IN MEMORIAM

Edward Bright

QA
453

THE

ESSENTIALS OF GEOMETRY

BY
WEbSTER WELLS, S.B.
PROFESSOR OF MATHEMATICS IN THE MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

BOSTON, U.S.A.
D. C. HEATH \& CO., PUBLISHERS

$$
\begin{aligned}
& \text { QA 45 } \\
& \hdashline \sqrt{2}
\end{aligned}
$$

Copyright， 1898 and 1899，
By WEBSTER WELLS．

PREFACE.

In the Essentials of Geometry, the author has endeavored to prepare a work suited to the needs of high schools and academies. It will also be found to answer as well the requirements of colleges and scientific schools.

In some of its features, the work is similar to the author's Revised Plane and Solid Geometry; but important improvements have been introduced, which are in line with the present requirements of many progressive teachers.

In a number of propositions, the figure is given, and a statement of what is to be proved; the details of the proof being left to the pupil, usually with a hint as to the method of demonstration to be employed.

The propositions and corollaries left in this way for the pupil to demonstrate, in the Plane Geometry, will be found in the following sections : -

Book I., §§ 51, 75, 76, 78, 79, 96, 102, 110, 111, 112, 115, 117, 136.

Book II., §§ 158, 160, 165, 170, 172 (Case III.), 174, 178, 179, 193 (Case III.), 194, and 201.

Book III., §§ 251, 257, 261, 264, 268, 278, 282, 284, and 286.

Book IV., §§ 312 and 316.
Book V., §§ 346, 347, and 350 .

Book VI., §§ 405, 407, 412, 414, 415, 416, 417, 420, 421, $434,437,440,442$, and 444.

Book VII., §§ 491, 495, 507, 512, 513, 521, 528, 529, and 530.

Book VIII., §§ 554, 559, 578, 580, 581, 594, 595, 601, 603 , 608, 613, 614, 625 (Case II.), 630, 631, 635, and 637.

Book IX., §§ 654, 656, 660, 673, and 679.
There are also Problems in Construction in which the construction or proof is left to the pupil.

Another important improvement consists in giving figures and suggestions for the exercises. In Book I., the pupil has a figure for every non-numerical exercise; after that, they are only given with the more difficult ones.

In many of the exercises in construction, the pupil is expected to discuss the problem, or point out its limitations.

In Book I., and also in the first eighteen propositions of Book VI., the authority for each statement of a proof is given directly after the statement, in smaller type, enclosed in brackets. In the remaining portions of the work, the formal statement of the authority is omitted ; but the number of the section where it is to be found is usually given.

In a number of cases, however, where the pupil is presumed, from practice, to be so familiar with the authority as not to require reference to the section where it is to be found, there is given merely an interrogation-point.

In all these cases the pupil should be required to give the authority as carefully and accurately as if it were actually printed on the page.

Another improvement consists in marking the parts of a demonstration by the words Given, To Prove, and Proof, printed in heavy-faced type.

A similar system is followed in the Constructions, by the use of the words Given, Required, Construction, and Proof.

A minor improvement is the omission of the definite article in speaking of geometrical magnitudes; thus we speak of "angle A," "triangle $A B C$," etc., and not "the angle A," "the triangle $A B C$," etc.

Symbols and abbreviations have been freely used; a list of these will be found on page 4.

Particular attention has been given to putting the propositions in the first part of Book I. in a form adapted to the needs of a beginner.

The pages have been arranged in such a way as to avoid the necessity, while reading a proof, of turning the page for reference to the figure.

The Appendix to the Plane Geometry contains propositions on Maxima and Minima of Plane Figures, and Symmetrical Figures; also, additional exercises of somewhat greater difficulty than those previously given.

The Appendix to the Solid Geometry contains rigorous proofs of the limit statements made in $\S \S 639,650,667$, and 674.

The author wishes to acknowledge, with thanks, the many suggestions which he has received from teachers in all parts of the country, which have added materially to the value of the work.

> WEBSTER WELLS.

Massachusetts Institute of Technology, 1899.

Stereoscopic views of many of the figures in the Solid Geometry have been prepared. Full particulars may be obtained from the publishers.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

CONTENTS.

Preliminary Dffinitions PAGE 1
PLANE GEOMETRY.
Book I. Rectilinear Figures 5
Book II. The Circle 72
Book III. Theory of Proportion.-Similar Polygons 122
Book IV. Areas of Polygons 162
Book V. Regular Polygons.-Measurement of the Circle 188
APPENDIX to plane geometry.
Maxima and Minima of Plane Figures 211
Symmetrical Figures 217
Additional Exercises. 220
SOLID GEOMETRY.
Book VI. Lines and Planes in Space.-Diedral Angles. - Polyedral Angles. 233
Book VII. Polyedrons 273
Book VIII. The Cylinder, Cone, and Sphere 319
Book IX. Measurement of the Cylinder, Cone, and Sphere 360
Appendix to Solid Geometry 386

181

E
$13+3$

12
1
1

GEOMETRY.

PRELIMINARY DEFINITIONS.

A material body.

A geometrical solid.

1. A material body, such as a block of wood, occupies a limited or bounded portion of space.

The boundary which separates such a body from surrounding space is called the surface of the body.
2. If the material composing such a body could be conceived as taken away from it, without altering the form or shape of the bounding surface, there would remain a portion of space having the same bounding surface as the former material body; this portion of space is called a geometrical solid, or simply a solid.

The surface which bounds it is called a geometrical surface, or simply a surface; it is also called the surface of the solid.
3. If two geometrical surfaces intersect each other, that which is common to both is called a geometrical line, or simply a line.

Thus, if surfaces $A B$ and $C D$ cut each other, their common intersection, $E F$, is a line.

GEOMETRY.

4. If two geometrical lines intersect each other, that which is common to both is called a geometrical point, or simply a point.

Thus, if lines $A B$ and $C D$ cut each other, their common intersection, O, is a point.
5. A solid has extension in every direction; but this is not true of surfaces and lines.

A point has extension in no direction, but simply position in space.
6. A surface may be conceived as existing independently in space, without reference to the solid whose boundary it forms.

In like manner, we may conceive of lines and points as having an independent existence in space.
7. A straight line, or right line, is a line which has the same direction throughout its length; as $A B$.

A straight line.

A curve.

A broken line.

A curved line, or curve, is a line no portion of which is straight; as $C D$.

A broken line is a line which is composed of different successive straight lines; as $E F G H$.
8. The word "line" will be used hereafter as signifying a straight line.
9. A plane surface, or plane, is a surface such that the straight line joining any two of its points lies entirely in the surface.

Thus, if P and Q are any two points in surface $M N$, and the straight line joining
 P and Q lies entirely in the surface, then $M N$ is a plane.
10. A curved surface is a surface no portion of which is plane.
11. We may conceive of a straight line as being of unlimited extent in regard to length; and in like manner we may conceive of a plane as being of unlimited extent in regard to length and breadth.
12. A geometrical figure is any combination of points, lines, surfaces, or solids.

A plane figure is a figure formed by points and lines all lying in the same plane.

A geometrical figure is called rectilinear, or right-lined, when it is composed of straight lines only.
13. Geometry treats of the properties, construction, and measurement of geometrical figures.
14. Plane Geometry treats of plane figures only.

Solid Geometry, also called Geometry of Space, or Geometry of Three Dimensions, treats of figures which are not plane.
15. An Axiom is a truth which is assumed without proof as being self-evident.

A Theorem is a truth which requires demonstration.
A Problem is a question proposed for solution.
A Proposition is a general term for a theorem or problem.
A Postulate assumes the possibility of solving a certain problem.

A Corollary is a secondary theorem, which is an immediate consequence of the proposition which it follows.

A Scholium is a remark or note.
An Hypothesis is a supposition made either in the statement or the demonstration of a proposition.

16. Postulates.

1. We assume that a straight line can be drawn between any two points.
2. We assume that a straight line can be produced (i.e., prolonged) indefinitely in either direction.

17. Axioms.

We assume the truth of the following:

1. Things which are equal to the same thing, or to equals, are equal to each other.
2. If the same operation be performed upon equals, the results will be equal.
3. But one straight line can be drawn between two points.
4. A straight line is the shortest line between two points.
5. The whole is equal to the sum of all its parts.
6. The whole is greater than any of its parts.
7. Since but one straight line can be drawn between two points, a straight line is said to be determined by any two of its points.

19. Symbols and Abbreviations.

The following symbols will be used in the work:

+ , plus. Δ, triangle.
- , minus. A, triangles.
\times, multiplied by. \perp, perpendicular, is perpen-
$=$, equals.
dicular to.
\approx, equivalent, is equivalent $I s$, perpendiculars. to.
$>$, is greater than.
$<$, is less than.
\therefore, therefore.
\angle, angle.
Ls, angles.

II, parallel, is parallel to.
Ils, parallels.
\square, parallelogram.
[s), parallelograms.
\odot, circle.
© , circles.

The following abbreviations will also be used:

Ax., Axiom.	Sup.,	Supplementary.
Def., Definition.	Alt.,	Alternate.
Hyp., Hypothesis.	Int.,	Interior.
Cons., Construction.	Ext.,	Exterior.
Rt., Right.	Corresp., Corresponding.	
Str., Straight.	Rect.,	Rectangle, rec-
Adj., Adjacent.		tangular.

PLANE GEOMETRY.

Воок I.

RECTILINEAR FIGURES.

DEFINITIONS AND GENERAL PRINCIPLES.

20. An angle (\angle) is the amount of divergence of two straight lines which are drawn from the same point in different directions.

The point is called the vertex of the angle, and the straight lines are called its sides.

21. If there is but one angle at a given vertex, it may be designated by the letter at that vertex; but if two or more angles have the same vertex, we avoid ambiguity by naming also a letter on each side, placing the letter at the vertex between the others.

Thus, we should call the angle of § 20 "angle O "; but if there were other angles having the same vertex, we should read it either $A O B$ or $B O A$.

Another way of designating an angle is by means of a letter placed between its sides; examples of this will be found in § 71.
22. Two geometrical figures are said to be equal when one can be applied to the other so that they shall coincide throughout.

To prove two angles equal, we do not consider the lengths of their sides.

Thus, if angle $A B C$ can be applied to angle $D E F$ in such a manner that point B shall fall on point E, and sides $A B$ and $B C$ on sides $D E$ and $E F$, respectively, the angles are equal, even if sides $A B$ and $B C$ are not equal
 in length to sides $D E$ and $E F$, respectively.
23. Two angles are said to be adjacent when they have the same vertex, and a common side between them; as $A O B$ and $B O C$.

PERPENDICULAR LINES.

24. If from a given point in a straight line a line be drawn meeting the given line in such a way as to make the adjacent angles equal, each of the equal angles is called a right angle, and the lines are said to be perpendicular (\perp) to each other.

Thus, if from point A in straight line $C D$ line $A B$ be drawn in such a way as to make angles $B A C$ and $B A D$ equal, each of these angles is a right angle, and $A B$ and $C D$ are perpendicular to each other.

Prop. I. Theorem.

25. At a given point in a straight line, a perpendicular to the line can be drawn, and but one.

Let C be the given point in straight line $A B$.

To prove that a perpendicular can be drawn to $A B$ at C, and but one.

Draw a straight line $C D$ in such a position that angle $B C D$ shall be less than angle $A C D$; and let line $C D$ be turned about point C as a pivot towards the position $C A$.

Then, angle $B C D$ will constantly increase; and angle $A C D$ will constantly diminish, until it becomes less than angle $B C D$; and it is evident that there is one position of $C D$, and only one, in which these angles are equal.

Let $C E$ be this position; then by the definition of $\S 24$, $C E$ is perpendicular to $A B$.

Hence, a perpendicular can be drawn to $A B$ at C, and but one.
26. Cor. All right angles are equal.

Let $A B C$ and $D E F$ be right angles.
To prove angles $A B C$ and $D E F^{\prime}$ equal.

Let angle $A B C$ be superposed (i.e., placed) upon angle $D E F$ in such a way that point B shall fall upon point E, and line $A B$ upon line $D E$.

Then, line $B C$ will fall upon line $E F$; for otherwise we should have two lines perpendicular to $D E$ at E, which is impossible.
[At a given point in a straight line, but one perpendicular to the line can be drawn.]

Hence, angles $A B C$ and $D E F$ are equal (§ 22).

DEFINITIONS.

27. An acute angle is an angle which is less than a right angle; as $A B C$.

An obtuse angle is an angle which is greater than a right angle; as $D E F$.

Acute and obtuse angles are called oblique angles; and intersecting lines which are not perpendicular, are said to be oblique to each other.

28. Two angles are said to be vertical, or opposite, when the sides of one are the prolongations of the sides of the other; as $A E C$ and BED.

29. An angle is measured by finding how many times it contains another angle, adopted arbitrarily as the unit of measure.

The usual unit of measure is the degree, which is the ninetieth part of a right angle.

To express fractional parts of the unit, the degree is divided into sixty equal parts called minutes, and the minute into sixty equal parts, called seconds.

Degrees, minutes, and seconds are represented by the symbols, ${ }^{\circ}$, ', '", respectively.

Thus, $43^{\circ} 22^{\prime} 37^{\prime \prime}$ represents an angle of 43 degrees, 22 minutes, and 37 seconds.
30. If the sum of two angles is a right angle, or 90°, one is called the complement of the other; and if their sum is two right angles, or 180°, one is called the supplement of the other.

For example, the complement of an angle of 34° is $90^{\circ}-34^{\circ}$, or 56°; and the supplement of an angle of 34° is $180^{\circ}-34^{\circ}$, or 146°.

Two angles which are complements of each other are called complementary; and two angles which are supplements of each other are called supplementary.
31. It is evident that

1. The complements of equal angles are equal.
2. The supplements of equal angles are equal.

EXERCISES.

1. How many degrees are there in the complement of 47° ? of 83° ? of 90° ?
2. How many degrees are there in the supplement of 31° ? of 90° ? of 178° ?
3. How many degrees are there in the complement, and in the supplement, of an angle equal to $\frac{7}{12}$ of a right angle?
4. How many degrees are there in an angle whose supplement is equal to $\frac{26}{1} \frac{6}{1}$ of its complement?
5. Two angles are complementary, and the greater exceeds the less by 37°. How many degrees are there in each angle?

Prop. II. Theorem.

32. If two adjacent angles have their exterior sides in the same straight line, their sum is equal to two right angles.

Let angles $A C D$ and $B C D$ have their sides $A C$ and $B C$ in the same straight line.

To prove the sum of angles $A C D$ and $B C D$ equal to two right angles.

Draw line $C E$ perpendicular to $A B$ at C.
[At a given point in a straight line, a perpendicular to the line can be drawn.]

Then, it is evident that the sum of angles $A C D$ and $B C D$ is equal to the sum of angles $A C E$ and $B C E$.

But since $C E$ is perpendicular to $A B$, angles $A C E$ and $B C E$ are right angles.

Hence, the sum of angles $A C D$ and $B C D$ is equal to two right angles.
33. Sch. Since angles $A C D$ and $B C D$ are supplementary (§ 30), the theorem may be stated as follows:

If two adjacent angles have their exterior sides in the same straight line, they are supplementary.

Such angles are called supplementary-adjacent.
34. Cor. I. The sum of all the angles on the same side of a straight line at a given point is equal to two right angles.

This is evident from § 32 .
35. Cor. II. The sum of all the angles about a point in a plane is equal to four right angles.

Let $A O B, B O C, C O D$, and $D O A$ be angles about the point O.

To prove the sum of angles $A O B$, $B O C, C O D$, and $D O A$ equal to four right angles.

Produce $A O$ to E.
Then, the sum of angles $A O B, B O C$, and $C O E$ is equal to two right angles.

[The sum of all the angles on the same side of a straight line at a given point is equal to two right angles.]

In like manner, the sum of angles $E O D$ and $D O A$ is equal to two right angles.

Therefore, the sum of angles $A O B, B O C, C O D$, and $D O A$ is equal to four right angles.

Ex. 6. If, in the figure of $\S 35$, angles $A O B, B O C$, and $C O D$ are respectively $49^{\circ}, 88^{\circ}$, and $\frac{9}{8}$ of a right angle, how many degrees are there in angle $A O D$?
36. Sch. The pupil will now observe that a demonstration, in Geometry, consists of three parts:

1. The statement of what is given in the figure.
2. The statement of what is to be proved.
3. The proof.

In the remaining propositions of the work, we shall mark clearly the three divisions of the demonstration by heavyfaced type, and employ the symbols and abbreviations of § 20.

Prop. III. Theorem.
37. If the sum of two adjacent angles is equal to two right angles, their exterior sides lie in the same straight line.

Given the sum of adj. $\triangle A C D$ and $B C D$ equal to two rt. \angle.

To Prove that $A C$ and $B C$ lie in the same str. line.
Proof. If $A C$ and $B C$ do not lie in the same str. line, let $C E$ be in the same str. line with $A C$.

Then since $A C E$ is a str. line, $\angle E C D$ is the supplement of $\angle A C D$.
[If two adj. $₫$ have their ext. sides in the same str. line, they are supplementary.]

But by hyp., $\angle A C D+\angle B C D=$ two rt. $\angle \mathrm{s}$.
Whence, $\angle B C D$ is the supplement of $\angle A C D$.
Then since both $\angle E C D$ and $\angle B C D$ are supplements of $\angle A C D, \angle E C D=\angle B C D$.
[The supplements of equal \mathbb{E} are equal.]
Hence, $E C$ coincides with $B C$, and $A C$ and $B C$ lie in the same str. line.
38. Sch. I. It will be observed that the enunciation of every theorem consists essentially of two parts; the Hypothesis, and the Conclusion.

Thus, we may enunciate Prop. I as follows:
Hypothesis. If a point be taken in a given straight line,
Conclusion. A perpendicular to the line at the given point can be drawn, and but one.
39. Sch. II. We may enunciate Prop. II as follows :

Hypothesis. If two adjacent angles have their exterior sides in the same straight line,

Conclusion. Their sum is equal to two right angles.
Again, we may enunciate Prop. III :
Hypothesis. If the sum of two adjacent angles is equal to two right angles,

Conclusion. Their exterior sides lie in the same straight line.

One proposition is said to be the Converse of another when the hypothesis and conclusion of the first are, respectively, the conclusion and hypothesis of the second.

It is evident from the above considerations that Prop. III is the converse of Prop. II.

> Prop. IV. Theorem.
40. If two straight lines intersect, the vertical angles are equal.

Given str. lines $A B$ and $C D$ intersecting at O.
To Prove $\quad \angle A O C=\angle B O D$.
Proof. Since $\angle S A O C$ and $A O D$ have their ext. sides in str. line $C D, \angle A O C$ is the supplement of $\angle A O D$.
[If two adj. \S have their ext. sides in the same str. line, they are supplementary.]

For the same reason, $\angle B O D$ is the supplement of $\angle A O D$.

$$
\begin{equation*}
\therefore \angle A O C=\angle B O D . \tag{§31}
\end{equation*}
$$

[The supplements of equal $₫$ 完 are equal.]
In like manner, we may prove

$$
\angle A O D=\angle B O C .
$$

EXERCISES.

7. If, in the figure of Prop. IV., $\angle A O D=137^{\circ}$, how many degrees are there in $B O C$? in $A O C$? in $B O D$?
8. Two angles are supplementary, and the greater is seven times the less. How many degrees are there in each angle?

Prop. V. Theorem.

41. If a perpendicular be erected at the middle point of a straight line,
I. Any point in the perpendicular is equally distant from the extremities of the line.
II. Any point without the perpendicular is unequally distant from the extremities of the line.

I. Given line $C D \perp$ to line $A B$ at its middle point D, E any point in $C D$, and lines $A E$ and $B E$.

To Prove $\quad A E=B E$.
Proof. Superpose figure $B D E$ upon figure $A D E$ by folding it over about line $D E$ as an axis.

Now $\quad \angle B D E=\angle A D E$.
[All rt. \subseteq are equal.]
Then, line $B D$ will fall upon line $A D$.
But by hyp., $\quad B D=A D$.
Whence, point B will fall on point A.
Then line $B E$ will coincide with line $A E$.
[But one str. line can be drawn between two points.]

$$
\begin{equation*}
\therefore A E=B E . \tag{Ax.3}
\end{equation*}
$$

II. Given line $C D \perp$ to line $A B$ at its middle point D, F any point without $C D$, and lines $A F$ and $B F$.

To Prove

$$
A F>B F .
$$

Proof. Let $A F$ intersect $C D$ at E, and draw line $B E$.
Now
$B E+E F>B F$.
[A str. line is the shortest line between two points.]
(Ax. 4)

But,
 $B E=A E$.

[If a \perp be erected at the middle point of a str. line, any point in the \perp is equally distant from the extremities of the line.] (§41, I)

Substituting for $B E$ its equal $A E$, we have

$$
A E+E F>B F, \text { or } A F>B F
$$

42 Cor. I. Every point which is equally distant from the extremities of a straight line, lies in the perpendicular erected at the middle point of the line.
43. Cor. II. Since a straight line is determined by any two of its points (§18), it follows from § 42 that

Two points, each equally distant from the extremities of a straight line, determine a perpendicular at its middle point.
44. Cor. III. When figure $B D E$ is superposed upon figure $A D E$, in the proof of $\S 41, \mathrm{I} ., \angle E B D$ coincides with $\angle E A D$, and $\angle B E D$ with $\angle A E D$.

That is, $\angle E A D=\angle E B D$, and $\angle A E D=\angle B E D$.
Then, if lines be drawn to the extremities of a straight line from any point in the perpendicular erected at its middle point,

1. They make equal angles with the line.
2. They make equal angles with the perpendicular.

Prop. VI. Theorem.
45. From a given point without a straight line, a perpendicular can be drawn to the line, and but one.

Given point C without line $A B$.
To Prove that a \perp can be drawn from C to $A B$, and but one.
Proof. Let line $H K$ be \perp to line $F G$ at H.
[At a given point in a str. line, $a \perp$ to the line can be drawn.] (§ 25) Apply line $F G$ to line $A B$, and move it along until $H K$ passes through C; let point H fall at D, and draw line $C D$.

Then, $C D$ is $\perp A B$.
If possible, let $C E$ be another \perp from C to $A B$.
Produce $C D$ to C^{\prime}, making $C^{\prime} D=C D$, and draw line $E C^{\prime \prime}$.
By cons., $E D$ is \perp to $C C^{\prime}$ at its middle point D.

$$
\therefore \angle C E D=\angle C^{\prime} E D .
$$

[If lines be drawn to the extremities of a str. line from any point in the \perp erected at its middle point, they make equal $₫$ sith the \perp.]
(§ 44)
But by hyp., $\angle C E D$ is a rt. \angle; then, $\angle C^{\prime} E D$ is a rt. \angle. $\therefore \angle C E D+\angle C^{\prime} E D=$ two rt. $\angle \mathrm{s}$.
Then line $C E C^{\prime \prime}$ is a str. line.
[If the sum of two adj. © is equal to two rt. \&s, their ext. sides lie in the same str. line.]

But this is impossible, for, by cons., $C D C^{\prime \prime}$ is a str. line.
[But one str. line can be drawn between two points.]
Hence, $C E$ cannot be $\perp A B$, and $C D$ is the only \perp that can be drawn.

Prop. VII. Theorem.

46. The perpendicular is the shortest line that can be drawn from a point to a straight line.

Given $C D$ the \perp from point C to line $A B$, and $C E$ any other str. line from C to $A B$.

To Prove $\quad C D<C E$.

Proof. Produce $C D$ to $C^{\prime \prime}$, making $C^{\prime \prime} D=C D$, and draw line $E C^{\prime}$.

By cons., $E D$ is \perp to $C C^{\prime}$ at its middle point D.

$$
\therefore C E=C^{\prime \prime} E .
$$

[If a \perp be erected at the middle point of a str. line, any point in the \perp is equally distant from the extremities of the line.]

But

$$
C D+D C^{\prime}<C E+E C^{\prime}
$$

[A str. line is the shortest line between two points.]
Substituting for $D C^{\prime}$ and $E C^{\prime \prime}$ their equals $C D$ and $C E$, respectively, we have

$$
\begin{aligned}
2 C D & <2 C E . \\
\therefore C D & <C E .
\end{aligned}
$$

47. Sch. The distance of a point from a line is understood to mean the length of the perpendicular from the point to the line.

Ex. 9. Find the number of degrees in the angle the sum of whose supplement and complement is 196°.

Prop. VIII. Theorem.
48. If two lines be drawn from a point to the extremities of a straight line, their sum is greater than the sum of two other lines similarly drawn, but enveloped by them.

Given lines $A B$ and $A C$ drawn from point A to the extremities of line $B C$; and $D B$ and $D C$ two other lines similarly drawn, but enveloped by $A B$ and $A C$.

To Prove $\quad A B+A C>D B+D C$.
Proof. Produce $B D$ to meet $A C$ at E.
Now $\quad A B+A E>B E$.
[A str. line is the shortest line between two points.]
Adding $E C$ to both members of the inequality,

$$
B A+A C>B E+E C
$$

Again, $\quad D E+E C>D C$.
Adding $B D$ to both members of the inequality,

$$
B E+E C>B D+D C
$$

Since $B A+A C$ is greater than $B E+E C$, which is itself greater than $B D+D C$, it follows that

$$
A B+A C>D B+D C
$$

EXERCISES.

10. The straight line which bisects an angle bisects also its vertical angle.
(If $O E$ bisects $\angle A O C, \angle A O E=\angle C O E$; and these \measuredangle are equal to $\triangle B O F$ and $D O F$, respectively.)

11. The bisectors of a pair of vertical angles lie in the same straight line.
(Fig. of Ex. 10. To prove $E O F$ a str. line. $\angle C O E=\angle D O F$, for they are the halves of equal \measuredangle; but $\angle D O E+\angle C O E=2 \mathrm{rt}$. \triangle, and therefore $\angle D O E+\angle D O F=2 \mathrm{rt}$. $\angle \mathrm{B}$.)
12. The bisectors of two supplementary adjacent angles are perpendicular to each other.
(We have $\angle A C D+\angle B C D=2 \mathrm{rt} . \measuredangle$; and $\triangle D C E$ and $D C F$ are the halves of $\subseteq A C D$ and $B C D$, respectively.)

13. If the bisectors of two adjacent angles are perpendicular, the angles are supplementary.
(Fig. of Ex. 12. Sum of $\triangle D C E$ and $D C F=1 \mathrm{rt} . \angle$, and $\triangle D C E$ and $D C F$ are the halves of $\triangle A C D$ and $B C D$, respectively.)
14. A line drawn through the vertex of an angle perpendicular to its bisector makes equal angles with the sides of the given angle.
($\triangle A O D$ and $B O E$ are complements of $\triangle A O C$ and $B O C$, respectively.)

Prop. IX. Theorem.
49. If oblique lines be drawn from a point to a straight line,
I. Two oblique lines cutting off equal distances from the foot of the perpendicular from the point to the line are equal.
II. Of two oblique lines cutting off unequal distances from the foot of the perpendicular from the point to the line, the more remote is the greater.

I. Given $C D$ the \perp from point C to line $A B$; and $C E$ and $C F$ oblique lines from C to $A B$, cutting off equal distances from the foot of $C D$.

To Prove

$$
C E=C F .
$$

Proof. By hyp., $C D$ is \perp to $E F$ at its middle point D.

$$
\therefore C E=C F .
$$

[If a \perp be erected at the middle point of a str. line, any point in the \perp is equally distant from the extremities of the line.]

II. Given $C D$ the \perp from point C to line $A B$; and $C E$ and $C F$ oblique lines from C to $A B$, cutting off unequal distances from the foot of $C D ; C F$ being the more remote.

To Prove $\quad C F>C E$.
Proof. Produce $C D$ to $C^{\prime \prime}$, making $C^{\prime \prime} D=C D$, and draw lines $C^{\prime} E$ and $C^{\prime} F$.

By cons., $A D$ is \perp to $C C^{\prime \prime}$ at its middle point D.

$$
\therefore C F=C^{\prime \prime} F, \text { and } C E=C^{\prime} E .
$$

[If a \perp be erected at the middle point of a str. line, any point in the \perp is equally distant from the extremities of the line.]

But $\quad C F+F C^{\prime}>C E+E C^{\prime \prime}$.
[If two lines be drawn from a point to the extremities of a str. line, their sum is $<$ the sum of two other lines similarly drawn, but enveloped by them.]

Substituting for $F C^{\prime \prime}$ and $E C^{\prime \prime}$ their equals $C F$ and $C E$, respectively, we have

$$
\begin{aligned}
2 C F & >2 C E . \\
\therefore C F & >C E
\end{aligned}
$$

Note. The theorem holds equally if oblique line $C E$ is on the opposite side of perpendicular $C D$ from $C F$.

Prop. X. Theorem.
50. (Converse of Prop. IX., I.) If oblique lines be drawn fiom a point to a straight line, two equal oblique lines cut off equal distances from the foot of the perpendicular from the point to the line.

Given $C D$ the \perp from point C to line $A B$, and $C E$ and $C F$ equal oblique lines from C to $A B$.

To Prove
 $$
D E=D F .
$$

Proof. We know that $D E$ is either $>$, equal to, or $<$ DF.

If we suppose $D E>D F, C E$ would be $>C F$.
[If oblique lines be drawn from a point to a str. line, of two oblique lines cutting off unequal distances from the foot of the \perp from the point to the line, the more remote is the greater.]

But this is contrary to the hypothesis that $C E=C F$.
Hence, $D E$ cannot be $>D F$.
In like manner, if we suppose $D E<D F, C E$ would be $<C F$, which is contrary to the hypothesis that $C E=C F$.

Hence, $D E$ cannot be $<D F$.
Then, if $D E$ can be neither $>D F$, nor $<D F$, we must have

$$
D E=D F
$$

Note. The method of proof exemplified in Prop. X is known as the "Indirect Method," or the "Reductio ad Absurdum."

The truth of a proposition is demonstrated by making every possible supposition in regard to the matter, and showing that, in all cases except the one which we wish to prove, the supposition leads to something which is contrary to the hypothesis.
51. Cor. (Converse of Prop. IX, II.) If two unequal oblique lines be drawn from a point to a straight line, the greater cuts off the greater distance from the foot of the perpendicular from the point to the line.

Given $C D$ the \perp from point C to line $A B$; and $C E$ and $C F$ unequal oblique lines from C to $A B, C F$ being $>C E$.

To Prove $\quad D F>D E$.
(Prove by Reductio ad Absurdum ; by § 49, I, DE cannot equal $D F$, and by $\S 49$, II, it cannot be $>D F$.)

PARALLEL LINES.
52. Def. Two straight lines are said to be parallel (II) when they lie in the same plane, and cannot meet however far they may be produced; as $A B$ and $C D$.

53. Ax. We assume that but one straight line can be drawn through a given point parallel to a given straight line.

Prop. XI. Theorem.

54. Two perpendiculars to the same straight line are parallel.

Given lines $A B$ and $C D \perp$ to line $A C$.
To Prove $\quad A B \| C D$.
Proof. If $A B$ and $C D$ are not $\|$, they will meet in some point if sufficiently produced (§ 52).

We should then have two 1 s from this point to $A C$, which is impossible.
[From a given point without a str. line, but one \perp can be drawn to the line.]

Therefore, $A B$ and $C D$ cannot meet, and are II.

Prop. XII. Theorem.

55. Two straight lines parallel to the same straight line are parallel to each other.

Given lines $A B$ and $C D \|$ to line $E F$.
To Prove $\quad A B \| C D$.
Proof. If $A B$ and $C D$ are not $\|$, they will meet in some point if sufficiently produced.

We should then have two lines drawn through this point \| to $E F$, which is impossible.
[But one str. line can be drawn through a given point || to a given str. line.]

Therefore, $A B$ and $C D$ cannot meet, and are $\|$.

Prop. XIII. Theorem.

56. A straight line perpendicular to one of two parallels is perpendicular to the other.

Given lines $A B$ and $C D \|$, and line $A C \perp A B$.
To Prove $\quad A C \perp C D$.
Proof. If $C D$ is not $\perp A C$, let line $C E$ be $\perp A C$.
Then since $A B$ and $C E$ are $\perp A C, C E \| A B$.
[Two $1 s$ to the same str. line are II.]
But by hyp., $\quad C D \| A B$.
Then, $C E$ must coincide with $C D$.
[But one str. line can be drawn through a given point II to a given str. line.]

But by hyp., $\quad A C \perp C E$.
Then since $C E$ coincides with $C D$, we have $A C \perp C D$.

TRIANGLES.

DEFINITIONS.
57. A triangle (Δ) is a portion of a plane bounded by three straight lines; as $A B C$.

The bounding lines, $A B, B C$, and $C A$, are called the sides of the triangle, and their points of intersection, A, B, and C, the vertices.
The angles of the triangle are the
 angles $C A B, A B C$, and $B C A$, included between the adjacent sides.
An exterior angle of a triangle is the angle at any vertex between any side of the triangle and the adjacent side produced; as $A C D$.

58. A triangle is called scalene when no two of its sides are equal; isosceles when two of its sides are equal; equilateral when all its sides are equal; and equiangular when all its angles are equal.

Scalene.

Isosceles.

Equilateral.
59. A right triangle is a triangle which has a right angle; as $A B C$, which has a right angle at C.

The side $A B$ opposite the right angle is called the hypotenuse, and the other sides, $A C$ and $B C$, the legs.

60. If any side of a triangle be taken and called the base, the corresponding altitude is the perpendicular drawn from the opposite vertex to the base, produced if necessary.

In general, either side may be taken as the base; but in an isosceles triangle, unless otherwise specified, the side which is not one of the equal sides is taken as the base.

When any side has been taken as the base, the opposite angle is called the vertical angle, and its vertex is called the vertex of the triangle.

Thus, in triangle $A B C, B C$ is the base, $A D$ the altitude, and $B A C$ the vertical
 angle.
61. Since a straight line is the shortest line between two points (Ax. 4), it follows that

Any side of a triangle is less than the sum of the other two sides.

Prop. XIV. Theorem.

62. Any side of a triangle is greater than the difference of the other two sides.

Given $A B$, any side of $\triangle A B C$; and side $B C>$ side $A C$.
To Prove $A B>B C-A C$.
Proof. We have $A B+A C>B C$.
[A str. line is the shortest line between two points.]
(Ax. 4)
Subtracting $A C$ from both members of the inequality,

$$
A B>B C-A C .
$$

Prop. XV. Theorem.

63. Two triangles are equal when two sides and the included angle of one are equal respectively to two sides and the included angle of the other.

Given, in $\triangle A B C$ and $D E F$,

$$
A B=D E, A C=D F, \text { and } \angle A=\angle D .
$$

To Prove $\quad \triangle A B C=\triangle D E F$.
Proof. Superpose $\triangle A B C$ upon $\triangle D E F$ in such a way that $\angle A$ shall coincide with its equal $\angle D$; side $A B$ falling on side $D E$, and side $A C$ on side $D F$.
Then since $A B=D E$ and $A C=D F$, point B will fall on point E, and point C on point F.
Whence, side $B C$ will coincide with side $E F$.
[But one str. line can be drawn between two points.]
Therefore, the coincide throughout, and are equal.
64. Cor. Since $A B C$ and $D E F$ coincide throughout, we have $\quad \angle B=\angle E, \angle C=\angle F$, and $B C=E F$.
65. Sch. I. In equal figures, lines or angles which are similarly placed are called homologous.

Thus, in the figure of Prop. $\mathrm{XV}, \angle A$ is homologous to $\angle D ; A B$ is homologous to $D E$; etc.
66. Sch. II. It follows from § 65 that

In equal figures, the homologous parts are equal.
67. Sch. III. In equal triangles, the equal angles lie opposite the equal sides.

Prop. XVI. Theorem.

68. Two triangles are equal when a side and two adjacent angles of one are equal respectively to a side and two adjacent angles of the other.

Given, in $\triangle A B C$ and $D E F$,

$$
A B=D E, \angle A=\angle D, \text { and } \angle B=\angle E .
$$

To Prove $\quad \triangle A B C=\triangle D E F$.

Proof. Superpose $\triangle A B C$ upon $\triangle D E F$ in such a way that side $A B$ shall coincide with its equal $D E$; point A falling on point D, and point B on point E.

Then since $\angle A=\angle D$, side $A C$ will fall on side $D F$, and point C will fall somewhere on $D F$.

And since $\angle B=\angle E$, side $B C$ will fall on side $E F$, and point C will fall somewhere on $E F$.

Then point C, falling at the same time on $D F$ and $E F$, must fall at their intersection, F.

Therefore, the \triangle coincide throughout, and are equal.

EXERCISES.

15. If, in the figure of Prop. XV., $A B=E F, B C=D E$, and $\angle B=\angle E$, which angle of triangle $D E F$ is equal to A ? which angle is equal to C ?
16. If, in the figure of Prop. XVI., $A C=D F, \angle A=\angle F$, and $\angle C=\angle D$, which side of triangle $D E F$ is equal to $A B$? which side is equal to $B C$?
17. If $O D$ and $O E$ are the bisectors of two complementaryadjacent angles, $A O B$ and $B O C$, how many degrees are there in $\angle D O E$?

Prop. XVII. Theorem.

69. Two triangles are equal when the three sides of one are equal respectively to the three sides of the other.

Given, in $\triangle A B C$ and $D E F$,

$$
A B=D E, B C=E F, \text { and } C A=F D
$$

To Prove

$$
\triangle A B C=\triangle D E F
$$

Proof. Place $\triangle D E F$ in the position $A B F^{\prime \prime}$; side $D E$ coinciding with its equal $A B$, and vertex F falling at $F^{\prime \prime}$, on the opposite side of $A B$ from C.

Draw line $C F^{\prime \prime}$.
By hyp., $A C=A F^{\prime}$ and $B C=B F^{\prime}$.
Whence, $A B$ is \perp to $C F^{\prime}$ at its middle point.
[Two points, each equally distant from the extremities of a str. line, determine $\mathrm{a} \perp$ at its middle point.]

$$
\therefore \angle B A C=\angle B A F^{\prime \prime}
$$

[If lines be drawn to the extremities of a str. line from any point in the \perp erected at its middle point, they make equal ς with the \perp.
(§ 44)
Then since sides $A B$ and $A C$ and $\angle B A C$ of $\triangle A B C$ are equal, respectively, to sides $A B$ and $A F^{\prime \prime}$ and $\angle B A F^{\prime \prime}$ of $\triangle A B F^{\prime \prime}$,

$$
\triangle A B C=\triangle A B F^{\prime}
$$

[Two \triangle are equal when two sides and the included \angle of one are equal respectively to two sides and the included \angle of the other.]

That is,

$$
\begin{equation*}
\triangle A B C=\triangle D E F \tag{§63}
\end{equation*}
$$

Prop. XVIII. Theorem.

70. Two right triangles are equal when the hypotenuse and an adjacent angle of one are equal respectively to the hypotenuse and an adjacent angle of the other.

Given, in rt. $\triangle A B C$ and $D E F$,
hypotenuse $A B=$ hypotenuse $D E$, and $\angle A=\angle D$.
To Prove $\triangle A B C=\triangle D E F$.

Proof. Superpose $\triangle A B C$ upon $\triangle D E F$ in such a way that hypotenuse $A B$ shall coincide with its equal $D E$; point A falling on point D, and point B on point E.

Then since $\angle A=\angle D$, side $A C$ will fall on side $D F$.
Therefore, side $B C$ will fall on side $E F$.
[From a given point without a str. line, but one \perp can be drawn to the ine.]

Therefore, the $\$$ coincide throughout, and are equal.
71. Def. If two straight lines, $A B$ and $C D$, are cut by a line $E F$, called a transversal, the angles are named as follows:
c, d, e, and f are called interior angles, and a, b, g, and h exterior angles.
c and f, or d and e, are called alter-nate-interior angles.

α and h, or b and g, are called alternate-exterior angles.
a and e, b and f, c and g, or d and h, are called corresponding angles.

Prop. XIX. Theorem.
72. If two parallels are cut by a transversal, the alternateinterior angles are equal.

Given $\|_{s} A B$ and $C D$ cut by transversal $E F$ at points G and $I I$, respectively.

To Prove $\angle A G I I=\angle G H D$ and $\angle B G H=\angle C H G$.
Proof. Through K, the middle point of $G H$, draw line $L M \perp A B$; then, $L M \perp C D$.
[A str. line \perp to one of two $\| s$ is \perp to the other.]
Now in rt. © GKL and HKM, by cons.,

$$
\text { hypotenuse } G K=\text { hypotenuse } H K .
$$

Also, $\angle G K L=\angle H K M$.
[If two str. lines intersect, the vertical $₫$ are equal.]

$$
\therefore \triangle G K L=\triangle H K M .
$$

[Two it. \& are equal when the hypotenuse and an adj. \angle of one are equal respectively to the hypotenuse and an adj. \angle of the other.] (§ 70)

$$
\therefore \angle K G L=\angle K H M .
$$

[In equal figures, the homologous parts are equal.]
Again, $\angle K G L$ is the supplement of $\angle B G H$, and $\angle K H M$ the supplement of $\angle C H G$.
[If two adj. ©s have their ext. sides in the same str. line, they are supplementary.]

Then since $\angle K G L=\angle K H M$, we have

$$
\angle B G H=\angle C H G
$$

[The supplements of equal $₫$ are equal.]

Prop. XX. Theorem.

73. (Converse of Prop. XIX.) If two straight lines are cut by a transversal, and the alternate-interior angles are equal, the two lines are parallel.

Given lines $A B$ and $C D$ cut by transversal $E F$ at points G and H, respectively, and

$$
\begin{gathered}
\angle A G H=\angle G H D . \\
A B \| C D .
\end{gathered}
$$

To Prove
Proof. If $C D$ is not $\| A B$, draw line $K L$ through $H \| A B$. Then since $\|_{s} A B$ and $K L$ are cut by transversal $E F$,

$$
\angle A G H=\angle G H L
$$

[If two $\|$ s are cut by a transversal, the alt. int. $₫$ \& are equal.] (§ 72)
But by hyp., $\angle A G H=\angle G H D$.

$$
\therefore \angle G H L=\angle G H D .
$$

[Things which are equal to the same thing are equal to each other.]
(Ax. 1)
But this is impossible unless $K L$ coincides with $C D$.

$$
\therefore C D \| A B .
$$

In like manner, it may be proved that if $A B$ and $C D$ are cut by $E F$, and $\angle B G H=\angle C H G$, then $A B \| C D$.

Ex. 18. If, in the figure of Prop. XIX., $\angle A G H=68^{\circ}$, how many degrees are there in $B G H$? in $G H D$? in $D H F$?

Prop. XXI. Theorem.

74. If two parallels are cut by a transversal, the corresponding angles are equal.

Given $\|_{s} A B$ and $C D$ cut by transversal $E F$ at points G and H, respectively.
To Prove $\quad \angle A G E=\angle C H G$.
Proof. We have $\angle B G H=\angle C H G$.
[If two \|fs are cut by a transversal, the alt. int. © are equal.] (§72)
But, $\quad \angle B G H=\angle A G E$.
[If two str. lines intersect, the vertical \mathbb{E} are equal.]

$$
\therefore \angle A G E=\angle C H G
$$

[Things which are equal to the same thing are equal to each other.]

In like manner, we may prove

$$
\angle A G H=\angle C H F, \angle B G E=\angle D H G, \text { and } \angle B G H=\angle D H F
$$

75. Cor. I. If two parallels are cut by a transversal, the alternate-exterior angles are equal.
(Fig. of Prop. XXI.)
Given $\|_{s} A B$ and $C D$ cut by transversal $E F$ at points G and H, respectively.

To Prove $\quad \angle A G E=\angle D H F$.
($\angle B G H=\angle C H G$, and the theorem follows by $\S 40$.)
What other two ext. $\measuredangle s$ in the figure are equal?
76. Cor. II. If two parallels are cut by a transversal, the sum of the interior angles on the same side of the transversal is equal to two right angles.
(Fig. of Prop. XXI.)
Given $\|_{s} A B$ and $C D$ cut by transversal $E F$ at points G and H, respectively.

To Prove $\angle A G H+\angle C H G=$ two rt. $\angle \mathrm{s}$.
(By §32, $\angle A G H+\angle A G E=$ two rt. \angle; the theorem follows by § 74.)

What other two int. $\angle s$ in the figure have their sum equal to two rt. \llcorner s?

Prop. XXII. Theorem.

77. (Converse of Prop. XXI.) If two straight lines are cut by a transversal, and the corresponding angles are equal, the two lines are parallel.

Given lines $A B$ and $C D$ cut by transversal $E F$ at points G and H, respectively, and

$$
\begin{gathered}
\angle A G E=\angle C H G \\
A B \| C D
\end{gathered}
$$

To Prove
Proof. We have $\angle A G E=\angle B G H$.
[If two str. lines intersect, the vertical $₫$ are equal.]

$$
\therefore \angle B G H=\angle C H G .
$$

[Things which are equal to the same thing are equal to each other.]

$$
\therefore A B \| C D \text {. }
$$

[If two str. lines are cut by a transversal, and the alt. int. $\&$ are equal, the two lines are II.]

In like manner, it may be proved that if
$\angle A G H=\angle C H F$, or $\angle B G E=\angle D H G$, or $\angle B G H=\angle D H F$, then $A B \| C D$.
78. Cor. I. (Converse of § 75.) If two straight lines are cut by a transversal, and the alternate-exterior angles are equal, the two lines are parallel.
(Fig. of Prop. XXII.)
Given lines $A B$ and $C D$ cut by transversal $E F$ at points G and H, respectively, and

$$
\angle A G E=\angle D H F
$$

To Prove

 $A B \| C D$.($\angle A G E=\angle B G H$, and $\angle D H F=\angle C H G$; and the theorem follows by § 73.)

What other two ext. Ls are there in the figure such that, if they are equal, $A B \| C D$?
79. Cor. II. (Converse of § 76.) If two straight lines are cut by a transversal, and the sum of the interior angles on the same side of the transversal is equal to two right angles, the two lines are parallel.
(Fig. of Prop. XXII.)
Given lines $A B$ and $C D$ cut by transversal $E F$ at points G and H, respectively, and

$$
\angle A G H+\angle C H G=\text { two rt. } \angle \mathrm{s} .
$$

To Prove

$A B \| C D$.
($\angle C H G$ is the supplement of $\angle A G H$, and also of $\angle G H D$; then $\measuredangle A G H$ and $G H D$ are equal by $\S 31,2$, and the theorem follows by $\S 73$.)

What other two int. $\angle s$ are there in the figure such that, if their sum equals two rt. $\llcorner s, A B \| C D$?

Prop. XXIII. Theorem.

80. Two parallel lines are everywhere equally distant.

Given $\|_{s} A B$ and $C D, E$ and F any two points on $A B$, and $E G$ and $F H$ lines $\perp C D$.

To Prove $\quad E G=F H(\S 47)$.
Proof. Draw line $F G$.
We have

$$
\begin{equation*}
E G \perp A B . \tag{§56}
\end{equation*}
$$

[A str. line \perp to one of two $\| s$ is \perp to the other.]
Then, in rt. $\triangle E F G$ and $F G H$,

$$
F G=F G
$$

And since $\|_{s} A B$ and $C D$ are cut by $F G$,

$$
\angle E F G=\angle F G H
$$

[If two $\|$ s are cut by a transversal, the alt. int. $₫$ are equal.]

$$
\begin{equation*}
\therefore \triangle E F G=\triangle F G H . \tag{§72}
\end{equation*}
$$

[Two rt. $\&$ are equal when the hypotenuse and an adj. \angle of one are equal respectively to the hypotenuse and an adj. \angle of the other.] (§ 70)

$$
\therefore E G=F H .
$$

[In equal figures, the homologous parts are equal.]

Prop. XXIV. Theorem.

81. Two angles whose sides are parallel, each to each, are equal if both pairs of parallel sides extend in the same direction, or in opposite directions, from their vertices.

Note. The sides extend in the same direction if they are on the same side of a straight line joining the vertices, and in opposite directions if they are on opposite sides of this line.

Given lines $A B$ and $B C \|$ to lines $D H$ and $K F$, respectively, intersecting at E.
I. To Prove that $\triangle A B C$ and $D E F$, whose sides $A B$ and $D E$, and also $B C$ and $E F$, extend in the same direction from their vertices, are equal.
Proof. Let $B C$ and $D H$ intersect at G.
Since $\|_{s} A B$ and $D E$ are cut by $B C$,

$$
\angle A B C=\angle D G C .
$$

[If two \|s are cut by a transversal, the corresp. Is are equal.]
In like manner, since $\|_{s} B C$ and $E F$ are cut by $D E$,

$$
\begin{align*}
\angle D G C & =\angle D E F . \\
\therefore \angle A B G & =\angle D E F . \tag{1}
\end{align*}
$$

[Things which are equal to the same thing are equal to each other.] (Ax. 1)
II. To Prove that $\boxed{\boxed{s}} \mathbf{A B C}$ and $H E K$, whose sides $A B$ and $E H$, and also $B C$ and $E K$, extend in opposite directions from their vertices, are equal.
Proof. From (1), $\angle A B C=\angle D E F$.
But, $\quad \angle D E F=\angle H E K$.
[If two str. lines intersect, the vertical $₫$ are equal.]

$$
\therefore \angle A B C=\angle H E K
$$

[Things which are equal to the same thing, are equal to each other.]
82. Cor. Two angles whose sides are parallel, each to each, are supplementary if one pair of parallel sides extend in the same direction, and the other pair in opposite directions, from their vertices.

Given lines $A B$ and $B C \|$ to lines $D H$ and $K F$, respectively, intersecting at E.

To Prove that $\subseteq A B C$ and $D E K$,

whose sides $A B$ and $D E$ extend in the same direction, and $B C$ and $E K$ in opposite directions, from their vertices, are supplementary.

Proof. We have $\angle A B C=\angle D E F$.
[Two $\mathbb{\&}$ whose sides are $\|$, each to each, are equal if both pairs of ॥ sides extend in the same direction from their vertices.]

But $\angle D E F$ is the supplement of $\angle D E K$.
[If two adj. $\&$ s have their ext. sides in the same str. line, they are supplementary.]
(§33)
Then its equal, $\angle A B C$, is the supplement of $\angle D E K$.

Prop. XXV. Theorem.
83. Two angles whose sides are perpendicular, each to each, are either equal or supplementary.

Given lines $A B$ and $B C \perp$ to lines $D E$ and $F G$, respectively, intersecting at E.

To Prove $\angle A B C$ equal to $\angle D E F$, and supplementary to $\angle D E G$.

Proof. Draw line $E H \perp D E$, and line $E K \perp E F$.
Then since $E H$ and $A B$ are $\perp D E$,

$$
E H \| A B .
$$

[Two \perp s to the same str. line are II.]
In like manner, since $E K$ and $B C$ are $\perp E F$, $E K \| B C$.

$$
\therefore \angle H E K=\angle A B C .
$$

[Two \angle s whose sides are $\|$, each to each, are equal if both pairs of \| sides extend in the same direction from their vertices.]

But since, by cons., $\subseteq D E H$ and $F E K$ are rt. $₫$, each of the $\triangle D E F$ and $H E K$ is the complement of $\angle F E H$.

$$
\therefore \angle D E F=\angle H E K .
$$

[The complements of equal $\&$ are equal.]

$$
\begin{equation*}
\therefore \angle A B C=\angle D E F \text {. } \tag{831}
\end{equation*}
$$

[Things which are equal to the same thing are equal to each other.] (Ax. 1)
Again, $\angle D E F$ is the supplement of $\angle D E G$.
[If two adj. $₫$ © have their ext. sides in the same str. line, they are supplementary.]
Then, its equal, $\angle A B C$ is the supplement of $\angle D E G$.
Note. The angles are equal if they are both acute or both obtuse; and supplementary if one is acute and the other obtuse.

EXERCISES.

19. If, in the figure of Prop. XXIV., $\angle A B C^{\prime}=59^{\circ}$, how many degrees are there in each of the angles formed about the point E ?
20. The line passing through the vertex of an angle perpendicular to its bisector bisects the supplementary adjacent angle.
(Fig. of Ex. 12. Let $C E$ bisect $\angle A C D$, and suppose $C F \perp C E$; sum of $\measuredangle A C D$ and $B C D=2 \mathrm{rt} . \measuredangle$; then sum of $\llcorner D C E$ and $\frac{1}{2} B C D=1 \mathrm{rt} . \angle$; but sum of $\angle D C E$ and $D C F$ is also 1 rt . \angle; whence the theorem follows.)
21. Any side of a triangle is less than the half-sum of the sides of the triangle.
(Fig. of Prop. XIV. We have $A B<B C+C A$; then add $A B$ to both members of the inequality.)

Prop. XXVI. Theorem.

84. The sum of the angles of any triangle is equal to two right angles.

Given $\triangle A B C$.
To Prove $\angle A+\angle B+\angle C=$ two rt. \triangle.
Proof. Produce $A C$ to D, and draw line $C E \| A B$.
Then, $\angle E C D+\angle B C E+\angle A C B=$ two rt. \angle.
[The sum of all the $\angle S$ on the same side of a str. line at a given point is equal to two rt. Ls.]
Now since lls $A B$ and $C E$ are cut by $A D$,

$$
\angle E C D=\angle A .
$$

[If two \|s are cut by a transversal, the corresp. $₫$ are equal.] (§ 74)
And since $\|_{s} A B$ and $C E$ are cut by $B C$,

$$
\angle B C E=\angle B .
$$

[If two \|s are cut by a transversal, the alt. int. © are equal.] (§ 72)
Substituting in (1), we have

$$
\angle A+\angle B+\angle A C B=\text { two rt. } \triangle A_{\text {. }}
$$

85. Cor. I. It follows from the above demonstration that $\angle B C D=\angle E C D+\angle B C E=\angle A+\angle B$; hence
86. An exterior angle of a triangle is equal to the sum of the two opposite interior angles.
87. An exterior angle of a triangle is greater than either of the opposite interior angles.
88. Cor. II. If two triangles have two angles of one equal respectively to two angles of the other, the third angle of the first is equal to the third angle of the second.
89. Cor. III. A triangle cannot have two right angles, nor two obtuse angles.
90. Cor. IV. The sum of the acute angles of a right triangle is equal to one right angle.
91. Cor. V. Two right triangles are equal when a leg and an acute angle of one are equal respectively to a leg and the homologous acute angle of the other.
The theorem follows by $\S \S 86$ and 68 .

Prop. XXVII. Theorem.

90. Two right triangles are equal when the hypotenuse and a leg of one are equal respectively to the hypotenuse and a leg of the other.

Given, in rt. $\triangle A B C$ and $D E F$,
hypotenuse $A B=$ hypotenuse $D E$, and $B C=E F$.
To Prove $\quad \triangle A B C=\triangle D E F$.
Proof. Superpose $\triangle A B C$ upon $\triangle D E F$ in such a way that side $B C$ shall coincide with its equal $E F$; point B falling on point E, and point C on point F.
We have

$$
\angle C=\angle F .
$$

[All rt. \& are equal.]
Then, side $A C$ will fall on side $D F$.
But the equal oblique lines $A B$ and $D E$ cut off upon $D F$ equal distances from the foot of $\perp E F$.
[If oblique lines be drawn from a point to a str. line, two equal oblique lines cut off equal distances from the foot of the \perp from the point to the line.]
Therefore, point A falls on point D.
Hence, the \mathbb{Q} coincide throughout, and are equal.

Prop. XXVIII. Theorem.

91. If two triangles have two sides of one equal respectively to two sides of the other, but the included angle of the first greater than the included angle of the second, the third side of the first is greater than the third side of the second.

Given, in $\triangle A B C$ and $D E F$,

$$
A B=D E, A C=D F \text {, and } \angle B A C>\angle D \text {. }
$$

To Prove

 $B C>E F$.Proof. Place $\triangle D E F$ in the position $A B G$; side $D E$ coinciding with its equal $A B$, and vertex F falling at G.

Draw line $A H$ bisecting $\angle G A C$, and meeting $B C$ at H; also, draw line $G H$.

In $\triangle A G H$ and $A C H, A H=A H$.
Also, by hyp., $\quad A G=A C$.
And by cons., $\quad \angle G A H=\angle C A H$.

$$
\therefore \triangle A G H=\triangle A C H .
$$

[Two $\$$ are equal when two sides and the included \angle of one are equal respectively to two sides and the included \angle of the other.]

$$
\therefore G H=C H .
$$

[In equal figures, the homologous parts are equal.]
But,
$B H+G H>B G$.
[A str. line is the shortest line between two points.]
(Ax. 4)
Substituting for $G H$ its equal $C H$, we have

$$
B H+C H>B G, \text { or } B C>E F
$$

Prop. XXIX. Theorem.
92. (Converse of Prop. XXVIII.) If two triangles have two sides of one equal respectively to two sides of the other, but the third side of the first greater than the third side of the second, the included angle of the first is greater than the included angle of the second.

Given, in $\mathbb{A} A B C$ and $D E F$,

$$
A B=D E, A C=D F, \text { and } B C>E F
$$

To Prove

$$
\angle A>\angle D .
$$

Proof. We know that $\angle A$ is either $<$, equal to, or $>\angle D$. If we suppose $\angle A=\angle D, \triangle A B C$ would equal $\triangle D E F$.
[Two \& are equal when two sides and the included \angle of one are equal respectively to two sides and the included \angle of the other.] (§ 63)

Then, $B C$ would equal $E F$.
[In equal figures, the homologous parts are equal.]
Again, if we suppose $\angle A<\angle D, B C$ would be $<E F$.
[If two \mathbb{A} have two sides of one equal respectively to two sides of the other, but the included \angle of the first $>$ the included \angle of the second, the third side of the first is $>$ the third side of the second.]

But each of these conclusions is contrary to the hypothesis that $B C$ is $>E F$.

Then, if $\angle A$ can be neither equal to $\angle D$, nor $<\angle D$,

$$
\angle A>\angle D .
$$

Prof. XXX. Theorem.

93. In an isosceles triangle, the angles opposite the equal sides are equal.

Given $A C$ and $B C$ the equal sides of isosceles $\triangle A B C$.
To Prove $\quad \angle A=\angle B$.
Proof. Draw line $C D \perp A B$.
In rt. $\triangle A C D$ and $B C D$,

$$
C D=C D .
$$

And by hyp.,

$$
A C=B C .
$$

$$
\therefore \triangle A C D=\triangle B C D .
$$

[Two rt. A are equal when the hypotenuse and a leg of one are equal respectively to the hypotenuse and a leg of the other.] ($\$ 90$)

$$
\therefore \angle A=\angle B .
$$

[In equal figures, the homologous parts are equal.]
94. Cor. I. From equal $\triangle A C D$ and $B C D$, we have

$$
A D=B D, \text { and } \angle A C D=\angle B C D ; \text { hence, }
$$

1. The perpendicular from the vertex to the base of an isosceles triangle bisects the base.
2. The perpendicular from the vertex to the base of an isosceles triangle bisects the vertical angle.
3. Cor. II. An equilateral triangle is also equiangular.

Prop. AXXI. Theorem.
96. (Converse of Prop, XXX.) If two angles of a triangle are equal, the sides opposite are equal.
(Fig. of Prop. XXX.)
Given, in $\triangle A B C, \quad \angle A=\angle B$.
To Prove $\quad A C=B C$.
(Prove $\triangle A C D=\triangle B C D$ by $\S 89$.)
97. Cor. An equiangular triangle is also equilateral.

EXERCISES.

22. The angles A and B of a triangle $A B C$ are 57° and 98° respectively; how many degrees are there in the exterior angle at C ?
23. How many degrees are there in each angle of an equiangular triangle ?

Prop. XXXII. Theorem.

98. If two sides of a triangle are unequal, the angles opposite are unequal, and the greater angle lies opposite the greater. side.

Given, in $\triangle A B C, \quad A C>A B$.
To Prove $\quad \angle A B C>\angle C$.
Proof. Take $A D=A B$, and draw line $B D$.
Then, in isosceles $\triangle A B D$,

$$
\angle A B D=\angle A D B .
$$

[In an isosceles \triangle, the $₫$ opposite the equal sides are equal.] (§ 93) Now since $\angle A D B$ is an ext. \angle of $\triangle B D C$,

$$
\begin{equation*}
\angle A D B>\angle C \tag{§85}
\end{equation*}
$$

[An ext. \angle of a \triangle is $>$ either of the opposite int. $₫$.]
Therefore, its equal, $\angle A B D$, is $>\angle C$.
Then, since $\angle A B C$ is $>\angle A B D$, and $\angle A B D>\angle C$,
$\angle A B C>\angle C$.

Prop. XXXIII. Theorem.

99. (Converse of Prop. XXXII.) If two angles of a triangle are unequal, the sides opposite are unequal, and the greater side lies opposite the greater angle.

Given, in $\triangle A B C, \angle A B C>\angle C$.
To Prove $A C>A B$.
Proof. Draw line $B D$, making $\angle C B D=\angle C$, and meeting $A C$ at D.

Then, in $\triangle B C D, \quad B D=C D$.
[If two $₫$ of a \triangle are equal, the sides opposite are equal.]
But, $A D+B D>A B$.
[A str. line is the shortest line between two points.]
Substituting for $B D$ its equal $C D$, we have

$$
A D+C D>A B, \text { or } A C>A B .
$$

Prop. XXXIV. Theorem.

100. If straight lines be drawn from a point within a triangle to the extremities of any side, the angle included by them is greater than the angle included by the other two sides.

Given D, any point within $\triangle A B C$, and lines $B D$ and $C D$.

To Prove $\angle B D C>\angle A$.
Proof. Produce $B D$ to meet $A C$ at E.
Then, since $\angle B D C$ is an ext. \angle of $\triangle C D E$,

$$
\angle B D C>\angle D E C
$$

[An ext. \angle of a \triangle is $>$ either of the opposite int. ©.]
In like manner, since $\angle D E C$ is an ext. \angle of $\triangle A B E$,

$$
\angle D E C>\angle A .
$$

Then, since $\angle B D C$ is $>\angle D E C$, and $\angle D E C>\angle A$,

$$
\angle B D C>\angle A .
$$

Prop. XXXV. Theorem.
101. Any point in the bisector of an angle is equally distant from the sides of the angle.

Given P, any point in bisector $B D$ of $\angle A B C$, and lines $P M$ and $P N \perp$ to $A B$ and $A C$, respectively.

To Prove

$$
P M=P N .
$$

Proof. In rt. $\triangle B P M$ and $B P N$,

$$
B P=B P
$$

And by hyp., $\quad \angle P B M=\angle P B N$.

$$
\therefore \triangle B P M=\triangle B P N \text {. }
$$

[Two rt. \& are equal when the hypotenuse and an adj. \angle of one are equal respectively to the hypotenuse and an adj. \angle of the other.]

$$
\therefore P M=P N .
$$

[In equal figures, the homologous parts are equal.]

Prop. XXXVI. Theorem.

102. (Converse of Prop. XXXV.) Every point which is within an angle, and equally distant from its sides, lies in the bisector of the angle.

Given point P within $\angle A B C$, equally distant from sides $A B$ and $B C$, and line $B P$.

To Prove $\quad \angle P B M=\angle P B N$.
(Prove $\triangle B P M=\triangle B P N$, by § 90 ; the theorem then follows by § 66.)

EXERCISES.

24. The angle at the vertex of an isosceles triangle $A B C$ is equal to five-thirds the sum of the equal angles B and C. How many degrees are there in each angle ?
25. If from a point O in a straight line $A B$ lines $O C$ and $O D$ be drawn on opposite sides of $A B$, making $\angle A O C=\angle B O D$, prove that $O C$ and $O D$ lie in the same straight line.
(Fig. of Prop. IV. We have $\angle A O D+\angle B O D=2 \mathrm{rt}$. \angle, and by hyp., $\angle B O D=\angle A O C$.)
26. If the bisectors of two adjacent angles make an angle of 45° with each other, the angles are complementary.
(Given $O D$ and $O E$ the bisectors of $\triangle A O B$ and $B O C$, respectively, and $\angle D O E=45^{\circ}$; to prove
 $\triangle A O B$ and $B O C$ complementary.)
27. Prove Prop. XXX. by drawing $C D$ to bisect $\angle A C B$. (§ 63.)
28. Prove Prop. XXX. by drawing $C D$ to the middle point of $A B$.
29. Prove Prop. XXXI. by drawing $C D$ to bisect $\angle A C B$. (§ 68.)

QUADRILATERALS.

DEFINITIONS.

103. A quadrilateral is a portion of a plane bounded by four straight lines; as $A B C D$.

The bounding lines are called the sides of the quadrilateral, and their points of intersection the vertices.

The angles of the quadrilateral are the angles included between the adjacent sides.

A diagonal is a straight line joining two opposite vertices; as $A C$.
104. A Trapezium is a quadrilateral no two of whose sides are parallel.

A Trapezoid is a quadrilateral two, and only two, of whose sides are parallel.

A Parallelogram (\square) is a quadrilateral whose opposite sides are parallel.

Trapezium.

Trapezoid.

Parallelogram.

The bases of a trapezoid are its parallel sides; the altitude is the perpendicular distance between them.

If either pair of parallel sides of a parallelogram be taken and called the bases, the altitude corresponding to these bases is the perpendicular distance between them.
105. A Rhomboid is a parallelogram whose angles are not right angles, and whose adjacent sides are unequal.

A Rhombus is a parallelogram whose angles are not right angles, and whose adjacent sides are equal.

A Rectangle is a parallelogram whose angles are right angles.

A Square is a rectangle whose sides are equal.

Prop. XXXVII. Theorem.
106. In any parallelogram,
I. The opposite sides are equal.
II. The opposite angles are equal.

Given $\square A B C D$.
I. To Prove $A B=C D$ and $B C=A D$.

Proof. Draw diagonal $A C$.
In $\triangle A B C$ and $A C D, A C=A C$.
Again, since $\|_{s} B C$ and $A D$ are cut by $A C$,

$$
\angle B C A=\angle C A D .
$$

[If two $\| \mathrm{s}$ are cut by a transversal, the alt. int. 逄 are equal.] (§ 72)
In like manner, since $\|_{s} A B$ and $C D$ are cut by $A C$,

$$
\begin{aligned}
\angle B A C & =\angle A C D \\
\therefore \triangle A B C & =\triangle A C D
\end{aligned}
$$

[Two $\$$ are equal when a side and two adj. $\&$ of one are equal respectively to a side and two adj. $₫$ of the other.]

$$
\therefore A B=C D \text { and } B C=A D .
$$

[In equal figures, the homologous parts are equal.]
II. To Prove $\angle B A D=\angle B C D$ and $\angle B=\angle D$.

Proof. We have $A B \| C D$, and $A D \| C B$; and $A B$ and $C D$, and also $A D$ and $C B$, extend in opposite directions from A and C.

$$
\therefore \angle B A D=\angle B C D .
$$

[Two $₫$ whose sides are $\|$, each to each, are equal if both pairs of $\|$ sides extend in opposite directions from their vertices.]

In like manner, $\quad \angle B=\angle D$.

107. Cor. I. Parallel lines included between parallel lines are equal.
108. Cor. II. A diagonal of a parallelogram divides it into two equal triangles.

Prop. XXXVIII. Theorem.

109. (Converse of Prop. XXXVII, I.) If the opposite sides of a quadrilateral are equal, the figure is a parallelogram.

Given, in quadrilateral $A B C D$,

$$
A B=C D \text { and } B C=A D
$$

To Prove $A B C D$ a \square.
Proof. Draw diagonal $A C$.
In © $A B C$ and $A C D, A C=A C$.
And by hyp., $A B=C D$ and $B C=A D$.

$$
\therefore \triangle A B C=\triangle A C D .
$$

[Two $\&$ are equal when the three sides of one are equal respectively to the three sides of the other.]

$$
\therefore \angle B C A=\angle C A D \text { and } \angle B A C=\angle A C D .
$$

[In equal figures, the homologous parts are equal.]
Since $\angle B C A=\angle C A D, B C \| A D$.
[If two str. lines are cut by a transversal, and the alt. int. © are equal, the two lines are II.]

In like manner, since $\angle B A C=\angle A C D, A B \| C D$ 。
Then by def., $A B C D$ is a \square.

Ex. 30. If one angle of a parallelogram is 119°, how many degrees are there in each of the others?

Prop. XXXIX. Theorem.

110. If two sides of a quadrilateral are equal and parallel, the figure is a parallelogram.

Given, in quadrilateral $A B C D, B C$ equal and $\|$ to $A D$.
To Prove $A B C D$ a \square.
(Prove $\triangle A B C=\triangle A C D$, by $\S 63$; then, the other two sides of the quadrilateral are equal, and the theorem follows by $\S 109$.)

Prop. XL. Theorem.

111. The diagonals of a parallelogram bisect each other.

Given diagonals $A C$ and $B D$ of $\square A B C D$ intersecting at E.

To Prove $\quad A E=E C$ and $B E=E D$.
(Prove $\triangle A E D=\triangle B E C$, by § 68.)
Note. The point E is called the centre of the parallelogram.
Prop. XLI. Theorem.
112. (Converse of Prop. XL.) If the diagonals of a quadrilateral bisect each other, the figure is a parallelogram.
(Fig. of Prop. XL.)
Given $A C$ and $B D$, the diagonals of quadrilateral $A B C D$, bisecting each other at E.

To Prove $A B C D$ a \square.
(Prove $\triangle A E D=\triangle B E C$, by § 63 ; then $A D=B C$; in like manner, $A B=C D$, and the theorem follows by § 109.)

Prop. XLII. Theorem.
113. Two parallelograms are equal when two adjacent sides and the included angle of one are equal respectively to two adjacent sides and the included angle of the other.

Given, in [s] $A B C D$ and $E F G H$,

$$
A B=E F, A D=E H, \text { and } \angle A=\angle E .
$$

To Prove $\quad \square A B C D=\square E F G H$.

Proof. Superpose $\square A B C D$ upon $\square E F G H$ in such a way that $\angle A$ shall coincide with its equal $\angle E$; side $A B$ falling on side $E F$, and side $A D$ on side $E H$.

Then since $A B=E F$ and $A D=E H$, point B will fall on point F, and point D on point H.

Now since $B C \| A D$ and $F G \| E H$, side $B C$ will fall on side $F G$, and point C will fall somewhere on $F G$.
[But one str. line can be drawn through a given point \| to a given str. line.]

In like manner, side $D C$ will fall on side $H G$, and point C will fall somewhere on $H G$.

Then point C, falling at the same time on $F G$ and $H G$, must fall at their intersection G.

Hence, the coincide throughout, and are equal.
114. Cor. Two rectangles are equal if the base and altitude of one are equal respectively to the base and altitude of the other.

Prop. XLIII. Theorem.

115. The diagonals of a rectangle are equal.

Given $A C$ and $B D$ the diagonals of rect. $A B C D$.
To Prove $\quad A C=B D$.
(Prove rt. $\triangle A B D=$ rt. $\triangle A C D$, by § 63.)
116. Cor. The diagonals of a square are equal.

Prop. XLIV. Theorem.
117. The diagonals of a rhombus bisect each other at right angles.

($A C$ and $B D$ bisect each other at rt. \measuredangle by $\S 43$.)

EXERCISES.

31. The bisector of the vertical angle of an isosceles triangle bisects the base at right angles.
(Fig. of Prop. XXX. In equal $\triangle A C D$ and $B C D$, we have $\angle A D C=\angle B D C$; then $C D \perp A B$ by $\S 24$.)
32. The line joining the vertex of an isosceles triangle to the middle point of the base, is perpendicular to the base, and bisects the vertical angle.
(Fig. of Prop. XXX. Prove $C D \perp A B$ as in Ex. 31.)
33. If one angle of a parallelogram is a right angle, the figure is a rectangle.

POLYGONS.

DEFINITIONS.
118. A polygon is a portion of a plane bounded by three or more straight lines; as $A B C D E$.

The bounding lines are called the sides of the polygon, and their sum is called the perimeter.

The angles of the polygon are the angles $E A B, A B C$, etc., included be-
 tween the adjacent sides; and their vertices are called the vertices of the polygon.

A diagonal of a polygon is a straight line joining any two vertices which are not consecutive; as $A C$.
119. Polygons are classified with reference to the number of their sides, as follows :

No. or Sides.	Desionation.	No. of Sides.	Designation.
	Triangle.	8	Octagon.
	Quadrilateral.	9	Enneagon.
5	Pentagon.	10	Decagon.
6	Hexagon.	11	Hendecagon.
7	Heptagon.	12	Dodecagon.

120. An equilateral polygon is a polygon all of whose sides are equal.

An equiangular polygon is a polygon all of whose angles are equal.
121. A polygon is called convex when no side, if produced, will enter the surface enclosed by the perimeter; as $A B C D E$.

It is evident that, in such a case, each angle of the polygon is less than two right angles.

All polygons considered hereafter will be understood to be convex, unless the contrary is stated.

A polygon is called concave when at least two of its sides, if produced, will enter the surface enclosed by the perimeter; as FGHIK.

It is evident that, in such a case, at least one angle of the polygon is greater than two right angles.

Thus, in polygon $F G H I K$, the interior angle $G H I$ is greater than two right angles.

Such an angle is called re-entrant.
122. Two polygons are said to be mutually equilateral when the sides of one are equal respectively to the sides of the other, when taken in the same order.

Thus, polygons $A B C D$
 and $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime}$ are mutually equilateral if

$$
A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime \prime}, C D=C^{\prime \prime} D^{\prime}, \text { and } D A=D^{\prime} A^{\prime}
$$

Two polygons are said to be mutually equiangular when the angles of one are equal respectively to the angles of the other when taken in the same order.

Thus, polygons $E F G H$ and
 $E^{\prime} F^{\prime \prime} G^{\prime} H^{\prime}$ are mutually equiangular if

$$
\angle E=\angle E^{\prime}, \angle F=\angle F^{\prime \prime}, \angle G=\angle G^{\prime} \text {, and } \angle H=\angle H^{\prime}
$$

123. In polygons which are mutually equilateral or mutually equiangular, sides or angles which are similarly placed are called homologous.

In mutually equiangular polygons, the sides included between equal angles are homologous.
124. If two triangles are mutually equilateral, they are also mutually equiangular (§ 69).

But with this exception, two polygons may be mutually equilateral without being mutually equiangular, or mutually equiangular without being mutually equilateral.

If two polygons are both mutually equilateral and mutually equiangular, they are equal.

For they can evidently be applied one to the other so as to coincide throughout.
125. Two polygons are equal when they are composed of the same number of triangles, equal each to each, and similarly placed.

For they can evidently be applied one to the other so as to coincide throughout.

Prop. XLV. Theorem.

126. The sum of the angles of any polygon is equal to two right angles taken as many times, less two, as the polygon has sides.

Given a polygon of n sides.
To Prove the sum of its $\angle s$ equal to $n-2$ times two rt. \llcorner.
Proof. The polygon may be divided into $n-2$ \& by drawing diagonals from one of its vertices.

The sum of the $\angle s$ of the polygon is equal to the sum of the \measuredangle of the \triangle.

But the sum of the \measuredangle of each \triangle is two rt. \measuredangle.

[The sum of the \measuredangle of any Δ is equal to two rt. | |
| :---: |
| ©.] |

Hence, the sum of the $\lll<$ of the polygon is $n-2$ times two rt. \measuredangle.
127. Cor. I. The sum of the angles of any polygon is equal to twice as many right angles as the polygon has sides, less four right angles.

For if R represents a rt. \angle, and n the number of sides of a polygon, the sum of its \measuredangle is $(n-2) \times 2 R$, or $2 n R-4 R$.
128. Cor. II. The sum of the angles of a quadrilateral is equal to four right angles; of a pentagon, six right angles; of a hexagon, eight right angles; etc.

Prop. XLVI. Theorem.

129. If the sides of any polygon be produced so as to make an exterior angle at each vertex, the sum of these exterior angles is equal to four right angles.

Given a polygon of n sides with its sides produced so as to make an ext. \angle at each vertex.

To Prove the sum of these ext. \llcorner equal to 4 rt . \llcorner.
Proof. The sum of the ext. and int. $\angle s$ at any one vertex is two rt. \angle s.
[If two adj. $\measuredangle \stackrel{\text { have their ext. sides in the same str. line, their sum }}{ }$ is equal to two rt. 厄.]

Hence, the sum of ail the ext. and int. $\angle \mathrm{s}$ is $2 n \mathrm{rt}$. \llcorner s.
But the sum of the int. $\measuredangle s$ alone is $2 n \mathrm{rt} . \angle s-4 \mathrm{rt}$. \angle.
 as the polygon has sides, less 4 rt . ©.]

Whence, the sum oif the ext. $\angle s$ is 4 rt . $\measuredangle \mathrm{s}$.

EXERCISES.

34. How many degrees are there in each angle of an equiangular hexagon? of an equiangular octagon? of an equiangular decagon? of an equiangular dodecagon?
35. How many degrees are there in the exterior angle at each vertex of an equiangular pentagon?
36. If two angles of a quadrilateral are supplementary, the other two angles are supplementary.
37. If, in a triangle $A B C, \angle A=\angle B$, a line parallel to $A B$ makes equal angles with sides $A C$ and $B C$.
(To prove $\angle C D E=\angle C E D$.)

38. If the equal sides of an isosceles triangle be produced, the exterior angles made with the base are equal. (§ 31, 2.)

39. If the perpendicular from the vertex to the base of a triangle bisects the base, the triangle is isosceles.
(Fig. of Prop. XXX. \& $A C D$ and $B C D$ are equal by $\S 63$.)
40. The bisectors of the equal angles of an isosceles triangle form, with the base, another isosceles triangle.

41. If from any point in the base of an isosceles triangle perpendiculars to the equal sides be drawn, they make equal angles with the base.
$(\angle A D E=\angle B D F$, by §31, 1.)

42. If the angles adjacent to one base of a trapezoid are equal, those adjacent to the other base are also equal.
(Given $\angle A=\angle D$; to prove $\angle B=\angle C$.)

43. Either exterior angle at the base of an isosceles triangle is equal to the sum of a right angle and one-half the vertical angle.
($\angle D A E$ is an ext. \angle of $\triangle A C D$.)

44. The straight lines bisecting the equal angles of an isosceles triangle, and terminating in the opposite sides, are equal.
($\triangle A B D=\triangle A B E$.

45. Two isosceles triangles are equal when the base and vertical angle of one are equal respectively to the base and vertical angle of the other.
(Each of the remaining \measuredangle of one Δ is equal to each of the remaining $\mathbb{\&}$ of the other.)
46. If two parallels are cut by a transversal, the bisectors of the four interior angles form a rectangle.
$(E H \| F G$, by $\S 73$; in like manner, $E F \| G H$; then use Exs. 12 and 33.)

47. Prove Prop. XXVI. by drawing through B a line parallel to $A C$.
(Sum of \mathbb{E} at $B=2 \mathrm{rt}$. ©.)

MISCELLANEOUS THEOREMS.

Prop. XLVII. Theorem.

130. The line joining the middle points of two sides of a triangle is parallel to the third side, and equal to one-half of it.

Given line $D E$ joining middle points of sides $A B$ and $A C$, respectively, of $\triangle A B C$.

To Prove $D E \| B C$, and $D E=\frac{1}{2} B C$.
Proof. Draw line $B F \| A C$, meeting $E D$ produced at F.

In $\triangle A D E$ and $B D F$,

$$
\angle A D E=\angle B D F
$$

[If two str. lines intersect, the vertical $₫$ © are equal.]
Also, since $\|_{s} A C$ and $B F$ are cut by $A B$,

$$
\angle A=\angle D B F
$$

[If two $\| \mathrm{s}$ are cut by a transversal, the alt. int. \S are equal.] (§ 72)
And by hyp., $\quad A D=B D$.

$$
\therefore \triangle A D E=\triangle B D F
$$

[Two $\&$ are equal when a side and two adj. $₫$ of one are equal respectively to a side and two adj. \mathcal{A} of the other.]

$$
\begin{equation*}
\therefore D E=D F \text { and } A E=B F \text {. } \tag{§88}
\end{equation*}
$$

[In equal figures, the homologous parts are equal.]
Then since, by hyp., $A E=E C, B F$ is equal and $\|$ to $C E$.
Whence, $B C E F$ is a \square.
[If two sides of a quadrilateral are equal and $\|$, the figure is a \square.]

$$
\begin{equation*}
\therefore D E \| B C . \tag{§110}
\end{equation*}
$$

Again, since $D E=D F$,

$$
D E=\frac{1}{2} F E=\frac{1}{2} B C .
$$

[In any \square, the opposite sides are equal.]
131. Cor. The line which bisects one side of a triangle, and is parallel to another side, bisects also the third side.

Given, in $\triangle A B C, D$ the middle point of side $A B$, and line $D E \| B C$.

To Prove that $D E$ bisects $A C$.
Proof. A line joining D to the middle
 point of $A C$ will be $\| B C$.
[The line joining the middle points of two sides of a Δ is $\|$ to the third side.]
(§ 130)
Then this line will coincide with $D E$.
[But one str. line can be drawn through a given point || to a given str. line.]

Therefore, $D E$ bisects $A C$.

Pror. XLVIII. Theorem.

132. The line joining the middle points of the non-parallel sides of a trapezoid is parallel to the bases, and equal to onehalf their sum.

Given line $E F$ joining middle points of non-ll sides $A B$ and $C D$, respectively, of trapezoid $A B C D$.

To Prove $E F \|$ to $A D$ and $B C$, and $E F=\frac{1}{2}(A D+B C)$.
Proof. If $E F$ is not $\|$ to $A D$ and $B C$, draw line $E K$ $\|$ to $A D$ and $B C$, meeting $C D$ at K; and draw line $B D$ intersecting $E F$ at G, and $E K$ at H.

In $\triangle A B D, E H$ is \| $A D$ and bisects $A B$; then it bisects $B D$.
[The line which bisects one side of a Δ, and is $\|$ to another side, bisects also the third side.]
(§ 131)
In like manner, in $\triangle B C D, H K$ is $\| B C$ and bisects $B D$; then it bisects $C D$.

But this is impossible unless $E K$ coincides with $E F$.
[But one str. line can be drawn between two points.]
(Ax. 3)
Hence, $E F$ is \| to $A D$ and $B C$.
Again, since $E G$ coincides with $E H$, and $E H$ bisects $A B$ and $B D$,

$$
\begin{equation*}
E G=\frac{1}{2} A D . \tag{1}
\end{equation*}
$$

[The line joining the middle points of two sides of a Δ is equal to one-half the third side.]
(§ 130)
In like manner, since $G F$ bisects $B D$ and $C D$,

$$
\begin{equation*}
G F=\frac{1}{2} B C . \tag{2}
\end{equation*}
$$

Adding (1) and (2),

$$
\begin{aligned}
E G+G F & =\frac{1}{2} A D+\frac{1}{2} B C . \\
E F & =\frac{1}{2}(A D+B C) .
\end{aligned}
$$

Or,
133. Cor. The line which is parallel to the bases of a trapezoid, and bisects one of the non-parallel sides, bisects the other also.

Prop. XLIX. Theorem.

134. The bisectors of the angles of a triangle intersect at a common point.

Given lines $A D, B E$, and $C F$ bisecting $\angle A, B$, and C, respectively, of $\triangle A B C$.

To Prove that $A D, B E$, and $C F$ intersect at a common point.

Proof. Let $A D$ and $B E$ intersect at O.
Since O is in bisector $A D$, it is equally distant from sides $A B$ and $A C$.
[Any point in the bisector of an \angle is equally distant from the sides of the \angle.]

In like manner, since O is in bisector $B E$, it is equally distant from sides $A B$ and $B C$.

Then O is equally distant from sides $A C$ and $B C$, and therefore lies in bisector $C F$.
[Every point which is within an \angle, and equally distant from its sides, lies in the bisector of the \angle.]

Hence, $A D, B E$, and $C F$ intersect at the common point O.
135. Cor. The point of intersection of the bisectors of the angles of a triangle is equally distant from the sides of the triangle.

Prop. L. Theorem.

136. The perpendiculars erected at the middle points of the sides of a triangle intersect at a common point.

Given $D G, E H$, and $F K$ the ${ }^{\text {s }}$ erected at middle points D, E, and F, of sides $B C, C A$, and $A B$, respectively, of $\triangle A B C$.

To Prove that $D G, E H$, and $F K$ intersect at a common point.
(Let $D G$ and $E H$ intersect at O; by $\S 41, O$ is equally distant from B and C; it is also equally distant from A and C; the theorem follows by § 42.)
137. Cor. The point of intersection of the perpendiculars erected at the middle points of the sides of a triangle, is equally distant from the vertices of the triangle.

EXERCISES.

48. If the diagonals of a parallelogram are equal, the figure is a rectangle.
(Fig. of Prop. XLIII. \& $A B D$ and $A C D$ are equal, and therefore $\angle B A D=\angle A D C$; also, these $₫$ are supplementary.)
49. If two adjacent sides of a quadrilateral are equal, and the diagonal bisects their included angle, the other two sides are equal.
(Given $A B=A D$, and $A C$ bisecting $\angle B A D$; to
 prove $B C=C D$.)
50. The bisectors of the interior angles of a parallelograin form a rectangle.
(By Ex. 46, each \angle of $E F G H$ is a rt. \angle.)

Prof. LI. Theorem.

138. The perpendiculars from the vertices of a triangle to the opposite sides intersect at a common point.

Given $A D, B E$, and $C F$ the 1 s from the vertices of $\triangle A B C$ to the opposite sides.

To Prove that $A D, B E$, and $C F$ intersect at a common point.
Proof. Through A, B, and C, draw lines $H K, K G$, and $G H \|$ to $B C, C A$, and $A B$, respectively, forming $\triangle G H K$.
Then $A D$, being $\perp B C$, is also $\perp H K$.
[A str. line \perp to one of two $\| s$ is \perp to the other.]
Now since, by cons., $A B C H$ and $A C B K$ are [s,

$$
A H=B C \text { and } A K=B C .
$$

[In any \square, the opposite sides are equal.]

$$
\therefore A H=A K \text {. }
$$

[Things which are equal to the same thing, are equal to each other.]
Then $A D$ is $\perp H K$ at the middle point of $H K$.
In like manner, $B E$ and $C F$ are \perp to $K G$ and $G H$, respectively, at their middle points.
Then, $A D, B E$, and $C F$ being \perp to the sides of $\triangle G H K$ at their middle points, intersect at a common point.
[The \perp erected at the middle points of the sides of a Δ intersect at a common point.]
139. Def. A median of a triangle is a line drawn from any vertex to the middle point of the opposite side.

Prop. LII. Theorem.

140. The medians of a triangle intersect at a common point, which lies two-thirds the way from each vertex to the middle point of the opposite side.

Given $A D, B E$, and $C F$ the medians of $\triangle A B C$.
To Prove that $A D, B E$, and $C F$ intersect at a common point, which lies two-thirds the way from each vertex to the middle point of the opposite side.

Proof. Let $A D$ and $B E$ intersect at O.
Let G and H be the middle points of $O A$ and $O B$, respectively, and draw lines $E D, G H, E G$, and $D H$.

Since $E D$ bisects $A C$ and $B C$,

$$
E D \| A B \text { and }=\frac{1}{2} A B
$$

[The line joining the middle points of two sides of $\mathrm{a} \Delta$ is $\|$ to the third side, and equal to one-half of it.]
(§ 130)
In like manner, since $G H$ bisects $O A$ and $O B$,

$$
G H \| A B \text { and }=\frac{1}{2} A B .
$$

Then $E D$ and $G H$ are equal and $\|$.
[Things which are equal to the same thing, are equal to each other.]
[Two str. lines || to the same str. line are \| to each other.] (§ 55)
Therefore, $E D H G$ is a \square.
[If two sides of a quadrilateral are equal and $\|$, the figure is a \square.]

Then $G D$ and $E H$ bisect each other at O.
[The diagonals of a \square bisect each other.]
But by hyp., G is the middle point of $O A$, and H of $O B$.

$$
\therefore A G=O G=O D \text {, and } B H=O H=O E \text {. }
$$

That is, $A D$ and $B E$ intersect at a point O which lies two-thirds the way from A to D, and from B to E.

In like manner, $A D$ and $C F$ intersect at a point which lies two-thirds the way from A to D, and from C to F.
Hence, $A D, B E$, and $C F$ intersect at the common point O, which lies two-thirds the way from each vertex to the middle point of the opposite side.

LOCI.

141. Def. If a series of points, all of which satisfy a certain condition, lie in a certain line, and every point in this line satisfies the given condition, the line is said to be the locus of the points.
For example, every point which satisfies the condition of being equally distant from the extremities of a straight line, lies in the perpendicular erected at the middle point of the line (§ 42).

Also, every point in the perpendicular erected at the middle point of a line satisfies the condition of being equally distant from the extremities of the line (§ 41).
Hence, the perpendicular erected at the middle point of a straight line is the Locus of points which are equally distant from the extremities of the line.

Again, every point which satisfies the condition of being within an angle, and equally distant from its sides, lies in the bisector of the angle (§ 102).

Also, every point in the bisector of an angle satisfies the condition of being equally distant from its sides (§ 101).

Hence, the bisector of an angle is the locus of points which are within the angle, and equally distant from its sides.

EXERCISES.

51. Two straight lines are parallel if any two points of either are equally distant from the other.
(Prove by Reductio ad Absurdum.)
52. What is the locus of points at a given distance from a given straight line? (Ex. 51.)
53. What is the locus of points equally distant from a pair of intersecting straight lines?
54. What is the locus of points equally distant from a pair of parallel straight lines?
55. The bisectors of the interior angles of a trapezoid form a quadrilateral, two of whose angles are right angles. (Ex. 46.)

56. If the angles at the base of a trapezoid are equal, the non-parallel sides are also equal.
(Given $\angle A=\angle D$; to prove $A B=C D$. Draw $B E \| C D$.)

57. If the non-parallel sides of a trapezoid are equal, the angles which they make with the bases are equal.
(Fig. of Ex. 56. Given $A B=C D$; to prove $\angle A=\angle D$, and also $\angle A B C=\angle C$. Draw $B E \| C D$.)
58. The perpendiculars from the extremities of the base of an isosceles triangle to the opposite sides are equal.

59. If the perpendiculars from the extremities of the base of a triangle to the opposite sides are equal, the triangle is isosceles.
(Converse of Ex. 58. Prove $\triangle A C D=\triangle B C E$.)
60. The angle between the bisectors of the equal angles of an isosceles triangle is equal to the exterior angle at the base of the triangle.
$\left(\angle A D B=180^{\circ}-(\angle B A D+\angle A B D).\right)$
61. If a line joining two parallels be bisected, any line drawn through the point of bisection and included between the parallels will be bisected at the point.
(To prove that $G H$ is bisected at 0 .)

62. If through a point midway between two parallels two transversals be drawn, they intercept equal portions of the parallels.
(Draw $O K \perp A B$, and produce $K O$ to meet $C D$ at L. Then $\triangle O G K=\triangle O H L$.)

63. If perpendiculars $B E$ and $D F$ be drawn from vertices B and D of parallelogram $A B C D$ to the diagonal $A C$, prove $B E=D F$. (§ 70.)

64. The lines joining the middle points of the sides of a triangle divide it into four equal triangles. (§ 130.)

65. If from any point in the base of an isosceles triangle parallels to the equal sides be drawn, the perimeter of the parallelogram formed is equal to the sum of the equal sides of the triangle. (§96.)

66. The bisector of the exterior angle at the vertex of an isosceles triangle is parallel to the base. (§ $85,1$.

67. The medians drawn from the extremities of the base of an isosceles triangle are equal.
68. If from the vertex of one of the equal angles of an isosceles triangle a perpendicular be drawn to the opposite side, it makes with the base an angle equal to one-half the vertical angle of the triangle.
(To prove $\angle B A D=\frac{1}{2} \angle C$.)
69. If the exterior angles at the vertices A and B of triangle $A B C$ are bisected by lines which meet at D, prove

$$
\begin{gathered}
\angle A D B=90^{\circ}-\frac{1}{2} C \\
\left(\angle A D B=180^{\circ}-(\angle B A D+\angle A B D) .\right)
\end{gathered}
$$

70. The diagonals of a rhombus bisect its angles.

 (Fig. of Prop. XLIV.)71. If from any point in the bisector of an angle a parallel to one of the sides be drawn, the bisector, the parallel, and the remaining side form an isosceles triangle.

72. If the bisectors of the equal angles of an isosceles triangle meet the equal sides at D and E, prove $D E$ parallel to the base of the triangle.
(Prove $\triangle C E D$ isosceles.)

73. If at any point D in one of the equal sides $A B$ of isosceles triangle $A B C, D E$ be drawn perpendicular to base $B C$ meeting $C A$ produced at E, prove triangle $A D E$ isosceles.

74. From C, one of the extremities of the base $B C$ of isosceles triangle $A B C$, a line is drawn meeting $B A$ produced at D, making $A D=A B$. Prove $C D$ perpendicular to $B C$. ($\$ 84$.)
($\triangle A C D$ is isosceles.)

75. If the non-parallel sides of a trapezoid are equal, its diagonals are also equal. (Ex.57.)

76. If $A D C$ is a re-entrant angle of quadrilateral $A B C D$, prove that angle $A D C$, exterior to the figure, is equal to the sum of interior angles A, B, and C. (§ 128.)

77. If a diagonal of a quadrilateral bisects two of its angles, it is perpendicular to the other diagonal.
(Prove $A C \perp D B$, by $\S 43$.)

78. In a quadrilateral $A B C D$, angles $A B D$ and $C A D$ are equal to $A C D$ and $B D A$, respectively ; prove $B C$ parallel to $A D$.
(Prove $A B=C D$; then prove $B E=C F$.)

79. State and prove the converse of Prop. XLIV. (§ 41, I.)
80. State and prove the converse of Ex. 66, p. 67. (§ 96.)
81. The bisectors of the exterior angles at two vertices of a triangle, and the bisector of the interior angle at the third vertex meet at a common point.
(Prove as in § 134.)

82. $A B C D$ is a trapezoid whose parallel sides $A D$ and $B C$ are perpendicular to $C D$. If E is the middle point of $A B$, prove $E C=E D$. (§41, I.)
(Draw $E F \| A D$.)

83. The middle point of the hypotenuse of a right triangle is equally distant from the vertices of the triangle.
(To prove $A D=B D=C D$. Draw $D E \| B C$.)

84. The bisectors of the angles of a rectangle form a square.
(By Ex. 50, EFGH is a rectangle. Now prove $A F=B H$ and $A E=B E$.)

85. If D is the middle point of side $B C$ of triangle $A B C$, and $B E$ and $C F$ are perpendiculars from B and C to $A D$, produced if necessary, prove $B E=C F$.

86. The angle at the vertex of isosceles triangle $A B C$ is equal to twice the sum of the equal angles B and C. If $C D$ be drawn perpendicular to $B C$, meeting $B A$ produced at D, prove triangle $A C D$ equilateral.

(Prove each \angle of $\triangle A C D$ equal to 60°.)
87. If angle B of triangle $A B C$ is greater than angle C, and $B D$ be drawn to $A C$ making $A D=A B$, prove

$$
\angle A D B=\frac{1}{2}(B+C), \text { and } \angle C B D=\frac{1}{2}(B-C) .
$$

(Fig. of Prop. XXXII.)
88. How many sides are there in the polygon the sum of whose interior angles exceeds the sum of its exterior angles by 540° ?
89. The sum of the lines drawn from any point within a triangle to the vertices is greater than the half-sum of the three sides.
(Apply § 61 to each of the $\triangle A B D, A C D$, and $B C D$.)

90. The sum of the lines drawn from any point within a triangle to the vertices is less thąn the sum of the three sides. (§ 48.)
(Fig. of Ex. 89.)
91. If D, E, and F are points on the sides $A B$, $B C$, and $C A$, respectively, of equilateral triangle $A B C$, such that $A D=B E=C F$, prove $D E F$ an equilateral triangle.
(Prove $\triangle A D F, B D E$, and $C E F$ equal.)

92. If E, F, G, and H are points on the sides $A B, B C, C D$, and $D A$, respectively, of parallelogram $A B C D$, such that $A E=C G$ and $B F=D H$, prove $E F G H$ a parallelogram.

93. If E, F, G, and H are points on sides $A B$, $B C, C D$, and $D A$, respectively, of square $A B C D$, such that $A E=B F=C G=D H$, prove $E F G H$ a square.
(First prove EFGH equilateral. Then prove $\angle F E H=90^{\circ}$.)
94. If on the diagonal $B D$ of square $A B C D$ a distance $B E$ be taken equal to $A B$, and $E F$ be drawn perpendicular to $B D$, meeting $A D$ at F, prove that $A F=E F=E D$.
95. Prove the theorem of $\S 127$ by drawing lines from any point within the polygon to the vertices. (§ 35.)
96. If $C D$ is the perpendicular from the vertex of the right angle to the hypotenuse of right triangle $A B C$, and $C E$ the bisector of angle C, meeting $A B$ at E, prove $\angle D C E$ equal to one-half the difference of angles A and B.

(To prove $\angle D C E=\frac{1}{2}(\angle A-\angle B)$.)
97. State and prove the converse of Ex. 70, p. 68.
(Fig. of Prop. XLIV. Prove the sides all equal.)
98. State and prove the converse of Ex. 75, p. 68.
(Fig. of Ex. 78. Prove $\triangle A C F$ and $B D E$ equal.)
99. D is any point in base $B C$ of isosceles triangle $A B C$. The side $A C$ is produced from C to E, so that $C E=C D$, and $D E$ is drawn meeting $A B$ at F. Prove $\angle A F E=3 \angle A E F$.
($\angle A F E$ is an ext. \angle of $\triangle B F D$.)

100. If $A B C$ and $A B D$ are two triangles on the same base and on the same side of it, such that $A C=B D$ and $A D=B C$, and $A D$ and $B C$ intersect at O, prove triangle $O A B$ isosceles.

101. If D is the middle point of side $A C$ of equilateral triangle $A B C$, and $D E$ be drawn perpendicular to $B C$, prove $E C=\frac{1}{4} B C$.
(Draw $D F$ to the middle point of $B C$.)

102. If in parallelogram $A B C D, E$ and F are the middle points of sides $B C$ and $A D$, respectively, prove that lines $A E$ and $C F$ trisect diagonal $B D$.

(By § 131, $A E$ bisects $B H$, and $C F$ bisects $D G$.)
103. If $C D$ is the perpendicular from C to the hypotenuse of right triangle $A B C$, and E is the middle point of $A B$, prove $\angle D C E$ equal to the difference of angles A and B. (Ex. 83.)

104. If one acute angle of a right triangle is double the other, the hypotenuse is double the shorter leg.
(Fig. of Ex. 86. Draw $C A$ to middle point of $B D$.)
105. If $A C$ be drawn from the vertex of the right angle to the hypotenuse of right triangle $B C D$ so as to make $\angle A C D=\angle D$, it bisects the hypotenuse.
(Fig. of Ex. 74. Prove $\triangle A B C$ isosceles.)
106. If D is the middle point of side $B C$ of triangle $A B C$, prove $A D>\frac{1}{2}(A B+A C-B C)$. (§62.)

Note. For additional exercises on Book I., see p. 220.

Bоoк II.

THE CIRCLE.

DEFINITIONS.

142. A circle (\odot) is a portion of a plane bounded by a curve called a circumference, all points of which are equally distant from a point within, called the centre; as $A B C D$.

An arc is any portion of the circumference; as $A B$.

A radius is a straight line drawn
 from the centre to the circumference; as $O A$.

A diameter is a straight line drawn through the centre, having its extremities in the circumference; as $A C$.
143. It follows from the definition of § 142 that

All radii of a circle are equal.
Also, all its diameters are equal, since each is the sum of two radii.
144. Two circles are equal when their radii are equal.

For they can evidently be applied one to the other so that their circumferences shall coincide throughout.
145. Conversely, the radii of equal circles are equal.
146. A semi-circumference is an arc equal to one-half the circumference.

A quadrant is an arc equal to one-fourth the circumference.
Concentric circles are circles having the same centre.
147. A chord is a straight line joining the extremities of an are; as $A B$.
The are is said to be subtended by its chord.
Every chord subtends two ares; thus chord $A B$ subtends arcs $A M B$ and $A C D B$.
When the arc subtended by a chord is
 spoken of, that arc which is less than a semi-circumference is understood, unless the contrary is specified.

A segment of a circle is the portion included between an are and its chord; as $A M B N$.

A semicircle is a segment equal to one-half the circle.
A sector of a circle is the portion included between an are and the radii drawn to its extremities ; as $O C D$.
148. A central angle is an angle whose vertex is at the centre, and whose sides are radii ; as $A O C$.

An inscribed angle is an angle whose vertex is on the circumference, and whose sides are chords; as $A B C$.

An angle is said to be inscribed in a segment when its vertex is on the arc of the segment, and its sides pass through the
 extremities of the subtending chord.

Thus, angle B is inscribed in segment $A B C$.
149. A straight line is said to be tangent to, or touch, a circle when it has but one point in common with the circumference; as $A B$.

In such a case, the circle is said to be tangent to the straight line.

The common point is called the point of contact, or point of tangency.

A secant is a straight line which
 intersects the circumference in two points; as $C D$.
150. Two circles are said to be tangent to each other when they are both tangent to the same straight line at the same point.

They are said to be tangent internally or externally according as one circle lies entirely within or entirely without the other.

A common tangent to two circles is a straight line which is tangent to both of them.
151. A polygon is said to be inscribed in a circle when all its vertices lie on the circumference; as $A B C D$.

In such a case, the circle is said to be circumscribed about the polygon.

A polygon is said to be inscriptible
 when it can be inscribed in a circle.

A polygon is said to be circumscribed about a circle when all its sides are tangent to the circle; as $E F G H$.

In such a case, the circle is said to be inscribed in the polygon.

> Prop. I. Theorem.
152. Every diameter bisects the circle and its circumference.

Given $A C$ a diameter of $\odot A B C D$.
To Prove that $A C$ bisects the \odot, and its circumference.

Proof. Superpose segment $A B C$ upon segment $A D C$, by folding it over about $A C$ as an axis.
Then, are $A B C$ will coincide with are $A D C$; for otherwise there would be points of the circumference unequally distant from the centre.
Hence, segments $A B C$ and $A D C$ coincide throughout, and are equal.
Therefore, $A C$ bisects the \odot, and its circumference.
Prof. II. Theorem.
153. A straight line cannot intersect a circumference at more than two points.

Given O the centre of a \odot, and $M N$ any str. line.
To Prove that $M N$ cannot intersect the circumference at more than two points.
Proof. If possible, let $M N$ intersect the circumference at three points, A, B, and C; draw radii $O A, O B$, and $O C$.

Then, $\quad O A=O B=O C$.
We should then have three equal str. lines drawn from a point to a str. line.
But this is impossible; for it follows from § 49 that not more than two equal str. lines can be drawn from a point to a str. line.

Hence, $M N$ cannot intersect the circumference at more than two points.

Ex. 1. What is the locus of points at a given distance from a given point?

Prop. III. Theorem.

154. In equal circles, or in the same circle, equal central angles intercept equal arcs on the circumference.

Given $A C B$ and $A^{\prime} C^{\prime} B^{\prime}$ equal central \llcorner of equal (© $A M B$ and $A^{\prime} M^{\prime} B^{\prime}$, respectively.

To Prove are $A B=\operatorname{arc} A^{\prime} B^{\prime}$.
Proof. Superpose sector $A B C$ upon sector $A^{\prime} B^{\prime} C^{\prime \prime}$ in such a way that $\angle C$ shall coincide with its equal $\angle C^{\prime \prime}$.

Now, $\quad A C=A^{\prime} C^{\prime}$ and $B C=B^{\prime} C^{\prime \prime}$.
Whence, point A will fall at A^{\prime}, and point B at B^{\prime}.
Then, are $A B$ will coincide with arc $A^{\prime} B^{\prime}$; for all points of either are equally distant from the centre.

$$
\therefore \operatorname{arc} A B=\operatorname{arc} A^{\prime} B^{\prime}
$$

Prop. IV. Theorem.
155. (Converse of Prop. III.) In equal circles, or in the same circle, equal arcs are intercepted by equal central angles.

Given $A C B$ and $A^{\prime} C^{\prime} B^{\prime}$ central $\angle s$ of equal (®) $A M B$ and $A^{\prime} M^{\prime} B^{\prime}$, respectively, and arc $A B=\operatorname{arc} A^{\prime} B^{\prime}$.

To Prove

$$
\angle C=\angle C^{\prime \prime} .
$$

Proof. Since the © are equal, we may superpose $\odot A M B$ upon $\odot A^{\prime} \boldsymbol{M}^{\prime} \boldsymbol{B}^{\prime}$ in such a way that point A shall fall at A^{\prime}, and centre C at $C^{\prime \prime}$.

Then since arc $A B=\operatorname{arc} A^{\prime} B^{\prime}$, point B will fall at B^{\prime}.
Whence, radii $A C$ and $B C$ will coincide with radii $A^{\prime} C^{\prime \prime}$ and $B^{\prime} C^{\prime \prime}$, respectively.
(Ax. 3)
Hence, $\angle C$ will coincide with $\angle C^{\prime \prime}$.

$$
\therefore \angle C=\angle C^{\prime \prime} .
$$

156. Sch. In equal circles, or in the same circle,
157. The greater of two central angles intercepts the greater arc on the circumference.
158. The greater of two arcs is intercepted by the greater central angle.

Prop. V. Theorem.

157. In equal circles, or in the same circle, equal chords subtend equal arcs.

Given, in equal © $A M B$ and $A^{\prime} M^{\prime} B^{\prime}$, chord $A B=$ chord $A^{\prime} B^{\prime}$.
To Prove

$$
\operatorname{arc} A B=\operatorname{arc} A^{\prime} B^{\prime} .
$$

Proof. Draw radii $A C, B C, A^{\prime} C^{\prime}$, and $B^{\prime} C^{\prime}$.
Then in $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, by hyp.,

$$
\begin{equation*}
A B=A^{\prime} B^{\prime} . \tag{?}
\end{equation*}
$$

Also, $\quad A C=A^{\prime} C^{\prime \prime}$ and $B C=B^{\prime} C^{\prime}$.
$\therefore \triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime \prime}$.
$\therefore \angle C=\angle C^{\prime \prime}$.
$\therefore \operatorname{arc} A B=\operatorname{arc} A^{\prime} B^{\prime}$.

Prop. VI. Theorem.

158. (Converse of Prop. V.) In equal circles, or in the same circle, equal arcs are subtended by equal chords.
(Fig. of Prop. V.)
Given, in equal (5 $A M B$ and $A^{\prime} M^{\prime} B^{\prime}$, arc $A B=\operatorname{arc} A^{\prime} B^{\prime}$; and chords $A B$ and $A^{\prime} B^{\prime}$.

To Prove chord $A B=\operatorname{chord} A^{\prime} B^{\prime}$.
(Prove $\triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime}$, by § 63.)

Ex. 2. If two circumferences intersect each other, the distance between their centres is greater than the difference of their radii.
(§ 62.)
Prop. VII. Theorem.
159. In equal circles, or in the same circle, the greater of two arcs is subtended by the greater chord; each arc being less than a semi-circumference.

Given, in equal (5) $A M B$ and $A^{\prime} M^{\prime} B^{\prime}$, arc $A B>\operatorname{arc} A^{\prime} B^{\prime}$, each arc being $<$ a semi-circumference, and chords $A B$ and $A^{\prime} B^{\prime}$.

To Prove chord $A B>$ chord $A^{\prime} B^{\prime}$.
Proof. Draw radii $A C, B C, A^{\prime} C^{\prime}$, and $B^{\prime} C^{\prime \prime}$.
Then in $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$,

$$
\begin{equation*}
A C=A^{\prime} C^{\prime} \text { and } B C^{\prime}=B^{\prime} C^{\prime \prime} \tag{?}
\end{equation*}
$$

And since, by hyp., are $A B>$ arc $A^{\prime} B^{\prime}$, we have

$$
\angle C>\angle C^{\prime \prime}
$$

\therefore chord $A B>$ chord $A^{\prime} B^{\prime}$.

Prop. VIII. Theorem.

160. (Converse of Prop. VII.) In equal circles, or in the same circle, the greater of two chords subtends the greater arc; each arc being less than a semi-circumference.
(Fig. of Prop. VII.)
($\angle C>\angle C^{\prime \prime}$, by § 92 ; the theorem follows by $\S 156,1$.)
161. Sch. If each are is greater than a semi-circumference, the greater are is subtended by the less chord; and conversely the greater chord subtends the less arc.

Prop. IX. Theorem.

162. The diameter perpendicular to a chord bisects the chord and its subtended arcs.

Given, in $\odot A B D$, diameter $C D \perp$ chord $A B$.
To Prove that $C D$ bisects chord $A B$, and arcs $A C B$ and $A D B$.

Proof. Let O be the centre of the \odot, and draw radii $O A$ and $O B$.

Then,

$$
\begin{equation*}
O A=O B \tag{?}
\end{equation*}
$$

Hence, $\triangle O A B$ is isosceles.
Therefore, $C D$ bisects $A B$, and $\angle A O B$.
Then since $\angle A O C=\angle B O C$, we have

$$
\begin{equation*}
\operatorname{arc} A C=\operatorname{arc} B C . \tag{§94}
\end{equation*}
$$

Again,

$$
\angle A O D=\angle B O D .
$$

$$
\therefore \operatorname{arc} A D=\operatorname{arc} B D
$$

Hence, $C D$ bisects $A B$, and arcs $A C B$ and $A D B$.
163. Cor. The perpendicular erected at the middle point of a chord passes through the centre of the circle, and bisects the arcs subtended by the chord.

EXERCISES.

3. The diameter which bisects a chord is perpendicular to it and bisects its subtended arcs. (§ 43.)
(Fig. of Prop. IX. Given diameter $C D$ bisecting chord $A B$.)
4. The straight line which bisects a chord and its subtended are is perpendicular to the chord.
(By § 158, chord $A C=$ chord $B C$.)

Prop. X. Theorem.

164. In the same circle, or in equal circles, equal chords are equally distant from the centre.

Given $A B$ and $C D$ equal chords of $\odot A B C$, whose centre is O, and lines $O E$ and $O F \perp$ to $A B$ and $C D$, respectively.

To Prove

$$
\begin{equation*}
O E=O F \tag{§47}
\end{equation*}
$$

Proof. Draw radii $O A$ and $O C$.
Then in rt. © $O A E$ and $O C F$,

$$
\begin{equation*}
O A=O C \tag{?}
\end{equation*}
$$

Now, E is the middle point of $A B$, and F of $C D$. (§ 162)

$$
\therefore A E=C F,
$$

being halves of equal chords $A B$ and $C D$, respectively.

$$
\begin{align*}
\therefore \triangle O A E & =\triangle O C F \tag{?}\\
\therefore O E & =O F . \tag{?}
\end{align*}
$$

Prop. XI. Theorem.

165. (Converse of Prop. X.) In the same circle, or in equal circles, chords equally distant from the centre are equal.
(Fig. of Prop. X.)
Given O the centre of $\odot A B C$, and $A B$ and $C D$ chords equally distant from 0 .
To Prove chord $A B=$ chord $C D$.
(Rt. $\triangle O A E=$ rt. $\triangle O C F$, and $A E=C F ; E$ is the middle point of $A B$, and F of $C D$.)

Prop. XII. Theorem.

166. In the same circle, or in equal circles, the less of two chords is at the greater distance from the centre.

Given, in $\odot A B C$, chord $A B<$ chord $C D$, and s $O F$ and $O G$ drawn from centre O to $A B$ and $C D$, respectively.

To Prove $O F>O G$.

Proof. Since chord $A B<$ chord $C D$, we have $\operatorname{arc} A B<\operatorname{arc} C D$.
Lay off arc $C E=\operatorname{arc} A B$, and draw line $C E$.

$$
\therefore \text { chord } C E=\text { chord } A B \text {. }
$$

Draw line $O H \perp C E$, intersecting $C D$ at K.

$$
\begin{align*}
& \therefore O H=O F . \tag{164}\\
& O H>O K . \\
& O K>O G . \tag{?}
\end{align*}
$$

But,
And,
Whence, $O H$, or its equal $O F$, is $>O G$.

Prop. XIII. Theorem.

167. (Converse of Prop. XII.) In the same circle, or in equal circles, if two chords are unequally distant from the centre, the more remote is the less.

Given O the centre of $\odot A B C$, and chord $A B$ more remote from O than chord $C D$.

To Prove chord $A B<$ chord $C D$.
Proof. Draw lines $O G$. and $O H \perp$ to $A B$ and $C D$ respectively, and on $O G$ lay off $O K=O H$.

Through K draw chord $E F \perp O K$.
\therefore chord $E F=$ chord $C D$.
Now, chord $A B \|$ chord $E F$.
Then it is evident that arc $A B$ is $<\operatorname{arc} E F$, for it is only a portion of arc $E F$.
\therefore chord $A B<$ chord $E F$.
\therefore chord $A B<$ chord $C D$.
168. Cor. A diameter of a circle is greater than any other chord; for a chord which passes through the centre is greater than any chord which does not.

EXERCISES.
5. The diameter which bisects an arc bisects its chord at right angles.

6. The perpendiculars to the sides of an inscribed quadrilateral at their middle points meet in a common point. (§ 163.)

Prof. XIV. Theorem.

169. A straight line perpendicular to a radius of a circle at its extremity is tangent to the circle.

Given line $A B \perp$ to radius $O C$ of $\odot E C$ at C.
To Prove $A B$ tangent to the \odot.
Proof. Let D be any point of $A B$ except C, and draw line $O D$.

$$
\begin{equation*}
\therefore O D>O C . \tag{?}
\end{equation*}
$$

Therefore, point D lies without the \odot.
Then, every point of $A B$ except C lies without the \odot, and $A B$ is tangent to the \odot.

Prop. XV. Theorem.
170. (Converse of Prop. XIV.) A tangent to a circle is perpendicular to the radius drawn to the point of contact.

Given line $A B$ tangent to $\odot E C$ at C, and radius $O C$.
To Prove $O C \perp A B$.
($O C$ is the shortest line that can be drawn from O to $A B$.)
171. Cor. A line perpendicular to a tangent at its point of contact passes through the centre of the circle.

Prop. XVI. Theorem.

172. Two parallels intercept equal arcs on a circumference.

Case I. When one line is a tangent and the other a secant.

Given $A B$ a tangent to $\odot C E D$ at E, and $C D$ a secant II $A B$, intersecting the circumference at C and D.

To Prove are $C E=\operatorname{arc} D E$.
Proof. Draw diameter EF.

$$
\begin{align*}
& \therefore E F \perp A B . \tag{§170}\\
& \therefore E F \perp C D . \tag{?}\\
& \therefore \operatorname{arc} C E=\operatorname{arc} D E .
\end{align*}
$$

Case II. When both lines are secants.

Given, in $\odot A B C, A B$ and $C D \|$ secants, intersecting the circumference at A and B, and C and D, respectively.

To Prove $\quad \operatorname{arc} A C=$ are $B D$.
Proof. Draw tangent $E F \| A B$, touching the \odot at G.

$$
\begin{equation*}
\therefore E F \| C D \tag{?}
\end{equation*}
$$

Now,
and

$$
\begin{aligned}
& \operatorname{arc} A G=\operatorname{arc} B G \\
& \operatorname{arc} C G=\operatorname{arc} D G .
\end{aligned}
$$

Subtracting, we have

$$
\begin{aligned}
\operatorname{arc} A G-\operatorname{arc} C G & =\operatorname{arc} B G-\operatorname{arc} D G \\
\therefore \operatorname{arc} A C & =\operatorname{arc} B D
\end{aligned}
$$

Case III. When both lines are tangents.

Given, in $\odot E G F, A B$ and $C D \|$ tangents, touching the \odot at E and F, respectively.

To Prove $\quad \operatorname{arc} E G F=\operatorname{arc} E H F$.
(Draw secant $G H \| A B$.)
173. Cor. The straight line joining the points of contact of two parallel tangents is a diameter.

Prop. XVII. Theorem.

174. The tangents to a circle from an outside point are equal.

(Rt. $\triangle O A B=$ rt. $\triangle O A C$, by $\S 90$; then $A B=A C$.)
175. Cor. From equal $\triangle O A B$ and $O A C$,

$$
\angle O A B=\angle O A C \text { and } \angle A O B=\angle A O C .
$$

Then, the line joining the centre of a circle to the point of intersection of two tangents makes equal angles with the tangents, and also with the radii drawn to the points of contact.

Prop. XVIII. Theorem.

176. Through three points, not in the same straight line, a circumference can be drawn, and but one.

Given points A, B, and C, not in the same straight line.
To Prove that a circumference can be drawn through A, B, and C, and but one.

Proof. Draw lines $A B$ and $B C$, and lines $D F$ and $E G \perp$ to $A B$ and $B C$, respectively, at their middle points, meeting at O.

Then O is equally distant from A, B, and C.
(§ 137)
Hence, a circumference described with O as a centre and $O A$ as a radius will pass through A, B, and C.

Again, the centre of any circumference drawn through A, B, and C must be in each of the $\downarrow \mathrm{s} D F$ and $E G$. (§42)

Then as $D F$ and $E G$ intersect in but one point, only one circumference can be drawn through A, B, and C.
177. Cor. Two circumferences can intersect in but two points; for if they had three common points, they would have the same centre, and coincide throughout.

Prop. XIX. Theorem.

178. If two circumferences intersect, the straight line joining their centres bisects their common chord at right angles.

Given O and O^{\prime} the centres of two © ©, whose circumferences intersect at A and B, and lines $O O^{\prime}$ and $A B$.

To Prove that $O O^{\prime}$ bisects $A B$ at rt. ©s.
(The proposition follows by $\S 43$.)

Prop. XX. Theorem.

179. If two circles are tangent to each other, the straight line joining their centres passes through their point of contact.

Given O and O^{\prime} the centres of two (®), which are tangent to line $A B$ at A.

To Prove that str. line joining O and O^{\prime} passes through A.
(Draw radii $O A$ and $O^{\prime} A$; since these lines are $\perp A B$, $O A O^{\prime}$ is a str. line by $\S 37$; the proposition follows by Ax .3 .)

EXERCISES.

7. The straight line which bisects the ares subtended by a chord bisects the chord at right angles.

8. The tangents to a circle at the extremities of a diameter are parallel.
9. If two circles are concentric, any two chords of the greater which are tangent to the less are equal. (§ 165.)

10. The straight line drawn from the centre of a circle to the point of intersection of two tangents bisects at right angles the chord joining their points of contact. (§ 174.)

ON MEASUREMENT.

180. The ratio of a magnitude to another of the same kind is the quotient of the first divided by the second.

Thus, if a and b are quantities of the same kind, the ratio of a to b is $\frac{a}{b}$; it may also be expressed $a: b$.

A magnitude is measured by finding its ratio to another magnitude of the same kind, called the unit of measure.

The quotient, if it can be obtained exactly as an integer or fraction, is called the numerical measure of the magnitude.
181. Two magnitudes of the same kind are said to be commensurable when a unit of measure, called a common measure, is contained an integral number of times in each.

Thus, two lines whose lengths are 23 and 34 inches are commensurable ; for the common measure $\frac{1}{20}$ inch is contained an integral number of times in each; i.e., 55 times in the first line, and 76 times in the second.

Two magnitudes of the same kind are said to be incommensurable when no magnitude of the same kind can be found which is contained an integral number of times in each.

For example, let $A B$ and $C D$ be two lines such that

$$
\frac{A B}{C D}=\sqrt{2} .
$$

As $\sqrt{2}$ can only be obtained approximately, no line, however small, can be found which is contained an integral number of times in each line, and $A B$ and $C D$ are incommensurable.
182. A magnitude which is incommensurable with respect to the unit has, strictly speaking, no numerical measure (§ 180); still if $C D$ is the unit of measure, and $\frac{A B}{C D}=\sqrt{2}$, we shall speak of $\sqrt{2}$ as the numerical measure of $A B$.
183. It is evident from the above that the ratio of two magnitudes of the same kind, whether commensurable or incommensurable, is equal to the ratio of their numerical measures when referred to a common unit.

THE METHOD OF LIMITS.

184. A variable quantity, or simply a variable, is a quantity which may assume, under the conditions imposed upon it, an indefinitely great number of different values.
185. A constant is a quantity which remains unchanged throughout the same discussion.
186. A limit of a variable is a constant quantity, the difference between which and the variable may be made less than any assigned quantity, however small, but cannot be made equal to zero.

In other words, a limit of a variable is a fixed quantity to which the variable approaches indefinitely near, but never actually reaches.
187. Suppose, for example, that a point moves from A towards B under the condition that it shall move, during successive equal in-
 tervals of time, first from A to C, half-way between A and B; then to D, half-way between C and B; then to E, halfway between D and B; and so on indefinitely.

In this case, the distance between the moving point and B can be made less than any assigned distance, however small, but cannot be made equal to 0 .

Hence, the distance from A to the moving point is a variable which approaches the constant distance $A B$ as a limit.

Again, the distance from the moving point to B is a variable which approaches the limit 0 .

As another illustration, consider the series

$$
1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \cdots,
$$

where each term after the first is one-half the preceding.
In this case, by taking terms enough, the last term may be made less than any assigned number, however small, but cannot be made actually equal to 0 .

Then, the last term of the series is a variable which approaches the limit 0 when the number of terms is indefinitely increased.

Again, the sum of the first two terms is $1 \frac{1}{2}$;
the sum of the first three terms is $1 \frac{3}{4}$;
the sum of the first four terms is $1 \frac{7}{8}$; etc.
In this case, by taking terms enough, the sum of the terms may be made to differ from 2 by less than any assigned number, however small, but cannot be made actually equal to 2 .

Then, the sum of the terms of the series is a variable which approaches the limit 2 when the number of terms is indefinitely increased.
188. The Theorem of Limits. If two variables are always equal, and each approaches a limit, the limits are equal.

Given $A M$ and $A^{\prime} M^{\prime}$ two variables, which are always equal, and approach the limits $A B$ and $A^{\prime} B^{\prime}$, respectively.

To Prove

$$
A B=A^{\prime} B^{\prime}
$$

Proof. If possible, let $A B$ be $>A^{\prime} B^{\prime}$; and lay off, on $A B, A C=A^{\prime} B^{\prime}$.

Then, variable $A M$ may have values $>A C$, while variable $A^{\prime} M^{\prime}$ is restricted to values $<A C$; which is contrary to the hypothesis that the variables are always equal.

Hence, $A B$ cannot be $>A^{\prime} B^{\prime}$.
In like manner, it may be proved that $A B$ cannot be $<A^{\prime} B^{\prime}$.

Therefore, since $A B$ can be neither $>$, nor $<A^{\prime} B^{\prime}$, we have

$$
A B=A^{\prime} B^{\prime}
$$

MEASUREMENT OF ANGLES.

Prop. XXI. Theorem.

189. In the same circle, or in equal circles, two central angles are in the same ratio as their intercepted arcs.

Case I. When the arcs are commensurable (§ 181).

Given, in $\odot A B C, A O B$ and $B O C$ central $\angle s$ intercepting commensurable arcs $A B$ and $B C$, respectively.

$$
\text { To Prove } \quad \frac{\angle A O B}{\angle B O C}=\frac{\operatorname{arc} A B}{\operatorname{arc} B C} \text {. }
$$

Proof. Since, by hyp., arcs $A B$ and $B C$ are commensurable, let arc $A D$ be a common measure of arcs $A B$ and $B C$; and suppose it to be contained 4 times in arc $A B$, and 3 times in arc $B C$.

$$
\begin{equation*}
\therefore \frac{\operatorname{arc} A B}{\operatorname{arc} B C}=\frac{4}{3} \text {. } \tag{1}
\end{equation*}
$$

Drawing radii to the several points of division of arc $A C$, $\angle A O B$ will be divided into $4 \angle s$, and $\angle B O C$ into $3 \angle s$, all of which $\lfloor\leqslant$ are equal.

$$
\therefore \frac{\angle A O B}{\angle B O C}=\frac{4}{3} .
$$

From (1) and (2), we have

$$
\begin{equation*}
\frac{\angle A O B}{\angle B O C}=\frac{\operatorname{arc} A B}{\operatorname{arc} B C} \tag{?}
\end{equation*}
$$

Case II. When the arcs are incommensurable (§ 181).

Given, in $\odot A B C, A O B$ and $B O C$ central \angle intercepting incommensurable arcs $A B$ and $B C$, respectively.

To Prove

$$
\frac{\angle A O B}{\angle B O C}=\frac{\operatorname{arc} A B}{\operatorname{arc} B C} .
$$

Proof. Let arc $A B$ be divided into any number of equal ares, and let one of these ares be applied to arc $B C$ as a unit of measure.

Since arcs $A B$ and $B C$ are incommensurable, a certain number of the equal arcs will extend from B to $C^{\prime \prime}$, leaving a remainder $C^{\prime} C$ less than one of the equal arcs.

Draw radius $O C^{\prime}$.
Then, since by const., arcs $A B$ and $B C^{\prime \prime}$ are commensurable,

$$
\begin{equation*}
\frac{\angle A O B}{\angle B O C^{\prime}}=\frac{\operatorname{arc} A B}{\operatorname{arc} B C^{\prime}} \tag{§189,CaseI.}
\end{equation*}
$$

Now let the number of subdivisions of arc $A B$ be indefinitely increased.

Then the unit of measure will be indefinitely diminished; and the remainder $C^{\prime \prime} C$, being always less than the unit, will approach the limit 0 .

Then $\angle B O C^{\prime}$ will approach the limit $\angle B O C$, and $\quad \operatorname{arc} B C^{\prime}$ will approach the limit are $B C$.

Hence, $\frac{\angle A O B}{\angle B O C^{\prime}}$ will approach the limit $\frac{\angle A O B}{\angle B O C}$, and $\frac{\operatorname{arc} A B}{\operatorname{arc} B C^{\prime \prime}}$ will approach the limit $\frac{\operatorname{arc} A B}{\operatorname{arc} B C}$.

Now, $\frac{\angle A O B}{\angle B O C^{\prime \prime}}$ and $\frac{\operatorname{arc} A B}{\operatorname{arc} B C^{\prime \prime}}$ are variables which are always equal, and approach the limits $\frac{\angle A O B}{\angle B O C}$ and $\frac{\operatorname{arc} A B}{\operatorname{arc} B C}$, respectively.

By the Theorem of Limits, these limits are equal. (§ 188)

$$
\therefore \frac{\angle A O B}{\angle B O C}=\frac{\operatorname{arc} A B}{\operatorname{arc} B C}
$$

190. Sch. The usual unit of measure for ares is the degree, which is the ninetieth part of a quadrant (§ 146).

The degree of arc is divided into sixty equal parts, called minutes, and the minute into sixty equal parts, called seconds.

If the sum of two arcs is a quadrant, or 90°, one is called the complement of the other; if their sum is a semi-circumference, or 180°, one is called the supplement of the other.
191. Cor. I. By § 154, equal central $\llcorner s$, in the same \odot, intercept equal ares on the circumference.

Hence, if the angular magnitude about the centre of a \odot be divided into four equal $\angle \in$, each \angle will intercept an arc equal to one-fourth of the circumference.

That is, a right central angle intercepts a quadrant on the circumference.
192. Cor. II. By § 189, a central \angle of n degrees bears the same ratio to a rt. central \angle that its intercepted arc bears to a quadrant.

But a central \angle of n degrees is $\frac{n}{90}$ of a rt. central \angle.
Hence, its intercepted are is $\frac{n}{90}$ of a quadrant, or an arc of n degrees.

The above principle is usually expressed as follows:
A central angle is measured by its intercepted arc.
This means simply that the number of angular degrees in a central angle is equal to the number of degrees of are in its intercepted arc.

Prop. XXII. Theorem.

193. An inscribed angle is measured by one-half its intercepted arc.

Case I. When one side of the angle is a diameter.

Given $A C$ a diameter, and $A B$ a chord, of $\odot A B C$.
To Prove that $\angle B A C$ is measured by $\frac{1}{2}$ arc $B C$.
Proof. Draw radius $O B$; then, $O A=O B$.
Then $\triangle O A B$ is isosceles, and $\angle B=\angle A$.
But since $B O C$ is an ext. \angle of $\triangle O A B$,

$$
\begin{gather*}
\angle B O C=\angle A+\angle B . \\
\therefore \angle B O C=2 \angle A, \text { or } \angle A=\frac{1}{2} \angle B O C .
\end{gather*}
$$

But, $\angle B O C$ is measured by arc $B C$.
Whence, $\angle A$ is measured by $\frac{1}{2} \operatorname{arc} B C$.
Case II. When the centre is within the angle.

Given $A B$ and $A C$ chords of $\odot A B C$, and the centre of the \odot within $\angle B A C$.

To Prove that $\angle B A C$ is measured by $\frac{1}{2} \operatorname{arc} B C$.

Proof. Draw diameter $A D$.
Then, $\quad \angle B A D$ is measured by $\frac{1}{2}$ arc $B D$,
and $\quad \angle C A D$ is measured by $\frac{1}{2}$ arc $C D$. (§ 193, Case I)
$\therefore \angle B A D+\angle C A D$ is measured by $\frac{1}{2}$ arc $B D+\frac{1}{2} \operatorname{arc} C D$. $\therefore \angle . B A C$ is measured by $\frac{1}{2}$ arc $B C$.
Case III. When the centre is without the angle.

(The proof is left to the pupil.)
194. Cor. I. Angles inscribed in the same segment are equal.

Given A, B, and $C \measuredangle$ inscribed in segment $A D E$ of $\odot A B C$.

To Prove $\angle A=\angle B=\angle C$.
(The proposition follows by § 193.)

195. Cor. II. An angle inscribed in a semicircle is a right angle.

Given $B C$ a diameter, and $A B$ and $A C_{B}$ chords, of $\odot A B D$.

To Prove $\angle B A C$ a rt. \angle.
Proof. $\angle B A C$ is measured by $\frac{1}{2}$ of 180°, or 90°.
(§ 193)
196. Cor. III. The opposite angles of an inscribed quadrilateral are supplementary.

For their sum is measured by $\frac{1}{2}$ of 360°, or 180°.

Prop. XXIII. Theorem.

197. The angle between a tangent and a chord is measured by one-half its intercepted arc.

Given $A E$ a tangent to $\odot B C D$ at B, and $B C$ a chord.
To Prove that $\angle A B C$ is measured by $\frac{1}{2}$ arc $B C$.
Proof. Draw diameter $B D$; then, $B D \perp A E$.
Now a rt. \angle is measured by one-half a semi-circumference.
$\therefore \angle A B D$ is measured by $\frac{1}{2}$ arc $B C D$.
Also, $\quad \angle C B D$ is measured by $\frac{1}{2}$ arc $C D$.
$\therefore \angle A B D-\angle C B D$ is measured by $\frac{1}{2} \operatorname{arc} B C D-\frac{1}{2} \operatorname{arc} C D$.

$$
\therefore \angle A B C \text { is measured by } \frac{1}{2} \operatorname{arc} B C .
$$

Similarly, $\angle E B C$ is measured by $\frac{1}{2}$ arc $B D C$.

Prop. XXIV. Theorem.

198. The angle between two chords, intersecting within the circumference, is measured by one-half the sum of its intercepted arc, and the arc intercepted by its vertical angle.

Given, in $\odot A B C$, chords $A B$ and $C D$ intersecting within the circumference at E.

To Prove that
$\angle A E C$ is measured by $\frac{1}{2}(\operatorname{arc} A C+\operatorname{arc} B D)$.
Proof. Draw chord $B C$.
Then, since $A E C$ is an ext. \angle of $\triangle B C E$,

$$
\begin{equation*}
\angle A E C=\angle B+\angle C . \tag{?}
\end{equation*}
$$

But, $\quad \angle B$ is measured by $\frac{1}{2}$ arc $A C$,
and $\quad \angle C$ is measured by $\frac{1}{2}$ arc $B D$.
$\therefore \angle A E C$ is measured by $\frac{1}{2}(\operatorname{arc} A C+\operatorname{arc} B D)$.

Prop. XXV. Theorem.

199. The angle between two secants, intersecting without the circumference, is measured by one-half the difference of the intercepted arcs.

Given, in $\odot A B C$, secants $A E$ and $C E$ intersecting without the circumference at E, and intersecting the circumference at A and B, and C and D, respectively.

To Prove that $\angle E$ is measured by $\frac{1}{2}(\operatorname{arc} A C-\operatorname{arc} B D)$.
Proof. Draw chord $B C$.
Then since $A B C$ is an ext. \angle of $\triangle B C E$,

$$
\begin{align*}
& \angle A B C=\angle E+\angle C . \tag{?}\\
& \therefore \angle E=\angle A B C-\angle C .
\end{align*}
$$

But, $\angle A B C$ is measured by $\frac{1}{2}$ arc $A C$,
and $\quad \angle C$ is measured by $\frac{1}{2} \operatorname{arc} B D$.
$\therefore \angle E$ is measured by $\frac{1}{2}(\operatorname{arc} A C-\operatorname{arc} B D)$.
200. Cor. (Converse of § 196.) If the opposite angles of a quadrilateral are supplementary, the quadrilateral can be inscribed in a circle.

Given, in quadrilateral $A B C D, \angle A$ sup. to $\angle C$, and $\angle B$ to $\angle D$; also, a circuinference drawn through A, B, and C. (§ 176)

To Prove that D lies on the circumference.
Proof. Since $\angle D$ is sup. to $\angle B$, it is measured by $\frac{1}{2}$ are $A B C$.
(§ 193)
Then, D must lie on the circumference; for if it were within the $\odot, \angle D$ would be measured by $\frac{1}{2}$ an arc $>A B C$; and if it were without the $\odot, \angle D$ would be measured by $\frac{1}{2}$ an arc $<A B C$.
(§§ 198, 199)

Prop. XXVI. Theorem.

201. The angle between a secant and a tangent, or two tangents, is measured by one-half the difference of the intercepted arcs.

Fig. 1.

Fig. 2.

1. Given $A E$ a tangent to $\odot B D C$ at B, and $E C$ a secant intersecting the circumference at C and D. (Fig. 1.)

To Prove that $\angle E$ is measured by $\frac{1}{2}($ arc $B F C-\operatorname{arc} B D)$. (We have $\angle E=\angle A B C-\angle C$.)
2. (In Fig. 2, $\angle E=\angle A B D-\angle B D E$; then use § 197.)
202. Cor. Since a circumference is an arc of 360°, we have
$\frac{1}{2}(\operatorname{arc} B F D-\operatorname{arc} B G D)$

$$
\begin{aligned}
& =\frac{1}{2}\left(360^{\circ}-\operatorname{arc} B G D-\operatorname{arc} B G D\right) \\
& =\frac{1}{2}\left(360^{\circ}-2 \operatorname{arc} B G D\right) \\
& =180^{\circ}-\operatorname{arc} B G D .
\end{aligned}
$$

Then, $\angle E$ is measured by 180° - arc $B G D$.
Hence, the angle between two tangents is measured by the supplement of the smaller of the two intercepted arcs.

EXERCISES.

11. If, in figure of $\S 197$, arc $B C^{\prime}=107^{\circ}$, how many degrees are there in angles $A B C$ and $E B C$?
12. If, in figure of $\S 198$, arc $A C=74^{\circ}$, and $\angle A E C=51^{\circ}$, how many degrees are there in arc $B D$?
13. If, in figure of $\S 199$, arc $A C=117^{\circ}$, and $\angle C=14^{\circ}$, how many degrees are there in angle E ?
14. If, in figure of $\S 199, A C$ is a quadrant, and $\angle E=39^{\circ}$, how many degrees are there in arc $B D$?
15. If, in Fig. 1 of $\S 201$, arc $B F C=197^{\circ}$, and arc $C D=75^{\circ}$, how many degrees are there in angle E ?
16. If, in Fig. 1 of $\S 201, \angle E=53^{\circ}$, and arc $B D$ is one-fifth of the circumference, how many degrees are there in arc $B F C$?
17. If, in Fig. 2 of $\S 201$, arc $B F D$ is thirteen-sixteenths of the circumference, how many degrees are there in angle E ?
18. Three consecutive sides of an inscribed quadrilateral subtend arcs of $82^{\circ}, 99^{\circ}$, and 67° respectively. Find each angle of the quadrilateral in degrees, and the angle between its diagonals.
19. Prove Prop. XXIV. by drawing through B a chord parallel to $C D$. (§ 172.)
20. Prove Prop. XXV. by drawing through B a chord parallel to $C D$.
21. Prove Prop. XXVI. for Fig. 1 by drawing through D a chord parallel to $A E$.
22. An angle inscribed in a segment greater than a semicircle is acute; and an angle inscribed in a segment less than a semicircle is obtuse. (§ 193.)
23. In an inscribed trapezoid the non-parallel sides are equal, and also the diagonals.
(The non-parallel sides, and also the diagonals, subtend equal arcs.)
24. If the inscribed and circumscribed circles of a triangle are concentric, prove the triangle equilateral. (§ 165.)
25. If $A B$ and $A C$ are the tangents from point A to the circle whose centre is O, prove $\angle B A C=2 \angle O B C$. (Ex. 10, p. 87.)
26. If two chords intersect at right angles within the circumference of a circle, the sum of the opposite intercepted arcs is equal to a semi-circumference.

27. Two intersecting chords which make equal angles with the diameter passing through their point of intersection are equal. (§ 165.)
(Prove that $O H=O K$.)

28. Prove Prop. XXIII. by drawing a radius perpendicular to BC. (§ 162.)

29. If $A B$ and $A C$ are two chords of a circle making equal angles with the tangent at A, prove $A B=A C$.
30. From a given point within a circle and not coincident with the centre, not more than two equal straight lines can be drawn to the circumference.
(If possible, let $A B, A C$, and $A D$ be three equal straight lines from point A to circumference $B C D$;
 then, by $\S 163, A$ must coincide with the centre.)
31. The sum of two opposite sides of a circumscribed quadrilateral is equal to the sum of the other two sides. (§ 174.)
(To prove $A B+C D=A D+B C$.)

32. Prove Prop. VI. by superposition.
33. In a circumscribed trapezoid, the straight line joining the middle points of the non-parallel sides is equal to one-fourth the perimeter of the trapezoid. ($\$ 132$.)
34. If the opposite sides of a circumscribed quadrilateral are parallel, the figure is a rhombus or a square. (Ex. 31.)
(Prove the sides all equal.)
35. If tangents be drawn to a circle at the extremities of any pair of diameters which are not perpendicular to each other, the figure formed is a rhombus. (Ex. 34.)
36. If the angles of a circumscribed quadrilateral are right angles, the figure is a square.
37. If two circles are tangent to each other at point A, the tangents to them from any point in the common tangent which passes through A are equal. (§ 174.)
38. If two circles are tangent to each other externally at point A, the common tangent which passes through A bisects the other two common tangents. (Ex. 37.)
(To prove that $F G$ bisects $B C$ and $D E$.)

39. The bisector of the angle between two tangents to a circle passes through the centre.
(The bisector of the \angle between the tangents bisects at rt. \S the chord joining their points of contact.)
40. The bisectors of the angles of a circumscribed quadrilateral pass through a common point.
41. If $A B$ is one of the non-parallel sides of a trapezoid circumscribed about a circle whose centre is O, prove $A O B$ a right angle. (§ 175.)

42: If two circles are tangent to each other internally, the distance between their centres is equal to the difference of their radii.

43. Prove the theorem of $\S 168$ by drawing radii to the extremities of the chord. (Ax. 4.)
44. Prove the theorem of $\S 202$ by drawing radii to the points of contact of the tangents. (§ 192.)
45. If any number of angles are inscribed in the saine segment, their bisectors pass through a common point. (§ 193.)
46. Prove Prop. XIII. by Reductio ad Absurdum. (§§ 164, 166.)
47. Two chords perpendicular to a third chord at its extremities are equal. (§ 158.)
48. If two opposite sides of an inscribed quadrilateral are equal and parallel, the figure is a rectangle.
(Arc $B C D$ is a semi-circumference.)

49. If the diagonals of an inscribed quadrilateral intersect at the centre of the circle, the figure is a rectangle. (§ 195.)
50. The circle described on one of the equal sides of an isosceles triangle as a diameter, bisects the base. (§ 195.)

51. If a tangent be drawn to a circle at the extremity of a chord, the middle point of the subtended are is equally distant from the chord and from the tangent.
($B D$ bisects $\angle A B C$.)

52. If sides $A B, B C$, and $C D$ of an inscribed quadrilateral subtend arcs of $99^{\circ}, 106^{\circ}$, and 78°, respectively, and sides $B A$ and $C D$ produced meet at E, and sides $A D$ and $B C$ at F, find the number of degrees in angles $A E D$ and $A F B$.
53. If O is the centre of the circumscribed circle of triangle $A B C$, and $O D$ be drawn perpendicular to $B C$, prove

$$
\angle B O D=\angle A . \quad(\S 192 .)
$$

54. If D, E, and F are the points of contact of sides $A B, B C$, and $C A$ respectively of a triangle circumscribed about a circle, prove

$$
\angle D E F=90^{\circ}-\frac{1}{2} A . \quad(\S 202 .)
$$

55. If sides $A B$ and $B C$ of an inscribed quadrilateral $A B C D$ subtend arcs of 69° and 112°, respectively, and angle $A E D$ between the diagonals is 87°, how many degrees are there in each angle of the quadrilateral?
56. If any number of parallel chords be drawn in a circle, their middle points lie in the same straight line. (§ 162.)
57. What is the locus of the middle points of a system of parallel chords in a circle?
58. What is the locus of the middle points of a system of chords of given length in a circle?
59. If two circles are tangent to each other, any straight line drawn through their point of contact subtends arcs of the same number of degrees on their circumferences. (§ 197.)
(Let the pupil draw the figure for the case when the (S) are tangent internally.)

60. If a straight line be drawn through the point of contact of two circles which are tangent to each other externally, terminating in their circumferences, the radii drawn to its extremities are parallel. (§ 73.)
(Let the pupil state the corresponding theo-
 em for the case when the (s) are tangent internally.)
61. If a straight line be drawn through the point of contact of two circles which are tangent to each other externally, terminating in their circumferences, the tangents at its extremities are parallel. (§ 73.)
(Let the pupil state the corresponding theorem for the case when the (5) are tangent internally.)
62. If sides $A B$ and $D C$ of inscribed quadrilateral $A B C D$ be produced to meet at E, prove that triangles $A C E$ and $B D E$, and also triangles $A D E$ and $B C E$, are mutually equiangular.
(For second part, see § 196.)
63. The sum of the angles subtended at the centre of a circle by two opposite sides of a circumscribed quadrilateral is equal to two right angles. (§ 175.)
(To prove $\angle A O B+\angle C O D=180^{\circ}$.)

64. If a circle is inscribed in a right triangle, the sum of its diameter and the hypotenuse is equal to the sum of the legs. (§ 174.)

65. If a circle be described on the radius of another circle as a diameter, any chord of the greater passing through the point of contact of the circles is bisected by the circumference of the smaller. (§ 195.)
66. If sides $A B$ and $C D$ of inscribed quadrilateral $A B C D$ make equal angles with the diameter passing through their point of intersection, prove $A B=C D$. (§ 165.)

67. If angles A, B, and C of circumscribed quadrilateral $A B C D$ are $128^{\circ}, 67^{\circ}$, and 112°, respectively, and sides $A B, B C, C D$, and $D A$ are tangent to the circle at points E, F, G, and H, respectively, find the number of degrees in each angle of quadrilateral $E F G H$.
68. The chord drawn through a given point within a circle, perpendicular to the diameter passing through the point, is the least chord which can be drawn through the given point. (§ 165.)
(Given chords $A B$ and $C D$ drawn through P, and
 $A B \perp O P$. To prove $A B<C D$.)
69. If $A D B, B E C$, and $C F A$ are angles inscribed in segments $A B D, B C E$, and $A C F$, respectively, exterior to inscribed triangle $A B C$, prove their sum equal to four right angles. (§ 196.)

Note. For additional exercises on Book II., see p. 222.

CONSTRUCTIONS.

Prop. XXVII. Problem.

203. At a given point in a straight line to erect a perpendicular to that line.

First Method.

Given C any point in line $A B$.

Required to draw a line \perp to $A B$ at C.
Construction. Takc points D and E on $A B$ equally distant from C.

With D and E as centres, and with equal radii, describe ares intersecting at F, and draw line $C F$.

Then, $C F$ is \perp to $A B$ at C.
Proof. By cons., C and F are each equally distant from D and E.

Whence, $C F$ is \perp to $D E$ at its middle point.

Second Method.

Given C arly point in line $A B$.
Required to draw a line \perp to $A B$ at C.
Construction. With any point O without line $A B$ as a centre, and distance $O C$ as a radius, describe a circumference intersecting $A B$ at C and D.

Draw diameter $D E$, and line $C E$.
Then, $C E$ is \perp^{-}to $A B$ at C.
Proof. $\angle D C E$, being inscribed in a semicircle, is a rt. \angle.

$$
\begin{equation*}
\therefore C E \perp C D . \tag{§195}
\end{equation*}
$$

Note. The second method of construction is preferable when the given point is near the end of the line.

EXERCISES.

70. Given the base and altitude of an isosceles triangle, to construct the triangle.
71. Given an acute angle, to construct its complement.

Prop. XXVIII. Problem.

204. From a given point without a straight line to draw a perpendicular to that line.

Given C any point without line $A B$.
Required to draw from C a line \perp to $A B$.
Construction. With C as a centre, and any convenient radius, describe an arc intersecting $A B$ at D and E.

With D and E as centres, and with equal radii, describe arcs intersecting at F.

Draw line $C F$.
Then,
$C F \perp A B$.
Proof. Since, by cons., C and F are each equally distant
a from D and $E, C F$ is \perp to $D E$ at its middle point.
Prop. XXIX. Problem.
205. To bisect a given straight line.

Given line $A B$.

Required to bisect $A B$.
Construction. With A and B as centres, and with equal radii, describe ares intersecting at C and D.
Draw line $C D$ intersecting $A B$ at E.
Then, E is the middle point of $A B$.
(The proof is left to the pupil.)
Prop. XXX. Problem.
206. To bisect a given arc.

Given arc $A B$.
Required to bisect arc $A B$.
Construction. With A and B as centres, and with equal radii, describe arcs intersecting at C and D.
Draw line $C D$ intersecting are $A B$ at E.
Then E is the middle point of arc $A B$.
Proof. Draw chord $A B$.
Then, $C D$ is \perp to chord $A B$ at its middle point.
Whence, $C D$ bisects arc $A B$.

EXERCISES.

72. Given an angle, to construct its supplement.
73. Given a side of an equilateral triangle, to construct the triangle.
74. To construct an angle of 60° (Ex. 73); of 30° (Ex. 71).
75. To construct an angle of 120° (Ex. 72); of 150°.

Prop. XXXI. Problem.

207. To bisect a given angle.

Given $\angle A O B$.
Required to bisect $\angle A O B$.
Construction. With O as a centre, and any convenient radius, describe an are intersecting $O A$ at C, and $O B$ at D.

With C and D as centres, and with the same radius as before, describe ares intersecting at E, and draw line $O E$.

Then, $O E$ bisects $\angle A O B$.
Proof. Let $O E$ intersect arc $C D$ at F.
By cons., O and E are each equally distant from C and D.
Whence, $O E$ bisects arc $C D$ at $F(\S 206)$.

$$
\begin{equation*}
\therefore \angle C O F=\angle D O F . \tag{?}
\end{equation*}
$$

That is, $O E$ bisects $\angle A O B$.

Prop. XXXII. Problem.
208. With a given vertex and a given side, to construct an angle equal to a given angle.

Given O the vertex, and $O A$ a side, of an \angle, and $\angle O^{\prime}$.

Required to construct, with O as the vertex and $O A$ as a side, an \angle equal to $\angle O^{\prime}$.

Construction. With O^{\prime} as a centre, and any convenient radius, describe an are intersecting the sides of $\angle O^{\prime}$ at C and D; and draw chord $C D$.

With O as a centre, and with the same radius as before, describe the indefinite are $A E$.

With A as a centre and $C D$ as a radius, describe an arc intersecting arc $A E$ at B, and draw line $O B$.

Then, $\quad \angle A O B=\angle O^{\prime}$.
(The chords of arcs $A B$ and $C D$ are equal, and the proposition follows by §§ 157 and 155 .)

Prop. XXXIII. Problem.

209. Through a given point without a given straight line, to draw a parallel to the line.

Given C any point without line $A B$.
Required to draw through C a line $\|$ to $A B$.
Construction. Through C draw any line $E F$, meeting $A B$ at E, and construct $\angle F C D=\angle C E B$. (§208)

Then,

$$
\begin{equation*}
C D \| A B \tag{?}
\end{equation*}
$$

EXERCISES.

76. To construct an angle of 45°; of 135°; of $22 \frac{1}{2}^{\circ}$; of $67 \frac{1^{\circ}}{}{ }^{\circ}$.
77. Through a given point without a straight line to draw a line making a given angle with that line.
(Draw through the given point a \| to the given line.)

Prop. XXXIV. Problem.

210. Given two angles of a triangle, to find the third.

Given A and B two $\angle s$ of a Δ.
Required to construct the third \angle.
Construction. At any point E of the indefinite line $C D$, construct $\angle D E F=\angle A$.

Also, $\angle F E G$ adjacent to $\angle D E F$, and equal to $\angle B$.
Then, $\angle C E G$ is the required \angle.
(The proof is left to the pupil.)

Prop. XXXV. Problem.

211. Given two sides and the included angle of a triangle, to construct the triangle.

Given m and n two sides of a Δ, and A^{\prime} their included \angle.
Required to construct the \triangle.
Construction. Draw line $A B=m$.
Construct $\angle B A D=\angle A^{\prime}$.
On $A D$ take $A C=n$, and draw line $B C$.
Then, $A B C$ is the required \triangle.
212. Sch. The problem is possible for any values of the given parts.

Prop. XXXVI. Problem.

213. Given a side and two adjacent angles of a triangle, to construct the triangle.

Given a side m, and the adj. $\leqslant^{\prime} A^{\prime}$ and B^{\prime} of a \triangle. (The construction is left to the pupil.)
214. Sch. I. If a side and any two angles of a triangle are given, the third angle may be found by § 210 , and the triangle may then be constructed as in § 213.
215. Sch. II. The problem is impossible when the sum of the given angles is equal to, or greater than, two right angles.
(§ 84)
Prof. XXXVII. Problem.
216. Given the three sides of a triangle, to construct the triangle.

Given m, n, and p the three sides of a Δ.
Required to construct the \triangle.
Construction. Draw line $A B=m$.
With A as a centre and n as a radius, describe an are; with B as a centre and p as a radius, describe an arc intersecting the former are at C, and draw lines $A C$ and $B C$.

Then, $A B C$ is the required \triangle.
217. Sch. The problem is impossible when one of the given sides is equal to, or greater than, the sum of the other two.

Prop. XXXVIII. Problem.

218. Given two sides of a triangle, and the angle opposite to one of them, to construct the triangle.

Given m and n two sides of a Δ, and A^{\prime} the \angle opposite to n.

Required to construct the Δ.
Construction. Construct $\angle D A E=\angle A^{\prime}$ (§208), and on $A E$ take $A B=m$.

With B as a centre and n as a radius, describe an arc.
Case I. When A^{\prime} is acute, and $m>n$.
There may be three cases:

1. The arc may intersect $A D$ in two points.

Let C_{1} and C_{2} be the points in which the are intersects $A D$, and draw lines $B C_{1}$ and $B C_{2}$.

Then, either $A B C_{1}$ or $A B C_{2}^{\prime}$ is the required \triangle.
Note. This is called the ambiguous case.
2. The are may be tangent to $A D$.

In this case there is but one \triangle.
And since a tangent to a \odot is \perp to the radius drawn to the point of contact ($\S 170$), the Δ is a right Δ.
3. The are may not intersect $A D$ at all.

In this case the problem is impossible.
Case II. When A^{\prime} is acute, and $m=n$.

In this case, the are intersects $A D$ in two points, one of which is A.
Then there is but one Δ; an isosceles Δ.
Case III. When A^{\prime} is acute, and $m<n$.
m
n

In this case, the arc intersects $A D$ in two points.
Let C_{1} and C_{2} be the points in which the are intersects $A D$, and draw lines $B C_{1}$ and $B C_{2}$.
Now $\triangle A B C_{1}$ does not satisfy the conditions of the problem, sinice it does not contain the given $\angle A^{\prime}$.
Then there is but one $\triangle ; \triangle A B C_{2}$.
Case IV. When A^{\prime} is right or obtuse, and $m<n$.
In each of these cases, the are intersects $A D$ in two points on opposite sides of A.
Then there is but one Δ.
219. Sch. If A^{\prime} is right or obtuse, and $m=n$ or $m>n$, the problem is impossible; for the side opposite the right or obtuse angle in a triangle must be the greatest side of the triangle:
The pupil should construct the triangle corresponding to each case of $\S 218$.

EXERCISES.

78. Given one of the equal sides and the altitude of an isosceles triangle, to construct the triangle.

What restriction is there on the values of the given lines?
79. Given two diagonals of a parallelogram and their included angle, to construct the parallelogram. (§ 111.)

Prop. XXXIX. Problem.

220. Given two sides and the included angle of a parallelogram, to construct the parallelogram.

Given m and n two sides, and A^{\prime} the included \angle, of a \square. (The construction and proof are left to the pupil.)

Prop. XL. Problem.

221. To inscribe a circle in a given triangle.

Given $\triangle A B C$.
Required to inscribe a \odot in $\triangle A B C$.
Construction. Draw lines $A D$ and $B E$ bisecting $\& A$ and B, respectively (§207).

From their intersection O, draw line $O M \perp A B$ (§ 204).
With O as a centre and $O M$ as a radius, describe a \odot.
This \odot will be tangent to $A B, B C$, and $C A$.
(The proof is left to the pupil; see § 135.)

Ex. 80. To construct a right triangle, having given the hypotenuse and an acute angle.
(The other acute \angle is the complement of the given \angle.)

Prop. XLI. Problem.

222. To circumscribe a circle about a given triangle.

Given $\triangle A B C$.
Required to circumscribe a \odot about $\triangle A B C$.
Construction. Draw lines $D F$ and $E G \perp$ to $A B$ and $A C$, respectively, at their middle points (§205).

Let $D F$ and $E G$ intersect at O.
With O as a centre, and $O A$ as a radius, describe a \odot.
The circumference will pass through A, B, and C.
(The proof is left to the pupil ; see § 137.)
223. Sch. The above construction serves to describe a circumference through three given points not in the same straight line, or to find the centre of a given circumference or arc.

EXERCISES.

81. To construct a right triangle, having given a leg and the opposite acute angle.
(Construct the complement of the given \angle.)
82. Given the base and the vertical angle of an isosceles triangle, to construct the triangle.
(Each of the equal \measuredangle s is the complement of one-half the vertical \angle.)
83. Given the altitude and one of the equal angles of an isosceles triangle, to construct the triangle.
(One-half the vertical \angle is the complement of each of the equal $₫$.)
84. To circumscribe a circle about a given rectangle.
(Draw the diagonals.)

Prop. XLII. Problem.

224. To draw a tangent to a circle through a given point on the circumference.

Given A any point on the circumference of $\odot A D$.
Required to draw through A a tangent to $\odot A D$.
Construction. Draw radius $O A$.
Through A draw line $B C \perp O A$ (§203).
Then, $B C$ will be tangent to $\odot A D$.

Prop. XLIII. Problem.
225. To.draw a tangent to a circle through a given point without the circle.

Given A any point without $\odot B C$.
Required to draw through A a tangent to $\odot B C$.
Construction. Let O be the centre of $\odot B C$, and draw line $O A$.

On $O A$ as a diameter, describe a circumference, cutting the given circumference at B and C.

Draw lines $A B$ and $A C$.

Then, $A B$ and $A C$ are tangents to $\odot B C$.
Proof. Draw line $O B$.
$\angle A B O$, being inscribed in a semicircle, is a rt. \angle.
Therefore, $A B$ is tangent to $\odot B C$.
In like manner, $A C$ is tangent to $\odot B C$.

Prop. XLIV. Problem.

226. Upon a given straight line, to describe a segment which shall contain a given angle.

Given line $A B$, and $\angle A^{\prime}$.
Required to describe upon $A B$ a segment such that every \angle inscribed in the segment shall equal $\angle A^{\prime}$.

Construction. Construct $\angle B A C=\angle A^{\prime}$.
Draw line $D E \perp$ to $A B$ at its middle point.
Draw line $A F \perp A C$, intersecting $D E$ at O.
With O as a centre and $O A$ as a radius, describe $\odot A M B N$.
Then, $A M B$ will be the required segment.
Proof. Let $A G B$ be any \angle inscribed in segment $A M B$. Then, $\angle A G B$ is measured by $\frac{1}{2}$ arc $A N B$.
But, by cons., $A C \perp O A$.
Whence, $A C$ is tangent to $\odot A M B$.
Therefore, $\angle B A C$ is measured by $\frac{1}{2}$ arc $A N B$.

$$
\begin{equation*}
\therefore \angle A G B=\angle B A C=\angle A^{\prime} . \tag{§197}
\end{equation*}
$$

Hence, every \angle inscribed in segment $A M B$ equals $\angle A^{\prime}$.

EXERCISES.

85. Given the middle point of a chord of a circle, to construct the chord.
(To draw through C a chord which is bisected at C.)

86. To draw a line tangent to a given circle and parallel to a given straight line.
(To draw a tangent || AB.)

87. To draw a line tangent to a given circle and perpendicular to a given straight line.
88. To draw a straight line through a given point within a given acute \angle, forming with the sides of the angle an isosceles triangle.

89. Given the base, an adjacent angle, and the altitude of a triangle, to construct the triangle.
(Draw a ll to the base at a distance equal to the altitude.)
90. Given the base, an adjacent side, and the altitude of a triangle, to construct the triangle.

Discuss the problem for the following cases:

1. $n>p$.
2. $n=p$.
3. $n<p$.

4. To construct a rhombus, having given its base and altitude.
(Draw a ll to the base at a distance equal to the altitude.)
What restriction is there on the values of the given lines?
5. Given the altitude and the sides including the vertical angle of a triangle, to construct the triangle.

What restriction is there on the values of the given lines?

Discuss the problem for the following cases:

1. $m<n$ or $>n$.
2. $m=n$.
3. Given the altitude of a triangle, and the angles at the extremities of the base, to construct the triangle.
(The \angle between the altitude and an adjacent side is the complement of the \angle at the extremity of the base, if acute, or of its supplement, if obtuse.)
4. To construct an isosceles triangle, having given the base and the radius of the circumscribed circle.

What restriction is there on the values of the given lines?
95. 'To construct a square, having given one of its diagonals. (§ 195.)
96. To construct a right triangle, having given the hypotenuse and the length of the perpendicular drawn to it from the vertex of the right angle.

What restriction is there on the values of
 the given lines?
97. To construct a right triangle, having given the hypotenuse and a leg.

What restriction is there on the values of the given lines ?
98. Given the base of a triangle and the perpendiculars from its extremities to the other sides, to construct the triangle. (§ 225.)

What restriction is there on the values of the given lines?

99. To describe a circle of given radius tangent to two given intersecting lines.
(Draw a II to one of the lines at a distance equal to the radius.)
100. To describe a circle tangent to a given straight line, having its centre at a given point without the line.
101. To construct a circle having its centre in a given line, and passing through two given points without the line. (§163.)

What restriction is there on the positions of the given points?
102. In a given straight line to find a point equally distant from two given intersecting lines. (§ 101.)
103. Given a side and the diagonals of a parallelogram, to construct the parallelogram.

What restriction is there on the values of the given lines?
104. Through a given point without a given straight line, to describe a circle tangent to the given line at a given point. (§ 163.)
105. Through a given point within a circle to draw a chord equal to a given chord. (§ 164.)

What restriction is there on the position of the given point?

106. Through a given point to describe a circle of given radius tangent to a given straight line.
(Draw a || to the given line at a distance equal to the radius.)
107. To describe a circle of given radius tangent to two given circles.
(To describe a \odot of radius m tangent to two given (s) whose radii are n and p, respectively.)

What restriction is there on the value of m ?

108. To describe a circle tangent to two given parallels, and passing through a given point.

What restriction is there on the position of the given point?
109. To describe a circle of given radius, tangent to a given line and a given circle.
(Draw a $\|$ to the given line at a distance equal to the given radius.)
110. To construct a parallelogram, having given a side, an angle, and the diagonal drawn from the vertex of the angle.
111. In a given triangle to inscribe a rhombus, having one of its angles coincident with an angle of the triangle.
(Bisect the \angle which is common to the Δ and the rhombus.)
112. To describe a circle touching two given intersecting lines, one of them at a given point. (§ 169.)
113. In a given sector to inscribe a circle.
(The problem is the same as inscribing a \odot in $\triangle O^{\prime} C D$.)

114. In a given right triangle to inscribe a square, having one of its angles coincident with the right angle of the triangle.
115. Through a vertex of a triangle to draw a straight line equally distant from the other vertices.
116. Given the base, the altitude, and the vertical angle of a triangle, to construct the triangle. (§226.)
(Construct on the given base as a chord a segment which shall contain the given \angle.)
117. Given the base of a triangle, its vertical angle, and the median drawn to the base, to construct the triangle.
118. To construct a triangle, having given the middle points of its sides.

119. Given two sides of a triangle, and the median drawn to the third side, to construct the triangle.
(Construct $\triangle A B D$ with its sides equal to m, n, and $2 p$, respectively.)

What restriction is there on the values of the given lines?

120. Given the base, the altitude, and the radius of the circumscribed circle of a triangle, to construct the triangle.
(The centre of the circuinscribed \odot lies at a distance from each vertex equal to the radius of the ${ }^{-} \odot$.)
121. To draw common tangents to two given circles which do not intersect.

(To draw exterior common tangents, describe $\odot A A^{\prime}$ with its radius equal to the difference of the radii of the given (5).

To draw interior common tangents, describe $\odot A A^{\prime}$ with its radius equal to the sum of the radii of the given (S).)

Note. For additional exercises on Book II., see p. 224.

Book III.

THEORY OF PROPORTION.-SIMILAR POLYGONS.

DEFINITIONS.

227. A Proportion is a statement that two ratios are equal.
228. The statement that the ratio of a to b is equal to the ratio of c to d, may be written in either of the forms

$$
a: b=c: d, \text { or } \frac{a}{b}=\frac{c}{d} .
$$

229. The first and fourth terms of a proportion are called the extremes, and the second and third terms the mears.

The first and third terms are called the antecedents, and the second and fourth terms the consequents.

Thus, in the proportion $a: b=c: d, a$ and d are the extremes, b and c the means, a and c the antecedents, and b and d the consequents.
230. If the means of a proportion are equal, either mean is called a mean proportional between the first and last terms, and the last term is called a third proportional to the first and second terms.

Thus, in the proportion $a: b=b: c, b$ is a mean proportional between a and c, and c a third proportional to a and b.
231. A fourth proportional to three quantities is the fourth term of a proportion, whose first three terms are the three quantities taken in their order.

Thus, in the proportion $a: b=c: d, d$ is a fourth proportional to a, b, and c.

Prop. I. Theorem.

232. In any proportion, the product of the extremes is equal to the product of the means.

Given the proportion $a: b=c: d$.
To Prove

$$
a d=b c .
$$

Proof. By § 228, $\quad \frac{a}{b}=\frac{c}{d}$.
Multiplying both members of this equation by $b d$,

$$
a d=b c .
$$

233. Cor. The mean proportional between two quantities is equal to the square root of their product.

Given the proportion $a: b=b: c$.
To Prove

$$
\begin{equation*}
b=\sqrt{a c} . \tag{1}
\end{equation*}
$$

Proof. From (1), $\quad b^{\prime}=a c$.

$$
\therefore b=\sqrt{a c} .
$$

Prof. II. Theorem.
234. (Converse of Prop. I.) If the product of two quantities is equal to the product of two others, one pair may be made the extremes, and the other pair the means, of a proportion.

Given

$$
\begin{equation*}
a d=b c . \tag{1}
\end{equation*}
$$

To Prove $\quad a: b=c: d$.
Proof. Dividing both members of (1) by $b d$,

$$
\frac{a d}{b d}=\frac{b c}{b d} .
$$

Or,

$$
\frac{a}{b}=\frac{c}{d} .
$$

Then by § 228,

$$
\begin{aligned}
& a: b=c: d . \\
& a: c=b: d \\
& b: a=d: c, \text { etc. }
\end{aligned}
$$

In like manner,

Prop. III. Theorem.

235. In any proportion, the terms are in proportion by Alternation; that is, the first term is to the third as the second term is to the fourth.

Given the proportion $a: b=c: d$.
To Prove

$$
\begin{align*}
a: c & =b: d . \tag{1}\\
a d & =b c . \\
\therefore a: c & =b: d .
\end{align*}
$$

Prop. IV. Theorem.
236. In any proportion, the terms are in proportion by Inversion; that is, the second term is to the first as the fourth term is to the third.

Given the proportion $a: b=c: d$.
To Prove $\quad b: a=d: c$.
Proof. From (1), $\quad a d=b c$.

$$
\begin{equation*}
\therefore b: a=d: c . \tag{?}
\end{equation*}
$$

Prop. V. Theorem.

237. In any proportion, the terms are in proportion by Composition ; that is, the sum of the first two terms is to the first term as the sum of the last two terms is to the third term.

Given the proportion $a: b=c: d$.
To Prove

$$
\begin{equation*}
a+b: a=c+d: c . \tag{1}
\end{equation*}
$$

Proof. From (1), $\quad a d=b c$.
Adding both members of the equation to $a c$,

$$
a c+a d=a c+b c
$$

Factoring,

$$
a(c+d)=c(a+b)
$$

$$
\begin{equation*}
\therefore a+b: a=c+d: c . \tag{§234}
\end{equation*}
$$

In like manner, $a+b: b=c+d: d$.

Prop. VI. Theorem.

238. In any proportion, the terms are in proportion by Division; that is, the difference of the first two terms is to the first term as the difference of the last two terms is to the third term.

Given the proportion $a: b=c: d$, in which $a>b$ and $c>d$.

To Prove $\quad a-b: a=c-d: c$.
Proof. From (1), $\quad a d=b c$.
Subtracting both members of the equation from ac,

$$
a c-a d=a c-b c
$$

Factoring,

$$
\begin{align*}
a(c-d) & =c(a-b) \\
\therefore a-b: a & =c-d: c . \tag{?}
\end{align*}
$$

In like manner, $a-b: b=c-d: d$.

Prop. VII. Theorem.

239. In any proportion, the terms are in proportion by Composition and Division; that is, the sum of the first two terms is to their difference as the sum of the last two terms is to their difference.

Given the proportion $a: b=c: d$, in which $a>b$ and $c>d$.

To Prove

$$
a+b: a-b=c+d: c-d
$$

Proof. From (1), $\frac{a+b}{a}=\frac{c+d}{c}$,
and

$$
\begin{equation*}
\frac{a-b}{a}=\frac{c-d}{c} \tag{§237}
\end{equation*}
$$

Dividing the first equation by the second,

$$
\begin{aligned}
\frac{a+b}{a-b} & =\frac{c+d}{c-d} \\
\therefore a+b: a-b & =c+d: c-d .
\end{aligned}
$$

Prop. VIII. Theorem.

240. In a series of equal ratios, the sum of all the antecedents is to the sum of all the consequents as any antecedent is to its consequent.

Given

$$
\begin{equation*}
a: b=c: d=e: f \tag{1}
\end{equation*}
$$

To Prove $\quad a+c+e: b+d+f=a: b$.
Proof. We have
Also, from (1),

$$
\begin{align*}
b a & =a b . \\
b c & =a d, \\
b e & =a f . \tag{?}
\end{align*}
$$ and

Adding, $\quad b a+b c+b e=a b+a d+a f$.

$$
\therefore b(a+c+e)=a(b+d+f)
$$

$$
\begin{equation*}
\therefore a+c+e: b+d+f=a: b . \tag{?}
\end{equation*}
$$

Prop. IX. Theorem.
241. In any proportion, like powers or like roots of the terms are in proportion.

Given the proportion $a: b=c: d$.
To Prove

$$
\begin{equation*}
a^{n}: b^{n}=c^{n}: d^{n} . \tag{1}
\end{equation*}
$$

Proof. From (1),

$$
\frac{a}{b}=\frac{c}{d} .
$$

Raising both members to the nth power,

$$
\begin{aligned}
\frac{a^{n}}{b^{n}} & =\frac{c^{n}}{d^{n}} \\
\therefore a^{n}: b^{n} & =c^{n}: d^{n} .
\end{aligned}
$$

In like manner, $\quad \sqrt[n]{a}: \sqrt[n]{b}=\sqrt[n]{c}: \sqrt[n]{d}$.
Note. The ratio of two magnitudes of the same kind is equal to the ratio of their numerical measures when referred to a common unit (§ 183) ; hence, in any proportion involving the ratio of two magnitudes of the same kind, we may regard the ratio of the magnitudes as replaced by the ratio of their numerical measures when referred to a common unit.

Thus, let $A B, C D, E F$, and $G H$ be four lines such that

$$
A B: C D=E F: G H .
$$

Then,

$$
\begin{equation*}
A B \times G H=C D \times E F . \tag{§232}
\end{equation*}
$$

This means that the product of the numerical measures of $A B$ and $G H$ is equal to the product of the numerical measures of $C D$ and $E F$.

An interpretation of this nature must be given to all applications of $\S \S 232,233$ and 241.

EXERCISES.

1. Find a fourth proportional to 65,80 , and 91.
2. Find a mean proportional between 28 and 63 .
3. Find a third proportional to $\frac{3}{4}$ and $\frac{5}{6}$.
4. What is the second term of a proportion whose first, third, and fourth terms are 45,160 , and 224 , respectively ?

PROPORTIONAL LINES.

Prop. X. Theorem.
242. If a series of parallels, cutting two straight lines, intercept equal distances on one of these lines, they also intercept equal distances on the other.

Given lines $A B$ and $A^{\prime} B^{\prime}$ cut by $\| s C C^{\prime}, D D^{\prime}, E E^{\prime}$, and $F F^{\prime}$ at points C, D, E, F, and $C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime \prime}$, respectively, so that

$$
C D=D E=E F
$$

To Prove $\quad C^{\prime} D^{\prime}=D^{\prime} E^{\prime}=E^{\prime} F^{\prime \prime}$.
Proof. In trapezoid $C C^{\prime \prime} E^{\prime} E$, by hyp., $D D^{\prime}$ is \| to the bases, and bisects $C E$; it therefore bisects $C^{\prime \prime} E^{\prime}$. (§133)

$$
\begin{equation*}
\therefore C^{\prime} D^{\prime}=D^{\prime} E^{\prime} . \tag{1}
\end{equation*}
$$

In like manner, in trapezoid $D D^{\prime} F^{\prime} F, E E^{\prime}$ is \| to the bases, and bisects $D F$.

$$
\begin{equation*}
\therefore D^{\prime} E^{\prime}=E^{\prime} F^{\prime} \tag{2}
\end{equation*}
$$

From (1) and (2), $\quad C^{\prime} D^{\prime}=D^{\prime} E^{\prime}=E^{\prime} F^{\prime \prime}$.
243. Def. Two straight lines are said to be divided proportionally when their corresponding segments are in the same ratio as the lines themselves.

Thus, lines $A B$ and $C D$ are divided

$$
\frac{A E}{C F}=\frac{B E}{D F}=\frac{A B}{C D} .
$$

Prof. XI. Theorem.
244. A parallel to one side of a triangle divides the other two sides proportionally.

Case I. When the segments of each side are commensurable.

Given, in $\triangle A B C$, segments $A D$ and $B D$ of side $A B$ commensurable, and line $D E \| B C$, meeting $A C$ at E.

To Prove

$$
\frac{A D}{B D}=\frac{A E}{C E}
$$

Proof. Let $A F$ be a common measure of $A D$ and $B D$; and let it be contained 4 times in $A D$, and 3 times in $B D$.

$$
\begin{equation*}
\therefore \frac{A D}{B D}=\frac{4}{3} . \tag{1}
\end{equation*}
$$

Drawing $\|_{s}$ to $B C$ through the several points of division of $A B, A E$ will be divided into 4 parts, and $C E$ into 3 parts, all of which. parts are equal.

$$
\begin{align*}
\therefore \frac{A E}{C E} & =\frac{4}{3} \tag{2}\\
\text { From (1) and (2), } \quad \frac{A D}{B D} & =\frac{A E}{C E}
\end{align*}
$$

Case II. When the segments of each side are incommensurable.

Given, in $\triangle A B C$, segments $A D$ and $B D$ of side $A B$ incommensurable, and line $D E \| B C$, meeting $A C$ at E.

To Prove

$$
\frac{A D}{B D}=\frac{A E}{C E}
$$

Proof. Let $A D$ be divided into any number of equal parts, and let one of these parts be applied to $B D$ as a unit of measure.

Since $A D$ and $B D$ are incommensurable, a certain number of the equal parts will extend from D to B^{\prime}, leaving a remainder $B B^{\prime}<$ one of the equal parts.

Draw line $B^{\prime} C^{\prime \prime} \| B C$, meeting $A C$ at $C^{\prime \prime}$.
Then, since $A D$ and $B^{\prime} D$ are commensurable,

$$
\begin{equation*}
\frac{A D}{B^{\prime} D}=\frac{A E}{C^{\prime} E} \tag{§244,CaseI.}
\end{equation*}
$$

Now let the number of subdivisions of $A D$ be indefinitely increased.

Then the unit of measure will be indefinitely diminished, and the remainder $B B^{\prime}$ will approach the limit 0 .

$$
\begin{array}{ll}
\text { Then, } & \frac{A D}{B^{\prime} D} \text { will approach the } \operatorname{limit} \frac{A D}{B D} \\
\text { and } & \frac{A E}{C^{\prime} E} \text { will approach the limit } \frac{A E}{C E} .
\end{array}
$$

By the Theorem of Limits, these limits are equal.

$$
\begin{equation*}
\therefore \frac{A D}{B D}=\frac{A E}{C E} \tag{?}
\end{equation*}
$$

245. Cor. I. We may write the result of § 244,

$$
\begin{align*}
A D: B D & =A E: C E . \tag{1}\\
\therefore A D+B D: A D & =A E+C E: A E . \\
\therefore A B: A D & =A C: A E . \tag{2}
\end{align*}
$$

In like manner, $A B: B D=A C: C E$.
246. Cor. II. From (2), § 245,
and from (3), $\quad A B: A C=B D: C E$.
Then, by Ax. 1, $\frac{A B}{A C}=\frac{A D}{A E}=\frac{B D}{C E}$.
247. Sch. The proportions (1), (2), (3), and (4), of §§ 245 and 246 , are all included in the general statement,

A parallel to one side of a triangle divides the other two sides proportionally.

Prop. XII. Theorem.

248. (Converse of Prop. XI.) A line which divides two sides of a triangle proportionally is parallel to the third side.

Given, in $\triangle A B C$, line $D E$ meeting $A B$ and $A C$ at D and E respectively, so that

$$
\frac{A B}{A D}=\frac{A C}{A E}
$$

To Prove

$D E \| B C$.
Proof. If $D E$ is not $\| B C$, draw line $D F \| B C$, meeting $A C$ at F.

$$
\begin{equation*}
\therefore \frac{A B}{A D}=\frac{A C}{A F} . \tag{§247}
\end{equation*}
$$

But by hyp., $\quad \frac{A B}{A D}=\frac{A C}{A E}$.

$$
\begin{align*}
& \therefore \frac{A C}{A E}=\frac{A C}{A F} \tag{?}\\
& \therefore A E=A F .
\end{align*}
$$

Then, $D F$ coincides with $D E$, and $D E \| B C$.
Prop. XIII. Theorem.
249. In any triangle, the bisector of an angle divides the opposite side into segments proportional to the adjacent sides.

Given line $A D$ bisecting $\angle A$ of $\triangle A B C$, meeting $B C$ at D.
To Prove

$$
\frac{D B}{D C}=\frac{A B}{A C}
$$

Proof. Draw line $B E \| A D$, meeting $C A$ produced at E. Then, since $\|_{s} A D$ and $B E$ are cut by $A B$,

$$
\begin{equation*}
\angle A B E=\angle B A D . \tag{?}
\end{equation*}
$$

And since $\|_{s} A D$ and $B E$ are cut by $C E$,

$$
\begin{equation*}
\angle A E B=\angle C A D \tag{?}
\end{equation*}
$$

But by hyp., $\quad \angle B A D=\angle C A D$.

$$
\begin{align*}
\therefore \angle A B E & =\angle A E B . \tag{?}\\
\therefore A B & =A E . \tag{?}
\end{align*}
$$

Now since $A D$ is $\|$ to side $B E$ of $\triangle B C E$,

$$
\frac{D B}{D C}=\frac{A E}{A C}
$$

Putting for $A E$ its equal $A B$, we have

$$
\frac{D B}{D C}=\frac{A B}{A C}
$$

250. Def. The segments of a line by a point are the distances from the point to the extremities of the line, whether the point is in the line itself, or in the line produced.

Prop. XIV. Theorem.

251. In any triangle the bisector of an exterior angle divides the opposite side externally into segments proportional to the adjacent sides.

Note. The theorem does not hold for the exterior angle at the vertex of an isosceles triangle.

Given line $A D$ bisecting ext. $\angle B A E$ of $\triangle A B C$, meeting $C B$ produced at D.

To Prove

$$
\frac{D B}{D C}=\frac{A B}{A C}
$$

(Draw $B F \| A D$; then $\angle A B F=\angle A F B$, and $A F=A B$; $B F$ is $\|$ to side $A D$ of $\triangle A C D$.)

SIMILAR POLYGONS.
252. Def. Two polygons are said to be similar if they are mutually equiangular ($\$ 122$), and have their homologous sides (§ 123) proportional.

Thus, polygons $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ are similar if

$$
\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}, \text { etc. }
$$

and,

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime \prime}}=\frac{C D}{C^{\prime} D^{\prime}}, \text { etc. }
$$

253. Sch. The following are given for reference:
254. In similar polygons, the homologous angles are equal.
255. In similar polygons, the homologous sides are proportional.

Prop. XV. Theorem.
254. Two triangles are similar when they are mutually equiangular.

Given, in $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$,

$$
\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}, \text { and } \angle C=\angle C^{\prime \prime} .
$$

To Prove \& $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ similar.
Proof. Place $\triangle A^{\prime} B^{\prime} C^{\prime}$ in the position $A D E ; \angle A^{\prime}$ coinciding with its equal $\angle A$, vertices B^{\prime} and C^{\prime} falling at D and E, respectively, and side $B^{\prime} C^{\prime}$ at $D E$.

Since, by hyp., $\angle A D E=\angle B, D E \| B C$.

$$
\begin{equation*}
\therefore \frac{A B}{A D}=\frac{A C}{A E} \tag{?}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}} \tag{§247}
\end{equation*}
$$

In like manner, by placing $\triangle A^{\prime} B^{\prime} C^{\prime}$ so that $\angle B^{\prime}$ shall coincide with its equal $\angle B$, vertices A^{\prime} and $C^{\prime \prime}$ falling on sides $A B$ and $B C$, respectively, we may prove

$$
\begin{equation*}
\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}} \tag{2}
\end{equation*}
$$

From (1) and (2), $\quad \frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}$.
Then, $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ have their homologous sides proportional, and are similar.
255. Cor. I. Two triangles are similar when two angles of one are equal respectively to two angles of the other.

For their remaining $\llcorner\stackrel{s}{ }$ are equal each to each.
256. Cor. II. Two right triangles are similar when an acute angle of one is equal to an acute angle of the other.
257. Cor. III. If a line be drawn between two sides of a triangle parallel to the third side, the triangle formed is similar to the given triangle.

Given line $D E \|$ to side $B C$ of $\triangle A B C$, meeting $A B$ and $A C$ at D - and E, respectively.

To Prove $\triangle A D E$ similar to $\triangle A B C$.
(The \triangle are mutually equiangular.)
258. Sch. In similar triangles, the homologous sides lie opposite the equal angles.

Prof. XVI. Theorem.

259. Two triangles are similar when their homologous sides are proportional.

Given, in $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$,

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime \prime}}=\frac{B C}{B^{\prime} C^{\prime}}
$$

To Prove $\mathbb{A} A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ similar.
Proof. On $A B$ and $A C$, take $A D=A^{\prime} B^{\prime}$ and $A E=A^{\prime} C^{\prime \prime}$. Draw line $D E$; then, from the given proportion,

$$
\frac{A B}{A D}=\frac{A C}{A E}
$$

$$
\begin{equation*}
\therefore D E \| B C . \tag{§248}
\end{equation*}
$$

Then, $\triangle A D E$ and $A B C$ are similar.

$$
\therefore \frac{A B}{A D}=\frac{B C}{D E} \text {, or } \frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{D E} .
$$

But by hyp.,

$$
\begin{align*}
\frac{A B}{A^{\prime} B^{\prime}} & =\frac{B C}{B^{\prime} C^{\prime}} \\
\therefore D E & =B^{\prime} C^{\prime \prime} \\
\therefore \triangle A D E & =\triangle A^{\prime} B^{\prime} C^{\prime \prime} \tag{§69}
\end{align*}
$$

But, $\triangle A D E$ has been proved similar to $\triangle A B C$. Hence, $\triangle A^{\prime} B^{\prime} C^{\prime \prime}$ is similar to $\triangle A B C$.
260. Sch. To prove that two polygons in general are similar, it must be shown that they are mutually equiangular, and have their homologous sides proportional (§ 252); but in the case of two triangles, each of these conditions involves the other ($\S(254,259$), so that it is only necessary to show that one of the tests of similarity is satisfied.

Prop. XVII. Theorem.

261. Two triangles are similar when they have an angle of one equal to an angle of the other, and the sides including these angles proportional.

Given, in $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$,

$$
\angle A=\angle A^{\prime}, \text { and } \frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}
$$

To Prove \& $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ similar.
(Place $\triangle A^{\prime} B^{\prime} C^{\prime \prime}$ in the position $A D E$; by $\S 248, D E \| B C$; the theorem follows by $\S 257$.)

Prop. XVIII. Theorem.

262. Two triangles are similar when their sides are parallel each to each, or perpendicular each to each.

Fig. 1.

Fig. 2.

Fig. 3.

Given sides $A B, A C$, and $B C$, of $\triangle A B C$, $\|$ respectively to sides $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}$, and $B^{\prime} C^{\prime \prime}$ of $\triangle A^{\prime} B^{\prime} C^{\prime \prime}$ in Fig. 2, and \perp respectively to sides $A^{\prime} B^{\prime}, A^{\prime} C^{\prime \prime}$, and $B^{\prime} C^{\prime \prime}$ of $\triangle A^{\prime} B^{\prime} C^{\prime \prime}$ in Fig. 3.

To Prove $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ similar.
Proof. Since the sides of $\angle s A$ and A^{\prime} are $\|$ each to each, or \perp each to each, $\left\lfloor S A\right.$ and A^{\prime} are either equal or supplementary.
(§§ 81, 82, 83)
In like manner, $\measuredangle B$ and B^{\prime}, and $\measuredangle C$ and $C^{\prime \prime}$, are either equal or supplementary.

We may then make the following hypotheses with regard to the $\subseteq \subseteq$ of the \triangle :

1. $A+A^{\prime}=2 \mathrm{rt} .\left\lfloor\mathrm{s}, B+B^{\prime}=2 \mathrm{rt}\right.$. ©s, $C+C^{\prime \prime}=2 \mathrm{rt}$. L.
2. $A+A^{\prime}=2 \mathrm{rt} . \measuredangle, B+B^{\prime}=2 \mathrm{rt} . \measuredangle \mathrm{s}, \quad C=C^{\prime}$.
3. $A+A^{\prime}=2 \mathrm{rt} . \measuredangle s, \quad B=B^{\prime}, \quad C+C^{\prime}=2 \mathrm{rt}$. . s .
4.
5.

$A=A^{\prime}, \quad B+B^{\prime}=2 \mathrm{rt} . \angle \mathrm{s}, C+C^{\prime \prime}=2 \mathrm{rt} . \angle \mathrm{s}$.
5. $\quad A=A^{\prime}, \quad B=B^{\prime}$, whence $C=C^{\prime \prime}$. (§ 86)

The first four hypotheses are impossible; for, in either

We can then have only $A=A^{\prime}, B=\dot{B}^{\prime}$, and $C=C^{\prime \prime}$.
Therefore, \& $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar.
(§ 254)
263. Sch. 1. In similar triangles whose sides are parallel each to each, the parallel sides are homologous.
2. In similar triangles whose sides are perpendicular each to each, the perpendicular sides are homologous.

Prop. XIX. Theorem.

264. The homologous altitudes of two similar triangles are in the same ratio as any two homologous sides.

Given $A D$ and $A^{\prime} D^{\prime}$ homologous altitudes of similar \& $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

To Prove $\quad \frac{A D}{A^{\prime} D^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime \prime}}=\frac{B C}{B^{\prime} C^{\prime}}$.
(Rt. \& $A B D$ and $A^{\prime} B^{\prime} D^{\prime}$ are similar by $\S 256$.)
265. Sch. In two similar triangles, any two homologous lines are in the same ratio as any two homologous sides.

EXERCISES.

5. The sides of a triangle are $A B=8, B C=6$, and $C A=7$; find the segments into which each side is divided by the bisector of the opposite angle.
6. The sides of a triangle are $A B=5, B C=7$, and $C A=8$; find the segments into which each side is divided by the bisector of the exterior angle at the opposite vertex.
7. The sides of a triangle are 5,7 , and 9 . The shortest side of a similar triangle is 14 . What are the other two sides?
8. Two isosceles triangles are similar when their vertical angles are equal. (§ 255.)
9. The base and altitude of a triangle are 5 ft .10 in . and 3 ft . 6 in., respectively. If the homologous base of a similar triangle is 7 ft .6 in., find its homologous altitude.

Prop. XX. Theorem.
266. Two polygons are similar when they are composed of the same number of triangles, similar each to each, and similarly placed.

Given, in polygons $A C$ and $A^{\prime} C^{\prime}, \triangle A B E$ similar to $\triangle A^{\prime} B^{\prime} E^{\prime}, \triangle B C E$ to $\triangle B^{\prime} C^{\prime \prime} E^{\prime}$, and $\triangle C D E$ to $\triangle C^{\prime} D^{\prime} E^{\prime}$.

To Prove polygons $A C$ and $A^{\prime} C^{\prime \prime}$ similar.
Proof. Since $\mathbb{Q}^{\triangle} A B E$ and $A^{\prime} B^{\prime} E^{\prime}$ are similar,

$$
\begin{equation*}
\angle A=\angle A^{\prime} . \tag{?}
\end{equation*}
$$

Also,

$$
\angle A B E=\angle A^{\prime} B^{\prime} E^{\prime} .
$$

And since $\mathcal{A} B C E$ and $B^{\prime} C^{\prime} E^{\prime}$ are similar,

$$
\angle E B C=\angle E^{\prime} B^{\prime} C^{\prime \prime} .
$$

$$
\therefore \angle A B E+\angle E B C=\angle A^{\prime} B^{\prime} E^{\prime}+\angle E^{\prime} B^{\prime} C^{\prime \prime}
$$

Or,

$$
\angle A B C=\angle A^{\prime} B^{\prime} C^{\prime} .
$$

In like manner, $\quad \angle B C D=\angle B^{\prime} C^{\prime} D^{\prime}$, etc.
Then, $A C$ and $A^{\prime} C^{\prime}$ are mutually equiangular.
Again, since $\triangle A B E$ is similar to $\triangle A^{\prime} B^{\prime} E^{\prime}$, and $\triangle B C E$ to $\triangle B^{\prime} C^{\prime \prime} E^{\prime}$,

$$
\begin{align*}
\frac{A B}{A^{\prime} B^{\prime}}= & \frac{B E}{B^{\prime} E^{\prime}} \text { and } \frac{B E}{B^{\prime} E^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}} . \tag{?}\\
& \therefore \frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}} \tag{?}
\end{align*}
$$

In like manner, $\quad \frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}$, etc.
Then, $A C$ and $A^{\prime} C^{\prime \prime}$ have their homologous sides proportional.

Therefore, $A C$ and $A^{\prime} C^{\prime}$ are similar.

Prop. XXI. Theorem.
267. (Converse of Prop. XX.) Two similar polygons may be decomposed into the same number of triangles, similar each to each, and simile iy placed.

Given E and E^{\prime} homologous vertices of similar polygons $A C$ and $A^{\prime} C^{\prime \prime}$, and lines $E B, E C, E^{\prime} B^{\prime}$, and $E^{\prime} C^{\prime \prime}$.
To Prove $\triangle A B E$ similar to $\triangle A^{\prime} B^{\prime} E^{\prime}, \triangle B C E$ to $\triangle B^{\prime} C^{\prime} E^{\prime}$, and $\triangle C D E$ to $\triangle C^{\prime} D^{\prime} E^{\prime}$.
Proof. Since polygons $A C$ and $A^{\prime} C^{\prime}$ are similar,

$$
\begin{equation*}
\angle A=\angle A^{\prime} \text { and } \frac{A E}{A^{\prime} E^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} . \tag{?}
\end{equation*}
$$

Then, $\triangle A B E$ and $A^{\prime} B^{\prime} E^{\prime}$ are similar.
Again, since the polygons are similar,

$$
\angle A B C=\angle A^{\prime} B^{\prime} C^{\prime \prime} .
$$

And since $\mathbb{A} A B E$ and $A^{\prime} B^{\prime} E^{\prime}$ are similar,

$$
\angle A B E=\angle A^{\prime} B^{\prime} E^{\prime} .
$$

$$
\therefore \angle A B C-\angle A B E=\angle A^{\prime} B^{\prime} C^{\prime \prime}-\angle A^{\prime} B^{\prime} E^{\prime} .
$$

Or,

$$
\angle E B C=\angle E^{\prime} B^{\prime} C^{\prime} .
$$

Also, since the polygons are similar, $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime \prime}}$.
And since $\triangle A B E$ and $A^{\prime} B^{\prime} E^{\prime}$ are similar, $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B E}{B^{\prime} E^{\prime}}$.

$$
\begin{equation*}
\therefore \frac{B C}{B^{\prime} C^{\prime}}=\frac{B E}{B^{\prime} E^{\prime}} . \tag{?}
\end{equation*}
$$

Then, since $\angle E B C=\angle E^{\prime} B^{\prime} C^{\prime}$, and $\frac{B C}{B^{\prime} C^{\prime}}=\frac{B E}{B^{\prime} E^{\prime}}, \triangle B C E$ and $B^{\prime} C^{\prime} E^{\prime}$ are similar.

In like manner, we may prove $\mathbb{\triangle} C D E$ and $C^{\prime} D^{\prime} E^{\prime}$ similar.

Prop. XXII. Theorem.

268. The perimeters of two similar polygons are in the same ratio as any two homologous sides.

Given $A B$ and $A^{\prime} B^{\prime}, B C$ and $B^{\prime} C^{\prime}, C D$ and $C^{\prime} D^{\prime}$, etc., homologous sides of similar polygons $A C$ and $A^{\prime} C^{\prime}$.

To Prove

$$
\frac{A B+B C+C D+\text { etc. }}{A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+C^{\prime} D^{\prime}+\text { etc. }}=\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}, \text { etc. }
$$

(Apply § 240 to the equal ratios of $\S 252$.)

Prop. XXIII. Theorem.

269. If a perpendicular be drawn from the vertex of the right angle to the hypotenuse of a right triangle,
I. The triangles formed are similar to the whole triangle, and to each other.
II. The perpendicular is a mean proportional between the segments of the hypotenuse.
III. Either leg is a mean proportional between the whole hypotenuse and the adjacent segment.

Given line $C D \perp$ hypotenuse $A B$ of rt. $\triangle A B C$.
I. To Prove © $A C D$ and $B C D$ similar to $\triangle A B C$, and to each other.

Proof. In rt. © $A C D$ and $A B C$,

$$
\begin{equation*}
\angle A=\angle A \tag{§256}
\end{equation*}
$$

Then, $\triangle A C D$ is similar to $\triangle A B C$.
In like manner, $\triangle B C D$ is similar to $\triangle A B C$.
Then, $\triangle A C D$ and $B C D$ are similar to each other, for each is similar to $\triangle A B C$.
II. To Prove $A D: C D=C D: B D$.

Proof. Since $\mathbb{S} A C D$ and $B C D$ are similar,

$$
\angle A C D=\angle B \text { and } \angle A=\angle B C D . \quad(\S 253,1)
$$

In $\triangle A C D$ and $B C D, A D$ and $C D$ are homologous sides, for they lie opposite the equal $\measuredangle S A C D$ and B, respectively; also, $C D$ and $B D$ are homologous sides, for they lie opposite the equal $\leftarrow A$ and $B C D$, respectively.

$$
\begin{equation*}
\therefore A D: C D=C D: B D \tag{§258}
\end{equation*}
$$

III. To Prove $A B: A C=A C: A D$.

Proof. Since $\mathbb{\triangle} A B C$ and $A C D$ are similar,

$$
\begin{equation*}
\angle A C B=\angle A D C \text { and } \angle B=\angle A C D \tag{?}
\end{equation*}
$$

In $\subseteq A B C$ and $A C D, A B$ and $A C$ are homologous sides, for they lie opposite the equal $\measuredangle A C B$ and $A D C$, respectively; also, $A C$ and $A D$ are homologous sides, for they lie opposite the equal $\measuredangle B$ and $A C D$, respectively.

$$
\begin{equation*}
\therefore A B: A C=A C: A D . \tag{?}
\end{equation*}
$$

In like manner, $\quad A B: B C=B C: B D$.
270. Cor. I. Since an angle inscribed in a semicircle is a right angle (§ 195), it follows that:

If a perpendicular be drawn from any point in the circumference of a circle to a diameter,

1. The perpendicular is a mean proportional between the segments of the diameter.
2. The chord joining the point to either extremity of the diameter is a mean proportional between the whole diameter and the adjacent segment.
3. Cor. II. The three proportions of $\S 269$ give
and

$$
\begin{align*}
\overline{C D}^{2} & =A D \times B D \\
\overline{A C}^{2} & =A B \times A D \\
\overline{B C}^{2} & =A B \times B D \tag{?}
\end{align*}
$$

Hence, if a perpendicular be drawn from the vertex of the right angle to the hypotenuse of a right triangle,

1. The square of the perpendicular is equal to the product of the segments of the hypotenuse.
2. The square of either leg is equal to the product of the whole hypotenuse and the adjacent segment.

As stated in Note, p. 126, these equations mean that the square of the numerical measure of $C D$ is equal to the product of the numerical measures of $A D$ and $B D$, etc.

Prop. XXIV. Theorem.

272. In any right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs.

Given $A B$ the hypotenuse of rt. $\triangle A B C$.
To Prove $\quad \overline{A B}^{2}=\overline{A C}^{2}+\overline{B C}^{2}$.
Proof. Draw line $C D \perp A B$.
Then, $\quad \overline{A C}^{2}=A B \times A D$,
and

$$
\overline{B C}^{2}=A B \times B D
$$

Adding, $\quad \overline{A C}^{2}+\overline{B C}^{2}=A B \times(A D+B D)=A B \times A B$.

$$
\therefore \overline{A B}^{2}=\overline{A C}^{2}+\overline{B C}^{2}
$$

273. Cor. I. It follows from § 272 that

$$
\overline{A C}^{2}=\overline{A B}^{2}-\overline{B C}^{2}, \text { and } \overline{B C}^{2}=\overline{A B}^{2}-\overline{A C}^{2}
$$

That is, in any right triangle, the square of either leg is equal to the square of the hypotenuse, minus the square of the other leg.
274. Cor. II. If $A C$ is a diagonal of square $A B C D$,

$$
\begin{align*}
\overline{A C}^{2}=\overline{A B}^{2}+\overline{B C}^{2} & =\overline{A B}^{2}+\overline{A B}^{2} . \\
\therefore \overline{A C}^{2} & =2 \overline{A B}^{2} .
\end{align*}
$$

Dividing both members by $\overrightarrow{A B}^{2}$,

$$
\frac{\overline{A C}^{2}}{\overline{A B}^{2}}=2, \text { or } \frac{A C}{A B}=\sqrt{2}
$$

Hence, the diagonal of a square is incommensurable with its side (§ 181).

EXERCISES.

10. The perimeters of two similar polygons are 119 and 68 ; if a side of the first is 21 , what is the homologous side of the second?
11. What is the length of the tangent to a circle whose diameter is 16 , from a point whose distance from the centre is 17 ?
12. What is the length of the longest straight line which can be drawn on a floor 33 ft .4 in . long, and 16 ft .3 in . wide ?
13. A ladder 32 ft .6 in . long is placed so that it just reaches a window 26 ft . above the street ; and when turned about its foot, just reaches a window 16 ft .6 in . above the street on the other side. Find the width of the street.
14. The altitude of an equilateral triangle is 5 ; what is its side ?
15. Find the length of the diagonal of a square whose side is 1 ft .3 in.
16. One of the non-parallel sides of a trapezoid is perpendicular to the bases. If the length of this side is 40 , and of the parallel sides 31 and 22 , respectively, what is the length of the other side ?
17. The length of the tangent to a circle, whose diameter is 80 , from a point without the circumference, is 42 . What is the distance of the point from the centre?
18. If the length of the common chord of two intersecting circles is 16 , and their radii are 10 and 17 , what is the distance between their centres? (§ 178.)

DEFINITIONS.

275. The projection of a point upon a straight line of indefinite length, is the foot of the perpendicular drawn from the point to the line.

Thus, if line $A A^{\dagger}$ be perpendicular to line $C D$, the projection of point A on line $C D$ is point A^{\prime}.

276. The projection of a finite straight line upon a straight line of indefinite length, is that portion of the second line included between the projections of the extremities of the first.

Thus, if lines $A A^{\prime}$ and $B B^{\prime}$ be perpendicular to line $C D$, the projection of line $A B$ upon line $C D$ is line $A^{\prime} B^{\prime}$.

Prop. XXV. Theorem

277. In any triangle, the square of the side opposite an acute angle is equal to the sum of the squares of the other two sides, minus twice the product of one of these sides and the projection of the other side upon it.

Fig. 1.

Fig. 2.

Given C an acute \angle of $\triangle A B C$, and $C D$ the projection of side $A C$ upon side $C B$, produced if necessary.

To Prove $\quad \overline{A B}^{2}=\overline{B C}^{2}+\overline{A C}^{2}-2 B C \times C D$.
Proof. Draw line $A D$; then, $A D \perp C D$.
There will be two cases according as D falls on $C B$ (Fig. 1), or on $C B$ produced (Fig. 2).

In Fig. 1, $\quad B D=B C-C D$.
In Fig. 2, $\quad B D=C D-B C$.
Squaring both members of the equation, we have by the algebraic rule for the square of the difference of two numbers, in either case,

$$
\overline{B D}^{2}=\overline{B C}^{2}+\overline{C D}^{2}-2 B C \times C D
$$

Adding $\overline{A D}^{2}$ to both members,

$$
\overline{A D}^{2}+\overline{B D}^{2}=\overline{B C}^{2}+\overline{A D}^{2}+\overline{C D}^{2}-2 B C \times C D
$$

But in rt. $\triangle A B D$ and $A C D$,
and

$$
\overline{A D}^{2}+\overline{B D}^{2}=\overline{A B}^{2}
$$

Substituting these values, we have

$$
\overline{A B}^{2}=\overline{B C}^{2}+\overline{A C}^{2}-2 B C \times C D
$$

Prop. XXVI. Theorem.

278. In any triangle having an obtuse angle, the square of the side opposite the obtuse angle is equal to the sum of the squares of the other two sides, plus twice the product of one of these sides and the projection of the other side upon it.

Given C an obtuse \angle of $\triangle A B C$, and $C D$ the projection of side $A C$ upon side $B C$ produced.

To Prove $\overline{A B}^{2}=\overline{B C}^{2}+\overline{A C}^{2}+2 B C \times C D$.
(We have $B D=B C+C D$; square both members, using the algebraic rule for the square of the sum of two numbers, and then add $\overline{A D}^{2}$ to both members.)

Prop. XXVII. Theorem.

279. In any triangle, if a median be drawn from the vertex to the base,
I. The sum of the squares of the other two sides is equal to twice the square of half the base, plus twice the square of the median.
II. The difference of the squares of the other two sides is equal to twice the product of the base and the projection of the median upon the base.

Given $D E$ the projection of median $C D$ upon base $A B$ of $\triangle A B C$; and $A C>B C$.

To Prove

$$
\begin{aligned}
& \text { I. } \overline{A C}^{2}+\overline{B C}^{2}=2 \overline{A D}^{2}+2 \overline{C D}^{2} \\
& \text { II. } \overline{A C}^{2}-\overline{B C}^{2}=2 A B \times D E
\end{aligned}
$$

Proof. Since $A C>B C, E$ falls between B and D.
Then, $\angle A D C$ is obtuse, and $\angle B D C$ acute.
Hence, in $\triangle A D C$ and $B D C$,
and

$$
\overline{A C}^{2}=\overline{A D}^{2}+\overline{C D}^{2}+2 A D \times D E
$$

$B C^{2}=B D^{2}+C D^{2}-2 B D \times D E$.
But by hyp., $\quad B D=A D$.

$$
\begin{equation*}
\therefore \overline{A C}^{2}=\overline{A D}^{2}+\overline{C D}^{2}+A B \times D E, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{B C}^{2}=\overline{A D}^{2}+\overline{C D}^{2}-A B \times D E \tag{2}
\end{equation*}
$$

Adding (1) and (2), we have

$$
\overline{A C}^{2}+\overline{B C}^{2}=2 \overline{A D}^{2}+2 \overline{C D}^{2}
$$

Subtracting (2) from (1), we have

$$
\overline{A C}^{2}-\overline{B C}^{2}=2 A B \times D E
$$

Prof. XXVIII. Theorem.

280. If any two chords be drawn through a fixed point within a circle, the product of the segments of one chord is equal to the product of the segments of the other.

Given $A B$ and $A^{\prime} B^{\prime}$ any two chords passing through fixed point P within $\odot A^{\prime} B$.

To Prove $\quad A P \times B P=A^{\prime} P \times B^{\prime} P$.
Proof. Draw lines $A A^{\prime}$ and $B B^{\prime}$.
Then, in $\& A A^{\prime} P$ and $B B^{\prime} P$,

$$
\begin{equation*}
\angle A=\angle B^{\prime} \tag{?}
\end{equation*}
$$

for each is measured by $\frac{1}{2}$ arc $A^{\prime} B$.
In like manner, $\quad \angle A^{\prime}=\angle B$.
Then, $\mathbb{A} A A^{\prime} P$ and $B B^{\prime} P$ are similar.
In similar $\triangle A A^{\prime} P$ and $B B^{\prime} P$, sides $A P$ and $B^{\prime} P$ are homologous, as also are sides $A^{\prime} P$ and $B P$.

$$
\begin{align*}
\therefore A P: A^{\prime} P & =B^{\prime} P: B P . \tag{?}\\
\therefore A P \times B P & =A^{\prime} P \times B^{\prime} P .
\end{align*}
$$

281. Sch. The proportion of § 280 may be written

$$
\frac{A P}{A^{\prime} P}=\frac{B^{\prime} P}{B P}, \text { or } \frac{A P}{A^{\prime} P}=\frac{1}{\frac{B P}{B^{\prime} P}}
$$

If two magnitudes, such as the segments of a chord passing through a fixed point, are so related that the ratio of any two values of one is equal to the reciprocal of the ratio of the corresponding values of the other, they are said to be reciprocally proportional.

Then, the theorem may be written,
If any two chords be drawn through a fixed point within a circle, their segments are reciprocally proportional.

Prop. XXIX. Theorem.

282. If through a fixed point without a circle a secant and a tangent be drawn, the product of the whole secant and its external segment is equal to the square of the tangent.

Given $A P$ a secant, and $C P$ a tangent, passing through fixed point P without $\odot A B C$.

To Prove

$$
A P \times B P=\overline{C P}^{2}
$$

($\angle A=\angle B C P$, for each is measured by $\frac{1}{2}$ arc $B C(?)$; then $\triangle A C P$ and $B C P$ are similar, and their homologous sides are proportional.)
283. Cor. I. If through a fixed point without a circle a secant and a tangent be drawn, the tangent is a mean proportional between the whole secant and its external segment.
284. Cor. II. If any two secants be drawn through a fixed point without a circle, the product of one and its external segment is equal to the product of the other and its external segment.

Given P any point without $\odot A B C$, and $A P$ and $A^{\prime} P$ secants intersecting the circumference at A and B, and A^{\prime} and B^{\prime}, respectively.

To Prove $\quad A P \times B P=A^{\prime} P \times B^{\prime} P$.
(We have $A P \times B P$ and $A^{\prime} P \times B^{\prime} P$ each equal to $\overrightarrow{C P}^{2}$.)
285. Cor. III. If any two secants be drawon through a fixed point without a circle, the whole secants and their external segments are reciprocally proportional (\$281).

EXERCISES.

19. Find the length of the common tangent to two circles whose radii are 11 and 18 , if the distance between their centres is 25 .
20. $A B$ is the hypotenuse of right triangle $A B C$. If perpendiculars be drawn to $A B$ at A and B, meeting $A C$ produced at D, and $B C$ produced at E, prove triangles $A C E$ and $B C D$ similar.

Prop. XXX. Theorem.

286. In any triangle, the product of any two sides is equal to the diameter of the circumscribed circle, multiplied by the perpendicular drawn to the third side from the vertex of the opposite angle.

Given $A D$ a diameter of the circumscribed $\odot A C D$ of $\triangle A B C$, and line $A E \perp B C$.

To Prove $\quad A B \times A C=A D \times A E$.
(In rt. $\triangle A B D$ and $A C E, \angle D=\angle C$; then, the $\mathbb{\triangle}$ are similar, and their homologous sides are proportional.)
287. Cor. In any triangle, the diameter of the circumscribed circle is equal to the product of any two sides divided by the perpendicular drawn to the third side from the vertex of the opposite angle.

Prop. XXXI. Theorem.

288. In any triangle, the product of any two sides is equal to the product of the segments of the third side formed by the bisector of the opposite angle, plus the square of the bisector.

Given, in $\triangle A B C$, line $A D$ bisecting $\angle A$, meeting $B C$ it D.

To Prove $\quad A B \times A C=B D \times D C+\overline{A D}^{2}$.
Proof. Circumscribe a \odot about $\triangle A B C$; produce $A D$ to meet the circumference at E, and draw line $C E$.

Then in $\triangle A B D$ and $A C E$, by hyp.,

$$
\angle B A D=\angle C A E .
$$

Also,

$$
\begin{equation*}
\angle B=\angle E, \tag{?}
\end{equation*}
$$

since each is measured by $\frac{1}{2}$ arc $A C$.
Then, \& $A B D$ and $A C E$ are similar.
In $\triangle A B D$ and $A C E$, sides $A B$ rnd $A E$ are homologous, as also are sides $A D$ and $A C$.

$$
\begin{align*}
\therefore A B: A D & =A E: A C . \tag{?}\\
\therefore A B \times A C & =A D \times A E \tag{?}\\
& =A D \times(D E+A D) \\
& =A D \times D E+\overline{A D}^{2} .
\end{align*}
$$

But

$$
\begin{equation*}
A D \times D E=B D \times D C \tag{§280}
\end{equation*}
$$

$$
\therefore A B \times A C=B D \times D C+\overline{A D}^{2} .
$$

EXERCISES.

21. The square of the altitude of an equilateral triangle is equal to three-fourths the square of the side.
22. If $A D$ is the perpendicular from A to side $B C$ of triangle $A B C$, prove

$$
\overline{A B}^{2}-\overline{A C}^{2}=\overline{B D}^{2}-\overline{C D}^{2}
$$

23. If one leg of a right triangle is double the other, the perpendicular from the vertex of the right angle to the hypotenuse divides it into segments which are to each other as 1 to 4 . (§ 271.)
24. If two parallels to side $B C$ of triangle $A B C$ meet sides $A B$ and $A C$ at D and F, and E and G, respectively, prove

$$
\frac{B D}{C E}=\frac{B F}{C G}=\frac{D F}{E G} . \quad(\S 247 .)
$$

25. C and D are respectively the middle points of a chord $A B$ and its subtended arc. If $A D=12$ and $C D=8$, what is the diameter of the circle? (§ 271.)
26. If $A D$ and $B E$ are the perpendiculars from vertices A and B of triangle $A B C$ to the opposite sides, prove

$$
A C: D C=B C: E C
$$

(Prove \& $A C D$ and $B C E$ similar.)
27. If D is the middle point of side $B C$ of triangle $A B C$, rightangled at C, prove $\overline{A B}^{2}-\overline{A D}^{2}=3 \overline{C D}^{2}$.
28. The diameters of two concentric circles are 14 and 50 units, respectively. Find the length of a chord of the greater circle which is tangent to the smaller. (§ 273.)
29. The length of a tangent to a circle from a point 8 units distant from the nearest point of the circumference, is 12 units. What is the diameter of the circle?
(Let x represent the radius.)
30. The non-parallel sides $A D$ and $B C$ of trapezoid $A B C D$ intersect at O. If $A B=15, C D=24$, and the altitude of the trapezoid is 8 , what is the altitude of triangle $O A B$? (§ 264.)
(Draw $C E \| A D$.)
31. If the equal sides of an isosceles right triangle are each 18 units in length, what is the length of the median drawn from the vertex of the right angle?
32. The non-parallel sides of a trapezoid are each 53 units in length, and one of the parallel sides is 56 units longer than the other. Find the altitude of the trapezoid.
33. $A B$ is a chord of a circle, and $C E$ is any chord drawn through the middle point C of arc $A B$, cutting chord $A B$ at D. Prove $A C$ a mean proportional between $C D$ and $C E$.
(Prove $\triangle A C D$ and $A C E$ similar.)
34. Two secants are drawn to a circle from an outside point. If their external segments are 12 and 9 , respectively, while the internal segment of the former is 8 , what is the internal segment of the latter ? (§ 284.)
35. If, in triangle $A B C, \angle C=120^{\circ}$, prove

$$
\overline{A B}^{2}=\overline{B C}^{2}+\overline{A C}^{2}+A C \times B C .
$$

(Fig. of Prop. XXVI. $\triangle A C D$ is one-half an equilateral \triangle.)
36. $B C$ is the base of an isosceles triangle $A B C$ inscribed in a circle. If a chord $A D$ be drawn cutting $B C$ at E, prove

$$
A D: A B=A B: A E
$$

(Prove $A B D$ and $A B E$ similar.)
37. Two parallel chords on opposite sides of the centre of a circle are 48 units and 14 units long, respectively, and the distance between their middle points is 31 units. What is the diameter of the circle ?
(Let x represent the distance from the centre to the middle point of one chord, and $31-x$ the distance from the centre to the middle point of the other. Then the square of the radius may be expressed in two ways in terms of x.)
38. $A B C$ is a triangle inscribed in a circle. Another circle is drawn tangent to the first externally at C, and $A C$ and $B C$ are produced to meet its circumference at D and E, respectively. Prove triangles $A B C$ and $C D E$ similar. (§ 197.)
(Draw a common tangent to the © at C. Then $B C$ and $C E$ are arcs of the same number of degrees.)
39. $A B C$ and $A^{\prime} B C$ are triangles whose vertices A and A^{\prime} lie in a parallel to their common base $B C$. If a parallel to $B C$ cuts $A B$ and $A C$ at D and E, and $A^{\prime} B$ and $A^{\prime} C$ at D^{\prime} and E^{\prime}, respectively, prove $D E=D^{\prime} E^{\prime}$.

(Prove $\left.\frac{D E}{B C}=\frac{D^{\prime} E^{\prime}}{B C}.\right)$
40. A line parallel to the bases of a trapezoid, passing through the intersection of the diagonals, and terminating in the non-parallel sides, is bisected by the diagonals. (Ex. 39.)
41. If the sides of triangle $A B C$ are $A B=10, B C=14$, and $C A=16$, find the lengths of the three medians. (§ 279, I.)
42. If the sides of a triangle are $A B=4, A C=5$, and $B C=6$, find the length of the bisector of angle A. ($\S \S 249,288$)
43. The tangents to two intersecting circles from any point in their common chord produced are equal. (§ 282.)

44. If two circles intersect, their common chord produced bisects their common tangents.
45. $A B$ and $A C$ are the tangents to a circle from point A. If $C D$ be drawn perpendicular to radius $O B$ at D, prove

$$
A B: O B=B D: C D .
$$

(Prove $\triangle O A B$ and $B C D$ similar by § 262.)
46. $A B C$ is a triangle inscribed in a circle. A line $A D$ is drawn from A to any point of $B C$, and a chord $B E$ is drawn, making $\angle A B E=\angle A D C$. Prove

$$
A B \times A C=A D \times A E .
$$

(Prove $A B: A E=A D: A C$.)
47. The radius of a circle is $22 \frac{1}{2}$ units. Find the length of a chord which joins the points of contact of two tangents, each 30 units in length, drawn to the circle from a point without the circumference.
(By $\S 271,2$, the radius is a mean proportional between the distances from the centre to the chord and to the point without the circumference ; in this way the distance from the centre to the chord can be found.)
48. If, in right triangle $A B C$, acute angle B is double acute angle A, prove $\overline{A C}^{2}=3 \overline{B C}^{2}$. (Ex. 104, p. 71.)
49. Find the product of the segments of any chord drawn through a point 9 units from the centre of a circle whose diameter is 24 units.
50. The hypotenuse of a right triangle is 5 , and the perpendicular to it from the opposite vertex is $2 \frac{2}{5}$. Find the legs, and the segments into which the perpendicular divides the hypotenuse. (§ 271.)
(Let x represent one of the segments of the hypotenuse.)
51. State and prove the converse of Prop. XIII.
(Fig. of Prop. XIII. To prove $\angle B A D=\angle C A D$. Produce $C A$ to E, making $A E=A B$.)
52. State and prove the converse of Prop. XIV.
(Fig. of Prop. XIV. Lay off $A F=A B$.)
53. If D is the middle point of hypotenuse $A B$ of right triangle $A B C$, prove

$$
\overline{C D}^{2}=\frac{1}{8}\left(\overline{A B}^{2}+\overline{B C}^{2}+\overline{C A}^{2}\right) . \quad(\text { Ex. 83, p. 69.) }
$$

54. If a line be drawn from vertex C of isosceles triangle $A B C$, meeting base $A B$ produced at D, prove

$$
\overline{C D}^{2}-\overline{C B}^{2}=A D \times B D . \quad(\S 278 .)
$$

55. If $A B$ is the base of isosceles triangle $A B C$, and $A D$ be drawn perpendicular to $B C$, prove

$$
3 \overline{A D}^{2}+\overline{B D}^{2}+2 \overline{C D}^{2}=\overline{A B}^{2}+\overline{B C}^{2}+\overline{C A}^{2} .
$$

(We have $3 \overline{A D}^{2}=\overline{A D}^{2}+2 \overline{A D}^{2}$.)
56. The middle points of two chords are distant 5 and 9 units, respectively, from the middle points of their subtended arcs. If the length of the first chord is 20 units, find the length of the second.
(Find the diameter by aid of $\S 270,1$.)
57. The sides $A B$ and $A C$, of triangle $A B C$, are 16 and 9 , respectively, and the length of the median drawn from C is 11 . Find side BC. (§ 279, I.)
58. The diameter which bisects a chord whose length is $33 \frac{3}{5}$ units, is 35 units in length. Find the distance from either extremity of the chord to the extremities of the diameter.
(Let x represent one segment of the diameter made by the chord.)
59. The equal angles of an isosceles triangle are each 30°, and the equal sides are each 8 units in length. What is the length of the base? (Ex. 104, p. 71.)
60. The diagonals of a trapezoid, whose bases are $A D$ and $B \dot{C}$, intersect at E. If $A E=9, E C=3$, and $B D=16$, find $B E$ and ED.
($\$ A E D$ and $B E C$ are similar. Find $B E$ by § 237.)
61. Prove the theorem of $\S 284$ by drawing $A^{\prime} B$ and $A B^{\prime}$.
62. The parallel sides, $A D$ and $B C$, of a circumscribed trapezoid are 18 and 6 , respectively, and the other two sides are equal to each other. Find the diameter of the circle.
(Find $A B$ by Ex. 31, p. 100. Draw through B a $\|$ to $C D$.)
63. An angle of a triangle is acute, right, or obtuse according as the square of the opposite side is less than, equal to, or greater than, the sum of the squares of the other two sides.
(Prove by Reductio ad Absurdum.)
64. Is the greatest angle of a triangle whose sides are 3,5 , and 6 , acute, right, or obtuse ?
65. Is the greatest angle of a triangle whose sides are 8,9 , and 12 , acute, right, or obtuse ?
66. Is the greatest angle of a triangle whose sides are 12,35 , and 37 , acute, right, or obtuse?
67. If two adjacent sides and one of the diagonals of a parallelogram are 7, 9 , and 8 , respectively, find the other diagonal.
(One-half of either diagonal is a median of the Δ whose sides are, respectively, the given sides and the other diagonal of the \square.)
68. If D is the intersection of the perpendiculars from the vertices of triangle $A B C$ to the opposite sides, prove

$$
\overline{A B}^{2}-\overline{A C}^{2}=\overline{B D}^{2}-\overline{C D}^{2} . \quad(\S 272 .)
$$

69. If a parallel to hypotenuse $A B$ of right triangle $A B C$ meets $A C$ and $B C$ at D and E, respectively, prove

$$
\overline{A E}^{2}+\overline{B D}^{2}=\overline{A B}^{2}+\overline{D E}^{2}
$$

70. The diameters of two circles are 12 and 28 , respectively, and the distance between their centres is 29 . Find the length of the common tangent which cuts the straight line joining the centres.
(Find the \perp drawn from the centre of the smaller \odot to the radius of the greater \odot produced through the point of contact.)

71. State and prove the converse of Prop. XXIII., III.
 (Fig. of Prop. XXIII. $\triangle A B C$ and $A C D$ are similar.)

72. State and prove the converse of Prop. XXIII., II.
73. The sum of the squares of the distances of any point in the circumference of a circle from the vertices of an inscribed square, is equal to twice the square of the diameter of the circle. (§ 195.)
(To prove $\overline{P A}^{2}+\overline{P B}^{2}+\overline{P C}^{2}+\overline{P D}^{2}=2 \overline{A C}^{2}$.)

74. The sides $A B, B C$, and $C A$, of triangle $A B C$, are 13,14 , and 15 , respectively. Find the segments into which $A B$ and $B C$ are divided by perpendiculars drawn from C and A, respectively.
($\measuredangle B A C$ and $A C B$ are acute by $\S 98$. Find the segments by $\S 277$.)
75. In right triangle $A B C$ is inscribed a square $D E F G$, having its vertices D and G in hypotenuse $B C$, and its vertices E and F in sides $A B$ and $A C$, respectively. Prove $B D: D E=D E: C G$.
(Prove $\mathbb{A} B D E$ and $C F G$ similar.)
Note. For additional exercises on Book III., see p. 226.

CONSTRUCTIONS.

Prop. XXXII. Problem.

289. To divide a given straight line into any number of equal parts.

Given line $A B$.
Required to divide $A B$ into four equal parts.
Construction. On the indefinite line $A C$, take any convenient length $A D$; on $D C$ take $D E=A D$; on $E C$ take $E F=A D$; on $F C$ take $F G=A D$; and draw line $B G$.

Draw lines $D H, E K$, and $F L \| B G$, meeting $A B$ at H, K, and L, respectively.

$$
\therefore A H=H K=K L=L B .
$$

Prop. XXXIII. Problem.

290. To construct a fourth proportional (§ 231) to three given straight lines.
m
n
\qquad

Given lines m, n, and p.
Required to construct a fourth proportional to m, n, and p.
Construction. Draw the indefinite lines $A B$ and $A C$, making any convenient \angle with each other.

On $A B$ take $A D=m$; on $D B$ take $D E=n$; on $A C$ take $A F=p$.

Draw line $D F$; also, line $E G \| D F$, meeting $A C$ at G.
Then, $F G$ is a fourth proportional to m, n, and p.
Proof. Since $D F$ is $\|$ to side $E G$ of $\triangle A E G$,

$$
\begin{align*}
A D: D E & =A F: F G \tag{?}\\
m: n & =p: F G
\end{align*}
$$

That is,
291. Cor. If we take $A F=n$, the proportion becomes

$$
m: n=n: F G
$$

In this case, $F G$ is a third proportional (§230) to m and n.
Prop. XXXIV. Problem.
292. To construct a mean proportional (§ 230) between two given straight lines.
\qquad
\qquad
Given lines m and n.
Required to construct a mean proportional between m and n.

Construction. On the indefinite line $A E$, take $A B=m$; on $B E$ take $B C=n$.

With $A C$ as a diameter, describe the semi-circumference $A D C$.

Draw line $B D \perp A C$, meeting the arc at D.
Then, $B D$ is a mean proportional between m and n.
(The proof is left to the pupil; see § 270.)
293. Sch. By aid of $\S 292$, a line may be constructed equal to \sqrt{a}, where a is any number whatever.

Thus, to construct a line equal to $\sqrt{3}$, we take $A B$ equal to 3 units, and $B C$ equal to 1 unit.

Then, $B D=\sqrt{A B \times B C}(\S 232)=\sqrt{3 \times 1}=\sqrt{3}$.

Prop. XXXV. Problem.

294. To divide a given straight line into parts proportional to any number of given lines.

Given line $A B$, and lines m, n, and p.
Required to divide $A B$ into parts proportional to m, n, and p.

Construction. On the indefinite line $A C$, take $A D=m$; on $D C$ take $D E=n$; on $E C$ take $E F=p$; and draw line $B F$.

Draw lines $D G$ and $E H \|$ to $B F$, meeting $A B$ at G and H, respectively.

Then, $A B$ is divided into parts $A G, G H$, and $H B$ proportional to m, n, and p, respectively.

Proof. Since $D G$ is $\|$ to side $E H$ of $\triangle A E H$,

$$
\begin{equation*}
\frac{A H}{A E}=\frac{A G}{A D}=\frac{G H}{D E} . \tag{?}
\end{equation*}
$$

That is, $\quad \frac{A H}{A E}=\frac{A G}{m}=\frac{G H}{n}$.
And since $E H$ is $\|$ to side $B F$ of $\triangle A B F$,

$$
\begin{equation*}
\frac{A H}{A E}=\frac{H B}{E F}=\frac{H B}{p} . \tag{2}
\end{equation*}
$$

From (1) and (2), $\frac{A G}{m}=\frac{G H}{n}=\frac{H B}{p}$.

Ex. 76. Construct a line equal to $\sqrt{2}$; to $\sqrt{5}$; to $\sqrt{6}$.

Prop. XXXVI. Problem.

295. Upon a given side, homologous to a given side of a given polygon, to construct a polygon similar to the given. polygon.

Given polygon $A B C D E$, and line $A^{\prime} B^{\prime}$.
Required to construct upon side $A^{\prime} B^{\prime}$, homologous to $A B$, a polygon similar to $A B C D E$.

Construction. Divide polygon $A B C D E$ into \mathbb{E} by drawing diagonals $E B$ and $E C$.

At A^{\prime} construct $\angle B^{\prime} A^{\prime} E^{\prime}=\angle A$; and draw line $B^{\prime} E^{\prime}$, making $\angle A^{\prime} B^{\prime} E^{\prime}=\angle A B E$, meeting $A^{\prime} E^{\prime}$ at E^{\prime}.

Then, $\triangle A^{\prime} B^{\prime} E^{\prime}$ will be similar to $\triangle A B E$.
In like manner, construct $\triangle B^{\prime} C^{\prime} E^{\prime}$ similar to $\triangle B C E$, and $\triangle C^{\prime} D^{\prime} E^{\prime}$ similar to $\triangle C D E$.

Then, polygon $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime} E^{\prime}$ will be similar to polygon $A B C D E$.
296. Def. A straight line is said to be divided by a given point in extreme and mean ratio when one of the segments ($\$ 250$) is a mean proportional between the whole line and the other segment.

Thus, line $A B$ is divided internally in extreme and mean ratio at C if

$$
A B: A C=A C: B C
$$

and externally in extreme and mean ratio at D if

$$
A B: A D=A D: B D
$$

Prop. XXXVII. Problem.

To divide a given straight line in extreme and mean ratio (r296).

Given line $A B$.
Required to divide $A B$ in extreme and mean ratio.
Construction. Draw line $B E \perp A B$, and equal to $\frac{1}{2} A B$.
With E as a centre and $E B$ as a radius, describe $\odot B F G$.
Draw line $A E$ cutting the circumference at F and G.
On $A B$ take $A C=A F$; on $B A$ produced, take $A D=A G$.
Then, $A B$ is divided at C internally, and at D externally, in extreme and mean ratio.

Proof. Since $A G$ is a secant, and $A B$ a tangent,

$$
\begin{align*}
A G: A B & =A B: A F . \tag{§283}\\
\therefore A G: A B & =A B: A C . \tag{1}\\
\therefore A G-A B: A B & =A B-A C: A C . \tag{?}\\
\therefore A B: A G-A B & =A C: B C . \tag{?}
\end{align*}
$$

But by cons., $\quad A B=2 B E=F G$.

$$
\begin{equation*}
\therefore A G-A B=A G-F G=A F=A C . \tag{2}
\end{equation*}
$$

Substituting, $\quad A B: A C=A C: B G$.
Therefore, $A B$ is divided at C internally in extreme and mean ratio.

Again, from (1),

$$
\begin{equation*}
A G+A B: A G=A B+A C: A B \tag{?}
\end{equation*}
$$

But, $A G+A B=A D+A B=B D$.
And by (2), $A B+A C=F G+A F=A G$.

$$
\begin{align*}
& \therefore B D: A G=A G: A B . \\
& \therefore A B: A G=A G: B D . \tag{?}\\
& \therefore A B: A D=A D: B D .
\end{align*}
$$

Therefore, $A B$ is divided at D externally in extreme and mean ratio.
298. Cor. If $A B$ be denoted by m, and $A C$ by x, proportion (3) of § 297 becomes

$$
\begin{align*}
& m: x=x: m-x . \\
& \therefore x^{2}=m(m-x)=m^{2}-m x . \tag{§232}
\end{align*}
$$

Or,

$$
x^{2}+m x=m^{2} .
$$

Multiplying by 4 , and adding m^{2} to both members,

$$
4 x^{2}+4 m x+m^{2}=4 m^{2}+m^{2}=5 m^{2}
$$

Extracting the square root of both members,

$$
2 x+m= \pm m \sqrt{5}
$$

Since x cannot be negative, we take the positive sign before the radical sign; then,

$$
\begin{aligned}
2 x & =m \sqrt{5}-m . \\
\therefore x(\text { or } A C) & =\frac{m(\sqrt{5}-1) .}{2} .
\end{aligned}
$$

EXERCISES.

77. To inscribe in a given circle a triangle similar to a given triangle. (§ 261.)
(Circumscribe a \odot about the given Δ, and draw radii to the vertices.)
78. To circumscribe about a given circle a triangle similar to a given triangle. (§ 262.)

Book IV.

AREAS OF POLYGONS

Prop. I. Theorem.

299. Two rectangles having equal altitudes are to each other as their bases.

Note. The words "rectangle," "parallelogram," "triangle," etc., in the propositions of Book IV., mean the amount of surface in the rectangle, parallelogram, triangle, etc.

Case I. When the bases are commensurable.

Given rectangles $A B C D$ and $E F G H$, with equal altitudes $A B$ and $E F$, and commensurable bases $A D$ and $E H$.

To Prove $\quad \frac{A B C D}{E F G H}=\frac{A D}{E H}$.
Proof. Let $A K$ be a common measure of $A D$ and $E H$, and let it be contained 5 times in $A D$, and 3 times in $E H$.

$$
\begin{equation*}
\therefore \frac{A D}{E H}=\frac{5}{3} . \tag{1}
\end{equation*}
$$

Drawing s to $A D$ and $E H$ through the several points of division, rect. $A B C D$ will be divided into 5 parts, and rect. $E F G H$ into 3 parts, all of which parts are equal.

$$
\begin{align*}
& \therefore \frac{A B C D}{E F G H}=\frac{5}{3} \tag{2}\\
& \text { From (1) and (2), } \frac{A B C D}{E F G H}=\frac{A D}{E H}
\end{align*}
$$

Case II. When the bases are incommensurable.

Given rectangles $A B C D$ and $E F G H$, with equal altitudes $A B$ and $E F$, and incommensurable bases $A D$ and $E H$.
To Prove

$$
\frac{A B C D}{E F G H}=\frac{A D}{E H} .
$$

Proof. Divide $A D$ into any number of equal parts, and apply one of these parts to $E H$ as a unit of measure.
Since $A D$ and $E H$ are incommensurable, a certain number of the parts will extend from E to K, leaving a remainder $K H<$ one of the equal parts.
Draw line $K L \perp E H$, meeting $F G$ at L.
Then, since $A D$ and $E K$ are commensurable,

$$
\frac{A B C D}{E F L K}=\frac{A D}{E K} .
$$

(§ 299, Case I.)
Now let the number of subdivisions of $A D$ be indefinitely increased.
Then the unit of measure will be indefinitely diminished, and the remainder KH will approach the limit 0 .

Then, $\frac{A B C D}{E F L K}$ will approach the limit $\frac{A B C D}{E F G H}$,
and

$$
\begin{equation*}
\frac{A D}{E K} \text { will approach the limit } \frac{A D}{E H} \text {. } \tag{?}
\end{equation*}
$$

By the Theorem of Limits, these limits are equal.

$$
\therefore \frac{A B C D}{E F G H}=\frac{A D}{E H} .
$$

300. Cor. Since either side of a rectangle may be taken as the base, it follows that

Two rectangles having equal bases are to each other as their altitudes.

Prop. II. Theorem.

301. Any two rectangles are to each other as the products of their bases by their altitudes.

Given M and N rectangles, with altitudes a and a^{\prime}, and bases b and b^{\prime}, respectively.

To Prove
 $$
\frac{M}{N}=\frac{a \times b}{a^{\prime} \times b^{\prime}}
$$

Proof. Let R be a rect. with altitude a and base b^{\prime}.
Then, since rectangles M and R have equal altitudes, they are to each other as their bases.

$$
\therefore \frac{M}{R}=\frac{b}{b^{\prime}}
$$

And since rectangles R and N have equal bases, they are to each other as their altitudes.

$$
\begin{equation*}
\therefore \frac{R}{N}=\frac{a}{a^{\prime}} . \tag{?}
\end{equation*}
$$

Multiplying (1) and (2), we have

$$
\frac{M}{R} \times \frac{R}{N}, \text { or } \frac{M}{N}=\frac{a \times b}{a^{\prime} \times b^{\prime}} .
$$

DEFINITIONS.

302. The area of a surface is its ratio to another surface, called the unit of surface, adopted arbitrarily as the unit of measure (§ 180).

The usual unit of surface is a square whose side is some linear unit; for example, a square inch or a square foot.
303. Two surfaces are said to be equivalent (\approx), when their areas are equal.
304. The dimensions of a rectangle are its base and altitude.

Prop. III. Theorem.

305. The area of a rectangle is equal to the product of its base and altitude.

Note. In all propositions relating to areas, the unit of surface (§ 302) is understood to be a square whose side is the linear unit.

Given a and b, the altitude and base, respectively, of rect. M; and N the unit of surface, i.e., a square whose side is the linear unit.

To Prove that, if N is the unit of surface,

$$
\text { area } M=a \times b
$$

Proof. Since any two rectangles are to each other as the products of their bases by their altitudes (§ 301),

$$
\frac{M}{N}=\frac{a \times b}{1 \times 1}=a \times b
$$

But since N is the unit of surface, the ratio of M to N is the area of M. (§ 302)

$$
\therefore \text { area } M=a \times b .
$$

306. Sch. I. The statement of Prop. III. is an abbreviation of the following:

If the unit of surface is a square whose side is the linear unit, the number which expresses the area of a rectangle is equal to the product of the numbers which express the lengths of its sides.

An interpretation of this form is always understood in every proposition relating to areas.
307. Cor. The area of a square is equal to the square of its side.
308. Sch. II. If the sides of a rectangle are multiples of the linear unit, the truth of Prop. III. may be seen by dividing the figure into squares, each equal to the unit of surface.

Thus, if the altitude of rectangle A is
 5 units, and its base 6 units, the figure can be divided into 30 squares.

In this case, 30 , the number which expresses the area of the rectangle, is the product of 6 and 5 , the numbers which express the lengths of the sides.

Prop. IV. Theorem.

309. The area of a parallelogram is equal to the product of its base and altitude.

Given $\square A B C D$, with its altitude $D F=a$, and its base $A D=b$.

To Prove area $A B C D=a \times b$.
Proof. Draw line $A E \| D F$, meeting $C B$ produced at E.
Then, $A E F D$ is a rectangle.
In rt. © $A B E$ and $D C F$,

$$
\begin{align*}
& A B=D C, \text { and } A E=D F . \tag{?}\\
& \therefore \triangle A B E=\triangle D C F .
\end{align*}
$$

Now if from the entire figure $A D C E$ we take $\triangle A B E$, there remains $\square A B C D$; and if we take $\triangle D C F$, there remains rect. $A E F D$.

$$
\therefore \text { area } A B C D=\text { area } A E F D=a \times b \text {. }
$$

310. Cor. I. Two parallelograms having equal bases and equal altitudes are equivalent (§ 303).
311. Cor. II. 1. Two parallelograms having equal altitudes are to each other as their bases.
312. Two parallelograms having equal bases are to each other as their altitudes.
313. Any two parallelograms are to each other as the products of their bases by their altitudes.

Prop. V. Theorem.

312. The area of a triangle is equal to one-half the product of its base and altitude.

Given $\triangle A B C$, with its altitude $A E=a$, and its base $B C=b$.

To Prove area $A B C=\frac{1}{2} a \times b$.
(By § 108, $A C$ divides $\square A B C D$ into two equal 合.)
313. Cor. I. Two triangles having equal bases and equal altitudes are equivalent.
314. Cor. II. 1. Two triangles having equal altitudes are to each other as their bases.
2. Two triangles having equal bases are to each other as their altitudes.
3. Any two triangles are to each other as the products of their bases by their altitudes.
315. Cor. III. A triangle is equivalent to one-half of a parallelogram having the same base and altitude.

Prop. VI. Theorem.

316. The area of a trapezoid is equal to one-half the sum of its bases multiplied by its altitude.

Given trapezoid $A B C D$, with its altitude $D E$ equal to a, and its bases $A B$ and $D C$ equal to b and b^{\prime}, respectively.

To Prove area $A B C D=a \times \frac{1}{2}\left(b+b^{\prime}\right)$.
(The trapezoid is composed of two \triangle whose altitude is a, and bases b and b^{\prime}, respectively.)
317. Cor. Since the line joining the middle points of the non-parallel sides of a trapezoid is equal to one-half the sum of the bases (§ 132), it follows that

The area of a trapezoid is equal to the product of its altitude by the line joining the middle points of its non-parallel sides.
318. Sch. The area of any polygon may be obtained by finding the sum of the areas of the triangles into which the polygon may be divided by drawing diagonals from any one of its vertices.

But in practice it is better to draw the longest diagonal, and draw perpendiculars to it from the remaining vertices of the polygon. The polygon will then be divided into right triangles and trapezoids; and by measuring the lengths of the perpendiculars, and of the portions of the diagonal which they intercept, the areas of the figures may be found by $\S \S 312$ and 316 .

Prop. VII. Theorem.
319. Two similar triangles are to each other as the squares of their homologous sides.

Given $A B$ and $A^{\prime} B^{\prime}$ homologous sides of similar $\& A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, respectively.

$$
\text { To Prove } \quad \frac{A B C}{A^{\prime} B^{\prime} C^{\prime \prime}}=\frac{\overline{A B}^{2}}{\overline{A^{\prime} B^{\prime 2}}} \text {. }
$$

Proof. Draw altitudes $C D$ and $C^{\prime} D^{\prime}$.

$$
\begin{align*}
\therefore \frac{A B C}{A^{\prime} B^{\prime} C^{\prime}} & =\frac{A B \times C D}{A^{\prime} B^{\prime} \times C^{\prime} D^{\prime}} \\
& =\frac{A B}{A^{\prime} B^{\prime}} \times \frac{C D}{C^{\prime} D^{\prime}} . \tag{1}
\end{align*}
$$

But,

$$
\begin{equation*}
\frac{C D}{C^{\prime} D^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} . \tag{§264}
\end{equation*}
$$

Substituting this value in (1),

$$
\frac{A B C}{A^{\prime} B^{\prime} C^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} \times \frac{A B}{A^{\prime} B^{\prime}}=\frac{\overline{A B}^{2}}{\overline{A^{\prime} B^{\prime}}} .
$$

320. Sch. Two similar triangles are to each other as the squares of any two homologous lines.

EXERCISES.

1. If the area of a rectangle is $7956 \mathrm{sq} . \mathrm{in}$., and its base $3 \frac{1}{4} \mathrm{yd}$., find its perimeter in feet.
2. If the base and altitude of a rectangle are 14 ft .7 in ., and 5 ft . 3 in., respectively, what is the side of an equivalent square?
3. Find the dimensions of a rectangle whose area is 168 , and perimeter 52.
(Let x represent the base.)

Prop. VIII. Theorem.

321. Two triangles having an angle of one equal to an angle of the other, are to each other as the products of the sides including the equal angles.

Given $\angle A$ common to $\triangle A B C$ and $A B^{\prime} C^{\prime \prime}$.
To Prove

$$
\frac{A B C}{A B^{\prime} C^{\prime \prime}}=\frac{A B \times A C}{A B^{\prime} \times A C^{\prime}}
$$

Proof. Draw line $B^{\prime} C$.
Then $\triangle A B C$ and $A B^{\prime} C$, having the common vertex C, and their bases $A B$ and $A B^{\prime}$ in the same str. line, have the same altitude.

$$
\therefore \frac{A B C}{A B^{\prime} C}=\frac{A B}{A B^{\prime}}
$$

And $\triangle A B^{\prime} C$ and $A B^{\prime} C^{\prime \prime}$, having the common vertex B, and their bases $A C$ and $A C^{\prime \prime}$ in the same str. line, have the same altitude.

$$
\therefore \frac{A B^{\prime} C}{A B^{\prime} C^{\prime \prime}}=\frac{A C}{A C^{\prime}}
$$

Multiplying these equations, we have

$$
\frac{A B C}{A B^{\prime} C} \times \frac{A B^{\prime} C}{A B^{\prime} C^{\prime}}, \text { or } \frac{A B C}{A B^{\prime} C^{\prime}}=\frac{A B \times A C}{A B^{\prime} \times A C^{\prime}}
$$

EXERCISES.

4. The area of a rectangle is $143 \mathrm{sq} . \mathrm{ft} .75 \mathrm{sq}$. in., and its base is 3 times its altitude. Find each of its dimensions.
(Let x represent the altitude.)
5. The hypotenuse of a right triangle is 5 ft .5 in ., and one of its legs is 2 ft .9 in . Find its area.

Prop. IX. Theorem.
322. Two similar polygons are to each other as the squares of their homologous sides.

Given $A B$ and $A^{\prime} B^{\prime}$ homologous sides of similar polygons $A C$ and $A^{\prime} C^{\prime}$, whose areas are K and K^{\prime}, respectively.

To Prove

$$
\frac{K}{K^{\prime}}=\frac{\overline{A^{\prime}}}{}{ }^{2} .
$$

Proof. Draw diagonals $E B, E C, E^{\prime} B^{\prime}$, and $E^{\prime} C^{\prime}$. Then, $\triangle A B E$ is similar to $\triangle A^{\prime} B^{\prime} E^{\prime}$.

$$
\therefore \frac{A B E}{A^{\prime} B^{\prime} E^{\prime}}=\frac{\overline{A B}^{2}}{\overline{A^{\prime} B^{\prime}}} .
$$

In like manner,

$$
\begin{align*}
& \frac{B C E}{B^{\prime} C^{\prime} E^{\prime}}=\frac{{\overline{B C^{2}}}^{2}}{\overline{B^{\prime} C^{\prime 2}}}=\frac{\overrightarrow{A B^{2}}}{\overline{A^{\prime} B^{\prime 2}}}, \\
& \frac{C D E}{C^{\prime} D^{\prime} E^{\prime}}=\frac{\overline{C D}^{2}}{\overline{C^{\prime} \bar{D}^{\prime 2}}}=\frac{\overline{A B}^{2}}{\overline{A^{\prime} B^{\prime 2}}} . \\
& \therefore \frac{A B E}{A^{\prime} B^{\prime} E^{\prime}}=\frac{B C E}{B^{\prime} C^{\prime} E^{\prime}}=\frac{C D E}{C^{\prime} D^{\prime} E^{\prime}} \text {. } \tag{?}\\
& \therefore \frac{A B E+B C E+C D E}{A^{\prime} B^{\prime} E^{\prime}+B^{\prime} C^{\prime} E^{\prime}+C^{\prime} D^{\prime} E^{\prime}}=\frac{A B E}{A^{\prime} B^{\prime} E^{\prime}} . \tag{§240}\\
& \therefore \frac{K}{K^{\prime}}=\frac{A B E}{A^{\prime} B^{\prime} E^{\prime}}=\frac{\overline{A B^{2}}}{A^{\prime} B^{\prime 2}} .
\end{align*}
$$

and
323. Cor. Two similar polygons are to each other as the squares of their perimeters.
(§ 268)

Prop. X. Problem.

324. To express the area of a triangle in terms of its three sides.

Given sides $B C, C A$, and $A B$, of $\triangle A B C$, equal to a, b, and c, respectively.

Required to express area $A B C$ in terms of a, b, and c.
Solution. Let C be an acute \angle, and draw altitude $A D$.

$$
\therefore c^{2}=a^{2}+b^{2}-2 a \times C D . \quad(\S 277)
$$

Transposing, $\quad 2 a \times C D=a^{2}+b^{2}-c^{2}$.

$$
\begin{equation*}
\therefore C D=\frac{a^{2}+b^{2}-c^{2}}{2 a} \tag{§273}
\end{equation*}
$$

$\therefore \overline{A D}^{2}=\overline{A C}^{2}-\overline{C D}^{2}$

$$
=(A C+C D)(A C-C D)
$$

$$
=\left(b+\frac{a^{2}+b^{2}-c^{2}}{2 a}\right)\left(b-\frac{a^{2}+b^{2}-c^{2}}{2 a}\right)
$$

$$
=\frac{\left(2 a b+a^{2}+b^{2}-c^{2}\right)\left(2 a b-a^{2}-b^{2}+c^{2}\right)}{4 a^{2}}
$$

$$
=\frac{\left[(a+b)^{2}-c^{2}\right]\left[c^{2}-(a-b)^{2}\right]}{4 a^{2}}
$$

$$
\begin{equation*}
=\frac{(a+b+c)(a+b-c)(c+a-b)(c-a+b)}{4 a^{2}} \tag{1}
\end{equation*}
$$

Now let $a+b+c=2 s$.

$$
\begin{aligned}
\therefore \overline{A D}^{2} & =\frac{2 s(2 s-2 c)(2 s-2 b)(2 s-2 a)}{4 a^{2}} \\
& =\frac{16 s(s-a)(s-b)(s-c)}{4 a^{2}} .
\end{aligned}
$$

$$
\therefore A D=\frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{a}
$$

$$
\begin{align*}
& \therefore \text { area } A B C=\frac{1}{2} a \times A D \tag{?}\\
& =\sqrt{s(s-a)(s-b)(s-c)} .
\end{align*}
$$

325. Sch. Let it be required to find the area of a triangle whose sides are 13,14 , and 15 .

Let $a=13, b=14$, and $c=15$; then

$$
s=\frac{1}{2}(13+14+15)=21 .
$$

Whence, $s-a=8, s-b=7$, and $s-c=6$.
Then, the area of the triangle is

$$
\begin{aligned}
\sqrt{21 \times 8 \times 7 \times 6} & =\sqrt{3 \times 7 \times 2^{3} \times 7 \times 2 \times 3} \\
& =\sqrt{2^{4} \times 3^{2} \times 7^{2}}=2^{2} \times 3 \times 7=84 .
\end{aligned}
$$

EXERCISES.

6. Find the area of a triangle whose sides are 8,13 , and 15.
7. The area of a square is $693 \mathrm{sq} . \mathrm{yd} .4 \mathrm{sq}$. ft. ; find its side.
8. If the altitude of a trapezoid is 1 ft .4 in ., and its bases 1 ft .1 in . and 2 ft .5 in ., respectively, what is its area ?
9. If, in figure of Prop. VII., $A B=9, A^{\prime} B^{\prime}=7$, and the area of $A^{\prime} B^{\prime} C^{\prime}$ is 147 , find area $A B C$.
10. If the sides of triangle $A B C$ are $A B=25, B C=17$, and $C A=28$, find its area, and the length of the perpendicular from each vertex to the opposite side.
11. Find the length of the diagonal of a rectangle whose area is 2640, and altitude 48.
12. Find the lower base of a trapezoid whose area is 9408 , upper base 79, and altitude 96 .
13. The area of a rhombus is equal to one-half the product of its diagonals. (§ 117.)
14. The diagonals of a parallelogram divide it into four equivalent triangles.
15. Lines drawn to the vertices of a parallelogram from any point in one of its diagonals divide the figure into two pairs of equivalent triangles. (Ex. 63, p. 67.)
16. The area of a certain triangle is $2 \frac{1}{4}$ times the area of a similar triangle. If the altitude of the first triangle is 4 ft .3 in ., what is the homologous altitude of the second? (§320.)
17. Sch. Since the area of a square is equal to the square of its side (§ 307), we may state Prop. XXIV., Book III., as follows :

In any right triangle, the square described upon the hypotenuse is equivalent to the sum of the squares described upon the legs.

The theorem in the above form may be proved as follows :

Given $A B E F, A C G H$, and $B C K L$ squares described upon hypotenuse $A B$, and legs $A C$ and $B C$, respectively, of rt . $\triangle A B C$.

To Prove area $A B E F=$ area $A C G H+$ area $B C K L$.
Proof. Draw line $C D \perp A B$, and produce it to meet $E F$ at M; also, draw lines $B H$ and $C F$.

Then in $\mathcal{A} A B H$ and $A C F$, by hyp.,

$$
A B=A F \text { and } A H=A C
$$

Also, $\quad \angle B A H=\angle C A F$,
for each is equal to a rt. $\angle+\angle B A C$.

$$
\begin{equation*}
\therefore \triangle A B H=\triangle A C F \tag{?}
\end{equation*}
$$

Now $\triangle A B H$ has the same base and altitude as square $A C G H$.

$$
\therefore \text { area } A B H=\frac{1}{2} \text { area } A C G H .
$$

And $\triangle A C F$ has the same base and altitude as rect. ADMF.

$$
\therefore \text { area } A C F=\frac{1}{2} \text { area } A D M F \text {. }
$$

But,

$$
\text { area } A B H=\text { area } A C F
$$

$$
\begin{equation*}
\therefore \frac{1}{2} \text { area } A C G H=\frac{1}{2} \text { area } A D M F, \tag{?}
\end{equation*}
$$

or \quad area $A C G H=$ area $A D M F$.
Similarly, by drawing lines $A L$ and $C E$, we may prove

$$
\begin{equation*}
\text { area } B C K L=\text { area } B D M E \tag{2}
\end{equation*}
$$

Adding (1) and (2), we have

$$
\text { area } A C G H+\text { area } B C K L=\text { area } A B E F
$$

327. Sch. The theorem of § 326 is supposed to have been first given by Pythagoras, and is called after him the Pythagorean Theorem.

Several other propositions of Book III. may be put in the form of statements in regard to areas; as, for example, Props. XXV. and XXVI.

EXERCISES.

17. If $E F$ is any straight line drawn through the centre of parallelogram $A B C D$, meeting sides $A D$ and $B C$ at E and F, respectively, prove triangles $B E F$ and $C E D$ equivalent. (Ex. 61, p. 66.)
(Prove $B E D F$ a \square by § 112.)

18. The side of an equilateral triangle is 5 ; find its area. (Ex. 21, p. 151.)
19. The altitude of an equilateral triangle is 3 ; find its area.
20. Two triangles are equivalent if they have two sides of one equal respectively to two sides of the other, and the included angles supplementary.

21. One diagonal of a rhombus is five-thirds of the other, and the difference of the diagonals is 8 ; find its area. (Ex. 13, p. 173.)
22. If D and E are the middle points of sides $B C$ and $A C$, respectively, of triangle $A B C$, prove triangles $A B D$ and $A B E$ equivalent. (§ 80.)
23. If E is the middle point of $C D$, one of the non-parallel sides of trapezoid $A B C D$, and a parallel to $A B$ drawn through E meets $B C$ at F and $A D$ at G, prove parallelogram $A B F G$ equivalent to the trapezoid.

24. The sides $A B, B C, C D$, and $D A$ of quadrilateral $A B C D$ are $10,17,13$, and 20 , respectively, and the diagonal $A C$ is 21 . Find the area of the quadrilateral.
25. Find the area of the square inscribed in a circle whose radius is 3 .
(The diagonal is a diameter, by § 157.)
26. The area of an isosceles right triangle is 81 sq . in.; find its hypotenuse in feet.
(Represent one of the equal sides by x.)
27. The area of an equilateral triangle is $9 \sqrt{3}$; find its side.
(Represent the side by x.)
28. The area of an equilateral triangle is $16 \sqrt{3}$; find its altitude.
(Represent the altitude by x.)
29. The base of an isosceles triangle is 56 , and each of the equal sides is 53 ; find its area.
30. The area of a triangle is equal to one-half the product of its perimeter by the radius of the inscribed circle.

31. The area of an isosceles right triangle is equal to one-fourth the area of the square described upon the base. (§ 307.)
32. If angle A of triangle $A B C$ is 30°, prove

$$
\text { area } A B C=\frac{1}{4} A B \times A C .
$$

(Draw $C D \perp A B$; then $C D$ may be found by Ex. 104, p. 71.)
33. A circle whose diameter is 12 is inscribed in a quadrilateral whose perimeter is 50 . Find the area of the quadrilateral.
(Compare Ex. 30, p. 176.)
34. Two similar triangles have homologous sides equal to 8 and 15 , respectively. Find the homologous side of a similar triangle equivalent to their sum. (§319.)
35. If E is any point within parallelogram $A B C D$, triangles $A B E$ and $C D E$ are together equivalent to one-half the parallelogram.
(Draw through E a \| to $A B$.)
36. The non-parallel sides, $A B$ and $C D$, of a trapezoid are each 25 units in length, and the sides $A D$ and $B C$ are 33 and 19 units, respectively. Find the area of the trapezoid.
(Draw through B a $\|$ to $C D$, and a \perp to $A D$.)
37. If the area of a polygon, one of whose sides is 15 in ., is 375 sq. in., what is the area of a similar polygon whose homologous side is 18 in ?
38. If the area of a polygon, one of whose sides is 36 ft ., is 648 sq. ft ., what is the homologous side of a similar polygon whose area is 392 sq . ft .?
39. If one diagonal of a quadrilateral bisects the other, it divides the quadrilateral into two equivalent triangles.
(To prove $\triangle A B C \approx \triangle A C D$.)

40. Two equivalent triangles have a common base, and lie on opposite sides of it. Prove that the base, produced if necessary, bisects the line joining their vertices.
(To prove $C D=C^{\prime} D$.)

41. If the sides of a triangle are 15,41 , and 52 , find the radius of the inscribed circle. (Ex. 30, p. 176.)
42. The area of a rhombus is 240 , and its side is 17 ; find its diagonals. (Ex. 13, p. 173.)
(Represent the diagonals by $2 x$ and $2 y$.)
43. The sum of the perpendiculars from any point within an equilateral triangle to the three sides is equal to the altitude of the triangle.

44. The longest sides of two similar polygons are 18 and 3 , respectively. How many polygons, each equal to the second, will form a polygon equivalent to the first? (§ 322.)
45. If the sides of a triangle are 25,29 , and 36 , find the diameter of the circumscribed circle. (§ 287.)
(The altitude of a Δ equals its area divided by one-half its base.)
46. If a is the base, and b one of the equal sides of an isosceles triangle, prove its area equal to $\frac{1}{4} a \sqrt{4 b^{2}-a^{2}}$.
47. The sides $A B$ and $A C$ of triangle $A B C$ are 15 and 22 , respectively. From a point D in $A B$, a parallel to $B C$ is drawn meeting $A C$ at E, and dividing the triangle into two equivalent parts. Find $A D$ and $A E$. (§ 319.)
48. The segments of the hypotenuse of a right triangle made by a perpendicular drawn from the vertex of the right angle, are $5 \frac{2}{5}$ and 9_{5}^{3}, respectively ; find the area of the triangle.
49. Any straight line drawn through the centre of a parallelogram, terminating in a pair of opposite sides, divides the parallelogram into two equivalent quadrilaterals. (Ex. 61, p. 66.)

50. If E is the middle point of $C D$, one of the non-parallel sides of trapezoid $A B C D$, prove triangle $A B E$ equivalent to $\frac{1}{2} A B C D$.
(Draw through E a \| to $A B$.)
51. The sides of triangle $A B C$ are $A B=13, B C=14$, and $C A=15$. If $A D$ is the bisector of angle A, meeting $B C$ at D, find the areas of triangles $A B D$ and $A C D$. ($\$ \S 249,325$.)
52. The longest diagonal $A D$ of pentagon $A B C D E$ is 44 , and the perpendiculars to it from B, C, and E are 24,16 , and 15 , respectively. If $A B=25, C D=20$, and $A E=17$, what is the area of the pentagon? (§318.)
53. The sides of a triangle are proportional to the numbers 7, 24, and 25 , respectively. The perpendicular to the third side from the vertex of the opposite angle is $13 \frac{1}{2} \frac{1}{2}$. Find the area of the triangle.
(Represent the sides by $7 x, 24 x$, and $25 x$, respectively; the Δ is a rt. \triangle by Ex. 63, p. 154.)
54. If E and F^{\prime} are the middle points of sides $A B$ and $A C$, respectively, of a triangle, and D is any point in $B C$, prove quadrilateral $A E D F$ equivalent to one-half triangle $A B C$.
(Prove $\triangle D E F \approx \frac{1}{2} \triangle A B C$, by aid of Ex. 64, p. 67.)
55. If E, F, G, and H are the middle points of sides $A B, B C, C D$, and $D A$, respectively, of quadrilateral $A B C D$, prove $E F G H$ a parallelogram equivalent to one-half $A B C D$.
(By Ex. 64, p. 67, area $E B F=\frac{1}{4}$ area $A B C$.)

Note. For additional exercises on Book IV., see p, 229.

CONSTRUCTIONS.

Prof. XI. Problem.

328. To construct a square equivalent to the sum of two given squares.

Given squares M and N.
Required to construct a square $\approx M+N$.
Construction. Draw line $A B$ equal to a side of M.
At A draw line $A C \perp A B$, and equal to a side of N; and draw line $B C$.
Then, square P, described with its side equal to $B C$, will be $\approx M+N$.
Proof. In rt. $\triangle A B C, \overline{B C}^{2}=\overrightarrow{A B}^{2}+\overline{A C}^{2}$.
\therefore area $P=$ area $M+$ area $N . \quad(\S 307)$
329. Cor. By an extension of the above method, a square may be constructed equivalent to the sum of any number of given squares.
Given three squares whose sides are equal to m, n, and p, respectively.
Required to construct a square \approx the sum of the given squares.
Construction. Draw line $A B=m$.
Draw line $A C \perp A B$, and equal to n, and
 line $B C$.
Draw line $C D \perp B C$, and equal to p, and line $B D$.
Then, the square described with its side equal to $B D$ will be \approx the sum of the given squares.
(The proof is left to the pupil.)

Prop. XII. Problem.

330. To construct a square equivalent to the difference of two given squares.

Given squares M and N, M being $>N$.
Required to construct a square $\approx M-N$.
Proof. Draw the indefinite line $A D$.
At A draw line $A B \perp A D$, and equal to a side of N.
With B as a centre, and with a radius equal to a side of M, describe an are cutting $A D$ at C, and draw line $B C$.

Then, square P, described with its side equal to $A C$, will be $\approx M-N$.

Proof. In rt. $\triangle A B C, \overline{A C}^{2}=\overline{B C}^{2}-\overline{A B}^{2}$.

$$
\begin{equation*}
\therefore \text { area } P=\text { area } M-\text { area } N . \tag{?}
\end{equation*}
$$

Prop. XIII. Problem.

331. To construct a square equivalent to a given parallelogram.

Given $\square A B C D$.
Required to construct a square $\approx A B C D$.
Construction. Draw line $D E \perp A B$, and construct line $F G$ a mean proportional between lines $A B$ and $D E$ (§ 292).

Then, square $F G H K$, described with its side equal to $F G$, will be $\approx A B C D$.

Proof. By cons., $A B: F G=F G: D E$.

$$
\begin{align*}
\therefore \overline{F G}^{2} & =A B \times D E . \tag{?}\\
\therefore \text { area } F G H K & =\text { area } A B C D . \tag{?}
\end{align*}
$$

332. Cor. A square may be constructed equivalent to a given triangle by taking for its side a mean proportional between the base and one-half the altitude of the triangle.

Ex. 56. To construct a triangle equivalent to a given square, having given its base and an angle adjacent to the base.
(Take for the required altitude a third proportional to one-half the given base and the side of the given square.)

Prop. XIV. Problem.

333. To construct a rectangle equivalent to a given square, having the sum of its base and altitude equal to a given line.

Given square M, and line $A B$.
Required to construct a rectangle $\approx M$, having the sum of its base and altitude equal to $A B$.

Construction. With $A B$ as a diameter, describe semicircumference $A D B$.

Draw line $A C \perp A B$, and equal to a side of M.
Draw line $C F \| A B$, intersecting arc $A D B$ at D, and line $D E \perp A B$.

Then, rectangle N, constructed with its base and altitude equal to $B E$ and $A E$, respectively, will be $\approx M$.

Proof.

$$
A E: D E=D E: B E
$$

$$
\begin{align*}
\therefore A E \times B E & =\overline{D E}^{2}=\overline{A C}^{2} . \tag{?}\\
\therefore \text { area } N & =\text { area } M . \tag{?}
\end{align*}
$$

Prop. XV. Problem.

334. To construct a rectangle equivalent to a given square, having the difference of its base and altitude equal to a given line.

Given square M, and line $A B$.
Required to construct a rectangle $\approx M$, having the difference of its base and altitude equal to $A B$.

Construction. With $A B$ as a diameter, describe $\odot A D B$.
Draw line $A C \perp A B$, and equal to a side of M.
Through centre O draw line $C O$, intersecting the circumference at D and E.

Then, rectangle N, constructed with its base and altitude equal to $C E$ and $C D$, respectively, will be $\approx M$.

Proof.

$$
\begin{equation*}
C E-C D=D E=A B \tag{?}
\end{equation*}
$$

That is, the difference of the base and altitude of N is equal to $A B$.

Again, $A C$ is tangent to $\odot A D B$ at A.

$$
\begin{align*}
\therefore C D \times C E & =\overline{C A}^{2} . \\
\therefore \text { area } N & =\text { area } M .
\end{align*}
$$

EXERCISES.

57. To construct a triangle equivalent to a given triangle, having given its base.
(Take for the required altitude a fourth proportional to the given base, and the base and altitude of the given \triangle.)

How many different © can be constructed?
58. To construct a rectangle equivalent to a given rectangle, having given its base.
59. To construct a square equivalent to twice a given square. (§ 307.)

Prof. XVI. Problem.

335. To construct a square having a given ratio to a given square.

Given square M, and lines m and n.
Required to construct a square having to M the ratio $n: m$.

Construction. On line $A B$, take $A D=m$ and $D B=n$.
With $A B$ as a diameter, describe semi-circumference $A C B$.

Draw line $D C \perp A B$, meeting arc $A C B$ at C, and lines $A C$ and $B C$.

On $A C$ take $C E$ equal to a side of M; and draw line $E F \| A B$, meeting $B C$ at F.

Then, square N, constructed with its side equal to $C F$, will have to M the ratio $n: m$.

Proof. $\angle A C B$ is a rt. \angle.
Then since $C D$ is $\perp A B$,

$$
\frac{\overline{A C}^{2}}{\overline{B C^{2}}}=\frac{A B \times A D}{A B \times B D}=\frac{A D}{B D}=\frac{m}{n} .
$$

But since $E F$ is $\| A B$,

$$
\begin{align*}
\frac{C E}{C F} & =\frac{A C}{B C} . \tag{?}\\
\therefore \frac{\overline{C E}^{2}}{\overline{C F}^{2}} & =\frac{\overline{A C}^{2}}{\overline{B C}^{2}}=\frac{m}{n} . \\
\therefore \frac{\operatorname{area} M}{\operatorname{area} N} & =\frac{m}{n} . \tag{?}
\end{align*}
$$

Prop. XVII. Problem.

336. To construct a triangle equivalent to a given polygon.

Given polygon $A B C D E$.
Required to construct a $\triangle \approx A B C D E$.
Construction. Take any three consecutive vertices, as A, B, and C, and draw diagonal $A C$; also, line $B F \| A C$, meeting $D C$ produced at F, and line $A F$.

Then, $A F D E$ is a polygon $\approx A B C D E$, having a number of sides less by one.

Again, draw diagonal $A D$; also, line $E G \| A D$, meeting $C D$ produced at G, and line $A G$.

Then, $A F G$ is a $\triangle \approx A B C D E$.
Proof. \& $A B C$ and $A F C$ have the same base $A C$.
And since their vertices B and F lie in the same line $\|$ to $A C$, they have the same altitude.

$$
\therefore \text { area } A B C=\text { area } A F C .
$$

Adding area $A C D E$ to both members, we have

$$
\text { area } A B C D E=\text { area } A F D E
$$

Again, \& $A E D$ and $A G D$ have the same base $A D$, and the same altitude.

$$
\begin{equation*}
\therefore \text { area } A E D=\text { area } A G D . \tag{?}
\end{equation*}
$$

Adding area $A F D$ to both members, we have

$$
\text { area } A F D E=\text { area } A F G
$$

$$
\begin{equation*}
\therefore \text { area } A B C D E=\text { area } A F G . \tag{?}
\end{equation*}
$$

Note. By aid of $\S \S 336$ and 332 , a square may be constructed equivalent to a given polygon.

Prop. XVIII. Problem.

337. To construct a polygon similar to a given polygon, and having a given ratio to it.

Given polygon $A C$, and lines m and n.
Required to construct a polygon similar to $A C$, and having to it the ratio $n: m$.

Construction. Construct $A^{\prime} B^{\prime}$ the side of a square having to the square described upon $A B$ the ratio $n: m$.

Upon side $A^{\prime} B^{\prime}$, homologous to $A B$, construct polygon $A^{\prime} C^{\prime \prime}$ similar to polygon $A C$.

Then, $A^{\prime} C^{\prime \prime}$ will have to $A C$ the ratio $n: m$.
Proof. Since $A C$ is similar to $A^{\prime} C^{\prime \prime}$,

$$
\begin{equation*}
\frac{A C}{A^{\prime} C^{\prime \prime}}=\frac{\overline{A B}^{2}}{{\overline{A^{\prime} B^{\prime}}}^{\prime}} . \tag{§322}
\end{equation*}
$$

But by cons., $\quad \frac{\overline{A B}^{2}}{\overline{A^{\prime} B^{\prime 2}}}=\frac{m}{n}$.

$$
\begin{equation*}
\therefore \frac{A C}{A^{\prime} C^{\prime}}=\frac{m}{n} . \tag{?}
\end{equation*}
$$

Ex. 60. To construct an isosceles triangle equivalent to a given triangle, having its base coincident with a side of the given triangle.

Prop. XIX. Problem.

338. To construct a polygon similar to one of two given polygons, and equivalent to the other.

m
\qquad

Given polygons M and N.
Required to construct a polygon similar to M, and $\approx N$.
Construction. Let $A B$ be any side of M.
Construct m, the side of a square $\approx M$, and n, the side of. a square $\approx N$.
(Note, p. 185)
Construct $A^{\prime} B^{\prime}$, a fourth proportional to m, n, and $A B$.
Upon side $A^{\prime} B^{\prime}$, homologous to $A B$, construct polygon P similar to M.

Then,

$$
P \approx N .
$$

Proof. Since M is similar to P,

$$
\begin{equation*}
\frac{\text { area } M}{\text { area } P}=\frac{\overline{A B}^{2}}{\overline{A^{\prime} B^{\prime 2}}} \text {. } \tag{?}
\end{equation*}
$$

But by cons., $m: n=A B: A^{\prime} B^{\prime}$, or $\frac{A B}{A^{\prime} B^{\prime}}=\frac{m}{n}$.
$\therefore \frac{\operatorname{area} M}{\operatorname{area} P}=\frac{m^{2}}{n^{2}}=\frac{\operatorname{area} M}{\operatorname{area} N}$.
\therefore area $P=$ area N.

EXERCISES.

61. To construct a triangle equivalent to a given square, having given its base and the median drawn from the vertex to the base.
(Draw a $\|$ to the base at a distance equal to the altitude of the Δ.)
What restriction is there on the values of the given lines?
62. To construct a rhombus equivalent to a given parallelogram, having one of its diagonals coincident with a diagonal of the parallelogram. (Ex. 60.)
63. To draw through a given point within a parallelogram a straight line dividing it into two equivalent parts. (Ex. 49, p. 178.)
64. To construct a parallelogram equivalent to a given trapezoid, having a side and two adjacent angles coincident with one of the nonparallel sides and the adjacent angles, respectively, of the trapezoid. (Ex. 23, p. 176.)
65. To construct a triangle equivalent to a given triangle, having given two of its sides. (Ex. 57.)
(Let n and n be the given sides, and take m as the base.)
Discuss the solution when the altitude is $<n .=n .>n$.
66. To construct a right triangle equivalent to a given square, having given its hypotenuse. (Ex. 96, p. 119.)
(Find the altitude as in Ex. 56.)
What restriction is there on the values of the given parts?
67. To construct a right triangle equivalent to a given triangle, having given its hypotenuse.

What restriction is there on the values of the given parts?
68. To construct an isosceles triangle equivalent to a given triangle, having given one of its equal sides equal to m.
(Draw a ll to the given side at a distance equal to the altitude.)
Discuss the solution when the altitude is $<m . \quad=n .>m$.
69. To draw a line parallel to the base of a triangle dividing it into two equivalent parts. (§ 319.)
($A B C$ and $A B^{\prime} C^{\prime}$ are similar.)

70. To draw through a given point in a side of a parallelogram a straight line dividing it into two equivalent parts.
71. To draw a straight line perpendicular to the bases of a trapezoid, dividing the trapezoid into two equivalent parts.
(A str. line connecting the middle points of the bases divides the trapezoid into two equivalent parts.)
72. To draw through a given point in one of the bases of a trapezoid a straight line dividing the trapezoid into two equivalent parts.
(A str. line connecting the middle points of the bases divides the trapezoid into two equivalent parts.)
73. To construct a triangle similar to two given similar triangles, and equivalent to their sum.
(Construct squares equivalent to the ©.)
74. To construct a triangle similar to two given similar triangles, and equivalent to their difference.

Book V.

REGULAR POLYGONS. - MEASUREMENT OF THE CIRCLE.

339. Def. A regular polygon is a polygon which is both equilateral and equiangular.

> Prop. I. Theorem.
340. A circle can be circumscribed about, or inscribed in, any regular polygon.

Given regular polygon $A B C D E$.
To Prove that a \odot can be circumscribed about, or inscribed in, $A B C D E$.

Proof. Let O be the centre of the circumference described through vertices A, B, and C (§ 223).

Draw radii $O A, O B, O C$, and $O D$.
In $\triangle O A B$ and $O C D, \quad O B=O C$.
And since, by def., polygon $A B C D E$ is equilateral, $A B=C D$.

Again, since, by def., polygon $A B C D E$ is equiangular,

$$
\angle A B C=\angle B C D .
$$

And since $\triangle O B C$ is isosceles,

$$
\begin{align*}
\angle O B C & =\angle O C B . \tag{?}\\
\therefore \angle A B C-\angle O B C & =\angle B C D-\angle O C B . \\
\angle O B A & =\angle O C D . \\
\therefore \triangle O A B & =\triangle O C D . \tag{?}\\
\therefore O A & =O D . \tag{?}
\end{align*}
$$

Or,

Then, the circumference which passes through A, B, and C also passes through D.

In like manner, it may be proved that the circumference which passes through B, C, and D also passes through E.

Hence, a \odot can be circumscribed about $A B C D E$.
Again, since $A B, B C, C D$, etc., are equal chords of the circumscribed \odot, they are equally distant from O. (§ 164)

Hence, a \odot described with O as a centre, and a line $O F$ \perp to any side $A B$ as a radius, will be inscribed in $A B C D E$.
341. Def. The centre of a regular polygon is the common centre of the circumscribed and inscribed circles.

The angle at the centre is the angle between the radii drawn to the extremities of any side ; as $A O B$.

The radius is the radius of the circumscribed circle, $O A$.
The apothem is the radius of the inscribed circle, $O F$.
342. Cor. From the equal \& $O A B, O B C$, etc., we have

$$
\begin{equation*}
\angle A O B=\angle B O C=\angle C O D \text {, etc. } \tag{?}
\end{equation*}
$$

But the sum of these \measuredangle s four rt. \measuredangle.
Whence, the angle at the centre of a regular polygon is equal to four right angles divided by the number of sides.

EXERCISES.

Find the angle, and the angle at the centre,

1. Of a regular pentagon.
2. Of a regular dodecagon.
3. Of a regular polygon of 32 sides.
4. Of a regular polygon of 25 sides.

Prop. II. Theorem.
343. If the circumference of a circle be divided into any number of equal arcs,
I. Their chords form a regular inscribed polygon.
II. Tangents at the points of division form a regular circumscribed polygon.

Given circumference $A C D$ divided into five equal arcs, $A B, B C, C D$, etc., and chords $A B, B C$, etc.

Also, lines $L F, F G$, etc., tangent to $\odot A C D$ at A, B, etc., respectively, forming polygon $F G H K L$.

To Prove polygons $A B C D E$ and $F G H K L$ regular.
Proof. Chord $A B=$ chord $B C=$ chord $C D$, etc.
Again, $\quad \operatorname{arc} B C D E=\operatorname{arc} C D E A=\operatorname{arc} D E A B$, etc., for each is the sum of three of the equal arcs $A B, B C$, etc.

$$
\begin{equation*}
\therefore \angle E A B=\angle A B C=\angle B C D \text {, etc. } \tag{§193}
\end{equation*}
$$

Therefore, polygon $A B C D E$ is regular.
Again, in $\triangle A B F, B C G, C D H$, etc., we have

$$
A B=B C=C D, \text { etc. }
$$

Also, since arc $A B=\operatorname{arc} B C=\operatorname{arc} C D$, etc., we have
$\angle B A F=\angle A B F=\angle C B G=\angle B C G$, etc. (§ 197)
Whence, $A B F, B C G$, etc., are equal isosceles \&. $(\S \S 68,96)$

$$
\therefore \angle F=\angle G=\angle H, \text { etc., }
$$

and

$$
\begin{gather*}
B F=B G=C G=C H, \text { etc. } \\
\therefore F G=G H=H K, \text { etc. } \tag{?}
\end{gather*}
$$

Therefore, polygon $F G H K L$ is regular.
344. Cor. I. 1. If from the middle point of each arc subtended by a side of a regular inscribed polygon lines be drawn to its extremities, a regular inscribed polygon of double the number of sides is formed.
2. If at the middle point of each arc included between two consecutive points of contact of a regular circumscribed polygon tangents be drawn, a regular circumscribed polygon of double the number of sides is formed.
345. Cor. II. An equilateral polygon inscribed in a circle is regular; for its sides subtend equal arcs.

Prop. III. Theorem.
346. Tangents to a circle at the middle points of the arcs subtended by the sides of a regular inscribed polygon, form a regular circumscribed polygon.

Given $A B C D E$ a regular polygon inscribed in $\odot A C$, and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ a polygon whose sides $A^{\prime} B^{\prime}, B^{\prime} C^{\prime \prime}$, etc., are tangent to $\odot A C$ at the middle points F, G, etc., of arcs $A B, B C$, etc., respectively.

To Prove $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime} E^{\prime}$ a regular polygon.
(Arc $A F=\operatorname{arc} B F=\operatorname{arc} B G=\operatorname{arc} C G$, etc., and the proposition follows by $\S 343$, II.)

Prop. IV. Theorem.

347. Regular polygons of the same number of sides are similar.

(The polygons fulfil the conditions of similarity given in § 252.)

Prop. V. Theorem.

348. The perimeters of two regular polygons of the same number of sides are to each other as their radii, or as their apothems.

Given P and P^{\prime} the perimeters, R and R^{\prime} the radii, and r and r^{\prime} the apothems, respectively, of regular polygons $A C$ and $A^{\prime} C^{\prime \prime}$ of the same number of sides.

To Prove

$$
\frac{P}{P^{\prime}}=\frac{R}{R^{\prime}}=\frac{r}{r^{\prime}} .
$$

Proof. Let O be the centre of polygon $A C$, and O^{\prime} of $A^{\prime} C^{\prime}$, and draw lines $O A, O B, O^{\prime} A^{\prime}$, and $O^{\prime} B^{\prime}$.

Also, draw line $O F \perp A B$, and line $O^{\prime} F^{\prime} \perp A^{\prime} B^{\prime}$.
Then, $O A=R, O^{\prime} A^{\prime}=R^{\prime}, O F=r$, and $O^{\prime} F^{\prime \prime}=r^{\prime}$.
Now in isosceles $\triangle O A B$ and $O^{\prime} A^{\prime} B^{\prime}$,

$$
\begin{equation*}
\angle A O B=\angle A^{\prime} O^{\prime} B^{\prime} \tag{§342}
\end{equation*}
$$

And since $O A=O B$ and $O^{\prime} A^{\prime}=O^{\prime} B^{\prime}$, we have

$$
\frac{O A}{O^{\prime} A^{\prime}}=\frac{O B}{O^{\prime} B^{\prime}}
$$

Therefore, $\triangle O A B$ and $O^{\prime} A^{\prime} B^{\prime}$ are similar.

$$
\therefore \frac{A B}{A^{\prime} B^{\prime}}=\frac{R}{R^{\prime}}=\frac{r}{r^{\prime}}
$$

But polygons $A C$ and $A^{\prime} C^{\prime}$ are similar.

$$
\begin{align*}
& \therefore \frac{P}{P^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} \tag{§347}\\
& \therefore \frac{P}{P^{\prime}}=\frac{R}{R^{\prime}}=\frac{r}{r^{\prime}} .
\end{align*}
$$

349. Cor. Let K denote the area of polygon $A C$, and K^{\prime} of $A^{\prime} C^{\prime}$.

$$
\therefore \frac{K}{K^{\prime}}=\frac{\overline{A B}^{2}}{\overline{A^{\prime} B^{\prime}}}
$$

But, $\quad \frac{A B}{A^{\prime} B^{\prime}}=\frac{R}{R^{\prime}}=\frac{r}{r^{\prime}}$; whence, $\frac{K}{K^{\prime}}=\frac{R^{2}}{R^{\prime 2}}=\frac{r^{2}}{r^{\prime 2}}$.
That is, the areas of two regular polygons of the same number of sides are to each other as the squares of their radii, or as the squares of their apothems.

Prop. VI. Theorem.

350. The area of a regular polygon is equal to one-half the product of its perimeter and apothem.

Given the perimeter equal to $=P$, and the apothem $O F$ equal to r, of regular polygon $A C$.

$$
\text { To Prove } \quad \text { area } A C=\frac{1}{2} P \times r \text {. }
$$

($\triangle O A B, O B C$, etc., have the common altitude r.)

Prop. VII. Problem.

351. To inscribe a square in a given circle.

Given $\odot A C$.
Required to inscribe a square in $\odot A C$.
Construction. Draw diameters $A C$ and $B D \perp$ to each other, and chords $A B, B C, C D$, and $D A$.

Then, $A B C D$ is an inscribed square.
(The proof is left to the pupil; see § 343, I.)
352. Cor. Denoting radius $O A$ by R, we have

$$
\begin{aligned}
\overline{A B}^{2} & =\overline{O A}^{2}+\overline{O B}^{2}=2 R^{2} . \\
\therefore A B & =R \sqrt{ } 2 .
\end{aligned}
$$

That is, the side of an inscribed square is equal to the radius of the circle multiplied by $\sqrt{2}$.

Prop. VIII. Problem.

353. To inscribe a regular hexagon in a given circle.

Given $\odot A C$.

Required to inscribe a regular hexagon in $\odot A C$.
Construction. Draw any radius OA.
With A as a centre, and $A O$ as a radius, describe an are cutting the given circumference at B, and draw chord $A B$.

Then, $A B$ is a side of a regular inscribed hexagon.
Hence, to inscribe a regular hexagon in a given \odot, apply the radius six times as a chord.

Proof. Draw radius $O B$; then, $\triangle O A B$ is equilateral. (?) Therefore, $\triangle O A B$ is equiangular.
Whence, $\angle A O B$ is one-third of two rt. $\angle \mathrm{s}$.
Then, $\angle A O B$ is one-sixth of four rt. $\angle s$, and arc $A B$ is one-sixth of the circumference.

Then, $A B$ is a side of a regular inscribed hexagon.
(§ 343, I.)
354. Cor. I. The side of a regular inscribed hexagon is equal to the radius of the circle.
355. Cor. II. If chords be drawn joining the alternate vertices of a regular inscribed hexagon, there is formed an inscribed equilateral triangle.
356. Cor. III. The side of an inscribed equilateral triangle is equal to the radius of the circle multiplied by $\sqrt{3}$.

Given $A B$ a side of an equilateral \triangle inscribed in $\odot A D$ whose radius is R.

To Prove $\quad A B=R \sqrt{3}$.
Proof. Draw diameter $A C$, and chord $B C$; then, $B C$ is a side of a regular inscribed hexagon.

Now $A B C$ is a rt. \triangle.

$$
\begin{align*}
\therefore \overline{A B}^{2} & =\overline{A C}^{2}-\overline{B C}^{2} \\
& =(2 R)^{2}-R^{2} \tag{§354}\\
& =4 R^{2}-R^{2}=3 R^{2} . \\
\therefore A B & =R \sqrt{3} .
\end{align*}
$$

Prop. IX. Problem.

357. To inscribe a regular decagon in a given circle.

Given $\odot A C$.
Required to inscribe a regular decagon in $\odot A C$.
Construction. Draw any radius $O A$, and divide it internally in extreme and mean ratio at $M(\S 297)$, so that

$$
\begin{equation*}
O A: O M=O M: A M . \tag{1}
\end{equation*}
$$

With A as a centre, and $O M$ as a radius, describe an arc cutting the given circumference at B, and draw chord $A B$.

Then, $A B$ is a side of a regular inscribed decagon.
Hence, to inscribe a regular decagon in a given \odot, divide the radius internally in extreme and mean ratio, and apply the greater segment ten times as a chord.

Proof. Draw lines $O B$ and $B M$.
In $\triangle O A B$ and $A B M, \angle A=\angle A$.
And since, by cons., $O M=A B$, the proportion (1) becomes

$$
O A: A B=A B: A M .
$$

Therefore, $\triangle O A B$ and $A B M$ are similar.

$$
\begin{equation*}
\therefore \angle A B M=\angle A O B . \tag{?}
\end{equation*}
$$

Again, $\triangle O A B$ is isosceles.
Hence, the similar $\triangle A B M$ is isosceles, and

$$
\begin{align*}
A B & =B M=O M . \tag{Ax.1}\\
\therefore \angle O B M & =\angle A O B .
\end{align*}
$$

$$
\begin{equation*}
\therefore \angle A B M+\angle O B M=\angle A O B+\angle A O B . \tag{?}
\end{equation*}
$$

$$
\begin{equation*}
\text { Or, } \quad \angle O B A=2 \angle A O B \tag{2}
\end{equation*}
$$

But since $\triangle O A B$ is isosceles,

$$
\begin{equation*}
2 \angle O B A+\angle A O B=180^{\circ} . \tag{§84}
\end{equation*}
$$

Then, by (2), $\quad 5 \angle A O B=180^{\circ}$, or $\angle A O B=36^{\circ}$.
Therefore, $\angle A O B$ is one-tenth of four rt. $\angle s$, and $A B$ is a side of a regular inscribed decagon.
358. Cor. I. If chords be drawn joining the alternate vertices of a regular inscribed decagon, there is formed a regular inscribed pentagon.
359. Cor. II. Denoting the radius of the \odot by R, we have

$$
A B=O M=\frac{R(\sqrt{5}-1)}{2}
$$

This is an expression for the side of a regular inscribed decagon in terms of the radius of the circle.

Prop. X. Problem.

360. To construct the side of a regular pentedecagon inscribed in a given circle.

Given arc MN.
Required to construct the side of a regular inscribed polygon of fifteen sides.

Construction. Construct chord $A B$ a side of a regular inscribed hexagon (§ 353), and chord $A C$ a side of a regular inscribed decagon (§357), and draw chord $B C$.

Then, $B C$ is a side of a regular inscribed pentedecagon.
Proof. By cons., arc $B C$ is $\frac{1}{6}-\frac{1}{10}$, or $\frac{1}{15}$, of the circumference.

Hence, chord $B C$ is a side of a regular inscribed pentedecagon.
361. Sch. I. By bisecting arcs $A B, B C$, etc., in the figure of Prop. VII., we may construct a regular inscribed octagon (§ $343, \mathrm{I}$.); and by continuing the bisection, we may construct regular inscribed polygons of $16,32,64$, etc., sides.

In like manner, by aid of Props. VIII., IX., and X., we may construct regular inscribed polygons of $12,24,48$, etc., or of $20,40,80$, etc., or of $30,60,120$, etc., sides.
362. Sch. II. By drawing tangents to the circumference at the vertices of any one of the above inscribed regular polygons, we may construct a regular circumscribed polygon of the same number of sides.
(§ 343, II.)

EXERCISES.

5. The angle at the centre of a regular polygon is the supplement of the angle of the polygon. (§ 127.)
6. The circumference of a circle is greater than the perimeter of any inscribed polygon.
7. An equiangular polygon circumscribed about a circle is regular. (§ 202.)

If r represents the radius, a the apothem, s the side, and k the area,
8. In an equilateral triangle, $a=\frac{1}{2} r$, and $k=\frac{3}{4} r^{2} \sqrt{3}$.
9. In a square, $a=\frac{1}{2} r \sqrt{2}$, and $k=2 r^{2}$.
10. In a regular hexagon, $a=\frac{1}{2} r \sqrt{3}$, and $k=\frac{3}{2} r^{2} \sqrt{3}$.
11. In an equilateral triangle, $r=2 a, s=2 a \sqrt{3}$, and $k=3 a^{2} \sqrt{3}$.
12. In a square, $r=a \sqrt{2}, s=2 a$, and $k=4 a^{2}$.
13. In a regular hexagon, $r=\frac{2}{3} a \sqrt{3}$, and $k=2 a^{2} \sqrt{3}$.
14. In an equilateral triangle, express r, a, and k in terms of s.
15. In a square, express r, a, and k in terms of s.
16. In a regular hexagon, express a and k in terms of s.
17. In an equilateral triangle, express r, a, and s in terms of k.
18. In a square, express r, a, and s in terms of k.
19. In a regular hexagon, express r and a in terms of k.
20. The apothem of an equilateral triangle is one-third the altitude of the triangle,
21. The sides of a regular polygon circumscribed about a circle are bisected at the points of contact. (§ 94.)
22. The radius drawn from the centre of a regular polygon to any vertex bisects the angle at that vertex. (§ 44.)
23. The diagonals of a regular pentagon are equal. (§ 63.)
24. The figure bounded by the five diagonals of a regular pentagon is a regular pentagon.
(Prove, by aid of § 164, that a \odot can be inscribed in FGHKL ; then use Ex. 7, p. 198.)

25. The area of a regular inscribed hexagon is a mean proportional between the areas of an inscribed, and of a circumscribed equilateral triangle.
(Prove, by aid of Exs. 8, 10, and 11, p. 198, that the product of the areas of the inscribed and circumscribed equilateral \mathbb{A} is equal to the square of the area of the regular hexagon.)
26. If the diagonals $A C^{\prime}$ and $B E$ of regular pentagon $A B C D E$ intersect at F, prove $B E=A E+A F$. (Ex. 23.)
27. In the figure of Prop. IX., prove that $O M$ is the side of a regular pentagon inscribed in a circle which is circumscribed about triangle $O B M$.

$$
\left(\angle O B M=36^{\circ} .\right)
$$

28. The area of the square inscribed in a sector whose central angle is a right angle is equal to onehalf the square of the radius.
(To prove area $O D C E=\frac{1}{2} \overline{O C}^{2}$.)

29. The square inscribed in a semicircle is equivalent to two-fifths of the square inscribed in the entire circle.
(By Ex. 9, p. 198, the area of the square inscribed in the entire \odot is $2 \overline{O B}^{2}$; we then have to prove area $A B C D=\frac{2}{5}$ of $2 \overrightarrow{O B}^{2}=\frac{4}{5} \overrightarrow{O B}^{2}$.)
30. The diagonals $A C, B D, C E, D F, E A$, and $F B$, of regular hexagon $A B C D E F$, form a regular hexagon whose area is equal to onethird the area of $A B C D E F$.
(The apothem of GHKLMN is equal to the apothem of $\triangle A C E$, which may be found by Ex. 8, p. 198.)

MEASUREMENT OF THE CIRCLE.

Prop. XI. Theorem.

363. If a regular polygon be inscribed in, or circumscribed about, a circle, and the number of its sides be indefinitely increased,
I. Its perimeter approaches the circumference as a limit.
II. Its area approaches the area of the circle as a limit.

Given p and P the perimeters, and k and K the areas, of two regular polygons of the same number of sides respectively inscribed in, and circumscribed about, a \odot.

Let C denote the circumference, and S the area, of the \odot.
I. To Prove that, if the number of sides of the polygons be indefinitely increased, P and p approach the limit C.

Proof. Let $A^{\prime} B^{\prime}$ be a side of the polygon whose perimeter is P, and draw radius $O F$ to its point of contact.

Also, draw lines $O A^{\prime}$ and $O B^{\prime}$ cutting the circumference at A and B, respectively, and chord $A B$.

Then, $A B$ is a side of the polygon whose perimeter is p.

Now the two polygons are similar.

$$
\begin{align*}
\therefore P: p & =O A^{\prime}: O F \\
\therefore P-p: p & =O A^{\prime}-O F: O F \tag{?}\\
\therefore(P-p) \times O F & =p \times\left(O A^{\prime}-O F\right) \tag{?}\\
\therefore P-p & =\frac{p}{O F} \times\left(O A^{\prime}-O F\right)
\end{align*}
$$

But p is always $<$ the circumference of the \odot.
Also,

$$
\begin{align*}
& O A^{\prime}-O F^{\prime} \text { is }<A^{\prime} F \\
& \therefore P-p<\frac{C}{O F} \times A^{\prime} F . \tag{1}
\end{align*}
$$

Now, if the number of sides of each polygon be indefinitely increased, the polygons continuing to have the same number of sides, the length of each side will be indefinitely diminished, and $A^{\prime} F$ will approach the limit 0 .

Then, by (1), since $\frac{C}{O F}$ is a constant, $P-p$ will approach the limit 0 .

But the circumference of the \odot is $<$ the perimeter of the circumscribed polygon; ${ }^{*}$ and it is $>$ the perimeter of the inscribed polygon.
(Ax. 4)
Then the difference between each perimeter and the circumference, or $P-C$ and $C-p$, will approach the limit 0 .

Therefore, P and p will each approach the limit C.
II. To Prove that K and k approach the limit S.

Proof. Since the given polygons are similar,

$$
\begin{align*}
K: k & ={\overline{O A^{\prime}}}^{2}:{\overline{O F^{2}}}^{2} \tag{§349}\\
\therefore K-k: k & ={\overline{O A^{\prime}}}^{2}-{\overline{O F}^{2}}_{2} \overline{O F}^{2} . \tag{?}\\
\therefore(K-k) \times \overline{O F}^{2} & =k \times\left({\overline{O A^{2}}}^{2}-\overline{O F}^{2}\right) . \tag{?}\\
\therefore K-k & =\frac{k}{\overline{O F}^{2}} \times\left({\overline{O A^{\prime}}}^{2}-\overline{O F}^{2}\right)=\frac{k}{\overline{O F}^{2}} \times{\overline{A^{\prime} F^{2}}}^{2} . \tag{?}
\end{align*}
$$

Now, if the number of sides of each polygon be indefinitely increased, the polygons continuing to have the same number of sides, $A^{\prime} F^{\prime}$ will approach the limit 0 .
 approach the limit 0 .

Whence, $K-k$ will approach the limit 0 .
But the area of the \odot is evidently $<K$, and $>k$.
Then, $K-S$ and $S-k$ will each approach the limit 0 .
Therefore, K and k will each approach the limit S.

* For a rigorous proof of this statement, see Appendix, p. 386.

364. Cor. 1. If a regular polygon be inscribed in a circle, and the number of its sides be indefinitely increased, its apothem approaches the radius of the circle as a limit.
365. If a regular polygon be circumscribed about a circle, and the number of its sides be indefinitely increased, its radius approaches the radius of the circle as a limit.

Prop. XII. Theorem.

365. The circumferences of two circles are to each other as their radii.

Given C and C^{\prime} the circumferences of two (3) whose radii are R and R^{\prime}, respectively.

To Prove

$$
\frac{C}{C^{\prime}}=\frac{R}{R^{\prime}}
$$

Proof. Inscribe in the (3) regular polygons of the same number of sides; P and P^{\prime} being the perimeters of the polygons inscribed in (c) whose radii are R and R^{\prime}, respectively.

$$
\begin{align*}
\therefore P: P^{\prime} & =R: R^{\prime} \tag{§348}\\
\therefore P \times R^{\prime} & =P^{\prime} \times R . \tag{?}
\end{align*}
$$

Now let the number of sides of each inscribed polygon be indefinitely increased, the two polygons continuing to have the same number of sides.

Then, $\quad P \times R^{\prime}$ will approach the $\operatorname{limit} C \times R^{\prime}$, and $\quad P^{\prime} \times R$ will approach the limit $C^{\prime} \times R$. $(\S 363, \mathrm{I}$.)

By the Theorem of Limits, these limits are equal.

$$
\begin{equation*}
\therefore C \times R^{\prime}=C^{\prime} \times R, \text { or } \frac{C}{C^{\prime}}=\frac{R}{R^{\prime}} \tag{?}
\end{equation*}
$$

366. Cor. I. Multiplying the terms of the ratio $\frac{R}{R^{\prime}}$ by 2 , we have

$$
\frac{C}{C^{\prime}}=\frac{2 R}{2 R^{\prime}}
$$

Now let D and D^{\prime} denote the diameters of the (3) whose radii are R and R^{\prime}, respectively.

$$
\begin{equation*}
\therefore \frac{C}{C^{\prime}}=\frac{D}{D^{\prime}} \tag{1}
\end{equation*}
$$

That is, the circumferences of two circles are to each other as their diameters.
367. Cor. II. The proportion (1) of § 366 may be written

$$
\frac{C}{D}=\frac{C^{\prime}}{D^{\prime}}
$$

That is, the ratio of the circumference of a circle to its diameter has the same value for every circle.

This constant value is denoted by the symbol π.

$$
\begin{equation*}
\therefore \frac{C}{D}=\pi . \tag{1}
\end{equation*}
$$

It is shown by methods of higher mathematics that the ratio π is incommensurable; hence, its numerical value can only be obtained approximately.

Its value to the nearest fourth decimal place is 3.1416 .
368. Cor. III. Equation (1) of § 367 gives

$$
C=\pi D .
$$

That is, the circumference of a circle is equal to its diameter multiplied by π.

We also have $\quad C=2 \pi R$.
That is, the circumference of a circle is equal to its radius multiplied by 2π.
369. Def. In circles of different radii, similar arcs, similar segments, and similar sectors are those which correspond to equal central angles.

Prop. XIII. Theorem.
370. The area of a circle is equal to one-half the product of its circumference and radius.

Given R the radius, C the circumference, and S the area, of a \odot.

To Prove

$$
S=\frac{1}{2} C \times R
$$

Proof. Circumscribe a regular polygon about the \odot.
Let P denote its perimeter, and K its area.
Then since the apothem of the polygon is R,

$$
K=\frac{1}{2} P \times R .
$$

Now let the number of sides of the circumscribed polygon be indefinitely increased.

Then, $\quad K$ will approach the limit S, and $\quad \frac{1}{2} P \times R$ will approach the limit $\frac{1}{2} C \times R$. (§ 363)

By the Theorem of Limits, these limits are equal.

$$
\begin{equation*}
\therefore S=\frac{1}{2} C \times R . \tag{?}
\end{equation*}
$$

371. Cor. I. We have $C=2 \pi R$.

$$
\begin{equation*}
\therefore S=\pi R \times R=\pi R^{2} \tag{§368}
\end{equation*}
$$

That is, the area of a circle is equal to the square of its radius multiplied by π.

$$
\text { Again, } \quad S=\frac{1}{4} \pi \times 4 R^{2}=\frac{1}{4} \pi \times(2 R)^{2}
$$

Now let D denote the diameter of the \odot.

$$
\therefore S=\frac{1}{4} \pi D^{2} .
$$

That is, the area of a circle is equal to the square of its diameter multiplied by $\frac{1}{4} \pi$.
372. Cor. II. Let S and S^{\prime} denote the areas of two © whose radii are R and R^{\prime}, and diameters D and D^{\prime}, respectively.
and

$$
\begin{align*}
\therefore & \frac{S}{S^{\prime}}=\frac{\pi R^{2}}{\pi R^{\prime 2}}=\frac{R^{2}}{R^{12}}, \\
& \frac{S}{S^{\prime}}=\frac{1}{4} \pi D^{2} \tag{§371}\\
\frac{1}{4} \pi D^{12} & \frac{D^{2}}{D^{\prime 2}} .
\end{align*}
$$

That is, the areas of two circles are to each other as the squares of their radii, or as the squares of their diameters.
373. Cor. III. The area of a sector is equal to one-half the product of its arc and radius.
Given s and c the area and arc, respectively, of a sector of a \odot whose area, circumference, and radius are S, C, and R, respectively.

To Prove

$$
s=\frac{1}{2} c \times R .
$$

Proof. A sector is the same part of the \odot that its are is of the circumference.

$$
\therefore \frac{s}{S}=\frac{c}{C}, \text { or } s=c \times \frac{S}{C} .
$$

But,

$$
\begin{align*}
\frac{S}{C} & =\frac{1}{2} R . \tag{§370}\\
\therefore s & =\frac{1}{2} c \times R .
\end{align*}
$$

374. Cor. IV. Since similar sectors are like parts of the © to which they belong (§ 369), it follows that

Similar sectors are to each other as the squares of their. radii.

EXERCISES.

31. Find the circumference and area of a circle whose diameter is 5 .
32. Find the radius and area of a circle whose circumference is 25π.
33. Find the diameter and circumference of a circle whose area is 289π.
34. The diameters of two circles are 64 and 88 , respectively. What is the ratio of their areas?

Prop. XIV. Problem.

375. Given p and P, the perimeters of a regular inscribed and of a regular circumscribed polygon of the same number of sides, to find p^{\prime} and P^{\prime}, the perimeters of a regular inscribed and of a regular circumscribed polygon having double the number of sides.

Solution. Let $A B$ be a side of the polygon whose perimeter is p, and draw radius $O F$ to middle point of are $A B$.

Also, draw radii $O A$ and $O B$ cutting the tangent to the \odot at F at points A^{\prime} and B^{\prime}, respectively; then, $A^{\prime} B^{\prime}$ is a side of the polygon whose perimeter is P.
(§ 342)
Draw chords $A F$ and $B F$; also, draw $A M$ and $B N$ tangents to the \odot at A and B, meeting $A^{\prime} B^{\prime}$ at M and N, respectively.

Then $A F$ and $M N$ are sides of the polygons whose perimeters are p^{\prime} and P^{\prime}, respectively.
(§ 344)
Hence, if n denotes the number of sides of the polygons whose perimeters are p and P, and therefore $2 n$ the number of sides of the polygons whose perimeters are p^{\prime} and P^{\prime}, we have

$$
\begin{equation*}
A B=\frac{p}{n}, A^{\prime} B^{\prime}=\frac{P}{n}, A F=\frac{p^{\prime}}{2 n}, \text { and } M N=\frac{P^{\prime}}{2 n} . \tag{1}
\end{equation*}
$$

Draw line $O M$; then $O M$ bisects $\angle A^{\prime} O F$.

$$
\therefore A^{\prime} M: M F=O A^{\prime}: O F .
$$

But $O A^{\prime}$ and $O F$ are the radii of the polygons whose perimeters are P and p, respectively.

$$
\begin{equation*}
\therefore P: p=O A^{\prime}: O F \tag{§348}
\end{equation*}
$$

$$
\begin{align*}
\therefore P: p & =A^{\prime} M: M F . \tag{?}\\
\therefore P+p: p & =A^{\prime} M+M F: M F . \tag{?}
\end{align*}
$$

Or,

$$
\frac{P+p}{p}=\frac{A^{\prime} F}{M F}=\frac{\frac{1}{2} A^{\prime} B^{\prime}}{\frac{1}{2} M N} .
$$

Then by (1), $\quad \frac{P+p}{p}=\frac{\frac{P}{2 n}}{\frac{P^{\prime}}{4 n}}=\frac{P}{2 n} \times \frac{4 n}{P^{\prime}}=\frac{2 P}{P^{\prime}}$.
Clearing of fractions,

$$
\begin{align*}
P^{\prime}(P+p) & =2 P \times p \\
\therefore P^{\prime} & =\frac{2 P \times p}{P+p} . \tag{2}
\end{align*}
$$

Again, in isosceles \& $A B F$ and $A F M$,

$$
\angle A B F=\angle A F M
$$

Therefore, $\triangle A B F$ and $A F M$ are similar.

$$
\begin{align*}
& \therefore \frac{A F}{A B}=\frac{M F}{A F} \tag{?}\\
& \therefore \overline{A F}^{2}=A B \times M F \tag{?}
\end{align*}
$$

Then by (1),

$$
\begin{align*}
\frac{p^{\prime 2}}{4 n^{2}} & =\frac{p}{n} \times \frac{P^{\prime}}{4 n}=\frac{p \times P^{\prime}}{4 n^{2}} . \\
\therefore p^{\prime 2} & =p \times P^{\prime} \\
\therefore p^{\prime} & =\sqrt{p \times P^{\prime}} . \tag{3}
\end{align*}
$$

Prop. XV. Problem.

376. To compute an approximate value of π (§367).

Solution. If the diameter of a \odot is 1 , the side of an inscribed square is $\frac{1}{2} \sqrt{2}$ (§ 352); hence, its perimeter is $2 \sqrt{2}$.

Again, the side of a circumscribed square is equal to the diameter of the \odot; hence, its perimeter is 4 .

We then put in equation (2), Prop. XIV.,

$$
P=4, \text { and } p=2 \sqrt{2}=2.82843
$$

$$
\therefore P^{\prime}=\frac{2 P \times p}{P+p}=3.31371 .
$$

We then put in equation (3), Prop. XIV.,

$$
\begin{gathered}
p=2.82843, \text { and } P^{\prime}=3.31371 \\
\therefore p^{\prime}=\sqrt{p \times P^{\prime}}=3.06147
\end{gathered}
$$

These are the perimeters of the regular circumscribed and inscribed octagons, respectively.

Repeating the operation with these values, we put in (2),

$$
\begin{gathered}
P=3.31371, \text { and } p=3.06147 \\
\therefore P^{\prime}=\frac{2 P \times p}{P+p}=3.18260
\end{gathered}
$$

We then put in (3), $p=3.06147$ and $P^{\prime}=3.18260$.

$$
\therefore p^{\prime}=\sqrt{p \times P^{\prime}}=3.12145 .
$$

These are, respectively, the perimeters of the regular circumscribed and inscribed polygons of sixteen sides.

In this way, we form the following table:

No. of Sides.	Perimeter of Reg. Circ. Polygon.	Perimeter of Red. Inso. PolyGon.
4	4.	2.82843
8	3.31371	3.06147
16	3.18260	3.12145
32	3.15172	3.13655
64	3.14412	3.14033
128	3.14222	3.14128
256	3.14175	3.14151
512	3.14163	3.14157

The last result shows that the circumference of a \odot whose diameter is 1 is >3.14157, and <3.14163.

Hence, an approximate value of π is 3.1416 , correct to the fourth decimal place.

Note. The value of π to fourteen decimal places is 3.14159265358979 .

EXERCISES.

35. The area of a circle is equal to four times the area of the circle described upon its radius as a diameter.
36. The area of one circle is $2 \frac{7}{\frac{7}{g} \text { times the area of another. If the }}$ radius of the first is 15 , what is the radius of the second?
37. The radii of three circles are 3,4 , and 12 , respectively. What is the radius of a circle equivalent to their sum ?
38. Find the radius of a circle whose area is one-half the area of a circle whose radius is 9 .
39. If the diameter of a circle is 48 , what is the length of an arc of 85° ?
40. If the radius of a circle is $3 \sqrt{3}$, what is the area of a sector whose central angle is 152° ?
41. If the radius of a circle is 4 , what is the area of a segment whose arc is 120° ? ($\pi=3.1416$.)
(Subtract from the area of the sector whose central \angle is 120°, the area of the isosceles Δ whose sides are radii and whose base is the chord of the segment.)
42. Find the area of the circle inscribed in a square whose area is 13 .
43. Find the area of the square inscribed in a circle whose area is 196π.
44. If the apothem of a regular hexagon is 6 , what is the area of its circumscribed circle?
45. If the length of a quadrant is 1 , what is the diameter of the circle? ($\pi=3.1416$.)
46. The length of the are subtended by a side of a regular inscribed dodecagon is $\frac{4}{9} \pi$. What is the area of the circle?
47. The perimeter of a regular hexagon circumscribed about a circle is $12 \sqrt{3}$. What is the circumference of the circle?
48. The area of a regular hexagon inscribed in a circle is $24 \sqrt{3}$. What is the area of the circle ?
49. The side of an equilateral triangle is 6 . Find the areas of its inscribed and circumscribed circles.
50. The side of a square is 8 . Find the circumferences of its inscribed and circumscribed circles.
51. Find the area of a segment having for its chord a side of a regular inscribed hexagon, if the radius of the circle is $10 . \quad(\pi=3.1416$.)
52. A circular grass-plot, 100 ft . in diameter, is surrounded by a walk 4 ft . wide. Find the area of the walk.
53. Two plots of ground, one a square and the other a circle, contain each 70686 sq. ft . How much longer is the perimeter of the square than the circumference of the circle? $\quad(\pi=3.1416$.)
54. A wheel revolves 55 times in travelling $\frac{1045 \pi}{4} \mathrm{ft}$. What is its diameter in inches?

If r represents the radius, a the apothem, s the side, and k the area, prove that
55. In a regular octagon,

$$
s=r \sqrt{2-\sqrt{2}}, a=\frac{1}{2} r \sqrt{2+\sqrt{2}}, \text { and } k=2 r^{2} \sqrt{2}
$$

56. In a regular dodecagon,

$$
s=r \sqrt{2-\sqrt{3}}, a=\frac{1}{2} r \sqrt{2+\sqrt{3}}, \text { and } k=3 r^{2}
$$

57. In a regular octagon,

$$
s=2 a(\sqrt{2}-1), r=a \sqrt{4-2 \sqrt{2}}, \text { and } k=8 a^{2}(\sqrt{2}-1)
$$

58. In a regular dodecagon,

$$
s=2 a(2-\sqrt{3}), r=2 a \sqrt{2-\sqrt{3}}, \text { and } k=12 a^{2}(2-\sqrt{3})
$$

59. In a regular decagon, $a=\frac{1}{4} r \sqrt{10+2 \sqrt{5}}$. (§ 359.)
(Find the apothem by §273.)
60. What is the number of degrees in an arc whose length is equal to that of the radius of the circle? $\quad(\pi=3.1416$.)
(Represent the number of degrees by x.)
61. Find the side of a square equivalent to a circle whose diameter is 3 . $(\pi=3.1416$.)
62. Find the radius of a circle equivalent to a square whose side is 10 . $(\pi=3.1416$. $)$
63. Given one side of a regular hexagon, to construct the hexagon.
64. Given one side of a regular pentagon, to construct the pentagon.
(Draw a \odot of any convenient radius, and construct a side of a regular inscribed pentagon.)
65. In a given square, to inscribe a regular octagon.
(Divide the angular magnitude about the centre of the square into eight equal parts.)
66. In a given equilateral triangle to inscribe a regular hexagon.
67. In a given sector whose central angle is a right angle, to inscribe a square.

Note. For additional exercises on Book V., see p. 231.

APPENDIX TO PLANE GEOMETRY.

MAXIMA AND MINIMA OF PLANE FIGURES.

Prop. I. Theorem.

377. Of all triangles formed with two given sides, that in which these sides are perpendicular is the maximum.

Given, in $\mathbb{B} A B C$ and $A^{\prime} B C, A B=A^{\prime} B$, and $A B \perp B C$.
To Prove area $A B C>$ area $A^{\prime} B C$.
Proof. Draw $A^{\prime} D \perp B C$; then,

$$
\begin{align*}
A^{\prime} B & >A^{\prime} D \tag{§46}\\
\therefore A B & >A^{\prime} D . \tag{1}
\end{align*}
$$

Multiplying both members of (1) by $\frac{1}{2} B C$,

$$
\begin{align*}
\frac{1}{2} B C \times A B & >\frac{1}{2} B C \times A^{\prime} D \\
\therefore \text { area } A B C & >\text { area } A^{\prime} B C \tag{§312}
\end{align*}
$$

378. Def. Two figures are said to be isoperimetric when they have equal perimeters.

Prop. II. Theorem.

379. Of isoperimetric triangles having the same base, that which is isosceles is the maximum.

Given $A B C$ and $A^{\prime} B C$ isoperimetric 8 , having the same base $B C$, and $\triangle A B C$ isosceles.

To Prove area $A B C>$ area $A^{\prime} B C$.
Proof. Produce $B A$ to D, making $A D=A B$, and draw line $C D$.

Then, $\angle B C D$ is a rt. \angle; for it can be inscribed in a semicircle, whose centre is A and radius $A B$.

Draw lines $A F$ and $A^{\prime} G \perp$ to $C D$; take point E on $C D$ so that $A^{\prime} E=A^{\prime} C$, and draw line $B E$.

Then since $\triangle A B C$ and $A^{\prime} B C$ are isoperimetric,

$$
\begin{gather*}
A B+A C=A^{\prime} B+A^{\prime} C=A^{\prime} B+A^{\prime} E . \\
\therefore A^{\prime} B+A^{\prime} E=A B+A D=B D . \\
A^{\prime} B+A^{\prime} E>B E . \tag{Ax.4}\\
\therefore B D>B E . \\
\therefore C D>C E
\end{gather*}
$$

But,

Now $A F$ and $A^{\prime} G$ are the \downarrow from the vertices to the bases of isosceles $\triangle A C D$ and $A^{\prime} C E$, respectively.

$$
\begin{gather*}
\therefore C F=\frac{1}{2} C D, \text { and } C G=\frac{1}{2} C E . \tag{§94}\\
\quad \therefore C F>C G . \tag{1}
\end{gather*}
$$

Multiplying both members of (1) by $\frac{1}{2} B C$,

$$
\begin{align*}
\frac{1}{2} B C \times C F & >\frac{1}{2} B C \times C G . \\
\therefore \text { area } A B C & >\text { area } A^{\prime} B C . \tag{?}
\end{align*}
$$

380. Cor. Of isoperimetric triangles, that which is equi. lateral is the maximum.

For if the maximum Δ is not isosceles when any side is taken as the base, its area can be increased by making it isosceles.

Then, the maximum Δ is equilateral.

Prop. III. Theorem.
381. Of isoperimetric polygons having the same number of sides, that which is equilateral is the maximum.

Given $A B C D E$ the maximum of polygons having the given perimeter and the given number of sides.

To Prove $A B C D E$ equilateral.
Proof. If possible, let sides $A B$ and $B C$ be unequal.
Let $A B^{\prime} C$ be an isosceles \triangle with the base $A C$, having its perimeter equal to that of $\triangle A B C$.

$$
\begin{equation*}
\therefore \text { area } A B^{\prime} C>\text { area } A B C . \tag{§379}
\end{equation*}
$$

Adding area $A C D E$ to both members,

$$
\text { area } A B^{\prime} C D E>\text { area } A B C D E
$$

But this is impossible; for, by hyp., $A B C D E$ is the maximum of polygons having the given perimeter.

Hence, $A B$ and $B C$ cannot be unequal.
In like manner we have

$$
B C=C D=D E, \text { etc. }
$$

Then, $A B C D E$ is equilateral.

Prop. IV. Theorem.

382. Of isoperimetric equilateral polygons having the same number of sides, that which is equiangular is the maximum.

Given $A B, B C$, and $C D$ any three consecutive sides of the maximum of isoperimetric equilateral polygons having the same number of sides.

To Prove $\quad \angle A B C=\angle B C D$.
Proof. There may be three cases:

1. $A B C+B C D=180^{\circ}$. (Fig. 1.)
2. $A B C+B C D>180^{\circ}$. (Fig. 2.)
3. $A B C+B C D<180^{\circ}$. (Fig. 3.)

Fig. 1.

Fig. 2.

Fig. 3.

If possible, let $\angle A B C$ be $>\angle B C D$, and draw line $A D$.

$$
\text { In Fig. } 1 .
$$

Let E be the middle point of $B C$; and draw line $E F$, meeting $A B$ produced at F, making $E F=B E$.

Produce $F E$ to meet $C D$ at G.
Then in $\triangle B E F$ and $C E G$, by hyp., $B E=C E$.
Also,
$\angle B E F=\angle C E G$.

And, $\quad \angle E B F=\angle C$,
for each is the supplement of $\angle B$.

$$
\therefore \triangle B E F=\triangle C E G
$$

$$
\begin{align*}
\therefore B E=E F= & C E=E G, \text { and } B F=C G . \\
& \text { In Fig. 2. }
\end{align*}
$$

Produce $A B$ and $D C$ to meet at H.
Since, by hyp., $\angle A B C>\angle B C D, \angle C B H<\angle B C H$.

$$
\begin{equation*}
\therefore B H>C H \tag{§99}
\end{equation*}
$$

Lay off, on $B H, F H=C H$; and on $D H, G H=B H$; and draw line $F G$ cutting $B C$ at E.

$$
\begin{align*}
& \therefore \triangle F G H=\triangle B C H . \tag{§63}\\
& \therefore \angle C B H=\angle F G H .
\end{align*}
$$

Then, in $\triangle B E F$ and $C E G, \angle E B F=\angle C G E$.

$$
\begin{array}{lrl}
\text { Also, } & \angle B E F & =\angle C E G \tag{?}\\
\text { And } & B F & =C G
\end{array}
$$

since $B F=B H-F H$, and $C G=G H-C H$.

$$
\therefore \triangle B E F=\triangle C E G
$$

$$
\therefore B E=C E \text { and } E F=E G
$$

$$
\text { In Fig. } 3 .
$$

Produce $B A$ and $C D$ to meet at K.
Since, by hyp., $\angle A B C>\angle B C D, C K>B K$.
Lay off, on $K B$ produced, $F K=C K$; and on $C K, G K=B K$; and draw line $F G$ cutting $B C$ at E.

$$
\begin{align*}
\therefore \triangle B C K & =\triangle F G K . \tag{?}\\
\therefore \angle F & =\angle C \tag{?}
\end{align*}
$$

Then, in $\triangle B E F$ and $C E G, \angle F=\angle C$.
Also, $\quad \angle B E F=\angle C E G$.
And $\quad B F=C G$,
since $B F=F K-B K$, and $C G=C K-G K$.

$$
\begin{equation*}
\therefore \triangle B E F=\triangle C E G \tag{?}
\end{equation*}
$$

$\therefore B E=C E$ and $E F=E G$.

Then since, in either figure, $B C+C G=B F+F G$, and $\triangle B E F=\triangle C E G$, quadrilateral $A F G D$ is isoperimetric with, and \approx to, quadrilateral $A B C D$.

Calling the remainder of the given polygon P, it follows that the polygon composed of $A F G D$ and P is isoperimetric with, and \approx to, the polygon composed of $A B C D$ and P; that is, the given polygon.

Then the polygon composed of $A F G D$ and P must be the maximum of polygons having the given perimeter and the given number of sides.

Hence, the polygon composed of $A F G D$ and P is equilateral.
(§ 381)
But this is impossible, since $A F$ is $>D G$.
Hence, $\angle A B C$ cannot be $>\angle B C D$.
In like manner, $\angle A B C$ cannot be $<\angle B C D$.

$$
\therefore \angle A B C=\angle B C D .
$$

Note. The case of triangles was considered in §380. Fig. 3 also provides for the case of triangles by supposing D and K to coincide with A. In the case of quadrilaterals, $P=0$.
383. Cor. Of isoperimetric polygons having the same number of sides, that which is regular is the maximum.

Prop. V. Theorem.

384. Of two isoperimetric regular polygons, that which has the greater number of sides has the greater area.

Given $A B C$ an equilateral \triangle, and M an isoperimetric square.

To Prove area $M>$ area $A B C$.

Proof. Let D be any point in side $A B$ of $\triangle A B C$.
Draw line $D C$; and construct isosceles $\triangle C D E$ isoperimetric with $\triangle B C D, C D$ being its base.

$$
\begin{align*}
\therefore \text { area } C D E & >\text { area } B C D . \\
\therefore \text { area } A D E C & >\text { area } A B C .
\end{align*}
$$

But, since $A D E C$ and M are isoperimetric,

$$
\begin{align*}
& \text { area } M>\text { area } A D E C . \\
\therefore & \text { area } M>\text { area } A B C .
\end{align*}
$$

In like manner, we may prove the area of a regular pentagon greater than that of an isoperimetric square ; etc.
385. Cor. The area of a circle is greater than the area of any polygon having an equal perimeter.

SYMMETRICAL FIGURES.

DEFINITIONS.

386. Two points are said to be symmetrical with respect to a third, called the centre of symmetry, when the latter bisects the straight line which joins them.

Thus, if O is the middle point of straight line $A B$, points A and B are symmetrical with respect to O as a centre.

387. Two points are said to be symmetrical with respect to a straight line, called the axis of symmetry, when the latter bisects at right angles the straight line which joins them.

Thus, if line $C D$ bisects line $A B$ at right angles, points A and B are symmetrical with respect to $C D$ as an axis.

388. Two figures are said to be symmetrical with respect to a centre, or with respect to an axis, when to every point of one there corresponds a symmetrical point in the other.
389. Thus, if to every point of triangle $A B C$ there corresponds a symmetrical point of triangle $A^{\prime} B^{\prime} C^{\prime}$, with respect to centre O, triangle $A^{\prime} B^{\prime} C^{\prime \prime}$ is symmetrical to triangle $A B C$ with respect to centre O.

Again, if to every point of triangle $A B \dot{C}$ there corresponds a symmetrical point of
 triangle $A^{\prime} B^{\prime} C^{\prime}$, with respect to axis $D E$, triangle $A^{\prime} B^{\prime} C^{\prime \prime}$ is symmetrical to triangle $A B C$ with respect to axis $D E$.
390. A figure is said to be symmetrical with respect to a centre when every straight line drawn through the centre cuts the figure in two points which are symmetrical with respect to
 that centre.
391. A figure is said to be symmetrical with respect to an axis when it divides it into two figures which are symmetrical with respect to that axis.

Prop. VI. Theorem.

392. Two straight lines which are symmetrical with respect to a centre are equal and parallel.

Given str. lines $A B$ and $A^{\prime} B^{\prime}$ symmetrical with respect to centre O.

To Prove $A B$ and $A^{\prime} B^{\prime}$ equal and $\|$.
Proof. Draw lines $A A^{\prime}, B B^{\prime}, A B^{\prime}$, and $A^{\prime} B$.

Then, O bisects $A A^{\prime}$ and $B B^{\prime}$.
Therefore, $A B^{\prime} A^{\prime} B$ is a \square.
Whence, $A B$ and $A^{\prime} B^{\prime}$ are equal and $\|$.

Prop. VII. Theorem.

393. If a figure is symmetrical with respect to two axes at right angles to each other, it is symmetrical with respect to their intersection as a centre.

Given figure $A E$ symmetrical with respect to axes $X X^{\prime}$ and $Y Y^{\prime}$, intersecting each other at rt. \angle at O.

To Prove $A E$ symmetrical with respect to O as a centre.
Proof. Let P be any point in the perimeter of $A E$.
Draw line $P Q \perp X X^{\prime}$, and line $P R \perp Y Y^{\prime}$.
Produce $P Q$ and $P R$ to meet the perimeter of $A E$ at P^{\prime} and $P^{\prime \prime}$, respectively, and draw lines $Q R, O P^{\prime}$, and $O P^{\prime \prime}$.

Then since $A E$ is symmetrical with respect to $X X^{\prime}$,

$$
\begin{equation*}
P Q=P^{\prime} Q . \tag{§387}
\end{equation*}
$$

But $P Q=O R$; whence, $O R$ is equal and $\|$ to $P^{\prime} Q$.
Therefore, $O P^{\prime} Q R$ is a \square.
Whence, $Q R$ is equal and $\|$ to $O P^{\prime}$.
In like manner, we may prove $O P^{\prime \prime} R Q$ a \square; and therefore $Q R$ equal and \| to $O P^{\prime \prime}$.

Then since both $O P^{\prime}$ and $O P^{\prime \prime}$ are equal and $\|$ to $Q R$, $P^{\prime} O P^{\prime \prime}$ is a str. line which is bisected at 0 .

That is, every str. line drawn through O is bisected at that point, and hence $A E$ is symmetrical with respect to O as a centre.

ADDITIONAL EXERCISES.

BOOK I.

1. Every point within an angle, and not in the bisector, is unequally distant from the sides of the angle.
(Prove by Reductio ad Absurdum.)
2. If two lines are cut by a third, and the sum of the interior angles on the same side of the transversal is less than two right angles, the lines will meet if sufficiently produced.
(Prove by Reductio ad Absurdum.)
3. State and prove the converse of Prop. XXXVII., II.
(Prove $\angle B A D+\angle B=180^{\circ}$.)
4. The bisectors of the exterior angles of a triangle form a triangle whose angles are respectively the half-sums of the angles of the given triangle taken two and two. (Ex. 69, p. 67.)
(To prove $\angle A^{\prime}=\frac{1}{2}(\angle A B C+\angle B C A)$, etc.)
5. If $C D$ is the perpendicular from C to side $A B$ of triangle $A B C$, and $C E$ the bisector of angle C, prove $\angle D C E$ equal to onehalf the difference of angles A and B.
6. If E, F, G, and H are the middle points of sides $A B, B C, C D$, and $D A$, respectively, of quadrilateral $A B C D$, prove $E F G H$ a parallelogram whose perimeter is equal to the sum of the diagonals of the quadrilateral. (§ 130.)
7. The lines joining the middle points of the opposite sides of a quadrilateral bisect each other. (Ex. 6, p. 220.)
8. The lines joining the middle points of the opposite sides of a quadrilateral bisect the line joining the middle points of the diagonals.
($E K G L$ is a \square, and its diagonals bisect each other.)

9. The line joining the middle points of the diagonals of a trapezoid is parallel to the bases and equal to one-half their difference.

10. If D is any point in side $A C$ of triangle $A B C$, and E, F, G, and H the middle points of $A D, C D, B C$, and $A B$, respectively, prove $E F G H$ a parallelogram.
11. If E and G are the middle points of sides $A B$ and $C D$, respectively, of quadrilateral $A B C D$, and K and L the middle points of diagonals $A C$ and $B D$, respectively, prove $\triangle E K L=\triangle G K L$.
12. If D and E are the middle points of sides $B C$ and $A C$, respectively, of triangle $A B C$, and $A D$ be produced to F and $B E$ to G, making $D F=A D$ and $E G=B E$, prove that line $F G$ passes through C, and is bisected at that point.

13. If D is the middle point of side $B C$ of triangle $A B C$, prove $A D<\frac{1}{2}(A B+A C)$.
(Produce $A D$ to E, making $D E=A D$.)
14. The sum of the medians of a triangle is less than the perimeter, and greater than the semi-perimeter of the triangle.
(Ex. 13, p. 221, and Ex. 106, p. 71.)
15. If the bisectors of the interior angle at C and the exterior angle at B of triangle $A B C$ meet at D, prove $\angle B D C=\frac{1}{2} \angle A$.
16. If $A D$ and $B D$ are the bisectors of the exterior angles at the extremities of the hypotenuse of right triangle $A B C$, and $D E$ and $D F$ are drawn perpendicular, respectively, to $C A$ and $C B$ produced, prove $C E D F$ a square.
(D is equally distant from $A C$ and $B C$.)
17. $A D$ and $B E$ are drawn from two of the vertices of triangle $A B C$ to the opposite sides, making $\angle B A D=\angle A B E$; if $A D=B E$, prove the triangle isosceles.
18. If perpendiculars $A E, B F, C G$, and $D H$, be drawn from the vertices of parallelogram $A B C D$ to any line in its plane, not intersecting its surface, prove

$$
A E+C G=B F+D H
$$

(The sum of the bases of a trapezoid is equal to twice the line joining the middle points of the non-parallel sides.)
19. If $C D$ is the bisector of angle C of triangle $A B C$, and $D F$ be drawn parallel to $A C$ meeting $B C$ at E and the bisector of the angle exterior to C at F, prove $D E=E F$.

20. If E and F are the middle points of sides $A B$ and $A C$, respectively, of triangle $A B C$, and $A D$ the perpendicular from A to $B C$, prove $\angle E D F=\angle E A F$. (Ex. 83, p. 69.)
21. If the median drawn from any vertex of a triangle is greater than, equal to, or less than one-half the opposite side, the angle at that vertex is acute, right, or obtuse, respectively. (§ 98.)
22. The number of diagonals of a polygon of n sides is $\frac{n(n-3)}{2}$.
23. The sum of the medians of a triangle is greater than threefourths the perimeter of the triangle.
(Fig. of Prop. LII. Since $A O=\frac{2}{3} A D$ and $B O=\frac{2}{3} B E$, we have $A B<{ }_{3}^{2}(A D+B E)$, by Ax. 4.)
24. If the lower base $A D$ of trapezoid $A B C D$ is double the upper base $B C$, and the diagonals intersect at E, prove $C E=\frac{1}{3} A C$ and $B E=\frac{1}{3} B D$.
(Let F be the middle point of $D E$, and G of AE.)

25. If O is the point of intersection of the medians $A D$ and $B E$ of equilateral triangle $A B C$, and line $O F$ be drawn parallel to side $A C$, meeting side $B C$ at F, prove that $D F$ is equal to $\frac{1}{6} B C$. (§ 133.)
(Let G be the middle point of $O A$.)

26. If equiangular triangles be constructed on the sides of a triangle, the lines drawn from their outer vertices to the opposite vertices of the triangle are equal. (§63.)
27. If two of the medians of a triangle are equal, the triangle is isosceles.
(Fig. of Prop. LII. Let $A D=B E$.)

BOOK II.

28. $A B$ and $A C$ are the tangents to a circle from point A, and D is any point in the smaller of the arcs subtended by chord $B C$. If a tangent to the circle at D meets $A B$ at E and $A C$ at F, prove the perimeter of triangle $A E F$ constant. (§ 174.)
29. The line joining the middle points of the arcs subtended by sides $A B$ and $A C$ of an inscribed triangle $A B C$ cuts $A B$ at F and $A C$ at G. Prove $A F=A G$.
($\angle A F G=\angle A G F$.)
30. If $A B C D$ is a circumscribed quadrilateral, prove the angle between the lines joining the opposite points of contact equal to $\frac{1}{2}(A+C)$. (§ 202.)
31. If sides $A B$ and $B C$ of inscribed hexagon $A B C D E F$ are parallel to sides $D E$ and $E F$, respectively, prove side $A F$ parallel to side CD. (§ 172.)
(Draw line $C F$, and prove $\angle A F C=\angle F C D$.)
32. If $A B$ is the common chord of two intersecting circles, and $A C$ and $A D$ diameters drawn from A, prove that line $C D$ passes through B. (§ 195.)

33. If $A B$ is a common exterior tangent to two circles which touch each other externally at C, prove $\angle A C B$ a right angle.
(Draw the common tangent at C, meeting $A B$ at D.)
34. If $A B$ and $A C$ are the tangents to a circle from point A, and D is any point on the greater of the arcs subtended by chord $B C$, prove the sum of angles $A B D$ and $A C D$ constant.
35. If A, C, B, and D are four points in a straight line, B being between C and D, and $E F$ is a common tangent to the circles described upon $A B$ and $C D$ as diameters, prove

$$
\angle B A E=\angle D C F
$$

(We have $O E \| O^{\prime} F$.)
36. $A B C D$ is an inscribed quadrilateral, $A D$ being a diameter of the circle. If O is the centre, and sides $A D$ and $B C$ produced meet at E making $C E=O A$, prove

$$
\angle A O B=3 \angle C E D
$$

($\angle A O B$ is an ext. \angle of $\triangle O B E$, and $\angle B C O$
 of $\triangle O C E$.)
37. $A B C D$ is a quadrilateral inscribed in a circle. If sides $A B$ and $D C$ produced intersect at E, and sides $A D$ and $B C$ produced at F, prove the bisectors of angles E and F perpendicular. (§ 199.)
(Prove arc $H M+\operatorname{arc} K L=180^{\circ}$.)

38. If $A B C D$ is an inscribed quadrilateral, and sides $A D$ and $B C$ produced meet at P, the tangent at P to the circle circumscribed about triangle $A B P$ is parallel to $C D$. ($\S 196$.)
(Prove \angle between the tangent and $B P$ equal to $\angle P C D$.)
39. $A B C D$ is a quadrilateral inscribed in a circle. Another circle is described upon $A D$ as a chord, meeting $A B$ and $C D$ at E and F, respectively. Prove chords $B C$ and $E F$ parallel.
(Prove $\angle A B C=\angle A E F$.)
40. If $A B C D E F G H$ is an inscribed octagon, the sum of angles A, C, E, and G is equal to six right angles. (§ 193.)
41. If the number of sides of an inscribed polygon is even, the sum of the alternate angles is equal to as many right angles as the polygon has sides less two.
(Use same method of proof as in Ex. 40.)
42. If a right triangle has for its hypotenuse the side of a square, and lies without the square, the straight line drawn from the centre of the square to the vertex of the right angle bisects the right angle. (§ 200.)
43. The perpendiculars from the vertices of a triangle to the opposite sides are the bisectors of the angles of the triangle formed by joining the feet of the perpendiculars.
(To prove $A D, B E$, and $C F$ the bisectors of the \S of $\triangle D E F$. By $\S 200$, a \odot can be circumscribed about quadrilateral $B D O F$; then $\angle O D F=\angle O B F$; in this
 way, $\angle O D F^{\prime}=90^{\circ}-\angle B A C$.)

Constructions.

44. Given a side, an adjacent angle, and the radius of the circumscribed circle of a triangle, to construct the triangle.

What restriction is there on the values of the given lines?
45. To describe a circle of given radius tangent to a given circle, and passing through a given point without the circle.

46. To draw between two given intersecting lines a straight line which shall be equal to one given straight line, and parallel to another.
(Draw a \| to one of the intersecting lines.)
47. Given an angle of a triangle, the length of its bisector, and the length of the perpendicular from its vertex to the opposite side, to construct the triangle.
(The side opposite the given \angle is tangent to a \odot drawn with the vertex as a centre, and with the \perp from the vertex to the opposite side as a radius.)
48. Given an angle of a triangle, and the segments of the opposite side made by the perpendicular from its vertex, to construct the triangle. (§ 226.)
49. To inscribe a square in a given rhombus.
(Bisect the \mathbb{E} between diagonals $A C$ and $B D$. To prove $E F G H$ a square, prove $\triangle O B E, O B F, O D G$, and $O D H$ equal ; whence, $O E=O F=O G=O H$.)

50. To draw a parallel to side $B C$ of triangle $A B C$ meeting $A B$ and $A C$ in D and E, respectively, so that $D E$ may equal $E C$.

51. To draw a parallel to side $B C$ of triangle $A B C$, meeting $A B$ and $A C$ in D and E, respectively, so that $D E$ may equal the sum of $B D$ and $C E$.

52. Given an angle of a triangle, the length of the perpendicular from the vertex of another angle to the opposite side, and the radius of the circumscribed circle, to construct the triangle.
(The centre of the circumscribed \odot is equally distant from the given vertices.)
53. Through a given point without a given circle to draw a secant whose internal and external segments shall be equal. (Ex. 65, p. 103.)
54. Given the base of a triangle, an adjacent angle, and the sum of the other two sides, to construct the triangle.
(Lay off $A D$ equal to the sum of the other two sides.)

55. Given the base of a triangle, an adjacent acute angle, and the difference of the other two sides, to construct the triangle.

What restriction is there on the values of the given lines?

56. Given the feet of the perpendiculars from the vertices of a triangle to the opposite sides, to construct the triangle. (Ex. 43.)

BOOK III.

57. In any triangle, the product of any two sides is equal to the product of the segments of the third side formed by the bisector of the exterior angle at the opposite vertex, minus the square of the bisector.
(To prove $A B \times A C=D B \times D C-\overline{A D}^{2}$. The work is carried out as in $\S 288$; first prove $\triangle A B D$ and $A C E$ similar.)
58. If the sides of a triangle are $A B=4, A C=5$, and $B C=6$, find the length of the bisector of the exterior angle at vertex A. (§ 251.)
59. $A B C$ is an isosceles triangle. If the perpendicular to $A B$ at A meets base $B C$, produced if necessary, at E, and D is the middle point of $B E$, prove $A B$ a mean proportional between $B C$ and $B D$. (Ex. 83, p. 69.)
($\$ A B C$ and $A B D$ are similar.)
60. If D and E, F and G, and H and K are points on sides $A B, B C$, and $C A$, respectively, of triangle $A B C$, so taken that $A D=D E=E B, B F=F G=G C$, and $C H=H K=K A$, prove that lines $E F, G H$, and $K D$, when produced, form a triangle equal to $A B C$.
(By § 248 , sides of $\triangle L M N$ are $\|$, respectively, to sides of $\triangle A B C$.)
61. The square of the common tangent to two circles which are tangent to each other externally is equal to 4 times the product of their radii. (§ 273.)
62. The sides $A B$ and $B C$ of triangle $A B C$ are 3 and 7 , respectively, and the length of the bisector of the exterior angle B is $3 \sqrt{7}$. Find side AC. (Ex. 57, and § 251.)
63. One segment of a chord drawn through a point 7 units from the centre of a circle is 4 units. If the diameter of the circle is 15 units, what is the other segment? ($\$ 280$.)
64. If E is the middle point of one of the parallel sides $B C$ of trapezoid $A B C D$, and $A E$ and $D E$ produced meet $D C$ and $A B$ produced at F and G, respectively, prove $F G$ parallel to $A D$.
(($A D G$ and $B E G$ are similar, as also are \& $A D F$ and $C E F$.)
65. The perpendicular from the intersection of the medians of a triangle to any straight line in the plane of the triangle, not intersecting its surface, is equal to one-third the sum of the perpendiculars from the vertices of the triangle to the same line.
(The sum of the bases of a trapezoid is equal to twice the line joining the middle points of
 the non-parallel sides.)
66. If two parallels are cut by three or more straight lines passing through a common point, the corresponding segments are proportional.
(To prove $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}$ \& $O A B$, $O B C$, and $O C D$ are similar, respectively, to \& $O A^{\prime} B^{\prime}, O B^{\prime} C^{\prime}$, and $O C^{\prime} A^{\prime}$.)

67. State and prove the converse of Ex. 66.
(Fig. of Ex. 66. To prove that $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ pass through a common point. Let $A A^{\prime}$ and $B B^{\prime}$ meet at O, and draw $O C$ and $O C^{\prime}$; then prove $\triangle O B C$ and $O B^{\prime} C^{\prime}$ similar.)
68. The non-parallel sides of a trapezoid and the line joining the middle points of the parallel sides, if produced, meet in a common point. (Ex. 67.)
69. $B D$ is the perpendicular from the vertex of the right angle to the hypotenuse of right triangle $A B C$. If E is any point in $A B$, and $E F$ be drawn perpendicular to $A C$, and $F G$ perpendicular to $A B$, prove lines $C E$ and $D G$ parallel.
(\& $A B C$ and $A E F$ are similar. By $\S 271,2$, we may prove $A D: C D=\overline{A B}^{2}: \overline{B C}^{2}$, and $A G: E G=\overline{A F}^{2}: \overline{E F}^{2}$; then, we have $A D: C D=A G: E G$.
70. In right triangle $A B C, \overline{B C}^{2}=3 \overline{A C}^{2}$. If $C D$ be drawn from the vertex of the right angle to the middle point of $A B$, prove $\angle A C D$ equal to 60°. (Ex. 83, p. 69.)
(Prove $A C=\frac{1}{2} A B$.)
71. If D is the middle point of side $B C$ of right triangle $A B C$, and $D E$ be drawn perpendicular to hypotenuse $A B$, prove

$$
\overline{A E}^{2}-\overline{B E}^{2}=\overline{A C}^{2}
$$

($A E=A B-B E$; square this by the rule of Algebra.)
72. If $B E$ and $C F$ are medians drawn from the extremities of the hypotenuse of right triangle $A B C$, prove

$$
4 \overline{B E}^{2}+4 \overline{C F}^{2}=5 \overline{B C}^{2} . \quad(\S 272 .)
$$

73. If $A B C$ and $A D C$ are angles inscribed in a semicircle, and $A E$ and $C F$ be drawn perpendicular to $B D$ produced, prove

$$
\overline{B E}^{2}+{\overline{B F^{2}}}^{2}=\overline{D E}^{2}+\overline{D F}^{2} . \quad(\S 273 .)
$$

74. If perpendiculars $P F, P D$, and $P E$ be drawn from any point P to sides $A B, B C$, and $C A$, respectively, of a triangle, prove

$$
\overline{A F}^{2}+\overline{B D}^{2}+\overline{C E}^{2}=\overline{A E}^{2}+\overline{B F}^{2}+\overline{C D}^{2} .
$$

75. If $B C$ is the hypotenuse of right triangle $A B C$, prove

$$
(A B+B C+C A)^{2}=2(A B+B C)(B C+C A) .
$$

(Square $A B+B C+C A$ by the rule of Algebra.)
76. If lines be drawn from any point P to the vertices of rectangle $A B C D$, prove

$$
\overline{P A}^{2}+\overline{P C}^{2}=\overline{P B}^{2}+\overline{P D}^{2} .
$$

77. If $A B$ and $A C$ are the equal sides of an isosceles triangle, and $B D$ be drawn perpendicular to $A C$, prove $2 A C \times C D=\overline{B C}^{2}$.
($A D=A C-C D$; square this by the rule of Algebra.)
78. If $A D$ and $B E$ are the perpendiculars from vertices A and B, respectively, of acute-angled triangle $A B C$ to the opposite sides, prove

$$
A C \times A E+B C \times B D=\overline{A B}^{2} .
$$

(By § 277, $2 A C \times A E=\overline{A B}^{2}+\overline{A C}^{2}-\overline{B C}^{2}$; and in like manner a value may be found for $2 B C \times B D$.)
79. The sum of the squares of the sides of a parallelogram is equal to the sum of the squares of its diagonals.
(§ 279, I.)
80. To construct a triangle similar to a given triangle, having given its perimeter.
(Divide the perimeter into parts proportional to the sides of the $\Delta_{\text {. }}$)
81. To construct a right triangle, having given its perimeter and an acute angle.
(From any point in one side of the given \angle draw a \perp to the other side.)
82. To describe a circle through two given points, tangent to a given straight line. (§ 282.)
(To prove \odot draw with O as a centre and $O P$ as a radius tangent to $A B$, draw $B F$ tangent to the \odot, and prove $\triangle O B E=\triangle O B F$.)
83. If A and B are points on either side of line $C D$, and line $A B$ cuts $C D$ at F, find a point E in $C D$ such that

$$
A E: B E=A F: B F . \quad(\S 249 .)
$$

($E F$ bisects $\angle A E B$ of $\triangle A B E$.)

BOOK IV.

84. In the figure on p. 174,
(a) Prove lines $C F$ and $B H$ perpendicular.
(If $C F$ and $B H$ meet at $S, \angle C S H$ is an ext. \angle of $\triangle B C S$.)
(b) Prove lines $A G$ and $B K$ parallel.
(c) Prove the sum of the perpendiculars from H and L to $A B$ produced equal to $A B$.
(If \perp from H meets $B A$ produced at $Q, \triangle A H Q=\triangle A C D$.)
(d) Prove triangles $A F H, B E L$, and $C G K$ each equivalent to $A B C$.
(If $A F$ be taken as the base of $\triangle A F H$, its altitude is equal to $C D$.)
(e) Prove C, H, and L in the same straight line.
(Prove $C H$ and $C L$ in the same ${ }^{\circ}$ str. line.)
(f) Prove the square described upon the sum of $A C$ and $B C$ equivalent to the square described upon $A B$, plus 4 times $\triangle A B C$.
(Square $A C+B C$ by the rule of Algebra.)
(g) Prove the sum of angles $A F H, A H F, B E L$, and $B L E$ equal to a right angle.
($\angle A F H+\angle A H F=180^{\circ}-\angle F A H$.)
(h) If $F N$ and $E P$ are the perpendiculars from F and E, respectively, to $H A$ and $L B$ produced, prove triangles $A F N$ and $B E P$ each equal to $A B C$.
(i) Prove $\overline{E L}^{2}+\overline{F H}^{2}+\overline{G K}^{2}=6 \overline{A B}^{2}$.
($E L$ is the hypotenuse of rt. $\triangle E L P$, and $F H$ of $\triangle F H N$; sides $P L$ and $H N$ may be found by (h).)
(j) Prove $\overline{C F}^{2}-\overline{C E}^{2}=\overline{A C}^{2}-\overline{B C}^{2}$.
(k) Prove that lines $A L, B H$, and $C M$ meet at a common point. (Ex. 84, (a).)
(Produce $D C$ to T, making $C^{\prime} T=D M$, and prove $A L, B H$, and $C M$ the \sqrt{s} from the vertices to the opposite sides of $\triangle A B T$.)
(l) Prove that lines $H G, L K$, and $M C$ when produced meet at a common.point.
(Draw $G T$ and $K T$, and prove $\lfloor\subseteq C G T$ and $C K T$ rt. ©.)
85. If $B E$ and $C F$ are medians drawn from vertices B and C of triangle $A B C$, intersecting at D, prove triangle $B C D$ equivalent to quadrilateral $A E D F$.

$$
\text { (area } B C D=\text { area } B C F-\text { area } B D F .)
$$

86. If D is the middle point of side $B C$ of triangle $A B C, E$ the middle point of $A D, F$ of $B E$, and G of $C F$, prove $\triangle A B C$ equivalent to $8 \triangle E F G$.
(Draw $C E$; then, area $A B C=2$ area $B C E$. .)
87. If E and F are the middle points of sides $A B$ and $C D$, respectively, of parallelogram $A B C D$, and $A F$ and $C E$ be drawn intersecting $B D$ in H and L, respectively, and $B F$ and $D E$ intersecting $A C$ in K and G, respectively, prove $G H K L$ a parallelogram equivalent to $\frac{1}{9} A B C D$. (§ 140.)
(If $A C$ and $B D$ intersect at $M, A M$ and $D E$ are medians of $\triangle A B D$.)
88. Any quadrilateral $A B C D$ is equivalent to a triangle, two of whose sides are equal to diagonals $A C$ and $B D$, respectively, and include an angle equal to either of the angles between $A C$ and $B D$.
(Produce $A C$ to F, making $C F=A E$; and $B D$ to G, making $D G=B E$. To prove quadrilateral $A B C D \approx \triangle E F G . \quad \triangle D F G \approx \triangle A B C$.)

89. If through any point E in diagonal $A C$ of parallelogram $A B C D$ parallels to $A D$ and $A B$ be drawn, neeting $A B$ and $C D$ in F and H, respectively, and $B C$ and $A D$ in G and K, respectively, prove triangles $E F G$ and $E H K$
 equivalent.
90. If E is the intersection of diagonals $A C$ and $B D$ of a quadrilateral, and triangles $A B E$ and $C D E$ are equivalent, prove sides $A D$ and $B C$ parallel.
($\$ A B D$ and $A C D$ are equivalent.)
91. Find the area of a trapezoid whose parallel sides are 28 and 36 , and non-parallel sides 15 and 17 , respectively.
(By drawing through one vertex of the upper base a ll to one of the non-parallel sides, one \angle of the figure may be proved a rt. \angle, by Ex. 63, p. 154.)
92. If similar polygons be described upon the legs of a right triangle as homologous sides, the polygon described upon the hypotenuse is equivalent to the sum of the polygons described upon the legs.
(Find, by § 322, the ratio of the area of the polygon described upon each leg to the area of the polygon described upon the hypotenuse.)
93. If E, F, G, and H are the middle points of sides $A B, B C, C D$, and $D A$, respectively, of a square, prove that lines $A G, B H, C E$, and $D F$ form a square equivalent to $\frac{1}{5} A B C^{\prime} D$.
(First prove $\triangle A D G=\triangle A B H$; then, by $\S 85,1$, $\angle N K \dot{L}$ may be proved a rt. \angle. By § 131, each side of $K L M N$ may be proved equal to $A K$. From
 similar $\& A H K$ and $A D G, A K$ may be proved equal to $\frac{A D}{\sqrt{5}}$.)
94. If E is any point in side $B C$ of parallelogram $A B C D$, and $D E$ be drawn meeting $A B$ produced at F, prove triangles $A B E$ and $C E F$ equivalent.
$(\triangle A B E+\triangle C D E \approx \triangle C D F$.
95. If D is a point in side $A B$ of triangle $A B C$, find a point E in $A C$ such that triangle $A D E$ shall be equivalent to one-half triangle $A B C$.
$(\triangle D E F \approx \triangle C E F)$
What restriction is there on the position of D ?

BOOK V.

96. The area of the ring included between two concentric circles is equal to the area of a circle, whose diameter is that chord of the outer circle which is tangent to the inner.
(To prove area of ring $=\frac{1}{4} \pi \overline{A C}^{2}$.)

97. An equilateral polygon circumscribed about a circle is regular if the number of its sides is odd. (§ 345.)
(The polygon can be inscribed in a \odot.)
98. An equiangular polygon inscribed in a circle is regular if the number of its sides is odd. (§ 345.)
(The polygon can be proved equilateral.)
99. If a circle be circumscribed about a right triangle, and on each of its legs as a diameter a semicircle be described exterior to the triangle, the sum of the areas of the crescents thus formed is equal to the area of the triangle. ($\$ 272$.)
(To prove area $A E C G+$ area $B F C H$ equal to area $A B C$.)

100. If the radius of the circle is 1 , the side, apothem, and diagonal of a regular inscribed pentagon are, respectively,

$$
\frac{1}{2} \sqrt{ }(10-2 \sqrt{5}), \frac{1}{4}(1+\sqrt{5}), \text { and } \frac{1}{2} \sqrt{ }(10+2 \sqrt{5})
$$

(In Fig. of Prop. IX., the apothem of a regular inscribed pentagon is the distance from O to the foot of a \perp from B to $O A$, and its side is twice this \perp. The diagonal is a leg of a rt. Δ whose hypotenuse is a diameter, and whose other leg is a side of a regular inscribed décagon.)
101. The square of the side of a regular inscribed pentagon, minus the square of the side of a regular inscribed decagon, is equal to the square of the radius. (Ex. 100, and § 359.)
102. The sum of the perpendiculars drawn to the sides of a regular polygon from any point within the figure is equal to the apothem multiplied by the number of sides of the polygon.
(The $\stackrel{1 s}{ }$ are the altitudes of \mathbb{A} which make up the polygon.)
103. In a given equilateral triangle to inscribe three equal circles, tangent to each other, and each tangent to one, and only one, side of the triangle.
(By § 174, the © touch the is at the same points.)

104. In a given circle to inscribe three equal circles, tangent to each other and to the given circle.

SOLID GEOMETRY.

Book VI.

LINES AND PLANES IN SPACE. DIEDRAL ANGLES. POLYEDRAL ANGLES.

394. Def. A plane is said to be determined by certain lines or points when one plane, and only one, can be drawn through these lines or points.

Prop. I. Theorem.
395. A plane is determined
I. By a straight line and a point without the line.
II. By three points not in the same straight line.
III. By two intersecting straight lines.
IV. By two parallel straight lines.

I. Given point C without str. line $A B$.

To Prove that a plane is determined by $A B$ and C.
Proof. If any plane $M N$ be drawn through $A B$, it may be revolved about $A B$ as an axis until it contains point C.

Hence, a plane can be drawn through line $A B$ and point C; and it is evident that but one such plane can be drawn.

II. Given A, B, and C three points not in the same str. line.

To Prove that a plane is determined by A, B, and C.
Proof. Draw line $A B$; then a plane, and only one, can be drawn through line $A B$ and point C.
[A plane is determined by a str. line and a point without the line.] (§ $395, \mathrm{I}$)
Then, a plane, and only one, can be drawn through A, B, and C.

III. Given $A B$ and $B C$ intersecting str. lines.

To Prove that a plane is determined by $A B$ and $B C$.
Proof. A plane, and only one, can be drawn through line $A B$ and point C.
[A plane is determined by a str. line and a point without the line.] (§ 395, I)
And since this plane contains points B and C, it must contain line $B C$.
[A plane is a surface such that the str. line joining any two of its points lies entirely in the surface.]

Then, a plane, and only one, can be drawn through $A B$ and $B C$.

IV. Given $\|_{s} A B$ and $C D$.

To Prove that a plane is determined by $A B$ and $C D$.
Proof. The Ils $A B$ and $C D$ lie in the same plane.
[Two str. lines are said to be $\|$ when they lie in the same plane, and cannot meet however far they may be produced.]

And only one plane can be drawn through $A B$ and point C. [A plane is determined by a str. line and a point without the line.] (§ 395, I)
Then, a plane, and only one, can be drawn through $A B$ and $C D$.

Prop. II. Theorem.

396. The intersection of two planes is a straight line.

Given line $A B$ the intersection of planes $M N$ and $P Q$.
To Prove $A B$ a str. line.
Proof. Draw a str. line between points A and B.
This str. line lies in plane $M N$, and also in plane $P Q$.
[A plane is a surface such that the str. line joining any two of its points lies entirely in the surface.]

Then it must be the intersection of planes $M N$ and $P Q$.
Hence, the line of intersection $A B$ is a str. line.
397. Defs. If a straight line meets a plane, the point of intersection is called the foot of the line.

A straight line is said to be perpendicular to a plane when it is perpendicular to every straight line drawn in the plane through its foot.

A straight line is said to be parallel to a plane when it cannot meet the plane however far they may be produced.

A straight line which is neither perpendicular nor parallel to a plane, is said to be oblique to it.

Two planes are said to be parallel to each other when they cannot meet however far they may be produced.
398. Sch. The following is given for convenience of reference:

A perpendicular to a plane is perpendicular to every straight line drawn in the plane through its foot.

Prop. III. Theorem.

399. At a given point in a plane, one perpendicular to the plane can be drawn, and but one.

Given point P in plane $M N$.
To Prove that a \perp can be drawn to $M N$ at P, and but one.
Proof. At any point A of indefinite str. line $A B$, draw lines $A C$ and $A D \perp$ to $A B$.

Let $R S$ be the plane determined by $A C$ and $A D$.
Let $A E$ be any other str. line drawn through point A in plane $R S$; and draw line $C D$ intersecting $A C, A E$, and $A D$ at C, E, and D, respectively.

Produce $B A$ to B^{\prime}, making $A B^{\prime}=A B$, and draw lines $B C$, $B E, B D, B^{\prime} C, B^{\prime} E$, and $B^{\prime} D$.

In $\triangle B C D$ and $B^{\prime} C D$,

$$
C D=C D .
$$

And since $A C$ and $A D$ are \perp to $B B^{\prime}$ at its middle point,

$$
B C=B^{\prime} C \text { and } B D=B^{\prime} D .
$$

[If a \perp be erected at the middle point of a str. line, any point in the \perp is equally distant from the extremities of the line.] (§ 41, I)

$$
\therefore \triangle B C D=\triangle B^{\prime} C D .
$$

[Two s are equal when the three sides of one are equal respectively to the three sides of the other.]
(§69)
Now revolve $\triangle B C D$ about $C D$ as an axis until it coincides with $\triangle B^{\prime} C D$.

Then, point B will fall at point B^{\prime}, and line $B E$ will coincide with line $B^{\prime} E$; that is, $B E=B^{\prime} E$.

Hence, since points A and E are each equally distant from B and B^{\prime}, line $A E$ is $\perp B B^{\prime}$.
[Two points, each equally distant from the extremities of a str. line, determine a \perp at its middle point.]

But $A E$ is any str. line drawn through A in plane $R S$.
Then, $A B$ is \perp to every str. line drawn through A in plane $R S$.

Whence, $A B$ is \perp to plane $R S$.
[A str. line is said to be \perp to a plane when it is \perp to every str. line drawn in the plane through its foot.]
(§ 397)
Now apply plane $R S$ to plane $M N$ so that point A shall fall at point P; and let $A B$ take the position $P Q$.

Then, $P Q$ will be $\perp M N$.
Hence, a \perp can be drawn to $M N$ at P.
If possible, let $P T$ be another \perp to plane $M N$ at P; and let the plane determined by $P Q$ and $P T$ intersect $M N$ in line $H K$.

Then, both $P Q$ and $P T$ are $\perp H K$.
[A \perp to a plane is \perp to every str. line drawn in the plane through its foot.]
(§ 398)
But this is impossible; for, in plane $H K T$, only one \perp can be drawn to $H K$ at P.
[At a given point in a str. line, but one \perp to the line can be drawn.]
Then only one \perp can be drawn to $M N$ at P.
400. Cor. I. A straight line perpendicular to each of two - straight lines at their point of intersection is perpendicular to their plane.
401. Cor. I. Since E is any point in plane $R S$, it follows that

If a plane is perpendicular to a straight line at its middle point, any point in the plane is equally distant from the extremities of the line.

Prop. IV. Theorem.

402. All the perpendiculars to a straight line at a given point lie in a plane perpendicular to the line.

Given $A C, A D$, and $A E$ any three $1 s$ to line $A B$ at A.
To Prove that they lie in a plane \perp to $A B$.
Proof. Let $M N$ be the plane determined by $A C$ and $A D$. Then, plane $M N$ is $\perp A B$.
[A str. line \perp to each of two str. lines at their point of intersection is \perp to their plane.]

Let the plane determined by $A B$ and $A E$ intersect, $M N$ in line $A E^{\prime}$; then, $A B \perp A E^{\prime}$.
[A \perp to a plane is \perp to every str. line drawn in the plane through its foot.]
(§ 398)
But in plane $A B E$, only one \perp can be drawn to $A B$ at A.
[At a given point in a str. line, but one \perp to the line can be drawn.] (§ 25)
Then, $A E^{\prime}$ coincides with $A E$, and $A E$ lies in plane $M N$.
But $A C, A D$, and $A E$ are any three 1 s to $A B$ at A.
Therefore, all the 1 s to $A B$ at A lie in a plane $\perp A B$.
403. Cor. I. Through a given point in a straight line, a plane can be drawn perpendicalar to the line, and but one.
404. Cor. II. Through a given point without a straight line, a plane can be drawn perpendicular to the line, and but one.

Given point C without line $A B$.
To Prove that a plane can be drawn through $C \perp A B$, and but one.

Proof. Draw line $C B \perp A B$, and let $B D$ be any other \perp to $A B$ at B.

Then, the plane determined by $B C$ and $B D$ will be a plane drawn through $C \perp A B$.
[A str. line \perp to each of two str. lines at their point of intersection is \perp to their plane.]
(§ 400)
Again, every plane through $C \perp A B$ must intersect the plane determined by $A B$ and $B C$ in a line from $C \perp A B$.
[$A \perp$ to a plane is \perp to every str. line drawn in the plane through its foot.]
(§ 398)
But only one \perp can be drawn from C to $A B$.
[From a given point without a str. line, but one \perp can be drawn to the line.]

Then, every plane through $C \perp A B$ must contain $B C$, and be \perp to $A B$ at B.

But only one plane can be drawn through $B \perp A B$.
[Through a given point in a str. line, but one plane can be drawn \perp to the line.]
(§ 403)
Hence, but one plane can be drawn through $C \perp A B$.
405. Cor. III. (Converse of § 401.) Any point equally distant from the extremities of a straight line lies in a plane perpendicular to the line at its middle point.

Given plane $M N \perp$ to line $A B$ at its middle point C, and point D equally distant from A and B.

To Prove that D lies in $M N$.

(By § $43, C D \perp A B$; then use § 402.)

Note. It follows from $\S \S 401$ and 405 that
The locus (§141) of points in space equally distant from the extremities of a straight line is a plane perpendicular to the line at its middle point.
Prop. V. Theorem.
406. If from a point in a perpendicular to a plane, oblique lines be drawn to the plane,
I. Two oblique lines cutting off equal distances from the foot of the perpendicular are equal.
II. Of two oblique lines cutting off unequal distances from the foot of the perpendicular, the more remote is the greater.

I. Given line $A B \perp$ to plane $M N$ at B, and $A C$ and $A D$ oblique lines meeting $M N$ at equal distances from B.

To Prove $\quad A C=A D$.
Proof. Draw lines $B C$ and $B D$.
In \& $A B C$ and $A B D, A B=A B$.
Also,

$$
\angle A B C=\angle A B D
$$

[A \perp to a plane is \perp to every str. line drawn in the plane through its foot.]
(§ 398)
And by hyp.,

$$
B C=B D .
$$

$$
\therefore \triangle A B C=\triangle A B D .
$$

[Two \mathbb{A} are equal when two sides and the included \angle of one are equal respectively to two sides and the included \angle of the other.] (§ 63)

$$
\therefore A C=A D \text {. }
$$

[In equal figures, the homologous parts are equal.]
II. Given line $A B \perp$ to plane $M N$ at B, and $A C$ and $A E$ oblique lines from A to $M N, A E$ meeting $M N$ at a greater distance from B than $A C$.

To Prove $A E>A C$.
Proof. Draw lines $B C$ and $B E$.
On $B E$ take $B F=B C$, and draw line $A F$.
Since $A F$ and $A C$ meet $M N$ at equal distances from B,

$$
A F=A C .
$$

[If from a point in a \perp to a plane, oblique lines be drawn to the plane, two oblique lines cutting off equal distances from the foot of the \perp are equal.]

But,

$$
A B \perp B E .
$$

[$\mathbf{A} \perp$ to a plane is \perp to every str. line drawn in the plane through its foot.]

$$
\therefore A E>A F \text {. }
$$

[If oblique lines be drawn from a point to a str. line, of two oblique lines cutting off unequal distances from the foot of the \perp from the point to the line, the more remote is the greater.]
(§ 49, II)

$$
\therefore A E>A C .
$$

Prop. VI. Theorem.

407. (Converse of Prop. V.) If from a point in a perpendicular to a plane, oblique lines be drawn to the plane,
I. Two equal oblique lines cut off equal distances from the foot of the perpendicular.
II. Of two unequal oblique lines, the greater cuts off the greater distance from the foot of the perpendicular.
I. Given line $A B \perp$ to plane $M N$ at $B, A C$ and $A D$ equal oblique lines from A to $M N$, and lines $B C$ and $B D$. (Fig. of Prop. V.)

To Prove $B C=B D$.

(Prove \& $A B C$ and $A B D$ equal.)
II. Given line $A B \perp$ to plane $M N$ at B, and $A C$ and $A E$ oblique lines from A to $M N, A E$ being $>A C$; also, lines $B C$ and $B E$.

To Prove $\quad B E>B C$.
(The proof is left to the pupil.)
Prop. VII. Theorem.
408. If through the foot of a perpendicular to a plane a line be drawn at right angles to any line in the plane, the line drawn from its intersection with this line to any point in the perpendicular will be perpendicular to the line in the plane.

Given line $A B \perp$ to plane $M N$ at A, line $A E \perp$ to any line $C D$ in $M N$, and line $B E$ from E to any point B in $A B$.

To Prove

$$
B E \perp C D .
$$

Proof. On $C D$ take $E C=E D$.
Draw lines $A C, A D, B C$, and $B D$.

$$
\therefore A C=A D \text {. }
$$

[If a \perp be erected at the middle point of a str. line, any point in the \perp is equally distant from the extremities of the line.] (§ $41, \mathrm{I})$

$$
\therefore B C=B D \text {. }
$$

[If from a point in a \perp to a plane, oblique lines be drawn to the plane, two oblique lines cutting off equal distances from the foot of the \perp are equal.] (§ $406, \mathrm{I})$
Then since each of the points B and E is equally distant from C and D,

$$
B E \perp C D .
$$

[Two points, each equally distant from the extremities of a str. line, determine a \perp at its middle point.]
409. Cor. I. From a given point without a plane, one perpendicular to the plane can be drawn, and but one.

Given point A without plane $M N$.
To Prove that a \perp can be drawn from A to $M N$, and but one.

Proof. Let $D E$ be any line in plane $M N$; draw line $A F \perp D E$, line $B F$ in plane $M N \perp D E$, line
 $A B \perp B F$, and line $B E$.

Now $E F$ is \perp to the plane determined by $A F$ and $B F$.
[A str. line \perp to each of two str. lines at their point of intersection is \perp to their plane.]

Then since $B F$ is drawn through the foot of $E F, \perp$ to line $A B$ in plane $A B F$, we have $B E \perp A B$.
[If through the foot of a \perp to a plane a line be drawn at rt. \&s to any line in the plane, the line drawn from its intersection with this line to any point in the \perp will be \perp to the line in the plane.] (§ 408)

Then $A B$, being \perp to $B E$ and $B F$, is \perp to $M N$.
[A str. line \perp to each of two str. lines at their point of intersection is \perp to their plane.]
(§ 400)
If possible, let $A C$ be another \perp from A to $M N$; then $\triangle A B C$ will have two rt. \measuredangle.
[A \perp to a plane is \perp to every str. line drawn in the plane through its foot.]
(§ 398)
But this is impossible.
Hence, but one \perp can be drawn from A to $M N$.
410. Cor. II. The perpendicular is the shortest line that can be drawn from a point to a plane.

Given $A B$ the \perp from point A to plane $M N$, and $A C$ any other str. line from A to $M N$. (Fig. of § 409.)

To Prove $\quad A B<A C$.

Proof. Draw line $B C$; then, $A B \perp B C$.
[$A \perp$ to a plane is \perp to every str. line drawn in the plane through its foot.]

$$
\therefore A B<A C .
$$

[The \perp is the shortest line that can be drawn from a point to a str. line.]

Note. The distance of a point from a plane signifies the length of the perpendicular from the point to the plane.

Prop. VIII. Theorem.

411. If two straight lines are parallel, a plane drawn through one of them, not coinciding with the plane of the parallels, is parallel to the other.

Given line $A B \|$ to line $C D$, and plane $M N$ drawn through $C D$, not coinciding with the plane of the Ils.

To Prove
 $A B \| M N$.

Proof. The $\|_{s} A B$ and $C D$ lie in a plane which intersects $M N$ in line $C D$.

Hence, if $A B$ meets $M N$, it must be at some point of $C D$. But since $A B$ is $\| C D$, it cannot meet $C D$ (§ 52).
Then $A B$ and $M N$ cannot meet, and are ॥ (§397).

Prop. IX. Theorem.

412. If a straight line is parallel to a plane, the intersection of the plane with any plane drawn through the line is parallel to the line.

Given line $A B \|$ to plane $M N$; and line $C D$ the intersection of $M N$ with any plane $A D$ drawn through $A B$.

To Prove $A B \| C D$.

($A B$ and $C D$ lie in the same plane, and cannot meet.)
413. Cor. If a line and a plane are parallel, a parallel to the line through any point of the plane lies in the plane.

Given line $A B \|$ to plane $M N$; and line $C D$ through any point C of $M N \|$ to $A B$. (Fig. of Prop. IX.)

To Prove that $C D$ lies in $M N$.
Proof. The plane determined by line $A B$ and point C intersects $M N$ in a line $\|$ to $A B$.
[If a str. line is || to a plane, the intersection of the plane with any plane drawn through the line is || to the line.]

But through C, only one $\|$ can be drawn to $A B$.
[But one str. line can be drawn through a given point || to a given str. line.]

Whence, $C D$ lies in $M N$.

Prop. X. Theorem.

414. If two parallel planes are cut by a third plane, the intersections are parallel.

Given ॥ planes $M N$ and $P Q$ cut by plane $A D$ in lines $A B$ and $C D$, respectively.

To Prove $\quad A B \| C D$.
($A B$ and $C D$ lie in the same plane, and cannot meet.)
415. Cor. Parallel lines included between parallel planes are equal.

Given $A C$ and $B D \|$ lines included between $\|$ planes $M N$ and $P Q$. (Fig. of Prop. X.)
(Prove $A C=B D$ by $\S \S 414$ and 107.)

Prop. XI. Theorem.

416. Through any given straight line, a plane can be drawn parallel to any other straight line.

$$
A \longrightarrow B
$$

Given lines $A B$ and $C D$.
To Prove that a plane can be drawn through $C D \| A B$.
(Draw line $C E \| A B$; then use §411.)
Note. If $A B$ is $\| C D$, an indefinitely great number of planes can be drawn through $C D \| A B$ (§411); otherwise, bùt one such plane can be drawn, for every plane drawn through $C D \| A B$ must contain $C E$ (§413), and but one plane can be drawn through $C D$ and $C E$.

Prop. XII. Theorem.

417. Through a given point a plane can be drawn parallel to any two straight lines in space.

Given point A and lines $B C$ and $D E$.
To Prove that a plane can be drawn through $A \|$ to $B C$ and $D E$.
(The proof is left to the pupil; see § 411.)
Note. If $B C$ and $D E$ are $\|$, an indefinitely great number of planes can be drawn through $A \|$ to $B C$ and $D E$ ($\S 411$) ; otherwise, but one such plane can be drawn.

Prop. XIII. Theorem.
418. Two perpendiculars to the same plane are parallel.

- Given lines $A B$ and $C D \perp$ to plane $M N$ at B and D, respectively.

To Prove $\quad A B \| C D$.

Proof. Let A be any point of $A B$, and draw line $A D$.
Also, draw line $B D$, and line $D F$ in plane $M N \perp B D$.

$$
\therefore C D \perp D F .
$$

[$A \perp$ to a plane is \perp to every str. line drawn in the plane through its foot.]
(§ 398)
Also, $\quad A D \perp D F$.
[If through the foot of a \perp to a plane a line be drawn at rt. © to any line in the plane, the line drawn from its intersection with this line to any point in the \perp will be \perp to the line in the plane.] (§ 408)

Then, $C D, A D$, and $B D$, being \perp to $D F$ at D, lie in the same plane.
[All the $\stackrel{1}{ }$ to a str. line at a given point lie in a plane \perp to the line.]
(§ 402)
Then, since points A and B lie in the plane of the lines $A D, B D$, and $C D, A B$ lies in this plane.
[A plane is a surface such that the str. line joining any two of its points lies entirely in the surface.]

That is, $A B$ and $C D$ lie in the same plane.
Again, $A B$ and $C D$ are $\perp B D$.
[A \perp to a plane is \perp to every str. line drawn in the plane through its foot.]

$$
\begin{equation*}
\therefore A B \| C D . \tag{§54}
\end{equation*}
$$

[Two \&s to the same str. line are \|.]
419. Cor. I. If one of two parallel lines is perpendicular to a plane, the other is also perpendicular to the plane.

Given lines $A B$ and $C D \|$, and $A B \perp$ to plane $M N$.

To Prove $C D \perp M N$.
Proof. A \perp from C to $M N$ will be $\| A B$.

[Two لs to the same plane are \|.]
But through C, only one $\|$ can be drawn to $A B$.
[But one str. line can be drawn through a given point \| to a given str. line.]

$$
\therefore C D \perp M N .
$$

420. Cor. II. If each of two straight lines is parallel to a thirl straight line, they are parallel to each other.

Given lines $A B$ and $C D \|$ line $E F$.
To Prove $A B \| C D$.
(Draw plane $M N \perp E F$, and prove $A B \| C D$ by $\S \S 418$ and 419.)

Prop. XIV. Theorem.

421. Two planes perpendicular to the same straight line are parallel.

Given planes $M N$ and $P Q \perp$ to line $A B$.

To Prove
 $M N \| P Q$.

(Prove as in $\S 54$; by $\S 404$, but one plane can be drawn through a given point \perp to a given str. line.)

Prop. XV. Theorem.
422. If each of two intersecting lines is parallel to a plane, their plane is parallel to the given plane.

Given lines $A B$ and $A C$, in plane $M N, \|$ to plane $P Q$.
To Prove . $M N \| P Q$.
Proof. Draw line $A D \perp P Q$, and lines $D E$ and $D F \|$ to $A B$ and $A C$, respectively; then $D E$ and $D F$ lie in plane $P Q$.
[If a line and a plane are $\|$, a $\|$ to the line through any point of the plane lies in the plane.]

Whence, $A D$ is \perp to $D E$ and $D F$.
[$\mathrm{A} \perp$ to a plane is \perp to every str. line drawn in the plane through its foot.]
(§ 398)
Therefore, $A D$ is \perp to $A B$ and $A C$.
[A str. line \perp to one of two $\| \mathrm{s}$ is \perp to the other.]
$\therefore A D \perp M N$.
[A str. line \perp to each of two str. lines at their point of intersection is \perp to their plane.]

$$
\therefore M N \| P Q .
$$

[Two planes \perp to the same str. line are Il.]

EXERCISES.

1. What is the locus (§ 141) of the perpendiculars to a given straight line at a given point?
2. What is the locus of points in space equally distant from the circumference of a given circle ?
3. A line parallel to a plane is everywhere equally distant from it.
(Fig. of Prop. IX. Draw lines $A C$ and $B D \perp M N$. To prove $A C=B D$.)

Prop. XVI. Theorem.
423. A straight line perpendicular to one of two parallel planes is perpendicular to the other also.

Given $M N$ and $P Q \|$ planes, and line $A D \perp P Q$.
To Prove $A D \perp M N$.
Proof. Pass two planes through $A D$, intersecting $M N$ in lines $A B$ and $A C$, and $P Q$ in lines $D E$ and $D F$, respectively.

Then, $A B \| D E$, and $A C \| D F$.
[If two \|l planes are cut by a third plane, the intersections are \|.]
But $A D$ is \perp to $D E$ and $D F$.
[A \perp to a plane is \perp to every str. line drawn in the plane through its foot.]
(§ 398)
Whence, $A D$ is \perp to $A B$ and $A C$.
[A str. line \perp to one of two $\| s$ is \perp to the other.]

$$
\therefore A D \perp M N .
$$

[A str. line \perp to each of two str. lines at their point of intersection is \perp to their plane.]
424. Cor. I. Two parallel planes are everywhere equally distant. (Note, p. 244.)

Given $M N$ and $P Q \|$ planes. (Fig. of Prop. XVI.)
To Prove $M N$ and $P Q$ everywhere equally distant.
Proof. All lines which are \perp to both planes are II.
['Two $\sqrt{1 s}$ to the same plane are $\|$. .]
Therefore, these lines are all equal.
[|| lines included between || planes are equal.]
425. Cor. II. Through a given point a plane can be drawn parallel to a given plane, and but one.
Given point A and plane $P Q$.
To Prove that a plane can be drawn through $A \| P Q$, and but one.
Proof. Draw line $A B \perp P Q$.
Through A pass plane $M N \perp A B$.

Then $M N$ will be $\| P Q$.
[Two planes \perp to the same str. line are \|.]
If another plane could be drawn through $A \| P Q$, it would be $\perp A B$.
[A str. line \perp to one of two $\|$ planes is \perp to the other also.] (§ 423) It would then coincide with $M N$.
[Through a given point in a str. line, but one plane can be drawn \perp to the line.]

Then but one plane can be drawn through $A \| P Q$.

EXERCISES.

4. What is the locus of points in space equally distant from the vertices of a given triangle ?
5. What is the locus of points in space equally distant from a given plane ?
6. What is the locus of points in space equally distant from two parallel planes?
7. A line parallel to each of two intersecting planes is parallel to their intersection.
(Pass a plane through $A B \| P R$; then use § 412.)

8. If two planes are parallel to a third plane, they are parallel to each other. ($\$ 8423,421$.)
9. Line $A B$ is perpendicular to plane $M N$ at A. A line is drawn from A meeting any line $C D$ of plane $M N$ at E. If line $B E$ is perpendicular to $C D$, prove $A E$ perpendicular to $C D$.
(Fig. of Prop. VII.)

Prof. XVII. Theorem.

426. If two angles not in the same plane have their sides parallel and extending in the same direction, they are equal, and their planes are parallel.

Given $\subseteq B A C$ and $B^{\prime} A^{\prime} C^{\prime}$ in planes $M N$ and $P Q$, respectively, with $A B$ and $A C \|$ respectively to $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$, and extending in the same direction.

To Prove $\quad \angle B A C=\angle B^{\prime} A^{\prime} C^{\prime}$, and $M N \| P Q$.
Proof. Lay off $A B=A^{\prime} B^{\prime}$ and $A C=A^{\prime} C^{\prime}$, and draw lines $A A^{\prime}, B B^{\prime}, C C^{\prime}, B C$, and $B^{\prime} C^{\prime}$.

Then since $A B$ is equal and \|l to $A^{\prime} B^{\prime}, A B B^{\prime} A^{\prime}$ is a \square.
[If two sides of a quadrilateral are equal and $\|$, the figure is a \square.]
Whence, $A A^{\prime}$ is equal and $\|$ to $B B^{\prime}$.
[The opposite sides of a \square are equal.]
(§ 106, I)
Similarly, $A C C^{\prime} A^{\prime}$ is a \square, and $A A^{\prime}$ is equal and $\|$ to $C C^{\prime}$.
Then, $B B^{\prime}$ is equal and $\|$ to $C C^{\prime}$.
[If each of two str. lines is \| to a third str. line, they are \| to each other.]
(§ 420)
Whence, $B B^{\prime} C^{\prime \prime} C$ is a \square, and $B C=B^{\prime} C^{\prime}$.

$$
\therefore \triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime} .
$$

[Two \mathbb{A} are equal when the three sides of one are equal respectively to the three sides of the other.]

$$
\therefore \angle B A C=\angle B^{\prime} A^{\prime} C^{\prime} .
$$

[In equal figures, the homologous parts are equal.]
Again, lines $A B$ and $A C$ are $\|$ to plane $P Q$.
[If two str. lines are II, a plane drawn through one of them, not coinciding with the plane of the $\| \mathrm{s}$, is $\|$ to the other.]

$$
\therefore M N \| P Q \text {. }
$$

[If each of two intersecting lines is $\|$ to a plane, their plane is || to the given plane.]
(§ 422)
Prop. XVIII. Theorem.
427. If two straight lines are cut by three parallel planes, the corresponding segments are proportional.

Given \| planes $M N, P Q$, and $R S$ intersecting lines $A C$ and $A^{\prime} C^{\prime}$ in points A, B, C, and $A^{\prime}, B^{\prime}, C^{\prime}$, respectively.

To Prove

$$
\frac{A B}{B C}=\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}}
$$

Proof. Draw line $A C^{\prime \prime}$; and through $A C$ and $A C^{\prime \prime}$ pass a plane intersecting $P Q$ and $R S$ in lines $B D$ and $C C^{\prime}$, respectively.

$$
\therefore B D \| C C^{\prime} .
$$

[If two \| planes are cut by a third plane, the intersections are ॥.]

$$
\begin{equation*}
\therefore \frac{A B}{B C}=\frac{A D}{D C^{\prime}} \tag{§414}
\end{equation*}
$$

[A \|t to one side of a Δ divides the other two sides proportionally.]
In like manner, $\quad \frac{A D}{D C^{\prime \prime}}=\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}}$.
From (1) and (2),

$$
\begin{equation*}
\frac{A B}{B C}=\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}} \tag{2}
\end{equation*}
$$

[Things which are equal to the same thing, are equal to each other.] (Ax. 1)

DIEDRAL ANGLES.

DEFINITIONS.

428. A diedral angle is the amount of divergence of two planes which meet in a straight line.

The line of intersection of the planes is called the edge of the diedral angle, and the planes are called its faces.

Thus, in the diedral angle between planes $B D$ and $B F, B E$ is the edge, and $B D$ and $B F$ the faces.

A diedral angle may be designated by two letters on its edge; or, if several diedral angles have a common edge, by four letters, one in each face and two on the edge, the letters on the edge being named between the other two.

Thus, we may read the above diedral angle $B E$, or $A B E C$.
Two diedral angles are said to be adjacent when they have the same edge, and a common face between them ; as, $A B E C$ and $C B E D$.

Two diedral angles are said to be vertical when the faces of one are the extensions of the faces of the other.

429. A plane angle of a diedral angle is the angle between two straight lines drawn one in each face, perpendicular to the edge at the same point.

Thus, if lines $A B$ and $A C$ be drawn in faces $D E$ and $D F$, respectively, of diedral angle $D G$, perpendicular to $D G$ at $A, \angle B A C$ is a plane angle of the diedral angle.

430. Let $B A C$ and $B^{\prime} A^{\prime} C^{\prime \prime}$ (Fig. of $\S 429$) be plane $\angle s$ of diedral $\angle D G$; then, $A B \| A^{\prime} B^{\prime}$ and $A C \| A^{\prime} C^{\prime \prime}$.

$$
\therefore \angle B A C=\angle B^{\prime} A^{\prime} C^{\prime} .
$$

That is, all plane angles of a diedral angle are equal.
431. A plane perpendicular to the edge of a diedral angle intersects the faces in lines perpendicular to the edge (§ 398); hence, a plane perpendicular to the edge of a diedral angle intersects the faces in lines which include the plane angle of the diedral angle (§ 429).
432. Two diedral angles are equal when their faces may be made to coincide.

Prop. XIX. Theorem.

433. Two diedral angles are equal if their plane angles are equal.

Given $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ plane \measuredangle of diedral $\measuredangle B D$ and $B^{\prime} D^{\prime}$, respectively, and $\angle A B C=\angle A^{\prime} B^{\prime} C^{\prime \prime}$.

To Prove diedral $\angle B D=$ diedral $\angle B^{\prime} D^{\prime}$.
Proof. Apply diedral $\angle B^{\prime} D^{\prime}$ to $B D$ in such a way that $A^{\prime} B^{\prime}$ shall coincide with $A B$, and $B^{\prime} C^{\prime}$ with $B C$.

Now $B D$ and $B^{\prime} D^{\prime}$ are \perp to the planes of $\measuredangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, respectively. (§ 400)
Whence, $B^{\prime} D^{\prime}$ will coincide with $B D$.
Then, $A^{\prime} D^{\prime}$ will coincide with $A D$, and $C^{\prime \prime} D^{\prime}$ with $C D$. (§ 395, III)
Hence, $B^{\prime} D^{\prime}$ and $B D$ are equal. (§ 432)
434. Cor. I. (Converse of Prop. XIX.) If two diedral angles are equal, their plane angles are equal. (Fig. of Prop. XIX.)
(Apply $B^{\prime} D^{\prime}$ to $B D$ so that face $A^{\prime} D^{\prime}$ shall coincide with $A D$, and $C^{\prime} D^{\prime}$ with $C D$, point B^{\prime} falling at B.)
435. Cor. II. If two planes intersect, the vertical diedral angles are equal.

For their plane angles are equal.
436. Defs. If a plane meets another plane in such a way as to make the adjacent diedral angles equal, each is called a right diedral angle, and the planes are said to be perpendicular to each other.

Thus, if plane $P Q$ be drawn meeting plane $M N$ in such a way as to make diedral $\triangle P P R Q M$ and $P R Q N$ equal, each of these is a right diedral \angle, and $M N$ and $P Q$ are \perp to each other.

Prop. XX. Theorem.

437. Through a given line in a plane, a plane can be drawn perpendicular to the given plane, and but one.

(Prove as in § 25.)

Prop. XXI. Theorem.

438. If two planes are perpendicular to each other, a straight line drawn in one of them perpendicular to their intersection is perpendicular to the other.

Given planes $P Q$ and $M N \perp$, intersecting in line $Q R$, and line $A B$ in plane $P Q \perp Q R$.

To Prove $A B \perp M N$.

Proof. Draw line $C^{\prime} B C^{\prime}$ in plane $M N \perp Q R$.
Then, $A B C$ and $A B C^{\prime}$ are plane \measuredangle of diedral $\angle P R Q N$ and PRQM, respectively.

Now, if two planes are \perp to each other, the adj. diedral \measuredangle are equal (§ 436).

That is, diedral $\angle P R Q N=$ diedral $\angle P R Q M$.

$$
\therefore \angle A B C=\angle A B C^{\prime} .
$$

Whence, $\angle A B C$ is a rt. \angle.
Then $A B$, being \perp to $B C$ and $B Q$ at B, is $\perp M N$. (§ 400)
439. Cor. I. If two planes are perpendicular to each other, a perpendicular to one of them at any point of their intersection lies in the other.

Given planes $P Q$ and $M N \perp$, intersecting in line $Q R$, and line $A B$ drawn from any point B of $Q R \perp M N$. (Fig. of Prop. XXI.)

To Prove that $A B$ lies in $P Q$.
Proof. If a line be drawn in $P Q$ from point $B \perp Q R$, it will be $\perp M N$.

But from point B but one \perp can be drawn to $M N$. (§ 399)
Therefore, $A B$ lies in $P Q$.
440. Cor. II. If two planes are perpendicular to each other, a perpendicular to one of them from any point of the other lies in the other.

Given planes $P Q$ and $M N \perp$, intersecting in line $Q R$, and line $A B$ drawn from any point A of $P Q \perp M N$. (Fig. of Prop. XXI.)

To Prove that $A B$ lies in $P Q$.
(The proof is left to the pupil.)

Prop. XXII. Theorem.

441. If a straight line is perpendicular to a plane, every plane drawn through the line is perpendicular to the plane.

Given line $A B \perp$ plane $M N$, and $P Q$ any plane drawn through $A B$.

To Prove $P Q \perp M N$.

Proof. Let line $Q R$ be the intersection of $P Q$ and $M N$, and draw line $C^{\prime} B C$ in plane $M N \perp Q R$.

We have

$$
\begin{equation*}
A B \perp B Q . \tag{§398}
\end{equation*}
$$

Then, $\measuredangle A B C$ and $A B C^{\prime}$ are plane $\angle s$ of diedral $\measuredangle P R Q N$ and PRQM, respectively.

But $\measuredangle A B C$ and $A B C^{\prime}$ are r.t. غs.

$$
\therefore \angle A B C=\angle A B C^{\prime} .
$$

$$
\begin{array}{cc}
\therefore \text { diedral } \angle P R Q N=\text { diedral } \angle P R Q M . & (\S 433) \\
\therefore P Q \perp M N . & (\S 436)
\end{array}
$$

Prop. XXIII. Theorem.
442. A plane perpendicular to each of two intersecting planes is perpendicular to their intersection.

Given planes $P Q$ and $R S \perp$ to plane $M N$, and intersecting in line $A B$.

To Prove $\quad A B \perp M N$.

(By $\S 439$, a \perp to $M N$ at B lies in both $P Q$ and $R S$.)

Pror. XXIV. Theorem.

443. Every point in the bisecting plane of a diedral angle is equally distant from its faces.

Given P any point in bisecting plane $B E$ of diedral $\angle A B D C$, and lines $P M$ and $P N \perp$ to $A D$ and $C D$, respectively.

To Prove

$$
P M=P N
$$

Proof. Let the plane determined by $P M$ and $P N$ intersect planes $A D, B E$, and $C D$ in lines $F M, F P$, and $F N$, respectively.

Plane PMFN is \perp to planes $A D$ and $C D$.
Then, plane $P M F N$ is $\perp B D$.
Whence, $P F M$ and $P F N$ are plane \measuredangle of diedral $\measuredangle A B D E$ and $C B D E$, respectively.

$$
\begin{equation*}
\therefore \angle P F M=\angle P F N \tag{§431}
\end{equation*}
$$

In $\subseteq P F M$ and $P F N, P F=P F$.

$$
\begin{align*}
& \text { And, } \angle P F M=\angle P F N . \\
& \text { Also, } \angle P M F \text { and } P N F \text { are rt. } \angle . \tag{§398}\\
& \therefore \triangle P F M=\triangle P F N . \\
& \therefore P M=P N . \tag{?}
\end{align*}
$$

444. Cor. I. (Converse of Prop. XXIV.) Any point which is within a diedral angle, and equally distant from its faces, lies in the bisecting plane of the diedral angle.

Given point P within diedral $\angle A B D C$, equally distant from $A D$ and $C D$, and plane $B E$ determined by $B D$ and P. (Fig. of Prop. XXIV.)

To Prove that $B E$ bisects diedral $\angle A B D C$.
(Prove $\triangle P F M$ and $P F N$ equal; then $\angle P F M=\angle P F N$, and the theorem follows by $\S 433$.)
445. Cor. II. It follows from §§ 443 and 444 that

The locus of points in space equally distant from the faces of a diedral angle is the plane bisecting the diedral angle.

Prop. XXV. Theorem.

446. Through a given straight line without a plane, a plane can be drawn perpendicular to the given plane, and but one.

Given line $A B$ without plane $M N$.
To Prove that a plane can be drawn through $A B \perp M N$, and but one.

Proof. Draw line $A C \perp M N$, and let $A D$ be the plane determined by $A B$ and $A C$; then, $A D \perp M N$. (§ 441)
If more than one plane could be drawn through $A B \perp M N$, their common intersection, $A B$, would be $\perp M N$. (§ 442)

Hence, but one plane can be drawn through $A B \perp M N$, unless $A B$ is $\perp M N$.

Note. If line $A B$ is $\perp M N$, an indefinitely great number of planes can be drawn through $A B \perp M N(\S 441)$.
447. Defs. The projection of a point on a plane is the foot of the perpendicular drawn from the point to the plane.

The projection of a line on a plane is the line which contains the projections of all its points.
448. Cor. The projection of a straight line on a plane is a straight line.

Given line $C D$ the projection ($\S 447$) of str. line $A B$ on plane MN. (Fig. of Prop. XXV.)

To Prove $C D$ a str. line.
Proof. Draw a plane through $A B \perp M N$.
The ls to $M N$ from all points of $A B$ will lie in this plane.

Therefore, $C D$ is a str. line.

Prop. XXVI. Theorem.

449. The angle between a straight line and its projection on a plane is the least angle which it makes with any line drawn in the plane through its foot.

Given line $B C$ the projection of line $A B$ on plane $M N$, and $B D$ any other line drawn through B in $M N$.

To Prove $\quad \angle A B C<\angle A B D$.
Proof. Lay off $B D=B C$, and draw lines $A C$ and $A D$.
In \& $A B C$ and $A B D, A B=A B$.
$\begin{array}{ll}\text { And by hyp., } & B C=B D . \\ \text { Also, } & A C<A D .\end{array}$

$$
\therefore \angle A B C<\angle A B D .
$$

Note. $\angle A B C$ is called the angle between line $A B$ and plane $M N$.

Prop. XXVII. Theorem.

450. Two straight lines, not in the same plane, have one common perpendicular, and but one; and this line is the shortest line that can be drawn between them.

Given lines $A B$ and $C D$, not in the same plane.
To Prove that one common \perp to $A B$ and $C D$ can be drawn, and but one; and that this line is the shortest line that can be drawn between $A B$ and $C D$.

Proof. Through $C D$ draw plane $M N \| A B$.
Through $A B$ draw plane $A H \perp M N$, and produce their intersection to meet $C D$ at G.
(§ 446)
Draw line $A G$ in plane $A H \perp G H$; then, $A G \perp M N$.

$$
\begin{align*}
\therefore & A G \perp C D . \\
& G H \| A B . \\
\therefore & A G \perp A B .
\end{align*}
$$

Also,

Then, $A G$ is a common \perp to $A B$ and $C D$.
If possible, let $E K$ be another common \perp to $A B$ and $C D$, and draw line $E F \| A B$, and line $K L$ in plane $A H \perp G H$.

Then, $E F$ lies in plane $M N$.
Also, $E K$ is \perp to $E D$ and $E F$.
Whence, $E K$ is $\perp M N$.
But $K L$ is also $\perp M N$. (§ 438)
We should then have two d from K to $M N$, which is impossible.
(§ 409)
Hence, but one common \perp can be drawn to $A B$ and $C D$.
Again, $\quad E K>K L$.
(§ 410)

$$
\begin{equation*}
\therefore E K>A G . \tag{§80}
\end{equation*}
$$

Hence, $A G$ is the shortest line between $A B$ and $C D$.

Prop. XXVIII. Theorem.

451. Two diedral angles are to each other as their plane angles.

Case I. When the plane angles are commensurable.

Given $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, plane \measuredangle of diedral $\measuredangle A B D C$ and $A^{\prime} B^{\prime} D^{\prime} C^{\prime}$, respectively, and commensurable.

To Prove $\quad \frac{A B D C}{A^{\prime} B^{\prime} D^{\prime} C^{\prime}}=\frac{\angle A B C}{\angle A^{\prime} B^{\prime} C^{\prime \prime}}$.
Proof. Let $\angle A B E$ be a common measure of $\measuredangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$; and suppose it to be contained 4 times in $\angle A B C$ and 3 times in $\angle A^{\prime} B^{\prime} C^{\prime \prime}$.

$$
\begin{equation*}
\therefore \frac{\angle A B C}{\angle A^{\prime} B^{\prime} C^{\prime}}=\frac{4}{3} . \tag{1}
\end{equation*}
$$

Passing planes through edges $B D$ and $B^{\prime} D^{\prime}$, and the several lines of division of $\angle S A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, respectively, diedral $\angle A B D C$ will be divided into 4 parts, and diedral $\angle A^{\prime} B^{\prime} D^{\prime} C^{\prime}$ into 3 parts, all of which parts are equal. (§ 433)

$$
\begin{gather*}
\therefore \frac{A B D C}{A^{\prime} B^{\prime} D^{\prime} C^{\prime}}=\frac{4}{3} . \tag{2}\\
\text { From (1) and (2), } \frac{A B D C}{A^{\prime} B^{\prime} D^{\prime} C^{\prime}}=\frac{\angle A B C}{\angle A^{\prime} B^{\prime} C^{\prime}} . \tag{?}
\end{gather*}
$$

Case II. When the plane angles are incommensurable.

Given $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ plane $\angle s$ of diedral $\angle s A B D C$ and $A^{\prime} B^{\prime} D^{\prime} C^{\prime}$, respectively, and incommensurable.

To Prove $\quad \frac{A B D C}{A^{\prime} B^{\prime} D^{\prime} C^{\prime}}=\frac{\angle A B C}{\angle A^{\prime} B^{\prime} C^{\prime}}$.
Proof. Let $\angle A B C$ be divided into any number of equal parts, and let one of these parts be applied to $\angle A^{\prime} B^{\prime} C^{\prime \prime}$ as a unit of measure.

Since $\angle S A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are incommensurable, a certain number of the parts will extend from $A^{\prime} B^{\prime}$ to $B^{\prime} E$, leaving a remainder $\angle E B^{\prime} C^{\prime \prime}<$ one of the equal parts.

Pass a plane through $B^{\prime} D^{\prime}$ and $B^{\prime} E$; then since the plane \measuredangle of diedral $\measuredangle A^{\prime} B^{\prime} D^{\prime} E$ and $A B D C$ are commensurable,

$$
\frac{A B D C}{A^{\prime} B^{\prime} D^{\prime} E}=\frac{\angle A B C}{\angle A^{\prime} B^{\prime} E} . \quad(\S 451, \text { Case } \mathrm{I})
$$

Now let the number of subdivisions of $\angle A B C$ be indefinitely increased.

Then the unit of measure will be indefinitely diminished, and the remainder $\angle E B^{\prime} C^{\prime \prime}$ will approach the limit 0 .

Then $\frac{A B D C}{A^{\prime} B^{\prime} D^{\prime} E}$ will approach the limit $\frac{A B D C}{A^{\prime} B^{\prime} D^{\prime} C^{\prime}}$,
and $\frac{\angle A B C}{\angle A^{\prime} B^{\prime} E}$ will approach the limit $\frac{\angle A B C}{\angle A^{\prime} B^{\prime} C^{\prime}}$.
By the Theorem of Limits, these limits are equal. (§ 188)

$$
\therefore \frac{A B D C}{A^{\prime} B^{\prime} D^{\prime} C^{\prime \prime}}=\frac{\angle A B C}{\angle A^{\prime} B^{\prime} C^{\prime}} .
$$

Note. It follows from § 451 that the plane angle may be taken as the measure of the diedral angle; thus, if the plane angle coutains n degrees, the diedral angle may be regarded as being of n degrees.

EXERCISES.

10. A straight line and a plane perpendicular to the same straight line are parallel.
(Fig. of Prop. IX. Let plane determined by $A B$ and $A C$ intersect $M N$ in $C D$.)
11. If two planes are parallel, a line parallel to one of them through any point of the other lies in the other.
(Fig. of Prop. X. Given planes $M N$ and $P Q \|$, and $A B$ through any point A of $M N \| P Q$. Prove that $A B$ lies in $M N$ by $\S 413$.)
12. If a straight line is parallel to a plane, any plane perpendicular to the line is perpendicular to the plane.
(Draw line $C D \perp Q R$, and prove it $\perp M N$.)

13. If two parallels meet a plane, they make equal angles with it.
(Given $A B \| C D$; to prove $\angle A B A^{\prime}=\angle C D C^{\prime}$.)

14. If a straight line intersects two parallel planes, it makes equal angles with them.
15. The angle between perpendiculars to the faces of a diedral angle from any point within the angle is the supplement of its plane angle.
(Prove $\angle B D C$ the plane \angle of diedral $\angle P Q R S$.)

16. If each of two intersecting planes be cut by two parallel planes, not parallel to their intersection, their intersections with the parallel planes include equal angles.
(To prove $\angle A B C=\angle D E F$.)

POLYEDRAL ANGLES. DEFINITIONS.

452. A polyedral angle is a figure composed of three or more triangles, called faces, having for their bases the sides of a polygon, and for their common vertex a point without its plane; as $O-A B C D$.

The common vertex, O, is called the vertex of the polyedral angle, and the polygon, $A B C D$, the base; the vertical angles of the
 triangles, $A O B, B O C$, etc., are called the face angles, and their sides, $O A, O B$, etc., the edges.

Note. The polyedral angle is not regarded as limited by the base ; thus, the face $A O B$ is understood to mean the indefinite plane between the edges $O A$ and $O B$ produced indefinitely.

A triedral angle is a polyedral angle of three faces.
Two polyedral angles are called vertical when the edges of one are the prolongations of the edges of the other.
453. A polyedral angle is called convex when its base is a convex polygon (§ 121).
454. Two polyedral angles are equal when they can be applied to each other so that their faces shall coincide.
455. Two polyedral angles are said to be symmetrical when the face and diedral angles of one are equal respectively to the homologous face and diedral angles of the other, if the equal parts occur in the reverse order.

Thus, if face $\llcorner\triangle A O B, B O C$, and $C O A$ are equal respectively to face $\triangle A^{\prime} O^{\prime} B^{\prime}, B^{\prime} O^{\prime} C^{\prime}$, and $C^{\prime} O^{\prime} A^{\prime}$, and diedral $\leftrightarrows O A, O B$, and $O C$ to diedral $\measuredangle O^{\prime} A^{\prime}, O^{\prime} B^{\prime}$, and $O^{\prime} C^{\prime}$, triedral $\angle O-A B C$ and $O^{\prime}-A^{\prime} B^{\prime} C^{\prime \prime}$ are symmetrical.

It is evident that, in general, two symmetrical polyedral angles cannot be placed so that their faces shall coincide.

Prop. XXIX. Theorem.

456. Two vertical polyedral angles are symmetrical.

Fig. 1.

Fig. 2.

Given $O-A B C$ and $O-A^{\prime} B^{\prime} C^{\prime \prime}$ (Fig. 1) vertical triedral \angle.
To Prove $O-A B C$ and $O-A^{\prime} B^{\prime} C^{\prime \prime}$ symmetrical.
Proof. Face $\angle A O B, B O C$, etc., are equal, respectively, to face $\unrhd^{\&} A^{\prime} O B^{\prime}, B^{\prime} O C^{\prime \prime}$, etc.

Again, diedral $\measuredangle O A$ and $O A^{\prime}$ are vertical ; for $A O B$ and $A^{\prime} O B^{\prime}$ are portions of the same plane, as also are $A O C$ and $A^{\prime} O C^{\prime}$; in like manner, diedral $\angle S O B$ and $O B^{\prime}$ are vertical; etc.

Then, diedral $\subseteq O A, O B$, etc., are equal, respectively, to diedral $\angle s O A^{\prime}, O B^{\prime}$, etc.
(§ 435)
But the equal parts of the triedral $\angle s$ occur in the reverse order; as may be seen by conceiving $O-A^{\prime} B^{\prime} C^{\prime \prime}$ moved $\|$ to itself to the right, and then revolved, as shown in Fig. 2, about an axis passing through O, until face $O A^{\prime} C^{\prime}$ comes into the same plane as before; edge $O B^{\prime}$ being on this side of, instead of beyond, plane $O A^{\prime} C^{\prime}$.

Hence, $O-A B C$ and $O-A^{\prime} B^{\prime} C^{\prime \prime}$ are symmetrical (§455).
In like manner, the theorem may be proved for any two polyedral $<$ s.

Ex. 17. If two parallel planes are cut by a third plane, the al-ternate-interior diedral angles are equal.
(Prove the plane \mathbb{s} of the alt.-int. diedral $\stackrel{s}{s}$ equal.)

Prop. XXX. Theorem.

457. The sum of any two face angles of a triedral angle is greater than the third.

Note. The theorem requires proof only in the case where the third face angle is greater than either of the others.

Given in triedral $\angle O-A B C$, face $\angle A O C>$ face $\angle A O B$ or face $\angle B O C$.

To Prove $\quad \angle A O B+\angle B O C>\angle A O C$.
Proof. In face $A O C$ draw line $O D$ equal to $O B$, making $\angle A O D=\angle A O B$; and through B and D pass a plane cutting the faces of the triedral \angle in lines $A B, B C$, and $C A$, respectively.

In $\triangle A O B$ and $A O D, O A=O A$.
And by cons.,

$$
O B=O D,
$$

and

$$
\angle A O B=\angle A O D
$$

$$
\begin{equation*}
\therefore \triangle A O B=\triangle A O D . \tag{?}
\end{equation*}
$$

$$
\begin{equation*}
\therefore A B=A D . \tag{?}
\end{equation*}
$$

Now, $\quad A B+B C>A D+D C$.
Or, since $A B=A D, \quad B C>D C$.
Then, in $\triangle B O C$ and $C O D, O C=O C$.

Also, $\quad O B=O D$, and $B C>D C$.

$$
\therefore \angle B O C>\angle C O D .
$$

Adding $\angle A O B$ to the first member of this inequality, and its equąl $\angle A O D$ to the second member, we have

$$
\begin{aligned}
& \angle A O B+\angle B O C>\angle A O D+\angle C O D . \\
\therefore & \angle A O B+\angle B O C>\angle A O C .
\end{aligned}
$$

Prop. XXXI. Theorem.
458. The sum of the face angles of any convex polyedral angle is less than four right angles.

Given $O-A B C D E$ a convex polyedral \angle.
To Prove $\angle A O B+\angle B O C+$ etc. $<4 \mathrm{rt} . \angle \mathrm{s}$.
Proof. Let $A B C D E$ be the base of the polyedral \angle. Let O^{\prime} be any point within polygon $A B C D E$, and draw lines $O^{\prime} A, O^{\prime} B, O^{\prime} C, O^{\prime} D$, and $O^{\prime} E$.

Then, in triedral $\angle A-E O B$,

$$
\angle O A E+\angle O A B>\angle O^{\prime} A E+\angle O^{\prime} A B .
$$

Also, $\angle O B A+\angle O B C>\angle O^{\prime} B A+\angle O^{\prime} B C$; etc.
Adding these inequalities, we have the sum of the base \angle of the \triangle whose common vertex is $O>$ the sum of the base \measuredangle of the \triangle whose common vertex is O^{\prime}.

But the sum of all the \mathbb{S} of the \mathbb{S} whose common vertex is O is equal to the sum of all the $\measuredangle \Delta$ of the Δ whose common vertex is O^{\prime}.

Hence, the sum of the \measuredangle at O is $<$ the sum of the \measuredangle at O^{\prime}. Then, the sum of the $\angle s$ at O is $<4 \mathrm{rt} . \angle \mathrm{s}$.

Prop. XXXII. Theorem.

459. If two triedral angles have the face angles of one equal respectively to the face angles of the other, their homologous diedral angles are equal.

Fig. 1.

Fig. 2.

Fig. 3.

Given, in triedral $\left\llcorner O-A B C\right.$ and $O^{\prime}-A^{\prime} B^{\prime} C^{\prime \prime}$,

$$
\begin{gathered}
\angle A O B=\angle A^{\prime} O^{\prime} B^{\prime}, \angle B O C=\angle B^{\prime} O^{\prime} C^{\prime}, \\
\text { and } \angle C O A=\angle C^{\prime} O^{\prime} A^{\prime} .
\end{gathered}
$$

To Prove diedral $\angle O A=$ diedral $\angle O^{\prime} A^{\prime}$.
Proof. Lay off $O A, O B, O C, O^{\prime} A^{\prime}, O^{\prime} B^{\prime}$, and $O^{\prime} C^{\prime}$ all equal, and draw lines $A B, B C, C A, A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and $C^{\prime} A^{\prime}$.

$$
\begin{align*}
\therefore \triangle O A B & =\triangle O^{\prime} A^{\prime} B^{\prime} . \\
\therefore A B & =A^{\prime} B^{\prime} .
\end{align*}
$$

Similarly, $\quad B C=B^{\prime} C^{\prime \prime}$ and $C A=C^{\prime \prime} A^{\prime}$.

$$
\begin{align*}
\therefore \triangle A B C & =\triangle A^{\prime} B^{\prime} C^{\prime} . \tag{§69}\\
\therefore \angle E A F & =\angle E^{\prime} A^{\prime} F^{\prime \prime} . \tag{?}
\end{align*}
$$

On $O A$ and $O^{\prime} A^{\prime}$ take $A D=A^{\prime} D^{\prime}$.
Draw line $D E$ in face $O A B \perp O A$.
Since $\triangle O A B$ is isosceles, $\angle O A B$ is acute, and hence $D E$ will meet $A B$; let it meet $A B$ at E.

Also, draw line $D F$ in face $O A C \perp O A$, meeting $A C$ at F; and lines $D^{\prime} E^{\prime}$ and $D^{\prime} F^{\prime \prime}$ in faces $O^{\prime} A^{\prime} B^{\prime}$ and $O^{\prime} A^{\prime} C^{\prime} \perp O^{\prime} A^{\prime}$, meeting $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime \prime}$ at E^{\prime} and F^{\prime}, respectively.

Draw lines $E F$ and $E^{\prime} F^{\prime \prime}$.
Then, in rt. $\triangle A D E$ and $A^{\prime} D^{\prime} E^{\prime}$,

$$
A D=A^{\prime} D^{\prime}
$$

And since

$$
\begin{align*}
\triangle O A B & =\triangle O^{\prime} A^{\prime} B^{\prime} \\
\angle D A E & =\angle D^{\prime} A^{\prime} E^{\prime} \tag{?}\\
\therefore \triangle A D E & =\triangle A^{\prime} D^{\prime} E^{\prime}
\end{align*}
$$

$$
\begin{equation*}
\therefore A E=A^{\prime} E^{\prime} \text {, and } D E=D^{\prime} E^{\prime} . \tag{?}
\end{equation*}
$$

Similarly, $\quad A F=A^{\prime} F^{\prime \prime}$, and $D F=D^{\prime} F^{\prime}$.
Then, in $\mathbb{Q} A E F$ and $A^{\prime} E^{\prime} F^{\prime \prime}$,

$$
\begin{gather*}
A E=A^{\prime} E^{\prime}, A F=A^{\prime} F^{\prime}, \text { and } \angle E A F=\angle E^{\prime} A^{\prime} F^{\prime} . \\
\therefore \triangle A E F=\triangle A^{\prime} E^{\prime} F^{\prime \prime} . \tag{?}\\
\therefore E F=E^{\prime} F^{\prime} . \tag{?}
\end{gather*}
$$

Then, in $\triangle D E F$ and $D^{\prime} E^{\prime} F^{\prime}$,

$$
\begin{gather*}
D E=D^{\prime} E^{\prime}, D F=D^{\prime} F^{\prime}, \text { and } E F=E^{\prime} F^{\prime} . \\
\therefore \triangle D E F=\triangle D^{\prime} E^{\prime} F^{\prime \prime} \tag{?}\\
\therefore \angle E D F=\angle E^{\prime} D^{\prime} F^{\prime} \tag{?}
\end{gather*}
$$

But, $E D F$ and $E^{\prime} D^{\prime} F^{\prime}$ are the plane \measuredangle of diedral $\measuredangle O A$ and $O^{\prime} A^{\prime}$, respectively.

$$
\therefore \text { diedral } \angle O A=\text { diedral } \angle O^{\prime} A^{\prime} .
$$

Note. The above proof holds for Fig. 3 as well as for Fig. 2; in Figs. 1 and 2, the equal parts occur in the same order, and in Figs. 1 and 3 in the reverse order.
460. Cor. If two triedral angles have the face angles of one equal respectively to the face angles of the other;

1. They are equal if the equal parts occur in the same order.

For if triedral $\angle O^{\prime}-A^{\prime} B^{\prime} C^{\prime \prime}$ (Fig. 2) be applied to $O-A B C$ so that diedral $\left\lfloor O^{\prime} A^{\prime}\right.$ and $O A$ coincide, point O^{\prime} falling at O, then since $\angle A^{\prime} O^{\prime} C^{\prime}=\angle A O C$, and $\angle A^{\prime} O^{\prime} B^{\prime}=\angle A O B$, $O^{\prime} B^{\prime}$ will coincide with $O B$, and $O^{\prime} C^{\prime}$ with $O C$.
2. They are symmetrical if the equal parts occur in the reverse order.

EXERCISES.

18. If $B C$ is the projection of line $A B$ upon plane $M N$, and $B D$ and $B E$ be drawn in the plane making $\angle C B D=\angle C B E$, prove $\angle A B D=\angle A B E$.
(Lay off $B D=B E$, and draw lines $A D, A E$, $C D$, and $C E$. Prove © $A B D$ and $A B E$ equal.)

19. If a plane be drawn through a diagonal of a parallelogram, the perpendiculars to it from the extremities of the other diagonal are equal.
(Given plane $E F$ through diagonal $A C$ of $\square A B C D$; to prove $B G=D H$. Prove rt. $\triangle B G O^{\mathrm{E}}$ and DHO equal.)

20. Two triedral angles are equal when a face angle and the adjacent diedral angles of one are equal respectively to a face angle and the adjacent diedral angles of the other, and similarly placed.
21. D is any point in perpendicular $A F$ from A to side $B C$ of triangle $A B C$. If line $D E$ be drawn perpendicular to the plane of $A B C$, and line $G H$ through E parallel to $B C$, prove line $A E$ perpendicular to $G H$.
(Prove $B C \perp$ to plane $A E D$ by § 438.)
22. A is any point in face $E G$ of diedral $\angle D E F G$. If $A C$ be drawn perpendicular to edge $E F$, and $A B$ perpendicular to face $D F$, prove the plane determined by $A C$ and $B C$ perpendicular to $E F$. (Ex. 9.)

23. From any point E within diedral $\angle C A B D$, $E F$ and $E G$ are drawn perpendicular to faces $A B C$ and $A B D$, respectively, and $G H$ perpendicular to face $A B C$ at H. Prove $F H$ perpendicular to $A B$.
(Prove that $F H$ lies in the plane of $E F$ and $E G$.)

24. The three planes bisecting the diedral angles of a triedral angle meet in a common straight line.
(Let planes $O A D$ and $O B E$ intersect in line A $O G$. Prove G in plane $O C F$ by § 444.)

25. Any point in the plane passing through the bisector of an angle, perpendicular to its plane, is equally distant from the sides of the angle.
26. Any face angle of a polyedral angle is less than the sum of the remaining face angles.
(Divide the polyedral \angle into triedral $₫$ by passing planes through any lateral edge.)

Bоок VII.

POLYEDRONS.

DEFINITIONS.

461. A polyedron is a solid bounded by polygons.

The bounding polygons are called the faces of the polyedron; their sides are called the edges, and their vertices the vertices.

A diagonal of a polyedron is a straight line joining any two vertices not in the same face.
462. The least number of planes which can form a polyedral angle is three.

Whence, the least number of polygons which can bound a polyedron is four.

A polyedron of four faces is called a tetraedron; of six faces, a hexaedron; of eight faces, an octaedron; of twelve faces, a dodecaedron; of twenty faces, an icosaedron.
463. A polyedron is called convex when the section made by any plane is a convex polygon (§ 121).

All polyedrons considered hereafter will be understood to be convex.
464. The volume of a solid is its ratio to another solid, called the unit of volume, adopted arbitrarily as the unit of measure (§ 180).

The usual unit of volume is a cube (§474) whose edge is some linear unit; for example, a cubic inch or a cubic foot.
465. Two solids are said to be equivalent when their volumes are equal.

PRISMS AND PARALLELOPIPEDS.

DEFINITIONS.

466. A prism is a polyedron, two of whose faces are equal polygons lying in parallel planes, having their homologous sides parallel, the other faces being parallelograms (§ 110).

The equal and parallel faces are called the bases of the prism, and the other faces the lateral faces; the edges which are not
 sides of the bases are called the lateral edges, and the sum of the areas of the lateral faces the lateral area.

The altitude is the perpendicular distance between the planes of the bases.
467. The following is given for convenience of reference:

The bases of a prism are equal.
468. It follows from the definition of § 466 that the lateral edges of a prism are equal and parallel. (§ 106, I)
469. A prism is called triangular, quadrangular, etc., according as its base is a triangle, quadrilateral, etc.
470. A right prism is a prism whose lateral edges are perpendicular to its bases.

The lateral faces are rectangles (§ 398).
An oblique prism is a prism whose lateral edges are not perpendicular to its bases.

471. A regular prism is a right prism whose base is a regular polygon.
472. A truncated prism is a portion of a prism included between the base, and a plane, not parallel to the base, cutting all the lateral edges.

The base of the prism and the section made by the plane are called the bases of the trun-
 cated prism.
473. A right section of a prism is a section made by a plane cutting all the lateral edges, and perpendicular to them.
474. A parallelopiped is a prism whose bases are parallelograms; that is, all the faces are parallelograms.

A right parallelopiped is a parallelopiped
 whose lateral edges are perpendicular to its bases.

A rectangular parallelopiped is a right parallelopiped whose bases are rectangles; that is, all the faces are rectangles.

A cube is a rectangular parallelopiped whose six faces are all squares.

Prop. I. Theorem.

475. The sections of a prism made by two parallel planes which cut all the lateral edges, are equal polygons.

Given \| planes $C F$ and $C^{\prime} F^{\prime}$ cutting all the lateral edges of prism $A B$.

To Prove section $C D E F G=$ section $C^{\prime \prime} D^{\prime} E^{\prime} F^{\prime \prime} G^{\prime}$.
Proof. We have $C D\left\|C^{\prime} D^{\prime}, D E\right\| D^{\prime} E^{\prime}$, etc.

$$
\begin{equation*}
\therefore C D=C^{\prime} D^{\prime}, D E=D^{\prime} E^{\prime}, \text { etc. } \tag{§414}
\end{equation*}
$$

Also $\angle C D E=\angle C^{\prime} D^{\prime} E^{\prime}, \angle D E F=\angle D^{\prime} E^{\prime} F^{\prime \prime}$, etc. (§ 426)
Then, polygons $C D E F G$ and $C^{\prime} D^{\prime} E^{\prime} F^{\prime \prime} G^{\prime}$, being mutually equilateral and mutually equiangular, are equal.
476. Cor. The section of a prism made by a plane parallel to the base is equal to the base.

Prop. II. Theorem.

477. Two prisms are equal when the faces including a triedral angle of one are equal respectively to the faces including a triedral angle of the other, and similarly placed.

Given, in prisms $A H$ and $A^{\prime} H^{\prime}$, faces $A B C D E, A G$, and $A L$ equal respectively to faces $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime} E^{\prime}, A^{\prime} G^{\prime}$, and $A^{\prime} L^{\prime}$; the equal parts being similarly placed.

To Prove prism $A H=$ prism $A^{\prime} H^{\prime}$.
Proof. We have $\measuredangle E A B, E A F$, and $F A B$ equal respectively to $<E^{\prime} A^{\prime} B^{\prime}, E^{\prime} A^{\prime} F^{\prime}$, and $F^{\prime} A^{\prime} B^{\prime}$.
\therefore triedral $\angle A-B E F=$ triedral $\angle A^{\prime}-B^{\prime} E^{\prime} F^{\prime} .(\S 460,1)$
Then, prism $A^{\prime} H^{\prime}$ may be applied to prism $A H$ in such a way that vertices $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, G^{\prime}, F^{\prime \prime}$, and L^{\prime} shall fall at A, B, C, D, E, G, F, and L, respectively.

Now since the lateral edges of the prisms are II, edge $C^{\prime} H^{\prime}$ will fall on $C H, D^{\prime} K^{\prime}$ on $D K$, etc.

And since points $G^{\prime}, F^{\prime \prime}$, and L^{\prime} fall at G, F, and L, respectively, planes $L H$ and $L^{\prime} H^{\prime}$ coincide.
(§ $395, \mathrm{II}$)
Then points H^{\prime} and K^{\prime} fall at H and K, respectively.
Hence, the prisms coincide throughout, and are equal.
478. Cor. Two right prisms are equal when they have equal bases and equal altitudes; for by inverting one of the prisms if necessary, the equal faces will be similarly placed.
479. Sch. The demonstration of $\S 477$ applies without change to the case of two truncated prisms.

Prop. III. Theorem.

480. An oblique prism is equivalent to a right prism, having for its base a right section of the oblique prism, and for its altitude a lateral edge of the oblique prism.

Given $F K^{\prime}$ a right prism, having for its base $F K$ a right section of oblique prism $A D^{\prime}$, and its altitude $F F^{\prime}$ equal to $A A^{\prime}$, a lateral edge of $A D^{\prime}$.
To Prove $\quad A D^{\prime} \approx F K^{\prime}$.
Proof. In truncated prisms $A K$ and $A^{\prime} K^{\prime}$, faces $F G H K L$ and $F^{\prime} G^{\prime} H^{\prime} K^{\prime} L^{\prime}$ are equal.

Therefore, $A^{\prime} K^{\prime}$ may be applied to $A K$ so that vertices $F^{\prime \prime}, G^{\prime}$, etc., shall fall at F, G, etc., respectively.

Then, edges $A^{\prime} F^{\prime \prime}, B^{\prime} G^{\prime}$, etc., will coincide in direction with $A F, B G$, etc., respectively.

But since, by hyp., $F F^{\prime}=A A^{\prime}$, we have $A F=A^{\prime} F^{\prime}$.
In like manner, $B G=B^{\prime} G^{\prime}, C H=C^{\prime} H^{\prime}$, etc.
Hence, vertices A^{\prime}, B^{\prime}, etc., will fall at A, B, etc., respectively.

Then, $A^{\prime} K^{\prime}$ and $A K$ coincide throughout, and are equal.
Now taking from the entire solid $A K^{\prime}$ truncated prism $A^{\prime} K^{\prime}$, there remains prism $A D^{\prime}$.

And taking its equal $A K$, there remains prism $F K^{\prime}$.

$$
\therefore A D^{\prime} \approx F K^{\prime} .
$$

Prop. IV. Theorem.

481. The opposite lateral faces of a parallelopiped are equal and parallel.

Given $A C$ and $A^{\prime} C^{\prime \prime}$ the bases of parallelopiped $A C^{\prime \prime}$.
To Prove faces $A B^{\prime}$ and $D C^{\prime}$ equal and $\|$.
Proof. $A B$ is equal and $\|$ to $D C$, and $A A^{\prime}$ to $D D^{\prime}$. (§ 106, I)

$$
\begin{gather*}
\therefore \angle A^{\prime} A B=\angle D^{\prime} D C, \text { and } A B^{\prime} \| D C^{\prime} . \\
\therefore \text { face } A B^{\prime}=\text { face } D C^{\prime \prime} . \tag{§113}
\end{gather*}
$$

Similarly, we may prove $A D^{\prime}$ and $B C^{\prime}$ equal and $\|$.
482. Cor. Either face of a parallelopiped may be taken as the base.

> Prop. V. Theorem.
483. The plane passed through two diagonally opposite edges of a parallelopiped divides it into two equivalent triangular prisms.

Given plane $A C^{\prime}$ passing through edges $A A^{\prime}$ and $C C^{\prime \prime}$ of parallelopiped $A^{\prime} C$.

To Prove prism $A B C-A^{\prime} \approx$ prism $A C D-A^{\prime}$.

Proof. Let $E F G H$ be a right section of the parallelopiped, intersecting plane $A A^{\prime} C^{\prime \prime} C$ in line $E G$.

$$
\text { Now, } \quad \text { face } A B^{\prime} \| \text { face } D C^{\prime} . ~ \therefore E F^{\prime} \| G H .
$$

In like manner, $E H \| F G$, and $E F G H$ is a \square.

$$
\begin{equation*}
\therefore \triangle E F G=\triangle E G H \tag{§108}
\end{equation*}
$$

Now, $A B C-A^{\prime}$ is \approx a right prism whose base is $E F G$ and altitude $A A^{\prime}$, and $A C D-A^{\prime}$ is \approx a right prism whose base is $E G H$ and altitude $A A^{\prime}$.

But these right prisms are equal, for they have equal bases and the same altitude.

$$
\therefore A B C-A^{\prime} \approx A C D-A^{\prime} .
$$

Prop. VI. Theorem.

484. The lateral area of a prism is equal to the perimeter of a right section multiplied by a lateral edge.

Given $D E F G H$ a right section of prism $A C^{\prime \prime}$.
To Prove lat. area $A C^{\prime}=(D E+E F+$ etc. $) \times A A^{\prime}$.
Proof. We have, $\quad A A^{\prime} \perp D E$.

$$
\begin{equation*}
\therefore \text { area } A A^{\prime} B^{\prime} B=D E \times A A^{\prime} . \tag{§398}
\end{equation*}
$$

Similarly, \quad area $B B^{\prime} C^{\prime} C=E F \times B B^{\prime}$

$$
=E F \times A A^{\prime} ; \text { etc. }
$$

Adding these equations, we have

$$
\text { lat. area } \begin{aligned}
A C^{\prime \prime} & =D E \times A A^{\prime}+E F \times A A^{\prime}+\text { etc. } \\
& =(D E+E F+\text { etc. }) \times A A^{\prime} .
\end{aligned}
$$

485. Cor. The lateral area of a right prism is equal to the perimeter of the base multiplied by the altitude.

> Prop. VII. Theorem.
486. Two rectangular parallelopipeds having equal bases are to each other as their altitudes.

Note. The phrase "rectangular parallelopiped" in the above statement signifies the volume of the rectangular parallelopiped.

Case I. When the altitudes are commensurable.

Given P and Q rect. parallelopipeds, with equal bases, and commensurable altitudes, $A A^{\prime}$ and $B B^{\prime}$.

To Prove

$$
\frac{P}{Q}=\frac{A A^{\prime}}{B B^{\prime}} .
$$

Proof. Let $A C$ be a common measure of $A A^{\prime}$ and $B B^{\prime}$, and suppose it to be contained 4 times in $A A^{\prime}$, and 3 times in $B B^{\prime}$.

$$
\begin{equation*}
\therefore \frac{A A^{\prime}}{B B^{\prime}}=\frac{4}{3} . \tag{1}
\end{equation*}
$$

Through the several points of division of $A A^{\prime}$ and $B B^{\prime}$ pass planes \perp to lines $A A^{\prime}$ and $B B^{\prime}$, respectively.

Then, rect. parallelopiped P will be divided into 4 parts, and rect. parallelopiped Q into 3 parts, all of which parts will be equal.

$$
\therefore \frac{P}{Q}=\frac{4}{3} .
$$

From (1) and (2), $\quad \frac{P}{Q}=\frac{A A^{\prime}}{B B^{\prime}}$.

Case II. When the altitudes are incommensurable.

Given P and Q rect. parallelopipeds, with equal bases, and incommensurable altitudes, $A A^{\prime}$ and $B B^{\prime}$.

To Prove
 $$
\frac{P}{Q}=\frac{A A^{\prime}}{B B^{\prime}} .
$$

Proof. Divide $A A^{\prime}$ into any number of equal parts, and apply one of these parts to $B B^{\prime}$ as a unit of measure.

Since $A A^{\prime}$ and $B B^{\prime}$ are incommensurable, a certain number of the parts will extend from B to C, leaving a remainder $C B^{\prime}<$ one of the parts.
Draw plane $C D \perp B B^{\prime}$, and let rect. parallelopiped $B D$ be denoted by Q^{\prime}.
Then since, by const., $A A^{\prime}$ and $B C$ are commensurable,

$$
\frac{P}{Q^{\prime}}=\frac{A A^{\prime}}{B C} .
$$

(§ 486, Case I)
Now let the number of subdivisions of $A A^{\prime}$ be indefinitely increased.
Then the length of each part will be indefinitely diminished, and remainder $C B^{\prime}$ will approach the limit 0 .

Then,

$$
\frac{P}{Q^{\prime}} \text { will approach the limit } \frac{P}{Q},
$$

and

$$
\begin{gather*}
\frac{A A^{\prime}}{B C} \text { will approach the limit } \frac{A A^{\prime}}{B B^{\prime}} . \\
\therefore \frac{P}{Q}=\frac{A A^{\prime}}{B B^{\prime}} .
\end{gather*}
$$

487. Def. The dimensions of a rectangular parallelopiped are the three edges which meet at any vertex.
488. Sch. The theorem of $\S 486$ may be expressed:

If two rectangular parallelopipeds have two dimensions of one equal respectively to two dimensions of the other, they are to each other as their third dimensions.

Prop. VIII. Theorem.

489. Two rectangular parallelopipeds having equal alt itudes are to each other as their bases.

Given P and Q rect. parallelopipeds, with the same altitude c, and the dimensions of the bases a, b, and a^{\prime}, b^{\prime}, respectively.

To Prove

$$
\frac{P}{Q}=\frac{a \times b}{a^{\prime} \times b^{\prime}} .
$$

Proof. Let R be a rect. parallelopiped with the altitude c, and the dimensions of the base a^{\prime} and b.

Then since P and R have each the dimensions b and c, they are to each other as their third dimensions a and a^{\prime}.

That is,

$$
\frac{P}{R}=\frac{a}{a^{\prime}}
$$

And since R and Q have each the dimensions a^{\prime} and c,

$$
\begin{equation*}
\frac{R}{Q}=\frac{b}{b^{\prime}} \tag{2}
\end{equation*}
$$

Multiplying (1) and (2), we have

$$
\frac{P}{R} \times \frac{R}{Q}, \text { or } \frac{P}{Q}=\frac{a \times b}{a^{\prime} \times b^{\prime}} .
$$

490. Sch. The theorem of $\S 489$ may be expressed :

Two rectangular parallelopipeds having a dimension of one equal to a dimension of the other, are to each other as the products of their other two dimensions.

Prop. IX. Theorem.
491. Any two rectangular parallelopipeds are to each other as the products of their three dimensions.

Given P and Q rect. parallelopipeds with the dimensions a, b, c, and $a^{\prime}, b^{\prime}, c^{\prime}$, respectively.

To Prove

$$
\frac{P}{Q}=\frac{a \times b \times c}{a^{\prime} \times b^{\prime} \times c^{\prime}} .
$$

(Let R be a rect. parallelopiped with the dimensions a^{\prime}, b^{\prime}, and c, and find values of $\frac{P}{R}$ and $\frac{R}{Q}$ by $\S \S 490$ and 488.)

EXERCISES.

1. Two rectangular parallelopipeds, with equal altitudes, have the dimensions of their bases 6 and 14, and 7 and 9 , respectively. Find the ratio of their volumes.
2. Find the ratio of the volumes of two rectangular parallelopipeds, whose dimensions are 8,12 , and 21 , and 14,15 , and 24 , respectively.
3. The diagonals of a parallelopiped bisect each other.
(To prove that $A C^{\prime}$ and $A^{\prime} C$ bisect each other. Prove $A A^{\prime} C^{\prime} C$ a \square by § 110.)

Prop. X. Theorem.

492. If the unit of volume is the cube whose edge is the linear unit, the volume of a rectangular parallelopiped is equal to the product of its three dimensions.

Given a, b, and c the dimensions of rect. parallelopiped P, and Q the unit of volume; that is, a cube whose edge is the linear unit.

To Prove vol. $P=a \times b \times c$.
Proof. We have

$$
\begin{align*}
\frac{P}{Q} & =\frac{a \cdot \times b \times c}{1 \times 1 \times 1} \tag{§491}\\
& =a \times b \times c .
\end{align*}
$$

But since Q is the unit of volume,

$$
\begin{align*}
\frac{P}{Q} & =\text { vol. } P . \\
\therefore \text { vol. } P & =a \times b \times c .
\end{align*}
$$

493. Sch. I. In all succeeding theorems relating to volumes, it is understood that the unit of volume is the cube whose edge is the linear unit, and the unit of surface the square whose side is the linear unit. (Compare § 306.)
494. Cor. I. The volume of a cube is equal to the cube of its edge.
495. Cor. II. The volume of a rectangular parallelopiped is equal to the product of its base and altitude.
(The proof is left to the pupil.)
496. Sch. II. If the dimensions of the rectangular parallelopiped are multiples of the linear unit, the truth of Prop. X. may be seen by dividing the solid into cubes, each equal to the unit of volume.

Thus, if the dimensions of rectangular parallelopiped P are 5 units, 4 units, and 3 units, respectively, the solid can evi-
 dently be divided into 60 cubes.

In this case, 60 , the number which expresses the volume of the rectangular parallelopiped, is the product of 5,4 , and 3 , the numbers which express the lengths of its edges.

EXERCISES.

4. Find the altitude of a rectangular parallelopiped, the dimensions of whose base are 21 and 30 , equivalent to a rectangular parallelopiped whose dimensions are 27,28 , and 35 .
5. Find the edge of a cube equivalent to a rectangular parallelopiped whose dimensions are 9 in ., 1 ft .9 in ., and 4 ft .1 in .
6. Find the volume, and the area of the entire surface of a cube whose edge is $3 \frac{1}{4} \mathrm{in}$.
7. Find the area of the entire surface of a rectangular parallelopiped, the dimensions of whose base are 11 and 13 , and volume 858.
8. Find the volume of a rectangular parallelopiped, the dimensions of whose base are 14 and .9 , and the area of whose entire surface is 620 .
9. Find the dimensions of the base of a rectangular parallelopiped, the area of whose entire surface is 320 , volume 336 , and altitude 4.
(Represent the dimensions of the base by x and y.)
10. How many bricks, each 8 in . long, $2 \frac{3}{4} \mathrm{in}$. wide, and 2 in . thick, will be required to build a wall 18 ft . long, 3 ft . high, and 11 in. thick?
11. The diagonals of a rectangular parallelopiped are equal.
(Prove $A A^{\prime} C^{\prime} C$ a rectangle.)

Prop. XI. Theorem.

497. The volume of any parallelopiped is equal to the product of its base and altitude.

Given $A E$ the altitude of parallelopiped $A C^{\prime \prime}$.
To Prove vol. $A C^{\prime \prime}=$ area $A B C D \times A E$.
Proof. Produce edges $A B, A^{\prime} B^{\prime}, D^{\prime} C^{\prime}$, and $D C$.
On $A B$ produced, take $F G=A B$; and draw planes $F K^{\prime}$ and $G H^{\prime} \perp F G$, forming right parallelopiped $F H^{\prime}$.

$$
\therefore F H^{\prime} \approx A C^{\prime} .
$$

Produce edges $H G, H^{\prime} G^{\prime}, K^{\prime} F^{\prime \prime}$, and $K F$.
On $H G$ produced, take $N M=H G$; and draw planes $N P^{\prime}$ and $M L^{\prime} \perp N M$, forming right parallelopiped $L N^{\prime}$.

$$
\begin{align*}
& \therefore L N^{\prime} \approx F H^{\prime} . \\
& \therefore L N^{\prime} \approx A C^{\prime \prime} .
\end{align*}
$$

Now since, by cons., $F G$ is \perp plane $G H^{\prime}$, planes $L H$ and $M H^{\prime}$ are \perp.

Then $M M^{\prime}$, being $\perp M N$, is \perp plane $L H$.
Whence, $\angle L M M^{\prime}$ is a rt. \angle.
Then, $L M^{\prime}$ is a rectangle.
Therefore $L N^{\prime}$ is a rectangular parallelopiped.

$$
\begin{align*}
& \therefore \text { vol. } L N^{\prime}=\text { area } L M N P \times M M^{\prime} \tag{§495}\\
& \therefore \text { vol. } A C^{\prime}=\text { area } L M N P \times M M^{\prime} \tag{1}
\end{align*}
$$

But rect. $L M N P=$ rect. $F G H K$; for they have equal bases $M N$ and $G H$, and the same altitude.
(§ 114)
Also, rect. $F G H K \approx \square A B C D$; for they have equal bases $F G$ and $A B$, and the same altitude.

$$
\therefore L M N P \approx A B C D
$$

Also,

$$
M M^{\prime}=A E
$$

Substituting these values in (1), we have

$$
\text { vol. } A C^{\prime}=\text { area } A B C D \times A E
$$

Prop. XII. Theorem.
498. The volume of a triangular prism is equal to the product of its base and altitude.

Given $A E$ the altitude of triangular prism $A B C-C^{\prime \prime}$.
To Prove vol. $A B C-C^{\prime \prime}=$ area $A B C \times A E$.
Proof. Construct parallelopiped $A B C D-D^{\prime}$, having its edges II to $A B, B C$, and $B B^{\prime}$, respectively.

$$
\begin{align*}
\therefore \text { vol. } A B C^{\prime}-C^{\prime} & =\frac{1}{2} \text { vol. } A B C D-D^{\prime} \tag{§483}\\
& =\frac{1}{2} \text { area } A B C D \times A E \\
& =\text { area } A B C \times A E . \tag{§108}
\end{align*}
$$

EXERCISES.

12. Find the lateral area and volume of a regular triangular prism, each side of whose base is 5 , and whose altitude is 8 .
13. The square of a diagonal of a rectangular parallelopiped is equal to the sum of the squares of its dimensions.
(Fig. of Ex. 11. To prove ${\overline{A^{\prime} C^{2}}}^{2}={\overline{A A^{\prime}}}^{2}+\overline{A B}^{2}+\widehat{A D}^{2}$.)

Prop. XIII. Theorem.

499. The volume of any prism is equal to the product of its base and altitude.

Given any prism.
To Prove its volume equal to the product of its base and altitude.

Proof. The prism may be divided into triangular prisms by passing planes through one of the lateral edges and the corresponding diagonals of the base.

The volume of each triangular prism is equal to the product of its base and altitude.
(§ 498)
Then, the sum of the volumes of the triangular prisms is equal to the sum of their bases multiplied by their common altitude.

Therefore, the volume of the given prism is equal to the product of its base and altitude.
500. Cor. I. Two prisms having equivalent bases and equal altitudes are equivalent.
501. Cor. II. 1. Two prisms having equal altitudes are to each other as their bases.
2. Two prisms having equivalent bases are to each other as their altitudes.
3. Any two prisms are to each other as the products of their bases by their altitudes.

Ex. 14. Find the lateral area and volume of a regular hexagonal prism, each side of whose base is 3 , and whose altitude is 9 .

PYRAMIDS.

DEFINITIONS.

502. A pyramid is a polyedron bounded by a polygon, called the base, and a series of triangles having a common vertex.

The common vertex of the triangular faces is called the vertex of the pyramid.

The triangular faces are called the lateral faces, and the edges terminating at the vertex
 the lateral edges.

The sum of the areas of the lateral faces is called the lateral area.

The altitude is the perpendicular distance from the vertex to the plane of the base.
503. A pyramid is called triangular, quadrangular, etc., according as its base is a triangle, quadrilateral, etc.
504. A regular pyramid is a pyramid whose base is a regular polygon, and whose vertex lies in the perpendicular erected at the centre of the base.
505. A truncated pyramid is a portion of
 a pyramid included between the base and a plane cutting all the lateral edges.

The base of the pyramid and the section made by the plane are called the bases of the truncated pyramid.
506. A frustum of a pyramid is a truncated pyramid whose bases are parallel.

The altitude is the perpendicular distance between the planes of the bases.

EXERCISES.

15. Find the length of the diagonal of a rectangular parallelopiped whose dimensions are 8,9 , and 12 .
16. The diagonal of a cube is equal to its edge multiplied by $\sqrt{3}$.

Prop. XIV. Theorem.

507. In a regular pyramid,
I. The lateral edges are equal.
II. The lateral faces are equal isosceles triangles.

(The theorem follows by $\S \S 406, \mathrm{I}$, and 69.)
508. Def. The slant height of a regular pyramid is the altitude of any lateral face.

Or, it is the line drawn from the vertex of the pyramid to the middle point of any side of the base.

Prop. XV. Theorem.

509. The lateral faces of a frustum of a regular pyramid are equal trapezoids.

Given $A C^{\prime}$ a frustum of regular pyramid $O-A B C D E$.
To Prove faces $A B^{\prime}$ and $B C^{\prime}$ equal trapezoids.
Proof. We have $\triangle O A B=\triangle O B C$.
(§ 507, II)
We may then apply $\triangle O A B$ to $\triangle O B C$ in such a way that sides $O B, O A$, and $A B$ shall coincide with sides $O B$, $O C$, and $B C$, respectively.

Now, $A^{\prime} B^{\prime} \| A B$ and $B^{\prime} C^{\prime} \| B C$.
Hence, line $A^{\prime} B^{\prime}$ will coincide with line $B^{\prime} C^{\prime}$.
Then, $A B^{\prime}$ and $B C^{\prime}$ coincide throughout, and are equal.
510. Cor. The lateral edges of a frustum of a regular pyramid are equal.
511. Def. The slant height of a frustum of a regular pyramid is the altitude of any lateral face.

Prop. XVI. Theorem.

512. The lateral area of a regular pyramid is equal to the perimeter of its base multiplied by one-half its slant height.

Given slant height $O H$ of regular pyramid $O-A B C D E$. To Prove
lat. area $O-A B C D E=(A B+B C+$ etc. $) \times \frac{1}{2} O H$.
(By § $508, O H$ is the altitude of each lateral face.)
513. Cor. The lateral area of a frustum of a regular pyramid is equal to one-half the sum of the perimeters of its bases, multiplied by its slant height.

Given slant height $H H^{\prime}$ of the frustum of a regular pyramid $A D^{\prime}$.

To Prove

lat. area $A D^{\prime}=\frac{1}{2}\left(A B+A^{\prime} B^{\prime}+B C+B^{\prime} C^{\prime}+\right.$ etc. $) \times H H^{\prime}$.
($H H^{\prime}$ is the altitude of each lateral face.)

EXERCISES.

17. The volume of a cube is $4 \frac{1}{2} \frac{7}{7} \mathrm{cu} . \mathrm{ft}$. Find the area of its entire surface in square inches.
18. The volume of a right prism is 2310 , and its base is a right triangle whose legs are 20 and 21 , respectively. Find its lateral area.
19. Find the lateral area and volume of a right triangular prism, having the sides of its base 4,7 , and 9 , respectively, and the altitude 8 .
20. The volume of a regular triangular prism is $96 \sqrt{3}$, and one side of its base is 8 . Find its lateral area.
21. The diagonal of a cube is $8 \sqrt{ } 3$. Find its volume, and the area of its entire surface.
(Represent the edge by x.)
22. A trench is 124 ft . long, $2 \frac{1}{2} \mathrm{ft}$. deep, 6 ft . wide at the top, and 5 ft . wide at the bottom. How many cubic feet of water will it contain? (§§ 316, 499.)
23. The lateral area and volume of a regular hexagonal prism are 60 and $15 \sqrt{3}$, respectively. Find its altitude, and one side of its base.
(Represent the altitude by x, and the side of the base by y.)

Prop. XVII. Theorem.

514. If a pyramid be cut by a plane parallel to its base,
515. The lateral edges and the altitude are divided proportionally.
II. The section is similar to the base.

Given plane $A^{\prime} C^{\prime} \|$ to base of pyramid $O-A B C D$, cutting faces $O A B, O B C, O C D$, and $O D A$ in lines $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}, C^{\prime} D^{\prime}$, and $D^{\prime} A^{\prime}$, respectively, and altitude $O P$ at P^{\prime}.
I. To Prove $\frac{O A^{\prime}}{O A}=\frac{O B^{\prime}}{O B}=\frac{O C^{\prime \prime}}{O C}$ etc. $=\frac{O P^{\prime}}{O P}$.

Proof. Through O pass plane $M N \| A B C D$.

$$
\therefore \frac{O A^{\prime}}{O A}=\frac{O B^{\prime}}{O B}=\frac{O C^{\prime \prime}}{O C} \text { etc. }=\frac{O P^{\prime}}{O P} .
$$

II. To Prove section $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ similar to $A B C D$.

Proof. We have $A^{\prime} B^{\prime}\left\|A B, B^{\prime} C^{\prime}\right\| B C$, etc.
$\therefore \angle A^{\prime} B^{\prime} C^{\prime \prime}=\angle A B C, \angle B^{\prime} C^{\prime \prime} D^{\prime}=\angle B C D$, etc. (§ 426)
Again, $\triangle O A^{\prime} B^{\prime}, O B^{\prime} C^{\prime}$, etc., are similar to $\& O A B, O B C$, etc., respectively.

$$
\therefore \frac{O A^{\prime}}{O A}=\frac{A^{\prime} B^{\prime}}{A B}, \quad \frac{O B^{\prime}}{O B}=\frac{B^{\prime} C^{\prime}}{B C} \text { etc. }
$$

But,

$$
\begin{equation*}
\frac{O A^{\prime}}{O A}=\frac{O B^{\prime}}{O B} \text { etc. } \tag{1}
\end{equation*}
$$

$$
\therefore \frac{A^{\prime} B^{\prime}}{A B}=\frac{B^{\prime} C^{\prime}}{B C}=\frac{C^{\prime \prime} D^{\prime}}{C D} \text { etc. }
$$

Then, polygons $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $A B C D$ are mutually equiangular, and have their homologous sides proportional.

Whence, $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime}$ and $A B C D$ are similar.
515. Cor. I. Since $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $A B C D$ are similar,

$$
\frac{\text { area } A^{\prime} B^{\prime} C^{\prime} D^{\prime}}{\text { area } A B C D}=\frac{{\overline{A^{\prime} B^{\prime}}}^{2}}{\overline{A B}^{2}}
$$

But from (1), §514, $\frac{A^{\prime} B^{\prime}}{A B}=\frac{O A^{\prime}}{O A}$

$$
=\frac{O P^{\prime}}{O P}
$$

$$
\therefore \frac{\text { area } A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime}}{\text { area } A B C D}=\frac{\overline{O P^{\prime}}}{} \overline{O P}^{2} .
$$

Hence, the area of a section of a pyramid, parallel to the base, is to the area of the base as the square of its distance from the vertex is to the square of the altitude of the pyramid.
516. Cor. II. If two pyramids have equal altitudes and equivalent bases, sections parallel to the bases equally distant from the vertices are equivalent.

Given bases of pyramids $O-A B C$ and $O^{\prime}-A^{\prime} B^{\prime} C^{\prime \prime} \approx$, and the altitude of each pyramid $=H$; also $D E F$
 and $D^{\prime} E^{\prime} F^{\prime}$ sections $=$ to the bases at distance h from O and O^{\prime}, respectively.

To Prove area $D E F=$ area $D^{\prime} E^{\prime} F^{\prime}$.
Proof. We have

$$
\begin{gathered}
\frac{\text { area } D E F}{\text { area } A B C}=\frac{h^{2}}{H^{2}}, \text { and } \frac{\operatorname{area} D^{\prime} E^{\prime} F^{\prime}}{\text { area } A^{\prime} B^{\prime} C^{\prime \prime}}=\frac{h^{2}}{H^{2}} .(\S 515) \\
\therefore \frac{\text { area } D E F}{\text { area } A B C}=\frac{\operatorname{area} D^{\prime} E^{\prime} F^{\prime}}{\text { area } A^{\prime} B^{\prime} C^{\prime \prime}} \\
\text { But by hyp., } \quad \text { area } A B C=\text { area } A^{\prime} B^{\prime} C^{\prime} . \\
\therefore \text { area } D E F=\text { area } D^{\prime} E^{\prime} F^{\prime \prime} .
\end{gathered}
$$

Prop. XVIII. Theorem.

517. Two triangular pyramids having equal altitudes and equivalent bases are equivalent.

Given $o-a b c$ and $o^{\prime}-a^{\prime} b^{\prime} c^{\prime}$ triangular pyramids with equal altitudes and \approx bases.

To Prove vol. $o-a b c=$ vol. $o^{\prime}-a^{\prime} b^{\prime} c^{\prime}$.
Proof. Place the pyramids with their bases in the same plane, and let $P Q$ be their common altitude.

Divide $P Q$ into any number of equal parts.
Through the points of division pass planes $\|$ to the plane of the bases, cutting $o-a b c$ in sections def and $g h k$, and $o^{\prime}-a^{\prime} b^{\prime} c^{\prime}$ in sections $d^{\prime} e^{\prime} f^{\prime}$ and $g^{\prime} h^{\prime} k^{\prime}$, respectively.

$$
\therefore d e f \approx d^{\prime} e^{\prime} f^{\prime} \text {, and } g h k \approx g^{\prime} h^{\prime} k^{\prime} \text {. }
$$

With abc, def, and ghk as lower bases, construct prisms X, Y, and Z, with their lateral edges equal and $\|$ to $a d$; and with $d^{\prime} e^{\prime} f^{\prime}$ and $g^{\prime} h^{\prime} k^{\prime}$ as upper bases, construct prisms Y^{\prime} and Z^{\prime}, with their lateral edges equal and $\|$ to $a^{\prime} d^{\prime}$.
\therefore prism $Y \approx$ prism Y^{\prime}, and prism $Z \approx$ prism $Z^{\prime} .(\$ 500)$
Hence, the sum of the prisms circumscribed about $o-a b c$ exceeds the sum of the prisms inscribed in $o^{\prime}-a^{\prime} b^{\prime} c^{\prime}$ by prism X.

But, $o-a b c$ is evidently $<$ the sum of prisms X, Y, and Z; and it is $>$ the sum of prisms $\approx \approx$ to Y^{\prime} and Z^{\prime}, respectively, which can be constructed with def and ghk as upper. bases, having their lateral edges equal and $\|$ to ad .

Again, $o^{\prime}-a^{\prime} b^{\prime} c^{\prime}$ is $>$ the sum of prisms Y^{\prime} and Z^{\prime}; and it is $<$ the sum of prisms \approx to X, Y, and Z, respectively, which can be constructed with $a^{\prime} b^{\prime} c^{\prime}$, $d^{\prime} e^{\prime} f^{\prime}$, and $g^{\prime} h^{\prime} k^{\prime}$ as lower bases, having their lateral edges equal and $\|$ to $a^{\prime} d^{\prime}$.

That is, each pyramid is $<$ the sum of prisms X, Y, and Z, and $>$ the sum of prisms Y^{\prime} and Z^{\prime}; whence, the difference of the volumes of the pyramids must be $<$ the difference of the volumes of the two systems of prisms, or $<$ volume \boldsymbol{X}.

Now by sufficiently increasing the number of subdivisions of $P Q$, the volume of prism X may be made $<$ any assigned volume, however small.

Hence, the volumes of the pyramids cannot differ by any volume, however small.
\therefore vol. $o-a b c=$ vol. $o^{\prime}-a^{\prime} b^{\prime} c^{\prime}$.
518. Cor. Since vol. $a^{\prime}-a^{\prime} b^{\prime} c^{\prime}$ is $>$ the total volume of the inscribed prisms, and $<$ the total volume of the circumscribed, the difference between vol. $o^{\prime}-a^{\prime} b^{\prime} c^{\prime}$ and the total volume of the inscribed prisms is $<$ the difference between the total volumes of the two systems of prisms, or $<$ vol. X; and hence approaches the limit 0 when the number of subdivisions is indefinitely increased.

Prop. XIX. Theorem.

519. A triangular pyramid is equivalent to one-third of a triangular prism having the same base and altitude.

Given triangular pyramid $O-A B C$, and triangular prism $A B C-O D E$ having the same base and altitude.

To Prove vol. $O-A B C=\frac{1}{3}$ vol. $A B C-O D E$.
Proof. Prism $A B C-O D E$ is composed of triangular pyramid $O-A B C$, and quadrangular pyramid $O-A C D E$.

Divide the latter into two triangular pyramids, $O-A C E$ and $O-C D E$, by passing a plane through O, C, and E.

Now, $O-A C E$ and $O-C D E$ have the same altitude.
And since $C E$ is a diagonal of $\square A C D E$, they have equal bases, $A C E$ and $C D E$.

$$
\begin{equation*}
\therefore \text { vol. } O-A C E=\text { vol. } O-C D E \text {. } \tag{§108}
\end{equation*}
$$

Again, pyramid $O-C D E$ may be regarded as having its vertex at C, and $\triangle O D E$ for its base.

Then, pyramids $O-A B C$ and $C-O D E$ have the same altitude.

They have also equal bases, $A B C$ and $O D E$.

$$
\begin{equation*}
\therefore \text { vol. } O-A B C=\text { vol. } C-O D E \text {. } \tag{§467}
\end{equation*}
$$

Then, vol. $O-A B C=$ vol. $O-A C E=$ vol. $O-C D E$.
\therefore vol. $O-A B C=\frac{1}{3}$ vol. $A B C-O D E$.
520. Cor. The volume of a triangular pyramid is equal to one-third the product of its base and altitude.

Prop. XX. Theorem.

521. The volume of any pyramid is equal to one-third the product of its base and altitude.

(Prove as in § 499.)
522. Cor. 1. Two pyramids having equivalent bases and equal altitudes are equivalent.
523. Two pyramids having equal altitudes are to each other as their bases.
524. Two pyramids having equivalent bases are to each other as their altitudes.
525. Any two pyramids are to each other as the products of their bases by their altitudes.

EXERCISES.

24. The altitude of a pyramid is 12 in ., and its base is a square 9 in . on a side. What is the area of a section parallel to the base, whose distance from the vertex is 8 in ? (§ 515.)
25. The altitude of a pyramid is 20 in ., and its base is a rectangle whose dimensions are 10 in . and 15 in ., respectively. What is the distance from the vertex of a section parallel to the base, whose area is 54 sq. in. ?

Prop. XXI. Theorem.

523. Two tetraedrons having a triedral angle of one equal to a triedral angle of the other, are to each other as the products of the edges including the equal triedral angles.

Given V and V^{\prime} the volumes of tetraedrons $O-A B C$ and $O-A^{\prime} B^{\prime} C^{\prime}$, respectively, having the common triedral $\angle O$.

To Prove

$$
\frac{V}{V^{\prime}}=\frac{O A \times O B \times O C}{O A^{\prime} \times O B^{\prime} \times O C^{\prime}}
$$

Proof. Draw lines $C P$ and $C^{\prime} P^{\prime} \perp$ to face $O A^{\prime} B^{\prime}$.
Let their plane intersect face $O A^{\prime} B^{\prime}$ in line $O P P^{\prime}$.
Now, $O A B$ and $O A^{\prime} B^{\prime}$ are the bases, and $C P$ and $C^{\prime} P^{\prime}$ the altitudes, of triangular pyramids $C-O A B$ and $C^{\prime \prime}-O A^{\prime} B^{\prime}$, respectively.

$$
\begin{align*}
\therefore \frac{V}{V^{\prime}} & =\frac{\text { area } O A B \times C P}{\text { area } O A^{\prime} B^{\prime} \times C^{\prime} P^{\prime}} \\
& =\frac{\text { area } O A B}{\text { area } O A^{\prime} B^{\prime}} \times \frac{C P}{C^{\prime} P^{\prime}} \tag{1}
\end{align*}
$$

But, $\quad \frac{\text { area } O A B}{\text { area } O A^{\prime} B^{\prime}}=\frac{O A \times O B}{O A^{\prime} \times O B^{\prime}}$.
Also, $\triangle O C P$ and $O C^{\prime \prime} P^{\prime}$ are rt. ©.
Then, $\triangle O C P$ and $O C^{\prime} P^{\prime}$ are similar.

$$
\therefore \frac{C P}{C^{\prime} P^{\prime}}=\frac{O C}{O C^{\prime}}
$$

Substituting these values in (1), we have

$$
\frac{V}{V^{\prime}}=\frac{O A \times O B}{O A^{\prime} \times O B^{\prime}} \times \frac{O C}{O C^{\prime \prime}}=\frac{O A \times O B \times O C}{O A^{\prime} \times O B^{\prime} \times O C^{\prime \prime}} .
$$

Prop. XXII. Theorem.
524. The volume of a frustum of a pyramid is equal to the sum of its bases and a mean proportional between its bases, multiplied by one-third its altitude.

Given B the area of the lower base, b the area of the upper base, and H the altitude, of $A C^{\prime}$, a frustum of any pyramid $O-A C$.

To Prove vol. $A C^{\prime}=(B+b+\sqrt{B \times b}) \times \frac{1}{3} H$. (§ 233)
Proof. Draw altitude $O P$, cutting $A^{\prime} C^{\prime}$ at Q.
Now, vol. $A C^{\prime}=$ vol. $O-A C-$ vol. $O-A^{\prime} C^{\prime}$

$$
\begin{align*}
& =B \times \frac{1}{3}(H+O Q)-b \times \frac{1}{3} O Q \\
& =B \times \frac{1}{3} H+B \times \frac{1}{3} O Q-b \times \frac{1}{3} O Q \tag{1}\\
& =B \times \frac{1}{3} H+(B-b) \times \frac{1}{3} O Q . \tag{1}
\end{align*}
$$

But,

$$
B: b=\overline{O P}^{2}: \overline{O Q}^{2}
$$

Taking the square root of each term,

$$
\begin{align*}
\sqrt{B}: \sqrt{b} & =O P: O Q . \\
\therefore \sqrt{B}-\sqrt{b}: \sqrt{b} & =O P-O Q: O Q \\
& =H: O Q \\
\therefore(\sqrt{B}-\sqrt{b}) \times O Q & =\sqrt{b} \times H
\end{align*}
$$

Multiplying both members by $(\sqrt{B}+\sqrt{b})$,

$$
(B-b) \times O Q=(\sqrt{B \times b}+b) \times H
$$

Substituting this value in (1), we have

$$
\text { vol. } \begin{aligned}
A C^{\prime} & =B \times \frac{1}{3} H+(\sqrt{B \times b}+b) \times \frac{1}{3} H \\
& =(B+b+\sqrt{B \times b}) \times \frac{1}{8} H .
\end{aligned}
$$

Prop. XXIII. Theorem.

525. The volume of a truncated triangular prism is equal to the product of a right section by one-third the sum of the lateral edges.

Given $G H C$ and $D K L \mathrm{rt}$. sections of truncated triangular prism $A B C-D E F$.

To Prove

$$
\text { vol. } A B C-D E F=\text { area } G H C \times \frac{1}{3}(A D+B E+C F)
$$

Proof. Draw line $D M \perp K L$.
The given truncated prism consists of the rt. triangular prism $G H C-D K L$, and pyramids $D-E K L F$ and $C-A B H G$.

$$
\text { vol. } \begin{align*}
G H C-D K L & =\text { area } G H C \times G D \\
& =\text { area } G H C \times \frac{1}{3}(G D+H K+C L), \tag{1}
\end{align*}
$$

since the lateral edges of a prism are equal (§468).
Now $D M$ is the altitude of pyramid $D-E K L F$.
\therefore vol. $D-E K L F=$ area $E K L F \times \frac{1}{3} D M$.
But $K L$ is the altitude of trapezoid EKILF. (§ 398)
\therefore vol. $D-E K L F=\frac{1}{2}(K E+L F) \times K L \times \frac{1}{3} D M .(\S 316)$
Rearranging the factors, we have

$$
\text { vol. } \begin{align*}
D-E K L F & =\left(\frac{1}{2} K L \times D M\right) \times \frac{1}{3}(K E+L F) \\
& =\text { area } D K L \times \frac{1}{3}(K E+L F) \\
& =\text { area } G H C \times \frac{1}{3}(K E+L F) \tag{2}
\end{align*}
$$

In like manner, we may prove

$$
\begin{equation*}
\text { vol. } C-A B H G=\text { area } G H C \times \frac{1}{3}(A G+B H) \tag{3}
\end{equation*}
$$

Adding (1), (2), and (3), the sum of the volumes of the solids $G H C-D K L, D-E K L F$, and $C-A B H G$ is area $G H C \times \frac{1}{3}(\overline{A G+G D}+\overline{B H+H K+K E}+\overline{C L+L F})$.
\therefore vol. $A B C-D E F=$ area $G H C \times \frac{1}{3}(A D+B E+C F)$.
526. Cor. The volume of a truncated right triangular prism is equal to the product of its base by one-third the sum of the lateral edges.

EXERCISES.

26. Each side of the base of a regular triangular pyramid is 6 , and its altitude is 4 . Find its lateral edge, lateral area, and volume.

Let $O A B$ be a lateral face of the regular triangular pyramid, and C the centre of the base; draw line $C D \perp A B$; also, lines $O C, A C$, and $O D$.

Now, $A C=\frac{A B}{\sqrt{3}}(\S 356)=\frac{6}{\sqrt{3}}=2 \sqrt{3}$.

\therefore lat. edge $O A=\sqrt{\overline{A C}^{2}+\overline{O C}^{2}}(\S 272)=\sqrt{12+16}=\sqrt{28}=2 \sqrt{7}$.
\therefore slant ht. $O D=\sqrt{\overline{O A}^{2}-\overline{A D^{2}}}(\S 273)=\sqrt{28-9}=\sqrt{19}$.
\therefore lat. area of pyramid $=9 \sqrt{19}(\S 512)$.
Again, $C D=\sqrt{\overline{A C^{2}}-\overline{A D^{2}}}=\sqrt{12-9}=\sqrt{3}$.
\therefore area of base $=\frac{1}{2} \times 18 \times \sqrt{3}(\S 350)=9 \sqrt{3}$.
\therefore vol. of pyramid $=\frac{1}{3} \times 9 \sqrt{3} \times 4(\S 520)=12 \sqrt{3}$.
27. Find the lateral edge, lateral area, and volume of a frustum of a regular quadrangular pyramid, the sides of whose bases are 17 and 7, respectively, and whose altitude is 12.

Let $A B B^{\prime} A^{\prime}$ be a lateral face of the frustum, and O and O^{\prime} the centres of the bases; draw lines $O C \perp A B$, $O^{\prime} C^{\prime} \perp A^{\prime} B^{\prime}, C^{\prime} D \perp O C$, and $A^{\prime} E \perp A B$; also, lines $O O^{\prime}$ and $C C^{\prime}$.
Now, $C D=O C-O^{\prime} C^{\prime} \doteq 8 \frac{1}{2}-3 \frac{1}{2}=5$.
\therefore Slant ht. $C C^{\prime}$
$=\sqrt{\overline{C D^{2}+C^{\prime} D^{2}}}=\sqrt{25+144}=\sqrt{169}=13$.
\therefore lat. area frustum

$=\frac{1}{2}(68+28) \times 13(\S 513)=624$.
Again, $A E=A C-A^{\prime} C^{\prime}=8 \frac{1}{2}-3 \frac{1}{2}=5$, and $A^{\prime} E=C C^{\prime}=13$.
\therefore lat. edge $A A^{\prime}=\sqrt{\overline{A E}^{2}+{\overline{A^{\prime} E^{2}}}^{2}}=\sqrt{25+169}=\sqrt{194}$.
Again, area lower base $=17^{2}$, area upper base $=7^{2}$, and a mean proportional between them $=\sqrt{17^{2} \times 7^{2}}=17 \times 7=119$.
\therefore vol. frustum $=(289+49+119) \times 4(\S 524)=1828$.

Find the lateral edge, lateral area, and volume
28. Of a regular triangular pyramid, each side of whose base is 12 , and whose altitude is 15 .
29. Of a regular quadrangular pyramid, each side of whose base. is 3 , and whose altitude is 5 .
30. Of a regular hexagonal pyramid, each side of whose base is 4 , and whose altitude is 9 .
31. Of a frustum of a regular triangular pyramid, the sides of whose bases are 18 and 6 , respectively, and whose altitude is 24 .
32. Of a frustum of a regular quadrangular pyramid, the sides of whose bases are 9 and 5 , respectively, and whose altitude is 10 .
33. Of a frustum of a regular hexagonal pyramid, the sides of whose bases are 8 and 4 , respectively, and whose altitude is 12 .
34. Find the volume of a truncated right triangular prism, the sides of whose base are 5,12 , and 13 , and whose lateral edges are 3,7 , and 5 , respectively.
35. Find the volume of a truncated right quadrangular prism, each side of whose base is 8 , and whose lateral edges, taken in order, are 2 , 6,8 , and 4 , respectively.
(Pass a plane through two diagonally opposite lateral edges, dividing the solid into two truncated right triangular prisms.)
36. Find the volume of a truncated right triangular prism, whose lateral edges are 11,14 , and 17 , having for its base an isosceles triangle whose sides are 10,13 , and 13 , respectively.
37. The slant height and lateral edge of a regular quadrangular pyramid are 25 and $\sqrt{674}$, respectively. Find its lateral area and volume.
38. The altitude and slant height of a regular hexagonal pyramid are 15 and 17 , respectively. Find its lateral edge and volume.
(Represent the side of the base by x.)
39. The lateral edge of a frustum of a regular hexagonal pyramid is 10 , and the sides of its bases are 10 and 4 , respectively. Find its lateral area and volume.
40. Find the lateral area and volume of a frustum of a regular triangular pyramid, the sides of whose bases are 12 and 6 , respectively, and whose lateral edge is 5 .
41. Find the lateral area and volume of a regular quadrangular pyramid, the area of whose base is 100 , and whose lateral edge is 13 .
42. The lateral surface of a pyramid is greater than its base.
(From foot of altitude draw lines to the vertices of the base; each \triangle formed has a smaller altitude than the corresponding lateral face.)
43. If E, F, G, and H are the middle points of edges $A B, A D$, $C D$, and $B C$, respectively, of tetraedron $A B C D$, prove $E F G H$ a parallelogram. (§ 130.)
44. Two tetraedrons are equal if a diedral angle and the adjacent faces of one are equal, respectively, to a diedral angle and the adjacent faces of the other, if the equal parts are similarly placed.
(Figs. of $\S 459$. Given faces $O A B, O A C$, and diedral $\angle O A$ equal, respectively, to faces $O^{\prime} A B^{\prime}, O^{\prime} A^{\prime} C^{\prime}$, and diedral $\angle O^{\prime} A^{\prime}$.)
45. The section of a prism made by a plane parallel to a lateral edge is a parallelogram.
(Given section $E E^{\prime} F^{\prime} F \| A A$. Prove $E E^{\prime} \|$ to plane $C D^{\prime}$; then use §412.)

46. The point of intersection of the diagonals of a parallelopiped is called the centre of the parallelopiped. (Ex. 3.)

Prove that any line drawn through the centre of a parallelopiped, terminating in a pair of opposite faces, is bisected at that point.

47. The volume of a regular prism is equal to its lateral area, multiplied by one-half the apothem of its base. (§ 350.)
48. The volume of a regular pyramid is equal to its lateral area, multiplied by one-third the distance from the centre of its base to any lateral face.
(Pass planes through the lateral edges and the centre of the base.)
49. Find the area of the entire surface and the volume of a triangular pyramid, each of whose edges is 2 .
50. The areas of the bases of a frustum of a pyramid are 12 and 75 , respectively, and its altitude is 9 . What is the altitude of the pyramid ?
(Let altitude of pyramid $=x$; then $x-9$ is the \perp from its vertex to the upper base of the frustum ; then use § 515.)
51. The bases of a frustum of a pyramid are rectangles, whose sides are 27 and 15 , and 9 and 5 , respectively, and the line joining their centres is perpendicular to each base. If the altitude of the frustum is 12 , find its lateral area and volume.
(From the centre of each base draw $1 s$ to two of its sides; in this way the altitudes of the lateral faces may be found.)
52. A frustum of any pyramid is equivalent to the sum of three pyramids, having for their common altitude the altitude of the frustum, and for their bases the lower base, the upper base, and a mean proportional between the bases, of the frustum. (§524.)
53. The upper base of a truncated parallelopiped is a parallelogram.
(Let planes $A C^{\prime}$ and $B D^{\prime}$ intersect in $O O^{\prime}$; prove that $O O^{\prime}$ bisects $A^{\prime} C^{\prime}$ and $B^{\prime} D^{\prime}$.)

54. The sum of two opposite lateral edges of a truncated parallelopiped is equal to the sum of the other two lateral edges.
(Fig. of Ex. 53. Find the length of $O 0^{\prime}$ in terms of the lateral edges by § 132.)
55. The volume of a truncated parallelopiped is equal to the area of a right section, multiplied by one-fourth the sum of the lateral edges.
(By proof of $\S 483$, a rt. section of a parallelopiped is a \square; divide the solid into two truncated triangular prisms, and apply Ex. 54.)

56. The volume of a truncated parallelopiped is equal to the area of a right section, multiplied by the distance between the centres of the bases.
(By Ex. 54, the distance between the centres of the bases may be proved equal to one-fourth the sum of the lateral edges.)
57. If $A B C D$ is a rectangle, and $E F$ any line not in its plane parallel to $A B$, the volume of the solid bounded by figures $A B C D$, $A B F E, C D E F, A D E$, and $B C F$, is

$$
\frac{1}{6} h \times A D \times(2 A B+E F),
$$

where h is the perpendicular from any point of $E F$ to $A B C D$. (§ 525.)

58. If $A B C D$ and $E F G H$ are rectangles lying in parallel planes, $A B$ and $B C$ being parallel to $E F$ and $F G$, respectively, the solid bounded by the figures $A B C D, E F G H, A B F E$, $B C G F, C D H G$, and $D A E H$, is called a rectangular prismoid.
$A B C D$ and $E F G H$ are called the bases of the rectangular prismoid, and the perpendicular
 distance between them the altitude.

Prove the volume of a rectangular prismoid equal to the sum of its bases, plus four times a section equally distant from the bases, multiplied by one-sixth the altitude.
(Pass a plane through $C D$ and $E F$, and find volumes of solids $A B C D-E F$ and $E F G H-C D$ by Ex. 57.)
59. Find the volume of rectangular prismoid the sides of whose bases are 10 and 7, and 6 and 5 , respectively, and whose altitude is 9 .
60. Two tetraedrons are equal if three faces of one are equal, respectively, to three faces of the other, if the equal parts are similarly placed. (§ $460,1$.
61. The perpendicular drawn to the lower base of a truncated right triangular prism from the intersection of the medians of the upper base, is equal to one-third the sum of the lateral edges.
(Let P be the middle point of $D L$, and draw $P Q \perp A B C$; express $L M$ in terms of $P Q$ and $G N$ by $\S 132$.

62. The three planes passing through the lateral edges of a triangular pyramid, bisecting the sides of the base, meet in a common straight line.
(Fig. of Ex. 24, p. 272. The intersections of the planes with the base of the pyramid are the medians of the base.)
63. A monument is in the form of a frustum of a regular quadrangular pyramid 8 ft . in height, the sides of whose bases are 3 ft . and 2 ft ., respectively, surmounted by a regular quadrangular pyramid 2 ft . in height, each side of whose base is 2 ft . What is its weight, at 180 lb . to the cubic foot?
64. Find the area of the base of a regular quadrangular pyramid, whose lateral faces are equilateral triangles, and whose altitude is 5 .
(Represent lateral edge and side of base by x.)
65. A plane passed through the centre of a parallelopiped divides it into two equivalent solids. (Ex. 55.)
66. The sides of the base, $A B, B C$, and $C A$, of truncated right triangular prism $A B C-D E F$ are 15,4 , and 12 , respectively, and the lateral edges $A D, B E$, and $C F$ are 15,7 , and 10 , respectively. Find the area of upper base $D E F$.
(Draw $E H \perp C F$, and $H G$ and $F K \perp A D$. Find area $D E F$ by § 324 .)

67. The volume of a triangular prism is equal to a lateral face, multiplied by one-half its perpendicular distance from any point in the opposite lateral edge.
(Draw a rt. section of the prism, and apply §525.)
68. The sum of the squares of the four diagonals of a parallelopiped is equal to the sum of the squares of its twelve edges.
(To prove ${\overline{A C^{\prime}}}^{2}+{\overline{A^{\prime} C^{\prime}}}^{2}+{\overline{B D^{\prime}}}^{2}+{\overline{B^{\prime} D}}^{2}$ equal to $4{\overline{A A^{\prime}}}^{2}+4 \overline{A B}^{2}+4 \overline{A D}^{2}$. Apply Ex. 79, p. 228, to $\square A A^{\prime} C^{\prime} C$.)

69. The altitude and lateral edge of a frustum of a regular triangular pyramid are 8 and 10 , respectively, and each side of its upper base is $2 \sqrt{3}$. Find its volume and lateral area.
70. If $A B C D$ is a tetraedron, the section made by a plane parallel to each of the edges $A B$ and $C D$ is a parallelogram. (§412.)
(To prove $E F G H$ a \square.)

71. In tetraedron $A B C D$, a plane is drawn through edge $C D$ perpendicular to $A B$, intersecting faces $A B C$ and $A B D$ in $C E$ and $E D$, respectively. If the bisector of $\angle C E D$ meets $C D$ at F, prove

$$
C F: D F=\text { area } A B C: \text { area } A B D . \quad(\S 249 .)
$$

72. The sum of the perpendiculars drawn to the faces from any point within a regular tetraedron (§536) is equal to its altitude.
(Divide the tetraedron into triangular pyramids, having the given point for their common vertex.)
73. The planes bisecting the diedral angles of a tetraedron intersect in a common point.

74. If the four diagonals of a quadrangular prism pass through a common point, the prism is a parallelopiped.
(In Fig. of Ex. 68, let $A C^{\prime}, A^{\prime} C, B D^{\prime}$, and $B^{\prime} D$ pass through a common point. To prove $A C^{\prime}$ a parallelopiped. Prove $A C$ a \square.)

SIMILAR POLYEDRONS.

527. Def. Two polyedrons are said to be similar when they have the same number of faces similar each to each and similarly placed, and have their homologous polyedral angles equal.

Prop. XXIV. 'Theorem.

528. The ratio of any two homologous edges of two similar polyedrons is equal to the ratio of any other two homologous edges.

Given, in similar polyedrons. $A F$ and $A^{\prime} F^{\prime}$, edge $A B$ homologous to edge $A^{\prime} B^{\prime}$, and edge $E F$ to edge $E^{\prime} F^{\prime}$; and faces $A C$ and $D F$ similar to faces $A^{\prime} C^{\prime \prime}$ and $D^{\prime} F^{\prime}$, respectively.

To Prove $\quad \frac{A B}{A^{\prime} B^{\prime}}=\frac{E F}{E^{\prime} F^{\prime}}$.
$\left(\right.$ By $\left.\S 253,2, \frac{A B}{A^{\prime} B^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}.\right)$
529. Cor. I. Any two homologous faces of two similar polyedrons are to each other as the squares of any two homologous edges.

$$
\left(\text { To prove } \frac{\text { area } A B C D}{\text { area } A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=\frac{{\overline{E F^{2}}}^{2}}{\overline{E^{\prime} F^{\prime 2}}}\right. \text {. See §322.) }
$$

530. Cor. II. The entire surfaces of two similar polyedrons are to each other as the squares of any two homologous edges.

$$
\left(\text { To prove } \frac{\text { area } A B C D+\text { area } C D E F \text { etc. }}{\text { area } A^{\prime} B^{\prime} C^{\prime} D^{\prime}+\text { area } C^{\prime} D^{\prime} E^{\prime} F^{\prime} \text { etc. }}=\frac{\overline{E F^{2}}}{\overline{E^{\prime} F^{\prime 2}}} .\right)
$$

Prop. XXV. Theorem.

531. Two tetraedrons are similar when the faces including a triedral angle of one are similar, respectively, to the faces including a triedral angle of the other, and similarly placed.

Given, in tetraedrons $A B C D$ and $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime}$, face $A B C$ similar to $A^{\prime} B^{\prime} C^{\prime}, A C D$ to $A^{\prime} C^{\prime} D^{\prime}$, and $A D B$ to $A^{\prime} D^{\prime} B^{\prime}$.

To Prove $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ similar.
Proof. From the given similar faces, we have

$$
\begin{equation*}
\frac{B C}{B^{\prime} C^{\prime}}=\frac{A C}{A^{\prime} C^{i}}=\frac{C D}{C^{\prime} D^{\prime}}=\frac{A D}{A^{\prime} D^{\prime}}=\frac{B D}{B^{\prime} D^{\prime}} . \tag{?}
\end{equation*}
$$

Hence, faces $B C D$ and $B^{\prime} C^{\prime} D^{\prime}$ are similar.
Again, $\measuredangle B A C, C A D$, and $D A B$ are equal, respectively, to $\measuredangle B^{\prime} A^{\prime} C^{\prime}, C^{\prime} A^{\prime} D^{\prime}$, and $D^{\prime} A^{\prime} B^{\prime}$.

Then, triedral $\measuredangle s A-B C D$ and $A^{\prime}-B^{\prime} C^{\prime} D^{\prime}$ are equal.
Similarly, any two homologous triedral $\angle \mathrm{s}$ are equal.
Therefore, $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are similar (§ 527).

Prop. XXVI. Theorem.

532. Two tetraedrons are similar when a diedral angle of one is equal to a diedral angle of the other, and the faces including the equal diedral angles similar each to each, and similarly placed.

Given, in tetraedrons $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, diedral $\angle A B$ equal to diedral $\angle A^{\prime} B^{\prime}$; and faces $A B C$ and $A B D$ similar to faces $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime} B^{\prime} D^{\prime}$, respectively.

To Prove $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ similar.
Proof. Apply tetraedron $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime}$ to $A B C D$ so that diedral $\angle A^{\prime} B^{\prime}$ shall coincide with its equal diedral $\angle A B$, point A^{\prime} falling at A.

Then since $\angle B^{\prime} A^{\prime} C^{\prime}=\angle B A C$ and $\angle B^{\prime} A^{\prime} D^{\prime}=\angle B A D$, edge $A^{\prime} C^{\prime}$ will coincide with edge $A C$, and $A^{\prime} D^{\prime}$ with $A D$.

$$
\therefore \angle C^{\prime \prime} A^{\prime} D^{\prime}=\angle C A D .
$$

Again, from the given similar faces,

$$
\begin{equation*}
\frac{A^{\prime} C^{\prime}}{A C}=\frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} D^{\prime}}{A D} \tag{?}
\end{equation*}
$$

Hence, $\triangle C^{\prime} A^{\prime} D^{\prime}$ is similar to $\triangle C A D$.
Then, the faces including triedral $\angle A^{\prime}-B^{\prime} C^{\prime} D^{\prime}$ are similar respectively to the faces including triedral $\angle A-B C D$, and similarly placed.

Therefore, $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are similar.

Ex. 75. If a tetraedron be cut by a plane parallel to one of its faces, the tetraedron cut off is similar to the given tetraedron.

Prop. XXVII. Theorem.

533. Two similar polyedrons may be decomposed into the same number of tetraedrons, similar each to each, and similarly placed.

Given $A F$ and $A^{\prime} F^{\prime \prime}$ similar polyedrons, vertices A and A^{\prime} being homologous.

To Prove that they may be decomposed into the same number of tetraedrons, similar each to each, and similarly placed.

Proof. Divide all the faces of $A F$, except the ones having A as a vertex, into \mathbb{B}; and draw lines from A to their vertices.

In like manuer, divide all the faces of $A^{\prime} F^{\prime \prime}$, except the ones having A^{\prime} as a vertex, into similar to those in $A F$, and similarly placed.

Draw lines from A^{\prime} to their vertices.
Then, the given polyedrons are decomposed into the same number of tetraedrons, similarly placed.

Let $A B C F$ and $A^{\prime} B^{\prime} C^{\prime} F^{\prime \prime}$ be homologous tetraedrons.
\& $A B C$ and $B C F$ are similar, respectively, to © $A^{\prime} B^{\prime} C^{\prime}$ and $B^{\prime} C^{\prime} F^{\prime \prime}$.
(§ 267)
And since the given polyedrons are similar, the homologous diedral $\measuredangle B C$ and $B^{\prime} C^{\prime \prime}$ are equal.

Therefore, $A B C F$ and $A^{\prime} B^{\prime} C^{\prime} F^{\prime \prime}$ are similar.
In like manner, we may prove any two homologous tetraedrons similar.

Hence, the given polyedrons are decomposed into the same number of tetraedrons, similar each to each, and similarly placed.

Prop. XXVIII. Theorem.
534. Two similar tetraedrons are to each other as the cubes of their homologous edges.

Given V and V^{\prime} the volumes of similar tetraedrons $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, vertices A and A^{\prime} being homologous.

To Prove

$$
\frac{V}{V^{\prime}}=\frac{\overline{A B}^{3}}{\overline{A^{\prime} B^{\prime}}}
$$

Proof. Since the triedral \measuredangle at A and A^{\prime} are equal,

$$
\begin{align*}
\frac{V}{V^{\prime}} & =\frac{A B \times A C \times A D}{A^{\prime} B^{\prime} \times A^{\prime} C^{\prime} \times A^{\prime} D^{\prime}} \tag{§523}\\
& =\frac{A B}{A^{\prime} B^{\prime}} \times \frac{A C}{A^{\prime} C^{\prime}} \times \frac{A D}{A^{\prime} D^{\prime}}
\end{align*}
$$

But,

$$
\begin{align*}
& \frac{A C}{A^{\prime} C^{\prime \prime}}=\frac{A B}{A^{\prime} B^{\prime}}, \text { and } \frac{A D}{A^{\prime} D^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} . \tag{§528}\\
\therefore & \frac{V}{V^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} \times \frac{A B}{A^{\prime} B^{\prime}} \times \frac{A B}{A^{\prime} B^{\prime}}=\frac{\overline{A B^{3}}}{\overline{A^{\prime} B^{\prime}}} .
\end{align*}
$$

535. Cor. Any two similar polyedrons are to each other as the cubes of their homologous edges.

For any two similar polyedrons may be decomposed into the same number of tetraedrons, similar each to each (§ 533).

Any two homologous tetraedrons are to each other as the cubes of their homologous edges.
(§ 534)
Then, any two homologous tetraedrons are to each other as the cubes of any two homologous edges of the polyedrons.

REGULAR POLYEDRONS.

536. Def. A regular polyedron is a polyedron whose faces are equal regular polygons, and whose polyedral angles are all equal.

Prop. XXIX. Theorem.

537. Not more than five regular convex polyedrons are possible.

A convex polyedral \angle must have at least three faces, and the sum of its face $\angle s$ must be $<360^{\circ}$ (§ 458).

1. With equilateral triangles.

Since the \angle of an equilateral \triangle is 60°, we may form a convex polyedral \angle by combining either 3 , 4 , or 5 equilateral 1 .

Not more than 5 equilateral \& can be combined to form a convex polyedral \angle.

Hence, not more than three regular convex polyedrons can be bounded by equilateral ©
2. With squares.

Since the \angle of a square is 90°, we may form a convex polyedral \angle by combining 3 squares.

Not more than 3 squares can be combined to form a convex polyedral \angle.

Hence, not more than one regular convex polyedron can be bounded by squares.
3. With regular pentagons.

Since the \angle of a regular pentagon is 108°, we may form a convex polyedral \angle by combining 3 regular pentagons.

Not more than 3 regular pentagons can be combined to form a convex polyedral \angle.

Hence, not more than one regular convex polyedron can be bounded by regular pentagons.

Since the \angle of a regular hexagon is 120°, no convex polyedral \angle can be formed by combining regular hexagons.

Hence, no regular convex polyedron can be bounded by regular hexagons.
In like manner, no regular convex polyedron can be bounded by regular polygons of more than six sides.

Therefore, not more than five regular convex polyedrons are possible.

Prop. XXX. Theorem.

538. With a given edge, to construct a regular polyedron.

We will now prove, by actual construction, that five regular convex polyedrons are possible:

1. The regular tetraedron, bounded by 4 equilateral ©.
2. The regular hexaedron, or cube, bounded by 6 squares.
3. The regular octaedron, bounded by 8 equilateral ©.
4. The regular dodecaedron, bounded by 12 regular pentagons.
5. The regular icosaedron, bounded by 20 equilateral ©.
6. To construct a regular tetraedron.

Given line $A B$.
Required to construct with $A B$ as an edge a regular tetraedron.
Construction. Construct the equilateral $\triangle A B C$.
At its centre E, draw line $E D \perp A B C$; and take point D so that $A D=A B$.

Draw lines $A D, B D$, and $C D$.
Then, solid $A B C D$ is a regular tetraedron.
Proof. Since A, B, and C are equally distant from E,

$$
\begin{equation*}
A D=B D=C D \tag{§406,I}
\end{equation*}
$$

Hence, the six edges of the tetraedron are all equal.
Then, the faces are equal equilateral ©.
And since the \llcorner s of the faces are all equal, the triedral $\stackrel{\diamond}{ }$ whose vertices are A, B, C, and D are all equal. ($\$ 460,1$)
Therefore, solid $A B C D$ is a regular tetraedron. (§ 536)
2. To construct a regular hexaedron, or cube.

Given line $A B$.
Required to construct with $A B$ as an edge a cube.

Construction. Construct square $A B C D$; and draw lines $A E, B F, C G$, and $D H$, each equal to $A B$, and $\perp A B C D$.

Draw lines $E F, F G, G H$, and $H E$; then, solid $A G$ is a cube.

Proof. By cons., its faces are equal squares.
Hence, its triedral \measuredangle are all equal.
3. To construct a regular octaedron.

Given line $A B$.
Required to construct with $A B$ as an edge a regular octaedron.

Construction. Construct the square $A B C D$; through its centre O draw line $E F \perp A B C D$, making $O E=O F=O A$.

Draw lines $E A, E B, E C, E D, F A, F B$,
 $F C$, and $F D$; then solid $A E F C$ is a regular octaedron.

Proof. Draw lines $O A, O B$, and $O D$.
Then in r.t. $\triangle A O B, A O E$, and $A O F$, by cons.,

$$
\begin{gather*}
O A=O B=O E=O F \\
\therefore \triangle A O B=\triangle A O E=\triangle A O F \tag{?}\\
\therefore A B=A E=A F \tag{?}
\end{gather*}
$$

Then, the eight edges terminating at E and F are all equal.

Thus, the twelve edges of the octaedron are all equal, and the faces are equal equilateral \&s.

Again, by cons., the diagonals of quadrilateral $B E D F$ are equal, and bisect each other at rt. \llcorner.

Hence, $B E D F$ is a square equal to $A B C D$, and $O A$ is \perp to its plane.
(§ 400)
Then, pyramids $A-B E D F$ and $E-A B C D$ are equal ; and hence polyedral $\triangle A-B E D F$ and $E-A B C D$ are equal.

In like manner, any two polyedral $\measuredangle s$ are equal.
Therefore, solid $A E F C$ is a regular octaedron.
4. To construct a regular dodecaedron.

Fig. 1.

Fig. 2.

Given line $A B$.
Required to construct with $A B$ as an edge a regular dodecaedron.

Construction. Construct regular pentagon $A B C D E$ (Fig. 1); and to it join five equal regular pentagons, so inclined as to form equal triedral $\underline{\underline{s}}$ at A, B, C, D, and E. (§460,1)

Then there is formed a convex surface $A K$ composed of six regular pentagons, as shown in lower part of Fig. 1.

Construct a second surface $A^{\prime} K^{\prime}$ equal to $A K$, as shown in upper part of Fig. 1.

Surfaces $A K$ and $A^{\prime} K^{\prime}$ may be combined as shown in Fig. 2, so as to form at F a triedral \angle equal to that at A, having for its faces the regular pentagons about vertices F and $F^{\prime \prime}$ in Fig. 1.
(§ 460, 1)
Then, solid $A K$ is a regular dodecaedron.
Proof. Since G^{\prime} falls at G, and diedral $\angle F G$ and face ¿s $F G H$ and $F G D^{\prime}$ (Fig. 2) are equal respectively to the diedral \angle and face \measuredangle of triedral $\angle F$, the faces about vertex G will form a triedral \angle equal to that at F.

In this way, it may be proved that at each of the vertices H, K, etc., there is formed a triedral \angle equal to that at F.

Therefore, solid $A K$ is a regular dodecaedron.
5. To construct a regular icosaedron.

Given line $A B$.
Required to construct with $A B$ as an edge a regular icosaedron.

Construction. Construct regular pentagon $A B C D E$ (Fig. 1); at its centre O draw line $O F \perp A B C D E$, making $A F=A B$, and draw lines $A F, B F, C F, D F$, and $E F$.

Then, $F-A B C D E$ is a polyedral \angle composed of five equal equilateral ©s.
(§§ 406, I, 69)
Then construct two other polyedral $\angle s, A-B F E G H$ and $E-A F D K G$, each equal to $F-A B C D E$; and place them as shown in upper part of Fig. 2, so that faces $A B F$ and $A E F$ of $A-B F E G H$, and faces $A E F$ and $D E F$ of $E-A F D K G$, shall coincide with the corresponding faces of $F-A B C D E$.

Then there is formed a convex surface $G C$, composed of ten equilateral s.

Construct a second surface $G^{\prime} C^{\prime}$ equal to $G C$, as shown in lower part of Fig. 2.

Surfaces $G C$ and $G^{\prime} C^{\prime}$ may be combined as shown in Fig. 3, so that edges $G H$ and $H B$ shall coincide with edges $G^{\prime} H^{\prime}$ and $H^{\prime} B^{\prime}$, respectively.

Then, solid $G C$ is a regular icosaedron.
Proof. Since diedral $\angle A H, E^{\prime} H^{\prime}$, and $F^{\prime} H^{\prime}$ are equal to the diedral $\angle s$ of polyedral $\angle F$, the faces about vertices H and H^{\prime} form a polyedral \angle at H equal to that at F.

Then, since diedral $\angle F B, A B, H B$, and $F^{\prime} B$ (Fig. 3) are equal to the diedral \angle of polyedral $\angle F$, the faces about vertex B form a polyedral \angle equal to that at F; and it may be shown that at each of the vertices C, D, etc., there is formed a polyedral \angle equal to that at F.

Therefore, solid $G C$ is a regular icosaedron.
539. Sch. To construct the regular polyedrons, draw the following figures on cardboard ; cut them out entire, and on the interior lines cut the cardboard half through; the edges may then be brought together to form the respective solids.

Tetraedron.

Hexaedron.

Octaedron.

Dodecaedron.

Icosaedron.

EXERCISES.

76. The volume of a pyramid whose altitude is 7 in . is 686 cu . in. Find the volume of a similar pyramid whose altitude is 12 in .
77. If the volume of a prism whose altitude is 9 ft . is 171 cu . ft ., find the altitude of a similar prism whose volume is $50 \frac{2}{3} \mathrm{cu} . \mathrm{ft}$.
(Represent the altitude by x.)
78. Two bins of similar form contain, respectively, 375 and 648 bushels of wheat. If the first bin is 3 ft .9 in . long, what is the length of the second?
79. A pyramid whose altitude is 10 in ., weighs 24 lb . At what distance from its vertex must it be cut by a plane parallel to its base so that the frustum cut off may weigh 12 lb . ?
80. An edge of a polyedron is 56 , and the homologous edge of a similar polyedron is 21 . The area of the entire surface of the second polyedron is 135 , and its volume is 162 . Find the area of the entire surface, and the volume, of the first polyedron.
81. The area of the entire surface of a tetraedron is 147 , and its volume is 686 . If the area of the entire surface of a similar tetraedron is 48 , what is its volume?
(Let x and y denote the homologous edges of the tetraedrons.)
82. The area of the entire surface of a tetraedron is 75 , and its volume is 500 . If the volume of a similar tetraedron is 32 , what is the area of its entire surface?
83. The homologous edges of three similar tetraedrons are 3,4 , and 5 , respectively. Find the homologous edge of a similar tetraedron equivalent to their sum.
(Represent the edge by x.)
84. State and prove the converse of Prop. XXVII.
85. The volume of a regular tetraedron is equal to the cube of its edge multiplied by $\frac{1}{12} \sqrt{2}$.
86. The volume of a regular tetraedron is $18 \sqrt{2}$. Find the area of its entire surface. (Ex. 85.)
(Represent the edge by x.)
87. The volume of a regular octaedron is equal to the cube of its edge multiplied by $\frac{1}{3} \sqrt{2}$.

Воок VIII.

THE CYLINDER, CONE, AND SPHERE.

DEFINITIONS.

540. A cylindrical surface is a surface generated by a moving straight line, which constantly intersects a given plane curve, and in all its positions is-parallel to a given straight line, not in the plane of the curve.

Thus, if line $A B$ moves so as to constantly intersect plane curve $A D$, and is constantly parallel to line $M N$, not in the plane of the
 curve, it generates a cylindrical surface.

The moving line is called the generatrix, and the curve the directrix.

Any position of the generatrix, as $E F$, is called an element of the surface.

A cylinder is a solid bounded by a cylindrical surface, and two parallel planes.

The parallel planes are called the bases of the cylinder, and the cylindrical surface the lateral surface.

The altitude of a cylinder is the perpendicular distance between the planes of its
 bases.

A right cylinder is a cylinder the elements of whose lateral surface are perpendicular to its bases.

A circular cylinder is a cylinder whose base is a circle.

A plane is said to be tangent to a cylinder when it contains one, and only one, element of the lateral surface.
541. It follows from the definition of a cylinder (§540) that

The elements of the lateral surface of a cylinder are equal and parallel.
(§ 415)

Prop. I. Theorem.

542. A section of a cylinder made by a plane passing through an element of the lateral surface is a parallelogram.

Given $A B C D$ a section of cylinder $A F$, made by a plane passing through $A B$, an element of the lateral surface.

To Prove section $A B C D$ a \square.
Note. It should be observed that, with the above hypothesis, $C D$ simply represents the intersection of plane $A C$ with the cylindrical surface, and may be a curved line; it must be proved that it is a str. line $\| A B$.

Proof. $A D$ and $B C$ are str. lines, and II. (§§ 396, 414)
Now draw str. line $C E$ in plane $A C \| A B$; then, $C E$ is an element of the cylindrical surface.
(§§541, 53)
Then since $C E$ lies in plane $A C$, and also in the cylindrical surface, it must be the intersection of the plane with the cylindrical surface.

Then, $C D$ is a str. line $\| A B$, and $A B C D$ is a \square.
543. Cor. A section of a right cylinder made by a plane perpendicular to its base is a rectangle.

Prop. II. Theorem.

544. The bases of a cylinder are equal.

Given cylinder $A B^{\prime}$.
To Prove base $A^{\prime} B^{\prime}=$ base $A B$.
Proof. Let $E^{\prime}, F^{\prime \prime}$, and G^{\prime} be any three points in the perimeter of base $A^{\prime} B^{\prime}$, and draw $E E^{\prime}, F F^{\prime}$, and $G G^{\prime}$ elements of the lateral surface.

Draw lines $E F, F G, G E, E^{\prime} F^{\prime \prime}, F^{\prime} G^{\prime}$, and $G^{\prime} E^{\prime}$.
Now, $E E^{\prime}$ and $F F^{\prime}$ are equal and $\|$.
Then, $E E^{\prime} F^{\prime \prime} F$ is a \square.

$$
\begin{equation*}
\therefore E^{\prime} F^{\prime}=E F \text {. } \tag{?}
\end{equation*}
$$

Similarly, $\quad E^{\prime} G^{\prime}=E G$ and $F^{\prime} G^{\prime}=F G$.

$$
\begin{equation*}
\therefore \triangle E^{\prime} F^{\prime \prime} G^{\prime}=\triangle E F G . \tag{?}
\end{equation*}
$$

Then, base $A^{\prime} B^{\prime}$ may be superposed upon base $A B$ so that points $E^{\prime}, F^{\prime \prime}$, and G^{\prime} shall fall at E, F, and G, respectively.

But E^{\prime} is any point in the perimeter of $A^{\prime} B^{\prime}$.
Then, every point in the perimeter of $A^{\prime} B^{\prime}$ will fall somewhere in the perimeter of $A B$, and base $A^{\prime} B^{\prime}=$ base $A B$.
545. Cor. I. The sections of a circular cylinder made by planes parallel to its bases are equal circles.

For each may be regarded as the upper base of a cylinder whose lower base is a \odot.
546. Def. The axis of a circular cylinder is a straight line drawn between the centres of its bases.
547. Cor. II. The axis of a circular cylinder is parallel to the elements of its lateral surface.

Given $A A^{\prime}$ the axis, and $B B^{\prime}$ an element of the lateral surface, of circular cylinder $B C^{\prime \prime}$.

To Prove $\quad A A^{\prime} \| B B^{\prime}$.
Proof. Let $B B^{\prime} C^{\prime} C$ be a section made by a plane passing through $B B^{\prime}$ and A;

(§ 542)

$$
\begin{equation*}
\therefore B^{\prime} C^{\prime \prime}=B C . \tag{?}
\end{equation*}
$$

Then since $B C$ is a diameter of $\odot B C$, and (5) $B C$ and $B^{\prime} C^{\prime \prime}$ are equal, $B^{\prime} C^{\prime \prime}$ is a diameter of $\odot B^{\prime} C^{\prime \prime}$, and passes through A^{\prime}.

Hence, $A B$ and $A^{\prime} B^{\prime}$ are equal and II.
Then, $A B B^{\prime} A^{\prime}$ is a \square.

$$
\begin{equation*}
\therefore A A^{\prime} \| B B^{\prime} . \tag{?}
\end{equation*}
$$

548. Cor. III. The axis of a circular cylinder passes through the centres of all sections parallel to the bases.

Prop. III. Theorem.

549. A right circular cylinder may be generated by the revolution of a rectangle about one of its sides as an axis.

Given rect. $A B C D$.
To Prove the solid generated by the revolution of $A B C D$ about $A D$ as an axis a rt. circular cylinder.

Proof. All positions of $B C$ are $\| A D$.
Again, $A B$ and $C D$ generate (3) $\perp A D$.
 (§§ 421, 419)
Whence, $A B C D$ generates a rt. circular cylinder.
550. Defs. From the property proved in $\S 549$, a right circular cylinder is called a cylinder of revolution.

Similar cylinders of revolution are cylinders generated by the revolution of similar rectangles about homologous sides as axes.

Prop. IV. Theorem.

551. A plane drawn through an element of the lateral surface of a circular cylinder and a tangent to the base at its extremity, is tangent to the cylinder.

Given $A A^{\prime}$ an element of the lateral surface of circular cylinder $A B^{\prime}$, line $C D$ tangent to base $A B$ at A, and plane $C D^{\prime}$ drawn through $A A^{\prime}$ and $C D$.

To Prove $C D^{\prime}$ tangent to the cylinder.
Proof. Let E be any point in plane $C D^{\prime}$, not in $A A^{\prime}$, and draw through E a plane $\|$ to the bases, intersecting $C D^{\prime}$ in line $E F$, and the cylinder in $\odot F H$.

Draw axis $O O^{\prime}$; then $O O^{\prime}$ is $\| A A^{\prime}$.
(§ 545)
Let the plane of $O O^{\prime}$ and $A A^{\prime}$ intersect the planes of $A B$ and $F H$ in radii $O A$ and $G F$, respectively.

Then, $G F \| O A$ and $F E \| A D$.

$$
\begin{equation*}
\therefore \angle G F E=\angle O A D . \tag{§548}
\end{equation*}
$$

But $\angle O A D$ is a ret. \angle.
Then, $F E$ is $\perp G F$, and tangent to $\odot F H$.
Whence, point E lies without the cylinder.
Then, all portions of $C D^{\prime}$, not in $A A^{\prime}$, lie without the cylinder, and $C D^{\prime}$ is tangent to the cylinder.
552. Cor. A plane tangent to a circular cylinder intersects the planes of the bases in lines which are tangent to the bases.

Ex. 1. The sections of a cylinder made by two parallel planes which cut all the elements of its lateral surface are equal.

THE CONE.

DEFINITIONS.

553. A conical surfuce is a surface generated by a moving straight line, which constantly intersects a given plane curve, and passes through a given point not in the plane of the curve.
Thus, if line $O A$ moves so as to constantly intersect plane curve $A B C$, and constantly passes through point O, not in the plane of the curve, it generates a conical surface.

The moving line is called the generatrix, and the curve the directrix.

The given point is called the vertex, and any position of the generatrix; as $O B$, is called an element of the surface.

If the generatrix be supposed indefinite in length, it will generate two conical surfaces of indefinite extent, $O-A^{\prime} B^{\prime} C^{\prime}$ and $O-A B C$.

These are called the upper and lower nappes, respectively.
A cone is a solid lounded by a conical surface, and a plane cutting all its elements.

The plane is called the base of the cone, and the conical surface the lateral surface.

The altitude of a cone is the perpendicular distance from the vertex to the plane of the base.

A circular cone is a cone whose base is a circle.

The axis of a circular cone is a straight line drawn from the vertex to the centre of the base.

A right circular cone is a circular cone whose axis is perpendicular to its base.

A frustum of a cone is a portion of a cone included between the base and a plane parallel to the base.

The base of the cone is called the lower base, and the section made by the plane the upper base, of the frustum.

The altitude is the perpendicular distance
 between the planes of the bases.

A plane is said to be tangent to a cone, or frustum of a cone, when it contains one, and only one, element of the lateral surface.

Prop. V. Theorem.
554. A right circular cone may be generated by the revolution of a right triangle about one of its legs as an axis.

Given C the rt. \angle of rt. $\triangle A B C$.
To Prove the solid generated by the revolution of $A B C$ about $A C$ as an axis a right circular cone.
(The proof is left to the pupil.)
555. Defs. From the above property, a right circular cone is called a cone of revolution.

Similar cones of revolution are cones generated by the revolution of similar right triangles about homologous legs as axes.

Prop. VI. Theorem.

556. A section of a cone made by a plane passing through the rertex is a triangle.

Given $O C D$ a section of cone $O A B$ made by a plane passing through vertex O.

To Prove section $O C D$ a \triangle.
Proof. We have $C D$ a str. line. (§ 396)
Now draw str. lines in plane $O C D$ from O to C and D; these str. lines are elements of the conical surface. (§550)

Then, since these str. lines lie in plane $O C D$, and also in the conical surface, they must be the intersections of the plane with the conical surface.

Then, $O C$ and $O D$ are str. lines, and $O C D$ is a \triangle.

Prop. VII. Theorem.

557. A section of a circular cone made by a plane parallel to the base is a circle.

Given $A^{\prime} B^{\prime} C^{\prime}$ a section of circular cone $S-A B C$, made by a plane $\|$ to the base.

To Prove $A^{\prime} B^{\prime} C^{\prime \prime}$ a \odot.

Proof. Draw axis $O S$, intersecting plane $A^{\prime} B^{\prime} C^{\prime \prime}$ at O^{\prime}. Let A^{\prime} and B^{\prime} be any two points in perimeter $A^{\prime} B^{\prime} C^{\prime}$.
Let the planes determined by these points and OS intersect the base in radii $O A$ and $O B$, the section in lines $O^{\prime} A^{\prime}$ and $O^{\prime} B^{\prime}$, and the lateral surface in lines $S A^{\prime} A$ and $S B^{\prime} B$, respectively.

Then, $S A^{\prime} A$ and $S B^{\prime} B$ are str. lines.
Now, $O^{\prime} A^{\prime} \| O A$ and $O^{\prime} B^{\prime} \| O B$.
Then, $\triangle S O^{\prime} A^{\prime}$ and $S O^{\prime} B^{\prime}$ are similar to $\triangle S O A$ and $S O B$, respectively.

$$
\begin{gather*}
\therefore \frac{O^{\prime} A^{\prime}}{O A}=\frac{S O^{\prime}}{S O} \text { and } \frac{O^{\prime} B^{\prime}}{O B}=\frac{S O^{\prime}}{S O} . \tag{?}\\
\therefore \frac{O^{\prime} A^{\prime}}{O A}=\frac{O^{\prime} B^{\prime}}{O B} . \tag{?}\\
O A=O B .
\end{gather*}
$$

But,
Then, $O^{\prime} A^{\prime}=O^{\prime} B^{\prime}$; and as A^{\prime} and B^{\prime} are any two points in perimeter $A^{\prime} B^{\prime} C^{\prime \prime}$, section $A^{\prime} B^{\prime} C^{\prime \prime}$ is a \odot.
558. Cor. The axis of a circular cone passes through the centre of every section parallel to the base.

Prop. VIII. Theorem.

559. A plane drawn through an element of the lateral surface of a circular cone and a tangent to the base at its extremity, is tangent to the cone.

Given $O A$ an element of the lateral surface of circular cone $O A B$, line $C D$ tangent to base $A B$ at A, and plane $O C D$ drawn through $O A$ and $C D$.

To Prove $O C D$ tangent to the cone.
(Prove that E lies without the cone.)
560. Cor. A plane tangent to a circular cone intersects the plane of the base in a line tangent to the base.

THE SPHERE.

DEFINITIONS.

561. A sphere is a solid bounded by a surface, all points of which are equally distant from a point within called the centre.

A radius of a sphere is a straight line drawn from the centre to the surface.

A diameter is a straight line drawn through the centre, having its extremities in the surface.
562. It follows from the definition of $\S 561$ that all radii of a sphere are equal.

Also, all its diameters are equal, since each is the sum of two radii.
563. Two spheres are equal when their radii are equal.

For they can evidently be applied one to the other so that their surfaces shall coincide throughout.

Conversely, the radii of equal spheres are equal.
564. A line (or a plane) is said to be tangent to a sphere when it has one, and only one, point in common with the surface; the common point is called the point of contact.

A polyedron is said to be inscribed in a sphere when all its vertices lie in the surface of the sphere; in this case the sphere is said to be circumscribed about the polyedron.

A polyedron is said to be circumscribed about a sphere when all its faces are tangent to the sphere; in this case the sphere is said to be inscribed in the polyedron.
565. A sphere may be generated by the revolution of a semicircle about its diameter as an axis.

For all points of such a surface are equally distant from the centre of the \odot.

Prop. IX. Theorem.
566. A section of a sphere made by a plane is a circle.

Given $A B C$ a section of sphere $A P C$ made by a plane.
To Prove $A B C$ a \odot.
Proof. Let O be the centre of the sphere, and draw line $O O^{\prime} \perp$ to plane $A B C$.

Let A and B be any two points in perimeter $A B C$, and draw lines $O A, O B, O^{\prime} A$, and $O^{\prime} B$.

Now,

$$
\begin{equation*}
O A=O B \tag{?}
\end{equation*}
$$

$$
\therefore O^{\prime} A=O^{\prime} B .
$$

But A and B are any two points in perimeter $A B C$.
Therefore, $A B C$ is a \odot.
567. Defs. A great circle of a sphere is a section made by a plane passing through the centre; as $A B C$.

A small circle is a section made by a plane which does not pass through the centre.

The diameter perpendicular to a circle of a sphere is called the axis of the circle,
 and its extremities are called the poles.
568. Cor. I. The axis of a circle of a sphere passes through the centre of the circle.
569. Cor. II. All great circles of a sphere are equal.

For their radii are radii of the sphere.
570. Cor. III. Every great circle bisects the sphere and its surface.

For if the portions of the sphere formed by the plane of the great \odot be separated, and placed so that their plane surfaces coincide, the spherical surfaces falling on the same side of this plane, the two spherical surfaces will coincide throughout; for all points of either surface are equally distant from the centre.
571. Cor. IV. Any two great circles bisect each other.

For the intersection of their planes is a diameter of the sphere, and therefore a diameter of each \odot.
572. Cor. V. Between any two points on the surface of a sphere, not the extremities of a diameter, an arc of a great circle, less than a semi-circumference, can be drawn, and but one.

For the two points, with the centre of the sphere, determine a plane which intersects the surface of the sphere in the required arc.

Note. If the points are the extremities of a diameter, an indefinitely great number of arcs of great (3) can be drawn between them; for an indefinitely great number of planes can be drawn through the diameter.
573. Def. The distance between two points on the surface of a sphere, not at the extremities of a diameter, is the are of a great circle, less than a semi-circumference, drawn between them.

Thus, the distance between points C and D is arc $C E D$, and not are $C A F B D$.

574. Cor. VI. An arc of a circle may be drawn through any three points on the surface of a sphere.

For the three points determine a plane which intersects. the surface of the sphere in the required arc.

Prop. X. Theorem.

575. All points in the circumference of a circle of a sphere are equally distant from each of its poles.

Given P and P^{\prime} the poles of $\odot A B C$ of sphere $A P C$.
To Prove all points in circumference $A B C$ equally distant (§573) from P, and also from P^{\prime}.

Proof. Let A and B be any two points in circumference $A B C$, and draw ares of great (5 $P A$ and $P B$.

Draw axis $P P^{\prime}$, intersecting plane $A B C$ at O.
Draw lines $O A$ and $O B$, and chords $P A$ and $P B$.
Now O is the centre of $\odot A B C$.

$$
\begin{equation*}
\therefore O A=O B . \tag{§568}
\end{equation*}
$$

$$
\begin{align*}
\therefore \text { chord } P A & =\operatorname{chord} P B . \\
\therefore \text { are } P A & =\operatorname{arc} P B .
\end{align*}
$$

But A and B are any two points in circumference $A B C$.
Therefore, all points in circumference $A B C$ are equally distant from P.

In like manner, all points in circumference $A B C$ are equally distant from P^{\prime}.
576. Def. The polar distance of a circle of a sphere is the distance (§573) from the nearer of its poles, or from either pole if they are equally near, to the circumference.

Thus, in figure of Prop. X , the polar distance of $\odot A B C$ is $\operatorname{arc} P A$.
577. Cor. All points in the circumference of a great circle of a sphere are at a quadrant's distance from either pole.

Given P a pole of great $\odot A B C$ of sphere $A P C, B$ any point in circumference $A B C$, and $P B$ an arc of a great \odot.

To Prove arc $P B$ a quadrant (§ 146).
Proof. Let O be the centre of the sphere, and draw radii $O B$ and $O P$.

Then, $\angle P O B$ is a rt. \angle.
Whence, arc $P B$ is a quadrant.
The above proof holds for either pole of the great \odot.
Note. An arc of a circle may be drawn on the surface of a sphere by placing one foot of the compasses at the nearer pole of the circle, the distance between the feet being equal to the chord of the polar distance.

Prop. XI. Theorem.

578. If a point on the surface of a sphere lies at a quadrant's distance from each of two points in the arc of a great circle, it is a pole of that arc.

Note. The term quadrant, in Spherical Geometry, usually signifies a quadrant of a great circle.

Given point P on surface of sphere $A P C, A B$ an arc of great $\odot A B C$, and $P A$ and $P B$ quadrants.

To Prove P a pole of are $A B$.
($P O$ is \perp to $O A$ and $O B$; then use §400.)

Prop. XII. Theorem.
579. The intersection of two spheres is a circle, whose centre is in the straight line joining the centres of the spheres, and whose plane is perpendicular to that line.

Given two intersecting spheres.
To Prove their intersection a \odot, whose centre is in the line joining the centres of the spheres, and whose plane is \perp to this line.

Proof. Let O and O^{\prime} be the centres of two (®), whose common chord is $A B$; draw line $O O^{\prime}$, intersecting $A B$ at C.

Then, $O O^{\prime}$ bisects $A B$ at rt. L.
(§ 178)
If we revolve the entire figure about $O O^{\prime}$ as an axis, the (5) will generate spheres whose centres are O and O^{\prime}. (§ 565)

And $A C$ will generate a $\odot \perp O O^{\prime}$, whose centre is C, which is the intersection of the two spheres.

Prop. XIII. Theorem.

580. A plane perpendicular to a radius of a sphere at its extremity is tangent to the sphere.

(The proof is left to the pupil; compare § 169.)
581. Cor. (Couverse of Prop. XIII.) A plane tangent to a sphere is perpendicular to the radius drawn to the point of contact. (Fig. of Prop. XIII.)
(The proof is left to the pupil ; compare § 170.)

Prop. XIV. Theorem.

582. Through four points, not in the same plane, a spherical surface can be made to pass, and but one.

Given A, B, C, and D points not in the same plane.
To Prove that a spherical surface can be passed through A, B, C, and D, and but one.

Proof. Pass planes through A, B, C, and D, forming tetraedron $A B C D$, and let K be the middle point of $C D$.

Draw lines $K E$ and $K F$ in faces $A C D$ and $B C D$, respectively, $\perp C D$; and let E and F be the centres of the circumscribed © of $\mathbb{S} A C D$ and $B C D$, respectively. (§ 222)

Then plane $E K F$ is $\perp C D$.
(§ 400)
Draw line $E G \perp A C D$, and line $F H \perp B C D$; then $E G$ and $F H$ lie in plane $E K F$.
(§ 439).
Then $E G$ and $F H$ must meet at some point O, unless they are $\|$; this cannot be unless $A C D$ and $B C D$ are in the same plane, which is contrary to the hyp.
(§ 418)
Now O, being in $E G$, is equally distant from A, C, and D; and being in $F H$, is equally distant from B, C, and D.
(§ 406, I)
Then O is equally distant from A, B, C, and D; and a spherical surface described with O as a centre, and $O A$ as a radius, will pass through A, B, C, and D.

Now the centre of any spherical surface passing through A, B, C, and D must be in each of the $\perp E G$ and $F H$.

Then as $E G$ and $F H$ intersect in but one point, only one spherical surface can be passed through A, B, C, and D.
583. Defs. The angle between two intersecting curves is the angle between tangents to the curves at their point of intersection.

A spherical angle is the angle between two intersecting arcs of great circles.

Prop. XV. Theorem.

584. A spherical angle is measured by an arc of a great circle having its vertex as a pole, included between its sides produced if necessary.

Given $A B C$ and $A B^{\prime} C$ arcs of great (3) on the surface of sphere $A C$, lines $A D$ and $A D^{\prime}$ tangent to $A B C$ and $A^{\prime} B C$, respectively, and $B B^{\prime}$ an arc of a great \odot having A as a pole, included between arcs $A B C$ and $A B^{\prime} C$.

To Prove that $\angle D A D^{\prime}$ is measured by are $B B^{\prime}$.
Proof. Let O be the centre of the sphere, and draw diameter $A O C$ and lines $O B$ and $O B^{\prime}$.

Now, ares $A B$ and $A B^{\prime}$ are quadrants.
Whence, $\left\llcorner\subseteq A O B\right.$ and $A O B^{\prime}$ are rt. Σ^{\prime}.
Therefore, $O B \| A D$ and $O B^{\prime} \| A D^{\prime}$.

$$
\therefore \angle D A D^{\prime}=\angle B O B^{\prime} .
$$

But $\angle B O B^{\prime}$ is measured by arc $B B^{\prime}$.
Then, $\angle D A D^{\prime}$ is measured by are $B B^{\prime}$.
585. Cor. I. (Fig. of Prop. XV.) Plane $B O B^{\prime}$ is $\perp O A$.

Then planes $A B C$ and $B O B^{\prime}$ are \perp.
Now a tangent to arc $A B$ at B is $\perp B O B^{\prime}$.
Then it is \perp to a tangent to arc $B B^{\prime}$ at B.
Then, spherical $\angle A B B^{\prime}$ is a rt. \angle.
That is, an arc of a great circle drawn from the pole of a great circle is perpendicular to its circumference.
586. Cor. II. The angle between two arcs of great circles is the plane angle of the diedral angle between their planes.

SPHERICAL POLYGONS AND SPHERICAL PYRAMIDS.

Definitions.

587. A spherical polygon is a portion of the surface of a sphere bounded by three or more ares of great circles; as $A B C D$.

The bounding ares are called the sides of the spherical polygon, and are usually measured in degrees.

The angles of the spherical polygon are the spherical angles (§583) between the adjacent sides, and their vertices are called the vertices of the spherical polygon.

A diagonal of a spherical polygon is an are of a great circle joining any two vertices which are not consecutive.

A spherical triangle is a spherical polygon of three sides.
A spherical triangle is called isosceles when it has two sides equal ; equilateral when all its sides are equal; and right-angled when it has a right angle.
588. The planes of the sides of a spherical polygon form a polyedral angle, whose vertex is the centre of the sphere, and whose face angles are measured by the sides of the spherical polygon (§ 192).

Thus, in the figure of §587, the planes of the sides of the spherical polygon form a polyedral angle, $O-A B C D$, whose face $\measuredangle A O B, B O C$, etc., are measured by arcs $A B$, $B C$, etc., respectively.

A spherical polygon is called convex when the polyedral angle formed by the planes of its sides is convex (§ 453).
589. A spherical pyramid is a solid bounded by a spherical polygon and the planes of its sides; as $O-A B C D$, figure of § 587.

The centre of the sphere is called the vertex of the spherical pyramid, and the spherical polygon the base.

Two spherical pyramids are equal when their bases are equal.

For they can evidently be applied one to the other so as to coincide throughout.
590. If circumferences of great circles be drawn with the vertices of a spherical triangle as poles, they divide the surface of the sphere into eight spherical triangles.

Thus, if circumference $B^{\prime} C^{\prime \prime} B^{\prime \prime}$ be drawn with vertex A of spherical $\triangle A B C$ as a pole, circumference $A^{\prime} C^{\prime \prime} A^{\prime \prime}$ with B as a pole, and circumference $A^{\prime} B^{\prime \prime} A^{\prime \prime} B^{\prime}$ with C as a pole, the surface of the sphere is divided into eight spherical \& $\% A^{\prime} B^{\prime} C^{\prime}$,
 $A^{\prime} B^{\prime \prime} C^{\prime \prime}, A^{\prime \prime} B^{\prime} C^{\prime \prime}$, and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ on the hemisphere represented in the figure, the others on the opposite hemisphere.

Of these eight spherical $\mathbb{\Delta}$, one is called the polar triangle of $A B C$, and is determined as follows:

Of the intersections, A^{\prime} and $A^{\prime \prime}$, of circumferences drawn with B and C as poles, that which is nearer (§573) to A, i.e., A^{\prime}, is a vertex of the polar triangle; and similarly for the other intersections.

Thus, $A^{\prime} B^{\prime} C^{\prime}$ is the polar \triangle of $A B C$.
591. Two spherical polygons, on the same or equal spheres, are said to be symmetrical when the sides and angles of one are equal, respectively, to the sides and angles of the other, if the equal parts occur in the reverse order.

Thus, if spherical \& $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, on the same or equal spheres, have sides $A B, B C$, and $C A$ equal, respectively, to sides $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and
 $C^{\prime} A^{\prime}$, and $\measuredangle s A, B$, and C to $\measuredangle A^{\prime}, B^{\prime}$, and $C^{\prime \prime}$, and the equal parts occur in the reverse order, the \mathbb{S} are symmetrical.

It is evident that, in general, two symmetrical spherical polygons cannot be placed so as to coincide throughout.

Prop. XVI. Theorem.

592. If one spherical triangle is the polar triangle of another, then the second spherical triangle is the polar triangle of the first.

Given $A^{\prime} B^{\prime} C^{\prime}$ the polar \triangle of spherical $\triangle A B C ; A, B$, and C being the poles of arcs $B^{\prime} C^{\prime \prime}, C^{\prime \prime} A^{\prime}$, and $A^{\prime} B^{\prime}$, respectively.

To Prove $A B C$ the polar \triangle of spherical $\triangle A^{\prime} B^{\prime} C^{\prime}$.
Proof. B is the pole of arc $A^{\prime} C^{\prime \prime}$.
Whence, A^{\prime} lies at a quadrant's distance from B. (§ 577)
Again, C is the pole of arc $A^{\prime} B^{\prime}$.
Whence, A^{\prime} lies at a quadrant's distance from C.
Therefore, A^{\prime} is the pole of arc $B C$.
Similarly, B^{\prime} is the pole of are $C A$, and $C^{\prime \prime}$ of arc $A B$.
Then, $A B C$ is the polar \triangle of $A^{\prime} B^{\prime} C^{\prime}$.

For of the two intersections of the circumferences having B^{\prime} and $C^{\prime \prime}$, respectively, as poles, A is the nearer to A^{\prime}; and similarly for the other vertices.

Note. Two spherical triangles, each of which is the polar triangle of the other, are called polar triangles.

Prof. XVII. Theorem.

593. In two polar triangles, each angle of one is measured by the supplement of that side of the other of which it is the pole.

Given $A, B, C, A^{\prime}, B^{\prime}$, and $C^{\prime \prime}$ the \measuredangle, expressed in degrees, of polar $\perp A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime} ; A$ being the pole of $B^{\prime} C^{\prime \prime}$, B of $C^{\prime \prime} A^{\prime}, C$ of $A^{\prime} B^{\prime}, A^{\prime}$ of $B C, B^{\prime}$ of $C A$, and $C^{\prime \prime}$ of $A B$.

Let sides $B C, C A, A B, B^{\prime} C^{\prime}, C^{\prime} A^{\prime}$, and $A^{\prime} B^{\prime}$, expressed in degrees, be denoted by $a, b, c, a^{\prime}, b^{\prime}$, and c^{\prime}, respectively.

To Prove

$$
\begin{array}{lll}
A=180^{\circ}-a^{\prime}, & B=180^{\circ}-b^{\prime}, & C=180^{\circ}-c^{\prime} \\
A^{\prime}=180^{\circ}-a, & B^{\prime}=180^{\circ}-b, & C^{\prime \prime}=180^{\circ}-c .
\end{array}
$$

Proof. Produce arcs $A B$ and $A C$ to meet arc $B^{\prime} C^{\prime \prime}$ at D and E, respectively.

Since B^{\prime} is the pole of $\operatorname{arc} A E$, and C^{\prime} of arc $A D$, ares $B^{\prime} E$ and $C^{\prime} D$ are quadrants.

$$
\begin{equation*}
\therefore \operatorname{arc} B^{\prime} E+\operatorname{arc} C^{\prime \prime} D=180^{\circ} . \tag{§577}
\end{equation*}
$$

Or,

$$
\operatorname{arc} D E+\operatorname{arc} B^{\prime} C^{\prime}=180^{\circ}
$$

But since A is the pole of $\operatorname{arc} B^{\prime} C^{\prime}$, arc $D E$ is the measure of $\angle A$.

$$
\therefore A+a^{\prime}=180^{\circ} \text {, or } A=180^{\circ}-a^{\prime} .
$$

In like manner, the theorem may be proved for any \angle of either Δ.

Prop. XVIII. Theorem.

594. Any side of a spherical triangle is less than the sum of the other two sides.

Given $A B$ any side of spherical $\triangle A B C$.
To Prove $\quad A B<A C+B C$.
(By § 457, $\angle A O B<\angle A O C+\angle B O C$; and these $\angle s$ are measured by sides $A B, A C$, and $B C$, respectively.)

Prop. XIX. Theorem.

595. The sum of the sides of a convex spherical polygon is less than 360°.

Given convex spherical polygon $A B C D$.
To Prove $\quad A B+B C+C D+D A<360^{\circ}$.
(By $\S 458$, sum of $\angle A O B, B O C, C O D$, and $D O A$ is $<360^{\circ}$.)

Prop. XX. Theorem.

596. The sum of the angles of a spherical triangle is greater than two, and less than six, right angles.

Given A, B, and C the $\angle s$, expressed in degrees, of spherical $\triangle A B C$.

To Prove $A+B+C>180^{\circ}$, and $<540^{\circ}$.
Proof. Let $A^{\prime} B^{\prime} C^{\prime}$ be the polar \triangle of spherical $\triangle A B C$, A being the pole of $B^{\prime} C^{\prime \prime}, B$ of $C^{\prime \prime} A^{\prime}$, and C of $A^{\prime} B^{\prime}$.
Also, let sides $B^{\prime} C^{\prime \prime}, C^{\prime \prime} A^{\prime}$, and $A^{\prime} B^{\prime}$, expressed in degrees, be denoted by a^{\prime}, b^{\prime}, and c^{\prime}, respectively.

Then,

$$
\begin{align*}
& A=180^{\circ}-a^{\prime} \\
& B=180^{\circ}-b^{\prime} \\
& C=180^{\circ}-c^{\prime} \tag{§593}
\end{align*}
$$

Adding these equations, we have

$$
\begin{equation*}
A+B+C=540^{\circ}-\left(a^{\prime}+b^{\prime}+c^{\prime}\right) \tag{1}
\end{equation*}
$$

$$
\therefore A+B+C<540^{\circ} .
$$

Again,

$$
\begin{equation*}
a^{\prime}+b^{\prime}+c^{\prime}<360^{\circ} . \tag{§595}
\end{equation*}
$$

Whence, by (1), $A+B+C>180^{\circ}$.
597. Cor. A spherical triangle may have one, two, or three right angles, or one, two, or three obtuse angles.

DEFINITIONS.

598. A spherical triangle having two right angles is called a bi-rectangular triangle, and one having three right angles a tri-rectangular triangle.
599. Two spherical polygons on the same sphere, or equal spheres, are said to be mutually equilateral, or mutually equiangular, when the sides or angles of one are equal, respectively, to the homologous sides or angles of the other, whether taken in the same or in the reverse order.

Prop. XXI. Theoriem.

600. If two spherical triangles on the same sphere, or equal spheres, are mutually equiangular, their polar triangles are mutually equilateral.

Given $A B C$ and $D E F$ mutually equiangular spherical \mathbb{S} on the same sphere, or equal spheres, $\triangle A$ and D being homologous; also, $A^{\prime} B^{\prime} C^{\prime \prime}$ the polar \triangle of $A B C$, and $D^{\prime} E^{\prime} F^{\prime \prime}$ of $D E F, A$ being the pole of $B^{\prime} C^{\prime}$, and D of $E^{\prime} F^{\prime}$.

To Prove $A^{\prime} B^{\prime} C^{\prime}$ and $D^{\prime} E^{\prime} F^{\prime \prime}$ mutually equilateral.
Proof. $\measuredangle S$ and D are measured by the supplements of sides $B^{\prime} C^{\prime}$ and $E^{\prime} F^{\prime \prime}$, respectively.

But by hyp., $\quad \angle A=\angle D$.

$$
\therefore B^{\prime} C^{\prime}=E^{\prime} F^{\prime \prime} .
$$

In like manner, any two homologous sides of $A^{\prime} B^{\prime} C^{\prime}$ and $D^{\prime} E^{\prime} F^{\prime \prime}$ may be proved equal.

Then, $A^{\prime} B^{\prime} C^{\prime}$ and $D^{\prime} E^{\prime} F^{\prime \prime}$ are mutually equilateral.
601. Cor. (Converse of Prop. XXI.) If two spherical triangles on the same sphere, or equal spheres, are mutually equilateral, their polar triangles are mutually equiangular.
(The proof is left to the pupil ; compare § 600.)

Prof. XXII. Theorem.

602. If two spherical triangles on the same sphere, or equal spheres, have two sides and the included angle of one equal, respectively, to two sides and the included angle of the other,
I. They are equal if the equal parts occur in the same order.
II. They are symmetrical if the equal parts occur in the reverse order.

I. Given $A B C$ and $D E F$ spherical © on the same sphere, or equal spheres, having

$$
A B=D E, A C=D F, \text { and } \angle A=\angle D
$$

the equal parts occurring in the same order.
To Prove $\quad \triangle A B C=\triangle D E F$.
Proof. Superpose $\triangle A B C$ upon $\triangle D E F$ in such a way that $\angle A$ shall coincide with its equal $\angle D$; side $A B$ falling on side $D E$, and side $A C$ on side $D F$.

Then, since $A B=D E$ and $A C=D F$, point B will fall on point E, and point C on point F.

Whence, arc $B C$ will coincide with arc $E F$.
Hence, $A B C$ and $D E F$ coincide throughout, and are equal.
II. Given $A B C$ and $D^{\prime} E^{\prime} F^{\prime \prime}$ spherical © on the same sphere, or equal spheres, having

$$
A B=D^{\prime} E^{\prime}, A C=D^{\prime} F^{\prime}, \text { and } \angle A=\angle D^{\prime} ;
$$

the equal parts occurring in the reverse order.
To Prove $\quad A B C$ and $D^{\prime} E^{\prime} F^{\prime \prime}$ symmetrical.
Proof. Let $D E F$ be a spherical \triangle on the same sphere, or an equal sphere, symmetrical to $D^{\prime} E^{\prime} F^{\prime \prime}$, having

$$
D E=D^{\prime} E^{\prime}, D F=D^{\prime} F^{\prime \prime}, \text { and } \angle D=\angle D^{\prime} ;
$$

the equal parts occurring in the reverse order.
Then, in spherical $\triangle A B C$ and $D E F$, we have

$$
A B=D E, A C=D F, \text { and } \angle A=\angle D ;
$$

and the equal parts occur in the same order.

$$
\therefore \triangle A B C=\triangle D E F
$$

Therefore, $\triangle A B C$ is symmetrical to $\triangle D^{\prime} E^{\prime} F^{\prime}$.

Prop. XXIII. Theorem.

603. If two spherical triangles on the same sphere, or equal spheres, have a side and two adjacent angles of one equal, respectively, to a side and two adjacent angles of the other,
I. They are equal if the equal parts occur in the same order.
II. They are symmetrical if the equal parts occur in the reverse order.
(The proof is left to the pupil; compare § 602.)

Prop. XXIV. Theorem.

604. If two spherical triangles on the same sphere, or equal spheres, are mutually equilateral, they are mutually equiangular.

Given $A B C$ and $D E F$ mutually equilateral spherical © on equal spheres; sides $B C$ and $E F$ being homologous.

To Prove $A B C$ and $D E F$ mutually equiangular.
Proof. Let O and O^{\prime} be the centres of the respective spheres, and draw lines $O A, O B, O C, O^{\prime} D, O^{\prime} E$, and $O^{\prime} F$.

Now the triedral $\measuredangle O-A B C$ and $O^{\prime}-D E F$ have their homologous face $\angle s$ equal.

$$
\therefore \text { diedral } \angle O A=\text { diedral } \angle O^{\prime} D .
$$

But the \angle between arcs $A B$ and $A C$ is the plane \angle of diedral $\angle O A$, and the \angle between ares $D E$ and $D F$ is the plane \angle of diedral $\angle O^{\prime} D$.

$$
\begin{equation*}
\therefore \angle B A C=\angle E D F . \tag{§434}
\end{equation*}
$$

In like manner, any two homologous $\angle s$ of $A B C$ and $D E F$ may be proved equal.

Whence, $A B C$ and $D E F$ are mutually equiangular.

Note. The theorem may be proved in a similar manner when the given spherical © are on the same sphere.
605. Cor. If two spherical triangles on the same sphere, or equal spheres, are mutually equilateral,

1. They are equal if the equal parts occur in the same order.
2. They are symmetrical if the equal parts occur in the reverse order.

Prop. XXV. Theorem.

606. If two spherical triangles on the same sphere, or equal spheres, are mutually equiangular, they are mutually equilateral.

Given $A B C$ and $D E F$ mutually equiangular spherical S on the same sphere, or equal spheres.

To Prove $A B C$ and $D E F$ mutually equilateral.
Proof. Let $A^{\prime} B^{\prime} C^{\prime \prime}$ be the polar \triangle of $A B C$, and $D^{\prime} E^{\prime} F^{\prime}$ of $D E F$.

Then, since $A B C$ and $D E F$ are mutually equiangular, $A^{\prime} B^{\prime} C^{\prime}$ and $D^{\prime} E^{\prime} F^{\prime \prime}$ are mutually equilateral.

Then $A^{\prime} B^{\prime} C^{\prime \prime}$ and $D^{\prime} E^{\prime} F^{\prime \prime}$ are mutually equiangular.
(§ 604)
But $A B C$ is the polar \triangle of $A^{\prime} B^{\prime} C^{\prime}$, and $D E F$ of $D^{\prime} E^{\prime} F^{\prime}$. (§ 592)
Then $A B C$ and $D E F$ are mutually equilateral. (§ 600)
607. Cor. I. If two spherical triangles on the same sphere, or equal spheres, are mutually equiangular,

1. They are equal if the equal parts occur in the same order.
2. They are symmetrical if the equal parts occur in the reverse order.
3. Cor. II. If three diameters of a sphere be so drawn that each is perpendicular to the other two, the planes determined by them divide the surface of the sphere into eight equal tri-rectangular triangles.
(Prove by § 607, 1. By § 585, each
 \angle of each spherical \triangle is a rt. \angle.)
4. Cor. III. The surface of a sphere is eight times the surface of one of its tri-rectangular triangles.

Prop. XXVI. Theorem.

610. In an isosceles spherical triangle the angles opposite the equal sides are equal.

Given, in spherical $\triangle A B C, A B=A C$.
To Prove $\quad \angle B=\angle C$.
Proof. Draw $A D$ an are of a great \odot, bisecting side $B C$ at D.

In spherical \& $A B D$ and $A C D, A D=A D$.
Also, $\quad A B=A C$ and $B D=C D$.
Then, $A B D$ and $A C D$ are mutually equiangular. (§ 604)

$$
\therefore \angle B=\angle C \text {. }
$$

611. Cor. I. An isosceles spherical triangle is equal to the spherical triangle which is symmetrical to it.

For the equal parts occur in the same order.
612. Cor. II. (Converse of Prop. XXVI.) If two angles of a spherical triangle are equal, the sides opposite are equal.

Given, in spherical $\triangle A B C, \angle B=\angle C$.
To Prove $\quad A B=A C$.
Proof. Let $A^{\prime} B^{\prime} C^{\prime}$ be the polar \triangle of $A B C ; B$ being the pole of $A^{\prime} C^{\prime}$, and C of $A^{\prime} B^{\prime}$.
Then, $A^{\prime} C^{\prime}$ is the sup. of $\angle B$, and $A^{\prime} B^{\prime}$

(§ 593)

$$
\begin{align*}
& \therefore A^{\prime} C^{\prime \prime}=A^{\prime} B^{\prime} . \\
& \therefore \angle B^{\prime}=\angle C^{\prime \prime} . \tag{§610}
\end{align*}
$$

But $A B C$ is the polar \triangle of $A^{\prime} B^{\prime} C^{\prime \prime} ; B^{\prime}$ being the pole of $A C$, and $C^{\prime \prime}$ of $A B$.

Then $A B$ is the sup. of $\angle C^{\prime}$, and $A C$ of $\angle B^{\prime}$.

$$
\begin{equation*}
\therefore A B=A C . \tag{?}
\end{equation*}
$$

Prop. XXVII. Theorem.
613. If two angles of a spherical triangle are unequal, the sides opposite are unequal, and the greater side lies opposite the greater angle.

Given, in spherical $\triangle A B C, \angle A B C>\angle C$.

To Prove $A C>A B$.

(Prove by a method analogous to that of § 99. Draw $B D$ an arc of a great \odot meeting $A C$ at D, and making $\angle C B D$ equal to $\angle C$.)
614. Cor. (Converse of Prop. XXVII.) If two sides of a spherical triangle are unequal, the angles opposite are unequal, and the greater angle lies opposite the greater side.
(Prove by Reductio ad Absurdum.)

Prop. XXVIII. Theorem.

615. The shortest line on the surface of a sphere between two given points is the arc of a great circle, not greater than a semi-circumference, which joins the points.

Given points A and B on the surface of a sphere, and $A B$ an arc of a great \odot, not $>$ a semi-circumference.

To Prove $A B$ the shortest line on the surface of the sphere between A and B.

Proof. Let C be any point in arc $A B$.
Let $D C F$ and $E C G$ be arcs of small © with A and B, respectively, as poles, and $A C$ and $B C$ as polar distances.

Now arcs $D C F$ and $E C G$ have only point C in common.
For let F be any other point in arc $D C F$, and draw arcs of great (©) $A F$ and $B F$.

$$
\therefore A F=A C \text {. }
$$

But,

$$
\begin{equation*}
A F+B F>A C+B C \tag{§594}
\end{equation*}
$$

Subtracting arc $A F$ from the first member of the inequality, and its equal are $A C$ from the second member,

$$
B F>B C, \text { or } B F>B G .
$$

Whence, F lies without small $\odot E C G$, and arcs $D C F$ and $E C G$ have only point C in common.

We will next prove that the shortest line on the surface of the sphere from A to B must pass through C.

Let $A D E B$ be any line on the surface of the sphere between A and B, not passing through C, and cutting arcs $D C F$ and $E C G$ at D and E, respectively.

Then, whatever the nature of line $A D$, it is evident that an equal line can be drawn from A to C.

In like manner, whatever the nature of line $B E$, an equal line can be drawn from B to C.

Hence, a line can be drawn from A to B passing through C, equal to the sum of lines $A D$ and $B E$, and consequently $<$ line $A D E B$ by the portion $D E$.

Therefore, no line which does not pass through C can be the shortest line between A and B.

But by hyp., C is any point in arc $A B$.
Hence, the shortest line from A to B must pass through every point of $A B$.

Then, the arc of a great $\odot A B$ is the shortest line on the surface of the sphere between A and B.

EXERCISES.

2. If the sides of a spherical triangle are $77^{\circ}, 123^{\circ}$, and 95°, how many degrees are there in each angle of its polar triangle?
3. If the angles of a spherical triangle are $86^{\circ}, 131^{\circ}$, and 68°, how many degrees are there in each side of its polar triangle?

MEASUREMENT OF SPHERICAL POLYGONS.

Definitions.

616. A lune is a portion of the surface of a sphere bounded by two semi-circumferences of great circles; as $A C B D$.

The angle of the lune is the angle between its bounding ares.
617. A spherical wedge is a solid bounded
 by a lune and the planes of its bounding arcs.

The lune is called the base of the spherical wedge.
618. It is evident that two lunes on the same sphere, or equal spheres, are equal when their angles are equal.
619. It is evident that two spherical wedges in the same sphere, or equal spheres, are equal when the angles of the lunes which form their bases are equal.

Prop. XXIX. Theorem.

620. The spherical triangles corresponding to a pair of vertical triedral angles are symmetrical.

Given $A O A^{\prime}, B O B^{\prime}$, and $C O C^{\prime \prime}$ diameters of sphere $A C$; also, the planes determined by them, intersecting the surface in circumferences $A B A^{\prime} B^{\prime}, B C B^{\prime} C^{\prime \prime}$, and $C A C^{\prime \prime} A^{\prime}$.

To Prove spherical $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ symmetrical.
Proof. $\lfloor A O B, B O C$, and $C O A$ are equal, respectively, to $\measuredangle A^{\prime} O B^{\prime}, B^{\prime} O C^{\prime}$, and $C^{\prime \prime} O A^{\prime}$.

Then, $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$, and $C A=C^{\prime} A^{\prime}$. (§ 192)
But the equal parts of $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ occur in the reverse order.

Whence, $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ are symmetrical. (§ 605, 2)

Prop. XXX. Theorem.

621. Two spherical triangles corresponding to a pair of vertical triedral angles are equivalent.

Given $A O A^{\prime}, B O B^{\prime}$, and $C O C^{\prime}$ diameters of sphere $A B$; also, the planes determined by them, intersecting the surface in $\operatorname{arcs} A B, B C, C A, A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and $C^{\prime} A^{\prime}$.

To Prove area $A B C=$ area $A^{\prime} B^{\prime} C^{\prime}$.
Proof. Let P be the pole of the small \odot passing through points A, B, and C, and draw ares of great © $P A, P B$, and $P C$.

$$
\begin{equation*}
\therefore P A=P B=P C . \tag{8575}
\end{equation*}
$$

Draw the diameter of the sphere $P P^{\prime}$, and the ares of great © $P^{\prime} A^{\prime}, P^{\prime} B^{\prime}$, and $P^{\prime} C^{\prime \prime}$; then, spherical $\triangle P A B$ and $P^{\prime} A^{\prime} B^{\prime}$ are symmetrical.
But spherical $\triangle P A B$ is isosceles.

$$
\begin{equation*}
\therefore \triangle P A B=\triangle P^{\prime} A^{\prime} B^{\prime} . \tag{§820}
\end{equation*}
$$

In like manner,

$$
\begin{equation*}
\triangle P B C=\triangle P^{\prime} B^{\prime} C^{\prime \prime} \text { and } \triangle P C A=\triangle P^{\prime} C^{\prime \prime} A^{\prime} \tag{§611}
\end{equation*}
$$

Then the sum of the areas of $\triangle P A B, P B C$, and $P C A$ equals the sum of the areas of $P^{\prime} A^{\prime} B^{\prime}, P^{\prime} B^{\prime} C^{\prime \prime}$, and $P^{\prime} C^{\prime} A^{\prime}$.

$$
\therefore \text { area } A B C=\text { area } A^{\prime} B^{\prime} C^{\prime} .
$$

622. Sch. If P and P^{\prime} fall without spherical $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$, we should take the sum of the areas of two isosceles spherical \mathbb{A}, diminished by the area of a third.
623. Cor. I. Two symmetrical spherical triangles are equivalent.
624. Cor. II. Spherical pyramids $O-A P B, O-B P C$, and $O-C P A$ are equal, respectively, to spherical pyramids $O-A^{\prime} P^{\prime} B^{\prime}, O-B^{\prime} P^{\prime} C^{\prime \prime}$, and $O-C^{\prime} P^{\prime} A^{\prime}$.

$$
\begin{equation*}
\therefore \text { vol. } O-A B C=\text { vol. } O-A^{\prime} B^{\prime} C^{\prime \prime} \text {. } \tag{§589}
\end{equation*}
$$

Whence, the spherical pyramids corresponding to a pair of vertical triedral angles are equivalent.

EXERCISES.

4. The sum of the angles of a spherical hexagon is greater than 8 , and less than 12, right angles. (§596.)
5. The sum of the angles of a spherical polygon of n sides is greater than $2 n-4$, and less than $2 n$, right angles.
6. The are of a great circle drawn from the vertex of an isosceles spherical triangle to the middle point of the base, is perpendicular to the base, and bisects the vertical angle.

Prop. XXXI. Theorem.

625. Two lunes on the same sphere, or equal spheres, are to each other as their angles.

Note. The word "lune," in the above statement, signifies the area of the lune.

Case I. When the angles are commensurable.

Given $A C B D$ and $A C B E$ lunes on sphere $A B$, having their $\measuredangle C A D$ and $C A E$ commensurable.

To Prove

$$
\frac{A C B D}{A C B E}=\frac{\angle C A D}{\angle C A E} .
$$

Proof. Let $\angle C A a$ be a common measure of $\angle S C A D$ and $C A E$, and let it be contained 5 times in $\angle C A D$, and 3 times in $\angle C A E$.

$$
\begin{equation*}
\therefore \frac{\angle C A D}{\angle C A E}=\frac{5}{3} . \tag{1}
\end{equation*}
$$

Producing the ares of division of $\angle C A D$ to B, lune $A C B D$ will be divided into 5 parts, and lune $A C B E$ into 3 parts, all of which parts will be equal.

$$
\begin{equation*}
\therefore \frac{A C B D}{A C B E}=\frac{5}{3} \tag{§618}
\end{equation*}
$$

From (1) and (2), $\frac{A C B D}{A C B E}=\frac{\angle C A D}{\angle C A E}$.
Note. The theorem may be proved in a similar manner when the given lunes are on equal spheres.

Case II. When the angles are incommensurable.

(Prove as in $\S \S 189$ or 244 . Let $\angle C A D$ be divided into any number of equal parts, and apply one of these parts to $\angle C A E$ as a unit of measure.)
626. Cor. I. The surface of a lune is to the surface of the sphere as the angle of the lune is to four right angles.

For the surface of a sphere may be regarded as a lune whose \angle is equal to $4 \mathrm{rt} . \angle$.
627. Cor. II. If the unit of measure for angles is the right angle, the area of a lune is equal to twice its angle, multiplied by the area of a tri-rectangular triangle.

Given L the area of a lune; A the numerical measure of its \angle referred to a rt. \angle as the unit of measure; and T the area of a tri-rectangular \triangle.

To Prove $\quad L=2 A \times T$.
Proof. The area of the surface of the sphere is $8 T$.

$$
\begin{align*}
\therefore \frac{L}{8 T} & =\frac{A}{4} . \\
\therefore L & =\frac{A}{4} \times 8 T=2 A \times T .
\end{align*}
$$

628. Sch. I. Let it be required to find the area of a lune whose \angle is 50°, on a sphere the area of whose surface is 72 .

The \angle of the lune referred to a rt. \angle as the unit of measure is $\frac{5}{9}$; and T is $\frac{1}{8}$ of 72 , or 9 .

Then the area of the lune is $2 \times \frac{5}{9} \times 9$, or 10 .
629. Def. A tri-rectangular pyramid is a spherical pyramid whose base is a tri-rectangular triangle.
630. Sch. II. It may be proved, as in § 625 , that

Two spherical wedges in the same sphere, or equal spheres, are to each other as the angles of the lunes which form their bases.
(The proof is left to the pupil; see § 619.)
631. Sch. III. It may be proved that

If the unit of measure for angles is the right angle, the volume of a spherical wedge is equal to twice the angle of the lune which forms its base, multiplied by the volume of a trirectanyular pyramid.
(The proof is left to the pupil; see §§ 626 and 627.)
632. Def. The spherical excess of a spherical triangle is the excess of the sum of its angles above 180° (§596).

Thus, if the $\angle s$ of a spherical \triangle are $65^{\circ}, 80^{\circ}$, and 95°, its spherical excess is $65^{\circ}+80^{\circ}+95^{\circ}-180^{\circ}$, or 60°.

Prop. XXXII. Theorem.

633. If the unit of measure for angles is the right angle, the area of a spherical triangle is equal to its spherical excess, multiplied by the area of a tri-rectangular triangle.

Given A, B, and C the numerical measures of the ςs of spherical $\triangle A B C$, referred to a rt. \angle as the unit of measure, and T the area of a tri-rectangular \triangle.

To Prove area $A B C=(A+B+C-2) \times T$.

Proof. Complete circumferences $A B A^{\prime} B^{\prime}, A C A^{\prime} C^{\prime \prime}$, and $B C B^{\prime} C^{\prime \prime}$, and draw diameters $A A^{\prime}, B B^{\prime}$, and $C C^{\prime \prime}$.

Then, since $A B A^{\prime} C$ is a lune whose \angle is A, we have

$$
\begin{equation*}
\text { area } A B C+\text { area } A^{\prime} B C=2 A \times T(\S 626) \tag{1}
\end{equation*}
$$

And since $B A B^{\prime} C$ is a lune whose \angle is B, area $A B C+$ area $A B^{\prime} C=2 B \times T$.
Again, area $A^{\prime} B^{\prime} C=$ area $A B C^{\prime}$.
Adding area $A B C$ to both members, we have

$$
\text { area } \begin{align*}
A B C+\text { area } A^{\prime} B^{\prime} C & =\text { area of lune } C B C^{\prime \prime} A \\
& =2 C \times T . \tag{3}
\end{align*}
$$

Adding (1), (2), and (3), and observing that the sum of the areas of $\triangle A B C, A^{\prime} B C, A B^{\prime} C$, and $A^{\prime} B^{\prime} C$ is equal to the area of the surface of a hemisphere, or $4 T$, we have

$$
\begin{aligned}
2 \text { area } A B C+4 T & =(2 A+2 B+2 C) \times T . \\
\therefore \text { area } A B C+2 T & =(A+B+C) \times T . \\
\therefore \text { area } A B C & =(A+B+C-2) \times T .
\end{aligned}
$$

634. Sch. I. Let it be required to find the area of a spherical \triangle whose $\angle s$ are $105^{\circ}, 80^{\circ}$, and 95°, on a sphere the area of whose surface is 144 .

The spherical excess of the spherical Δ is 100°, or $\frac{10}{9}$ referred to a rt. \angle as the unit of measure; and the area of a tri-rectangular \triangle is $\frac{1}{8}$ of 144 , or 18 .

Then the area of the spherical Δ is $\frac{10}{9} \times 18$, or 20 .
635. Sch. II. It may be proved, as in § 633 , that

If the unit of measure for angles is the right angle, the volume of a triangular spherical pyramid is equal to the spherical excess of its base, multiplied by the volume of a tri-rectangular pyramid.
(The proof is left to the pupil ; see §§ 624 and 630 .)

EXERCISES.

7. What is the volume of a spherical wedge the angle of whose base is $127^{\circ} 30^{\prime}$, if the volume of the sphere is 112 ?
8. In figure of Prop. XVII., prove $A^{\prime}=180^{\circ}-a$.

Prop. XXXIII. Theorem.

636. If the unit of measure for angles is the right angle, the area of any spherical polygon is equal to the sum of its angles, diminished by as many times two right angles as the figure has sides less two, multiplied by the area of a trirectangular triangle.

Given K the area of any spherical polygon, n the number of its sides, s the sum of its $\angle s$ referred to a rt. \angle as the unit of measure, and T the area of a tri-rectangular \triangle.

To Prove $K=[s-2(n-2)] \times T$.
Proof. The spherical polygon can be divided into $n-2$ spherical \mathbb{A} by drawing diagonals from any vertex.

Now, if the unit of measure for $\angle S$ is the rt. \angle, the area of each spherical \triangle is equal to the sum of its $\lfloor s$, less $2 \mathrm{rt} .\llcorner$, multiplied by T.
(§ 633)
Hence, if the unit of measure for $\angle s$ is the rt. \angle, the sum of the areas of the spherical \mathbb{S} is equal to the sum of their $\angle s$, diminished by $n-2$ times 2 rt . $\angle \mathrm{s}$, multiplied by T.

But the sum of the \measuredangle of the spherical \triangle is equal to the sum of the $\angle S$ of the spherical polygon.

Whence, $K=[s-2(n-2)] \times T$.
637. Sch. It may be proved, as in $\S 636$, that

If the unit of measure for angles is the right angle, the volume of any spherical pyramid is equal to the sum of the angles of its base, diminished by as many times two right angles as the base has sides less two, multiplied by the volume of a tri-rectangular pyramid.
(The proof is left to the pupil.)

EXERCISES.

9. The area of a lune is $28 \frac{4}{5}$. If the area of the surface of the sphere is 120 , what is the angle of the lune?
10. Find the area of a spherical triangle whose angles are 103°, 112°, and 127°, on a sphere the area of whose surface is 160 .
11. Find the volume of a triangular spherical pyramid the angles of whose base are $92^{\circ}, 119^{\circ}$, and 134°; the volume of the sphere being 192.
12. What is the ratio of the areas of two spherical triangles on the same sphere whose angles are $94^{\circ}, 135^{\circ}$, and 146°, and $87^{\circ}, 105^{\circ}$, and 118°, respectively ?
13. The area of a spherical triangle, two of whose angles are 78° and 99°, is $34 \frac{1}{8}$. If the area of the surface of the sphere is 234 , what is the other angle?
14. The volume of a triangular spherical pyramid, the angles of whose base are $105^{\circ}, 126^{\circ}$, and 147°, is $60 \frac{1}{2}$; what is the volume of the sphere?
15. The sides opposite the equal angles of a birectangular triangle are quadrants. (§442.)

16. The sides of a spherical triangle, on a sphere the area of whose surface is 156 , are $44^{\circ}, 63^{\circ}$, and 97°. Find the area of its polar triangle.
17. Find the area of a spherical hexagon whose angles are 120°, $139^{\circ}, 148^{\circ}, 155^{\circ}, 162^{\circ}$, and 167°, on a sphere the area of whose surface is 280 .
18. Find the volume of a pentagonal spherical pyramid the angles of whose base are $109^{\circ}, 128^{\circ}, 137^{\circ}, 153^{\circ}$, and 158°; the volume of the sphere being 180 .
19. The volume of a quadrangular spherical pyramid, the angles of whose base are $110^{\circ}, 122^{\circ}, 135^{\circ}$, and 146°, is $12 \frac{3}{4}$; what is the volume of the sphere?
20. The area of a spherical pentagon, four of whose angles are $112^{\circ}, 131^{\circ}, 138^{\circ}$, and 168°, is 27 . If the area of the surface of the sphere is 120 , what is the other angle?
21. If two straight lines are tangent to a sphere at the same point, their plane is tangent to the sphere. (§ 400.)
22. The sum of the arcs of great circles drawn from any point within a spherical triangle to the extremities of any side, is less than the sum of the other two sides of the triangle.
(Compare § 48.)
23. How many degrees are there in the polar distance of a circle, whose plane is $5 \sqrt{2}$ units from the centre of the sphere, the diameter of the sphere being 20 units?
(The radius of the \odot is a leg of a rt. Δ, whose hypotenuse is the radius of the sphere, and whose other leg is the distance from its centre to the plane of the \odot.)
24. The chord of the polar distance of a circle of a sphere is 6 . If the radius of the sphere is 5 , what is the radius of the circle?
25. If side $A B$ of spherical triangle $A B C$ is a quadrant, and side $B C$ less than a quadrant, prove $\angle A$ less than 90°.

26. The polar distance of a circle of a sphere is 60°. If the diameter of the circle is 6 , find the diameter of the sphere, and the distance of the circle from its centre.
(Represent radius of sphere by $2 x$.)
27. Any point in the arc of a great circle bisecting a spherical angle is equally distant ($\$ 573$) from the sides of the angle.
(To prove arc $P M=\operatorname{arc} P N$. Let E be a pole of arc $A B$, and F of arc $B C$. Spherical $\triangle B P E$ and $B P F$ are symmetrical by $\S 602$, II., and $P E=P F$.)

28. A point on the surface of a sphere, equally distant from the sides of a spherical angle, lies in the are of a great circle bisecting the angle.
(Fig. of Ex. 27. To prove $\angle A B P=\angle C B P$. Spherical $\mathbb{A} B P E$ and $B P F$ are symmetrical by $\S 605,2$.)
29. The arcs of great circles bisecting the angles of a spherical triangle meet in a point equally distant from the sides of the triangle. (Exs. 27, 28, p. 358.)
30. A circle may be inscribed in any spherical triangle.
31. State and prove the theorem for spherical triangles analogous to Prop. IX., I., Book I.
32. State and prove the theorem for spherical triangles analogous to Prop. V., Book I.
33. State and prove the theorem for spherical triangles analogous to Prop. L., Book I. (Ex. 32.)
34. If $P A, P B$, and $P C$ are three equal ares of great circles drawn from point P to the circumference of great circle $A B C$, prove P a pole of $A B C$.
($P A$ and $P B$ are quadrants by Ex. 15, p. 357.)
35. The spherical polygons corresponding to a pair of vertical polyedral angles are symmetrical. (§ 456.)
36. A sphere may be inscribed in, or circumscribed about, any tetraedron. (Ex. 73, Book VII.)
37. What is the locus of points in space at a given distance from a given straight line?
38. Equal small circles of a sphere are equally distant from the centre.
39. State and prove the converse of Ex. 38.
40. The less of two small circles of a sphere is at the greater distance from the centre.
41. State and prove the converse of Ex. 40.
42. What is the locus of points on the surface of a sphere equally distant from the sides of a spherical angle?
43. If two spheres are tangent to the same plane at the same point, the straight line joining their centres passes through the point of contact.
44. The distance between the centres of two spheres whose radii are 25 and 17 , respectively, is 28 . Find the diameter of their circle of intersection, and its distance from the centre of each sphere.
45. If a polyedron be circumscribed about each of two equal spheres, the volumes of the polyedrons are to each other as the areas of their surfaces.
(Find the volume of each polyedron by dividing it into pyramids.)
46. Either angle of a spherical triangle is greater than the difference between 180° and the sum of the other two angles.
(Fig. of Prop. XX. To prove $\angle A>180^{\circ}-(\angle B+\angle C)$, or $>(\angle B+\angle C)-180^{\circ}$, according as $\angle B+\angle C$ is $<$ or $>180^{\circ}$. In the latter case, $A^{\prime} C^{\prime}+A^{\prime} B^{\prime}>B^{\prime} C^{\prime}$; then use § 593.)

Book IX.

MEASUREMENT OF THE CYLINDER, CONE, AND SPHERE.

THE CYLINDER.

Definitions.

638. The lateral area of a cylinder is the area of its lateral surface.

A right section of a cylinder is a section made by a plane perpendicular to the elements of its lateral surface.
639. A prism is said to be inscribed in a cylinder when its lateral edges are elements of the cylindrical surface.

In this case, the bases of the prism are inscribed in the bases of the cylinder.

A prism is said to be circumscribed about a cylinder when its lateral faces are tangent to the cylinder, and its bases lie in the same planes with the bases of the cylinder.

In this case, the bases of the prism are circumscribed about the bases of the cylinder.
640. It follows from § 363 that

If a prism whose base is a regular polygon be inscribed in, or circumscribed about, a circular cylinder (§540), and the number of its faces be indefinitely increased,

1. The lateral area of the prism approaches the lateral area of the cylinder as a limit.

2. The volume of the prism approaches the volume of the cylinder as a limit.
3. The perimeter of a right section of the prism approaches the perimeter of a right section of the cylinder as a limit.*

Prop. I. Theorem.

641. The lateral area of a circular cylinder is equal to the perimeter of a right section multiplied by an element of the lateral surface.

Given S the lateral area, P the perimeter of a rt. section, and E an element of the lateral surface, of a circular cylinder.

To Prove

$$
S=P \times E
$$

Proof. Inscribe in the cylinder a prism whose base is a regular polygon, and let S^{\prime} denote its lateral area, and P^{\prime} the perimeter of a rt. section.

Then, since the lateral edge of the prism is E,

$$
S^{\prime}=P^{\prime} \times E .
$$

Now let the number of faces of the prism be indefinitely increased.

Then, S^{\prime} approaches the limit S, and $P^{\prime} \times E$ approaches the limit $P \times E .(\S 640,1,3)$ By the Theorem of Limits, these limits are equal. (§ 188)

$$
\therefore S=P \times E .
$$

* For rigorous proofs of these statements, see Appendix, p. 386.

642. Cor. I. The lateral area of a cylinder of revolution is equal to the circumference of its base multiplied by its altitude.
643. Cor. II. If S denotes the lateral area, T the total area, H the altitude, and R the radius of the base, of a cylinder of revolution,

$$
\begin{equation*}
S=2 \pi R H \tag{§368}
\end{equation*}
$$

And, $\quad T=2 \pi R H+2 \pi R^{2}(\S 371)=2 \pi R(H+R)$.

Prop. II. Theorem.

644. The volume of a circular cylinder is equal to the product of its base and altitude.

Given V the volume, B the area of the base, and H the altitude, of a circular cylinder.

To Prove
 $$
V=B \times H
$$

Proof. Inscribe in the cylinder a prism whose base is a regular polygon, and let V^{\prime} denote its volume, and B^{\prime} the area of its base.

Then, since the altitude of the prism is H,

$$
V^{\prime}=B^{\prime} \times H
$$

Now let the number of faces of the prism be indefinitely increased.

Then, $\quad V^{\prime}$ approaches the limit V. (§ 640, 2)
And, $\quad B^{\prime} \times H$ approaches the limit $B \times H . \quad(\S 363$, II $)$

$$
\begin{equation*}
\therefore V=B \times H . \tag{?}
\end{equation*}
$$

645. Cor. If V denotes the volume, H the altitude, and R the radius of the base, of a circular cylinder,

$$
\begin{equation*}
V=\pi R^{2} H \tag{?}
\end{equation*}
$$

Prop. III. Theorem.

646. The lateral or total areas of two similar cylinders of revolution (§550) are to each other as the squares of their altitudes, or as the squares of the radii of their bases; and their volumes are to each other as the cubes of their altitudes, or as the cubes of the radii of their bases.

Given S and s the lateral areas, T and t the total areas, V and v the volumes, H and h the altitudes, and R and r the radii of the bases, of two similar cylinders of revolution.

$$
\text { To Prove } \frac{S}{s}=\frac{T}{t}=\frac{H^{2}}{h^{2}}=\frac{R^{2}}{r^{2}} \text {, and } \frac{V}{v}=\frac{H^{3}}{h^{3}}=\frac{R^{3}}{r^{3}} \text {. }
$$

Proof. Since the generating rectangles are similar,

$$
\begin{align*}
\frac{H}{h} & =\frac{R}{r} \\
& =\frac{H+R}{h+r} .
\end{align*}
$$

$$
\begin{aligned}
& \therefore \frac{S}{s}=\frac{2 \pi R H}{2 \pi r h}(\S 643)=\frac{R}{r} \times \frac{R}{r}=\frac{R^{2}}{r^{2}}=\frac{H^{2}}{h^{2}}, \\
& \frac{T}{t}=\frac{2 \pi R(H+R)}{2 \pi r(h+r)}(\S 643)=\frac{R}{r} \times \frac{R}{r}=\frac{R^{2}}{r^{2}}=\frac{H^{2}}{h^{2}},
\end{aligned}
$$

and $\quad \frac{V}{v}=\frac{\pi R^{2} H}{\pi r^{2} h}$
$(\S 645)=\frac{R^{2}}{r^{2}} \times \frac{R}{r}=\frac{R^{3}}{r^{3}}=\frac{H^{3}}{h^{3}}$.

EXERCISES.

1. Find the lateral area, total area, and volume of a cylinder of revolution, the diameter of whose base is 18 , and whose altitude is 16 .
2. The radii of the bases of two similar cylinders of revolution are 24 and 44 , respectively. If the lateral area of the first cylinder is 720 , what is the lateral area of the second?
3. Find the altitude and diameter of the base of a cylinder of revolution, whose lateral area is 168π and volume 504π.
(Substitute the given values in the formulæ of $\S \S 643$ and 645 , and solve the resulting equations.)
4. Find the volume of a cylinder of revolution, whose total area is 170π and altitude 12.
5. How many cubic feet of metal are there in a hollow cylindrical tube 18 ft . long, whose outer diameter is 8 in ., and thickness 1 in .?
(Find the difference of the volumes of two cylinders of revolution. $\pi=3.1416$.)
6. The cross-section of a tunnel, $2 \frac{1}{2}$ miles in length, is in the form of a rectangle 6 yd . wide and 4 yd . high, surmounted by a semicircle whose diameter is equal to the width of the rectangle; how many cu. yd. of material were taken out in its construction? $(\pi=3.1416$.
7. The volume of a cylinder of revolution is equal to its lateral area multiplied by one-half the radius of its base.

THE CONE.

DEFINITIONS.

647. The lateral area of a cone, or frustum of a cone, is the area of its lateral surface.

The slant height of a cone of revolution is the straight line drawn from the vertex to any point in the circumference of the base.

The slant height of a frustum of a cone of revolution is that portion of the slant height of the cone included between the bases of the frustum.
648. A pyramid is said to be inscribed in a cone when its lateral edges are elements of the conical surface; the base of the pyramid is inscribed in the base of the cone, and its vertex coincides with the vertex of the cone.

A pyramid is said to be circumscribed about a cone when its lateral faces are tangent to the cone, and its base lies in the same plane with the base of the cone; the base of the pyramid is circumseribed about the base of the cone, and its vertex coincides with the vertex of the cone.
649. A frustum of a pyramid is said to be inscribed in a frustum of a cone when its lateral edges are elements of the lateral surface of the frustum of the cone.

In this case, the bases of the frustum of the pyramid are inscribed in the bases of the frustum of the cone.

A frustum of a pyramid is said to be circumscribed about a frustum of a cone when its lateral faces are tangent to the frustum of the cone, and its bases lie in the same planes with the bases of the frustum of the cone.

In this case, the bases of the frustum of the pyramid are circumscribed about the bases of the frustum of the cone.
650. It follows from § 363 that

If a pyramid whose base is a regular polygon be inscribed in, or circumscribed about, a circular cone (§553), and the number of its faces be indefinitely increased,

1. The lateral area of the pyramid approaches the lateral area of the cone as a limit.
2. The volume of the pyramid approaches
 the volume of the cone as a limit.*
3. It follows from the above that

If a frustum of a pyramid whose base is a regular polygon be inscribed in, or circumscribed about, a frustum of a circular cone, and the number of its faces be indefinitely increased,

1. The lateral area of the frustum of the pyramid approaches the lateral area of the frustum of the cone as a limit.
2. The volume of the frustum of the pyramid approaches the volume of the frustum of the cone as a limit.
[^0]
Prop. IV. Theorem.

652. The lateral area of a cone of revolution is equal to the circumference of its base, multiplied by one-half its slant height.

Given S the lateral area, C the circumference of the base, and L the slant height, of a cone of revolution.
To Prove $\quad S=C \times \frac{1}{2} L$.
Proof. Circumscribe about the cone a regular pyramid; let S^{\prime} denote its lateral area, and $C^{\prime \prime}$ the perimeter of its base.

Now the sides of the base of the pyramid are bisected at their points of contact with the base of the cone.

Then, the slant height of the pyramid is the same as the slant height of the cone.

$$
\therefore S^{\prime}=C^{\prime} \times \frac{1}{2} L
$$

Now let the number of faces of the pyramid be indefinitely increased.

$$
\begin{array}{lrr}
\text { Then, } & S^{\prime} \text { approaches the limit } S . & (\S 650,1) \\
\text { And } & C^{\prime} \times \frac{1}{2} L \text { approaches the limit } C \times \frac{1}{2} L . & (\S 363, I)
\end{array}
$$

$$
\begin{equation*}
\therefore S=C \times \frac{1}{2} L \tag{?}
\end{equation*}
$$

653. Cor. If S denotes the lateral area, T the total area, L the slant height, and R the radius of the base, of a cone of revolution,

$$
\begin{aligned}
& S=2 \pi R \times \frac{1}{2} L(?)=\pi R L \\
& T=\pi R L+\pi R^{2}(?)=\pi R(L+R)
\end{aligned}
$$

And,

Prop. V. Theorem.

654. The volume of a circular cone is equal to the area of its base, multiplied by one-third its altitude.

Given V the volume, B the area of the base, and H the altitude, of a circular cone.

To Prove

$$
V=B \times \frac{1}{3} H .
$$

(Inscribe a pyramid whose base is a regular polygon.)
655. Cor. If V denotes the volume, H the altitude, and R the radius of the base, of a circular cone,

$$
\begin{equation*}
V=\frac{1}{3} \pi R^{2} H . \tag{?}
\end{equation*}
$$

Prof. VI. Theorem.

656. The lateral or total areas of two similar cones of revolution are to each other as the squares of their slant heights, or as the squares of their altitudes, or as the squares of the radii of their bases; andi their volumes are to each other as the cubes of their slant heights, or as the cubes of their altitudes, or as cubes of the radii of their bases.

Given S and s the lateral areas, T and t the total areas, V and v the volumes, L and l the slant heights, H and h the altitudes, and R and r the radii of the bases, of two similar cones of revolution (§ 555).
To Prove $\frac{S}{s}=\frac{T}{t}=\frac{L^{2}}{l^{2}}=\frac{H^{2}}{h^{2}}=\frac{R^{2}}{r^{2}}$, and $\frac{V}{v}=\frac{L^{3}}{l^{3}}=\frac{H^{3}}{h^{3}}=\frac{R^{3}}{r^{3}}$.
(The proof is left to the pupil; compare § 646.)

Prop. VII. Theorem.

657. The lateral area of a frustum of a cone of revolution is equal to the sum of the circumferences of its bases, multiplied by one-half its slant height.

Given S the lateral area, C and c the circumferences of the bases, and L the slant height, of a frustum of a cone of revolution.

To Prove

$$
S=(C+c) \times \frac{1}{2} L
$$

Proof. Circumscribe about the frustum of the cone a frustum of a regular pyramid; let S^{\prime} denote its lateral area, and $C^{\prime \prime}$ and c^{\prime} the perimeters of its bases.

Now the sides of the bases of the frustum of the pyramid are bisected at their points of contact with the bases of the frustum of the cone.
(§ 174)
Then, the slant height of the frustum of the pyramid is the same as the slant height of the frustum of the cone.

$$
\begin{equation*}
\therefore S^{\prime}=\left(C^{\prime}+c^{\prime}\right) \times \frac{1}{2} L . \tag{§508}
\end{equation*}
$$

Now let the number of faces of the frustum of the pyramid be indefinitely increased.

Then, $\quad S^{\prime}$ approaches the limit $S, \quad(\S 651,1)$ and $\left(C^{\prime \prime}+c^{\prime}\right) \times \frac{1}{2} L$ approaches the limit $(C+c) \times \frac{1}{2} L$.

$$
\therefore S=(C+c) \times \frac{1}{2} L .
$$

658. Cor. I. If S denotes the lateral area, L the slant height, and R and r the radii of the bases, of a frustum of a cone of revolution,

$$
S^{\prime}=(2 \pi R+2 \pi r) \times \frac{1}{2} L(?)=\pi(R+r) L .
$$

659. Cor. II. We may write the first result of § 658

$$
S=2 \pi \times \frac{1}{2}(R+r) \times L
$$

But, $2 \pi \times \frac{1}{2}(R+r)$ is the circumference of a section equally distant from the bases.

Whence, the lateral area of a frustum of a cone of revolution is equal to the circumference of a section equally distant from its bases, multiplied by its slant height.

Prop. VIII. Theorem.

660. The volume of a frustum of a circular cone is equal to the sum of its bases and a mean proportional between its bases, multiplied by one-third its altitude.

Given V the volume, B and b the areas of the bases, and H the altitude, of a frustum of a circular cone.

To Prove $\quad V=(B+b+\sqrt{B \times b}) \times \frac{1}{3} H$.

(Inscribe a frustum of a pyramid whose base is a regular polygon. Then apply § 524.)
661. Cor. If V denotes the volume, H the altitude, and R and r the radii of the bases, of a frustum of a circular cone,

$$
\begin{equation*}
B=\pi R^{2}, b=\pi r^{2}, \text { and } \sqrt{B \times b}=\sqrt{\pi^{2} R^{2} r^{2}}=\pi R r \tag{?}
\end{equation*}
$$

Then,

$$
V=\left(\pi R^{2}+\pi r^{2}+\pi R r\right) \times \frac{1}{3} H=\frac{1}{3} \pi\left(R^{2}+r^{2}+R r\right) H
$$

EXERCISES.

8. Find the lateral area, total area, and volume of a cone of revolution, the radius of whose base is 7 , and whose slant height is 25 .
9. Find the lateral area, total area, and volume of a frustum of a cone of revolution, the diameters of whose bases are 16 and 6 , and whose altitude is 12 .
10. The slant heights of two similar cones of revolution are 9 and 15 , respectively. If the volume of the second cone is 625 , what is the volume of the first?
11. Find the volume of a cone of revolution, whose slant height is 29 and lateral area 580π.
12. Find the lateral area of a cone of revolution, whose volume is 320π and altitude 15.
13. The altitude of a cone of revolution is 27 , and the radius of its base is 16. What is the diameter of the base of an equivalent cylinder of revolution, whose altitude is 16 ?
14. The area of the entire surface of a frustum of a cone of revolution is 306π, and the radii of its bases are 11 and 5 . Find its lateral area and volume.
15. The volume of a frustum of a cone of revolution is 6020π, its altitude is 60 , and the radius of its lower base is 15 . Find the radius of its upper base and its lateral area.
16. Find the altitude and lateral area of a cone of revolution, whose volume is 800π, and whose slant height is. to the diameter of its base as 13 to 10 .
17. The total areas of two similar cylinders of revolution are 32 and 162 , respectively. If the volume of the second cylinder is 1458 , what is the volume of the first?
(Let x and y denote the altitudes of the cylinders.)
18. The volumes of two similar cones of revolution are 343 and 512, respectively. If the lateral area of the first cone is 196 , what is the lateral area of the second?
19. A cubical piece of lead, the area of whose entire surface is 384 sq. in., is melted and formed into a cone of revolution, the radius of whose base is 12 in . Find the altitude of the cone.
20. A tapering hollow iron column, 1 in. thick, is 24 ft . long, 10 in . in outside diameter at one end, and 8 in . in diameter at the other ; how many cubic inches of metal were used in its construction?
(Find the difference of the volumes of the frustums of two cones of revolution. $\pi=3.1416$.)
21. If the altitude of a cone of revolution is three-fourths the radius of its base, its volume is equal to its lateral area multiplied by one-fifth the radius of its base.

THE SPHERE.

DEFINITIONS.

662. A zone is a portion of the surface of a sphere included between two parallel planes.

The circumferences of the circles which bound the zone are called the bases, and the perpendicular distance between their planes the altitude.

A zone of one base is a zone one of whose bounding planes is tangent to the sphere.

A spherical segment is a portion of a sphere included between two parallel planes.

The circles which bound it are called the bases, and the perpendicular distance between them the altitude.

A spherical segment of one base is a spherical segment one of whose bounding planes is tangent to the sphere.
663. If semicircle $A C E B$ be revolved about diameter $A B$ as an axis, and $C D$ and $E F$ are lines $\perp A B$, are $C E$ generates a zone whose altitude is $D F$, figure $C E F D$ a spherical segment whose altitude is $D F$, $\operatorname{arc} A C$ a zone of one base, and figure $A C D$ a spherical segment of one base.

664. If a semicircle be revolved about its diameter as an axis, the solid generated by any sector of the semicircle is called a spherical sector.

Thus, if semicircle $A C D B$ be revolved about diameter $A B$ as an axis, sector $O C D$ generates a spherical sector.

The zone generated by the are of the sector is called the base of the spherical sector.

Prop. IX. Theorem.

665. The area of the surface generated by the revolution of a straight line about a straight line in its plane, not parallel to and not intersecting it, as an axis, is equal to its projection on the axis, multiplied by the circumference of a circle, whose radius is the perpendicular erected at the middle point of the line and terminating in the axis.

Given str. line $A B$ revolved about str. line $F M$ in its plane, not $\|$ to and not intersecting it, as an axis; lines $A C$ and $B D \perp F M$, and $E F$ the \perp erected at the middle point of $A B$ terminating in $F M$.

To Prove \quad area $A B^{*}=C D \times 2 \pi E F$. (§§ 276, 368)
Proof. Draw line $A G \perp B D$, and line $E H \perp C D$.
The surface generated by $A B$ is the lateral surface of a frustum of a cone of revolution, whose bases are generated by $A C$ and $B D$.

$$
\begin{equation*}
\therefore \text { area } A B=A B \times 2 \pi E H \tag{§659}
\end{equation*}
$$

But $\mathbb{\triangle} A B G$ and $E F H$ are similar.

$$
\begin{align*}
\therefore \frac{A B}{A G} & =\frac{E F}{E H} . \tag{?}\\
\therefore A B \times E H & =A G \times E F \\
& =C D \times E F .
\end{align*}
$$

Substituting, we have

$$
\begin{equation*}
\text { area } A B=C D \times 2 \pi E F \tag{?}
\end{equation*}
$$

* The expression "area $A B$ " is used to denote the area of the surface generated by $A B$.

Prop. X. Theorem.

666. If an isosceles triangle be revolved about a straight line in its plane, not parallel to its base, as an axis, which passes through its vertex without intersecting its surface, the volume of the solid generated is equal to the area of the surface generated by the base, multiplied by one-third the altitude.

Given isosceles $\triangle O A B$ revolved about str. line $O F$ in its plane, not $\|$ to base $A B$, as an axis; and line $O C \perp A B$.

To Prove vol. $O A B^{*}=$ area $A B \times \frac{1}{3} O C$.
Proof. Draw lines $A D$ and $B E \perp O F$; and produce $B A$ to meet $O F$ at F.

Now, vol. $O B F=$ vol. $O B E+$ vol. $B E F$

$$
\begin{aligned}
& =\frac{1}{3} \pi \overline{B E}^{2} \times O E+\frac{1}{3} \pi \overline{B E}^{2} \times E F \\
& =\frac{1}{3} \pi \overline{B E}^{2} \times(O E+E F)=\frac{1}{3} \pi B E \times B E \times O F
\end{aligned}
$$

But $B E \times O F=O C \times B F$, for each expresses twice the area of $\triangle O B F$.

$$
\begin{equation*}
\therefore \text { vol. } O B F=\frac{1}{3} \pi B E \times O C \times B F \tag{?}
\end{equation*}
$$

But $\pi B E \times B F$ is the area of the surface generated by $B F$.

$$
\begin{align*}
\therefore \quad \text { vol. } O B F & =\text { area } B F \times \frac{1}{3} O C . \tag{§653}\\
\text { Similarly, } \quad \text { vol. } O A F & =\text { area } A F \times \frac{1}{3} O C . \tag{1}
\end{align*}
$$

Subtracting (2) from (1), we have

$$
\text { vol. } \begin{aligned}
O A B & =(\text { area } B F-\text { area } A F) \times \frac{1}{3} O C \\
& =\text { area } A B \times \frac{1}{3} O C
\end{aligned}
$$

* The expression "vol. OAB" is used to denote the volume of the solid generated by OAB.

Prop. XI. Theorem.

667. The area of a zone is equal to its altitude multiplied by the circumference of a great circle.

Given are $A B$ revolved about diameter $O M$ as an axis, lines $A A^{\prime}$ and $B B^{\prime} \perp O M$, and R the radius of the arc.

To Prove area of zone generated by $A B=A^{\prime} B^{\prime} \times 2 \pi R$.
Proof. Divide arc $A B$ into three equal arcs, $A C, C D$, and $D B$, and draw chords $A C, C D$, and $D B$.

Also, draw lines $C C^{\prime}$ and $D D^{\prime} \perp O M$, and line $O E \perp A C$.

$$
\begin{align*}
\therefore \text { area } A C & =A^{\prime} C^{\prime} \times 2 \pi O E, \\
\quad \text { area } C D & =C^{\prime} D^{\prime} \times 2 \pi O E, \text { etc. }
\end{align*}
$$

Adding these equations, we have
area of surface generated by broken line $A C D B$

$$
=\left(A^{\prime} C^{\prime}+C^{\prime} D^{\prime}+\text { etc. }\right) \times 2 \pi O E=A^{\prime} B^{\prime} \times 2 \pi O E .
$$

Now let the subdivisions of arc $A B$ be bisected indefinitely.
Then, area of surface generated by broken line $A C D B$ approaches area of surface generated by arc $A B$ as a limit. (§ $363, \mathrm{I}^{*}$)
And, $A^{\prime} B^{\prime} \times 2 \pi O E$ approaches $A^{\prime} B^{\prime} \times 2 \pi R$ as a limit. (§ $364,1^{*}$)

* The broken line $A C D B$ is called a regular broken line, and is said to be inscribed in arc $A B$; the theorems of $\S \S 363, \mathrm{I}$, and 364,1 , are evidently true when, instead of the perimeter of a regular inscribed polygon, we have a regular broken line inscribed in an arc.

For a rigorous proof of the statement that the area of the surface generated by $A C D B$ approaches the area of the surface generated by $\operatorname{arc} A B$ as a limit, see Appendix, p. 390.

Then, area of zone generated by $\operatorname{arc} A B=\Lambda^{\prime} B^{\prime} \times 2 \pi R$.
668. Sch. The proof of $\S 667$ holds for any zone which lies entirely on the surface of a hemisphere; for, in that case, no chord is \| $O M$, and § 665 is applicable.

Since a zone which does not lie entirely on the surface of a hemisphere may be considered as the sum of two zones, each of which does lie entirely on the surface of a hemisphere, the theorem of $\S 667$ is true for any zone.
669. Cor. I. If S denotes the area of a zone, h its altitude, and R the radius of the sphere,

$$
S=2 \pi R h
$$

670. Cor. II. Since the surface of a sphere may be regarded as a zone whose altitude is a diameter of the sphere, it follows that

The area of the surface of a sphere is equal to its diameter multiplied by the circumference of a great circle.
671. Cor. III. Let S denote the area of the surface of a sphere, R its radius, and D its diameter.

Then,

$$
S=2 R \times 2 \pi R(?)=4 \pi R^{2}
$$

That is, the area of the surface of a sphere is equal to the square of its radius multiplied by 4π.

$$
\text { Again, } \quad S=\pi \times(2 R)^{2}=\pi D^{2}
$$

That is, the area of the surface of a sphere is equal to the square of its diameter multiplied by π.
672. Cor. IV. The surface of a sphere is equivalent to four great circles.

For πR^{2} is the area of a great \odot.
673. Cor. V. The areas of the surfaces of two spheres are to each other as the squares of their radii, or as the squares of their diameters.
(The proof is left to the pupil; compare § 372.)

EXERCISES.

22. Find the area of the surface of a sphere whose radius is 12 .
23. Find the area of a zone whose altitude is 13 , if the radius of the sphere is 16.
24. Find the area of a spherical triangle whose angles are 125°, 133°, and 156°, on a sphere whose radius is 10 .

Prop. XII. Theorem.

674. The volume of a spherical sector is equal to the area of the zone which forms its base, multiplied by one-third the radius of the sphere.

Given sector $O A B$ revolved about diameter $O M$ as an axis, and R the radius of the arc.

To Prove volume of spherical sector generated by $O A B$ $=$ area of zone generated by $A B \times \frac{1}{3} R$.

Proof. Divide arc $A B$ into three equal arcs, $A C, C D$, and $D B$, and draw chords $A C, C D$, and $D B$.

Also, draw lines $O C$ and $O D$, and line $O E \perp A C$.

$$
\begin{align*}
& \therefore \text { vol. } O A C=\text { area } A C \times \frac{1}{3} O E \text {, } \\
& \text { vol. } O C D=\text { area } C D \times \frac{1}{3} O E \text {, etc. }
\end{align*}
$$

Adding these equations, we have
volume of solid generated by polygon $O A C D B$

$$
\begin{aligned}
& =(\text { area } A C+\text { area } C D+\text { etc. }) \times \frac{1}{3} O E \\
& =\text { area } A C D B \times \frac{1}{3} O E .
\end{aligned}
$$

Now let the subdivisions of arc $A B$ be bisected indefinitely.

Then, volume of solid generated by polygon $O A C D B$ approaches volume of solid generated by sector $O A B$ as a limit. (§ 363, II *)
And area of surface generated by $A C D B \times \frac{1}{3} O E$ approaches area of surface generated by are $A B \times \frac{1}{3} R$ as a limit.
(§§ 363, I, 364, 1 †)
Then, volume of solid generated by sector $O A B$

$$
\begin{equation*}
=\text { area of zone generated by arc } A B \times \frac{1}{3} R \text {. } \tag{?}
\end{equation*}
$$

675. Sch. It is evident, as in $\S 668$, that the theorem of § 674 holds for any spherical sector.
676. Cor. I. If V denotes the volume of a spherical sector, h the altitude of the zone which forms its base, and R the radius of the sphere,

$$
V=2 \pi R h \times \frac{1}{3} R(\S 669)=\frac{2}{3} \pi R^{2} h .
$$

677. Cor. II. Since a sphere may be regarded as a spherical sector whose base is the surface of the sphere,

The volume of a sphere is equal to the area of its surface multiplied by one-third its radius.
678. Cor. III. Let V denote the volume of a sphere, R its radius, and D its diameter.
Then, $\quad V=4 \pi R^{2} \times \frac{1}{3} R(\S 671)=\frac{4}{3} \pi R^{3}$.
That is, the volume of a sphere is equal to the cube of its radius multiplied by $\frac{4}{3} \pi$.

$$
\text { Again, } \quad V=\pi D^{2} \times \frac{1}{6} D(\S 671)=\frac{1}{6} \pi D^{3} \text {. }
$$

That is, the volume of a sphere is equal to the cube of its diameter multiplied by $\frac{1}{6} \pi$.

* The polygon $O A C D B$ is called a regular polygonal sector, and is said to be inscribed in sector $O A B$; the theorem of $\S 363$, II, is evidently true when, instead of a regular inscribed polygon, we have a regular polygonal sector inscribed in a sector.

For a rigorous proof of the statement that the volume of the solid generated by $O A C D B$ approaches the volume of the solid generated by sector $O A B$ as a limit, see Appendix, p. 391.
\dagger See note foot of p. 374.
679. Cor. IV. The volumes of two spheres are to each other as the cubes of their radii, or as the cubes of their diameters.
(The proof is left to the pupil.)
680. Cor. V. The volume of a spherical pyramid is equal to the area of its base multiplied by one-third the radius of the sphere.

Given P the volume of a spherical pyramid, K the area of its base, and R the radius of the sphere.

To Prove
 $$
P=K \times \frac{1}{3} R .
$$

Proof. Let n denote the number of sides of the base of the spherical pyramid, s the sum of its $\angle s$ referred to a rt. \angle as the unit of measure, T the area of a tri-rectangular \triangle, $T^{\prime \prime}$ the volume of a tri-rectangular pyramid, S the area of the surface of the sphere, and V its volume.

$$
\begin{align*}
\text { Then, } \quad \frac{P}{K} & =\frac{[s-2(n-2)] \times T^{\prime}}{[s-2(n-2)] \times T}=\frac{T^{\prime \prime}}{T} . \\
\text { Also, } \quad \frac{V}{S} & =\frac{8 T^{\prime}}{8 T}=\frac{T^{\prime}}{T} . \\
\therefore \frac{P}{K} & =\frac{V}{S}=\frac{4}{3} \pi R^{3} \\
4 \pi R^{2} & (\S \S 671,678)=\frac{1}{3} R . \\
\therefore P & =K \times \frac{1}{3} R .
\end{align*}
$$

Prop. XIII. Problem.

681. Given the radii of the bases, and the altitude, of a spherical segment, to find its volume.

Given O the centre of arc $A D B$, lines $A A^{\prime}$ and $B B^{\prime} \perp$ to diameter $O M, A A^{\prime}=r^{\prime}, B B^{\prime}=r, A^{\prime} B^{\prime}=h$, and figure $A D B B^{\prime} A^{\prime}$ revolved about $O M$ as an axis.

Required to express volume of spherical segment generated by $A D B B^{\prime} A^{\prime}$ in terms of r, r^{\prime}, and h.

Solution. Draw lines $O A, O B$, and $A B$; also, line $O C \perp$ $A B$, and line $A E \perp B B^{\prime}$; and denote radius $O A$ by R.

Now, vol. $A D B B^{\prime} A^{\prime}=$ vol. $A C B D+$ vol. $A B B^{\prime} A^{\prime}$.
Also, ${ }^{-}$vol. $A C B D=$ vol. $O A D B-$ vol. $O A B$.
But, vol. $O A D B=\frac{2}{3} \pi R^{2} h$.
And, vol. $O A B=$ area $A B \times \frac{1}{3} O C$

$$
\begin{align*}
& =h \times 2 \pi O C \times \frac{1}{3} O C \\
& =\frac{2}{3} \pi \overline{O C}^{2} h .
\end{align*}
$$

\therefore vol. $A C D B=\frac{2}{3} \pi R^{2} h-\frac{2}{3} \pi \overline{O C}^{2} h$

$$
=\frac{2}{3} \pi\left(R^{2}-\overline{O C}^{2}\right) h
$$

But, $\quad R^{2}-\overline{O C}^{2}=\overline{A C}^{2}$

$$
\begin{align*}
& =\left(\frac{1}{2} A B\right)^{2} \tag{?}\\
& =\frac{1}{4} \overline{A B}^{2} .
\end{align*}
$$

\therefore vol. $A C D B=\frac{2}{3} \pi \times \frac{1}{4} \overrightarrow{A B}^{2} \times h=\frac{1}{6} \pi \overrightarrow{A B}^{2} h$.
Now,

$$
\begin{align*}
\overline{A B}^{2} & =\overline{B E}^{2}+\overline{A E}^{2} \tag{?}\\
& =\left(r-r^{\prime}\right)^{2}+h^{2} . \tag{?}
\end{align*}
$$

\therefore vol. $A C D B=\frac{1}{6} \pi\left[\left(r-r^{\prime}\right)^{2}+h^{2}\right] h$.
Also, vol. $A B B^{\prime} A^{\prime}=\frac{1}{3} \pi\left(r^{2}+r^{\prime 2}+r r^{\prime}\right) h$.
Substituting in (1), we have

$$
\begin{aligned}
& \text { vol. } A D B B^{\prime} A^{\prime} \\
& =\frac{1}{6} \pi\left[\left(r-r^{\prime}\right)^{2}+h^{2}\right] h+\frac{1}{6} \pi\left(2 r^{2}+2 r^{\prime 2}+2 r r^{\prime}\right) h \\
& =\frac{1}{6} \pi\left(r^{2}-2 r r^{\prime}+r^{\prime 2}+h^{2}+2 r^{2}+2 r^{\prime 2}+2 r r^{\prime}\right) h \\
& =\frac{1}{6} \pi\left(3 r^{2}+3 r^{\prime 2}\right) h+\frac{1}{6} \pi h^{3} \\
& =\frac{1}{2} \pi\left(r^{2}+r^{\prime 2}\right) h+\frac{1}{6} \pi h^{3} .
\end{aligned}
$$

682. Cor. If r denotes the radius of the base, and h the altitude, of a spherical segment of one base, its volume is

$$
\frac{1}{2} \pi r^{2} h+\frac{1}{6} \pi h^{3} .
$$

EXERCISES.

25. Find the volume of a sphere whose radius is 12 .
26. Find the volume of a spherical sector, the altitude of whose base is 12 , the diameter of the sphere being 25 .
27. Find the volume of a spherical segment, the radii of whose bases are 4 and 5 , and whose altitude is 9 .
28. Find the radius and volume of a sphere, the area of whose surface is 324π.
29. Find the diameter and area of the surface of a sphere whose volume is ${ }_{2}^{2125} \pi$.
30. The surface of a sphere is equivalent to the lateral surface of its circumscribed cylinder.
31. The volume of a sphere is two-thirds the volume of its circumscribed cylinder.
32. A spherical cannon-ball 9 in . in diameter is dropped into a cubical box filled with water, whose depth is 9 in . How many cubic inches of water will be left in the box? $(\pi=3.1416$.)
33. What is the angle of the base of a spherical wedge whose volume is $\frac{40}{3} \pi$, if the radius of the sphere is 4 ?
34. Find the volume of a quadrangular spherical pyramid, the angles of whose base are $107^{\circ}, 118^{\circ}, 134^{\circ}$, and 146°; the diameter of the sphere being 12 .
35. The surface of a sphere is equivalent to two-thirds the entire surface of its circumscribed cylinder.
36. Prove Prop. IX. when the straight line is parallel to the axis.
37. Find the area of the surface and the volume of a sphere inscribed in a cube the area of whose surface is 486.
38. How many spherical bullets, each $\frac{5}{8} \mathrm{in}$. in diameter, can be formed from five pieces of lead, each in the form of a cone of revolution, the radius of whose base is 5 in ., and whose altitude is 8 in .?
39. A cylindrical vessel, 8 in . in diameter, is filled to the brim with water. A ball is immersed in it, displacing water to the depth of $2 \frac{1}{4} \mathrm{in}$. Find the diameter of the ball.
40. If a sphere 6 in . in diameter weighs 351 ounces, what is the weight of a sphere of the same material whose diameter is 10 in .?
41. If a sphere whose radius is $12 \frac{1}{2} \mathrm{in}$. weighs 3125 lb ., what is the radius of a sphere of the same material whose weight is $819 \frac{1}{5} \mathrm{lb}$.?
42. The altitude of a frustum of a cone of revolution is $3 \frac{1}{2}$, and the radii of its bases are 5 and 3 ; what is the diameter of an equivalent sphere?
43. Find the radius of a sphere whose surface is equivalent to the entire surface of a cylinder of revolution, whose altitude is $10 \frac{1}{2}$, and radius of base 3 .
44. The volume of a cylinder of revolution is equal to the area of its generating rectangle, multiplied by the circumference of a circle whose radius is the distance to the axis from the centre of the rectangle.
45. The volume of a cone of revolution is equal to its lateral area, multiplied by one-third the perpendicular from the vertex of the right angle to the hypotenuse of the generating triangle.
46. Two zones on the same sphere, or equal spheres, are to each other as their altitudes.
47. The area of a zone of one base is equal to the area of the circle whose radius is the chord of its generating arc. (§ 270, 2.)
48. If the radius of a sphere is R, what is the area of a zone of one base, whose generating arc is 45° ? (Ex. 55, p. 210.)
49. If the altitude of a cone of revolution is 15 , and its slant height 17 , find the total area of an inscribed cylinder, the radius of whose base is 5 .
(Let the cone and cylinder be generated by the revolution of rt. $\triangle A B C$ and rect. $C D E F$ about $A C$ as an axis.)

50. Find the area of the surface and the volume of a sphere circumscribing a cylinder of revolution, the radius of whose base is 9 , and whose altitude is 24.
51. An equilateral triangle, whose side is 6 , revolves about one of its sides as an axis. Find the area of the entire surface, and the volume, of the solid generated.
52. A cone of revolution is inscribed in a sphere whose diameter is $\frac{4}{3}$ the altitude of the cone. Prove that its lateral surface and volume are, respectively, $\frac{3}{8}$ and $\frac{9}{32}$ the surface and volume of the sphere.
53. Find the volume of a sphere circumscribing a cube whose volume is 64 .
54. A cone of revolution is circumscribed about a sphere whose diameter is two-thirds the altitude of the cone. Prove that its lateral surface and volume are, respectively, three-halves and nine-fourths the surface and volume of the sphere.

55. If the radius of a sphere is 25 , find the lateral area and volume of an inscribed cone, the radius of whose base is 24 .
(Two solutions.)

56. If the volume of a sphere is $\frac{500}{3} \pi$, find the lateral area and volume of a circumscribed cone whose altitude is 18.
57. Find the volume of a spherical segment of one base whose altitude is 6 , the diameter of the sphere being 30 .
58. A square whose area is A revolves about its diagonal as an axis. Find the area of the entire surface, anr? c the volume, of the solid generated.

59. The altitude of a cone of revolution is 9 . At what distances from the vertex must it be cut by planes parallel to its base, in order that it may be divided into three equivalent parts? (§656.)
(Let V denote the volume of the cone, x the distance from the vertex to the nearer plane, and y the distance to the other.)
60. Given the radius of the base, R, and the total area, T, of a cylinder of revolution, to find its volume.
(Find H from the equation $T=2 \pi R H+2 \pi R^{2}$.)
61. Given the diameter of the base, D, and the volume, V, of a cylinder of revolution, to find its lateral area and total area.
62. Given the altitude, H, and the volume, V, of a cone of revolution, to find its lateral area.
63. Given the slant height, L, and the lateral area, S, of a cone of revolution, to find its volume.
64. A circular sector whose central angle is 45° and radius 12 revolves about a diameter perpendicular to one of its bounding radii. Find the volume of the spherical sector generated.
65. Given the area of the surface of a sphere, S, to find its volume.
66. Given the volume of a sphere, V, to find the area of its surface.
67. A right triangle, whose legs are a and b, revolves about its hypotenuse as an axis. Find the area of the entire surface, and the volume, of the solid generated.
68. The parallel sides of a trapezoid are 12 and 26 , respectively, and its non-parallel sides are 13 and 15. Find the volume generated by the revolution of the trapezoid about its longest side as an axis.
(Represent $B E$ by x.)

69. An equilateral triangle, whose altitude is h, revolves about one of its altitudes as an axis. Find the area of the surface, and the volume, of the solids generated by the triangle, and by its inscribed circle. (Ex. 21, p. 151.)
70. Find the lateral area and volume of a cylinder of revolution, whose altitude is equal to the diameter of its base, inscribed in a cone of revolution whose altitude is h, and radius of base r.
(Represent altitude of cylinder by x.)
71. Find the lateral area and volume of a cylinder of revolution, whose altitude is equal to the diameter of its base, inscribed in a sphere whose radius is r.
72. An equilateral triangle, whose side is a, revolves about a straight line drawn through one of its vertices parallel to the opposite side. Find the area of the entire surface, and the volume, of the solid generated.
(The solid generated is the difference of the cylinder generated by $B C H G$, and the cones generated by $A B G$ and $A C H$.)

73. The outer diameter of a spherical shell is 9 in ., and its thickness is 1 in . What is its weight, if a cubic inch of the metal weighs $\frac{1}{3} \mathrm{lb} . ? \quad(\pi=3.1416$.
74. Find the diameter of a sphere in which the area of the surface and the volume are expressed by the same numbers.
75. A regular hexagon, whose side is a, revolves about its longest diagonal as an axis. Find the area of the entire surface, and the volume, of the solid generated.
76. The sides $A B$ and $B C$ of rectangle $A B C D$ are 5 and 8 , respectively. Find the volumes generated by the revolution of triangle $A C D$ about sides $A B$ and $B C$ as axes.
77. The sides of a triangle are 17,25 , and 28 . Find the volume generated by the revolution of the triangle about its longest side as an axis. (§ 324.)
78. A frustum of a circular cone is equivalent to three cones, whose common altitude is the altitude of the frustum, and whose bases are the lower base, the upper base, and a mean proportional between the bases of the frustum. (§660.)
79. The volume of a cone of revolution is equal to the area of its generating triangle, multiplied by the circumference of a circle whose radius is the distance to the axis from the intersection of the medians of the triangle. (§ 140.)
80. If the earth be regarded as a sphere whose radius is R, what is the area of the zone visible from a point whose height above the surface is H ? (§271, 2.)

81. The sides $A B$ and $B C$ of acute-angled triangle $A B C$ are $\sqrt{241}$ and 10 , respectively. Find the volume of the solid generated by the revolution of the triangle about an axis in its plane, not intersecting its surface, whose distances from A, B, and C are 2, 17, and 11, respectively.

82. A projectile consists of two hemispheres, connected by a cylinder of revolution. If the altitude and diameter of the base of the cylinder are 8 in . and 7 in ., respectively, find the number of cubic inches in the projectile. $\quad(\pi=3.1416$.)
83. A segment of a circle, whose bounding arc is a quadrant, and whose radius is r, revolves about a diameter parallel to its bounding chord. Find the area of the entire surface, and the volume, of the solid generated.

84. If any triangle be revolved about an axis in its plane, not parallel to its base, which passes through its vertex without intersecting its surface, the volume of the solid generated is equal to the area of the surface generated by the base, multiplied by one-third the altitude.

Fiy. 1.

Fig. 2.

Fig. s.
(Compare § 666. Case I., Figs. 1 and 2, when a side coincides with the axis; there are two cases according as $A E$ falls on $B C$, or $B C$ produced. Case II., Fig. 3, when no side coincides with the axis ; prove by Case I.)
85. If any triangle be revolved about an axis which passes through its vertex parallel to its base, the volume of the solid generated is equal to the area of the surface generated by the base, multiplied by one-third the altitude.
(Compare Ex. 72, p. 383. There are two cases according as $A D$ falls on $B C$, or $B C$ produced.)

Fig. 1.

Fig. 2.
86. Find the area of the surface of the sphere circumscribing a regular tetraedron, whose edge is 8 .
(Draw lines $D O E$ and $A O F \perp$ to $\& A B C$ and $B C D$, respectively.)

APPENDIX.

PROOF OF STATEMENT MADE IN ELEVENTH LINE, PAGE 201.

683. Theorem. The circumference of a circle is shorter than the perimeter of any circumscribed polygon.

Given polygon $A B C D$ circumscribed about a \odot.
To Prove circumference of \odot shorter than perimeter $A B C D$.

Proof. Of the perimeters of the \odot and of its circumscribed polygons, there must be one perime-
 ter such that all the others are of equal or greater length.

But no circumscribed polygon can have this perimeter.
For, if we suppose polygon $A B C D$ to have this perimeter, and draw a tangent to the \odot, meeting $C D$ and $D A$ at points E and F, respectively, then since str. line $E F$ is $<$ broken line $E D F$, the perimeter of circumscribed polygon $A B C E F$ is $<$ perimeter $A B C D$.

Hence, the circumference of the \odot is $<$ the perimeter of any circumscribed polygon.

PROOFS OF THE LIMIT STATEMENTS OF §640.

684. We assume the following :

A portion of a plane is less than any other surface having the same boundaries.
685. Theorem. The total surface of a circular cylinder is less than the total surface of any circumscribed prism.

Given prism $A C^{\prime}$ circumscribed about circular cylinder $E G$.

To Prove total surface $E G<$ total surface $A C^{\prime}$.

Proof. Of the total surfaces of the cylinder and of its circumscribed prisms, there must be one total surface such that the area of every other is either equal to
 or $>$ it.

But no circumscribed prism can have this total surface.
For suppose prism $A C^{\prime}$ to have this total surface; and let $B C D F E-E^{\prime}$ be a circumscribed prism, whose face $E F^{\prime \prime}$ intersects faces $A B^{\prime}$ and $A D^{\prime}$ in lines $E E^{\prime}$ and $F F^{\prime \prime}$, respectively.

Now, face $E F^{\prime}$ is $<$ sum of faces $A E^{\prime}, A F^{\prime}, A E F^{\prime}$, and $A^{\prime} E^{\prime} F^{\prime}$.

Whence, total surface of prism $B C D F E-E^{\prime}$ is $<$ total surface of prism $A C^{\prime}$.

Then, total surface of cylinder $E G$ is $<$ total surface of any circumscribed prism.

Proofs of the Limit Statements of § 640.

686. Let L denote the lateral edge, H the altitude, S and s the the lateral areas, V and v the volumes, E and e the perimeters of rt. sections, and B and b the areas of the bases of the circumscribed and inscribed prisms, respectively ; also, S^{\prime} the lateral area of the cylinder, V^{\prime} its volume, E^{\prime} the perimeter of a rt. section, and B^{\prime} the area of the base.
687. We have,

$$
\begin{align*}
& S+2 B>S^{\prime}+2 B^{\prime} \tag{§685}\\
\therefore & S+2\left(B-B^{\prime}\right)>S^{\prime}
\end{align*}
$$

Again, the total surface of the inscribed prism is $<$ the total surface of the cylinder.

$$
\therefore S^{\prime}+2 B^{\prime}>s+2 b, \text { or } S^{\prime}>s+2\left(b-B^{\prime}\right)
$$

Then,

$$
S+2\left(B-B^{\prime}\right)>S^{\prime}>s+2\left(b-B^{\prime}\right)
$$

Now if the number of faces of the prisms be indefinitely increased, $B-B^{\prime}$ and $b-B^{\prime}$ approach the limit 0 .
(§ 363, II)
Again, the difference between the perimeters of the bases of the prisms approaches the limit 0 .
(§ 363, I)
Then, the total surface of the circumscribed prism continually decreases, but never reaches the total surface of the inscribed prism; and the total surface of the inscribed prism continually increases, but never reaches the total surface of the circumscribed prism. (§684)

Then, the difference between $S+2 B$ and $s+2 b$ can be made less than any assigned value, however small.

Whence, $S+2 B-(s+2 b)$, or $S-s+2(B-b)$, approaches the limit 0.

But $B-b$ approaches the limit 0 .
Whence, $S-s$ approaches the limit 0 .
Then, S^{\prime} is intermediate in value between two variables, the difference between which approaches the limit 0 .

Then, the difference between either variable and $S^{\prime \prime}$, that is,

$$
S+2\left(B-B^{\prime}\right)-S^{\prime} \text { and } S^{\prime \prime}-s-2\left(b-B^{\prime}\right),
$$

approaches the limit 0 .
Whence, $S-S^{\prime}$ and $S^{\prime}-s$ approach the limit 0 .
Hence, S and s approach the limit S^{\prime}.
2. We have, $\quad V=B \times H$ and $v=b \times H$.

Whence, $\quad V-v=B \times H-b \times H=(B-b) \times H$.
Now if the number of faces of the prisms be indefinitely increased, $B-b$, and therefore $V-v$, approaches the limit 0 .
(§ 363, II)
But V^{\prime} is evidently $>v$, and $<V$.
Then, $V-V^{\prime}$ and $V^{\prime}-v$ approach the limit 0 .
Whence, V and v approach the limit V^{\prime}.
3. We have, $\quad S=E \times L$ and $s=e \times L$.

Then,

$$
\begin{equation*}
E=\frac{S}{L} \text { and } e=\frac{s}{L} ; \text { or, } E-e=\frac{S-s}{L} . \tag{§484}
\end{equation*}
$$

Now if the number of faces of the prisms be indefinitely increased, $S-s$, and therefore $E-e$, approaches the limit 0 .
(§ 640, 1)
But E^{\prime}, the perimeter of a rt. section of the cylinder, is $<E$; for the theorem of $\S 683$ is evidently true when for the \odot is taken any closed curve whose tangents do not intersect its surface ; also, E^{\prime} is $>e$.
(Ax. 4)
Then, $E-E^{\prime}$ and $E^{\prime}-e$ approach the limit 0 .
Whence, E and e approach the limit E^{\prime}.

PROOFS OF THE LIMIT STATEMENTS OF § 650.

687. Theorem. The total surface of a circular cone is less than the total surface of any circumscribed pyramid.

Given pyramid $S-A B C D$ circumscribed about circular cone $S-E F$.

To Prove total surface $S-E F<$ total surface $S-A B C D$.

Proof. Of the total surfaces of the cone and of its circumscribed pyramids, there must be one total surface such that the area of every
 other is either equal to or $>\mathrm{it}$.

But no circumscribed pyramid can have this total surface.
For suppose pyramid $S-A B C D$ to have this total surface; and let $S-B C D F E$ be a circumscribed pyramid, whose face $S E F$ intersects faces $S A B$ and $S A D$ in lines $S E$ and $S F$, respectively.

Now, face $S E F$ is < sum of faces $S A E, S A F$, and $A E F$. (§ 684)
Whence, total surface of pyramid $S-B C D F E$ is $<$ total surface of pyramid $S-A B C D$.

Then, total surface of cone $S-E F$ is $<$ total surface of any circumscribed pyramid.

Proofs of the Limit Statements of § 650.

688. Let H denote the altitude, S and s the lateral areas, V and v the volumes, and B and b the areas of the bases, of the circumscribed and inscribed pyramids, respectively ; also, S^{\prime} the lateral area of the cone, V^{\prime} its volume, and B^{\prime} the area of its base.
689. We have,

$$
\begin{equation*}
S+B>S^{\prime}+B^{\prime} . \tag{§687}
\end{equation*}
$$

$$
\therefore S+\left(B-B^{\prime}\right)>S^{\prime} .
$$

Again, the total surface of the inscribed pyramid is $<$ the total surface of the cone.

Then,

$$
\therefore S^{\prime}+B^{\prime}>s+b, \text { or } S^{\prime}>s+\left(b-B^{\prime}\right) .
$$

Now if the number of faces of the pyramids be indefinitely increased, $B-B^{\prime}$ and $b-B^{\prime}$ approach the limit 0 . (§ 363, II)
Also, the difference between the perimeters of the bases of the pyramids approaches the limit 0 . (§ $363, \mathrm{I}$)
Then, $S+B$ continually decreases, and $s+b$ continually increases; and the difference between them can be made less than any assigned value, however small.

Then, $S-s+(B-b)$ approaches the limit 0 .
But $B-b$ approaches the limit 0 .
Whence, $S-s$ approaches the limit 0 .
Then, S^{\prime} is intermediate in value between two variables, the difference between which approaches the limit 0 .

Whence, the difference between either variable and S^{\prime}, that is, $S+\left(B-B^{\prime}\right)-S^{\prime}$ and $S^{\prime}-s-\left(b-B^{\prime}\right)$, approaches the limit 0 .

Then, $S-S^{\prime}$ and $S^{\prime \prime}-s$ approach the limit 0.
Whence, S and s approach the limit $S^{\prime \prime}$.
2. We have,

$$
\begin{aligned}
& V=B \times \frac{1}{3} H \text { and } v=b \times \frac{1}{3} H . \\
& V-v=(B-b) \times \frac{1}{3} H .
\end{aligned}
$$

Now if the number of faces of the pyramids be indefinitely increased, $B-b$, and therefore $V-v$, approaches the limit 0 . (§ 363, II)
But, V^{\prime} is evidently $>v$, and $<V$.
Then, $V-V$ and $V^{\prime}-v$ approach the limit 0.
Whence, V and v approach the limit V.

proof of the limit statement in note foot OF PAGE 374.

689. Theorem. If a regular broken line, inscribed in an arc, be revolved about a diameter, not intersecting the arc, as an axis, and the subdivisions of the arc be bisected indefinitely, the area of the surface generated by the broken line approaches the area of the surface generated by the arc as a limit.

Given regular broken line $A B C D$, inscribed in $\operatorname{arc} A D$, revolving about diameter $O M$ as an axis.

To Prove that, if the subdivisions of arc $A D$ be bisected indefinitely, area of surface generated
 by $A B C D$ approaches area of surface generated by arc $A D$ as a limit.

Proof. Let $A^{\prime} B^{\prime}, B^{\prime} C^{\prime \prime}$, and $C^{\prime} D^{\prime}$ be tangents \| to $A B, B C$, and $C D$, respectively, points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} being in radii $O A, O B$, $O C$, and $O D$, respectively, produced ; and let S, s, and S^{\prime} denote the areas of the surfaces generated by $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, and $A B C D$, and arc $A D$, respectively.
Of the surfaces generated by arc $A D$, by $A B C D$, and by regular inscribed broken lines obtained by bisecting the subdivisions of the arc indefinitely, there must be one surface such that the areas of all the others are either equal to or $<\mathrm{it}$.

But no regular inscribed broken line can generate this surface.
For if this were the case, by bisecting the subdivisions of the arc, a regular inscribed broken line would be obtained having the same projection on the axis; but the \perp from O to each line would be greater, and hence the surface generated would be greater.
(§ 665, and Note foot of p. 374.)
Hence, surface generated by arc $A D$ is $>$ surface generated by $A B C D$; that is, $S^{\prime \prime}$ is $>s$.

Again, of the surfaces generated by arc $A D$, by $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, and by regular circumscribed broken lines obtained by bisecting the subdivisions of the arc indefinitely, there must be one surface such that the areas of all the others are either equal to or $>$ it.

But no regular circumscribed broken line can generate this surface.
For if this were the case, by bisecting the subdivisions of the arc, a regular circumscribed broken line would be obtained in which the \perp from O to each line would be the same ; but the projection on the axis would be smaller, and hence the surface generated would be smaller.

Hence, surface generated by arc $A D$ is $<$ surface generated by $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$; that is, S^{\prime} is $<S$.

Then, $S-S^{\prime}$ and $S^{\prime}-s$ are $<S-s$.
Now if the subdivisions of arc $A D$ be bisected indefinitely, the difference between broken lines $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $A B C D$ approaches the limit 0. (Note foot p. 374.)

Then, the difference between the projections on $O M$ of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $A B C D$ approaches the limit 0 .

Also, the difference between the $\$$ from O to $A^{\prime} B^{\prime}$ and $A B$ approaches the limit 0 . (Note foot p. 374.)

Then, the difference between the areas of the surfaces generated by $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $A B C D$, that is, $S-s$ approaches the limit 0 . ($\S 665$)

Then, $S-S^{\prime}$ and $S^{\prime \prime}-s$ approach the limit 0 .
Whence, S and s approach the limit S^{\prime}.

PROOF OF THE LIMIT STATEMENT IN NOTE FOOT OF PAGE 377.

690. Theorem. If a regular polygonal sector, inscribed in a sector of a circle, be revolved about a diameter, not crossing the sector, as an axis, and the subdivisions of the arc be bisected indefinitely, the volume of the solid generated by the polygonal sector approaches the volume of the solid generated by the sector as a limit.

Given regular polygonal sector $O A B C D$, inscribed in sector $O A D$, revolved about diameter $O M$ as an axis. (Fig. of § 689.)

To Prove that, if the subdivisions of are $A D$ be bisected indefinitely; volume of solid generated by $O A B C D$ approaches volume of solid generated by sector $O A D$ as a limit.

Proof. Let $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and $C^{\prime} D^{\prime}$ be tangents $\|$ to $A B, B C$, and $C D$, respectively, points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} being in radii $O A, O B$, $O C$, and $O D$, respectively, produced ; and let V, v, and V^{\prime} denote the volumes of the solids generated by $O A^{\prime} B^{\prime} C^{\prime} D^{\prime}, O A B C D$, and sector $O A D$, respectively.

Then, V^{\prime} is evidently $>v$, and $<. V$.
Whence, $V-V^{\prime}$ and $V^{\prime}-v$ are $<V-v$.
Now if the subdivisions of arc $A D$ be bisected indefinitely, the difference between the areas of $O A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $O A B C D$, and therefore $V-v$, approaches the limit 0 . (Note foot p . 377.)

Then, $V-V^{\prime}$ and $V^{\prime}-v$ approach the limit 0.
Whence, V and v approach the limit V^{\prime}.

SUGGESTIONS FOR THE USE OF COLORED PLATES.

In beginning the study of solid geometry, a new difficulty is encountered, the difficulty of seeing the figures correctly. Through plane geometry, the pupil has acquired the habit of looking at the figures simply as lines making different angles and running in varying directions, but always limited to one plane. To the untrained eye, the line figures in solid geometry do not look essentially different. The teacher sees, the pupil does not, and, worse than all, too frequently the teacher fails to realize that what represents to him a solid figure is, to the pupil, a number of lines similar to those in plane geometry, only hopelessly complicated in arrangement.

The first thing necessary, then, is to train a class to visualize correctly, - to see in imagination, not a seeming confusion of lines, but the solids outlined by those lines.

In the hope of accomplishing this, various aids have been offered by text-books in the way of graphic representation, but all of them, while attractive at first, have, when tried, fallen short of expectation in teaching value.

Work with actual models is accurate and helpful, but photographic reproductions of these models make nearly the same demands upon the untrained imagination that the line figures do. Shaded figures have been used, but the similarity in tone of grays and blacks is confusing to the uneducated eye.

With the color scheme here presented, the confusion
vanishes, and the pupil not only may see, but must see, the planes in their true relations to each other. If his first glimpse of figures for solids is right, he is ready then to look for depth, distance, and three dimensions, in all succeeding figures.

The few colored figures here presented are valuable in the beginning, to show the pupil the kind of thing that he is to look for - what he is expected to see. Take, for instance, the figure on page 236. To the beginner there is little suggestion of various planes intersecting, disappearing behind each other, and reappearing, but by Plate I all this is instantly revealed. The correct visual impression here gained will then be transferred naturally to the line figure.

Another objection to the aids thus far presented lies in the fact that the text-book does all the work, leaving the pupil only an observer. If the work stops with looking at the figures and studying from them, their greatest teaching value is lost. It is comparatively easy, with a figure that has been carefully drawn and effectively shaded or colored, to grasp for the moment the general idea indicated, but the impression will be neither complete nor lasting.

Purposely only a few suggestive figures are here presented in color, it being the plan that the pupil, from the figures given in the text, and from the accompanying demonstration, shall interpret in color the solids indicated. When he is compelled thus to fix the limitations of the planes, he is led to definite knowledge that is otherwise impossible. Here is represented all the vast distance that lies between looking at a picture done by some one else, and reproducing that picture yourself, - all the difference between observing and doing.

The plan here offered is capable of practical application in several ways.

Send the class to the board to draw the figures for the day with colored crayons; the result will reveal their understanding or misunderstanding of the proposition under con-
sideration. With the color in their own hands, pupils are compelled to decide where plane intersects plane, where one disappears behind another, and many other things that escaped their observation in studying from the book. Take, for instance, the figure on page 236. It probably never occurred to the pupil in studying to observe into how many planes the argument is carried. When he colors it he must know.

This first work should be done rapidly, with no attempt at finished drawings. Sometimes it is well to have a class draw entirely free-hand, laying in the color rapidly, attempting only to bring out the geometric idea. At first strongly contrasting colors should be used, and, as the work is not permanent, they may be even crude, if only striking.

Following this, certain figures should be put into permanent form. Such drawing should be done carefully, with as close mathematical accuracy as board and chalk will allow. Here attention should be given to the color scheme and the result made restful to the eye. There is actual teaching value in having these difficult figures long before the attention.

With the figures thus before the class, it is easy in the few spare moments that occasionally come at the close of a recitation, to give a quick review that would not be possible if time had to be consumed in drawing.

Blackboard work is strengthened by outlining all planes in strong white lines, just as in the book they are outlined in black.

Another useful expedient in the use of color is the careful preparation of plates outside of class. The most interesting and effective figures should be selected, and all members of the class required to execute a certain number, this number varying according to the ability of different classes. It is usually well to suggest a uniform size of paper; seven by mine inches, approximately, is desirable. One figure only should be placed on a sheet. As to size of figure, it is better not to dicłate. When the first drawings are brought
together, it will not take a class long to decide which is most effective. From this they will modify their scale, approximating the best, but retaining perfect individuality.

One additional direction should be given, applying equally to board work and to work on paper. Leave only such lines as would be visible if the planes were opaque. A glance at the colored plates here given will show that by omitting the dotted lines the figure is more effective, and the solidarity greatly emphasized. The geometric value of the lines is not lost, for the eye naturally carries them along behind the plane, and joins the parts correctly if they reappear. In outlining the figure at first, these lines, of course, should be drawn, for by them is frequently determined where the planes intersect.

As to the medium used, that is a matter of taste and equipment. Colored pencils are easiest for the untrained hand, and good effects can be obtained with them. If any one in the class handles water colors, he should be encouraged to use them, for they make stronger figures, and the influence of even one or two working in them will elevate the entire standard.

Some or all of these expedients may be used as the conditions of individual classes indicate, but let it always be insisted that the class do the work. The most carefully executed drawing of teacher or text-book is worth less than the poorest attempt of the poorest pupil.

Finally, the method here presented is offered only as a practical suggestion for clearer teaching, not as an integral part of geometry, and may be used or not as teachers desire. Like everything else, it is capable of abuse and perversion, and whoever uses it should be ever watchful lest it overstep its proper limitations. Its purpose is not to produce a fine set of drawings, but to assist in teaching.geometry. It is a means, not an end; an expedient, not a science.

Plate I.

Plate II.

Plate III.

E
*

Plate IV.

Plate V.

Plate VI.

-

$\sim \sim \cos +\infty$
$2+3$
3

$$
\because \quad \sim
$$

-

Plate IX.

INDEX TO DEFINITIONS.

Acute angle, § 27.
Adjacent angles, § 23.
diedral angles, § 428.
Alternate-exterior angles, § 71.
-interior angles, § 71.
Alternation, § 235.
Altitude of a cone, § 553.
of a cylinder, §540.
of a frustum of a cone, § 553.
of a frustum of a pyramid, § 506.
of a parallelogram, § 104.
of a prism, § 466.
of a pyramid, § 502 .
of a spherical segment, § 662.
of a trapezoid, $\S 104$.
of a triangle, $\S 60$.
of a zone, § 662.
Angle, § 20.
at the centre of a regular polygon, § 341.
between two intersecting curves, § 583.
inscribed in a segment, § 148.
of a lune, § 616 .
Angles of a polygon, § 118.
of a quadrilateral, § 103.
of a spherical polygon, § 587.
of a triangle, § 57.
Angular degree, § 29.
Antecedents of a proportion, § 229.

Apothem of a regular polygon, § 341.
Arc of a circle, § 142.
Area of a surface, § 302.
Axiom, § 15.
Axis of a circle of a sphere, $\S 567$. of a circular cone, § 553 . of a circular cylinder, $\S 546$. of symmetry, § 387 .

Base of a cone, §553.
of a polyedral angle, § 452 .
of a pyramid, § 502 .
of a spherical pyramid, §589.
of a spherical sector, $\S 664$.
of a spherical wedge, $\S 617$.
of a triangle, $\S 60$.
Bases of a cylinder, § 540 .
of a parallelogram, § 104.
of a prism, $\S 466$.
of a spherical segment, $\S 662$.
of a trapezoid, § 104.
of a truncated prism, $\S 472$.
of a truncated pyramid, § 505.
of a zone, § 662 .
Bi-rectangular triangle, § 598.
Broken line, § 7.
Central angle, § 148.
Centre of a circle, § 142.
of a parallelogram, § 111.
of a regular polygon, § 341
of a sphere, § 561.
of symmetry, § 386 .

Chord of a circle, § 147.
Circle, § 142.
circumscribed about a polygon, § 151.
inscribed in a polygon, § 151.
Circles tangent externally, § 150. tangent internally, § 150.
Circular cone, § 553. cylinder, § 540.
Circumference, § 142.
Commensurable magnitudes, $\S 181$.
Common measure, § 181. tangent, § 150.
Complement of an angle, $\S 30$. of an arc, § 190 .
Complementary angles, $\S 30$.
Composition, § 237.
Concave polygon, § 121.
Concentric circles, § 146.
Conclusion, § 38.
Cone, § 553.
of revolution, § 555.
Conical surface, § 553 .
Consequents of a proportion, § 229.
Constant, § 185.
Converse of a proposition, $\S 39$.
Convex polyedral angle, § 453.
polyedron, § 463.
polygon, § 121. spherical polygon, § 588.
Corollary, § 15.
Corresponding angles, § 71.
Cube, § 474.
Curve, § 7.
Curved surface, § 10.
Cylinder, § 540.
of revolution, § 550 .
Cylindrical surface, § 540.
Decagon, § 119.
Degree of arc, § 190.
Determination of a plane, § 394. of a straight line, § 18.
Diagonal of a polyedron, § 461.

Diagonal of a polygon, § 118. of a quadrilateral, § 103. of a spherical polygon, § 587.
Diameter of a circle, § 142. of a sphere, § 561.
Diedral angle, § 428.
Dimensions of a rectangle, $\S 304$. of a rectangular paral. lelopiped, § 487.
Directrix of a conical surface, § 553.
of a cylindrical surface, § 540 .
Distance between two points on the surface of a sphere, § 573.
of a point from a line, § 47.
of a point from a plane, § 410.
Division, § 238.
Dodecaedron, § 462.
Dodecagon, § 119.
Edge of a diedral angle, § 428.
Edges of a polyedral angle, $\S 452$. of a polyedron, $\S 461$.
Element of a conical surface, § 553.
of a cylindrical surface, § 540.
Enneagon, § 119.
Equal angles, § 22.
diedral angles, § 432.
figures, § 22.
polyedral angles, § 454.
Equiangular polygon, § 120. triangle, § 58.
Equilateral polygon, § 120.
spherical triangle, § 587.
triangle, §58.
Equivalent solids, § 465.
surfaces, § 303.
Exterior angles, § 71. of a triangle, $\S 57$.

Extremes of a proportion, § 229.
Face angles of a polyedral angle, § 452.
Faces of a diedral angle, § 428.
of a polyedral angle, § 452.
of a polyedron, § 461.
Figure symmetrical with respect to a centre, § 390 .
symmetrical with respect to an axis, § 391.
Figures symmetrical with respect to a centre, § 388.
symmetrical with respect to an axis, § 388.
Foot of a line, § 397.
Fourth proportional, § 231.
Frustum of a cone, § 553. of a pyramid, § 506.
of a pyramid circumscribed about a frustum of a cone, § 649. of a pyramid inscribed in a frustum of a cone, § 649 .

Generatrix of a conical surface, § 553.
of a cylindrical surface, § 540.
Geometrical figure, § 12.
Geometry, § 13.
Great circle of a sphere, §567.
Hendecagon, § 119.
Heptagon, § 119.
Hexaedron, § 462.
Hexagon, § 119.
Homologous, §§ 65, 123.
Hypotenuse of a right triangle, § 59.
Hypothesis, § 15.
Icosaedron, § 462.
Incommensurable § 181.

Indirect method of proof, § 50. Inscribed angle, § 148.
Inscriptible polygon, § 151.
Interior angles, § 71.
Inversion, § 236.
Isoperimetric figures, § 378.
Isosceles spherical triangle, § 587. triangle, § 58.

Lateral area of a cone, § 647 . of a cylinder, § 638.
of a frustum of a cone, § 647.
of a prism, § 466.
of a pyramid, §502.
Lateral edges of a prism, $\S 466$. of a pyramid, § 502.
Lateral faces of a prism, § 466.
of a pyramid, § 502.
Lateral surface of a cone, §553.
of a cylinder, § 540.
Legs of a right triangle, § 59.
Limit of a variable, § 186.
Line, § 3.
Locus of a series of points, § 141.
Lower base of a frustum of a cone, § 553.
nappe of a conical surface, § 553.
Lune, § 616.

Material body, § 1.
Mean proportional, § 230.
Means of a proportion, § 229.
Measure of a magnitude, § 180.
of an angle, $\S 29$.
Median of a triangle, § 139.
Mutually equiangular polygons, § 122.
equiangular spherical polygons, § 599.
equilateral polygons, § 122.
equilateral spherical polygons, § 599.

Numerical measure, § 180.
Oblique angles, § 27. lines, § 27. prism, § 470.
Obtuse angle, $\S 27$.
Octaedron, § 462.
Octagon, § 119.
Parallel lines, § 52. planes, § 397.
Parallelogram, § 104.
Parallelopiped, § 474.
Pentagon, § 119.
Perimeter of a polygon, § 118.
Perpendicular lines, § 24. planes, § 436.
Plane, § 9.
angle of a diedral angle, § 429.
figure, § 12.
geometry, § 14.
tangent to a cone, § 553.
tangent to a cylinder, § 540 .
tangent to a frustum of a cone, § 553.
tangent to a sphere, § 564.
Point, § 4.
of contact of a line tangent to a circle, § 149.
of contact of a line tangent to a sphere, § 564.
of contact of a plane tangent to a sphere, $\S 564$.
Points symmetrical with respect to a line, § 387.
symmetrical with respect to a point, § 386.
Polar distance of a circle of a sphere, § 576. triangle of a spherical triangle, § 590 .
triangles, § 592.
Poles of a circle of a sphere, § 567.
Polyedral angle, § 452.
Polyedron, § 461.

Polyedron circumscribed about a sphere, § 564.
inscribed in a sphere, § 564.
Polygon, § 118.
circumscribed about a circle, § 151.
inscribed in a circle, $\S 151$.
Postulate, § 15.
Prism, § 466.
circumscribed about a cylin. der, § 639.
inscribed in a cylinder, § 639.
Problem, § 15.
Projection of a line on a line, § 276.
of a line on a plane, § 447.
of a point on a line, § 275.
of a point on a plane, § 447.
Proportion, § 227.
Proposition, § 15.
Pyramid, § 502.
circumscribed about a cone, § 648.
inscribed in a cone, § 648.
Quadrangular prism, § 469.
pyramid, § 503.
Quadrant, § 146.
Quadrilateral, § 103.
Radius of a circle, § 142.
of a regular polygon, $\S 341$.
of a sphere, $\S 561$.
Ratio, § 180.
Reciprocally proportional magnitudes, § 281.
Rectangle, § 105.
Rectangular parallelopiped, § 474
Rectilinear figure, § 12.
Re-entrant angle, § 121.
Regular polyedron, § 536.

Regular polygon, § 339.
prism, § 471.
pyramid, § 504.
Rhomboid, § 105.
Rhombus, § 105.
Right angle, § 24.
angled spherical triangle, § 587.
circular cone, § 553.
cylinder, § 540.
diedral angle, § 436.
parallelopiped, § 474.
prism, § 470.
section of a cylinder, § 638.
section of a prism, § 473.
triangle, § 59.
Scalene triangle, § 58.
Scholium, § 15.
Secant, § 149.
Sector of a circle, $\S 147$.
Segment of a circle, § 147.
Segments of a line by a point, § 250.
Semicircle, § 147.
Semi-circumference, § 146.
Sides of a polygon, § 118.
of a quadrilateral, § 103.
of a spherical polygon, § 587.
of a triangle, $\S 57$.
of an angle, $\S 20$.
Similar arcs, § 369.
cones of revolution, § 555.
cylinders of revolution, § 550.
polyedrons, § 527.
polygons, § 252.
sectors, § 369.
segments, § 369 .
Slant height of a cone of revolution, § 647.
of a frustum of a cone of revolution, § 647. of a frustum of a regular pyramid, § 511. of a regular pyramid, § 508.

Small circle of a sphere, § 567.
Solid, § 2.
geometry, § 14.
Sphere, § 561.
circumscribed about a polyedron, § 564.
inscribed in a polyedron, § 564.
Spherical angle, § 583.
excess of a spherical triangle, § 632.
polygon, § 587.
pyramid, § 589.
sector, § 664.
segment, § 662.
segment of one base, § 662.
triangle, § 587.
wedge, § 617.
Square, § 105.
Straight line, § 7.
divided in extreme and mean ratio externally, § 296.
divided in extreme and mean ratio internally, § 296.
oblique to a plane, § 397.
parallel to a plane, § 397.
perpendicular to a plane, § 397.
tangent to a circle, § 149.
tangent to a sphere, § 564.
Straight lines divided proportionally, § 243.
Subtended arc, § 147.
Supplement of an angle, $\S 30$. of an arc, $\S 190$.
Supplementary-adjacent angles, § 33. angles, § 30.

Surface, § 2.

Surface of a material body, § 1. of a solid, § 2.
Symmetrical polyedral angles, § 455.
spherical polygons, § 591.

Tangent circles, § 150.
Tetraedron, § 462.
Theorem, § 15.
Third proportional, § 230.
Transversal, § 71.
Trapezium, § 104.
Trapezoid, § 104.
Triangle, § 57.
Triangular prism, § 469. pyramid, § 503.
Triedral angle, § 452.
Tri-rectangular triangle, §598. pyramid, § 629.
Truncated prism, § 472. pyramid, § 505.

Unit of measure, § 180. of surface, $\S 302$. of volume, $\S 464$.
Upper hase of a frustum of a cone, § 553.

Upper nappe of a conical surface, § 553.

Variable, § 184.
Vertex of a cone, § 553.
of a conical surface, § 553 .
of a polyedral angle, $\S 452$.
of a pyramid, § 502.
of a spherical pyramid, § 589.
of a triangle, § 60 .
of an angle, $\S 20$.
Vertical angle of a triangle, $\S 60$.
angles, § 28.
diedral angles, § 428.
polyedral angles, § 452.
Vertices of a polyedron, $\S 461$.
of a polygon, § 118.
of a quadrilateral, $\S 103$.
of a spherical polygon § 587.
of a triangle, § 57.
Volume of a solid, § 464.
Zone, § 662.
of one base, § 662 .

ANSWERS

NUMERICAL EXERCISES.

Book I.			
4. 24°.	5. $63^{\circ} 30^{\prime}, 26^{\circ} 30^{\prime}$.	8. $22^{\circ} 30^{\prime}, 157^{\circ} 30^{\prime}$.	
9. 37°.	24. $A=112^{\circ} 30^{\prime}, B=C=33^{\circ} 45^{\prime}$.	88.7.	

Воок II.
12. 28°. 13. $44^{\circ} 30^{\prime}$. 14. 12°. 15. $54^{\circ} 30^{\prime}$. 16. 178°.
17. $112^{\circ} 30^{\prime}$.
18. $83^{\circ}, 89^{\circ} 30^{\prime}, 97^{\circ}, 90^{\circ} 30^{\prime}, 74^{\circ} 30^{\prime}$.
52. $\angle A E D=14^{\circ} 30^{\prime}, \angle A F B=10^{\circ} 30^{\prime}$.
55. $114^{\circ} 30^{\prime}, 89^{\circ} 30^{\prime}, 65^{\circ} 30^{\prime}, 90^{\circ} 30^{\prime}$.
67. $97^{\circ} 30^{\prime}, 89^{\circ} 30^{\prime}, 82^{\circ} 30^{\prime}, 90^{\circ} 30^{\prime}$.

Book III.

1. 112 . 2. 42 . 3. $\frac{25}{27}$. 4. 63. 5. $B C, 3 \frac{1}{5}, 2 \frac{4}{5} ; C A, 4,3$; $A B, 4 \frac{4}{13}, 3_{\frac{9}{13}}$. 6. $B C, 11 \frac{2}{3}, 18 \frac{2}{3} ; C A, 20,28 ; A B, 35,40$.
2. $19 \frac{3}{5}, 25 \frac{1}{5}$.
3. 4 ft .6 in.
4. 12.
1. 15.
1. 37 ft .1 in .
2. 47 ft .6 in .
3. $\frac{10}{3} \sqrt{3}$.
4. $15 \sqrt{2}$ in. 16. 41.17 .58 . 18. 21.19 .24.
5. 18. 28. 48.29 .10 . 30. $13 \frac{1}{3} . \quad$ 31. $9 \sqrt{2}$. 32. 45.

| 34. $17 \frac{2}{3}$. | 37. 50. | 41. $\sqrt{129}, 2 \sqrt{21}, \sqrt{201}$. | 42. $\frac{10}{3}$. |
| :--- | :--- | :--- | :--- | :--- |
| 47. 36. | 49. 63. | 50. 4 and $3 ; 16$ | |
| | | 403 | |

57. 17. 58. $21,28 . \quad 59.8 \sqrt{3}$. 60. $B E=4, E D=12$. 62. $6 \sqrt{3}$. 67. 14. 70. 21. 74. $\frac{99}{18}$ and $\frac{70}{13} ; 9$ and 5 .

Book IV.

1. $30 \frac{5}{6} \mathrm{ft}$. 2. 8 ft .9 in 3. 14, 12 . 4. 6 ft .11 in ., 20 ft .9 in . 5. 6 sq. ft. 60 sq. in. 6. $30 \sqrt{3}$. 7. 26 yd .1 ft . 8. 2 sq. ft. 48 sq. in. 9. 243 . 10. $210 ; 24 \frac{1}{1} \frac{2}{7}, 15,16 \frac{4}{5}$. 11. 73. 12. 117. 16. 2 ft .10 in . 18. $\frac{25}{4} \sqrt{3}$. 19. $3 \sqrt{3}$. 21. 120. 24. 210. 25. 18. 26. $1 \frac{1}{2} \mathrm{ft}$. 27. 6. 28. $4 \sqrt{3}$. 29. 1260 . 33. 150.34 .17 .36 .624 . 37. 540 sq. in. 38. 28 ft . 41. $\frac{13}{3} . ~ 42.30,16.45 . \frac{145}{4} .747 . A D=\frac{15}{2} \sqrt{2}$, $A E=11 \sqrt{2}$. 48. 54. 51. Area $A B D=39$, area $A C D=45$. 52. 1010. 53. 336.

Book V.
32. Area, $\frac{625}{4} \pi$. 33. Circumference, 34π. 34. $64: 121$. 36. 9. $37.13 . \quad$ 38. $\frac{9}{2} \sqrt{2}$. 39. $\frac{34}{3} \pi$. 40. $\frac{57}{5} \pi$. 41. 9.8268 . 42. $\frac{13}{4} \pi$. 43. 392. 44. 48π. 45. 1.2732 . 46. $\frac{64}{9} \pi$. $\quad 47.6 \pi$. 48.16π. 49. $3 \pi, 12 \pi$. $\quad 50.8 \pi, 8 \pi \sqrt{2}$. 51. 9.06. 52. 416π sq. ft. 53. 120.99 ft . 54.57 in . 60. $57.295^{\circ}+$. 61. $2.658+$. 62. $5.64+$.

APPENDIX TO PLANE GEOMETRY.

58. $10 \sqrt{7}$
59. 8.
1. $\frac{29}{16}$.
2. 480.

Book VII.

1. $4: 3$. 2. $2: 5.4 .42 .5 .1 \mathrm{ft} .9$ in. 6. $34 \frac{21}{6} \mathrm{cu}$. in. ; $63 \frac{3}{8}$ sq. in. 7. $574 . \quad$ 8. 1008 . 9. 12, 7. 10. 1944. 12. Volume, $50 \sqrt{3}$.
2. Volume, $\frac{24}{2} 3 \sqrt{3}$. 15. 17. 17. 2400 sq. in. 18. 770. 19. Volume, $48 \sqrt{5}$. 20. 144. 21. $512,384.22 .1705 . \quad$ 23. $10,1 . \quad$ 24. 36 sq. in. 25. 12 in. 28. $\sqrt{273}, 18 \sqrt{237}, 180 \sqrt{3}$. 29. $\frac{1}{2} \sqrt{118}$,
$3 \sqrt{109}, 15 . \quad$ 30. $\sqrt{97}, 12 \sqrt{93}, 72 \sqrt{3}$. 31. $4 \sqrt{39}, 504 \sqrt{3}$, $936 \sqrt{3}$. $\quad 32.6 \sqrt{3}, 56 \sqrt{26}, 503 \frac{1}{3}$. \quad 33. $4 \sqrt{10}, 72 \sqrt{39}$, $672 \sqrt{3}$. 34. 150. 35. 320. 36. 840.) 37. 700, 1568. 38. $\frac{7}{3} \sqrt{57}, 640 \sqrt{3}$. 39. $42 \sqrt{91}, 624 \sqrt{3 \text {. . }}$ 40. $108,21 \sqrt{39}$. 41. $240, \frac{100}{3} \sqrt{119}$. 49. $4 \sqrt{3}, \frac{2}{3} \sqrt{2}$. 50. 15. 51. 768 , 2340. 59. 438. 63. 9600 lb 64. 50. 69. $168 \sqrt{3}$, $15 \sqrt{219}$. 76. $3456 \mathrm{cu} . \mathrm{in}$ 77. 6 ft . 78. 4 ft .6 in . 79. $5 \sqrt[3]{4}$ in. 80. 960,3072 . 81. 128. 82. 12. 83. 6. 86. $36 \sqrt{ } \overline{3}$.

Book VIII.

7. $39 \frac{2}{3} . \quad$ 9. $86^{\circ} 24^{\prime} . \quad$ 10. $36 . \quad$ 11. 44 . 12. $3: 2$. 13. 108°. 14. 220 . 16. $33 \frac{4}{5}$. 17. $66 \frac{1}{2}$. 18. $36 \frac{1}{4}$. 19. 60 . 20. 153° : 23. 45°. 24. $4 \frac{4}{5}$. 26. $4 \sqrt{3}, \sqrt{3}$. 44. $30,8,20$.

Воок IX.

1. $288 \pi, 450 \pi, 1296 \pi$.
2. 2420 .
3. $14,12$.
4. 300π.
$224 \pi, 392 \pi$.
5. $2.7489+$.
6. 167803.68 .
7. 175π, 11. 2800π. 12. 136π. 13. 24 . 14. $160 \pi, 536 \pi$. 15. $4,1159 \pi . \quad$ 16. $24,260 \pi . \quad$ 17. 128. 18. 256.
8. $\frac{32}{3 \pi}$ in. 20. 7238.2464 . 22. 576π. 23. 416π. 24. 130π. 25. 2304π. 26. 1250π. 27. 306π. -28. Volume, 972π. 32. 347.2956 . $\quad 33.56^{\circ} 15^{\prime}$ ' 34. 58π. 37. 81π, $\frac{243}{2} \pi$. 38. 8192. 39. 6 in.
9. 8 in.
10. 7. 43. $4 \frac{1}{2}$. 48. $\pi R^{2}(2-\sqrt{2})$.
1. $\frac{425}{4} \pi$.
2. $900 \pi, 4500 \pi$.
3. $36 \pi \sqrt{3}, 54 \pi$.
4. $32 \pi \sqrt{3}$.
5. $720 \pi, 3456 \pi$; $960 \pi, 6144 \pi$.
6. $\frac{585}{4} \pi, \frac{675}{2} \pi$. 57. 468π. 58. $\pi A \sqrt{2}, \frac{1}{6} \pi A \sqrt{2 A}$.
7. $3 \sqrt[8]{9}$ in., $3 \sqrt[8]{18}$ in. $\quad 60 . \frac{R T-2 \pi R^{3}}{2}$. 61. $\frac{4 V}{D}$,
$\frac{8 V+\pi D^{3}}{2 D}$.
8. $\frac{\sqrt{9 V^{2}+3 \pi H^{3} V}}{H}$.
9. $\frac{S^{2} \sqrt{\pi^{2} L^{4}-S^{2}}}{3 \pi^{2} L^{3}}$.
10. $576 \pi \sqrt{2}$.
11. $\frac{S \sqrt{S}}{6 \sqrt{\pi}}$.
12. $\sqrt[8]{36 \pi V^{2}}$.
13. $\frac{\pi(a+b) a b}{\sqrt{a^{2}+b^{2}}}, \frac{\pi a^{2} b^{2}}{3 \sqrt{a^{2}+b^{2}}}$.
14. 2400π.
15. By triangle, πh^{2}, $\frac{1}{9} \pi h^{3}$; by inscribed circle, $\frac{4}{9} \pi h^{2}, \frac{4}{81} \pi h^{3}$.
16. $\frac{4 \pi r^{2} h^{2}}{(2 r+h)^{2}}, \frac{2 \pi r^{3} h^{3}}{(2 r+h)^{3}}$.
17. $2 \pi r^{2}, \frac{1}{2} \pi r^{3} \sqrt{2}$.
18. $2 \pi a^{2} \sqrt{3}, \frac{1}{2} \pi a^{3}$.
19. $67.3698+\mathrm{lb}$.
20. $2 \pi a^{2} \sqrt{3}, \pi a^{3}$.
21. $\frac{640}{3} \pi, \frac{400}{3} \pi$.
22. 2100π.
23. $\frac{2 \pi R^{2} H}{R+H}$.
24. 1440π.
25. 487.4716.
26. $2 \pi r^{2}(1+\sqrt{2})_{\text {t }}$
$\frac{1}{8} \pi r^{3} \sqrt{2}$. 86. $96 \pi . \quad$ 87. S $\sqrt{5}$

ADVERTISEMENTS

Science.

Ballard's World of Matter. A guide to mineralogy and chemistry. \$r.oo.
Benton's Guide to General Chemistry. A manual for the laboratory. 35 cts.
Boyer's Laboratory Manual in Biology. An elementary guide to the laboratory study of animals and plants. 80 cts .
Chute's Physical Laboratory Manual. A well-balanced course in laboratory physics, requiring inexpensive apparatus. Illustrated. 80 cts .
Chute's Practical Physics. For high schools and colleges. \$1.12.
Clark's Methods in Microscopy. This book gives in detail descriptions of methods that will lead any careful worker to successful results in microscopic manipulation. \$r.6o.
Coit's Chemical Arithmetic. With a short system of analysis. 50 cts .
Colton's Physiology. Experimental and descriptive. For high schools and colleges. Illustrated. \$1.12.
Colton's Physiology, Briefer Course. For earlier years in high schools. Illustrated. oo cts.
Colton's Practical Zoology. Gives a clear idea of the subject as a whole by the careful study of a few typical animals. 80 cts .
Grabfield and Burns's Chemical Problems. For review and drill. Paper. 25 cts.
Hyatt's Insecta. Illustrated. \$1.25.
Orndorff's Laboratory Manual. Contains directions for a course of experiments in Organic Chemistry, arranged to accompany Remsen's Chemistry. Boards. 35 cts.
Remsen's Organic Chemistry. An introduction to the study of the compounds of carbon. For students of the pure science, or its application to arts. \$1.20.
Roberts's Stereo-Chemistry. Its development and present aspects. $\$$ r.oo
Sanford's Experimental Psychology. Part I. Sensation and Perception. \$r.50.
Shaler's First Book in Geology. For high school, or highest class in grammar school. $\$ \mathrm{r} .00$. Bound in boards for supplementary reader. 6o cts.
Shepard's Inorganic Chemistry. Descriptive and qualitative; experimental and inductive; leads the student to observe and think. For high schools and colleges. \$1.12.
Shepard's Briefer Course in Chemistry, with chapter on Organic Chemistry. For schools giving a half year or less to the subject, and schools limited in laboratory facilities. 80 cts.
Shepard's Laboratory Note-Book. Blanks for experiments; tables for the reactions of metallic salts. Can be used with any chemistry. Boatds. 35 cts .
Spalding's Introduction to Botany. Practical exercises in the study of plants by the laboratory method. 80 cts .
Stevens's Chemistry Note-Book. Laboratory sheets and cover, with separate cover for permanent file. 50 cts.
Venable's Short History of Chemistry. \$x.oo.
Whiting's Physical Measurement. I. Fifty measurements in Density, Heat, Light, and Sound. II. Fifty measurements in Sound, Dynamics, Magnetism, Electricity. III, Principles and Methods of Physical Measurement, Physical Laws and Principles, and Mathematical and Physical Tables. IV. Appendix. Parts I-IV, in one vol., $\$ 4.00$.
Whiting's Mathematical and Physical Tables. Paper. 50 cts.
Williams's Modern Petrography. Paper. 25 cts.
For elementary works see our list of books in Elementary Science.

D.C.HEATH छ CO., Publishers, Boston, New York, Chicago.

English Literature.

The Arden Shakespeare. The plays in their literary aspect, each with introduction, interpretative notes, glossary, and essay on metre. 40 cts .
Burke's American Orations. (A. J. George.) Five complete selections. 50 cts.
Burns's Select Poems. (A. J. George.) 118 poems chronologically arranged, with introduction, notes and glossary. Illustrated. 75 cts .
Coleridge's Principles of Criticism. (A. J. George.) From the Biographia Literaria. With portrait. 60 cts.
Cook's Judith. With introduction, translation, and glossary. Cloth. 170 pages. \$1.oo. Student's Edition, without translation. Paper. 104 pages. 30 cts.
Cook's The Eible and English Prose Style. 40 cts .
Corson's Introduction to Browning. A guide to the study of Browning's poetry. Also has 33 poems with notes. With portrait of Browning. $\$ 1.00$.
Corson's Introduction to the Study of Shakespeare. A critical study of Shakespeare's art, with comments on nine plays. \$r.oo.
Davidson's Prolegomena to Tennyson's In Memoriam. A critical analysis, with an index of the foem. 50 cts .
DeQuincey's Confessions of an Opium Eater. (G. A. Wauchope.) A complete and scholarly edition. 50 cts.
Hall's Beowulf. A metrical translation. 75 cts . Student's edition, 30 cts .
Hawthorne and Lemmon's American Literature. Contains sketches, characterizations, and selections. Illustrated with portraits. \$1.12.
Hodgkins's Nineteenth Century Authors. Gives full list of aids for library study of 26 authors. A separate pamphlet on each author. Price, 5 cts. each, or $\$ 3.00$ per hundred. Complete in cloth. 60 cts .
Meiklejohn's History of English Language and Literature. For high schools and colleges. A compact and reliable statement of the essentials. 8o cts.
Moulton's Four Years of Novel-Reading. A reader's guide. 50 cts.
Moulton's Literary Study of the Bible. An account of the leading forms of literature represented, without reference to theological matters. $\$ 2.00$.
Plumptre's Translation of Aeschylus. With biography and appendix. \$r.oo.
Plumptre's Translation of Sophocles. With biography and appendix. \$1.00.
Shelley's Prometheus Unbound. (Vida D. Scudder.) With introduction and notes. 60 cts .
Simonds's Introduction to the Study of English Fiction. With illustrative selections. 80 cts . Briefer Edition, without illustrative selections. Boards. 30 cts .
Simonds's Sir Thomas Wyatt and his Poems. With biography, and critical analysis of his poems. 50 cts .
Webster's Speeches. (A. J. George.) Nine select speeches with notes. 75 cts.
Wordsworth's Prefaces and Essays on Poetry. (A. J. George.) Contains the best of Wordsworth's prose. 50 cts.
Wordsworth' ε Prelude. (A. J. George.) Annotated for high schools and colleges. Never before published alone. 75 cts .
Selections from Wordsworth. (A. J. George.) 168 poems chosen with a view to illustrate the growth of the poet's mind and art. 75 cts .

See also our list of books in Higher English and Enghish Classics.
D. C. HEATH \& CO., Publishers, Boston, NewYork, Chicago

Heath's English Classics.

Addison's Sir Roger de Coverley Papers. Edited, with introduction and notes, by W. H. Hudson, Professor of English Literature in the Leland Stanford Junior University. Cloth. 232 pages. Nine full-page illustrations and two maps. 40 cts .
Burke's Speech on Conciliation with America. With introduction and notes by Andrew J. George, Master in the Newton (Mass.) High School. Boards. 119 pages. 25 cts.

Carlyle's Essay on Burns. Edited, with introduction and notes, by Andrew J. George. Cloth. $x 59$ pages. Hlustrated. 30 cts .
Coleridge's Rime of the Ancient Mariner. Edited by Andrew J. George. The text of 1817 , together with facsimile of the original text of 1798 . Cloth. 150 pages. Illustrated. 30 cts .
Cooper's Last of the Mohicans. Edited by J. G. Wight, Principal Girls' High School, New York City. With maps and illustrations. In preparation.
DeQuincey's Flight of a Tartar Tribe. Edited, with introduction and notes, by G. A. Wauchope, Professor of English Literature in the University of South Carolina. Cloth. 112 pages. 30 cts.
Dryden's Palamon and Arcite. Edited, with notes and critical suggestions, by William H. Crawshaw, Professor of English Literature in Colgate University. Cloth, ${ }_{15} 5^{8}$ pages. Illustrated. 30 cts.
George Eliot's Silas Marner. Edited, with introduction and notes, by G. A. Wauchope, Professor of English Literature in the University of South Carolina. Cloth. ooo pages. oo cts.
Goldsmith's Vicar of Wakefield. With introduction and notes by William Henry Hud. son. Cloth. 300 pages. Seventeen full-page illustrations. 50 cts .
Macaulay's Essay on Milton. Edited by Albert Perry Walker, editor of Milton's " Paradise Lost," Master in the English High School, Boston. Ready soon.
Macaulay's Essay on Addison. Edited by Albert Perry Walker. Ready soon.
Milton's Paradise Lost. Books I and II. With selections from the later books, with introduction, suggestions for study, and glossary by Albert Perry Walker. Cloth. 288 pages. Illustrated. 45 cts.
Milton's Minor Poems. Lycidas, Comus, L'Allegro, Il Penseroso, etc, edited, with introduction and suggestions for study, by Albert Perry Walker. Cloth. 000 pages. Illustrated. oo cts.
Pope's Translation of the Iliad. Books I, VI, XXII, and XXIV. Edited, with introduction and notes, by Paul Shorey, Professor in the University of Chicago. In preparation.
Scott's Ivanhoe. In preparation.
Shakespeare's Macbeth. Edited by Edmund K. Chambers, lately of Corpus Christi College, Oxford. In the Arden Shakespeare series. Cloth. 188 pages. 40 cts.
Shakespeare's Merchant of Venice. Edited by H. L. Withers. In the Arden Shakespeare series. Cloth. 178 pages. 40 cts .
Tennyson's Enoch Arden and the two Locksley Halls. Edited, with introduction and notes, by Calvin S. Brown, Professor in the University of Colorado. Cloth. r68 pages. 35 cts.
Tennyson's The Princess. With introduction and notes by Andrew J. George, Master in the Newton (Mass.) High School. Cloth. 236 pages. Illustrated. 40 cts.
Webster's First Bunker Hill Oration. With introduction and notes by Andrew J George. Boards. 55 pages. 20 cts.

See also our lists of books in English Literature and Higher English.
D.C. HEATH \& CO.,Publishers, Boston, New York, Chicago

Elementary English.

Badlam's Suggestive Lessons in Language and Reading. A manual for primary teachers. Plain and practical. \$1.50.
Badlam's Suggestive Lessons in Language. Being Part I and Appendix of Suggestive Lessons in Language and Reading. 50 cts .
Benson's Practical Speller. Contains nearly 13,000 words. Part I, 26 Lessons, 18 cts.; Part II, 270 Lessons, 18 cts. Parts I and 11 bound together, 25 cts.
Benson and Glenn's Speller and Definer. Seven hundred spelling and defining lists. 40 cts .
Branson's Methods in Reading. With a chapter on spelling. 15 cts .
Buckbee's Primary Word Book. Embraces thorough drills in articulation and in the primary difficulties of spelling and sound. 25 cts .
Fuller's Phonetic Drill Charts. Exercises in elementary sounds. Per set (3 charts) 10 cents.

Hall's How to Teach Reading. Treats the important question : what children should and should not read. Yaper. 25 cts .
Hyde's Lessons in English, Book I. For the lower grades. Contains exercises for reproduction, picture lessons, letter writing, uses of parts of speech, etc. 35 cts .
Hyde's Lessons in English, Book II. For Grammar schools. Has enough technical grammar for correct use of language. 50 cts .

Hyde's Lessons in English, Book II with Supplement. Has, in addition to the above, r18 pages of technical grammar. 6o cts. Supplement bound alone, 30 cts .
Hyde's Practical English Grammar. For advanced classes in grammar schools and for high schools. 50 cts .
Hyde's Derivation of Words. With exercises on prefixes, suffixes, and stems. 1o cts.
Mathews's Outline of English Grammar, with Selections for Practice. The application of principles is made through composition of original sentences. 70 cts .
Penniman's Common Words Difficult to Spell. Graded list of 3500 common words. 20 cts .
Penniman's Prose Dictation Exercises. For drill in spelling, punctuation and use of capitals. 25 cts.
Phillips's History and Literature in Grammar Grades. An essay showing the intimate relation of the two subjects. 15 cts .
Sever's Progressive Speller. Gives spelling, pronunciation, definition, and use of words. Vertical script is given for script lessons. 25 cts.
Smith's Studies in Nature, and Language Lessons. A combination of object lessons with language work. 50 cts . Part I bound separately, 25 cts .
Spalding's Problem of Elementary Composition. Practical suggestions for work in grammar grades. 40 cts .

> See also our lists of books in Higher English, English Classics, Supplementary Reading, and English Literature.
D. C. HEATH \& CO.,Publishers, Boston, NewYork, Chicago

Wells's Mathematical Series.

ALGEBRA.

Wells's Essentials of Algebra (1897) \$1.10
A new Algebra for Secondary Schools. With or without answers.

$$
\begin{aligned}
& \text { Wells's Academic Algebra } \\
& \text { This popular Algebra is intended for High Schools and Academies. It is full in its } \\
& \text { treatment of Factoring and contains an abundance of carefully selected problems. }
\end{aligned}
$$

Wells's Higher Algebra .
1.32

The first half of this book is identical with the corresponding pages of the Academic Algebra. The latter half treats more advanced topics.

Wells's College Algebra
 1.50
 A thoroughly modern text-book for colleges and scientific schools. The latter half of this book, beginning with the discussion of Quadratic Equations, is also bound separately, and is known as Wells's College Algebra, Part II. \$t.32.

Wells's University Algebra 1.32

GEOMETRY.

Wells's Essentials of Geometry - Plane (1898), 75 cts.; Solid
(1899), 75 cts.; Plane and Solid (1899). . . . 1.25
This new text is the latest in the series. It offers a practical combination of more desirable qualities than any other Geometry ever published.
Wells's Elements of Geometry - Revised 1894.- Plane, 75 cts.; Solid, 75 cts.; Plane and Solid 1.25
In his critical analysis of this work the author calls attention of instructors to some forty-nine points which are worthy of special consideration.
Wells's Syllabus of Plane and Solid Geometry 20
To accompany the author's Elements of Geometry.
TRIGONOMETRY.
Wells's New Plane and Spherical Trigonometry (1896) $\$ 1.00$
For colleges and technical schools. With Wells's New Six Place Tables, \$1.25.
Wells's Plane Trigonometry.75An elementary work for secondary schools. Contains Four Place Tables.
Wells's Essentials of Plane and Spherical Trigonometry 90For secondary schools. The chapters on Plane Trigonometry are identical withthose of the book described above ; to these are added three chapters on SphericalTrigonometry. Edition containing Tables, $\$ 1.08$.
Wells's New Six Place Logarithmic Tables 60The handsomest tables in print. Large page.
Wells's Four Place Tables. 25
Correspondence regarding terms for introduction and exchange is cordially invited.
D. C. Heath \& Co., Publishers, Boston, New York, Chicago

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO $\$ 1.00$ ON THE SEVENTH DAY OVERDUE.

YB 17306

UNIVERSITY OF CALIFORNIA LIBRARY - intin

[^0]: * For rigorous proofs of these statements, see Appendix, p. 388.

