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Estimation of the Marginal Rate of Substitution in the

Intertemporal Capital Asset Pricing Model

ABSTRACT

The purpose of this paper is to use the intertenporal capital

asset pricing model (CAPM) to develop empirical estimates of the

marginal rate of substitution (MRS). We treat the MRS as an

unobservable and develop a method of moments estimator which is

consistent. Ue find that consistency depends on both a large number

of time observations and a large number of securities. We use the MRS

estimates to test restrictions implied by the intertemporal CAP'i and

the results generally support the model.
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ESTIMATION OF THE MARGINAL RATE OF SUBSTITUTION IN THE
INTERTEMPORAL CAPITAL ASSET PRICING MODEL

In this paper, we develop empirical estimates of the marginal rate

of substitution (MRS) using the intertemporal capital asset pricing

model (CAPM). The advantage of this approach is that we do not require

a strong set of assumptions in order to estimate the MRS or to test the

intertemporal CAPM. Tests of intertemporal CAP'l's in the literature

have followed two approaches. The most common one has been to use a

consumpt ion-basel CAPM in which consumption data and a particular

utility function are used to measure the marginal utility of real

consumption. Examples of this approach can be found in Hansen and

Singleton (1932, 1933), Dunn and Singleton (1933, 1936), Grossman an I

Shiller (1931), and Mankiw and Shapiro (1934). The empirical results

have been generally negative: the models are rejected by the data on

asset returns and the parameter estimates frequently result in

implausible values. Mankiw and Shapiro find that consumption betas

perform very poorly in the presence of betas estimated from the

standard market model. A. second approach has been to treat the MRS as

an unobservable and impose additional assumptions on the joint

distribution of asset returns and the MRS. Hansen and Singleton (1933)

show that the joint lognormal distribution implies a restriction on the

difference between the returns on two assets: specifically, expected

excess returns are constant and excess returns should be unpredictable.

Their tests with short-term interest rates and returns on large stock

portfolios indicate rejection of these restrictions.
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Several explanations for the poor performance of these empirical

models have been mentioned in the literature. One argument is that we

need to measure the instantaneous consumption rate and that temporal

aggregation of the published consumption data poses a serious problem.

Another argument is that the time-additive separable utility function

is too restrictive and a more complicated utility function is needed

for consumption-based models. Garber and King (1983), for example,

have shown that estimates of utility function parameters are biased if

there is a random shoe"; in the representative agent's utility of con-

sumption function. The empirical results from a variety of studies

suggest that the investment opportunity set (conditional distributions

of asset returns) changes over time; specifically, the conditional

neans and variances of asset returns, interest rates, and the iIRS ,r :i;/

over time. In the first section, we develop the empirical model and

the method of moments estimator for the MRS. In the second section we

present the results of the model. We use both long time series and a

large cross section of security returns to estimate the MRS series.

After estimating the MRS, we use the estimates to test restrictions

implied by the intertemporal CAPM; these second-stage tests are more in

the spirit of a check on whether the model fits the data, and do not

represent comprehensive tests of the intertemporal CAPM.

1. The Empirical Model and the Estimator of the MP>.S

Our approach to estimating and testing the intertemporal model is to

treat the MRS as an unobservable variable and use both time series and

cross-sectional data on returns to estimate the unobservable series. Let
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J (t) be the marginal utility of real wealth, p. be the real asset
w it

price, and d. be the real dividend or cashflow at the end of periodr It

t. As Breeden (1979) and others have shown, intertemporal asset

pricing models imply the following asset pricing relation:

where E is the conditional expectations operator, conditional on

information available at time t. Let X equal the product of J (t)
t w

and the consumption price deflator at time t, and we have the follow-

ing relationship:

E [ X P. -X L1 (P. ,+D. , )] = 0,
t t it t+1 l ,t+l l ,t+l '

where P. and D. are price and dividends In nominal terms (nominal $),

for security i. In an appendix we show that these asset pricing rela-

tions can be derived from a rather weak set of assumptions. We have

the following relationship for nominal returns:

Mir1 (1+R
i,t+i> " « °- (l>

t '

The asset pricing relationship also applies to short-term securities

that are riskless in nominal terms. For one-period risk-free interest

rates, we have

1 -EJ^-], (2)
1+R

F (t+ l

C \

where R^ is the return known at time t for a one-period discount bond
r , t+

1

that matures at (t+1). This model is known in the literature as a MRS
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* 1t+k
model, t measures the ex post marginal rate of substitution for a $

A
t

between t+k and t. Formally, this variable measures the ex post value

of having an extra $ at time t+k relative to time t. For convenience,

we refer to X as the marginal utility of wealth variable.

The asset pricing relation in (1) is a restriction on conditional

moments, but the relationship implies the follox^ing restriction on

unconditional moments;

E n^- <i«
1>t+1 ) - 'i^i - o. (3)

where z. is a vector of information variables or instruments associated
—it

with security i known at time t. Using equation (2) and the

observation that the marginal utility of wealth variable should he

X

positive, we develop the following model for :

t-1

X

t-1
1+R

Ft
Z

where n > and E (n ) = E(n ) = 1. The n series is serially

uncorrelated , but not necessarily serially independent. Substituting

this into (3), we get

(1+R
lt

)

One of the instruments can be a constant and we have the following

sample moments with expected values of zero:
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,
T (1+R. )

t = l Ft

K (1+R )

K 7- l \ (1+R
gJ - 1]

'
C " » T

1 = 1 Ft

where T is the number of time periods in the sample and K is the number

of securities. The first set of sample moments consists of time-series

moments, and the second set consists of cross-sectional moments. The

time series moments converge in probability to zero as T gets large,

but the cross-sectional moments do not necessarilv converge in proba-

bilitv to zero as K gets large. Let u. - n T~,—

^

7 - 1» Each series
it t +R

Ft
)

u. is serially uncorrelated , but in general there is contemporaneous
Lt

correlation across the securities. Hence the variances of the time

series moments go to zero as T gets large, but the variances of the

cross-sectional moments do not go to zero as K gets large. One possi-

bility for a consistent estimate of _n, where n' - (n.,...,rT ), is to set

jn so that the time series moments are close to their expected values of

zero. To identify _n in this estimator, one must have more securities

or sample moments than time observations, but we are unable to show

consistency for this estimator as the number of securities increases.

Our estimator proceeds as follows. First we note that if we tiave

a cross-sectional moment that converges in probability to zero then we

can develop a consistent estimator of each n • The problem with the

cross-sectional moments above is that for each period the u. 's will bev it

systematically above or below the expected value of zero. Note that
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T) should vary inversely with the market return. If the relative risk

aversion parameter for the economy is greater than one, the variation

of r\ over time should be greater than the variation of the market

return. In this case u. for most securities will tend to be negative

during periods with positive surprises in the market return, and posi-

tive when there are negative surprises in the market return. If rela-

tive risk aversion for the economy is less than one, the variation of

n will be less than that of the market return and u. will tend to
t it

be positive when the market is up and negative when the market is

down. To account for this contemporaneous covariation of u. , wev
it

assume that we have a factor model of the following form:

u. = I 3. .£. + e. ,

it ij'jt it'

where the E. 's represent common factors and e. is the idiosyncratic
Jt it

error which is uncorrelated with the common factors. All of these

variables, u , 2 , and e , represent unpredictable forecast errors.
it jt it

The common factors must be innovations that we can separately measure.

A natural candidate that follows from our arguement above is the

innovation in the measured return for a large market portfolio. We

also consider the innovations in other financial market variables such

as short-term and long-term interest rates. We develop the estimator

for a two-factor model and note that it is easy to incorporate more

factors if necessary. The two factor model has the form:

"it ' B
il 5lt

+ hlht + e
it-
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We now form cross-sectional moments as follows:

K 1+R.

e
t ^K .

E
,

[ \ TTrT" l ~ 6il^lt " 8
i2 ?2t

]
>

t = 1
>
••" T

-
(5)

1=1 Ft

These sample moments converge in probability to zero if their variances

go to zero as K gets large. A sufficient condition for this conver-

gence is that each KxK covariance matrix for e. , i=l , . .., K, be

diagonal, but this is not a necessary condition. From Chamberlain

(1983) and Chamberlain and Rothschild (1983), we know that if the

eigenvalues for this covariance matrix remain bounded as K. gets large

then the sample moment e converges in probability to zero. This

weaker condition allows some of the covariances to be nonzero. For

example, we can have nonzero covariances between firms in the same

industry if this industry effect becomes negligible as K gets large.

Next we observe that the important parameters are _n_ and the aver-

age B's, not 6., and $ for all securities:

e
t

" "t<F* *£"> " l - hht - 8
2
52t

~ ° t-1. .... I (6)
1 = 1 Ft

1
K

x
K

where B, - ~ E B. , and B^ = — £ B.„. Once we have consistent
1 K . _ ll 2 K . , i2

i=l i=l
estimates for _n, B, , and B

?
, we can easily compute B. and B..-, by

running an ordinary least squares (OLS) regression of u. on E, and

£ for each security. Up to this point we have not used the time

series moments in (4). We now set B-> and B9
so that the time series

moments are close to zero. Formally we set B-, and B~ to minimize

the sum of the squares of the time series moments. Our approach



is to use the moments that correspond to r\ and a subset of the

securities. If we have more than two common factors in the model for

u. , there are more than enough time series moments available from
it

which to estimate more average betas. From (6) for the two-factor

model we have

1+3
l^lt

+e2^2t
\

=
,

K 1+R.
t = l

-
—

•

T (7)
,

(I i *t)
^K .

,
1+R,

;

1 = 1 Ft

and we plug this into the time series moments, which we then set close

to zero by minimizing the average of their sum of squares with respect

to 6 and 8 :

P T (1+8 ? + 3 r
) (1+R )

L I
f
l i 1 It 2 '2t

; V
it'

, ,2

3,,3
? 3 = 1 t=l A it. Ft'

K . ,
1+R )

1 = 1 Ft

For i = 1 , we use R. = R^ so that one of the sample moments includesJ
' jt Ft '

(n -1). We show consistency below with this unweighted general method

of moments (GMM) estimator, but one can alternatively weight the

moments by the inverse of the corresponding covariance matrix.

We now formally state the estimator for _n, g, , and 3?
and show

that this method of moments estimator is consistent. One cannot

simply invoke the results of Hansen (1982) because in this application

the parameter space is growing as we increase T. The estimator is

formed so that the following sample moments equal their expected

values of zero:
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K 1+R.
— En — -1-8,5 -SC =0
K . , t 1+R 1 It 2^2t

1 = 1 Ft

t = 1, ... , T

. T (1 + 8.5, +6
9 5 9J (1+R. ) , T g (1+R. )

It * r r i-4-r ^ MIt l r m+r W u
^
o;

(l+R,, )
Ft

" C (1+R ) J

t=l t Ft

L
p

1
t d^

1
c
lt
^

2
e
2t ) a+y)

p jfi
iT

t=V c
t

_nTv x
T £

2t
(1+R.

t
)

It e
c TT+r 5"!

= °»
t=i t Ft

1
K 1+R

it
where C = — E -—-— . Let 9 be a vector containing the parameters to

' K
i-i

1+R
Ft

be estimated: 9' = (n
1

,B
1
,S 9

). In matrix form we have A_9_ - _b = 0_

where A is a (T+2) x (T+2) matrix and b is a (T+2) x 1 vector. The

elements of _b are

- II,...,1, i. U
T

I
c (L+R }

JL
T

l
C (1+R )

J '

3=1 t=l t Ft t=l t Ft

. P
,

T (1+R,
t

) ,
T 5 (1+R )

1 y [1-1 y
J L

1 r_L v _±I 1L_1 I

P . \ T
L

C (1+R n )
JL

T \ C (1+R,, )
J '*

j=l t=l t Ft t=l t Ft

A has the following form:

A =

a
i

°

a
2

-5
11

'12

-5
IT

T+l

-5
21

-5
22

c2T

T+2
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1
K 1+R,

t
where a. = — E -rrr j = 1,..., T

and

i K
i=i

1+R
Ft

. P . T C, „(1+R J o

? E

,
£ * d/)l *

" I+k and k = 1 - 2

p=l t=l t Ft

, P , T 5-U+R. ) . T £ (1+R. )

P A tT
t = l

C
t
(1+RFt>^t=l C

t
(1+R

Ft>
}

The resulting estimator is = A _b; it is linear and the inversion of

A is trivial. The estimator can be computed as follows. Solve the

last two sample moment conditions in (8) to get 8
1

and 3 . Plug these

into (7) for r\ which solves the first set of sample moments in (8).

To show consistency, we need to show that each terra in (_Q—_0)

-I
converges in probability to zero. Note that 0- = A ( b_-A_0) . The

vector in parentheses on the right hand side is simply the negative

of the vector of sample moments in (8) evaluated at the true parameter

values. By our previous arguments, each one of these terms converges

in probability to zero as T and K get large. We now examine what

happens to A as T and K get large. A has the following form:
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-1

-1 C
li

a
T+2~ C

21
C ?2lVl C

11
C

a
l
D

-1 ^lT
a
T-f2~^2T

C

l

T an
T

T+2
D

D

a
i
D

^2T
a
T-fl ^1T

(

T

-c

D

T+l

D

where = a a - c"". <\s T and K get large, the nonzero terras in

A converge to either constants or random variables. For each term

in (_9-j3) , we have the products of no more than three terms in A with

sample moments that converge in probability to zero. 3y the results

cited in Thell (1971, pp. 370-71), we can conclude that each term in

(_9-_6) converges in probability to zero as T and K get large. Hence

A .IS

plim _9 = _9 and plim _n = _n, and we have established the consistency of

K,T>°° K,T>«
our estimator.

Deriving the asymptotic distribution for _n is much more difficult

and we do not pursue it here. We do have an asymptotic distribution

for the 6 estimates and we can easily compute the covariance matrix

and standard errors for these estimates. To do this, observe that the

estimator for Q and B is a GMM estimator with a fixed parameter
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space, and we can apply the results of Hansen. A more efficient

estimator for 8, and 3„ is the following weighted estimator:

min _x' S _x>

1
T (1+8

l^lt
+B^ 2 t

) (1+R
i t

)

where x , = — I ^ / , +R
- J

n "1 for j-1, ... , P,
J t=l t Ft

and S is the estimated covariance matrix for f£ _x. The resulting

estimator is a linear two-step estimator: in the first stage we

estimate 3, and 8
9
with the unweighted estimator and use the initial

estimates to compute S, then we re-estimate 8-, and 8?
using S in the

second stage. The asymptotic covariance matrix for 3 and & is

(G'S^G)"
1

3x_ 3x_

where G =
[ ] . We can develop approximate standard errors for
op-, op-

x] by rewriting equation (7) as follows:

1+B
i
e
it
+B

2«2t
n„
't c

t

and noting that

\ '
~ T

t

(9)

- i
K

where e = — £ e. . The variance of (n ~n ) depends on the variance
t K . , It t t

v

i = l

of (3,-8,), (8^-8^,), and e . e is the average of cross-sectional

a. >\

errors and should be uncorrelated with 8, and 3
9
which are computed

from time series data. In the next section we describe a calculation
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for a rough approximation to the variance of e . With the covariance

matrix for g and g and an approximate variance for e , we can cal-

culate approximate standard errors for n •

Finally we would like to have a method for checking whether we

have included a sufficient number of common factors so that the cross-

sectional moments will converge in probability to zero. There are no

simple methods for doing this. One approach is to test for the sig-

nificance of the average g's on additional factors and to examine the

2
x" goodness-of-f it statistic for the time series moments:

T x.
1

S x_. Another approach is to check the sample covariance matrix

for e = u. 3.,E, - 8.„C~ , estimated over time. This sample
it it ll It 12 2t'

covariance matrix provides an estimate of the unconditional covar-

iance. One check is to compute the covariance matrix for N of the

securities and look at the corresponding matrix of correlation coef-

ficients. Some of these correlation coefficients may be large, but

most should be close to zero. One can also compute the eigenvalues

for the covariance matrix and examine the size of the eigenvalues as N

increases. As N increases, the eigenvalues should remain bounded and

the ratio of the total variation to the number of securities should

not increase.

Given estimates of jn, we can construct estimates of the MRS as

f ol lows

:

t-l Ft
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By normalizing and setting X~ equal to some arbitrary value, we can

compute estimates of X ,X ,...,X . These latter estimates are unique up

\
to a scalar transformation. The estimates (— ) are unique. One

\-l
strategy for testing the asset pricing relation in (3) is to use the

large cross section of securities to estimate jq, and then use the

estimated values for to test the relationship for a subset of

t-1

securities. For each security, we have a sample moment vector _u.

:

T X

u - ± Z [
—£-

( L+R ) -1
] z i = 1 , . . . , K

i T
t=1

\ it i,t-l

where z. . represents a set of instruments for each security. Each—i t — 1
' V.

vector u. has a covariance matrix, , where V. is
—i T i

.
= E

( [
(-—£.) (l+R. ) - l]

2
z. «!

}
l

l

X it —a , t-1—l, t-1 '

The matrix V can be estimated from the corresponding sample moments:
l

. T A _ ,

V. = ± Z [
(——) (l+R. ) - 1]

Z
z. „.«,„.-

1
t=l t-1

X -l,t-l—L,t-l

This estimate allows for the possibility of conditional heteroskedas-

ticity. In large samples, the distribution of _u. is approximately
V.

2

normal with mean zero and variance -r—. We can compute standard errors

and t-statistics for each of the sample moments and we can compute a

2 . . _

X test statistic for each security,

2 t „ -1
X/,x = Tu. V. u.,A (k) —li—i
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where k is the degrees of freedom and is equal to the number of in-

2
struments in z . ,. One can also construct a v test for the time-

—l ,
t-1

series moments associated with a subset of securities, but the covar-

iance matrix is not invertible if the number of sample moments

exceeds T.

In terms of existing empirical models in the literature, this

estimation is most closely related to the signal extraction problem.

The standard problem is a linear model of the form y = x + e , wherer J
t t t

x , the variable of interest, is observed with error. A common

example is extracting expected inflation rates from observed inflation

rates with a model of how expectations are formed. Our problem is

reversed because we observe interest rates, the conditional expecta-

tion of the MRS. The model frora which we extract estimates of the MRS

is nonlinear, but we have restrictions on a large number of moments

and the resulting estimator is linear. The MRS estimator employs an

asset pricing relation and does not require a complete description of

how expectations on key variables are formed, even though we have

implicitly used the assumption that expectations are formed ration-

ally.

From the model in equation (1), we can derive the following risk-

return relationship:

Wi.t* " «rt- -^c-i'W 1 - (11)

which states that the risk premium on a security is negatively related

to the conditional covariance of the security return and the MRS.

With estimates of this covariance, one can perform cross-sectional
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regression tests similar to those which have been used to test the

standard CAPM and the APT as in Fama and MacBeth (1973) and Roll and

Ross (1980). Estimating this conditional covariance could be dif-

ficult, and we suspect that the risk premia and conditional covar-

iances change over time. For this reason we do not attempt a cross-

sectional regression test of the model. From equation (3), we can

develop a relationship between average returns and covariances with

the MRS. Our procedure of testing the model on a subset of security

returns incorporates this relationship when we include a constant in

the set of instrumental variables.

II. Empirical Results with the MRS Model

The first step in the empirical analysis is to estimate the MRS

with the estimator developed in Section I. The data for the estima-

tion stage include monthly returns for the period 1926-85. We use the

returns on one-month Treasury bills, long-term Treasury bonds, and

long-term corporate bonds computed by Ibbotson and Sinquefield plus

2
the returns on stocks taken from the CRSP tapes. We have also split

the sample into two subperiods for estimation: (1) February 1926 to

December 1955 and (2) January 1956 to December 1985. For the var-

iable C in equation (8), we use all of the returns included in the

CRSP equally weighted return index and add three security returns

(the one-month Treasury bill, long-term Treasury bonds, and long-term

corporate bonds). The number of securities included is 503 for

January 1926, 1056 for December 1955, and just over 1500 at the end

of 1985. For the estimation of the average S's on the common factors,
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we use returns on one-month Treasury bills, long-term Treasury bonds,

long-terra corporate bonds, and the first 97 companies on the CRSP

tapes that have complete return series for the sub-period.

For the common factors in u. , we use the innovations in short-

terra interest rates (returns on one-month T bills), yields on long-

terra Treasury bonds, and the excess return on the NYSE-CRSP value

3
weighted index. Our strategy is to use low order autoregressive

(AR) models to predict these variables, but we find that changes in

long-term rates are useful in predicting short-term rates and lagged

short-term rates and dividend yields are useful in predicting stock

market returns. We also consider a first order AR model for the ex-

cess return on the stock market. In Table 1, we present estimated

prediction equations for the two sub-periods. Our calculations of the

innovations, however, use a rolling regression method. For example,

to predict the variables for January 1956, we run the regressions with

15 years of monthly data through December 1955 and use those parameter

estimates to make the predictions. The innovations are simply the

actual values minus the predicted values. Then for February 1956, we

re-estimate our regression equations with 15 years of data through

January 1956. At the beginning of the sample, we use the first 10

years of data, 1926-35, to estimate the regression equations and use

the residuals as our innovations. Then beginning with January 1936,

we initiate the rolling regression procedure and add data until we

reach the point where we have 15 years of data for the regressions.

After 1940, we use the most recent 15 years of data to estimate the

prediction equations. We find that the regression coefficients which
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correspond to equation (4) for excess stock market returns in Table 1

vary considerably throughout the sample periods. Using mean squared

errors and mean absolute deviations, we find that this model does not

predict as well as the first-order AH model. For this reason we use

the first order AR model to compute innovations in the excess stock

market return and note that the first order autocorrelation coeffi-

cients are typically small.

The results of the GMM estimation for the average 8' s on the com-

mon factors are summarized in Table II. We estimate the 8' s for the

two sub-periods with a three-factor model and a two-factor model: in

both periods the addition of a third factor is not significant. The

8 parameters are not estimated with a high level of precision as

indicated by the size of the standard errors. For the period 19 26 — 55

,

the t statistics are 1.48 and -1.50 for the second and third factors

in the two-factor model. When we add the first factor (short-term

interest rates), its t statistic is .17 and its standard error is very

large. For the period 1956-85, the t statistics are significant on

only two factors: the first one (short-term interest rates) and the

2
third one (excess stock market returns). In all cases, the x

goodness-of-f i t statistics indicate acceptance of the models. For

the estimation of _n, we use the two-factor models because the standard

errors are smaller and the coefficients for a third factor are not

significantly different from zero. The innovations in long-term in-

terest rates and the excess stock market return are used for the

1926-55 period. During this period there was very little variation in

rates on short-term Treasury bills. The innovations in the short-term
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rate and Che excess stock market return are used for the 1956-85

period. In Section I, we have made a theoretical argument for includ-

ing the market return innovation as a factor, and here we find that an

additional interest rate innovation adds to the fit of the model,

marginally in one case and significantly in the other.

With the 6 estimates, we then compute n according to equation (7)

and the MRS, (X /X ), from equation (10). The estimates for the MRS

are plotted in Figures 1A and B. The estimates suggest considerable

variability in the ex post MRS over time: most of the values fall be-

tween .75 and 1.3, but the range is from .2536 to 1.9860 and there

are many outliers. Most of the outliers occur between 1929 and 1940,

a period which includes the stock market crash and the Depression of

the 1930s. Recall from Section I that X is the product of the

marginal utility of real wealth and the consumption price deflator.

Large decreases in consumption prices would make X /X , a number much
t t-1

greater than one. During this period there were shocks in the stock

market and dramatic decreases in consumer prices. The large values

(> 1.6) for the MRS between 1929 and 1940 correspond to months when

the stock market experienced returns between -13.4% and -23.6%. The

low values (< .4) for this period coincide with months when the stock

market experienced returns between +21.1% and +38.3%. During the

period 1956-85 there are fewer outliers. The high outlier in Figure

13 is for September 1974 when the stock market return was -11%. The

low outlier is for November 1980 when the stock market return was

9.47% and short-term interest rates experienced their largest positive

shock. The estimates of the MRS suggest considerable variability, and
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the outliers coincide with periods of large shocks in financial mar-

kets .

Before moving to the empirical tests of the intertemporal CAPM

relation, we present some diagnostic tests on the estimates. One

implication of the model is that n should be randomly distributed

about a mean of one. To check this randomness, we have computed

first-order autocorrelation coefficients, and with sample sizes of 360

the standard error is .0527. The autocorrelation coefficients are

.0488 for the 1926-55 period and .0323 for the 1956-85 period. The

sample means for n are not significantly different from one. We

have performed the same calculations on n ' s computed from one-factor

models in which the innovation in the excess stock market return is

the only factor and we find that the autocorrelation coefficients are

.2959 and .1871, respectively. The n ' s from these one-factor models

also have means which are significantly different from one.

To check the covariation of e. across securities we have computed
it

sample covariance matrices and eigenvalues starting with 20 securities

4
and increasing up to 200 securities. These calculations are summar-

ized in Table III. For both sub-periods the largest eigenvalue is

still increasing as we approach 200 securities, but the ratio of the

largest eigenvalue to the sum of the eigenvalues is decreasing. In

both cases with 200 securities, the component with the largest var-

iance (the one with the largest eigenvalue) explains less than 8% of

the total variance. We also note that the ratio of the sum of the

eigenvalues (the total variation) to the number of securities remains

level in both cases.
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Frora the numbers in the last column of Table III, we can compute

approximate standard errors for e in equation (9). If the ratio of

the variation to the number of securities remains roughly constant as

suggested by Table III, we can divide this constant by K, the number

of securities used to compute C in order to approximate the variance

of e . The calculations imply that the standard error for e varies
t

J
t

between .0031 and .0044 for the 1926-55 period and between .0018 and

.0022 for the 1956-85 period. We have also computed the variance from

the 8 estimates, _£ Var(_8_)_£ , and when we add the variance of e the

increase is negligible in most cases. Using equations (9) and (10),

we have calculated the approximate standard error for each MRS esti-

mate: the average standard error is .0434 for the 1926-55 period and

.0469 for the 1956-85 period. The ranges for these standard errors

are .0032 to .3464 and .0021 to .2398, respectively, but only 51 (7%

of the total) standard errors exceed .1. The large standard errors

are associated with the outliers that we observe in Figures 1A and 3.

These calculations suggest that most of the MRS estimates have been

estimated with a reasonable level of precision but there is substan-

tial estimation error associated with the extreme values which occur

during periods of large shocks to financial markets.

The second step in our empirical analysis is to use the estimated

MRS series to test the intertemporal CAPM relation. We test the

X

restriction E
{ [

(- ) (1+R. ) - 1 ]
_z . }

= by testing whether

the time-series sample moments are close to zero. The results of

these tests are contained in Tables IV-VI. The first tests are per-

formed on the NYSE-CRSP value weighted return index, Treasury bonds,
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corporate bonds, and the n series. In Table IV, we present the

results for the entire period 1927-85, and in Table V we present

results for a more recent period 1952-85, which is frequently used in

empirical studies. For the NYSE index, we include the following four

"D

instruments: a constant, (1+R . ,
)/(l+R-

fc ), ( 1+R^ ) > and =—'-

m,t-l Ft Ft r ,

m, t-1

where D , is the accumulation of cash dividends over the months
m,t-l

(t-12) through (t-1). We have included the short-term interest rate

and the dividend yield because several studies, including the regres-

sions in Table I, have documented correlations of stock returns with

short-term interest rates and lagged dividend yields. All of the t

statistics in Table IV are small indicating that none of the sample

2
moments are significantly different from zero. None of the y" statis-

tics are significant, and we conclude that these security returns

satisfy the restrictions of the intertemporal CAPM. In Table V, the

results for the period 1952-85 are mixed. The sample moments are

2
small and none of the t statistics are significant, but the x sta-

tistic for the NYSE portfolio is significant at the 5% level. Each

2

X test statistic is a test of the null hypothesis that all of the

sample moments for the security are zero. In Table VI, we present a

summary of the results of tests on 30 securities in the Dow Jones

Industrial Average. We use four instruments for each security

including the dividend yield. None of the t statistics for the

2
sample moments and none of the x (4) statistics are significant. The

results for these individual stocks generally support the intertem-

poral CAPM restrictions.
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In Table VII, we present the tests of the intertemporal CAPM

restrictions in an alternative framework by using more conventional

regression tests. The regressions have been computed with the NYSE

index, and we estimate three different equations. An alternative method
X

of testing the sample moments is to regress (1+R ) on a constant
X , mt

and the instrumental variables:

t-1 Ft m,t-l

Under the null hypothesis of the intertemporal CAPM, c should equal

*
c

one and c, , c_ , and c„ should equal zero. A regression of —-— (R -R„ )12' 3
M &

X , mt Ft
t-l

on a constant and lagged variables known at time t-l should produce a

zero intercept and zero coefficients on all lagged variables. In the

third regression, we regress (R -R ) on a constant and lagged
mt Ft

variables known as t-l. This third regression is not a test of the

intertemoral CAPM, but it is a test of a conventional model that is

used in empirical studies. By placing restrictions on the distribu-

tions of the MRS and security returns, Hansen and Singleton (1983) and

others have derived a result that expected excess returns should be

constant and excess returns should be unpredictable. The intercept in

the third regression measures the risk, premium and the coefficients on

the lagged variables should be zero. In panel A of Table VII we have

2
the regression results for the period 1927-85. The R 's for all three

equations are small and all of the tests indicate acceptance of the

intertemporal CAPM restrictions and the stronger restrictions implied

by the excess return model. In Panel B, we present the same three
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regressions for the more recent period 1952-85. In all three regres-

sion equations, the t statistics for some of the coefficients are

2
significant and the joint x test statistics are significant. These

regression tests indicate rejection of the intertemporal CAPM restric-

tions for the 1952-85 period. It is interesting to note that over the

longer period all of the model restrictions are accepted. At this

point, we conjecture that there may be something unique during the

1952-85 period which is averaged out or disappears over a longer time

period. Given the results for the longer period, we conclude that the

data generally support the restrictions of the intertemporal CAPM.

In Section I, we noted that the estimates and empirical tests allow

for the possibility of conditional heteroscedast ici ty in the data. In

Table VIII we present some evidence of autoregressi ve conditional

heteroscedasticity in some of our key variables. We apply Engle's

(1982) LaGrange multiplier test: in this application, we regress the

square of the error term on three lagged values of itself and TR is

?
approximately distributed as a x" with three degrees of freedom. We

have used several simple models for r\ , the market excess return, the

short-term interest rate, and the long-term interest rate. The two

models for n ar e

n
t

- l + u
t

In n
c

- B + u
t

.

We also consider two simple models for the market excess return:

m Ft t

(1+R ,)
ln

tttr-t - 8
o

+ V
r L
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For the interest rate variables we use the models in Table I. We find

evidence of conditional heteroscedasticity in the error terras for all

but one of the models, the one for In n . Even though we have tested

for only one form of autoregressive conditional heteroskedasticity

,

the results indicate that there is some conditonal heteroskedasticity

in these financial variables. These results indicate one possible

explanation for the rejection of asset pricing relations in models

which require additional restrictions on the distributions of security

7
returns and the MRS.

III. Summary

In the first part of this paper, we develop a method for using

security returns to extract consistent estimates of the MRS, which we

treat as an unobservable . The estimator makes use of the large number

of sample moments available on security returns to identify and esti-

mate the underlying MRS series which is common across all securities.

The estimates are then used to test the relationship which arises in

the intertemporal CAPM by applying the test to a subset of securities.

These second stage tests examine the ability of the estimates and the

model to fit the data on security returns. We find that the results

generally support the intertemporal CAPM, but the tests are not

comprehensive tests of the intertemporal CAPM. With estimates of the

MRS implicit in security returns, one can explore other important

issues such as the relationship between security prices and market

fundamentals and the relationship between aggregate consumption and

the MRS in life-cycle models.
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APPENDIX

From the budget constraints of intertemporal consumption-investment

decisions, we have the following set of necessary conditions for an

economy with N agents who are neither identical nor share the same

information sets:

jk(t)p
t

- E[At+l) (Pt+1
+d

t+1
) | «j£] = 0, k=l,..., N,

where prices and dividends are in real terms and we have suppressed the

index on p and d for different securities. For examples, see Lucas

(1978) and Breeden (1979). Restating the model in nominal terms, we have

X
k
P - E[X

k
,(P +D ,) I <}>

k
]

= 0, k=l,...,N (A-l)
t t t + 1 t+1 t+1 ' t ' '

where X is the marginal utility of real wealth times the consumption

price deflator for individual k. These pricing equations are aggregated

across all N investors and equilibrium prices are formed so that inves-

tors as a group are willing to hold all the shares outstanding. To

avoid boundary conditions for some investors, we must assume unrestricted

short selling. Given equilibrium market prices, the relationships in

(A-l) should be satisfied. Private information plays a role in the

price formation, but we do not investigate that issue here. Instead we

consider the role of market information defined as follows:

A™ - A
1

A
2

A
N

that is, market information includes information that is known by all

agents. Agents may or may not know the marginal utility of wealth

parameters, X
£j for other agents. If they have this information, the
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model is simplified. We consider the case in which agents do not, but

instead we form an expectation about these preference parameters

conditional on market information. Our next step is to take the

expectation of each equation in (A-l) conditional on <j> , noting that

<(> C <j> for k=l , . . . ,N.

P
t
E(X^

|

") - E[^
+1

CP
t+1+

D
t+1

) |

») -

Then we aggregate across the N investors.

N N

P E E(X
K

I $
m

) - Z E[X
K

,(P +D ,) I

<J,

m
]

=
t

, , t '

Y
t

y
, , t+1 t+1 t+1 ' t

J

k=l k=l

For the second term, we have

N . N

E[ E X A? +D ,)
| *

m
]

= E[(P +D ,)( E X
K

) I 6
m

]

\ . t + 1 t+1 t+1 ' t t+1 t+1 , , t+1 ' t
k=l k=l

N u
tc i m

Let X = E E(X
I

<J> ) . By the law of interated expectations,
t

k=l
t t

k=l k=l

and it follows that

X P - E[X ,(P ,+D ,) I A
ra

] - 0, (A-2)
t t

l

t+1 t + 1 t+1 '

T
t '

Ic m 1c

where X 5 E E(X ,
| <J>

) . If agents know current values of X

k=l

N
k

for all investors, then this result follows with \ = E X . (A-2)

k=l
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implies the relationship studied in the paper with the interpretation

that E is the expectation conditional on market information, <}>

n
, and

A is an aggregation of the marginal utility of wealth variable across

agents. It is not necessary to assume that agents are identical and

share all information to derive this result.
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Footnotes

For N > T, the estimated covariance matrix is singular and N - T

eigenvalues will equal zero.

2
"We have supplemented the series from Ibbotson and Sinquefield

(1982) with the corresponding data in R. G. Ibbotson Associates,
Stocks, Bonds, Bills, and Inflation: 1986 .

3
We have used data for 1925 taken from the Federal Reserve's

Banking and Monetary Statistics , 1943, so that our sample periods for

the prediction equations and innovations can be initiated on January
1926. The yields on long-terra Treasury bonds are from the DRI data
base and the Federal Reserve's Banking and Monetary Statistics .

4
We stop at 200 securities because at that point we hit the limits

of the central memory available on our CDC Cyber computer. The covar-
iance matrices are computed over time and are NxN, where N is the

number of securities.

We use the NYSE returns calculated with dividends.

The stock returns and dividend_yields have been adjusted for

stock spli_ts and stock dividends. D^
t _]_ is calculated in the same

manner as Da t—1"

For an example, see the tests on differences between two security

returns in Hansen and Singleton (1983).
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TABLE I

Formulating the Prediction Equations for the Common Factors

A. First Sub-Period, 1926-55

(1) RS = .00004507 + .2135 RS + .2414 R + .3242 RS
Z

(.00002908) (.0543)
t

(.0543)
t

(.0532)
t

+ .1871 RS ,
- .01976 RS + .1011 ARL

(.0542)
t

(.0522)
t 5

(.0308)
t l

+ .06455 ARL

(.0311)
t

2
R = .85 D.W. = 1.99 T = 360

(2) ARL = -.00001966 + .3120 ARL
11

(.00003789) (.0526)
C

• .1036 ARL
(.0526)

t-Z

R
2

= .09 D.W. = 1.99 T = 360

(3) R - RS . = .007690 + .1295 (R .-RS J + ?,..mt t_1
(.003643) (.0524)

m
'
t_1 t_2 3t

2
R = .02 D.W. = 2.00 T = 360

(4) R - RS , - -.01673 + .1509 (R -RS ) - .06362 RS
mt t_1

(.01514) (.0549)
m>t_1 t_2

(3.7955)
t_1

"d

+ .4693 ( p

m>t
) + Co f

(.2634) ra,t-l

2
R = .03 D.W. - 2.01 T - 348



TABLE I (continued)

B. Second Sub-Period, 1956-85

(1) RS = .0001676 + .7496 RS _ + .0211 RS + .2357 RS
Z

(.0000833) (.0600)
t

(.0738)
t

(.0695)
t

- .1921 RS , + .1515 RS + .07476 ARL

(.0699) (.0518)
5

(.01821)

- .03256 ARL + £.

(.01867)

R
2

= .92 D.W. = 2.00 T = 354

(2) ARL = .0001677 + .4042 ARL
C

(.0001263) (.0513)

.2856 ARL

(.0516)
Z

R
2

= .17 D.W. = 2.00 T = 354

(3) R - RS^ = .003591 + .07439 (R ,.
.-RS,. _) + g_.

mt t_1
(.002212) (.05317)

m
'
t_1 t_2 3t

R
2

= .01 D.W. = 2.00 T = 354

(4) R - RS _ = -.03130 + .05629 (R -RS _ ) - 5.1347 RS

(.01031) (.05197)
m

'
t

(1.0884)

D

+ 1.5654 ( p

m>t X
) + Co r

(.3316) m,t-l

R
2

= .08 D.W. = 1.97 T - 354

NOTES: The conventional OLS standard errors are in parentheses. D
mt

is the accumulation of dividends over the periods

t,t-l, ..., t-11. RS
t

i Rp
t+1

.



TABLE II

GMM Estimation of 8

A. First Sub-Period, 1926-55

Factors

s
i

h

6
3

3 Factors 2 Factors

ht y ht* ht ht' 5
3t

37.3139

(215.9927)

119.4198

(92.8840)

-.8766

(.7540)

360

T x 1 S
l

x 70.76

B. Second Sub-Period, 1956-85

65.

(44.

9586

6847)

-1.

(.

0933

7297)

360

7:!.96

3 Factors 2 Factors

Factors ^ ^ ^ 5U , ?3t

6, -106.2600 -111.1016
(40.4088) (34.1643)

8 9
-5.0642
(23.5506)

8. -2.7610 -2.6355

(1.3763) (1.3474)

T 360 360

T x ?

S
_1

x 67.09 67.04

NOTES: Standard errors are in parentheses. Q t
is tJle innovation

in the short rate, ^jt * s t ^ie i nnovat i° n ^ n the long rate, and

£3 t
is the innovation in the excess return on the value-

weighted NYSE portfolio.
T 1+R

x: x. = - £ n (B) , J_ D
lt

, i = l, ..., 100 for the 100

t = l Ft

security returns used in the estimation. S/T is the 100x100

estimated covariance matrix for x.



TABLE III

Analysis of Eigenvalues for Sample Covariance Matrices of

e. = (- (1+R.J - 1 - S..S.,. " 3. S04.it X, it lilt i2 2t
t-1

A. First Sub-Period, 1926-55

Ratio of the Rat io of the

Number of Largest Sum of the Largest Eigenvalue Sum to Number
Securities Eigenvalue Eigenvalues to the Sum of Securities

20 .02573 .1405 .1831 .0070
40 ,1101 .4078 .2700 .0102

60 .1111 .5838 .1902 .0097

80 .1123 .7472 .1503 .0093
100 .1131 .8986 .1259 .0090
120 .1160 1.1209 .1035 .0093

140 .1189 1.3166 .0903 .0094
160 .1266 1.5022 .0843 .0094

180 .1448 1.7439 .0830 .0097

200 .1510 1.9223 .0785 .0096

B. Second Sub-Period, 1956-85

Rat io of the Rat io of the

Number of L argest Siam of the Largest Eigenvalue Sum to Number
Securities E igenvalue E Lgenvalues to the Sum of Securities

20 .01355 .09590 .1413 .0048
40 .01735 .1862 .0932 .0047

60 .02981 .3043 .0980 .0051

80 .03908 .4300 .0909 .0054
100 .04240 .5158 .0822 .0052

120 .04666 .6079 .0768 .0051
140 .05253 .6951 .0756 .0050
160 .05660 .7891 .0717 .0049
180 .06133 .8846 .0699 .0049

200 .06766 .9605 .0704 .0048

NOTE: The ratio of the sum of the eigenvalues to the number of secur-

ities is also the total variation divided by the number of

securities.



TABLE IV

Tests on the Intertemporal CAPM

T AT X

t=l t-1

Sample Period: January 1927 to December 1985, T = 708

A. NYSE-CRSP Value Weighted Return Index

Instrument

Constant

(lta
.,t-i»

(1+R
Ft>

Sample
Moment

-.001503

-.001979

Standard
Error

.004550

.004590

Statistic

-.33

-_ L.43

1+R
Ft

-.001492 .004570

m, t-1

P
m,t-l

-.0001978 .000247

x
2
(4) = 3. 53

•.33

-.80

B. Long Term Treasury Bonds

Instrument

Constant

(1+R
B.t-l>

Sample
Moment

.000957

.000737

Standard
Error

.006377

.006377

Statistic

.15

.12

1+R
Ft

.000982 .006399 .15

X (3) => 2.08



TABLE IV (continued)

C. Long Term Corporate Bonds

Instrument
Sample
Moment

Standard
Error Statistic

Constant .001420 .006330 .22

(1+R
c,t-1>

(1+R
Ft

}

.001245 .006363 .20

l+R
Ft

X"(3) = 1.65

.001445 .006402 .23

D. E(u.)
—i

= E (i-
It

I [n - l] z. ,1=0
t-1

c ~i,t-i '

Instrument
Sample
Moment

Standard
Error Statistic

Constant 000711 .006430 .11

(1+R
Ft>

.000482 .006432 .08

l+R
Ft

.000737 .006451 .11

X (3) = 2.26



TABLE V

Tests of the Intertemporal CAPM

Sample Period: February 1952 to December 1985, T = 407

A. NYSE-CRSP Value Weighted Return Index

Instrument

Constant

Sample
Moment

-.002136

Standard
Error

.006228

Statistic

-.34

(1+R .. ,)m,t-l

(1+R. )
Ft

-.002455 .006189 -.40

l+R
Ft

D
m,t-l

»

m,t-l

-.002120

-.0001714

.006268

.0002722

-.34

-.63

X (4) = 12.90

B. Long Term Treasury Bonds

Instrument
Sample
Moment

Standard
Error Statistic

Constant -.002569 .007921 -.32

(1 "R
B > t-l

)

(l +R
Ft

)

-.002933 .007871 -.37

1+R
Ft

-.002531 .007969 -.32

X (3) = 5.54



TABLE V (continued)

Tests of the Intertemporal CAPM

Sample Period: February 1952 to December 1985, T = 407

C. Long Term Corporate Bonds

Instrument
Sample
Moment

Standard
Error Statistic

Constant -.002405 .007848 -.31

^CtV
(1+R

Ft
}

-.002659 .007795 .34

1+R
Ft

-.002367

X (3) = 4.72

.007897 -.30

D. E(u.) " E £
t l {

[\~ 1] ^t-lJ =

Instrument
Sample
Moment

Standard
Error Statistic

Constant

(l+R
B,t-l

)

-.001917

-.002308

.007878

.007828

-.24

•.29

1+R
Ft

-.001877 .007926 -.24

(3) = 5.49



TABLE VI

Summary of Results for 30 DJIA Stocks

T X

E{£ E [y
l-(l +R )-l]£ }T

t=l
A
t-1

1<: 1,c l

=

t Statistics for Sample Moments

Stock

AlLied

ALCOA

American Brands

American Can

AT&T

Bethlehem Steel

Chevron

DuPont

Kodak

Exxon

General Electric

General Foods

General Motors

Goodyear

INCO

IBM

International
Harvester

1_ 2_ 3_ 4_ x
2w T

-.31 -.97 -.95 -.71 1.04 704

-.27 -.44 -.34 -.98 3.46 402

.39 .23 .22 .08 .20 708

.06 -.45 -.44 -.30 .46 708

.25 -.17 -.17 -.21 .22 708

-.39 -1.35 -1.36 -1.17 2.07 708

.12 -.37 -.37 -.30 .32 708

.14 -.79 -.76 -.63 1.28 708

.24 -.36 -.34 -.50 .48 708

.47 .04 .05 -.00 .44 708

-.05 -.50 -.47 -.57 .51 708

.42 .32 .33 .02 .22 706

.17 -.49 -.48 -.49 .60 708

-.09 -.53 -.50 -.63 .52 687

-.17 -1.34 -1.33 -1.09 2.33 708

1.27 .33 .34 -.17 1.82 708

-.45 -1.16 -1.15 -.83 1.44 708

Sample
Period

1927-85

1951-85

1927-85

1927-85

1927-85

1927-85

1927-85

1927-85

1927-85

1927-85

1927-85

1927-85

1927-85

1928-85

1927-85

1927-85

1927-85



TABLE VI (continued)

Summary of Results for 30 DJIA Stocks

t Statistics for Sample Moments

2

(3) 1 + R
Ft

i,t-l

Sample
Stock 1_ 2_ 3_ 4_ x W 1 Period

International
Paper .67 -1.03 -.99 -.86 2.39 673 1930-85

Manville -1.01 -1.70 -1.67 -1.40 3.05 682 1929-85

Merck .60 .08 .13 -.31 2.09 463 1947-85

3M .40 -.34 -.29 -.66 3.03 467 1947-85

Owens Illinois -.00 -.79 -.77 -.72 .89 708 1927-85

Procter & Gamble .22 -.04 -.02 -.22 .25 664 1930-85

Sears .12 -.54 -.53 -.53 .55 708 1927-85

Texaco .09 -.53 -.51 -.55 .53 708 1927-85

Union Carbide -.14 -1.08 -1.05 -.85 1.75 705 1927-85

U.S. Steel -.52 -.94 -.94 -.92 1.09 708 1927-85

United Technologies .18 .05 .07 -.04 .11 667 1930-85

Westinghouse -.17 -.50 -.50 -.43 .27 708 1927-85

Woolworth -.12 -.41 -.40 -.31 .18 708 1927-85

NOTE: The instruments are (1) constant

1 + R.

(2) ^
1 + R

Ft



TABLE VII

Regression Tests

A. Sample Period: January 1927 to December 1985, T = 708

(1) A- (1+R ) - .2357 -.1639
f

"^T 1
- .9584 (1+^) -.7443 f^ +

(U
\_1

U mt
(2.5648) (.1178)

(1+R
Ft

} (2.5373) (.4925) m,t-l

R
2

= .013

e
l

D.W. = 2.03

?

Test of S
L

= B
2

= S
3

= 0, X (3) = 4 -22

JTest of B
Q

= 1 and B
1

6
2

- 63 - 0, X W = 4.26

m L_
( R - R ) = .004447 + .06926 (Rm . ,

" % f
_. ) " 1.13*3

(2)
X
t _ L

Umt Ft
;

(#0llQ9) ( . 05549) \_2 -.t-1 F.t 1
( . 8319)

^- CR . R„
.

,) 1-1333 R
pt

+

- . , m , t—

1

.07426 p-2 + e
t

(.2546) m,t-l

R
2

= .008

D.W. = 2.00

Test of S
1

= B
2

- S3 = 0, X
2
(3) = 3.88

Test of 8
Q

= B
t

- 6
2

- 63 - 0, x ( 4 ) = 4 - 91

m,t-l I

(3) R - R„ = -.009310 + .1242 (R - % ,) - -9927 R + -3956 p -

mt Ft
(.01362) (.07077) "• t

~
1 ^

'

C L
(.7382) (.3083) m,t-l

R
2

= .026

D.W. = 2.00

Test of Z = S
2

= 63 - 0, X
2
(3) = 6.76



TABLE VII (continued)

3. Sample Period: February 1952 to December 1985, T = 407

(1+R

(I)

\
~ (1+R

mt
}

= "3 - 9918 " - 15283 TT^T— + 5 - 1872 ( 1+Rp.) - i-^ze ^zl
"I (3.3031) (.1767)

U+R
Ft

;

(3.2534)
Ft

(.6797)
P
m,t-1

e
t

V = .021

. = 2.00

)f 3
1

= B
2

= 3
3

= 0, x
2
(3) = 11.04*

of 3Q = 1
and 8

L
= 32

= 63
=

°» x
"
(4) = 12 * 76 *

X
t

A _,2)~ (R - R ) = -.01658 + .08132 -±± (R - R ) - 3.7545 R +
X
t"l

mt Ft
(.00904) (.06251)

X
t-2

m
'
t_1 F

' t " 1

(.8748)
Ft

.8296 ^bldL + e

(.2320) m,t-l
t

.071

D.W. = 1.97

**Test of 3
X
- B

2
- S

3
- 0, X

2
(3) = 30.16

Test of 6 = 8
X

= S
2

= 6
3

= 0, x
2
(h) = 32.01 **

D
(3) R

-,r
" R

vr
= -- 01597 + -04138 (R - R ) - 3.2189 R + .8900

m>t "
1

+ eFt
(.008849) (.05644)

m
'
t " 1 F

'
t " 1

(.7944)
Ft

(.2407)
P
m ,t-1

2
R .058

D.W. = 1.97

Test of Bj = B
2

=» B
3

- 0, x
2
(3) - 26.81**

Standard errors are in parentheses. We have allowed for conditional heteroskedas-
ticlty in computing the standard errors and x

2 statistics.

r Significant at the 5% level.
** Significant at the 1% level.



TABLE VIII

'ests for Autoregressive Conditional Heteroskedasticity
Sample Period: 1952-85

2 2 2 2
odels of the Form: u = a_ + a., u

1
+ a.u _ + a.u „ + e

t 1 t-1 2 t-2 3 t-3 t

2 2
R_ TR_

1 .042 16.89**

i
+ .01532114 .009 3.56

-R„ ) - .00529 .052 20.89**
Ft

+R
t

-~^-) - .004459 .047 19.15**

Ft

- (.000131982 + .749709 RS , + .018782 RS + .244077 RS „
t-1 t-2 t-3

- .193055 RS , + .151801 RS _ + .074729 ARL .

t-4 t-5 t-1

- .031869 ARL )

.099 39.56**

(.000155241 + .403823 ARL ,
- .283799 ARL Jt-1 t-2

.124 49.44**

NOTg.dicates significance at the 5% level,
idicates significance at the 1% level.






