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ABSTRACT

Estimation of systematic risk is one of the most important aspects

of investment analysis, and has attracted the attention of many re-

searchers. In spite of substantial contributions in the recent past,

there still remains room for improvement in the methodologies cur-

rently available for forecasting systematic risk. This paper is con-

cerned with some improved methods of estimating systematic risk for

individual securities. We use Bayesian analysis with hierarchical and

non-normal priors.





1. Introduction

The central model in most of the research pertaining to systematic

risk has been the single index model

R. =a. +6.R +£. i = 1,2,... ,N (1)
it l irat it _

where R. and R are, respectively, the random return on security i
it mt '

and the corresponding random market return in period t, a. and 8. are

the regression parameters appropriate to security i and e is the

2
random disturbance terra with mean zero and variance a.. The parameter

0., called beta, measures the systematic risk of the security i and is

defined as Cov(R. ,R )/Var(R ).
l m m

Estimation of this systematic risk is one of the most important

aspects of investment analysis and has attracted the attention of many

researchers. Betas are used by the investors to evaluate the relative

risk of different portfolios. In the future market context, betas of

different stock portfolios are needed to calculate the number of con-

tracts to be bought or sold. In spite of substantial contribution in

the recent past, there still remains room for improvement in the

methodologies currently available to forecast betas.

Blurae (1971) observed that over time betas appear to take less

extreme values and exhibit a tendency towards the market risk. This

would mean that the historical betas based on ordinary least squares

(OLS) estimation would be poor estimators of the future betas. There-

fore, it is necessary to adjust the OLS estimators of Q . . Vasicek
i

(1973) suggested a Bayesian adjustment technique using a normal prior
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for B.. As it will be clear from the subsequent discussion, Vasicek's

procedure has some drawbacks. It utilizes the information from the

other stocks only through the cross-sectional mean and variance. In

the New York Stock Exchange more than 2,000 stocks are traded;

improved estimates of one stock might be obtained by combining the

data from the other stocks as far as possible. We propose to do this

utilizing Lindley and Smith's (1972) hyperparameter model and the

concept of exchangeable priors. Under this framework, parameters of

our linear model (1), themselves will have a general linear structure

in terms of other quantities which are called hyperparameters. And

exchangeability means that the joint distribution of B.'s is unaltered

by any permutation of the suffixes. This assumption is weaker than

the traditional independent and identically distributed (IID) set up.

Lindley and Smith's linear hierarchical model has been used in many

econometric applications, see e.g., Trivedi (1980), Haitovsky (1986),

Ilmakunnas (1986), and Kadiyala and Oberhelman (1986). In Section 2,

we set up the model in a convenient form and carry out the Bayesian

analysis using the hierarchical model.

Recently, Bera and Kannan (1986) studied extensively the empirical

distribution of betas. They considered the time period from July 1948

through June 1983, and divided that period into seven non-overlapping

estimation periods of 60 months each. They found that the empirical

distributions of betas were highly positively skewed and often

platykurtic. However, with a square-root transformation the values

of skewness and kurtosis changed in such a way that using Jarque and

Bera (1987) test statistic the normality hypothesis could be accepted
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in four out of seven periods. Also the values of the test statistic

in the remaining three periods were not very high. Therefore, it

appears that beta has a root-normal distribution, i.e., the square-

root of the variable is normal. The finding casts some doubts on the

validity of Vasicek's selection of normal priors. Therefore, our

second aim is to do a Bayesian analysis assuming that /B . is normally

2
distributed, or in other words, B. has a noncentral x distribution

with one degree of freedom. In Section 3, we generalize our results

of Section 2 by considering a hierarchical model with non-normal

priors; while in Section 4, we go back to Vasicek's set up and com-

bine it with our non-central chi-square prior distribution and its

various approximations. In the last section of the paper, some con-

cluding remarks are offered.

After the publication of Vasicek's paper in 1973, to our knowl-

edge, there is no work which attempts to improve upon it. Also in

the statistics literature, most of the Bayesian regression analysis

are based on normal priors primarily because of its simplicity. Since

here we have some empirical evidence on the distribution of betas, it

is appropriate that we utilize that information in the analysis. We

hope this will lead to improved estimation of betas.

2. Analysis with Hierarchical Priors

Since we are interested only in the B. parameters, it is con-

venient to work with the model in deviation form

y. = B .x. + u. (2)
'it i it it
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where y. = R. - R. , x. = R - R and u. = e. - e.. So we willy it it 1 it mt tn it it 1

2 2 12
have u. ~ N(0,p.I„) where p. = (1 - —)a . . Under the classical frame-

it ' i T 1 T i

work, the maximum likelihood or the OLS estimator of 8 . is given by

£ x. v

.

it' it

3. = ~* * = 1,2,. ..,N

I x
2

t-1 "

T
2 2 2

with V(8.) = p./ £ x. = S.. Vasicek (1973) suggested a Bayesian
l i . it i

approach with normal prior for 8.

3. ~ N(8~,<j>
2

) (3)

and a non-informative prior density for p

*(p.)a I
.

The standard Bayes estimator is the posterior mean

(6./4»
2

) + (6./S
2

)

(l/*
2

) + (1/S
2

)

(A)

2 ,2-1
and the posterior variance is given by ((l/4> ) + (1/S.)) . Vasicek

suggested to use the mean and variance of the cross-sectional betas

— 2
in place of 8 and $ respectively. Empirical results in Bera and

Kannan (1986, Tables VII and VIII) show that forecasts based on the

Vasicek's adjusted betas are superior to the OLS (unadjusted) betas.

This indicates that we can improve prediction performance for a
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security by pooling information from other securities. Let us now

cast the model in Lindley and Smith's hierarchical framework.

From (2) we can write

y. |8. - N(x.B., p
2
I T ) i = 1,2,... ,N (5)y

l ' 1 1 l i T

where y. = C
yil ,yi2

,...,y
iT

)' and
XjL

= (xn ,x.
2
,... ,x.

T
)'.

Next we assume exchangeability among the 8., specifically

B
i

|5 ~ N(^,t
2

) (6)

with a second stage non-informative prior for £. Due to the random-

ness of £, this is a weaker assumption than the IID assumption in (3).

To see it clearly, note that the joint prior distribution of

6
x
,6

2
, . . . ,3

N
is given by

N

tt(8,,B ,...,6
xt

) = / n ir(g, |Of(Od£12 N
i=1

where f(£) is the probability density function of Z, . Therefore,

tt (8 , ,8 , . . . ,6 ) is a mixture of IID distributions conditional on £,12 N

but unconditionally the joint distribution does not satisfy the IID

assumption. The above specification is a simple special case of

Lindley and Smith's (1972, p. 6) general hierarchical model

y|e
l

~ n(a
1

8
i

,c
i
)

Je 2
~ n(a

2
8
2
,c

2
)

8j6
3
~ N(A

3
9
3
,C

3
)
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with C_ 0. For this model Bayesian inference can be drawn from the

posterior for 8 given {A.}, {C.}, and y which is given by N(Dd,D)

where

<
-1

and d = AC y.

Identifying the appropriate values of A , C. and 8., for our

specification (5) and (6), we obtain the following posterior distri-

bution for 8 = (6 ,B 2> . . . ,B )
' as N(Dd,D) where

t t

n" 1 A- /

X
1

X
1 1 ^^ 1 ,

J
N

, 7 ,D = diag(—— + ~
' • • »

—~ ~~2^ ~ —

2

' '

p T p T NT
I N

where J is an N*N matrix whose all elements are one, and
N

x
i
y

i Vn
d = (—r—

, ..., —2~ (^
P
l

P
N

Using the above expression for the i-th security, the estimate of the

systematic risk under a quadratic loss function can be expressed as

s
i

=
(-y- + —) —r 6

i
+ (~y- + t } t** wjV

P. T P. p. T TJ=1 JJ111
N X. X. . X .X

.

where v. » [ I _
1 L

=•] _ J 3 T . (9)
, Z i Z Z « ZJ

i = 1t x.x. +p. t x.x. +P.
i- i l j j j
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A quick comparison of (4) and (9) reveals that both estimates are

linear combinations of OLS estimator and the mean of cross-section

beta, but for the hierarchical estimate a weighted average of the

cross-section betas are used instead of simple average as in the

Vasicek case. 8 . can also be expressed as
l

22 :
P .T 8 . -J*

i 2, t . 2
v

2. . 2
T (x.X. ) + p . p . /X.X. T-

i i l ill

N
JL JL

where 8=2 8./N. This formula, which is directly comparable with

J-l
J

(4), reveals how the information from other securities is used in

estimating the systematic risk for i-th security. Unlike in (4), the

information conveyed by other stocks which is reflected in 8* is

incorporated in a self-fulfilling way, in the sense that the cross-

sectional average beta is consistent with the estimates for individual

securities.

To compare the above estimate with Vasicek's one, let us put his

specification in Lindley and Smith's framework as

y.|B. ~N(x.S., p*I
N )

8.|(f ~ N(F,4>
2
). (10)

Here the first stage prior is "completely specified" by the cross-

section data. The counterparts (7) and (9) are respectively,
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D
y = diag(—;p~ + ~

'
"**' —2~ ~~2^ ^

P
t

P
N

*

x. x. , , x. x. x. x. , , , N 8 .

P, * P, P. 4> 4> J = l

Comparing (9) and (12), we note that to find the average systematic

risk in (12), a simple average is used whereas under the Lindley and

Smith framework, we use a weighted average. The latter is more

reasonable since the precision in estimating the systematic risks of

different securities are different from each other.

It is also interesting to note that

-1 -1 ,. A 1 1 1 s

J
N

D
v

-D = diag(— -—,...,—-—) +—
4> T <j> T NT

and as such we cannot say much about this matrix. However, when we

2 2
put <j> = x , i.e., the first stage prior variances are the same then

Dv
- D is positive semi -definite. In other words, the Vasicek's

estimator has higher precision. This result is not at all surprising

if we compare the prior distributions. Under the Vasicek prior at the

second stage V(8) = whereas for the hyperparameter model we assume

second stage non-informative prior, i.e., V(£ ) = 0.

3. Analvsis of Hierarchical Model with Non-normal Prior
»

Vasicek used a normal prior for the cross-sectional distribution

of the beta coefficients. As mentioned earlier, the cross-sectional

betas are not normally distributed, and recent work by Bera and Kannan

(1986) indicates that their distribution tends to normal after a
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square-root transformation. It is therefore natural to explore the

consequences of assuming a root-normal prior for beta, i.e.,

/ff~ N(B,4>
2
).

2 2
Then 8/<+> will be distributed as a noncentral x with one degree of

"2 2 " 2 2
freedom and noncentrality parameter (8/<j>) denoted by x,(8 /<t> )? Tne

p.d.f. of 8 can be written as

1 " 2
r(8+8)

Z

ir(B|8,<fr
2

) = (2ir)
1/2

(8<j>

2
)

1/2
e cosh(^-) I,

ft
,(8) (13)

z —z
where cosh(z) = (e + e )/2 and I, N is an indicator function.

To avoid cumbersome results and to make the comparison with

Vasicek's analysis clearer, we shall focus on the case of a single

security. Therefore, without the loss of generality we can suppress

the index i.

We shall develop a hierarchical framework by assuming non-

informative priors for the hyperparameters 8 and <j>. The hierarchical

model is,

y|8,P ~ N(x8,p
2
I
T

)

B |8 ,4> - 4>

2
x
2

u (B
2
/4>

2
)

with tt (p ) a p

and tt (8 ,<$> ) a
<J>
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The major difference between this set-up and Lindley and Smith's

(1972) is that now the prior for B is not linear in the hyperparameter

S. Because of this feature one needs the explicit consideration of

the non-informative priors for p and <j>.

Direct application of the Bayes formula using the above setup and

the prior density in (13) yields the joint posterior p.d.f. of the

unknown parameters,

ir(6,B,p,<|> |y,x) a p~(T+1) exp{- -~ (y-xB )
' (y-xB )}

x f 1 8" l/2
[exp{- -^r{/S" + B)

2
} + exp{-^-(/B~ - S)

2
}] (14)

2<J> 2$

for B, B, P and <j> in (O, 00 ).

Noticing that (by the "normal integral")

/ exp(- -±- (•!" + B)
2
)dB

— 2$

is proportional to
<J>

, integration of the posterior density in (14)

with respect to B gives

tt(B,p,4> |y,x) a p"(T+1) exp{- -^(y-xB )
' (y-xB )}B

_1/V l

2V

-(T+l) / 1 \/t n /-S-6v2 UQ -l/2.-l
a p exp{ r-l(T-l) + (——) ])B 4>

2p
2 S

B

-1 2 * * -1
where 6 = (x'x) x*y and s* = (y-xB )

' (y-xB ) (x 'x) /(T-l). This ex-
p

pression clearly implies that
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w(B,p|y,x) « p-(T+1) exp{--^-[(T-l) + (^-)
2 ]}8" 1/2

.

2p
Z S

B

Integrating this joint density with respect to p (performing the

2 "2
change of variable, z = a/2p , a = (T-l) + [(B-B)/s;J ) one gets the

marginal posterior p.d.f. of 8 as

TT(B|y,x) a 8
_1/2

{(T-1) + (^-)
2}~T/2

, 8 > 0. (15)
S
8

The main features of ir(8|y,x) can be seen in Figure 1 (plot for

8 = 1 , s% = .5, T = 20). It is apparent that the posterior density is
8

slightly skewed to the left, and therefore, the posterior mean will be

smaller than the least squares estimator of 8.

When a non-informative or normal prior for 8 is assumed, the

marginal posterior of 8 belongs to the t-family and the posterior mean

is equal to the least squares estimator. Now the posterior p.d.f. is

-1/2
like a t-density with an additional factor (8 ) and range (O, 00 ).

Without the additional term the posterior mode (as well as the mean)

-1/2
would be 8, the least squares estimator. The term 3 moves the

posterior mode towards zero, as follows easily from the fact that

d7r(8|y,x)/d8 < 0.

It can be shown easily that the posterior mean of 8 exists.

Therefore, there exists the Bayes estimator under a quadratic loss

function. Indeed, noticing that for T >_ 3 the terra

((T-l) + (^-)
2}"T/2 (16)

S
8

1/2
in (15) is smaller than one and that 8 > 8 for 8 > 1,
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OO 00 *

j 6Tr(0|y,x)d8 < J 6
1/2

dB + / B{(T-1) + (^-)
2}"T/2d8.

S
8

Direct integration and the use of the t-family density [see, e.g.,

Rao (1973, p. 171)] reveal that the right-hand side is equal to

S
2 -2-^+1 - —

1 + _L_ [(T_ 1} + ilj 2 B. (T-l) 2

3
T

T_ 2
lu l '

T
2

J

2 _,1 T-K
s
g

B(T'T" )

where B(»,«) is the beta function.

The posterior mode can be computed explicitly if we approximate

the t-kernel by the normal, i.e., if one writes the posterior density

in (15) as,

fl
-l/2 , (B-6)

2
,

B exp{ —}

.

2s^

For large data sets no crucial loss is incurred by using this approxi-

mation. It is easy to show that if the posterior mode exists, it is

equal to

A 2 s^

2
+ i

k 2
*

As the first derivative of the approximate posterior density is

~ 2 2
quadratic the mode exists if 8 /4 > sff/2. Otherwise, the posterior— 8

2
density will be monotonically decreasing, resembling a x distribution

with one degree of freedom. The mode of the above approximation to

the posterior p.d.f. provides an easy way to compute the Bayes estimator

(under a 0-1 loss function) and shows that this estimator is obtained

by shrinking the OLS estimator 8 towards zero.
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In the following section we shall develop a non-hierarchical

approach which may be easier to compete and is more in the line of

Vasicek's work. Three cases will be considered: one based on the

2
root-normal prior for beta and the other two based on central x and

normal approximations to the prior density of beta.

4. Non-hierarchical Approach with Non-normal Prior

Instead of a hierarchical model, we now adopt a single stage

root-normal prior for 8. As in Vasicek, the hyperpararaeters B and 4>

are assumed to be known, although in applications these will have to

be estimated.

The model can now be written as,

y|S - N(x8,p
2
I
T

)

6 - *
2
'X( (B

2
/4>

2
)

tt(p ) a p

The conditional (on B and <> ) joint posterior p.d.f. of (B ,p ) is,

tt(B,p |y,x,8,<j>) a p"(T+1) exp{- -^- (y-xB ) ' (y-xB )}

2p
Z

x 6
_1/2

[exp{- -We" + B)
2
} + exp{- -^/B~ - B)

2
}].

2((. 2<(>

Integration with respect to p yields,

tt(8 |y,x,S,4>) a B~
1/2

[exp{- -~{/ff + B)
2
} + exp{- -~</B" - B)

2
}

2* 2*

* {(T-l) + (^-) 2 }-T/2
(17)

S
B

for B > 0.
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It is apparent from this expression, and confirmed by Figure 2

that conditional marginal p.d.f. of 6 has a left tail similar to a

X density. Figure 2 plots the posterior p.d.f. for 8 = 1.03, <f>
= «22

(B = 1 , s~ = . 5, T = 20). The values of 6 and
<J>

were selected from
8

the findings in Bera and Kannan (1986). For T >_ 3, as we noted in

(16), the last term in (17) is less than one, and therefore,

OO 00 ~ 2

/ 6tt(6 |y,x,B ,<J))d6 < J 8k( X
2
(8

2
/<i>

2
) )dB = (1 + ^-)(2tt4>

2
)
1/2

,

4>

2 2
where k(x,(*)) represents the kernel of a non-central x density, and

the last equality follows from the fact that E(x,"(6)) = v + 6. Hence

the posterior mean of 8 conditional on 8 and
<J>

exists.

The conditional p.d.f. in (17) is directly comparable with expres-

sion (14) in Vasicek (1973). The major difference is that here the

2
non-central x kernel replaces the normal kernel found in Vasicek 's

result. The "t-like" terra is common to either expression. It is also

worth recalling that in the hierarchical approach the two exponential

terms were integrated out of the p.d.f.

The comparison with Vasicek's results is perhaps clearer if one

uses a normal approximation to the non-central x~ prior for 8. The

approximated prior is [see Johnson and Kotz (1970, p. 139)]

,
fl

, 1 A 1 -1/2 , 1,A ,-r V ,2
Xtt(8) = 7-B exp{- -(- /8 - B) }

/ 27
2 * 2 *

where A = [ ( l+<5 )/ ( 1 + 26 )

[ /2
, B = [( 1 + 26

2
+ 26 )/( 1 + 25 )]

l /2
and 6 = (8/<t>)

2

is the non-centrality parameter.



-15-

The same arguments as before yield the conditional posterior

p.d. f . of 6,

tt(8 |y,x,S,*)a6~
1/2

exp{- y(^ H - B)
2
}

r/^ ,n ,3-6.2,-1/2
* (T-l) + (—) ]

s
3

This expression highlights what was already remarked when com-

menting on the marginal (unconditional) p.d.f. of 3: from a practical

-1/2
standpoint the terra 3 appears to be the crucial modifier as it

implies a thicker left tail than the one obtained using a normal

prior. Therefore the posterior mean will be closer to zero.

Applied work with the above posteriors will be slightly messy.

2
Simpler results can be obtained by using a central x approximation

2
to the prior for 8. A central x approximation to our prior p.d.f. is

[see Johnson and Kotz (1970, p. 139)],

x 2
~ X

f

where c = ( 1-mS )

-1
( 1 + 26 ) , f = l+6

2
(l + 26)

-1
and 5 = (3/4>)

2
. Therefore,

the prior for 3 is a gamma density whose kernel is,

S
1 "' e^ /h

, 9 > 0.

2 2
where h = 2c<t> . It is worth noting that, even though 2c4> is, for

fixed f, a scale parameter, f is not a location parameter. It is

therefore difficult to develop a hierarchical model with non-

• z:
2

informative second stage priors based upon this central x approxima-

tion.
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Using the same model as before and integrating p out one gets the

conditional posterior density of B,

1 _! _ £ » _ 1
ir(B|y,x,f,h) a B

2
e

h
{(T-l) + (^) 2

}
2

, B > 0.
S
B

The plot in Figure 3 illustrates the shape of this density. The

values of f and h are those implied by B = 1.03 and 4> = .22 (c.f..

Figure 2), and again 8 = 1, s~ = .5 and T = 20.
p

It can easily be shown that the posterior mean exists. Indeed

for T _> 3,

/ 8Tr(8|y,x,f,h)dB < J 8
2

e
h

dB = |(f/2+l) h
2

where the last equality follows from the gamma p.d.f.

It is apparent that, at least for the parameter values used, the

posterior p.d.f. is uniraodal and almost symmetric though slightly

skewed to the right. The least squares estimator can be larger or

smaller than the modal value. In fact, straightforward algebra

yields

signal?*} ~= sign{h({- 1) -8}.

Therefore, if 8 > h(— - 1) it follows from the shape of the p.d.f.

that the Bayes estimator B* under a quadratic loss will satisfy

S* ^ B. If we take Bayes estimates as an improved predictor for

beta, then the above observation agrees with the findings of earlier

researchers that relatively high and low OLS beta estimates tend to

overpredict and underpredict , respectively, the corresponding betas
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for the subsequent time period [see, e.g., BLume (1971) and Klemkosky

and Martin (1975) ].

5. Concluding Remarks

We have presented only some theoretical results. It would be

interesting to apply our procedures to real data, and see whether that

leads to improved forecasts for systematic risk. On the theoretical

side, some other prior distribution can be used instead of a non-

2
central x distribution. One possibility is to use a mixture of two

(or a few) normal distributions. A second possibility is to take a

normal prior for 8 . with mean modelled in terms of a regression func-

tion of some firm specific variables. The prior variance could also

be defined from a regression model. Lastly, a number of other

2
approximations for non-central x distribution are available. For

2 2
example, x

}
(&) can be approximated by a central x, with 1+v degrees

of freedom where v is a Poisson random variable with mean 6/2.
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