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Abstract : We provide random equilibrium existence theorems for non-cooperative

random games with a countable number of players. Our results give as

corollaries generalized random versions of the ordinary equilibrium existence

result of Nash [18]. Moreover, they can be used to obtain equilibrium existence

results for games with incomplete information, and in particular Bayesian games.

In view of recent work on applications of Bayesian games and Bayesian

equilibria, the latter results seem to be quite useful since they delineate

conditions under which such equilibria exist.





1. INTRODUCTION

A finite game consists of a set of players I = {l,2,...,n} each of whom is

characterized by a strategy set X. and a payoff (utility) function

u. : II X. * R. An equilibrium for this game is a strategy vector such that no

jEl J

player can increase his/her payoff by deviating from his/her equilibrium

strategy, given that the other players use their equilibrium strategies, i.e.,

* *****
x II X. is an equilibrium if u. (x ) = max u. (x- , . . ,x. . ,y. ,x.

,
- , . . ,x ) for all

, _ 1 n
l l 1 l-l J

i l+l n
iel y.eX.J l i

iel. The above game form and the notion of equilibrium were both introduced in

a seminal paper by Nash [18] . In that same paper Nash proved by means of the

Brouwer fixed point theorem, the existence of an equilibrium for the above game,

I
where strategy sets were subsets of R , i.e., the i-fold Cartesian product of

the set of real numbers R. The work of Nash has found very interesting

applications in Game Theory and Mathematical Economics (see for instance

Arrow-Debreu [1] or Debreu [6] among others). Generalizations of Nash's

equilibrium existence theorem to games where strategy sets were subsets of

arbitrary Hausdorff linear topological spaces, were obtained by Fan [9] and

Browder [4] among others. The results of Fan and Browder were proved by means

of infinite dimensional fixed point theorems. Subsequently to the above work,

research in economics (see for instance Shafer-Sonnenschein [24]) necessitated

further generalizations of Nash's equilibrium existence result, to games where

each player is equipped with a preference correspondence (instead of a payoff

function) , which need not be transitive or complete and therefore need not be

representable by a utility function. The latter work was motivated by empirical

results which indicated that in many instances agents' behavior is not

necessarily transitive.



A common characteristic of all the above results is that they are

deterministic, i.e., players cannot accommodate any kind of uncertainty or

randomness in their responses to potential changes in their primitive

environment. In reality however, there are many factors which go beyond the

control of players and cannot be influenced by their actions. In that sense, it

seems natural to assume that player's payoff functions depend not only on the

strategies, but on the states of nature of the world as well. In other words

payoff functions can be random. This is the type of the game we will consider

in this paper. Of course with the random payoff functions the equilibrium

strategy vector will be random as well, and therefore the equilibrium will

change from one state of the environment to another.

It is the purpose of this paper to prove random equilibrium existence

results for a quite general form of random games. In particular, as in

Shafer-Sonnenschein [23] or Yannelis-Prabhakar [24] instead of assigning each

player a random payoff or utility function, we equip each player with a random

preference correspondence which need not be representable by a random utility

function. It should be noted, however, that our random equilibrium results,

provide as corollaries random versions of the theorems of Nash, Fan, and

Browder. Moreover, we show that these random equilibrium theorems can be used

to obtain equilibrium existence results for games with incomplete information,

and in particular, for Bayesian games. The main reference for the latter type

of games appears to be Harsanyi's [10] seminal paper. Recently there is a

growing literature on this subject. In particular, Bayesian games have found

very interesting applications in economic theory, e.g., Aumann [2], Myerson

[17], Palfrey-Srivastava [19, 20], Peck-Shell [21] and Postlewaite-Schmeidler

2
[22] among others.



As in [2, 10, 17, 19, 20, 21] by the term Bayesian games we mean games,

where each player i is characterized by a strategy set X. , a random utility

function h. defined on the product space ft x X (where Cl is the set of states of
l

the world and X = II X.). an information set S. (where S. is a partition of Q) ,

iel
L X L

and a prior q. (i.e., a probability measure on ft). In this setting the

corresponding natural extension of Nash's equilibrium concept is that of a

Bayesian equilibrium. In particular, if we denote by E.(w) the event in S.

containing the realized state of nature w G ft, then each agent will choose a

strategy which maximizes expected utility conditional on his/her own event

E.(w).

Note that in this Bayesian game the conditional expected utility of each

player is a random function, i.e., depends on the states of nature of the world

and on the strategies, Hence, in essence the problem of the existence of a

Bayesian equilibrium is converted to a random equilibrium problem, simply by

thinking of the conditional expected utility of each player as his/her random

payoff function of some random game. It is exactly for this reason that in

certain cases the existence of a Bayesian equilibrium for a Bayesian game

follows directly from the existence of a random equilibrium for a random game.

The latter result seems to be quite interesting. Specifically, in view of

recent work on Bayesian games and Bayesian equilibrium, e.g., Palfrey-Srivastava

[19, 20], Peck-Shell [21] and Postlewaite-Schmeidler [22], among others, it is

useful to delineate conditions under which such equilibria exist.

Finally, we would like to note that the proofs of our random equilibrium

existence theorems are not based on any of the ordinary equilibrium existence

results of Nash or Fan or Browder. Our arguments start from a rudimentary level



and provide a different way to prove the deterministic results of the above

authors. As the deterministic results of Nash, Fan and Browder are based on

deterministic fixed point theorems, the proofs of our random equilibrium

existence results are based on random fixed point theorems. The idea behind the

need of a random fixed point can be intuitively grasped simply by noting that

with random payoff functions the best reply correspondence becomes random as

well, and therefore a random extension of the Kakutani-Fan-Glicksberg fixed

point theorem seems to be required. To this end, we prove a random version of

Fan's [8, Theorem 6, p. 238] coincidence theorem, which gives as corollary a

random version of the Kakutani-Fan-Glicksberg fixed point theorem. In addition

we employ Aumann-type measurable selection theorems and some recent

Caratheodory- type selections results proved in [12, 13].

The paper is organized as follows: Section 2 contains several preliminary

results of measure theoretic character. Moreover, a random version of Fan's

coincidence theorem is established. The main results of the paper are stated in

Section 3 and their proofs are gathered in Section 4. Section 5 contains some

discussion of the related literature on games with incomplete information.

Finally some concluding remarks are given in Section 6.



2. PRELIMINARIES

2.1 Notation

2 denotes the set of all nonempty subsets of the set A,

conA denotes the convex hull of the set A,

/ denotes the set theoretic subtraction,

R denotes the i-fold Cartesian product of the set of real numbers R,

R denotes the strictly positive elements of R,
TT

proj denotes projection,

(j) denotes the empty set,

Y Y
If

<f>
: X -» 2 is a correspondence, then 4>\ : U -» 2 denotes the

restriction of
<f>

to U.

2 . 2 Upper and Lower Semicontinuous Correspondences

Y
Let X and Y be sets. The graph G. of a correspondence

<f>
: X + 2 is the

9
Y

set G - ((x,y)eX x Y : yG^(x)}. If X and Y are topological spaces, 4> : X -+ 2

Y
is said to have an open graph if the set G is open in X x Y; 4> : X - 2 is said

to be lower semicontinuous (l.s.c.) if the set {xeX : (/>(x)nV * <})} is open in X

Y
for every open subset V of Y and; <j> : X -» 2 is said to be upper- semicontinuous

(u.s.c.) if the set {xeX : <£(x) C V) is open in X for every open subset V of Y.

It can be easily checked that if a correspondence has an open graph, then it is

l.s.c., but the reverse is not true, (see [25, p. 237]).

We will need the following facts.

(F.2.1.) Let X be a topological space and Y be a linear topological space.

Y Y
If the correspondence

<f>
: X-+2 is l.s.c. then the correspondence \p : X -» 2

defined by ip(x) - con^(x) is also l.s.c. [14, Proposition 3.6, p. 366].



(F.2.2) Let X be a topological space and {Y. : iel } ,
(I can be any finite

or infinite set) be a family of compact spaces. Let Y = II Y. . If for each Isl,

lei
L

Y
the correspondence F. : X -* 2 " is u.s.c. and closed valued then the

Y
correspondence F : X -» 2 defined by F(x) = II F.(x) is also u.s.c. [7, Lemma 3,

iel
L

P- 124]

2 . 3 Auxiliary Measure Theoretic Facts

Y
Let X, Y be topological spaces and cf> : X -» 2 be a nonempty valued

correspondence. A continuous selection for ^ is a continuous function f : X -* Y

such that f(x)G0(x) for all xeX.

Y
Let (Q,q) be a measurable space, Y be a topological space and

<f> : -» 2 be

a nonempty-valued correspondence. A measurable selection for is a measurable

function f : Q * Y such that f(u>)e<£(u) for all weft.

We now define the concept of a Caratheodory selection which combines the

notion of continuous selection and measurable selection.

Let (X,q) be a measurable space and Y, Z be topological spaces. Let

Y
<£ : X x Z - 2 be a (possibly empty-valued) correspondence. Let

U - {(x,z)eX x Z : $(x,z) *
<J>}

. A Caratheodory selection for $ is a function

f : U -» Y such that f (x, z)€<^(x, z) for all (x,z)eU and; for each xeX, f(x,-) is

y
continuous on U = { zeZ : (x,z)eU) and for each zeZ, f(-,z) is measurable on

U
Z

= {xeX : (x,z)GU)

.

Y
If (X,a) and (Y,^) are measurable spaces and

<f>
: X -* 2 is a

correspondence,
<f>

is said to have a measurable graph if G belongs to the

product cr-algebra a® ft. We are usually interested in the situation where (X,a)

is a measurable space, Y is a topological space and /3=^(Y) is a Borel a-algebra



of Y. For a correspondence
<f>

from a measurable space into a topological space,

if we say that
<f>

has a measurable graph, it is understood that the topological

space is endowed with its Borel cr-algebra (unless specified otherwise) . In the

same setting as above i.e., (X,q) a measurable space and Y a topological space,

<f>
is said to be lower measurable if {x : <f>(x) n V ^ (j)) e a for every V open in

Y.

The following facts will be useful in the sequel.

(F.2.3) Let (Cl,a,n) be a complete finite measure space, X be a separable

metric space and <j> : fl -*• 2 be a nonempty valued correspondence having a

measurable graph, i.e., G. £ a ® /3(X) . Then there exists a measurable selection
9

for <j> [5, Theorem III. 22, p. 22, or 6 , Theorem 5.2, p. 60].

(F.2.4) Let (fi,a,/j) be a complete finite measure space, X be a complete

R
J

separable metric space and : fl x X - 2 be a convex (possibly empty-) valued

correspondence such that:

(i) <f>(-,-) is lower measurable with respect to the a-algebra

a 0(X) , and

(ii) for each wGQ, <f>(w,-) is l.s.c.

Then there exists a Caratheodory selection for
<f> [12, Theorem 3.2].

(F.2.5) The previous fact remains true if <j> is a correspondence from Q x X

Y
into 2 , where Y is a separable Banach space and (i) and (ii) are replaced by



(i' ) G . e a ® j8(X) <S> )9(Y) , and

(ii') for each weO, <f>(w,-) has an open graph, i.e., for each w e Q the set

G,. . = {(x,y)eX x Y : ye<£(u,x)} is open in X x Y [13, Main
<p(w, )

Theorem!

.

(F.2.6) Let ft be a measurable space, {Y. : iel } ,
(where I is a countable

set) be a family of second countable topological spaces. Let Y = II Y. . If for

iel
x

Y
i Y

each iel, F. : Q -» 2 is lower measurable then the correspondence F: Q -» 2

defined by F(u) = II F . (w) is also lower measurable [11, Proposition 2.3, p. 55]

iel
L

(F.2.7) Let Q be a measurable space, X be a separable metric space and for

each iel, (where I is a countable set) F. : -* 2 is a lower measurable and

closed valued correspondence. Suppose that for each u e Q, F. (u) is compact for

Y
at least one iel. Then the correspondence F : ft + 2 defined by F(u) = n F.(w)

iel
L

is lower measurable [11, Theorem 4.1, p. 58].

If (X,a), (Y,£) and (Z,2) are measurable spaces, U C X x Z and f : U -* Y,

we call f jointly measurable if for every Be/?, f (B) = UnA for some A e a ® E.

It is a standard result that if Z is a separable metric space, Y is a metric

space and f : X x Z -+ Y is such that for each fixed xeX, f(x,-) is continuous

and for each fixed z e Z, f(-,z) is . measurable , then f is jointly measurable

(where /3=(3(Y) , 2 = /3(Z)). It turns out, that in several instances U is proper

subset of X x Z, and this situation is more delicate. However, in this more

delicate situation it can be shown that f is still jointly measurable. In

particular, we have the following fact.



(F.2.8) Let (ft, a) be a measurable space, X be a separable metric space, Y

be a metric space and U C fl x X be such that:

(i) for each w G ft the set U = {x G X : (w,x)GU} is open in X, and

(ii) for each x G X the set U = (u G fl : (tj,x)GU) belongs to a.

Let f : U -» Y be a function such that for each w G ft, f(w, •) is continuous on U

and for each xgX, f(-,x) is measurable on U . Then f is jointly relatively

measurable with respect to the cr-algebra a @ fi(X) , i.e., for every open subset V

of Y, { (w,x)eU : f (w,x)€V} = UnA for some A G a <8> /3(X) [12, Lemma 4.12] .

(F.2.9) Let (ft,a,/i) be a complete measure space and X be a complete

separable metric space. If the set belongs to a ® /3(X) its projection,

proj (0) belongs to a, [5, Theorem III. 23, p. 75].

2 . 4 The Random Coincidence Theorem

The result below is a random version of Fan's Coincidence Theorem,

[8, Theorem 6, p. 238]

.

Theorem 2.4.1 : Let X be a compact convex nonempty subset of a locally

convex separable and metrizable linear topological space Y and let (Q,E,v) be a

Y Y
complete finite measure space. Let 7 : Q x X -+ 2 and n : ft x X -» 2 be two

nonempty, convex, closed and at least one of them is compact valued

correspondences such that:

(i) /;(•,•) and 7(-,-) are lower measurable,

Y
(ii) for each fixed u G ft, the correspondences p(w,-) : X -* 2 and

Y
7(w,«) : X -» 2 are u.s.c.
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(iii) for every u e fl and every xeX, there exist three points yEX,

ue7(u>,x), z£)ii(u,x) and a real number X > such that y - x =

A(u-z)

.

Then there exists a measurable function x : fl -» X such that

7(u,x (u)) n ^(tj,x (u) ) * (p for almost all weQ.

Y
Proof : Define the correspondence W : Q x X * 2 by W(u,x) = 7(w,x)n^(w,x) .

Since 7(-,-) and /i(-,-) are closed valued and lower measurable and at least one

of them is compact valued, it follows from (F.2.7) that W(-,-) is lower

X
measurable. Define the correspondence

<f>
: ft -* 2 by

^(w) = {xeX : W(u,x) * §) .

Observe that

G. = {(w.x)GQ x X : xe^(w)} = {(u.x)eft x X : W(u,x) * 6}

= {(w,x)eO x X : W(w,x)nY * <|)} ,

and the latter set belongs to S /8(X) since W( •
, • ) is lower measurable.

Therefore, G e 2 ® /?(X) . It follows from Fan's Coincidence Theorem,
<P

(Fan [8, Theorem 6, p. 238]) that for each w e ft, <£(w) ^ (j). Thus, the

correspondence : ft -» 2 satisfies all the conditions of (F.2.3), (the Aumann

Measurable Selection Theorem) and consequently, there exists a measurable

'* *
function x : Q -» X such that x (w)G<f>(w) for almost all w in ft, i.e.

,

y(w, ,x (w)) n /i(w,x (w)) ^ 4> for almost all w in ft. This completes the proof of

the Theorem.

An immediate corollary of the above theorem is a random version of the

Kakutani-Fan-Glicksberg fixed point theorem (see [7, Theorem 1, p. 122])
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Corollary 2.4.1 : Let X be a compact, convex, non-empty subset of a locally

convex separable and metrizable linear topological space Y and let (n,2,v) be a

complete finite measure space. Let 7 : fl x X - 2 be a nonempty, convex, closed

valued correspondence such that for each fixed u£fl, y(w,-) isu.s.c. and

7 (
•

,

•
) is lower measurable . Then 7 (

•

,

•
) has a random fixed point , i.e., there

exists a measurable function x : ft -* X such that x (w)Ey(w,x (w)) for almost

all u in fl.

X
Proof : Define the correspondence n : Q x X -+ 2 by /i(w,x) - {x} . Clearly

for each fixed weQ, h(w,-) is u.s.c. and n(-,-) is convex, lower measurable,

nonempty, compact valued. Let xeX and u> e Q. By choosing uE7(w,x),

z - x € fi(w,x) and Ae(0,l) assumption (iii) of Theorem 2.4.1 is satisfied

(simply notice that since X is convex y = x + A(u-z) = Au + (l-A)x e X ).

*
Hence, by the previous theorem there exists a measurable function x : fl + X*•*, •&• -k

such that 7(w,x (w) ) n /i(w,x (w)) H
(f>

for almost all weft, i.e., x (w)G7(w,x (w))

for almost all w G n.

Remark 2.4.1 : Theorem 2.4.1 and Corollary 2.4.1 remain true if we replace

the assumption that (ft.E.v) is a complete finite (or a-finite) measure space, by

the fact that (Q,S) is simply a measurable space. In this case one only needs

to observe that in the proof of Theorem 2.4.1 for each fixed wGQ, W(u>,-) is

u.s.c. (as it is the intersection of two u.s.c. correspondences) and therefore,

the correspondence tp\ Q * 2 is closed valued. Since <p( • ) is closed valued and

it has a measurable graph by Theorem 3.3 in [11, p. 56], <p( • ) is lower

measurable. One can now appeal to the Kuratowski and Ryll-Nardzewski measurable

selection theorem (see [11, p. 60]) to complete the proof of Theorem 2.4.1.
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2 . 5 Bochner Integrable Functions. Randon-Nikodym Property, Diestel's Theorem

The notions we define below are quite standard but we briefly outline them

for the sake of completeness.

We begin by defining the notion of a Bochner integrable function. Let

(T,r,/i) be a finite measure space and Y be a Banach space. A function f: T -> Y

is called simple if there exist y n ,yn , . . . ,y in Y and a.. ,a a in r such1/ n L l n

that f = 2. ,y.v . where y (t) - 1 if t S a. and \ (t) = if t £ a.. A
i=l 7 i a. aq. l

aq. 111 l

function f: T * Y is said to be u-measurable if there exists a sequence of

simple functions f :T -» Y such that limllf (t)-f(t)| = for almost all t e T. A
n->-oo

^-measurable function f : T -» Y is said to be Bochner integrable if there exists

a sequence of simple functions {f : n= 1,2,...} such that

lim/
T

||f
n
(t)-f(t)||d/i(t) = 0.

n-K=°

In this case we define for each E e r the integral to be

JE
f(t)d/i(t) = lim;

E
f
n
(t)d/i(t)

It can be shown that if f : T -» Y is a /i-measurable function then f is Bochner

integrable if and only if J ||
f ( t) ||d/i( t) < *>. We denote by L (/x,Y) the space of

equivalence classes of Y- valued Bochner integrable functions x: T * Y normed by

|x| = J ||x(t) ||d^(t) . It can be easily shown that normed by the functional
|| ||

above L- (/x,Y) becomes a Banach space.

A Banach space Y has the Radon-Nikodym Property with respect to the measure
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space (T,r,/i) if for each /*- continuous vector measrue G: r -» Y of bounded

variation there exists g e L-C^.Y) such that G(E) = J g(t)d/j(t) for all E G r.

A Banach space Y has the Radon-Nikodym Property (RNP) if Y has the RNP with

respect to every finite measure space. It is a standard result that if Y has

the RNP then (L..(u,Y)) = L O.Y ).
1 «>

Y
The correspondence <p:T -» 2 is said to be integrably bounded if there

exists a map g e L.. (aO such that for almost all t in T, sup { ||x|| : x G <p(t)} <

g(t) . We denote by L the set of all Y-valued Bochner integrable selections of

Y
<p:T -* 2 , i.e., L = {x G L

1
(n,Y) :x(t)G<p(t) for almost all t in T) . Following

Aumann [2a] the integral of the correspondence <p is defined as

/T
v(t)d/i(t) = {/T

x(t)dM (t):xGL }

By (F.2.3) if T is a complete finite measure space, Y is a separable Banach

Y
space, and

<f>
: T •* 2 is a nonempty-valued correspondence with a measurable graph

(or equivalently <£(•) is lower measurable and closed valued), then <£(•) admits a

measurable selection , i.e., there exists a measurable function f: T -» Y such

that f(t) G <f>(t) for almost all t in T. By virtue of this result and provided

that 4> is integrably bounded, we can conclude that L, * (b and therefore
9

;T
0(t)dM (t) x (j).

Finally we wish to note that Diestel's theorem tells us that if K is a

nonempty, weakly compact, convex subset of a separable Banach space Y (or more

Y
generally if K: T -» 2 is an integrably bounded, nonempty, weakly compact convex

valued correspondence) then L, is weakly compact in L..(|i,Y). With all these

preliminary results out of the way we can turn to our main theorems.
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3. THE MAIN THEOREMS

3 . 1 Random Games and Random Equilibria

Let (Q,S,/i) be a complete finite measure space. We interpret Q as the

states of nature of the world and assume that Q is large enough to include all

the events that we consider to be interesting. S, will denote the a-algebra of

events. Denote by I the set of players. I can be any finite or countably

infinite set. A random game E =» {(X., P.) : iel } is a set of ordered pairs

(X. , P.) where
l l

(1) X. is the strategy set of player i, and

X.

(2) P. : Q x X -» 2 (where X = II X.) is the random preference (or
1

iel
x

choice) correspondence of player i

We read y.eP.(u.x) as player i strictly prefers y. to x. at the state of nature

w, if the (given) components of other players are fixed.

A random equilibrium for E is a measurable function x : Q -» X such that

tie

for all iel , P.(w,x (ti>)) = <j) for almost all u>e.Q.

Notice that each player in the game described above is characterized by a

strategy set and a random preference correspondence. We now follow the original

formulation by Nash [18] (and his generalizations by Fan [6] and Browder [3]

among others) where random preference correspondences are replaced by random

payoff functions, i.e., real valued functions defined on Q x X.
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Let T —
{ (X. , u. ) : iel } be a Nash -type random game , i.e.,

(i) X. is the strategy set of player i, and

(ii) u. : n X X -* R, (where X = II X.) is the random payoff function of
1

iel
X

player i.

Let X. = II X. and denote the points of X. by x. .

1 . . 1 i i
J* 1

A random Nash equilibrium for T is a measurable function x : ft -» X such that

for all i,

u.(w,x (w)) = max u. (w,y. ,x. (w) ) for almost all uefi.

y.eX.J 1 i

We now state our first random equilibrium existence result

Theorem 3.1 : Let E = {(X., P.) : iel } be a random game satisfying for

each i the following assumptions:

(a. 1.1) X. is a compact, convex, nonempty subset of R
,

(a. 1.2) conP. (•,•) is lower measurable, i.e., for every open subset V of

X., the set {(u>,x)eft x X : conP.(w.x) n V * (j)} belongs to

2<8>/3(X),

(a. 1.3) for every measurable function x : Q -* X, x.(u)SconP. (u,x(u)) for

almost all u e Q,

(a. 1.4) for each fixed w e Q, P.(w,-) is l.s.c.

Then there exists a random equilibrium for E.
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As a Corollary of Theorem 3 . 1 we obtain a generalized random version of Nash's

[18, Theorem 1, p. 288] equilibrium existence result.

Corollary 3.1 : Let T — {(X., u.) : iel } be a Nash-type random game

satisfying for each i the following assumptions:

Z
(c.1.1) X. is a compact, convex, nonempty subset of R

,

(c.1.2) for each fixed w e Q, u. («,•) is continuous,

(c.1.3) for each fixed xeX, u.(-,x) is measurable,

(c.1.4) for each u€Q and each x.eX. = II X. , u.(w,x.,x.) is a quasi-concaveli. .viii
j*i J

function of x. on X.

.

l l

Then there exists a random Nash equilibrium for T.

We now provide an extension of Theorem 3.1 to strategy sets which can be subsets

of a separable Banach space.

Theorem 3.2 : Let E = {(X., P.) : iel) be a random game satisfying for each

i the following assumptions:

(a. 2.1) X. is a compact, convex, nonempty subset of a separable Banach

space

,

(a. 2. 2) conP. (•,•) has a measurable graph, i.e., the set

{(u,x,y.)EflxXxX. : y.econP. (u,x)}€ S ® 0(X) ® /3(X.)
,

(a. 2. 3) for every measurable function x : Q -» X, x.(w)€conP.(u,x(u)) for

almost all w e Q,

(a. 2. 4) for each w G Q, ?.(w,-) has an open graph in X x X.

.

Then E has a random equilibrium.
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The following Corollary of Theorem 3.2 extends Corollary 3 . 1 to strategy

sets which can be subsets of arbitrary separable Banach spaces. We thus have a

random version of Nash's result [18, theorem 1, p. 288] in separable Banach

spaces. It should be noted that Corollary 3.2 may be seen as a random

generalization of the deterministic equilibrium existence results of Fan [9,

Theorem 4, p. 192] and Browder [4, Theorem 14, p. 277], but only if the

underlying strategy space is separable. Note the latter assumption is needed in

order to make the Aumann measurable selection theorem applicable. It is worth

noting that Fan and Browder allow only for a finite number of players whereas in

our setting the set of players can be any finite or countably infinite set.

Corollary 3.2 : Replace assumption (c.1.1) in Corollary 3 . 1 by

(c.1.1') X. is a nonempty, compact, convex subset of a separable

Banach space

.

Then the conclusion of Corollary 3.1 remains true.

A couple of comments are in order. Notice that the continuity assumption

in Theorem 3.1, i.e., (a. 1.4) is weaker than the continuity assumption (a. 2. 4)

of Theorem 3.2. The reason we need a weaker continuity assumption is that the

proof of Theorem 3.1 makes use of (F.2.4) which is a Caratheodory selection

result for a correspondence which is lower measurable in one variable and l.s.c.

in the other. However, in the proof of Theorem 3.2a different Caratheodory

selection result is used, i.e., (F.2.5), which requires a stronger continuity

assumption. Moreover, observe that Corollary 3.1 follows directly from
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Corollary 3.2. Nevertheless, we choose to state Corollary 3.1 since its proof

by means of Theorem 3.1 is slightly different than the proof of Corollary 3.2

which follows from Theorem 3.2. Finally it is important to note that the proofs

of Theorems 3.1 and 3.2 do not use any deterministic equilibrium existence

results. To the contrary, our arguments "start from scratch" and provide

3
alternative ways to prove the equilibrium results of Nash, Fan, and Browder.

We now turn to the problem of the existence of equilibrium points for

Bayesian games.

3 . 2 Bayesian Games and Bayesian Equilibria

Let (ft, 2,^) be a complete finite measure space as described in Section 3.1.

We still denote by I the set of players where I can be any finite or countably

infinite set. A Bayesian game G =
{ (X. ,h. , S . ,

q .
) : iel } is a set of quadruples

(X. ,h. , S . , q .
) where,

l 11 n
i

(1) X. is the strategy set of player i,

(2) h. : ft x X -* R (where X = II X.) is the random payoff function of

iel

player i

S . is a i

l

information available at player i

q. : ft -» R is the prior of play<

Nikodym derivative having the property that J q . ( t)d/i(t)=l) .

(3) S. is a measurable partition of (ft, 2) denoting the (private)

(4) q. : ft -» R is the prior of player i, (i.e., q. is a Randon

teft^i

As in Aumann [2] or Myerson [17] it is assumed that G =
{ (X. ,h. , S . ,q ) :

iel } , is common knowledge, i.,e., every player knows G, every player knows that

every player knows G, every player knows that every player knows that every

player knows G and so on.
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3.2(a) Symmetric Bavesian Equilibria

We first consider the case where the information set of each player i, is

the same, i.e., S.= S for each iel . Denote by E(w) the event in S which

contains the realized state of nature tjefi, and suppose that q.(E(u))>0 for all

iel. Given E(w) in S the conditional expected utility of player i,

v. : Q x X -» R is defined by
1

J

(3.1) v.(W ,x) = JteE(w) q
i
(t|E(w))h

i
(t,x)d/i(t)

where

q.(t|E( W ))d/i(t)
if t«E(w)

q (t)d/i(t)

if teE(u) .

/q i
(s)d/i(s)

sGE(w)

A symmetric Bavesian equilibrium for G =
{ (X. ,h. , S , q. ) : iel} is a function

x : fl -* X such that, each x.(-) is S-measurable and for each iel

_*
v.(w,x (ui)) = max v. (w,y . ,x. (tj) ) for almost all w€tl, (where v. is given

by (3.1)).

y.eX.J
i i

We are now ready to state our first Bayesian equilibrium existence theorem,

Theorem 3.3 : Let G -
( (X. ,h. , S ,

q .
) : iel) be a Bayesian game satisfying

for each iel the following assumptions:
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(a. 3.1) X. is a compact, convex, nonempty subset of a separable Banach

space Y,

(a. 3. 2) for each fixed w € ft, h.(w,«) is continuous,

(a. 3. 3) for each fixed xeX, h.(-,x) is measurable,

(a. 3. 4) for each v&l and each x.eX. = II X.
,

l l . . 1
j*i J

h.(w,x.,x.) is a quasi-concave function of x. on X.,ill n
l l

(a. 3. 5) h. is integrably bounded.

Then G has a symmetric Bayesian equilibrium.

3.2(b) Asymmetric Bayesian Equilibria

We now turn to the rather more interesting case where the information set

of each player is different.

Let G={ (X. ,h. , S . ,
q . ) : i£l } be a Bayesian game as described in Section 3.2.

Denote by L^. the set of all Bochner integrable and S .

-

measurable selections
i

from the strategy set X. of player i, i.e., L^ = {x.EL- (/i, Y) : x. :Q + Y is
1 A. . 1 1 1

1

S . -measurable and x.(u)eX. for almost all wefi) . Let L. - n L. . Denote by
i ii x . _ x

.

lGl 1

E.(tij) the event in S. containing the true state of nature ueft and suppose that

for all iel
, q, (E, (w)) > 0. Given E.(u) in S. define the conditional expectedn

i l l l

utility of player i, v. : x L -* R by

(3.2) v.(u,x) - /teE (w) qi
(t|E

i
(w))h

i
(t,x(t))d/i(t),
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where

q
i
(t|E

i
(w))dM(t)

if t€E. (w)

q (t)d/i(t)

if teE.(w)
1

q
i
(E

i
(w))

An asymmetric Bayesian equilibrium for G={ (X. ,h. , S . , q. ) : iel } is an x e L^.

* ~*
such that for each iel , v.(u,x ) - max v.(w,y.,x.) for almost all uefl, (where v.

yi
GL

x'
i

is given by (3.2)).

We now state the following result

Theorem 3.4 : Let G={ (X. ,h. , S . ,q. ) : iel, I=(l,2 n) } be a Bayesian game

satisfying:

(a. 4.1) (ft,E,^) is a separable, complete, finite measure space, and for

each iel, the following assumptions hold:

(a. 4. 2) X. is a weakly compact, convex, nonempty subset of a separable

Banach space Y, whose dual Y has the RNP,

(a. 4. 3) for each fixed ueQ, h.(w,-) is weakly continuous,

(a. 4. 4) for each fixed xeX, h.(-,x) is measurable,

(a. 4. 5) for each tjeQ and x.eX. =IIX., h.(w,x.,x.)
l l . . 1 ill

j*i J

is a quasi-concave function of x. on X.

,

11
(a. 4. 6) h. is integrably bounded, and

(a. 4. 7) the partition S. is countable.
l

Then G has an asymmetric Bayesian equilibrium.



22

Before we turn to the proof of our theorems we would like to note that all

the equilibrium existence results of Section 3 can be easily extended to

abstract economies as defined in [6], [24], [25]. Moreover, one can use the

equilibrium results for abstract economies to obtain equilibrium existence

theorems for random exchange economies or Bayesian exchange economies. In

particular, in this setting of incomplete information the appropriate

equilibrium notion is that of a rational expectations equilibrium. We will take

up these details, however, in a subsequent paper.



23

4. PROOF OF THE MAIN THEOREMS

4. 1 Lemmata

We begin by proving two Lemmata which are going to be needed in the sequel

Lemma 4.1 : Let (S,a,/x) be a complete measure space and X, Y be separable

Y
metric spaces. Let <£ : S x X - 2 be a lower measurable (possibly

empty- valued) correspondence. Suppose that for each fixed seS , <f>(s,-) is l.s.c

Let = {(s,x)eS x X : <f>(s,x) H $) , and let f : -* Y be a Caratheodory

Y
selection for

<f>
. Then the correspondence 9 : S x X -» 2 defined by

I

(f(s,x)} if (s,x)eO

*(s,x) = /

\^ Y if (s,x)€0

is lower measurable.

Proof : We begin by making a couple of observations. First notice that,

since 4>{-,-) is lower measurable the set - {(s,x)eS x X : <£(s,x) *
(J)}

-

{(s,x)eS x X : <£(s,x)nY H (()} belongs to o®/9(X). By (F.2.9) for each xgX the

set

X
= {sgS : (s,x)eO) - proj ({ (s,x)eS x X : 4>(s,x) * (J)}n((S x {x}))

- proj
s
(0n(S x {x})),

belongs to q. Moreover, note that since for each fixed seS
,
#(s,-) is l.s.c. it

follows that for each sgS the set - (xeX: (s,x)eO) is open in X. Since for

g
each fixed seS , f(s,-) is continuous on and for each fixed xeX, f(-,x) is

measurable on , by (F.2.8) f(-,-) is jointly measurable. It can be easily now
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seen that for every open subset V of Y the set A = ((s,x)eS x X : 0(s,x) n V *

f } - B u C where B = ((s.x)eO : f(s,x)eV} and C = {(s,x)eS x X/0 :Y n V * cj)} .

Clearly, B e a ® 0(X) and C £ a ® 0(X) and therefore A=B u C belongs to

a ® ^3(X) . Consequently, 0(-,-) is lower measurable as was to be shown.

Lemma 4.2 : Let (S,a) be a measurable space, Z be a separable metric space

and R be the extended real line. Let g : S x Z -+ R be a function such that for

each fixed seS
,
g(s,-) is continuous and for each fixed zeZ

,
g(-,z) is

measurable. Define the correspondence K : S -* 2 by

K(s) = {zeZ : g(s,z) > 0}.

Then,

(a) G € a ® /?(Z) , i.e., K( • ) has a measurable graph, and

(b) K(
•
) is lower measurable.

Proof : (a) Since for each fixed seS
,
g(s,-) is continuous and for each

fixed zeZ, g(-,z) is measurable, it follows from a standard result that g(-,-)

is jointly measurable. Observe that,

g
- 1

((0,=o)) = {(s,z)GS x Z : g(s,z) > 0}

-
{ (s,z)eS x Z : zeK(s)

}

- g
k •

and the latter set belongs to a ® /?(Z) since g( •
, • ) is jointly measurable.

(b) We must show that the set {sgS : K(s) n V *
(f)}

belongs to a for every

open subset V of Z. As it was remarked above, g( •
, • ) is jointly measurable,

i.e., g is measurable with respect to the product a-algebra a ® /3(Z) . Let D be
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a countable dense subset of Z, and let U = (0,°°). Observe that,

{s : K(s) n V +
<f>)

= {s : g(s,z)eU for some zeV)

= (s : g(s,d)eU for some deD)

= U (s : g(s,d)GU),
deD

and the latter set belongs to a since for each fixed zeZ
,
g(-,z) is measurable.

This completes the proof of the Lemma.

4.2 Proof of Theorem 3.1

X.

For each iel define the correspondence
<f> . : Q x X -* 2 by ^.(w,x) =

conP.(tj,x). Since by assumption (a. 1.4) for each fixed ueQ, P.(il>,-) is l.s.c.

it follows from (F.2.1) that for each fixed wEQ, <f>.{w,-) is l.s.c. Furthermore,

by assumption (a. 1.2), <£.(•,•) is lower measurable and clearly convex valued.

For iel let 0. = ((u,x) e Q x X : <f>.(u,x) *
(J>)

. For each weQ let 0? = {xeX :

(w,x) e 0.) and for each xeX let 0. = {t^eO : (w,x)e0.}. It follows from (F.2.4)

that there exists a Caratheodory selection for 4> . , i.e., there exists a function

f . : 0.-> X. such that f . (w,x)Ed>. (w,x) for all (w,x) e 0. and for each xeX,ill l l l

f.(-.x) is measurable on 0. and for each w e Cl, f.(w,-) is continuous on 0..
l l ' i

x
'

'
l

X.

For each iel define the correspondence F. : Q x X -* 2 by

Fj^Cw.x)

{f .(w,x) ) if (w,x)e0.

X. if (w,x)«0.
l l

By Lemma 4.1, F. (
•

,
) is lower measurable, and it is obviously closed, convex,

nonempty valued. Since for each fixed uGQ,
<f> . (w , • ) is l.s.c. the set 0. -

(xeX : (w,x)e0.) = (xeX : 4>.(w,x) * <\>) - {xeX : <^>.(w,x) n X. * $) is open in the

relative topology of X, and consequently for each fixed uGQ, F.(w,-) is u.s.c.

(see Lemma 6.1 in [25]). Define the correspondence F : fi x X -» 2 by F(u,x)

- II F.(w,x). Since for each i, F.(-,-) is lower measurable it follows
iel

X L
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from (F.2.6) that F(
•

,

•
) is lower measurable as well. Obviously F(

•

,

•
) is

closed, convex and nonempty valued. By (F.2.2) for each fixed w€Q,

F(tj,-) : X -» 2 is u.s. c. Therefore, F( •
, • ) satisfies all the conditions of

Corollary 2.4.1 and consequently there exists a random fixed point, i.e., there

exists a measurable function x : n -» X such that x (u)eF(w,x (w)) for almost

all w e Q. We now show that the random fixed point is by construction a random

equilibrium for the game E. Notice that for each iel , if (w,x (u))eO., then by

•* * *•

the definition of F. , x.(w) = f.(u,x (w) )econP. (w,x (w)), a contradiction to

*
assumption (a. 1.3). Thus, for all iel

,
(u.x (u))eO. for almost all w e n, i.e.,

for all iel, conP.(u,x (w)) = (j) for almost all w e n, which in turn implies that

for all iel, P.(w,x (w)) = ({> for almost all weQ, i.e.,x : Q - X is a random

equilibrium for E. This completes the proof of the Theorem.

4.3 Proof of Corollary 3.1

X.

For each iel, define the correspondence Q. : n x X * 2 by Q.(w,x) =

{y
i
eX

i
: h.(u,x,y.) > 0}, where h.(w,x,y.) = u.(to,y.,x ) - u.(w,x). Setting S =

n x X, Z = X^^, a = Z®0(X), g(s,z) = h
i
(w,x,y

i
), K(s) = Q

i
(w,x) for s = (w,x)

in Lemma 4.2(b) we can conclude that Q.(-,-) is lower measurable. It follows

from assumption (c.1.4) that, Q.(-,-) is convex valued, and clearly for any

measurable function x : Cl -* X, x. (w)£conQ. (w,x(tj) ) = Q. (w,x(w)) for almost all

uGQ. Moreover, it follows from assumption (c.1.2) that for each fixed w e Q.,

Q.(w,-) has an open graph in X x X.. Hence, the random game E = {(X.,Q.) : iel}

satisfies all the assumptions of Theorem 3.1 and therefore E has a random

equilibrium, i.e., there exists a measurable function x : U •* X such that for

•k

all i, Q.(u,x (w)) =
(J)

for almost all wen. But this implies that for all i,

* ~* * „ .

u.(u,x (u)) - max u.(w,y.,x. (w)), for almost all wen, i.e., x : n -* X is a
1

y.eX.
L 1 1
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random Nash equilibrium for the game T = {(X.,u.) : iel}. This completes the

proof of the Corollary.

4.4 Proof of Theorem 3.2

X.

For each iel define the correspondence
<f>

. : fl x X -» 2 by 4>.(w,x) =

conP.(w,x). Since by assumption (a. 2. 4) for each w e fl, P.(u>,-) has an open

graph in X x X. it can be easily checked (see Lemma 4.1 in [26]) that so does

<£.(u>,-) for each uefl.

Let 0. =
{ (u>,x)efJ x X :

<f> . (w,x) * <\>) . Since
<f> . ( • , • ) has a measurable graph

(recall assumption a. 2. 2)) and it is convex valued appealing to (F.2.5) we can

ensure the existence of a Caratheodory selection for
<f> . . One can now proceed as

in the proof of Theorem 3.1 to complete the proof.

4.5 Proof of Corollary 3.2

The proof is identical with that of Corollary 3.1 except with the fact that

one now has to use Lemma 4.2(a) to show that Q.(-,-) has a measurable graph, and

appeal to Theorem 3.2 instead of Theorem 3.1.

4.6 Proof of Theorem 3.3

The result follows directly from Corollary 3.2. To see this note that

since for each fixed t^Q, h.(u,-) is continuous and h. is integrably bounded by

virtue of the Lebesgue dominated convergence theorem we can automatically

conclude that for each fixed w e Q,

v
i
(w,-) -JteE q

i
(t|E(w))h(t,-)dM(t) is continuous, (where
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q (t)d/i(t)

q (t|E(w))d/i(t) = if t<jE(w) and q. (t|E(w) )d/i(t) - *

J~ q (s)d/i(s)

sGE(w)
L

if teE(w))

Furthermore, it can be easily seen that for each fixed xeX, v.(-,x) is

S -measurable . Finally, it follows from assumption (a. 3. 4) that for each w e Q

and each x.GX. = II X. , v. (w.x. ,x. ) is a quasi-concave function of x. on X.. We11.1111 n
l l

j*i J

can now consider the Bayesian game G =
{ (X. ,h. , S ,

q . ) : i£l } as a random game

E = {(X.,v.) : i£l } . Obviously the existence of a random Nash equilibrium for E

implies the existence of a Bayesian equilibrium for the game G. It can be

easily seen that the random game E, satisfies all the assumptions of Corollary

4
3.2 and consequently, E has a random Nash equilibrium. Hence, there exists an

S-measurable function x : fl -» X (obviously since x( • ) is S-measurable each

* *
x.(-) is S-measurable as well) such that for all iel v.(w,x (w))

_* *
- max v. (u>,y . ,x. (u) ) for almost all w e ft, i.e., x (•) is a symmetric Bayesian
y.eX.

1 1 1
J l i

equilibrium for the game G =
{ (X. ,h. , S ,

q . ) : iel } . This completes the proof of

the theorem.

4. 7 Proof of Theorem 3.4

For each iel , define the correspondence <P.:Ly "* 2 i by
i

a?.(x.) = {y.eL,, : v.(w,y.,x.) = max v.(w,x.,x.) for almost all weft)
l l

y
i a. l J i i _ i i i

X
i
GL

X.
l
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4
Moreover define the correspondence F: L^ — 2 by

F(x) = n <p (x ).

l€l

We will show that the correspondence F satisfies all the assumptions of the

Fan-Glicksberg fixed point theorem (see for instance Fan [17]). It can be

easily seen that the fixed point of the correspondence F is by construction an

asymmetric Bayesian equilibrium for the game G. We will spread out the proof

into several claims.

Claim 4.1 : L^. is weakly compact, nonempty, convex and metrizable.

Proof : The proof of Claim 4.1 is similar to Lemma 4.3 and Remark 4.3 in

[26] but we provide an argument for the sake of completeness. First note that

since (0,2,^) is separable and Y is separable, L
1
(/x,Y) is a separable Banach

space. Since by assumption X. is weakly compact, convex and nonempty it follows

from Diestel's theorem that 1^, is a weakly compact subset of L
1
(^t,Y).

i

Obviously, L^ is convex since X. is convex and by virtue of the Aumann
i

measurable selection theorem, we can conclude that L^ is nonempty.

Furthermore, since L^. is a weakly compact subset of the separable Banach space
i

L..(/i,Y), it is also metrizable. Clearly, L^.= II L is weakly compact, convex,

iel i

nonempty and metrizable as well, and this completes the proof of the claim.

Claim 4.2 : For each fixed t^eQ, v.(w,-) is weakly continuous
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Proof : Let i denote a fixed player, iel , I = {1,2,..., n}. Fix uGQ,

E.(tj)eS.. Let {x : n—1,2,...} be a sequence in L, - II ly converging weakly toii n A . _ A

.

iel i

x G Ly , i.e., for each iel, the sequence {x : n—1,2,...} in L^. converges weakly
i

to x G L,, . We must show that x y_ , x converges pointwise in the weak
A. n E. (w) ° r

l l

topology of X. to x y_ , . for all i. Then in view of assumptions (a. 4. 3) andr OJ
l E. (w)

l

(a. 4. 6) the result will follow from the Lebesgue dominated convergence theorem.

1 2
Now if S. = {E.,E.,...} is the partition of player i, then the fact that

00 oo

x , x are elements of L,. implies that x = 2 x ' y v
, x = Z x ' y^* , for

n' A. v n n A
E,

,
, E<

l k=l i k=l i

00

i k i k i i k
x , x ' in X. and therefore we can conlcude that x y„ . . = S x ' Y„fc „ . .

n l n E.(w)
, n n E nE.(w)

l k=l i i

i i k
converges weakly to x xP / N

= 2 x Xc-K / \ • This completes the proof of the

claim.

Claim 4.3 : The correspondence <p. : Lrr -> 2 i is convex, nonempty valued
i

and weakly u.s.c.

Proof : It follows from assumption (a. 4. 5) that for each wGQ and for each

x.GLrt , v.(w,x. ,x.) is a quasi-concave function of x. on L^ , and therefore we

i i

can conclude that <p. is convex valued. By virtue of Berge's maximum theorem we

have that cp. (•) is weakly u.s.c. Finally nonempty valueness of (p. follows from

Weierstrass' theorem.

Now since each cp.(-) is weakly u.s.c. convex, closed, nonempty valued so is

F (recall F.2.2). By Claim 4.1, L^ is weakly compact, convex and nonempty.
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4
Hence, the correspondence F: L

y
.->' 2 satisfies all the conditions of the

*
Fan-Glicksberg fixed point theorem and so we have that there exists x e L^, sucl

that x E F(x ) . It is easily seen that the fixed point is by construction an

asymmetric Bayesian equilibrium for the game G =
{ (X. ,h. , S . , q. ) : i=l ,

2

n)

.

This completes the proof of Theorem 3.4.
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RELATED LITERATURE

The equilibrium existence results for games with incomplete information

which are related to Theorems 3.3 - 3.4 and we are aware of, are those in Balder

[3], Milgrom-Weber [16] and Radner- Rosenthal [23].

Their approach is based on distributional strategies and it is entirely

different than ours, which is based on measurable functions. For purposes of

comparison it may be instructive to briefly outline their approach.

Following [16] a game G is a sextuple (N, (T.). „,{A.}. „,{u.}. „,C)

where

,

(1) N = {1,2 n) is the set of players .

(2) {T. : ieN} is the set of types for each player.

Each T. is a complete, separable metric space.

(3) {A. : ieN} is the set of actions for each player.

Each A. is a compact metric space.

(4) T_ is the set of possible states . T_ is a complete, separable

metric space.

(5) u. : TxA->R, (where T = T_ x. . .x T
,

l n
A - A. x. . .x A ) is the payoff function of player i.

Each u. is bounded and measurable.
l

(6) f is the information structure , where f is a probability
measure on the Borel subsets of T. Denote by f. the marginal

distribution on each T.

.

l

A distributional strategy for player i is a probability measure \i . on the

Borel subsets of T. x A. , for which the marginal distribution of T. is J*.. Theii' & i i

expected payoff of player i is:
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(4.1) V
1 (M1 .....A»n) = S u.(t,a)/i

1
(da

1
|t

1
)...Mn

(da
n
|t
n
)r(dt).

The two basic assumptions that Milgrom-Weber make are (a) payoffs are

equicontinuous and (b) the information structure is absolutely continuous.

Conditions which imply either (a) or (b) are given in [16, p. 625]. Balder has

succeeded in generalizing their results by relaxing (a) , but he still needs

(b) . For the proof of Theorem 3 . 3 we did not make use of any of these

assumptions and no equicontinuity assumption was needed for the proof of Theorem

3.4. It is important to note that assumption (b) allows the above authors to

express the expected utility (4.1) in a convenient way (see [16, p. 625] or

[3]). In particular, once distributional strategies are topologized with weak

convergence, strategy sets are compact metric spaces, expected utility is

continuous and linear and therefore the standard results of either Glicksberg,

Fan or Browder (see [16] or [3] for a statement of this result) can be directly

applied to prove the existence of an equilibrium. We would like to note that in

our framework the expected utility is required to be only quasi-concave in each

player's own strategy. Moreover, our expected utility is random, i.e., depends

on the states of nature of the world. The latter is quite important since with

random expected payoffs, the Fan-Glicksberg result is not directly applicable

and the use of measurable selection theorems seems to be needed.

Although it is not obvious how one from the approach of Milgrom-Weber and

Balder can obtain versions of our Theorems 3.3 and 3.4, it is very clear that

these Theorems are not subsumed by any of their results. In particular, no

assumption of equicontinuity of payoffs is needed and the set of players in

Theorem 3.3 is not necessarily finite. It may be instructive to note that our

approach, i.e., working with strategies which are measurable functions, seems to

be quite natural to analyze economies with incomplete information as recently
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defined in Palfrey- Srivastava [19, 20] and Postlewaite-Schmeidler [21] or

uncertainty in market games examined in Peck- Shell [22]. In fact, our approach,

as well as Theorems 3.3 and 3.4 have been motivated from the work of the above

authors

.

Finally, we would like to note that Mas-Colell [14] viewing a game as a

probability measure on the space of utility functions has proved Nash

equilibrium existence theorems. He indicates that his existence results may be

useful to obtain results for games with incomplete information.

6. CONCLUDING REMARKS

Remark 6.1 : We now show how a version of Theorem 3.2 can be easily

obtained by combining the deterministic equilibrium result in Yannelis-Prabhakar

[25] with the Aumann measurable selection theorem.

Theorem 6.1 : Theorem 3.2 remains true if one replaces assumptions (a. 2. 2)

and (a. 2. 4) by

(a. 2. 2') conP. (•,•) is lower measurable, i.e., for every open V in X.

,

the set {(tj,x) : conP. (u,x)nV * $} belongs to S ® £(X) .

(a. 2.4') For each w&Q, P.(w,-) has open lower sections, i.e., for each

weft and for each y.eX. , the set P. (w,y.) = {xeX : y.eP.(w.x))
'l i 1 y I i l

is open in X.

X.

Proof : For each iel define
<f>

. : Cl x X + 2 " by <£.(u,x) = conP.(u.x). By

assumption (a.2.2'), <j> . ( • , • ) is lower measurable. Define the correspondence
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F : x X -» 2
X

by F(u,x) = II <f>.(w,x). By virtue of (F.2.6), F(-,-) is lower
iel

1

measurable. Define the correspondence r : ft -*• 2 by

T(w) = {xEX : F(w,x) = (|)) .

We will show that there exists a measurable selection for T(-) which will turn

out to be a random equilibrium for the random game E = {(X.,P.) : iel}.

In order to apply the Aumann measurable selection theorem (F.2.3), we need

to show that T(-) has a measurable graph and it is nonempty valued. Since

F( •
, • ) is lower measurable, the set

K = {0,x)ef2 x X : F(w,x) * (j>) - {(w,x)eG x X : F(u,x) n X * $)

belongs to Z® /3(X) and so does the complement of the set K which is denoted by

K . Observe now that

G = {(u,x)efl x X : xer(u)} = {(u,x)€(J x X : F(w,x) = ({>}

= {(u,x)eft x X : F(u,x) * (})}

C

-KC
,

and the latter set belongs to E ® ^(X) as it was noted above. Therefore, T()

has a measurable graph. Moreover, an appeal to Theorem 6.1 in [25, p. 242]

(where in [25] for each iel and for each xeX we set A.(x) = A. (x) = X.) shows

that for each w e 0, T(w) * <\>. Therefore, by the Aumann measurable selection

theorem there exists a measurable function x* : ft -> X such that x*(u) e T(w) for

almost all u e 0, i.e., F(w,x*(w)) - (|) for almost all w e ft, which implies that

for each iel, P, (ti>,x*(w)) = (j) for almost all w e Cl, i.e., x*(-) is a random

equilibrium for E.

Note that in Theorem 6.1 the assumption that (Q,Z,/j) is a complete finite

measure space, can be replaced by the fact that (0,2) is a measurable space.
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The proof remains the same. In particular, since for each fixed t^eQ, the

correspondence F(tj,-)' X -» 2 has open lower sections, it is also l.s.c.

(Proposition 4.1 in [25]) and therefore T(-) is closed valued. Since T(-) has a

measurable graph and it is closed valued, it is also lower measurable (Theorem

3.3 in [11]). One can now appeal to the Kuratowski and Ryll-Nardzewski

measurable selection theorem to complete the proof of Theorem 6.1.

Finally, note that assumption (a. 2. 4') of Theorem 6.1 is weaker than

assumption (a. 2. 4) of Theorem 3.2, and, assumption (a. 2. 2') is different than

assumption (a. 2. 2). Hence, neither result implies the other. However, the

methods of proof are different. It can be easily seen that Corollary 3.2

follows directly from Theorem 6.1. The idea of the proof is identical with the

one used to prove Corollary 3.1.

Remark 6.2 : The form of the Bayesian game defined in Section 3.2(a) can be

generalized by replacing each player's random payoff function h. : Q x X -* R, by

X.

a random preference correspondence P. : Q x X -* 2 . Following the notation of

Section 3.2, in this new setting the conditional expected payoff of each player

denoted by F.(tj,x) is the integral of the correspondence P., i.e., F. («,x) =

/ q. (t|E(tj))P. (t,x)d/i(t) . By replacing assumptions (a. 3. 2) - (a. 3. 5) with:

teE(w)
1 L

(a. 3. 2') For each fixed u e ft, P.(w,-) is l.s.c,

o

(a. 3. 3') conF.(-,-) is lower measurable,
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(a. 3. 4') for each measurable function x : ft -» X, x.(u>)€

conF.(w,x(u)) for almost all u G fl,

(a.3.5') P. is integrably bounded, and it has a measurable graph,

and invoking to Theorem 3.2 in [27] (which says that the integral of a l.s.c.

correspondence which is integrably bounded and has a measurable graph, is also

l.s.c.) we can guarantee that for each fixed w G fi, F.(w,-) is l.s.c. and

therefore by appealing to Theorem 3.1 one can prove the existence of a Bayesian

equilibrium, for this more general form of a Bayesian game.

Remark 6.3 : The proof of Theorem 3.4 remains unchanged if (a. 4. 2) is

replaced by:

Y
(a. 4. 2') X.: Q —*2 is a weakly compact, convex, nonempty valued

correspondence, having a measurable graph.

Remark 6.4 : We now indicate how one can prove the existence of a pure

strategy asymmetric Bayesian equilibrium. In particular, the technique used to

prove Theorem 3.4 can be adopted to prove the following result:

Theorem 6.2 : Let G - ((X., h. , S., q.): i-1,2, . . . ,n) be a Bayesian game

satisfying the assumptions (a. 4.1), (a. 4. 4), (a. 4. 6), (a. 4. 7) of Theorem 3.4 in

addition to the following conditions:

(a. 6.0) (ft, Z,^) is an atomless measure space,

(a. 6.1) X. : Q — 2 is an integrably bounded, nonempty .closed, convex

valued correspondence, having a measurable graph, and

(a. 6. 2) for each fixed weft, h.(u,-) is linear and continuous on X.
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n n
r e r e

Then there exists x e II jX.(w)d^i(w) - II (J 2 . (w)d/i(w) : z.(u)eX.(w) for almost
l-l i-I

all uefi)
,

(where X. denotes the extreme points of X.) such that for all i,
l l

* _*
v.(u,x ) - max v.(u, v., x.) for almost all weCl (where v. is defined as in
l i

yii l

y. £/X
e

J i J l

(3.2))

Proof : First note that since for each fixed weft, h. («,•) is linear and

n n
continuous on X the domain of v. is now Q x II fx. . Let fx - II fx. . For each

l . ,
J l J

. .
J l

1=1 1=1

i define <p. : Jx. —* 2*' i by
i " l

— r e ~ ~
<p.(x.)- {y.ejX.: v. (tj.y . ,x. ) - max v.(w,x.,x.) for almost all weQ) .

l l -^ l J l l y i l l 11
x. EJxf
1 " 1

Define F: Jx 2J by

n
F(x) - n <p (x ).

i=l

Clearly a fixed point of F(
•
) is a pure strategy asymmetric Bayesian equilibrium

for the game G. If we show that J"X = Jx and that J~X is compact we will be done

(note that the proof of the properties of the correspondence <p.,i.e, u.s.c.

convexity closed and nonempty valueness, is similar with that in the proof of

n
Theorem 3.4). Since X — II X. is a compact convex set by the

i=l
X

n
Krein-Milman-Minkowski theorem, conX -con II X. - X. By Theorem 3 in

i-1
x

[2a], JconX - Jx « Jx. Moreover, by Theorem 4 in [2a], Jx is compact. Hence,

JX is compact, convex and nonempty (recall that the nonempty valueness of J*X

follows from the measurable selection theorem) and by the Kakutani fixed point
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theorem there exists x ejx such that x eF(x ), i.e, x is a pure strategy

asymmetric Bayesian equilibrium for the game G.

Remark 6 ,

5

: If assumption (a. 6.1) of Theorem 6.2 is replaced by:

Y
(a. 6.1') X. : —-2 ( where Y is a separable Banach space whose dual

has the RNP) is an integrably bounded weakly compact, convex,

nonempty valued correspondence having a measurable graph,

then only an approximate pure strategy assymetric Bayesian equilibrium can be

obtained. The reason is that Aumann's Theorem 3 in [2a] is no longer true (see

for instance Rustichini [23b] for a counterexample). In particular, in this

case we only have that J*X = /con X - ci/x (where con denotes the closed

convex hull and ci denotes the norm closure). Moreover, by Lemma 3.1 in

Yannelis [28], J"x is weakly compact. Carrying out now the argument outlined in

the proof of Theorem 6.2 one can easily prove the existence of an approximate

pure stategy asymmetric Bayesian equilibrium.

For other results on approximate purification of mixed strategies see [2b],

[16] , [23] and [23a]

.



F-l

FOOTNOTES

1. Notice that this notion of equilibrium is non-cooperative. No communication

between players is allowed.

2. However, no equilibrium existence results are contained in the above papers.

Balder [3], Mas-Collel [14], Milgrom-Weber [16] and Radner- Rosenthal [23]

have provided existence of equilibrium theorems for games with incomplete

information, but their approach is different than ours. We will discuss the

work of the above authors in Section 5.

3. An alternative proof of a version of Theorem 3.2 will be given in Section 6.

4. Note that the proofs of Theorems 3.1 - 3.2 and Corollaries 3.1 - 3.2 remain

unchanged if the measurability assumptions on either the preference

correspondence P. or the payoff function u. of each player are made with

respect to the partition S. instead of S.

5. Let {f : n—1,2,...} be a sequence in L-((j.,Y). Then f converges weakly to f

if and only if <f ,p> (where <f ,p> denotes the value of f at p) convergesJ n r n r n °

k -k

to <f,p> for any p e L (n,Y ) (recall that Y has the RNP) , which is

equivalent to the fact that <f x A >P>
= <f >X AP> converges to <f,x A p>

=
n fi n a. a

*
<fxA ,p> for any p G L (/i,Y ), A e S, and each condition above implies that

•k -k -k -k -k -k

<f x. ,x > = <f »XAX > converges to <fx A
,x > = <f,x A

x > for any x eY , A e 2.

6. Since the connection between [16] and [23] has already been discussed by

Milgrom-Weber elsewhere (see [16] for an exact reference), we will focus on

the mixed strategy equilibrium existence results given in [3] and [16].

7. It should also be mentioned that Balder does not impose any topological

structure on the type spaces T..

8. I.e., for every open subset V of X. the set {(w,x) : conF.(u,x) n V i* <j>)

belongs to S . ® /9(X) .
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