

4.2 Theorem : the set of limiting-average payoffs to equilibria of the

undiscounted supergame is {ye CH(h(S)): y. ^_v., all I € N}.

One striking feature of this result is that the outcomes can be

characterised purely by their payoffs; no strategic considerations enter

in. In particular, the immediate profit earned by the defector plays no

role. Unfortunately, this is not true in the discounted game, so that

the characterisation of equilibrium outcomes involves explicitly the

strategic aspects of the specified sequence. However, it is still the

case that the sine qua non of equilibrium is the existence of a grim-

strategy equilibrium supporting the outcome, so that we obtain:
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4.3 Theorem: y £ D is the outcome of an equilibrium of the discounted
m

—1 —t —
supergame iff there exists an infinite sequence (m , . . . ,m , ...) = m of

members of M with the following properties:

ao

i) for all i, y = (1 - 6
±
) Z <5

t~1
H
i
(m

t
)

t=l
1

ii) for all i,T

(1) Z sT
mT
R
±
CSh >.max H^nu/m*..) + (6^(1 - &

±
))v

±
t>T

1
m.— l

or

(2)

_ T-l

y. > (1 - 6.) [max H.(m.,m* ) + Z 6
t~T

H.(m
t
)] + 6. v.

m. t=l

In particular, if y € H(M) , y is the outcome of a stationary equilibrium

of the discounted supergame iff there exists m* £ M s.t.

iii) H(m*) = y

iv) for all i £ N

(3) y ± 1 (1 - 6.)max H
i
(m.,m^

i)
) + &

±
v
±

.

ffi

i

Proof:

Stationary Equilibrium : Let us suppose that player i wishes to defect

from a stationary grim strategy supporting the sequence m*,m*,.... If

he does not defect, his payoff will be y.; if he does defect, his pay-

off will be at most max H.(m.,m*.«) in the first period and at most v
±

m.

in all subsequent periods. The normalised discounted payoff to his

best defection is therefore the RES of condition (3) . This shows the

sufficiency of the condition. Necessity follows from the following
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observation: in any supergame strategy combination with stationary

specified sequence m*,m*,..., the payoff to the best defection will be

greater than or equal to the payoff to the best defection against the

grim strategy supporting this outcome.

In general, this will be true: if m is any infinite sequence, and

f is any supergame strategy supporting this sequence (i.e., m (f) = m ),

then

maxHj(f',f
(

.

)

) 1 maxH 5

i
(f

1
,g (i)

)

i i

where g is the grim strategy supporting m.

Nonstationary equilibrium : In general, it may be the case that D

strictly contains H(M) . If player i chooses to defect from a grim

strategy g supporting the sequence m at time T, he exchanges an expected

payoff sequence worth

Z 6
t_T

H.(m
t
)

t>T
X 1

—

T

for one which pays at most max H.(m.,m ) on day T, and v. in all subse-

m.

quent periods, for a total expected payoff of

max H.(m.,m,. N ) + 6.v./(l - <5.)
x 1 (l) 11 1

m.
i

as of day T, which give us the LHS and the RHS of (1), respectively.

Finally, we can obtain condition (2) by applying condition (i) to

equation (1). QED

We shall present an example which uses this theorem to characterise

the equilibrium points of Prisoner's Dilemma. Before we do so, there
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are several consequences of this theorem that are worth noting. In the

first place, by letting all the discount rates go to 1 we obtain pre-

cisely the "first Folk Theorem": any feasible and individually-rational

payoff can be supported by an equilibrium of the undiscounted game.

Strictly-speaking this gives us a version of the Folk Theorem where

players use the Abel limit, rather than the first Caesaro sum to eval-

uate payoff streams. However, this poses no problems, since Caesaro

convergence implies Abel convergence.

Another interesting feature of this result can be noted by letting

the discount rate shrink to 0, condition (3) becomes the usual condition

for Nash Equilibrium, while condition (1) limits us to precisely those

sequences with which we began this section; sequences calling for a

stage-game Nash equilibrium at every stage.

Finally, it will be noted that condition (1) can be written:

(4) min[ S 6. H.(m ) - max H. (m. .m, .,. ] > 6.v./(l - <5
.

)

T t>T
X X

m.
X X (1) ± i

— i

and it is clear that this is monotonic in 6 . : if y is an equilibrium

outcome at 6 = (6-,..., & ) and 6! >_ 6 . for each i € N, then y is an

equilibrium outcome at <S'.

We conclude this section by characterising the outcomes of equi-

libria of a simple version of the Prisoner's Dilemma. The mixed exten-

sion of this game is an follows: let m. be the probability that player

i uses the "Greedy" Strategy, and 1 - m. be the probability that player

i uses the "Helpful" strategy. The payoff functions are:

H (m.. ,m
9 ) = 3 + nu - 3m ?



-20-

I
2
(nL,,m

2
) = 3 + m

2
- 3m

1

It follows that, for any pair (m ,m„) , the best defection is m. = 1,

so that

max H
x
(m

1
,m

2
) = 4 - 3m

2
;

m.
l

v
x

= 1 = v
2

max H
?
(m ,m„) = 4 - 3m.. ; and

m
2

Thus, we can determine that (m ,m„) is the outcome of a stationary

supergame equilibrium iff:

(5) 3 + n^ - 3m
2

>_ (1 - 6 ) (4 - 3m
2
> + 5 ; and

(6) 3 + m
2

- 3^ >. (1 - 6
2

) (4 - 3^) + &,

We can rearrange these linear inequalities to give a unified condition

on m:

1 - m„
(7) 1 - l6T- m

l - 1 " 36
1
(1 " m

2
)

In the following figure, we show the image of this set of strategies,

for discount rates 6 . between 1 and tt.

i^
1 I[
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We have labelled the boundaries of this region, to facilitate translating

these strategy pairs into pairs of payoffs. In region I, we have m„ = 0,

m. <_ 1 - TT~; in Region II, we have m. = 0, and m„ <_ —r~ ; in region III,

we have nu = 1 - tt—(1 - nO ; while in region IV, we have m- = 1 - 3<5
2
(l-m..)

— 1
In region III, m„ ranges between 1 - -rr— and 1, and in region IV between

and 1. Inserting these boundary values into the payoff function, we

get the corresponding regions in payoff space:

I: H = 3 + ny 3 - 3m
i;

n^ 6 [0,1 - —•]

II: H =

III: H =

3 - 3m
2

, 3 + m
2

; m
2
e [0,1 -—

]

IV: H = [(n^ + 95
2
(1 - n^)), (A - 3 0^ + S^l - n^)) ]

We have displayed these regions below.

Turning now to the non-stationary equilibrium outcomes, we observe

that since any outcome in D is also in H(M) = CH(h(S)), we have only

to see whether there are any outcomes which are more stable when the
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specified sequence is nonstationary . The crucial element in this is the

incentive to defect at any stage. Suppose that we are trying to support

an outcome paying (y ,y~): the stationary strategies giving this outcome

specify a repetition of (m*,m*) where

m* - | - |[y. + 3y ] i = 1,2; j = 2,1, j t i

On the other hand, if m is an infinite sequence with the same payoff, and

if m is the outcome of an equilibrium of the stage game, we have four

equations to satisfy.

(8) I m 6 -3 I m„6, = -, —(y - 3)

t=l
L 1

t=l
2 1 1-^1

(9) Z m^"1
- 3 Z m.^"1

-
]

1
; (y, - 3)

t=l
2 2

t=l
X 2 1 " «

2
2

(10) min[ Z m^"1
- 3 Z m^6^"

T
] > = r-^-

T t>T
X l

t>T
2 1 ~ 1 " °1

l .- *^^

t t-T t t-T 2
(11) min[ Z m,«, - 3 Z ra.

c
5^

L

] > - ~
T t>T

2 1
t>T

1 2 - 1 ~ &
2

The first two being feasibility conditions, and the last two being equi-

librium conditions derived from conditions i) and ii) of Theorem 4.3.

Since we are interested in the set of outcomes, and not the sequences

that give rise to them, we may assume that there is no stationary equi-

librium paying (y.. ,y.) . Thus either

4(1 - 36
]
_)

- 3(1 - S )y
2

(12) Yl >
(1 _ 95 ]

or

4(1 - 36J - 3(1 - 5 )y

(13) y.
(1 - 96

2
)
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In terms of the strategies used by the players, from the definition of

m* we know that

(14) Z CC3 + m5 - 3m$] - [3 + m* - 3m*])6.
t~1

= =

t=l
L l 12 1

I ([3 + nu - 3m
1

t
] - [3 + m* - 3m*])6^

_1

t=l ^ X / 1 2

Let us suppose that condition (12) is satisfied; it is player 1 who will

defect from the stationary equilibrium. This means that

(15) 3 + m* - 3m* < (1 - 6^(4 - 3m*) + &
±

; or

(16) m* < 1 - 36 + 36 m*

Condition (14) can be rearranged (using only the left-hand equation) to

give:

m* - 3m*
(17) E m.6. -31 m„6 ~ = -: -

—

t=l
l L

t=l
2 X X ~ 6

1

Inserting (16) into this gives

"I Tf

(18) S nW_1
- 3 Z mjfi?"

1
< -, —i - 3m*

t=l
l 1

t=l
2 X X " 6

1
2

which contradicts condition (10). Thus, any equilibrium outcome in the

prisoner's dilemma can be supported by a stationary equilibrium, so the

sets defined above provide the entire set of equilibrium outcomes.

V. Perfect Equilibrium in the discounted supergame

The grim strategies usually fail to provide perfect equilibrium out-

comes, as the following simple example shows: Let the mixed extension

of a game with two players be given by:
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H(m ,m ) = (m ,2m m
2

- m_ + m. - 1)

The grim strategy secures an equilibrium of the game with the stationary

result m* = 1, m* = 0, as long as the discount rate for player 2 is at

least — , and certainly for the undiscounted game. However, once player

2 has defected, it is incredible that player 1, who is in no way injured

by player 2's defection, should actually carry out the grim punishment

which costs him his entire remaining profit in the game.

In the undiscounted game, the requirement of perfection does not

actually affect the set of payoffs sustained by equilibrium behavior, a

result discovered independently by Rubens tein and by Aumann and Shapley.

We shall call this the "perfectness Folk Theorem" and include a simple

proof for the present model.

5.1 Theorem : The set of limiting average payoffs to perfect equilibria

of the undiscounted supergame coincides with the set of payoffs to equi-

libria of the undiscounted supergame.

Proof : Let y e CH(h(S)) be a feasible and individually-rational payoff:

v. > v. for each player i. We know by Theorem 4.2 that there exists an'l—i
equilibrium of the undiscounted game with limiting average payoff ex-

actly y. Let us denote the specified sequence of this equilibrium by

m(y) = [m (y) , . . .
,m (y) , . . . ] . By the properties of the Caesaro mean,

for any finite T, we have

(19) lim i E H(m
T
(y)) = y

t-*» T=T
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Thus, nothing that happens in finite time affects the limiting average

payoff. Now, let f be any n-tuple of supergame strategies, and m ,...,m

an arbitrary history of length t. We define the set of last defectors

from f according to m = (m , . . .,m ) ; LD(f ,m) , and the time of last

defection t*(f,m) as follows:

t' t
1

1 t'-l
fmax {t'<_t: m £ f (m,...,m ) } if it exists

t*(f,m) »<

v__t + 1 otherwise

(is N: m
t
*(f,m) f f

t
*(m

1
, . . . ,m

t *"1
) } if t* = t*(f,m) < t

LD(f,m) =<

lo otherwise

Now let e be an infinite sequence of positive numbers e = o(t). We

shall define the notion of a "debt to society," by stipulating that a

player who defects at time t is to be punished until his cumulative aver-

age payoff is within e of his minmax payoff, at which point play re-

turns to the specified sequence, or until another player or players de-

fects. If another single player j defects at time t' subsequent to t,

then j is to be punished to within e of his minmax payoff; if more

than one player defects simultaneously, play returns to the cooperative

sequence. To implement this idea, we must remove from LD(f,m) those

players who have paid their debt to society. The remaining criminals

as of time t form a set C (f,m) defined by:

C
t
(f,m) ={i£ LD(f,m): £ Z H.(m

T
) > v. + e^

(f m)
}

T<t
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We can now define a perfect equilibrium strategy with outcome y:

FT = m.(y) for all i

f .
(m ,. . o

,m ) = f . (m) = <

pJ iff C
t
(f,m) = {j}

m. otherwise
1

The following are consequences of this definition: m(f) = m(y) , so that

the specified sequence does indeed have the outcome y. If player i con-

templates defecting for at most a finite number of periods, his limiting

average payoff will be y. by equation (19) and the fact that C (f,m)

is always empty a finite number of periods after any last defection, if

the players adhere to f : in other words, by adding at each stage the

amount v. to player i's cumulative payoff, his cumulative average payoff

reaches the trigger level e .,.. N + v. within finite time after t*(f ,m)

.

00 t*(f,m) l

If player i defects an infinite number of times, then the strategy calls

for him to be punished forever, since the trigger level approaches v..

Now, consider any subgame in which players are punishing player i. If

player j decides to defect by not playing p., then player j is punished.

If i defects forever, he is held to v.: if he defects a finite number of
3

times, play returns to m(y) and his payoff is y.; if he does not defect,

the punishment of player i ends in finite time, so his payoff is y..

Therefore, any feasible and individually-rational y can be sustained

as a perfect equilibrium outcome by such a strategy. Since every perfect

equilibrium outcome is a fortiriori an equilibrium outcome, it follows

that the set of perfect equilibrium outcomes co-incides with the set of

equilibrium outcomes. QED
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This happy state of affairs does not persist in the discounted game,

as we can show through analysis of a simple example related to the prob-

lem of strategic control of externalities.

5.2 Example ; There are two players. In the stage game, player 1 can

take a level of precaution s- £ [0,1]. It costs him nothing to take

this precaution, but the result is a social cost of C(l - s ) where C

is a large positive number. Player 2 cannot take any precaution, but

can compensate player 1 by paying him an amount s„ from her initial

wealth of 1. Player 1 is liable for a constant share, L S (0,1), of the

social cost, and player 2 pays the balance. The payoffs to the two

players are therefore:

h
1
(x

1
,s

2
) = s

2
- L(l - s

1
)C

h
2
(slf s 2

) = 1 - s
2

- (1 - L)(l - Sl )C

In the one shot game there is a unique equilibrium at s. = 1 = 1 - s„.

In the undiscounted supergame, we can define the set of strong equilibrium

outcomes to be the set of Pareto Optimal equilibrium outcomes; in general,

a strong equilibrium is a situation from which no coalition can defect,

making all of its members better off. Here, the only non-singleton

coalition is the pair {1,2}. A strong equilibrium outcome of the undis-

counted supergame is a pair of net wealths (a.. ,a„) s.t.

i) a + a„ = 1 (Pareto Optimality)

ii) a >_ (individual rationality for player 1)

iii) a„ > 1 - (1 - L)C (individual rationality for player 2)
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The set of equilibrium outcomes can be found by replacing condition i) by

i') a. + a
2

<_ 1 (feasibility)

It is clear that player 1 can use the threat of diminishing his precau-

tion to extract some money from player 2. Moreover, by Theorem 5.1 we

know that this threat is credible in the undiscounted game, so condi-

tions i-iii also give us the set of strong perfect equilibrium outcomes

for the undiscounted game. Now let us move to the discounted game, with

both players using the same discount rate, d G (0,1). From Theorem 4.3,

we know that (a.. ,a„) is a Pareto Optimal outcome of an equilibrium

of the discounted game iff it satisfies i) , ii) , and

iv) 1 - a
2

= a
1

>_ d(l - L)C

Now suppose that player 1 wishes to punish player 2 for some defection

by playing the punishment sequence (s , . . . ,s , . . .) . The ratio of the

cost to player 1 of this sequence divided by the punishment inflicted on

player 2 is:

00

Z d
t_1

[(l - s5)LC]
t=l

1
L

" t-1 t
X " L

z d
c 1

[(i - sba - Dc]
t=i

L

So that player 1 may as well react immediately to defection with a pun-

ishment sufficient to have deterred defection in the first place. How

strong must this punishment be?

If the outcome of the perfect equilibrium is to be the pair (a,l-a)

,

it is easy to see that the cheapest punishment sequence sufficient to

prevent defection is (s ,1,1,...) where
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(20) (1 - Sl)(l - L)C >|

We must now see whether player 1 will be willing to execute this punish-

ment. By the argument given above, player 1 has two alternatives, use

the specified punishment at once, or hold off forever, for a payoff of

in each period. The condition for carrying out the punishment is there-

fore

(21) (l-^LC ^- 1 - 5
!

Combining this with (20) gives us the condition for the equilibrium out-

come (a,l-a) to be sustainable as the outcome of a stationary Pareto

Optimal perfect equilibrium of the discounted supergame:

,2

(22)
da

(1 - d)LC - (1 - L)dC 1-d-l-L' ,

d
: > ;

L
: for a t 0, L € (0,1),

d e (0,1)

Combining this condition with i, ii, and iv gives us the set of (strong)

perfect equilibrium outcomes of the discounted supergame. The set of

equilibrium outcomes is as shown below:

l-d(l-L)C-
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The set of perfect equilibrium outcomes is equal to the set of equilibrium

outcomes if condition (22) is satisfied, and is equal to the single out-

come (0,1), otherwise. We should remark, that an argument similar to that

used in analysing the set of equilibrium outcomes for the prisoner's

dilemma lets us confine our attention to stationary outcomes of equilibria

in this game.

Since there is no hope for a general result such as Theorem 5.1 for

the discounted case, we close by presenting a sufficient condition for

the set of perfect equilibrium outcomes to co-incide with the set of

equilibrium outcomes. This condition turns out to be satisfied by quite

a few games of economic interest.

5.3 Theorem : Let [N,M,H] be the mixed extension of a stage game. Sup-

pose that for each player i, there exists an n-tuple m € M of mixed

strategies for the stage game with the following properties:

i) max H. (m. ,m. .* ) = H.(m ) = v.

m

.

l

ii) for all j ^ i, H . (m ) > 6. v. + (1 - 6.)max H.(m.,m, .» )

j

Then the set of outcomes sustainable by perfect equilibria of the dis-

counted supergame co-incides with the set of outcomes sustainable by

equilibria of the discounted supergame.

Proof : Let y be an outcome sustainable by a grim-strategy equilibrium

of the discounted supergame, and m(y) the associated specified sequence.

Recalling the definition of the last defector from a strategy f given
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a partial history m used in the proof of Theorem 5.1, we define a perfect

equilibrium strategy f by

i
= m

i
(y)

-t, 1 t-1. -t, ,

f
. (m , . . . ,m ) = f . Cm) =

nr? iff LD(f,m) = {j}

m. (y) otherwise

To see that this is indeed a perfect equilibrium strategy combination,

we first observe that m(f) = m(y) , so that adherence to this strategy

results in a payoff of y. Secondly, notice that this strategy calls for

a grim punishment to be inflicted on any defector, regardless of whether

that defection occured while playing the specified sequence or a punish-

ment sequence. It follows that no player will wish to unilaterally de-

fect from the specified sequence. Now suppose that we are playing a

punishment sequence. The condition of the theorem states that for each

player i there is a way of implementing the grim punishment via a sta-

tionary equilibrium of the discounted supergame: by condition i) the

punished player cannot improve his payoff in any stage; and by condi-

tion ii) no other player will find it in his interest to defect from

the new stationary equilibrium. QED

As a special case, we remark that the condition is clearly satis-

fied if there is an equilibrium of the stage game that gives each player

his minmax payoff. This is clearly the case with Prisoner's Dilemma,

and also with irany economic exchange games. In the latter, a player's
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security level v. is almost always the same as his payoff at the no-

trade point, so if there is a no-trade equilibrium, the Theorem applies.

Examples include: Kurz' "Altruism games"; the Shapley-Shubik-Dubey family

of exchange games; and Wilson's Competitive bidding model.
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