$$
\text { (2. } 2
$$

EUCLID'S

ELEMENTS OF GEOMETRY,

> THE FIRST SIX BOOKS,

CHIEFLY FROM THE TEXT OF DR. SIMSON,

wirn

explanatory notes;
$\mathfrak{A} \mathfrak{S e r i c s}$ of Ouestions on such Book;
AND
a SELECTION OF GEOMETRICAL EXERCISES FROM THE SEAATE hoUse and college examination papers; WITH HINTS, ETC.

designed for the die of the jenior classes in peblbo aND PRIVATE SCHOOLS.

BY

ROBERT POTTS, M.A.,
TRINITY COLLEGE.

OORRECTED $\triangle N D$ IMPROVED.

NEW TORK:

JOHN F. TROW, PRINTER, 50 GREENE STREET.

CONTENTS.

Preface to the Third Edition iii
First Book of the Elements 1
Notes to the First Book 42
Questions on the First Book 59
On the Ancient Geometrical Analysis 64
Geometrical Exercises on Book I. 69
Second Book of the Elements. 85
Notes to the Second Book 99
Note on the Algebraical Symbols and Abbreviations used in Geometry. 109
Questions on the Second Book 110
Geometrical Exercises on Book II 113
Third Book of the Elements 120)
Notes to the Third Book 153
Questions on the Third Book 157
Geometrical Exercises on Book III 160
Fourtl Book of the Elements 175
Notes to the Fourth Book 191
Questions on the Fourth Book 193
Geometrieal Exereises on Book IV 196
Fifth Book of the Elements 204
Notes to the Fifth Book 23.5
Questions on the Fifth Book 257
Sixth Book of the Elements 259
Notes to the Sixth Book. 294
Questions on the Sixth Book 299
Geometrical Excrcises on Book TVI 3112
Solutions, IIints, \&c. on Book I. 31:3
" " " II. 323
" " " III 329
" " " IV 338
" " " VI. 345
Index to the Geometrical Exercises 356

PREFACE TO THE THIRD EDITION.

Some time after the publication of an Octavo Edition of Euclid's Elements with Geometrical Exercises, \&e., designed for the use of Aea-s demieal Siudents; at the request of some suhoohasters of eminence, a duodecimo Edition of the Six Books was put forth on the same plan for the use of Schools. Soon after its appearance, Professor Clristie, the Seeretary of the Royal Society, in the Preface to his Treatise on Deseriptive Geometry for the use of the Royal Military Aeademy, was pleased to notice these works in the following terns:-" When the greater Portion of this Part of the Course was printed, and had for some time been in use in the Academs, a new Edition of Euclid's Elements, by Mr. Robert Potts, M. A., of Trinity College, Cambridge, which is likely to supersede most others, to the extent, at least, of the Six Books, was published. From the manner of arranging the Demonstrations, this edition has the adrantages of the symbolieal form, and it is at the same time free from the manifold objections to which that form is open. The duodecino edition of this Work, eomprising only the first Six Books of Euelid, with Deductions from them, having been introluced at this Institution as a text ${ }^{\text {took, now renders any other Treatise }}$ on Plane Geometry unnecessary in our course of Mathematics."

For the very favourable reeeption which both Editions hare met with, the Editor's grateful acknowledgements are due. It has been his desire in putting fortla a revised Edition of the Sehool Euclid, to render the work in some degree more worthy of the farour which the former editions have received. In the present Edition several errors and oversights have been correeted, and some additions made to the notes: the questions on eaeh book have been considerably augmented and a better arrangement of the Geometrical Exereises has been attempted: and lastly, some himts and remarks on them have been given to assist the learner. The additions made to the present Edition amount to more than fifty pages, and it is hoped that they will render the work more useful to the learner.

And here an occasion may be taken to quote the opinions of some ablo nen respecting the use and importance of the Mathematical Scienees.

On the subject of Edueation in its most extensive sense, an ancient writer "directs the aspirant after excellence to commence with the Science of Moral Culture; to proceed next to Logic ; next to Mathematies; next to Physies; and lastly, to Theology." Another writer on Edueation would place Mathematies before Logie, which (he remarks) "seems the preferable
course : for by practising itself in the former, the mind becomes stored rith distinctions; the faculties of constancy and firmness are established; and its rule is always to distinguish between cavilling and investigation-between close reasoning and eross reasoning; for the contrary of all which habits, those are lor the most part noted, who apply themselves to Logie withont studying in some department of Mathematies; taking noise and wrangling for proficiency, and thinking refutation accomplished by the instancing of is doubt. This will explain the inscription placed by Plato over the door of his house: 'Whoso knows not Geometry, let him not enter here.' Un the precedence of Soral Culture, howerer, to all the other Sciences, the acknowledgement is general, and the agreement entire." The same writer recommends the study of the Mathematies, for the cure of "compound ignorance." "Of this," he proceeds to say, "the essence is opinion not agrecable to fact; and it necessarily insolses another opinion, mamely, that we are already possessed of knowledge. So that besides not knowing, we know not that we know not; and hence its designation of compound ignorance. In like manner, as of many chronic complaints, and established makadies, no cure can be effected by physicians of the body: of this, no cure can be effected by physicians of the mind: for with a pre-supposal of knowledge in our own regard, the pursuit and acquirement of further knowledge is not to be looked for. The approximate cure, and one from which in the main much benefit may be anticipated, is to engage the patient in the study of measures (Geometry, computation, \&c.); for in such pursuits the true and the false are separated by the clearest interval, and no room is left for the intrusions of fancy. From these the mind may discorer the delight of certainty ; and when, on returning to his own opinions, it finds in them no such sort of repose and gratification, it may riscover their erroneous character, its ignorance may become simple, and a capacity for the acquirement of truth and virtue be obtained."

Lord Bacon, the founder of Inductive Philo ophy, was not insensible of the high importance of the Mathematical Seiences, as appears in the following passage from his work on "The Advancement of Learning."
"The Mathematics are either pure or mixed. To the pure Mathematics are those sciences belonging which handle quantity determinate, merely severed from any axioms of natural philosophy ; and these are two, feomeiry, and Arithmetic; the one handling quantity contimued, and the other dissevered. Mixed hath for subject some axioms or parts of natural philos. ophy, and considereth quantity determined, as it is anxiliary and incident unto tiem. For many parts of nature can neither be invented with sufficient subtlety, nor demonstrated with sufficient perspicuity, nor accommodated unto use with sufficient dexterity, without the aid and intervening of the Mathematics; of which sort are nerspective, music, astronomy, cosmography, archiceture, enginery, and divers others.
"In the Jathematics I can report no deficience, except it be that men do not sufficiently understand the excellent use of the pure Mathematics, in that they do remedy and cure many defects in the wit and faculties intellectual. For, if the wit be dull, they sharpen it; if too wandering, they fix it; if too inherent in the sense, they abstract it. So that as tennis is a game of no use in itself, but of great use in respect that it maketh a quick eye, and a body ready to put itself into all postures; so in the Mathematics, that use which is collateral and intervenient, is no less worthy than that which is principal and intended. And as for the mixed Mathematics, I may only make this prediction, that there caniot fail do be more kinds of them, as nature grows further disclosed."

IIow truly has this prediction oeen fulfilled in the subsequent advancement of the Mixed Scieuces, aud in the applications of the pure Hathematics to Natural Philosopiny!

Dr. Whewell, in his "Thoughts on the Study of Matbematics," has maintained, that mathematical studies judiciously pursued, form one of the most effective means of developing and cultivating the reason: and that "the oljject of a liberal education is to develope the whole mental system of man;-to make his speculutive inferences coincide with his practical con-victions;-to enable him to render a reason for the belief that is in him, and not to leare him in the condition of Solomou's sluggard, who is wiser in his own conceit than seven men that can render a reason." And in his more recent work entitled, "Of a Liberal Education, de." he has more fully shewn the importance of Geometry as one of the most effectual instruments of intellectual education. In page 5. he thens proceeds:-"But besides the value of Jathematical Studies in Education, as a perfect example and complete exercise of demonstrative reasoning; Mathematical Truths have this additional recommendation, that they have alwass been refered to, by each successive generation of thoughtful and eultirated men, as examples of truth and of demonstration ; and have thos become standard points of reference, among cultivated men, whenever they speak of truth, knowledge, or proof. Thus Mathematics has not only a disciplinal but an historical interest. This is peculiarly the case with those portious of Mathematics which we have mentioned. We find geometrical proof adduced in illustration of the mature of reasoning, in the earliest speculations on this sulyect, the Dialognes of Plato; we find geometrical proof one of the main suljocts of discussion in some of the most recent of such speculations, as those of Dugald Siewart and his contemporaries. The recollection of the truths of Elementary Geometry has, in all ages, given a meaning and a reality to the best attempts to explain man's power of arriving at truth. Other branches of Mathematies have, in like manner, become recognized examples, anong edueated men, of man's powers of attaining truth."

Dr. Pemberton, in the preface to his view of Sir Isanc N゙owton's Dis-
coverics, makes mention of the circumstance, "that Newton used to apeak with regret of his mistake, at the begiming of his Mathematical Studies, in having applied himself to the works of Deseartes and other Algetraical writers, before he Lad considered the Elements of Euclid with the attention they deserve."

To these we may subjoin the opinion of Mr. John Stuart Mill, which he bas reeorded in his invaluable System of Logic, (Vol. 11. p. 180,) in the following terms:-"The value of Mathematical instruction as a preparation for those more difficult investigations, (physiology, society, government, \&e.,) consists in the applicability not of its doctrines, but of its method. Mathematics will ever remain the most perfect type of the Deductive Method in generai; and the applications of Mathematics to the simpler branches of physics, furnish the only school in which philosophers can effectually learn the most difficult and important portion of their art, the employment of the laws of simpler phenomena for explaining and predicting those of the more complex. These grounds are quite sufficient for deening mathematical training an indispensable basis of real scientific education, and regarding, with Plato, one who is $\dot{\alpha} \gamma \epsilon \omega_{i} \mu \epsilon \dot{\tau} \rho \eta \tau o s$, as wanting in one of the most essential qualifications for the successful cultivation of the higher branches of plilosophy."

In addition to these authorities it may be remarked, that the new Regulations which were confirmed by a Grace of the Scnate on the 11th of May, 1846, assign to Geometry and to Geometrical methods, a more important place in the Examinations both for Honors and for the Ordinary Degree in this University.

```
Trinity College,
R. P.
March 1, 1850.
```

This Edition (the fifth) has been angmented by about fifty pages of additional Notes, Questions, and Geometrical Exercises.

Trinity College,
R. P.

November 5, 1859.

EUCLID'S
 ELEMENTS OF GEOMETRY.

BOOK I.

DEFINITIONS.

I.

A point is that which has no parts, or which has no magnitude. II.

A line is length without breadth.
III.

The extremities of a line are points.
IV.

A straight line is that which lies evenly bet ween its extreme points.
V .
A superficies is that which has only length and breadth.
VI.

The extremities of a superficies are lines.
VII.

A plane superficies is that in which any two points being taken, the straight line between them lies wholly in that superficies.

VIII.

A plana angle is the inclination of two lines to each other in a plane, which meet together, but are not in the same straight line.
IX.

A plane rectilineal angle is the inclination of two straight lines to one another, which meet together, but are not in the same straight line.

N.B. If there be only one angle at a point, it may be expressed by a letter placed at that point, as the angle at E : but when several angles are at one point B, either of them is expressed by three letters, of which the letter that is at the vertex of the angle, that is, at the point in which the straight lines that contain the angle meet one another, is put between the other two letters, and one of these two is somewhere upon one of these straight lines, and the other upon the other line. Thus the angle which is contained by the straight lines $A B, C B$, is named the angle $A B C$, or $C B A$; that which is contained by $A B, D B$, is named the angle $A B D$, or $D B A$; and that which is contained by $D B, C B$, is ealled the angle $D B C$, or $C B D$.

X.

When a straight line standing on another straight line, makes the arljacent angles equal to one another, each of these angles is called at right angle; and the straight line which stands on the other is callcd a pe:pendicular to it.

XI.

An obtuse angle is that which is greater than a right angle。

XII.

An acute angle is that which is less than a right angle.

XIII.

A term or boundary is the extremity of any thing.

> XIV.

A figure is that which is enclosed by one or more boundaries

XV.

A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference, are equal to one another.

XVI.

And this point is called the center of the circle.

XVII.

A diameter of a circle is a straight line drawn through the center, and terminated both ways by the circumference.

XVIII.

A semicircle is the figure contained by a dianeter and the part of the circumference cut off by the diameter.

XIX.

The center of a semicircle is the same with that of the circle.
XX.

Rectilineal figures are those which are contained by straight lines. XXI.

Trilateral figures, or triangles, by three straight lines.
XXII.

Quadrilateral, by four straight lines.
KXIII.
Multilateral figures, or polygons, by more than four straight lines.

XXIV.

Of three-sided figures, an equilateral triangle is that which has three equal sides.

An isosceles triangle is that which has two sides equal.

XXVI.

A scalene triangle is that which has three unequal sides.

XXVII.

A right-angled triangle is that which has a right angle.

An obtuse-angled triangle is that which has an obtuse angle.

An acute-angled triangle is that which has three acute angles.

Of quadrilateral or four-sided figures, a square has all its sides equal and all its angles right angles.

XXXI.

An oblong is that which has all its angles right angles, but has not all its sides equal.

XXXII.

A rhombus has all its sides equal, but its angles are not right angles.

XXXIII.

A rhomboid has its opposite sides equal to each other, but all its sides are not equal, nor its angles right angles.

XXXIV.

All other four-sided figures besides these, are called Trapezinms. MXXV.

Parallel straight lines are such as are in the same plane, and which being produced ever so far both ways, do not meet.

A.

A parallelogram is a four-sided figure, of which the opposite sides are parallel : and the diameter, or the diagonal is the straight line joining two of its opposite angles.

POSTULATES.

I.

Let it be granted that a straight line may be drawn from any one point to any other point.
II.

That a terminated straight line may be produced to any length in a straight line.

- III.

And that a circle may be described from any center, at any distance from that center.

AXIOMS.

I.

Thivgs which are equal to the same thing are equal to one another.
II.

If equals be added to equals, the wholes are equal.
III.

If equals be taken from equals, the remainders are equal.
IV.

If equals be added to unequals, the wholes are unequal.
V.

If equals be taken from unequals, the remainders are unequal.
VI.

Things which are double of the same, are equal to one another. VII.

Things which are halves of the same, are equal to one another.

> VIII.

Macnitudes which coincide with one another, that is, which exactly fill the same space, are equal to one another.
IX.

The whole is greater than its part.

X.

Two straight lines cannot enclose a space.
XI.

All right angles are equal to one another.

XII.

If a straight line meets two straight lines. so as to make the two interior angles on the same side of it taken together less than two right angles; these straight lines being continually produced, shall a^{+} length meet uipon that side on which are the angles which are ler than two right angles.

PROPOSITION I. PROBLEM.

F'o eiescribe an equilateral triangle upon a given finite straight line.
Let $A B$ be the given straight line.
It is required to describe an equilateral triangle upon $A B$.

From the center A, at the distance $A B$, describe the circle $B C D$; (post. 3.)
frum the center B, at the distance $B A$, describe the circle $A C E$; and from C, one of the points in which the circles cnt one another, draw the straight lines $C A, C D$ to the points A, B. (post. 1.)

Then $A B C$ slall be an equilateral triangle.
Because the point A is the center of the circle $B C D$, therefore $A C^{\prime}$ is equal to $A B$; (def. 15.)
ara because the point B is the center of the circle $A C E$, therefore $B C^{\prime}$ is equal to $A B$;
but it has been proved that $A C$ is equal to $A B$; therefore $A C, B C$ are each of them equal to $A B$; but things ivinch are equal to the same thing are equal to one another; therefore $A C$ is equal to $B C$; (ix. 1.)
wherefore $A D, B C, C A$ are equal to one another: and the triangle $A B C$ is therefore equilateral, and it is described upon the given straight line $A B$. Which was required to be done.

PROPOSITION IT. PROBLEM.

From a given poirt, to draw a straight line equal to a given straight line.
Let A be the given point, and $B C$ the given straight line.
It is required to draw from the point A, a straight line equal to $B C$.

From the point A to J draw the straight line $A B ;$ (post. 1.)
upon $A l$; describe the equilateral triangle $A T D$, (r. 1.) and produce the straight lines D A, $H B$ tu E and $F \cdot$; (post. 2.)
from the center B, at the distance $B^{\prime} C$, deseribe the circle $C(r I I$, (post. 3.) entting $/$) f^{\prime} in the point (r;
and from the center I, at the distance $V G$, deseribe the circle $G K L$, cutting $A E$ in the point L.

Then the straight line $A C$ shall be equal to $B C$.
Because the point B is the center of the circle C' $G I F$,
therefore $B C$ is equal to $B f_{i} ;$ (def. 15.)
and because D is the center of the circle $\dot{C} F L L$, therefore $I L L$ is equal to $D G$,
and $D A, D B$ parts of them are equal ; (r. 1.)
therefore the remainder $A L$ is efual to the remander $B G$; (ax. 3.)
but it has been shewn that $B C$ is equal to $B G$, wherefore $A L$ and $B C$ are each of then equal to $B G$;
and things that are equal to the same thing are equal to one another ;
therefore the straight line $A L$ is equal to $B C$. (ax. 1.)
Wherefore from the given point A, a straight line ΛL has been drawn equal to the given straight line $B C$. Which was to be done.

$<$ Ploposition iif. problev.

From the greater of tuo given straight lines to cut off a part equal to the less.
Let $A B$ and C be the two given straight lines, of which $A B$ is the greater.

It is required to cut off from $A B$ the greater, a part equal to C, the less.

From the point A draw the straight line $A D$ equal to C; (ı. 2.) and from the center A, at the distance $A D$, describe the circle $D E F$ (post. 3.) cutting $A B$ in the point E.

Then $A E$ shall be equal to C.
Because A is the center of the circle IDEF,
therefore $A E$ is equal to $A D$; (def. 15.)
but the straight line C^{\prime} is equal to $A D$: (constr.)
whence $A E$ and C are each of them equal to $A D$;
wherefore the straight line $A E$ is equal to C. (ax. 1.)
And therefore from $A B$ the greater of two straight lines, a part $A E$ has been cut off equal to C, the less. Which was to be done.

PROPOSITION IV. TIIEOREM.

If two triangles have turn sides of the one equal to two sides of the other, each to eaeh, and have likourise the amyles contained by those vides equal to egech other; they shall likemese have their bases or third sides equal, and the tiro triaugles shatl bie equal, and their other angles shatl be equal, rach to each, viz. those to whiche the equel sides ure opposite.

Let $A B C, D E F$ be two triangles, which have the two sides $A B$, $A C$ equal to the two sides $D E . D F$. each to each. viz. $A B$ to D / E, and $A C$ to $D F$, and the included angle $B A C$ equal to the included angle $E D F$.

Then shall the base $B C$ be equal to the base $E F$; and the triangle $A B C$ to the triangle $D E F^{\prime}$; and the other angles to which the equal sides are opposite shall be equal. each to each, viz. the angle $A B C$ to the angle $D E F$, and the angle $A C B$ to the angle $D F E$.

For, if the triangle $A B C$ be applied to the triangle $D E F$, so that the point A may be on D, and the straight line $A B$ on $D E$;
then the point B shall coincide with the point E,
becanse $A B$ is equal to $D E$; and $A B$ coinciding with $D E$,
the straight line $A C$ shall fall on $D F$,
becanse the angle $B A C$ is equal to the angle $E D F$;
therefore also the point C shall coincide with the point F, because $A C$ is equal to $D F$;
but the point B was shewn to coincide with the point E; wherefore the base $B C$ shall coincide with the base $E F$; because the point B coinciding with E, and C with F,
if the base $B C$ do not coincide with the base $E F$, the two straight lines $B C$ and $E F$ would enclose a space, which is impossible. (ax. 10.)
Therefore the bass $B C$ does coincide with $E^{\prime} F$, and is equal to it; and the whole triangle $A B C$ coincides with the whole triangle $D E F$, and is equal to it ;
also the remaining angles of one triangle coincide with the remain-
ing angles of the other, and are equal to them,
viz. the angle $A B C$ to the angle $D E F$, and the angle $A C B$ to $I P F E$.
Therefore, if two triangles have two sides of the one equal to two sides, \&c.

Whieh was to be demonstrated.

\& PROPOSITION V. TILEOREM.

The angles at the base of an isosceles triangle are equal to earh other: and if the equal sides be produced, the angles on the other side of the baso shall be equal.
Let $A B C$ be an isosceles triangle of which the side $A B$ is equal to $A C$, and let the equal sides $A B, A C$ be produced to $1 /$ and E.
Then the angle $A B C$ shall be equil to the ancle $A C B$, and the angle $D B C$ to the angle $E C B$.

In $B D$ take any point F;
from $A E$ the greater, cut oft $A \dot{F}$ equal to $A F$ the less, (т. 3.) and join $F^{\prime} C, C_{r} B$.
Because $A F$ is equal to $A G$, (constr.) and $A B$ to $A C$; (hyp.)
the two sides $F A, A C^{\prime}$ are equall to the two $G A, A B$, each to each; and they contain the angle $F_{i} \mathrm{~L}(\dot{r}$ common to the two triangles $A F C, A G B ;$

therefore the base $F C$ is equal to the base $G B$, (r. 4.)
and the triangle $A F C$ is equal to the triangle $A G B$,
also the remaining angles of the one are equal to the remaining angles of the other, each to each, to which the equal sides are opposite; viz. the angle $A C F$ to the angle $A B G$, and the angle $A F C$ to the angle $A G B$.
And becanse the whole $A F^{\prime}$ is equal to the whole $A(t$, of which the parts $A B, A C$, are equal:
therefore the remainder $B F^{\prime}$ is equal to the remainder $C^{\prime} G$; (ax. 3.) and $F C$ has been proved to be eqnal to $G B$;
hence, because the two sides $B F, F C$ are equal to the two $C G, G B$, each to each :
and the ancle $B F C$ has been proved to be equal to the angle $C G B$, also the base $B C$ is common to the two triangles $B F C, C G B$; wherefore these triangles are equal, (1. 4.)
and their remaining angles, each to each, to which the equal sides are opposite;
therefore the angle $F B C$ is equal to the angle $G C B$, and the angle $B C F$ to the angle $C B G$.
And. since it has been demonstrated.
that the whole angle $A B G$ is equal to the whole $A C F$, the parts of which, the angles $C^{\prime} B G, B C^{\prime} F^{\prime}$ are also equal;
therefore the remaining angle $A \dot{B C}$ 'is equal to the remaining angle $A C B$, which are the angles at the base of the triangle $A B C^{\prime}$: and it has also been proved,
that the angle $F B C$ is equal to the angle $G C B$,
which are the angles non the other side of the base.
Therefore the angles at the base, de. Q.E.d.
Cor. IIence an equilateral triangle is also equiangular.

PROPOSITION VI. THEOREM.

If two angles of a trianale be equal to cach other; the sides also which subtend, or are opposite to, the equal angles, shall be equal to one another.
Let $A B C$ be a triangle haring the angle $A B^{\prime}$ equal to the angle $A^{\prime} C^{\prime} B$.
Then the side $A B$ shall be equal to the side $A C$.

For, if $A B$ be not equal to $A C$, one of them is greater than the other. If possible, let $A B$ be greater than $A C$;
and from $B A$ cut off $B D$ equal to $C A$ the less, (1. 3.) and join $D C$.
Then, in the triangles $D B C, A B C$,
because $D B$ is equal to $A C$, and $B C$ is common to both triangles, the two sides $D B, B C$ are equal to the two sides $A C^{\prime}, C B$, each to each; and the angle $D B C$ is equal to the angle $A C B$; (hyp.)
therefore the base $D C$ is equal to the base $A B$, (ı. 4.)
and the triangle $D B C$ is equal to the triangle $A B C$.
the less equal to the greater, which is absurd. (ax. 9.)
Therefore $A B$ is not unequal to $A C$, that is, $A B$ is equal to $A C$. Wherefore, if two angles, \&c. Q.E.d.
Cor. Hence an equiangular triangle is also equilateral.

proposition rit. theorem.

Upon the same base, and on the same side of it, there cannot be turo triangles that have their sides which are terminated in one extremity of the base, equal to one another, and likewise those which are terminated in the other extremity.

If it be possible, on the same base $A B$, and upon the same side of it, let there be two triangles $A C B, A D B$, which have their sides $C A$, $L_{A} A$, terminated in the extremity A of the base, equal to one another, and likewise their sides $C B, D B$, that are terminated in B.

First. When the rertex of each of the triangles is without the other triangle.

Becanse $A C$ is equal to $A D$ in the triangle $A C D$,
therefore the angle $A D C$ is equal to the angle $1(C D$; (I. 5.)
but the angle $A C D$ is greater than the angle $B C D$; (ax. 9.) therefore also the angle $A D C$ is greater than $B C D$;
much more therafore is the angle $B D C$ greater than $B C D$.
Again, because the side $E C^{\prime}$ is equal to $B D$ in the triangle $B C D$, (hyp.)
therefore the angle $B D C$ is equal to the angle $B(D)$; ($\mathrm{I} . \tilde{\mathrm{F}}$.
but the angle $B J$) $($ was proved greater than the angle $B(D)$, hence the angle $B D C$ is both equal to, and greater than the angle $B C D$; which is impossible.
Secondly. Let the vertex D of the triangle $A D B$ fall within the triangle $\angle C^{\prime} B$.

Produce $A C$ to E, and $A D$ to F, and join $C D$.
Then becanse $A C$ is equal to $A D$ in the triangle $A C D$, therefore the angles $E C D, F^{\prime} D C^{\prime}$ upon the other side of the base $C D$, are equal to one amother; (1.5.)
but the angle $E^{\prime}(1)$ is greater than the angle $B C D$; (ax. 9.)
therefore also the angle $F D C$ is greater than the angle $B C D$; much more then is the angle $B D C^{\prime}$ greater than the angle $B^{\prime} C^{\prime} D$.

Again, because $B C$ is equal to $B D$ in the triangle $B C D$;
therefore the angle $B D C^{\prime}$ is equal to the angle $B C^{\prime} D$. (r. 5.)
but the angle $B D C$ has been proved greater than $B C D$,
wheretore the angle $B D C$ is both equal to, and greater than the angle $B C D$;
which is inmossible.
Thirdly. The case in which the vertex of one triangle is upon a side of the other, needs no demonstration.
Therefore, upon the same base and on the same side of it, dec. Q.E.D.

proposition Vili. tileorem.

If tuo triangles have tiro sides of the one cqual to tuo sides of the other, each to each, and have likewise their bases egual: the angle withech is contained by the turo sidns of the one shall be equal to the angle contuined by the two sides equal to them, of the other.

Let $A B C, D E F$ be two triangles, having the two sides $A B, A C$, equal to the two sides $D E, D F$, each to each, viz. $A B$ to $D E$, and $A C$ to $D F$, and also the base $B C$ equal to the base $E F$.

Then the angle $B A C$ shall be equal to the angle $E D F$.
For, if the triangle $A B C$ be applied to $D E F$,
so that the point B be on E, and the straight line $B C$ on $E F$;
then because $B C$ is equal to EF, (hyp.)
therefore the point (shall coincide with the point F;
wherefore $B C$ coinciding with $E F$,
BA and $I C$ shali coineide with $E D, D F$;
for, if the base $B C$ coincide with the base $E F$, but the sides $B A, A C$, do not coincide with the sides $E D, D F$, but have a different sitnation as $E G, G F$:
then, upon the same base, and upon the same side of it, there can be two triangle; which have their sides which are terminated in one extremity of the base, equal to one another, and likewise those sides which are terminated in the other extremity ; but this is impossible. (ı. 7.)

Therefore, if the base $B C$ eoincide with the base $E F$.
the sides $B, 1, A C$ caunot but coincide with the sides $E D, D F$;
wheretore likewise the angle $B A C$ coincides with the angle $E D F$, and is equal to it. (ax. 8.)

Therefore if two triangles hare two sides, \&e. Q.E.D.

PROPOSITION IN. PLOBLEM.

To bisect a given rectilineal angle, thet is, to divide it into two equal angles.
Let $B A C$ be the given rectilineal angle.
It is required to bisect it.

In $A B$ take any point D;
from $A C$ cut off $A E$ equal to $A D$, (1. 3.) and join $D E$; on the side of $D E$ remote from A, describe the equilateral triangle $D E F$ (r. 1), and join $A F$.
Then the straight line $A F$ shall bisect the angle $B A C$.
Because $A D$ is equal to $A E$, (constr.)
and $A F$ is common to the two triangles $D A F, E A F$;
the two sides $D A, A F$, are equal to the two sides $E A, A F$, each to each; and the base $D F$ is equal to the base $E F$, (constr.)
therefore the angle $D A F$ is equal to the angle $E A F$. (1. 8.) Wherefore the angle $B A C$ is bisected by the straight line $A F$. Q.E.F.

PROPOSITION X. PROBLEM.

To bisect a given finite straight line, that is, to divide it into two equal parts.

Let $A B$ be the given straight line.
It is required to divide $A B$ into two equal parts.
Upon $A B$ describe the equilateral triangle $A B C$; (r. 1.)

and bisect the angle $A C B$ by the straight line $C D$ meeting $A B$ in the point 1 . (土. 9.)

Then $A B$ shall be cut into tro equal parts in the point D. Because $A C$ is equal to C C, (constr.)
and $C D$ is common to the two triangles $A\left(C^{\prime} D, B C D\right)$;
the two sides $A C$. C'D are equal to the two $B C$. CD, each to each; and the angle $A(C D)$ is equal to BCD; (eonstr.)
therefore the base $A D$ is equal to the base $l ; 1$). (r. 4.)
Wherefore the straight line $A B$ is divided into two equal parts in the point U. (4.E.E.

PLOPOSITION XI. PROBLEM.

To draw a straight line at right angles to a given straight line, fiom a given point in the same.

Let $A B$ be the given straight line, and C a given point in it.
It is required to draw a straight line from the point C^{C} at right angles to $A B$.

In $A C$ take any point D, and make $C E$ equal to $C D$; ((. 3.) upon $D E$ describe the equilateral triancle $D E F$ (.1), and join $C F$. Then $C F$ drawn from the point C shall be at right angles to $A B$.
Beearse $D C$ is equal to $E C$, and $F($ is common to the two triangles DCF, EC'F;
the two sides $D C$, C'F are equal to the two sides $E C, C F$, each to each; and the base $L F$ is equal to the base EF' (constr.)
therefore the angle $1 / C F^{\prime}$ is equal to the angle $E\left(F^{\prime}\right.$: (1. 8.) and these two angles are adjacent angles.
But when the two adjacent angles which one straight line makes with another straight line, are equal to one another, each of them is called a right angle: (def. 10.)
therefore each of the angles $D C F, E C F$ is a right angle.
Wherefore from the given point C, in the given straight line $A B$, $F C$ has been drawn at right angles to $A B$. Q.e.f.

Cor. By help of this problem, it may be demonstrated that two straight lines cannot have a common segment.

If it be possible, let the segment $A B$ be common to the two straight lines $A B C, \triangle B D$.

From the point B, draw $B E$ at right angles to $A B$; (т. 11.)
then because $A B C$ is a straight line,
therefore the angle $A B E$ is equal to the angle $E B C$; (def. 10.)
Similarly, because $A B / /$ is a straight line.
therefore the angle $A B E$ is equal to the angle $E B D$; but the angle $A B E$ is equal to the angle $E B C$,
wherefore the angle $E B D$ is equal to the angle $E B C$, (ax. 1.)
the less equal to the greater angle, which is impossible.
Therefore two straight lines eamot have a common segment.

prorosition xir. rroblem.

To dram a straight line perpenticular to a given straight line of unlimitcll length, from' a given proint withont it.

Let $A B$ be the given straight line, which may bo produced any length both ways, and let C be a point without it.

It is required to draw a straight line perpendicular to $A B$ from the point C.

Upon the other side of $A B$ take any point D,
and from the center C, at the distance $C D$, describe the circle $E G F$ meeting A / B, produced if necessary, in F and G : (post. 3.)
bisect $F^{\prime} G$ in $I($ (. 10.) and join ($I T$.
Then the straight line CII drawn from the given point C, shall be perpendicular to the given straight line $A B$.

$$
\text { Join } F C \text {, and } C G \text {. }
$$

Becansa $F I I$ is equal to $H(r$, (constr.)
and $H C$ is common to the triangles $F H C, G H C$;
the two sides $F I I$. $I C$, , are equall to the two $G I I, H C$, each to each; and the base $C F$ is equal to the base (' $(r$; (def. 15.)
therefore the angle FIIC is equal to the angle billC ; (1.8.) and these are adjacent angles.
But when a straight line standing on another straight line, makes the adjacent augles equal to one another, each of then is a right angle, and the straight line which stands upon the other is called a perpendicalar to it. (def. 10.)

Therefore from the given point C, a perpendicular $C I I$ has been drawn to the given straight line $A B$. Q.E.F.

Proposition siil. theorem.

The angles which one straight line makes with unother upon one side of it, are either two-right angles, or are together equal to two right angles.

Let the stralight line $A B$ make with $C D$, upon one side of it, the angles (13.1, A $1 ; 1$).

Then these shall be either two right angles,

- or, shall be together, equal to two right angles.

For if the angle $C B A$ be equal to the angle $A B D$, each of them is a right amgle. (thef. 10.)
But if the angle (1 biA be not equal to the angle $A B D$. from the point B draw likat right angles to (V) (1.11.)
Then the angles ('BE', EBD) are two right augles. (def. 10.)

And because the angle CBE is equal to the angles $C B A, A B E$, add the angle E'BD to each of these equals:
therefore the angles ($D B E, E B D$ are equal to the three angles $C B A$,
ABE, EBD. (ax. 2.)
Again, because the angle $D B A$ is equal to the two angles $D B E, E B A$, add to each of these equals the angle $A B C$;
therefore the angles $D B A, A B C$ are equal to the three angles DDE, EBA, A BCO
But the angles $C B E, E B D$ have been proved equal to the same three angles;
and things which are equal to the same thing are equal to one another: therefore the angles ('BE, EBD) are equal to the angles $I D B A, A B C$; but the angles $C B E, E B D$ are two right angles;
therefore the angles $D B A, A B C$ are together equal to two right angles. (ax. 1.)

Wherefore, when a straight line, \&cc. e.E.d.

PROPOSITION NIY. TIEOREM.

If at a point in a straight line, tuo other straight lines, upon the opposite sides of it, make the adjacent engles together equal to turo right angles; then these two straight lines shall be in one and the same straight line.

At the point B in the straight line $A B$, let the tro straight lines $B C, B D$ upon the opposite sides of $A B$, make the adjacent angles $A B C, A B D$ together equal to two right angles.

Then $B D$ shall be in the same straight line with $D C$.

For, if $B D$ be not in the same straight line with $B C$,
If possible, let $B E$ be in the same straight line with it.
Then becanse $A B$ meets the straight line C $B E$;
therefore the adjacent angles $C B A, A B E$ are equal to two right angles; (I. 13.)
but the angles $C B A, A B D$ are equal to two right angles; (hyp.)
therefore the angles $C B A, A B E$ are equal to the angles $C B A, A D D$: (ax. 1.)
take away from these equals the common angle CB. 1 ,
therefore the remaining angle $A B E$ is equal to the remaining angle
$A B D$; (ax. 3.)
the less angle equal to the greater. which is impossible:
therefore $B E$ is not in the same straight line with $B C$.
And in the same manner it may be demonstrated, that no other can be in the same straight line with it but $B D$, which therefore is in the same straight line with $B C$.

Wherefore, if at a point, \&e. Q.E.d.

PROPOSITION XV. THEOREM.

If two straight lines cut one another, the vertical, or opposite angles shall be equal.
Let the two straight lines $A B, C D$ cut one another in the point E.
Then the angle $A E C$ shall be equal to the angle $D E B$, and the angle $C E B$ to the angle $A E D$.

Because the straight line $A E$ makes with $C D$ at the point E, the adjacent angles $C E A, A E D$;
these angles are together equal to two right angles. (I. 13.)
Again, because the straight line $D E$ makes with $A B$ at the point E, the adjacent angles $A E D, D E B$;
these angles also are equal to two right angles;
but the angles CEA, AED have been shewn to be equal to two right angles;
wherefore the angles $C E A, A E D$ are equal to the angles $A E D, D E D$; take away from each the common angle $A E D$,
and the remaining angle $C E A$ is equal to the remaining angle $D E B$. (ax. 3.)

In the same manner it may be demonstrated, that the angle $C E B$ is equal to the angle $A E D$.

Therefore, if two straight lines cut one anotlier, \&e. Q.E.D.
Cor. 1. From this it is manifest, that, if two straight lines ent each other, the angles which they make at the point where they cut, are together equal to four right angles.

Cor. 2. And consequently that all the angles made by any number of lines mecting in one point, are together equal to four right angles.

PROPOSITION XVI. TIIEOREM.

If one side of a triangle be produccd, the exterior angle is greater tharo either of the interior opposite angles.

Let $A B C$ be a triangle, and let the side $B C$ be produced to D.
Then the exterior angle $A C D$ shall be greater than either of the interior opposite angles CBA or B.1C'.

Bisect $A C$ in $E{ }^{-}$(1. 10.) and join $D E$; produce $B E$ to F, making $E F^{\prime}$ equal to $A B E$, (1. 3.) and join $F C$.

Because $A E$ is equal to $E C^{\prime}$, and $B E$ to $E F$; (constr.) the two sides $A E, E B$ are equal to the two $C E, E F$, each to each, in the triangles $A B E, C F E ;$ and the angle $A E B$ is equal to the angle $C E F$, because they are opposite vertical angles; (1. 15.) therefore the base $A B$ is equal to the base $C F$, (r. 4.) and the triangle $A E B$ to the triangle $C E F$,
and the remaining angles of one triangle to the remaining angies of
the other, each to each, to which the equal sides are opposite;
wherefore the angle $B A E$ is equal to the angle $E C F$;
but the angle $E C D$ or $A C D$ is greater than the angle $E C F$;
therefore the angle $A C D$ is greater than the angle $B A E$ or $B A C$.
In the same manner, if the side $B C$ be bisected, and $A C$ be produced to G; it may be demonstrated that the angle $B C G$, that is, the angle $A C D,(\mathbf{I} .15$.) is greater than the angle $A B C$.

Therefore, if one side of a triangle, ©c. Q.E.d.

PROPOSITION XVII. THEOREM.

Any two angles of a triangle are together less than two right angles.
Let $A B C$ be any triangle.
Then any two of its angles together shall be less than two right angles.

Produce any side $B C$ to D.
Then because $A C D$ is the exterior angle of the triangle $A B C$;
therefore the angle $A C D$ is greater than the interior and opposite angle $A B C$; (ı. 16.)
to each of these unequals add the angle $A C B$:
therefore the angles $A C^{\prime} D, A^{\prime} B$ are greater than the angles $A B C$, $A C B$;
but the angles $A C D, A C B$ are equal to two right angles: (т. 13.) therefore the angles $A B C, A C B$ are less than two right angles.

In like manner it may be demonstrated,
that the augles $B A C, A C B$ are less than two right angles, as also the ancles $C A B, A B C$.
Therefore any two angles of a triangle, \&c. Q.E.D.

Proposition xilif. THEOREM.

The greater side of every triangle is opposite to the greater angle.
Let $A B C$ be a triangle, of which the side $A C$ is greater than the side $A B$.

Then the angle $A B C$ shall be greater than the angle $A C B$.

Since the side $A C$ is greater than the side $A B$, (hyp.)
make $A D$ equal to $A B,(\mathrm{r}, 3$.$) and join B D$.
Then, because $A D$ is equal to $A B$, in the triangle $A B D$,
therefore the angle $A B D$ is equal to the angle $A D B$, (ı. 5.)
but because the side $C D$ of the triangle $B D C$ is produced to A,
therefore the exterior angle $A D B$ is greater than the interior and opposite angle $D C B$; (r. 16.)
but the angle $A D B$ has been proved equal to the angle $A B D$,
therefore the angle $A B D$ is greater than the angle $D C B$;
wherefore much more is the angle $A B C$ greater than the angle $A C B$.
Therefore the greater side, de. Q.e.d.

PROPOSITION NIX. THEOREM.

The greater angle of every triungle is subtended by the greater side, or, has the greater side opposite to it.

Let $A B C$ be a triangle of which the angle $A B C$ is greater than the angle $B C A$.

Then the side $A C$ shall be greater than the side $A B$.

For, if $A C$ be not greater than $A B$, $A C$ mnst either be equal to or less than $A B$; if $A C$ were equal to $A B$, then the angle $A B C$ would be equal to the angle $A C D$; (1. 5.) but it is not equal ; (hyp.)
therefore the side $A C$ is not equal to $A B$.
Again, if $A C$ were less than $A B$,
then the angle $A B C$ would be less than the angle $A(B)$ ((1. 18.) lout it is not less, (hyp.)
therefore the side $A C$ is not less than $A B$;
and $A C$ has been shewn to be not equal to $A B$;
therefore $A C$ is greater than $A B$.
Wherefore the greater angle, de. e.E.D.

PROPOSTTION XX. THEOREM.

Any two sides of a triangle are together greater than the third side.
Let $A B C$ be a triangle.
Then any two sides of it together shall be greater than the third side e, viz. the sides $B A, A C$ greater than the side $B C$;

$A B, B C$ greater than $A C$;

 and $B C, C A$ greater than $A B$.

Produce the side $B A$ to the point D, make $A D$ equal to $A C,(1.3$) and join $D C$.
Then because $A D$ is equal to $A C$, (eonstr.)
therefore the angle $A C D$ is equal to the angle $A D C$; (т. 5.)
but the angle $B C D$ is greater than the angle $A C D ;($ ax. 9.)
therefore also the angle $B C D$ is greater than the angle $A D C$.
And because in the triangle $D B C$, the angle $B C D$ is greater than the angle $B D C$,
and that the greater angle is subtended by the greater side; (I. 19.)
therefore the side $D B$ is greater than the side $B C$;
but $D B$ is equal to $B A$ and $A C$,
therefore the sides $B A$ and $A C$ are greater than $B C$.
In the same manner it may be demonstrated,
that the sides $A B, B C$ are greater than $C A$;
also that $B C, C A$ are greater than $A B$.
Therefore any two sides, \&c. q.E.D.

PROPOSITION XXI. THEOREM.

If from the ends of a side of a triangle, there be drawn tuo straight lines to a point uithin the trinngle; these shall be less than the other two sides of the triangle, but shall contain a greater angle.

Let $A B C$ be a triangle, and from the points B, C, the ends of the side $B C$, let the two straight lines $B D, C D$ be drawn to a point D within the triangle.

Then $B D$ and $D C$ shall be less than $B A$ and $A C$ the other two sides of the triangle,
but shall contain an angle $B D C$ greater than the angle $B A C$.

Produce $B D$ to meet the side $A C$ in E.
Becaus, two sides of a triangle are greater than the third side, (1. 20.) therefore the two sides $B A, A E$ of the triangle $A B E$ are greater than $B E$;
to each of these unequals add $E C$;
therefore the sides $B A, A C$ are greater than $B E, E C$. (ax. 4.) Again, because the two sides $C E, E D$ of the triangle $C E D$ aro greater than $D C ;(1,20$.
add DD to each of these mequals;
therefore the sides $C E, E B$ are greater than $C D, D B$. (ax. 4.)
But it has been shewn that $B A, A C$ are greater than $B E, E C$;
much more then are $B A, A C$ greater than $B D, D C$.
Again, becanse the exterior angle of a trianglo is greater than the interior and opposite angle : (1. 16.)
theretore the exterior angle $B D C$ of the triangle $C D E$ is greater than the interior and opposite angle $C E D$;
for the same reason, the exterior angle $C E D$ of the triangle $A B E$ is greater than the interior and opposite angle $B A C^{\prime}$; and it has been demonstrated.
that the angle $B D C$ is greater than the angle $C E B$; much more therefore is the angle $B D C$ greater than the angle $B A C$. Therefore, if from the ends of the side, \&c. Q.E.D.

PROPOSITION XXII. PROBLEN.

To make a triangle of which the sides shall be equal to three given straight lines, bet any tuo whatever of thesc must be greatcr than the third.

Let A, B, C be the three given straight lines, of which any two whaterer are greater than the third, (i. 20.) namely, A and B greater than C; A and C greater than B; and B and C greater than A.
It is required to make a triangle of which the sides shall be equal to A, B, C, each to each.

Take a straight line $D E$ terminated at the point D, but mlimited towards E.
make $U F$ equal to $A, F G$ equal to B, and $G I I$ equal to C : (土. 3.) from the center F, at the distance $F D$, descrile the circle $D H^{\prime} L$; (post. 3.)
from the center \mathcal{F}, at the distance $G I I$. describe the circle $M L K^{-}$: from F^{\prime} where the circles cut each other draw $h^{\prime} F, H^{\prime} G$ to the points $F,{ }_{r}$;

Then the triangle $h^{\prime} F G$ shall have its sides equal to the three straight lines A, B, C.

Because the point F is the center of the circle $D K I$,
therefore $F I$) is equal to $F T^{\circ}$; (llef. 15.)
but $F I$ is equal to the straight line A;
therefore $F K$ is equal to A.

- Again, because G is the center of the circle $H I L L$;
therefore $G I I$ is equal to $G h^{5}$ (def. 15.)
but $G I I$ is équal to C;
therefore also $G h^{\prime}$ is equal to C; (ax. 1.) and $F G$ is equal to B;
therefore the three straight lines $F F, F G, G K$, are respectively equal to the three A, B, C :
and therefore the triangle $\mathscr{H F G}$ has its three sides $\Pi F, F G, G H$, equal to the three given straight lines A, B, C : Q.E.F.

PROPOSITION XXIII. PROBLEM.

At a given point in a given straight line, to make a reetilineal angle equal to a given reetilineal anyle.

Let $A B$ be the given straight line, and A the given point in it, and $D C E$ the given rectilineal angle.
It is required, at the given point A in the given straight line $A B$, to make an angle that shall be equal to the given rectilineal angle $L C E$.

In $C D, C E$, take any points D, E, and join $D E$;
on $A B$, make the triangle $A F G$, the sides of which shall be equal to the three straight lines $C D, D E, E C$, so that $A F$ be equal to $U D$, $A G$ to C ' E, and $F G$ to $D E$. (г. 22.)

Then the angle $F A G$ shall be equal to the angle $D C E$.
Because $F A, A G$ are equal to $D C, C E$, each to each, and the base $F G$ is equal to the base $D E$:
therefore the angle $F A G$ is equal to the angle $D C E$. (1.8.)
Wherefore, at the given point A in the given straight line $A B$, the angle $F A G$ is made equal to the given rectilineal angle $D C E$. Q.E.F.

PROFOSITION XNIV. THEOREM.

If two triangles hare two sides of the one equal to turo sides of the other, each to each, but the angle contained by the tuo sides of one of them greater than the angle contained by the tuo sides equal to them, of the other; the base of that which has the greater angle, shall be greater than the base of the other.

Let $A B C, D E F$ be two triangles, which have the two sides $A B$, $A C^{\prime}$, equal to the two $D E, D F$, each to each, namely, $A B$ equal to $D E$, and $A C$ to $D F$; but the angle $B A C$ greater than the angle $E D F$.

Then the base $B C$ shall be greater than the base $E F$.

Of the two sides $D E, D F$ ，let $D E$ be not greater than $D F$ ， at the point D ，in the line $D E$ ，and on the same side of it as $D F$ ，
make the angle $E D G$ equal to the angle $B A C$ ；（1．23．）
make $D G$ equal to $D F$ or $A C$ ，（r．3．）and join $E(r, G F$ ．
Then，because $D E$ is equal to $A B$ ，and $D G$ to $A C$ ， the two sides $D E, D G$ are equal to the two $A B, A C$ ，each to each， and the angle $E D(\dot{r}$ is equal to the angle $B A C$ ；
therefore the base $E G$ is equal to the base $B C$ ．（1．4．）
And because $D G$ is equal to $D F$ in the triangle $D F G$ ，
therefore the angle $D F G$ is equal to the angle $D G F ;($ r．5．）
but the angle $D G F$ is greater than the angle $E G F$ ；（ax．9．）
therefore the angle $D F G$ is also greater than the angle $E G F$ ； much more therefore is the angle $E F G$ greater than the angle $E(r F$ ．

And because in the triangle $E F G$ ，the angle $E F G$ is greater than the angle $E G F$ ，
and that the greater ancle is subtended by the greater side ；（r．19．）
therefore the side $E G$ is greater than the side $E F$ ；
but $E G$ was proved equal to $B C$ ；
therefore $B C^{\prime}$ is greater than $E F$ ．
Wherefore，if two triangles，\＆c．Q．E．D．

PROPOSITION XXV．THEORES．

If two triangles have two sides of the one equal to two sides of the other， each to cach，but the base of one greater than the base of the other；the angle contained by the sides of the one which has the greater base，shall be greater than the angle contained by the sides，equal to them，of the other．

Let $A B C, D E F$ be two triangles which have the two sides $A B, A C$ ， equal to the two sides $D E, D F^{\prime}$ ，each to each，namely，$A B$ equal to $D E$ ，and $A C$ to $D F$ ；but the base $B C$ greater than the base $E Y$ ．

Then the angle $B A C$ shall be greater than the angle $E D F$ ．

For，if the angle $B A C$ be not greater than the angle $E D F$ ， it must either be equal to it，or less than it．
If the angle $B A C$ were equal to the angle $E D F$ ，
then the base $B^{\prime} C^{\prime}$ wonld be equal to the base $E F$ ；（1．4．）
but it is not equal，（hypr．）
therefore the angle $B A C$ is not equal to the angle EDF．
Again，if the angle BAC were less than the angle EDF F^{\prime} ，
then the base $E C^{\prime}$ would be less than the base $E F^{\prime} ;(1.24$. but it is not less，（hyp．）
therefore the angle $B A C$ is not less than the angle $E D F^{\prime}$ ： and it has been shewn，that the angle $P A 1$＇is not equal to the angle EDF； therefore the angle $B A C$ is greater than the angle $E D F$ ． Wherefore，if two triangles，\＆c．Q．E．D．

PROPOSITION NXTI. THEOREM.

If tiro triangles have two ctryles of the ome equal to tro angles of the other, cach to each, and one side equal to one side, viz. either the sides adjacent to the equal angles in cach, or the sides opposite to them; then shall the other sides be equal, cach to each, and also the third angle of the one equal to the third angle of the other.

Let $A B C, D E F$ be two triangles which have the angles $A B C$, $B C A$, equal to the angles $D E F$, $E F D$, each to each, namely, $A B O$ to $D E F$, and $B C A$ to $E F D$; also one side equal to one side.

First, let those sides be equal which are adjacent to the angles that are equal in the two triangles, namely, $B C^{\prime}$ to $E F$.

Then the other sides shall be equal, each to each, namely, $A F$ to $D E$, and $A C$ to $D F$, and the third angle $B A C$ to the third angle $E D F$.

For, if $A B$ be not equal to $D E$, one of them must be greater than the other. If possible, let $A B$ be greater than $D E$, make $B G$ equal to $E D,(1.3$.$) and join G C$. Then in the two triangles $G^{\prime} B C, D E F$, because $G B$ is equal to $D E$, and $B C$ to $E F$, (hyp.)
the two sides $G B, B C$ are equal to the two $D E, E F$, each to each; and the angle $G B C$ is equal to the angle $D E F$;
therefore the base $G C$ is equal to the base $D F$, (1. 4.) and the triangle $G B C$ to the triangle $D E F$,
and the other angles to the other angles, each to each, to which the equal sides are opposite;
therefore the angle $G C B$ is equal to the angle $D F E$; but the angle $A C B$ is, by the hypothesis, equal to the angle $D F E$; wherefore also the angle $\widetilde{f}_{T} C B$ is equal to the angle $A C B ;(a x .1$.)
the less angle equal to the greater. which is impossible;
therefore $A B$ is not unequal to $D E$, that is, $A B$ is equal to $D E$.
Hence, in the triangles $A B C, D E F$;
because $A B$ is equal to $D E$, and $B C$ to $E F$. (hrp.) and the angle $A B C$ is equal to the angle $D E F$: (hyp.)
therefore the base $A C$ is equal to the base $D F$. (土. 4.) and the third angle $B A C$ to the third angle $E D F$.
Secondly, let the sides which are opposite to one of the equal angles in each triangle be equal to one another, namely, $A B$ equal to $D E$.

Then in this case likewise the other sidesshall be equal. $A C$ to $D F$, and $B C$ to $E F$, and also the third angle $B A C$ to the third angle $E D F$.

For if $B C$ be not equal to $E F$, ond of them must be greater than the other. If possible, let $B C$ be greater than $E F$; ruake $B H$ equal to $E F$, (土. 3.) and join $A H$. Then in the two triangles $A B H, D E F$, because $A B$ is equal to $D E$, and $B H$ to $E F$, and the angle $A B H$ to the angle $D E F$; (hyp.)
therefore the base $A H$ is equal to the base $D \dot{F}$. (ı. 4.)
and the triaugle $A B I I$ to the triangle $D E F$, and the other angles to the other angles, each to each, to which the equal sides are opposite:
therefore the angle $B H A$ is equal to the angle $E F D$;
but the angle $E F D$ dis equal to the angle $B C A$; (hyp.)
therefore the angle $B H A$ is equal to the angle $B C A$, (ax. 1.)
that is, the exterior angle $B H A$ of the triangle $A H C^{\prime}$, is
equal to its interior and oposite angle $B C A$;
which is impossible ; (r. 16.)
wherefore $B C$ is not unequal to $E F$, that is, $E C$ is equal to $E F$.
Hence, in the triangles $A B C, D E F$;
because $A B$ is equal to $D E$, and $B C$ to $E F$, (hyp.)
and the included angle $A B^{\prime}$ ' is equal to the inchded angle $D E F$: (hyp.)
therefore the base $A C$ is equal to the base II F, (т. 4.)
and the third angle $B A C$ to the third angle $E D F$.
Wherefore, if two triangles, \&c. Q.E.D.

PLOPOSITION XXVII. THEOREM.

If a straight line falling on two other straight lines, make the alternate angles equal to each other; 'these two streight lines shatl be parallel.

Let the straight line $E F$, which falls upon the two straight limes $A B, C D$, make the alternate angles $A E F, E F D$, equal to one another.

Then $A B$ shall be parallel to $C D$.

For, if $A B$, be not parallel to $C D$,
then $A B$ and $C D$ being produced will meet, either towards A and C, or towards B and D.
Let $A B, C J$) be produced and mect, if possible, towards B and D, in the point G, then GEF is a triangle.

And because a side $G E$ of the triangle $G E F$ is produced to A, therefore its exterior angle $A E F$ is greater than the interior and opposite angle EFY; ; (1. 16.)
but the angle $A E F$ is epual to the angle $E F G$; (hyp.)
therefore the angle $A E F^{\prime}$ is greater than, and equal to, the angle
$E F G$; whiel is impossible.
Therefore $A B, C D$ being produced, do not meet towards B, D.
In like manner, it may be demonstrated, that they do not meet when prodnced towards A, C.

But those straight lines in the same plane, which meet neither way, though produced ever so far, are parallel to one another; (def. 35.) therefore $A B$ is parallel to $C D$.
Wherefore, if a straight line, \&c. Q.E.D.

Prorosition xxtili. Tileoney.

If 'a straight line fulling upon two other straight lines, make the exterior angle equal to the interior and opposite upan the same side of the line; or make the interior angles upon the same side toyether equal to two right angles; the two straight lines shall be parallet to one another.

Let the straight line $E F$, which falls upon the two straight lines $A B, C I$, make the exterior angle $E G B$ equal to the interior and opposite augle GIID, upon the same side of the line EF; or make the two interior angles BGH, GIID on the same side together equal to two right angles.

Then $A B$ shall be parallel to $C D$.

Because the angle $E G B$ is equal to the angle $G I I D$, (hyp.) and the angle $E G B$ is equal to the angle $A G H$, (1. 15.)
therefore the angle $A G H$ is equal to the angle $G H D$; (ax. 1.)
and they are alternate angles,
therefore $A B$ is parallel to $C D$. (т. 27.)
Again, because the angles $B G H, G H D$ are together equal to two rig:at angles, (hyp.)
and that the angles $A G I F, B G H$ are also together equal to two right angles; (1. 13.)
therefore the angles $A G H, D G H$ are equal to the angles $B G H$, GHD : (ax. 1.)
take away from these equals, the common angle $B G I I$;
therefore the remaining angle $A G I I$ is equal to the remaining angle
GIID ; (ax. 3.)
and they are alternate angles;
therefore $A \dot{B}$ is parallel to $C D$. (i. 27.)
Wherefore, if a straight line, de. Q.E.D.

PROPOSITION XXIX. THEOREM.

If a straight line fall upon two parallel straight lines, it makes the alternate angles equal to one another ; and the exterior angle equal to the interior and opposite upon the same side; and likewise the two interior angles upon the same side together equal to two right angles.

Let the straight line $E F$ fall upon the parallel straight lines $A B, C D$. Then the alternate angles $A G I I, G I I D$ shall be equal to one onother, the exterior angle $E G B$ shall be equal to the interior and opposite angle $G H D$ upon the same side of the line $E F$;
and the two interior angles $B G I I, G H D$ upon the same side of $E F^{7}$ shall be together equal to two right angles.

First. For, if the angle $A G I I$ be not equal to the alternate angle GIID, one of them must be greater than the other ; if possible, let $A G H$ be greater than $G H D$,
then because the angle $A(G I I$ is greater than the angle $G I D D$, add to each of these unequals the angle $B G I I$;
therefore the angles $A G H, B G I I$ are greater than the angles $B G H$, $G H I$; (ax. 4.)
but the angles $A G H, B G H$ are equal to two right angles; (1. 13.) therefore the angles BGII, GIII) are less than two right angles; but those straight lines, which with another straight line falling upon them, make the two interior angles on the same side less than two right angles, will meet together if contimually produced ; (ax. 12.) theretore the straight lines $A B, C D$, if produced far enough, will meet towards B, D;
but they never meet, since they are parallel by the hypothesis; therefore the angle $A G I I$ is not mengal to the angle ($i / I D$), that is, the ancle $A G H$ is equal to the alternate angle $G I I H$.
Secondly, becanse the angle $A G / I$ is equal to the angle $E G B$, (1. 15.) and the angle $A G_{i} I I$ is equal to the angle ($i / I D$.
therefore the exterior angle $E G B$ is equal to the interior and opposite angle $(i / I D)$, on the same side of the line.
Thirdly. Becanse the angle $E F_{i}^{\prime} B$ is equal to the angle $G I F D$, add to cach of them the angle $B(1 I I$;
therefore the angles $E G B, B G I I$ are equal to the angles $B G I I, G I I D$; (ax. 2.)
but EG $B, B G I I$ are equal to two right anglea; (1. 13.)
therefore also the two interior angles $B G M I, G I I D$ on the same side of the line are equal to two right angles. (ax. 1.)

Wherefore, if a straight line, \&c. \&.E.D.

PROPOSITION XXX. TIIEOREM.

Straight lines which are parallel to the same straight line are parullel to each other.

Let the straight lines $A B, C D$, be each of them parallel to $E F$.
Then shall $A B$ be also parallel to $C D$.

Let the straight line GIIK cut $A B, E F, C D$.
Then because $G H h^{\prime}$ cuts the parallel straight lines $A B, E F$, in G, I;
therefore the angle $A G H$ is equal to the alternate angle $G H F$. (1.29.)
Again, because $G H h^{\prime \prime}$ cuts the parallel straight lines $E F, C D$, in H, K;
therefore the exterior angle $G I F$ is equal to the interior angle $H K D$; and it was shewn that the angle $A G H$ is equal to the angle $G H F^{\prime}$;
therefore the angle $A G I$ is equal to the angle $G K D$;
and these are alternate angles;
therefore $A B$ is parallel to $C D$. (I. 27.)
Wherefore, straight lines which are parallel, de. Q.E.D.

PROPOSITION XXXI. PROBLEM.

To dranc a straight line through a given point parallel to a given straight line.

Let A be the given point, and $B C$ the given straight line.
It is required to draw, through the point A, a straight line parallel to the straight line $B C$.

In the line $B C$ take any point D, and join $A D$, at the point A in the straight line $A D$,
make the angle $D A E$ equal to the angle $A D C$, (r. 23.) on the opposite side of $A D$;
and produce the straight line $E A$ to F.
Then $E F$ shall be parallel to $B C$.
Because the straight line $A I$ meets the two straight lines $E F, B C$, and makes the alternate angles $E A D, A D C$. equal to one another, therefore $E F$ is parallel to $B C^{\prime}$. (1. 27.)
Wherefore, throngh the given point A. has been drawn a straight line $E d k^{\prime}$ parallel to the given straight line BC. Q.E.F.

PROPOSITION XXXII. THEOREM.

If a side of any triangle be produced, the exterior angle is equal to the two interior and opposite ungles; and the three interior angles of crery triangle are together equal to two right angles.

Let $A B C$ be a triangle, and let onc of its sides $B C$ be produced to D.
Then the exterior angle $A C D$ shall be equal to the two interior and opposite angles $C A B, A B C$:
and the three interior angles $A B C, B C A, C A B$ shall be equal to two right angles.

Through the point C draw $C E$ parallel to the side $B .1$. (r. 31.)
Then because $C E$ is parallel to $B A$, and $A C$ meets them, therefore the angle $A C E$ is equal to the alternate angle $B A C$. (ı. 29.) Again, because $C ' E$ is parallel to $A B$, and $B D$ falls upon them,
therefore the exterior angle $E C D$ is equal to the interior and opposite angle $A B C$; (1. 29.)
but the ancle $A C E$ was shewn to be equal to the angle $B A C$;
therefore the whole exterior angle $A C D$ is equal to the two interior and opposite angles $C A D, A B C$. (ax. 2.)
Again, because the ansrle $A(D)$ is equal to the two angles $A B C, B A C$, to each of these equals add the angle $A C D$,
therefore the angles $A(1 D)$ and $A C D$ ' are equal to the three angles $A B C . B A C$, and $A C B$; (ax. -.)
but the angles $A C D, A C E$ are equal to two right angles, (I. 13.)
therefore also the angles $A B C, B A C, A C D$ are equal to two right angles. (ax. 1.)
Wherefore, if a side of any triangle be produced, \&c. Q.E.D.
Cons. 1. All the interior angles of sur rectilineal figure together with four right angles, are equal to twice as many right angles as the figure has sides.

For any rectilineal figure $A B C D E$ can be divided into as many triangles as the fignre has sides by drawing straight lines from a point F within the figure to cach of its angles.

Then, becanse the three interior angles of a triangle are equal to two right angles, and thereare as many tringles as the figure has sides,
therefore all the angles of these trimgles are equal to twiou as many right angles as the figure has sides:
but the same angles of these triangles are equal to the interior angles of the fignre together with the angles at the point F^{\prime} :
and the angles at the point F, which is the common vertex of all the tringles, are equal to four right angles, (1. 15. Cor. 2.)
therefore the same angles of these triangles are equal to the angles of the figure torether with four right angles;
but it has been proved that the angles of the triangles are equal to twice as many right angles as the figmre hats sides:
therefore all the angles of the ligure together with four right angles, are eqnal to twice as many right angles as the figure haw sides.
Con. 2. All the exterior angles of any rectilineal figure, made by producing the sides successively in the same direction, are together equal to four right angles.

Since every interior angle $A B C$ with its adjacent exterior angle $A B D$, is equal to two right angles. (r. 13.)
therefure all the interior angles, together with all the exterior angles, are equal to twice as many right angles as the figure has sides;
but it has been proved by the foregoing corollary, that all the interior angles together with four right angles are equal to twice as many right angles as the figure has sides;
therefore all the interior angles together with all the exterior angles, are equal to all the interior angles and four right angles, (ax. 1.) take from these equals all the interior tagles,
therefore all the exterior angles of the figure are equal to four right augles. (ax. 3.)

PP.OPOSITION XXXIII. TIIEOREM.

The straight lines which join the extremities of two cqual and parallel straight lines towards the sume parts, are also themselves equal and parallel.

Let $A B, C D$ be equal and parallel straight lines, and joined towards the same parts by the straight lines $A C, B D$ 。 Then $A C, B D$ shall be equal and parallel.

Join $B C$.

Then because $A B$ is parallel to $C D$, and $B C$ incets them,
therefore the angle $A B C$ is equal to the alternate angle $B C D$: (土. 29.)
and becanse $A B$ is equal to (D), and $B(c$ common to the two triangles $A B C, D C B$; the two sides $1 B, B C$, are equal to the two $D C, C B$, eacio to each, and the angle $A B C$ was proved to be equal to the angle $B C D$:
therefore the base $A C$ is equal to the base $B D,(1.4$.
and the triangle $A B C$ to the triangle $B C D$,
and the other angles to the other angles, each to each, to which the equal sides are opposite;
therefore the angle $A C B$ is equal to the angle $C B D$.
And because the straight line $B C^{\prime}$ meets the two straight lines $A C$, $B D$, and makes the alternate angles $A C \prime B, C D D=$ equal to one another; therefore $A C$ is parallel to $1 B D ;($ (1. 27.)
and $A C$ was shewn to be equal to $B L$.
Therefore, straight lines which, dc. Q.E.D.

PROPOSITION XXXIV. THEOREM.

The opposite sides and angles of a parallelogram are equal to one arother, and the diameter biseets it, that is, divides it into two equal parts.

Let $A C D B$ be a parallelogram, of which $B C$ is a diameter.
Then the opposite sides and angles of the figure shall be equal to one another; and the diameter $B C$ shall bisect it.

Because $A B$ is parallel to $C D$, and $B C$ meets them,
therefore the angle $A B C$ is equal to the alternate angle $B C^{\prime} D$. (г. 20.) And because $A('$ is parallel to $B D$. and $B C$ meets them.
therefore the angle $A C B$ is equal to the alternate angle $C B D$. (1. 29.) Hence in the two triangles $A B C, C B I$,
because the two angles $A B C^{\prime}, B C A$ in the one, are equal to the two angles $B C D, C B D$ in the other, each to each;
and one side $B C$, which is adjacent to their equal angles, common to the two triangles.
therefore their other sides are equal, each to each, and the third angle of the one to the third angle of the other, (r. 26.)
namely, the side $A B$ to the side (I), and $A C$ to $B D$, and the angle $B A C$ to the angle $B I C$.
And because the angle $A B C^{\prime}$ is equal to the angle $B C^{\prime} D$, and the angle (' $B T$) to the angle $A(1)$,
therefore the whole angle $A B D$ is equal to the whole angle $A C D$; (ax. 2.) and the angle $B . A C$ has been shewn to be equal to $B H f^{\prime}$:
therefore the oiprosite sides and angles of a parallelogram are equal to one another.
Also the diameter BC bisects it.
For since $A B$ is equal to $C D$, and $B C$ common, the two sides $A B$,

and the angle $A B C$ has been proved to be equal to the angle $B(1 D)$: therefore the trimgle $A B C^{\prime}$ is eqnal to the trimele $B(B) ;(1.4$.$) and$ the diameter $B C^{\prime}$ divides the parallelogram $A C D B$ into two equal parts. Q.E.D.

PROPOSITION XXXV. THEOREM.

Parallelograms upon the same base, and brtween the same parailels, wre equal to one another.

Let the parallelograms $A B C D, E B C F$ be upon the same base $B C$, and between the same parallels $A F, B C$.

Then the parallelogram $A B C D$ shall be equal to the parallelogram $E B C$ '

If the sides $A D, D F$ of the parallelograns $A B C D, D B C F$, opposite to the base $B C$, be terminated in the same point D;
then it is pain that each of the parallelograms is duable of the tri-
angle $B D C$; ((. 34.)
and therefore the parallelogram $A B C D$ is equal to the parallelogram DBCF. (ax. 6.)

But if the sides $A D, E F$, opposite to the base $B C$, be not terminated in the same point;

Then, becanse $A B C D$ is a parallelogram, therefore $A D$ is equal to $B C$; (1. 84.)
and for a similar reason, $E F$ is equal to $B C$; wherefore $A D$ is equal to $E F$; (ax. 1.) and DE' is common ;
therefore the whole, or the remainder $A E$, is equal to the whole, or the remainder $D F$; (ax. 2 or 3 .)
and $A B$ is equal to $D C$; (1. 24.) hence in the triangles $E A B, F D C$, because $F D$ is equal to $E A$, and $D C$ to $A B$,
and the exterior angle $F D C$ is equal to the interior and opposite angle EA 1 ; (1. 29.)
therefore the base $F C$ is equal to the hase $E B$, (i. 4.) and the triangle $F D C$ is equal to the triangle $E A B$,
From the trapezium $A B C^{\prime} l^{\prime}$ take the triangle $F D C$,
and from the same trapeziun take the triangle $E A D$, and the remainders are equal, (ax. 3.)
therefore the parallelogram $A B C D$ is equal to the parallelogram $E B C F$.
Therefore, parallelograns upon the same, dc. e.E.D.

PROPOSITION XXXYI. THEOREM.

Parallelograms upon equal bases and between the same parallels, are equal to one another.

Let $A B C D, E F G I I$ be parallelograms upon equal bases $B C, F G$, and between the same parallels $A H, B C_{r}$.

Then the parallelogram $A B C D$ slall be equal to the parallelogram EFGH.

$$
\text { Join } B E, C H \text {. }
$$

Then because $B C$ is equal to $F G$, (hyp.) and $F G$ to $E I$, (1. 34.) therefore $B C$ is equal to $E H$; (ax. 1.) and these lines are parallels, and joined towards the same parts by
the straight lines $B E$, CII;
lout straiglat lines which join the extremities of equal and parallel straight lines towards the same parts, are themselves equal and parallel ; (1. 83.)
therefore $D E, C I I$ are both equal and parallel ; wherefore EBCII is a parallelogram. (def. A.)
And because the parallelograms $1 B C D, E B(H$, are upon the same base $B C$, and between the same parallels $B C, A I I$;
therefore the parallelogram $\triangle B C D$ is equal to the parallelogram EBCII. (土. 35.)

For the same reason, the parallelogram $E F G H$ is equal to the parallelogram EBCH:
therefore the parallelogram $A B C D$ is equal to the parallelogram EFGII. (ах. 1.)

Therefore, parallelograms upon equal, \&c. Q.E.D.

PROPOSITION XXXVII. THEOREM.

Triangles upon the same base and between the same parallels, are equal to one another.

Let the triangles $A B C, D B C$ be upon the same base $B C$, and between the same parallels $A D, B C$.
Then the triangle $A B C$ shall be equal to the triangle $D B C$.

Produce $A D$ buth ways to the points E, F; through B draw $B E$ parallel to $(A,(1.31)$. and throngh C draw $C F$ parallel to $B D$.
Then each of the figures $E: B(A, C) B C \cdot 1$ is a parallelogram ; and EBCA is equal to $D B C F,(1.35$.$) bec:anse they are upon tho$ same base $D C$, and between the same paraltels $B C=E P$.
And because the diameter $A B$ bisects the parallelogram EBC. A, therefore the triangle $A D C$ is half of the parallelogran $E B C A ;(t, 34$.) also because the diameter $D C$ bisects the parallelorem $D / B C H$, theretore the triangle $D B C$ is half of the parallelogram $D B C F$, but the halves of equal-things are equal ; (ax. 7.)
therefore the triansle $A l i^{\prime}$ is egpal to the triangle $D B C$. Wherefore, triangles, \&e. Q.E.D.

PPOPOSITION XXXVIII. TIFOREM.

Triangles upon efual buses and betueen the same parallels, wie equal to one another.

Let the triangles $A B C, D E F$ be upon equal bases $B C, E F$, and between the same parallels $B F, A D$.

Then the triangle $A B C$ shall be equal to the triangle $D E F$.

Produce $A D$ both ways to the points G, I; through B draw $B G$ parallel to $C A,(1.81$. and through F draw $F H$ parallel to $E I$,
Then each of the figures $G B C A, D E F I I$ is a parallelogram; and they are equal to one another, (1. 36.)
because they are mon equal bases $B C, E F$, and between the same parallels $B F, G H$.
And becanse the diameter $A B$ bisects the parallelogram $G B C A$, therefore the triangle $A B C$ is the half of the parallelogram $G B C A$; (I. 34.)
also, because the diameter $D F$ bisects the parallelogram $D E F H$. therefore the triangle $D E F$ is the half of the parallelogram $D E F H$;
but the halves of equal things are equal ; (ax. 7.)
therefore the triangle $A B C$ is equal to the triangle $D E F$. Wherefore, triangles upon equal bases, \&c. Q.E.D.

PROPOSITION XXXIN. THEOREM.
Equal triangles upon the same base and upon the same side of it, are betreeen the same parallels.

Let the equal triangles $A B C, D B C$ be upon the same base $B C$ and upon the same side of it.

Then the triangles $A B C, D B C$ shall be between the same parallels.

Join $A D$: then $A D$ shall be parallel to $B C$. For if $A D$ be not parallel to $B C$.
if possible, through the point A, draw $A E$ parallel to $B C$ (1. 31.) mecting $B D$, or $B D$ produced, in E. and join $E C$.

Then the triangle $A B C$ is equal to the triangle $E B C$, ($\mathbf{(} .37$. becanse they are npon the same base $B C$, and between the same parallels $B C, A E$:
but the triangle $A B C$ is equal to the triangle $D B C$; (hyp.).
therefore the triangle $D B C$ is equal to the triangle $E B C$,
the greater triangle equal to the less, which is impossible : therefore $A E$ is not parallel to $B C$.
In the same manner it can be demonstrated,
that no other line drawn from A but $A D$ is parallel to $B C$; $A D$ is therefore parallel to $B C$.
Wherefore, equal triangles upon, \&c. Q.E.D.

PROPOSITION XL. THEOREM.

- Equal triangles upon cqual bases in the same straight line, and towards the same parts, are between the same parallels.

Let the equal triangles $A B C, D E F$ be upon equal bases $B C, E F$, in the same straight line $B F$, and towards the same parts.

Then they shall be between the same parallels.

Join $A D$; then $A D$ shall be parallel to $B F$.
For if $A D$ be not parallel to $B F$,
if possible, throngh A draw A (f parallel to $D F$, (土. 31.)
meeting $E D$, or $E D$ produced in G. and join $G F$.
Then the triangle $A B C$ is equal to the triangle $G E F$, (1. 38.)
because they are upon equal hases $B C, E F$, and between the same parallels $B F, A(\dot{r}$;
but the triangle $A B C$ is equal to the triangle $D E F$; (hyp.)
therefore the triangle $D E F^{\prime}$ is equal to the triangle $G E F$, (ax. 1.)
the greater trimgle equal to the less. Which is impossible:
therefore $A G$ is not parallel to $P F$.
And in the same mamer it can be demonstrated,
that there is no other line drawn from A parallel to it but $A D$; $A D$ is therefore parallel to $B F$.
Wherefore, equal triangles upon, \&c. Q.E.D.

PROPOSITION XLF. THEOREM.

If a parallelogram and a triangle be ripon the same base, and betwern the same parallels; the parallelograin shall be donble of the trimule.

Let the parallelogram $A B C D$, and the triangle EBC be upon the same base $B C$, and between the stme parallels $B C, A E$.

Then the parallelogram $A B C D$ shall le double of the triangle $E B C$.

Then the triangle $A B C$ is equal to the triangle $E B C$, (1. 37.)
because they are upon the same base $B C$, and between the same parallels $B C, A E$.
But the parallelegram $A B C D$ is double of the triangle $\triangle B C$, because the diameter $A(1$ lisects it ; (r. 34.)
wherefore $A B C D$ is also donble of the triangle EBr. Therefore, it a parallelogram and a triangle, de. e.e.d.

Proposition xlif. problem.

To describe a parallelotram that shall be aqual to a given triangle, and have one of its angles cqual to a given rectilincal angle.

Let $A B C$ be the given triangle, and D the given rectilineal angle.
It is required to describe a parallelogram that shall be equal to the given triangle $A B C$, and lave one of its angles equal to H.

Bisect $B C$ in E, (1. 10.) and join $A E$; at the point E in the straight line $E C$.
make the angle $C E F$ equal to the angle D; (1. 23.)
through C draw $C G$ parallel to $E F$, and throngh A draw $A F G$ parallel to $B C$, (1.31.) meeting $E F$ in F, and $C G$ in G.

Then the figure $C E F G$ is a parallelogram. (def. A.)
And because the triangles $A B E, A E C$ are on the equal bases $B E, E C$, and between the same parallels $B C, A G$;
they are therefore equal to one another ; (r. 38.)
and the triangle $A B C$ is donble of the triangle $A E C$;
but the parallelogran $F E C G$ is donble of the triangle $A E C$, (1. 41.)
because they are mon the same base $E C$, and between the same parallels $E C, A G$;
there fore the parallelogram $F E C C$ is equal to the triangle $A B C$, (ax.6.)
and it has one of its angles (CEF equal to the given angle D.
Wherefore, a parallelogram FECG las been described equal to the given triangle $A B C$ and having one of its angles $C E F$ equal to the given angle D. Q.E.F.

PROPOSITION XLIII. THEOREM.

The complements of the parallelorrams, which are aboit the diameter of any perallelogram, are cqual to one another.

Let $A B C D$ be a parallelogram, of which the dianeter is $A C^{r}$: and

also $B K, K_{1} D$ the other parallelograms which make up the whole figme $A B C D$, which are therefore called the complements. Then the complement $B h$ shall be equal to the eomplement $K D$.

Because $A B C D$ is a parallelogram, and $A C$ its diameter, therefore the triangle $A B C$ is equal to the triangle $A D C$, (1. 34.)

Again, becanse EKHA is a parallelogram, and $A h^{\prime}$ its diameter,
therefore the triangle $A E H^{-}$is equal to the trimgle $A H h^{r}$; (т.34.) and for the same reason, the triangle $I^{\prime} G^{\prime} C^{\prime}$ is equal to the triangle $I^{\prime} F C$.

Wherefore the two triangles $A E K, H^{\prime} G C$ are equal to the two triangles $A H H^{\circ}, h^{\prime} F^{\prime}$, (ax. 2.)
but the whole triangle $A B C$ is equal to the whole triangle $A D C$; therefore the remaining complement $B I^{r}$ is equal to the remaining complement hil. (ax. 3.)

Wherefore the complements, $\mathcal{d c} . \quad$ Q.E.D.

prorosition xliv. problem.

To a given straight line to apply a parallelogram, which shall be equal to a given triangle, and hare one of $i t s$ angles equal to a given rectilineal angle.

Let $A B$ be the given straight line, and C the given triangle, and D the given rectilineal angle.

It is required to apply to the straight line $A B$. a parallelogram equal to the triangle (', and having an angle equal to the angle D.

Make the parailelogram $\operatorname{BEFG} \boldsymbol{r}^{\prime}$ equal to the triangle C, and having the angle $E B(;$ equal to the angle I, (1.42.)
so that $B E^{\prime}$ be in the same straight line with $A B ;$
prochnce $F(G$ to $I I$,
through A draw $A I$ parallel to $B\left(f_{r}\right.$ or $E F P$, (ı. 31.) and join $I I B$. Then becanse the straight line $/ I F$ falls upon the parallels $A M, E F$, therefore the amgles $A M F, M F E$ are together equal to two right angles; ((1. 29.)
wherefore the angles BIIF. HFE are leas than two right angles:
but straight lines which with another straght line, make the two interior angles mon the same side less than two right angles, do meet if produced far emonglı: (ax. 12.)
therefore $/ I J, F E$-hall meet if prodneed;
let them be produced and meet in h.
throngh h draw lit parallel to EA or FII, and prorlnce $I I A, G B$, to mect $l_{1} L$ in the points L, M, Then $H L K F$ is a parallelogram, of wheh the diameter is $I h^{\prime}$:
and $A G, M E$, are the parallelograms about $M K$;
also $L B, B F$ are the complements:
therefore the complement $L B$; is equal to the complement $B F^{\prime}$; (I .43.)
but the complement $B F$ is equal to the triangle (' ; (constr.)
wherefore $L B$ is equal to the triangle C.
And becanse the angle GBE is equal to the angle $A B M O$ (1. 15.) and likewise to the angle I; (constr.)
therefore the angle $A B M$ is equal to the angle D. (ax. 1.)
Therefore to the given straght line $A B$, the parallelogram $L B$ has been applied, equal to the triangle C, and having the angle $A B M$ equal to the given angle D. Q.E.f.

PROPOSITION XLT. PROBLEM.

To descrebe a purallelogram equal to a given rectilineal figure, ared having an amgle aqual to a given rectilineal angle.

Let $A B C D$ be the given rectilineal figure, and E the given rectilineal angle.

It is required to describe a parallelogran thet shall be equal to the figure $-I B C D$, and having an angle equal to the given angle E.

Deacribe the parallelogram $F H$ equal to the triangle $A D B$, and having the angle $F / H M$ equal to the angle E; (I. 42.)
to the straight line $G M$, apply the parallelogram (r.M equal to the triangle $D B C^{\prime}$, haring the angle GHM equal to the angle E. (1. 44.)

Then the fignre $F F M I$ shall be the parallelogram required.
Because each of the angles FHII, GHM, is equal to the angle E, therefore the angle $F H W$ is equal to the angle G $H M$; add to each of these equals the angle $K H G$; therefure the angles FHH, hHG are equal to the angles LHG, GHIF; but FhII, hIIG are equal to two right angles; (1. 29.)
therefore also $K I I G, G I I M$ are equal to two right angles; and becanse at the point H, in the straight line $G H$, the tro straight lines $K I F, I I M$, upon the opposite sides of it, make the adjacent angles $K H F, G H I H$ equal to two right angles,
therefore $H K^{\circ}$ is in the same straight line with $H 11 \%$. (I. 14.)
And because the line $H G$ meets the parallels $K M . F G$, therefore the angle $M I I G$ is equal to the alteruate angle $I I G F$: (і. 29.) add to each of these equals the angle $\bar{H}(\underset{T}{ } f$:
therefore the ancles $M I I G . M(C L$ are equal to the angles $I I G F, H G L$; but the angles MHG. $H G L$ are equal to two right angles; (i. 29.) therefore also the angles $I I G F$, $I G L$ are equal to two right angles, and therefore $F G$ is in the same straight line with $G L$. (1.14.)

And becanse $K F$ is parallel to $H G$ ，and $H G$ to $M L$ ， therefore $K F$ is parallel to $M L$ ；（1．30．） and $F L$ has been proved parallel to $K M$ ， wherefore the figure $F W M L$ is a parallelogram ； and since the parallelogram $I F F$ is equal to the triangle $A B D$ ， and the parallelogram $G M$ to the triangle $B D C^{\prime}$ ；
therefore the whole parallelogram $K F L M$ is equal to the whole rectilineal figure $A B C^{\prime} D$ ．
Therefore the parallelogram KFLM has been described equal to the given rectilineal figure $A B C D$ ，having the angle FhH equal to the given angle E ．Q．e．f．

Cor．From this it is manifest how，to a given straight line，to apply a parallelogram which shall have an angle equal to a given rectilineal angle，and shall be equal to a giren rectilineal figure ；viz．by applying to the given straight line a parallelogram equal to the first triangle $A B D,(1.44$.$) and having an angle equal to the given angle．$

Proposition Nlvi．problem．

To deseribe a square upon a given straight line．
Let $A B$ be the given straight line．

It is required to describe a square upon $A B$ ．
From the point A draw $A C$ at right angles to $A B$ ；（1．11．） make $A D$ equal to $A B$ ；（土．3．）
through the point D draw $D E$ parallel to $A B$ ；（（．31．） and throngh E ，draw $B E$ parallel to $I D$ ，meeting $D E$ in E ；
therefore $A B E D D$ is a parallelogran；
whence $A B$ is equal to $H E$ ，and $A D$ tor $B E ;$（土．34．）
but $A D$ is equal to $A B$ ，
therefore the fon lines $A B, B E, E D, D, A$ are equal to one another and the parallelogram $A B E D$ is equilateral．
It lias likewise all its angles right angles；
since A / J meets the parallels $A B, J I E$ ，
therefore the angles $B A D, 1 D E$ are equal to two right angles ；（t．29．）
but $B A D$ is at right angle；（constr．）
therefore also $A J E$ is a richt angle．
But the opposite aurles of parallelograms are equal ；（1．3．4．）
therefore each of the opposite angles $A B E, P B E /=$ is a right angle ；
wherefore the figure $A B E D$ is rectugrular， and it has been proved to be equilateral ；
therefore the fignre $A B E /$ is a sumare，（def．30．）
and it is described upon the given straight line $A B$ ．Q．E．F．

Cor. Hence. erery parallelogram that has one of its angles a , ght angle, has all its anglés right angles.

PROPOSITIUN XLVII. THEOREM.

In any right-angled triangle, the square entich is described upon the side subtending the right angle, is equal to the squares described upon the sides which contain the right ungle.

Let $A B C$ be a ris hit-angled triangle, having the right angle $B A C$.
Then the square described upon the side $B C$, shall be equal to the squares described upon $B A, A C$.

On $B C$ describe the square $B D E C$, (I. 46.)
and on $B A, A C$ the squares $G B, H C$;
through A draw $A L$ parallel to $B D$ or $C E$; (1. 31.) and join $A D, F C$.
Then because the angle $B A C$ is a right angle, (hyp.) and that the angle $B A G$ is a right angle, (def. 30.)
the tro straight lines $A C, A G$ upon the opposite sides of $A B$, make with it at the point A, the adjacent angles eçual to two right angles;
therefore $C A$ is in the sume straight line with $A(r$. (I. 14.)
For the same reason, $B A$ and $A I I$ are in the same straight line.
And because the angle $D B C$ is equal to the angle $F B A$, each of them heing a right angle,
add to each of these equals the angle $A B C$.
therefore the whole angle $A B D$ is equal to the whole angle $F B C$. (ax. 2.)
And because the two sides $A B, B D$, are equal to the tiro sides $F B$, $B C$, each to each, and the included angle $A B D$ is equal to the included angle $F B C$,
therefore the base $A D$ is equal to the base $F C$. (i. 4.) and the trimgle $A B D$ to the triangle $F B C$
Now the parallelogram $B L$ is double of the triangle $A B D$, (r. 41.)
becanse they are upon the same base $B D$, and between the same parallels $B D$, $A L$;
also the square $G B$ is doulle of the triangle $F B C$,
because these also are upon the same base $F B$, and between the same parallels $F B$. GC .
But the doubles of equals are equal to one another: (ax. fi.)
therefore the parallelouram $B L$ is equal to the square $G B$. Similarly, by joining $A E, B h^{r}$, it can be prored.
that the parallelogram $C L$ is equal to the square $H C$.

Therefore the whole square $B D E C$ is equal to the two squares $G B, H\left({ }^{\prime}\right.$; (ax. थ.)
and the sylure $B D E C$ is described upon the straght line $B C$,
and the squares $G B, H C$, upon $A B, A C^{\prime}$:
therefore the square upon the side $L C^{\prime}$, is equal to the squares upon
the sides $A l, A C$.
Therefore, in any right-angled triangle, de. Q.E.D.

PROPOSITION NLVIII. THEOREM.

1. If the square deseribed upmon one of the sides of a triangle, be equal to the squares deseribed upon the other two sides of it ; the angle contained by these two sides is a right angle.

Let the square described upon $B C$. one of the sides of the triangle $A B C$, be equal to the squares upon the other two sides, $A B, A C$.

Then the angle $B A O^{\prime}$ shall be a right angle.

From the point A draw $A D$ at right angles to $A C$, (1. 11.)
make $A D$ equal to $A B$, and join $D C$.
Then, because $A D$ is equal to $A B$,
the square on $A D$ is equal to the square on $A B$;
to each of these equals add the square on $I C$;
therefore the squares on $A D, A C$ are equal to the squares on $A B, A C$: but the squares on $A D, A C$ are equal to the square on $D C$, (1. 47.) becanse the angle D_{A} (${ }^{\prime}$ is a right angle;
and the square on $B C$. by hypothesis, is equal to the squares on $B A, A C$;
therefore the square on I C is equal to the square on $B C$;
and therefore the side $D C$ is equal to the side $D C$.
And becanse the side $A D$ is equal to the side $A D$,
and $A C$ is common to the two triangles $I_{A} A C, B A C$;
the two sides $D .1, A C$, are equal to the two $B A, A C$, each to each; and the base $D C$ has been proved to be equal to the base B, ;
therefore the angle $D A C$ is equal to the angle $B . A C^{2}$; (1.8.)
hut $D A C$ is a right angle;
therefore also $B A C$ is a right angle.
Therefore, if the syuare described upon, \&e. Q.E.d.

NOTES TO BOOK I.
 ON TIIE DEFLNITIONS.

Geometry is one of the most perfect of the deductive Seienens, and seems to rest on the simplest induetions from experience and observation.

The first principles of (icometry are therefore in this view consistent hypotheses founded on facts cognizable by the senses, and it is a subject of pimary importance to draw a distinction between the conception of things and the things themselves. These hypotheses do not involve any property contrary to the real nature of the things, and consequently cannot be regarded as arbitrary, but in certain respects, agree with the conceptions which the things themselves suggest to the mind through the medium of the senses. The essential detinitions of Geometry therefore being inductions from observation and experience, rest ultimately on the evidence of the senses.

It is by experience we become acquainted with the existenee of individual forms of magnitudes; but by the mental process of abstraction, which begins with a particular instance, and proceeds to the general idea of all objects of the same kind, we attain to the general conception of those forms which come under the same general idea.

The essential definitions of Geometry express generalized emeeptions of real existences in their most perfect ideal forms: the laws and appearances of nature, and the operations of the human intellect being supposed unitorm and consistent.

But in cases where the subject falls under the class of simple ideas, the terms of the definitions so called, are no more than merely equivalent expressions. The simple idea described by a proper term or terms, does not in fact admit of definition properly so called. The definitions in Euclid's Elements may be divided into two classes, those whiels merely explain the meaning of the terms emplored, and those which, besides explaining the meaning of the terms, suppose the existence of the things described in the definitions.

Definitions in Geometry canuot be of such a form as to explain the nature and properties of the figures defined: it is sufficient that they give marks whereby the thing defined may be distinguished from every other of the same kind. It will at once be obvious, that the definitions of Geometry, one of the pure sciences, being abstractions of space, are not like the definitions in any one of the plysical sciences. The discovery of any new plysical facts may render necessary some alteration or modification in the definitions of the jatter.

Def. 1. Simson has adopted Theon's definition of a point. Euclid's defi-
 part," or which camot be parted or divided, as it is explained by Proclus. The Greek term $\sigma \eta \mu \epsilon \hat{i} \nu$, , literally means, a visible sign or mark on a surface, in other words, a physical point. The English term point, means the sharp end of any thing, or a mark made by it. The word point comes from the Latin penctum, through the French word pimint. Neither of these terms, in its literal sense, appears to give a very exact notion of what is to be understood by a point in (icometry. Euclid's definition of a point merely expresses a negative property; which excludes the proper and literal meaning of the Greek term, as ajpplied to denote a physical point, or a mark which is visible to the senses.
 position." By uniting the positive idea of position, with the negative idea of defect of magnitude, the conception of a point in Geometry may
be rendered perhaps more intelligible. A point is defined to be that which has no maguitude, but position only.

Def. ir. Every visible line has both length and breadth, and it is impossible to draw any line whatever which shall have no breadth. The definition requires the conception of the length only of the line to be considered, abstracted from, and independently of, all idea of its breadth.

Def. nII. This definition render's more intelligible the exact meaning of the definition of a point: and we may add, that, in the Elements, Euclid supposes that the intersection of two lines is a point, and that two lines can intersect each other in one point only.

Def. iv. The straight line or right line is a term so elear and intelligible as to be incapable of becoming more so by formal definition. Euclid's
 wherein he states it to !ie eventy, or equally, or tpon an equality ($\epsilon \xi$ z' $\sigma o v$) between its extremities, and which Proclus explains as being stretched be-

If the line be enneeived to be llawn on a plane surface, the words $\dot{\epsilon} \xi$ zoov may mean, that no part of the line which is ealled a straight line deviates either from one side or the other of the direction which is fixed by the extremitics of the line; and thus it may be distinguished from a curved line, which does not lie, in this sense, evenly between its extreme points. If the line be conceived to be drawn in space, the words $\epsilon \xi$ toov, must he anderstool to apply to every direction on every side of the line between its extremities.

Every straight line sitnated in a plane, is considered to hare two sides; and when the direction of a line is known, the line is said to be given in position; also, when the length is known or can be found, it is said to be given in magnitude.

From the defintion of a straight line, it follows, that two points fix a straight line in position, which is the foundation of the first and second postulates. Wence straight lines which are proved to coincide in two or more points, are called, "one and the same straight line," Prop. 14, Book 1, or, which is the same thing, that "two straight lines eannot have a common segment," as simson shews in his Corollary to Irop. 11, Book 1.

The following defintion of straight lines has also been proposet: "Straight lines are those which, if they eoincide in any two points, coneide as far as they are protuced." But this is rather a eriterion of straight lines, and analogots to the cleventh axiom, which states that, " all right angles are equal to one another," and suggests that all straight lines may be made to coincide wholly, it the lines be equal; or partially, if the lines be of merpual lengths. A detinition should properly be restricted to the description of the thing delined, as it exists, independently of any comparison of its properties or of tacitly assuming the existence of axioms.

 which lies erenly or equally with the straight lines in it ;" instead of which Simson las given the definition which was originally propesed by flem the Bllder. A platne supertieies may be supposed to be situated in any position, and to be continued in every direetion to any extent.

Def. vins. Simson remarks that this definition seems to include the angles formed by two eurved lines, or-a curve and a straight line, as well as that formerd by two straight lines.

Angles made by staight lines only, are treated of in Elementary (ieometry:

Def. Ix. It is of the highest importance to attain a clear conception of an angle, and of the sum and difference of two angles. The literal meaning of the term angulus sugrests the Geometrical conception of an angle, which may be regarded as formed by the divergence of two straight lines from a point. In the definition of an angle, the magnitude of the angle is independent of the lengths of the two lines by which it is included; their mutual divergence from the point at which they meet, is the eriterion ol the magnitude of an angle, as it is pointed out in the succeeding definitions. The point at which the two lines meet is called the angular point or the vertex of the angle, and must not be confounded with the magnitude of the angle itself. The right angle is fixed in magnitude, and, on this aceount, it is made the standarl with whieh all other angles are compared.

Two straight lines whieh aetually intersect one another, or which when produced would interseet, are said to be inclined to one another, and the inclination of the two lines is determined by the angle which they make with one another.

Def. x. It may be here observed that in the Elements, Euclid always assumes that when one line is perpendicular to another line, the latter is also perpendicular to the former; and always calls a right angle, óp日ì $\gamma \omega \nu \dot{\prime} \alpha$: but a straiyht line, є $\dot{\theta} \theta \in i \alpha$ रранці).

Def. xin. This has been restored from Proclus, as it seems to have a meaning in the construction of Prop. 14, Book II ; the first ease of Prop. 33, Book 11, and Prop. 13, Book vi. The definition of the segment of a circle is not once alluded to in Book I, and is not required before the discussion of the properties of the cirele in Book nu. Proclus remarks on this definition: "Hence you may collect that the eenter has three places: for it is either within the figure, as in the cirele; or in its perimeter, as in the semicirele; or without the figure, as in certain conie lines."

Def. xur-xixi. Triangles are divided into three classes, by reference to the relations of their sides; and into three other classes, by reference to their angles. A further classification may be made by considering both the relation of the sides and angles in each triangle.

In Aimson's definition of the isoseeles triangle, the word only must be omitted, as in the Cor. Prop. 5, Book r, an isosceles triangle may be equilateral, and an equilateral triangle is considered isosceles in Prop. 15, Rook 15 . Objection has been made to the definition of an acute-angled triangle. It is said that it eannot be admitted as a definition, that all the three angles of a triangle are aeute, which is supposed in Def. 29. It may be replied, that the definitions of the three kinds of angles point out and seem to supply a foundation for a similar distinction of triangles.

Def. xxx-xxxit. The definitions of equadrilateral figures are liable to objection. All of them, exeept the trapezium, fall under the general idea of a parallelogram; but as Euclid defined parallel straight lines after he had delined four-sided figures, no other arrangement could be adopted than the one he has followed; and for which there appeared to lim, without doubt, some probable reasons. Sir Hemy Savile, in his Seventh Lecture, remarks on some of the definitions of Euclid, "Nee dissimulandum aliquot harum in manibus exiguum esse usum in Geometriâ." A few verbal emendations have been made in some of them.

A square is a four-sided plane figure haring all its sides equal, and one angle a right angle: beeanse it is proved in Prop. 46, Book I, that if a parallelogram have one angle a riglit angle, all its angles are right angles.

An oblong, in the same manner, may be defined as a plane figure of four sides, having only its opposite sides equal, and one of its angles a right angle.

A rhomboid is a four-sided plane figure having only its opposite sides equal to one another and its angles not right angles.
sometimes an irregular four-sided figure which has two sides parallel, is called a trapezoid.

Def. xxxt. It is possible for two right lines never to meet when produced, and not be parallel.

Def. A. The term parallelogram literally implies a figure formed by parallel straight lines, and may consist of four, six, eight, or any even number of sides, where every two of the opposite sides are patallel to one another. In the Elements, howerer, the term is restrieted to four-sided figures, and includes the four species of figures named in the Definitions xxx-xyxili.

The synthetic method is followed by Euclid not only in the demonstrations of the propositions, but also in laving down the definitions. He commences with the simplest abstractions, defining a point, a line, an angle, a superficies, and their different varicties. This mode of proceeding involves the difficulty, almost insurmountable, of defining satisfactorily the elementary abstractions of Geometry. It has been-observed, that it is necessary to consider a solid, that is, a magnitude which las lengith, breadth, and thickness, in order to understand aright the definitions of a point, a line, and a superficies. A solid or volume considered apart from its physieal properties, suggests the idea of the surfaces by which it is bounded: a smface, the idea of the line or lines which form its boundaries: and a finite line, the points which form its extremities. A solid is therefore bounded by surfaces; a surface is bounded by lines; and a line is terminated by two points. A point marks position only: a line has one dimension, length only, and defines distance: a superficies las two dimensions, length and breadth, and defines extension: and a solid has three dimensions, leagth, breadth, and thickness, and defines some portion of space.

It may also be remarked that two points are sufficient to deternine the position of a straight line, and three points not in the same straight line, are necessary to fix the position of a plane.

on tile postclates.

THE definitions assume the possible existence of straight lines and circles, and the postulates predicate the possibility of drawing and of producing straight lines, and of describing cireles. The postulates form the principles of construction assumed in the Elements; and are, in fact, prohlems, the possibility of which is admitted to be self-evident, and to roquire no proof.

It must, however, be earefully remarked, that the thirl postulate only admits that when any line is given in position and magniturle, a circle may be described from cither extrenity of the line as a center, and with a radins equal to the length of the line, as in Eue. i, 1. It does not admit the description of a circle with any other point as a eenter than one of the extremities of the given line.

Eue. r. ?, shews how, from any giren point, to draw a straight line equal to another straight line which is given in magnitude and position.

ON THE AXIOMS.

Axions are usually defined to be self-evident truths, which cannot be readered more evident by demonstration; in other words, the axioms of Geometry are theorems, the truth of which is admittel without proof. It is by experience we first become acquainterl with the different forms of geometrical magnitudes, and the axioms, or the fundamental ideas of their equality or inequatity, appear to rest on the same basis. The conception of the truth of the axioms does not appear to be more removed from experience than the conception of the definitions.

These axioms, or first principles of demonstration, are suel theorems as cannot be resolved into simpler theorems, and no theorem ought to be admitted as a first principle of reasoning which is capable of being demonstrated. An axiom, and (when it is convertible) its converse, should both be of such a nature as that neither of them should require a formal demonstration.

The first and most simple idea, derived from experience is, that every magnitude fills a certain s_{i} ace, and that sereral magnitudes may successirely fill the same space.

All the knowledge we have of magnitude is purely relative, and the most simple relations are those of equality and inequality. In the comparison of magnitules, some are corsidered as given or known, and the unknown are compared with the known, and conclusions are synthetically deduced with respect to the equality or inequality of the magnitudes under consideration. In this manner we form our idea of equality, which is thus formally stated in the eighth axiom: "Magnitudes which coincide with one another, that is, which exactly fill the same space, are equal to one another."

Every specifie definition is referred to this universal principle. With regard to a few more general definitions which do not furnish an equality, it will be found that some hypothesis is always made reducing them to that principle, before any theory is built upon them. As for example, the definition of a straight line is to be referred to the tenth axiom; the definition of a right angle to the eleventh axiom; and the definition of parallel stmight lines to the twelfth axiom.

The eighth axiom is called the principle of superposition, or, the mental process by which one Geometrical magnitude may he conceived to be placed on another, so as exactly to coincile with it, in the parts which are mads the subject of comparioon. Thus, if one straight line be conceired to be placed upon another, so that their extremities are coincident, the two straight lines are equal. If the directions of two lines which include one angle, coineide with the directions of the two lines which contain another angle, where the points, from which the angles diverge, coincile, then the two angles are equal: the lengths of the lines not affecting in any way the magnitudes of the angles. When one plane figure is conceived to be placed upon another, so that the boundaries of one exaetly coincide with the boundaries of the other, then the two plane figures are equal. It may also be remarked, that the converse of this proposition is not universally true, namely, that when two magnitudes are equal, they eoincide with one another: since two magnitudes may be equal in area, a two parallelograms or two triangles, Euc. I. 35, 87; but their boundaries may not be equal: and consequently, by superposition, the figures could not exactly coincide: all such figures, however, haring equal areas, by a different arrangement of their parts, may be made to coin* cide exactly.

This axiom is the criterion of Geometrical equality, and is essentially different from the criterion of Arithnctical equality. Two geometrical magnitudes are equal, when ther coincide or may be inade to coincide: two abstract numbers are equal, when they contain the same aggregate of units; and two concrete numbers are equal, when they contain the same number of units of the same kind of magnitude. It is at once obvious, that Arithmetical representations of deometrical magnitudes are not admissible in Euclid's criterion of ceometrical Equality, as he has not fixed the unit of magnitude of either the straight line, the angle, or the superficies. Perhaps Euclid intended that the first seven axioms should be applicable to numbers as well as to Geometrical magnitudes, and this is in accordance with the woris of Proclus, who calls the axioms, common notions, not peculiar to the subject of Ceometry.

Several of the axioms may be geacrally exemplified thus :
Axiom I. If the straight line $A B$ be equal to A B the straight line $C D$; and if the straight line $E F$ be also equal to the straight line $C D$; then the straight line $A B$ is equal to the straight line $E F$.

Axiom 1. If the line $A B$ be equal to the

	F	C	
E			
A	B	C	
E	F	G	II

Axiom 111. If the line $A B$ be equal to the line $C D$; and if the line $E F$ be also equal to the line $G I I$; then the difference of $A B$ and $E F$,

| A | B |
| :--- | :--- | :--- | :--- |
| $E \quad F$ | C |
| G II | | is equal to the difference of $C D$ and $G M$.

Axions w. admits of being exemplified under the two following forms:

1. If the line $A B$ be equal to the line $C 7$; and if the line $E F$ be areater thon the lime $G I I$; then the sum of the lines $A B$ and $E F^{\prime}$ is grater

A	B	C	D
$\underline{G} \quad \mathrm{H}$			

2. If the line $A B$ be equal to the line $C l$; and if the line EF be less than the line GII; then the sum of the lines $A B$ and $E F$ is less

| A | B | | |
| :--- | :--- | :--- | :--- | :--- |
| E | F | C | H | than the sum of the lines (') and $6 / I!$.

Axioni v. also admit* of two forms of exemplification.

1. If the line $A B$ be equal to the line (1); and if the line $E F$ be greater than the line Gil: then the dillerence of the lines $A B$ and $E F$ is greater than the difference of Cl) and (ith.
2. If the line $A B$ be equal to the line $C D$; and if the line $E \cdot F^{\prime}$ be less than the line fill ; then the difference of the lines $A B$ and $E F$ is
 less thun the difference of the lines $C l /$ and $G / l /$.

The axiom, "If unequals be taken from equals, the remaindera are unequal," maty bexemplified in the same mamer.

Axiom rit. If the line $A B$ be domble ol the line ('I) : and if the line $E \neq '$ be also denble of the line $C D$;
then the line $A B$ is equal to the line $E F$.
Axion vit. If the line $A B$ be the half of the line $U D$; and if the line $E F$ be also the haif of tne line $C D$;
then the line $A B$ is equal to the line $E F$.

E F

It may be observed that when equat magnitudes are taken from unequal magnitudes, the greater remainder exceeds the less remainder by as much ay the greater of the mequal magnitudes exceeds the less.

If mequals le taken from merquals, the remaindens are not always unequal ; they may ine equal: also il' unequals lie added to mequals the wholes are not always unequal, they may also be equal.

Axiom 1x. The whole is greater than its part, and conversely, the part is less than the whole. This axiom appears to assert the contrary of the eighth axiem, namely, that two magnitudes, of which one is greater than the other, cannot be made to coincide with one another.

Axiom x . The property of straight lines expressed by the tenth axiom, namely, "that two straight lines camot enclose a space," is obrionsly imphied in the definition of straight lines; for if they enclosed a space, they could not coincide between their extreme points, when the two lines are equal.

Axiom xi. This axiom has been asserted to be a demonstrable theorem. As an engle is a species of magnitude, this axiom is only a particular application of the eighth axiom to right angles.

Axiom xit. Sice the notes on Prop. xxix. Book i.

ON TIIE PROPOSITIONS.

Wpraeter a judgment is formally expressed, there must be something respecting which the judgment is expressed, and something else which constitutes the judgnient. The former is called the subject of the proposition, and the latter, the predicate, which may be anything which can be affirmed or denied respeeting the suliject.

The propositions in Euclid's Flements of Ceometry may be divided into two classes, problems and theorems. A proposition, as the term imports, is something proposed ; it is a problem, when some Geometrical construction is required to be effected: and it is a theorem when some (xeometrical property is to be demonstruted. Every proposition is uaturally divided into two parts; a problem consists of the dutu, or thingss given; and the quesita, or thimys required: a theorem consists of the subject or hypothesis, and the conclusion, or predicate. Hence the distinction between a problem and a theorem is this, that a problem consists of the data and the quesita, and refpuies solution: and a theorem consists of the hypothesis and the predicate, and requires demonstration.

All propositions are affimative or negative; that is, they either assert some property, as Euc. I. 4, or deny the existence of some property, as Euc. 1. 7 ; and every proposition which is affirmatively stated has a contradictory corresponding proposition. If the affirmative be proved to be true, the contradietory is false.

All propositions may he riewed as (1) miversally affirmative, or universally negative ; (2) as particularly affirmative, or purtionlarly negative.

The conneeted course of reasouing by which any Geometrical truth is established is cailed a demonstration. It is called a diroet demonstration when the predicate of the proposition is inferred directlv from the premises, as the eonclusion of a series of successive deductions. The demonstration is called indircet, when the eonelusion shows that the introduction of any other supposition contrary to the hypothesis stated in the proposition, necessarily leads to an alsurdity.

It has been remarked by Paseal, that "Geometry is almost the only subject as to which we find triths wherein all men agree ; and one cause of this is, that Geometers alone regard the true laws of demonstration."

These are enumerated by him as eight in number. " 1 . To define nothing which cannot be expressed in elearer terms than those in which it is already expressed. 2. To leave no obscure or equivocal terms undefined. 3. To employ in the definition no terms not already known. 4. To omit nothing in the principles from which we argue, unless we are sure it is grauted. 5. To lay down no axiom.which is not perfectly evident. 6. To demonstrate nothing which is as clear already as we can make it. 7. To prove every thing in the least doubtful by means of self-evident axioms, or of propositions already demonstrated. 8. To substitute mentally the definition instead of the thing defined." Of these rules, he says, "the first, fouth and sixth are not absolutely necessary to avoid eryor, but the other five are indispensable; and though they may be found in books of logie, none but the Gcometers have paid any regard to them."

The course pursued in the demonstrations of the propositions in Euclid's Flements of Geometry, is always to refer directly to some expressed principle, to leave nothing to be inferred from vague expressions, and to make every step of the demonstrations the olject of the understanding.

It has been maintained by some philosophers, that a genuine definition contains some property or properties which can form a basis for demonstration, and that the science of Geometry is deduced from the definitions, and that on them alone the demonstrations depend. Others have mainained that a definition explains only the meaning of a term, and does not cmbrace the nature and properties of the thing defined.

If the propositions usnally called postulates and axioms are either taeitly assumed or expressly stated in the definitions; in this riew, demonstrations may be said to be legitimately founded on definitions. If, on the other hand, a definition is simply an explanation of the meaning of a term, whether abstract or conerete, by such marks as may prevent a misconception of the thing defined; it will be at once obrions that some constructive and theoretic principles must be assumed, besides the definitions to form the groud of legitimate demonstration. These principles we concejve to be the postulates and axioms. The postulates deseribe constructions which may be admitted as possible by direct appeal to our experience; and the axions assert general theoretic tuths so simple and self-evident as to require no proof, but to be admitted as the assmued first principles of demonstration. Under this view all Geometrical reasonings proceed upon the admission of the hypotheses assumed in the definitions, and the unquestioned possibility of the postulates, and the truth of the axioms.

Dednetive reasoning is generally delivered in the form of an entlymeme, or an argument wherein one enunciation is not expressed, but is readily supplied by the reader: and it may be observed, that althongh this is the ordinary mode of speaking and writing, it is not in the strictly syllogistic form ; as either the major or the minor premiss only is formally stated before the conclusion: Thus in Euc. i., 1.

Becanse the point A is the center of the circle $1 ; C D$;
therefore the straight line $A B$ is equal to the straight line $A C$.
The preniss here omittecl, is: all straight lines drawn from the eenter of a circle to the circumference are equal.

In a similar way may be supplied the reservel premiss in every enthymeme. The eonchusion of two enthymemes may form the major and minor preniss of a third syllogism, and so on, and thes any process of reasoning is reduced to the strictly syllogistic form. And in this way it is shewn
that the general theorems of Geometry are demonstrated by means of syllogisms founded on the axioms and definitions.

Every syllogism consists of three propositions, of which, two are called the premisses, and the third, the conclusion. These propositions contain three terms, the subject and predicate of the conclusion, and the middle term which connects the predicate and the conclusion together. The subjeet of the conclusion is called the minor, and the predicate of the conclusion is called the major term, of the syllogism. The major term appears in one premiss, and the ininor term in the other, with the middle term, which is in both premisses. That premiss which contains the middle term and the major term, is called the major premiss; and that which eontains the middle term and the minor term, is called the minor peniss of the syllogism. As an example, we may take the syllogism in the demonstration of Prop. 1, Book 1, wherein it will be seen that the middle term is the subject of the major premiss and the predicate of the minor.
Major premiss. Because the straight line $A B$ is equal to the straight line $A C$; Minor premiss. and, because the straight line $B C$ is equal to the straight line $A B$;
Conclusion. therefore the straight line $B C$ is equal to the straight line $A C$.
Here, $B C$ is the subject, and $A C$ the predicate of the eonclusion.
$B C$ is the subject, and $A B$ the predicate of the minor premiss.
$A B$ is the subject, and $A C$ the predicate of the major premiss.
Also, $A C$ is the major term, $B C$ the minor term, and $A B$ the middle term of the syllogism.

In this syllogism, it may be remarked that the definition of a straight line is assumed, and the definition of the Geometrieal equality of two straight lines; also that a general theoretic truth, or axiom, forms the ground of the conclusion. And further, though it be impossible to make any point, mark or $\operatorname{sign}(\sigma \eta \mu \epsilon i o v)$ which has not both length and breadth, and any line which has not both length and breadth; the demonstrations in Geometry do not on this aceount become invalid. For they are pursued on the hypothesis that the point has no parts, but position only: and the line has length only, but no breadth or thickness: also that the surface has length and breadth only, but no thickness: and all the conclusions at which we arrive are independent of every other consideration.

The trath of the conclusion in the syllogism depends upon the truth of the premisses. If the premisses, or only one of them be not true, the conclusion is false. The conclusion is said to follow from the premisses; whereas, in truth, it is contained in the premisses. The expression must be uaderstood of the mind apprehending in succession, the truth of the premisses, and subsequent to that, the truth of the conclusion; so that the conclusion follows from the premisses in order of time as far as reference is made to the mind's apprehension of the whole argument.

Every proposition, then eomplete, may be divided into six parts, as Proclus has pointed out in his commentary.

1. The proposition or general enuuciation, which states in general terms the conditions of the problem or theorem.
2. The exposition or particular enunciation, which exhibits the subject of the proposition in particular terms as a fact, and refers it to some diagram described.
3. The determination contains the predicate in particular terms, as it is pointed out in the diagram, and direets attention to the demonstration, by pronouncing the thing sought.
4. The construction applies the postulates to prepare the diagram for the demonstration.
5. The demonstration is the connexion of syllogisms, which prove the truth or falsehood of the theorem, the possibility or impossibility of the problem, in that particular case exhibited in the diagram.
6. The conclusion is merely the repetition of the general enunciation, wherein the predicate is asserted as a demonstrated truth.

Prop. I. In the first two Books, the circle is employed as a mechanical instrument, in the same manner as the straight line, and the use made of it rests entirely on the third postulate. No properties of the circle are discussed in these books beyond the definition and the third postulate. When two circles are described, one of which has its center in the circumference of the other, the two circles being each of them partly within and partly without the other, their circumferences must intersect each other in two points; and it is obvious from the two circles cutting each other, in two points, one on each side of the given line, that two equilateral triangles may be formed on the given line.

Prop. II. When the given point is neither in the line, nor in the line produced, this problem admits of cight diflerent lines being drawn from the given point in different directions, every one of which is a solution of the problen. For, 1. The given line has two extremitics, to each of which a line may be drawn from the given point. 2. The equilateral triangle may be described on either side of this line. 3. And the side $B D$ of the equilateral triangle $A B D$ may be produced either way.

But when the given point lies either in the line or in the line produced, the distinction which arises from joining the two ends of the line with the given point, no longer exists, and there are only four cases of the problem.

The construction of this problen assumes a neater form, by first describing the circle $C G H$ with center B and radins $B C$, and producing $1 / B$ the side of the equilateral triangle $D B A$ to meet the circumference in G : next, with center $/ /$ and rarlius $/ /(i$, deseribing the circle $G K L$, and then producing D A to meet the circumference in L.

By a similar construction the less of two giren straight lines may be produced, so that the less together with the part produced may be equal to the greater.

Prop. III. This problem admits of two solutions, and it is left undetermined from which end of the greater line the part is to be cht off.

By means of this problem, a straight line may be found equal to the sum or the difference of two given lines.

Prop. Ir. This forms the first case of equal triangles, two other cases are proved in Prop. viri, and Prop. xxvi.

The term base is obviously taken from the idea of a building, and the same may be said of the term altitude. In Geometry, however, these terms are not restricted to one particular position of a ligure, as in the case of a building, but may be in any position whatever.

Prop. v. Proclus has given, in his commentary, a proof for the equality of the angles at the base, without producing the equal sides. The constrmetion follows the same order, taking in $A B$ one side of the isosceles triangle $A B C$, a point D and eutting off from $A C$ a part $A E$ equal to $A l$, and then joining C 17) and $B E$.

A corollary is a theorem which results from the demonstration of a proposition.

Prop. Fr. is the converse of one part of Prop. 1. One proposition is de-
fined to be the converse of another when the lypothesis of the former becomes the predicate of the latter; and vice versa.

There is besides this, another kind of conversion, when a theorem has several hypotheses and one predicate; by assuming the predicate and one, or more than one of the hypotheses, some one of the bypotheses may be inferred as the predicate of the converse. In this manner, Prop. vili. is the converse of Prop. 1w. It may here be observed, that converse theorems are not universally true: as for instance, the following direct proposition is universally true; "If two triangles have their three sides respectively equal, the three angles of each shall be respectively equal." But thie converse is not universally true; namely, "If two triangles have the three angles in each respectively equal, the three sides are respectively equal." Converse theorems require, in some instances, the consideration of other conditions than those which enter into the proof of the direct theorem. Conucrse and contrary propositions are by no means to be confounded; the contrary proposition denies what is asserted, or asserts what is denied, in the direct proposition, but the subject and predicate in each are the same. A contrury proposition is a completcly contradictory proposition, and the distinction consists in this-that tuo contrary propositions may both be false, but of two contralictory propositions, one of them must be true, and the other false. It may liere be remarked, that one of the most common intellectual mistakes of learners, is to imagine that the denial of a proposition is a legitimate ground for affirming the contrary as true; whereas the rules of sound reasoning allow that the affirmation of a proposition as true, only affords a ground for the denial of the contrary as false.

Prop. rr. is the first instanee of indirect demonstrations, and they are more suited for the proof of converse propositions. All those propositions which are demonstrated ex absurdo, are properly analytical demonstrations, according to the Greek notion of analysis, which first supposed the thing required, to be done, or to be true, and then shewed the consistency or inconsistency of this construction or hypothesis with truths admitted or already demonstrated.

In indirect demonstrations, where hypotheses are made which are not true and contrary to the truth stated in the proposition, it seems desirable that a form of expression should be employed different from that in which the hrpotheses are true. In all eases therefore, whether noted by Euclid or not, the words if possible have been introduced, or some such qualifying expression, as in Euc. i. 6, so as not to leave upon the mind of the learner, the inpression that the hypothesis which contradicts the proposition, is really true.

Prop. rint. When the three sides of one triangle are shewn to coincide with the three sides of any other, the equality of the triangles is at once obrious. This, however, is not stated at the conclusion of Prop. vir. or of Prop. xxy. For the equality of the areas of two coincident triangles, reference is always made by Euclid to Prop. Ir.

A direct demonstration may be given of this proposition, and Prop. vir. raay be dispensed with altogether.

Let the triangles $A B O, D E F$ be so placed that the base $B C$ may coincide with the base $E F$, and the rertices A, D may be on opposite sides of $E F$. Join $A D$. Then because $E A D$ is an isosceles triangle, the angle $E A D$ is equal to the angle $E D A$; and because $C D A$ is an isosceles triaugle, the angle $C A D$ is equal to the angle $C D A$. Hence
the angle $E A F$ is equal to the angle $E D F$, (ax. 2 or $3:$) or the angle $B D C$ is equal to the angle $E D F$.

Prop. ix. If $B A, A C$ be in the same straight line. This problem then becomes the same as Prob, xi, which may be regarded as drawing a line which bisects an angle equal to two right angles.

If F A be produced in the fig. Prop. 9 , it bisects the angle which is the defect of the angle $B A C$ from four right angles.

By means of this problem, amy angle may be divided into four, eight, sixteen, de. equal angles.

Prop. x. A finite straight line may, by this problem, be divided into four, eight, sixteen, \&c. equal parts.

Prop. xı. When the point is at the extremity of the line ; by the second postulate the line may be produced, and then the construction applies. See note on Finc. ini. 31.

The distance between two points is the straight line which joins the points; but the distance between a point and a straight line, is the shortest line which can be drawn from the point to the line.

From this Prop. it follows that only one perpendicular can be drawn from a given point to a given line: and this perpendicular may he shewn to be less than any other line which can be drawn from the given poist to the given line: and of the rest, the line which is nearer to the perpendicular is less than one more remote from it: also only two equal straight lines ean be drawn from the same point to the line, one on each side of the perpendicular or the least. This property is anelogous to Euc. iII. 7, 8 .

The corollary to this proposition is not in the Greek text, but wes added by Simson, who states that it "is necessary to Prop. 1, Book x1., and otherwise."

Prop. xir. The third postulate requires that the line $C D$ should be drawn before the cirele can be described with the eenter C', and radius ('D).

Prop. xir. is the converse of Prop. xir. "Upon the opposite sides of it." If these words were omitted, it is possible for two lines to make with a third, two angles, which together are equal to two riglit angles, in such a mamer that the two lines shall not be in the sane strairlit hine.

The line l;E may be supposed to fall above, as in Euclid's figure, or below the line $B I$, and the demonstration is the same in form.

I'rop. xr. is the development of the definition of an angle. If the lines at the angular point be produced, the profuced lines have the same inclination to one another as the original lines, but in a diflerent position.

The converse of this Proposition is not proved ly Ehelid, namely:If the vertical angles made by four straight lines at the same poinit be respectively equal to each other, each pair of opposite lines shall be in the same stmight line.
l'rop. xrit. appears to be only a corollary to the preceding proposition, and it seems to be introduced to explain Axiom Xno, of which it is the converse. The exact truth respeeting the angles of a triangle is proved in Prop, xxin.
l'rop, xvir. It may here be remarked, for the purpose of guarding the student against a very common mistake, that in this proposition, and in the converse of it, the himpothesis is stated before the predicute.

Prop. xix. is the converse of Prop xwni. It may be remarked, that Prop. xax. bears the same relation to Prop. xvin, as I'rop. No does to Prop. v .

Prop. xx . The following corollary arises from this proposition :-
Λ straight line is the shortest distance between two points. For the straight line $B C$ is atways less than $B A$ and $A C^{\prime}$, however near the point a may be to the line $B C$.

It may be easily slewn from this proposition, that the difference of any two sides of a triangle is less than the third side.

Prop. xxn. When the sum of two of the lines is equal to, and when it is less than the third line; let the diagrams be described, and they will exhibit the impossibility implied by the restriction laid down in the Proposition.

The same remark may be made here, as was made under the first Proposition, namely:-if one circle lies partly within and partly withont another circle, the circumferences of the cireles interseet each other in two points.

Prop. xxiri. $C D$ might be taken equal to $C E$, and the construction effected by means of an isusceles triangle. It would, however, be less general than Euclid's, but is more convenient in practice.

Prop. xxiv. Simson makes the angle $E D G$ at D in the line $E D$, the side which is not the greater of the two $E D, D F$; otherwise, three different cases would arise, as may be seen by forming the different figures. The point G^{t} might fall below or upon the base $E F$ produced as well as above it. Prop. xxiv. and Prop. xxy. bear to each other the same relation as Prop. Iv. and Prop. vin.

Prop. xxvi. This forms the third case of the equality of two triangles. Every triangle has three sides and three angles, and when any three of one triangle are given equal to any three of another, the triangles may be proved to be equal to one another, whenever the three magnitudes given in the hypothesis are independent of one another. Prop. iv. contains the first case, when the lappothesis consists of two sides and the included angle of each triangle. Prop. vir. contains the second, when the hypothesis consists of the three sides of each triangle. Prop. xxri. contains the third, when the lyppothesis eonsists of two angles, and one side either adjacent to the equal angles, or opposite to one of the equal angles in each triangle. There is another case, not proved by Euclid, when the hypothesis consists of two sides and one angle in each triangle, but these not the angles included by the two given sides in each triangle. This case however is only true under a certain restrietion, thus:-

If two triangles have two sides of one of them equal to tro sides of the other, each to each, and have also the angles opposite to one of the equal sides in each triangle, equal to one another, and if the angles oppositc to the other equal sides be both acute, or both obtuse angles; then shall the thirel sides be equal in each triangle, as also the remaining angles of the one to the remaining angles of the other.

Let $A B C, D E \prime$ ' he two triangles which have the sides $A B, A C$ equal to the two sides $D E, D F$, each to each, and the angle $A B r^{\prime}$ equal to the angle DEF: then, if the angles $A C B, D E F$, be both acute, or both obiuse angles, the third side $D C$ shall be equal to the third side $E F$, and also the angle $B C A$ to the angle $E F D$, and the angle $B A C$ to the angle $E D F$.

First. Let the angles $A C B, D F^{\prime} E$, opposite to the equal sides $A B, D E$, be both acute angles.

If $B C$ be not equal to $E F$, let $B C$ be the greater, and from $B C^{\prime}$, cut off $B G$ equal to $E F$, and join $A G$.

Then in the triangles $A B G, D E F$, Euc. 1. 4. $A G$ is equal to $D P$
and the angle $A G B$ to $D F E$. But since $A C$ is equal to $D F, A G$ is equal to $A C$: and therefore the angle $A C G$ is equal to the angle $A G C$, which is also an acute angle. But becanse $A G C, A G B$ are together equal to two right angles, and that $A G^{\prime} C^{\prime}$ is an acute angle, $A G L^{\prime}$ must be an oltuse angle ; which is absurd. Wherefore, $B C$ is nut mequal to $E F$, that is, $B C$ is equal to $E T$, and also the remaining angles of one triangle to the remaining angles of the other.

Secondly. Let the angles $A C^{\prime} B, D F E$, be both oltuse angles. By proceeding in a similar way, it may be shewn that $B C$ cannot le othen wise than equal to $E F$.

If $A C B, D F E$ be both right angles : the case fails under Euc. i. 26.
Prop. xxuri. Alternate angles are defined to be the two angles which two straight lines make with another at its extremities, but upon opposite sides of it.

When a straight line intersects two other straight lines, two pairs of alternate angles are formed by the lines at their intersections, as in the figure, $B E F, E F C$ are alternate angles as well as the angles $A E F, E F D$.

Prop. xxviri. One angle is called "the exterior angle," and another "the interior and opposite angle," when they are formed on the same side of a straight line which falls upon or intersects two other straight lines. It is also obvious that on eaeh side of the line, there will be two exterior and two interior and opposite angles. The exterior angle EGB has the angle ($\underset{H}{ } I I$) for its corresponding interior and opposite angle: also the exterior angle $F I I D$ has the angle $H G D$ for its interior and opposite angle.

Prop, xxix. is the converse of Prop. xxyid, and Prop. xxyine.
As the definition of parallel straight lines simply deseribes them by a statement of the negative property, that they never meet; it is necessary that some positive property of parallel lines should be assumed as an axiom, on which reasonings on such lines may he founded.

Enelid has assumed the statement in the twelfth axiom, which has been objected to, as not being selfevident. A stronger objection appears to be, that the converse of it forms Enc. 1. 17 ; for both the assumed axiom and its converse, should be so obvious as not to require formal demonstration.

Simson has attempted to overeome the objection, not by any improred definition and axion respecting parallel lines, but by considering Euclid's twelfth axiom to be a theorem, and for its proof, assuming two definitions and one axiom, and then demonstrating five subsidiary Propositions.

Instead of Enclid's twelfth axiom, the following las been proposed as a more simple property for the foundation of reasonings on parallel lines: namely, "If a straight line fall on two parallel straight lines, the alternate angles are equal to one another." In whatever this may execed Enelid's definition in simplicity, it is liable to a similar oljection, being the conver:o of Eue. ı. 27.

Professor Plarfair has adopted in his Elements of Geometry, tlat "Two straight lines which intersect one another camot be both parallel to the same straight line." This apparently more simple axiom follows as a direct inference from Enc. I. 30.

But one of the least ohjectionable of all the definitions which have been proposed on this subject, appears to he that which simply expresses the conception of equidistanes. It may le formally staterl thas:"Paralled lises are such as lie in the same plane, and which neither recede from, nor approach to, each other." This includes the concention
stated by Euclid, that parallel lines never meet. Dr. Wailis observes on this sulyject, "Parallelismus et aquidistantia vel idem sunt, vel certe se mutuo comitantur."
L.s an additional reason for this definition being preferrel, it may be
 exact idea of such lines.

An account of thirty methods which have been proposed at different times for avoiding the dificulty in the twefth axiom, will be foural in the appendix to Colouel Thompson's "Geometry without Axioms."

Prop. xxx. In the diagram, the two lines $A B$ and $C D$ are placed one on each side of the line $E F$: the proposition may also be proved when both $A B$ and $C D$ are on the same side of $E F$.

Prop. xxxil. From this proposition, it is obrious that if one angle of a triangle be equal to the sum of the other two angles, that angle is a right angle, as is shewn in Euc. 111. 31, and that each of the angles of an equilateral triangle, is equal to two-thirds of a right angle, as it is shewn in Euc. 15.15. Nso, il one angle of an isosceles triangle be a riyht angle, then each of the equal angles is half a right angle, as in Euc. If. 9 .

The three angles of a triangle may be shewn to be equal to two right angles without produeing a side of the triangle, by drawing through any angle of the triangle a line parallel to the opposite side, as Prochs has remarked in his Commentary on this proposition. It is manifest from this proposition, that the third angle of a triangle is not independent of the sum of the other two ; but is known if the sum of any two is known. Cor. 1 may be also proved by drawing lines from any one of the angles ol the figure to the other angles. If any of the sides of the figtre bend inwards and form what are called re-entering angles, the enamelation of these two corollures will require some moditication. As Euclid gives no definition of re-entering angles, it may fairly be coneluded, he did not intend to enter into the proofs of the properties of figures which contain such angles.

Prop. xxxul. The words "towards the same parts" are a necessary restriction: for if they were omitted, it would be donbtful whether the extremities A, C, and B, D, were to be joined by the lines $A C$ and $B D$; or the extremities A^{\prime}, I, and B, C, by the lines $A \dot{D}$ and $\dot{B C}$.

Prop, xxxis. If the other diameter be drawn, it may be shewn that the diameters of a parallelogram biseet each other, as well as bisect the area of the parallelogram. If the parallelogram be right-angled, the diagonals are equal; if the parallelogram be a square or a rhombus, the diagonals bisect each other at right angles. The converse of this Prop., namely, "If the opposite silles or opposite angles of a quadrilateral figure be equal, the opposite sides shall also be parallel ; that is, the figure shall be a parallelogram," is not proved by Euclid.
i'rop. xxxr. The latter part of the demonstration is not expressed very intelligibly. Simson, who altered the demonstration, seems in fact to consider two trapezinms of the same form and magnitude, and from one of them, to take the triangle $A B E$; and from the other, the triangle $I C^{\prime} F$; and then the remainders are equal by the third axiom: that is, the parallelogram $A B C D$ is equal to the parallelogram $E B C F$. Otherwise, the triangle, whose base is $/ / E$, (fig. 2,) is taken twice from the traperium, which would appear to be impossible, if the sense in which Euclid applies the third axiom, is to be retained lere.

It mat be observed, that the two parallelograms exhibited in fig. 2 partially lie on one another, and that the triangle whose base is $B C$ is a common part of them, but that the triangle whose base is $1 J E$ is entirely withont both the parallelograms. After having proved the triangle $A B E$ equal to the triangle $D C^{\prime} F$, if we take from these equals (fig. 2.) the triangle whose loase is $D E$, and to each of the remainders add the triangle whose base is $B C$, then the parallelogram $A B C D$ is equal to the parallelogram $E B C^{\prime} F$. In fig. 3, the equality of the parallelograms $A B C^{\prime} D, E B C^{\prime} F$, is shewn by adding the figure $E B C D$ to each of the triangles $A B E, D C F$.

In this proposition, the word equal assumes a new meaning, and is no longer restricted to mean coineidence in all the parts of two figures.

Irop. xxxyn. In this proposition, it is to be understood that the bases of the two triangles are in the same straight line. If is the diagram the point E coincide with C, and D with A, then the angle of one triangle is supplemental to the other. Hence the following property:-If two triangles have two sides of the one respectively equal to two sides of the other, and the contained angles supplemental, the two triangles are equal.

A distinction ought to be made between equal triangles and equiralent triangles, the former including those whose sides and angles mutually coineide, the latter those whose areas only are equivalent.

I'mp. xxxix. If the rertices of all the equal triangles which can be described upon the same base, or upon the equal bases as in Prop. 40 , be joined, the line thus formed will he a straiglt line, and is called the locus of the vertices of equal triangles upon the same base, or upon equal bases.

A locus in plane Geometry is a straight line or a plane curve, every point of which and none else satisfes a certain condition. With the execption ol the straight line and the cirele, the two most sinple loci; all other boci, perhaps including also the Conic Sections, may be more readily and effectually investigated algebraieally by means of their rectangular or polar equations.

Prop. xh. The ennerse of this proposition is not proved hy Euclid; viz. If a parallelogram is touble of a triangle, and they have the same base, or equal hase's upon the same straight line, and towards the same parts, they shall be between the same parallels. Also, it may easily be slewn that if two erpal triangles are between the same parallels; they are cither mon the same hase or upon equal bases.

Prop. xar. A paraltelogram described on a straight line is said to be appliod to that line.

Prop. xlv. The problem is solved mony for a rectilineal figure of four sides. If the given rectilineal figure have move than four sides, it may be divided into triangles by drawing straight linas from any angle of the figure to the opposite angles, and then a praballelogran equal to the thim triangle can le applied to $L, 1 /$, and having an angle equal to E : : and so on for all the trimgles of which the rectilineal tigure is comperet.

Prop. xbry. The square lowing considered as an equilateral rectangle, its area or suface may be expressed muncrically if the mumber of limeal units in a side of the square be given, as is shewn in the note on l'rop. i., Book If.

The student will not fail to remark the analogy which exists botween the area of a square and the product of two equal numbers; and between the sile of a square and the square root of a number. There is, however,
this distinction to be observed: it is always possible to find the product of two equal numbers, (or to find the square of a number, as it is usually called, and to tescribe a square on a given line; but conversely, though the side of a given square is known from the firgure itself, the exact number of mits in the side of a square of given area, can only be found exactly, in such cases where the given mumber is a square number. For example, if the area of a square contain 9 square units, then the square root of 9 or 3 , indicates the number of lineal units in the side of that square. Again, if the area of a square contain 12 square mits, the side of the square is greater than 3 , but less than 4 lineal units, and there is no number which will exaetly express the side of that square : an approximation to the true length, however, may be obtained to any assigned degree of accuracy.

Prop. xlyir, In a right-angled triangle, the side opposite to the right angle is called the hypotemse, and the other two sides, the base and perpendicular, according to their position.

In the diagram the three stuares are described on the muter sides of the triangle $A B C$. The Proposition may also be demonstrated (1) when the three squares are described upon the irener sides of the triangle: (2) when one square is described on the outer side and the other two squares un the inner sides of the triangle: (3) when one square is described on the imer side and the other two squares on the outer sides of the triangle.

As one instance of the third case. If the square $B E$ on the hypotenuse be described on the inner side of $B C$ and the squares $I G, I C$ on the outer sides of $A B, A\left(C^{\prime}\right.$; the point $\left.l\right)$ falls on the side $F G$ (Euclid's fig.) of the square $P G$, and $h^{\prime} H$ produced meets $C E$ in E. Let $L A$ meet $B C$ in M. Join M_{A}; then the equare $G B$ and the oblong I, B are each double of the triangle $D A B$, (Tuc. 1.41 ;) and similarly by joining $E A$, the square $I I C$ and oblong $L C$ are each double of the triangle $E A C$. Whence it follows that the squares on the sides $\Lambda B, \Lambda C^{\prime}$ are together equal to the square on the hypotenuse $D C$.

By this proposition may be found a square equal to the sum of any given squares, or equal to any multiple of a given square : or equal to the difference of two given squares.

The truth of this proposition may be exhilited to the eye in some particular instances. As in the case of that right-angled triangle whose three sides are 3,4 , and 5 units respectively. If through the points of division of two contiguous sides of each of the squares upon the sides, lines he drawn parallel to the sides, (see the notes on laok n.,.) it will be obvious, that the squares will be divided into 9,16 , and 25 small squares, each of the same magnitude ; and that the number of the smail squares into which the squares on the perpendicular and base are divided is equal to the number into which the square on the hypotenuse is divided.
l'rop. xlyun, is the converse of Irop. xyrif. In this Prop. is assumed the Corollary that " the squares deseriled upon two equal lines are cqual," and the converse, which properly ought to have been appended to Irop. xLEI.

The First Book of Euclid's Elements, it has been keen, is conversant with the construction and properties of rectilineal figures. It first lays down the definitions which limit the subjects of diseussion in the Iirst Book, next the three postulates, which restrict the instruments hy which the constructions in Plane Geometry are effected; and thirdly, the twolve axioms, which express tha principles by which a comparison is made between the ideas of the things defined.

This Book mar be divided into three parts. The first part treats of the origin and properties of triangles, both with respeet to their sides and angles; and the comparison of these mutually, both with regard to equality and inequalits. The second part treats of the properties of parallel lines and of parallelograms. The third part exhibits the connection of the properties of triangles and parallelograms, and the equality of the squares on the base and perpendicular of a right-angled triangle to the square ou the hypotenuse.

When the propositions of the First Book have been read with the notes, the student is recommended to use different letters in the diagrams, and where it is possible, diagrams of a form somewhat different from those exhibited in the text, for the purpose of testing the accuracy of his knowhedge of the demonstrations. And further, when he has become sufticiently fimiliar with the method of geometrical reasoning, he may dispense with the aid of letters altogether, and acquire the power of expressing in general terms the process of reasoning in the demonstration of any proposition. Also, he is advised to answer the following (frestions before he attempts to apply the principles of the First Book to the solution of Problems and the demoastration of Theorems.

QUESTIONS ON BOOK I.

1. What is the name of the Science of which Euclid gives the Elements? What is moant by solid Geanetry? Is there any distinetion between Plane Gemetry, and tic Geometry of Planes?
2. Define the term magnitude, and specify the different kinds of magnitud: emaidared in Geometry. What dimensions of space belung to figures treated of in the first six Books of Enclid?
? Give Euclid's definition of a "straight line." What does he really uss as his test of rectilinearity, and where does he first emphoy it? What wheetions have been male to it, and what substitute has been proposed as an available definition? How many points are neecsary to fix the position of a straight line in a plane? When is one straight line said to cut, and when to meet another?
3. What positive property has a Geometrical point? From the definition of a straight line, shew that the intersection of two lines is a point.
4. Give Euclid's definition of a plane rectilineal angle. What are the limits of the angles considered in Geometry? Does Duclid consider angles greater than two right angles!
5. When is a straight line said to be drawn at right angles, and when perpenticu'ar, to a given straght line?
6. Defiue a tritug'e ; slew how many kinds of triangles there are according to the variation both of the angles, and of the sides.
7. What is Lactid's definition of a circle? Point out the assumption involved in your definition. Is any axion applied in it? Shew that in this, as in all other definitions, some geonetrical fact is assumed as somelow previously known.
8. Define the quadrilateral figures mentioned ly Fuclid.
9. Describe briefly the use and fomulation of detinitions, axioms, and postulates : give illnstrations by an instance of eath.
10. What objection may be made to the methon and order in whicla Euclid has laid down the elementary abstractions of the Science of Geomotry: What other method has been suggested?
11. What diastinctions may be made between definitions in the Seienee of Geometry and in the Physieal sciences?
12. What is necessary to constitute an exact definition? Are definitions propositions? Are they arbitary? Are they convertible? Does a Mathematical definition admit of proof on the principles of the science to which it relates?
13. Enumerate the principles of construction assumed hy Euclid.
14. Ol' what instruments may the use be considered io meet approximately the demand's of Euclid's postulates? Why only afuroximately?
15. "A circle may be deseribed from any center, with any straight line as radius." IIow does this postulate differ from Euclid's, and which of his problems is assumed in it ?
16. What principles in the Plysical Sciences correspond to axioms in Geometry ?
17. Enumerate Euclid's twelve axioms, and point out those which hase special reference to Geometry. State the converse of those which admit of being so expressed.
18. What two tests of equalitr are assumed by Enelid? Is the assumption of the principle of superposition (ax. 8.), essential to all Geometrical reasoning? 1s it correct to say, that it is "an appeal, though of the most familiar sont, to extermal observation"?
19. Could any, and if any, which of the axioms of Euclid be turned into definitions; and with what adrantages or disadrantages?
20. Define the terms, Iroblem, l'ostulate, Axiom, and Theorem. Are any of Euclil's axioms improperly so called?
21. Of what two parts does the enunciation of a Problem, and of a Theorem consist? Distinguish them in Euc. 1. 4, 5, 18, 19.
22. When is a problem said to be indeterminate? Give an example.
23. When is one proposition said to be the converse or reciprocal of another? Give examples. Are converse propositions universally true? If not, under what circumstances are they necessarily truc? Why is it necessary to demonstrate converse propositions? How are ther proved?
24. Explain the meaning of the word proposition. Distinguish between converse and contrary propositions, and give examples.
25. State the grounds as to whether Geometrical reasonings depend for their conclusiveness upon axioms or definitions.
26. Explain the meaning of enthymeme and syllogism. How is the enthymeme made to assume the form of the syllogion? "iive examples.
27. What constitutes a demonstration?" State the laws of demonstration.
28. What are the principal parts, in the entire process of establishing a proposition?
29. Distinguish between a direct and indireet demonstration.
30. What is meant ly the term s?methesis, and what liy the term analy. sis? Which of these moles of reasoning does Euclid adopt in his Elements of (Beometry?
31. In what sense is it true that the conclusions of Geometry are necesSary truths?
32. Bumeiate those feometrical definitions which are used in the proof of the propositions of the First lhook.
33. If in Finclid I. 1, an equal triangle be described on the other side of the given line, what figure will the two triangles form?
3.5. In the diagram, Euclid 1. 2, if $1 / B$ a side of the equilateral triangle $D A B$ be produced both ways and cut the circle whose center is B and radius $B C$ in two points G and H; shew that either of the distances, $D G, D H$
may be taken as the radius of the second circle; and give the proof in each ease.
34. Explain how the propositions Eue. 1. 2, 3, are rendered necessary by the restriction imposed by the third postulate. Is it necessary for the proof, that the triangle described in Euc. 1. 2, should be equilateral? Could we, at this stage of the sulject, describe an isosceles triangle on a given base?
35. State how Euc. 1. 2, may be extended to the following problem: "From a given point to draw a straight line in a given divection equal to a given straight line."
36. How would you cut off from a straight line unlimited in both directions, a length equal to a given straight line:
37. In the proof of Euclid 1. 4, how mucls depends upon Definition, how much upon Axiom?
38. Draw the figure for the third ease of Euc. I. 7, and state why it needs no demonstrution.
39. In the construction Euclid 1. 9, is it indifferent in all cases on which side of the joining line the equilateral triangle is described?
40. Shew how a given straight line may be biseeted by Euc. J. I.
41. In what cases do the lines which bisect the interior angles of plane thiangles, also bisect one, or more than one of the come-ponding opposite sides of the triangles?
42. "Two straight lines eamot have a common segment." Itas this corollary been tacitly assmed in any preceding proposition :
43. In Euc. 1. 12, must the given line necessarily be "of unlimited length"?
44. Shew that (fig. Euc. 1. 11) every point withont the perpendieular drawn fron the midile peint of every straight line $D L E$, is at uncrual distances from the extremities 1 , E, of that line.
45. From what propenition may it be inferred that a straight line is the shortest distance between two points?
46. Enunciate the propositions you emplor in the proof of Eue. 1. 16.
47. Is it essential to the truth of Eue. 1. 2l, that the two straight lines be drawn from the extremities of the laace?

51 . In the diagram, Fuc. 1.21 , by how much does the greater anglo BDC' exced the less B.IC'?
51. To form a triangle with three stming lines, any two of them must be greater than the third: is a similar limitation necessary with respect to the three angles?

5 .2. Is it possible to form a triangle with three lines whose lencths are $1,2,3$ units: or one with three lines whose lengthsare $1,12,18, ?$
53. Is it possible to eomstruct a triangle whose angles shall ber as the numbers 1, 2, 3? Prove or disprove yon answer.
5. What is the reason of the limitation in the construction of Euc. i. 24, vi\%. "that $1 P F$ ' is that side which is not greater than the other"?
55. Quote the first propenition in which the equality of two areas which emmot be superposed on each other is considered.
i66. Is the following proposition universally true? "If two plane triangles have thre chements of the one respectively comal to three demments of the other, the triungles are equal in every respect." Enumerate all the cases: in which this equality is proved in the First look. What case is omitted?
57. What parts of a triangle must be given in order that the triangle may te deseribed?
58. State the converse of the sceond ease of Ene. I. 26. Under what limitations is it true? Irove the proposition so limited.
59. Shew that the angle contaned between the perpendienlars drawn to two given straight lines which meet cach other, is cuual to the angle contained by the lines themselves.
60. Are two triangles vecessarily erpal in all respects, where a side and two angles of the one are equal to a side and two angles of the other each to each?
61. Illustrate fully the difference between analytical and synthetical proofs. What propositions in Euclid are demonstrated analytically?
62. Can it be properly predicated of any two straight lines that they never meet if indefinitely produced either way, antecedently to our knowledge of some other property of such lises, which makes the property first predicatel of them a necessary conclusion from it?
63. Enunciate Eucid's definition and axion relating to parallel straight lines; and state in what Props. of Book 1. they are used.
64. What proposition is the conrerse to the twelfth axiom of the First Book? What other two propositions are eomplementary to these?
65. If lines being produced ever so far do not meet, can they be otherwise than parallel? If so, under what circumstances?
66. Detine adjutent augles, opposite ang'es, vertical angles, and alternate ang'es; and give examples from the First Book of Euclid.
67. Can you suggest any thing to justify the assumption in the twelfth axiom upon which the proof of Euc. . . 29, depends?
68. What objections have been urged against the definition and the doctrine of parallel straight lines as laid down by Euclid? Where does the difficulty originate? What other assumptions have been suggested, and for what reasons?
69. Assuming as an axiom that two straight lines which eut one another cannot both lee parallel to the same straight line; deduce Euclid's twelfth axiom as a corollary of Euc. 1. 29.
70. From Ene. 1. 27, shew that the distance betmeen tro parallel straight lines is constant.
71. If two straight lines be not parallel, shew that all straight lines falling on them, make alternate angles, which differ by the same angle.
72. Taking as the definition of parallel straight lines that they are equally inclined to the same straight line towards the same parts; prove that "being produced ever so far both ways they do not meet." Prove also Euclid's axiom 12, by means of the same definition.
73. What is meant ly exterior and interior angles? Point out examples.
74. Can the three angles of a triangle be proved equal to two right angles without producing a side of the triangie?
75. Shew how the comers of a tringular piece of paper may be turned down, so as to exhibit to the eye that the three angles of a triangle are equal to two right angles.
76. Explain the meaning of the term corollary. Enunciate the two corollaries appended to Euc. r. 32, and give another proof of the first. What other corollaries may be deduced from this proposition?
77. Shew that the two lines which hiseet the exterior and interior angles of a triangle, as well as those which bisect any two interior angles of a parallelogram, contain a right angle.
75. The opposite sides and angles of a parallelogram are equal to one another, and the diameters bisect it. State and prove the converse of this proposition. Also shew that a quadrilateral figure, is a paral-
lelogram, when its diagonals bisect each other: and when its diagonals divide it into four triangles, which are equal, tyo and two, viz. those which have the same vertical angles.
79. If two straight lines join the extremities of two parallel straight lines, but not towards the same parts, when are the joining lines equal, and when are they unequal?
80. If either diameter of a four-sided figure divide it into two equal triangles, is the figure necessarily a parallelogram? Prove your answer.
81. Shew how to divide one of the parallelograms in Euc. I. 35, by straight lines so that the parts when properly arranged shall make up the other parallelogram.

8:. Distinguish between equal triangles and equivalent triangles, and give examples from the First Book of Euclid.
88. What is meant by the locus of a point? Adduce instances of loci from the First Book of Euclid.
84. How is it shewn that equal triangles upon the same base or equal bases have equal altitudes, whether they are situated on the same or opposite sides of the same straight line?
85. In Euc. 1. 37, 38, if the triangles are not towards the same parts, shew that the straight line joining the vertices of the triangles is bisected by the line containing the bases.
86. If the complements (fig. Euc. I. 43) be squares, determine their relation to the whole parallelogram.
87. What is meant ly a parallelogram being applied to a straight line?
88. Is the proof of Euc. 1. 45 , periectly general?
89. Define a square without including superfluous conditions, and explain the mode of constructing a square upon a given straight line in conformity with such a definition.
90. The sum of the angles of a square is equal to four right angles. Is the converse true? If not, why?
91. Conceiving a square to be a figure bounded by four equal straight lines not necessarily in the same plame, what condition respecting the angles is necessary to complete the definition?
92. In Etelid 1. 47, why is it necessary to prove that one side of each sfuare deseribed upon each of the sides containing the right angle, should be in the same straight line with the other side of the triangle?
93. On what assumption is an analogy shewn to exist between the product of two equal numbers and the surface of a square?
94. Is the triangle whose sides are $8,4,5$ right-angled or not?
95. Can the side and diagonal of a square be represented simulaneously by any linite numbers?
96. By means of Ene. 1. 47, the square roots of the natural numbers, $1,2,3$, f, \&e. may be represented l,y straight lines.
97. If the sfuare on the hypotemse in the fig. Fne. I. 47, be deseribed on the other side of it : shew from the diagram how the squares on the two sides of the triangle may be made to cover exactly the square on the hypotenuse.
98. If Enelid it. 2, be assumed, enmeinte the form in which Fuc. i. 47 may be expressed.
99. Classify all the properties of triengles and parallelograms, proved in the First Buok of Euclid.
100. Mention any propositions in Book 1. which are included in more general ones which follow.

ON THE ANCIENT GEONETTRLCAL ANALYSIS.

Synthesis, or the medhod of composition, is a mode of reasoning which begins with something given, and ends with something required, either to be done or to be proved. This may be termed a direct process, as it leads from principles to consequences.

Analysis, or the method of resolntion, is the reverse of synthesis, and thus it may be considered an indirect process, a method of reasoning from consequences to principles.

The synthetic method is pursued by Euclid in his Elements of Geometry. He commences with certain assumed principles and proceeds to the solution of problems and the demonstration of theorems by undeniable and successive inferences from them.

The Geometrical Analysis was a process employed by the ancient Geometers, both for the discovery of the solution of problems and for the investiquation of the truth of theorems. In the amalys of a proulem, the quesita, or what is required to be done, is supposed to have been effected, and the consequences are traced by a series of geometrical constructions and reasonings, till at length they terminate in the data of the problem, or in some previonsly cemonstrated or admitted truth, whence the direct solution of the problem is deduced.

In the Synthesis of a problem, however, the last consequence of the analysis is assumed as the first step, of the process, and by proceeding in a contrary order through the several steps of the analysis until the process terminate in the quesita, the solution of the problem is effected.

But if, in the analysis, we arrive at a consequence which contiadicts any truth demonstrated in the Elements, or which is ineonsistent with the data of the problem, the probiem must be inpossible : and further, if in certain relations of the given magnitudes the construction be possible, while in other relations it is imposible, the discosery of these relations will become anecessary part of the solution of the problem.

In the analysis of a theorem, the question on be determined is, whether by the application of the geometrical truth proved in the Eloments, the predicate is consistent with the hypothesis. This point is ascertained by assuming the predicate to be true, and by dedueing the suceessive consequences of this asumption combined with proved geometrical truths, till they teminate in the hypothesis of the theorem or some demonstrated truth. The theorem will be proved syathetically by retracing, in order, the steps of the investigation phrsued in the analysis, tiil they terminate in the predicate, which was assumed in the amalysis. This proeess will constitute the demonstration of the theorem.

If the assumption of the truth of the predicate in the analysis lead to some consequence which is inconsistent with any demonstrated truth, the false conclusion thas arrived at, indicates the falselood of the predicate; and by reversing the process of the analysis, it may be demonstrated, that the theorem cannot be true.

It may here be remarked, that the seometrical analysis is more extensircly useful in diseorering the solution of problems than for investigating the demonstration of theorems.

From the nature of the subject, it must be at once obvious, that no generall rules can be prescribed, which will be fonnd applicable in all cases, and infallibly lead to the solution of every problem. The conditions of problems must suggest what constructions may be posible; aid the conseguences which follow from these constructions and the assmed solution, will shew the possibility or impossibility of arriving at some known property consistent with the data of the problem.

Thongh the data of a problem may be given in magnitude and position, certain ambiguities will arise, if they are not properly restricted. Two points may be considered as sitnated on the sane side, or one on each side of a given line; and there may be two lines drawn from a given point making equal angles with a line given in position; and to avoid ambiguity, it must be stated on which side of the line the angle is to be fornied.

A problem is said to be detrminate when, with the prescribed conditions, it admits of one definite solution; the same construction which may be made on the other side of any given line, not being considered a difierent solution : and a problem is said to be indeterminate when it admits of more than one definite solntion. This latter circumstance arises from the data not absolutely fixing, but merely restricting the quesita, leaving certain points or lines not fixed in one position only. Thie number of given conditions may be insufficient for a single determinate solution; or relations may subsist anong some of the given conditions from which one or more of the remaining given conditions may be dednced.

If the base of a right-angled triangle be given, and also the difference of the squares of the hypotemuse and perpendicular, the triangle is indeterminate. For though apparently here are three things given, the right angle, the base, and the difterence of the squares of the hypotenuse and perpendicular, it is obvions that these three apparent conditions are in fact reducible to two; for since in a right-angled triangle, the sum of the squares on the base and on the perpendicular, is equal to the square on the hypotenuse, it follows that the ditlerence of the squares of the hepotemuse and perpendicular, is ecpual to the square of the base of the triangle, and therefire the base is known from the ditierence of the squares of the hypotemse and perpendicular being known. The conditions therefore arendiejent to determine a right-angled triangle : an indefinite number of triangles may be fomed with the preseribed conditions, whose vertices will lie in the line which is perpendicular to the hate.

If a problem relate to the determination of a single point, and the data be sufficient to determine the position of that poim, the problem is deferminate: lant if one or more of the conditions be omitted, the data which remain may be sufficient for the determination of more than one perint, eacla of wheln atisties the conditions of the problem; in that rase, the problem is indurminate: and in gromal, such puints are foumd to be situated in some line fand hence such line in called the loens of the point which satisfies the conditions of the problem.

If any two given peints A and 1) (fig. Fine. 15. 5.) be joined by a straight line $A B$, and this line be bisected in I, then if a perpendieular be drawn from tho point of bisection, it is manifest that a circle
described with any point in the perpendicular as a center, and a rarlius equal to its distance from one of the given points, will pass throngh the other point, and the perpendicular will be the loens of all the eircles which can be deseribed pasing through the two given points.

Again, if a third point c'be taken, but not in the same straight line with the other two, and this point be joined with the first point, A; then the perpendicular drawn from the bisection E of this line will bo the locus of the centers of all circles which pass through the first and third points A and C. But the perpendicular at the bisection of the first and second points A and B is the locus of the centers of circles which pass throngh these tro points. Hence the intersection F ' of these two perpendiculars, will be the center of a cirele which passes through the three points and is called the intersection of the two loci. Sometines this method of solving geometrical problems may be pursued with advantage, by constructing the locns of every two points separately, which are given in the conditions of the problem. In the Geometrical Exercises which follow, only those local problems are given where the loens is either a straight line or a circle.

Whenever the quesitum is a point, the problem on being rendered indeterminate, becomes a loens, whether the deficient datum be of the essential or of the accidental kind. When the quæsitum is a straight line or a circle, (which were the only two loci admitted into the ancient Elementary Geometry, the problem may admit of an accidentally indeterminate case; but will not iacariably or even very frequently do so. This will be the case, when the line or circle shall be so far arbitrary in its position, as depends upon the deficiency of a single condition to fix it perfectly ; -that is, (fur instance, one point in the line, or two points in the circle, may be determined from the given conditions, but the remaining one is indeterminate from the aceidental relations among the data of the problem.

Determinate Problems become indeterminate by the merging of some one datum in the results of the remaining ones. This may arise in three different ways: first, from the coincidence of two points; secondly, from that of two straight lines; and thirdly, from that of two cireles. These, further, are the only three ways in which this accidental coincidence of data can produce this indeterminateness; that is, in other words, convert the problem into a Porism.

In the original Greek of Euclid's Elements, the corollaries to the propositions are called porisms, (π opto $\mu a \tau a ;$) but this searcely explains the nature of porisms, as it is manifest that they are different from simple deductions from the demonstrations of propositions. Somo analogy, however, we may suppose them to have to the porisms or corollaries in the Elements. Pappus (Coll, Math. Lib. wi. pref.) informs us that Euclid wrote three books on Porisms. IIe defines " a porism to be something between a problem and a theorem, or that in which sumetling is proposed to be investigated." Dr. Simson, to whom is due the merit of having restored the porisms of Euclid, gives the following definition of that class of propositions: "Porisma est propositio in qua proponitur demonstrare rem aliquam, vel plures datas esse, cui, rel quibus, ut et cuilibet ex rebus innumeris, non quidem, datis, sed qua ad ear quad data suint eandem habent relationem, conve-
nire ostendendum est affectionem quandam communem in propositione descriptan." That is, "A Porism is a proposition in which it is proposed to demonstrate that some one thing, or more things than one, are given, to which, as also to each of innumerable other things, not given indeed, but which have the same relation to those which are given, it is to be shewn that there belongs some common affection described in the proposition." Professor Dugald Stewart defines a porism to be "A proposition affirming the posibility of finding one or more of the conditions of an indeterminate theorem." Professor Playfair in a paper (from which the following account is taken) on Porisms, printed in the Transaetions of the Royal Society of Edinburgh, for the year 1792, defines a porism to be " A proposition affirming the possibility of finding such conditions as will render a certain problem indeterminate or capable of innumerable solutions."

It may without much difficulty be perceired that this definition represents a porism as almost the same as an indeterminate problem. There is a large class of indeterminate problems which are, in general, loci, and satisfy certain defined conditions. Every indeterminate problem containing a locus may be made to assume the form of a porism, but not the converse. Porisms are of a more general nature than indeterminate problems which involre a locus.

The ancient geometers appear to have undertaken the solution of problems with a scrupulous and minute attention, which would scarcely allow any of the collateral truths to escape their observation. They never considered a problem as solved till they had distinguished all its varieties, and evolsel separately every different case that could oceur, carefully distingnishing whatever change might arise in the construction from any change that was supposed to take place among the magnitudes which were given. This cantious method of proceeding soon led them to see that there were circumstances in which the solntion of a problem would cease to be possible; and this always happened when one of the conditions of the data was inconsistent with the rest. Sucl: instances would occur in the simplest problems; but in the analysis of more complex problems, they must have remarked that their constructions failed, for a reason direstly contrary to that assigned. Instances would be found where the lines, which, by their intersection, were to determine the thing sought, instead of intersecting one another, as they did in general, or of not mecting at all, wonld coincisle with one another entirely, and consequently leave the question unresolved. The confnsion thus arising would soon be cleared up, by observing, that a problem before determined hy the intersection of two lines, would now become capable of an indefinite number of solutions. This was soon perceived to arise from one of the eonditions of the problem involving another, of from two parte of the data bocoming one, so that there was not left a sufficient number of independent conditions to confine the problem to a single solution, or any determinate number of solutions. It was not difienlt afterwards to perecive that these cases of problems formed rery curions propositions, of an indeterminate nature between problems and theorems, and that they admitted of being enunciated separately. It was to such propositions so enunciated that the ancient geometers gate the name of Porisms.

Besides, it will be fomm, that some problems are possible within certain limits, and that eertain magnitudes increace while others decrease within those limits; and alter hating reached a certains value, the former begin to decrease, white the hatter increase. This circmustance gives rise to questions of maxima and minimu, or the greatest and least values which eertain magnitudes may admit of in determinate problems.

In the following collection of problems and thenrems, most will be found to be of so simple a character, (being almost obvions dednctions from propositions in the Elements, as searecly to admit of the principle of the Geometrical Analysis being applied in their solution.

It must howerer be recollected that a clear and exact knowledge of the first principles of Geometry must necessarily precede any intelligent application of them. Indistinctness or defectiveness of understanding with respect to these, will be a perpetnal source of error and contusion. The learner is therefore recommended to understand the principles of the Science, and their comection fully, before he attempt any applications of them. The following directions may assist him in his proceedings:
ANALYSIS OF THEOREMS.

1. Assme that the Theorem is true.
2. Proceed to examine any consequences that result from this admission, by the aid of other trnths respecting the diagram, which have been already proved.
3. Examine whether any of these consequences are already known to lee true, or to be false.
4. If :my one of themi be false, we have arrived at a reductio al absurdum, which proves that the theorem itself is false, as in Euc. 1. 25.
5. If none of the consequences so dedued be linown to lie either trne or false, proceed to deduce other consequenees from all or any of these, as in (2).
6. Examine these results, and proceed as in (3) and (4): and if still withont any conclusive indications of the truth or falschool of the alleged theorem, proceed still further, until such are obtained.

ANALYSIS OF PROBLEMS.

1. In general, any given problem will be found to depend on several problems and theorems, and these ultimately on some problen or theorem in Enclid.
2. Deseribe the diagram as directed in the enunciation, and sunppose the solntion of the problen effected.
3. Examine the relations of the lines, angles, triancles. ©e. in the diagram, and find the dependence of the :ssumed solution on some thenrem or problem in the Elements.
4. If such camot be found, draw other lines parallel or perpendicular as the case may require, join given points, or points assmmed in the solntion, and describe circles if need he: and then proceed to trace the denendence of the assumed solution on some theorem o. problem in Enclid.
5. Let not the first unsuccessful attempts at the solntion of a Problem be considered as of no valne; such attempts have beca found to lead to the diseovery of other theorems and problems.

PROPOSITION I. PROBLEM.

To trisect a given straight line.
Analysis. Let $A B$ be the given straight line, and suppose it divided into three equal parts in the points D, E.

On $D E$ describe an equilateral triangle $D E F$,
then $D F$ is equal to $A D$, and $F E$ to $E B$.
On $A B$ describe an equilateral triangle $A B C$, and join $A F, F B$.
Then becanse $A D$ is equal to $D F$, therefore the angle $A F D$ is equal to the angle $D A F$, and the two angles $D A F, D F A$ are donble of one of them DAF. But the angle $F D E$ is equal to the angles $D A F, D F A$,
and the angle $F P E$ is equal to $D A C$, each being an angle of an equilateral triangle;
therefore the angle $D A C$ is domble the angle $D A F$; wherefore the angle $D A C$ is bisected by $A F$.
Also because the angle $F A C$ is equal to the angle $F A D$, and the angle $F A D$ to $D F A$;
therefore the angle $C A \cdot F^{\prime}$ is equal to the alternate angle $A F D$: and consequently $F^{\prime} D$ is parallel to $A C$.
Synthesis. 1"pon $A B$ describe an equilateral triangle $A B C$, bisect the angles at A and B by the straglat lines $A F, B F$, meeting in F;
through F^{\prime} draw $F H$ parallel to $A C$, and $F E$ parallel to $B C$.
Then $A B$ is trisected in the points I, E.
For since A_{i}^{C} is parallel to $F D$ and $F_{1} 1$ meets them, therefore the alternate angles $F A C, A F D$ are equal;
lout the angle $F A D$ is equal to the angle $F A C$,
hence the angle $D A F^{\prime}$ is equal to the angle $A F D$,
and therefore $D F$ is equal to D / A.
But the angle $F=D E$ is equal to the angle $C A B$, and FED to ClBA; (土. 29.)
therefore the remaining angle $D P^{\prime} E$ is equal to the remaining angle $A C B$.
Hence the three sides of the triangle DFE are equal to one another, and $/ D F^{\prime}$ has been shewn to be equal to $/$. 1 ,
therefore $A I), I) E . E B$ are equal to one another.
IIence the following theorem.
If the angles at the base of an equilateral triangle be hisected by two lines which meet at a point within the triangle; the two lines drawn from this point parallel to the sides of the triangle, divide the base into three equal parts.

Note. There is another method whereby a line may be divided into three equal parts :-by drawing from one extremity of the given line, another making an acute argle with it, and taking three equal distances from the extremity, then joining the extremitics, and throngh the other two points of division, drawing lines patallel to this line through the other two points of division, and to the giren line; the three triangles thus formed are equal in all respects. This may be extended for any number of parts, and is a particular case of Enc. vi.10.

PROPOSITION II. THEOREM.

If two opposite sides of a parallelorram be bisceted, and tro lines be draun from the points of biscetion to the opposite angles, these two lines trisect the diagonal.

Let $A B C D$ be a parallelogram of which the diagonal is $A C$.
Let $A B$ be bisected in E, and $D C$ in F,
also let $I E E, F B$ be joined cutting the diagonal in $G, I I$.
Then $A C$ is trisected in the points $G, I I$.

Throngh E draw $E K$ parallel to $A C$ and meeting $F B$ in K, Then because $E B$ is the half of $A B$, and $D F$ the halt of $D C$, therefore $E B$ is equal to $D F$;
and these equal and parallel straight lines are joined towards the same parts by $D E$ and $F B$;
therefore $D E$ and $F B$ are equal and parallel. ((1. 33.) And becanse $A E B$ meets the parallels $E T, A C$,
therefore the exterior angle $B E K$ is equal to the interior angle $E A G$.
For a similar reason, the angle $E B H^{r}$ is equal to the angle $A E G$.
Hence in the triangles $A E G, E B K$, there are the two angles $G A E, A E G$ in the one, equal to the two angles $H E B, E B K$. in the other, and one side adjaeent to the equal angles in each triangle, namely $A E$ equal to $E B$;
therefore $A G$ is equal to $E H^{F},(1,26$.
but $E K$ is equal to $G I I$. (1. 34.) therefore $A G$ is equal to $G I I$.
By a similar process, it may be shewn that $G I I$ is equal to $H C$.
Hence $A G, G H, I C$ are equal to one another, and therefore $A C$ is trisected in the points $G, I I$.
It may also be proved that $B F^{\prime}$ is trisected in K and K.

PROPOSITION III. PROBLEM.

Dravo through a given point, between two straight lines not parallel, a straight line which shall be bisected in that point.

Analysis. Let $B C, B D$ be the two lines meeting in B, and let A be the giren point between them.

Suppose the line $E A F$ drawn through A, so that $E A$ is equal to $A F$,

through A draw $A G$ parallel to $B C$, and $G I I$ parallel to $E F$.
Then $A G H E$ is a parallelogram, wherefore $A E$ is equal to $(i I I$. but $E A$ is equal to $A F$ by hypothesis; therefore $G H$ is equal to $A F$.

Hence in the triangles $B H G, G A F$,
the angles $I I B G, A G F$ are equal, as also $B G I I, G F A$, (r. 29.) also the side $G I I$ is equal to $A F^{\prime}$;
whence the other parts of the triangles are equal, (1. 26.) therefore $B G$ is equal to $G F$.
Synthesis. Through the given point A, draw $A G$ parallel to $B C$, on $G D$, take $G F$ equal to $C B$;
then F is a second point in the required line:
join the points F, A, and produce $F A$ to meet $B C$ in E; then the line $F E$ is bisceted in the point A;
draw $G H$ parallel to $A E$.
Then in the triangles $B G H, G F A$, the side $B G$ is equal to $G F$, and the angles $G B H, B G I$ are respectively equal to $F G A, G F A$; wherefore (II I is equal to $A F,(3.26$.)
but $G H$ is equal to $A E,(\mathrm{I} .84$.
therefore $A E$ is equal to $A F$, or $E F$ is ioisected in A.
PROPOSITION IV. PRCBLEM.
From two given points on the same side of a straight line given in positim, draw tro straight lines which shalt mest in that line, and make equal angles with it; also prove, that the sum of these tro lines is less than the sum of any other turo lines drawn to vely other point in the line.

Analysis. Let A, B be the two given points, and $C D$ the given line.
Suppose G the required point in the line, such that $A Q$ and $B G$ being joined, the angle $A G^{\prime} C^{\prime}$ is equal to the angle $B G^{\prime} D$.

Draw $A F$ perpendicular to $C D$ and meeting $B G$ produced in E.
Then, because the angle $B G D$ is equal to $A\left(F^{\prime} F_{\text {, }}\right.$ (hyp.)
and also to the vertical angle F(IE. (r. 15.)
therefore the angle $A C F$ is equal to the angle $E G F$;
also the right angle $A F G$ is equal to the right angle $E F G$,
and the side $F^{\prime}\left({ }_{r}\right.$ is common to the two triangles $A F^{\prime}\left(r, E F^{\prime} G\right.$, therefore $A A^{\prime}$ is equal to $E G^{\prime}$ and $A F^{\prime}$ to $F E$.
Hence the point E being known, the point G^{\prime} is deternined by the intersection of $C D$ and $B E$.

Synthesis. From 1 draw $A F$ perpendicular to $C D$, and produce it to E, , making $F E$ equal to $A F$, and join $B E$ cutting $C^{\prime} D$ in G. Join also $A G$.
Then $A G$ and $B G$ make equal angles with $C D$.
For since $A F^{\prime}$ is equal to $F^{\prime} E$, and $F G$ is common to the two triangles $A G F, E G F$, and the included angles $A F G$. $E F$, F_{r} are equal;
therefore the base $A G$ is equal to the base $E G$, and the angle $A G F$ to the angle $E G F$,
but the angle $E G F$ is equal to the vertical angle $B G D$,
therefore the angle $A G F$ is equal to the angle $B G D$;
that is, the straight lines $A G$ and $B G$ make equal angles with the straight line $C D$.

Also the sum of the lines $A G, G B$ is a minimum.
For take any other point $I I$ in $C D$, and join EHI, IID. AII. Then since any two sides of a triangle are greater than the third side,
therefore EII, MB are greater than EB in the triangle EIIB.
But $E G$ is equal to $A G$, and $E I I$ to $A I I$;
therefore $A I I, H B$ are greater than $A G, G B$.
That is. $A G, G B$ are less than any other two lines which can be drawn from A, B, to any other point $I T$ in the line $C D$.

By means of this Proposition may be found the shortest path from one given point to another, sulject to the condition, that it shall meet two given lines.

PROPOSTTION Y. PROBLEM.

Given one angle, a side opposite to it, and the sum of the other turo sides, construct the triangle.

Analysis. Suppose $B .1 C$ the triangle required, having $B C$ equal to the given side, $B A C$ equal to the given angle opposite to $B C$, also $E D$ equal to the sum of the other two sides.

Join $D C$.
Then since the two sides $B A, A C$ are equal to $B D$, by taking $B A$ from these equals, the remainder $A C$ is equal to the remainder $J D$.

Hence the triancle $A C D$ is isosceles, and therefore the angle $A D C$ is equal to the angle $A(C)$.

But the exterior angle $B A C$ of the triangle $A D C$ is equal to the two interior and opposite angles $A(D)$ and $A D C$:

Wherefore the angle $B A C$ is double the angle $B D C$, and $B D C$ is the half of the angle BAC.

Hence the synthesis.

At the point D in $B D$, make the angle $B D C$ equal to half the givon angle,
and from B the other extremity of $B D$, draw $B C$ equal to the given side, and meeting $D C^{\prime}$ in C,
at C in $C D$ make the angle $D C A$ equal to the angle $C D A$, so that $C A$ may meet $B D$ in the point A.
Then the triangle $A B C$ shall have the required conditions.

PROPOSITION VI. PROBLEM.

To biseet a triangle by a line drawn from a given point in one of the sides.
Analysis. Let $A B C$ be the given triangle, and D the given point in the side $A B$.

Suppose $D F$ the line drawn from D which bisects the triangle; therefore the triangle $D B F$ is half of the triangle $A B C$.

Bisect $B C$ in E, and join $A E, D E, A F$,
then the triangle $A B E$ is half of the triangle $A B C$:
hence the triangle $A B E$ is equal to the triangle $D B F$;
take away from these equals the triangle $D B E$,
therefore the remainder $A D E$ is equal to the remainder $D E F$.
But $A D E, D E F$ are equal triangles upon the same base $D E$, and on the same side of it,
they are therefore between the same parallels, (r. 39.) that is, $A F$ is parallel to $D E$, therefore the point F is determined.
Synthesis. Bisect the base $B C$ in E, join $D E$, from A, draw $A F$ parallel to $D E$, and ioin $D F$.

Then because $D E$ is parallel to $A F$,
therefore the triangle $A D E$ is equel to the triangle $D E F$; to each of these equals, add the triangle $B D E$,
therefore the whole triangle $A B E$ is equal to the whole $D B F$, but $A B E$ is half of the whole triangle $A B C$; therefore $D B F$ is also half of the triangle $A B C$.

PROPOSITION YII. THEOREM.

If from a point without a parallclogram lines be dranen to the cxtremitics of two adjacent sides, and of the diayonal which they include; of the triangles thus formed, that, whose base is the diagonal, is cqual to the sum of the other two.

Let $A B C D$ be a parallelogram of which $A C$ is one of the diagonals, and let P be any point without it: and let $A P, P C, B P, P D$ be joined.

Then the triangles $A P D, A P B$ are together equivalent to the triangle $A P C$.

Draw $P G E$ parallel to $A D$ or $B C$, and meeting $A B$ in G, and $D C$ in E; and join $D G, G C$.

Then the triangles $C B P, C B G$ are equal: (1. 37.)
and taking the common part $C B H$ from each, the remainders $I^{\prime} H D, C I I G$ are equal.
Again, the triangles $D A P, D A G$ are equal ; (i. 87.)
also the triangles $D A G, A G C$ are equal, being on the same base $A G$, and between the same parallels $A G, D C$:
therefore the triangle $D A P$ is equal to the triangle $A G C$:
but the triangle $P H B$ is equal to the triangle $C H G$,
wherefore the triangles $P H B, D A P$ are equal to $A G C, C H G$, or
$A C H$, add to these equals the triangle $A P H$,
therefore the triangles $A P H, P H B, D A P$ are equal to $A P H, A C H$,
that is, the triangles $A P B, D A P$ are together equal to the triangle $P A C$.
If the point P be within the parallelogram, then the difference of the triangles $A P B, D A P$ may be proved to be equal to the triangle PAC.

I.

8. Describe an isosceles triangle upon a given base and haring each of the sides double of the base, without using any proposition of the Elements subsequent to the first three. If the base and sides be given, what condition mist be fulfilled with regard to the magnitude of each of the equal sides in order that an iscsceles triangle may be constructed?
9. In the fig. Euc. r. 5. If $F C$ and $B G$ meet in H, then prove that $A I I$ bisects the angle $B A C$.
10. In the fig. Euc. i. 5. If the angle $F B G$ be equal to the angle $A B C$, and $B G, C F$, intersect in O; the angle $B O F$ is equal to twice the angle $B A C$.
11. From the extremities of the base of an isosceles triangle straight lines are drawn perpendicular to the sides, the angles made by them with the base are each equal to half the rertical angle.
12. A line drawn bisecting the angle contained by the two equal sides of an isosceles triangle, bisects the third side at right angles.
13. If a straight line drawn bisecting the vertical angle of a triangle alse bisect the base, the triangle is isosceles.
14. Given two points, one on each side of a given straight line ; find a point in the line such that the angle contained by two lines drawn to the given points may be bisected by the given line.
15. In the fig. Euc. i. 5, let F and G be the points in the sides $A B$ and $A C$ produced, and let lines $F H$ and $G K$ be drawn perpendienlar and equal to $F C$ and $G B$ respectively : also if $B H, C F^{\circ}$, or these lines produced meet in O; prove that $B H$ is equal to $C H$, and $B O$ to $C O$.
16. From every point of a given straight line, the straight lines drawn to each of two given points on opposite sides of the line are equal : prove that the line joining the given points will cut the given line at right angles.
17. If A be the vertex of an isosceles triangle $A B C$, and $B A$ be prodnced so that $A D$ is equal to $B A$, and $D C$ be drawn; shew that $B C D$ is a right angle.
18. The straight line $E D F$, drawn at right angles to $B C$ the base of an isosceles triangle $A B C$, cuts the side $A B$ in D, and $C A$ produced in E; shew that $A E D$ is an isosceles triangle.
19. In the fig. Euc. r. 1, if $A B$ be produced both ways to meet the circles in D and E, and from $C, C D$ and $C E$ be drawn ; the figure $C D E$ is an isosceles triangle having each of the angles at the base, equal to one-fourth of the angle at the vertex of the triangle.
20. From a given point, draw two straight lines making equal angles with two given straight lines intersecting one another.
21. From a given point to draw a straight line to a given straight line, that shall be bisected by another given straight line.
22. Place a straight line of given length between two given straight lines which meet, so thatt it shall be equally inclined to each of them.
23. To determine that point in a straight line from which the straight lines drawn to two other given points shall be equal, provided the line joining the two given points is not perpendicular to the given line.
24. In a given straight line to find a point equally distant from two given straight lines. In what case is this imposible ?

25 . If a line intercepted between the extremity of the hase of an isosceles triangle, and the opposite side (produced if necessary) be equal to a side of the triangle, the angle formed by this line and the base produced, is equal to three times either of the equal angles of the triangle.
26. In the base $B C$ of an isosceles triangle $A B C$, take a point D. and in $C A$ take $C E$ equal to $C D$, Let $E D$ produced meet $A B$ prowlucel in F, then $3 . A E F=2$ right angles $+A F E$, or $=4$ right angles $+A F E$,
27. If from the base to the opposite sides of ill isoseces triangle, three straight lines be drawn, making equal angles with the hatci, viz., one from its extremity, the other two from any other point in it, these two shall be together equal to the first.
28. A straight line is drawn, terminated by one of the sides of an isoseeles triangle, and by the other side produced, and bisected by the base; prove that the straight lines, thas inter ep: 21 beiweon the
vertex of the isosceles triangle, and this straight line, are togethet equal to the two equal sides of the triangle.
29. In a triangle, if the lines bisecting the angles at the base bo equal, the triangle is isosceles, and the angle contained by the bisecting lines is equal to an exterior angle at the base of the triangle.
30. In a triangle, it the two straight lines drawn from the extremities of the base, (1) perpendicular to the sides, (2) liseeting the sides, (3) making equal angles with the sides; the triangle is isosceles: and then these lines which respectively join the intersections of the sides, are parallel to the base.

II.

31. $A B C$ is a triangle right-angled at B, and having the angle A double the angle C; shew that the side $B C$ is less than double the side $A B$.
32. If one angle of a triangle be equal to the sum of the other two, the greatest side is double of the distance of its middle point from the opposite angle.
33. If from the right angle of a right-angled triangle, two straight lines be drawn, one perpendicular to the base, and the other bisecting it, they will contain an angle equal to the difference of the two acute angles of the trimgle.
34. If the vertical angle $C A B$ of a triangle $A B C$ be bisected by $A D$, to which the perpendiculars $C E, B F$ are drawn from the remaining angles: bisect the base $B C$ in G, join $G E, G F$, and prove these lines equal to each other.
35. The difference of the angles at the base of any triangle, is double the angle contained by a line drawn from the vertex perpendicular to the base, and another bisecting the angle at the vertex.
36. If one angle at the base of a triangle be double of the other, the less side is equal to the sum or difference of the segments of the base made by the perpendicular from the vertex, according as the angle is greater or less than a right angle.
37. If two exterior angles of a triangle be bisected, and from the point of intersection of the bisecting lines, a line be drawn to the opposite angle of the triangle, it will bisect that angle.
38. From the vertex of a scalene triangle draw a right line to the base, which shall exceed the less side as much as it is exceeded by the greater.
39. Divide a right angle into three equal angles.
40. One of the acute angles of a right-angled triangle is three times as great as the other ; trisect the smaller of these.
41. Prove that the sum of the distances of any point within a triangle from the three angles is greater than half the perimeter of the triangle.
42. The perimeter of an isosceles triangle is less than that of any other equal triangle upon the same base.
43. If from the angles of a triangle $A B C$, straight lines $A D E$, $B D F, C D C$ be drawn through a point D to the opposite sides, prove that the sides of the triangle are together greater than the three
lines drawn to the point D, and less than twice the same, but greater than two-thirds of the lines drawn through the point to the opposite sides.
44. In a plane triangle an angle is right, acute or obtuse, according as the line joining the vertex of the angle with the middle point of the opposite side is equal to, greater or less than half of that side.
45. If the straight line $A D$ bisect the angle A of the triangle $A B C$, and $B D E$ be drawn perpendicular to $A D$ and meeting $A C$ or $A C$ produced in E, shew that $B D=D E$.
46. The side $B C$ of a triangle $A B C$ is produced to a point D. The angle $A C B$ is bisected by a line $C E$ which meets $A B$ in E. A line is drawn through E parallel to $B C$ and meeting $A C$ in F, and the line bisecting the exterior angle $A C D$, in G. Shew that $E F$ is equal to $F G$.
47. The sides $A B, A C$, of a triangle are bisected in D and E respectively, and $B E, C D$, are produced until $E F=E B$, and $G D=D C$; shew that the line GF passes through A.
48. In a triangle $A B C . A D$ being drawn perpendicular to the straight line $B D$ which bisects the angle B, shew that a line drawn from I parallel to $B C$ will bisect $A C$.
49. If the sides of a triangle be trisceted and lines be drawn through the points of section adjacent to each angle so as to form another triangle, this shall be in all respects equal to the first triangle.
50. Between two given straight lines it is required to draw a straight line which shall be equal to one given straight line, and parallel to another.
51. If from the vertical angle of a triangle three straight lines be drawn, one bisecting the angle, another bisecting the base, and the third perpendicular to the base, the first is always intermediate in magnitude and position to the other two.
52. In the base of a triangle, find the point from which, lines drawn parallel to the sides of the triangle and limited by them, are equal.
53. In the base of a triangle, to find a point from which if two lines be drawn, (1) perpendieular, (2) parallel, to the two sides of the triangle, their sum shall be equal to a given line.

III.

54. In the figure of Eue. 1. 1, the given line is produced to meet either of the circles in P; shew that P^{\prime} and the points of intersection of the cireles, are the angular points of an equilateral triangle.
55. If each of the equal angles of an isosceles triangle be onefourtl of the third angle, and from one of them a line be drawn at right angles to the hase meeting the opposite side produced; then will the part produced, the perpendicular, and the remaining side, form an egnikateral trimgle.
56. In the firnure Enc. I. 1, if the sides $C A, C B$ of the equilateral triangle $A B C$ be prodnced to meet the circles in F, C^{\prime}, respectively, and if C^{\prime} be the point in which the cireles cut one another on the
other side of $A B$; prove the points $F, C^{\prime \prime}, G$ to be in the same straight line; and the figure Cr' r to be an equilateral triangle.
57. $A B C$ is a triangle and the exterior angles at B and C are bisected by lines $B I$, (CD respectively, meeting in D; shew that the angle $B D O$ and half the angle $B . A C$ make up a right angle.
58. If the exterior angle of a triangle be bisected, and the angles of the triangle made by the bisectors be bisected, and so on, the triangles so formed will tend to become eventually equilateral.
59. If in the three sides $A B, B C, C A$ ot an equilateral triangle $A B C$, distances $A E, B F, C G$ be taken, each equal to a third of one of the sides, and the points E, F, G be respectively joined (1) with each other, (2) with the opposite angles: shew that the two triaugles so formed, are equilateral triangles.
IV.
60. Describe a right-ancled triangle upon a giren base, haring giren also the perpendicular from the right angle upon the hypotenuse.
61. Given one side of a right-angled triangle, and the difference between the hypotenuse and the sum of the other two sides, to construct the triangle.
62. Construct an isosceles right-angled triangle, having given (1) the sum of the hypotenuse and one side; (2) their difference.
63. Describe a right-angled triangle of which the hypotenuse and the difference between the other two sides are given.

64 . Given the base of an isosceles triangle, and the sum or difference of a side and the perpendicular from the vertex on the base. Construct the triangle.
65. Make an isosceles triangle of given altitude whose sides shall pass through two given points and have its base on a given straight line.
66. Construct an equilateral triangle, haring given the length of the perpendicular drawn from one of the angles on the opposite side.
67. Iaving given the straight lines which bisect the angles at the base of an equilateral triangle, determine a side of the triangle.
68. Having given two sides and an angle of a triangle, construct the triangle, distinguishing the different cases.
69. Having given the base of a triangle, the difference of the sides, and the difference of the angles at the base; to describe the triangle.
70. Giren the perimeter and the angles of a triangle, to construct it.
71. Haring given the base of a triangle, and half the sum and half the difference of the angles at the base; to construct the triangle.
72. ILaving given two lines, which are not parallel, and a point between them; describe a triangle having two of its augles in the respective lines, and the third at the given point; and such that the sides shall be equally inclined to the lines whien they meet.
73. Construct a triangle, haring given the three lines drawn from the angles to bisect the sides opposite.
74. Given one of the angles at the base of a triangle, the base itself, and the sum of the two remaining sides, to construct the triangle.
75. Given the base, an angle adjacent to the base, and the difference of the sides of a triangle, to construct it.
76. Given one angle, a side opposite to it, and the difference of the other two sides; to construct the triangle.
57. Given the base and the smin of the two other sides of a triangle, construct it so that the line which bisects the vertical angle shall be parallel to a given line.

V.

78. From a given point without a given straight line, to draw a line making an angle with the given line equal to a given rectilineal angle.
79. Through a given point A, draw a straight line $A B C$ meeting two given parallel straight lines in B and C, such that $E C$ way be equal to a given straight line.
80. If the line joining two parallel lines be bisected, all the lines drawn through the point of bisection and terminated by the parallel lines are also bisected in that point.
81. Three given straight lines issue from a point: dram another straight line cutting them so that the two segments of it intercepted between them may be equal to one another.
82. $A B, A C$ are two straight lines, B and C given points in the same; $B D$ is drawn perpendicular to $A C$, and $D E$ perpendicular to $A B$; in like manner $C F$ is drawn perpendicular to $A B$, and $F G$ to $A C$. Shew that $E G$ is parallel to $B C$.
83. $A B C$ is a right-angled triangle, and the sides $A C, A B$ are produced to D and F; bisect $F B C$ and $B C D$ hy the lines $B E, C E$, and from E let fall the perpendiculars $E F, E D$. Prove (without assuming any properties of parallels) that $A D E F$ is a square.
84. Two pairs of equal straight lines being given, sliew how to construct with them the greatest parallelogram.
85. With two given lines as diagonals deseribe a parallelogram which shall have an angle equal to a given angle. Within what limits must the given angle lie?
86. Having given one of the diagonals of a parallelogram, the sum of the two adjacent sides and the angle between them, construct the parallelogram.
87. One of the diagonals of a parallelogram being given, and the angle which it makes with one of the sides, complete the parallelogram, so that the other diagonal may be parallel to a given line.
88. $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are two parallelograms whose correspoming sides are equal, but the angle A is greater than the angle A^{\prime}, prove that the diameter $A C$ is less than $A^{\prime} C^{\prime \prime}$ but $B H$ greater than $B^{\prime} D^{\prime}$.
89. If in the diagonal of a parallelogram any two points equidistant from its extremities be joined with the opposite angles, a figure will be formed which is also a parallelogram.
90. From each angle of a parallelogram a line is drawn making
the same angle towards the same parts with an adjacent side, taken always in the same order ; shew that these lines form another parallelogran similur to the original one.
91. Along the sides of a barallelogram taken in order, measure $A A^{\prime}=B D^{\prime}=C C^{\prime}=D D^{\prime}$: the tigure $A^{\prime} B^{\prime \prime} C^{\prime \prime} D^{\prime}$ will be a parallelogram.
92. On the sides $A B, B C, C D, D A$, of a parallelogram, set off $A E, B F, C G, D I I$, equal to each other, and join $A F^{\prime}, B G, C H, D E$: these lines form a parallelogram, and the difterence of the angles $A F B, B G C$, equals the difference of any two proximate angles of the two parallelograms.
93. $O B, O C$ are two straight lines at right angles to each other, through any point P^{\prime} any two straight lines are drawn intersecting $O B, O C$, in $B, B^{\prime}, C, C^{\prime \prime}$, respectively. If D and D^{\prime} be the middle points of $B B^{\prime}$ and $C C^{\prime}$, shew that the angle $B^{\prime} P D^{\prime}$ is equal to the angle 1 OOD'.
94. $A B C D$ is a parallelogram of which the angle C is opposite to the angle A. If through A any straight line be drawn, then the distance of C is equal to the sum or difference of the distances of B and of D from that straight line, according as it lies withont or within the parallelogram.
95. Upon stretching two chains $A C, B D$, across a field $A B C D$. I find that $B D$ and $A C$ make equal angles with $D C$, and that $A C$ makes the same angle with $A D$ that $B D$ does with $B C$; hence prove that $A B$ is parallel to $C D$.
96. To find a point in the side or side produced of any parallelogram, such that the angle it makes with the line joining the point and one extremity of the opposite side, may be bisected by the line joining it with the other extremity.

97 . When the corner of the leat of a book is turned down a second time, so that the lines of folding are parallel and equidistant, the space in the second fold is equal to three times that in the first.

VI.

98. If the points of bisection of the sides of a triangle be joined, the triangle so formed shall be one-fourth of the given triangle.
99. If in the triangle $A B C, B C$ be bisected in $D, A D$ joined and bisected in $E, B E$ joined and bisected in F, and $C F$ joined and bisected in G; then the triangle $E F G$ will be equal to one-eighth of the triangle $A B C$.
100. Shew that the areas of the two equilateral triangles in Prob. 59, p. 78, are, respectisely, one-third and one-seventh of the area of the original triangle.
101. To describe a triangle equal to a given triangle. (1) when the base, (2) when the altitude of the required triangle is given.
102. To describe a triangle equal to the sum or difference of two given triangles.
103. Upon a given base describe an isosceles triangle equal to a given triangle.
104. Describe an equilateral triangle equal to a given triangle.
105. To a given straight line apply a triangle which shall be equal
to a given parallelogram and have one of its angles equal to a given rectiliueal angle.
106. Transform a given rectilineal figure into a triangle whose vertex shall be in a given angle of the figure, and whose base shall be in one of the sides.
107. Divide a triangle by two straight lines into three pats which when properiy arranged shall form a parallelogram whose augles are of a given magnitnde.
108. Shes that a scalene triangle cannot be divided into two parts which will coincide.
109. If two sides of a triangle be given, the triangle will be greatest when they contain a right angle.
110. Of all triangles having the same rertical angle, and whose bases pass through a given point, the least is that whose base is bisected in the given point.
111. Of all triangles having the same base and the same perimeter, that is the greatest whieh has the two undetermined sides equal.
112. Divide a triangle into three equal parts, (1) by lines drawn from a point in one of the sides: (2) by lines drawia from the angles to a point within the triangle: (3) by lines drawn from a given point within the triangle. In how many ways can the third case be done?
113. Divide an equilateral triangle into nine equal parts.
114. Bisect a parallelugram, (1) by a line drawn from a point in one of its sides: (2) by a line drann from a given point within or without it: (3) by a line perpendicular to one of the sides: (4) by a line drawn parallel to a given line.
115. From a given point in one side produced of a parallelogram, draw a straight line which shall divide the parallelogram into two equal parts.
116. To trisect a parallelogram by lines drawn (1) from a given point in one of its sides, (Ω) from one of its angular points.

VII.

117. To describe a rhombus which shall be equal to any given quadrilateral figure.
118. Describe a parallelogren which shall be equal in area and perimeter to a given triangle.
119. Find a point in the diagonal of a square produced, from which if a straisflt line be drawn parallel to any side of the square, and meeting another side produced, it will form torether with the produced diagonal and produced side, a triangle equal to the spare.
120. If from any point within a parallelogram, straght lines be drawn to the angles, the parallelogram shall be divided into four triangles of which each two opposite are together equal to one-half of the parallelogram.
121. If $A B C D$ be a parallelogram, and E any point in the diagonal $A C^{\prime}$, or $A C$ prodnced; shew that the triangles $E B C, E D C$ ', are equal, as also the triangles $E D A$ and $E F B D$.
122. $A B C D$ is a parallelogram, draw $D F G$ meeting $B C$ in F,
and $A B$ producel in G; join $A F, C G$; then will the triangles $A B F$, $C F G$ be equal to one another.
123. $A B C D$ is a parallelogram, E the point of intersection of its diagonals, and h^{\prime} any point in $A D$. If $h^{\prime} B, F^{c} C$ be joined, shew that the figure $B^{\prime} E C C$ is onc-fonth of the parallelogram.
124. Let $A B C D$ be a parallelogram, and O any point within it, throngh O draw lines parallel to the sides of $A B C^{\prime} L$, and join $O A$, $O C$; prove that the difference of the parallelograms $D O, B O$ is twice the triangle $O A C$.
125. The diaronals $A C, B D$ of a parallelogram intersect in O, an P is a point within the triangle $A O B$; prove that the difference of the triangles $A P B, C^{\prime} P D$ is equal to the sum of the triangles $A P C^{\prime}, I P P D$.
126. If h^{\prime} be the common angular point of the parallelograms about the diameter $A C$ (fig. Euc. 1. 43.) and $B D$ be the other dianeter, the difference of these parallelograms is equal to twice the triangle $B K^{\prime} D$.
127. The perimeter of a square is less than that of any other parallelogram of equal area.
128. Shew that or all equiangular parallelogroms of equal perimeters, that which is equilateral is the greatest.
129. Prove that the perimeter of an isoscetes triangle is greater than that of an equal right-angled parallelogram of the same altitude.

TIII.

130. If a quadrilateral figure is bisected by one diagonal, the second diagonal is bisected by the first.
131. If two opposite angles of a quadrilateral figure are equal, shew that the angles between opposite sides produced are equal.
132. Prove that the sides of any four-sided rectilinear figure are together greater than the two diagonals.
133. The sum of the diagonals of a trapezium is less than the sum of any four lines which can be drawn to the four angles, from any point within the figure, except their intersection.
134. The longest side of a given quadrilateral is opposite to the shortest; shew that the angles adjacent to the shortest side are together greater than the sum of the angles adjacent to the longest side.
135. (iive any two points in the opposite sides of a trapezium, inscribe in it a parallelogram having two of its angies at these points.
136. Shew that, in every quadrilateral plane figure, two parallelograms can be described upon two opposite sides as diagonals, such that the other two diagonals shall be in the same straight line and equal.

13T. Describe a quadrilateral figure whose sides shall be equal to four given straight lines. What limitation is necessary?
138. If the sides of a quadrilateral figure be bisected and the points of bisection joined, the included figure is a parallelogram, and equal in area to half the original figure.
139. A trapezium is such, that the perpendiculars let fall on a diagonal from the opposite angles are equal. Divide the trapezium into four equal triangles, by straight lines drawn to the angles from a point within it.
140. If two opposite sides of a trapezium be parallel to one another, the straight line joining their bisections, bisects the trapezium.
141. If of the four triangles into which the diagonals divide a trapezium, any two opposite ones are equal, the trapezium has two of its opposite sides parallel.
142. If two sides of a quadrilateral are parallel but not equal, and the other two sides are equal but not parallel, the opposite angles of the quadrilateral are together equal to two right angles: and conversely.
143. If two sides of a quadrilateral be parallel, and the line joinfing the middle points of the diagonals be produced to meet the other sides; the line so produced will be equal to half the smm of the parallel sides, and the line between the points of bisection equal to half their difference.
144. To bisect a trapezium, (1) by a line drawn from one of its angular points; (2) by a line drawn from a given point in one side.
145. To divide a square into four equal portions by lines drawn from any point in one of its sides.
146. It is impossille to divide a quadrilateral figure (except it be a parallelogram) into equal triangles by lines drawn from a point within it to its four corners.

IX.

14\%. It the greater of the aento angles of a right-angled triangle, be donble the other, the square on the greater side is three times the square on the other.
148. Upon a given straight line construct a right-angled triangle such that the square of the other side may be equal to seven times the square on the given line.
149. If from the vertex of a plane triangle, a perpendicular fall upon the base or the base prodnced, the difierence of the squares on the sides is equal to the difference of the stimares on the segments of the base.
150. If from the middle point of one of the sides of a right-angled triangle, a perpendicular be drawn to the hypotennse, the difference of the synares on the segments into which it is divided, is equal to the siguare on the other side.
151. If a straight line be drawn from one of the achute angles of a right-angled triangle, bisecting the opposite side, the splure upun that line is less than the square upon the hypotense liy three times the square upon half the line bisected.
$15=$. If the sun of the squares of the thre sides of a triangle be equal to eipht times the square on the line drawn from the vertex to the point of bisection of the base, then the vertical anme is a right angle.
153. If a line be drawn parallel to the hypotemuse of a riphtangled triangle, and each of the acute angles he joined with the points where this line intersects the sides respectively epposite to them, the squares on the foining- lines are together equal to tho squares on the hypotenuse and on the line drawn parallef to it.
154. Let $A C B, A D B$ be two right-angled triangles haring a common hypotenuse $A B$, join (C, and on (V, produced both ways draw perpendiculars $A E, B F^{\prime}$. Shew that $\left(E^{2}+C F^{\prime 2}=D E^{2}+D F^{2}\right.$.
155. If perpendiculars $A D, B E, C H$ drawn from the angles on the opposite sides of at triangle intersect in G, the squares on $A B$, $B C$, and $C A$, are together three times the squares on $A G, B G$, and $C G$.
156. If $A B C$ be a triangle of which the angle A is a right angle ; and $B E$, C' V ' be drawn bisecting the op'posite sides respectively : shew that four times the sum of the squares on $B E$ and $C F$ is equal to five times the square on $B C$.
157. If $A B C$ be an isosceles triangle, and $C D$ be drawn perpendicnlar to $A B$; the sim of the squares on the three sides is equall to

$$
A D^{2}+\Omega \cdot B D^{2}+3 \cdot C D^{2} .
$$

158. The sum of the squares described upon the sides of a rlombus is equal to the squares deseribed on its diameters.
159. A point is taken within a square, and straight lines drawn from it to the angular points of the square, and perpendicular to the sides; the squares on the first are donble the sum of the squares on the last. Shew that these sums are least when the point is in the centre of the square.
160. In the figmre Euc. s. 47,
(a) Shew that the diagonals $F A, A K$ of the squares on $A B, A C$, lie in the same straight line.
(b) If $D F, E K$ be joined, the sum of the angles at the bases of the triangles $B F D, C E K$ is equal to one right angle.
(c) If $B G$ and CII be joined, those lines will be paralle].
(d) If perpendienlars be let fall from F^{\prime} and h^{\prime} on $B C$ produced, the parts produced will be equal; and the perpendiculars together will be equal to $B C$.
(e) Join GII, $h E, F D$, and prove that each of the triangles so former, equals the given triangle $A B C$.
(f) The sum of the squares on $G H, K F$, and $F D$ will be equal to six times the square on the hypotenuse.
(g) The difference of the squares on $A B, A C$, is equal to the difference of the squares on $A D, A E$.
161. The area of any two parallelograms described on the two sides of a triangle, is equal to that of a parallelogram on the base, whose side is equal and parallel to the line drawn from the vertex of the triangle, to the intersection of the two sides of the formes parallelograms produced to meet.
162. If one augle of a triangle be a right angle, and another equal to two-thirds of a right-angle, prove from the First Book of Euelid, that the equilateral triangle described on the hypotenuse, is equal to the sum of the equilateral triangles described upon the sides which contain the right angle.

BOOK II.

DEFINITIONS.

I.

Etery right-angled parallelogram is called a rectangle, and is said to be contained by any two of the straight lines which contain one of the right angles.

II.

In evers parallelogram, any of the parallelograms about a diameter together with the two complements, is called a gnomon.

"Thus the parallelogram $H G$ together with the complements $A F, F C$, is the gnomon, which is more briefly expressed by the letters $A G K$, or EHC, which are at the opposite angles of the parallelograms which make the gnomon."

PROPOSITION I. THEOREM.

If there be tuo straight lines, one of which is divided into any rumber of parts; the reetangle contuined by the tro straight lines, is egual to the rectangles contuined by the undivided line, and the sereral ports of the Livided line.

Let A and $B C$ be two straight lines; and let $B C$ be divided into any parts $B D, D E, E C$, in the points D, E.

Then the rectangle contained by the straight lines A and $B C$, shall be equal to the rectangle contained by A and $B D$), together with that contained by A and $D E$, and that contained by A and $E C$.

From the point B, draw $B F$ at right angles to $B C$, (r. 11.) and make $B G$ equal to A; (1. 3.)
through G draw $G I I$ parallel to $B C$, , (i. 31.)
and through D, E, C, draw $D K \bar{K}, E L, C^{\prime} H$ parallel to $B G$, meeting $G H$ in $K, L, I I$.
Then the rectangle $B I I$ is equal to the rectangles $B K, D L, E H$. And $B I I$ is contained by A and $B C$,
for it is contained by $G B, B C^{\prime}$, and $G B$ is equal to A :
and the rectangle $B H^{\prime}$ is contained by $A, B D$,
for it is contained by $G B, B D$, of which $G B$ is equal to A :
also $D L$ is contained by $A, D E$.
because $D K^{\prime}$, that is. $B G,(\mathrm{t} .34$.$) is equal to A$;
and in like manner the rectangle $E I$ is contained by $A, E O$:
therefore the rectangle contained by $A, B C$, is equal to the several
rectangles contained by $A, B D$, and by $A, D E$, and by $A, E C$.
Wherefore, if there be two straight lines, de. Q.E.d.

PROPOSITION II. THEOREM.

If a straight line be divided into any two parts, the reetangles contained by the whole and each of the parts, are together equal to the square on the whole line.

Let the straight line $A B$ be divided into any two parts in the point C.

Then the rectangle contained by $A B, B C$, together with that contained by $A B, A C$, shall be equal to the square on $A B$.

Upon $A B$ deseribe the square $A D E B$, (1. 46.) and through C draw $(' F$ parallel to $A D$ or $B E$, (土. 31.) meeting $D E$ in F.

Then $A E$ is equal to the rectangles $A F, C E$.
And $A E$ is the square on $A B$;
and $A F$ is the rectangle contained by $B A, A C$:
for it is contained by $D A, A C$. of which $D A$ is equal to $A \bar{B}$: and $C E$ is contained by $A B, B C$, for $B E$ is equal to $A B$:
therefore the reetangle contained by $A B, A C$, together with the
reetangle $A B, B C$ is equal to the square on $A B$.
If therefore a straight line, \&e. Q.E.D.

PROPOSITION IH. THEOREM.

If a straight line be divided into any tuo parts, the rectangle contained by the whole and one of the parts, is cqual to the rectangle contained by the two parts, toyether with the square on the aforesaid part.
Let the straight line $A B$ be divided into any two parts in the point C.
Then the rectangle $A B, B C$, shall be equal to the rectangle $A C, C B$, together with the square on $B C$.

Tpon $B C$ describe the square $C D E B$, (1. 46.) and produce $E D$ to F, through A draw $A F$ parallel to $C D$ or $B E$, (1. 31.) meeting $E F$ in F.

Then the rectangle $A E$ is equal to the rectangles $A D, C E$.
And $A E$ is the rectangle contained by $A B, B C$,
for it is contained by $A B, B E$, of which $B \dot{E}$ is equal to $B C$:
and $A D$ is contained by $A C, C B$, for $C D$ is equal to $C B$:
and $C^{\prime} E$ is the square on $B C^{\prime}$:
therefore the rectangle $A B, B C$, is equal to the rectangle $A C, C B$, together with the square on $B C$.

If therefore a straight line be divided, \&c. Q.E.D.

PLOPOSITION IV. THEOREM.

If a straight line be divided into any two parts, the square on the whole line is equal to the squares on the two parts, together with twice the rectangle contained by the prits.

Let the straight line $A B$ be divided into any two parts in C.
Then the square on $A B$, shall be eqnal to the squares on $A C$, and $C B$, together with twice the rectangle contained by $A C, C B$.

Upon $A B$ describe the square $A D E B$, (1. 46.) join $B D$,
through C draw $C G F$ parallel to $A L$ or $B E$, (r. 31.) meeting $B D$ in G and $D E$ in F^{\prime};
and throngh G draw $I I G K$ parallel to $A B$ or $D E$, mecting $A D$ in I, and $B E$ in K^{-};
Then, because $C F$ is parallel to $A D$ and $B D$ falls upon them. therefore the exterior angle $B G C$ is equal to the interior and opposite angle $B D A$; (1. 2!.)
but the angle $B D A$ is equal to the angle $D B A,(1,5$. because $B A$ is equal to $A D$, being sides of a square ;
wherefore the angle $B C C$ is enual to the angle $D B A$ or $G B C$;
and therefore the side $B C$ ' is equal to the side $C G$; (. ©.)
but $B C^{\prime}$ is equal also to cilf and C C C to $B h$; (1. 34.) wheretore the digure C GTBB is equilateral.
It is likewise rectangular ;
for: since $C^{\prime \prime}\left(G\right.$ is parallel to $B h^{\prime}$, and $B C$ meets them.
therefore the angles $A B C^{\prime}, J^{\prime} C^{\prime} G^{\prime}$ are equal to two right angles; (i. 29.)
but the angle $h^{\prime} B{ }^{\prime}$ is a right angle; (def. :0. constr.)
wherefore $B C^{\prime} G$ is a right angle :
and therefore also the allgles $C G F, G H \mathscr{B}$, opporite to these, are right
angles; (1.34.)
wherefore $C G H B$ is rectangular:
but it is also equilateral, as was demonstrated;
wherefore it is a square, and it is upon the side $C B$.
For the same reason $I I F$ is a square,
and it is upon the side $H G$, which is equal to $A C$. (1. 34.)
Therefore the figures $I I F, C h$, are the squares on $A C, C B$.
And because the complement $A G$ is equal to the conplement $G E$, (1. 43.)
and that $A G$ is the rectangle contained by $A C, C B$, for $G C^{\prime}$ is equal to $C B$;
therefore $G E$ is also equal to the rectangle $A C, C B$;
wherefore $A(G, G E$ are equal to twice the rectangle $A C, C B$;
and $H F, r H$ are the squares on $A C, C B$:
wherefore the four figures $H F, C K, A G, G E$, are equal to the squares on $A C, C D$, and twice the rectangle $A C, C B$:
but $H F, C \hbar, A G, G E$ make up the whole figure $A D E B$, which is the square on $A B$;
therefore the square on $A B$ is equal to the squares on $A C, C B$, and twice the rectangle $A C, C^{\prime} B$.
Wherefore, if a straight line be divided, \&c. Q.E.D.
Cor. From the demonstration, it is manifest, that the parallelograms about the diameter of a square, are likewise squares.

PROPOSITION V. THEOREM.

If a straight line he divided into two equal parts, and also into two unequal parts; the rectungle contained by the unequal parts, together with the square on the line betucen the points of section, is equal to the square on half the line.

Let the straight line $A B$ be divided into two equal parts in the point C, and into two unequal parts in the point D.

Then the rectangle $A D, D B$, together with the square on $C D$, skall be equal to the square on $C B$.

Upon $C B$ describe the square $C E F B$, (r. 46.) join $B E$,
through D draw $D H G$ parallel to $C E$ or $B F$, (.. 31.) meeting $D E$ in I, and $E F^{\prime}$ in G.
and through $I I$ draw $K L M$ parallel to $C B$ or $E F$, meeting $C E$ in L, and $B F$ in M;
also through A draw $A K$ parallel to $C L$ or $B M$, meeting MLK in K. Then because the complement $C H$ is equal to the complement $H F$, (.. 43.) to each of these equals add $D M$;
therefore the whole $C M$ is equal to the whole $D F$;
but because the line $A C$ is equal to $C D$, therefore $A L$ is equal to $C M$, (1. 36.)
therefore also $A L$ is equal to $D F$;
to each of these equals add $C I I$,
and therefore the whole $A H$ is equal to $D F$ and $C H$:
but $A H$ is the rectangle contained by $A D, D B$, for $D H$ is equal to $D B$; and $D F^{\prime}$ together with $C H$ is the gnomon $C M G^{\prime}$;
therefore the gnomon $C M G$ is equal to the rectangle $A D, D B$:
to each of these equals add $L G$, which is equal to the square on $C D$; (iı. 4. Cor.)
therefore the gnomon $C M G$, together with $L G$, is equal to the rectangle $A D, D B$, together with the square on $C D$:
but the gnomon $C M G$ and $L G$ make up the whole figure $C E F B$, which is the square on $C B$;
therefore the rectangle $A D, D B$, together with the square on $C D$ is equal to the square on $C B$.

Wherefore, if a straight line, \&c. Q.E.D.
Cor. From this proposition it is manifest, that the difference of the squares on two unequal lines $A C, C D$, is equal to the rectangle contained by their sum $A D$ and their difference $D B$.

PROPOSITION VI. THEOREM.

If a straight line be bisected, and produced to any point; the rectangle contained by the whole line thus produced, and the part of it produced, together with the square on half the line biseeted, is equal to the square on the straight line whieh is made up of the half and the part produced.
Let the straight line $A B$ be bisected in C, and prodnced to the point D.
Then the rectangle $A D, D B$, together with the square on $C D$, shall be equal to the square on $C D$.

Upon $C D$ describe the square $C E F D$ ((1.46.$)$ and join $D E$,
through B draw $B H G_{i}$ parallel to $C E$ or $D F$, (1. 31.) meeting $D E$ in H, and $E F$ in $(\prime$:
throngh H draw $K L A M$ parallel to $A D$ or $E F$, meeting $D F$ in M, and $C E$ in L;
and through A draw $A K^{-}$parallel to $C L$ or $I M$, meeting $M L K$ in K^{\prime}.

Then because the line $A C$ is equal to $C B$,
therefore the rectangle $A L$ is equal to the rectangle $C I I,(1.36$.
but $C H$ is equal to $I I F$; (1. 43.)
therefore $A L$ is equal to $H F$;
to each of these equals add CM;
therefore the whole $A M$ is equal to the gnomon $C M G$:
but $A M$ is the rectangle contained by $A D, D 1$,
for $H M$ is equal to $H B$: (11. 4. Cor.)
therefore the gnomon $C M G$ is equal to the rectangle $A D, D B$:
to each of these equals add $L G$ which is equal to the square on $C B$;
therefore the rectangle $A D, D B$, together with the square on
$C B$, is equal to the gnomon $C M G$, and the figure $L G^{\circ}$;
but the gnomon $C M G$ and $L G$ make up the whole figure $C E F D$, which is the square on $C D$;
therefore the rectangle $A D, D B$, together with the square on $C B$, is equal to the square on $C I$.

Wherefore, if a straight line, \&c. Q.E.D.

PROPOSITION YII. THEOREM.

If a straight line be divided into any two parts, the squares on the whole line, and on one of the parts, are equal to twicc the rectangle contained by the whole and that part, together with the square on the other part.

Let the straight line $A B$ be divided into any two parts in the point C.
Then the squares on $A B, B C$ shall be equal to twice the rectangle $A B, B C$, together with the square on $A C$.

Upon $A B$ describe the square $A D E B$, (r. 46.) and join $B D$;
through C draw $C F$ parallel to $A D$ or $B E$ (1.31.) meeting $B D$ in G, and $D E$ in F^{\prime};
through G draw $H G H$ parallel to $A B$ or $D E$, meeting $A D$ in I, and $B E$ in K.

Then because $A G$ is equal to $G E$, (1. 43.)
add to each of them $C K$;
therefore the whol $A K$ is equal to the whole $C E$;
and therefore $A K, C E$, are double of $A K$:
but $A K, C E$, are the gnomon $A K F$ and the square $C K^{\prime}$;
therefore the gnomon $A h^{\prime} F$ and the square $C F^{\prime}$ are double of $A K$:
but twice the rectangle $A B, B C$, is double of $A K$, for $B K$ is equal to $B C$; (iI. 4. Cor.)
therefore the gnomon $A I^{\wedge} F$ and the square $C K$, are equal to t wice the rectangle $A B, B C$:
to each of these equals add $I I F$, which is equal to the square on $A C$,
therefore the gnomon $A \hbar^{2} F$, and the squares $C K, H F$, are equal to twice the rectangle $A B, B C^{\prime}$, and the square on $A C$;
but the gnomon $A \Gamma_{1}^{r} F$, together with the squares $C h^{\prime}, H F$, make
up the whole figure $A D E B$ and $C F$, which are the squares on $A B$ and $B C$;
therefore the squares on $A B$ and $B C$ are equal to twice the rectangle $A B, B C$, together with the square on $A C$.

Wherefore, if a straight line, \&c. Q.E.D.

PROPOSITION VIII. THEOREM.

If a straight line be divided into any two parts, four times the rectangle contained by the whole line, and one of the parts, together with the square on the other part, is equal to the square on the straight line, which is made up of the whole and that part.

Let the straight line $A B$ be divided into any two parts in the point C.
Then four times the rectangle $A B, B C$, together with the square on $A C$, shall be equal to the square on the straight line made np of $A B$ and $B C$ together.

Produce $A B$ to D, so that $B D$ be equal to $C B$, (г. 3.)
upon $A D$ describe the square $A E F D$, (r. 46.) and join $D E$, through B, C, draw $B L, C H$ parallel to $A E$ or $D F$, and cutting $D E$ in the points K, P respectively, and meeting $E F$ in L, H;
through K, P draw $M G K N$, XPRO parallel to $A D$ or $E F$.
Then because $C B$ is equal to $B D, C B$ to $G K$, and $B D$ to $K N$;
therefore $G h^{\prime}$ is equal to $K N$;
for the same reason, $P R$ is equal to $R O$;
and because $C B$ is equal to $B D$, and $G K$ to $K N$,
therefore the rectangle $C K$ is equal to $B N$, and $G R$ to $R N$; (ı. 36.) but $C K$ is equal to $R N$, (I. 43.)
because they are the complements of the parallelogram CO ; therefore also $B N$ is equal to $G R$;
and the four rectangles $B N, C h, G_{r} R, R N$, are equal to one another, and so are quadruple of one of them $C K$.
Again, because $C \prime B$ is equal to $B I$, and $B D$ to $B K$, that is, to $C G$; and becanse $C B$ is equal to $C K$, that is, to $G P$; therefore $C G$ is equal to $G P$.
And because $C G$ is equal to $G P$, and $P R$ to $R O$,
therefore the rectangle $A G_{r}$ is equal to $M P$, and $P J$, to $R F^{\prime}$; but the rectaugle $M P$ is equal to $P L$, (r. 43.)
because they are the complements of the parallelogram $M L$: wherefore also $A\left(t\right.$ is equal to $R F^{\prime}$:
therefore the four rectangles $A(G, M P, P L, I \cdot F$, are equal to one
another, and so are quadruple of one of them at f.
And it was demonstrated, that the four C'h, BSN, GR, and ISN, are quadruple of $C^{\prime \prime}$:
therefore the eight rectangles which contain the gnomon $A O H$, are quadruple of $A h^{2}$.
And becanse $A h^{\prime}$ is the rectangle contained by $A B, B C$, for $B R^{\prime}$ is equal to $B C$;
therefore four times the rectangle $A B, B C$ is quadruple of $A K$:
but the gnomon $A O H$ was demonstrated to be quarruple of $A K^{;}$; therefore four times the rectangle $A B, B C$ 'is equal to the gnomon $A O I I$; to each of these equals add $X H$, which is equal to the sfuare on ΛC^{C}; therefore four times the rectangle $A B, B C$, together with the square on $A C$, is equal to the gnomon $A O H$ and the square $X H$;
but the gnomon $A O I I$ and XII make up the figure $A E F D$, which is the square on $A D$;
therefore four times the rectangle $A B, B C$ together with the square on $A C$, is equal to the square on $A D$, that is, on $A B$ and $B C$ added together in one straight line.

Wherefore, if a straight line, \&c. Q.E.D.

PROPOSITION IN. TIIEOREM.

If a straight line be divided into two equal, and also into two unequal parts; the squares on the two unequal parts are together double of the square on half the line, and of the square on the line between the points of section.

Let the straight line $A B$ be divided into two equal parts in the point C, and into two unequal parts in the point D.

Then the squares on $A D, D B$ together, shall be double of the squares on $A C, C D$.

From the point C draw $C E$ at right angles to $A B$, (1. 11.) make $C E$ equal to $A C$ or $C B,(1.3$.) and join $E A, E B$;
through D draw $D F$ parallel to $C E$, meeting $E B$ in F, (1. 31.) through F draw $F G$ parallel to $B A$, and join $A F$.

Then, becanse $A C$ is equal to $C E$,
therefore the angle $A E C$ is equal to the angle $E A C$; (г. 5.) and because $A C E$ is a right angle,
therefore the two other angles $A E C, E A C$ of the triangle are together equal to a right angle ; (i. 32.)
and since they are equal to one another ; therefore each of them is half a right angle.
For the same reason, each of the angles CEB. $E B C$ is half a right angle; and therefore the whole $1 E B$ is a right angle.
And because the angle $G E F$ is lialf a right angle, and $E G F^{\prime}$ a right angle.
for it is equal to the interior and opposite angle $E C B$, (1. 29.)
therefore the remaining angle $E F G$ is lialf a right angle ; wherefore the :mgle $C^{\prime} E F$ is equal to the angle $E F G$, and the side $G F$ equal to the side $E G$. (1. 6.)

Again, because the angle at B is half a right angle, and $F D B$ a right angle,
for it is equal to the interior and opposite angle $E C B$, (1. 29.)
therefore the remaining angle $B F D$ is half a right angle;
wherefore the angle at \bar{B} is equal to the angle $B F D$, and the side $D F$ ' equal to the side $D B$. (1.6.)

And because $A C$ is equal to $C E$,
the square on $A C$ is equal to the square on $C E$;
therefore the squares on $A C, C E$ are double of the square on $A C$;
but the square on $A E$ is equal to the squares on $A C, C E$, (1. 47.)
becanse $A C E$ is a right angle ;
therefore the square on $A E$ is double of the square on $A C$.

$$
\text { Again, because } E G \text { is equal to } G F \text {, }
$$

the square on $E G$ is equal to the square on $G F$;
therefore the squares on $E G, G F$ are double of the square on $G F$; but the square on $E F$ is equal to the squares on $E G, G F ;$ (1. 47.)
therefore the square on $E F$ is double of the square on $G F$; and $G F$ is equal to $C D ;(1,34$.
therefore the square on $E F$ is double of the square on $C D$;
but the square on $A E$ is donble of the square on $A C$;
therefore the squares on $A E, E F$ are double of the squares on $A C, C D$;
but the square on $A F$ is equal to the squares on $A E, E F$,

$$
\text { because } A E F \text { is a right angle ; (1. 47.) }
$$

therefore the square on $A F$ is double of the squares on $A C, C D$;
but the squares on $A D, D F$ are equal to the square on $A F$;
because the angle $A D F$ is a right angle; (1.47.)
therefore the squares on $A D, D F$ are donble of the squares on $A C, C D$; and $D F$ is equal to $I D B$;
cherefore the squares on $A D, D B$ are double of the squares on $A C, C D$.
If therefore a straight line be divided, \&e. Q.e.d.

PROPOSITION X. TIIEOREM.

If a straight line be bisected, and produced to any point, the square on the whole line thus produced, and the spuare me the part of it produced, are toyether double of the squarere on half the line bisected, and of the square ons the line made up of the half and the part produced.

Let the straight line $A B$ be bisected in C, and produced to the point D.

Then the squares on $A D, D B$, shall be double of the squares on $A C, C D$.

From the point C draw $C E$ at right angles to $A B$, (r. 11.)
make $C E$ equal to $A C$ or $C B$, (1. 3.) and join $A E, E B$;
through E draw $E F$ parallel to $A B$, (1. 31.)
and through D draw $D F$ parullel to $C E$, meeting $E F$ in F.

Then because the straight line $E F$ meets the parallels $C E, F D$, therefore the angles $C E F, E F D$ are equal to two right angles; (1. 29.) and therefore the angles $B E F$, $E F I$ are less than two right angles.

But straight lines, which with another straight line make the interior angles upon the same side of a line, less than two right angles, will meet if produced far enough ; (i. ax. 12.)
therefore $E B, F D$ will neet, if produced towards B, D;
let them be produced and meet in G, and join $A G$.
Then, because $A C$ is equal to $C E$,
therefore the angle CEA is equal to the angle $E A C$; (1. 5.) and the angle $A C^{\prime} E$ is a right augle;
therefore each of the angles $C E A, E A C$ is half a right angle. (土. 32.)
For the same reason,
each of the angles $C E B, E B C$ is half a right angle; therefore the whole $A E B$ is a right angle.
And because $E B C$ is half a right angle,
therefore $D B G$ is also half a right angle, (i. 15.)
for they are vertically opposite;
but $B D G$ is a right angle,
because it is equal to the alternate angle $D \mathcal{U} E$; (1. 29.)
therefore the remaining angle $D G B$ is half a right angle; and is therefore equal to the angle $D B G$;
wherefore also the side $B D$ is equal to the side $D\left(\sigma_{\text {. }}\right.$ (1. 6.)
Again, because $E G F^{\prime}$ is half a right angle, and the angle at F is a right angle, being equal to the opposite angle $E C D$, (1. 3t.)
therefore the remaining angle FEG is half a right angle, and therefore equal to the angle $E G F$;
wherefore also the side $G F$ is equal to the side $F E$. (1. 6.) Ant becanse $E C$ is equal to $C A$;
the square on $E C$ is equal to the square on $C A$;
therefore the spuares on $E C, C A$ are double of the square on $C A$; but the square on $E A$ is equal to the squares on $E C, C A$; (1. 47.)
therefore the square on $E A$ is double of the square on $A C$.
Again, because $G F$ is equal to $F E$,
the square on $G F$ is equal to the square on $F E$;
therefore the squares on $G F, F E$ are donble of the square on $F E$; but the square on $E G$ is equal to the squares on $G F, F E$; (i. 47.)
therefore the square on $E G$ is double of the square on $F E$;
and $F E$ is equal to $C D$; (I. 34.)
wherefore the square on $E G$ is double of the square on $C D$
'but it was demonstrated,
that the square on $E A$ is double of the square on $A C$;
therefore the squares on $E A, E G$ are double of the squares on $A C, C D$;
but the square on $A G$ is equal to the squares on $E A, E G$; (1. 47.)
therefore the square on $A G$ is double of the squares on $A C, C D$:
but the squares on $A D, D G$ are equal to the square on $A G$;
therefore the squares on $A D, D G$ are donble of the squares on $A C, C D$; but $D G$ is equal to $D B$;
therefore the squares on $A D, D B$ are double of the squares on $A C, C D$.
Wherefore, if a straight line, \&e. Q.E.D.

PROPOSITION XI. PROBLEM.

To divide a given straight line into two parts, so that the rectangle contained by the whole and one of the parts, shall be equal to the square on the other part.

Let $A B$ be the given straight line.
It is required to divide $A B$ into two parts, so that the rectangle contained by the whole line and one of the parts, shall be equal to the square on the other part.

Cpon $A B$ describe the square $A C D B ;$ (I .46.)
bisect $A\left(^{\prime}\right.$ in E, (1. 10.) and join $B E$,
produce $C A$ to F, and make $E F$ equal to $E B$, ((. 3.) upon $A F$ describe the square $F G H A$. (1. 46.)
Then $A B$ shall be divided in H, so that the rectangle $A B, B H$ is equal to the square on $A H$.

Produce $G I I$ to meet $C D$ in K.
Then because the straight line $A C$ is bisected in E, and produced to F, therefore the rectangle $C F, F A$ together with the square on $A E$, is equal to the square on $E F$; (11. 6.) but $E F$ is equal to $E B$;
therefore the rectangle $C F, F A$ together with the square on $A E$, is equal to the square on $E B$;
but the squares on $B A, A E$ are equal to the square on $E B$, (1. 47.) because the angle $E A B$ is a right angle ;
therefore the rectangle $C F, F A$, together with the square on $A E$, is equal to the squares on $B A, A E$;
take away the square on $A E$, which is common to both;
therefore the rectangle contained by $C F, F A$ is equal to the square on $B A$.
But the figure $F W$ is the rectangle contained by $C F, F A$, for $F A$ is equal to $F G$:
and $A D$ is the square on $A B$;
therefore the figure $F^{\prime} K$ is equal to $A D$; take away the common part $A K$,
therefore the remainder $F I$ is equal to the remainder $H D$;
but $H D$ is the rectangle contained by $A B, B H$, for $A B$ is equal to $B D$;
and $F H$ is the square on $A I$;
therefore the rectangle $A B, B H$, is equal to the square on $A I I$.
Wherefore the straight line $A B$ is divided in H, so that the rectangle $A B, B H$ is equal to the square on $A H$. Q.E F.

PROPOSITION XII. THEOREM.

In obtuse-angled triangles, if a perpenticular be drawn from either of the acute argles to the opposite side produced, the square on the side subtendiny the obtuse ancle, is grouter than the squares on the sides containing the obtuse ample, by twice the rectangle contained b!! the side upon which, when produced, the perpendicular falls, and the straight line intercepted without the triangle between the perpendiculat and the obtuse angle.

Let $A B C$ be an obtuse-angled triangle, haviug the obtuse angle $A C B$, and from the point A, let $A D$ be drawn perpendicular to $B C$ produced.

Then the square on $A B$ shall be greater than the squares on $A C$, $C B$, by twice the rectangle $B C, C D$.

Because the straight line $B D$ is divided into two parts in the point C,
therefore the square on $B D$ is equal to the squares on $B C, C D$, and twice the rectangle $B C, C D$; (ir. 4.)
to each of these equals add the square on $D A$;
therefore the squares on $B D, D A$ are equal to the squares on $B C$, $C D, D A$, and twice the rectangle $B C, C D$;
but the square on $B A$ is equal to the squares on $B D, D A$, (r. 47.) because the angle at D is a right angle; and the square on $C A$ is equal to the squares on $C D, D A$;
therefore the square on $B A$ is equal to the squares on $B C, C A$, and twice the rectangle $B C, C D$;
that is, the square on $B A$ is greater than the squares on $B C, C A$, by twice the rectangle $B C, C D$.

Therefore in obtuse-angled triangles, \&c. Q.E.D.

PROPOSITION XIII. THEOREM.

In evcry trianglc, the square on the side subtending cither of the acute angles, is less than the squares on the sides containing that angle, by trice the rectangle contained by cither of these sides, and the straight line intercepted betucen the acute angle and the perpendicular let fall upon it from the opposite angle.

Let $A B C$ be any trimgle, and the angle at B one of its acute angles, and upon $B C$, one of the sides containing it, let fall the perpendicular $A D$ from the opposite angle. (1.12.)

Then the square on $A C^{\prime}$ opposite to the angle B, shall be less than the squares on $C B, B A$, by twice the rectangle $C B, B D$.

First, let $A D$ fall within the triangle $A B C$.
Then because the straight line $C B$ is divided into two parts in D, the squares on $C B, B D$ are equal to twice the rectangle contained by $C B, B D$, and the square on $D C$; (11. 7.)
to each ot these equals add the square on $A D$;
therefore the squares on $C B, B D, D A$, are equal to twice the rectangle $C B, B D$, and the squares on $A D, D C$;
but the square on $A B$ is equal to the squares on $B D, D A$, (i. 47.) because the angle $B D A$ is a right angle ;
and the square on $A C$ is equal to the squares on $A D, D C$;
therefore the squares on $C B, B A$ are equal to the square on $A C$, and twice the rectangle $C B, B D$:
that is, the square on $A C$ alone is less than the squares on $C B, B A$, by twice the rectangle $C B, B D$.
Secoudly, let $A D$ fall without the triangle $A B C$.

Then, because the angle at D is a right angle, the angle $A C B$ is greater than a right angle; (i. 16.)
and therefore the square on $A B$ is equal to the squares on $A C, C B$, and twice the rectangle $B C, C D$; (II. 12.)
to each of these equals add the square on $B C$;
therefore the squares on $A B, B C$ are equal to the square on $A C$,
twice the square on $B C$, and twice the rectangle $B C, C D$;
but because $B D$ is divided into two parts in C,
therefore the rectangle $D B, B C$ is equal to the rectangle $B C, C D$, and the square on $B C$; (II. 3.) and the doubles of these are equal ;
that is, twice the rectangle $D B, B C$ is equal to twice the rectangle $B C, C D$ and twice the square on $B C^{\prime}$:
therefore the squares on $A B, B C$ are equal to the square on $A C$, and twice the rectangle $D B, B C$:
wherefore the square on $A C$ alone is less than the squares on $A B, B C$;
by twice the rectangle $I A, B C$.
Lastly, let the side $A C$ be perpendicular to $B C$.

Then $B C$ is the straight line between the perpendicular and the acute angle at B;
and it is manifest, that the squares on $A B, B C$, are equal to the square on $A C$, and twice the square on $B C$. (1. 47.)

Therefore in any triangle, \&c. Q.e.d.

PROPOSITION XIV. PROBLEM.

To describe a square that shall be equal to a given rectilineal fiyure.
Let A be the given rectilineal figure.
It is required to describe a square that shall be equal to A.

Describe the rectangular parallelogram $B C D E$ equal to the rectilineal figure A. (I. 45.)

Then, if the sides of it, $B E, E D$, are equal to one another,
it is a square, and what was required is now done.
But if $B E, E D$, are not equal,
produce one of them $B E^{\prime}$ to F, and make $E F$ equal to $E D$, bisect $B F$ in G; (1. 10.)
from the center G, at the distance $G B$, or $G F$, descrive the semicircle BHF,
and produce $D E$ to meet the circumference in H.
The square deseribed upon $E H$ shall be equal to the given rectilineal figure A.
Join GH.

Then because the straight line $B F$ is divided into two equal parts in the point G, and into two unequal parts in the point E;
therefore the rectangle $B E, E F$, together with the square on $E G$, is equal to the square on $G F$; (11.5.)

$$
\text { but } G F \text { is equal to } G H ;(\text { def. 15.) }
$$

therefore the rectangle $B E, E F$, together with the square on $E G$, is equal to the square on $G I I$;
but the squares on $H E, E G$ are equal to the square on $G H ;$ ((1. 47.)
therefore the rectangle $B E, E F$, together with the square on $E G$,
is equal to the squares on $H E, E G$:
take away the square on $E G$, which is common to both;
therefore the rectangle $B E, E F$ is equal to the square on $H E$.
But the rectangle contained by $B E, E F$ is the parallelogram $B D$, because $E F$ is equal to $E D$;
therefore $B D$ is equal to the square on $E H$;
but $B D$ is equal to the rectilineal figure A : (constr.)
therefore the square on $E I$ is equal to the rectilineal figure A.
Wherefore a square has been made equal to the given rectilineal figure A, namely, the square described upon EH. Q.E.F.

NOTES TO BOOK II.

Is Book r., Geometrical magnitudes of the same kind, lines, angles and surfaces, more particularly triangles and parallelograms, are compared, either as being absolutely equal, or unequal to one another.

In Book 11., the properties of right-angled parallelograms, but without refcrence to their magnitudes, are demonstrated, and an important extension is made of Euc. 1., 47, to acute-angled and obtuse-angled triangles. Euclid has given no definition of a rectangular parallelogram or rectangle: proba-
 voo simply, is a definition of the figure. In English, the term reetangle, formed from rectus angulus, ouglit to be defined before its propertics are demonstrated. A rectangle may be defined to be a parallelogram having one angle a right-angle, or a right-angled parallelogram; and a square is a rectangle having all its sides equal.

As the squares in Euclid's demonstrations are squares deseribed or supposed to be deseribed on straight lines, the expression "the square on $A B$," is a more appropriate abbre eviation for "the square described on the line $A B$," than "the square of $A B$." The latter expression more fitly expresses the arithmetical or algebraical equivalent for the square on the line $A B$.

In Euc. $\mathrm{I} ., 35$, it may be seen that there may be an indefinite number of parallelograms on the same base and between the same parallels whose areas are always equal to one another; but that one of them has all its angles right angles, and the length of its boundary less than the boundary of any other parallelogram upon the same base and between the same parallels. The area of this rectangular parallelogram is therefore determined by the two lines which contain one of its rifht angles. Ilenee it is stated in Def. 1, that every right-angled parallelogran is said to be contained by any two of the straight lines which contain one of the right angles. No distinetion is made in Book 11., between equality and identity, as the rectangle may be said to be contained by two lines which are equal respectively to the two which contain one right angle of the figure. It may be remarked that the rectangle itscle is bounded by four straight lines.

It is of primary importance to diseriminate the Geometrical coneeption of a rectangle from the Arithmetical or Algebraical representation of it. The sulbect of Geometry is magnitude not number, and therefore it would be a departure from strict reasoning on space, to substitute in feometrical demonstrations, the Arithmetical or Algehraical representation of a rectangle for the rectangle itself. It is, however, absolutely necessary that the comexion of number and magnitude be clearly understood, as far as regards the representation of lines and areas.

All lines are measured ly lines, and all surfaces by surfaces. Some one line of definite length is arbitrarily assumerl as the linear unit, and the length of every other line is represented by the mumber of linear units contained in it. The square is the figure assumed for the measure of surfaces. The square unit or the muit of area is assumed to be that square, the side of which is one unit in length, and the magnitule of every surface is represented by the number of square units coutained in it. But here it may be remarked, that the properties of rectangles and squares in the Sccond Book of Euclid are proved iudependently
of the consideration, whether the sides of the rectangles ean be represented by any multiples of the same linear unit. If, however, the sides of rectangles are supposed to be divisible into an exact number of linear units, a numerical representation for the area of a rectangle may be deduced.

On two lines at right angles to each other, take $A B$ equal to 4 , and $A D$ equal to 3 linear units.

Complete the reetangle $A B C D$, and through the points of division of $A B, A D$, draw $E L, F M I, G N$ parablel to $A D$; and $H P, F Q$ parallel to $A B$ respectively.

Then the whole rectangle $A C$ is divided into squares, all equal to each other.
And $A C$ is equal to the sum of the rectangles $A L, E M, F N, G C$; (i1. 1.) also these reetangles are equal to one another, (I .56.)
therefore the whole $A C$ is equal to four times one of them $A L$.
Again, the rectangle $A L$ is equal to the rectangles $E H, H R, R D$, and these rectangles, by construetion, are squares deseribed upon the equal lines $A H, H K, K D$, and are equal to one another.

Therefore the rectangle $A L$ is equal to 3 times the square on $A H$,
but the whole rectangle $A C$ is equal to 4 times the rectangle $A L$,
therefore the rectangle $A C$ is 4×3 times the square on $A I I$, or 12 square units:
that is, the product of the two numbers which express the number of linear units in the two sides, will srive the number of squase tanits in the rectangle, and therefore will be an aithmetical representation of its area.

And generally, if $A B, A D$, instead of 4 and 3 , consisted of a and b linear units respectively, it may be shewn in a similar manner, that the area of the reetangle $A C$ would contain $a b$ square units; and therefore the product $a b$ is a proper representation for the area of the rectangle $A C$.

Hence, it follows, that the term rectangle in Geometry eorresponds to the term product in Arithmetic and Algebra, and that a similar comparison may be made between the products of the two numbers which represent the sides of rectangles, as between the areas of the rectangles themselves. This forms the hasis of what are called Arithmetical or Algebraical proofs of Geometrical propertics.

If the two sides of the rectangle be equal, or if b be equal to a, the figure is a square, and the area is represented by aa or a^{2}.

Also, since a triangle is equal to the half of a parallelogram of the same base and altitude;

Therefore the area of a triangle will be represented by half the rectangle which has the same base and altitude as the triangle: in other words, if the length of the base be a units, and the altitude be b units;

Then the area of the triangle is algebraically represented by $\frac{1}{2} a b$.
The demonstrations of the first eight propositions, exemplify the obrious axiom, that, "the whole area of every figure in each case, is equal to all the parts of it taken together."

Def. 2. The parallelogram $E K$ together with the complements $A F$,
$F C$, is also a gnomon, as well as the parallelogram $H G$ together with the same complements.

Prop. 1. For the sake of brevity of expression, "the rectangle contained by the straight tines $A B, B C$," is called "the rectangle $A B, B C$;" and sometimes "the rectangle $A B C$."

To this proposition may be added the corollary: If two straight lines be divided into any number of parts, the rectangle contained by the two straight lines, is equal to the rectangles contained by the several parts of one line and the several parts of the other respectively.

The method of reasoning on the properties of rectangles by means of the products which indicate the number of square units contained in their areas is foreign to Euchid's itleas of rectangles, as discussed in his Second Book, which have no reference to any particular unit of length or measure of surface.

Prop. 1. The figures $B H, B h, D L, E H$ are rectangles, as may readily be shewn. For, by the parallels, the angle CEL is equal to EDK ; and the angle $E D K$ is equal to $B D(\dot{r}$ (Euc. 1. 29.). But $B D G$ is a right angle. Hence one of the angles in each of the figures $B H, B K, D L$, E'll is a right angle, and therefore (Euc. 1. 46, Cor.) these figures are rectaugular.

Prop. 1. Algebraically. (fig. Prop. 1.)
Let the line $B C$ contain a linear units, and the line A, b linear units of the same length.

Also suppose the parts $B D, D E, E C$ to contain m, n, p linear units respectively.

$$
\text { Then } a=m+n+p
$$

multiply these equals by b,

$$
\text { therefore } a b=b m+b n+b p
$$

That is, the product of two numbers, one of which is divided into any number of parts, is equal to the sum of the products of the undivided number, and the several parts of the other;
or, if the Geometrical interpretation of the products be restored,
The number of square units expressed by the product ab, is equal to the number of square units expressed by the sum of the products bm, $b n, b p$.
l'rop. It. Agebraically. (fig. Prop. 11.)
Let $A B$ contain a linear units, and $A C, C D, m$ and n linear units respectively.

$$
\text { Then } m+u=a
$$

multiply these equals by a,

$$
\text { therefore } a m+a n=a^{2}
$$

That is, if a number be divided into any two parts, the sum of the products of the whole and each of the parts is equal to the square of the whole number.

Prop. In. Alrebraically. (fig. Prop. int.)
Let $A B$ contain a lincar units, and let $B C$ contain m, and $A C, x$ linear units.

$$
\text { Then } a=m+n
$$

multiply these equals hy m,
therefore $m a=m e^{2}+m n$.
That is, if a number be divided into any two parts, the prodiet of the whole number and one of the parts, is equal to the square of that part, and the product of the two parts.

Prop. iv. might have been deduced from the two preceding propositions; but Euclid has preferred the method of exhibiting, in the demonstrations of the second book, the equality of the spaces compared.

In the corollary to Prop. xuvi. Book I. it is stated that a paralielogram which has one right angle, has all its angles right angles. By applying this corollary, the demonstration of Prop. IV. may be considerably shortened.

If the two parts of the line be equal, then the square on the whole line is equal to four times the square on half the line.

Also, if a line be divided into any three parts, the square on the whole line is equal to the squares on the three parts, and twice the rectangles contained by every two parts.

Prop. 1v. Algebraically. (fig. Prop. נv.)
Let the line $A B$ contain a linear units, and the parts of it $A C$ and $B C$, m and n linear units respectively.

$$
\begin{gathered}
\text { Then } a=m+n, \\
\text { squaring these equals, } \therefore a^{2}=(m+n)^{2} \text {, } \\
\text { or } a^{2}=m^{2}+2 m n+n^{2} .
\end{gathered}
$$

That is, if a number be divided into any two parts, the square of the number is equal to the squares of the two parts together with twice the produet of the two parts.

From Eue. u., 4, may be deduced a proof of Eue. I., 47. In the fig. take $D L$ on $D E$, and $E M$ on $E B$, each equal to $B C$, and join $C H, M L, L M, M C$. Then the ligure $I I L M C$ is a square, and the four triangles ($A H, H D L$, $L E M, M B C^{\prime}$ are equal to one another, and together are equal to the two rectangles $A G, G E$.

Now $A\left(G, C E, F I I, C F^{\prime}\right.$ are together equal to the whole figure $A D E B$; and $H L I M C$, with the four triangles ('AH,HDL, $L E E B, M B C^{\prime}$ also make up the whole figure $A D E B$;

Hence $A G, G E, F H, C H$ are equal to IILMC together with the four triangles:

> but $A G, G E$ are equal to the four triangles, wherefore $F H, C K$ are equal to $H L M C$, that is, the squares on $A C, A H$ are together equal to the square on $C I I$.

Prop. r. It must be kept in mind, that the sum of two straight lines in Geometry, means the straight line formed by joining the two lines together, so that both may be in the same straight line.

The following simple properties respecting the equal and unequal division of a line are worthy of being remembered.
I. Since $A B=2 B C=2(B D+D C)=2 B D+2 D C$, (fig. Prop. v.)

$$
\text { and } A B=A D+D B
$$

$$
\therefore 2 C D+2 D B=A D+D B
$$

and by subtracting $2 D B$ from these equals,

$$
\begin{gathered}
\therefore 2 C D=A D-D B \\
\text { and } C D=\frac{1}{2}(A D-D B)
\end{gathered}
$$

That is, if a line $A B$ be divided into two equal parts in C, and into tro unequal parts in I, the part $(C D$ of the line between the points of section is equal to lalf the difference of the mequal parts $A D$ and $D B$.
II. Here $A D=A C+C D$, the sum of the unequal parts, (fig. Prop. v.) and $D B=A C-C D$ their difference.

Hence by adding these equals together,

$$
\therefore A D+D B=\Omega A C
$$

or the sum and difference of two lines $A C, C D$, are together equal to twice the greater line.

And the halves of these equals are equal,

$$
\therefore \frac{1}{2} \cdot A D+\frac{1}{2} \cdot D B=A C
$$

or, half the sum of two unequal lines $A C, C D$ added to half their difference is equal to the greater line $A C$.

II1. Again, since $A D=A C+C D$, and $D B=\perp C-C D$, by subtracting these equals,

$$
\therefore A D-D B=2 C D
$$

or, the difference between the sum and difference of two unequal lines is equal to twice the less line.

And the halves of these equals are equal,

$$
\therefore \frac{1}{2} \cdot A D-\frac{1}{2} \cdot D B=C D,
$$

or, half the difference of two lines subtracted from half their sum is equal to the less of the two lines.

$$
\begin{gathered}
1 \mathrm{~V} . \text { Since } \quad A C-C D=D B \text { the difference, } \\
\therefore A C=C D+D B,
\end{gathered}
$$

and adding $C D$ the less to each of these equals,

$$
\therefore A C+C I=2 C D+D B
$$

or, the sum of two unequal lines is equal to twice the Iess line together with the difference between the lines.

Prop. r. Algebraically.
Let $A B$ contain $2 \neq$ linear units, its half $B C$ will contain a linear units.
And let $C D$ the line between the points of section contain m linear units. Then $A D$ the greater of the two mequal parts, contains $a+m$ linear units; and $D B$ the less contains $a-m$ units.
Also m is half the difference of $a+m$ and $a-m$;

$$
\begin{gathered}
\therefore(a+m)(a-m)=a^{2}-m^{2} \\
\text { to each of these equals add } m^{2} \\
\therefore(a+m)(a-m)+m^{2}=a^{2}
\end{gathered}
$$

That is, if a number be divided into two equal parts, and also into tro unequal parts, the produet of the unequal parts together with the square of half their diference, is equal to the square of half the number.

Bearing in mind that $A(, C J)$ are respectively half the sum and half the difference of the two lines $A D, D B$; the corollary to this proposition may be expressed in the following form: "The rectangle eontained by two straight lines is equal to the difference on the squares of half their sum and hall their difference."

The rectangle contained by $A J$ and $H D$, and the square on $I B C$ are each bounded by the same extent of line, but the spaces enclosed differ by the square on (1).

A given straight line is said to be prorluced when it has its lengtl inereased in either direction, and the increase it receives, is called the frort produced.

If a point be taken in a line or in a line produced, the line is said to be divided internally or externally, and the distances of the point from the
ends of the line are called the internal or external segments of the bine, according as the point of section is in the line or the line produced.

Prop. vı. Algebraically.
Let $A B$ contain 2 linear units, then its half $B C$ contains a units; and let $B D$ contain m units.

Then $A D$ contains $2 \alpha+m$ units,

$$
\text { and } \therefore(2 a+m) m=2 a m+m^{2}
$$

to each of these equals add a^{2},
$\therefore(2 a+m) m+a^{2}=a^{2}+2 a m+m^{2}$.
But $a^{2}+2 a m+u^{2}=(a+m)^{2}$, $\therefore(2 a+m) m+a^{2}=(a+m)^{2}$.
That is, If a number he divided into two equal numbers, and another number be added to the whole and to one of the parts; the product of the whole number thus increased and the other number, together with the square of half the given number, is equal to the square of the number which is made up of half the given number increased.

The algebraical results of Prop. v. and Prop. vi. are identical, as it is obvious that the difference of $a+m$ and $a-m$ in Prop. v. is equal to the difference of $2 a+m$ and m in Prop. vi, and one algebivical result expresses the truth of both propositions.

This arises from the two ways in which the difference between two unequal lines may be represented geometrically, when they are in the same direction.

In the diagram (fig. to Prop. v.), the difference $D B$ of the two unequal lines $A C$ and $C D$ is exhibited by producing the less line $C D$, and making $C B$ equal to $A C$ the greater.

Then the part produced $D B$ is the difference between $A C$ and $C D$, for $I C$ is equal to $C B$, and taking $C D$ from each,
the difference of $A C$ and $C D$ is equal to the difference of $C B$ and $C D$.
In the diagram (fig. to Prop. v.), the difference $I) B$ of the two unequal lines $C D$ and $C A$ is exhibited by cutting off from $C D$ the greater, a part $C B$ equal to $C A$ the less.

Prop. vil. Either of the two parts $A C, C B$ of the line $A B$ may be taken : and it is equally true, that the squares on $A B$ and $A C$ are equal to twice the rectangle $A \dot{B}, A C$, together with the square on $B C$.

Prop. rir. Algebraically.
Let $A B$ contain " linear units, and let the parts $A C$ and $C B$ contain m and n linear units respectively.

$$
\begin{gathered}
\text { Then } a=m+n ; \\
\text { squaring these equals, } \\
\therefore a^{2}=m^{2}+2 m n+n^{2}, \\
\text { add } n^{2} \text { to each of these equals, } \\
\therefore a^{2}+n^{2}=m^{2}+2 m n+2 n^{2} \\
\text { But } 2 m n+2 n^{2}=2(m+n) n=2 a n, \\
\therefore a^{2}+n^{2}=m^{2}+2 a n .
\end{gathered}
$$

That is, If a number be divided into any two parts, the square of the whole number and of one of the parts, is equal to twice the product of the whole number and that part, together with the square of the other part.

Prop. vir. As in Prop. vir. either part of the line may be taken, and it is also true in this Proposition, that four times the rectangle con-
tained by $A B, A C$ together with the square on $B C$, is equal to the square on the straight line made up of $A B$ and $A C$ together.

The truth ol this proposition may be deduced from Enc. Ir. 4 and 7.
For the square on $A D$ (fig. Prop. 8.) is equal to the squaies on $A B, D D$, and twice the rectangle $A B, B D$; (Euc. II. 4.) or the squares on $-1 B, L r^{\prime}$, and twice the rectangle $A B, B C$, becanse $B C$ is equal to $B D$: and the squares on $A B, B C$ are equal to twice the rectangle $A B, B C$ with the square on $-1 C$: (Euc. Ir. 7.) therefore the square on $A D$ is equal to four times the rectangle $A B, D C$ together with the square on $A C$.

Prop. Tini. Algebraically.
Let the whole line $A B$ contain a linear units of which the parts $A C, C B$ contain m, n units respectively.

$$
\text { Then } m+n=a
$$

and subtracting or taking n from each,

$$
\therefore m=a-n,
$$

squaring these equals,

$$
\therefore m^{2}=a^{2}-2\left(n+n^{2},\right.
$$

and adding 4 an to each of these equals,

$$
\begin{gathered}
\therefore 4 a n+m^{2}=a^{2}+2 a n+n^{2} \\
\text { But } a^{2}+2 a n+n^{2}=(a+n)^{2} \\
\therefore 4 a n+m^{2}=(a+n)^{2} .
\end{gathered}
$$

That is, If a mumber be divided into any two parts, four times the produet of the whole mumber and one of the parts, together with the square of the other part, is equal to the square of the momber made of the whole and the part first taken.

Prop. Vir, may be put under the following form: The square on the sum of two lines exceeds the square on their diference, by four times the rectangle eontained by the lines.

Prop. Ix. The demonstration of this proposition may be deduced from Euc. If. 4 and 7.

For (Euc. 11. 4.) the square on $A D$ is equal to the squares on $A C, C l)$ and twice the rectangle A^{\prime}, ('l); (fice. P'rop). (!) and adding the square on $1 B B$ to each, therefore the squares on $A D, D I B$ are equal to the squares on $A C, C D$ and twice the rectangle $A($, (1) together with the square on $D B$; or to the squares on $B C^{\prime},(' /)$ and twice the rectangle $B C, C D$ with the square on $D D B$, because $I C^{\prime}$ is erqual to $A C$ '.

But the squanes on $B C,(I)$ are equal to twice the rectangle $E C, C D$, with the square on J / B. (Enc. 11. 7.)

Wherefore the squares on $A D, D B$ are equal to twice the squares on BC and ('l).

Prop. Ix. Algelraically.
Let $A B$ contain $2 a$ lincar units, its half $A C$ or $B C$ will contain a units; and let (J) the line between the points of section contain m units.

Also $A D$ the greater of the two unequal parts contains $a+m$ units, and $D B$ the less contans $a-m$ mits.

> Then $(a+m)^{2}=a^{2}+2 a m+m^{2}$,
> and $(a-m)^{2}=a^{2}-2 a m+m^{2}$

Hence by adding these equals,

$$
\therefore(a+m)^{2}+(a-m)^{2}=2 a^{2}+2 m^{2}
$$

That is, If a number be divided into two equal parts, and also into two unequal parts, the sum of the squares of the two unequal parts is equal to twice the square of half the number itself, and twice the square of half the difference of the unequal parts.

The proof of Prop. x. may be deduced from Euc. in. 4, 7, as Prop. ix.
Prop. x. Algebraically.
Let the line $A B$ contain $2 a$ linear units, of which its half $A C$ or $C B$ will contain a units;

$$
\text { and let } B D \text { contain } m \text { units. }
$$

Then the whole line and the part produced will contain $2 a+i n$ units, and half the line and the part produced will contain $a+m$ units,

$$
\begin{gathered}
\therefore(2 a+m)^{2}=4 a^{2}+4 a m+m^{2}, \\
\text { add } m^{2} \text { to eaeh of these equals, } \\
\therefore(2 a+m)^{2}+m^{2}=4 a^{2}+4 a m+2 m^{2} . \\
\text { Again, }(a+m)^{2}=a^{2}+2 a m+m^{2}, \\
\text { add } a^{2} \text { to each of these equals, } \\
\therefore(a+m)^{2}+a^{2}=2 a^{2}+2 a m+m^{2}, \\
\text { and doubling these equals, } \\
\therefore 2(a+m)^{2}+2 a^{2}=4 a^{2}+4 a m+2 m^{2} . \\
\text { But }(2 a+m)^{2}+m^{2}=4 a^{2}+4 a m+2 m^{2} . \\
\text { Hence } \therefore(2 a+m)^{2}+m^{2}=2 a^{2}+2(a+m)^{2} .
\end{gathered}
$$

That is, If a number be divided into two equal parts, and the whole number and one of the parts be inereased by the addition of another number, the squares of the whole number thus increased, and of the number by which it is increased, are equal to double the squares of half the number, and of half the number increased.

The algebraical results of Prop. ix. and Prop. x. are identical, (the enunciations of the two Props. arising, as in Prop. v. and Prop. vi., from the two ways of exhibiting the difference between two lines:) and both may be included under the following proposition: The square on the sum of two lines and the square on their difference, are together equal to double the sum of the squares on the two lines.

Prop. xi. Two series of lines, one series deereasing and the other series increasing in magnitude, and each line divided in the same manner, may be found by means of this proposition.
(1) To find the deereasing series.

In the fig. Euc. H . $11, A B=A H+B H$,
and since $A B . B H=A H^{2}, \therefore(A I I+B H) . B H=A I^{2}$,
$\therefore B H^{2}=A H H^{2}-A H . B H=A H .(A H-B H)$.
If now in $H A, H L$ be taken equal to $B H$,

$$
\text { then } H L^{2}=A I I(A H-H L) \text {, or } A H \cdot A L=H L^{2} \text { : }
$$

that is, $A I I$ is divided in L, so that the rectangle contained by the whole line $A I I$ and one part, is equal to the square on the other part $I H$.. By a similar process, IIL may be so divided; and so on, by always taking from the greater part of the divided line, a part equal to the less.
(2) To find the increasing series.

From the fig. it is obvious that $C F, F A=C A^{2}$.
Hence $C F$ is diviled in A, in the same manner as $A B$ is divided in H, by adding $A F$ a line equal to the greater segmont, to the given line $C A$ or
$A B$. And by suceessively adding to the last line thus divided, its greaier segment, a series of lines increasing in magnitude may be found similarly divided to $A B$.

It may also be shewn that the squares on the whole line and on the less segment are equal to three times the square on the greater segment. (Euc. NiII. 4.)

To solve Prop. xı. algebraically, or to find the point H in $A B$ such that the rectangle contained by the whole line $A B$ and the part $I B$ shall be cqual to the square on the other part $A H$.

Let $A B$ contain a linear units, and $A I I$ one of the unknown parts eontain x units,

$$
\text { then the other part } H B \text { contains } a-x \text { units. }
$$

And $\therefore a(a-x)=x^{2}$, by the problem, or $x^{2}+a x=a^{2}$, a quadratic equation.

$$
\text { Whence } x=\frac{ \pm a \downarrow 5-a}{2}
$$

The former of these values of x determines the point H.

$$
\text { So that } x=\frac{1^{\prime} 5-1}{2} \cdot A B=A I I \text {, one part, }
$$

and $a-x=a-A I I=\frac{3-4^{\prime 5}}{2}, A B=H B$, the other part.
It may be observed that the parts $A H$ and $I I B$ cannot be numerieally expressed by any rational number. Approximation to their true values in terms of $A \dot{B}$, may be made to any required degree of accupacy, by extending the extraction of the square root of 5 to any number of decimals.

To ascertain the meaning of the other result $x=-\frac{1^{\prime} 5+1}{2} \cdot a$.
In the equation $a(a-x)=x^{2}$,
for x write $-x$, then $a(a+x)=x^{2}$,
which when translated into words gives the following problem.
To find the length to whieh a given line must be produced so that the rectangle contained by the given line and the line made up of the given line and the part produced, may be equal to the square on the part produced.

Or, the problem may also be expressed as follows:
To find two lines having a given difference, such that the reetangle eontained by the difference and one of them may be equal to the square on the other.

It may here be remarked that Irop. xı. Book II. affords a simple Geometrical construetion for a quadratic equation.

Prop. xir. Algetraically.
Assuming the truth of Eive. 1. 47.
Let $B C, C A, A B$ contain a, b, c linear units respectively, and let $C D, D A$, contain m, n units, then $B D$ contains $a+m$ units.
And therefore, $c^{2}=(a+m)^{2}+n^{2}$, from the right-angled triangle $A B D$, also $b^{2}=m^{2}+u^{2}$ from $A(C D$;

$$
\begin{aligned}
\therefore c^{2}-b^{2} & =(a+m)^{2}-m^{2} \\
& =a^{2}+2 a m+m^{2}-m^{2}
\end{aligned}
$$

$$
\begin{aligned}
&=a^{2}+2 a m, \\
& \therefore c^{2}=b^{2}+a^{2}+2 a m, \\
& \text { that is, } c^{2} \text { is greater than } b^{2}+a^{2} \text { by } 2 a m .
\end{aligned}
$$

Prop. xir. Case in. may be prowed more simply as follows.
Since Bl) is divided into two parts in the point D,
therefore the squares on $(1 / ;, l j)$ are cqual to twice the rectangle con-
tained by $(D), D D$ and the square on (D) ; (ii. 7.)
add the square on $A D$ to each of these equals;
therefore the squares on $C B, B D, D A$ are equal to twice the rectangle
$C B, B D$, and the squares on $C ' D$ and $D A$,
but the squares on $B D, D A$ are equal to the square on $A B$, (r. 47.)
and the squares on $C D, D A$ are equal to the square on $A C$,
therefore the squares on $C B, B A$ are equal to the square on $A C$, and
twice the rectangle $C B, D D$. That is, \&e.
Prop. xirt. Algebraically.
Let $B C, C A, A B$ contain respectively a, b, c linear units, and let $E D$ and $A D$ also contain m and n units.

Case 1. Then $D C$ contains $a-m$ mits.
Therefore $c^{2}=u^{2}+m^{2}$ from the right-angled triangle $A B D$,
and $b^{2}=n^{2}+(a-m)^{2}$ from $A D C^{\prime}$;
$\therefore c^{2}-b^{2}=m^{2}-(a-m)^{2}$
$=m^{2}-a^{2}+2 a m-m^{2}$
$=-a^{2}+2 a m$,
$\therefore a^{2}+c^{2}=b^{2}+2 a m$,
or $b^{2}+2 a m=a^{2}+c^{2}$,
that is, b^{2} is less than $a^{2}+c^{2}$ by $2 a m$.
Case II. $D C=m-a$ units.
$\therefore c^{2}=m^{2}+n^{2}$ from the right-angled triangle $A B D$,
and $b^{2}=(m-a)^{2}+u^{2}$ from $A C D$,
$\therefore c^{2}-b^{2}=m^{2}-(m-a)^{2}$,
$=m^{2}-m^{2}+2 a m-a^{2}$
$=\Omega a m-a^{2}$,
$\therefore a^{2}+c^{2}=b^{2}+2 a m$,
or $b^{2}+2 a m=a^{2}+c^{2}$,
that is, b^{2} is less than $a^{2}+c^{2}$ by $2 a m$.
Case in. Here m is equal to a.
And $b^{2}+a^{2}=c^{2}$, from the right-angled triangle $A B C$.
Add to each of these equals a^{2},

$$
\therefore b^{2}+2 a^{2}=c^{2}+a^{2}
$$

that is, b^{2} is less than $c^{2}+a^{2}$ by $2 a^{2}$, or $2 a \alpha$.
These two propositions, Fue. II. 12, 13, with Euc. 1. 47, exhinit tho relations which subsist between the sides of an obtuse-angled, an acuteangled, and right-angled triangle respectively.

NOTE ON THE ABBRETTATIONS AND ALGEBRAICAL SYMBOLS EMPLOYED IN GEOMETRY.

Tine aneient freometry of the Greeks atmitted no symbols besides the diagrams and ordinary langnage. In later times, atter symbols of operation had been devised by witers on Algebra, they were very soon adopted and employed on account of their brevity and convenience, in writings parely geometrical. Dr. Barrow was one of the first who introduced algebraical symbols into the language of Elementary Geometry, and distinctly states in the preface to his Enclicl, that his object is "to eontent the desires of those who are delighted more with symbolical than verbal demonstrations." As algebraical symbols are employed in alntost all works on the mathematies, whether geometrical or not, it seems proper in this place to give some briel account of the marks which may be regarded as the alphabet of symbolical language.

The mark $=$ was first used by Robert Recorde, in lis treatise on Algebra entitled, "The Whetstone of Witte," 1557. He remarks: "And to avoide the tediouse repetition of these woorles : is cqualle to : I will sette as I doe often in woorke use, a paire of paralleles, or Gemowe lines of one lengtke, thus: $=$, bicause noe 2 thynges can be more equalle." It was employed by him as simply alfinming the erfality of two numerical or algebraical expressions. (reonmetrical equality is not exactly the same as numerical equality, and when this srmbol is used in geometrical reasonings, it must be understood as having reference to pure geometrical equality.

The signs of relative magnitude, $>$ meaning, is oreater than, and $<$, is less than, were first introduced into algebra by Thomas Inariot, in his "Artis Analytice Praxis," which was published atter his ateath in 1631.

The signs + anl - were first employed by Michael Stifel, in his "Arithmetica Integra," which was published in 1544 . The sign + was employed by hin for the word plus, and the sign - for the word minus. These signs were used by Sitilel strictly as the arithnetical or algebraical signs of addition and subtraction.

The sign of multiplieation \times was fisst introluced by Onghtred in his "Clavis Mathematiea," which was published in l6i:31. In algehraical multiplication he cither connects the letters which form the lactors of a product by the sign x, or writes them as words without any sign or mark between them, as lat been done before by Ilamiot, who first introduced the small letters to designate known and unknown quantities. Ilowever eoncise and convenient th." notation $A B \times B=\prime$ or $A B$. BC'may be in pmatice for " the recteng'e contained by the lines $A B$ and $B C^{\prime \prime}$; the student is cautioned against the use of it, in the carly part of his geometrical studies, as its use is likely to oceasion a misapprehension of Euclid's meaning, by confounding the idea of (reometrical equality with that of Arithmetical equality. later writers on (Gometry who employed the Latin languge, explaned the nota-
 ried along the line $B B^{\prime}$ in a mormal position to it, until it eome to the end 1 , it will then form with $B C^{\prime}$, the rectangle contaned $b y A B$ and $B C^{\prime}$. Dr. Barrow sometimes expresses "the rectangle contained by $A l$ ' ard $B C^{+}$" by "the rectangle A BC."

Michael stifel was the first who introduced intargal expments to denote the powers of algebraical symbols of quantity, for which he employed capital letters. Vieta atterwards used the vowels to denote known, and the consonants, unknown quantities, but used words to designate the powers. Simou

Stevin, in his treatise on Algebra, which was published in 1605 , improved the notation of stifel, by phacing the figures that indicated the powers within small circles. P'eter Hamus adopted the initial letters $l, q, e, b q$ of latus, quadratus, cubus, biquadratus, as the notation of the first four powers. Hariot exhibited the different powers of algebraical symbols by repeating the symbol, two, three, four, $\&$ c. times, accoding to the order of the power. Descartes restored the numerical exponents of powers, placing them at the right of the numbers, or symbols of quantity, as at the present time. Dr. Barrow employed the notation $A B q$, for "the square on the line $A B$," in his edition of Euclid. The notations $A B^{2}, A B^{3}$, for " the square and cube on the line whose extremities are A and B," as well as $A B \times B C$, for "the rectangle contained by $A B$ and $B C$," are used as abbreviations in almost all works on the Mathematies, though not wholly consistent with the algelbraical notations a^{2} and a^{3}.

The symbol l, being originally the initial letter of the word rudix, was first used by Stifel to denote the square root of the number, or of the symbol, before which it is placed.

The lifindus, in their treatises on Algebra, indicated the ratio of two numbers, or of two algebraical symbols, by placing one above the other, without any line of separation. The line was first introduced by the Arabians, from whom it passed to the Italians, and from them to the rest of Europe. This notation has been employed for the expression of geometrical ratios by almost all writers on the Mathematics, on account of its great consenience. Oughtred first used points to indicate proportion; thus, $a: b:: c: d$, means that a bears the same proportion to b, as c does to d.

QUESTIONS ON BOOK II.

1. Is rectangle the same as rectus angulus? Explain the distinction, and give the corresponding Greek terms.
2. What is meant by the sum of two, or more than two straight lines in Geometry ?
3. Is there any difference letween the straight lines by which a rectangle is said to be contained, and those by which it is bounded?
4. Define a guomon. How many guomous appear from the same construction in the same rectangle? Find the difference between them.
5. What axiom is assumed in proving the first eight propositions of the Second Book of Euclid?
6. Of effual squares and equal rectangles, which must necessarily coincide?
7. How may a rectangle be dissected so as to form an equivalent rectangle of any proposed length?
8. When the adjacent sides of a rectangle are commensurable, the area of the rectangle is properly represented by the product of the number of units in two adjaceut sides of the rectangle. Illustrate this by considering the ease when the two adjacent sides contain 3 and 4 units respectively, and distinguish between the units of the factors and the units of the product. Shew generally that a rectangle whose adjacent sides are represented by the integers a and \vec{b}, is represented by $a b$. Also shew, that in the same sense, the rectangle is represented by $\frac{a b}{m m}$, if the sides be represented by $\frac{a}{a n}, \frac{b}{r}$.
9. Why may not Algebraical or Arithmetical proofs be substituted (as being shorter) for the demonstrations of the Propositions in the Second Book of Euclid?
10. In what sense is the area of a triangle said to be equal to half the product of its base and its aititnde? What two propositions of Euclid may be adduced to prove it?
11. How do you shew that the area of a rhombus is equal to half the rectangle contained by the diagonals?
12. How may a rule be deduced for finding a numerical expression for the area of any parallelogram, when two adjacent sides are given?
13. The area of a trapezium which has two of its sides parallel is equal to that of a rectangle contained by its altitude and half the sum of its parallel sides. What propositions of the First and Second Books of Euclid are employed to prove this? Of what service is the above in the mensuration of fields with irregular borders?
14. From what propositions of Enclid may be deduced the following rule for finding the area of any quadrilateral figure :-" Multiply the sum of the perpendiculars drawn from opposite angles of the figure upon the diagonal joining the other two angles, and take half the product."
15. In Euclid 1r. 3, where must be the point of division of the line, so that the rectangle contained by the two paits nay be a maximum? Exemplify in the case where the line is 12 inches long.
16. Inow may the deruonstration of Euclid in. 4, be legitimately shortened? Give the Algebraical proof, and state on what suppositions it can be regarded as a proof.
17. Shew that the proof of Euc. II. 4, can be deduced from the two previous propositions without any geometrical construction.
18. Shew that if the two complements be together equal to the two squares, the given line is bisected.
19. If the line $A B$, as in Enc. If. 4. be divided into any three parts, entmciate and prove the analogons proposition.
20. Prove geometrically that if a straight line be trisected, the square on the whole line equals nine times the square on a third part of it.
21. Deduce from Einc. ir. 4, n proof of Enc. 1. 47.

22 . If a straight line be divided into two parts, when is the reetangle contained by the parts, the greatest prossible? and when is the sum of the squares of the parts, the least possible?
23. Shew that if a line be divided into two equal parts and into two unequal parts; the part of the line between the points of section is equal to hall the difference of the unequal parts.
24. If half the sum of two mequal lines be increased by laalf their difference, the sum will be equal to the greater line; and if the sum of two lines bo diminished by half their difference, the remander will be equal to the less line.
25. Explain what is meant by the intermal and extermed seqments of a line; and shew that the sum of the external segments of a line or the dilierence of the internal segments is double the distance between the points of section and bisection of the line.
26. Shew how Euc. 11. 6, may be deduced immediately from the preceding Proposition.
27. Prove Ceometrically that the squares on the sum and difference of two lines are equal to twice the stuares on the lines themselves.
28. A given rectangle is divided by two straight lines into fonr rectangles. (iven the areas of the two which have not commou sides: Lind the areas of the other twe.
29. In how many wars may the difference of two lines be exlibited? Enunciate the propositions in Book no which denend on that circmastance.
30. How may a series of lines be found similarly divided to the line $A B$ in Euc. 11. 11 ?
31. Divide Algelraically a given line (a) into two parts, such that the rectangle eontained by the whole and one part may be equal to the square of the other part. Deduce Euclid's construction from one solution, and explain the other.
32. Given the lesser segment of a line, divided as in Euc. H1. 11, find the greater.
33. Fnunciate the Arithmetical theorems expressed by the following Algebraical formula,

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}: a^{2}-b^{2}=(a+b)(a-b):(a-b)^{2}=a^{2}-2 a b+b^{2},
$$

and state the eorresponding Geometrical propositions.
3. Shew that the first of the Algebraical propositions,

$$
(a+x)(a-x)+x^{2}=a^{2}:(a+x)^{2}+(u-x)^{2}=2 a^{2}+2 x^{2},
$$

is equivalent to the two propositions 5 . and vi., and the second of them, to the two propositions Ix. and x. of the Second Book of Euclid.
35. Prove Euc. 11. 12, when the perpendienlar $B E$ is drawn from B on $A C$ produced to E, and shew that the rectangle $B C^{\prime}, C I$) is equal to the rectangle $A C, C E$.
36. Inelude the first tro eases of Euc. 11. 13, in one proof.
37. In the second case of Euc. 11. 13, draw a perpendicular $C E$ from the obtuse angle C upon the side $A B$, and prove that the square on $A B$ is equal to the rectangle $A B, A E$ fogether with the rectangle $B C, B D$.
38. Emuciate Euc. 11. 13, and give an Algebraical or Aritlunetical proof of it.
39. The sides of a triangle are a* $3,4,5$. Determine whether the angles between 3,$4 ; 4,5$; and 3,5 ; respectively are greater than, equal to, or less than, a right angle.
40. Two sides of a triangle are 4 and 5 inches in length, if the third sile be $6^{6}{ }_{16}$ inches, the triangle is acute-angled, but if it be $6^{\circ} / 26$ inches, the triangle is obtuse-angled.
41. A triangle has its sides $7,8,9$ units respectively : a strip of breadth 2 units being taken off all round from the triangle, lind the area of the remainder.
42. If the original figure, Euc. 11. 14, were a right-angled triangle, whose sides were represented by 8 and 9, whit number would represont the side of a subare of the same area? Shew that the perimeter of the square is less than the perimeter of the triangle.
43. If the sides of a rectangle are 8 feet and 2 feet, what is the side of the equivalent square?
44. "All plane rectilineal figures admit of quadrature." Toint out the succe:sion of steps by which Euclid establishes the truth of this proposition.
45. Explain the construction (without proof) for making a square equal to a plane polygon.
46. Shew from Euc. 11. 14 that any algebraical surd as 1 a can be represented by a line, if the unit be a line.
47. 'ould any of the mopositions of the Second Book be made corollaries to other propositions, with adrantage? l'oint out any such propositions, and give your reasons for the alterations you would make.

GEOMETRICAL EXERCISES ON BOOK II.

PROPOSITION I. PROBLEM.

Divide a given straight line into two parts such, that their rectangle may be equal to a given square; and determine the greatest square which the rectangle can equal.

Let $A B$ be the given straight line, and let $I /$ be the side of the giren square.

It is required to divide the line $A B$ into two parts, so that the rectangle contained by them may be equal to the square on \mathcal{I}.

Bisect $A B$ in C, with center C, and radius $C A$ or $C D$, describe the semicirele $A D B$.

At the point B draw $B E$ at right angles to $A B$ and equal to M.
Through E, draw $E D$ parallel to $A \dot{B}$ and cutting the semicircle in D;
and draw $D F$ parallel to $E B$ meeting $A B$ in F.
Then $A B$ is divided in F, so that the rectangle $A F, F B$ is equal to the square on MF. (II. 14.)

The square will be the greatest, when $E D$ touches the semicircle, or when M is equal to half of the given line $A B$.

PROPOSITION II. THEOREM.

The square on the excess of one straight line above another is less than the squares on the tuo lines by twice their rectangle.

Let $A B, B C$ be the two straight lines, whose difference is $A C$.
Then the square on $A C$ is less than the squares on $A B$ and $B C$ by twice the rectangle contained by $A B$ and $B C$.

Constructing as in Prop. 4. Book m.
Because the complement $A C_{r}$ is equal to $G E$,
add to each $C K$, therefore the whole $A h^{\circ}$ is equal to the whole $C E^{\prime}$;
and $A K, C E$ together are double of $A K$; but $A K^{\circ}, C E$ are the gnomon $A h^{\prime} F$ and $C h^{*}$, and $A K$ is the rectangle contained by $A B, D C$;
therefore the ghomon $A \mathrm{hF}$ and $\mathrm{C}^{-} \mathrm{h}^{-}$
are equal to twice the rectangle $A B, B C$,
but $A E$, ('K are equal to the squares on $A D, B C$;
taking the former equals from these equals,
therefore the difterence of $A E$ and the gnomon $A h^{\prime} F$ is equal to the difference between the squares on $A \bar{B}, B^{\prime} C$, and twice the rectangle $A B, B C^{\prime}$;
but the difierence $A E$ and the gnomon $A T F$ is the figure $I I F$ which is equal to the square on $A C$.
Wherefore the square on $A C$ is equal to the difference between the squares on $A B, B C$, and twice the rectangle $A B, B C$.

PROPOSITION III. THEOREM.

In any triangle the squares on the two sides are together double of the squares on half the base and on the straight line joininy its bisection with the opposite angle.

Let $A B C$ be a triangle, and $A D$ the line drawn from the rertex A to the bisection D of the base $B C$.

From A draw $A E$ perpendicular to $B C$.
Then, in the obtuse angled triangle $A B D$, (in. 12.) ;
the square on $A B$ exceeds the squares on $A D, D B$, by twice tho rectangle $B D, D E$:
and in the acute-angled triangle $A D C$. (11. 13.) ;
the square on $A C$ is less than the squares on $A D, D C$, by twice the rectangle $C D, D E$:
wherefore, since the rectangle $B D, D E$ is equal to the rectangle $C D$,
$D E$; it follows that the squares on $A B, A C$ are double of the squares on $A D, D B$.

PROPOSITION IV. THEOREM.

If straight lines be draun from each angle of a triamgle bisecting the opposite sides, four times the sum of the squares on thess tines is equal to thre times the sum of the squares on the sides of the triangle.

Let $A B C$ be any triangle, and let $A D, B E, C F$ be drairn from A, B, r to I, E, \dot{F}, the bisections of the opposite sides of the triangle: draw $A G$ perpendicular to $B C$.

Then the square on $A B$ is equal to the squares on $B D, D A$ together with twice the rectangle $B D, D G$, (in. 12.)
and the square on $A C$ is equal to the squares on $C D, D A$ diminished by twice the rectangle $C D, L G$; (II. 13.)
therefore the squares on $A B, A C$ are equal to twice the square on $B D$, and twice the square on $A D$; for $D C$ is equal to $B D$:
and twice the squares on $A B, A C$ are equal to the square on $B C$, and four times the square on $A D$: for $B C^{\prime}$ is twice $B D$.
Sinilarly, twice the squares on $A B, B C$ are equal to the square on $A C$. and four times the square on $B E$:
also twice the squares on $B C, C A$ are equal to the square on $A B$, and four times the square on $F C^{\prime}$:
hence, by adding these cquals,
four times the squares on $A B, A C, B C$ are equal to fom times the squares on $A D, B E,(F$ together with the squares on $A B, A C, B C$: and taking the squares on $A B, A C, B C$ from these equals,
therefore three times the squares on $A B, A C, B C$ are equal to four times the squares on $A D, B E, C F$.

PROPOSITION V. THEOREM.

The sum of the perpenticulars let fall from any point within an equilatcral triangle, will be cqual to the perpendirular let fall from one of its angles upon the opposite side. Is this proposition true then the point is in one of the sides of the trianale? In uchat manner must the proposition be enunciated when the point is withont the triangle?

Let $A B C$ be an equilateral triangle, and P any point within it : and from P^{\prime} let fall $P D, P E, P F^{\prime}$ perpendiculars on the sides $A B, B C$, $C A$ respectively, also from A let fall $A G$ perpendicular on the base $B C$.

Then $A\left(G\right.$ is equal to the sum of $P D, P E, P F^{r}$

From P draw $P A, P B, P C$ to the angles A, B, C.
Then the triangle $A B C$ is equal to the thre triangles $P A B, P B C$, PCA.

But since every rectangle is double of a triangle of the same base and altitude, (1.41.)
therefore the rectangle $A C_{,}, B C^{\prime}$, is equal to the three rectangles $A B, P I) ; A C, P^{\prime} F^{\prime}$ and $B C, J^{\prime} E \prime$.

Whence the line $A G^{\prime}$ is equal to the sum of the lines $P D, P E, P F$. If the point P fall on one side of the triangle, or coincide with E : then the triangle $A B C$ is equal to the two triangles $\triangle P C, B P A$: whence $A G$ is equal to the sum of the tro perpendiculars $P D, P F$. If the point P fall withont the base $B C$ of the triangle:
then the triangle $A B C$ is equal to the difference betreen the sum of the two triangles $A P^{\prime} C^{\prime}, B P^{\prime} A$, and the triangle $P^{\prime}(B$.

Whence $A G$ is equal to the difference between the sum of $P D$, $P F$, and $P E$.

I.

6. If the straight line $A B$ be dirided into tro unequal parts in D. and into two unequal parts in E, the rectangle contained by $A E$, $E B$, will be greater or less than the rectangle contained by $A D, D B$, according as E is nearer to, or further from, the middle point of $A B$, than D.
7. Produce a given straight line in such a manner that the square on the whole line thus produced, shall be equal to twice the square on the given line.
8. If $A B$ be the line so divided in the points C and E, (fig. Euc. (II. 5.) Shew that $A B^{2}=4 . C D^{2}+4 . A D \cdot D B$.
9. Divide a straight line into two parts, such that the sum of their squares may be the least possible.
10. Divide a line into two parts, such that the sum of their squares shall be double the square on another line.
11. Shew that the difference between the squares on the two unequal parts (fig. Euc. ir. 9.) is equal to triee the rectangle contained by the whole line, and the part butween the points of section.
12. Shew how in all the possible cases, a straight line may be geometrically divided into two such parts, that the sum of their squares shall be equal to a given square.
13. Divide a given straight line into two parts, such that the squares on the whole line and on one of the parts shall be equal to twice the square on the other part.
14. Any rectangle is the lalf of the rectangle contained by the diameters of the sfuares on its tro sides.
15. If a straight line be divided into two equal and into two unequal parts, the squares on the two unequal parts are equal to twice the rectangle contained by the two unequal parts. together with four times the sture on the line between the points of section.
16. If the points C, D be equidnstant from the extremities of the straight line $A B$, shew that the squares constructed on $A D$ and $A C$, exceed twice the rectangle $A C, A D$ by the square constructed on $C P$.
17. If any puint be taken in the plane of a parallelograin from which perpendiculars are let fall on the diagonal, and on the sides which include it, the rectangle of the diagonal and the perpendicular
on it, is equal to the sum or difference of the rectangles of the sides and the perpendiculars on them.
18. $A B C D$ is a rectangular parallelogram, of which A, C^{γ} are opposite angles, E any point in $B C, F$ any point in $C D$. Prove that twice the area of the triangle $A E F$ together with the rectangle $B E$, $D F$ is equal to the parallelogram $A C$.

II.

19. Shew how to produce a given line, so that the rectangle contained by the whole line thus produced, and the produced part, shall be equal to the square (1) on the given line (2) on the part produced.
20. If in the figure Euc. 11. 11, we join $B F$ and $C H$, and produce $C I I$ to meet $B F$ in $L, C L$ is perpendicular to $B F$.
21. If a line be divided, as in Enc. 11. 11, the squares on the whole line and one of the parts are together three times the square on the other part.
22. If in the fig. Enc. n. 11, the points F, D be joined cutting $A H B, G H K$ in f, d respectively' ; then shall $F f=D d$.

III.

23. If from the three angles of a triangle, lines be drawn to the points of bisection of the opposite sides, the squares on the distances between the angles and the common intersection, are together onethird of the syuares on the sides of the triangle.
24. $A B C$ is a triangle of which the angle at C is obtuse, and the angle at B is half a right angle: D is the middle point of $A B$, and $C E$ is drawn perpendicular to $A B$. Shew that the square on $A C$ is double of the squares on $A D$ and $D E$.
25. If an angle of a triangle be two-thirds of two right angles, slew that the square on the side subtending that angle is equal to the stuares on the sides containing it, together with the rectungle contained by those sides.
26. The square deseribed on a straight line drawn from one of the angles at the base of a triangle to the middle point of the opposite side, is equal to the sum or difference of the square on half the side bisected, and the rectangle contained between the base and that part of it, or of it produced, which is intercepted between the same angle and a perpendicular drawn from the vertex.
27. $A B C$ is a triangle of which the angle at C is obtnse, and the angle at B is half a right angle : D is the middle point of $A B$, and $C E$ is drawn perpendienlar to $A B$. Shew that the square on $A C$ is double of the squares on $A D$ and $D E$.
28. Produce one side of a scalene triangle, so that the rectanglo under it and the produced part may be equal to the difference of the squares on the other two sides.
29. Given the base of any triangle, the area, and the line bisecting the base, construct the triangle.

IV.

30. Shew that the square on the hypotennse of a right-angled triangle, is equal to four times the area of the triangle together with the square on the difticrence of the sides.
31. In the triangle $A B C$, if $A D$) be the perpendicular let fall mpon the side $B C^{\prime}$; then the square on $A C^{\prime}$ together with the rectangle contained by $B C^{C} B D$ is equal to the square on $A B$ together with the rectangle $C D, C D$.
32. $A B C$ is a triangle, right-angled at. C, and $C D$ is the perpendieular let fill from ' upon $A B$; if $H h^{\prime}$ is equal to the sum of the sides $A C^{\prime}$, (' D, , and $L M$ to the sum of $A B, C D$, shew that the square on $W I^{\prime}$ together witl the square on (' I) is equal to the equare on $L . I \%$.
33. $A B C$ is a triangle having the angle at B a right angle: it is required to find in $A B$ a point P such that the square on $A C$ may exceed the squares on $A P^{\prime}$ and $P C$ by half the square on $A B$.
34. In a right-angled triangle, the square on that side which is the greater of the two sides eontaining the right angle, is equal to the rectangle by the sum and difference of the other sides.
35. The hypotenuse $A B$ of a right-angled triangle $A B C$ is trisected in the points I, E; prove that if C $D, C E$ be joined, the sum of the squares on the sides of the triangle $C^{\prime} D E$ is equal to two-thirds of the square on $A B$.
36. From the hypotermse of a right-angled triangle portions are cut off equal to the adjacent sides: shew thet the square on the middle segment is equivalent to twice the rectangle under the extreme segments.

$$
\mathrm{V}
$$

37. Prove that the square on any straight line dramn from the rertex of an isorceles triangle to the base, is less than the square on a side of the triangle by the rectangle contained by the segments of the base: and conve"sely.
38. If from one of the equal angles of an isosceles triangle a perpendicular be drawn to the opposite side, the rectangle contained by that side and the segment of it intercepted between the pernendienlar and base, is equal to the half of the square deseribed upon the base.
39. If in an isosecles triangle a perpendicular be let fall from one of the equal angles to the opposite side, the square on the perpendicular is equal to the square on the line intereepted between the other equal angle and the perpendicular, together with twice the rectangle contained by the segments of that side.
40. The square on the base of an isonceles triangle whose vertical angle is a right angle, is equal to four times the area of the triangle.
41. Describe an isosceles obtuse-angled triangle, such that the square on the side subtending the obtuse angle may be three times the square on either of the sides containing the obtuse angle.
42. If $A B$, one of the sides of an isosceles triangle $A B C$, be produced beyond the base to D, so that $B D=\Lambda B$, shew that

$$
C D^{2}=A B^{2}+2 \cdot B C^{2} .
$$

43. If $A B C$ be an isosceles triangle, and $D E$ be drawn parallel to the base $B C$, and $E B$ be joined: prove that $B E^{2}=B C^{\gamma} \times D E+C E^{2}$.
44. If $A B C$ be an isosceles triangle of which the angles at B and C are each double of A; then the square on $A C$ is equal to the square on $B C$ together with the rectangle contained by $A C$ and $B C$.

II.

45. Shew that in a parallelogram the squares on the diagonals are equal to the sum of the squares on all the sides.
46. If $A B C D$ be any rectangle, A and (" being opposite angles, and O any point either within or without the rectangle:

$$
O A^{2}+O C^{2}=O B^{2}+O I^{2}
$$

47. In any quadrilateral figure, the sum of the squares on the diagonals together with four times the square on the line joining their middle points, is equal to the sum of the squares on all the sides.
48. In any trapezium, if the opposite sides be bisected, the sum of the squares on the other two sides, together with the squares on the diagonals, is equal to the sum of the squares on the bisected sides, together with four times the square on the line joining the points of bisection.
49. The squares on the diagonals of a trapezium are together double the squares on the two lines joining the bisections of the opposite sides.
50. In any trapezium two of whose sides are parallel, the squares on the diagonals are together equal to the squares on its two sides which are not parallel, and twice the rectangle contaned by the sides which are parallel.
51. If the two sides of a trapezium be parallel, shew that its area is equal to that of a triangle contained by its altitude and half the sum of the parallel sides.
52. If a trapezium have two sides parallel, and the other two equal, shew that the rectangle contained by the two parallel sides together with the square on one of the other sides, will be equal to the square on the straight line joining two opposite angles of the trapezium.
53. If squares be described on the sides of any triangle and the angular points of the squares be joined ; the sum of the squares on the sides of the lexagonal figure thims fomed is equal to four times the sum of the squares on the sides of the triangle.

VII.

54. Find the side of a square equal to a given equilateral triangle.
55. Find a square which shall be equal to the simm of two given rectilineal fisures.
56. To divide a given straight line so that the rectangle under its segments may be equal to a given rectungle.
57. Construct a rectongle equal to a given square and haring tho difference of its sides equal to a given straight line.
58. Shew how to describe a rectangle equal to a given square, and having one of its sides cqual to a given straight line.

BOOK III.

DEFINITIONS.

I.

Equal cireles are those of which the diameters are equal, or from the centers of which the straight lines to the circumferences are equal.

This is not a definition, but a theorem, the truth of which is evident; for, if the eircles be applied to one another, so that their centers coincide, the cireles must likewise eoincide since the straight lines from the centers are equal.

II.

A straight line is said to touch a circle when it meets the cincle, and being produced does not cut it.

III.

Circles are said to touch one another, which meet, but do not cut one another.
IV.

Straight lines are said to be equally distant from the center of a circle, when the perpendiculars drawn to them from the center are equal.

V.

And the straight line on which the greater perpendicular falls, is said to be further from the center.
VI.

A segment of a circle is the figure contained by a straight line, and the are or the part of the circumference which it cuts off.

VII.

The angle of a segment is that which is contained by a straight line and a part of the circumference.

VIII.

An angle in a segment is any angle contained by two straight lines drawn from any point in the arc of the segment, to the extremities of the straight line which is the base of the segment.
IX.

An angle is said to insist or stand upon the part of the circumferenco intercepted between the straight lines that contain the angle.

X.

A sector of a circle is the figure contained by two straight lines drawn from the center and the arc between them.

XI.

Similar segments of circles are those in whieh the angles are equal, or which contain equal angles.

PROPOSITION I. PRODLEM.

To find the center of a given circlc.
Let $A B C$ be the given circle: it is required to find its center

Draw within it any straight line $A B$ to mect the circumference A, B; and bisect $A B$ in D; (. 10.) from the point D draw $D C$ at right angles to $A B$, (r.11.) meeting the circminference in θ, produce $C D$ to E to meet the cirenmference again in E, and bisect $(E E$ in F.

Then the point F shall be the center of the circle $A B C$.
For, if it be not, if possible, let G be the center, and join $G A, G D, G B$.
Then, because $D A$ is equal to $D B$, (censtr.)
and $D G$ common to the two triangles $A D G, B D G$,
the two sides $A D, D G$, are equal to the two $B D, D G$, each to each ;
and the base $G A$ is equal to the base $G B$, (ı. def. 15.)
becanse they are drawn from the center G :
therefore the angle $A D G$ is equal to the angle $G D B$: (1. 8.)
but when a straight line standing upon another straight line makes the adjacent angles equal to one another, each of the angles is a right angle ; (i. def. 10.)
therefore the angle $G D B$ is a right angle :
but $F D B$ is likewise a right angle: (constr.)
wherefore the angle $F D B$ is equal to the angle $G D B$, (ax. 1.)
the greater angle equal to the less, which is impossible;
therefore G is not the center of the cirele $A B C$.
In the same manner it can be shewn that no other point out of the line $C E$ is the center ;
and since $C E$ is bisected in F,
any other point in $C E$ divides $C E$ into unequal parts, and cannot be the center.
Therefore no point but F is the center of the circle $A B C$. Which was to be found.
Cor. From this it is manifest, that if in a circle a straight line bisects another at right angles, the center of the circle is in the lino which bisects the other.

PROPOSITION II. THEOREM.

If any tro points be taken in the circumference of a circle, the straight line which joins them shall fall within the circle.

Let $A B C$ be a circle, and A, B any two points in the circumference. Then the straight line drawn from A to \mathcal{D} shall fall within the circle.

For if $A B$ do not fall within the circle, let it fall, if possible, without the circle as $A E B$;
find D the center of the circle $A B C$, (iin. 1.) and join $D A, D B$; in the circumference $A B$ take any point F, join $D F$, and produce it to meet $A B$ in E.
Then, because D, A is equal to D / B, (i. def. 15.)
therefore the angle $D B A$ is equal to the angle $D A B$: (1. 5.) and because $A E$, a side of the triangle $D A E$, is preduced to B,
the exterior angle $D E B$ is greater than the interior and opposite angle $D A E$; (1.16.$)$
but $D A E$ was proved to be equal to the angle $D B E$;
therefore the angle $D E B$ is greater than the angle $D D E$;
but to the greater angle the greater side is opposite, (r. 19.) therefore $D B$ is greater than $D E$: but $D B$ is equal to $D F$; (. def. 15.) wherefore $D F$ is greater than $D E$,
the less than the greater, which is impossible;
therefore the straight line drawn from A to B does not fall without the circle.
In the same manner, it may be demonstrated that it does not fall apon the circumference;
therefore it falls within it.
Wherefore, if any two points, \&c. Q.E.D.

PROPOSITION III. TIIEOREM.

If a straight line draun through the center of a circle bisect a straight line in it which does not pass through the center, it shall cut it at right angles: and conversely, if it cut it at right angles, it shall bisect it.

Let $A B^{\prime} C$ be a circle; and let $C D$, a straight line drawn through the center, bisect any straight line $A B$, which does not pass through the center, in the point F.

Then $C D$ shall cut $A B$ at right angles.

Take E the center of the circle, (in. 1.) and join $E A, E B$ Then, because $A F^{\prime}$ is equal to $F b$, (hyp.) and $F E$ common to the two triangles $A F E, D F E$,
there are two sides in the one equal to two sides in the other, each to each;
and the base $E A$ is equal to the base $E B$; (1. def. 15.)
theretore the angle $A F E$ is equal to the angle $B F E$; (1. \&.)
but when a straight line standing upon another straight lino makes the adjacent ansles equal to one another, each of them is a right angle ; (1. def. 10.)
therefore each of the angles $A F E, B F^{\prime} E$, is a right angle :
wherefore the straight line $C D$, drawn through the center, bisecting another $A B$ that does not pass through the center, cuts the same at right angles.

Conversely, let $C D$ cut $A B$ at right angles.
Then $C D$ shall also bisect $A B$, that is, $A F^{2}$ shall be equal to $F B$.
The same construction being made,
because, $E B, E A$, from the center are equal to one another, (1. def. 15.)
therefore the angle $E A F$ is equal to the angle $E B F$: (1. 5.) and the right angle $A F E$ is equal to the right angle $B F E$; (r. def. 10.) therefore, in the two triangles, $E A F, E B F$,
there are two angles in the one equal to two angles in the other, each to each ;
and the side $E F$, which is opposite to one of the equal angles in each, is common to both;
therefore the other sides are equal; (1. 26.)
therefore $A F$ is equal to $F B$.
Wherefore, if a straight line, \&c. Q.E.D.

PROPOSITION IV. THEOREM.

If in a circle tro straight lines cut one another, which do not both pass through the center, they do not bisect cach other.

Let $A B C D$ be a circle, and $A C, B D$ two straight lines in it which cut one another in the point E, and do not both pass through the center.

Then $A C, B D$, shall not bisect one another.

For, if it be possible, let $A E$ be equal to $E C$, and $B E$ to $E D$.
If one of the lines pass through the center,
it is plain that it cannot be bisected by the other which does not pass through the center:
but if neither of them pass through the center, find F the center of the circle, (ini. 1.) and join $E F$.
Then because $F E$, a straight line drawn through the center, bisects another $A C$ which does not pass through the center, (hyp.)
therefore $F \cdot E$ cuts $A O$ at right angles: (In. 3.) wherefore FE. 1 is a right angle.

Again, becanse the straight line $F E$ bisects the straight line $B D_{\text {, }}$ which does not pass through the center, (lypp.)
therefore $F E$ conts $B D$ at right angles: (11. 3.) wherefore $F E B$ is a right angle :
but FEA was shewn to be a right angle;
therefore the angle FEA is equal to the angle $F E B$. (ax. 1.)
the less equal to the greater, which is impossible : therefore $A C, B D$ do not lisect one another.

Wherefore, if in a circle, \&c. Q.E.D.

PROPOSITION V. THEOREM.

If two circles cut one another, they shall not have the same center.
Let the two circles $A B C, C D G$, cut one another in the points B, C. They shall not have the same center.

If possible, let E be the center of the two circles; join $E C$, and draw any straight line $E F G$ meeting the circunferences in F and G.

And because E is the center of the circle $A B C$,
theretore $E F$ is equal to $E C$: (i. def. 15.)
again, because E is the center of the circle $C D G$,
therefore $E G$ is equal to $E C$: (1. def. 15.)

- but $E F$ was shewn to be equal to $E C$;
therefore $E F^{\prime}$ is equal to $E G$, (ax. 1.)
the less line equal to the greater, which is impossible.
Therefore E is not the center of the circles $\triangle B C, C D G$. Wherefore, if two circles, \&c. Q.E.D.

PROPOSITION YI. THEOREM.

If one circle tonch another internally, they shall not have the same center.
Let the circle $\left.C^{\prime} D\right) E$ tonch the circle $A B C$ internally in the point C. They shall not have the same center.

If possible, let F be the center of the two circles: join $P C$, and draw any straight line $F E B$, meeting the eiremmerencesin E and B.

And because F is the eenter of the circle $A B C$,
$F^{\prime} B^{\prime}$ is equal to FCO^{\prime}; (1. def. 15.)
also, because F ' is the center of the cirele $C D E$, $F E$ is equal to $F C$: (I. def. 15.)
but $F B$ was shewn to be equal to $F C$; therefore $F^{\prime} E$ is equal to $F B$, (ax. 1.)
the less line equal to the greater, which is impossible: therefore F^{\prime} is not the center of the circles $A D C, C D E$.

Therefore, if two circles, \&e. Q.E.D.

PROPOSITION VII. THEORES.

If any point be taken in the diumeter of a circle which is not the center, of all the straight lines which can be dramen from it to the circumference, the greatest is that in which the center is, and the other part of that diametor is the least; and, of the rest, that which is nearer to the line which passes through the center is aluays greater than one more remote: and from the same point there can be diam only two equal straight lines to the circumforence one upon cach side of the diameter:

Let $A B C^{\prime} D$ be a cirele, and $A D$ its diameter, in whieh let any point F be taken which is not the center:
let the center be E.
Then, of all the straight lines $F B, F C, F G, \& \in$. that can be drawn from F to the ciromference,
$F A$, that in which the center is, shall be the greatest. and $F D$, the other part of the diameter $A D$. shesl be the least:
and of the rest, $F i b$, the nearer to $F A$, shall be greater than $F C$ the more remote, and $F C^{\prime}$ greater than $F G$.

Join BE, CE GE G.
Because two sides of a triangle are greater than the third side, (土. 20.) therefore $B E, E F$ are greater than $B F$: but $A E$ is equal to $B E$; (1. def. 15.)
therefore $A E, E F$, that is, $A F$ is greater than $B F$. Again, because $B E$ is equal to $C E$, and $F E$ common to the triangles $1 B E F, C E F$,
the two sides $B E, E F$ are equal to the two $C E, E F$, each to each; but the angle $B E F$ is greater than the angle $C E F$; (ax. 9.) therefore the base $B F$ is greater than the base $C F$. (I. 24.)

For the same reason $C F$ is greater than $G F$.
Again, because GF, FE are greater than $E G$, (1.20.) and $E G$ is equal to $E D$:
therefore $G F, F E$ are greater than $E D$:
take away the common part $F E$,
and the remainder $G F$ is greater than the remainder $F D$. (ax. 5.)

Therefore, $F A$ is the greatest, and $F D$ the least of all the straight lines from F to the circumference; and $B F$ is greater than $C F$, and $C F$ than $(i F$.
Also, there can be drawn only two equal straight lines from the point F to the circumference, one upon each side of the diameter.

At the point E, in the straight line $E F$, make the angle $F E H$ equal to the angle $F E G$. (r. 23.) and join $F H$.

Then, becanse $G E$ is equal to $E H$, (r. def. 15.)
and $E F$ common to the two triangles $G E F, H E F$:
the two siles $G E, E F$ are equal to the two $H E, E F$, each to each;
and the angle $G E F$ is equal to the angle HEF; (constr.)
therefore the base $F G$ is equal to the base $F I:$ (r. t.)
but, besides $F H$, no other straight line can be drawn from F to the circumference equal to $F G$:
for, if possible, let it be FR:
and because $F K$ is equal to $F G$, and $F G$ to $F H$, therefore $F K$ is equal to $F H$; (ax. 1.)
that is, a line nearer to that which passes through the center, is equal to one which is more remote;
which has been proved to be impossible.
Therefore, if any point be taken, de. Q.E.D

PIOPOSITION VIII. THEOREM.

If any point be takon without a circle, and straight lines be drawn from it to the circumfremee, whereof one passes through the center; of those which fall upon the concare part of the circumferenee, the greatest is that which passes throngh the conter' ; and of the rest, that which is nearer to the one passing through the eente, is always greater than one more remote: but of those which fall upin the convex part of the circumference, the least is that between the point withont the circle and the diameter; and of the rest, that which is nearer to the least is aluerys lesss than one more remote; and only two equal straight lines can be drann from the same point to the circumference, onc upon cach side of the line which passes through the center.

Let $A B C$ be a circle, and D any point withont it, from which let tho straight lines $D A, D E, D F, D C$ be drawn to the circumference, whereof $D A$ passes through the center.

Of those which fall upon the concaro part of the circumferenco $A E F C$, the greatest shall be $D A$; which passes through the center ;
and any line nearer to it shall be greater than one more remote, viz. $D E$ shall be greater than $D F$, and $/ D F^{\prime}$ greater than $D C^{\prime}$; but of those which fall upon the convex part of the circumference $H L K C$, the least shall be $D G^{\prime}$ between the point I and the diameter $A G$; and any line nearer to it shall be less than one more remote, viz. $D h^{*}$ less than $D L$, and $D L$ less than DII.
Take M the center of the circle $A B C$, (ini. 1.)
and join ME, MF, MC, MK, ML, MIF.
And becanse $A M$ is equal to $M E$, add $M D$ to each of these equals, therefore $A D$ is equal to $E J, M D$: (ax. 2.) but $E M, M D$ are greater than $E D$; (ı. 20.) therefore also $A D$ is greater than $E D$.
Again, because $M E$ is equal to $M F$, and $M D$ common to the triangles $E M D, F M D ; E M, M D$, are equal to $F M$, $M D$, each to each; but the angle $E M D$ is greater than the angle FMD; (ax. 9.) therefore the base $E D$ is greater than the base $F D$. (I. 24.)
In like manner it may be shewn that $F D$ is greater than $C D$.
Therefore $D A$ is the greatest;
and $D E$ greater than $D F$, and $D F$ greater than $D C$.
And, because $M K, K D$ are greater than $M D$, (1. 20.)
and $M H$ is equal to $M\left(\frac{1}{}\right.$, (. def. 15.)
the remainder $K D$ is greater than the remainder $G D$, (ax. 5.)
that is, $G D$ is less than $K D$:
and because $M L D$ is a triangle, and from the points M, D, the extremities of its side MD, the straight lines $M K, D K$ are drawn to the point K within the triangle,
therefore $M F, K D$ are less than $M L, L D:$ (1. 21.) but $M h^{\circ}$ is equal to $M L$; (I. def. 15.)
therefore, the remainder $D K$ is less than the remander $D L$. (ax. 5.)
In like manner it may be shewn, that $D L$ is less than $D H$.
Therefore, $D G$ is the least, and $D K$ less than $D L$, and $D L$ less than DII.
Also, there can be drawn only two equal straight lines from the point D to the cireumference, one upon each side of the line which passes throngh the center.

At the point M, in the straiglit line $M D$,
make the angle $D M B$ equal to the angle $D . M h^{\prime}$, (1. 23.) and join $D B$.
And becanse $M K^{\prime}$ is equal to $M B$, and $M D$ common to the triangles $K M D, B M D$,
the two sides $K M, M D$ are equal to the two $B M, M D$, each to each; and the angle $K M D$ is equal to the angle $B M D$; (constr.)
therefore the base $D I_{1}$ is equal to the hase $D B$: (т. 4.)
but, besides $D B$, no straight line equal to $D h^{\prime}$ can be drawn from D
to the circumference,
for, if possible, let it be $D N^{\Gamma}$;
and becanse $D F^{\prime}$ is equal to $D N$, and also to $D B$, therefore $D B$ is equal to $D N^{*}$;
that is, a line nearer to the least is equal to one more remote, which has been proved to be impossible.

If therefore, any point, \&c. Q.E.D.

PROPOSITION IX. THEOREM.

If a point be taken within a circle, from which there full more than two equil straight lines to the circumforence, that point is the center of the circle. Let the point D be taken within the circle $A B C$, from which to the circumference there fall more than two equal straight lines, viz. $D A, D B, D C$.

Then the point D shall be the center of the circle.

For, if unt, let E, if possible, be the center :
join $D E$, and produce it to meet the circumference in F, G;
then $F G$ is a dimmeter of the circle $A B C$: (r. def. 17.)
and berause in $F G$, the diameter of the circle $A B C$, there is taken
the point D, which is not the center,
therefore $D G$ is the greatest line drawn trom it to the circumference, and $D C$ is greater than $D B$, and $D B$ greater than $D A:$ (III. 7.)
but these lines are likewise equal, (hyp.) which is impossible:
therefore E is not the wenter of the circle $A B C$.
In like manner it may be demonstrated,
that no other point but D is the center;
D therefore is the center.
Wherefore, if a point be taken, \&c. Q.E.D.

PROPOSITION X. THEOREM.

One circumference of a circle camot ent another in more than suo points.
If it be possible let the circminference $A B C$ ont the eiremuference $D E F$ in more thas two points, viz. in B, G, F.

Take the center \AA_{1} of the erirele $A B C$, (ini, 3.) and join $h B, K G, I^{r} F$. Then pernuse H^{\prime} is the center of the circle $A B^{\prime}$,
 and because within the circle /DE' there is taken the point h, from which to the circumference 1 E'P fall more than two equal straight lines $\mathbb{L} B, K^{\circ} G, K T$;
therefore the point K is the center of the circle DEF: (inf. 9.)
but K is also the center of the circle $A B C^{\prime}$; (constr.) 6^{*}
therefore the same point is the center of two circles that cut one another, which is impossible. (III, 5.)
Therefore, one circmimerence of a circle cannot cut another in more than two points. Q.E.D.

proposition di. timeorem.

If one circle touch another internally in any point, the straight line which joins their centers being mroducel, shall puss's through that point of contact.

Let the circle $A D E$ touch the circle $A B C$ internally in the point A;
and let F be the center of the circle $A B C$, and G the center of the circle $A D E$;
then the straight line which joins the centers F, G, being produced, shall pass throngh the point A.

For, if $F G$ produced do not pass through the point A.
let it fall otherwise, if possible, as $F G D H$, and join $A F, A G$.
Then, becanse two sides of a triangle are together greater than the third side, (1. 20.)

> therefore $F G, G .1$ are greater than $F A$:
> but $F A$ is equal to $F H$; (土. def. 15.)
> therefore $F G, G A$ are greater than $F H$:
take away from these unequals the common part $F G$:
therefore the remaiuler $A G$ is greater than the remainder $G I I$; (ax. 5.)
but $A G$ is equal to $G D$; (1. def. 15.)
therefore (${ }^{\prime} D$) is greater than $G H$,
the less than the greater, which is impossible.
Therefore the straight line which joins the points F, G, being produced,
camot fall otherwise than upon the point A,
that is, it must pass throngh it.
Therefore, if one circle, de. Q.E.D.

proposition xil. Tiliorem.

If two cireles touch carh other externally in an!! point, the stratyht line which joins their centers, shall pais throngh that point of contact.

Let the two circles $A B C, A D E$, tonch each other externally in the point A;
and let F^{\prime} be the center of the circle $A B C^{\prime}$, and G the center of $A D E$. Then the straight line which joius the points F, G, shall pass through
the point of contact A.

If not, let it pass otherwise; if possible, as $F C D F$, and join $F A, A G$.
And because F is the center of the circle $A B C$, $F A$ is equal to $F C$:
also, becanse G is the center of the circle $A D E$, $G A$ is equal to $G D$:
therefore $F A, A G$ are equal to $F C, D G$; (ax. 2.)
wherefore the whole $F G$ is greater than $F A, A G$:
but $F G$ is less than $F 1, A G ;$ (1. 20.) which is impossible.
therefore the straight line which joins the points F, G, cannot pass otherwise than through A the point of contact, that is, $F G$ m!st pass through the point A. Therefore, it two circles, \&c. Q.E.D.

PROPOSITION NIII. TIIEOREM.

One circle cannot touch another in more points than one, whether it touethes it on the inside or outside.

For, if it be possible, let the circle $E B F$ touch the circle $A B O$ in more points than one.
and tirst on the inside, in the points B, D.

Join $B D$, and draw $G I I$ bisecting $B D$: at right angles. (r. 11.) Becanse the points B. D are in the circunferences of each of the circles, therefore the straight line Bl) falls within each of them; (in. 2.)
therefore their centers are in the straight line $G H$ which bisects $B D$ at right angles: (111. 1. Cor.)
therefore $G_{i} I I$ passes throngh the point of contact: (1II. 11.) but it does not pass through it,
because the points l, l are without the straght line $G I I$; which is absurd:
therefore one circle cannot tonch another on the inside in more points than one.
Nor can two circles tonch one another on the outside in more than one point.

For, if it le possible.
let the circle $A C \hbar$ touch the circle $A B C$ in the points A, C; join $A C$.

Because the two points A, C are in the circumference of the circle $A C h$,
therefore the straight line $A C$ which joins them, falls within the circle ACK: (in. 2.)
but the circle $A C^{\prime} K$ is withont the circle $A B C$; (hyp.)
therefore the straight line $A C$ is wichont this last circle :
but, because the points A, (' are in the circumference of the circle $A B C$,
the straight line $A C$ must be within the same circle, (nn. 2.) which is absurd:
therefore one cilcle cannot touch another on the ontside in more than one point:
and it has been shewn, that they camot touch on the inside in more points than one.

Therefore, one circle, \&c. Q.E.D.

PROPOSITION XIV. THEOREM.

Equal straight lines in a circle are equally distant from the center; and conversely, those which are equally distant from the center, are cqual to one another:

Let the straight lines $A B, C^{\prime} D$, in the circle $A B D C$, be equal to one another.

Then $A B$ and $C D$ shall be equally distant from the center.

Take E the center of the circle $A B D C$, (iin. 1.)
from E draw $E F, E G$ perpendiculars to $A B, C D$, (1 12.) and join $E A, E C$.
Then, becanse the straight line EF passing through the center, cuts $A B$, which does not pass through the center, at right angles;
$E F$ bisects $A B$ in the point F : (111. 3.)
therefore $A F$ is equal to $F B$, and $A B$ double of $A F$.
For the same reason $C D$ is double of $C G$:
but $A B$ is equal to (D : (lypp.)
therefore $A F$ is equal to $C \sigma$. (ax. 7.)
And because $A E$ is equal to $E C$, (1. def. 15.)
the square on $A E$ is equal to the square on $E C$:
but the squares on $A F, F E$ are equal to the square on $A E$, (1. 4i.)
because the angle $A F E$ is a right angle ;
and for the same reason, the squares on $E G, G C$ are equal to the square on $E C$;
therefore the squares on $A F, F E$ are equal to the squares on $C G, G E:(a x .1$.
but the square on $A F$ is equal to the square on $C G$, because $A F$ is equal to $C G$;
therefore the remaining square on $E F$ is equal to the remaining square on $E(G$, (ax. 3)
and the straight linc $E F$ is therefore equal to $E G$:
but straight lines in a circle are said to be equally distant from the center, when the perpendiculars drawn to them from the center are equal: (111. def. 4.)
therefore $A B, C D$ are equally distant from the center.
Conversely, let the straight lines $A L^{\prime}, C^{\prime} D$ be equally distant from the center, (ini, def. 4.)
that is, let $F E$ be equal to $E G$;
then $A B$ shall be eqnal to $C D$.
For the same construction being made, it may, as before, be demonstrated,
that $A B$ is double "f $A F$, and C D double of $C C$, and that the squares on $F E, A F$ are equal to the squares on $E G, G C$: but the square on $F E$ is equal to the square on $E G$, because $F E$ is equal to $E G$; (hyp.)
therefore the remaining square on $A F$'s equal to the remaining square on $\mathrm{r}^{\prime}(\mathrm{G}$: (ax. 3.)
and the straight line $A F$ is therefore equal to $C G$:
but $A F$ was shewn to be double of $A F$, and ('I) double of $C G$:
wherefore $A B$ is equal to (D. (ax. 6.)
Therefore equal straight lines, \&c. Q.E.D.

PROPOSITION XY. THEOREM.

The diameter is the greatest straingt line in a eirele; and of the rest, that which is neator to the center is alvolys grouter than ome more remote: and eomersely the gerater is warer to the comtor than the less.
Let $A B^{\prime} D$ be a circle of which the diameter is $A I$, and the center E; and let $D^{\prime} C^{\prime}$ be nearer to the center than $F^{\prime} G$.
Then $A D$ shall be greater than any straight line $B C^{\prime}$, which is not
diancter, and $B C$, wall be greater than $F G$.

From E draw $E I$, , perpendicular to $B C$, and $E H$ to $F(G$, (1. 12.) aud join El', EC, El'.
And because $A E$ is emal to $E F$, and $E I$ to $E C$. (1. det. 15.)
therefore $A D$) is equal to $E P, E C^{\prime}:(a x, 2$. but $E F B, E C^{\prime}$ are greater than $B^{\prime}\left(C^{\prime}:(1.20)\right.$. Wherefore also $A D$ is greater than $B C$:

And, because $B C$ is nearer to the center than $F G$, (hyp.) therefore $E H$ is loss than $E / A=$ (nu. def. 5.)
but, as was demonstrated in the preceding proposition, $B C^{\prime}$ is double of $B H$, and $F\left(C^{\prime}\right.$ double of $F \%$,
and the squares on $E M, M B$ are equal to the squares on $E F, E F$:
but the square on $E H$ is less than the square on $E \hbar$, because $E H$ is less than $E H^{\prime}$;
therefore the square on $B H$ is greater than the square on $F K$, and the straight line BII greater than $F=$, and therefore $B C$ is greater than $F G$.
Next, let $B C^{\prime}$ be greater than $F G^{\prime}$;
then $B C$ shall be nearer to the center than $F G$, that is, the same construction being made, $E \neq$ shall be less than $E \hbar$. (iII, def. 5.) Becamse $B C$ is greater than $F^{\prime} G$. BII likewise is greater than $K F$:
and the squares on $D I I, I I E$ are equal to the squares on $F K, F E$ of which the square on $B I I$ is greater than the square on $F K$, because $B H$ is qreater than F :
therefore the square on $E I I$ is less than the square on $E \hbar$, and the straight line EII less than $E K$:
and therefore $B C$ is nearer to the center than $F\left({ }^{\prime}\right.$. (ini, def. 5.) Wherefore the diameter, dec. Q.E.D.

proposition xvi. Theorem.

The straight line drann at right angles to the diameter of a circle, from the extremity of it, fulls without the circle; and no straight line can be dounn from the extromity betueens thot straight line and the cirommerence, so as not to cut the circle: oif, whichi is ihe same thing, no streight lime can malie so great an acute anyle with the diameter at its extromity, or so small an angle with the straight line which is at right angles to it, as unt to cut the circle.
Let $A B C$ be a circle, the center of which is D, and the diameter $A B$.
Then the straight line drawn at right angles to $A B$ from its extremity A, shall fall without the eircle.

For, if it does not, let it fall. if possible, within the circle, as $A C$; and draw $D C$ to the point C, where it meets the circumference.

And becanse $D A$ is equal to $D r^{\prime}$ ((r. def. 15.)
the angle $D .10$ is equal to the angle $A C D$: (. 5.)
but $D A C$ is a richt angle; (lyp.)
therefore $A C D$ is a right ancle:
and therefore the angles $D A C, A C I$ are equal to two right angles; which is impossible: (1. 17.)
therefore the straight line drawn from A at right angles to $B A$, does not fall within the circle.

In the same manner it may be demonstrated, that it does not fall upon the ciremmference;
therefore it must fall without the circle, as $A E$.
Also, between the straight line $A E$ and the circumference, no straight line can be drawn from the point A which does not cut the circle. For, if possible, let $A F$ fall between them,

E \mathbf{H}

and from the point D, let $D G$ be diawn perpendicular to $A F$, (1. 12.) and let it meet the circumference in $I I$.

And becanse $A G D$ is a right angle,
and DAG less than a right angle, (1. 17.)
therefore $D A$ is greater than $D(\dot{r}:($ (. 19.)
but $D A$ is equal to $D H$; (i: def. 15.)
therefore $D I I$ is greater than $D(G$,
the less than the greater, which is impossible:
therefore no straight line can be drawn from the point A, between
$1 E$ and the circumterence, which does not cut the circle:
or, which amounts to the same thing, lowever great an acute angle a straight line makes with the diameter at the point A, or however small an angle it makes with $A E$, the ciremmicrence must pass between that straight line and the perpendicular $A E$. Q.E.D.

Con. From this it is maifest, that the straight line which is drawn at right angles to the diameter of a circle from the extremity of it touches the circle: (1n. def. 2.) and that it tomehes it only in one point, becalle, if it did meet the circle in two, it would fall within it. (III. 2.) "Also, it is evident, that there can be but one straight line which touches the circle in the same point."

proposition xyif. problem.

To dran a straight line from a diven preint, cither wilhout or in the circumference, which shall tomeh a given circle.

First, let A be a givelu point withont the given circle $B C D$; it is reguired to draw astraght line from A which shall touch the circle.

Find the center E of the circle. (ini. 1.) and join $A E$; and from the ectiter E, at the distance $E A$, describe the cirelo $A F C$; from the point D draw $I F F_{\text {at right angles to EA, (i. 11.) meeting }}$ the circumference of the circte $A F^{\prime}$ in F; and join ESF. $A D$.

Then $A B$ shall toneh the eircle $B C D$ in the point B.
Because E is the center of the circles $B C D, A F^{\prime}\left(G^{\prime}\right.$. (I. def. 15.)
theretore $E A$ is equal to $E F \prime$, and $E \prime D$ to $E X B ;$
therefore the two sides $A E \prime, E B$, are equal to the two $F E, E D$, each to eaeh ;
and they contain the angle at E^{\prime} common to the two triangles $A E B$, FED;
therefore the base $D F$ is equal to the base $A B$, (i. 4.)
and the triangle $F E D$ to the triangle $A E B$,
and the other angles to the other angles:
therefore the ancle $E B A$ is equal to the angle $E D F$:
but $E D F^{\prime}$ is a right angle, (constr.)
wherefore $E B A$ is a right angle: (ax.1.)
and $E B$ is drawn from the center:
but a straight line drawn from the extremity of a diameter, at right angles to it, touches the cirele: (in. 16. Cor.)
therefore $A B$ tonches the circle ;
and it is drawn from the giren point A.
Secondly, if the given point be in the eircunference of the circle, as the point I,
draw $D E$ to the center E, and $D F$ at right angles to $D E$:
then $D F$ touches the circle. (iir. 16. Cor.) Q.E.f.

PROPOSITION XVIII. TIIEOREM.

If a straight line touch a circle, the straight line dram from the center to the point of contaet, shall be perpendieular to the line touching the circle.

Let the straight line $D E$ touel the cirele $A B C$ in the point C; take the eenter F, and draw the straight line $F C$. (iir.1.)

Then $F^{\prime} C^{\prime}$ shall be perpendicular to $D E$.

If $F C$ be not perpendieular to $D E$; from the point F, if passible, let $F^{\prime} B G$ be drawn perpendicular to I I E.

And beeanse $F G C$ is a right angle,
therefore $G^{\prime}(' T$ is an acute angle ; (1. 1\%.)
and to the greater angle the greater side is opposite: (I. 5. .)
therefore $F C$ is greater than $F G_{r}$:
but $F C$ is equal to $F B$; (1. def. 15.) therefore $F B$ is greater than $F(r$,
the less than the greater, which is impossible:
therefore $F G$ is not perpendienlar to $D E$.
In the same manner it may be shewn,
that no other line is perpendicular to $D E$ besides $F C$, that is, $F C$ is perpendienlar to $D E$.
Therefore, if a straight liue, \&e. 2.E.d.

PROPOSITION XLX. THEOREM.

If a straight linc touch a circle, and from the point of contact a straight line be drawn at right angles to the touching line, the center of the circle shall be in that line.

Let the straight line $D E$ touch the circle $A B C$ in C, and from C let $C A$ be drawn at right angles to $D E$.

Then the center of the circle shall be in $C A$.

For, if not, let F be the center, if possible, and join $C F$.
Because $D E$ touches the circle $A B C$,
and $F C$ is drawn from the center to the point of contact,
therafore $F C^{\prime}$ is perpendienlar to $D E$; (iII. 18.)
therefore $F^{\prime} C E$ is a right angle :
bat $A C E$ is also a right angle ; (hyp.)
therefore the angle $F C E$ is equal to the angle $A C E$, (ax. 1.)
the less to the greater, which is impossible:
therefore F is not the center of the circle $A B C$.
In the same manner it may be shewn,
that no other point which is not in $C A$, is the center;
that is, the center of the circle is in CA.
Therefure, if a straight line, \&c. Q.E.D.

PROPOSITION XX. THEOREM.

The angle at the conter of a circle is double of the angle at the circumference upor the same base, thut is, npon the same purt of the circumfercnce.

Let $A B C$ be a eircle, and $B E C$ an angle at the center, and $B A C$ an angle at the eiremnfurence, which have $B C$ the same part of tho circumference for their base.

Then the angle $B E C$ shall be double of the angle $B A C$.

Join $A E$, and produce it to F.
First, let the center of the circle be within the angle $B A C$.
Becanse $E^{\prime} A$ is equal to $E \prime B$,
therefore the angle EBA is equal to the angle EAS B; (1. 5.) therefore the angles $E A D, E B A$ are double of the angle $E A B$: but the anglo $B E F$ is equal to the angles EALJ, EBSA; (1.32.)
therefore also the angle $B E F^{\prime}$ is double of the angle $E A B$: for the same reason, the angle $F^{\prime} E^{\prime} C$ is double of the angle $E A C$: therefore the whole angle $B E C$ is double of the whole angle $B A C$.
Secondly, let the center of the circle be without the angle BAC

It may be demonstrated, as in the first case, that the angle $F E C$ is double of the angle $F A C$, and that $F E B$, a part of the first, is double of $F A B$, a part of the other; therefore the remaining angle $B E C$ is double of the remaining angle BAC.

Therefore the angle at the center, de. Q.e.d.

PROPOSITION XXI. THEORES.

The angles in the same segment of a circle are cqual to one another. Let $A B C D$ be a circle, and $B A D, B E D$ angles in the same segment $B A E D$.
Then the angles $B A D, B E D$ shall be equal to one another. First, let the segment $B A E D$ be greater than a semicircle.

Take F, the center of the circle $A B C D$, (iir. 1.) and join $B F, F D$. Becanse the angle $B F^{\prime} D$ is at the center, and the angle $B A D$ at the circumference, and that they have the same part of the circumference, viz. the are $B C D$ for their base;
therefore the angle $B F D$ is double of the angle $B A D$: (inr. 20.)
for the same reason the angle $B F D$ is double of the angle $B E D$:
therefore the angle $B A D$ is equal to the angle $B E D$. (ax. 7.)
Next, let the segment $B A E D$ be not greater than a semicircle.

Draw $A F$ to the center, and produce it to C, and join $C E$. Because A e is a diameter of the circle,
therefore the segment $B A D C$ is greater than a semicircle; and the angles in it $B A C, B E C$ are equal, by the first case:
for the same reason, because $C B E D$ is greater than a semicircle, the angles $C A D, C^{\prime} E D$, are equal:
therefore the whole angle $B A D$ is equal to the whole angle $B E D$. (ax.2.)
Wherefors the angles in the same segment, \&c. Q.E.D.

PROPOSITION XXII. THEOREM.

The opposite angles of any quadrilateral figure inscribed in a cirele, are together tquat to two rigit angles.

Let $A B C D$ be a quadrilateral figure in the circle $A B C D$.
Then any two of ats opposite angles shall together be equal to two right angles.

Join $A C, B D$.
And because the three angles of every triangle are equal to two right angles, (i. 32.)
the three angles of the triangle $C A B$, viz. the angles $C A B, A B C$, $B C^{C} A$, are equal to two right angles:
but the angle $C A B$ is equal to the angle $C D B$, (1ir. 21.)
becanse they are in the same segment $(D A B$;
and the angle $\angle C B$ is equal to the angle $A D B$,
becanse they are in the same segment $A D C B$:
therefore the two angles $C A B, A C B$ are together equal to the whole angle $A D C$: (ax. 2.)
to each of these equals add the anglo $A B C$;
therefore the three angles $A B C, C A B, B C A$ are equal to the two angles $A B C, A D C$: (ax. 2.)
but $A B C, C A B, B C A$, are equal to two right angles;
therefore also the angles $A B C, A D C$ are equal to two right angleg.
In the same manner, the angles $B A D, D C D$, may be shewn 50 be equal to two right angles.

Therefore, the opposite angles, \&c. Q.E.D.

PROPOSITION NXII. THEOREM.

Upon the same straight line, and upon the same side of it, there cannot be tro similar segments of circles, not coineiding with one another.

If it be possible, upon the same straight line $A B$, and upon tha same side of it, let there be two similar segments of circles, $A C s$ $A D B$, not coinciding with one another.

Then, beeause the circumference $A C D$ cuts the circumference $A D B$ in the two points A, B, they cannot cut one another in any other point: (111. 10.)
therefore one of the segments must fall within the other : let $A(C B$ fall within $A D B$:
dravy the straight line $B(' D$, and join $C A, D A$.
Because the segment $A \theta^{\prime} B$ is similar to the segment $A D B$, (hyp.) and that similar segments of cireles contain equal angles; (ni. def. I1.)
therefore the angle $A C B$; is erpual to the angle $A D B$,
the exterior angle to the interior, which is impossible. (i. 16.)
Therefore, there camot be two similar segments of circles upon the same side of the same line, which do not coincide. Q.E.D.

PROPOSITION XXIT, THEOREM.

Similar segments of circles upon equal straight lines, are equal to one another.
Let $A E B, C F D$ be similar segments of circles upon the equal straight lines $A B,\left({ }^{\prime} I\right)$.

Then the segment $A E B$ shall be equal to the segment $C F D$.

For if the segment $A E B$ be applied to the semment $C F D$, so that the point A may be on C, and the straight line $A B$ upon $C D$, then the point l shall coincide with the poin D, because $A B$ is equal to $C D$:
therefore, the straight line $A B$ coinciding with $C D$,
the segment $A E B$ must coincide with the segment $C F D$, (m. 23.)
and therefore is equal to it. (r. ax. 8.)
Wherefore similar segments, \&c. Q.E.D.

PROPOSITION XXY. PROBLEM.

A segmont of a circle being given, to describe the circle of which it is the segment.

Let $A B C$ be the giren segment of a eircle.
It is required to describe the circle of which it is the segment.
Bisect $A C$ in D. (1.10.) and from the point D draw $D B$ at right angles to $A C$, (1. 11.) and join $A P$.

First, let the angles $A B D, B A D$ be equal to one another :

then the straight line $D A$ is equal to $D B$. (I. 6.) and therefore, to $D C$;
and because the three straight lines $D A, D B, D C$ are all equal,
therefore I) is the center of the circle. (in. 9.)
From the center I, at the distance of any of the three $D A, D B$, $D C$, describe a circle :
this shall pass through the other points;
and the circle of which $A B C$ is a segment has been described:
and because the center D is in $A C$, the segment $A B C$ is a semicircle.
But if the angles $A B D, B A D$ are not equal to one another :

at the point A, in the straight line $A B$, make the angle $B A E$ equal to the angle $A B D$, (r. 23.) and produce $B D$, if necessary, to meet $A E$ in E, and join $E C$.

Because the angle $A B E$ is equal to the angle $B A E$,
therefore the straight line $E A$ is equal to $E B:$ (I. 6.)
and because $A D$ is equal to $D C$, and $D E$ common to the triangles $A D E, C D E$,
the two sides $A D, D E$, are equal to the two $C D, D E$, each to each; and the angle $A D E$ is equal to the angle $C D E$, for each of them is a right angle; (constr.)
therefore the base $E A$ is equal to the base $E C:$ (1. 4.) but $E A$ was shewn to be equal to $E B$:
wherefore also $E B$ is equal to $E C$: (ax, 1.)
and therefore the three straight lines $E A, E B, E C$ are equal to one another:
wherefore E is the center of the circle. (iir. 9.)
From the center E, at the distance of any of the three $E A, E B$, $E C$, describe a circle ;
this shall pass through the other points;
and the circle of which $A B C$ is a segment, is described.
And it is evident, that if the angle $A B D$ be greater than the angle $B A D$, the center E falls without the segment $A B C$, which therefore is less than a smicircle:
but if the augle $A B D$ be less than $B A D$, the center E falls within the segment $A B C$, which is therefore greater than a semicircle.

Wherefore a segment of a circle being given, the circle is described of which it is a segment. Q.E.F.

PROPOSITION XXVI. THEOREM.

In equal circles, equal angles stand upon cqual ares, whether the angles be at the conters or circumfercnces.

Let $A B C, D E F$ be equal circles, and let the angles BGC, EIFF at their centers, and $B A C, E J F$ at their circumferences be equal to each other. Then the are $B K^{\circ} C$ shall be equal to the are $E L F$.

Join BC, EF
And becanse the circles $A B C, D E F$ are equal, the straight lines drawn from their centers are equal ; (Hii. def. 1.) therefore the two sides $B G, G C$, , are equal to the two $E M, H F$, each to each :
and the angle at G is equal to the angle at $I I$; (hyp.)
therefore the base $B C$ is equal to the base $E h^{i}$ ((i. 4.)
And because the angle at A is equal to the angle at ν, (hyp.) the segment $B A C$ is similar to the segment $E 1 P F^{\prime}$ (111. def. 11.) and they are upon equal straight lines $B C, E F$:
but similar segments of circles upon equal straight lines, are equal to one another, (ili. 24.)
therefore the segment $B A C$ is equal to the segment $E D F$:
but the whole circle $A B C$ ' is equal to the whole DEF ; (hyp.)
therefore the remaning segment $B H^{\circ} C$ is equal to the remaining segment $E L F$, (1. ax. 3.)
and the arc $B A^{\circ} C$ to the are ELF.
Wherefore, in equal circles, de. Q.E.D.

PROPOSITION XXVII. TILEOREM.

In equal circles, the angles which stand upon equal ares, are cqual to one another, whether they be at the centers or circumferences.

Let $A B C, D E F$ be equal circles, and let the angles $B G C, E A F F$ at their centers, and the angles $B A C, E D F$ at their circumferences, stand upon the equal ares $B C, E F$.
Then the angle $B G C$ shall be equal to the angle EHF , and the angle $B A C$ to the angle $E D F$.

If the angle $B G C$ be equal to the angle $E H F$,
it is manifest that the angle $B A C$ is also equal to $E D F$. (ini. 20. and
I. ax. 7.)

But, if not, one of them must be greater than the other :
if possible, let the angle BGC be greater than EIIF, and at the point G, in the straight line $B G$. make the angle $B G K$ equal to the angle EIIF. (1.23.)
Then becanse the angle BGK is equal to the angle EHF,
and that equal angles stand upon equal ares, when they are at the centers; (III. 26.)
therefore the are $B H^{\circ}$ is equal to the arc $E F$:
but the arc $E F$ is equal to the are $B C^{\prime}$; (hyp.)
therefore also the are $B K^{\prime}$ is equal to the are $B C$,
the less equal to the greater, which is impossible: (I. ax. 1.)
therefore the angle $B G C$ is not unequal to the angle $E H F$; that is, it is equal to it:
but the angle at A is half of the angle $B G C$, (in. 20.)
and the angle at D, half of the angle EHIF;
therefore the angle at A is equal to the angle at D. (I. ax. 7.)
Wherefore, in equal circles, \&c. Q.e.d.

PROPOSITION XXVIII. TILEOREM.

In equal circles, equal straight lines cut off equal ares, the greater equal to the greater, and the less to the less.

Let $A B C, D E F$ be equal circles,
and $B C, E F$ equal straight lines in them, which cut off the two greater arcs BAC, EDF, and the two less BGi', EIIF.
Then the greater are $B A C$ shall be equal to the qreater $E D F$, and the less are $B G C$ to the less $E H F$.

Take K, L, the centers of the circles, (iri. 1.) and join $B K, K C, E L, L F$. Because the circles $A B C, D E F$ are equal,
the straight lines from their centers are equal : (ini. def. 1.) therefore $B K, K C$ are equal to $E L, L F$, each to each :
and the base $B C$ is equal to the base $E F$, in the triangles $B C K, E F L$;
therefore the augle $B F^{\prime} C^{\prime}$ is equal to the angle $E L F$: (r. S.)
but equal angles stand upon equal ares, when they are at the centers: (iII. 26.)
therefore the are $B G C$ is equal to the are EIF :
but the whole circumference $A B C$ is equal to the whole EDF; (hyp.)
therefore the remaining part of the circumference,
viz. the are $B A C$, is equal to the remaining part $E D F$. (ı. ax. 3.) Therefore, in equal circles, \&c. q.e.b.

PROPOSITION XXIX. THEOREM.

In equal circles, cqual ares are subtended by equal straight lines.
Let $A B C, D E F$ be equal circles, and let the ares $B G C, E: / F F^{\prime}$ also be equal, and joined loy the straight lines $B C, E F$.
Then the straight line $B C$ shall be equal to the straight line $E F$.

Take h, L, (iin. 1.) the centers of the rireles, and join $B F_{i}, F C, E L, L F$.
Because the are $J G O$ is equal to the are $E H F$,
therefore the angle $B F^{\circ} C$ is equal to the angle $E L F^{\prime}$: (11. 27)
and because the circles $A D C, D E F$, are equal,
the straight lines from their centers are equal ; (1u. def. 1.)
therefore $13 R, h^{\circ} C$, are equal to $E L, L F$, each to each:
and they contain equal angles in the triangles $B C K, E F L$;
therefore the base $B C$ is equal to the base $E F$. (r. 4.)
Therefore, in equal circles, dc. Q.E.t.

PROPOSITION XXX. PROBLEM.

To bisect a given arc, that is, to divide it into two equal parts.
Let $A D B$ be the given arc: it is required to biseet it.

Join $A B$, and bisect it in C; (1. 10.)
from the point C draw $C D$ at right angles to $A B$. (I. 11.)
Then the are $A D B$ shall be bisected in the point D. Join $A D, I) B$. And because $A C$ is equal to $C B$, and $C D$ common to the triangles $A C D, B C D$,
the two sides $A C, C D$ are equal to the two $B C, C D$, each to each; and the angle $A C^{\prime} D$ is equal to the angle $B C D$,
beeause each of them is a right angle :
therefore the base $A D$ is equal to the base $B D$. (i. 4.)
But equal straight lines ent off equal ares, (iir. 28.)
the greater are equal to the greater, and the less are to the less;
and the ares $A D, D B$ are each of them less than a semicirele;
because $D C$, if produced, passes throngh the center: (ini. 1. Cor.)
therefore the are $A D$ is equal to the arc $D B$.
Therefore the given are $A D B$ is bisected in D. Q.E.f.

PROPOSITION XXXI. THEOREM.

In a circle, the angle in a semicirele is a right angle ; but the angle in a scgment greater than a semicircle is less than a right angle; and the angle iss a segment less than a semicircle is greater than a right angle.

Let $A B C D$ be a circle. of which the diameter is $B C$. and center E, and let $C A$ be drawn, dividing the circle into the segments $A B C, A D C$. Join $B A, A D, D C$.
Then the angle in the semicircle $B A C$ shall be a right ancle ; and the angle in the segment $A B C$, which is greater than a semicircle, shall be less than a right angle :
and the angle in the segment $A D C$. which is less than a semicirele, shall be greater than a right angle.

Join $A E$. and produce $B A$ to F. First, because $E B$ is equal to $E A$, (1. def. 15.) the angle $E A B$ is equal to $E B A$; (1. 5.) also, because $E A$ is equal to $E C$, the angle $E C A$ is equal to $E A C$;
wherefore the whole angle $B A C$ is equal to the two angles $E B A$, ECA; (1. ax. 2.)
but $F A C$, the exterior angle of the triangle $A B C$, is equal to the two angles EBA, ECA ; (1. 32.)
therefore the angle $B A C$ is equal to the angle $F A C$; (ax. 1.) and therefore each of them is a right angle ; (I. def. 10.)
wherefore the angle $B A C$ in a semicirele is a right angle.
Secondly, becanse the two angles $A B C, B A C$ of the triangle $A B C$ are together less than two right angles, (r. 17.)
and that $B A C$ has been proved to be a right angle; therefore $A B C$ must be less than a right angle:
and therefore the angle in a segment $A B C$ greater than a semicircle, is less than a right angle.
And lastly, because $A B C D$ is a quadrilateral figure in a circle, any two of its opposite angles are equal to two right angles: (1II. 22.) therefore the angles $A B C, A D C$, are equal to two right angles: and $A B C$ has been proved to be less than a right angle; wherefore the other $A D C$ is greater than a right angle.
Therefore, in a circle the angle in a semicirele is a right angle; \&c. Q.E.D.
Cor. From this it is manifest, that if one angle of a triangle be equal to the other two, it is a right angle: becanse the angle adjacent to it is equal to the same two: (I 32.) and when the adjacent angles are equal, they are right angles. (1. def. 10.)

PROPOSITION XXXII. THEOREM.

If a straight line truch a circle, and from the point of contact a straight line be dram meeting the cirele; the anylles which this line makes with the line touching the rircle shatl be equal to the angles which are in the atternate segments of the "vole.

Let the suaight line $E F$ touch the circle $A B C D$ in F,
and from the point B let the straight line $B D$ be drawn, meeting the circumference in I, and dividing it into the segments $D C B, D A B$, of which $D C B$ is less than, and $D A B$ greater than a semicircle.

Then the angles which $1 ; D$ makes with the toulhing line EF, shall be equal to the angles in the alternate segments of the circle;
that is, the angle $D B F$ shall bo equal to the angle which is in the
segment $D A B$,
and the angle $D B E$ shall be equal to the angle in the alternate segment $D C B$.

From the point B draw $B A$ at right angles to $E F$, (i. 11.) meeting the circumference in A;
take any point ('in the arc $D B$, and join $A D, D C, C B$.
Because the straight line $E F$ touches the cirele $A B C^{\prime} D$ in the point B,
and BA is drawn at right angles to the touching line from the point of contact B,
the center of the circle is in $B A:($ (11. 19.)
therefore the angle $A D B$ in a semicircle is a right angle: (ii. 31.)
and consequently the other two angles $B A D, \angle B D$, are equal to
a right angle; (1. 32.)
but $A B F$ is likewise a right angle; (constr.)
therefore the angle $A B F$ is equal to the angles $B A D, A B D$: (土.ax. 1.) take from these equals the common angle $A B D$:
therefore the remaining angle $D B F$ 'is equal to the angle $B A D$, (ı.ax. 3.)
which is in $B D A$, the alternate segment of the circle.
And because $A B C D$ is a quadrilateral figure in a circle,
the opposite angles $B A D, B C D$ are equal to two right angles: (1iI. 22.)
but the angles $D B F, D B E$ are likewise equal to two right angles; (1. 13.)
therefore the angles $D B F, D B E$ are equal to the angles $B A D$, $B C D$, (1. ax. 1.)
and $D B F$ has been proved equal to $B A D$;
therefore the remaining angle $D B E$ is equal to the angle $B C D$ in
$B D C$, the alternate segment of the circle. (r. ax. 2.)
Wherefore, if a straight line, \&c. Q.E.D.

PROPOSITION XXXIII. PROBLEM.

Upon a given straight line to describe a segment of a cirele, which shall contain an angle equal to a given rectilineal angle.

Let $A B$ be the given straight line, and the angle C the given rectilineal angle.
It is required to descr ibe upon the given straight line $A B$, a segment of a circle, which shall contain an angle equal to the angle C.

First, let the angle C be a right angle.

Bisect $A B$ in F. (土. 10.)

and from the center F, at the distance $F B$, describe the semicircle $A H B$, and draw $A H, B I I$ to any point H in the circumference.

Therefore the angle $A H B$ in a semicircle is equal to the right angle C. (iit. 31.)

But if the angle C be not a right angle :

at the point A, in the straight line $A B$, make the angle $B A D$ equal to the angle C, (i. 23.) and from the point A draw $A E$ at right angles to $A D$; (I. 11.) bisect $A B$ in F, (1. 10.)
and from F draw $F G$ at right angles to $A B$. (i. 11.) and join $G B$.
Because $A F^{\prime}$ is equal to $F B$, and $F G$ common to the triangles $\Lambda F G, B F G$,
the two sides $A F, F G$ are equal to the two $B F, F G$, each to each, and the angle $A F G$ is equal to the angle $B F G$; (i. def. 10.)
therefore the base $A G$ is equal to the base $G B$; (1. 4.)
and the circle described from the center G, at the distance $G A$, shall pass through the point B :
let this be the circle $A H B$.
The segment $A I I B$ shall contain an angle equal to the giren rectilineal angle C.

Because from the point A the extremity of the diameter $A E$, $A D$ is drawn at right angles to $A E$,
therefore $A D$ touches the circle: (iII. 16. Cor.)
and because $A B$, drawn from the point of contact A, cuts the cirele,
the angle $D A B$ is equal to the angle in the alternate segment A IIB: (1II. 32.)
but the angle $D_{A} B$ is equal to the angle C : (constr.)
therefore the angle C is equal to the angle in the segment $A I I B$.
Wherefore, upon the given straight line $A B$, the segment $A I I B$ of a circle is deseribed, which contains an angle equal to the given angle C. ©.E.E.

PROPOSITION XXXIV. PROBLEM.

From a given circle to eut off a segment, which shall contain an angle equal to a given rectilineal angle.

Let $A B C$ be the given circle, and D the given rectilineal augle.
It is reguired to cht off from the circle $A B C$ a segment that shall contain an angle orqual to the given angle D.

Draw the straight line $E F$ touching the circle $A B C$ in any point B, (III. 17.)

$$
\text { and at the point } B \text {, in the straight line } B F \text {. }
$$

make the angle $F B C$ ' equal to the angle J. (I. 23.)
Then the segment $B A O$ shall contain an angle equal to the given angle D.

Because the straight line EF touches the cirele ABC, and $B C$ is drawn from the point of contact B,
therefore the angle $F B C$ is equal to the angle in the alternate seg-
ment BAC of the cirele: (111. 32.)
but the angle $F B C$ is equal to the angle D; (constr.)
therefore the angle in the segment $B A C$ is equal to the angle D. (I. ax. 1.)

Wherefore from the given circle $A B C$, the segment $B A C$ is cut off, containing an angle equal to the given angle D. Q.E.F.

PROPOSITION XXXV. THEOREM.

If two straight lines cut one another uithin a circle, the rectangle contained by the segments of one of them, is equal to the reetangle contained by the sefments of the other.

Let the two straight lines $A C^{\prime}, B D$, cut one another in the point E, within the circle $A B C^{\prime} D$.

Then the rectangle contained by $A E, E C$ shall be equal to the rectangle contained by $D E, E D$.

First, if $A C, B D$ pass each of them through the center, so that E is the center;
it is evident that since $A E, E C, B E, E D$, being all equal, (i. def. 15.) therefore the rectangle $A E, E C$ is equal to the rectangle $B E, E D$.

Secondly, let one of them $B D$ pass through the center, and cut the other $A C$, which does not pass throngh the center, at right angles, in the point E.

Then, if $B D$ be bisected in F, F is the center of the circle $A B C D$.
 Join $A F$.

Because $B D$ which passes through the center, cuts the straight line $A C$, which does not pass through the center, at right angles in E, therefore $A E^{\prime}$ is equal to $E C^{\prime}:($ In, 3.)
and because the straight line $B D$ is cut into two equal parts in the point F, and into two unequal parts in the point E,
therefore the rectangle $B E, E D$, together with the square on $E F$, is equal to the square on $F B$; (II. 5.)
that is, to the square on $F A$:
but the squares on $A E, E F$, are equal to the square on $E A:$ (i. 47.) therefore the rectangle $B E, E D$, together with the square on $E F$, is equal to the squares on $A E, E F:$ (i. ax. 1.)
take away the common square on $E F$,
and the remaining rectangle $B E, E D$ is equal to the remaining square on $A E$; (1. ax. 3.)

$$
\text { that is, to the rectangle } A E, E C \text {. }
$$

Thirdly, let B1, which passes throngh the center, cut the other $A C$, which does not pass through the center, in E, but not at right angles.

Then, as before, if $B D$ be bisected in F, F^{\prime} is the center of the circle.
Join $A F$, and from F draw $F G$ perpendicular to $A C$; (r. 12.) therefore $A G$ is equal to $G C$; (in. 3.)
wherefore the rectangle $A E, E U$, together with the square on $E G$, is equal to the square on $A G$: (ni.5.)
to each of these equals add the square on $G F$;
therefore the rectangle $A E, E C$, together with the squares on $E G$,
$G F$, is equal to the squares on $A(r, G F$; (r. ax. a.)
but the squares on $E G, A^{\prime} F^{\prime}$, are equal to the square on $E F^{\prime}$; (1. tr.) and the squares on $A G, G F$ are equal to the square on $A F^{\prime}$;
therefore the rectangle $A E^{\prime}, E C^{\prime}$, together with the square on $E F^{\prime}$, is equal to the square on $A F$;
that is, to the square on $F B$:
but the square on $F P B$, is equal to the rectangle $B E, E D$, together with the square on $E F^{\prime}$; (II. 5.)
therefore the rectangle $A E, E C^{\prime}$, tegether with the square on $E \prime \prime$, is equal to the rectangle DES, ED, together with the square on $E F$; (г. ax. 1.)
take away the common spuare on $E F$.
and the remaining rectamgle $A E, E C$, is therefore equal to the remaining rectangle $13 E, E F$). (ax. 3.)
Lastly, let neither of the straight lines $A C, B D$ pass through the center.

Take the center F, (ini. 1.)
and through E the intersection of the straight lines $A C, D B$, draw the dianeter $G E F H$.
And because the rectangle $A E, E C$ is equal, as has been shewn, to the rectangle $G E, E I I$:
and for the same reason, the rectangle $B E, E D$ is equal to tho same rectangle GE, EH: therefore the rectangle $A E, E C$ is equal to the rectangle $B E, E D$. (1. ax. 1.)

Wherefore, if two straight lines, \&c. Q.E.D.
PROPOSITION XXXVI. TIEOREY.
If from any point without a cirele two straight lines be draven, one of whieh cuts the eircle, and the other tonches it ; the rectangle contained by the whole line which cuts the circle, and the part of it without the circle, shull be equal to the square on the line which touches it.

Let D be any point without the circle $A B C$.
and let $D C A, D B$ be two straight lines drawn from it, of which $D C A$ cuts the circle. and $D B$ touches the same.
Then the rectangle $A D, D C$ shall be equal to the square on $D B$.
Either $D C^{\prime} A$ passes throngh the center, or it does not:
first, let it pass through the center E.

Join EB,
therefore the angle $E B D$ is a right angle. (iir. 18.)
And because the straight line $A C$ is bisected in E, and produced to the point D,
therefore rectangle $A D, D C$, together with the square on $E C$, is equal to the square on $E D$: (in. 6.) but $C E$ is equal to $E P$;
therefore the rectangle $A D, I C^{\prime}$, together with the square on $E B$, is equal to the square on $E D$:
but the square on $E D$ is equal to the squares on $E B, B D$, (1. 47 .) because $E B D$ is a right angle:
 is equal to the squares on $E B, B D:$ (ax. 1.)
take away the common square on EB;
therefore the remaining rectangle $A D, D C$ is equal to the square on the tangent $L \neq$. (ax. 3.)
Next, if $D C A$ does not pass through the center of the circle $A B C$.

Take E the center of the circle, (irr. 1.)
draw $E F$ perpendicular to $A C$. (1. 12.) and join $E B, E C, E D$.
Because the straight line $E F$, which passes through the center, cuts the straight line $A C$, which does not pass through the center, at right angles; it also bisects $A($ ' (11.3.3.) therefore $A F$ is equal to $F C$;
and because the straight line $A C$ is bisected in F, and produced to D, the rectangle $A \nu, D C$, together with the square on $F C$, is equal to the square on $F D$: (II. 6.)
to each of these equals add the square on FE ;
therefore the rectangle $A D, I C$, together with the squares on $C F, F E$, is equal to the squares on $D F, F E$: (1. ax. 2.)
but the square on $E I$ is equal to the squares on $D F, F E$, (1. 47.) because EFD is a right angle;
and for the same reason,
the square on $E C$ is equal to the squares on $C F, F E$;
therefore the rectangle $A D, D C$, together with the square on $E C$, is equal to the square on $E D$: (ax. 1.)
but $C E$ is equal to $E B$;
therefore the rectangle $A D, D C$, together with the square on $E B$, is equal to the square on E1):
but the squares on $E B, B D$), are equal to the square on $E D$, (1. 47.) because EBI is a right angle :
therefore the rectangle $A D, D C$, together with the square on $E B$, is equal to the squares on $E B, D B D$;
take away the common square on $E B$;
and the remaining rectimgle $A I), D C^{\prime}$ is equal to the square on
DB. (土. ax. ?.)
Wherefore, if from any point, \&c. Q.E.d.
Cor. If from any point without a circle, there be drawn two straight

lines cutting it, as $A B, A C$, the rectangles contained by the whole lines and the parts of them without the circle, are eifual to one another. viz. the rectangle $B A, A E$, to the rectangle $C A, A F^{\prime}$: for each of them is equal to the square on the straight line $A L$, which touches the circle.

Proposition xxxyif. Theorey.

If from a point without a cirele there be drawn tewo strablit lines, one of which cuts the circle, and the other meets it; if the reetamele contained by the whole line whieh cuts the circle, and the part of it without the cirele, be equal to the square on the line which meets it, the line which mests, shall tonch the eircle.

Let any point D be taken without the circle $A B C$,
and from it let two straight lines $D C A$ and $D B$ be drawn, of which $D C A$ cuts the circle in the points C, A, and $D B$ meets it in the point B.
If the rectangle $A D, D C$ be equal to the square on $D B$; then $D B$ shall touch the circle.

Draw the straight line $D E$, touching the circle $A B C$, in the point E; (III. 17.)
find F, the center of the circle, (III, 1.) and join $F E, F B, F D$.
Then $F E O$ is a right angle: ((II. 18.)
and because $D E$ touches the circle $\triangle B C$, and $D C A$ cuts it, therefore the rectangle $A D, D C$ is equal to the square on $D E$; (iII. 36.)
but the rectangle $A D, D C$, is, by lyypothesis, equal to the square on $I D B$:
therefore the square on $D E$ is equal to the square on $D B ;(\mathrm{I} . \operatorname{ax} .1$.)
and the straight line $D E$ equal to the straight line $D B$:
and $F E$ is equal to $F B$; (i. det. 15.)
wherefore $D E, E F$ are equal to $D B, B F$, each to each:
and the base $F D$ is common to the two triangles $D E F, D B F$;
therefore the angle $D E F$ is equal to the angle $D B F$: (1.8.)
but $D E F$ was shewn to be a right angle ;
therefore also $D B F$ is a right angle: (I. ax. 1.)
and $B F$, if produced, is a diancter ;
and the straight line which is drawn at right angles to a diameter,
from the extremity of it, touches the circle; (ini. 16. Cor.)
therefore $D B$ tonches the cirele $A B C$.
Wherefore, if from a point, \&e. Q.E.D.

NOTES TO BOOK III.

In the Third Book of the Elements are demonstrated the most elementary properties of the cirele, assuming all the properties of figures demonstrated in the First and Second Books.

It may be worthy of remark, that the word circle will be found sometimes taken to mean the surface included within the circumference, and sometimes the circumference itself. Euelid has employed the word ($\pi \in \rho$ рфє́ $\rho \in a$) periphe$r y$, both for the whole, and for a part of the circumference of a circle. If the word circunference were restricted to mean the whole cireumference, and the word are to mean a part of it, ambiguity might be avoided when speaking of the circumference of a circle, where only a part of it is the subject under cousideration. A circle is said to be given in position, when the position of its center is known, and in magnitude, when its radius is known.

Def. i. And it may be added, or of which the cireumferences are equal. And conversely : if two cireles be equal, their diameters and radii are equal; as also their cirenmferences.

Def. I. states the criterion of equal cireles. Simson calls it a theorem; and Euclid seems to have considered it as one of those theorems, or axioms, which might be admitted as a basis for reasoning on the equality of circles.

Def. in. There seems to be tacitly asumed in this definition, that a straight line, when it meets a circle and does not touch it, must necessarily, when produced, ent the cirele.

A straight line which touches a cirele, is called a tangent to the eircle; and a straight line which cuts a circle is called a sectut.

Def. 15. The distance of a straight line from the center of a eirele is the distance of a point from a straight line, which has been already explained in note to Prop. 11. page 53.

Def. vi. x. An are of a circle is any portion of the circumference; and a chord is the straight line joining the extremities of an are. Every chord except a diancter divides a circle into two unequal segments, one greater than, and the other less than a semicircle. And in the same manner, two radii drawn from the center to the cireunference, divide the circle into two unequal sectors, which become equal when the two radii are in the same straight line. As Euclid, howerer, does not notice reentering angles, a sector of the cirele seems necessarily vestricted to the figure which is less than a semieirele. A guadrant is a sector whose radii are perpendicular to one another, and which contains a fourth part of the circle.

Def. vir. No use is mate of this definition in the Flements.
Def. xi. The definition of similar segments of circles as employed in the Third Book is restricted to such segments as are also equal. lrous. ximi, and xxis. are the only two instances, in which reference is mate to similar segments of circtes.

Prop. I. "Tines drawn in a circle," always mean in Euchid, such lines only as are terminated at their extremities by the cirememence.

If the point G be in the diameter $C \mathcal{A}{ }^{\prime}$, but not coinciling with the point F, the demonstration given in the text does not hodd good. At the same time, it is obvious that G camot be the eenter of the eircle, because $H^{\prime} C^{\prime}$ is not equal to $/ ; E$.

Indirct demonstrations are more frequently employed in the Third Book than in the First book of the Elements. Of the demonstrations of the forty-right propositions of the First Book, nine are indirect: but of the thirty-seven of the Third laok, no less than fifteen are indirect demonstrations. The indirect is, in general, less readily appreciated by the learner, than the dircet form of demonstration. The indirect form, however, is equally satisfactory, as it excludes every assumed hypothesis as false, except that which is made in the enunciation of the proposition. It may be here remarked that Euclid employs three mothods of demonstrating converse propositions. First, by indirect demonstrations as in Euc. i. 6: iir. 1, \&e. Secondly, by shewing that neither side of a possible alternative can be true, and thence inferring the truth of the proposition, as in Euc. I. 19, 25. Thirdly, by means of a construction, thereby avoiding the indirect mode of demonstration, as in Euc. 1. 47 : 111. 37.

Prop. II. In this proposition, the circumference of a circle is proved to be essentially different from a straight line, by shewing that every straight line joining any two points in the are falls entirely within the circle, and can neither coincide with any part of the circumference, nor meet it except in the two assumed points. It excludes the idea of the circumference of a circle being flexible, or capable, under any circuinstances, of admitting the possibility of the line falling outside the circle.

If the line could fall partly within and partly without the circle, the circumference of the circle would intersect the line at some point between its extremities, and any part without the circle has been shewn to be impossible, and the part within the circle is in accordance with the enunciation of the Proposition. If the line could fall opon the circumference and coincide with it, it would follow that a straight line coincides with a curved line.

From this proposition follows the corollary, that " a straight line cannot cut the cireumference of a circle in more points than two."

Commandine's direct demonstration of Prop. Ir. depends on the following axiom, "If a point be taken nearer to the center of a circle than the circumference, that point falls within the cirele."

Take any point E in $A B$, and join $D_{A}, D E, D B$. (fig. Euc. ni. 2.)
Then because $D A$ is equal to $D B$ in the triangle $D A B$;
therefore the angle $D A B$ is equal to the angle $D B A$; (1.5.) but since the side $A E$ of the triangle $J A E$ is produced to B,
therefore the exterior angle $D E B$ is greater than the interior and opposite angle $D . A E$; (1. 16.)
but the angle $D A E$ is equal to the angle $D B E$,
therefore the angle $D E B$ is greater than the angle $D B E$.
And in every triangle, the greater side is sabtended by the greater angle; therefore the side $D B$ is greater than the side $D E$;
but $D B$ from the center meets the circumference of the circle, therefore $D E$ does not meet it.
Wherefore the point E falls within the eirele: and E is any point in the straight line $A B$:
therefore the straight tine $A B$ falls within the circle.
Prop. vir. and Prop. rir. exhibit the same property; in the former, the point is taken in the diameter, and in the latter in the diameter produced.

Prop. vili. An are of a circle is said to be convex or concare with respect to a point, according as the straight lines drawn from the point meet the ontside or inside of the circular arc: and the two points found in the
circumference of a cirele by two straight lines drawn from a given point to touch the circle, divide the circumference into two portions, oue of which is convex and the other concave, with respeet to the given point.

Prop. Ix. This appears to follow as a Corollary from Euc. 1II. T.
Prop. xi. and Prop. xir. In the enunciation it is not asserted that the contact of two circles is confined to a single point. The meaning appears to be, that supposing two circles to touch each other in any point, the straight line which joins their eenters being produced, shall pass through that point in which the cireles touch each other. In Prop. xirs. it is proved that a circle cannot toneh another in more points than one, by assuming two points of contact, and proving that this is impossible.

Prop. xnn. The following is Euelid's demonstration of the case, in which one cirele tonches another on the inside.

If possible, let the circle $E B F$ touch the cirele $A B C$ on the inside, in more points than in one point, namely in the points B, I. (fig. Eue. 111. 13.) Let P be the center of the cirele $A B C$, and Q the center of $E B F$. Jom P, Q; then $P Q$ prodnced shall pass through the points of eontact D, D. For since P is the center of the circle $A B C, P D$ is equal to $P D$, but $P B$ is greater than $Q D$, much more then is $Q B$ greater than $Q D$. Again, since the point Q is the center of the circle $E B F, Q B$ is equal to $Q D$; but $Q B$ has been shewn to be greater than (27 , which is impossible. One cirele therefore cannot touch another on the inside in more points than in one poinr.

Prop. xri. may be demonstrated directly by assuming the following axiom: "If a point be taken further from the center of a circle than the circumference, that point falls without the eirele."

If one circle tonch another, either internally or externally, the two eircles can have, at the point of contact, only one common tangent.

Prop. xvit. When the given point is without the eiremmference of the given circle, it is obvious that two equal tangents may be drawn fiom the giveu point to touch the circle, as may be seen from the diagram to Prop. vill.

The best practical method of drawing a tangent to a cirele from a given point withont the ciremference, is the tollowing: join the given point and the center of the circle, upon this line describe a semicircle cutting the given circle, then the line drawn from the given point to the intersection will he the tangent required.

Circles are called concoutric rircles when they have the same center.
Prop. xvin. appears to be mothing more than the converse to I'rop. xir., because a tangent to any point of a ciremmerence of a circle is a straght line at right angles at the extremity of the diameter which meets the eircumference in that point.

Prop. xx. This proposition is proved by Fuclid only in the ease in which the angle at the circmonference is less than a right ancle, and the demonstration is free from ohjeetion. It, however, the angle at the eiremmference be a right angle, the angle at the center disappears, by the two straight lines from the center to the extremities of the are becominge one strulght line. Aud, if the angle at the cireumference be an obuse angle, the angle formed hy the two lines from the center, does not stand on the fame are, but upon the are which the assumed are wants of the whole cirenmference.

If 'Enclid's defnition of an angle be strictly observed, Props. xx. is geometrically true, only when the anzle at the center is less than two right angles. If, howerer, the defect of an angle from four right migles may
be regarded as an angle, the proposition is universally true, as may be proved by drawing a line lrom the angle in the circunderence through the center, and thus forming two angles at the center, in Euclid's striet sense of the term.

In the first ease, it is assumed that, if there be four magnitudes, such that the first is donble of the second, and the third llouble of the fourth, then the first and third together shall be double of the second and fourth together: also in the second case, that il one magnitude be double of another, and a part taken from the first be double oí a part taken from the second, the remainder of the first shall be double the remainder of the second, which is, in fact, a particular case of Prop. r. Book r

Prop. xxi. IIence, the locus of the vertices of all triangles upon the same base, and which have the same rertical angle, is a circular are.

Prop, xxir. The converse of this Proposition, namely: If the opposite angles of a quadrilateral figure be equal to two sight angles, a circle can be deseribed about it, is not proved by Euclid.

It is obrious from the demonstration of this proposition, that if any side of the inscribed figure be produced, the exterior angle is equal to the opposite angle of the figure.

Prop. xxar. It is obvious from this proposition that of two circular segments upon the same base, the larger is that which contains the stnaller angle.

Prop. xxr. The three cases of this proposition may be reduced to one, by drawing any two contiguous chords to the given are, bisecting them, and from the points of bisection drawing perpendicutars. The point in which they meet will be the center of the circle. This problem is equivalent to that of finding a point equally distant from three given points.

Props xxvi.-xxix. The properties predicated in these four propositions with respect to equal circles, are also true when predicated of the same circle.

Prop. xxxi. suggests a method of drawing a line at right angles to another when the giren point is at the extremity of the given line. And that if the diameter of a circle be one of the equal sides of an isosceles triangle, the base is bisected by the circumference.

Prop. xxxr. The most general case of this Proposition might hare been first demonstrated, and the other more simple cases deduced from it. But this is not Euclil's method. He always commences with the more simple case and proceeds to the more difficult afterwards. The following process is the reverse of Euclid's mothorl.

Assuming the construction in the last fig. to Euc. n1, 35. Join $F A, F D$, and draw $F K$ perpendicular to $A C$, and $F T$ perpendicular to $B D$. Then (Euc. 11. 5.) the rectangle $A E, E C$ with square on $E K^{-}$is equal to the square on $A K$: add to these equals the square on $F h^{*}$: therefore the rectangle $A E, E C$, with the squares on $E K, F^{\prime}$ is equal to the squares on $A K^{\prime}, F K$. But the squares on $E K, F h^{\prime}$ are equal to the square on $E F$, and the squares on $A K, H$ are equal to the square on $A F$. Hence the rectangle $A E$, $E C$, with the square on $E F$ is equal to the square on $I F$.

In a simitar way may be shewn, that the reetangle $B E, E D$ with the square on $E F$ is equal to the square on $F D$. And the square on $F D$ is equal to the square on $A D$. Wherefore the rectangle $A E$, $E C$, with the square on $E C$ is equal to the rectangle $B E, E D$ with the square on $E F$. Take from these equals the square on $E F$, and the rectangle $A E, E C$ is equal to the rectangle $B E, E D$.

The other more simple cases may easily be deduced from this general case.

The converse is not proved by Euclid; namely, -If two straight lines intersect one another, so that the rectangle contained by the parts of one is equal to the rectangle contained by the parts of the other; then a circle may be described passing through the extremities of the two lines. Or, in other words:-If the diagonals of a quadrilateral figure intersect one another, so that the rectangle contained by the segments of one of them is equal to the rectangle contained by the segments of the other; then a cirele may be described about the quadrilateral.

Prop. xxxvi. The converse of the corollary to this proposition may be thus stated:-If there be two straight lines, such that, when produced to meet, the rectangle contained by one of the lines produced, and the part produced, be equal to the rectangle contained by the other line produced and the part produced; then a circle can be described passing through the extremities of the two straight lines. Or, If two opposite sides of a quadrilateral figure be produced to meet, and the rectangle contained by one of the sides produced and the part prodnced, be equal to the rectangle contained by the other side produced and the part produced; then a circle may be described about the guadrilateral figure.

Prop. xxxvir. The demonstration of this theorem may be made shorter by a reference to the note on Euclid 11 . Def. 2: for if $D \dot{B}$ meet the cirele in B and do not touch it at that point, the line must, when produeed, cut the circle in two points.

It is a circumstance worthy of notice, that in this proposition, as well as in Prop, xbvin. Book i. Fuclid departs from the ordinary ex absurdo mode of proof of converse propositions.

QUESTIONS ON BOOK III.

1. Defing tecurately the tema radius, aro, circomference, shord, secant.
2. How does a sector differ in form, from a segment of a curcle! Are they in any case coincident?
3. What is Eurlid's witerion of the equality of two circles? What is meant by a given circle? How many points are necessary to determine the mugnitnele and pesition of a cincle?
4. When are segments of circles said to be similar? Enunciate the propositions of the Third Book of Euclid, in which this definition is employed. Is it employed in a restricted or general lom:
5. In how many points can a circle be cut by a straight line and by another eircle?
6. When are straight lines equally distant from the center of a cirele ?
7. Shew the necessity of an indirect demonstmation in Enc. 11. 1.
8. Find the center of a given circle withont bisecting any straght line.
9. Shew that if the ciremuferenee of one of two equal circles pas: through the eenter of the other, the portions of the two cireles, each of which lies withont the circomferenee of the other circle, are "fual.
10. If a straight line passing throngh the center of a circle hisect a straight line in it, it shall cut it at right anoles. Point ont the exeeption ; and shew that if a straight line bisect the are and base of a segment of a circle, it will, when problued, pass through the center.
11. If any point be taken within a circle, nud a right line be drawn from
it to the circumference, how many lines can generally be drawn equal to it ? Draw them.
12. Find the shortest distance between a circle and a given straight line withont it.
13. Shew that a circle can only have one center, stating the axioms upon which your proof depends.
14. Why would not the demonstration of Euc. III. 9, hold good, if there were only two such equal straight liaes?
15. 'T'wo parallel chords in a circle are respectively six and eight inehes in length, and one inch apart; how many inches is the diameter in length?
16. Which is the greater chord in a circle whose diameter is 10 inches; that whose length is 5 inches, or that whose distance from the center is 4 inches?
17. What is the loeus of the middle points of all equal straight lines in a circle?
18. The radius of a circle $B C D C F$, (fig. Fuc. In. 15.) whose center is E, is equal to five inches. The distance of the line $F G$ from the center is four inches, and the distance of the line $D C$ from the center is three inches, required the lengths of the lines $F G, B C$.
19. If the chord of an are be twelve inches long, and be divided into two segments of eight and four inches by another chord: what is the length of the latter chord, if one of its segments be two inches?
20. What is the radius of that circle of which the ehords of an are and of double the are are five and eight inches respectively?
21. If the chord of an are of a circle whose diameter is $8 \frac{1}{3}$ inches, be five inches, what is the length of the chord of double the are of the same eircle?
22. State when a straight line is said to touch a circle, and shew from your definition that a straight line cannot be drawn to touch a circle from a point within it.
23. Can more cireles than one touch a straight line in the same point?
24. Nhew from the construction, Euc. 11.. 17, that two equal straight lines, and only two, ean be draw touching a given circle from a giren point without it: and one, and only one, from a point in the circumference.

25 . What is the locus of the centers of all the circles which touch a straight line in a given point?

26 . How may a tangent be drawn at a given point in the circumference of a circle, without knowing the center?
27. In a circle place two chords of given lengith at right angles to each oflier.
25. From Euc. II1. 19, shew how many cireles equal to a given cirele may be drawn to touch a straight line in the same point.
29. Enumbate Euc. 111. 20. Is this trie, when the base is greater than a semicirele? If so, why has Euclid omitted this case?
30. The augle at the center of a circle is clouble of that at the circumference. How will it appear hence that the angle in a semicircle is a right angle?
31. What conditions are essential to the possibility of the inscription and circumseription of a circle in and about a quadrifateral figure?
32. What conditions are requisite in order that a parallelogram may be iuscribed in a cirele? Are there any analogous conditions requisite that a parallelogram may be deseribed about a circle?
83. Define the angle in a segment of a circle, and the angle on a seg.
ment; and shew, that in the same circle, they are together equal to two sight angles.
34. State and prove the converse of Euc. 1II. 22.
35. All eircles which pass through two given points have their eenters in a certain straight line.
36. Describe the circle of which a given segment is a part. Give Euclid's more simple method of solving the same problem independently of the magnitude of the giren segment.
37. In the same cirele equal straight lines cut off equal circumferenees. If these straight lines have any point common to one another, it must not be in the circumference. Is the euunciation given complete?
38. Enunciate Euc. 11. 31, and deduce the proof of it from Ene. nir. 20.
39. What is the locus of the vertices of all right-angled triangles which can be deseribed upon the same hypotenuse?
40. How may a perpendicular be drawn to a given straight line from one of its extremities without producing the line?
41. If the angle in a semicirele be a right angle; what is the angle in a quadrant?
42. The sum of the squares of any two lines drawn from any point in a semicircle to the extremity of the diameter is constant. Express that constant in terms of the radius.
43. In the demonstration of Euc. 111.30 , it is stated that "equal straight lines cut off equal cireumferences, the greater equal to the greater, and the less to the less: " explain by reference to the diagram the meaning of this statement.
44. How many cireles may be described so as to pass through one, two, and three given points? In what ease is it possible fur a circle to pass through thece given points?
4.). Compare the circumference of the segment (Enc. III. 33.) with the whole circunference when the angle contaned in it is a right angle and a half.
46. Inclusle the four eases of Euc. nu. 35, in one general proof.
47. Enunciate the propositions which are converse to l'rops. 32,35 , of Book in.
49. If the position of the center of a circle be known with respect to a given point ontside a circle, and the distance of the circumference to the point be ten inches: what is the length of the diameter of the circle, if a tangent drawn from the given point be fifteen inehes?
49. If two straight lines be drawn from a point without a circle, and be both teminatel by the eoncave part of the ciremmference, and if one of the lines pass through the center, and a portion of the other line intercepted by the circle, be equal to the radius: fint the diancter of the circle, if the two lines meet the convex part of the circunference, u, b, units respectively from the given point.
51. Lpon what propositions depends the demonstration of Fine. I11. 35? Is any extension made of this proposition in the Thirl Book?
51. What conditions must be fulblled that at circle may pass through four given points?
52. Why is it considered necessary to demonstrate all the separate cases of Eace. "11. 35, 3f, geometrically, which are comprehembed in one fommata, when expressed by Algebraic symbols?
53. Bnmelate the comverse propositions of the Thifd laonk of Euclitl which are not demonstrated e.r chisuredo: and state the three methods which Enclid employs in the demonstration of consense propositions in the Firss and Third Books of the Elements.

GEOMETRICAL EXERCISES ON BOOK III.

PROPOSTTION I. THEOREM.

If AB, CD be chords of a circle at right anyles to each other, prove that the sum of the arcs AC, BD is equal to the sum of the ares AD, BC.

Draw the diameter $F G I I$ parallel to $A B$, and entting $C D$ in $I I$.

Then the ares $F D G$ and $F C G$ are each lalf the circumference. Also since $C D$ is bisected in the point $I I$, the are $F D$ is equal to the are $F C$,
and the are $F D$ is equal to the ares $F A, A D$, of which, $A F$ is equal to $B G$,
therefore the ares $A D, B G$ are equal to the are $F O$; add to each $C\left(\frac{r}{r}\right.$.
therefore the ares $A D, B C$ are equal to the $\operatorname{arcs} F C, C C$, which make up the half circumference.
Hence also the arcs $A C, D B$ are equal to lialf the circumference.
Wherefore the ares $A D, B C$ are equal to the ares $A C, D B$.

PROPOSITION II, PROBLEM,

The diameter of a circle having been prodnced to a given point, it is required to find in the part produced a point, from whick if a tangent be drawn to the circle, it shall be rqual to the segment of the part produced, that is, betucen the giucn point and the point found.

Analysis, Let $A E D$ be a circle whose center is C, and whose diametcr $A B$ is prodnced to the given point D.

Suppose that G is the point required, such that the segment $G D$ is equal to the tament $G E$ drawn from G to tonel the circle in E.

Join $D E$ and produce it to meet tle cirenmference again in F; , join also $C E$ and $C F$.
Then in the triancle $G D F$, becanse $G D$ is equal to $G E$, therefore the angle $G E D$ is equal to the angle $G D E$;
and because $C E$ is equal to $C F$, the angle $C E F$ is equal to the angle $C F E$;
therefore the angles $C E F,(\dot{G} E D$ are equal to the angles $C F E$, GDE:
but since $G E$ is a tangent at E, therefore the angle (' $E G$ is a right angle, (ui. 18.) hence the angles CEF, $G E F$ ure equal to a right augle,
and consequently, the angles $C F E, E D G$ are also equal to a right angle,
wherefore the remaining angle $F C D$ of the triangle $C F D$ is a right angle, and therefore $C F$ is perpendicular to $A D$.
Synthesis. From the center C, draw $C F$ perpendicular to $A D$ meeting the circumference of the circle in F :
join $D F$ cutting the circumference in E,
join also $C E$, and at E draw $E G$ perpendicular to $C E$ and intersecting $B D$ in G.

Then G will be the point required.
For in the triangle $C F D$, since $F(D$ is a right angle, the angles $C F D, C D F$ are together equal to a right angle;
also since $C E G$ is a right angle,
therefore the andles CEF, GED are together equal to a right angle ;
therefore the angles $C E F, G E D$ are equal to the angles $C F D$, $C D F$;
but because $C E$ is equal to $C F$, the angle $C E F$ is equal to the angle $C F D$,
wherefore the remaining angle $G E D$ is equal to the remaining angle $C D F$,
and the side $G D$ is equal to the side $G E$ of the triangle $E G D$,
therefore the point G is determined according to the required conditions.

Proposition ill. Theorem.

If a chord of a circle be produced till the part produred be equal to the radins, and if from its estremity a line bc drown through the centre and mecting the convex and concave circumferences, the convex is one-thirel of the eoneave circumfercnce.

Let $A B$ any chord be produced to C, so that $B C$ is equal to the radius of the circle:

and let $C E$ be drawn from C through the center D, and maetina the convex circumference in F, and the concave in E.

Then the are $B F^{\prime}$ is one-third of the are $A E$.

Draw EG paralle! to $A B$, and join $P B, D C$.
Since the angle $I / E^{\prime} G$ is equal to the angle $D C^{\prime} E ;$ (r. \%.)
and the angle $G D F$ is equal to the angles $D E G, D(\dot{r} E ;$ (ı. 32.) therefore the angle ($i D C$ is double of the angle $D E \|$.
But the angle $B^{\prime} D C$ is equal to the angle $B C^{\prime} D$, (r. 5.) and the angle $C E G$ is equal to the alternate angle $A(E E$; (1. 29.) therefore the angle $G D C$ is double of the angle $C D B$, add to these equals the angle $(D D B$,
therefore the whole angle $(\dot{r} 1) B$ is treble of the angle $C D B$.
but the angles $G D B, C D B$ at the center I, are subtended by the ares $B F, B G$, of which $B G$ is equal to $A E$.
Wherefore the circumference $A E$ is trelle of the circumference $B F$, and $B F^{\prime}$ is one-third of $A E$.

Hence may be solved the following problem:
$A E, B F$ are two arcs of a circle intercepted between a chord and a given diameter. Determine the position of the chord, so that one are shall be triple of the other.

PLOPOSITION IV. TIIEOREM.

AB, AC and ED are tangents to the circle CFB; at urhaterer point between C and I the tangent EFD is diown, the three sides of the triangle AED are equal to turice AB or twice AC : also the angle snbtended by the tangent EFD at the center of the circle, is a constant quantity.
Take G the center of the circle, and join $G B, G E, G F, G D, G C$. Then $E B$ is equal to $E F$, and $D C$ to $D F$; (in. 37.)

therefore $E D$ is equal to $E B$ and $D C$;
to each of these add $A E . A D$, wherefore $A D, A E, E D$ are equal to $A B, A C$; and $A B$ is equal to $A C$,
therefore $A D, A E$. $E D$ are equal to twice $A B$, or twice $A C$; or the perimeter of the trimule $A E D$ is a constant quantity.

Again, the angle $E G F$ is half of the angle $B G F$, and the angle $D G F$ is half of the angle $C G F$. therefore the angle $D C E$ is half of the angle C $C B$,
or the angle subtended by the tangent $E D$ at G. is half of the angle contained between the two radii which meet the circle at the points where the two tangents $A B, A C$ mect the circle.

PROPOAITION Y. PROBLEM.

Given the base, the vertical angle, and the perpendieular in a plane triangle, to construct it.

Upon the given base $A B$ describe a segment of a circle containing an angle equal to the given angle. (ini. 33.)

At the point B draw $B C$ perpendicular to $A B$, and equal to the altitude of the triangle. (I. 11, 3.)

Through C, draw $C D E$ parallel to $A B$, and meeting the circumference in D and E. (1. 31.)

Join $D A, D B$; also $E A, E B$;
then $E A B$ or $D A B$ is the triangle required.
It is also manifest, that if $C D E$ touch the circle, there mill be only one triangle which can be constructed on the base $A B$ with the given altitude.

PROPOSITION VI. THEOREM.

If turo chords of a circle intersect each other at right angles either vithin or vithout the circle, the sum of the squares deseribed upon the four segments, is equal to the square described upon the diameter.

Let the chords $A B, C D$ intersect at right angles in E.

Draw the diameter $A F$, and join $A C, A D, C F, D B$.
Then the angle $A C F$ in a semicircle is a right angle, (ini. 31.)
and equal to the angle $A E D$:
also the angle $A D C$ is equal to the angle $A F C$. (iir. 21.)
Ifence in the triangles $A D E, A F C$, there are two angles in the one respectively equal to two thgles in the other.
consequently, the third angle CAF is equal to the third angle I $A B$;
therefore the are $D I$) is equal to the are C / F, (int. 26.)
and therefore also the chord $D B$ 'is equal to the chord $C ' F$. (111.29.)
Because $A E C$ is a right-angled triangle,
the squares on $A E, E^{\prime} C$ are epurl to the square on $A C$; (1.4T.)
similarly, the squares on $l / E, E B$ are equal to the square on $/ / B$: therefore the squares on $A E, E C, D E, E B$, are equal to the squares on $A C, L D ;$
lut $1 / B$ was proved equal to $F C$,
and the squares on $A C, F^{C} C$ are equal to the square on $A F$,
wherefore the squares on $A E, E C, D E, E B$, are equal to the square on $A F$, the diameter of the circle.
When the elaords meet without the circle, the property is proved in a similar manner.

I.

7. Throtgn a given point within a circle, to draw a chord which shall be bisected in that point, and prove it to be the least.
8. To draw that diameter of a given circle which shall pass at a given distance from a given point.
9. Find the locus of the middle points of any system of parallel chords in a circle.
10. The two straight lines which join the opposite extremities of two parallel chords, intersect in a point in that diameter which is perpendicular to the chords.
11. The straight lines joining towards the same parts, the extremities of any two lines in a circle equally distant from the center, are parallel to each other.
12. $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are points on the circumference of a circle; if the lines $A B, A C$ be respectively parallel to $A^{\prime} B^{\prime}, A^{\prime} C^{\prime \prime}$, shew that $B C^{\prime}$ is parallel to $B^{\prime} C^{\prime}$.
13. Two chords of a circle being given in position and magnitude, describe the circle.
14. Two circles are drawn, one lying within the other; prove that no chord to the outer circle can be bisected in the point in which it touches the inner, unless the circles are concentric, or the chord be perpendicular to the common diameter. If the circles have the same center, shew that every chord which touches the inner circle is bisected in the point of contact.
15. Draw a chord in a circle, so that it may be double of its perpendicular distance from the center.
16. The ares intercepted between any two parallel chords in a circle are equal.
17. If any point P be taken in the plane of a circle, and $P A$, $P B, P C, \ldots$ be drawn to any number of points $A, B, C \ldots$ situated symmetrically in the circumference, the sum of $P A, P B, \ldots$ is least when P is at the center of the circle.

II.

1 18. The sum of the ares subtending the vertical angles made by any two chords that intersect, is the same, as long as the angle of intersection is the same.
19. From a point without a circle two straight lines are drawn cutting the conrex and concave circumferences, and also respectively parallel to two radii of the circle. Prove that the difference of the concave and convex ares intercepted by the cutting lines, is equal to twice the are intereepted by the radii.
20. In a circle with center O, any two chords, $A B, C D$ are drawn
cutting in E, and $O A, O B, O C, O D$ are joined; prove that the angles $A O C+B O D=2 \cdot A E C$, and $A O D+B O C=2 \cdot A E D$.
21. If from any point without a circle, lines be drawn cutting the circle and making equal angles with the longest line, they will cut off equal segments.

22 . If the curresponding extremities of two intersecting chords of a circle be joined, the triangles thus formed will be equiangular.
23. Through a given point within or without a circle, it is required to draw a straight line cutting off a segment containing a given angle.
24. If on two lines containing an angle, segments of circles bo described containing angles equal to it, the lines prodnced will touch the segments.
25. Any segment of a circle being described on the base of a triangle ; to describe on the other sides segments similar to that on the base.
26. If an arc of a circle be divided into three equal parts by three straight lines drawn from one extremity of the are, the angle contained by two of the straight lines is bisected by the third.
27. If the chord of a given circular segment be produced to a fixed point, describe upon it when so produced a segment of a circle which shall be similar to the given segment, and shew that the two segments have a common tangent.
28. If $A D, C E$ be drawn perpendicular to the sides $B C, A B$ of the triangle $A B C$, and $D E$ be joined, prove that the angles $A D E$, and $A C E$ are equal to each other.
29. If from any point in a circular are, perpendiculars be let fall on its bounding radii, the distance of their feet is invariable.

III.

30. If both tangents be drawn, (fig. Euc. IIr. 17.) and the points of contact joined by a straght line which cuts $E A$ in $H_{\text {a }}$, and on H_{A} as diameter a cirele be deseribed, the lines drawn through E to tonch this circle will meet it on the circumference of the given cirele.
31. Draw, (1) perpendicular, (2) parallel to a given line, a line touching a given circle.
32. If two straight lines intersect, the centers of all circles that can be inceribed between them, lie in two lines at right angles to each other.
33. Draw two tangents to a given circle, which shall contain an angle equal to a given rectilineal angle.
34. Deveribe a circle with a given radins touching a given line, and so that the tangents drawn to it from two given points in this line may be parallel, and shew that, if the radius vary, the locus of the centers of the circles su deseribed is a circle.
3.5. Determine the distance of a point from the center of a given circle, sn that if tangents be drawn from it to the circle, the concave part of the circminfence may be domble of the convex.
35. In a chord of a circle produced, it is required to find a point, from which if a straight line be drawn touching the circle, the line so drawn shall be oqual to a given straight line.
36. Find a point without a given circle, such that the sum of the two lines drawn from it tonching the cirele, shall be equal to tho line drawn from it through the center to meet the circle.
37. If from a point without a circle two tangents be drawn; the straight line which joins the points of contact will be bisected at right angles by a line drawn from the center to the peint withont the circle.
38. If tangents be drawn at the extremities of any two dianeters of a circle, and produced to intersect one another; tho straight lines joining the opposite points of intersection will both pass throngh the center.
39. If from any point withont a circle two lines be dramm touching the circle, and from the extremities of any diancter, lines be drawn to the point of contact entting each other within the circle, the line drawn from the points withont the circle to the point of intersection, shall be perpendicular to the diameter.
40. If any chord of a circle be produced eymally both ways, and tangents to the circle be drawn on opposite sides of it from its extremities, the line joining the points of contact lisects the given chord.
41. $A B$ is a chord, and $A D$ is a tangent to a circle at $A . D P Q$ any seeant parallel to $A B$ mecting the circle in P and Q_{8}. Shew that the triangle $P A D$ is equiangular with the triangle $Q A B$.
42. If from any point in the circmmerence of a circle a chord and tangent be drawn, the perpendiculars dropped opon them from the middle point of the subtended are, are equal to one another.

IV.

44. In a given straight line to find a point at which two other straight lines being drawn to two given points, shall contain a right angle. Shew that if the distance between the two given points be greater than the sum of their distances from the given line, there will be two such points; if equal, there may be ouly one; if less, the problem may be impossible.
45. Find the point in a giren straight line at which the tangents to a given circle will contain the greatest angle.
46. Of all straight lines which can be drawn from two given points to meet in the convex circmimference of a given circle, the sum of those two will be the least, which make equal angles with the tangent at the point of concourse.
47. $D F^{\prime}$ is a straight line touching a circle, and terminated by $A D, B F$, the tangents at the extremities of the diameter $A B$, shew that the angle which $D F$ sultends at the center is a right angle.
48. If tangents $A m, B n$ be drawn at the extremities of the diameter of a semicircle, and any line in $m P n$ crossing them and tonching the circle in P, and if $A N, B, M$ be joined intersecting in O and cutting the semicircle in E and F : shew that O, P, and the point of intersection of the tangents at E and F, are in the same straight line.
49. If from a point P withont a circle, any straight line be drawn entting the circumference in A and B, shew that the straight lines joining the points A and B with the bisection of the chord of contact of the tangents from P, make equal angles with that chord.

V.

50. Describe a circle which shall pass through a giren point and which shall touch a given straight line in a given point.
51. Draw a straight line which shall touch a given circle, and make a given angle with a given straight line.
52. Describe a circle the circumference of which shall pass through a given point, and touch a given circle in a given point.

5ว. Describe a circle with a given center, such that the circle so described and a given circle may tonch one another internally.
$\tilde{y} t$. Describe the circles which shall pass throngh a given poins and tonch two given straight lines.
5.5. Describe a circle with a given center, cutting a giren circle in the extremities of a diameter.

อ̄6. Describe a circle which shall hare its center in a given straight lime, tonch another given line, and pass through a fixed point in the first given line.
57. The center of a given circle is equidistant from two given straight lines: to deecribe another circle which shall tonch the two straight lines and shall eut off from the given circle a segment containing an angle equal to a given rectilineal angle.

VI.

58. If any two circles the centers of which are given, intersect each other, the greatest line which can be drawn throngh either point of intersection and terminated by the circles, is independent of the diameters of the eircles.
59. Two equal circles intersect, the lines joining the points in which any straight line throngh one of the points of section, which meets the cireles with the other point of section, are equal.
60. Draw throngh one of the points in which any two circles cut one another, a straight line which shall be terminated by their circumferences and bisected in theil point of section.
61. Deseribe two circles with given radii which shall cut each other, and have tho line between the points of section equal to a given line.
62. Two circles cut each other, and from the points of intersection straight lines are drawn parallel to one another, the portions intereperted by the circumferences are equal.
63. AClP, $A D B$ are two segments of circles on the sane base $A B$, take any point C in the serment $A C l ;$; join $A C, B C$, and produce them to meet the segment $A D D$ in D and E respectively: shew that the are $D E$ is comstant.
64. $A H B, A C / B$, are the ares of two equal circles cutting ono another in the straight line $A P$, draw the chord $A(V)$ cutting the inner circumference in C and the outer in l, such that $A D$ and $D B$ together may be donble of $A C$ and $P B$ torether.
6.5. If from two fixed prints in the ciremuference of a circle, straight lines bedrawn intereppting a given are and receting without the circle, the locus of their intersections is a circle.
65. If two circles intersect, the common chord produced bisects the common tangent.
66. Shew that, if two circles cut each other, and from any point in the straight line produced, which joins their intersections, two tangents be drawn, one to each circle, they shall be equal to one another.
67. Two circles intersect in the points A and B; through A and B any two straight lines $C A D, E B F$, are drawn cutting the circles in the points C, D, E, F; prove that $C E$ is parallel to $D F$.
68. Two equal cireles are drawn intersecting in the point A and B, a third circle is drawn with center A and any radius not greater than $A B$ intersecting the former circles in \bar{D} and C. Shew that the three points B, C, D lie in one and the same straight line.
69. If two cireles cut each other, the straight line joining their centers will bisect their common chord at right angles.
70. Two circles cut one another; if throngh a point of intersection a straight line be drawn bisecting the angle between the diameters at that joint, this line cuts off similar segments in the two circles.
71. $A C B, A P B$ are two equal circles, the center of $A P B$ being on the circumference of $A C B, A B$ being the common chord, if any chord $A C$ of $A C B$ be produced to cut $A P B$ in P, the triangle $P B C$ is equilateral.

VII.

73. If two circles tonch each other externally, and two parallel lines be drawn, so tonching the circles in points A and B respectively that neither circle is cut, then a straight line $A B$ will pass through the point of contact of the eireles.

T4. A common tangent is drawn to two circles which touch each other externally ; if a circle be described on that part of it which lies between the points of contact, as diameter, this circle will pass through the point of contact of the two circles, and will tonch the line which joins their centers.
75. If two circles touch each other externally or internally, and parallel dianeters be dram, the straight line joining the extremities of these diameters will pass through the point of contact.
76. If two circles touch each other internally, and any circle be described tonching both, prove that the sum of the distances of its center from the centers of the two given circles will be invariable.
7. If two eircles touch each other, any straight line passing through the point of contact, cuts off similar parts of their circumferences.
78. Two circles touch each other externally, the diameter of one being double of the diameter of the other; throngh the point of contact any line is drawn to meet the circmenfences of both; shew that the part of the line which lies in the larger circle is double of that in the smaller.
79. If a circle roll within another of twice its size, any point in its circumference will trace out a diameter of the first.
80. With a given radius to describe a circle touching two given circles.
81. Two equal circles touch one another externally, and through the point of contact chords are drawn, one to each circle, at right angles to each; prove that the straight line joining the other extremities of these chords is equal and parallel to the straight line joining the centres of the circles.
82. Two circles can be described, each of which shall touch a given circle, and pass through two given points outside the circle; shew that the angles which the two given points subtend at the two points of contact, are one greater and the other less than that which they subtend at any other point in the given circle.

VIII.

83. Draw a straight line which shall touch two given circles; (1) on the same side; (2) on the alternate sides.
84. If two circles do not touch each other, and a segment of the line joining their centers be intercepted between the convex circumferences, any circle whose diameter is not less than that segment may be so placed as to touch both the circles.
85. Giver two circles : it is required to find a point from which tangents may be drawn to each, equal to two given straight lines.
86. Two circles are traced on a plane; draw a ftraight line cutting them in such a manner that the chords intercepted within the circles shall have given lengths.
87. Draw a straight line which shall touch one of two given circles and cut off a given segment from the other. Of how many solutions does this problem adinit?
88. If from the point where a common tangent to two circles meets the line joining their centers, any line be drawn cutting the circles, it will cut off similar segments.
89. To find a point P, so that tangents drawn from it to the outsides of two equal circles which touch each other, may contain an anglo equal to a given angle.
90. Describe a circle which shall touch a given straight line at a given point, and bisect the circumference of a given circle.
91. A circle is deseribed to pass through a given point and cut a given cirele orthogonally, sliew that the locus of the center is a certain straight line.
92. Through two given points to describe a circle bisecting the circumference of a given circle.
93. Describe a circle through a given point, and tonehing a given straight line, so that the chord joining the given point and point of contact, may cut off a segment containing a given angle.
94. To describe a circle through two given points to ent a straight line given in position, so that a diameter of the circle drawn through the point of intersection, shall make a given angle with the line.
95. Describe a circle which should pass throngh two given points and cut a given circle, so that the chord of intersuction may bo of a given length.

IX.

96. The circumference of one circle is wholly within that of another. Find the greatest and the least straight lines that can bedrawn touching the former and terminated by the latter.
97. Draw a straight line throurh two concentric circles, so that the chord terminated by the exterior circumference may be doulle that terminated by the interior. What is the least value of the radins of the interior circle for which the problem is possible?
98. If a straight line be drawn cutting any number of concentric circles, shew that the segments so cut ofi are not similar.
99. If from any point in the circumference of the exterior of two concentric circles, two straight lines be drawn touching the inte: ior and meeting the exterior ; the distance between the points of contact will be half that between the points of intersection.
100. Shew that all equal straight lines in a circle will be touched by another circle.
101. Throngh a given point draw a straight line so that the part intercepted by the circumference of a circle, shall be equal to a given straight line not greater than the diameter.
102. Two circles are described about the same center, draw a chord to the onter circle, which shall be divided into three equal parts by the inner one. How is the possibility of the problem limited?
103. Find a point without a given circle from which if two tangents be drawn to it, they shall contain an angle equal to a given angle, and shew that the locus of this point is a circle concentric with the given circle.
104. Draw two concentric circles such that those chords of the outer circle which touch the inner, may be equal to its diameter.
105. Find a point in a given straight line from which the tangent drawn to a given circle, is of given length.
106. If any number of chords be drawn in the inner of two concentric circles, from the same point A in its circumference, and each of the chords be then produced beyond A to the circumference of the outer circle, the rectangle contained by the whole line so produced and the part of it produced, shall be constaut for all the cases.

K.

107. The circles described on the sides of any triangle as diameters will intersect in the sides, or sides produced, of the triangle.
108. The circles whieh are described upon the sides of a rightangled triangle as diameters, meet the hypotenuse in the same point; and the line drawn from the point of intersection to the center of either of the circles will be a tangent to the other cirele.
109. If on the sides of a triangle circular ares be described containing angles whose sum is equal to two right angles, the triangle formed by the lines joining their centers, has its angles equal to those in the segments.
110. The perpendiculars let fall from the three angles of any triangle upon the opposite sides, intersect each other in the same point.
111. If $A D, C E$ be drawn perpendicular to the sides $B C, A D$ of
the triangle $A B C$, prove that the rectangle contained by $B C$ and $B D$. is equal to the rectangle contained by $B A$ and $B E$.
112. The lines which bisect the vertical angles of all triangles on the same base and with the same vertical angle, all intersect in one point.
113. Of all triangles on the same base and between the same parallels, the isosceles has the greatest vertical angle.
114. It is required within an isosceles triangle to find a point such. that its distance from one of the equal angles may be double its distance from the vertical angle.
115. Tu find within an acute-angled triangle, a point from which, if straight lines be drawn to the three angles of the triangle, they shall make equal angles with each other.
116. A flar-staff of a given leight is erected on a tower whose height is also given: at what point on the horizon will the Hag-stail appear under the greatest possible angle?
117. A ladder is gradually raised against a wall ; find the locus of its middle point.
118. The triangle formed by the chord of a circle (produced or not) the tangent at its extremity, and any line perpendicular to the diameter through its other extremity will be isosceles.
119. $A D, B E$ are perpendiculars from the angles A and B on the opposite sides of a triangle, $B F$ perpendicular to $E D$ or $E D$ produced; shew that the angle $F B D=E B A$.

XI.

120. If three equal circles have a common point of intersection, prove that a straight line joining any two of the points of intersection, will be perpendicular to the straight line joining the other two points of intersection.
121. Two equal circles cut one another, and a third circle tonches each of these two equal circles externally; the straight line which joins the points of section will, if produced, pass through the centre of the third cirele.
122. A number of circles tonch each other at the same point, and a straight line is drawn from it cutting them : the straight lines joining each point of intersection with the centre of the circle will be all parallel.
123. If three circles intersect one another, t wo and $t w o$, the three chords joining the points of intersection shall all pass through ono point.
124. If three circles touch each other externally, and the three common tangents be drawn, these tangents shall intersect in a point equidistant from the points of contact of the circles.
125. If two equal circles intersect one another in A and B, and from one of the points of intersection as a center, a circle be described which shall cut both of the equal circles, then will the other point of intersection, and the two points in which the third circle cuts tho other two on the same side of $A B$, be in the same straight line.

XII.

126. Given the base, the vertical angle, and the difference of the sides, to construct the triangle.-
127. Describe a triangle, having given the vertical angle, and the segments of the base marle by a line bisecting the vertical angle.
128. Given the perpendicular height, the vertical angle and the sum of the sides, to construet the triangle.
129. Construct a triangle in which the vertical angle and the difference of the two angles at the hase shall be respectively equal to two given augles, and whose base shall be equal to a given straight line.
130. Given the vertical angle, the difference of the two sides containing it, and the difference of the serments of the base made by a perpendicular from the vertex; construct the triangle.
131. Given the vertical angle, and the lengths of two lines drawn from the extremities of the base to the points of bisection of the sides, to construct the triangle.
132. Given the base, and vertical angle, to find the triangle whose area is a maximmm.
133. Given the base, the altitude, and the sum of the two remaining sides; construct the triangle.
134. Describe a triangle of given base, area, and vertical angle.
135. Given the base and vertical angle of a triangle, find the locus of the intersection of perpendiculars to the sides from the extremities of the base.

XIII.

136. Shew that the perpendiculars to the sides of a quadrilateral inscribed in a circle from their middle points intersect in a fixed point.
137. The lines bisecting any angle of a quadrilateral figne inscribed in a circle, and the opposite exterior angle, meet in the circumference of the circle.
138. If two opposite sides of a quadrilateral figure inseribed in a circle be equal, prore that the other two are parallel.
139. The angles subtended at the center of a circle by any two opposite sides of a quadrilateral figure cireumscribed about it, are together equal to two right angles.
140. Four circles are described so that each may tonch internally three of the sides of a quadrilaternl figure, or one side and the adjacent sides produced ; shew that the centers of these four circles will all lie in the circumference of a circle.
141. One side of a trapezimn capable of being inscribed in a given circle is given, the sum of the remaining three sides is given; and also one of the angles opposite to the given side: construct it.
142. If the sides of a quadrilateral figure inseribed in a circle be modnced to mect, and from each of the points of intersection a straight line be drawn, touching the circle, the squares of these tangents are together equal to the square of the straight line joining the points of intersection.
143. If a quadrilateral fignre be described about a circle, the sums of the opposite sides are equal; and each sum equal to half the perimeter of the figure.
144. A qualrilateral $A B C D$ is inscribed in a circle, $B C$ and $D O$
are produced to meet $A D$ and $A B$ produced in E and F. The angles $A B C$ and $A D C$ are together equal to $A F C, A E B$, and twice the angle $B A C$.
145. If the hypotenuse $A B$ of a right-angled triangle $A B C$ be bisected in D, and $E D F$ drawn perpendicular to $A B$, and $D E$. $D F$ cut off cach equal to $D A$, and $C^{\prime} E^{\prime}, C^{\prime} F^{\prime}$ joined, prove that the last two lines will bisect the angle at C and its supplement respectively.
146. $A B C D$ is a quadrilateral figure inseribed in a circle. Throngh its angular points tangents are drawn so as to form another quadrilateral figure FBLCIIDEA circmenscribed about the circle. Find the relation which exists between the angles of the exterior and the angles of the interior figure.
147. The angle contained by the tangents drawn at the extremities of any chord in a circle is equal to the difierence of the angles in segments made by the chord :and also equal to twice the angle contained by the same chord and a diameter drawn from cither of its extremities.
148. If $A B C D$ be a quadrilateral figure, and the lines $A B, A C$, $A D$ be equal, shew that the angle $B A D$ is donble of $C B D$ and $C D E$ together.
149. If the sides of a quadrilateral figure circumscriling a circle, tonch the circle at the angular points of an inseribed guadrilateral figure ; all the diagonals will intersect in the same point.
150. In a quadrilateral figure $A B C D$ is inscribed a sceond quadrilateral by joining the middle points of its adjacent sides; a third is similarly inseribed in the scoond, and so on. Shew that each of the series of quadrilaterals will be capalde of being inscribed in a circle if the first three are so. Shew also that two at least of the opposite sides of $A B(T)$ must be equal, and that the two squares upon these sides are together equal to the sum of the squares upon the other two.

KIV.

151. If from any point in the diameter of a semicircle, there be Chawn two straight lines to the ciremference, one to the bisection of the circumference, the other at right angles to the diameter, the squares upon these two lines are together double of the square upon the semi-dianeter.
152. If from any point in the diameter of a circle, straight lines be drawn to the extremities of a parallel chord, the squares on theso lines are together equal to the squares on the segments into which the diameter is divided.
153. Foom a given point without a circle, at a distance from the circumference of the circle not greater than its diameter, draw a straight line to the coneave circmuference whicla shall be bisected by the convex circmaference.
154. If any two chords be drawn in a circlo perpendicular to ench other, the sum of their squares is equal to twice the square of the diameter diminished ly four times the square of the line joining the ecnter with their point of interscetion.
155. Two points are taken in the diameter of a circle at any equal distances from the center; thromgh one of these draw any chord, and join its extrenities and the other point. The triangle so formed has the sum of the squares of its sides invariable.
156. If chords drawn from any fixed point in the ciremmerencs of a circle, be cut by another chord which is parallel to the tangent at that point, the rectangle contained by each chord, and the part of it intercepted between the given point and the given chord, is constant.
157. If $A B$ be a chord of a cirele inclined by half a right angle to the tangent at A, and $A C, A D$ be any two chords equally inclined to $A B, A C^{2}+A D^{2}=2 . A B^{2}$.
158. A chord $P O Q$ cuts the diameter of a circle in Q, in an angle equal to half a right angle; $P O^{2}+O Q^{2}=2(\text { rad. })^{2}$.
159. Let $A C D B$ be a semicirele whose diameter is $A B$; and $A D, B C$ any two chords intersecting in P; prove that

$$
A B^{2}=D \cdot A \cdot A P+C B \cdot B P
$$

160. If $A B D C^{\prime}$ be any parallelogram, and if a circle be described passing through the point A, and cutting the sides $A B, A C$, and the diagonal $A D$, in the points $F, G, I I$ respectively, shew that

$$
A B \cdot A F+A C \cdot A G=A D \cdot A I .
$$

161. Produce a given straight line, so that the rectangle under* the given line, and the whole line produced, may equal the square of the part froduced.
162. If A be a point within a circle, $B C$ the diameter, and through $A, A D$ be drawn perpendienlar to the diameter, and $B A E$ meeting the circumference in E, then $B A \cdot B E=B C \cdot B D$.
163. The diameter $A C D$ of a circle, whose center is C, is produced to P, determine a point F in the line $A P$ wheh that the reetangle $P F \cdot P C$ may be equal to the rectangle $P D . P A$.
164. To produce a given straight line, so that the rectangle contained by the whole line thus produced, and the part of it produced, shall be equal to a given square.
165. Two straight lines stand at right angles to each other, one of which passes through the center of a given circle, and from any point in the other, tangents are drawn to the circle. Prove that the chord joining the points of contact cuts the first line in the same point, whatever be the point in the second from which the taugents are drawn.
166. A, B, C, D, are four points in order in a straight line, find a point E between B and C, such that $A E \cdot E B=E D . E C$, by a geometrical construction.
167. If any two circles touch each other in the point O, and lines be drawn through O at right angles to ench other, the ohe line cutting the circles in P, P^{\prime}, the other in Q, Q^{\prime}; and if the line joining the centers of the circles cut them in $A, A^{\prime} ;$ then

$$
P^{\prime} P^{2}+Q^{\prime} Q^{2}=A^{\prime} A^{2} .
$$

BOOK IV.

DEFINITIONS.

I.

A rectilineal figure is said to be inseribed in another rectilineal figure, when all the augular points of the inscribed figure are upon the sides of the figure in which it is inscribed, each upon each.

II.

In like manner, a figure is said to be described about another figure, when all the sides of the circumscribed figure pass through the angular points of the figure about which it is described, each through each. III.

A rectilineal figure is said to be inscribed in a cirele, when all the angular points of the inseribed figure are upon the circumference of the circle.

IT.
A rectilineal figure is said to be described about a circle, when each side of the circumscribed figure tonches the circumference of the circle.

V.

In like manner, a circle is said to be inscribed in a rectilineal figure, when the circumference of the circle tonches each side of the figure.

VI.

A cirele is said to be deseribed about a rectilineal fignere, when the circumference of the circle passes through all the angular points of the figure about which it is deseribed.

VII.

A straight line is said to be placed in a circle, when the extremities of it are in the circumference of the circle.

PROPOSITION I. PROBLEM.

In a giecn circle to place a straight line, equal to a given straight line which is not groater then the diumeter of the circlc.

Let $A B C$ be the given circle, and D the given straight line, not greater than the diameter of the circle.

It is required to place in the circle $A B C$ a straight line equal to D.

Drasr $B C$ the diameter of the circle $A B C$.
Then, if $B C$ is equal to D, the thing required is done;
for in the circle $A B C^{\prime}$ a straight line $B C^{\prime}$ is placed equal to D.
But, if it is not, $B C$ is greater than D; (hyp.)
make $C E$ equal to D. (1. 3.)
and from the center C, at the distance $C^{\prime} E$, describe the circle $A E F$, and join CA.

Then $C A$ shall be equal to D.
Because C is the center of the circle $A E F$,
therefore $C A$ is equal to $C E:$ (1. def. 15.)
but $C E$ is equal to D; (constr.)
therefore D is equal to $C A . \quad$ (ax. 1.)
Wherefore in the circle $A B C$, a straight line $O A$ is placed equal to the given straight line D, which is not greater than the diameter of the circle. Q.E.F.

PROPOSITION II. PROBLEM.

In a given circle to inscribe a triangle equiangular to a given triangle.
Let $A B C$ be the given circle, and $D E F$ the given triangle.
It is recquired to inscribe in the circle $A B C^{\circ}$ a triangle equiangular to the trianglo $D E F$.

Draw the straight line $G A M$ touching the circle in the point A, (III. 17.) and at the point A, in the straight line $A H$,
make the angle $\Pi A C$ equal to the angle $D E F$; (1. 23.) and at the point A, in the straight line $A G$, make the angle ($A B D$ equal to the angle $D F E$;
and joiu $B C$; then $A B C$ shall be the triangle required.
Becanse $H A G$ touches the circle $A B C$, and $A C$ is drawn from the point of contact, therefore the angle $H A C^{\prime}$ is equal to the angle $A B^{\prime} C^{\prime}$ in the alternate segment of the circle: (ini.32.)
but $H A C$ is equal to the angle $D E F$; (constr.)
therefore also the angle $A B C$ is equal to $D E F$: (ax. 1.)
for the same reason, the angle $A C B$ is equal to the angle $D F E$:
therefore the remaining angle $B A C$ is equal to the remaining angle $E D F:(\mathrm{I} .32$ and ax. 1.)
wherefore the triangle $A B C$ is equiangular to the triangle $D E F$, and it is inscribed in the circle $A B C$. Q.e.f.

PROPOSITION III. PROBLEM.

Ahout a given circle to describe a triangle equiangular to a given triangle.
Let $A B C$ be the given circle, and $D E F$ the given triangle.
It is required to describe a triangle about the circle $A B C$ equiangular to the triangle $D E F$.

Produce EF both ways to the points G, H; find the center h^{-}of the circle $A B^{\prime}($, (ur. 1.) and from it draw any straght line $h 3$; at the point K_{1} in the straight line $K_{1} R$, make the angle $B H A$ equal to the angle $D E G$. (土. 23.) and the angle $B K^{-} C$ equal to the angle $H F H$:
nod through the points A, S, C, draw the straight lines $L A M, M B N$, $N^{\prime} C^{\prime} L$, tollehing the circle $A B C$. (irr. 17.)

Then $L, M / V$ shall be the triangle required.
Because $L M O, M N, N L$ toucls the circle $A B C$ in the points A, B, C, to which from the center are drawn $h A, K T H, \Lambda^{\prime} C$,
therefore the angles at the points A, B, C are right angles: (iII. 18.) and because the four angles of the quadribateral fignre $A M B A^{\circ}$ are equal to four right angles,
for it can be divided into two triangles;
and that two of them $h^{-1} A M, K B M$ are right angles,
therefore the other two $A A^{2} B, A M B$ are equal to two right angles: (:tx. 3.)
but the angles $D E G, D E F$ are likewise equal to two right angles. (1. 13.)
therefore the angles $A H B, A M B$ are equal to the angles $D E G$ DEF'; (ax. 1.)
of which $A H B$ is equal to $D E G$; (constr.)
wherefore the remaining augle $A M B$ is equal to the remaining angle HE'F. (ax. 3.)
In like manner, the angle $L N M$ may be demonstrated to be equal to DFE;
and therefore the remaining angle $M L N$ is equal to the remaining angle $E D F$; (1.32. and ax. 3.)
therefore the triangle $L M N$ is equiangular to the triangle $L E F$: and it is described about the circle $A B C$. \&.E.F.

PROPOSITION IV. PROBLEM.
To inseribe a circle in a given triangle.
Let the given triangle be $A B C$. It is required to inseribe a circle in $A B C$.

Bisect the angles $A B C, B C A$ by the straight lines $B D, C D$ meeting one another in the point I, (1. 9.)
f:om which draw $D E, D F, D G$ perpendiculars to $A D, B C, C A$. (1. 12.)
And because the angle $E B D$, is equal to the angle $F B D$, for the angle $A B C^{\prime}$ is bisected by $B D$,
and that the right angle $B E D$ is equal to the right angle $B F D$; (ax. 11.)
therefore the two triangles $E B D, F B D$ have two angles of the one equal to two angles of the other, each to each;
and the side $B D$, which is opposite to one of the equal angles in each, is common to both ;
therefore their other sides are equal ; (1. 26.) wherefore $D E$ is equal to $D F$:

$$
\text { for the same reason, } D G \text { is equal to } D F \text { : }
$$

therefore $I D E$ is equal to $D G^{\prime}:(a x .1$.)
therefore the three straight lines $D E, D F, D G$ are equal to one another:
and the circle described from the center D, at the distance of any of them, will pass through the extremities of the other two, and tonch the straight lines $A B, B C, C A$,
because the angles at the points E, F, G are right angles,
and the straight line which is drawn from the extremity of a diam-
cter at right angles to it, touches the circle: (iII. 16.)
therefore the straight lines $A B, B C, C A$ do each of them touch the circle,
and therefore the circle $E F G$ is inscribed in the triangle $A B C$. Q.E.F.

PROPOSITION V. PROBLEM.

To describe a circle about a given triangle.
Let the given triangle be $A B C$.
It is required to describe a circle about $A B C$.

Bisect $A B, A C$ in the points D, E, (i. 10.) and from these points draw $D F, E F$ at right angles to $A B, A C$; (1.11.) $D F, E F$ produced meet one another:
for, if they do not meet, they are parallel,
wherefore $A B, A C$, which are at right angles to them, are parallel ; which is absurd:
let them meet in F, and join $F A$;
also, if the point F be not in $B C$, join $B F, C F$.
Then, because $A D$ is equal to $D B$, and $D F$ common, and at right augles to $A B$,
therefore the base $A F$ is equal to the base $F B$. (I. 4.)
In like manner, it may be shewn that $C F$ is equal to $F A$;
and therefore $B F$ is equal to $F C$; (as. 1.) and $F A, F B, F C$ are equal to one another:
Wherefore the circle described from the center F, at the distance of one of them, will pass throngh the extremities of the other two, and be described abont the triangle $A B C$. Q.e.f.

Cor.-And it is manifest, that when the center of the circle falls within the triangle, each of its angles is less than a right angle, (111. 31.) each of them being in a segment greater than a semicircle; but, when the center is in one of the sides of the triangle, the angle opposite to this side, being in a semicircle, (mi.31.) is a right amrle; and, if the conter falls withont the triangle, the angle opposite to the side beyond which it is, being in a segnent less than a semicircle, (III. 31.) is greater than a right angle: therefore, conversely, if tho given triangle be acnte-angled, the center of the cirele falls within it; if it be a right-angled triangle, the center is in the side opposite to the right anrle ; and if it be an obtuse-angled trimgle, the center fills without the triangle, beyoud the side opposite to the obtuse angle.

proposition vit. problem.

To inscribe a square in a given circle.
Let $A B C D$ be the given circle. It is required to inseribe a square in $A B C D$.

Draw the diameters, $A C, B D$, at right angles to one another, (iii. 1. and I. 11.)

$$
\text { and join } A P, B C, C D, 1) A
$$

The fiywire $A B C D$ shall be the square required.
Because $B E$ is equal to $E I$, for E is the center, and that $E A$ is common, and at right angles to BID ;
the base $B A$ is equal to the base $A D$: (1. 4.)
and, for the same reason, $B C, C D$ are each of them equal to $B A$, or $A D$; therefore the quadrilateral figure $A B C D$ is equilateral.

It is also rectangular ;

- for the straight line $B D$ being the diameter of the circle $A B C D$, $B A D$ is a semicircle;
wherefore the angle $B A D$ is a right angle: (III. 31.)
for the same reason, each of the angles $A B C, B C D, C D A$ is a right angle :
therefore the quadrilateral figure $A B C D$ is rectangular:
and it has been shewn to be equilateral, therefore it is a square: (1. def. 30.) and it is inscribed in the circle $A B C D$ 。 Q.E.F.

proposition VII. Problem.

To describe a square about a given circle.
Let $A B C D$ be the given circle. It is required to describe a square about it.

Draw two diameters $A C, B D$ of the circle $A B C D$, at right angles to one another,
and through the points A, B, C, D, draw $F G, G H, H H, H F$ touch-
ing the eircle. (int. 17.)
The figure $G H H^{\prime} F$ shall be the square required.
Becanse $F G$ tonches the circle $A B C D$, and $E A$ is drawn from the center E to the point of contact A,
therefore the angles at Λ are right angles: (iin. 18.)
for the same reason, the angles at the points B, C, D are right angles; and because the angle $A E B$ is a right angle, as likewise is $E B G$, therefore $G I I$ is parallel to $A C:$ (1. 28.)
for the same reason $A C$ is parallel to $F K$:
and in like manner $G F, \Pi F^{\prime}$ may each of them be demonstrated to be parallel to $B E D$:
therefore the figures $G F, G C, A K, F B, B F$ are parallelograms; and therefore $G F$ is equal to $H K$. and GHI to $F H$: (i. 34.)
and because $A C$ is equal to $B D$, and that $A C$ is equal to each of the two GH, FH.
and $B D$ to each of the two $G F, H H^{\circ}$:
$G H, F h$ are each of them equal to $G F$, or $\Pi \hbar$;
therefore the quadrilateral figure $F G H F$ is equilateral.
It is also rectangular :
for $G B E A$ being a parallelogran, and $A E B$ a right angle, therefore $A G B$ is likewise a right angle: (1. 34.)
and in the same manner it may be shewn that the angles at H, K, F are right angles:
therefore the quadrilateral figure $F G H /$ is rectangular :
and it was demonstrated to be equilateral ;
therefore it is a square ; (1. def. 30.) and it is described about the circle $A B C D$. Q.E.F.

PROPOSITION TIII. PROBLEM.
To inscribe a circle in a given square.
Let $A B C D$ be the given square. It is required to inscribe a circle in $A B C D$.

Bisect earh of the sides $A B, A D$ in the points F, E, (ı. 10.) and through $E E^{\prime}$ draw $E H$ parallel to $A B$ or $D C^{\prime}$, (1. 31.)
and through F draw F'K parallel to $A D$ or $B C$:
therefore each of the figures $A K, K L, A I I, H D, A G, G C, B G$, $G D$ is a right-angled parallelogram;
and their opposite sides are equal: (i. 34.)
and becanse $A I$) is equal to $A B$, i. def. 30.)
and that $A E$ is the half of $A I$, and $A l$ ' the half of $A B$, therefore $A E$ is equal to $A F^{\prime} ;($ ax. 7.)
wherefore the sides opposite to these are equal, viz. $F G_{f}$ to $G E$:
in the same manner it may be demonstrated that GII, GH are each of then equal to $F^{F} G$ or $G E$:
therefore the four straight lines $G E, G F, G I I, G K$ are equal to one another;
and the circle described from the center G at the distance of one of them, will pass through the extremities of the other three, and tonch the straight lines $A B, B C, C D, I A$:
bectuse the anfles at the points $E, F, I I, h$, are right angles, (1. 29.) and the the straight line which is drawn from the extremity ot a diameter, at right angles to it, tonches the circle: (III. 16. (or.)
therefore each of the straisht lines $A B, B C,(I), D A$ tonches the circle, which therefore is inscribed in the square $A B C D$. Q.E.F.

PROPOSITION IX. PIOBLEM.
To deseribe a circle about a given square.
Let $A B C D$ be the given square.
It is required to describe a circle about $A B C D$.

Join $A C, B D$, cutting one another in E :
and because $D A$ is equal to $A B$, and $A C$ common to the triangles $D A C, B A C$, (I. def. 30.)
the two sides $D A, A C$ are equal to the two $B A$. $A C$, each to each; and the base $D C$ is equal to the base $B C$;
wherefore the angle $D A C$ is equal to the angle $B A C$; (土. 8.) and the angle $D A B$ is bisected by the straight line $A C$:
in the same manner it may be demonstrated that the angles $A B C$, $B C D, A^{\prime} D$ are severally bisected by the straight lines $B D, A C$:
therefore because the angle $D A B$ is equal to the angle $A B C$, (. def. 30.)
and that the angle $E A B$ is the half of $D A B$, and $E B A$ the half of $A B C$;
the:efore the angle $E A B$ is equal to the angle $E B A$; (ax. 7.) wherefore the side $E A$ is equal to the side $E B:(1.6$.$) .$
in the same manner it may be demonstrated, that the straight lines $E C, E D$ are each of them equal to $E A$ or $E B$:
therefore the four straight lines $E A, E B, E C, E D$ are equal to one another ;
and the circle described from the center E, at the distance of one of them, will pass through the extremities of the other three. and be described about the square $A B C^{\prime} D$. Q.e.f.

PROPOSTION X. PROBLEM.

To describe an isosceles trinngle, having each of the angles at the base double of the third angle.

Take any straight line $A B$, and divide it in the point C, (II. 11.)
so that the rectangle $A B, B C$ nay be equal to the square of $C A$; and from the center A, at the distance $A B$, describe the circle $B D E$. in which place the straight line $B D$ equal to $A C$, which is not greater than the diameter of the circle $B D E$; (гг. 1.) and join $D A$.
Then the triangle $A B D$ shall be such as is required,
that is, each of the angles $A B D, A D B$ shall be donble of the angle $B A D$.
Join $D C$, and about the triangle $A D C$ describe the circle $A C D$. (Ir. 5.)
Aud because the rectangle $A B, B C$ is equal to the square on $A C$, and that $A C$ is equal to $B D$, (constr.)
the rectangle $A B, B C$ is equal to the square on $B D:$ (ax. 1.) and because from the point B, without the circle $A C D$, two straight lines $B O A, B D$ are drawn to the circumference, one of which cuts, and

the other meets the cirele, and that the rectangle $A B, B C$, contained by the whole of the cutting line, and the part of it without the circle, is equal to the square on BI which meets it;
therefore the straight line $B I$) tow hes the circle $A C D:$ (iri. 37.) and because $B D$ touches the circle, and $D C$ is drawn from the point of contact D,
the angle $B D C$ is equal to the angle $D A C$ in the alternate segment of the circle: (III. 32.)
to each of these add the angle $C D A$;
therefore the whole angle $B D A$ is equal to the two angles $C D A$, $D A C$: (ax. 2.)
but the exterior angle $B C D$ is equal to the angles $C D$) $A, D A C$; (i. 32.) therefore also $B D A$ is equal to $B C D$: (ax. 1.) but $B J A$ is equal to the angle $C B D$, (I. 5.) because the side $A D$ is equal to the side $A B$; therefore $C B D$, or $I B .1$, is equal to $B C D$; (ax. 1.) and consequently the three angles $B D A, D B A, B C D$ are equal to one another:
and because the angle $D B C^{\prime}$ is equal to the angle $B C D$ the side $B D$ is equal to the sirfe $D(:$: (3. 6.) but BI) was made equal to (A;
therefore also (A is equal to (D, (ax. 1.)
and the angle ('J) A equal to the angle DAC; (r. 5.)
therefore the angles $\left({ }^{\prime} J A, I\right) A C$ together, are donble of the angle I. $1 C^{\prime}:$
but $B(I)$ is equal to the angles $C D A, D . A C$; (1. 32.) therefore also $B C D$ is double of $D A C$:
and $B r D$ was proved to be erpmal to each of the angles $B D A, D B A$; therefore each of the angles $B D . A, D B .1$ is donble of the angle $/ A A B$.

Wherefore an isosceles trianglo $A B D$ has been described, having each of the angles at the base donble of the third angle. Q.E.F.

PROPOSITION XI. PROBLFM.

To inscribe an cquilateral amd equiangular pentagon in a given circle.
Let $A B F^{\prime} I D E$ be the given circle.
It is required to inseribe an equilateral and equiangular pentagon in the circle $A D^{\prime} D E$.

Describe an isosecles triangle FGII, having each of the angles at $G, I I$ double of the angle at $F^{\prime} ;($ iv. 10 .)
and in the rirele $\left.A B^{\prime} I\right) E$ inscribe the triangle $A C D$ equiangular
to the triangle P'(rll, (x. 2.)
so that the angle $r_{A} / /$) may be equal to the angle at F,
and each of the anglos $\Lambda C D, C D A$ oqual to the angle at G or $H_{\text {; }}$
wherefore each of the angles $A C D, C D A$ is double of the angle $C A D$.
Bisect the angles $A C I)$. ('I)A by the straight lines $C E, D B^{\prime}$; (土. 9.) and join $A \dot{B}, B C, D E, E A$.

Then $A B C D E$ shall be the pentagon required.
Because each of the angles $A C D, C D A$ is double of $C A D$, and that they are bisected by the straight lines $C E, D B$; therefore the five angles $D A C, A C E, E C D, C D B, B D A$ are equal to one another :
but equal angles stand upon equal cireumferences ; (111. 26.)
therefore the five cireminferences $A B, B C, C D, D E, E A$ are equal to one another:
and equal circumferences are subtended by equal straight lines; (III. 29.)
therefore the five straight lines $A B, B C, C D, D E, E A$ are equal to one another.

Wherefore the pentagon $A B C D E$ is equilateral.
It is also equiangular:
for, because the circumference $A B$ is equal to the circumference $D E$, if to each be added $B C D$,
the whole $A B C D$ is equal to the whole $E D C B:$ (ax. 2.) but the angle $A E D$ stands on the eircumference $A B C D$;
and the angle $B A E$ on the circumference $E D C B$;
therefore the angle $B A E$ is equal to the angle $A E D$: (mir. 27.)
for the same reason, each of the angles $A B C, B C D, C D E$ is equal to the angle $B A E$. or $A E D$:
therefore the pentagon $A B C D E$ is equiangular; and it has been shewn that it is equilateral:
wherefore, in the given circle, an equilateral and equiangular pentagon has been described. Q.e.f.

proposition xit. problem.

To deseribe an equilateral and equiangular pentagon about a given circle.
Let $A B C J D$ be the given circle.
It is required to describe an equilateral and equiangular pentagon abont the cirele $A B C D E$.

Let the angular points of a pentagon, inscribed in the circle, by the last proposition, be in the points A, B, C, D, E, so that the circumferences $A B, B C,(D, D) E, E . d$ are equal: (iv. 11.) and throngh the points A, B, C, D, E draw $G H, I I H^{\prime}, L^{\prime} L, L M$, $M\left(\frac{1}{r}\right.$ touching the circle: (iII. 17.)
the figure G $\| h^{\prime} L M$ shall be the pentagon required.
Take the center F, and join $F B, F K, F C, F L, F D$.
And beeause the straight line $K L$ touches the circle $A B C D E$ in the point C, to which $F C$ is drawn from the center F,
$F C$ is perpendieular to $K L$, (in. 18.)
therefore each of the angles at C is a right angle : for the same reason, the angles at the pints j, ν are right angles:

and because $F C T^{-}$is a right angle,
the square on $F K$ is equal to the squares on $F C, C K$: (т. 47.)
for the same reason, the square on FIT is equal to the squares on FB, Bh:
therefore the squares on $F C, C K$ are equal to the squares on $F B$, $B K$; (ax. 1.)
of which the square on $F C$ is equal to the square on $F B$;
therefore the remaining square on $C K$ is equal to the remaining square on $B h^{*}$, (ax. 3.) and the straight line (K equal to $B h^{\prime}$:
and because $F B$ is cqual to $F C^{C}$, and $F H^{\prime}$ common to the triangles BFK, CFH,
the two $B F, F K$ are equal to the two $C F, F K$, each to each :
and the base $B H^{-}$was proved equal to the base $K C$:
therefore the angle $B F h^{\prime}$ is equal to the angle $h^{\prime} F C$, (1. 8.) and the angle $B F^{\circ} F$ to $F K C$: (1. 4.)
wherefore the angle $B F C$ is double of the angle $K F C$, and $B K^{\prime} C^{\prime}$ double of $F K^{C} C$:
for the same reason, the angle ($F D$) is donlle of the angle $C F L$, and $C L I$) double of $C L F$:
and because the circmaference $B C^{\prime}$ is equal to the circumference $C D$, the angle $B P C$ is equal to the angle ($F F /$); (111. 27.)
and $B F F^{\prime}$ is donble of the angle $R F C$, and ('FI) double of CFL;
therefore the angle $h F\left({ }^{\prime}\right.$ is equal to the angle CFL: (ax. T.) and the right angle $F^{\prime} C^{\prime} h^{\prime \prime}$ is equal to the right angle $F^{\prime}(L$; therefore, in the two triangles $F F^{\prime}$, FLC, there are two angles of the one equal to two angles of the other, each to each ; and the side F^{\prime} which is adjacent to the equal angles in each, is common to both ;
therefore the other sides are equal to the other sides, and the third angle to the thitrd angle: (1.26.)
therefore the straight line $K C$ is equal to $C L$, and the angle $F h C$ to the angle $F^{\prime} U^{\prime} C^{\prime}$:

> and berause $H C$ is equal to $C L$, $M^{\prime} L$ is double of $I^{\top} C$.

It the same manner it may be shewn that $I H$ is double of $B H^{\circ}$: and because $B h^{\prime}$ is equal to $H^{K} C$, as was demonstrated, and that $K^{\prime} L$ is double of $K^{C} C$, and $I h^{\circ}$ double of $E K$, therefore $/ I h^{\prime}$ is equal to $K L:($ as. 6.)
In like manner it may be shewn that $G H, G M, M L$ are each of them equal to $I h^{2}$, or $l^{\prime} L$:
therefore the pentagon $G H K L M$ is equilateral.
It is also equiangular:
for, since the angle $F h^{\prime} C$ is equal to the angle $F \cdot L C$, and that the angle $/ I h^{\circ} L$ is double of the angle Fhe and $K^{\prime} L . Y$ domble of $F^{\prime} L C$, as was before demonstrated;
therefore the angle $/ I K L$ is equal to $I L^{\prime} L M$: (ax. 6.) and in like manner it may be shewn,
that each of the angles $K H G^{\prime}, H G M, G M L$ is equal to the angle HKL or hLU:
therefore the five angles $G H h, H K L, K L M, L M G, M G H$ being equal to one another,
the pentagon $G I I h^{\circ} L M$ is equiangular :
and it is equilateral, as was demonstrated; and it is described about the circle $A B C D E$. Q.E.F.

PROPOSITION XIII. PROBLEM.

To inscribe a circle in a given equilateral and equiangular pentagon.
Let $A B C D E$ be the given equilateral and equiangular pentagon.
It is required to inscribe a circle in the pentagon $A B C D E$.

Bisect the angles $B C D, C D E$ by the straight lines $C F, D F$, (1. 9.) and from the point F, in which they meet, draw the straight lines $F B, F A, F E$:
therefore since $B C$ is equal to $C D$, (hyp.) and $C F$ common to the triangles $B C F$. DC' F,
the two sides $B C, C F$ are equal to the two $D C, C F$, each to each ; and the angle $B C F$ is equal to the angle $D C F$: (constr.)
therefore the base $B F$ is equal to the base $F I$). (1. 4.)
and the other angles to the other angles, to which the equal sides are opposite:
therefore the angle $C D F$ is equal to the angle $C D F$: and becanse the angle $C D E$ is double of $C D F$, and that $C D E$ is equal to $C B A$, and $C D F$ to $C B F$; $C B A$ is also double of the angle $C B F$:
therefore the angle $A B F$ is equal to the angle $C B F$; wherefore the angle $A B C$ is bisected by the straight line $B F$: in the same manner it may be demonstrated.
that the angles $B .1 E . A E D$. are bisected by the straight lines $A F, F E$.
From the point F, draw $F(G, F I, F I, F L, F M$ perpendialars to the straight lines $A B, B C,(D), L E, E A:($ (1. 12$)$
and because the angle $I C F$ is equal to $K^{\prime} C F$, and the right angle
$F H C$ equal to the right angle $F \mathrm{FC}^{\circ}$;
therefore in the triangles FHC, FKC , there are two angles of the one equal to two angles of the other, each to each; and the side $F C$, which is opposite to one of the equal angles in each, is common to both ;
therefore the other sides are equal, each to each; (I. 26.)
wherefore the perpendicular $F I I$ is equal to the perpendicular $F F$: in the same manner it may be demonstrated, that $F L, F M, F G$ aro each of them equal to $F \prime I$, or $F h^{\prime}$:
therefore the five straight lines $F G, F H, F K, F L, F M$ are equal to one another :
wherefore the circle described from the center F, at the distance of one of these five, will pass through the extremities of the other four, and tonch the straight lines $A B, B C, C D, D E, E A$,
because the angles at the points, $G, I I, K, L, M$ are right angles, and that a straight line drawn from the extremity of the diameter of
a circle at right angles to it, touches the circle ; (in. 16.)
therefore each of the straight lines $A B, B C, U D, D E, E A$
touches the circle:
wherefore it is inscribed in the pentagon $A B C D E$, Q.E.F.

PROPOSITION NIV. PROBLEM.

To describe a eircle about a given equilateral and equiangular pentagon. Let $A B C D E$ be the given equilateral and equiangular pentagon. It is required to describe a circle about $A B C D E$.

Disect the angles $B C D, C D E$ by the straight lines $C F, F D$, (1. 9.) fand from the point F, in which they meet, draw the straight lines $F B, F A, F E$, to the points B, A, E.
It may be demonstrated, in the same manner as the preceding proposition,
that the angles CDBA, BAE AED are bisected by the straight lines FPB. FA, FE'
And because the angle $B C D$ is equal to the angle $C D E$, and that $P\left(C^{\prime}\right)$ is the half of the angle $B(D)$, and $C D F$ the half of ('DE';
therefore the angle $F^{\prime} C^{\prime} D$) is equal to $F D C:(a x .7$. wherefore the side $C F$ is equal to the side $F D:($ (. 6.)

In like manner it may he demon-trated,
that $F P, F A, F E$, are each of them equal to $F C$ or $F D$:
therefore the five straight lines $l^{\prime} A, F P, F^{\prime}(C, F J, l \cdot E$, are equal to one another :
and the circle described from the center F, at the distance of one of them, will pass through the extremities of the other fomr, and he described about the equilateral and equianrular pentagon $A B C D E$. Q.E.F.

PROPOSITION XV, PROBLEM.

To inscribe an equilateral and eqwingmiar hexagom in a given circle.
Let $A B C D E F^{\prime}$ be the giren circle.
It is required to inscribe an eqnilateral and equiangular hexagon in it.

Find the center G of the circle $A B C D E F$, and draw the diameter $A G D$; (in. 1.)
and from D, as a center, at the distance $D G$, describe the circle $E G C I I$, join $E G, C G$, and produce then to the points E, F;
and join $A B, B C, C D, D E, E F, F A$:
the hexagon $A B C D E F$ shall be equilateral fod equiangular, because G is the center of the circle $A B C D E F$,
$G E$ is equal to $G D$:
and because D is the center of the circle $E G C H$,
$D E$ is equal to $D G$:
wherefore $G E$ is equal to $E D$, (ax. 1.)
and the triangle $E G D$ is equilateral ;
and therefore its three angles $E G D, G D E, D E G$, are equal to one another: (r .0 . b . Cor.)
but the three angles of a triangle are equal to two riglit angles; (i. 32.)
theretore the angle $E G D$ is the third part of two right angles:
in the same manner it may be demonstrated,
that the angle $D G C$ is also the third part of two rimlit angles:
and because the straight line $G C$ makes with $E B$ the adjacent angles $E G C, C G B$ equal to two right angles: (I. 13.)
the remaining angle $C G B$ is the third part of two right angles:
therefore the angles $E G D, D C^{\prime} C^{\prime}, C G B$ are equal to one another :
and to these are equal the rertical opposite angles $B G A, A G F$,
$F G E$: (1. 15.)
therefore the six angles $E G D, D G C, C G B, B G A, A G F, F G E$, are equal to one another :
but equal angles stand mpon equal circumferences; (iir. 26.)
therefore the six circumferences $A B, B C, C D, D E, E F, F A$, are equal to one another :
and equal circumferences are subtended by equal straight lines: (1п. 29.)
therefore the six straight lines are equal to one another, and the hexagon $A B C D E F$ is equilateral. It is also equiangular :
for, since the circmonference $A F$ is equal to $E D$,
to each of these equals add the circumference $A B C D$;
therefore the whole circumference $F A B C^{\gamma} D$ is equal to the whole $E D C B A$:
and the angle $F E D$ stands upon the circumference $F A B C D$, and the angle $A F E$ upon EDCBA; therefore the angle $A F E$ is equal to $F E 1$: (InI. 27.)
in the same manner it may be demonstrated,
that the other angles of the hexagon $\triangle B C D E F$ are cach of them equal to the angle $A F E$ or $F E D$: therefore the hexagon is equiangular: and it is equilateral, as was shewn;
and it is inscribed in the given circle $A B C D E F$. Q.E.F.
Cor.-From this it is manifest, that the side of the hexaron is equal to the straight line from the center, that is, to the semidiameter of the circle.

And if through the points A, B, C, D, E, F there bo drawn straight lines touching the circle, an equilateral and equiangular hexagon will be described about it, which may be demonstrated from what has been said of the pentagon: and likewise a circle may be inscribed in agiven equilateral and equiangular hexagon, and circumseribed about it by a method like to that used for the pentagon.

PROPOSITION XVI. PROBLEM.

To insrribe an equilateral and equiangular quindsengon in a giren circle.

$$
\text { Let } A B C D \text { be the given circle. }
$$

It is required to inscribe an equilateral and equiangular quindecagcu in the circle $A B C D$.

Let $A C$ be the side of an equilateral triangle inscribed in the circle,(1v.2.) and $A F$ the side of an equiliteral and equiangular pentagon inscribed in the same: (1v. 11.)
therefore, of such equal parts as the whole circumference $A B C D P$ contains tifteen.
the circumference $A B C$, being the thind part of the whole, contains fire; and the circunterence $A B$, which is the fifth part of the whole, contains three:
therefore $B C$, their difference, contains two of the same parts: bisect $B C$ in E : (iII, 30.)
therefore $B E, E C$ are, each of them, the fifteenth part of the whole cirenmference $A B(' J)$:
therefore it the straight lines $B E E, E C$ be drawn, and straight lines equal to them be phaced romd in the whole circle, (s. 1.) an equilateral and equiangular quindectron will be inseribed in it. Q.e.f.

And in the same manner as was done in the pentagon, if throngh the points of division mate hy inseribing the quinderagon, straight lines be drawn tonching the circle, an equilateral and equiangular quindecaron will be deseribed abont it: and tikewise, as in the pentagon, a circle may bo inscribed in a given equilateral and equiangular quindecagon, and circunscribed about it.

The Fourth Book of the Elements contains some particular cases of four general problems on the inseription and the circumseription of triangle sand regular figures in and about circles. Fuclid has not given any instance of the inscription or circumseription of rectilincal figures in and about other reetilineal figures.

Any rectilineal figure, of five sides and angles, is called a pentagon; of seven sides and angles, a heptagon; of eight sides and angles, an octaron; of nine sides and angles, a nonagon; of ten sides and angles, a deearon; of eleren sides and angles, an unkecagon; of twelve sides and angles, a duodecagon; of fifteen sides and angles, a quindecagon, \&c.

These figures are included under the general narie of polygons; and are called equilateral, when their sides are equal; and cquiangular, when their angles are equal; also when both their sides and angles are equal, they are called regular polygnas.

Prop. 111. An objection has been raised to the construction of this problem. It is said that in this and other instanees of a similar kind, the lines which touch the circle at A, B, and C, shoukd be proved to meet one another: This may be done by joining $A B$, and then since the angles $K A M, F B M$ are equal to two right angles (int. 18.), therefore the angles $B A M, A B M$ are less than two right angles, and consequently (ax. 19.), $A M$ and $B M$ must meet one another, when produced far enough. Similarly, it may be shewn that ΛL and $C L$, as also $C \perp$ and $B V^{\top}$ meet one another.

Prop. r. is the same as "To describe a circle passing through three given points, provided that they are not in the same straight line."

The corollary to this proposition appears to have been already demonstrated in Prop. 31. Book in.

It is obvious that the square described about a cirele is equal to double the square inscribed in the same circle. Also that the circumseribed square is equal to the square of the diameter, or four times the square of the radius of the circle.

Prop. VII. It is manifest that a square is the only right-angled parallelogram which can be circumscribed about a circle, but that both a rectangle and a sfutare may be inscribed in a circle.

Prop. x. By means of this proposition, a right angle may be divided into five equal parts.

Reference has already been made to the distinction between analysis and suhthesis, and that all Euelid's direct demonstrations are syuthetic, properly so called. There is howerer a single exception in Prop. 10. Book Iv, where the analysis only is given of the Problem. The two methods are so comnected in all processes of reasoning, that it is very difficult to separate one from the other, and to assert that this process is really symihetic, and that is really analytic. In every operation performed in the construction of a problem, there must be in the mind a knowledge of some properties of the figure which suggest the steps to be taken in the construction of it. Let any Problen be selected from Euclid, and at each step of the operation, let the (fuestion be asked, "Why that step is taken?" It will he found that it is becouse of some known property of the required figure. As an example will make the subject more clear to the learner, the Analysis of Euc. Ir. 10, is taken from the Appendix, pp. 13, 14, to the larger edition of the Euclid, and to which the learner is referred for more complete information.

In Fine. ir. 10, there are five operations specificd in the construction :-
(1) Take any straight line $A B$.
(2) Divide the line $A B$ in C, so that the rectangle $A B, B C$, may be equal to the square on $A C$.
(3) Describe the circle $B D E$ with center A and radius $A B$.
(4) Place the line $B D$) in that circle, equal to the line $A C$.
(5) Join the points A, D.

Why should either of these operations be performed rather than any others? And what will enable us to foresce that the restalt of the m will be such a triangle as was required! The demonstration aftixed to it ly Euclid does undoubtedly prove that these operations must, in conjunction, produce such a triangle ; but we are furnished in the Elements with no obvious reason for the adoption of these steps, unless we suppose them aceidental. To suppose that all the constructions, even the simpler ones, are the result of accident only, would be supposing inore than could be shewn to the admissible. No construction of the problem conld have been devised withont a previous knowledge of some of the properties of the figure. In fiet, in directing the figure to be constructed, we assume the possibility of its existelice; and we study the properties of such a figure on the hypothesis of its actual existence. It is this study of the properties of the figme thut constitutes the Analysis of the problem.

Let then the existence of a triangle $B A D$ be admitted, which has each of the angles $A B D, A D B$ double of the angle $B A l$, in order to ascertain any properties it may possess which would assist in the construction of such a tiangle.

Then, since the angle $A D B$ is double of $B A D$, if we draw a line $D C$ to bisect $A D B$ and meet $A B$ in C, the angle $A D C$ will be equal to $C A D$; and hence (Eue. r. 6.) the sides $A C^{\prime}, C D$ are equal to one another.

Again, since we have three points A, C, J, not in the same straight lime, let us examine the effect of describing a eirele through them: that is, deseribe the tirele $A(C D$ about the triangle $A C D$, (Euc. w. 5.)

Then, since the angle $A D B$ has been liseeted by $D C$, and sinee $A D B$ is double of $D . A B$, the angle ($C D B$ is equal to the angle $D A C^{\prime}$ in the altemate segment of the cirele; the line $B D$ therefore eoincides with a tangent to the cirele at 1). (Converse of Euc. III. 32.)

Whence it follows, that the rectangle contained by $A B, B C$, is equal to the square on BI). (Eue. .11. 36.)

But the angle $B C D$ is equal to the two interior opposite angles $C A D$, $C D A$; or sinee these are erpual to each other, $B(1)$ is the double of $C . A 1)$, that is, of $B A D$. And since $A B D$ is also double of $B A D$, by the conditions of the triangle, the angles $B C \cdot D, C B D$ are equal, and $B i \prime$) is equal to $D C$, that is, to $A C$?

It has been proved that the rectangle $A B, B C^{\prime}$, is equal to the square on $B D$; and hence the point C in $A B$, found hy the intersection of the hisecting line $D C$, is such, that the rectangle $A B, B C$ is equal to the square on $A C$. (Euc. 11. 11.)

Finally, since the triangle $A B D$) is isosceles, having each of the angles $A B D, A D B$ double of the same angle, the sides $A B, A D$ are comal, and hence the prints $I B, I$, are in the circimefence of the circle deseribed about A with the radin. $A B$. And since the magninde of the triangle is not specilied, the line $A 1$, ray be of any length whatever.

From this "Anaysis of the problem," which ohvionsly is nothing more than an examination of the properties of such a figure supposed to exist already, it will be at once apprarent, why those steps which are preseribed by Euclid for its construction, were adopted.

The line $A B$ is taken of any lengtl, because the problem does not preseribe any specific magnitude to any of the sides of the triangle.

The circle $B D E$ is described about A with the distance $A B$, because the triangle is to be isosceles, having $A B$ for one side, and therefore the other extremity of the base is in the circmuferenee of that cirele.

The line $A B$ is divided in σ, so that the rectangle $A B, B C$ shall be equal to the square on AC , becouse the base of the triangle must be equal to the segment $A C$.

And the line $A D$ is drawn, because it completes the triangle, two of whose sides, $A B, B D$ are already drawn.

Whenever we have reduced the construction to depend upon problems which hare been already constructed, our analysis may be terminated; as was the ease where, in the preeeding example, we arrived at the division of the line $A B$ in U; this problem having been abready constructed as the eleventh of the second book.

Prop. xvi. The are subtending a side of the quindecagon, may be found by placing in the eircle from the same point, two lines respeetively equal to the sides of the regular hexagon and pentagon.

The centers of the inscribed and circumseribed circles of any regular polygon are coincident.

Besides the circumscription and inseription of triangles and regular polygons about and in circles, some very important problems are solved in the constructions respecting the division of the circumferences of circles into equal parts.
B_{Y} inscribing an equilateral triangle, a square, a pentagon, a hexagon, \&e., in a circle, the circumference is divided into three, forr, five, six, \&e., equal parts. In Prop. 26, Book nir., it has been shewn that equal angles at the centers of equal circles, and therefore at the center of the same circle, subtend equal ares; by bisecting the angles at the center, the ares which are subtended by them are also bisected, and hence, a sixth, eighth, tenth, twellth, de., part of the circumference of a circle mar be found.

If the right angle be considered as divided into 90 degrees, each degree into 60 minutes, and each minute into 60 seconds, and so on, according to the sexacgesimal division of a degree; by the aid of the first corollary to Prop. 32, Book 1., may be found the numerical magnitude of an interior angle of any regular polygon whatever.

Let θ denote the magnitude of one of the interior angles of a regular polygon of n sides,

$$
\text { then } n \theta \text { is the sum of all the interior angles. }
$$

But all the interior angles of any rectilinear figure together with four right angles, are equal to twice as many right angles as the figure has sides, that is, if π be assumed to designate two right angles,

$$
\begin{aligned}
\therefore n \theta+2 \pi & =n \pi, \\
\text { and } n \theta=n \pi-2 \pi & =(n-2) \cdot \pi, \\
\therefore \theta & =\frac{(n-2)}{n} \cdot \pi,
\end{aligned}
$$

the magnitude of an interior angle of a regular polygon $c^{\prime} n$ sides.
By taking $n=3,4,5,6$, se., may be found the m^{\prime} gitude in terms of two right angles, of an interior angle of any regular porygon whaterer.

Pythagoras was the first, as Proclus informs us in his commentary, who discorered that a multiple of the angles of three regular figures onls, namely, the trigon, the square, and the hexagon, can fill up space round a point in a plane.

It has been shewn that the interior angle of ans regular polygon of n
sides in terms of two right angles, is expressed by the equation

$$
\theta=\frac{n-2}{n} . \pi
$$

Let θ_{3} denote the magnitude of the interior angle of a regular figure of three sides, in which case, $n=3$.

$$
\text { Then } \begin{aligned}
\theta_{3}=\frac{3-2}{3} \cdot \pi & =\frac{\pi}{3}=\text { one-third of two right angles. } \\
\therefore 3 \theta_{3} & =\pi \\
\text { and } 6 \theta_{3} & =2 \pi
\end{aligned}
$$

that is, six angles, each equal to the interior angle of an equilateral triangle, are equal to four right angles, and therefore six equilateral triangles may be placed so as completely to fill up the space round the point at which they meet in a plane.

In a similar way, it may be shewn that four squares and three hexagons may be placed so as completely to fill up the space round a point.

Also it will appear from the results deduced, that no other regular figures besides these three, can be made to fill up the space round a point ; for any multiple of the interior angles of any other regular polygon, will be found to be in excess above, or in defect from four right angles.

The equilateral triangle or trigon, the square or tetragon, the pentagon, and the hexagon, were the only regular polygons known to the Greeks, capable of being inscribed in circles, besides those which may be derived from them.
M. Gauss in his Disquisitiones Arithmetice, has extended the number by shewing that in general, a regular polygon of $2^{n}+1$ sides is capable of being inscribed in a circle by means of straight lines and circles, in those cases in which $2^{n}+1$ is a prime number.

The case in which $n=4$, in $2^{n}+1$, was proposed by Mr. Lowry of the Royal Military College, to be answered in the seventeenth number of Leybourn's Mathematical Repository, in the following form:-
liequired a geometrical demonstration of the following method of constructing a regular polygon of seventeen sides in a circle.

Draw the radins $C O$ at right angles to the diameter $A B$; on $O C$ and $O B$, take $O(l$ equal to the half, and $O I)$ equal to the eighth part of the radius; make $D E$ and $D F$ each equal to $D Q$, and $E G$ and $F I I$ respectively equal to $E Q$ and $F Q$; take $O K$ a mean proportional between $O H$ and $O Q$, and through $K_{\text {, draw }} K_{H} M$ parallel to $A B$, meeting the semicirele deseribed on $O G$ in M, draw $M N^{+}$parallel to $O C$ cuttiug the given circle in N, the are $A N$ is the seventecuth part of the whole circumference.

A demonstration of the truth of this construction has been given by Mr. Lowry bimself, and will be found in the fourth volume of Leybourn's Repository. The demonstration including the two lemmas accupies more than eight pages, and is by no meins of an elementary character.

QUESTIONS ON BOOK IV.

1. Wiat is the general object of the Fourth Book of Euclid?
2. What consideration renders necessary the first proposition of the Fourth Book of Euclid?
3. When is a circle sail] to be inzeribed within, and circumseribed about a rectilineal figure?
4. When is one rectilineal figure said to be inseribed in, and circumscribed about another rectilineal firure?
5. Modify the construction of Euc. 15. 4, so that the circle may touch one side of the triangle and the other two sides produced.
6. The sides of a triangle are $5,6,7$ units respectively, find the radii of the inseribed and circumseribed circle.
7. Give the constructions by which the centers of cireles described ahout, and inseribed in triangles are found. In what triangles will they coincide?
8. How is it shewn that the radius of the cirele inscribed in an equilateral triangle is lialf the radius described about the same triangle?
9. The equilateral triangle inseribed in a cincle is one-fourth of the equilateral triangle circumscrlbed about the same circle.
10. What relation subsists between the square inseribed in, and the square cirenmscribed about the same circle?
11. Enunciate Euc. 111. 22: and extend this property to any inseribed polygon having an even number of sides.
12. Trisect a quadrantal are of a circle, and shew that every are which is an $\frac{m}{2^{n}}$ th part of a quadrantal are may be trisected geometrically : m and n being whole numbers.
13. If one side of a quadrilateral figure inseribed in a circle be produced, the exterior angle is equal to the interior and opposite angle of the figure. Is this property true of any inscribed polygon having an even number of sides?
14. In what parallelograms can cireles be inscribed?
15. Give the analysis and synthesis of the problem: to describe an isoscelestriangle, having each of the angles at the base double of the third angle?
16. Shew that in the figure Euc. Ir. 10, there are two triangles possessing the required property.
17. IIow is it made to appear that the line $B D$ is the side of a regular decayon inscribed in the larger circle, and the side of a regular pentagon inseribed in the smaller circle? fig. Eue. ir. 10.
18. In the construction of Euc. w. 3, Euclid has omitted to shew that the tangents drawn through the points A and B will muct in some point M. How may this be shewn?
19. Sher that if the points of intersection of the cireles in Euclid's figure, Book ir. Prop. 10, be joined with the rertex of the triangle and with each other, another triangle will be formed cquiangular and equal to the former.
20. Divide a right angle into five equal parts. How may an isosceles triangle be described upon a given base, having each angle at the base onethird of the angle at the vertex?
21. What regular figures may be inscribed in a circle by the help of Euc. 1v. 10?
22. What is Euclid's definition of a regular pentagon? Would the stellated figure, which is formed by joining the alternate angles of a regular pentagon, as described in the Fourth Book, satisfy this definition?
23. Shew that each of the interior angles of a regular pentagon inseribed in a circle, is equal to three-fifths of two right angles.
24. If two sides not adjacent, of a regular pentagon, be produced to rocet : what is the magnitude of the angle contained at the point where they meet?
25. Is there any method more direct than Euclid's for inseribing a regular pentagon in a circle?
26. In what sense is a regular hexagon also a parallelogram? Would the same observation apply to all regular figures with an even number of sides?
27. Why has Euclid not shewn how to inscribe an equilateral triangle in a circle, before he requires the use of it in Prop. 16, Book w.?
28. An equilateral triangle is inscribed in a circle by joining the first, third, and fifth angles of the inscribed hexagon.
29. If the sides of a hexagon be produced to meet, the angles formed by these lines will be equal to four right angles.
30. Sher that the area of an equilateral triangle inscribed in a circle is one-half of a regular hexagon inscribed in the same circle.
31. If a side of an equilateral triangle be six inches: what is the radius of the inscribed circle?
32. Find the area of a regular hexagon inscribed in a circle whose diameter is twelve inches. What is the difference between the inscribed and the circumscribed hexagon?
33. Which is the greater, the difference between the side of the square and the side of the regular bexagon inseribed in a eircle whose raditus is unity; or the difference between the side of the equilateral triangle and the side of the regular pentagon inscribed in the same circle?
34. The regular hexagon inseribed in a circle, is three-fourths of the regular circumscribed hexagon.
35. All the interior angles of an octagon equal to twelve right angles.
36. What figure is formed by the production of the alternate sides of a regular octagon?
37. How many square inches are in the area of a regular octagon whose side is eight inenes?
38. If an irregular octagon be capable of having a circle deseribed about it, shew that the sums of the angles taken alternately are equal.
39. Find an algebraical formula for the number of degrees contained by an interior angle of a regular polymon of n sides.
40. What are the three regular figures which can be used in paving a plane area? Shew that no other regular figures but these will fill up the space round a point in a plane.
41. Into what number of equal parts may a right angle be divided geometrically? What connection has the solution of this problem with the possibility of inscribing regular figures in circles?
42. Assuming the demonstrations in Euc. Iv., shew that any equilateral figure of $3.2^{n}, 4.2^{n}, 5.2^{n}$, or 15.2^{n} sides may be inscribed in a circle, when n is any of the numbers $0,1, \therefore, 3,8 \mathrm{cc}$.
43. With a pair of compasses only, shew how to divide the circumference of a given circle into twent y-four equal parts.
44. Shew that if any polygon inseribed in a circle be equilateral, it must also be equiangular. Is the converse true?
45. Shew that if the circumference of a circle pass through three angular points of a regular polygon, it will pass through all of them.
46. Similar polygons are always equiangular: is the converse of this proposition true?
47. What are the limits to the Geometrical inscription of regular figures in cireles? What does Geometrical mean when used in this way?
48. What is the difficulty of inscribing geometrically an equilateral and equiangular undecagon in a circle? Why is the solution of this problem said to be beyond the limits of plane greometry? Why is it so dillicult to prove that the geonetrical so.ution of such problems is impossible?

GEOMETRICAL EXERCISES ON BOOK IV.

PROPOSITION I. THEOREM.

If an equilateral triangle be inscribed in a circle, the square of the side of the triangle is triple of the square of the rudius, or of the side of the regular hexagon insrribed in the same circle.

Let $A B D$ be an equilateral triangle inseribed in the circle $A B D$, of which the center is C.

Join $B C$, and produce $B C$ to meet the circumference in E, also join $A E$.
And beeause $A B D$ is an equilateral triangle inscribed in the circle; therefore $A E D$ is one-third of the whole circumference, and therefore $A E$ is one-sixth of the cireumference,
and consequently, the straight line $A E$ is the side of a regular hexagon (iv. 15.), and is equal to $E C$.

And becanse $B E$ is double of $E C$ or $A E$,
therefore the square on $B E$ is quadruple of the square on $A E$,
but the square on $B E$ is equal to the squares on $A B, A E$;
therefore the squares on $A B, A E$ are quadruple of the square on $A E$, and taking from these equals the square on $A E$,
therefore the square on $A B$ is triple of the square on $A E$.

PROPOSITION Iİ. PROBLEM.

To describe a eircle which shall touch a straight line given in position, and pass through two given points.

Analysis. Let $A B$ be the given straight line, and C, D the two given points.

Suppose the circle required which passes through the points C, D to touch the line $A B$ in the point E.

Join C, D, and proluce $D C$ to meet $A B$ in F, and let the circle he described having the center L, join also $L E$, and draw $L H I$ perpendicular to $C D$.
Then $C D$ is bisceted in $I I$, and $L E$ is perpendieular to $A B$.

Also, since from the point F without the circle, are drawn two straight lines, one of which $F E$ touches the circle, and the other $F D C^{\prime}$ cuts it; the rectangle contained by $F C, F D$, is equal to the square of $F E$. (im. 36.)

Synthesis. Join C, D, and produce $C D$ to meet $A B$ in F,
take the point E in $F B$, such that the square on $F E$, shall be equal to the rectangle $F D, F C$.
Bisect $C D$ in $I I$, and draw $I I h^{*}$ perpendicular to $C D$;
then $H h^{r}$ passes through the center. (iir. 1, Cor. 1.)
At E draw $E G$ perpendicular to $F B$,
then $E G$ passes through the center, (iir. 19.)
consequently L, the point of intersection of these two lines, is the center of the circle.
It is also manifest, that another circle may be described passing through C, D, and touching the line $A B$ on the other side of the point F; and this circle will be equal to, greater than, or less than the other circle, according as the angle $C^{\prime} F B$ is equal to, greater than, or less than the angle CFA.

Proposition ill. Problem.

Inscribe a circle in a given sector of a circle.

Analysis. Let $C A B$ be the given sector, and let the required circle whose center is O, touch the radii in P^{\prime}, Q, and the are of the sector in D.

Join $O P, O Q$, these lines are equal to one another. Juin also ('O.
Then in the triangles $C P O$) $C\left(l O\right.$, the two sides $P^{\prime} C, C O$, are equal to $Q C, C O$, and the base $O P$ is equal to the base $O Q$;
therefore the angle $P^{\prime} C O$ is equal to the angle $Q C O$; and the angle $A C B$ is bisected by (O :
also C'O produced will bisect the are $A B$ in $/$. (im. 26.)
If a tonsent $E H F$ be drawn to tonch the are $A J$ in l;
and $C A, C B$ be proluced to meet it in E, l^{\prime} :
the inseription of the circle in the sector is reduced to the inscription of a circle in a triangle. (1r. 4.)

proposition iv. problem.

ABCD is a rectangular parallelonfam. Required to dran FG, FG parallol to AD, DC, so that the rectengle EF may be equal to the figure EMD, and EB cqual to FD.

Analysis. Let $E G, F G$ bó drawn, as required, bisecting tho rectangle $A B C D$.

Draw the diagonal $B D$ cutting $E(r$ in Π and $F G$ in π. Then (BI) also bisects the rectangle $A B C^{\prime} 1 \prime$; sad therefore the area of the triangle $h^{\prime}\left(\begin{array}{rll}l\end{array}\right.$ is eymal to that of the two triangles $E 1 I A, F K D$.

Draw $G L$ perpendicular to $B D$, and joir $G B$, also produce $F G$ to M, and $E G$ to N.
If the triangle $L(H I I$ be supposed to be equal to the triangle $E H B$, by adding $M C B$ to each,
the triangles $L G B, G E B$ are equal, and they are upon the same base $G B$, and on the same side of it;
therefore they are between the sane parallels,
that is, if L, E were joined, $L E$ wonld be parallel to $G B$;
and if a semicircle were described on $G B$ as a diameter, it would pass through the points E, L; for the angles at E, L are right angles:
also $L E$ wonld be a chord parallel to the diameter $G B$;
therefore the arcs intercepted between the parallels $L E, G B$ are equal,
and consequently the chords $E B, L C_{r}$ are also equal;
but $E B$ is equal to $G M$, and $G M$ to $G N$;
wherefore $L G, G H, G N$, are equal to one another;
hence G is the center of the circle inscribed in the triangle $B D C$. Synthesis. I)raw the diagomal BD.
Find G the center of the circle inscribed in the triangle $B D C$;
through G draw $E G N$ parallel to $B C$, and $F K M$ parallel to $A B$.
Then $E G$ and $F G$ bisect the rectangle $A B C D$.
Draw GL perpendicular to the diagonal $B D$,
In the triangles GLII, EIIB, the angles GLII, IIES are equal, each being a right angle, and the vertical angles $L I I G, E H B$, also the side $L G$ is equal to the side $E B$;
therefore the triangle $L H G$ is equal to the triangle $E I B$.
Similarly, it may be proved, that the triangle GL/ is equal to the triancle $h^{\prime} F I$,
therefore the whole triangle $\pi G I I$ is equal to the two triangles EHD, KFI;
and consequently $E G, F G$ bisect the rectangle $A B C D$.

I.

1. In a given circle, place a straight line equal and parallel to a given straight line not greater than the dianeter of the circle.
2. Trisect a given circle by dividing it into three equal sectors.
3. The centers of the circle inscribed in, and ciremseribed about an equilateral triangle coincide; and the diameter of one is twice the dianeter of the other.
4. If a line be drawn from the vertex of an equilateral triangle, perpendicular to the base, and intersecting a line drawn from either of the angles at the base perpendicular to the opposite side; the distance from the vertex to the point of intersection, shall be equal to the radius of the circumscribing circle.
5. If an equilateral triangle be inscribed in a circle, and a straight line be drawn from the vertical angle to meet the circmmerence, it will be equal to the sum or difference of the straight lines drawn from the extremities of the base to the point where the line meets the circumference, according as the line dues or does not cut the base.
6. The perpendicular from the vertex on the base of an equilateral triangle, is equal to the side of an efpuiateral triangle inscribed in a circle whose diameter is the hase. Required proof.
7. If an equilateral triangle be inscribed in a circle and the adjacent ares ent off by two of its sides be bisected, the line joining the points of bisection slall be trisected by the sides.
8. If an equilateral triangle be inscribed in a circle, any of its sides will ent off one-fourth part of the diameter drawn through the opposite angle.
9. The perimeter of an equilateral triangle inscribed in a circle is greater than the perimeter of any other isosecles triangle inscribed in the same cirele.
10. If any two consecutive sides of a hexagon inseribed in a circle be respectively parallel to their opposite sides, the remaining sides are parallel to each other.
11. Prove that the area of a regular hexagon is greater than that of an equilateral triancle of the sane perimeter.
12. If two equilateral triangles be inseribed in a circle so as to have the sides of one parallel to the sides of the other, the figure common to both will be a regular hexagon, whose area and perimeter will be equal to the remainder of the area and perimeter of the two triangles.
13. Determine the distance between the opposite sides of an equi. lateral and equiangular hexagon inseribed in a circle.
14. Inseribe a regular hexagon in a given equilateral triangle.
15. To inseribe a regular dodecagon in a given circle, and shew that its area is equal to the square of the side of an equilateral triamrle inscribed in a circle.

II.

16. Describe a circje tonching three straight lines.
17. Any number of triangles having the same base and the samo vertical angle, will he circmeserjed by one circle.
18. Find a point in a triangle from which two straight lines
drawn to the extremities of the base shall contain an angle equal to twice the vertical angle of the triangle. Within what limitations is this posible?
19. Given the base of a triangle, and the point: from which the perpendiculars on its three sides are equal; coustruct the triangle. To what limitation is the position of this point sabject in order that the triangle may lie on the same side of the base?
20. From any point B in the radins C_{A} of a given circle whose center is C, a straight line is drawn at right angles to $C A$ meeting the circumference in D; the circle described round the triangle $(C B D$) tonches the given eircle in D.
21. If a circle be described abont a triangle $A B C$, and perpendiculars be let fall from the angular points A, B, C on the opposite sides, and produced to meet the circle in D, E, F, respectively, the circumferences $E F, F D, D E$, are bisceted in the points A, B, C.

22 . If from the angles of a triangle, lines be drawn to the points where the inseribed circle touclies the sides; these lines shall intersect in the same point.
23. The straight line which bisects any angle of a triangle inscribed in a cirele, cuts the cireumference in a point which is cquidistant from the extremities of the side opposite to the bisected augle, and from the center of a circle inseribed in the triangle.
24. Let three perpendiculars from the angles of a triangle $A B C$ on the opposite sides meet in P, a circle described so as to pass through P and any two of the points A, B, C, is equal to the circumscribing eircle of the triangle.
25. If perpendiculars $A a, B b, C c$ be drawn from the angular points of a triangle $A B C$ upon the opposite sides, shew that they will bisect the angles of the triangle $a b c$, and thence prove that the perimeter of $a b c$ will be less than that of any other triangle which can be inscribed in $A B C$.
26. Find the least triangle which can be circumscribed about a given circle.
27. If $A B C$ be a plane triangle, $G C F$ its cireumseribing circle, and $G E F$ a diameter perpendicular to the base $A B$, then if $C F$ be joined, the angle $G F C$ is equal to half the difference of the angles at the base of the triangle.
28. The line joining the centers of the inscribed and circumscribed cireles of a triangle, subtends at any one of the angular points an angle equal to the semi-diference of the other two angles.

III.

29. The locus of the centers of the circles, which are inscribed in all right-angled triangles on the same hypotenuse, is the quadrant described on the hypotenuse.
30. The center of the लircle which tonches the two semicircles described on the sides of a right-angled triangle is the middle point of the liypotenuse.
31. If a circle be inscribed in a right-angled triangle, the excess of the sides containing the right angle above the hypotenuse is equal to the diameter of the inseribed circle.
32. Having given the hypotenuse of a right-angled triangle, and the radius of the inseribed circle, to construet the triangle.
33. $A B C$ is a triangle inscribed in a cirele, the line joining tho middle points of the ares $A B, A C$, will cut oft equal portions of the tivo contiguon; sides measured from the angle A.
IV.
34. Haring given the vertical angle of a triangle, and the radii of the inscribed and circumscribed circles, to construct the triangle.
35. Given the base and vertical angle of a triangle, and also the radius of the inscribed circle, required to construct it.
36. Given the three angles of a triangle, and the radius of the inscribed circle, to construct the triangle.
37. If the base and vertical angle of a plane triangle be given, prove that the locu; of the centers of the inscribed circle is a circle, and find its position and marnitude.

V.

38. In a given triangle insaribe a parallelogram which shall bo equal to one-lialf the triangle. Is there any limit to the number of such parallelograns?
39. In a givea triangle to inscribe a triangle, the sides of which shall be parallel to the sides of a given triangle.
40. If any mumber of parallelograms be inscribed in a given parallelogratn, the diameters of all the figures shall cut one another in the same point.
41. A square is inscribed in another, the difterence of the areas is twice the rectangle contained ly the segments of the side which are made at the angular point of the inseribed square.
4.. Inseribe an eqnilateral triaugle in a square, (1) When the vertex of the triangle is in an angle of the square. (2) When the vertex of the triangle is in the proint of hisection of a side of the square.
42. On a given straight line describe an equilateral and equiangular octagon.

VI.

44. Inscribe a circle in a rhombus.
45. Having given the distances of the centers of two equal circles which cut one another, inscribe a square in the space included botween the two circmuferenes.
46. The square inscribed in a circle is equal to half the square described about the same circle.
47. The square is greater than any oblong inscribed in the samo circle.
48. A circle haring a square inseribed in it heing given, to find a circle in which a regnlan octagon of a perimeter egual to that of the square, may be inseribed.
49. Describe a circle about a figure formed be constructing an equilateral triangle upon the base of an isosceles triangle, the vertical angle of which is four times the angle at the base.
50. A regular octagon inscribed in a circle is equal to the rectangle
contained by the sides of the squares inscribed in, and circumscribed about the circle.
51. If in any circle the side of an inseribed hexagon be produced till it becomes equal to the side of an inscribed square, a tangent drawn from the extremity, without the circle, shall be equal to the side of an inseribed octagon.

VII.

52. To describe a circle which shall touch a given circle in a given point, aud also a given straight line.
53. Describe a circle touching a giren straight line, and also tw. given circles.
54. Describe a circle which shall touch a given circle, and each of two given straight lines.
55. Two points are given, one in each of two given circles; describe a circle passing through both points and touching one of the circles.
56. Describe a circle touching a straight linc in a given point, and also touching a given circle. When the line cuts the given circle, shew that your construction will enable you to obtain six circles touching the given circle and the given line, but not necessarily in the given point.
57. Describe a circle which shall tonch two sides and pass through one angle of a given square.
58. If two circles touch each other externally, describe a circle which shall touch one of them in a given point, and also touch the other. In what case dues this become impossille?
59. Describe three circles touching each other and laving their centers at three given points. In how many different ways may this be done?

VIII.

60. Let two straight lines be drawn from any point within a circle to the circumference: describe a circle, which shall touch them both, and the are between them.
61. In a given triangle having inscribed a circle, inscribe another circle in the space thus intercepted at one of the angles.
62. Let $A B$. $A C$, be the bounding radii of a quadrant ; complete the square $A B D C$ and draw the diagonal $A D$; then the part of the diagonal without the quadrant will be equal to the radius of a circle inscribed in the quadrant.
63. If on one of the bonnding radii of a quadrant, a semicirele be described, and on the other, another semicircle be described, so as to tonch the former and the quadrantal arc; find the center of the circle inscribed in the figure bounded by the three curses.
64. In a given segment of a circle inscribe an isosceles triangle, such that its vertex may be in the middle of the chord, and the base and perpendicular together equal to a given line.
65. Inscribe three circles in an isosceles triangle touching each other, and cach of them touching two of the three sides of the triangle.

> IX.
66. In the fig. Prop. 10, Book ir., shew that the base $B D$ is the
side of a regular decagon inscribed in the larger circle, and the side of a regular pentagon inseribed in the smaller circle.
67. In the fig. Prop. 10. Book iv.. produce $D C$ to meet the circle in F, and draw $B F$; then the angle $A D F$ shall be equal to three times the angle $B F D$.
68. If the alternate angles of a regular pentagon be joined, the figure formed by the intersection of the joining lines will itself be a regular pentagon.
69. If $A B C D E$ be any pentagon inscribed in a circle, and $A C$, $B D, C E, L_{A}, E B$ be joined, then are the angles $A B E, B C A, C D B$, $D E C$. EAD, together equal to two right angles.
70. A watch-ribbon is folded up into a flat knot of five edges, shew that the sides of the knot form an equilateral pentagon.
71. If from the extromities of the side of a reguiar pentagon inscribed in a cirele, straight lines be drawn to the middle of the are sultended by the adjacent side, their difference is equal to the radius; the sum of their squares to three times the square of the radius; and the rectangle contained by them is equal to the square of the radius.
72. Inscribe a regular pentagon in a given square so that four angles of the pentagon may tonch respectively the four sides of the square.

T3. Inscribe a regular decagon in a given circle.
74. The square described upon the side of a regular pentagon in a circle, is equal to the square of the side of a regular hexagon, together with the equare uron the side of a regular decagon in the same circle.

X.

75. In a given circle inseribe threo equal circles tonching each other and the given circle.

Th. Slew that if two circles be inseribed in a third to tonch one another, the tangents of the points of contact will all meet in the same point.

个7. If there be three concentric circles, whose radii are $1.2,3$; deterinine how many circles may be described rom the interior one, having their centers in the circumference of the circle, whose radins is 2 , and touching the interior and exterior circles, and each other.
78. Shew that nine equal circles may be placed in contact, so that a square whose side is three times the diameter of one of them will circunseribe them.

XI.

79. Produce the sides of a given heptagon both ways, till they mect, forming seven triangles; required the sum of their vertieal angles.
80. To eonvert a given regular polvon into another which shall have the same perimeter. but donble the number of sides.
81. In any polygon of an even number of sides, inseribed in a circle, the sum of the 1st, 3rd, 5th, de. angles is equal to the sum of the 2nd, 4th, fith, \&e.
82. Of all polygons liaving equal perimeters, and the same number of sides, the equilateral polygon has the greatest area.

BOOK V.

DEFINITIONS.

I.

A less magnitude is said to be a part of a greater magnitude, when the less measures the greater; that is, 'when the less is contained a certain number of times exactly in the greater.'

II.

A greater magnitude is said to be a multiple of a less, when the greater is measmred by the luss, that is, when the greater contains the less a certain number of times exactly.'

III.

"Ratio is a mutual relation of tro magnitudes of the same kind to one another, in respect of quantity."
IV.

Magnitudes are said to have a ratio to one another, when the less can be multiplied so as to exceed the other.

V.

The first of four magnitudes is said to have the same ratio to the second, which the third has to the fourth, when any equimultiples whatsoever of the first and third being taken, and any equimultiples whatsoever of the second and fourth; if the multiple of the first be less than that of the second, the multiple of the third is also less than that of the fourth: or, if the multiple of the first be equal to that of tho second, the multiple of the third is also equal to that of the fourth: or, if the maltiple of the first be greater than that of the second, the multiple of the third is also greater than that of the fourth.
VI.

Magnitudes which hare the same ratio are called proportionals.
N.B. 'When four magnitudes are proportionals, it is usually expressed by saying, the first is to the second, as the third to the fourth.'

VII.

When of the equimultiples of four magnitudes, (taken as in the fifth definition, the multiple of the first is greater than that of the second, but the multiple of the third is not greater than the multiple of the fourth; then the first is silid to have to the second a ereater ratio than the third magnimde has to the fourth: and, on the contrary, the third is said to have to the fourth a less ratio thau tha first has to the second.

VIII.

" Analogy, or proportion, is the similitude of ratios."

IX.

Proportion consists in three terms at least.

N.

When three magiitudes are proportionals, the first is said to have to third, the duplicate ratio of that which it has to the second.

XI.

When four magnitudes are continual proportiona's, the first is said to have to the fourth, the triplicate ratio of that which it has to the second, and so on, quadruplicate, \&c. increasing the denomination still by unity, in any number of proportiona's.

$$
\text { Definition } 4 \text {, to wit, of compound ratio. }
$$

Whon there are any number of magnitudes of the same kind, the first is said to have to the last of them the ratio compounded of the ratio which the first has to the second, and of the ratio which tho second has to the third, and of the ratio which the third has to the fourth, and so on unto the last magnitude.

For example. if A, B, C, D be four magnitules of the same kind, the first A is srid to have to the last D, the ratio componnded of the ratio of A to B, and of the ratio of B to C, and of the ratio of C to D; or, the ratio of A to D is said to be compoundel of the ratios of A to B, B to C, and C ' to D.

And if A has to B the same ratio which E has to F; and B to C the same ratio that G has to $I I$; and G to D the same that h^{\prime} has to L; then, by this definition, A is said to have to D the ratio compounded of ratios which are the sume with the ratios of E to $F,{ }_{F}^{\prime}$ to H, and K to L. And the same thing is to be understood when it is more briefly expressed by saying, A has to l) the ratio empounded of the ratios of E to F, F^{\prime} to H, and h to L.

In like manner, the same things being supposed, if M has to N^{\prime} the same ratio which A has to \bar{I} : then, for shorthess sake, M is said to have to A the ratio componded of the ratios of E^{\prime} to F, G to H, and K to L.

XII.

In proportionals, the antecedent terms are called homologous to one another, as also the consequents to one another.
'Geometers make use of the following technical words, to signify certain ways of changing either the order or magnitude of proportionals, so that they continue still to be proportionals.'

XIII.

Permutando, or alternando by permutation, or altermately. This word is used when there ate four proportionals, and it is inferred that the first has the same ratio to the third which the second has to the fourth; or that the first is to the third as the seeond to the fourth : as is shewn in Prop, xwa. of this Fifth Book.

XIV.

Invertendo, by inversion; when there aro fone proportionals, and it is inferred, that the second is to the first, as the fourth to the third. Prop. B. Book v.

IV.

Componendo, by composition; when there are four proportionals, and it is inferred that the first together with the seend. is to the second. as the third together with the fourth, is to the fometh. Prop. 18, Book v.
XVI.

Dividendo, by division: when there are four proportionals, and it is inferred, that the excess of the first abore the second, is to the second, as the excess of the third above the fourth, is to the fourth. Prop. 17, Book r:

XVII.

Convertendo, by conversion: when there are four proportionals, and it is inferred, that the first is to its excess above the second, as the third to its excess abore the fomrth. Prop. E. Book r.

XVIII.

Ex æqquali (sc. distantiâ), or ex eequo, from equality of distance: when there is any number of macnitudes more than two, and as many others such that they are proportionals when taken two and two of each rank. and it is inferred, that the first is to the last of the first rank of magnitudes, as the first i , to the last of the others: - Of this there are the two following kinds, which arise from the different order in which the magnitudes are taken two and two.'

XIX.

Ex requali, from equality: This term is used simply by itself, when the first magnitude is to the secoud of the first rank, as the first to the second of the other rank: and as the second is to the third of the first rank. so is the second to the third of the other ; and soon in order: and the inference is as mentioned in the preceding definition; whence this is called ordinate proportion. It is demonstrated in Prop. 22, Book r.

$$
X X:
$$

Ex requali in proportione perturbatî seu inordinatâ, from equality in perturbate or disorderly proportion.* This term is nsed when the first magnitude is to the second of the first rank. as the last but one is to the list of the second rank: and as the second is to the third of the first ramk. so is the last but two to the last but one of the second rank: and as the third is to the fourth of the first rank, so is the third from the last to the last but two of the second rank: and so on in a cross order: and the inference is as in the 18th definition. It is demonstrated in Prop. 23. Book v.

AXIOMS.

I.

Eqtimitutiples of the same, or of equal magnitudes. are equal to one another.

II.

Those magnitudes, of which the same or equal magnitudes are equimultiples, are equal to one another.

* Prop. 4 Lib. in. Archimedis de sphera et cylindro.

III.

A multiple of a greater magnitude is greater than the same mul. tiple of a less.
IV.

That magnitude, of which a multiple is greater than the same multiple of another, is greater than that other magnitude.

PROPOSITION I. THEOREA.

If any number of maqnitudes be cquimultiples of as many, cach of each; vkut multiple soever any one of them is of its part, the same multipte shall all the first mugnitudes be of all the other:

Let any number of maguitndes $A B, C^{\prime} D$ be equimultiples of as many others E, F, each of each.

Then whatsuever multiple $A B$ is of E,
the same multiple shall $A B$ and $C D$ together be of E and F together.

Because $A B$ is the same multiple of E that $C D$ is of F, as many maguitudes as there are in $A B$ equal to E, so many are there in $C D$ equal to F.
Divide $A B$ iuto magnitudes equal to E, viz. $A G, G B$; and C C D into $C \cdot I I, H D$, equal each of them to F;
therefore the number of the magnitudes $(H, H D$ shall be equal
to the number of the others $A G, G B$;
and becaluse $A\left(G\right.$ is equal to ${ }^{\circ} E$ and $C I I$ to F,
therefore $A G$ 'and ('II together are equal to E and F 'together: (i.ax. 2.)
for the same reason, because $G B$ is equal to E, ind $I I D$ to F;
$G P$ and $I I l$ together are equal to E and F torether:
wherefore as many magnitudes as there are in $A B$ equal to E, so many are there in $A B,(T)$ together, equal to $E \prime$ fim f ' together: therefore. whatsoever mu tiple $A B$ is of B,
the same multiple is $A B$ and (' 1) tugether, of E and F ' together.
Therefore if any magnitudes, how many sever, be equimultiples of as many, each of each; whatsoever multiple any one of them is of its part, the same multiple shall all the first magnitudes be of all the others: For the sane demonstration lowds in any number of magnitudes, which was here applied to two.' Q.E.1.

RIROPOSTION IL. THEOREM.

If the first mugnitude be the same multiple of the second that the thired is of the fomith, and the fifth the same multiple of the serond that the sidth is of the fourth; then shailh the first torgether with the fifth be the same multiple of the sceond, that the third logether with the sisth is of the fourth.

Let $A B$ the first be the same multiple of C the second, that $D E$ the third is of F^{\prime} the fourth :
and $B G$ the fifth the same multiple of C the second, that $E T T$ the sixth is of f^{\prime} the fourth.
Then shall $A G$, the first together with the fifth, be the same multiple of C the second, that $D H$, the third together with the sixth, is of F^{\prime} the fourth.

Because $A B$ is the same multiple of C that $D E$ is of F;
there are as many magnitudes in $A B$ equal to C, as there are in $D E$ equal to F.
In like manner, as many as there are in $B G$ equal to C, so many are there in $E H$ equal to F :
therefore as many as there are in the whole $A G$ equal to C,
so many are there in the whole $D H /$ equal to F :
thercfore $A G$ is the stme multiple of (${ }^{\prime}$ that $D I I$ is of F :
that is, $A G$, the first and fifth together, is the same muitiple of the second C,
that $D I I$, the third and sisth together, is of the fourth F.
If therefore, the first be the same inultiple, \&e. Q.E.D.
Cor. From this it is plain, that if any number of magnitudes $A B$, $B G, G I I$ be multiples of another C :
and as many $D E, E K, I^{\prime} L$ be the same multip'es of F, each of each; then the whole of the first, viz. $A H$, is the same multiple of C, that the whole of the last, viz. $D L$, is of F.

Proposition hir Theorem.

If the first be the sume multiple of the sceond, which the third is of the fourth: and if of the first and third there be taken equimultiples: these shall be equimultiples, the one of the seeond, and the other of the fourth.

Let A the first be the same multiple of B the second, that C tha third is of l the fourth :
and of A, O let equimultiples $E F, G H$ be taken.
Then $E F$ shall be the same multiple of B, that $G H$ is of D.

Because EF is the same multiple of A, that $G I I$ is of r^{r},
there are as many magnitudes in $E F$ equal to A, as there are in $G H$ equal to C :
let $E F$ be divided into the magnitndes $E F, h^{\prime} F$, each equal to A; and $G I I$ into $G L, L I I$, each equal to C :
therefore the number of the magnitudes $E h, K F$ shall be equal to the number of the others $G L, L H$:
and because A is the same multiple of B, that C is of D, and that $E K$ is equal to A, and $G L$ equal to C :
therefore $E K$ is the same multiple of B, that $G L$ is of D :
for the same reason, $h F$ is the same multiple of b, that $L H$ is of D :
and so, it there be more parts in $E F, G I$, equal to A, C :
therefure becanse the first $E H^{\prime}$ is the same multiple of the second B, which the third $G L$ is of the fourth D,
and that the fitth $K F$ is the same multiple of the second B, which the sixth $L H$ is of the fourth I;
EF the first, together with the tifth, is the same multiple of the second B. (r. 2.)
which $G I I$ the third, together with the sixth, is of the fourth D. If, therefore, the first, ©cc. Q.E.D.

PROPOSITION IV. THEOREM.

If the first of four magnitudes has the same ratio to the sconnd which the third has to the fourth; then any equimultiples whatever of the first and third shall have the same ratio to any equinultiples of the second and fourth, riz. 'the equimultipie of the first shall have the same ratio to that of the second, which the equimaltiple of the third has to that of the forrth.'

Let A the first have to B the sccond, the same ratio which the third C has to the fourth D;
and of A and C let there be taken any equimultiples whatever E, F; and of B and D any equimultiples whatever $G, I I$.
Then E shall have the same ratio to G, which F has to H.

Take of E and F any equimultiples whatever K, L, and of G, H any equimultiples whatever M, N :
then becanse E ' is the sume multiple of A, that F is of C; and of E and F have been taken equimultiples K, L; therefore K^{\prime} is the same multiple of A, that L is of $C:(\mathrm{v}, 3$. for the sume reason, M is the same multip'e of D, that N is of D. And becanse, as A is to D, so is C to I, (hyp.)
and of A and O have been taken certain equimultiples l, L, and of B and I hare been taken certain equimultiples M, N; therefore if K^{\prime} be greater that $1 /, L$ is greater than N^{\prime}; and if equal, equal ; if less, less: (v. def. 5.)
but K^{F}, L are any equimultiples whaterer of E, F, (constr.) and I, , any whatever of $G, I I$;
therefore as E is to G, so is F to H. (v. def. 5.) Therefore, if the first, δ de. Q.E.D.
Cor. Likewise, if the first has the same ratio to the second, which the third has to the fourth, then also any equimultiples whatever of
the first and third shall have the same ratio to the seend and fourth; and in like manner, the first and the third shall bave the same ratio to any equimultiples whaterer of the second and fomrth.

Let A the tirst have to B the second the same ratio which the third O hits to the fourth I.
and of A and (' let E and F be any equimultiples whatever. Then E shall be to \dot{B} as F to I.
Take of E, F any equimultiples whatever, K, L, and of B, D any equimultiples whaterer G, H :
then it may be demonstrated, as betore, that K is the same multiple of A, that L is of C :

$$
\text { and because } A \text { is to } B \text {, as } C \text { is to } D \text {, (hyp.) }
$$

and of A and ('certain equimultiples have been taken, viz. h^{\prime} and L;
and of B and H certain equimultiples $G, I F$;
therefore, if K^{\prime} be greater thatn G. L is greater than $I I$; and if equal, equal: if less, less: (5. def. 5.)
but K, L are any equimultiples whaterer of E, F, (constr.) and $G, I I$ any whatever of B, D;
therefore as E is to B, so is F to H. (r. def. 5.)
And in the same way the other case is demonstrated.

PROPOSITION T. THEOREM.

> If one magnitude be the same multiple of another, which a magnitude taken from the first is of a magnitude taken from the other; the remainder shall be the same multiple of the remainder, that the whole is of the whole.

Let the magnitude $A B$ be the same multiple of $C D$, that $A E$ taken from the first, is of $C F$ taken from the other.

The remainder $E \mathscr{B}$ shall be the same multiple of the remainder $F D$, that the whole $A B$ is of the whole $C D$.

G	A	E	B	
C	F	D		
	I			

Take $A C_{r}$ the same multiple of $F D$, that $A E$ is of $C F$: therefore $A E$ is the same multiple of $C F$, that $E G$ is of $C D:$ (г.1.)
but $A E$, by the hypothesis, is the same multiple of $C F$, that $A B$ is of CD;
therefore $E G$ is the same multiple of $C D$ tlrat $A B$ is of $C L$; wheretore $E G$ is equal to $A B:$ (v. ax. 1.)
take from each of them the common magnitude $A E$; and the remainder $A G$ is equal to the remainder $E B$.
Wherefore, since $A E$ is the same multiple of $C F$, that $A G$ is of $F I$ (constr.)
and that $A G$ has been proved equal to $E B$;
therefore $A E$ is the same multiple of $C F$, that $E B$ is of $F D$:
but $A E$ is the same multiple of 'C' that $A B$ is of $C D$: (hyp.) therefore $E I$ ' is the same multiple of $F I$, that $A B$ is of ' $C^{\prime} D$.

Therefore, if one magnitude, \&c. Q.E.D.

PROPOSITION VI. THEOREM.

If two magnitudes be equimultiples of two others, and if equimultiples of these be tuken from the first two ; the remainders are cither equal to thess others, or equimultiples of them.
Let the two magnitudes $A B, C D$ be equimnltiples of the two E, F,
and let $A G$, $C I I$ taken from the first two be equimultiples of the same E, F.
Then the remainders $G B, H D$ shall be either equal to E, F, c equimultiples of them.

> First. Iet $G B$ be equal to E : $I I D$ shall be equal to F. Make $C F$ equal to $F:$
and because $A F_{T}$ is the same multiple of E, that $C H$ is of F : (hyp.) and that $G B$ is equal to E, and $C F^{\prime}$ to F;
therefore $A B$ is the same multiple of E, that $K I I$ is of F :
but $A B$, by the hypothesis, is the same multiple of E, that $C D$ is of F;
therefore H^{\prime} / I is the same multiple of F, that $C D$ is of F :
wherefore H / I is equal to $C D$: (v. ax. 1.)
take away the common magnitude (' H,
then the remainder $H^{-} C$ is equal to the remainder $I D$:
but $K C$ is equal to F : (constr.)
therefore $H D$ is equal to F.
Next let $G B$ be a multiple of E.
Then $I I D$ slall be the same multiple of F.

玉——

F

Make $C H^{-}$the same multiple of F, that $G B$ is of E : and becanse $A G$ is the same multiple of E, that $C H$ is of F : (hyp.', and $G B$ the same multiple of E, that $C K$ is of F :
therefore $A B$ is the same multiple of E, that $K^{\prime} M$ is of $F^{\prime}:(\mathrm{v} .2$.
but $A B$ is the same multiple of E, that (T) is of F; (hyp.)
therefore $l^{\prime \prime} H$ is the same multiple of F^{\prime}, that $C H$ is of L^{\prime};
wherefore $K^{7} H$ is equal to $C I$: (v. ax. 1.) take away ${ }^{1} I I$ from botlı;
therefore the remainder $A^{2} C$ is equal to the remainder $I I D$: and becanse $G B$ is the same multiple of E, that $H^{\prime \prime} C^{\prime}$ is of F, (constr.) and that $h^{-} C$ is equal to $I I I$:
therefore $I I D$ is the same multiple of F, that $G B$ is of E.
If, therefore, two magnitudes, \&c. Q.E.D.

PROPOSITION A. THEOREM.

If the first of four maqnitudes has the sume ratio to the second, which the third has to the fourth; then, if the first be grcater than the second, the third is also greater than the fourth; and if equal, equal; if less, less.

Take any equimultiples of each of them, as the doubles of each :
then, by def. 5th of this book, if the double of the first be greater than the double of the second, the double of the third is greater than the double of the fourth :
but if the first be greater than the second,
the double of the first is greater than the duuble of the second;
wheretore also the double of the third is greater than the double of the fourth;
therefure the third is greater than the fourth:
in like manner if the first be equal to the second, or less than it, the third can be proved to be equal to the fourth, or less than it, Therefore, if the first, \&e. Q.E.D.

PROPOSITION B. THEOREM.

If four magnitudes are proportionals, they are proportionals also when taken inversely.

Let A be to B, as C is to D.
Then also inversely, B shall be to A, as D to C.

Take of B and D any equimultiples whatever E and F;
and of A and C any equimultiples whatever G and $I I$.
First, let E be greater than G, then G is less than E :
and because A is to B, as C is to I, (hyp.)
and of A and C, the first and third, G and H are equimmltiples; and of B and D, the second and fonrth. E and F are equimultiples, and that G is less than E, therefore $I I$ is less than $F ;$ ((г. def. ธ.)
that is. F is greater than M :
if, therefore, E be greater than G, F is greater than I;
in like manner, if E be equal to G,
F may be shewn to be equal to $I I$; and if less. less;
but E, F, are any equimultiples whatever of B and D, (constr.)
and G, H any whatever of A and C;
therefore, as B is to A, so is D to C. (r. def. 5.)
Therefore, if four marnitudes, \&c. Q.E.D.

PROPOSITION C. THEOREM.

If the first be the same multiple of the seende, or the same part of it, that the third is of the fourth; the first is to the second, as the third is to tho poarth.

Let the first A be the same multiple of the second B, that the third C is of the fourth D,

Then A shall be to B as C is to D.

Take of A and C any equimultiples whatever E and F; and of B and D any equimultiples whatever G and H. Then, because A is the same multiple of B that C is of D; (hyp.) and that E is the same multiple of A, that F is of C; (constr.) therefore E is the same multiple of B, that F is of $D ;$ (v. 3.) that is, E and F are equimultiples of B and D :
but G_{r} and H are equimultiples of B and D : (constr.)
therefore, if E be a greater multiple of B than G is of B,
F is a greater multiple of D than H is of D; that is, if E be greater than G, F is greater than H :
in like manner, if E be equal to G, or less than it, F may be shewn to be equal to H. or less than it, but E, F are equirnultiples, any whatever, of A, C; (constr.)
and G, H any equimultiples whatever of B, D; therefore A is to B, as C is to D. (г. def. 5.$)$
Next, let the first A be the same part of the second B, that the third C is of the fourth D.

Then A shall be to B, as C is to D.

A

For since A is the same part of B that C is of D, therefore B is the same multiple of A, that D is of C : Wherefore, by the preceding case, B is to A, as D is to C; and therefore inversely, A is to B. as C is to D. (г. в.) Therefore, if the first be the same multiple, \&c. Q.E.D.

PROPOSITION D. THEOREM.

If the first be to the second as the thired to the fourth, and if the first be a multiple, or a part of the second; the third is the same multiple, or the same part of the fourth.

Let A be to B as C is to D :
and first, let A be a multiple of B.
Then C shall be the same multiple of D.

Take E equal to A,
and whatever multiple A or E is of B, make F the same multiplo of $I)$:
then, because A is to D, as C is to D; (hyp.)
and of D the second, and D the fourth, equimultiples have been taken, E and F;
therefore A is to E, as C to $F:(\mathrm{v} .4$. Cor.)
but A is equal to E, (constr.)
therefore C is equal to F : (v. A.)
and F is the same multiple of D, that A is of B; (constr.)
therefore C is the same multiple of L, that A is of B.
Next, let A the first be a part of B the second.
Then C the third shall be the same part of D the fourth.
Because A is to l, as $($ is to l; (hyp.)
then, iuversely, B is to A, as I to C : (V. B.)

A — $\mathrm{B}-\mathrm{C}$ —— $\quad \mathrm{D}$

but A is a part of B, therefore B is a multiple of A : (hyp.)
therefore, by the preceling case, D is the same multiple of C; that is, C is the same part of D, that A is of B.

Therefore, if the first, \&cc. Q.E 1 .

PROPOSITION VII. THEOREM.

Equal magnitudes have the same ratio to the same magnitude: and the same has the same ratio to equal magreitudes.

Let A and B be equal maguitudes, and C any other.
Then A and B shall each of them have the same ratio to C : and C shall have the same ratio to each of the magnitudes A and B.

$$
\begin{aligned}
& \mathrm{C}- \\
& \mathrm{F}-
\end{aligned}
$$

Take of A and B any equimultiples whatever D and E, and of C any multiple whaterer F.
Then, because D is the same multiple of A, that E is of B, (constr.) and that A is equal to B : (hyp.)
therefore D is equal to $E ;($ r. ax. 1.)
therefore, if L the greater than F, E is greater than F;
and if equal, equal ; if less, less:
but D, E are any equimultiples of A, B, (constr.) and F is any multiple of C;
therefore, as A is to C, so is B to C. (v. def. 5.)
Likewise r shall hiwe the same ratio to A, that it has to B.
For having made the same construction.
D may in like manuer be shewn to be equal to E;
therefore, if F be greater than D, it is likewise greater than E;
and if equal, equal : if less, less;
but F is any multiple whatever of C.
and D, E are any equimultiples whatever of A, B; therefore, C is to A as C^{\prime} is to B. (r. def. 5.$)$

Therefore, equal magnitudes, \&cc. Q.e.D.

PROPOELTION TIII. THEOREM.

Of two unequal magnitudes, the greator has a greater ratio to any other magnitude than the less has: and the same marnitude has a grcater ratio to the less of two other magnitudes, than it has to the greater.
Let $A B, B C$ be two unequal magnitudes, of which $A B$ is the greater, and let D be any other magnitude,

Then $A B$ shall hare a greater ratio to D than $B C$ has to D : and D shall have a greater ratio to $B C$ than it has to $A B$.

If the magnitude which is not the greater of the two $A C, C B$, ba not less than D,
take $E F, F G$, the doubles of $A C, C B$, (as in fig. 1.) but if that which is not the greater of the two $A C, C B$, be less than D, (as in fig. 2 and 3.) this magnitude can be multiplied, so as to become greater than 1 , whether it be $A C$, or $C B$.
Let it be multiplied until it beome greater than D,
and let the other be multiplied as often;
and let $E F$ be the multiple thus taken of $A C$, and $F G$ the same multiple of $C B$:
therefore $E F$ and $F G$ are each of them greater than D : and in erery one of the cases,
take I the donble of I, K its triple, and so on,
till the multiple of D be that whicl first becomes greater than $F G$:
let L be that multiple of D which is first greater than $F G$, and h^{-}the multiple of D which is next less than L.
Then becanse L is the multiple of D, which is the first that becomes greater than $F G$,
the next preceding multiple h is not greater than $F G$; that is, $F G^{\prime}$ is not less than K :
and since $E F$ is the same multiple of $A C$, that $F G$ is of $C B$: (constr.) therefore $F G$ is the same multiple of $C B$, that $E G$ is of $A B ;(\mathrm{v} .1$.) that is, $E G$ and $F\left({ }^{\prime}\right.$ are equinultiples of $A B$ and $C^{\prime} B$; and since it was shewn, that $F G$ is not less than h, and, by the construction, $E F$ is greater than $I)$:
therefore the whole $E\left(f^{\prime}\right.$ is greater than K^{\prime} and I) togethar:
but K together with l is equal to L; (constr.)
therefore $E G$ is sreater than L;
but $F G$ is not greater than L : (constr.)
and $E G, F G$ were proved to be equimultiples of $A B, E C$; and L is a multiple of $I \prime$; (monstr.)
therefore $A B$ has to $/ /$ a greater ratio than $B C$ hals to D. (r. def. 7.)
Also D shall have to $B C^{\prime}$ a greater ratio than it has to $A B$.

For having made the same construction,
it may be shewn in like manner, that L is greater than $F G$,
but that it is not greater than Ef:
and L is a multiple of D; (constr.)
and $F G$, EG were proved to be equimultiples of $C B, A B$: therefore L has to $C I \prime$ a greater ratio than it las to $A D$. (r. def. 7.) Wherefore, of two unequal magnitudes, \&c. Q.E.D.

PROPOSITION IX. THEOREM.

Magnitudes which have the same ratio to the same magnitude are equal to one another: and those to which the same magnitude has the same ratio are equal to one another.

Let A, B hare each of them the same ratio to C. Then A shall be equal to B.

For, if they are not equal, one pf them must be greater than the other: let A be the greater:
then, by what was shewn in the preceding proposition,
there are some equimultiples of A and B, and some multiple of C, such,
that the multiple of A is greater than the multiple of C,
but the multiple of B is not greater than that of C,
let these multiples be taken;
and let D, E be the equimultiples of A, B, and F the multiple of C,
such that D may be greater than F, but E not greater than F.
Then, because A is to C as B is to C, (hyp.) and of A, B, are taken equimultiples, D, E, and of C^{\prime} is taken a multiple F; and that D is greater than F; therefore E is also greater than F (r. def. 5. .)
but E is not greater than F; (constr.) which is impossible:
therefore A and B are not unequal; that is, they are equal.
Next, let C have the same ratio to each of the magnitudes A and B.
Then A shall be equal to B.
For, if they are not equal, one of them must be greater than the other: let A be the greater:
therefore, as was shewn in Prop. vini. there is some multiple F of C,
and some equimultiples E and D of B and A such,
that F is greater than E, but not greater than D : and because C is to B, as C is to A, (hyp.)
and that F the multiple of tho first, is greater than E the multiple of the seeond;
therefore l the multiple of the third, is greater than D the multiple of the fourth : (v. def. 5.)
but F is not greater than D (hyp.); which is impossible: therefore A is equal to B. Wherefore, magnitudes which, \&c. Q.E.D.

PROPOSITION X. THEOREM.

That magnitude which has a greater ratio than another has unto the same magnitude, is the greater of the two; and that magnitude to which the same has a greater ratio than it has unto another magnitude, is the less of the two.

Let A have to C a greater ratio than B has to C; then A shall be greater than B.

B-

F ———

For, because A has a greater ratio to C, than B has to C, there are some equimultiples of A and B, and some multiple of C such, (5. def. 7.)
that the multiple of A is greater than the multiple of C, but the multiple of B is not greater than it: let them be taken;
and let D, E be the equimultiples of A, B, and F the multiple of C; such, that D is greater than F, but E is not greater than F : therefore D is greater than E :
and, because D and E are equimultiples of A and B, and that D is greater than E;
therefore A is greater than B. ($\mathrm{r} . \operatorname{ax}, 4$.)
Next, let C have a greater ratio to B than it has to A. Then B shall be less than A.
For there is some multiple F of C, (r. def. 7.) and some equinultiples E and D of B and A such, that F is greater than E, but not greater than D : therefore E is less than D :
and because E and D are equimultiples of B and A, and that E is less than D,
therefore B is less than A. (v. ax. 4.)
Therefore, that magnitude, \&e. Q.E.D.

PROPOSITION XI. THEOREM.

Ratios that are the sane to the same ratio, are the same to one another.
Let A be to B as C is to D;
and as C to D, so let E be to F.
Then A shall be to B, as E to F.

Take of A, C, E, any equimultiples whatever G, M, K;
and of B, D, F any equimultiples whatever L, M, N.
Therefore, since A is to D as C to D, and G, H are taken equimultiples of A, C, and L, M, of I, I;
if G be greater than L, I is greater than M;
and if equal, equal ; and it less, less. (v. def. 5.)
Again, because C is to D, as E is to F, and H, H are taken equimultiples of C, E; and M, N, of D, H^{\prime};
if Π be greater than M, K^{\prime} is greater than N;
and if equal, equal : and if less, less : but if G be greater than L,
it has been shewn that H is greater than M;
and if equal, equal ; and if less, less : therefore, if G be greater than L,
K is greater than N; and if equal, equal ; and if less, less:
and G, F are any equimultiples whatever of A, E; and L, N any whatever of B, F^{\prime};
therefore, as A is to B, so is E to F. (v. def. 5.)
Wherefore, ratios that, \&c. Q.F.D.
PROPOSITION XII. THEORESI.
If any number of magnitudes be proportionals, as one of the antceedents is to its consequent, so shall all the antecedents taken together be to all the consequents.
Let any number of magnitndes A, B, C, D, E, F, be proportionals: that is, as A is to B, so C to D, and E to F.
Then as A is to B, so shall A, C, E together, be to B, D, F together.

Take of A, C, E any equimultiples whatever G, H, π; and of B, D, F any equimultiples whatever, L, M, N. Then, because A is to B, as C is to D, and as E to F;
and that G, H, K are equimultiples of A, C, E, and L, M, N, equimultiples of B, D, F;
therefore, if G be greater than L,
M is greater than M, and K greater than N;
and if equal, equal ; and if less, less: (v. c.ef. 5.)
wherefore if G be greater than L,
then G, I, K together, are greater than L, M, N together; and if equal, equal ; and if less, less:
but G, and $G, I I, K$ together, are any equimultiples of A, and A, C, E together;
because if there be any number of magnitudes equimultiples of as many, each of each, whatever multiple one of thom is of its part, the same multiple is the whole of the whole: (v.1.)
for the same reason L, and L, M, N^{+}are any equimultiples of B, and B, D, F :
therefore as A is to B, so are A, C, E together to B, D, F together. (r. def. ธ.)

Wherefore, if any number, \&c, Q.E.D.

PROPOSITION XIII. THEOREM.

If the first has to the second the same ratio rhich the third has to the fourth, but the third to the fourth, a greater ratio than the fifth has to the sixtly; the first shall also have to the second a greater ratio than the fifth has to the sixth.

Let A the first have the same ratio to B the second, which C the third has to D the fourth, but C the third a greater ratio to D the fourth, than E the fifth has to F the sixth.

Then also the first A shall have to the second B, a greater ratio than the fifth E has to the sixth F.

Because C has a greater ratio to D, than E to F,
there are some equimnltiples of C and E, and some of D and F, such that the multiphe of C is greater than the multiple of D, but the multiple of E is not greater than the multiple of F : (v. def. 7.) let these be taken, and let G, H be equimultiples of C, E, and K, L equimultiples of D, H, such that G may be greater than K, but $I I$ not greater than L :
and whatever multiple C is of C, take M the same multiple of A;
and whatever multiple K is of I, take N the same mnltiple of B;
then, because A is to B, as C to D, (hyp.)
and of A and C, M and G are equimultiples;
and of B and D, N and K are equimultiples;
therefore, if M be greater than N, G is greater than K^{\prime};
and if equal, equal ; and if less, less: (r. def. 5.$)$
but G is greater than $F^{\text {; }}$ (constr.)
therefore M is greater than N :
but $I I$ is not greater than L : (constr.)
and M, H are equimnltiples of A, E;
and N, L equimultiples of B, F;
therefore A has a greater ratio to B, than E has to F. (r. def. 7.) Wherefore, if the first, dec. Q.e.d.
Cor. And if the first have a greater ratio to the second, than the third las to the fourth, but the third the same ratio to the fourth which tho fifth has to the sixth; it may be demonstrated. in like manner, that the first has a greater ratio to the second, than the gifth has to the sixth.

PROPOSITION XIV. TIEOREM.

If the first has the same ratio to the second which the third has to the fourth; then, if the first be greater thes the third, the second shal! be greater than the fourth; and if equal, equal; and if less, less.

Let the first A have the same ratio to the second B which the third C has to the fourth D.

If A be greater than C, B shall be greater than D. (fig. 1.)
1.

2.

3.

Because A is greater than C and B is any other magnitude, A has to B a greater ratio than C has to $B:(\mathrm{v} .8$.

$$
\text { but, as } A \text { is to } B \text {, so is } C \text { to } D \text { : (lyyp.) }
$$

therefore also C has to I a greater ratio than C has to $B:(г, 13$.
but of two magnitudes, that to which the same has the greater ratio, is the less: (v .10.)
therefore D is less than B;
that is, B is greater than D.
Secondly, if A be equal to C ', (fig. 2.)
then B shall be equal to D.
For A is to B, as C, that is, A to D :
therefore B is equal to D. (r. 9.)
Thirdly, if A be less than C, (fig. 3.)
then B shall be less than D.
For C is greater than A;
and because C is to D, as A is to B,
therefore D is greater than B, by the first case ;
that is, B is less than D.
Therefore, if the first, \&c. Q.E.D.

PROPOSITION XT. THEOREM.

Magnitudes have the same ratio to one another whieh their equimultiples ban'e.

Let $A B$ be the same multiple of C that $D E$ is of F.
Then C shall be to F, as $A B$ is to $D E$.

Because $A B$ is the same multiple of C, that $D E$ is of F;
there are as many magnitudes in $A B$ equal to C, as there are in $D E$ equal to F^{\prime} :
lot $A B$ be divided into magnitudes, each equal to C, viz. $\angle G, G I, I B$;
ancid $D E$ into magnitudes, each equal to F, viz. $D K, K L, L E$:
then the number of the first $A G, G H, M B$, is equal to the number of the last $I h^{\prime}, h^{2} L, L E$:
and because $A G, G I, H B$ are all equal, and that $D K, K L, L E$, are also equal to one another ; therefore $A G$ is to $D H$, as $G H$ to $K L$, and as $H B$ to $L E$: (r. 7.) but as one of the antecedents is to its consequent, so are all the antecedents together to all the consequents together, (v. 12.) wherefore as $A G$ is to $D h$, so is $A B$ to $D E$:
but $A G$ is equal to C and $D K$ to F :
therefore, as (' is to F. so is $A B$ to $D E$. Therefore, magnitudes, \&c. Q.E.D.

PROPOSITION XVI. THEOREM.

If four magnitudes of the same kind be proportionals, they shall also be uroportionals when taken alternately.

Let A, R, C, D be four magnitudes of the same kind, which are proportionals, viz. as A to B so C to D.

They shall also be proportionals when taken alternately :
that is, A shall be to C, as B to D.

Take of A and B any equimultiples whaterer E and F : and ot C and D take any equimultiples whatever G and $I T$, and becanse E is the same multiple of A, that F is of B,
and that magnitudes have the same ratio to one another which their equimultiples have ; (r. 15.)
theretore A is to B, as E is to F :
but as A is to B so is C to D; (hyp.)
wherefore as C is to I, so is E to F : (r. 11.) aqain, because $G, I I$ are equimultiples of C, D, therefore as C is to I, so is G to $I I$: (r. 15.)
but it was proved that as C is to D, so is E to F; therefore, as E is to F, so is G to $I I$. (r. 11.)
But when four marnitudes are proportionals, if the first be greater than the third, the second is greater than the fourth :
and if orqual, equal ; it less, less : (v. 14.)
therefore, if E be greater than G, F likewise is greater than Π; and if equal, equal ; if less, less:
and E, F are any equimultiples whatever of A, B; (constr.) and G, H any whaterer of C, D :
therefore A is to $(\mathbb{C}$, as I to $I)$. (v. def. 5.$)$
If then four magnitudes, \&EC. Q.E.D.

PROPOSITION XVII. THEOREM.

If magnitudes, taken jointly, be mopontionals, they shall also be proportionals when taken separretcly: thut is, if tworn magnitules together have to one of them, the same ratio which two others have to one of these, the remaining one of the first two shall have to the other the same ratio which the remaining one of the last two has to the other of these.

Let $A B, B E, C D, D F$ be the magnitndes, taken jointly which are proportionals ;
that is, as $A B$ to $B E$, so let $C D$ be to $D F$.
Then they shall also be proportionals taken separately, viz. as $A E$ to $E B$, so shall $C F$ be to $F D$.

G	II	K	X	I.	M	N	P
	1	1			1	1	
	E B						

Take of $A E, E B, C F, F D$ any equimultiples whaterer $G K, H K$, LM, MN:
and again, of $E B, F D$ take any equimultiples whatever $\pi X, N P$.
Then because GH is the same multiple of $A E$, that $H K$ is of $E B$,
therefore $G I I$ is the same multiple of $A E$, that $G h^{\prime}$ is of $A B ;(\mathrm{v} .1$. but $G H$ is the same multiple of $A E$, that $L M$ is of $C F$:
therefore $G h^{*}$ is the same multiple of $A B$, that $L D$ is of $C F$. Again, because $L M$ is the same multiple of $C F$, that $M N$ is of $F D$; therefore $L M$ is the same multiple of $C F$, that $L N$ is of $C D:$ (v. 1.) but $L M$ was shewn to be the same multiple of ' h, that $G F^{\prime}$ is of $A B$;
therefore $G K$ is the same multiple of $A B$, that $L N$ is of $C^{\prime} D$;
that is, $G h^{r}, L N$ are equimultiples of $A B, C D$.
Next, becanse $I \Pi$ is the same multiple of EJ; that $M A$ is of $F D$; and that $K Y$ is also the same multiple of $E P$, that $N P$ is of $F D$; therefore $H X$ is the same multiple of $E B$, that $M P^{\prime}$ is of $F I$. (v. 2.)

And beeanse $A B$ is to $D E$, as $C D$ is to $D F$, (hyp.)
and that of $A B$ and $C D, G F$ and $L N$ are equimultiples, and of $E B$ and $F I$, $H X$ and $M P$ are equimultiples;
therefore if $G T$ be greater than $I L X$, then $L N$ is greater than $M P$;
and if equal, equal; and if less. less: (v. def. 5.)
but if $G I I$ be greater than $h^{\prime} X$,
then, by adding the common jart $I H_{i}^{r}$ to both,
$G K^{*}$ is greater than $H X^{\prime}$; (1. ax. 4.)
wherefore also $L N$ is greater than MP;
and by taking away $M N$ from both,
$L M$ is greater than $N P$: (r. ax. 5.)
therefore, if $G I I$ be greater than $K X$, LIM is greater than NP.
In like manner it may be demonstrated, that if Gll be equal to $K X$,
$L M$ is equal to $N P$; and if less, less:
but $G H, L M$ are any equimultiples whaterer of $A E, C F$, (constr.) and $K X, N P$ are any whatever of $E B, F D$:
therefore as \mathcal{A} is to $E B$, so is $C F$ to $F D$. (v. def. 5.)
If then magnitudes, \&c. Q.E.D.

PROPOSITION XVIII. THEOREM.

If magnitudes. taken separately, be proportionals, they shall also be proportionul's when taken jointly: that is, if the first be to the second, as the third to the fourth, the first und seeond together shall be to the second, as the thirel and fourth tugether to the fourth.

Let $A E, E B, C F, F D$ be proportionals; that is, as $A E$ to $E B$, so let $C F$ be to $F D$.
Then they shall also be proportionals when taken jointly ;
that is, as $A B$ to $B E$, so shall $C D$ be to $D F^{\prime}$.

$\frac{\mathrm{A} E \quad \mathrm{~B}}{1}$

$\underline{L} \quad$| N | P | M |
| :---: | :---: | :---: |

$\frac{\text { C F D }}{1}$

Take of $A B, B E, C D, D F$ any equimultiples whatever $G H, H K$, $L M, M N$; and again, of $B E, D F$ take any equimultiples whatever $K O, N P$:
and because $H^{\circ} O, N P$ are equimultiples of $B E, D F$;
and that $K H, N M$ are likewise equimultiples of $B E, D F$;
therefore, if $K^{\prime} O$, the multiple of $B E$, be greater than $K I$, which is a multiple of the same $B E$,
then $N P$, the multiple of $D F$, is also greater than $N M$, the multiple of the same $D H$; and if KO be equal to $K H$, $N P$ is equal to $N M$; and if less, less.
First, let $K_{1} O$ be not greater than $K^{\prime} H$;
therefore $V P$ is not greater than $N M$:
and because $G I I, H K$, are equimultiples of $A B, D E$, and that $A B$ is greater than $B E$,
therefore ($H I$ is greater than $H h^{\circ}$; (v. ax. 3.)
but $K O$ is not greater than $K I I$:
therefore $G H$ is greater than $h^{2} O$.
In like manner it may be shewn, that $L 1 /$ is greater than $N P$.
Therefore, if HO be not greater than $\mathrm{K}^{\prime} H$,
then $G H$, the multiple of $A B$, is always greater than $h^{\circ} O$, the multiple of $B E$;
and likewise $L M$, , the multiple of $C D$, is greater than $N P$, the multiple of $D F$.

Next, let $\mathrm{K} O$ be greater than $\mathrm{K} I I$;
therefore, as has been shewn, NP is greater than NM.

A E B
1

L	N	M	P
	O	1	

$\mathrm{C} D$

And because the whole $G I I$ is the same multiple of the whole $A B$, that $I I K$ is of $B E$,
therefore the remainder $C K$ is the same multiple of the remainder $A E$ that $G H$ is of $A B,(v .5$.
which is the same that $L \mathcal{L}$ is of $C D$.

In like manner, becanse $L M$ is the same multiple of $C D$, that $M N$ is of $D E$,
therefore the remainder $L N$ is the same multiple of the remainder (C), that the whole $L . / I$ is of the whole $\left(\frac{1}{\prime}\right):(\Upsilon, 5$.
but it was shewn that $L M$ is the same multiple of $C D$, that $G^{\prime} K^{\prime}$ is of $A E$;
therefore $G K^{\prime}$ is the same multiple of $A E$, that $L N$ is of $C F$; that is, $G K, L N^{\prime}$ are equimultiples of $A E, C F$. And becamse $K O, N P$ are equimultiples of $B E, D F$,
therefore if from $K^{\prime} O, N P$ there be taken $K H, N M$, which are likewise equimultiples of $B E, D F$,
the remainders $I O, L I P$ are either equal to $B E, D F$, or equimultiples of them. (r .6 .)

First, let $M O, M P$ be equal to $D E, D F$:
then because $A E$ is to $E B$. as (F to $F D$, (hyp.)
and that $G K, L V$ are equimultiples of $A E, C F^{\prime}$;
therefore $G h^{-}$is to $E B$, a $\neg L N$ to $F D$: (v. 4. Cor.)
but $I I O$ is eqnall to $E B$, and $M P$ to $F D$; wherefore $G K$ is to $I O$, as $L N$ to $M P^{\prime}$;
therefore if $G K$ be greater than $I I O, L N$ is greater than $M P$; (т. А.) and if equal, equal ; and if less. less.
But let IIO, MP be equimultip'es of $E B, F D$.
Then because $A E$ is to $E B$, as $C F$ to $F D$, (hyp.)

| $\mathrm{A} \quad \mathrm{E} \quad \mathrm{B}$ |
| :--- | :--- |

L	N	M	P
	H	I	

C	FD

and that of $A E, C F$ are taken equimultiples $G K, L N$; and of $E B, F D$, the equimultiples $H O, M P$;
if $G K$ be greater than $H O, L N$ is greater than MP;
and if equal, equal ; and if less, less: (r. def. 5.)
which was likewise shewn in the preceding case.
But if $G H$ be greater than $\mathrm{F}^{\circ} O$,
taking $h^{\prime} I I$ from both, $G K$ is greater than $I O$; (土. as. 5.)
wherefore also $L N^{\top}$ is greater than $M P$;
aud consequently adding $N^{N} M$ to both,
$L M$ is greater than $M P$: (i. ax. 4.) therefore, if $G I I$ be greater than $\mathrm{F} O$, $L M$ is greater than NP.
In like manner it may be shewn, that if $G I I$ be equal to $K O$. $L M$ is equal to $N P$; and if less, less.
And in the case in which $K O$ is not greater than $K I T$, it has beeu shewn that $G H$ is always greater than $K O$, and likewise $L . M$ greater than $I^{T P}$:
but GH, LM are any equimultiples whaterer of $A B, C D$, (constr.) and $K O, N P$ are any whatever of $B E . D F$;
therefore, as $A B$ is to $B E$, so is $C D$ to $D F$. (v. def. 5.)
If then magnitudes, \&c. Q.E.D.

PROPOSITION XIX. THEOREM.

If a whole magnitude be to a whole, as a magnitude taken fiom the first is to a magnitude taken from the other; the remainder shall be to the remainder as the whole to the whole.

Let the whole $A B$ be to the whole $C D$, as $A E$ a magnitude taken from $A B$ is to $C F$ a magnitude taken from $C D$.

Then the remainder $E B$ shall be to the remainder $F D$, as the whole $A D$ to the whole $C D$.

Because $A B$ is to $C D$, as $A E$ to $C F$:
therefore alternately, $B A$ is to $A E$, as $D C$ to $C F:($ (v. 16.)
and because if magnitudes taken jointly be proportionals, they are also proportionals, when taken separately; (v. 17.)
therefore, as $B E$ is to $E A$, so is $D F$ to $F C$; and alternately, as $B E$ is to $D F$, so is $E A$ to $F C$:
but, as $A E$ to $C F$, so, by the hypothesis, is $A B$ to $C D$;
therefore also $B E$ the remainder is to the remainder $D F$, as the whole $A B$ to the whole $C D$. (r.11.)

Wherefore, if the whole, \&c. Q.E.d.
Cor.- If the whole be to the whole, as a magnitude taken from the first is to a magnitude taken from the other; the remainder shall likewise be to the remainder, as the magnitude taken from the first to that taken from the other. The demonstration is contained in the preceding.

PROPOSITION E. TIIEOREM.

If four magnitudes be proportionals, they are also proportionals by conversion: that is, the first is to its excess above the second, as the third to its excess above the fourth.

Let $A B$ be to $B E$, as $C D$ to $D F$.
Then $D A$ shall be to $A E$, as $D C$ to $C F$.

Because $A B$ is to $B E$ as $C D$ to $D F$,
therefore hy division, $A E$ is to $E B$, as $C F$ to $F D ;(\mathrm{v}, 17$.
and by inversion, $D F F$ is to $E A$, as $D F$ is to $C F$; (г. 13.)
wherefore, by composition, $B A$ is to $A E$, as I / C is to $C F$. (v. 18.) If therefore four, \&e. \&.E.D.

PROPOSITION XX. TIIFOREM.

If there be inree magnitudes, antl other three, whieh, taken two and two, have the same ratio; then if the first be greater than the third, the fourth shall be greater than the sixth; and if cqual, equal; and if less, less.

Let A, B, C be three magnitudes, and D, E, F other three, which
taken two and two have the same ratio,

$$
\text { viz. as } A \text { is to } B \text {, so is } D \text { to } E \text {; }
$$

and as B to C, so is E to F.
If A be greater than C, D shall be greater than F;
and if equal, equal ; and if less, less.

Because A is greater than C, and B is any other magnitude, and that the greater has to the same magnitude a greater ratio than the less has to it ; (v. 8.)
therefore A has to B a greater ratio than C has to B :
but as D is to E, so is A to B; (hyp.)
therefore D has to E a greater ratio than C to $B:($ (r. 13.)
and because B is to C, as E to F,
by inversion, C is to B, as F is to E : (г. в.)
and D was shewn to have to E a greater ratio than C to B :
therefore D has to E a greater ratio than F to $E:(\mathrm{v} .13$. Cor.)
but the magnitude which has a greater ratio than another to the same magnitude, is the greater of the two ; (v. 10.)
therefore D is greater than F.
Secondly, let A be equal to C.
Then D shall be equal to F.

Becanse A and C are equal to one another, A is to B, as C is to $B:$ (r. 7.) but A is to B, as D to E; (hyp.) and C is to B, as F to E; (hyp.)
wherefore D is to E, as F to E; (г. 11. and v. в.)
and therefore D is equal to F. (г. 9.)
Next, let A be less than C.
Then D shall be less than F.

For C is greater than A;
and as was shewn in the first case, C is to B, as F to E, and in like manner, B is to A, as E to D;
therefore F is greater than D. by the first case;
that is, D is less than F.
Therefore, if there be three, \&c. Q.E.D.

PROPOSITION XXI. THEORESI.

If there be three magritudes, and other three, which have the same ratio taken tuo and two, but in a cross order; then if the first magnitude be greater than the third, the fourth shall be greater than the sixth; and if rqual, equal; and if less, less.

Let A, B, C be three magnitudes, ard D, E, F other three, which have the same ratio, taken two and two, but in a cross order,
viz. as A is to B so is E to F,
and as B is to C, so is D to E.
If A be greater than C, D shall be greater than F; and if equal, equal ; and if less, less.

Because A is greater than C, and B is any other magnitude, A has to B a greater ratio than C has to $B:(\mathrm{r} .8$.
but as E to F, so is A to B; (hyp.)
therefore E has to F a greater ratio than C to $B:(\tau, 13$.
and because B is to C, as D to E; (hyp.)
by inversion, C is to B, as E to D :
and E was shewn to have to F a greater ratio than C has to B; therefore E has to F a greater ratio than E has to $D:$ (v. 13. Cor.) but the magnitude to which the sume has a greater ratio than it has
to another, is the less of the two: (v. 10.)
therefore F is less than D;
that is, D is greater than F.
Secondly, let A be equal to C'; l) shall be equal to F.

For C is greater than A;
and as was shewn, C is to B, as E to D, and in like manner, B is to A, as F to E; therefore F is greater than I, by case first; that is, D is less than F
Therefore, if there be three, \&c. Q.E.D.

PROPOSITION XXII. THEOREM.

If there be any number of magnitudes, and as many others, ariich taken two and two in order, have the same rutio; the first shall have to the last of the first magnitudes, the same rution which the first has to the last of the others. N. "B. This is usually cited by the words "ex aequali," or "ex wquo."

First, let there be three magnitudes A, B, C, and as many others - D, E, F, which taken two and two in order, have the same ratio.
that is, such that A is to B, as D to E;
and as B is to C, so is E to F.
Then A shall be to C, as D to F.

Take of A and D any equimultiples whatever G and $I F$;
and of B and E any equimultiples whatever K and L;
and of C and F^{\prime} any whatever $I S$ and N :
then because A is to B a as D to E,
and that G, I are equimultiples of A, D,
and K, L equimultiples of B, E;
therefore as G is to h, so is $I I$ to L : ($(4.4$.
for the same reason, h is to M as L to N :
and because there are three magnitudes G, I_{i}, M, and other three
H, L, N, which two and two have the same ratio;
therefore if G be greater than M, H is greater than N;
and if equal, equal ; and if less, less; (v. 20.)
but G, H are any equimultiples whatever of A, D,
and M, N are any equimultiples whaterer of $C, F ;$ (constr.)
therefore, as A is to $'$ ', so is D to F. (v. def. is.)
Next, let there be four m: gnitudes A, B, C, D,
and other four $E, F, G, I I$, which two and two have the same ratio, riz. as A is to B, so is E to F;
and as B to C, so F to G; and as C to D, so G to $I I$.
Then A shall be to I, as E to $I I$.

$$
\begin{aligned}
& \text { A.B.C.D } \\
& \text { E.F.G. } \\
& \hline
\end{aligned}
$$

Becanse A, B, C are three magnitudes, and E, F, G other three, which taken two and two, have the same ratio;
therefore by the foregoing case, A is to C, as E to G : but C is to D, as G is to I;
wherefore again, by the first case A is to D, as E to $I I$:
and so on, whatever be the number of magnitudes.
Therefore, if there be any number, \&e. Q.E.D.

PROPOSITION XXIII. THEOREM.

If there be an! mumber of magnitudes, and as many others, which tuken two and two in a eross order, have the same ratio; the first shall have to the last of the first magnitudes the same ratio which the first has to the last of the others. $\lambda^{Y} B$. This is usually cited by the words "ex equali in proportione perturbatâ ; " or "ex eequo perturbato."

First, let there be three magnitudes A, B, C, and other three D, E, F, which taken two and two in a cross order have the same ratio, that is, such that A is to B, as E to F^{\prime};
and as B is to C, so is D to E.
Then A sha'l be to C, as D to F.

Take of A, B, D any equimultiples whatever $G, I I, K$; and of C, E, F any equimultiples whatever $L, A /, J$:
and beeanse G. $I I$ are equimultiples of A, B,
and that magnitudes have the same ratio which their equimultiples hare: (5.15.$)$ therefore as A is to B, so is G to Π :
and for the same reason, as E is to F, so is M to N :
but as A is to B, so is E to F; (hyp.)
therefore as $(G$ is to $I I$, so is M to N : (v. 11.)
and because as B is to C, so is D to E, (hyp.)
and that I, H^{F} are e pimultiples of B, I, and L, M of C, E;
therefore as H is to L, so is K to M : (v. 4.)
and it has heen shewn that G is to $I I$, as M to N :
therefore becanse there are three magnitudes $G, I I, L$, and other three K, M, N, which have the same ratio taken two and two in a cross order ;
if G be greater than L, h is greater than N :
and if equal, equal; and if less. less: (v. 21.)
but G, h^{-}are any equimultiples whatever of A, D; (constr.) and L, N any whatever of C, F;
therefore as A is to C, so is L to F. (r. def. 5. .)
Next, let there be four magnitudes A, B, C, D, and other four $E^{\prime}, F^{\prime}, G, H$, which taken two and two in a cross order have the saune ratio,

> riz. A to B, as G to $I I ;$ B to C, as F to $(G ;$ and C to H, as E to ${ }^{\circ} F$, $I F$.

$$
\begin{array}{|l|}
\hline \text { A,B,C, D } \\
\text { E.F.G. } 11
\end{array}
$$

Because A, B, C are three magnitudes, and $F, G, I I$ other three, Which taken two and two in a-cross order, have the same ratio;

> by the first case, A is to C, as F^{\prime} to H;
> but C^{\prime} is to H, as E^{\prime} is to $F^{\prime} ;$
wherefore again, by the tirst case, A is to D, as E to H;
and so on, whatever be the number of magnitudes.
Therefore, if there be any number, \&c. Q.E.D.

PROPOSITION NXIV. THEOREM.

If the first has to the srcomb the same ratio which the third has to the fourth; and the fifth to the second the same ratio urhich the sixth has to the fourth; the first and fifth toyether shall have to the second, the same ratio schich the thind and sixth together have to the fourth.

Let $A B$ the first hare to C the second the same ratio which $D E$ the third has to F the fourth;
and let $B G$ the fifth have to C the second the same ratio which EII the sixth has to F^{\prime} the fourth.
Then $A G$, the first and fifth together, shall have to C the seeond, the same ratio which $D I I$, the third and sisth together, has to F the fourth.

Because $B G$ is to C, as $E I I$ to F;
by inversion, C is to $B G$, as F to $E I I$: (г. в.) and because, as $A B$ is to C, so is $D E$ to F; (hyp.) and as C to $B G$, so is F to $E I$; ex requali, $A B$ is to $B G$, as $D E$ to $E H$: (v. 29.)
and becanse these magnitudes are proportionals when taken separately,
they are likewise proportionals when taken jointly ; (г. 18.)
therefore as $A G$ is to $G B$, so is $I H$ to $H E$:
but as $G B$ to C, so is $H E$ to F : (hyp.)
therefore, ex tequali, as $A G$ is to C, so is $D H$ to F. (г. 22.)
Wherefore, if the first, de. Q.E.D.
Cor. 1.-If the same hypothesis be made as in the proposition, the excess of the first and fifth shall be to the second, as the excess of the third and sixth to the fourth. The demonstration of this is the same with that of the proposition, if division be used instead of composition.

Cor. 2. - The proposition holds true of two ranks of magnitudes, whaterer be their number, of which each of the first rank has to the second magnitude the same ratio that the corresponding one of the second rank has to a fourth magnitude : as is manifest.

PROPOATION XXV. THEOREM.

If four magnitudes of the same kind are proportionals, the greatest and least of them together are greater than the other two together.

Let the four magnitudes $A B, C D, E, F$ be proportionals, viz. $A B$ to $C T$, as E to F;
and let $A B$ be the greatest of them, and consequently F the least (v. 14. and А.)

Then $A B$ together with F shall be greater than $C D$ together with E.

Take $A G$ equal to E, and $C I I$ equal to F. Then because as $A B$ is to $C D$, so is E to F, and that $A G$ is equal to E, and $C H$ equal to F,
therefore $A B$ ' is to (D, as $A(t$ to $C H:$ (v. 11, and 7.)
and because $A B$ the whole, is to the whole $C D$, as $A G$ is to $C H$, likewise the remainder $G B$ is to the remainder $H D$, as the whole $A B$ is to the whole $C D:($ (. 19.)
but $A B$ is greater than $C D$; (hyp.)
theretore $G B$ is greater than $I D$; ($5 . \mathrm{A}$.
and because $A G$ is equal to E, and $C H$ to F :
$A G$ and F tugether are equal to $C I I$ and E together: (土. ax. 2.)
therefore if to the mequal magnitudes $G B, H I$, of which $G B$ is the greater, there be added equal magnitudes, viz. to $G B$ the two $A G$ and F, and $C H$ and E to $H D$;
$A B$ and F together are greater than $C D$ and E. (1. ax. 4.)
Therefore, if four magnitudes, \&e. Q.E.D.

PROPOSITION F. TIIEOREM.

Ratios urhich are compounded of the same ratios, are the same to one another.
Let A be to B, as D to E; and B to C, as E to F.
Then the ratio which is compounded of the ratios of A to B, and B to C,
which, by the definition of compound ratio, is the ratio of A to C, shall be the same with the ratio of D to F, which, by the same definition, is compounded of the ratios of D to E, and E to F.

$$
\begin{aligned}
& \mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \\
& \mathrm{D} \cdot \mathrm{E} \cdot \mathrm{~F} \\
& \hline
\end{aligned}
$$

Becanse there are three magnitudes A, B, C, and three others D, E, F, which, taken two and two, in order, have the same ratio; ex requali, A is to C, as D to F. (v. 22.)
Next, let A be to B, as E to F, and L to C, as D to E :
A. B $\cdot \mathrm{C}$
therefore, ex aquali in proportione perturbata, (r 23.)
A is to r, as I to F^{\prime} :
that is, the ratio of A to C, which is componnded of the ratios of A to B, and B, to C, is the same with the ratio of D to F, which is compounded of the ratios of I) to E, and E to F.

And in like manner the proposition may be demonstrated, whatever be the number of ratios in either case.

PROPOSITION G. THEOREM.

If several ratios be the same to several ratios, cach to cach, the ranm which is compounded of ratios which are the same to the first iutirs, cach to each, shull be the same to the rutio compoundod of rutios which are the same to the other ratios, each to each.

Let A be to B, as E to F; and C to D, as G to I^{-}: and let A be to B, as K^{-}to L; and C to D, as L to M.

Then the ratio of K to M,
by the definition of compound ratio, is compounded of the ratios of π to L, and L to M, which are the same with the ratios of A to D and C to D.
Again, as E to F, so let N^{γ} be to O; and as G to H, so let O be to P.
Then the ratio of N to P is compounded of the ratios of N^{\prime} to O, and O to P, which are the same with the ratios of E to F, and G to $I I$:
and it is to be shewn that the ratio of Γ to M, is the same with the ratio of N^{\top} to P;
or that K is to M, as N to P.

$$
\begin{aligned}
& \text { A.B.C.D.K.L. M } \\
& \text { E.F.G.H.N.O.P }
\end{aligned}
$$

Because F is to L, as (A to B, that is, as E to F. that is, as) N to O : and as L to M, so is (C to D, and so is G to I, and so is) O to P : ex xquali, K is to M, as N to P. (v. 22.)
Therefore, if several ratios, \&c. Q.E.D.

PROPOSITION II. THEOREM.

If a ratio which is compounded of several ratios be the same to a ratio which is compounded of several other ratios; and if one of the first ratios, or the ratio which is compounded of several of them, be the same to one of the last ratios, or to the ratio which is compounded of several of them; then the remaining ratio of the first, or, if there be more than one, the ratio compounded of the remaining ratios, shall be the same to the remaining ratio of the last, or, if there be more than one, to the ratio compounded of these remaining ratios.

Let the first ratios be those of A to B, B to C, C^{\prime} to D, D to E, and E to F;
and let the other ratios be those of G to I, I to K, K to L, and L to M :
also, let the ratio of A to F, which is compounded of the first ratios, he the same with the ratio of G to M, which is compounded of the other ratios;
and besides, let the ratio of A to D, which is compounded of the ratios of A to B, B to C, C to D, be the same with the ratio of G to K, which is compounded of the ratios of G to I, and I to K.

Then the ratio compounded of the remaining first ratios, to wit, of the ratios of D to E, and E to F, which compounded ratio is the ratio
of D to F, shall be the same with the ratio of K to M, which is compounded of the remaining ratios of K to L, and L to M of the other ratios.

```
A.B.C.D.E.F
    G.H.K.L.M
```

Because, by the hypothesis, A is to D, as G to π,
by iuversion, D is to A, as Π^{\prime} to G; (г. в.) and as A is to F, so is G to M (hyp.) therefore, ex equali, D is to F, as K^{\prime} to M. (г. 22.)

If, therefore, a ratio which is, \&c. Q.E.D.

PROPOSITION K. THEOREM.

If there be any mumber of ratios, and any mumber of other ratios, sueh, that the ratio which is eompounded of ratios uhich are the same to the first ratios, each to each, is the same to the ratio which is compounded of ratios whieh are the same, eaeh to cach, to the last rutios; and if one of the first ratios, or the ratio which is compounded of ratios which are the same to several of the first ratios, ench to each, be the same to one of the last ratios, or to the ratio which is eompounded of ratios which are the same, euth to each, to several of the last ratios; then the remaining ratio of the first, or, if there be more than one, the ratio which is compounded of ratios whieh are the same each to etch to the remaining ratios of the first, shall be the same to the remaining rutio of the last, or, if there be more than one, to the ratio which is compounded of ratios which are the same each to each to these remaining ratios.

Let the ratios of A to B, C to D, E to F, be the first ratios:
and the ratios of G to H, K to L, M to N, O to P, Q to R, be the (ther ratios:
and lot A be to B, as S to T; and C to D, as T to V^{\top}; and E to F, as V to F :
therefore, by the definition of compound ratio, the ratio of S to X is compounded of the ratios of S to T, T to V^{r}, and V to Γ, which are the same to the ratios of A to B, C to J, E to F : each to each.

Also, as G to $I I$, so let Y be to Z; and K^{-}to L, as Z to a;
M to N, as a to $b ; O$ to P, as b to c; and Q to R, as c to d :
therefore, by the same definition, the ratio of Y^{\prime} to d is compounded of the ratios of Y to Z, Z to a, a to b, b to c, and c to d, which are the same. each to each, to the ratios of G to H. F to L, M to N, O to P and (l) to R :
therefore, by the hypothesis, S is to X, as Y to d.
Also, let the ratio of A to B, that is, the ratio of S to T, which is one of the first ratios, be the same to the ratio of e to g, which is compounded of the ratios of e to f and f to g, which, by the hypothesis, are the same to the ratios of G^{\prime} to $I I$, and I^{-}to L, two of the other ratios:
and let the ratio of h to l be that which is compounded of the ratios of h to k, and k to l, which are the sane to the remaining first ratios, viz. of C to D, and E to F_{i}
also, let the ratio of m to p, be that which is compounded of the ratios of m to n, n to o, and o to p, which are the same, each to each, to the remaining other ratios, viz. of M to I, O to I^{\prime}, and Q to R.

Then the ratio of h to l shall be the same to the ratio of m to p; or h shall be to l, as m to p.

Because e is to f, as (G to M, that is, as) Y to Z;
and f is to g, as (K to L, that is, as) Z to a;
therefore, ex equali, e is to g. as I to a : (v. 22.)
and by the hypothesis, A is to B, that is, S to T, as e to g;
wherefore S is to T, as Y to a; (r. 11.)
and by inversion, T is to S. as a to Y : (v. B.)
but S is to X. as Y^{\prime} to D; (hyp.)
therefore, ex requali, T is to X, as a to d :
also, because h is to k, as (C to I, that is, as) T to V; (hyp.)
and $\%$ is to l as (E to F, that is, as) J to Y;
therefore ex eqquali, h is to l, as T to X;
in like manner, it may be demonstrated, that m is to p, as a to d;
and it has been shewn, that T is to X, as a to d; therefore h is to l, as m to p. (r. 11.) Q.E.D.
The propositions G and K are usmally, for the sake of brevity, expressed in the same terms with propositions F and H : and therefore it was proper to shew the true meaning of them when they are so expressed; especially since they are very frequently made use of by geometers.

NOTES TO BOOK V.

Is the first four Books of the Elements are considered, only the absolute equality and incquality of Geometrical magnitudes. The Fifth Book contains an exposition of the principles whereby a more definite comparison may be instituted of the relation of magnitudes, besides their simple equality or inequality.

The doctrine of Proportion is one of the most important in the whole course of mathematical iruths, and it appears probable that if the subject were read simultaneously in the Algebraical and Geometrical form, the inrestigations of the properties, under both aspects, would mutually assist each other, and both become equally comprehensible; also their distiuct characters would be more easily perceived.

Def. 1., Ir. In the first Four Books the word part is used in the same sense as we find it in the ninth axiom, "The whole is greater than its part:" where the word pait means any portion whatever of any whole magnitude: but in the Fifth Book, the word part is restricted to mean that portion of magnitude which is contained an exaet number of times in the whole. For instance, if any straight line be taken two, three, four, or any number of times another straight line, by Euc. I. 3 ; the less line is ealled a part, or rather a submultiple of the greater line; and the greater, a multiple of the less line. The multiple is composed of a repetition of the same magnitude, and these definitions suppose that the multiple may be divided jnto its parts, any one of which is a measure of the multiple. And it is also obvious that when there are two magnitudes, one of which is a multiple of the other, the two magnitudes must be of the same kind, that is, they must be two lines, two angles, two surfaces, or two solids: thus, a triangle is donbled, trebled, \&e., by doubling, trebling, \&c., the base, and completing the figure. The same may be said ol a parallelogram. Angles, ares, and sectors of equal cireles may be doubled, trebled, or any multiples found by Prop. xxvi.-xxix., Book nir.

Two magnitudes are said to be eormensurable when a third magnitude of the same kind can be found which will measure both of them; and this third magnitude is called their common measure: and when it is the greatest magnitnde which will measure both of them, it is called the groutest common measure of the two magnitudes; also when two magnitudes of the same kind have no common measure they are said to be incommensurable. The same terms are also applied to numbers.

Unity has no masnitude, properly so ealled, hut may represent that portion of every kind of magnitude which is assumed as the measure of all magnitudes of the same kind. The composition of unities camnot produce Geometrical magnitude; three units are more in mumber than one unit, but still as much different from magnitude as unity itself. Numbers may he considered as quantities, for we consider every thing that can be exactly measured, as a drantity.

C'nity is a eommon measure of all rational numbers, and all numerical reasonings proceed upon the hypothesis that the unit is the same throughout the whole of any partionlar process. Euclid has not fixed the magnitude of any unit of length, nor made reference to any unit of measure of angles, surfaces, or volumes. Hence arises an essential difference between number and magnitude; unity, heing invariable, measures all rational numbers; but though any quantity be assumed as the unit of madnitude, it is impossible to assert that this assumed unit will measure all other magnitudes of the same kind.

All whole numbers therefore are commensurable; for unity is their common measure: also all rational fractions, proper or impoper, are commen surable; for any such firations may be reduced to other equivalent fractions having one common denominator, and that fraction whose denominator is the common denominator, and whose numerator is unity, will measure any one of the fractions. Two magnitudes having a conmon measure can be represented by two numbers which express the number of tines the common measure is contained in both the magnitudes.

Sut two incommensurable maguitudes camot be exactly represented by any two whole numbers or fractions whatever; as, for instance, the side of a square is incommensurable to the diagonal of the square. For it may be shewn numerically, that if the side of the square coutain one unit of length, the diagonal contains more than one, but less than two units of length. If the side be divided into 10 units, the diagonal contains more than 14 , but less than 15 such units. Also if the side contains 100 units, the diagonal contains more than 141 , but less than 142 such units. It is also obvious, that as the side is successively divided into a greater number of equal parts, the error in the magnitude of the diagonal will be dininished continually, but never can be entirely exhausted; and therefore into whatever number of equal parts the side of a square be divided, the diagonal will never contain an exact number of such parts. Thus the diagonal and side of a square having no common measure, cannot be exactly represented by any two numbers.

The term cquimultiple in Geometry is to be understood of magnitudes of the same kind, or of diferent kinds, taken an equal number of times, and implies only a division of the magnitudes into the same number of equal parts. Thus, if two given lines are trebled, the trebles of the lines are equigmitiples of the two lines: and if a given line and a given triangle be trebled, the trebles of the line and triangle are equimultiples of the line and titangle: as (vi. 1. fig.) the straight line $H C$ and the triangle $A I I C$ are equimultiples of the line $\overline{B C}$ and the triangle $A B C$: and in the same manner, (Vr. 38. tig.) the are $E N_{\text {and }}$ the angle $E H H^{Y}$ are equimultiples of the are $E F$ and the angle $E H F$.
 ä $\lambda \lambda \eta \lambda \alpha$ тotà $\sigma \chi \epsilon$ ' $\sigma t s$. By this definition of ratio is to be understood the coneeption of the mutual relation of two magnitudes of the same kind, as two straight lines, two angles, two smfaces, or two solids. To prevent any misconception, Def. iv. lays down the criterion, whereby it may be known what kinds of magnitude can have a ratio to one another; mamely, só \quad ov éxeiv
 $\chi \in i \nu$. "Magnitudes are said to have a ratio to one another, which, when they are multiplied, can exceed one another ; " in other words, the magnitudes which are capable of mutual comparison must be of the same kind. The former of the two terms is called the antecedent; and the latter, the consequent of the ratio. If the antecedent and cousequent are equal, the ratio is called a ratio of equality; but if the antecedent be greater or less than the consequent, the ratio is called a ratio of greater or of less inequality. Care must be taken not to confound the expressions "ratio of equality" and "equality of ratio:" the former is applied to the terms of a ratio when ther the antecedent and consequent, are equal to one another, but the latter, two or more ratios, when they are equal.

Arithnetieal ratio has been defined to be the relation which one number bears to another with respect to quotity; the comparison being made by considering what multiple, part or parts, one number is of the other.

An arithmetical ratio, therefore, is represented by the quotient which arises from dividing the antecedent by the consequent of the ratio; or by the fraction which has the antecedent for its numerator and the consequent for its demominator. Hence it will at once be obvious that the propertics of arithmetical ratios will be made to depend on the properties of fractions.

It must ever be borne in mind that the subjeet of (reometry is not numher, but the magnitude of lines, angles, surfaces, and solids; and its object is to demonstrate their properties by a comparison of their absolute and relative magnitud.s.

Also, in Geometry, multiplication is only a repeated addition of the same magnitude: and division is only a repeated subtraetion, or the taking of a less magnitude successively from a greater, until there be either no remainder, or a remainder less than the magnitude which is suecessively subtracted.

The Geometrical ratio of any two given magnitudes of the same kind will obviously be represented by the magnitudes themsclves; thas, the ratio of two lines is represented by the lengths of the lines themselves; and, in the same manner, the ratio of two angles, two surfaces, or two solids, will be properly representel by the magnitudes themselves.

In the definition of ratio as given by Euclid, all reference to a third magnitude of the same grometrical species, by means of which, to compare the two, whose ratio is the suhject of conecption, has been carefully avoided. The ratio of the two magnitudes is their relation one to the other, without the intervention of any standard unit whatever, and all the propositions demonstrated in the Fifth Book respecting the equality or inequality of two or more ratios, are demonstrated independently of any knowledge of the exact numerieal measures of the ratios; and their generality includes all ratios, whatever distinctions may be made, as to the terms of them being commensurable or ineommensurable.

In measuring any magnitude, it is obvious that a magnitude of the same kind must be used ; but the ratio of two magnitudes may be measured by every thing which has the property of quantity. Two straight lines will measure the ratio of two triangles, or parallelograms (ri. 1. fig.) : and two trianglez, of two parallelograms, will measure the ratio of two straight lines. It wouk manifestly he absurd to speak of the line as measuring the triaugle, or the triangle measuring the line. (See notes on Book n.)

The ratio of any two fuantities depends on their relative and not their a^{7},so'ute magnitudes; and it is possible for the absolute magnitude of two quantities to be ehanged, and their relative magnitude to continue the same as before ; and thus, the same rutio may subsist between two given magnitudes, aall any other two of the same kincl.

In this method of mpasuring ficometrical ratios, the measures of the ratios are the same in number as the magnitudes themselves. It has, however, two advantages; first, it enables us to pass from one kind of magnith le to another, and thus, independently of any numerical measure, to instithte a emparison between such magnitudes as cammot be direetly compared with one another: and seeondly, the ratio of two magnitudes of the same kind may be measured by two straight lines, which form a simpler measure of ratios than any other kind of magnitude.

But the simplest method of all woull be, to express the measure of the ratio of tioo magnitudes by one; but this cannot be done, unless the two magnitules are commensurable. If two lines $A F, C l$, one of which A / F coatains 12 mits of any lengrth, and the other $C D$ contains 4 units of the same length ; then the ratio of the line $A B^{\prime}$ to the line $C \cdot D$, is the same as the
ratio of the number 12 to 4 . Thus, two numbers may represent the ratio of two lines when the lines are commensurable. In the same nanner, two numbers may represent the ratio of two angles, two surfaces, or two solids.

Thus, the ratio of any two magnitudes of the same kind may be expressed by two numbers, when the magnitudes are commensurable. By this means, the consideration of the ratio of two magnitudes is changed to the consideration of the ratio of two numbers, and when one number is divided by the other, the quotient will be a single number or a fraction, which will be a measure of the ratio of the two numbers, and therefore of the two quantities. If 12 be divided by 4 , the quotieut is 3 , which measures the ratio of the two numbers 12 and 4 . Again, if besides the ratio of the lines $A B$ and $C D$ whieh contain 12 and 4 units respectively, we consider two other lines EF and GH which contain 9 and 3 units respectively; it is obvious that the ratio of the line E ' F ' to $G H$ is the sume as the ratio of the number 9 to the number 3 . And the measure of the ratio of 9 to 3 is 3 . That is, the numbers 9 and 3 have the same ratio as numbers 12 and 4.

But this is a numerical measure of ratio, and ean only be applied strictly when the antecedent and consequent are to one another as cue number to another.

And generally, if the two lines $A B, C D$ contain a and b units respectively, and q be the quotient which indicates the number of times the number \dot{b} is contained in a, then q is the measure of the ratio of the two numbers a and b : and if $E F$ and $G H$ contain c and d units, and the number d be contained q times in c : the number a has to b the same ratio as the number c has to d.

This is the numerical definition of proportion, which is thus expressed in Euclid's Elements, Book tri., definition 20. "Four numbers are proportionals when the first is the same multiple of the second, or the same part or parts of it, as the third is of the fourth." This defiuition of the proportion of four numbers, leads at once to an equation:

$$
\begin{aligned}
& \text { for, since } a \text { contains } b, q \text { times; } \frac{a}{b}=q \text { : } \\
& \text { and since } c \text { contains } d, q \text { times; } \frac{c}{d}=q ;
\end{aligned}
$$

therefore $\frac{a}{b}=\frac{c}{d}$ which is the fundamental equation upon which all the reasonings on the proportion of numbers depend.

If four numbers be proportionals, the product of the extremes is equal to the product of the means.

For if a, b, c, d be proportionals, or $a: b:: c: d$
Then

$$
\frac{a}{b}=\frac{c}{d} ;
$$

Multiply these equals by bod,

$$
\begin{aligned}
& \therefore \frac{a b d}{b}=\frac{c b d}{d} \\
& \text { or } a d=b c,
\end{aligned}
$$

that is, the product of the extremes is equal to the product of the means.
And conversely, If the product of the two extremes be equal to the product of the two means, the four numbers are proportionals.

For if a, b, c, d, be four quantities,

such that $a d=b c$,

then dividing these equals by $b d$, therefore $\frac{a}{b}=\frac{c}{d}$,
and $a: b:: c: d$,
or the first number has the same ratio to the second, as the third has to the fourth.

$$
\text { If } c=b \text {, then } a d=b^{2} ; \text { and conversely if } a d=b^{2}: \text { then } \frac{a}{b}=\frac{b}{d}
$$

These results are analogous to Props. 16 and 17 of the Sixth Book. Sometimes a proportion is defined to be the equality of two ratios.
Def. riri. declares the meaning of the term analogy or proportion. The ratio of two lines, two angles, two surfaces or two solids, means nothing more than their relative magnitude in contradistinction to their absolute magnitudes; and a similitude or likeness of ratios implies, at least, the two ratios of the four magnitudes which constitute the analogy or proportion.

Def. ix. states that a proportion consists in three terms at least; the meaning of which is, that the second magnitude is repeated, being made the conserguent of the first, and the antecedent of the second ratio. It is also obvious that when a proportion consists of three magnitudes, all three are of the same kind. Def. vi. appears only to be a further explanation of what is implied in Def. run.

Def. v. Proportion having been defined to be the similitude of ratios, or more properly, the equality or identity of ratios, the filth definition lays down a criterion by which two ratios may be known to be equal, or four magnitudes pronortionals, without involving any inquiry respecting the four quantities, whether the antecedents of the ratios contain or are contained in their consequents exactly; or whether there are any magnitudes which measure the terms of the two ratios. The eriterion only requires, that the relation of the equimultiples expressed should hold good, not merely for any particular multiples, as the doubles or trebles, but for any multiples whatever, whether large or small.

This criterion of proportion may be applied to all Geometrieal magnitudes which can be multiplich, that is, to all which can be doubled, trebled, quadrupled, \&e. But it must be borne in mind, that this eriterion does not exhibit a definite measure for either of the two ratios whieh constitute the proportion, but only an undetermined measure for the sameness or equality of the two ratios. The uature of the proportion of Geometrical magnitudes neither requires nor admits of a nuncrieal measure of either of the two ratios, for this would be to suppose that all magnitudes are commensurable. Though we know not the definite measure of either of the ratios, further than that they are both equal, and one may be taken as the measure of the other, yet particular conclusions may be arrived at by this method: for by the test of proportionality here laid down, it can be proved that one magnitude is greater than, equal to, or less than amother: that a third proportional can be found to two, and a fourth proportional to three straight lines, also that a mean proportional can be found between two stmight lines: and further, that which is here stated of straight lines may be extended to other Geometrieal magnitudes.

The fifth definition is that of equal ratios. The definition of ratio itself (defs. 3,4) contains no eriterion by which one ratio may be known to he equal to another ratio: analogrous to that by which one magnitude is known to be equal to another magnitude (Euc. I. Ax. 8). The preeeding delinitious
$(3,4)$ only restriet the conception of ratio within certain limits，but lay down no test for comparison，or the deduction of properties．All Euclid＇s reason－ ings were to turn upon this comparison of ratios，and hence it was compe－ tent to liy down a criterion of equality and inequality of two ratios between two pairs of magnitudes．In short，lis cffective definition is a definition of proportionals．

The precision with which this definition is expressed，considering the number of conditions involred in it，is remarkable．Like all complete defi－ nitions the terms（he subject and predicate）are convertille：that is，
（a）If four magnitudes be proportionals，and any equimultiples be taken as prescribed，they shall have the specified relations with respect to＂great－ er，greater，＂\＆c．
（b）If of four marnitudes，two and twe of the same Geomerrical Spe－ cies，it can be shewn that the prescribed equimultiples being taken，the conditions under which those magnitudes exist，mest be such as to fulfil the criterion＂greater，greater，dc．＂；then these four magnitudes shall be pro－ portionals．

It may be remarked，that the cases in which the second part of the cri－ terion（＂equal，equal＂）can be fulfilled，are comparatively tew ：namely， those in which the given magnitures，whose ratio is under consideration，are botl exact multiples of some third magnitude－or those which are called commensurable．When this，however，is fultilled，the other two will be ful－ filled as a consequence of this．When this is not the case，or the magni－ tudes are incommensurable，the other two criteria determine the propor－ tionality．However，when no hypothesis respecting commensurability is involved，the contemporaneous existence of the three cases（＂greater，great－ er ；equal，equal ；less，less＂）must be deduced from the hypothetical condi－ tions under which the magnitudes exist，to render the criterion valid．

With respect to this test or criterion of the proportionality of four mag－ nitudes，it has been objeeted，that it is utterly impossible to make trial of all the possible equimultiples of the first and third magnitudes，and also of the second and fourth．It may be replied，that the point in ques－ tion is not determined by making such trials，but by shewing from the nature of the magnitudes，that whatever be the multipliers，if the mul－ tiple of the first exceeds the multiple of the second magnitude，the mul－ tiple of the third will exceed the multiple of the fourth magnitude，and if equal，will be equal，and if less，will be less，in any case which may be taken．

The Arithmetical definition of proportion in Book ru．Def．2n，even if it were equally general with the Geometrical definition in Bookr．Def． 5 ，is by no means universally applicable to the subject of Geometrieal mag－ nitudes．The Geometrical criterion is founded on multiplication，which is always possible．When the magniturles are commensurable，the multi－ ples of the first and second may be equal or nnequal ；but when the magni－ tudes are incommensurable，any multiples whatever of the first and second must be unequal；but the Arithmetical eriterion of proportion is founded on dirision，which is not always possible．Euclid has not shewn in Book r． how to take any part of a line or other magnitude，or that the two terms of a ratio have a common measure，and therefore the numerical definition could not be strictly applied，eren in the limited way in which it may be applied．

Number and Magnitude do not correspond in all their relations；and hence the distinction between Gcometrical ratio and Arithmetical ratio； the former is a comparison кат̀̀ $\pi \eta \lambda \iota \kappa ⿱ ㇒ 日 勺 十 \eta \tau a$ ，according to quantity，but
the latter, according to quotity. The former gives an undetermined, though definite measure, in magnitudes; but the latter attempts to give the exact value in numbers.

The fifth book exhibits no method whereby two magnitudes may be determined to be commensurable, and the Geometrical conclusions deduced from the multiples of magnitudes are too general to furnish a numerical measure of ratios, being all independent of the commensurability or incommensurability of the magnitudes themselves.

It is the numerical ratio of two magnitudes which will more eertainly discover whether they are commensurable or incommensurable, and hence, recourse must be had to the forms and properties of numbers. All numbers and fractions are either rational or irrational. It has been seen that rational numbers and fractions can express the ratios of Geometrical magnitudes, when they are commensurable. Similar relations of incommensurable magnitudes may be expressed by irrational numbers, if the Algebraical expressions for such numbers may be assumed and employed in the same manner as rational numbers. The irrational expressions being considered the exact and definite, though undetermined, values of the ratios, to which a series of rational numbers may suceessively approximate.

Though two incommensurable magnitudes have not an assignable numerical ratio to one another, yet they have a certain definite ratio to one another, and two other magnitudes may have the same ratio as the first fwo: and it will be found, that, when reference is made to the numerical value of the ratios of four incommensurable magnitudes, the same irrational number appears in the two ratios.

The sides and diagonals of squares can be shewn to be proportionals, and though the ratio of the side to the diagonal is represented Geometrically by the two lines which form the side and the diagonal, there is no rational number or fraction which will measure exactly their ratio.

If the side of a square contain a units, the ratio of the diagonal to the side is numerically as $1^{\prime 2}$ to 1 ; and if the side of another square contain b units, the ratio of the diagonal to the side will be found to be in the ratio of $y^{\prime 2}$ to 1 . Again, the two parts of any number of lines which may be divided in extreme and mean ratio will be found to be respectively in the ratio of the irrational number $t^{\prime} 5-1$ to $3-1^{\prime 5}$. Also, the ratios of the diagonals of eubes to the diagonals of one of the faces will be found to be in the irrational or incommensurate ratio of $1^{\prime 3}$ to $1^{\prime 2}$.

Thus it will be found that the ratios of all incommensurable magnitudes which are proportionals do involve the same irrational numbers, and these may be used as the numerical measures of ratios in the same manner as rational numbers and fractions.

It is not however to such enquiries, nor to the ratios of magnitudes when expressed as rational or irrational numbers, that Enclid's doctrine of proportion is legitinately directed. There is no enquiry into what a ratio is in numbers, but whether in diagrams formed according to assigned conditions, the ratios between certain parts of the one are the same as the ratios between eorresponding parts of the other. Thus, with respect to any two squares, the question that properly belongs to pure Geometry is:-whether the diagonals of two squares have the same ratio as the sides of the squares? Or whether the side of one square has to its diagonal, the same ratio as the side of the other square las to its diagonal? Or again, whether in Euc. vi. 2, when $B C$ and I I E are parallel, the line $D D$ has to the line $D A$, the same ratio that the line CE has to the line $A E$? There is no purposo
on the part of Fuclid, to assign cither of these ratios in numbers: but only to prove that their miversal sameness is inevitably a consequence of the original conditions according to which the diagrams were constituted. There is, consequently, no introduction of the idea of incommensurables: and indeed, with such an object as Euclid had in view, the simple mention of them would have been at least irrelevant and superfluous. If, however, it be attempted to apply numerical considerations to pure geometrical investigations, incommensurables will soon be apparent, and difficultiez will arise which were not foreseen. Euclid, however, effects his demonstrations without creating this artificial difficulty, or even recognising its existence. Itad he assumed a standard unit of length, he would have involved the subjeet in numerical cousiderations; and entailed upon the subject of Geometry the almost insuperable difficulties which attach to all such methods.

It cannot, however, be too strongly or too frequently impressed upon the learner's mind, that all Euelid's reasonings are independent of the numerical expositions of the magnitudes concerned. That the enquiry as to what numerical function any magnitude is of another, belongs not to pure Geometry, but to another Seience. The consideration of any intermediate standard unit does not enter into pure Geometry ; into Algebraic Geometry it essentially enters, and indeed constitutes the fundamental idea. The former is wholly free from numerical considerations; the latter is entirely dependent upon them.

Def, vir, is analogous to Def. ז., and lays down the criterion whereby the ratio of two magnitudes of the same kind may be known to be greater or less than the ratio of two other magnitudes of the same kind.

Def. xr. includes Def. x. as three magnitudes may be continued proportionals, as well as four or more than four. In continued proportionals, all the terms except the first and last, are made suceessively the consequent of one ratio, and the antecedent of the next: whereas in other proportionals this is not the case.

A series of numbers or Algebraical quantities in continued proportion, is called a Geometrical progression, from the analogy they bear to a series of Geometrical magnitudes in continued proportion.

Def. A. The term componend ratio was devised for the purpose of avoiding cireumbocution, and no difficulty can arise in the use of it, if its exact meaning be strictly attended to.

With respect to the Geometrical measures of compound ratios, three straight lines may measure the ratio of four, as in Prop. 23, Book vi. For K to L measures the ratio of $B C$ to $C G$, and L to M measures the ratio of $D C$ to $C E$; and the ratio of K^{-}to M is that which is said to be compounded of the ratios of K to L, and L to M, which is the same as the ratio which is compounded of the ratios of the sides of the parallelograms.

Both duplicate and triplieate ratio are species of compound ratio.
Duplicate ratio is a ratio compounded of two equal ratios; and in the case of three magnitudes which are continued proportionals, means the ratio of the first to a third proportional to the first and second.

Triplicate ratio, in the same manner, is a ratio compounded of three equal ratios; and in the case of four magnitudes which are continued proportionals, the triplicate ratio of the first to the second means the ratio of the first to a fourth proportional to the first, second, and third magnitudes. Instances of the composition of three ratios, and of triplicate ratio, will be found in the eleventh and twelfth books.

The produet of the fractions which represent or measure the ratios
of numbers, corresponds to the composition of Geometrical ratios of mag nitudes.

It has been shewn that the ratio of two numbers is represented by a fraction whereof the numerator is the antecedent, and the denominator the consequent of the ratio; and if the antecedents of two ratios be multiplied together, as also the consequents, the new ratio thus formed is said to be compounded of these two ratios; and in the same manner, if there be more than two. It is also obvious, that the ratio compounded of two equal ratios is equal to the ratio of the squares of onc of the antecedents to its consequent; also when there are three equal ratios, the ratio compounded of the three ratios is equal to the ratio of the cubes of any one of the antecedents to its consequent. And further, it may be observed, that wheu several numbers are continued proportionals, the ratio of the first to the last is equal to the ratio of the product of all the antecedents to the prodact of all the consequents.

It may be here remarked, that, though the constructions of the propositions in Book r. are exhibited by straight lines, the enunciations are expressed of magnitude in general, and are equally true of angles, triangles, parallelograms, ares, sectors, $\& \mathrm{c}$.

The two following axioms may be added to the four Euclid has given.
Ax. 5. A part of a greater magnitude is greater than the same part of a less magnitude.

Ax. 6. That magnitude of which any part is greater than the same part of another, is greater than that other magnitude.

The learner must not forget that the capital letters, used generally by Euclid in the demonstrations of the fifth Book, represent the magnitudes, not any numerical or Algebraical measures of them : sometimes, however, the magnitude of a line is represented in the usual way by two letters which are placed at the extremities of the line.

Pron. 1. Algebraically.
Let each of the magnitudes $A, B, C, \&$. ., be equimultiples of as many $a, b, c, \& c \cdot$.
that is, let $A=m$ times $a=m a$,

$$
\begin{aligned}
& B=m \text { times } b=m b, \\
& C=m \text { times } c=m c, s c .
\end{aligned}
$$

First, if there be two magnitudes equimultiples of two others,

$$
\text { then } A+B=m a+m b=m(a+b)=m \text { times }(a+b) \text {. }
$$

Hence $A+B$ is the same multiple of $(a+b)$, as A is of a, or B of b.
Secondly, if there be three magnitudes equimultiples of three others,

$$
\text { then } \begin{aligned}
A+B+C & =m a+m b+m c=m(a+b+c) \\
& =m \text { times }(a+b+c) .
\end{aligned}
$$

Hence $A+B+C$ is the same multiple of $(a+b+c)$;

$$
\text { as } A \text { is of } a, B \text { of } b \text {, and } C \text { of } c \text {. }
$$

Similarly, if there wore four, or any number of magnitudes.
Therefore, if any number of magnitudes he equimultiples of as many, each of each ; what multiple soever, any one is of its part, the same multiple shall the first magniturles lee of all the other.

Prop. Ir. Algebraically.
Let A_{1} the first magnitude, be the same multiple of α_{2} the second, as A_{3} the third, is of a_{1} the fourth; and A_{5} the fifth the same multiple of a_{2} the second, as A_{6} the sixth, is of a_{6} the fourth.

$$
\text { That is, let } \begin{aligned}
A_{1} & =m \text { times } a_{2}=m a_{2} \\
A_{3} & =m \text { times } a_{4}=m a_{4} \\
A_{5} & =n \text { times } a_{2}=n a_{2} \\
A_{6} & =n \text { times } a_{4}=n a_{4} .
\end{aligned}
$$

Then by addition, $A_{1}+A_{3}=m a_{2}+n a_{2}=(n+n) a_{2}=(m+n)$ times a_{2}, and $A_{3}+A_{8}=m a_{4}+n a_{4}=(m+n) a_{4}=(m+n)$ times a_{4}.
Therefore $A_{1}+A_{5}$ is the same multiple of a_{2}, as $A_{3}+A_{6}$ is of a_{4}.
That is, if the first magnitude be the same multiple of the second, as the third is of the fourth, \&c.

Cor. If there be any number of magnitudes A_{1}, A_{2}, A_{3}, \&c. multiples of another a, such that $A_{1}=m a, A_{2}=n a, A_{3}=p a$, δc.

And as many others B_{1}, B_{2}, B_{3}, \&c. the same multiples of another b, such that $B_{1}=m b, B_{2}=n b, B_{3}=p b, \& c$.
Then by addition, $A_{1}+A_{2}+A_{3}+\delta \cdot .=m a+n a+p a+\& c$.
$=(m+n+p+\delta c) a=.(m+n+p+\& c$. $)$ times $a:$
and $B_{1}+B_{2}+B_{3}+\& c .=m b+n b+p b+\& c .=(m+n+p+\delta c)$. $=(m+n+p+\& c$.$) times b:$
that is $A_{1}+A_{2}+A_{3}+\&$ c. is the same multiple of a_{1} that

$$
B_{1}+B_{2}+B_{3}+\& c . \text { is of } b
$$

Prop. iII. Algebraically.
Let A_{1} the first magnitude, be the same multiple of a_{2} the second, as A_{3} the third, is of a_{4} the fourth, that is, let $A_{1}=m$ times $a_{2}=m a_{2}$,

$$
\text { and } A_{3}=m \text { times } a_{4}=m a_{4}
$$

If these equals be each taken n times,

$$
\begin{aligned}
& \text { then } n A_{1}=m n a_{2}=m n \text { times } a_{2}, \\
& \text { and } n A_{3}=m n a_{4}=m n \text { times } a_{4},
\end{aligned}
$$ or $n A_{1}, n A_{3}$ each contain a_{2}, a_{4} respectively $m n$ times.

Wherefore $n A_{1}, n A_{3}$ the equimultiples of the first and third, are respectively equimultiples of a_{2} and a_{4}, the second and fourth.

Prop. IV. Algebraically.
Let $A_{2}, a_{2}, A_{3}, a_{4}$, be proportionals according to the Algebraical definie tion:

$$
\begin{gathered}
\text { that is, let } A_{1}: a_{2}:: A_{3}: a_{4}, \\
\text { then } \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}}
\end{gathered}
$$

multiply these equals by $\frac{m}{n}, m$ and n being any integers,

$$
\therefore \frac{m A_{1}}{n a_{2}}=\frac{m A_{3}}{n a_{4}}
$$

or $m A_{1}: n a_{2}: m A_{3}: n a_{4}$.
That is, if the first of four magnitudes has the same ratio to the second Thich the third has to the fourth; then any equimultiples whatever of the first and third shall have the same ratio to any equimultiples of the second and fourth.

The Corollary is contained in the proposition itself:
for if n be unity, then $m A_{1}: a_{2}:: m A_{9}: a_{4}:$
and if m be unity, also $A_{1}: n a_{2}:: A_{9}: n a_{4}$.
Prop. v. Algebraically.
Let A_{1} be the same multiple of a_{1},
that A_{2} a part of A_{1}, is of α_{2}, a part of a_{1}.
Then $A_{1}-A_{2}$ is the same multiple of $a_{1}-a_{2}$ as A_{1} is of a_{2}
For let $A_{1}=m$ times $a_{1}=m a_{1}$,

$$
\text { and } A_{2}=m \text { times } a_{2}=m a_{2}
$$

then $A_{1}-A_{2}=m \alpha_{1}-m a_{2}=m\left(a_{1}-a_{2}\right)=m$ times $\left(a_{1}-a_{2}\right)$, that is $A_{1}-A_{2}$ is the same multiple of $\left(a_{1}-a_{2}\right)$ as A_{1} is of a_{1}.
Prop. vı. Algebraically.
Let A_{1}, A_{2} be equimultiples respectively of a_{1}, a_{2} two others,

$$
\text { that is, let } A_{1}=m \text { times } a_{1}=m a_{1},
$$

$$
A_{2}=m \text { times } a_{2}=m a_{2} .
$$

Also if B_{1} a part of $A_{1}=n$ times $a_{1}=n a_{1}$, and B_{2} a part of $A_{2}=n$ times $a_{2}=n a_{2}$.
Then by taking equals from equals,

$$
\begin{aligned}
\therefore A_{1}-B_{1} & =m a_{1}-n a_{1}=(m-n) a_{1} \\
A_{2}-B_{2} & =m a_{2}-n a_{2}
\end{aligned}=(m-n) a_{2}=(m-n) \text { times } a_{1},
$$

that is, the remainders $A_{1}-B_{1}, A_{2}-B_{2}$ are equimultiples of a_{1}, a_{2}
respectively.
And if $m-n=1$, then $A_{1}-B_{1}=a_{1}$, and $A_{2}-B_{2}=a_{2}$: or the remainders are equal to a_{1}, a_{2} respectively.
Prop. A. Algebraically.
Let $A_{1}, a_{2}, A_{3}, a_{4}$ be proportiouals,

$$
\begin{gathered}
\text { or } A_{1}: a_{2}:: A_{3}: a_{4}, \\
\text { then } \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}} .
\end{gathered}
$$

And since the fraction $\frac{A_{1}}{a_{2}}$ is equal to $\frac{A_{3}}{a_{4}}$, the following relations only can subsist between A_{1} and a_{2}; and between A_{9} and a_{4}.

First, if A_{1} be greater than a_{2}; then A_{3} is also greater than a_{4} :
Secondly, if A_{1} be equal to a_{2}; then Λ_{9} is also equal to a_{5} :
Thirdly, if A_{1} be less than a_{2}; then A_{3} is also less than a_{4} :
Otherwise, the fraetion $\frac{\Lambda_{1}}{a_{2}}$ could not be equal to the fraction $\frac{A_{9}}{a_{6}}$.
Prop. B. Algebraically.
Let $A_{1}, a_{2}, A_{3}, a_{4}$ be proportionals,

$$
\text { or } A_{1}: a_{2}:: A_{3}: a_{4} .
$$

Then shall $a_{2}: A_{1}:: a_{4}: A_{3}$.
For since $A_{1}: a_{2}:: A_{9}: a_{4}$,

$$
\therefore \frac{A_{1}}{a_{2}}=\frac{A_{5}}{a_{4}}
$$

and if 1 be divided by each of these equals,

$$
\begin{aligned}
& 1 \div \frac{A_{1}}{a_{2}}=1 \div \frac{A_{3}}{a_{4}} \\
& \text { or } \frac{a_{2}}{A_{1}}=\frac{a_{4}}{A_{3}}
\end{aligned}
$$

and therefore $a_{2}: A_{1}:: a_{4}: A_{3}$.
Prop. c. "This is frequently made use of by geometers, and is necessary to the 5 th and 6 th P'ropositions of the 10th Book. Clavius, in his notes subjoined to the 8 th def. of Book 5 , demonstrates it only in numbers, by help of some of the propositions of the 7th Book; in order to demonstrate the property contained in the 5th definition of the 5th book, when applied to numbers, from the property of proportionals contained in the 20 th def. of the 7 th Book : and most of the commentators judge it difficult to prove that four magnitudes which are proportionals according to the 20 th def. of the 7th Book, are also proportionals according to the 5th def. of the 5th Book. But this is easily made out as follows :

First, if A, B, C, D, be four magnitudes, such that A is the same multiple, or the same part of B, which C is of D :

Then A, B, C, D, are proportionals:
this is demonstrated in proposition (c).
Secondly, if $A B$ contain the same parts of $C D$ that $E F$ does of $G H$; in this case likewise $A B$ is to $C D$, as $E F$ to $G H$.

A		B
C	K	D

Let $C F^{*}$ be a part of $C D$, and $G L$ the same part of $G H$; and let $A B$ be the same multiple of $C H$, that $E F^{\prime}$ is of $G L$: therefore, by Prop. c, of Book r, $A B$ is to $C K$, as $E F$ to $G L$: and $C D, G H$, are equimultiples of $C K, G L$, the second and fourth; wherefore, by Cor. Prop. 4, Book r, $A B$ is to $C D$, as $E F$ to $G H$.
And if four magnitudes be proportionals according to the 5th def. of Book T , they are also proportionals according to the 20th Def. of Book rir.

$$
\text { First, if } A \text { be to } B \text {, as } C \text { to } D \text {; }
$$

then if A be any multiple or part of B, C is the same multiple or part of D, by Prop. r, Book r.

Next, if $A B$ be to $C D$, as $E F$ to $G I I$:
then if $A B$ contain any part of $C D, E F$ contains the same part of $G_{F} H$:

A		
C	K	D
	I	

E		F
G	L	H
	G	

M
for let $C H$ be a part of $C D$, and $G L$ the same part of $G H$, and let $A B$ be a multiple of $C K^{-}$:
$E F$ is the same multiple of $G L$:
take M the same multiple of $G L$ that $A B$ is of $C K$;
therefore, by Prop. c, Book r, $A B$ is to $C h$, as M to $G L$:
and $C D, G H$, are equimultiples of $C H, G L$;
wherefore, by Cor. Prop. 4 , Book r, $A B$ is to $C D$, as M to $G H$.
And, by the hypothesis, $A B$ is to $C D$, as $E F$ to $G I I$; therefore $M_{\text {I }}$ is equal to EF by Prop. 9, Book v, and consequently, $E F$ is the same multiple of $G L$ that $A B$ is of $C K .^{n}$

This is the method by which Simson shews that the Geometrical definition of proportion is a consequence of the Arithmetical definition, and conversely.

It may however be shern by employing the equation $\frac{a}{b}=\frac{c}{d}$, and taking $m a, m c$ any equimultiples of a and c the first and third, and $n b, n d$ any equimultiples of b and d the second and fourth.

Aud conversely, it may be shewn ex absurdo, that if four quantities are proportionals according to the fifth definition of the fifth book of Euclid, they are also proportionals according to the Algebraical definition.

The student must however bear in mind, that the Algebraical definition is not cqually applicable to the Geometrical demonstrations contained in the sixth, eleventh, and twelfth Books of Euclid, where the Geometrical definition is employed. It has been before remarked, that Geometry is the science of magnitude and not of number; and though a sum and a difference of two magnitudes can be represented Geometrically, as well as a multiple of any given magnitude, there is no method in Geometry whereby the quotient of two magnitudes of the same kind can be expressed. The idea of a quotient is entirely foreign to the principles of the Fifth Book, as are also any distinctions of magnitudes as being commensurable or incommensurable. As Euclid in Boohs vir-x has treated of the properties of proportion according to the Arithmetical definition and of their application to Geometrical magnitudes; there can be no doult that his intention was to exclude all reference to numerical measures and quotients in his treatment of the doctrine of proportion in the Fifth Book; and in his applications of that doctrine in the sixth, eleventh and twelfth books of the Elements.

Prop. C. Algebraically.
Let $A_{1}, a_{2}, A_{3}, a_{4}$ be four magnitudes.

$$
\text { First let } A_{1}=m a_{2} \text { and } A_{3}=m a_{4} \text { : }
$$

Then $A_{1}: a_{2}:: A_{3}: a_{4}$.
For since $A_{2}=m a_{2}, \therefore m=\frac{A_{1}}{a_{2}}$;
and $A_{3}=m a_{4} \therefore m=\frac{A_{3}}{a_{4}}$.
Hence $\frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}}$,

$$
\text { and } A_{1}: a_{2}:: A_{3}: a_{4} .
$$

Secondly.
Let $A_{1}=\frac{1}{m} a_{2}$, and $A_{3}=\frac{1}{m} a_{4}:$
Then, as before, $\frac{A_{1}}{a_{2}}=\frac{1}{m}$, and $\frac{A_{3}}{a_{4}}=\frac{m}{1}$.

$$
\text { Hence } \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}} \text {, }
$$

$$
\text { and } A_{1}: a_{2}:: A_{3}: a_{4}
$$

Prop. D. Algebraically.
Let $A_{1}, a_{2}, A_{3}, a_{4}$ be proportionals, or $A_{2}: a_{2}:: A_{3}: a_{4}$.

First let A_{1} be a multiple of a_{2}, or $A_{1}=m$ times $a_{1}=m a_{2}$
Then shall $A_{3}=m a_{4}$.
For since $A_{1}: a_{2}:: A_{3}: a_{4}$,

$$
\begin{gathered}
\therefore \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}}: \\
\text { but since } A_{1}=m a_{2}, \\
\therefore \frac{m a_{2}}{a_{2}}=\frac{A_{3}}{a_{4}}, \text { or } m=\frac{A_{3}}{a_{4}}, \\
\text { and } A_{3}=m a_{4} .
\end{gathered}
$$

Therefore the third A_{3} is the same multiple of a_{4} the fourth.
Secondly. If $A_{1}=\frac{1}{m} a_{2}$, then shall $A_{3}=\frac{1}{m} a_{4}$.

$$
\begin{gathered}
\text { For sinee } \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}} \\
\text { and } A_{3}=\frac{1}{m} a_{2}, \therefore \frac{A_{1}}{a_{2}}=\frac{1}{m} \\
\therefore \frac{A_{3}}{a_{4}}=\frac{1}{m}, \text { and } A_{3}=\frac{1}{m} a_{4}:
\end{gathered}
$$

wherefore, the third A_{3} is the same part of the fourth a_{4}.
Prop. vir. is so obvious that it may be considered axiomatic. Also Prop. viil. and Prop. ix. are so simple and obvious, as not to require algebraical proof.

Prop. x. Algebraically.
Let A_{1} have a greater ratio to α, than A_{s} has to a.
Then $A_{1}>A_{3}$.
For the ratio of A_{1} to a is represented by $\frac{A_{1}}{a}$,
and the ratio of A_{3} to a is represented by $\frac{A_{3}}{a}$,
and since $\frac{A_{1}}{a}>\frac{A_{3}}{a} ;$
it follows that $A_{1}>A_{9}$.
Secondly. Let a have to A_{3} a greater ratio than a has to A_{1}.
Then $A_{3}<A_{2}$.
For the ratio of $a: A_{3}$ is represented by $\frac{a}{A_{3}}$,
and the ratio of $a: A_{1}$ is represented by $\frac{a}{A_{1}}$,

$$
\text { and since } \frac{a}{A_{3}}>\frac{a}{A_{2}},
$$

dividing these unequals by a,

$$
\therefore \frac{1}{A_{3}}>\frac{1}{A_{1}}
$$

and multiplying these unequals by $A_{1} . A_{3}$,

$$
\begin{aligned}
& \therefore A_{1}>A_{3} \\
& \text { or } A_{2}<A_{3}
\end{aligned}
$$

Prop. xi. Algebraically.
Let the ratio of $A_{1}: a_{2}$ be the same as the ratio of $A_{3}: a_{4}$, and the ratio of $A_{3}: a_{4}$ be the same as the ratio of $A_{6}: a_{6}$. Then the ratio of $A_{2}: a_{2}$ shall be the same as the ratio of $A_{6}: a_{6}$.

For since $A_{1}: a_{2}:: A_{3}: a_{4}$,

$$
\therefore \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}},
$$

and since $A_{3}: a_{4}:: A_{5}: a_{6}$

$$
\begin{gathered}
\therefore \frac{A_{3}}{a_{4}}=\frac{A_{6}}{a_{6}} \\
\text { Hence } \frac{A_{1}}{a_{2}}=\frac{A_{6}}{a_{6}}, \\
\text { and } A_{1}: a_{2}:: A_{5}: a_{8} .
\end{gathered}
$$

Prop. xir. Algebraically.
Let $A_{1}, a_{2}, A_{3}, a_{4}, A_{5}, a_{6}$ be proportionals,

$$
\text { so that } A_{1}: a_{2}:: A_{3}: a_{4}:: A_{6}: a_{6} \text {. }
$$

Then shall $A_{1}: a_{2}:: A_{1}+A_{3}+A_{5}: a_{2}+a_{4}+a_{6}$.
For since $A_{1}: a_{2}:: A_{3}: a_{4}:: A_{6}: a_{6}$,

$$
\begin{aligned}
& \therefore \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}}=\frac{A_{6}}{a_{6}} \\
& \text { And } \because \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}}, \therefore A_{1} a_{4}=a_{2} A_{3}, \\
& \frac{A_{1}}{a_{2}}=\frac{A_{6}}{a_{6}}, \therefore A_{1} a_{6}=a_{2} A_{5}, \\
& \text { also } A_{1} a_{2}=a_{2} A_{1} .
\end{aligned}
$$

Hence $A_{1}\left(a_{2}+a_{4}+a_{6}\right)=a_{2}\left(A_{1}+A_{3}+A_{5}\right)$, by addition, and dividing these equals by $a_{2}\left(a_{2}+a_{4}+a_{6}\right)$,

$$
\therefore \frac{A_{1}}{a_{2}}=\frac{A_{1}+A_{3}+A_{5}}{a_{2}+a_{4}+a_{6}} ;
$$

and $A_{1}: a_{2}:: A_{1}+A_{3}+\dot{A}_{6}: a_{2}+a_{4}+a_{6}$.
Prop. xiri. Algebraically.
Let $A_{1}, a_{2}, A_{3}, a_{4}, A_{6}, a_{6}$, be six magnitudes, sueh that $\Lambda_{1}: a_{2}:: A^{\circ} a_{44}$
but that the ratio of $A_{3}: a_{4}$ is greater than the ratio of $A_{6}: a_{8}$.
Then the ratio of $A_{1}: a_{2}$ shall be greater than the ratio of $A_{6}: a_{0}$
For since $A_{1}: a_{2}:: A_{3}: a_{4}: \therefore \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}}$;
but since $A_{3}: a_{4}>A_{6}: a_{6} \therefore \frac{A_{3}}{a_{4}}>\frac{A_{6}}{a_{6}}$.

$$
\text { Hence } \frac{A_{1}}{a_{2}}>\frac{A_{6}}{a_{6}} \text {. }
$$

That is, the ratin of $A_{1}: a_{2}$ is greater than the ratio of $\Lambda_{6}: a_{0}$. Prop. xiv. Algebraically.

Let $A_{1}, a_{2}, \boldsymbol{A}_{3}, a_{4}$ be proportionals.
Then if $A_{1}>A_{3}$, then $a_{2}>a_{4}$, and if equal, equal; and if less, les* For since $A_{1}: a_{2}:: A_{3}: a_{4}$,

$$
\therefore \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}} .
$$

Multiply these equals by $\frac{\alpha_{2}}{A_{3}}$;

$$
\therefore \frac{A_{1}}{A_{3}}=\frac{a_{2}}{a_{4}}:
$$

and because these fractions are always equal, if A_{1} be $>A_{3}$, then a_{2} must be greater than a_{4}, for if a_{2} were not greater than a_{4},
the fraction $\frac{a_{2}}{a_{4}}$ could not be equal to $\frac{A_{1}}{A_{3}}$;
whicl would be contrary to the hypothesis.
In the same manner,
if A_{1} be $=A_{3}$, then a_{2} must be equal to a_{4},
and if A_{1} be $<A_{3}, a_{2}$ must be less than a_{4}.
Hence, therefore, if $\& c$.
Prop. xy. Algebraically.
Let A_{1}, a_{2} be any magnitudes of the same kind.
Then $A_{1}: a_{2}:: m A_{1}: m \alpha_{2} ;$
$m A_{1}$ and $m a_{2}$ beiug any equimultiples of A_{1} and a_{2}.

$$
\text { For } \frac{A_{1}}{a_{2}}=\frac{A_{1}}{a_{2}},
$$

and since the numerator and denominator of a fraction may be multiplied by the same number without altering the value of the fraction,

$$
\therefore \frac{A_{1}}{a_{2}}=\frac{m A_{1}}{m a_{2}},
$$

$$
\text { and } A_{1}: a_{2}:: m A_{2}: m a_{2} .
$$

Prop. xur. Algebraically.
Let $A_{1}, a_{2}, A_{3}, a_{4}$ be four magnitudes of the same kind, which are proportionals,

$$
A_{1}: \alpha_{2}:: A_{3}: a_{4} .
$$

Then these shall be proportionals when taken alternately, that is,

$$
\begin{gathered}
A_{1}: A_{3}:: a_{2}: a_{4} . \\
\text { For since } A_{1}: a_{2}: A_{3}: a_{4}, \\
\text { then } \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}} . \\
\text { Multiply these equals by } \frac{a_{2}}{A_{3}}, \\
\therefore \frac{A_{1}}{A_{3}}=\frac{a_{2}}{a_{4}}, \\
\text { and } A_{1}: A_{3}:: a_{2}: a_{4} .
\end{gathered}
$$

Prop. xrin. Algebraically.
Let $A_{1}+a_{2}, a_{2}, A_{3}+a_{4}, a_{4}$ be proportionals, then $A_{1}, a_{2}, A_{3}, a_{4}$ shall be proportionals.
For since $A_{1}+a_{2}: a_{2}:: A_{3}+a_{4}: a_{4}$,

$$
\begin{aligned}
& \therefore \frac{A_{1}+a_{2}}{a_{2}}=\frac{A_{3}+a_{4}}{a_{4}} ; \\
& \text { or } \frac{A_{1}}{a_{3}}+1=\frac{A_{3}}{a_{4}}+1,
\end{aligned}
$$

and taking 1 from each of these equals,

$$
\therefore \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}},
$$

$$
\text { and } A_{3}: a_{2}:: A_{3}: a_{4} .
$$

Prop. xriir, is the converse of Prop. xyin.
The following is Euelid's indireet demonstration.
Let $A E, E B, C F, F D$ be proportionals, that is, as $A E$ to $E B$, so let C' F ' be to $F D$. then these shall be proportionals also when taken jointly; that is, as $A B$ to $B E$, so shall $C D$ be to $D F$.

$$
\begin{array}{l|l|l|l}
\mathrm{A} & & \mathrm{E} & \mathrm{~B} \\
\hline \mathrm{C} & \mathrm{Q} & \mathrm{~F} & \mathrm{D} \\
\hline
\end{array}
$$

For if the ratio of $A B$ to $B E$ be not the same as the ratio of $C D$ to $D F$;
the ratio of $A B$ to $B E$ is either greater than, or less than the ratio of $C D$ to $D F$.
First, let $A B$ have to $B E$ a less ratio than $C D$ has to $D F$;
and let $D Q$ be taken so that $A B$ has to $B E$ the same ratio as $C D$ to $D Q$: and since magnitudes when taken jointly are proportionals, they are also proportionals when taken separately; (v. 17.)
therefore $A E$ has to $E B$ the same ratio as $C Q$ to $Q D$;
but, by the hypothesis, $A E$ has to $E D$ the same ratio as $C F$ to $F D$; therefore the ratio of $C Q$ to $Q D$ is the same as the ratio of $C F$ to $F D$. (v.11.)

And when four magnitudes are proportionals, if the first be greater than the secoud, the third is greater than the fourth; and if equal, equal; and if less, less; (v. 14.) but $C Q$ is less than $C F$,
therefore $Q D$ is less than $F D$; which is absurd.
Wherefore the ratio of $A B$ to $B E$ is not less than the ratio of $C D$ to $D F$;
that is, $A B$ has the same ratio to $B E$ as $C D$ has to $D F$.
Secondly by a similar mode of reasoning, it may likewise be shewn, that $A B$ has the same ratio to $B E$ as $C D$ has to $D F$, if $A B$ be assumed to bave to $B E$ a greater ratio than $C D$ has to $/ P F$.

Prop. xinin. Algebraically.
Let $A_{1}: a_{2}:: A_{3}: a_{4}$.

$$
\text { Then } A_{1}+a_{2}: a_{2}:: A_{3}+a_{4}: a_{4}
$$

For since $A_{1}: a_{2}:: A_{3}: a_{4}$,

$$
\therefore \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}}
$$

and adding 1 to each of these equals;

$$
\begin{gathered}
\therefore \frac{A_{1}}{a_{2}}+1=\frac{A_{3}}{a_{4}}+1, \\
\text { or, } \frac{A_{1}+a_{2}}{a_{2}}=\frac{A_{3}+a_{4}}{a_{4}}, \\
\text { and } A_{1}+a_{2}: a_{2}:: A_{3}+a_{4}: a_{4} .
\end{gathered}
$$

Prop. xix. Algebraically.
Let the whole A_{1} have the same ratio to the whole A_{2}, as a_{1} taken from the first, is to a_{2} taken from the second, that is, let $A_{1}: A_{2}:: a_{1}: a_{2}$.
Then $A_{2}-a_{1}: A_{2}-a_{2}:: A_{1}: A_{2}$.

For since $A_{1}: A_{2}:: a_{1}: a_{2}$,

$$
\therefore \frac{A_{1}}{A_{2}}=\frac{a_{1}}{a_{2}} .
$$

Multiplying these equals by $\frac{A_{2}}{a_{1}}$,

$$
\begin{gathered}
\therefore \frac{A_{1}}{A_{2}} \times \frac{A_{2}}{a_{1}}=\frac{a_{1}}{a_{2}}+\frac{A_{2}}{a_{1}} ; \\
\text { or, } \frac{A_{1}}{a_{1}}=\frac{A_{2}}{a_{2}},
\end{gathered}
$$

and subtracting 1 from each of these equals,

$$
\begin{gathered}
\therefore \frac{A_{2}}{a_{1}}-1=\frac{A_{2}}{a_{2}}-1, \\
\text { or, } \frac{A_{1}-a_{1}}{a_{1}}=\frac{A_{2}-a_{2}}{a_{2}},
\end{gathered}
$$

and multiplying these equals by $\frac{a_{1}}{A_{2}-a_{\varepsilon}}$,

$$
\begin{gathered}
\therefore \frac{A_{1}-a_{1}}{A_{2}-a_{2}}=\frac{a_{1}}{a_{2}}, \\
\text { but } \frac{A_{1}}{A_{2}}=\frac{a_{1}}{a_{2}}, \\
\therefore \frac{A_{1}-a_{1}}{A_{2}-a_{2}}=\frac{A_{1}}{A_{2}}, \\
\text { and } A_{1}-a_{1}: A_{2}-a_{2}:: A_{1}: A_{2} .
\end{gathered}
$$

Cor. If $A_{1}: A_{2}:: a_{1}: a_{2}$,
Then $A_{1}-a_{1}: A_{2}-a_{2}:: a_{3}: a_{2}$, is found proved in the preceding process.
Prop. E. Algebraically.
Let $A_{1}: a_{2}:: A_{3}: a_{4}$,
Then shall $A_{1}: A_{1}-a_{2}:: A_{3}: A_{3}-a_{4}$
For since $A_{1}: a_{2}:: A_{3}: a_{4}$,

$$
\therefore \frac{A_{3}}{a_{2}}=\frac{A_{3}}{a_{4}},
$$

subtracting 1 from each of these equals,

$$
\begin{aligned}
\therefore \frac{A_{1}}{a_{2}}-1 & =\frac{A_{3}}{a_{4}}-1, \\
\text { or, } \frac{A_{1}-a_{2}}{a_{2}} & =\frac{A_{3}-a_{1}}{a_{4}}, \\
\text { but } \frac{A_{1}}{a_{2}} & =\frac{A_{3}}{a_{4}}
\end{aligned}
$$

Dividing the latter by the former of these equals,

$$
\begin{aligned}
& \therefore \frac{A_{1}}{a_{2}} \div \frac{A_{1}-a_{2}}{a_{2}}=\frac{A_{3}}{a_{4}} \div \frac{A_{3}-a_{4}}{a_{4}} ; \\
& \text { or, } \frac{A_{1}}{a_{2}} \times \frac{a_{2}}{A_{2}-a_{2}}=\frac{A_{3}}{a_{4}} \times \frac{a_{4}}{A_{3}-a_{4}},
\end{aligned}
$$

$$
\begin{gathered}
\text { or } \frac{A_{1}}{A_{1}-a_{2}}=\frac{A_{3}}{A_{3}-a_{4}} ; \\
\text { and } A_{1}: A_{1}-a_{2}:: A_{3}: A_{3}-a_{4} .
\end{gathered}
$$

Prop. xx. Algebraically.
Let A_{1}, A_{2}, A_{3} be three magnitudes, and a_{1}, a_{2}, a_{3}, other three
such that $A_{1}: A_{2}:: a_{1}: a_{2}$, and $A_{2}: A_{3}:: a_{2}: a_{3}:$
if $A_{1}>A_{3}$, then shall $a_{1}>a_{3}$,
and if equal, equal ; and if less, less.
Since $A_{2}: A_{2}:: a_{1}: a_{2}, \therefore \frac{A_{1}}{A_{2}}=\frac{a_{1}}{a_{2}}$,
also since $A_{2}: A_{3}:: a_{2}: a_{3}, \therefore \frac{A_{2}}{A_{9}}=\frac{a_{2}}{a_{3}}$,
and multiplying these equals,

$$
\begin{gathered}
\therefore \frac{A_{1}}{A_{2}} \times \frac{A_{2}}{A_{3}}=\frac{a_{1}}{a_{2}} \times \frac{a_{2}}{a_{3}}, \\
\quad \text { or } \frac{A_{1}}{A_{3}}=\frac{a_{1}}{a_{3}},
\end{gathered}
$$

and since the fraction $\frac{A_{1}}{A_{3}}$ is equal to $\frac{a_{1}}{a_{3}}$; and that $A_{1}>A_{3}$: It follows that a_{1} is $>a_{3}$.
In the same way it may be shewn
that if $A_{1}=A_{3}$, then $a_{1}=a_{3}$; and if A_{1} be $<A_{3}$, then $a_{1}<a_{3}$.
Prop. xxı. Algebraically.

> Let A_{1}, A_{2}, A_{3}, be three magnitudes, and a_{1}, a_{2}, a_{1} three others, such that $A_{1}: A_{2}: a_{2}: a_{3}$, and $A_{2}: A_{3}:: a_{1}: a_{2}$.

If $A_{2}>A_{2}$, then shall $a_{1}>a_{3}$, and if equal, equal ; and if less, less.

$$
\begin{aligned}
& \text { For since } A_{1}: A_{2}:: a_{2}: a_{3}, \therefore \frac{A_{1}}{A_{2}}=\frac{a_{2}}{a_{3}}, \\
& \text { and since } A_{2}: A_{3}:: a_{1}: a_{2}, \therefore \frac{A_{2}}{A_{3}}=\frac{a_{1}}{a_{2}} .
\end{aligned}
$$

Multiplying these equals,

$$
\begin{aligned}
& \therefore \frac{A_{1}}{A_{2}} \times \frac{A_{2}}{A_{3}}=\frac{a_{2}}{a_{3}} \times \frac{a_{1}}{a_{2}}, \\
& \quad \text { or } \frac{A_{1}}{A_{2}}=\frac{a_{1}}{a_{3}} ;
\end{aligned}
$$

and since the fraction $\frac{A_{3}}{A_{3}}$ is cqual to $\frac{a_{1}}{a_{3}}$,

$$
\text { and that } \Lambda_{1}>\Lambda_{2}
$$

It follows that also $a_{1}>a_{3}$.
Similarly, it may be shewn, that if $A_{1}=A_{3}$, then $a_{1}=a_{3}$;
and if $A_{1}<\Lambda_{3}$, also $a_{1}<a_{2}$.

Prop. xxir. Algebraically.
Let A_{1}, A_{2}, A_{3} be three magnitudes, and a_{1}, a_{2}, a_{3} other three, such that $A_{1}: A_{2}:: \pi_{1}: a_{2}$, and $A_{2}: A_{3}:: a_{2}: a_{3}$. Then shall $A_{1}: A_{3}:: a_{1}: a_{3}$. For since $A_{1}: A_{2}:: a_{1}: a_{2}, \therefore \frac{A_{1}}{A_{2}}=\frac{a_{1}}{a_{2}}$, and since $A_{2}: A_{3}:: a_{3}: a_{4}, \therefore \frac{A_{2}}{A_{3}}=\frac{a_{3}}{a_{4}}$. Multiply these equals,

$$
\begin{aligned}
\therefore \frac{A_{1}}{A_{2}} \times \frac{A_{2}}{A_{3}} & =\frac{a_{1}}{a_{2}} \times \frac{a_{2}}{a_{3}}, \\
& \text { or } \frac{A_{1}}{A_{3}}
\end{aligned}=\frac{a_{1}}{a_{3}}, ~ \$
$$

$$
\text { and } A_{1}: A_{2}:: a_{1}: a_{3}
$$

Next if there be four magnitudes, and other four such that

$$
\begin{aligned}
& A_{1}: A_{2}:: a_{1}: a_{2} \\
& A_{2}: A_{3}:: a_{2}: a_{3} \\
& A_{3}: A_{4}:: a_{3}: a_{4}:
\end{aligned}
$$

Then shall $A_{1}: A_{4}:: a_{2}: a_{4}$.
For since $A_{1}: A_{2}:: a_{1}: a_{2}, \therefore \frac{A_{1}}{A_{2}}=\frac{a_{1}}{a_{9}}$,

$$
\begin{aligned}
& A_{2}: A_{3}:: a_{2}: a_{3}, \therefore \frac{A_{2}}{A_{3}}=\frac{a_{2}}{a_{3}} \\
& A_{3}: A_{4}:: a_{3}: a_{4}, \therefore \frac{A_{3}}{A_{4}}=\frac{a_{3}}{a_{4}} .
\end{aligned}
$$

Multiplying these equals,

$$
\begin{aligned}
& \therefore \frac{A_{1}}{A_{2}} \times \frac{A_{2}}{A_{3}} \times \frac{A_{3}}{A_{4}}=\frac{a_{1}}{a_{2}} \times \frac{a_{2}}{a_{3}} \times \frac{a_{3}}{a_{4}}, \\
& \text { or } \frac{A_{1}}{A_{4}}=\frac{a_{1}}{a_{4}}, \\
& \text { and } A_{1}: A_{4}:: a_{1}: a_{4},
\end{aligned}
$$

and similarly, if there were more than four magnitudes.
Prop. xxin. Algebraically.
Let A_{1}, A_{2}, A_{3} be three magnitudes, and a_{1}, a_{2}, a_{3} other three,
. such that $A_{1}: A_{2}:: a_{2}: a_{3}$ and $A_{2}: A_{3}:: a_{1}: a_{2}$.
Then shall $A_{1}: A_{3}:: a_{1}: a_{3}$. For since $A_{1}: A_{2}:: a_{2}: a_{3}, \therefore \frac{A_{1}}{A_{2}}=\frac{a_{2}}{a_{3}}$, and since $A_{2}: A_{8}:: a_{1}: a_{2}, \therefore \frac{A_{9}}{A_{8}}=\frac{a_{1}}{a_{9}}$.

Multiplying these equals,

$$
\begin{aligned}
\therefore \frac{A_{1}}{A_{2}} \times \frac{A_{2}}{A_{3}} & =\frac{a_{2}}{a_{3}} \times \frac{a_{1}}{a_{2}}, \\
\text { or } \frac{A_{1}}{A_{3}} & =\frac{a_{1}}{a_{3}},
\end{aligned}
$$

$$
\text { and } A_{1}: A_{3}:: a_{1}: a_{3} .
$$

If these were four magnitudes, and other four,
such that $A_{1}: A_{2}:: a_{3}: a_{4}$,

$$
\begin{aligned}
& A_{2}: A_{3}:: a_{2}: a_{3} \\
& A_{3}: A_{4}:: a_{1}: a_{2}
\end{aligned}
$$

Then shall also $A_{1}: A_{4}:: a_{1}: a_{4}$.
For since $A_{1}: A_{2}:: a_{3}: a_{4}, \therefore \frac{A_{1}}{A_{2}}=\frac{a_{3}}{a_{4}}$,

$$
\begin{aligned}
& A_{2}: A_{3}:: a_{2}: a_{3}, \therefore \frac{A_{2}}{A_{3}}=\frac{a_{2}}{a_{3}}, \\
& A_{3}: A_{4}:: a_{1}: a_{2}, \therefore \frac{A_{3}}{A_{4}}=\frac{a_{1}}{a_{2}} .
\end{aligned}
$$

Multiplying these equals,

$$
\begin{aligned}
& \therefore \frac{A_{1}}{A_{2}} \times \frac{A_{2}}{A_{3}} \times \frac{A_{3}}{A_{4}}=\frac{a_{3}}{a_{4}} \times \frac{a_{2}}{a_{3}} \times \frac{a_{1}}{a_{2}}, \\
& \text { or } \frac{A_{1}}{A_{4}}=\frac{a_{1}}{a_{4}}, \\
& \therefore A_{1}: A_{4}:: a_{1}: a_{4},
\end{aligned}
$$

and similarly, if there be more thau four magnitudea
Prop. xxir. Algebraically.

$$
\begin{aligned}
& \text { Let } A_{1}: a_{2}:: A_{3}: a_{4}, \\
& \text { aud } A_{3}: a_{2}:: A_{0}: a_{4},
\end{aligned}
$$

Then shall $A_{1}+A_{5}: a_{2}:: A_{3}+A_{8}: a_{4}$.

$$
\begin{aligned}
& \text { For since } A_{1}: a_{2}:: A_{3}: a_{4}, \therefore \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}} \\
& \text { and since } A_{0}: a_{2}:: A_{6}: a_{4}, \therefore \frac{A_{5}}{a_{2}}=\frac{A_{6}}{a_{4}}
\end{aligned}
$$

Divide the former by the latter of these equals,

$$
\begin{aligned}
\therefore \frac{A_{1}}{a_{2}} \div \frac{A_{8}}{a_{2}} & =\frac{A_{8}}{a_{4}} \div \frac{A_{0}}{a_{4}} \\
\text { or } \frac{A_{1}}{a_{2}} \times \frac{a_{2}}{A_{5}} & =\frac{A_{3}}{a_{4}} \times \frac{a_{4}}{A_{6}}, \\
\therefore \frac{A_{1}}{A_{0}} & =\frac{A_{3}}{A_{8}}
\end{aligned}
$$

adding 1 to each of these equals;

$$
\begin{aligned}
& \therefore \frac{A_{1}}{A_{3}}+1=\frac{A_{3}}{A_{0}}+1 \\
& \text { or } \frac{A_{1}+A_{6}}{A_{6}}=\frac{A_{3}+A_{6}}{A_{6}}
\end{aligned}
$$

$$
\text { and } \frac{A_{0}}{a_{2}}=\frac{A_{0}}{a_{4}}
$$

Multiply these equals together,

$$
\begin{aligned}
& \therefore \frac{A_{1}+A_{6}}{A_{0}} \times \frac{A_{5}}{a_{2}}=\frac{A_{8}+A_{6}}{A_{6}} \times \frac{A_{0}}{a_{4}} \\
& \quad \text { or } \frac{A_{1}+A_{5}}{a_{2}}=\frac{A_{8}+A_{6}}{a_{4}} \\
& \text { and } \therefore A_{1}+A_{5}: a_{2}:: A_{9}+A_{6}: a_{4}
\end{aligned}
$$

Cor. 1. Similarly may be shewn, that

$$
A_{1}-A_{5}: a_{3}:: A_{3}-A_{6}: a_{4}
$$

Prop. xxv. Algebraically.

$$
\text { Let } A_{1}: a_{2}:: A_{3}: a_{4}
$$

and let A_{1} be the greatest, and consequently a_{4} the least.
Then shall $A_{1}+a_{4}>a_{2}+A_{3}$.
Since $A_{1}: a_{2}:: A_{3}: a_{4}$,

$$
\therefore \frac{A_{1}}{a_{3}}=\frac{A_{3}}{a_{4}}
$$

Multiply these equals by $\frac{a_{2}}{A_{3}}$,

$$
\therefore \frac{A_{1}}{A_{3}}=\frac{a_{2}}{a_{4}}
$$

mbtract I from each of these equals,

$$
\begin{aligned}
& \therefore \frac{A_{1}}{A_{3}}-1=\frac{a_{2}}{a_{4}}-1 \\
& \text { or } \frac{A_{1}-A_{3}}{A_{3}}=\frac{a_{2}-a_{4}}{a_{4}}
\end{aligned}
$$

Multiplying these equals by $\frac{A_{3}}{a_{2}-a_{4}}$,

$$
\begin{aligned}
& \therefore \frac{A_{1}-A_{3}}{a_{2}-a_{4}}=\frac{A_{3}}{a_{4}}, \\
& \quad \text { but } \frac{A_{1}}{a_{2}}=\frac{A_{3}}{a_{4}} \\
& \therefore \frac{A_{1}-A_{3}}{a_{2}-a_{4}}=\frac{A_{1}}{a_{2}}
\end{aligned}
$$

but $A_{1}>a_{3}, \because A_{1}$ is the greatest of the four magnitudes

$$
\therefore \text { also } A_{1}-A_{3}>a_{2}-a_{4}
$$

$$
\text { add } A_{3}+a_{4} \text { to each of these equals, }
$$

$$
\therefore A_{1}+a_{4}>a_{2}+A_{3}
$$

"The whole of the process in the Fifth Book is purely logical, that is, the whole of the results are virtually contained in the definitions, in the manner and sense in which metaphysicians (certaiu of them) imagine all the results of mathematies to be contained in their definitions and hypotheses. No assumption is made to determine the truth of any consequence of this definition, which takes for granted more about number or magnitude than is necessary to understand the definition itself. The
latter being once understood, its results are deduced by inspection-of itself only, without the necessity of looking at any thing else. Hence, a great distinction between the fifth and the preceding books presents itself. The first four are a series of propositions, resting on different fundamental assumptions ; that is, about different kinds of magnitudes. The fifth is a definition and its development; and if the analogy by which names have been given in the preceding Books had been attended to, the propositions of that Book would have been called corollaries of the definition."-Connexion of Number and Magnitude, by Professor De Morgan, p. 56.

The Fifth Book of the Elements as a portion of Euclid's System of Geometry ought to be retained, as the doetrine contains some of the most important characteristies of an effective instrument of intellectual edueation. This opinion is favoured by Dr. Barrow in the following expressive terms: "There is nothing in the whole body of the Elements of a more subtile invention, nothing more solidly established, or more accurately landled, than the doctrine of proportionals."

QUESTIONS ON BOOK V.

1. Explaty and exemplify the meaning of the terms, multiple, submultiple, equimultiple.
2. What operations in Geometry and Arithmetic are analogous?
3. What are the different meanings of the term measure in Geometry? When are Geometrical magnitudes said to have a common measure?
4. When are magnitudes said to have, and not to have, a ratio to one another? What restriction does this impose upon the magnitudes in regard to their species?
5. When are magnitudes said to be commensurable or incommensurable to each other? Do the definitions and theorems of Book v. inelude incommensurable quantities?
6. What is meant by the term geometrical ratio? How is it represented?
7. Why does Euelid give no independent definition of ratio?
8. What sort of quantities are excluded from Euclid's idea of ratio, and how does his idea of ratio differ from the Algebraic definition?
9. How is a ratio represented Algebracally? Is there any distinction between the terins, a rutio of equality, and equality of ratio?
10. In what manner are ratios, in Geometry, distinguished from each other as efual, greater, or less than one another? What objection is there to the use of an independent definition (properly so ealled) of ratio in a system of Geometry?
11. Point out the distinetion between the geometrical and algebraical methods of treating the subject of proportion.
12. What is the geometrical definition of proportion? Whence arises the necessity of such a definition as this?
13. Shew the necessity of the qualification "any whatever" in Euelid's definition of proportion.
14. Must magnitudes that are proportional be all of the same kind?
15. To what objection has Euc. v, def. 5 , bech considered liable?
16. I'oint out the connexion between the more obvious definition of proportion and that given by Euclid, and illustrate clearly the nature of the advantage obtained by which he was induced to aulopt it.
17. Why may not Enchil's definition of proportion be superseded in a system of Geometry by the following: "Four quantities are proportionals,
when the first is the same multiple of the second, or the same part of it, that the third is to the fourth"?
18. Point out the defect of the following definition: "Four magnitudes are proportional when equimultiples may be taken of the first and the third, and also of the second and fourth, such that the multiples of the first and second are equal, and also those of the third and fourth."
19. Apply Euclid's definition of proportion, to shew that if four quantities be proportional, and if the first and the third be divided into the same arbitrary number of equal parts, then the second and fourth will either be equimultiples of those parts, or will lie between the same two successive multiples of them.
20. The Geometrical definition of proportion is a consequence of the Algebraical definition; and conversely.
21. What Geometrical test has Euclid given to ascertain that four quantities are not proportionals? What is the Algehraical test?
22. Show in the manner of Euclid, that the ratio of 15 to 17 is greater than that of 11 to 13 .
23. How far may the fifth definition of the fifth Book be regarded as an axiom? Is it convertible?
24. Def. 9, Book v. "Proportion consists of three terms at least." How is this to be understood?
25. Define duplicate ratio. How does it appean from Euclid that the duplieate ratio of two magnitudes is the same as that of their squares?
26. When is a ratio compounded of any number of ratios? What is the ratio which is compounded of the ratios of 2 to 5,3 to 4 , and 5 to 6 ?
27. By what process is a ratio found equal to the composition of two or more given ratios? Give an example, where straight lines are the magnitudes which express the given ratios.
28. What limitation is there to the alternation of a Geometrical proportion?
29. Explain the construction and sense of the phrases, $c x$ eequali, and ex cequali in proportione perturbata, used in proportions.
30. Exemplify the meaning of the word homologous as it is used in the Fifth Book of the Elements.
31. Why, in Euclid r. 11, is it necessary to prove that ratios which are the same with the same ratio, are the same with one another?
32. Apply the feometrical eriterion to ascertain whether the four lines of $3,5,6,10$ units are proportionals.
33. Prove by taking equimultiples according to Euclid's definition, that the magnitudes 4, 5, 7, 9, are not proportionals.
34. Give the Algebraical proofs of Props. 17 and 18, of the Fifth Book.
35. What is necessary to constitute an exact definition? In the demonstration of Euc. v. 18, is it legitimate to assume the converse of the fifth definition of that Book? Does a mathematical definition admit of proof on the principles of the science to which it relates?
36. Explain why the properties proved in Book v. by means of straight lines, are true of any concrete magnitudes.
37. Enunciate Fuc. v. 8, and illustrate it by numerical examples.
38. Prove Algebraically Euc. v. 25.
39. Shew that when four magnitudes are proportionals, they cannot, when equally inereased or equally diminished by any other magnitude, continue to be proportionals.
40. What grounds are there for the opinion that Euclid intended to exclude the idea of numerical measures of ratios in his Fifth Book?
41. What is the object of the Fiith Book of Euclid's Elements?

BOOK VI.

DEFINITIONS.

I.

Smilar rectilineal figures are those which have their several angles equal, each to each, and the sides about the equal angles propo"tionals.

II.
"Reciprocal figures, viz. triangles and parallelograms, are such as have their sides about two of their angles proportionals in such a manner, that.a side of the first figure is to a side of the other, as the remaining side of the other is to the remaining side of the first."

III.

A straight line is said to be cut in extreme and mean ratio, when the whole is to the greater segment, as the greater segment is to the less.
IV.

The altitude of any figure is the straight line drawn from its vertex perpendicular to the base.

PROPOSITION I. THEOREM.

Triangles and parallelograms of the same altitude are one to the other as their bases.

Let the triangles $A B C, A C D$, and the parallelograms $E C, C F$, lave the same altitude.
viz. the perpendicular drawn from the point A to $B D$ or $B D$ produced.
As the base $B C$ is to the base $C D$, so shall the triangle $A B C$ be to the triangle $A C D$,
and the parallelogram $E C$ to the parallelogram $C F^{\prime}$.

Produce $B D$ both ways to the points H, L,
and take any number of straight lines $B G, G H$, each equal to the base $B C^{\prime}$: (I. 3.)
and $D h^{\prime}, K L$, any number of them, each equal to the base $C D$; and join $A G, A \bar{T}, A K, A L$.
Then, because $C B, B G, G I I$, are all equal,
the triangles $A I I G, A G B, A B C$, are all equal: (土. 38.)
therefore, whatever multiple the base $H C$ is of the base $B C$,
the same multiple is the triangle $A H C$ of the triangle $A B C$:
for the same reason whatever multiple the base $L C$ is of the base $C D$,
the same multiple is the triangle $A L C$ of the triangle $A D C$:
and if the base $H C$ be equal to the base $C L$,
the triangle $A I I C$ is also equal to the triangle $A L C$: (1. 38.)
and if the base $H C$ be greater than the base $C L$,
likewise the triangle $A H C$ is greater than the triangle $A L C$; and if less, less;
therefore since there are four magnitudes,
viz. the two bases $B C, C D$, and the two triangles $A B C, A C D$;
and of the base $B C$. and the triangle $A B C$, the first and third, any equimultiples whatever have been taken,
viz. the base $I I C$ and the triangle $A H C^{\prime}$;
and of the base $C D$ and the triangle $A C D$, the second and fourth, have been takeu any equimultiples whaterer, viz. the base $C L$ and the triangle $A L C$;
and since it has been shewn, that, if the base $M C$ be greater than the base CL,
the triangle $A I I C$ is greater than the triangle $A L C$; and if equal, equal ; and if less, less:
therefore, as the base $B C$ is to the base $C D$, so is the triangle $A B C$ to the triangle $A C D$. (v. def. 5.)
And because the parallelogram $C E$ is double of the triangle $A B C$, (I. 41.)
and the parallelogram $C F$ double of the triangle $A C D$,
and that magnitudes hare the same ratio which their equimultiples have; (r. 15.)
as the triangle $A B C$ is to the triangle $A C D$, so is the parallelogram $E C$ to the parallelogram $C F$;
and because it has been shewn, that, as the base $B C$ is to the base ${ }^{\prime} D$, so is the triangle $A B C$ to the triangle $A C D$;
and as the triangle $A B C$ is to the triangle $A C D$, so is the parallelogram $E C$ to the parallelogram $C F$;
therefore, as the base $B C$ is to the base $C D$; so is the parallelogram $E C$ to the parallelogran $C F$. (т. 11.)

Wherefore, triangles, \&c. Q.E.D.

Cor. From this it is plain, that triangles and parallelograms that have equal altitudes, are to one another as their bases.

Let the figure: be placed so as to have their bases in the same straight line: and having drawn perpendiculars from the vertices of the triangles to the bases, the straight line which joins the rertices is parallel to that in which their bases are, (i. 33.) because the perpendiculars are both equal and parallel to one another. (i. 28.) Then, if the same construction be made as in the proposition, the demonstration will be the same.

PROPOSITION II. THEOREM.

If a straight line be drawn parallel to one of the sides of a triangle it shall cut the other sides, or these produced, proprtionally: and conversely, if the sides, or the sides produced, be cut proportionally, the straight line which joins the points of section shall be parallel to the romaining side of the triangle.
Let $D E$ be drawn parallel to $B C$, one of the sides of the triangle $A B C$. Then $B D$ shall be to $I A$, as $C E$ to $E A$.

$$
\text { Join } B E, C D \text {. }
$$

Then the triangle $B D E$ is equal to the triangle $C D E$, (r. 37.)
because they are on the same base $D E$, and between the same parallels $D E, B C$;

$$
\text { hui } A D E \text { is another triangle; }
$$

and equal magnitudes have the same ratio to the same magnitude: (r. 7.)
therefore, as the triangle $B D E$ is to the triangle $A D E$, so is the triangle $C D E$ to the triangle $A D E$:
but as the triangle $B D E$ to the triangle $A D E$, so is $B D$ to $D A$, (vi. 1.)
because, having the same altitude, viz. the perpendicular drawn from the point E to $A B$, they are to one another as their bases;
and for the same reason, as the triangle $C D E$ to the triangle $A D E$, so is CE to EA:
therefore, as $B D$ to $D A$, so is $C E$ to $E A$. (v. 11.)
Next, let the sides $A B, A C$ of the triangle $A B C$, or these sides produced, be cut proportionally in the points D, E, that is, so that $B D$ may be to $D A$ as $C E$ to $E A$, and join $D E$.

Then $D E$ shall he parallel to $B C$.
The same construction being made,
because as $B D$ to $D A$, so is $C E$ to $E A$;
and as $B D$ to $D A$, so is the triangle $B D E$ to the triangle $A D E$; (vi.1.) and as $C E$ to $E A$, so is the triangle $C D E$ to the triangle $A D E$;
therefore the triangle $B D E$ is to the triangle $A D E$, as the triangle $C D E$ to the triangle $A D E ;(\mathrm{v} .11$.
that is, the triangles $B D E, C D E$ have the same ratio to the triangle All':
therefore the triangle $B D E$ is equal to the triangle $C D E:(v .9$. and they are on the same base $/ / E$:
but equal triangles on the same base and on the same side of it, are between the same parallels; (i. 39.)
therefore $D E$ is parallel to $B C$. Wherefore, if a straight line, \&c. Q.e.D.

PROPOSITION III. THEOREM.

If the angle of a triangle be divided into turo equal angles, by a straight line which also cuts the base; the segments of the base shall have the same ratio which the other sides of the triangle have to one another: and conversely, if the segments of the base have the same ratio which the other sides of the triangle have to one another; the straight line drawn from the vertex to the point of section, divides the vertical angle into two equal angles.

Let $A B C$ be a triangle, and let the angle $B A C$ be divided into two equal angles by the straight line $A D$.

Then $B D$ shall be to $D C$, as $B A$ to $A C$.

Through the point C draw $C E$ parallel to $D A$, (1. 31.) and let $B A$ produced meet $C E$ in E.
Becanse the straight line $A C$ meets the parallels $A D, E C$,
the angle $A C E$ is equal to the alternate angle $C A D:$ ($\mathbf{1} .29$.)
but $C A D$, by the hypothesis, is equal to the angle $B A D$;
wherefore $B A D$ is equal to the angle $A C E$. (ax. 1.)
Again, because the straight line $B A E$ meets the parallels $A D, E C$,
the outward angle $B A D$ is equal to the inward and opposite angle $A E C$: (ı. 29.)
but the angle $A C E$ has been proved equal to the angle $B A D$; therefore also $A C E$ is equal to the angle $A E C$, (ax. 1.)
and consequently, the side $A E$ is equal to the side $A C:$ (1. 6.)
and because $A D$ is drawn parallel to $E C$, one of the sides of the triangle $B C E$,
therefore $B D$ is to $D C$, as $B A$ to $A E$: (1.2.)
but $A E$ is equal to $A C$:
therefore, as $B D$ to $D C$, so is $B A$ to $A C$. (т. 7.)
Next, let $B D$ be to $D C$, as $B A$ to $A C$, and join $A D$.
Then the angle $B A C$ shall be divided into two equal angles by the straight line $A D$.

The same construction being made; because, as $B D$ to $D C$, so is $B A$ to $A C$;
and as $B D$ to $D C$, so is $B A$ to $A E$, because $A D$ is parallel to $E C$; (vi. 2.)
therefore $B A$ is to $A C$, as $B A$ to $A E:(\mathrm{v} .11$. consequently $A C$ is equal to $A E$, (r. 9.)
and therefore the angle $A E C$ is equal to the angle $A C E$: (i. 5.) but the angle $A E C$ is equal to the outward and opposite angle $B A D$, and the angle $A C E$ is equal to the alternate augle $C A D$: (1. 29.) wherefore also the angle $B A D$ is equal to the angle $C A D$; (ax. 1.)
that is, the angle $B A C^{\prime}$ is cut into two equal angles by the straight line $A D$.

Therefore, if the angle, \&e. Q.E.D.

PROPOSITION A. THEOREM.

If the outward angle of a triangle made by producing one of its sides, be divided into two equal ingles, by a straight line, which also outs the buse producad; the segments between the dividing line and the extremities of the base, have the same ratio which the other sides of the triangle have to one another: and conversely, if the segonents of the base produced have the same ratio which the other sides of the triangle have; the straight line draun from the vertex to the point of section divides the outward angle of the triangle into two equal angles.
Let $A B C$ be a triangle, and let one of its sides $B A$ be produced to E; and let the outward angle $C A E$ be divided into two equal angles by the straight line $A D$ which meets the base produced in D.

Then $B D$ shall be to $D C$, as $B A$ to $A C$.

Through C draw $C F$ parallel to $A D$: (r. 31.) and because the straight line $A C$ meets the parallels $A D, F C$, the angle $A C F^{\prime}$ is equal to the alternate angle $(A D)$: (1.29.)
but $C A D$ is equal to the angle $D A E$; (hyp.)
therefore also $D A E$ is equall to the angle $A C F$. (2x. 1.)
Again, because the straight line FAE meets the parallels $A D, F C$, the ontward angle $D A E$ is equal to the inward and opposite angle $C F A$: ((. 29.)
but the angle $A C F$ has been proved equal to the angle $D A E$;
therefore also the angle $A C F^{\prime}$ is equal to the angle C $A A$: (ax. 1.)
and consequently the side $A F^{\prime}$ is equal to the side $A C^{\prime}$: (1. 6.)
and because $A D$ is parallel to $F C$, a side of the triangle $B C F$, therefore, $B D$ is to $D C$, as $B A$ to $A F^{\prime}$: (vi. 2.)
but $A F$ is equal to $A C$;
therefore as $B D$ is to $D C$, so is $B A$ to $A C$. (v. 7.)
Next, let $B D$ be to $D(Y$, as $B A$ to $A C$, and join $A D$.
The angle $C A D$, shall be equal to the angle $D A E$.
The same construction being made, because $B D$ is to $D C$, as $B A$ to $A C$;
and that $B D$ is also to $D C$, as $B A$ to $A F$; (vi. 2.)
therefore $B A$ is to $A C$, as $B A$ to $A F^{\prime}$: (v. 11.)
wherefore $A C$ is equal to $A F,(v, 9$.
and the angle $A F C$ equal to the angle $A C F$: (1 5.)
but the angle $A F^{\prime} C$ is equal to the outward angle $E A D$, (1. 29.) and the angle $A C F$ to the alternate angle $C A D$;
theretore also $E A D$ is equal to the angle $C A D$. (ax. 1.)
Wherefore, if the outward, \&c. Q.e.d.

PROPOSITION IV. THEOREM.

The sides about the equal angles of equiangular triangles are proportionals; and those which are opposite to the equal angles are homologous sides, that is, are the antecedents or consequents of the ratios.

Let $A B C, D C E$ be equiangular triangles, having the angle $A B C$ equal to the angle $D C E$, and the angle $A C B$ to the angle $D E C$; and consequently the angle $B A C$ equal to the angle $C D E$. (1.32.)

The sides about the equal angles of the triangles $A B C, D C E$ shall be proportionals;
and those shall be the homologous sides which are opposite to the equal angles.

Let the triangle $D C E$ be placed, so that its side $C E$ may be contiguous to $B C$, and in the same straight line with it. (I. 22.)

Then, because the angle $B C A$ is equal to the angle $C E D$, (lyp.) add to each the angle $A B C$;
therefore the two angles $A B C, B C A$ are equal to the two angles $A B C, C E D:($ ax. 2.)
but the angles $A B C, B C A$ are together less than two right angles ; (I. 17.)
therefore the angles $A B C, C E D$ are also less than two right angles: wherefore $B A, E D$, if produced will meet: (1. ax. 12.) let them be produced and meet in the point F :
then because the angle $A B C$ is equal to the angle $D C E$, (hyp.) $B F^{\prime}$ is parallel to $C D$; (128 .)
and because the angle $A C B$ is equal to the angle $D E C$, $A C$ is parallel to $F E$: (1. 28.)
therefore $F A C D$ is a parallelogram ;
and consequently $A F$ is equal to $C D$, and $A C$ to $F D$: (1. 34.)
and because $A C$ is parallel to $F E$, one of the sides of the triangle $F B E$,
$B A$ is to $A F$, as $B C$ to $C E$: (vi. 2.) but $A F$ is equal to $C D$;
therefore, as $B A$ to $C D$, so is $B C$ to $C E:$: (г. 7.) and alternately, as $A B$ to $B C$, so is $D C$ to $C E$; (v. 16.)

$$
\begin{gathered}
\text { again, becanse } C D \text { is parallel to } B F, \\
\text { as } B C \text { to } C E \text {, so is } F D \text { to } D E:(\text { vr. 2.) } \\
\text { but } F D \text { is equal to } A C \text {; } \\
\text { therefore, as } B C \text { to } C E \text {, so is } C \text { to } D E ; \text { (v. 7.) } \\
\text { and alternately, as } B C \text { to } C A, \text { so } C E \text { to } E D: \text { (v. } 16 .) \\
\text { therefore, because it has been proved that } A B \text { isto } B C \text {, as } D C \text { to } C E \text {, } \\
\text { and as } B C C \text { to } C A \text {, so } C E \text { to } E D, \\
\text { ex aquali, } B A \text { is to } A C, \text { as } C D \text { to } D E \text { (v. 22.) } \\
\text { Therefore the sides, } \& \text {. Q.E.D. }
\end{gathered}
$$

PROPOSITION V. THEOREM.

If the sides of turo triangles, about each of their anglcs, be proportionals, the triangles shall be equiangular; and the equal angles shall be those which are opposite to the homologous sides.

Let the triangles $A B C, D E F$ have their sides proportionals, so that $A B$ is to $B C$, as $D E$ to $E F^{\prime}$; and $B C$ to $C A$. as $E F$ to $F D$;
and consequently, ex requali, $B A$ to $A C$, as $E D$ to $D F$.
Then the triangle $A B C$ shall be equiangular to the triangle $D E F$, and the angles which are opposite to the homologous sides shall be equal, viz. the angle $A B C$ equal to the angle $D E F$, and $B C A$ to $E F D$, and also $B A C$ to $E D F$.

At the points E, F, in the straight line $E F$, make the angle $F E G$ equal to the angle $A B C$, and the angle $E F G$ equal to $B C A$; (r. 23.)
wherefore the remaining angle $E G F$, is equal to the remaining angle BAC, (1. 32.)
and the triangle $G^{\prime} E F$ ' is therefore equiangular to the triangle $A B C$:
consequently they have their sides opposite to the equal angles
proportional: (vi. 4.)
wherefore, as $A B$ to $B C$, so is $G E$ to $E F$;
but as $A B$ to $B C$, so is $D E$ to $E F$; (hyp.)
therefore as $D E$ to $E F$, so $G E$ to $E F$; (v. 11:)
that is, $D E$ and $G E$ have the same ratio to $E F$, and consequently are equal. (v. 9.)
For the same reason, $D F$ is equal to $F G$:
and because, in the triangles $I D E F, G E F, D E$ is equal to $E G$, and $E F$ is common,
the two sides $D E, E F$ are equal to the two $G E, E F$, each to each ; and the base $D F$ is equal to the base $G F$;
therefore the angle $D E F$ is equal to the angle $G E F$, (x. 8.)
and the other angles to the other angles which are subtended by the equal sides; (i. 4.)
therefore the angle $D F E$ is equal to the angle $G F E$, and $E D F$ to $E G F$.
and becanse the angle $D E F$ is equal to the angle $G E F$, and $G E F$ equal to the angle $A B C$; (constr.)
therefore the angle $A B C$ is equal to the angle $D E F$: (ax. 1.) for the same reason, the angle $A C B$ is equal to the angle $D F E$, and the angle at A equal to the augle at U :
therefore the triangle $A B C$ is equiangular to the triangle $D E F$.
Wheretore, if the sides, dee. Q.E.D.

PROPOSITION VI. THEOREM.

If tuon triangles have one angle of the one equal to one angle of the other, and the sides about the equal anyles proportionals, the triangles shall be equiangular, and shall have those angles equal which are opposite to the homologous sides.

Let the triangles $A B C, D E F$ have the angle $B A C$ in the one equal to the angle $E D F$ in the other, and the sides about those angles proportionals; that is, $B A$ to $A C$, as $E D$ to $D F$.

Then the triangles $A B C, D E F$ shall be equiangular, and shail have the angle $A B C$ equal to the angle $D E F$, and $A C B$ to $D F E$.

At the points D, F, in the straight line $D F$, make the angle $F D G$ equal to either of the angles $B A C, E D F ;$ (1.23.) and the angle $D F G$ equal to the angle $A C B$:
wherefore the remaining angle at B is equal to the remaining anglo at $G:(1.32$.
and consequently the triangle $D G F$ is equiangular to the triangle $A B C^{\prime}$; therefore as $B A$ to $A C$, so is $G D$ to $D F$: (тı. 4.) but, by the hypothesis, as $B A$ to $A C$, so is $E D$ to $D F$; therefore as $E D$ to $D F$, so is $G D$ to $D F$; (г. 11.) wherefore $E D$ is equal to $D G$; (v. 9.)
and $D F$ is common to the two triangles $E D F, G D F$:
therefore the two sides $E D, D F^{\prime}$ are equal to the two sides $G D, D F$, each to each ;
and the angle $E D F$ is equal to the angle $G D F$; (constr.)
wherefore the base $E F$ is equal to the base $F G$, (1. 4.)
and the triangle $E D F$ to the triangle $G D F$,
and the remaining angles to the remaining angles, each to each,
which are subtended by the equal sides;
therefore the angle $D F G$ is equal to the angle $D F E$, and the angle at G to the angle at E;
but the angle $D F G$ is equal to the angle $A C B$; (constr.)
therefore the angle $A C B$ is equal to the angle $B F E$; (ax. 1.)
and the angle $B A C$ is equal to the angle EDF: (hrp.)
wherefore also the remaining angle at B is equal to the remaining angle at E; (1. 32.)
theretore the triangle $A B C$ is equiangular to the triangle $D E F$. Wherefore, if two triangles, \&c. Q.E.D.

PROPOSITION VII. THEOREM.

If two iriangles have one angle of the one equal to one angle of the other, nd the sides about two other angles proportionals; then, if each of the remaining angles be either less, or not less, than a right angle, or if one of them be a right angle; the triangles shall be equiangular, and shall have those angles equal about which the sides are proportionals.

Let the two triangles $A B C, D E F$ have one angle in the one equal to one angle in the other,
viz. the angle $B A C$ to the angle $E D F$, and the sides about two other angles $A B C, D E F$ proportionals, so that $A B$ is to $B C$, as $D E$ to $E F$;
and in the first case, let each of the remaining angles at C, F be less than a right angle.
The triangle $A B C$ shall be equiangular to the triangle $D E F$, riz. the angle $A B C$ shall be equal to the angle $D E F$,
and the remaining angle at C equal to the remaining angle at F.

For if the angles $A B C, D E F$ be not equal, one of them must be greater than the other : let $A B C$ be the greater, and at the point B, in the straight line $A B$, make the angle $A B G$ equal to the angle $D E F$; (1.23.) and because the angle at A is equal to the angle at D, (hyp.) and the angle $A B G$ to the angle $D E F$;
the remaining angle $A G B$ is equal to the remaining angle $D F E$:
(I. 32.)
therefore the triangle $A B G$ is equiangular to the triangle $D E F$.
w'ierefore as $A B$ is to $B G$, so is $D E$ to $E F$: (vi. 4.)
but as $D E$ to $E F$, so, by hypothesis, is $A B$ to $B C$; therefore as $A B$ to $B C$, so is $A B$ to $B G:$ (v. 11.)
and because $A B$ has the same ratio to each of the lines $B C, B G$, $B C$ is equal to $B G$; (v. 9.)
and therefore the angle $B G C$ is equal to the angle $B C G$: (г. 5.)
but the angle $B C G$ is, by hypothesis, less than a right angle; therefore also the angle $B G C$ is less than a right angle ;
and therefore the adjacent angle $A G B$ must be greater than a right angle; (I. 13.)
but it was proved that the angle $A G B$ is equal to the angle at F; therefore the angle at F is greater than a right angle;
but, by the hypothesis, it is less than a right angle ; which is absurd.
Thercfore the angles $A B C, D E F$ are not unequal, that is, they are equal :
and the angle at A is equal to the angle at D : (hyp.)
wherefore the remaining angle at C is equal to the remaining angle at F : (1. 32.)
therefore the triangle $A B C$ is equiangular to the triangle $D E F$.

Next, let each of the angles at C, F be not less than a right angle.
Then the triangle $A B C^{\prime}$ shall also in this case be equiangular to the triangle $D E F$.

The same construction being made,
it may be proved in like manner that $B C$ is equal to $B G$, and therefore the angle at C equal to the angle $B C C$:
but the angle at C is not less than a right angle ; (hyp.)
therefore the angle $B G C$ is not less than a right angle:
wherefore two angles of the triangle $B G C$ arc together not less than two right angles:
which is impossible ; (ı. 1ヶ.)
and therefore the triangle $A B C$ may be proved to be equiangular to the triangle $D E F$, as in the first case.
Lastly, let one of the angles at C, F, viz. the angle at C, be a right angle: in this case likewise the triangle $A B C$ shall be equiangular to the triangle $D E F$.

For, if they be not equiangular, at the point B in the straight line $A B$ make the angle $A B G$ equal to the angle $D E F ;$
then it may be prored, as in the first case, that $B G$ is equal to $B C$:
and therefore the angle $B C G$ equal to the angle $B G C$: (г. 5.)
but the angle $B C G$ is a right angle, (hyp.)
therefore the angle $B G C$ is also a right angle ; (ax. 1.)
whence two of the angles of the triangle $B G C$ are together not less than two right angles; which is impossible : (1. 17.)
therefore the triangle $A B C$ is equiangular to the triangle $D E F$. Wherefore, if two triangles, \&:. Q.E.D.

PROPOSITION VIII. THEOREM.

In a right-angled triangle, if a perpendicular be dravo from the rightangle to the base; the trimgles on eueh side of it are similar to the whole triangle, and to one another.

Let $A B C$ be a right-angled triangle, having the right angle $B A C$; and from the point A let $A D$ be drawn perpendicular to the base $B C$.

Then the triangles $A B D, A D C$ shall be similar to the whole triangle $A B C$, and to one another.

Because the angle $B A C$ is equal to the angle $A D B$, each of them being a risht angle, (ax. 11.)
and that the angle at B is common to the two triangles $A B C, A B D$:
the remaining angle $A C B$ is equal to the remaining augle $B A D$; (1. 32.)
therefore the triangle $A B C$ is equiangular to the triangle $A B D$, and the sides abont their equal angles are proportionals; (vi. 4.) wherefore the triangles are similar ;' (vi. def. 1.)
in the like manner it may be demonstrated, that the triangle $A D C$ is equiangular and similar to the triangle $A B C$.
And the triangles $A B D, A C D$, being both equiangular and similar to $A B C$, are equiangular and similar to each other.

Therefore, in a right-angled, \&c. Q.E.D.
Cor. From this it is manifest, that the perpendicular drawn from the right angle of a right-angled triangle to the base, is a mean proportional between the segments of the base; and also that each of the sides is a mean proportional between the base, and the segment of it adjacent to that side: because in the triangles $B D A, A D C$; $B D$ is to $D A$, as $D A$ to $D C$; (ri. 4.) and in the triangles $A B C, D B A ; B C$ is to $B A$, as $B A$ to $B D$: (vi.4.) and in the triangles $A B C, A C D ; B C$ is to $C A$, as $C A$ to $C D$. (ri.4.)

PROPOSITION IN. PROBLEM.

From a given straight line to cut off any part required.
Let $A B$ be the given straight line.
It is required to cut off any part from it.

From the point A draw a straight line $A C$, making any angle with $A B$; and in $A C$ take any point I,
and take $A C$ the same multiple of $A I$, that $A B$ is of the part
which is to be rut off from it :
join $B C$, and draw $I D E$ parallel to $C B$.
Then $A E$ shall be the part required to be cut off.
Because $E D$ is parallel to $B C$. one of the sides of the triangle $A B C$,

and by composition, $C A$ is to $A D$, as $B A$ to $A E$: (v. 18.)
but $C A$ is a multiple of $A D$; (constr.) therefore $B A$ is of the same multiple $A E:$ (v. D.)
whatever part therefore $A D$ is of $A C, A E$ is the same part of $A B$: wherefore, from the straight line $A B$ the part requised is cut ofir. Q.E.F.

PROPOSITION X. PROBLEM.

To divide a given straight line similarly to a given divided straight lin $\boldsymbol{*}$, that is, into purts that shall have the same ratios to one another which the parts of the divided given straight line have.
Let $A B$ be the straight line given to be divided, and $A C$ the divided line.

It is required to divide $A B$ similarly to $A C$.

Let $A C$ be divided in the poirts D, E;
and let $A B, A C$ be placed so as to contain any angle, and join $B C$, and through the points I, E draw $D F, E G$ parallels to $B C$. (ı. 31.)

Then $A B$ shall be divided in the points F, G, similarly to $A C$.
Through D draw $D H K$ parallel to $A B$:
therefore each of the figures, $F I, H B$ is a parallelogram ;
wherefore $D H$ is equal to $F G$, and $I H$ to $G B$: (1.34.)
and because $I I E$ is parallel to $K^{\prime} C$, one of the sides of the tri-
angle Dlic'
as $C E$ to $E D$, so is πH to $H D$: (זr. 2.)
but $h H$ is equal to $B G$, and $H D$ to $G F$;
therefore, as $C E$ is to $E D$, so is $B G$ to $G F:($ т. 7.)
again, because $F D$ is parallel to $G E$, one of the sides of the triangle $A G E$,
as $E D$ is to $D A$, so is $G F$ to $F A$; (vi. 2.)
therefore, as has been proved, as $C E$ is to $E D$, so is $B G$ to $G F$, and as $E D$ is to $D A$, so is $G F$ to $F A$:
therefore the given straight line $A B$, is divided similarly to $A C$. Q.E.F.

PROPOSITION XI. PROBLEM.

To find a third proportional to two given straight lines.
Let $A B, A C$ be the two given straight lines.
It is required to find a third proportional to $A B, A C$.

Let $A B, A C$ be placed so as to contain any angle: produce $A B, A C$ to the points D, \dot{E};
and make $B D$ equal to $A C$:
join $B C$, and through D, draw $D E$ parallel to $B C$. (i. 31.)
Then ($D E$ shall be a third proportional to $A B$ and $A C$.
Because $B C^{\prime}$ is parallel to $U E$. a side of the triangle $A D E$,
$A B$ is to $B D$, as $A C$ to $C E$: (vi. 2.)
but $B D$ is equal to $A C^{?}$;
therefore as $A B$ is to $A C$, so is $A C$ to $C E$. (r. 7.)
Wherefore, to the two given straight lines $A B, A C$, a third proportional C ' E is found. Q.E.F.

PROPOSITION XII. PROBLEM.

To find a fourth proportional to three given straight lines.
Let $A . B, C$ be the three given straight lines.
It is required to find a fourth proportional to A, B, C.
Take two straight lines $D E, D F$, containing any angle $E D F$:
and upon these make $D G$ equal to $A, G E$ equal to B, and $D H$ equal to C; (1. 3.)

join GIT. and through E draw $E F$ parallel to it. (I. 31.)
Then IIF shall be the fourth proportional to A, B, C.
Because $G I I$ is parallel to $E F$, one of the sides of the triangle $D E F$,
$D G$ is to $G E$, as $D I I$ to $I H^{\prime}$; (v. थ.)
but $D G$ is equal to $A, G E$ to B, and $D I I$ to C;
therefore as A is to B, so is (C to $M F$. (v. 7.)
Wherefore to the three given straight lines A, B, C, a fourth proportional $I F$ is found. Q.E.F.

PROPOSITION XIIL. PROBLEM.

To find a mean proportional brtween two given straight lines.
Let $A B, B C^{\prime}$ be the two given straight lines. It is required to find a mean proportional between them.

Place $A B, B C$ in a straight line, and upon $A C$ describe the semicircle $A D C$,
and from the point B draw $B D$ at right angles to $A C$. (1.11.)
Then $B D$ shall be a mean proportional between $A B$ and $B C$. Join $A L, D C$.

And because the angle $A D C$ in a semicircle is a right angle, (iir. 31.)
and because in the right-aigled triangle $A D C, B D$ is drawn from the right angle perpondicular to the base,
$D B$ is a mean proportional between $A B, B C$ the segments of the base: (ri. 8. Cor.)
therefore between the two given straight lines $A B, B C$, a mean proportional $D B$ is found. Q.E.F.

PROPOSITION XIV. THEOREM.

Equal parallelograms, which have one angle of the one equal to one angle of the other, have their sides about the equal angles reciprocally proportional: and conversely, parallelograms that have one ongle of the one equal to one angle of the other, and their sides about the equal angles reciprocally proportional, are equal to one another.

Let $A B, B C$ be equal parallelograms, which have the angles at B equal.

The sides of the parallelograms $A B, B C$ abont the equal angles, shall be reciprocally proportional ;
that is, $D B$ shall be to $B E$, as $G B$ to $B F$.

Let the sides $D B, B E$ be placed in the same straight line; wherefore also $F B, B G$ are in one straight line: (1. 14.) complete the parallelogram $F E$.
And becanse the parallelogram $A B$ is equal to $B C$, and that $F E$ is another parallelogram,

$$
A B \text { is to } F E \text {, as } B C \text { to } F E:(\tau, \tau .)
$$

but as $A B$ to $F E$ so is the base $D B$ to $B E$, (ri. 1.)
and as $B C$ to $F E$, so is the base $G B$ to $B F$:
therefore, as $D B$ to $B E$, so is $G B$ to $B F$. (г. 11.)
Wherefore, the sides of the parallelograms $A B, B C$ about their equal angles are reciprocally proportional.
Next, let the sides about the equal angles he reciprocally proportional, viz. as $D B$ to $B E$, so $G B$ to $B F$:
the parallelogram $A B$ shall be equal to the parallelogram $B C$.
Because, as $D B$ to $B E$, so is $G B$ to $B F$;
and as $D B$ to $B E$, so is the parallelogram $A B$ to the parallelogram FE; (vi. 1.)
and as $G B$ to $B F$, so is the parallelogram $B C$ to the parallelogram $F E$; therefore as $A B$ to $F E$, so $B C$ to $F E:($ (v. 11.)
therefore the parallelogram $A B$ is equal to the parallelogram $B C$.
(v. 9.)

Therefore equal parallelograms, \&c. Q.E.D.

PROPOSITION XV. THEOREM.

Equal triangles which have one angle of the one equal to one angle of the other, huve their sides about the equal angles reciproeally proportional. and conversely, trinngles which have one angle in the one equal to one angls $2 n$ the other, and their sides about the equal angles reeiprocally proportional, are equal to one ginother.

Let $A B C, A D E$ be equal triangles, which have the angle $B A C$ equal to the angle $D A E$.

Then the sides about the equal angles of the triangles shall be reciprocally proportional
that is, $C A$ shall be to $A D$, as $E A$ to $A B$.

Let the triangles be placed so that their sides $C A, A D$ be in one straight line;
wherefore also $E A$ and $A B$ are in one straight line; (1. 14.) and join $B D$.
Because the triangle $A B C$ is equal to the triangle $A D E$, and that $A B D$ is another triangle;
therefore as the triangle $C A B$, is to the triangle $B A D$, so is the triangle $A E D$ to the triangle $D A B$; (r. T.)
but as the triangle $C A B$ to the triangle $B A D$, so is the base $C A$ to the base $4 D$. (yr. 1.)
and as the triangle $E A D$ to the triangle $D A B$, so is the base $E A$ to the base $A B$; (vi. 1.)
therefore as $C A$ to $A D$, so is $E A$ to $A B$: (v. 11.)
wherefore the sides of the triangles $A B C, A D E$, about the equal angles are reciprocally proportional.
Next, let the sides of the triangles $A B C, A D E$ about the equal angles be reciprocally proportional,
viz. $C A$ to $A D$ as $E A$ to $A B$.
Then the triangle $A B C$ shall be equal to the triangle $A D E$. Join $B D$ as before.
Then becanse, as $(A$ to $A D$, so is EA to $A B$; (hyp.)
and as $C A$ to $A D$, so is the triangle $A B C$ to the triangle $B A D$: (vi. 1.)
and as $E A$ to $A B$, so is the triangle $E A D$ to the triangle $B A D$; (vi. 1.)
therefore as the triangle $B A C$ to the triangle $B A D$, so is the trie angle $E A I)$ to the triangle $B A D ;(1,11$.
that is, the trimgles $B_{i} A C, E, L D$ have the same ratio to the triangle BAD:
wherefore the triangle $A B C$ is equal to the triangle $A D E$. (v. 9.) Therefore, equal triangles, \&c. Q.E.D.

PROPOSITION XVI. THEOREM.

If four straight lines be proportionals, the reetangle contained by the extremes is equal to the rectangle contained by the menns: and conversely, if the reetangle contained by the extromes be equal to the rectangle contained by the means, the four straight lines are proportionals.

Let the four straight lines $A B, C I, E, F$ be proportionals, viz. as $A B$ to $C D$, so E to F.
The rectangle contained by $A B, F$, shall be equal to the rectangle contained by $(' L, E$.

From the points A, C draw $A G, C I I$ at right angles to $A B, C D$: (I. 11.)
and make $A G$ equal to F, and $C \Pi$ equal to E; (1. 3.)
and complete the parallelograms $B G, D H$. (r. 31.)
Beeause as $A B$ to $C H$, so is E to F; and that E is equal to $\left(H\right.$, and F to $A G^{\prime}$,
$A B$ is to $C D$ as $C H$ to $A G:$ (т. 7.)
therefore the sides of the parallelograms $B G, D H$ about the equal angles are reeiprocally proportional ;
but parallelograms which have their sides about equal angles reciprocally proportional, are equal to one another: (vi. 14.)
therefore the parallelogram $B G$ is equal to the parallelogram $D I I$: but the parallelogram $B G$ is contained by the straight lines $A B, F$; beeause $A G$ is equal to F :
and the parallelogran $D I$ is contained by $C D$ and E; beeause $C I$ is equal to E;
therefore the rectangle contained by the straight lines $A B, F$, is equal to that which is contained by $C D$ and E.
And if the reetangle contained by the straight lines $A B, F$, be equal to that which is contained by $C D, E$; these four lines shall be proportional, viz. $A B$ shall be to $C D$, as E to F.
The same construetion being made,
because the rectangle contained by the straight lines $A B, F$, is equal to that which is contained by $C D, E$,
and that the rectangle $B G$ is contained by $A B, F$;
becanse $A G_{r}$ is equal to F;
and the rectangle $D I I$ by $C D, E$; beeause $C I I$ is equal to E;
therefore the parallelogram $B G$ is equal to the parallelogram $D H$; (a.. 1.)
and they are equiangular:
but the sides about the equal angles of equal parallelograms are reciprocally proportional: (ri. 14.)
wherefore, as $A B$ to $C D$, so is $C H$ to $A G$.

But $C H$ is equal to E, and $A G$ to F; therefore as $A B$ is to $C D$, so is E to F. (v. 7.) Wherefore, if four, \&c. Q.E.D.

Proposition xvil. Theorey.

If three straight lines be proportionals, the reetangle contained by the extrenes is equal to the square on the mean; and conversely, if the reetangle contained by the extremes be equal to the square on the mean, the thres atraight lines are proportionals.

Let the three straight lines A, B, C be proportionals, viz. as A to B, so B to C.
The rectangle contained by A, C shall be equil to the square on B.

Take D equal to B.
And becanse as A to B, so B to C, and that B is equal to D; A is to B, as D to $C:(\mathrm{v} .7$.
but if four straight lines be proportionals. the rectangle contained br the extremes is equal to that which is contained by the means; (vi. 16.)
therefore the rectangle contained by A, C is equal to that contained by B, D :
but the rectangle contained by B, D, is the square on B, because B is equal to D :
therefore the rectangle contained by A, C, is equal to the square on B. And if the rectangle contained $b y A, C$, be equal to the square on B, then A shall be to B, as B to C.
The same construction being made,
becanse the rectangle contained by A, C is equal to the square on B, and the square on B is equal to the rectangle contained by B, D, becanse B is equal to D;
therefore the rectangle coutained by A, C, is equal to that contained by B, D :
but if the rectangle contained liy the extremes be equal to that contained by the means, the four straight lines are proportionals: (vi. 16.) therefore A is to B, as D) to C : but B is equal to D;
wherefore, as A to B, so B to C.
Therefore, if three straight lines, \&e. Q.e.d.

PROPOSITION XYIII. PROBLEM.

Upon a given straight line to describe a reetilineal figurs similar, and similarly sitnated, to agiven rectilineal figure.

Let $A B$ be the given straight line, and $C D E F$ the given rectilineal figure of four sides.

It is required upon the given straight line $A B$ to describe a rectilineal figure similar, and similarly situated, to C'DEF'.

Join $D F$, and at the points A, B in the straight line $A B$, make the angle $B A G$ equal to the angle at $C,(1.23$.)
and the angle $A B G$ equal to the angle $C D F$;
therefore the remaining angle $A G B$ is equal to the remaining angle $C F D:($ (.32 and ax. 3.)
therefore the triangle $F C D$ is equiangular to the triangle $G A B$.
Again, at the points G, B, in the straight line $G B$, make the anglo $B G I I$ equal to the angle $D F E,(1.23)$
and the angle GEHI equal to $F D E$;
therefore the remaining augle $G H B$ is equal to the remaining angle FED, and the triangle $F D E$ equiangular to the triangle $G B H$:
then, because the angle $A G B$ is equal to the angle $C F D$, and $B G I l$ to DFE,
the whole angle $A G H$ is equal to the whole angle $C F E$; (ax. 2.)
for the same reason, the angle $\angle B H$ is equal to the angle $C D E$:
also the angle at A is equal to the angle at C, (constr.) and the angle $G H B$ to $F E D$:
therefore the rectilineal figure $A B H I f^{\prime}$ is equiangular to $C D E F$:
likewise these figures have their sides about the equal angles proportionals:
because the triangles $G d B, F C D$ being equiangul:ur, $B A$ is to $A G$, as $C D$ to $C F$; (vi. 4.)
and becanse $A G$ is to $G B$, as $C F$ to $F D$; and as $G B$ is to $G I I$, so is $F D$ to $F E$,
by reason of the equiangular triangles $B G I I, D F E$, therefore, ex requali, $A G$ is to $G I I$, as $C F$ to $F E$. (т. 22.)
In the same manner it may be proved that $A B$ is to $B I I$, as $C D$ to $D E$:
and $G H$ is to $H B$, ns $F E$ to $E D$. (vi. 4.)
Wherefore, because the rectilineal figures $A B I I G, C D E F$ are equiangular.
and have their sides about the equal angles proportionals, they are similar to one another. (vi. def. 1.)
Next, let it be required to describe upon a given straight line $A B$, a rectilineal figure similar, and similarly situated, to the rectilineal figure DFEF of five sides.

Join $D E$, and upon the given straight line $A B$ describe the rectilineal figure $A B I T\left(A^{\prime}\right.$ similar, and similarly situated, to the quadrilateral figure $C D E F$, by the former case:
and at the points $B, I I$, in the straight line $B I I$, make the a gle $H B L$ equal to the angle $E D K$,
and the angle $B H L$ equal to the angle $D E K$;
therefore the remaining angle at L is equal to the remaining angle at K. (I. 32, and ax. 3.)

And because the figures $A B H G, C D E F$ are similar,
the angle G $U D$ ' is equal to the angle $F E D$; (vi. def. 1.)
and BHL is equal to $D E K$;
wherefore the whole angle $G H L$ is equal to the whole angle $F E F$:
for the same reason the angle $A B L$ is equal to the angle $C D F^{\text {: }}$:
therefore the fire-sided figures A GHILB, CFEKD are equiangular :
and because the tigures $A G I D B . C F E H$ are similar, $G H$ is to $I B$, as $F E$ to $E D$; (vi. def. 1.)
but as $H B$ to $H L$, so is $E D$ to $E K$; (ri. 4.)
therefore, ex æquali, GII is to IIL, as FE to EH: (v. 22.)
for the same reason, $A B$ is to $B L$, as $C D$ to $D H^{*}$:
and $B L$ is to $L I I$, as $D F^{\circ}$ to $I^{2} E$, (vi. 4.)
because the triangles $B L H, D F^{-} E$ are equiangular:
therefore because the fire-sided figures $A G H L B$, CFEKD are equiangular,
and have their sides about the equal angles proportionals, they are similar to one another.
In the same manner a rectilineal tigure of six sides may be described upon a given straight line similar to one given, and so on. Q.E.F.

PROPOSITION NIX. TIIEOREM.

Similar triangles are to one another in the duplicate ratio of their homologous sides.

Let $A B C, D E F$ be similar triangles, haring the angle B equal to the angle E,
and let $A B$ be to $B C$, as $D E$ to $E F$,
so that the side $B C$ may be homologous to EF. (v. def. 12.)
Then the triangle $A B C^{i}$ shall have to the triangle $D E F$ the duplicate ratio of that which $B C$ hats to $E F$.

Take $B G$ a third proportional to $B C, E F$, (v. 11.) so that $B C$ may be to $E F$ as $E F$ to $B G$ and join $G A$.

Then, because as $A B$ to $B C$, so $D E$ to $E F$;
alternately, $A B$ is to $D E$, as $B C^{\prime}$ to $E F:$ (v. 16.)
but as $B C$ to $E F$, so is $E F$ to $B G^{\prime}$; (constr.)
therefore, as $A B$ to $D E$, so is $E F 10 B\left(F_{i}^{\prime}:(\right.$ r. 11.)
therefore the sides of the triangles $A B G$. WEF, which are about the equal angles, are reciprocally proprortional:
but triangles, which have the sides abont two equal angles recipror cally proportional, are equal to one :nother: (vi. Io.)
therefore the triangle $A B G_{r}^{\prime}$ is equal to the triangle $D E F^{\prime}$:
and becaluse as $B C$ is to $E F$, so $E F$ to $B G$;
and that if three straight lines be proportionals, the first is said to have to the thind, the duplicate ratio of that which it has to the second: (r. def. 10.)
therefore $B C$ has to $B C$ the duplicate ratio of that which $D C$ has to $E P$: but as $B^{\prime} C^{\prime}$ is to $B G^{\prime}$, so is the triangle $A B C^{\prime}$ to the triangle $A B f^{\prime}$; (vı. 1.)
therefore the triangle $A B C^{\prime}$ has to the triangle $\triangle B G$, the duplicate ratio of that which $B C^{\prime}$ has to $E^{\prime} F^{\prime}$:
but the triangle $A B G$ is equal to the triangle $D E F$;
therefore also the triangle $A \overline{B C}$ has to the triangle $D E F$, the duplicate ratio of that which $B C$ has to $E F$.

Therefore similat triangles, \&re. Q.E.D.
Cor. From this it is manifest, that if three straight lines be proportionals, as the first is to the third, so is any triangle upon the first, to a similar and similarly described triangle upon the second.

PROPOSITION XX. THEOREM.

Similar polygons may be divided into the same number of similar triangles, haning the same rution to one munther that the polyyons have; and the polygons have to one another the duplicute ratio of that which their homologous sides have.

Let $A B C D E, F G I I F L$ be similar polygons, and let $A B$ be the side homologous to $F G$:
the polygons $A B C D E, F G H / L$ may be divided into the same number of similar triancles, whereof each shall have to each the same ratio which the polygons have;
and the polygon $A B C D E$ shall have to the polygon $F G H F L$ the
duplicate ratio of that which the side $A B$ has to the side $F G$.

M

Join BE, EC, GL, LII.
And because the polygon $A B C D E$ is similar to the polygon $F G H T L$, the angle $B A E$ is equal to the angle $G F L$. (vi. def. 1.) and $B A$ is to $A E$, as $G F$ to $F L$: (w. def. 1.)
therefore because the triangles $A B E, F G L$ have an angle in one, equai to an angle in the other, and their sides about these equal angles proportionils.
the triangle $A B E$ is equiangular to the triangle $F G L$: (vi. 6.) and therefore similar to it ; (ri. 4.)
wherefore the angle $A B E$ is equal to the angle $F G L$:
and, becanse the polygons are similar,
the whole angle $A B C$ is equal to the whole angle $F G H$; (ri. def. 1.)
therefore the remaining angle $E B C$ is equal to the remaining angle L (fII: 1. 39. and ax. 3.)
and becanse the triangles $A B E, F G L$ are similar, $E B$ is to $B A$, as $L G$ to $G F$; (vi. 4.)
for the same reason, the triangle $E C D$ likewise is similar to the triangle LIIF:
therefore the similar polygons $A B C D E, F G H F L$ are divided into the same number of similar triangles.
Also these triangles shall have, each to each, the same ratio which the polygons have to one another,
the antecedents being $A B E, E B C, E C D$, and the consequents FGL, LGII, LII :
and the polygon $A B C D E$ shall have to the polygon $F G H F L$ the duplicate ratio of that which the side $A B$, has to the homologous side $F G$. Because the triangle $A B E$ is similar to the triangle $F G L$, $A B E$ has to $F G L$, the duplicate ratio of that which the side $B E$ has to the side (iLL: (ri. 19.)
for the same reason, the triangle $B E C$ has to $G L I I$ the duplicate ratio of that which $B E$ has to $G L$:
therefore, as the triangle $A B E$ is to the triangle $F G L$, so is the triangle $B E C$ to the triangle GLH. (v. 11.)
Again, because the triangle $E \cdot B C$ is similar to the triangle $L G I T$,
$E B C$ has to $L G I I$, the duplicate ratio of that which the side $E C$ has to the side $L H$:
for the same reason, the triangle $E C P$ has to the triangle $L H K$, the duplicate ratio of that which $E^{\prime \prime}{ }^{\prime}$ has to $L I I$:
therefore, as the triangle $E B C$ is to the triangle $L G H$, so is the triangle $E^{\prime} C^{\prime} l$) to the triangle $L I I I^{2}:(\mathrm{v} .11$.

> but it has been proved,
that the triangle $E B C$ is likewise to the triangle $L G H$, as the triangle $A B E$ to the triangle $F G L$;
therefore, as the triangle $A B E$ to the triangle $F G L$, so is the triangle $E B C$ to the triangle $L f_{i}^{\prime} I I$, and the triangle $E '^{\prime}(D)$ to the triangle $L H F^{\prime}$: and therefore as one of the antecedents is to one of the consepuents, so are all the antecedents to all the consequents: ($\mathrm{s}, 12$.)
that is, as the triangle $A B E$ to the triangle $F(G L$, so is the polygon A I CMD E to the polygon F(illh L :
but the triangle $A B E$ has to the triangle $F G L$, the duplicate ratio of that which the side $A B$ has to the homologous side $P^{\prime} G ;($ vi. 19.) therefore also the polygon $A B C D E$ has to the polygon FGllif the duplicate ratio of that which $A B$ has to the homologons side $F(t$. Wherefore, similar polygons, \&c. Q.E.D.
Cor. 1. In like manner it may be proved, that similar fomr-sided figures, or of any munber of sides, are one to another in the duplicate ratio of their homologous sides: and it has already been proved in triangles: (vi. 19.) therefore, miversally, similar rectilincal figures are to one another in the duplirate ratio of their homologous sides. Con. 2. And if to $A B, F(C, t$ wo of the homologous sides, a third proportional M be taken, (vi.11.)
$A B$ has to M the duplicate ratio of that which $A B$ has to $F G$: (v. def. 10.)
but the four-sided figure or polygon upon $A B$, has to the foursided figure or polygon upon F (likewise the duplicate ratio of that which $A B$ has to $F G:$ (vy. 20. Cor. 1.)
thercfore, as $A B$ is to M, so is the figure upon $A B$ to the figure upon $F G$: (v.11.)
which was also proved in triangles: (vi. 19. Cor.)
therefore, universally, it is manifest, that if three straight lines be proportionals, as the first is to the third, so is any rectilineal figure upon the first, to a similar and similarly deseribed rectilineal figure upon the second.

PROPOSITION XXI. THEOREM.

Rectilineal figures which are similar to the same rectilineal figure, are also similar to one another.

Let each of the rectilineal figures A, B be similar to the rectilineal figure r.

The figure A shali be similar to the figure B.

Becanse A is similar to C,
they are equiangular, and also have their sides about the equal angles proportional: (ri. def. 1.)
again, becanse B is similar to C,
they are equiangular, and have their sides abont the equal angles
proportionals: (ri. def. 1.)
therefore the figures A, B are each of them equiangular to C, and have the sides about the equal angles of each of them and of O proportionals.

Wherefore the rectilineal figures A and B are equiangular, (I. ax. 1.) and have their sides about the equal angles proportionals; (v. 11.)
therefore A is similar to B. (mi. def. 1.)
Therefore, rectilineal figures, \&L. Q.E.D.

PROPOSITION XNII. THEOREM.

If four straight lines be proportionals, the similar rectilineal figures isimilarly described upon them shall also be proportionals: and conversely, if the similar rectilimeal fiqures similarly deseribed upon four straight lines be proportionals, those straight lines shaill be proportionals.

Let the four straight lines $A B, C D, E F, G I$ be proportionals, viz. $A B$ to $r D$. as $E F$ to $G I$;
and upon $A B, C D$ let the similar rectilineal figures $K A B, L C D$ be similarly described;
and upon $E F$, GII the similar rectilineal figures $1 H F$, $N H$, in like manner:
the rectilineal figure $\pi A B$ shall be to $L C D$, as $M F$ to $N H$.

To $A B, C D$ talse a third proportional X; (vi. 11.)
and to $E F, G H$ a third proportional O :
and because $A B$ is to $C D$ as $E F$ to $G H$,
therefore $C D$ is to Y, as $G H$ to O; (v. 11.)
wherefore, ex wupali, as $A B$ to I, so $E F$ to O : (v. 22.)
but as $A B$ to X, so is the rectilineal figure $K A B$ to the rectilineal figure $L C D$,
and as $E F^{\prime}$ to O, so is the rectilineal figure $M F$ to the rectilineal figure $N H:$ (vi. 20. Cor. 2.)

$$
\text { therefore, as } K A B \text { to } L C D \text {, so is } M F \text { to } N H \text {. (v. 11.) }
$$

And if the rectilineal figure $K A B$ be to $L C D$, as $M F$ to $N H$;
the straight line $A B$ shall be to $C D$, as $E F$ to $G H$.
Make as $A B$ to $C D$, so $E F$ to $P R$, (v. 12.)
and upon $P R$ describe the rectilineal figure $S R$ similar and similarly situated to either of the figures $M F, N M:$ (ri. 18.)
then, because as $A B$ to $C D$, so is $E F$ to $P R$,
and that upon $A B, C D$ are described the similar and similarly situated rectilincals $K A B, L C D$,
and upon $E F, P R$, in like manner, the similar rectilineals $M F, S R$; therefore $K A B$ is to $L C D$, as $M F$ to $S R$:
but by the hypothesis $K A B$ is to $L C D$, as $M F$ to $N H$;
and therefore the rectilincal $M F$ having the same ratio to each of the two $N H, S R$,
these are equal to one another; (v. 9.)
they are also similar, and similarly situated; therefore $G I I$ is equal to $\dot{P R}$:
and becanse as $A B$ to $C D$, so is $E F^{\prime}$ to $P R$, and that $P R$ is equal $G I I$;
$A B$ is to $\because D$, as $E F^{\top}$ to GII. (v. 7.)
If therefore, four straisht lines, \&c. Q.E.D.

PROPOSITION XXNII. THEOREM.

Equiangular parallelograms have to one another the ratio which is compounded of the ratios of their sides.

Let $A C, C F$ be equiangular parallelograms, having the angle $B C D$ equal to the angle $E C G$.

Then the ratio of the parallelogram $A C$ to the parallelogram $C F$, shall be the same with the ratio which is compounded of the ratios of their sides.

Let $B C, C G$ be placed in a straight line; therefore $D C^{\prime}$ and $C^{\prime} E$ are also in a straight line; (i. 14.)
and complete the parallelegram D (x_{i}^{\prime}
and taking any straight line K,
make as $B C$ to $C^{\prime}\left(G\right.$ ', so h^{\prime} to L; (vi. 12.)
and as $D C$ to $C E$. so make L to M; (vi. 12.)
therefore, the ratios of $l l^{\prime}$ to L, and L to M, are the same with the ratios of the sides,
viz. of $B C$ to $C G$, and $D C$ to $C E$:
but the ratio of K^{\prime} to M is that which is said to be compounded of the ratios of K to L, and L to M; (r. def. A.)
therefore K has to M the ratio compounded of the ratios of the sides:
and because as $B C$ to $C G$, so is the parallelogram $A C$ to the parallelogram $C H$; (vı. 1.)
but as $B C$ to $C G$, so is K to L;
therefore π is to L, as the parallelogram $A C$ to the parallelogram CII: (v. 11.)
again, because as $D C$ to $C E$, so is the parallclogram CII to the parallelogram $C F$;
but as $D C$ to $C E$, so is L to M;
wherefore L is to M, as the parallelogram $C H$ to the parallelogram $C F$: (v. 11.)

> therefore since it has been proved,
that as K to L, so is the parallelogram $A C$ to the parallelogram $C I$:
and as L to M, so is the parallelogram $C I$ to the parallelogram $G F$;
ex æquali, K is to M, as the parallelogram $A C$ to the parallelogram $C F^{\prime}:($ r. 22.)
but K has to M the ratio which is compounded of the ratios of the sides;
therefore also the parallelogram $A C$ has to the parallelogram $C F$, the ratio which is compounded of the ratios of the sides.

Wherefore, equiangular parallelograms, \&c. Q.E.D.

PROPOSITION XXIV. TIEOREM.

Parallelograms about the diameter of any parallelogram, are similar to the whole, and to one another.

Let $A B C D$ be a parallelogram, of which the diameter is $A C$; and $E G, H H^{-}$parallelograms about the diameter.
The parallelograms $E G, M K$ shall be similar both to the whole parallelogram $A B C D$, and to one another.

Because DC, GF are parallels,
the angle $A D C$ is equal to the angle $A G F$: (1. 29.)
for the same reason, hecanse $B C, E F$ are parallels, the angle $A B C$ is equal to the angle $A E F$:
and each of the angles $B C D, E F G$ is equal to the opposite angle $D_{A} A$, (1. 84.)
and therefore they are equal to one another:
wherefore the parallelograms $A B C D, A E F G$, are equiangular:
and beeanse the angle $A B C$ is equal to the angle $A E^{\prime} F$,
and the angle $B A C$ common to the two triangles $D A C, E A F$, they are equiangular to one another ;
therefore as $A B$ to $B C$, so is $A E$ to $E F$: (vi. 4.)
and because the opposite sides of parallelograms are equal to one another, (r. 34.)

$$
\begin{aligned}
& A B \text { is to } A D \text { as } A E \text { to } A G ;(\mathrm{v} .7 .) \\
& \text { and } D C \text { to } C B \text {, as } G F \text { to } F E ; \\
& \text { and also } C D \text { to } D A \text {, as } F G \text { to } G A \text { : }
\end{aligned}
$$

therefore the sides of the parallelograms $A B C D, A E F G$ about the equal angles are proportionals ;
and they are therefore similar to one another: (ri. def. 1.)
for the same reason, the parallelogram $A B C D$ is similar to the parallelogram FIICK:
wherefore each of the parallelograms $G E, I H$ is similar to $D B$: but rectilineal figures which are similar to the same rectilineal figure, are also similar to one another: (r1. 21.)
therefore the parallelogram $G E$ is similar to $R I H$.
Wherefore, parallelograms, de. Q.E.D.

PROPOSITION XXV. PROBLEM.

To deseribe a reetilineal figure which shall be similar to one, and cqual to another given reetilineal figure.

Let $A B C$ be the given rectilineal figure, to whieh the figure to be deseribed is required to be similar, and D that to which it must be equal.

It is required to describe a rectilineal figure similar to $A B C$, and equal to D.

Upon the straight line $B C$ describe the parallelogram $B E$ equal to the figure $A B C^{\prime} ;$ (r. 45. Cor.)
also upon C' E deseribe the parallelogram $C M$ equal to D, (1. 45. Cor.) and having the angle $F^{\prime} C E$ equal to the angle $C B L$:
therefore $B^{\prime} C$ and $C^{\prime} F$ are in a straight line, as also $L E$ and $E M$: (1. 29. and i. 14.)
between $B C$ and $C F$ find a mean proportional $G I I$, (va. 13.)
and upon $G H$ deseribe the rectilineal figure $l^{\prime} G I I$ similar and similarly situated to the figure $A B C$. (vi. 18.)

Because $B C$ is to $G H$ as $G I I$ to $C F$,
and that if three straight lines be proportionals, as the first is to the third, so is the figure upon the first to the similar and similarly described figure upon the second; (vi. 20. Cor. 2.)
therefore, as $B C$ to $C F$, so is the rectilineal figure $A B C$ to $H^{\prime} G M$:
but as $D C$ to $C H$, so is the parallelogram $B E$ to the parallelogram $E F$; (ri. 1.)
therefore as the rectilineal figure $A B C$ is to $h^{\circ} G H$, so is the parallelogram $B E$ to the parallelogram $E F^{\prime}$: (v. 11.)
and the rectilineal figure $A B C$ is equal to the prallelogram $B E$; (constr.)
therefore the rectilineal figure $K G H$ is equal to the parallelogram $E F:(\mathrm{v} .14$.
but $E F$ is equal to the figure D; (constr.)
wherefore also $h^{-} G I I$ is equal to D : and it is similar to $A B C$.
Therefore the rectilineal figure $K^{\prime} G H$ has been described similar to the figure $A B C$, and equal to D. Q.E.F.

PROPOSITION XXVI. THEOREM.

If two similar parallelograms lave a common angle, and be similarly situated; they are about the same dianeter.

Let the parallelograms $A B C D, A E F G$ be similar and similarly situated, and have the angle $D A B$ common.
$A B C D$ and $A E F G$ shall be about the same diameter.

For if not, let, if possible, the parallelogram $B D$ have its diameter $A H C$ in a different straight line from $A F$, the diameter of the parallelogram $E G$,

$$
\text { and let } G F \text { meet } A H C \text { in } H \text {; }
$$

and through $I I$ draw $M h^{\prime}$ parallel to $A D$ or $B C^{\prime}$;
therefore the parallelograms $A B C D, A K H G$ being about the same
diameter, they are similar to one another ; (ri. 24.)
wherefore as $D A$ to $A B$, so is $G A$ to $A K$: (vi. def. 1.)
but because $A B C D$ and $A E F G$ are similar parallelograms, (hyp.) as $I A$ is to $A B$, so is $G A$ to $A E$;
therefore as $G A$ to $A E$, so $G A$ to $A K^{\prime}$: (r. 11.)
that is, $G A$ has the same ratio to each of the straight lines $A E, A H^{*}$; and consequently $A K^{\prime}$ is equal to $A E$, (1.9.$)$
the less equal to the greater, which is impossible :
therefore $A B C D$ and $A K H G$ are not about the same diameter : wherefore $A B C D$ and $A E F G$ must be abont the same diameter. Therefore, if two similar, \&e. Q.E.D.

PROPOSITION XXVII. THEOREM.

Of all parallelograms applied to the same straight line, and deficient by parallelograms, similar and similarly situated to that which is described upon the half of the line; that which is applied to the half, and is similar to its defect, is the greaicst.

Let $A B$ be a straight line dirided into two equal parts in C;
and let the parallelogram $A D$ be applied to the half $A C$, which is therefore deficient from the parallelogram upon the whole line $A B$ by the parallelogram $C E$ upon the other half $C B$:
of all the parallelograms applied to any other parts of $A B$, and deficient by parallelograms that are similar and similarly situated to $C E, A D$ shall be the greatest.

Let $A F^{\prime}$ be any parallelogram applied to $A K$, any other part of $A B$ than the half, so as to be deficient from the parallelogram upon the whole line $A B$ by the parallelogram $K H$ similar and similarly situated to $C E$:

$A D$ shall be greater than $A F$.
First, let $A F$ the base of $A F$, be greater than $A C$ the half of $A B$: and because $C E$ is similar to the parallelogram $I I K$, (hyp.)
they are about the same diameter: (ri. 26.)
draw their diameter $D B$, and complete the scheme:
then, because the parallelogram $C F$ is equal to $F E$, (1. 43.) add $h I I$ to both :
therefore the whole $C I I$ is equall to the whole $K E$:
but $C I I$ is equal to $C G$, (1. 36.)
because the base $A C$ is equal to the base $C B$;
therefore $C G$ is equal to $N E$: (ax. 1.)
to each of these equals add $C F$;
then the whole $A F$ is equal to the gnomon $C H L$: (ax. 2.)
therefore $C E$, or the parallelogram $A D$ is greater than the parallelogram $A F$.

Next, let $A K$ the base of $A F^{\prime}$ be less than $A C$:

then, the same construction being made, because $B C$ is equal to $C A$, therefore $H M$ is equal to $M G$; (土. 34.)
therefore the parallelogram $D H$ is equal to the parallelogram $D G$; (I. 36.)

> wherefore $D H$ is greater than $L G$: but $D I I$ is equal to $D I_{i} ;(1,43$.
> theretore $D H^{\prime}$ is greater than $L G^{\prime}$:
> to each of these add $A L ;$
then the whole $A D$ is greater than the whole $A F$.
Therefore, of all parallelograms applied, \&e. Q E.D.

PROPOSITION XXVIII. PROBLEM.

To a given straight line to apply a parallelogram equal to a given rectilineal figure, and deficient by a paralleloyrom similar to a given parallelogram: but the given rectilineal figure to which the parullelogram to be applied is to be eqnal, must not be greater then the proralleloyram applied to half of the given line, having its defect similar to the defect of that which is to be applied; that is, to the given perallelogram.

Let $A B$ be the given straight line, and C the given rectilineal figure to which the parallelogran to be applied is required to be equal, which figure must not be greater (vr. 27.) than the parallelogram applied to the half of the line, having its defect from that upon the whole line similar to the defect of that which is to be applied;
and let l be the parallelogram to which this defect is required to be similar.

It is required to apply a parallelogram to the straight line $A B$, which shall be equal to the figure C, and be deficient from the parallelogram upon the whole line by a parallelogram similar to D.

Divide $A B$ into two equal parts in the point E, ($\mathbf{1}$. 10.)
and upon EB describe the parallelogram EDFG similar and simi-
larly situated to D, (vi. 18.)
and complete the parallelogram $A G$, which must either be equal to C, or greater than it, by the determination.
If $A G$ be equal to C, then what was required is already done:

for, upon the straight line $A B$, the parallelogram $A G$ is applied equal to the figure C, and deficient by the purallelogram $E F$ similar to D.

But, if $A G$ be not equal to C. it is greater than it: and $E F$ is equal to $A C_{x}$; (1. B6.)
therefore $E F$ also is greater than C.
Make the parallelogram $K L M N$ equal to the exeess of $E F$ above σ, and similar and similarly situated to D : (T 1.25. .
then, since D is similar to $E F$, (constr.)
therefore also $K M$ is similar to $E F$, (vi. 21.)
let $K L$ be the homologous side to $E G$, and $L M$ to $G F$: and because $E F$ is equal to O and $F^{\prime} M$ together,
$E F$ is greater than $K N$;
therefore the straight line $E(r$ is greater than $K L$, and $G F$ than $L M$:
make ($i H^{\circ}$ equal to $L K$, and $G O$ equal to $L M$, (1. 3.)
and complete the parallelogram $\mathrm{XGOP}:$ (I. 31.)
therefore $K O$ is equal and similar to $I N$:
but $K M$ is similar to $E F^{\prime}$;
wherefore also YO is similar to $E F$;
and therefore $X O$ and $E F$ are about the same diameter: (vi. 26.) let $G P B$ be their diameter and complete the scheme.
Then, because $E F^{\prime}$ is equal to C and $K M$ together, and $N O$ a part of the one is equal to $K M$ a part of the other, the remainder, viz. the gnomon $E R O$, is equal to the remainder C : (ax. 3.)
and becanse $O R$ is equal to $N S$, by adding $S R$ to cach, (1. 43.) the whole $O B$ is equal to the whole $X B$:
but $X P$ is equal to $T E$, because the base $A E$ is equal to the base
$E B ;$ (1. 36.)
wherefore also $T E$ is equal to $O B:($ ax. 1.)
add $X S$ to each, then the whole TS is equal to the whole, viz. to the gnomon ERO:
but it has been proved that the gnomon ERO is equal to C; and therefore also $T S$ is equal to C.
Wherefore the parallelogram $T S$, equal to the given rectilineal figure C, is applied to the given straight line $A B$, deficient by the parallelogram $\overparen{A} R$, similar to the given one D, becanse $S R$ is similar to $E F$. (yI. 24.) Q.E.f.

PROPOSITION AKIN. PROBLEM.

To a given straight line to apply a parallelogram equal to a given reetilincal figure, cxcceding by a parallelogram similar to another given.

Let $A B$ be the given straight line, and C the given rectilineal figure to which the parallelogram to be applied is required to bo equal, and D the parallelogram to which the excess of the one to be applied above that upon the given line is required to be similar.

It is required to apply a parallelogram to the given straight lino $A B$ which shatl be equal to the figure C, exceeding ly a parallelogram similar to D.

Divide $A B$ into two equal parts in the point E, (r. 10.) and upon $E B$ describe the parallelogram $E L$ similar and similarly situated to D : (vi. 18.)
and make tho parallelogram $G I J$ equal to $E L$ and C together, and similar and similarly situated tı J): (vi. 25.)
wherofore $G I I$ is similar to $E L$: (vi. 21.)
let $K H$ be the side homologous to $F L$, and $K G$ to $F E$:
and because the parallelogram (i / I is greater than $E L$,
therefore the side $K I I$ is greater than $F L$,
and K G than $F E$:
produce $F L$ and $F E$, and make $F L I F$ equal to $K H$, and $F E N$ to πG,
and complete the parallelogram $M N^{+}$:
$M N$ is therefore equal and similar to $G H$:
but $G I I$ is similar to $E L$;
wherefore $M N$ is similar to $E L$;
and consequently $E L$ and $M N$ are about the same diameter: (r .26.)
draw their diameter $F X$, and complete the scheme.
Therefore, since $G I I$ is equal to $E L$ and C together, and that $G H$ is equal to $M N$;
$M N$ is equal to $E L$ and C :
take away the common part EL;
then the remainder, viz. the gnomon $N O L$, is equal to C.
And because $A E$ is equal to $E B$,
the parallelogram $A N$ is egual to the parallelogram $N^{+} B$, (1. 36.) that is, to BMI: (土. 43.)
add $N O$ to each;
therefore the whole, viz. the parallelogram $A X$, is equal to the gnomon NOL:
but the gnomon $N O L$ is equal to C;
therefore also $A X$ is equal to C.
Wherefore to the straight line $A B$ there is applied the parallelogram $A X$ equal to the given rectilineal figure C, exceeding by the parallelogram $P O$, which is similar to D, because $P O$ is similar to $E L$. (VI. 24.) Q.E.F.

PROPOSITION XXX. PROBLEM.

To cut a given straight line in extrem. and mean ratio.
Let $A B$ be the given straight line.
It is required to cut it in extreme and mean ratio.

Upon $A B$ describe the square $B C$, (1. 46.)
and to $A C$ apply the parallelogram $C D$, equal to $B C$, exceeding by the figure $A D$ similar to $B C$: (vi. 29.)
then, since $B C$ is a square, therefore also $A D$ is a square: and because $B C$ is equal to $C D$,
by taking the common part $C E$ from each, the remainder $B F$ is equal to the remainder $A D$:
and these figures are equiangular,
therefore their sides about the equal angles are reciprocally proportional: (rı. 14.)
therefore, as $F E$ to $E D$, so $A E$ to $E B$:
but $F E$ is equal to $A C$, (1.34) that is, to $A B$; (def. 30.)
and $E D$ is equal to $A E$;
therefore as $B A$ to $A E$, so is $A E$ to $E B$:
but $A B$ is greater than $A E$;
wherefore $A E$ is greater than $E B:($ (v. 14.)
therefore the straight line $A B$ is cut in extreme and mean ratio in E. (vi. def. 3.) Q.e.f.

Otherwise:
Let $A B$ be the given straight line.
It is required to cut it in extreme and mean ratio.

Divide $A B$ in the point C, so that the rectangle contained by $A B, B C$, may be equal to the square on $A C$. (in. 11.)
Then, because the rectangle $A B, B C$ is equal to the square on $A C$; as $B A$ to $A C$, so is $A C^{\prime}$ to C'B: (vı. 17.)
therefore $A B$ is cut in extreme and mean ratio in C. (vi. def. 3.) Q.E.F.

PROPOSITION XXXI. THEOREM.

In right-angled triangles, the rectilincal figure describcd upon the side opposite to the right angle, is equal to the similar and similarly described figures upon the sides containing the right angle.

Let $A B C$ be a right-angled triangle, having the right angle $B A C$.
The rectilineal figure described upon $B C$ shall be equal to the similar and similarly described figures upon $B . A, A C$.

Draw the perpendienlar $A D$: (i. 12.)
therefore, becanse in the right-angled triangle $A B C$,
$A D$ is drawn from the right angle at A perpendicular to the base $B C$, the triangles $A B D, A D C$ are similar to the whole triangle $A B C$, and to one another: (vi. 8.)
and becanse the triangle $A B C$ is similar to $A D B$, as $C D$ to $B A$, so is $B A$ to $B D$: (vi. 4.)
and becanse these three straight lines are proportionals,
as the first is to the third, so is the figure upon the first to the similar and similarly deseribed figure upon the second: (vi. 20. Cor. 2.)
therefore as $C^{\prime} B$ to $Z B$), so is the figure upon C'B to the similar and similarly described figme upon lid;
and inversely, as $D P$) to $B C$, so is the figure upon $B A$ to that upon $13 C:(\mathrm{v}$, в.)
for the same reason, as $D C$ to $C B$, so is the figure upon $C A$ to that upon $C B$:
therefore as $B D$ and $D C$ together to $B C$, so are the figures upon $B A, A C$ to that upon $B C$: (1. 24.)
but $B D$ and $D C$ together are equal to $B C$;
therefore the figure described on $B C$ is equal to the similar and similarly described figures on $B A, A C$. (v. A.)

Wherefore, in right-angled triangles, \&c. Q.E.D.

PROPOSITION XXXII. THEOREM.

If tuo triangles whech have two sides of the one proportional to two sides of the other, be joined at one angle, so as to have their homologous sides parallel to one another; the remaining sides shall be in a straight line.

Let $A B C, D C E$ be two triangles, which hare the two sides $B A$, $A C$ proportional to the two $C D, D E$,

$$
\text { viz. } B A \text { to } A C \text {, as } C D \text { to } D E \text {; }
$$

and let $A B$ be parallel to $D C$, and $A C$ to $D E$.

Then $B C$ and $C E$ shall be in a straight line.
Because $A B$ is parallel to $D C$, and the straight line $A C$ meets them, the alternate angles $B A C, A C D$ are equal ; (т. 29.)
for the same reason, the angle $C D E$ is equal to the angle $A C D$;
wherefore also $B A C$ is equal to $C D E$: (ax. 1.)
and because the triangles $A B C, D C E$ have one angle at A equal to one at D, and the sides about these angles proportionals, riz. $B A$ to $A C$, as $C D$ to $D E$,
the triangle $A B C$ is equiangular to $D C E$: (гı. 6.) therefore the angle $A B C$ is equal to the angle $D C E$: and the angle $B A C$ was proved to be equal to $A C D$;
therefore the whole angle $A C E$ is equal to the two angles $A B C$, $B A C$: (ax. 2.)
add to each of these equals the common angle $A C B$,
then the angles $A C E, A C B$ are equal to the angles $A B C, B A C, A C B$: but $A B C, B A C, A C B$ are equal to two right angles: (i. 32.)
therefore also the angles $A C E, A C B$ are equal to two right angles; and since at the point C, in the straight line $A C$, the two straight lines $B C, C E$, which are on the opposite sides of it, make the adja. cent angles $A C E, A C B$ equal to two right angles ;
therefore $B C$ and $C E$ are in a straiglit line. (I. 14.)
Wherefore, if two triangles, \&e. Q.E.D.

PROPOSITION KXXIII. THEOREM.

In equal circles, angles, whether at the centers or circumferences, have the same ratio which the circumferences on which they stand huve to one another. so also have the sectors.

Let $A B C, D E F$ be equal circles ; and at their centers the angles $B G C, E H F$, and the angles $B A C, E D F$, at their circumferences.

As the circumference $B C$ to the circumference $E F$, so shall the angle $B G C$ be to the angle EHF, and the angle $B A C$ to the angle $E D F$;
and also the sector $B G C$ to the sector EIIF.

Take any number of circumferences $C K, K L$, each equal to $B C$, and any number whatever $F M, M N$, each equal to $E F$: and join GK, GL, HM, $H N$.
Because the circumferences $B C, C K, K L$ are all equal, the angles $B G C, C G K, K G L$ are also all equal : (iiI. 27.)
therefore what multiple soever the circumference $B L$ is of the circumference $B C$, the same multiple is the angle $B G L$ of the angle $B G C$:

For the same reason, whatever multiple the circumference EN is of the circumference $E F$, the same multiple is the angle $E I I N$ of the angle EHF'
and if the circumference $B L$ be equal to the circumference $E N$, the angle $B G L$ is also equal to the angle $E 1 H N$; (111. 27.) and if the circumference $B L$. be greater than $E N$,
likewise the angle $B G L$ is greater than $E H N^{\prime}$; and if less, less :
therefore, since there are forr magnitudes, the two ciremferences $B C, E F$, and the two angles $B(\dot{C}, E M F$; and that of the circumference $B C$, and of the angle $B G C$, have been taken any equimultiples whatever, viz. the circumference $B L$, and the angle $B G L$; and of the circumference $E F$, and of the angle EIIF, any equimultiples whatever, viz the circumference $E N$, and the angle $E I I^{\top}$:
and since it has been proved, that if the circumference $B L$ be greater than $E N$;
the angle $B C L$ is greater than EIIN; and if equal, equal : and if less, less;
therefore as the cirenmierence $B C$ to the cirmmference $E F$, so is the angle BGC to the angle E/F h^{\prime} : (v. def:- $\tilde{\sigma}$.)
but as the angle $B G C$ is to the angle EIIF, so is the angle $B A C$ to the angle EIF : (1.15.$)$
for each is double of each: (1II, 20.)
therefore, as the circmonference $l ; C$ is to $E F$, so is the anglo $B G C$ to the angle $E \prime L H$, and the anglo $B A C$ to the angle $E \cdot H F$ '

Also, as the circumference $B C$ to $E F$, so shall the sector $B G C$ be to the sector EIIF.

Join $B C, C K$, and in the circumferences, $B C, C h$, take any points A, O, and join $\mathrm{BI}, \mathrm{NC}, \mathrm{CO}, \mathrm{OK}$.

Then, becanse in the triangles $G B C, G C h^{\prime}$, the two sides $B C, G C$ are equal to the two $C G, G h^{\prime}$ each to each, and that they contain equal angles;
the base $B C$ is equal to the base $C K,(1.4$.
and the triangle $G B C$ to the triangle $G C K$:
and because the circumference $B C$ is equal to the circumference $C h$,
the remaining part of the whole circumference of the circle $A B C$, is equal to the remaining part of the whole circumference of the same circle: (ax. 3.)
therefore the angle $B X C$ is equal to the angle $C O H^{\prime}$; (III. 27.)
and the segment $B N O$ is therefore similar to the segment $C O K$; (iiI. def. 11.)
and they are upon equal straight lines, $B C, C \pi$;
but similar segments of circles upon equal straight lines, are equal to one another: ((iII. 24.)
therefore the segment $B N C$ is equal to the segment $C O K$:
and the triangle $B G C$ was proved to be equal to the triangle $C G F$; therefore the whole, the sector $B G C$, is equal to the whole, the sector $C G h^{\prime}$:
for the same reason, the sector $\pi^{r} G L$ is equal to each of the sectors $B G C, C G h:$
in the same manner, the sectors EHF, FHM, MHN, may be proved equal to one another:
therefore, what multiple soever the circumference $B L$ is of the circumference $B C$, the same multiple is the sector $B G L$ of the sector $B G C$;
and for the same reason, whatever multiple the circumference $E V$ is of $E F$, the same multiple is the sector $E H N$ of the sector EIF:
and if the cireumference $B L$ be equal to $E N$, the sector $B G L$ is equal to the sector EIFN:
and if the eirenmference $B L$ be greater than $E N$, the sector $B C L$ is greater than the sector EIIN; and if less, less;
since, then, there are four magnitudes, the two circumferences $B C, E F$, and the two sectors $B A C(C H F$, and that of the circumference $B C$, and sector $B C C$, the cirmmference $B L$ and sector $B C D$ are any equimultiples whatever; and of the circumference $E F$. and sector $E I I F$, the circumference $E S^{\top}$, and sector $E I S N^{\prime}$ are any equimultiples whatever ;
and since it has been proved, that if the circumference $B L$ be greater than $E N$, the sector $B\left(G L\right.$ is greater than the sector $E H N^{\prime}$; and if equal, equal; and if less, less:
therefore, as the circumference $B C$ is to the circnmference $E F$, so is the sector $B G C$ to the sector $E I I F$. (v. def. 5.$)$

Wherefore, in equal circles, \&c. Q.E.D.

PIOPOSITION B. THEOREM.

If an angle of a triangle be bisected by a straight line which likewise euts the base; the reetengle contained by the sides of the triangle is cqual to the rectangle eontained by the segments of the buse, together with the square on the struight line which lisects the angle.

Let $A B C$ be a triangle, and let the angle $B A C$ be bisected by the straipht line $A D$.

The rectangle $B A, A C$ shall be equal to the rectangle $B D, D C$, together with the square on $A D$.

Describe the circle $A C B$ about the triangle, (Iv. 5.) and produce $A D$ to the circumference in E, and join $E C$.
Then becanse the angle $B A D$) is equal to the angle ($A E$, (hyp.) and the angle $A B D$ to the angle $A E C$, (111. 21.) for they are in the same segment;
the triangles $A B I, A \dot{E C} C$ are equiangular to one amother: (r. 32.) therefore as BA to $A D$, so is EA to $A C$; ((v1. t.)
and consequently the rectangle $B A, A C$ is equal to the rectingle $E A$, AD, (vi. 16.)
that is, to the rectangle $E D, D A$, together with the square on $A D$; (11. 3.)
but the rectangle $l: I$, $D A$ is equal to the rectanglo $B D, D C$: (iir. 35.)
therefore the rectangle $B A, A \subset$ is equal to the rectangle $B D, D C$,
together with the square on $A I J$.
Wherefore, if an angle, de. Q.E.D.

PROPOSITION C. THEOREM.

If from any angle of a triangle, a straight line be dramn perpendientar to the buse; the rentangle contained by the sides of the triangle is equal to the rectrangle comtainall ly the perpendicular and the diameter of the circle described abont the triangige.

Let $A B C$ be a triangle, and $A D$ the perpendicular from the angle A to the base $B C$:

The rectande $B . A, A C$ shall be equal to the rectangle contained by $A D$ and the dianeter of the cirele deseribed about the triangle.

Describe the circle $A C B$ about the triangle, (1v. 5.) and draw its dianeter $A E$, and join $E C$.

Because the right angle $B D A$ is equal to the angle $E C A$ in a semicircle, (in. 31.)
and the angle $A B D$ equal to the angie $A E C$ in the same segment; (in. 21.) the triangles $A B D, A E C^{\prime}$ are equiangular: therefure as $B A$ to $A D$, so is $E A$ to $A C^{\prime}$; (vi. 4.)
and consequently the rectangle $B A, A C$ is equal to the rectangle $E A$, $A D$. (tr. 16.) If therefore from any augle, \&c. Q.E.D.

PROPOSITION D. THEOREM.

The rectangle contained by the diayonals of a quendrilateral fignre inseribed in a circle, is equal to both the rectengles containcel by its opposite sides.

Let $A B C D$ be any quadrilateral figure inscribed in a circle, and join $A C, B D$.

The rectangle contained by $A C . B D$ shall be equal to the two rectangles contained by $A B, C D$, and by $A D, B C$.

Make the angle $A B E$ equal to the angle $D B C$: (土. 23.)
ald to each of these equals the common angle $E B D$,
then the angle $A B D$ is equal to the angle $E B C$:
and the angle $73 D A$ is equal to the angle $B C E$, because they are in the same segment: (rin. 21.)
therefore the triangle $A B I$ is equiangular to the triangle $B C E$: wherefore, as $B C$ is to $C E$, so is $B D$ to $D A$; (vr. 4.)

and consequently the rectangle $B C, A D$ is equal to the rectangle $B D, C E:(1.16$.
again, hecause the angle $A B E$ is equal to the angle $D B C$, and the angle BAE to the angle BDC, (ini. 21.)
the triangle $A B E$ is equiangular to the triangle $B C D$: therefore as $B A$ to $A E$, so is $B I$ to $D C$;
wherefore the rectangle $B A, D C$ is equal to the rectangle $B D, A E$:
but the rectangle $B C^{2}, A D$ has heon shewn to be equal to the rectangle $B D, C E$:
therefore the whole rectangle $A C, B D$ is equal to the rectangle $A B, D C$, torether with the rectangle $A I), B C$. (is. 1.)

Therefore the rectangle, \&e. Q.E.D.

NOTES TO BOOK VI.

Is this Book, the theory of proportion exhibited in the Fifth Book, is applied to the comparison of the sides and areas of plane rectilineal figures, both of those which are similar, and of those which are not similar.

Def. I. In defining similar triangles, one condition is sufficient, namely, that similar triangles are those which have their three angles respectively equal; as in Prop. 4, Book vi., it is proved that the sides about the equal angles of equiangular triangles are proportionals. But in defining similar figures of more than three sides, both of the eonditions stated in Def. 1. are requisite, as it is obvious, for instance, in the case of a square and a rectangle, which have their angles respectively equal, but have not their sides about their equal angles proportionals.

The following definition has been proposed: "Similar reetilineal figures of more than three sides, are those which may be divided into the same number of similar triangles." This definition would, if adopted, require the omission of a part of Prop. 20, Book r1.

Def. III. To this definition nay be added the following:
A straight line is said to be divided harmonically, when it is divided into three parts, such that the whole line is to one of the extreme segments, as the other extreme segment is to the middle part. Three lines are in harmonical proportion, when the first is to the third, as the difference between the first and sceond, is to the difference between the second and third; and the second is called a harmonic mem between the first and third.

The expression 'harmonical proportion' is derived from the following fact in the science of Acousties, that three musical strings of the same naterial, thiekness, and tension, when divided in the mamer stated in the definition, or numerically, as 6,4 , and 3 , produce a certain musical note, its fifth, and its octave.

Def. If. The term altitude, as applied to the same triangles and parallelograms, will be different according to the sides which may be assumed as the base, umless they are equilateral.

Prop. I. In the same manner may be proved, that triangles and paralleiograms upon equal bases, are to one another as their altitudes.

Prop. A. When the triangle $A B C$ is isosceles, the line which bisects the exterior angle at the vertex is parallel to the base. In all other cases, if the line which bisects the angle $B A C$ cut the base $B C$ in the point G, then the straight line $l i l$) is harmonically divided in the points $\left(G^{\prime}, C\right.$.

For $B G$ is to $G C$ ns $B A$ is to $A C$; (v. 3.)
and $B D$ is to $D C$ as $B A$ is to $A C$, (v. A.)
therefore $D D$ is to $I) C$ as $B G$ is to $G C$, but $B(F=B I)-D G$, and $G C=G I-D C$. Wherefore $D I D$ is to $D C$ as $B D-D G$ is to $G D-D C$. Henee $B D, J G, I D C$, are in larmonical proportion.
Prop. Iv. is the first case of similar trianglew, and corresponds to the third case of equal triangles, Prop. 26, Book 1.

Sometimes the sides opposite to the equal angles in two equiangular triangles, are called the correspombing sides, and these are said to be proportionn, which is simply taking the proportion in Euclisl alternately.

The term homologous (óuó入o $o s$), has reference to the places the sides of the triangles have in the ratios, and in one sense, homologous sudes may be considered as corresponding sirles. The homologons sides of any two similar rectilineal figures will be found to be those which are adjacent to two equal angles in each figure.

Prop. V., the converse of Prop. N., is the second ease of similar triangles, and corresponds to Prop. 8, Book r., the second case of equal triangles.

Prop. VI. is the third case of similar triangles, and corresponds to Prop. 4, Book i., the first case of equal triangles.

The property ol similar triangles, and that contained in Prop. 47, Book i., are the most important theorems in Geometry.
lrop. vin. is the fonth case of similar triangles, and corresponds to the fourth case of equal triangles demonstrated in the note to Prop. 26, Book 1.

Prop. ix. The learner here most not forget the different meanings of the word part, as employed in the Elements. The word here has the same meaning as in Euc. I. ax. 9.

It mar be remarked, that this proposition is a more simple case of the next. namely, Prop. x.

Prop. xi. This proposition is that particular case ff Prop. xir., in which the second and third terms of the proportion are equal. These iwo problems exhibit the same results by a Geometrical construction, as are obtained by numerical multiplication and division.

Prop. xill. The difference in the two propositions Euc. II. 14, and Euc. ri. 13, is this: in the Second Book, the problem is, to make a rectangular figure or square equal in area to an irregular rectilinear figure, in which the idea of ratio is not introduced. In the Prop. in the Nixth Book, the problem relates to ratios only, and it requires to divide a line into two parts, so that the ratio of the whole line to the greater segment may be the same as the ratio of the greater segment to the less.

The result in this proposition obtained by a Geometrical construction, is analogous to that which is obtained by the multiplication of two numbers, and the extraction of the square root of the product.

It may be observed, that half the sum of $A B$ and $B C$ is called the Arithmetic mean between these lines; also that $B D$ is called the Gcometric mean between the same lines.

To find two mean proportionals between two given lines is impossible by the straight line and cirele. Pappus has given several solutions of this problem in Book 111. of his Mathematical Collections; and Eutocius has given, in his Commentary on the Sphere and Cylinder of Archimedes, ten different methods of solving this problem.

Prop. xir. depends on the same principle as Prop. xr., and both may easily be demonstrated from one diagram. Join $D F, F E, E G$ in the fig. to Prop. xir., and the figure to Prop. xv, is formed. We may add that there does not appear any reason why the properties of the triangle and parallelogram should be here separated, and not in the first proposition of the Sixth Book.

Prop. xy. holds good when one angle of one triangle is equal to the defect from what the corresponding angle in the other wants of two right angles.

This theorem will perhaps be more distinctly comprehended by the learner, if he will bear in mind, that four magnitudes are reciprocally
proportional, when the ratio compounded of these ratios is a ratio of equality.

Prop. xrir is only a particular case of Prop. xri, and more properly might appear as a corollary: and both are cases of l'rop. xiv.

Algebraically, Let $A B, C D, E, F$, contain a, b, c, d units respeetively.
Then, since a, b, c, d are proportionals, $\therefore \frac{a}{b}=\frac{c}{d}$.
Multiply these equals by $b d, \quad \therefore a d=b c$,
or, the product of the extremes is equal to the product of the means.
And conversely, If the product of the extremes be equal to the product of the means,

$$
\text { or } \cdot d=b c
$$

then, dividing these equals by $b d, \therefore \frac{a}{b}=\frac{c}{d}$
or the ratio of the first to the second number, is equal to the ratio of the third to the fourth.

Similarly may be shewn, that if $\frac{a}{b}=\frac{b}{d}$; then $a d=l^{2}$.

$$
\text { And conversely, if } a d=b^{2} \text {; then } \frac{a}{b}=\frac{b}{d}
$$

Prop. xrmir. Similar figures are said to be similarly situated, when their homologous sides are parallel, as when the figures are situated on the same straight line, or on parallet lines; but when similar figures are situated on the sides of a triangle, the similar figures are said to be similarly sitnated when the homolugous sides of each figure have the same relative position with respect to one another; that is, if the bases on which the similar figures stand, were placed parallel to one another, the remaining sides of the figures, if similaty situated, wonld also be parallel to one another.

Prop. xx. It may easily be shewn, that the perimeters of similar polygons are proportional to their homologons sides.

Prop. xxi. This proposition must be so understood as to include all rectilincal figures whatsocere, which require for the conditions of similarity another condition than is reruaired for the similarity of triangles. sice note on Euc. wi. Def. 1.

Prop, xxir. The doctrine of compound ratio, inchuding duplieate and triplicate ratio, in the form in which it was propounded and practised by the ancient Geometers, has been alnost wholly superseded. However satisfactory for the parposes of exact reasoning the method of expressing the vatio of two surfaces, or of two solids by two straight lines, may be in itself, it has not been found to be the form best suited for the direet applicatiou of the results of (ieometry. Almost all modern writers on Geometry and its applications to every branch of the Mathematical Sciences, have adopted the algeloraical notation of a quotient $A B: B C$; or of a fraction $\frac{A B}{B C}$; for expressing the ratio of twolines $A D, B C$: as well as that of a product $A B \times L C$. or $A B, B C$, for the expression of a rectangle. The want of a concise and expressive method of notation to indicate the proportion of (icometrical magnitudes in a form suited for the direct application of the results, has doubtless fiavoured the introduction of Algebraical symbols into the language of Geometry. It must be adnittel, however, that such notations in the lan-
guage of pure freometry are liable to very serions objections, ehiefly on the ground that pure Geometry does not admit the Arithmetical or Algebraical idea of a pronluct or a quotient into its reasonings. On the other hand, it may be urged, that it is not the employment of symbols which renders a process of reasoning peeuliarly Geometrical or Algchraical, but the ideas which are expressed by them. If symbols be employed in (ieometrieal reasonings, and be maderstood to express the mumitudes themsches and the conception of their Geometrical ratio, and not any measwes, or numerical ealues of them, there would not appear to be any very great objections to their use, provided that the notations employed were such as are not likely to lead to misconception. It is, however, desirable, for the sake of aroiding confusion of ideas in reasoning on the properties of number and of magnitude, that the language and notations employed both in Geometry and Algebra should be rigidly defined and strictly adhered to, in all cases. At the commencement of his Geometrical studies, the student is recommended not to employ the symbols of Algebra in Geometrical denonstrations. How far it may be necessary or advisable to employ them when he fully understands the nature of the subject, is a question on which some difference of opinion exists.

Prop. xxr. There does not appear any sufficient reason why this proposition is placed between Prop. xxiv. and Prop. xxri.

Prop. xxrir. To understand this and the three following propositions more easily, it is to be observed:

1. "That a parallelogram is said to be applied to a straight line, when it is described upon it as one of its sides. Ex. gr. the parallelogram $A C$ is said to be applied to the straight line $A B$.
2. But a parallelogram $A E$ is said to be applied to a straight line $A B$, deficient by a parallelogram, when $L D$ the base of $A E$ is less than $A B$, and therefore $A E$ is less than the parallelogram $A C$ described upon $A B$ in the same angle, and between the same parallels, by the parallelogram $D C^{\prime}$; and $D C$ is therefore called the defect of $A E$.
3. And a parallelogram $A G$ is said to be applied to a straight line $A B$, exceeding by a parallelogram, when $A F$ the base of $A G$ is greater than $A B$, and therefore $A C$ exceeds $A C$ ' the parallehogram deseribed upon $A B$ in the same angle, and between the same parallels, by the parallelogram $B G$."-Simson.

Both among Euelid's Theorems and Problems, cases oceur in whieh the hypotheses of the one, and the data or quæsita of the other, are restricted within certain limits as to magnitude and position. The determination of these limits constitutes the doctrine of Maxima and Vinima. Thus:-The theorem Eue. vi. 27 is a case of the maximum value which a figure fulfilling the other conditions can have; and the succeeding proposition is a problem involving this fact among the conditions as a part of the data, in truth, perfeetly analogous to Ene. 1. 20, 2. ; wherein the limit of possible diminution of the sum of the two sides of a triangle described upon a given base, is the magnitude of the base itself: the limit of the side of a square which shall be equal to the rectangle of the two parts into which a given line may be divided, is half the line, as it appears from Euc. 11. 5 :-the greatest line that can be drawn from a given point within a circle to the cireumference, Euc. III. 7, is the line which passes through the center of the circle; and the least line which can be so drawn from the same point, is the part produced, of the greatest line between the given point and the cireumference. Enc. III. 8 , also affords another instance of a maximum and a minimum when the giren point is outside the given cirele.

Prop. xxix. This proposition is the general case of Prop. 47, Book i, for any similar rectilineal figure described on the sides of a right-angled triangle. The demonstration, however, here given is wholly independent of Euc. I. 47.

Prop. xxxin. In the demonstration of this important proposition, angles greater than two right angles are employed, in accordance with the eriterion of proportionality laid down in Euc. v. def. 5.

This proposition forms the basis of the assumption of ares of cireles for the measures of angles at their centers. One magnitude may be assumed as the measure of another magnitude of a different kind, when the two are so connected, that any variation in them takes phace simultaneously, and in the same direct proportion. This being the case with angles at the center of a circle, and the ares subtended by them; the arcs of circles can be assumed as the measures of the angles they subtend at the center of the circle.

Prop. b. The converse of this proposition does not hold good when the triangle is isosceles.

QUESTIONS ON BOOK VI.

1. Distinguisu between similar figures and equal figures.
2. What is the distinction between homologous sides, and equal sides in Geometrical figures?
3. What is the number of conditions requisite to determine similarity of figures? Is the number of conditions in Euclid's definition of similar figures greater than what is necessary? Propose a definition of similar figures which includes no surertluous condition.
4. Exphain how Euclid makes use of the definition of proportion in Eus. vi. 1.
5. Prove that triangles on the same base are to one another as their altitudes.
6. If two triangles of the same altitude have their bases unequal, and if one of them be divideal into m equal parts, and if the other contain z of those parts; prove that the triangles have the same numerical relation as their bases. Why is this Proposition less general than Euc. vi. 1?
7. Are triangles which have one augle of one equal to one augle of another, and the sides about two other angles proportionals, necessarily similar?
8. What are the conditions, considered by Enclid, under which two triangles are similar to each other ?
9. Apply Euc. vi. 2, to triseet the diagonal of a parallelogram.
10. When are three lines said to be in harmonical propertion? If both the interior and exterior angles at the vertex of a triangle (Eue. vi. 3, A.) he hisected by lines which meet the base, and the base produced in D, G; the segments $B G^{\prime}$, (if), $G C$ of the hase shatl be in Ifarnenical proportion.
11. If the angles at the hase of the triangle in the figure Euc. vi. A, be equal to each other, how is the propesition modified?
12. Under what cireumstaners will the bisecting line in the fig. Euc. vi. A, meet the base on the side of the angle bisected? Shew that there is an indeterminate case.
13. State some of the uses to which Ene. vi. 4, may be applied.
14. Apply Ene. ri. 4, to prove that the reetangle comained by the segments of any chord passing through a given point within a circle is constant.
15. Point out clearly the difference in the proofs of the two latter cases in Euc. vi. 7.
16. From the corollary of Euc. vi. 8, deduce a proof of Eine. i. 47.
17. Shew how the last two properties stated in Euc. vi. 8. Cor. may be deduced from Eue. 1. 47 ; 11. 2; ri. 17.
18. Given the nth part of a straight line, find by a Geometrical construction, the $(n+1)^{\text {th }}$ part.
19. Define what is meant by a mean proportional between two given lines: and find a mean proportional between the lines whose lengths are 4 and 9 units respectively. Is the method you employ suggested by any Propositions in any of the first four books?
20. Determine a third proportional to two lines of 5 and 7 units: and a fourth proportional to three lines of $5,7,9$, units.
21. Find a straight line which shall have to a givea straight line, the ratio of 1 to $\sqrt{5}$.
22. Define reciprocal figures. Enunciate the propositions proved respecting such figures in the Sixth Book.
23. Give the corollary, Euc. vi. 8, and prove thence that the Arithmetic mean is greater than the Geometric between the same extremes.
24. If two ernat triangles have two angles together equal to two right angles, the sides about those angles are reciprocally proportional.
25. Give Algebraical proofs of Prop. 10 and 17 of Book vi.
26. Enunciate and prove the converse of Euc. vi. 15.
27. Exphain what is meant by saying, that "similar triangies are in the duplicate ratio of their homologous sides."
28. What are the duta which determine triangles both in species and magnitude? IIow are those date expressed in (ieqmetry:
29. If the ratio of the homologous sides of tro triangles be as 1 to 4, what is the ratio of the triangles? And if the ratio of the triangles be as 1 to 4 , what is the ratio of the homologous sides?
30. Shew that one of the triangles in the figure, Enc. in. 10 . is a mean proportional hetween the other two.
31. What is the algebraical interpretation of Euc. ti. 19?
32. From your definition of Proportion, prove that the diagonals of a square are in the same proportion as their sides.
33. What propositions does Euclid prove respecting similar polygons?
34. The parallelograms about the diameter of a parallelogram are similar to the whole and to one another. Shew when thay are equal.
35. Prove Algehraically, that the areas (1) of similar triangles and (2) of similar parallelograms are proportional to the squares of their homologous sides.
36. How is it shewn that equiangular parallelograms have to one another the ratio which is compounded of the ratios of their bases and altitudes?
37. To firal two lines which shall have to each other, the ratio compounded of the ratios of the lines A to B, and $($ to I.
38. State the force of the condition "similarty described;" and shew that, on a given straight line, there may be described as mans polygons of different magnitudes, similar to a given polygon, as there are sides of different lengths in the polygon.
39. Deseribe a triangle similar to a given triangle, and having its area double that of the given triangle.
40. The three sides of a triangle are $7,8,9$ units respectively; determine the length of the lines which meeting the base, and the base produced, bisect the interior angle opposite to the greatest side of the triangle, and the adjacent exterior angle.
41. The three sides of a triangle are $3,4,5$ inches respeetively; find the lengths of the external segments of the sides determined by the lines which bisect the exterior angles of the triangle.
4.2. What are the segments into which the hypotennse of a right-angled trongle is divided by a perpendicular drawn from the right angle, if the sides containing it are a and $3 a$ nnits respectively?
42. If the three sides of a triangle be $3,4,5$ units respectively : what are the parts into which they are divided by the lines which bisect the angles opposite to them?
43. If the homologous sides of two triangles be as 3 to 4 , and the area of one triangle be known to contain low square units; how many sqnare units are contained in the area of the other triangle?
44. Prove that if $B D$) be taken in $A B$ produced (fig. Ene. ri. 30) equal to the greater segment $A C$, then $A D$ is divided in extreme and mean ratio in the point D.

Shew also, that in the series $1,1,2,3,5,8,80$. in which each term is the smm of the two preceding terms, the last two terms perpetually approach to the proportion of the segments of a line divided in extreme and mean ratio. Fiad a greneral expression (free from surds) for the nth term of this series.
46. The parts of a line divided in extreme and mean ratio are ineommensurable with cach other.
47. Shew that in Euclid's fignre (Eue. 15. 11.) four other lines, besides the given line, are divided in the reduired manner.

4s. Enunciate Euc. vi. 31. What theorem of a previous book is included in this proposition?
49. What i.s the superior limit, as to magnitude, of the angle at the cirenmferene in Euc. vo. 33: Shew that the froof may be extended by withdrawing the usnally supposed restriction as to angular magnitude; and then deduce, as a comblary, the proposition respecting the magnitudes of angles in segments greater than, equal to, or less than a semicirele.

50 . The sides of a triangle inseribed in a circde are a, b, c, units respeetively: find by Fuc, wa, c, the radins of the cireunseribing circle.
51. Enunciate the converse of Eue. vi. 1.
5.. Shew inderendently that Eue. vi. 1 , is true when the quadrilateral figure is rectangular.
53. Shew that the rectangles contained by the opposite sides of a quatrilateral firure which does not admit of having a cirele deseribed about it, are torether greater than the rectangle contained by the diagonals.
54. What diffrent comditions may be stated as essential to the possibility of the inseription and circumseription of a circle in and abont a quadrilateral ficure?
 nition of proportion is directly applied.
56. Explain briefly the atwantagres ganed by the application of analysis to the solution of (ecometrical I'roblems.
57. In what cases are triangles proved to be equal in Euclid, and in what cases are they proved to be similar?

PROPOSITION I. PROBLEM.

To inseribe a square in a given triangle.
Analysis. Let $A B C^{\prime}$ be the given triangle, of which the base $B C$, and the perpendicular $A D$ are given.

Let FGIIf t, the required inscribed square.
Then BIIfr, BDA are similar triangles.
and $C_{i} H$ is to $A B$, as $A D$ is to $A B$, but $G F$ is equal to $C H$;
therefore $G F$ is to $\left(G^{\prime} B\right.$, as $A D$ is to $A B$.
Let $B F$ be joined and produced to meet a line dramn from A parallel to the base $B C$ in the point E.

Then the triangles $D G F, B A E$ are similar,

$$
\text { and } A E \text { is to } A B \text {, as } G F \text { is to } G R \text {, }
$$ but $G F$ is to $G B$, as $A D$ is to $A B$;

wherefore $A E$ is to $A B$, as $A D$ is to $A B$; hence $A E$ is equal to $A I$.
Synthesis. Through the rertex A, draw $A E$ parallel to $B C$ the base of the triangle, make $A E$ equal to $A D$, join $E B$ cutting $A C$ in F,

also through $\left({ }_{r}\right.$ draw $G H$ parallel to $A D$.
Then $G H F F^{\text {is }}$ the square required.
The different cases may be considered when the triangle is equilaterah, scalene, or isosceles, and when each side is taken as the base.

PROPOSITION II. TILEOREM.

If from the extremities of any diamster of a given circle, perpendiculars be draien to any chord of the eirele, they sheill mest the chord, or the chord produced in two points whieh are equidistunt from the center.

First, let the chord $C D$ intersect the diameter $A B$ in L. but not at right angles; and trom A, B, let $A E, B F$ be drawn perpendicular to $(I J)$. Then the points F, E are equidistant from the center ot the chord (D).

Join $E B$, and from I the center of the circle, draw $I G$ perpendicular to $C D$, and produce it to meet $E B$ in H.

Then $I(f$ bisects $C D$ in G; (iII. 2.)
and $I G, A E$ being both perpendicular to $C D$, are parallel. (1. 29.)
Therefore $B I$ is to $D I I$, as $I A$ is to $H E$; (vi. 2.)
and $B H$ is to $F G$, as $H E$ is to $G E$;
therefore $B I$ is to $F G$, as $I A$ is to $G E$;
but $B I$ is equal to $I A$;
theretore $F G$ is equal to $G E$.
It is also manifest that $I E E$ is equal to $C F$.
When the chord does not intersect the dianeter, the perpendiculars interseet the chord produced.

PROPOSITION III. THEOREM.

If two diagnals of a regular pentagon be drawn to cut one another, the greater segments will be erral to the side of the prentagon, and the diagonals vill cut one another in extreme and mean ratio.

Let the diagonals $A C, B E$ be drawn from the extremities of the side $A B$ of the rergular pentagon $A B C D E$, and intersect each other in the point H.

Then $B E$ and $A C$ are cut in extreme and mean ratio in I. and the greater serment of each is equal to the side of the pentagon.
Let the circle $A B C D E$ be described abont the pentagon. (15. 14.)
Because $E A, A B$ are equal to $A B, B C$, and they contain equal angles;
therefore the hase $E B$ is equal to the hase $A C$. (1. 4.) and the triangle $E A B$ is equal to the triangle $C B A$,
and the remaning angles will he equal to the remaining angles, each to each, to which the equal sides are oprosite.

Therefore the angle $B A C$ is equal to the angle $A B E$; and the angle $A / I E$ is double of the angle $13.4 I$. (土. 32.) but the angle $E A C$ is also double of the angle $B A C$, (ri. 33.) therefore the angle $I A A E$ is equal to $A H E$,
and consequ ntly $/ I E$ is equal to $E A$, (1. (i.) or to $A B$.
And becanse $B A$ is equal to $A E$,
the angle $A B E$ is equal to the angle $A E B$;
but the angle $A B E$ has been proved equal to $B A I T$: therefore the angle $B E A$ is equal to the angle $B A I I$:
and $A B E$ is common to the two triangles $A B E, A B H$;
therefore the remaining angle $B A E$ is equal to the remaining angle AILB;
and consequently the triangles $A B E, A B H$ are equiangular ;
therefore $E B$ is to $B A$, as $A B$ to $B I I$: but $B A$ is equal to $E I I$, therefore $E B$ is to $E I I$, as $E I I$ is to $B H$,
but $B E$ is greater than $E I$; therefore $E I$ is greater than $H P$;
therefore $B E$ has been cut in extreme and mean ratio in I.
Similarly, it may be shewn, that $A C$ has also been cut in extreme and mean ratio in $I I$, and that the greater segment of it $C^{\prime} I I$ is equal to the side of the pentagon.

Proposition iv. probley.

Divide a given are of a circle into two parts which shall have their chords in a given ratio.

Analysis. Let A, B be the two given points in the circumference of the circle, and C the point required to be fornd, such that when the chords $A C$ and $B C$ are joined, the lines $A C$ and $B C$ shall have to one another the ratio of E to F.

Draw $C D$ tonching the circle in C^{\prime}; join $A B$ and produce it to meet $C D$ in D.
Since the angle $B A C$ is equal to the angle $B C D$, (1II, ?,2.)
and the angle CDB is common to the two triangles $D B C, I D C$;
therefore the third angle $C B D$ in one, is equal to the third angle
$D C A$ in the other, and the triangles are similar.
therefore $A D$ is to $D C$, as $D($ is to $J B$: (vi. 4.)
hence also the square on $A D$ is to the square on $I C$ as $A D$ is to BD. (vi. 20. Cor.)

$$
\begin{aligned}
& \text { But } A D \text { is to } A C \text { as } D C \text { is to } C B \text {. (vi. 4.) } \\
& \text { and } A D \text { is to } D C \text { as } A C \text { to } C B,(\text { v. } 16 .)
\end{aligned}
$$

also the square on $A D$ is to the square on $D C$, as the square on $A C$ is to the square on $C D$;
but the square on $A D$ is to the square on $D r$, as $A D$ is to $D B$:
wherefore the square on A^{C} is to the surure on $(B$, as $A J$ is to $H D$;
but $.1 C$ is to $C B$, as E is to F (constr.)
therefore $A J$, is to $J B$, as the square on F is to the square on F.
Hence the ratio of $A D$ to $I D$ is given,
and $A B$ is given in magnitnde, becanse the points A, B in the circumference of the circle are given.

Wherefore also the ratio of $A D$ to $A B$ is given, and also the magnitude of $A D$.
Synthesis. Join $A B$ and produce it to D, so that $A D$ shall be to $B D$, as the square on E to the square on F.

From 11 draw $D C$ to touch the circle in C, and join $C B, C A$. Since $A D$) is to $D B$, as the square on E is to the square on F, (constr.) and $A D$ is to $D B$, as the square on $A C$ is to the square on $B C$;
therefore the square on $A C$ is to the square on $B C$, as the square on E is to the square on F, and $A C$ is to $B C$, as E is to F.

PROPOSITION V. PROBLEM.

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are given points. It is required to draw through any other point in the same plane with A, B, and C, a straight line, such that the swine of its distances from two of the given points, may be equal to its dishance from the third.

Analysis. Suppose F the point required, such that the line $X F H I$ being drawn through any other point X, and $A D, B E$, $C I I$ perpeudiculars on $F H H$, the sum of $B E$ and $C H$ is equal to $A D$.

Join $A B, B C, C A$, then $A B C$ is a triangle.
Draw $A G$ to bisect the base $B C^{\prime}$ in G, and draw $G K^{\prime}$ perpendicular to $E F$.

Then since $B C$ is bisected in G, the sum of the perpendiculars $C \cdot H, B E$ is donble of $G K$;
but $C H$ and $B E$ are equal to $A D$, (hyp.) therefore $A I$ m mist be double of ($G h_{i}$;
but since $A D$ is parallel to $G K$, the triangles $A D F, G H^{2} F$ are similar, theretore $A D$ is to $A F$, as $G h$ is to $G F$;
but $A D$ is double of $G K_{\text {, }}^{*}$ therefore $A F^{\prime}$ is double of $G F$;
and consequently, $G F$ is one-third of $A G$ the line drawn from the vertex of the triangle to the bisection of the base.

But $A G$ is a line given in magnitude and position, therefore the point F^{\prime} is aletermined.
Synthesis. Join $A B, A C, B C^{\prime}$, and bisect the inase $B C$ of the triangle $A B C$ in G; join $A G$ and take $G F$ equal to one-third of $(B A$; the line drawn throngh X and F will be the line required.
It is also obrions, that while the relative position of the points A, B, C, remains the same, the point F^{\prime} remains the same, wherever
the point Y may be. The point Y may therefore coincide with the point F, and when this is the case, the position of the line $F X$ is left undetermined. Hence the following porism.

A triangle being given in josition, a point in it may be found, such, that any straight line whatever being drawn through that point, the perpendiculars drawn to this straight line from the two angles of the triangle, which are on one side of it, will be torether equal to the perpendicular that is drawn to the same line from the angle on the other side of it.

I.

6. Triangles and parallelograms of unequal altitudes are to each other in the ratio compounded of the ratios of their bases and altitudes.
7. If $A C B, \triangle D B$ be two triangles upon the same base $A B$, and between the same parallels, and if through the point in which two of the $\quad .3 s$ (or two of the sides produced) intersect two straight lines be dra n parallel to the other two sides so as to meet the base $A B$ (or $A B$, roduced) in points E and F. Prove that $A E=B F$.
8. In the base $A C$ of a triangle $A B C$ take any point D; bisect $A D, D C, A B, B C$, in E, F, G, H respectively: shew that $E G$ is equal to $M F$.
9. Construct an isosecles triangle equal to a given scalene triangle and having an equal vertical angle with it.
10. If, in similar triangles, from any two equal angles to the opposite sides, two straight lines be drawn making equal angles with the homologons sides, these straight lines will have the same ratio as the sides on which they fall, and will also divide those sides proportionally.
11. Any three lines being drawn making equal angles with the three sides of any triangle to wards the same parts, and meeting one another, will form a triangle similar to the original triangle.
12. $B D, O D$ are perpendicular to the sides $A B, A C$ of a triangle $A B C$, and $C E$ is drawn perpendicular to $A l$, meeting $A B$ in E : shew that the triangles $A B C, A C E$ are similar.
13. In any triangle, if a perpendicular be let fall mpon the base from the rertical angle, the base will he to the sum of the sides, as the difference of the sides to the difference or sum of the segments of the base made by the perpendicular, acerrding as it fills within or without the triangle.
14. If triangles $A E F, A B C$ hare a common angle A, triangle $A B C$: triangle $A E F:: A B . A C: A E \cdot A F$.
15. If one side of a triangle be produced, and the other shortened by equal quantities, the line joining the points of section will be divided by the base in the iuverse ratio of the sides.
II.
16. Find two arithmetic means between two given straight lines.
17. To divide a given line in harmonical proportion.
18. To find, by a geometrical construction, an arithmetic, geometric, and harmonic mean between two given lines.
19. Prove geometrically, that an arithmetic mean between two quantities, is greater than a geometric mean, Also having given the simm of two lines, and the excess of their arithmetic above their geometric mean, find by a construction the lines themselves.
20. If through the point of bisection of the base of a triangle any line be drawn, intersecting one side of the triangle, the other produced, and a line drawn parallel to the base from the rertex, this line shall be eat harmonically.
21. If a given straight line $A B$ be divided into any tro parts in the point C, it is required to produce it, so that the whole line produced may be harmonically divided in C and B.
22. If from a point without a circle there be drawn three straight lines, two of which tonch the circle, and the other.ents it, the line which cuts the circle will be divided harmonically by the convex circumference, and the chord which joins the points of contact.

III.

23. Shew greometrically that the diagonal and side of a square are incommensurable.
24. It a straight line be divided in two given points, determine a third point, such that its distances from the extremities may be proportional to its distances from the given points.
25. Determine two straight lines, such that the sum of their squares may equal a given square, and their rectangle equal a given rectangle.
26. Draw a straight line such that the perpendiculars let fall from any point in it on two given lines may be in a given ratio.
27. It diverging lines cut a straight line. so that the whole is to one extreme, as the other extreme is to the middle part, they will intersect every other intercepted line in the same ratio.
28. It is required to cht off a part of a given line so that the part cut oft may be a mean proportional between the remainder and another given line.
29. It is required to divide a given finite straight line into two parts, the squares of which shall have a given ratio to each other. IV.
30. From the vertex of a triangle to the base, to draw a straicht line which shall be an arithnetic mean between the sides containing the vertical angle.
31. From the obtuse angle of a triangle, it is required to draw a line to the base, which shall be a mean proportional between the sugments of the base. How many answers does this question admit of
32. To draw a line from the vertex of a triangle to the lase, which slall be amen proportional between tho whole bace and one segment.
33. If the perpendienlar in a right-angled triangle divide tho hypotennse in extreme and mean ratio, the less side is equal to the alternate segment.
34. From the vertex of any triangle $A B C$, draw a straight line meeting the base produced in I, so that the rectangle I, D. $I V^{\prime}=A I^{2}$.
35. To find a point I ' in the base $l ; C$ of a triangle produced, so that l 'l) being draw parallel to $A C$, and meeting $A C$ produed to D, AC': ('P:: ('P: PD.
36. If the triangle $A B C$ has the angle at C a right angle, and from C a perpendicular be drepped on the opposite side intersecting it in H, then $A D: D B^{\prime}:: A C^{\prime 2}: C^{\prime} B^{2}$.
37. In any right-angled triangle, one side is to the other, as the excess of the hypotemuse abore the second, to the line rut off firm the first bet ween the right angle and the line bisecting the opposite angle.
38. If on the two sides of a right-angled triangle squares be described, the lines joining the acute angles of the triangle and the opposite angles of the squares, will cut off equal serments from the sides ; and each of these equal segments will be a meau proportional between the remaining segments.
39. In any right-angled triangle $A B C$, (whose hypotennse is $A B$.) bisect the angle A by $A D$ meeting $C B$ in D, and prove that

$$
21 C^{2}: A C^{2}-C D^{2}:: B C: C D .
$$

40. On two given straight lines similar triangles are described. Required to find a third, on which, if a triamerle similar to them be described, its area shall equal the difference of their areas.
41. In the triangle $A B C, A\left(C=2 . B C\right.$. It $C^{\prime} D, C E$ respectively bisect the angle C, and the exterior angle formed by producing $A C^{\prime}$; prove that the triangles $C D D, \triangle C D, \triangle B C, C D E$, have their areas as $1,2,3,4$.

V.

42. It is required to bisect ans triangle (1) by a line drawn parallel, (2) by a line drawn perpendicular, to the base.
43. To divide a given triangle into two parts, having a given ratio to one another, by a straight line drawn parallel to one of its sides.
44. Find three points in the sides of a triangle, such thet. they being joined, the triangle shall be divided into four equal triangles.
4.). From a given point in the side of a triangle, to draw lines to the sides which shall divide the triangle into any number of equal parts.
45. Any two triangles being given, to draw a straight line parallel to a side of the greater, which shall cut otf a triangle equal to the less.

VI.

45. The rectangle contained by two lines is a mean proportional between their squares.
46. Deseribe a rectangular parallelogram which shall be equal to a given square, and have its sides in a given ratio.
47. It from any two points within or without a parallelogram, straight lines be drawn perpendicular to each of two adjacent sides and intersecting each other, they form a parallelogram similar to the former.
48. It is required to cut off from a rectangle a similar rectanglo which shall be any required part of it.
49. If from one angle A of a parallelogram a straight line be drawn cutting the diagonal in E and the sides in P, Q, shew that

$$
A E^{2}=P E . E Q
$$

52. The diagonals of a trapezium, two of whose sides are parallel, cut one another in the same ratio.

VII.

53. In a given circle place a straight line parallel to a given straight line, and having a given ratio to it ; the ratio not being greater than that of the diameter to the giren line in the circle.
it. In a given circle place a straight line, cutting two radii which are perpendicular to each other, in such a manner, that the line itself may bo trisected.
54. $A B$ is a diameter, and P any point in the circumference of a circle; $A P$ and $B P$ are joined and produced if necessary : if from any point (cof $A B$, a perpendicular be drawn to $A B$ meeting $A P$ and $B P$ in points D and E respectively, and the circumference of the circle in a point F, shew that $C D$ is a third proportional of $C E$ and $C F$.
55. It from the extremity of a diancter of a circle tangents be drawn, any other tangent to the circle terminated by then is so divided at its point of contact, that the radius of the circle is a mean proportional between its serments.
56. From a given point without a circle, it is reqnired to draw a straight line to the concare cireunference, which shall be divided in a given ratio at the point where it intersects the convex circumference.
57. Fron what point in a circle must a tangent be drawn. so that a perpendicular on from a given point in the ciremmerence may be cut by the circle in a given ratio?
58. Through a given point within a given circle, to draw a straight line such that the parts of it intercepted between that point and the cirmmference, may have a given ratio.
59. Let the two diameters $A B, C D$, of the cirele $A D B C$, be at right angles to each other, draw any chord $E F$, join $C^{\prime} E^{\prime}, C F^{\prime}$, meeting $A B$ in G and $I F$; prove that the triangles C $G I I$ and C C'F are similar.
60. A circle, a straight line, and a point being given in position, required a point in the line, such that a line drawn from it to the given point nay be es, nal to a line drawn from it touching the eirele. What must be the relation among the data, that the problem may become porismatic, i. e. admit of innmerable solutions?

VIII.

62. Prove that there may be two, but not more than two similar triangles in the same segment of a circle.
63. If as in Euclid ri., 3, the vertical angle BAC of the triangle $B . A($ be lisected by $A I$, and $B A$ be produced to meet $C E$ drawn parallel to $A I /$ in E; shew that $A D$ will be a tangent to the circle deseribed abont the triangle E :A C.
fit. If a triangle be inseribed in a cirele, and from its vertex, lines be drawn parallel to the tangents at the extremities of its base, they will cut off similar triangles.
64. If from any point in the circumference of a cirele perpendicular: be drawn to the sides, or silles produced, of an inseribed triangle; shew that the three points of intersection will be in the same strair ht line.
65. If through the middle point of any chord of a circle, two chords be drawn, the lines joining their extremities shall intersect the first chord at equal distances from its extremitios.
66. If a straight line be divided into any two parts. to find the locus of the point in which these parts sulitend equal angles.
67. If the line bisceting the vertical angle of a triangle be divided into parts which are to one another as the base to the sum of the sides, the point of division is the center of the inscribed circle.
68. The rectangle contained by the sides of any triangle is to the rectangle by the radii of the inscribed and cireumscribed circles, as twice the perimeter is to the base.
69. Shew that the locus of the rertices of all the triangles constructed upon a given base, and having the ir sides in a given ratio, is acircle.
70. If from the extremities of the base of a triangle, perpendiculars be let fall on the opposite sides, and likewise straisht lines drawn to bisect the same, the intersection of the perpendiculars, that of the bisecting lines, and the center of the circumscribing circle, will be in the same straight line.

$$
I \lambda .
$$

72. If a tangent to two circles be drawn cutting the straight line which joins their centers, the chords are parallel which join the points of contact, and the points where the line throngh the centers cuts the circumferences.
73. It through the vertex, and the extremities of the base of a triangle, two cireles be deseribed, intersecting one another in the base or its continiation, their diameters are proportional to the sides of the triangle.
74. If two circles touch each other externally and also touch a straight line, the part of the line between the points of contact is a mean proportional between the diameters of the circles.
75. If from the centers of each of two circles exterior to one another, tangents bedrawn to the other circles, so as to cut one another, the rectangles of the segments are equal.
76. If a circle he inseribed in a richt-angled triangle and another be described touching the side opposite to the richt angle and the produced parts of the other sides, shew that the rectangle under the radii is equal to the triangle, and the sum of the radii equal to the sum of the sides which contain the right angle.
77. If a perpendicular be drawn from the right angle to the hypotennse of a right-angled triangle and circles be inscribed within the two smaller triangles into which the given triangle is divided, their diameters will be to each other as the sides containing the right angle.

ヶ8. Describe a cirele passing through two given points and toucbing a given circle.

- 79. Describe a circle which shall pass throngh a given point and touch a given straight line and a given circle.

80. Through a given point draw a circle touching two given circles.
81. Describe a circle to tonch two given reath lines and such that a tangent drawn to it from a given point, may be equal to a given line.
82. Deseribe a circle which shall have its center in a given line, and shall touch a circle and a straight line given in position.
XI.
83. Given the perimeter of a right-angled triangle, it is required to construct it, (1) If the sides are in arithmetical progression. (2) If the sides are in geometrical progression.
84. Given the vertical angle, the perpendicular drawn from it to the base, and the ratio of the segments of the base made by it, to construct the triangle.

S5. Apply (vi, c.) to construct a triangle; haring given the vertical angle, the radius of the inseribed circle, and the rectangle contained by the straight lines drawn from the center of the circle to the augles at the base.
86. Describe a triangle with a given vertical angle, so that the line which bisects the base shall be equal to a given line, and the angle which the bisecting line makes with the base shall be equal to a siven angle.
87. Given the base, the ratio of the sides containing the vertical angle, and the distance of the vertex from a given point in the base; to construct the triangle.
88. Given the vertical angle and the base of a triangle, and also a line drawn from either of the angles, cntting the opposite side in a given ratio, to construct the triangle.
89. Upon the given base $A B$ constrnct a triangle having its sides in a given ratio and its vertex situated in the given indefinite line $C D$.
90. Describe an equilateral triangle equal to a given triangle.
91. Given the hypotenuse of a right-angled triangle, and the side of an inseribed square. Required the two sides of the triangle.
92. To make a triangle, which shall be equal to a given triangle, and have two of its sides equal to two given straight lines; and shew that if the rectangle contained by the two straight lines be less than twice the given triangle, the problem is impossible.
XII.
93. Given the sides of a quadrilateral figure inscribed in a circle, to find the ratio of its diagonals.
94. The diagonals $A C, B D$, of a trapezimen inseribed in a circle, cut each other at right angles in the point E;
the rectangle $A B, B C$: the rectangle $A D, D C:: B E$: ED.
XIII.
95. In any triangle, inscribe a triangle similar to a given triangle.
96. Of the two squares which cam be inseribed in a right-ingled triangle, which is the greater?
97. From the vertex of an isoseeles triangle two straiglat lines
drawn to the opposite angles of the square described on the base, cut the diagonals of the square in E and F : prove that the line $E F$ is parallel to the base.
98. Inscribe a square in a segment of a circle.
99. Inseribe a aquare in a sector of a circle, so that the angular points shall be one on each radins, and the other two itn the circumference.
100. Inscribe a square in a given equilateral and equiangular pentagon.
101. Inscribe a parallelogram in a given triangle similar to a given parallelogram.
102. If any rectangle be inscribed in a given triangle, required the lowns of the point of intersection of its diagonals.
103. Inscribe the greatest parallelogram in a given semicircle.
104. In a given rectangle inscribe another, whose sides shall bear to each other a given ratio.
105. In a giren segment of a circle to inscribe a similar serment.
106. The square inscribed in a circle is to the square inscribed in the semicircle :: 5:2.
107. If a square be inscribed in a right-angled triangle of which one side coincides with the hypotenuse of the triangle, the extremities of that side divide the base into three segments that are contimed proportionals.
108. The square inscribed in a semicircle is to the square inscribed in a quadrant of the same circle $:: 8: 5$.
109. Shew that if a triangle inscribed in a circle be jsosceles, haring each of its sides double the base, the squares described upon the radius of the circle and one of the sides of the triangle, shall beto each other in the ratio of $4: 15$.
110. $A P B$ is a quadrant, $S P T$ a straight line touching it at $P, P M$ perpendicular to CA; move that triangle SCT: triaugle $A C B$:: triangle $A C B$: triangle $C D P$.
111. If through any point in the are of a quadrant whose radins is R, two circles be drawn tonching the bounding radii of the quadrant, and r, r^{\prime} be the radii of these circles: shew that $r r^{\prime}=R^{2}$.
112. If R be the radius of the circle inscribed in a right-angled triangle $A B C$, right-angled at A : and a perpendicular be let fall from A on the hypotenuse $B C$, and if r, r^{\prime} be the radii of the circles inscribed in the triangles $A D B, A C D$: prove that $r^{2}+r^{\prime 2}=R^{2}$.
KIV.
113. If in a given equilateral and equiangular hexagon another be inscribed, to determine its ratio to the given one.
114. A regular hexagon inscribed in a circle is a mean proportional between an inseribed and circumscribed equilateral triangle.
115. The area of the inscribed pentagon, is to the area of the circumscribing pentagon, as the square of the radius of the circle inscribed within the greater pentagon, is to the square of the radins of the circle circumscribing it.
116. The diameter of a circle is a mean proportional between the sides of an equilateral trimgle and hexagon which are described about that circle.

GEOMETRICAL EXERCISES ON BOOK I.

HINTS, \&c.

8. This is a particular case of Euc. 1. 22. The triang.e however may be deseribed by means of Euc. 1. 1. Let AB be the given base, produce $A B$ both ways to meet the cireles in D, E (fig. Euc. I. 1.); with center A , and radius AE , describe a circle, and with center B and radius BD , describe another circle cutting the former in G. Join GA, GB.
9. Apply Euc. 1. 6, 8.
10. This is proved by Enc. ז. 32, 13, 5.
11. Let fall also a perpendicular from the vertex on the base.
12. Apply Euc. з. 4.
13. Let CAB be the triangle (fig. Euc. I. 10.), CD the line bisecting the angle ACD and the base AB . Prodice CD , and make DE equal to CD , and join AE. Then CB may be proved equal to AE, also AE to AC.
14. Let AB be the given line, and C, D the given points. From C draw CE perpendicular to AB , and produce it making EF equal to CE , join FD , and produce it to meet the given line in G, which will be the point required.
15. Hake the construction as the emunciation directs, then by Euc. 1. 4, BII is proved equal to CK: and by Euc. I. $13,6, O B$ is shewn to be equal to 0C.
16. This proposition requires for its proof the case of equal triangles omitted in Euclid:-namely, when tro sides and one angle are given, but not the angle ineluded by the given sides.
17. The angle BCD may be shewn to be equal to the sum of the angles $\mathrm{ABC}, \mathrm{ADC}$.
18. The angles $A D E, A E D$ may be each proved to be equal to the complements of the angles at the base of the triangle.
19. The angles CAB, CBA, being equal, the angles CAD, CBE are equal, Euc. I. 13. Then, by Euc. I. 4, CD is prored to be equal to CE. And by Euc. 1. 5, 32, the angle at the rertex is shewn to be four times either of the angles at the base.
20. Let AB, CD be two straight lines intersecting each other in E , and let P be the given point, within the angle AED. Draw LF bisecting the angle AEL), and through P draw P(iH parallel to EF, and entting ED, EB in (r, II. Then EG is equal to EII. And by bisecting the angle DEB and drawing through P a line parallel to this line, another solution is obtained. It will be found that the two lines are at right angles to each other.
21. Let the two given straight lines ment in A, and fot P be the given point. Let P(QR be the line required, meeting the lines $A Q, A R$ in Q and R, so that $P^{\prime} Q$ is equal to QR. Thengh P draw $P S$ parallel to $A R$ and join RS. Then APSR is a parallelogram and AS, PR the diagonals. Hence the constraction.
22. Let the two straight lines AB, AC meet in A . In AB take any point D, and from $A C$ cut off $A E$ equal to $A D$, and join DE. On DE, or DE: produced, take DF equal to the given line, and through F draw FG parallel to $A B$ meeting AC in (i, and throngh if draw GHI parallel to DE mecting $A B$ in II. Then GII is the line required.
23. The two given points may be both on the same side, or one point may be on each side of the line. If the point required in the line be supposed to be found, and lines be drawn joining this point and the given points, an isosceles triangle is formed, and if a perpendicular be drawn on the base from the point in the line: the construction is obrious.
24. The problem is simply this-to find a point in one side of a triangle from which the perpendieulars drawn to the other two sides shall be equal. If all the positions of these lines be considered, it will readily be seen in what case the problem is impossible.
25. If the isosceles triangle be obtuse-angled, by Euc. I. 5, 32, the truth will be made evident. If the triangle be aeute-angled, the enunciation of the proposition requires some modification.
26. Construct the figure and apply Euc. I. 5, 32, 15.

If the isosceles triangle have its vertical angle less than two-thirds of a right-angle, the line ED produced, meets AB produced towards the base, and then $3 . A E F=4$ right angles $+A F E$. If the rertical angle be greater than two-thirds of a right angle, ED produced meets $A B$ produced towards the vertex, then $3 . \mathrm{AEF}=2$ right angles + AFE.
27. Let ABC be an isosceles triangle, and from any point D in the base $B C$, and the extremity B, let three lines $D E, D F, B G$ be drawn to the sides and making equal angles with the base. Produce ED and make DH equal to DF and join BH.
28. In the isosceles triangle ABC , let the line DFE which meets the side AC in D and AB produced in E , be bisected by the base in the point E . Then DC may be shewn to be equal to BE .
29. If two equal straight lines be drawn terminated by two lines which meet in a point, they will cut off triangles of equal area. Hence the two triangles have a common rertical angle and their areas and bases equal. By Eue. I. 32 it is shewn that the angle contained by the bisecting lines is equal to the exterior angle at the base.
30. There is an omission in this question. After the words "making equal angles with the sides," add, " and be equal to each other respectively." (1), (3) Apply Enc. I. 26, 4. (2) The equal lines which bisect the sides may be shewn to make equal angles with the sides.
31. At C make the angle BCD equal to the angle ACB , and produce AB to meet CD in D .
32. By bisecting the hypotenuse, and drawing a line from the vertex to the point of bisection, it may be shewn that this line forms with the shorter side and half the hypotenuse an isosceles triangle.
33. Let $A B C$ be a triangle, having the right angle at A, and the angle at C greater than the angle at B, also let $A D$ be perpendicular to the base, and AE be the line drawn to E the bisection of the base. Then AE may bo proved equal to BE or EC independently of Enc. III. 31.
34. Produce EG, FG to meet the perpendiculars CE, BF, produced if necessary. The demonstration is obrious.
35. If the given triangle have both of the angles at the base aeute angles; the difference of the angles at the base is at once obvions from Euc. r. 39. If one of the angles at the base be obtuse, does the property hold good?
36. Let ABC be a triangle having the angle ACB double of the angle ABC, and let the perpendieular AD be drawn to the hase BC. Take DE equal to DC and join AE. Then AE may be proved to be equal to EB.

If ACD be an obtuse angle, then AC is equal to the sum of the segments of the base, made by the perpendicular from the vertex A.
37. Let the sides AB, AC of any triangle ABC be produced, the exterior angles bisected by two lines which meet in D, and let $A D$ be joinet, then AD bisects the angle BAC . For draw DE perpendicular on BC, also DF, DG perpendiculars on $A B, A C$ produced, if necessary. Then DF may be proved equal to DG, and the squares on DF, DA are equal to the squares on FG, (iA, of which the square on FD is equal to the square on DG; hence $A F$ is equal to $A G$, and Euc. I. 8 , the angle BAC is biseeted by AD .
38. The line required will be found to be equal to half the sum of the two sides of the triangle.
39. Apply Euc. 1. 1, 9.
40. The angle to be trisected is one-fourth of a right angle. If an cquilateral triangle be described on one of the sides of a triangle which contains the given angle, and a line be drawn to biseet that angle of the equilateral triangle which is at the given angle, the angle contained between this line and the other side of the triangle will be one-twelfth of a right angle, or equal to one-third of the given angle.

It may be remarked, generally, that any angle which is the half, fourth, eighth, de., part of a right angle, may be trisected by Plane Geometry.
41. Apply Euc. 1. 20.
42. Let $\mathrm{ABC}, \mathrm{DBC}$ be two equal triangles on the same base, of which $A B C$ is isosceles, fig. Euc. 1. 37. By producing $A B$ and making AG equal to $A B$ or $A C$, and joining GD, the perimeter of the triangle $A B C$ may be shewn to be less than the perimeter of the triangle DBC.
43. Apply Euc. 1. 20.
44. For the first case, see Theo. 32, p. 76 : for the other two eases, apply Euc. 1. 19.
45. This is obrious from Euc. 1. 26.
46. By Euc. I. 29, 6, FC may be shewn equal to each of the lines EF, FG.
47. Join GA and AF, and prove GA and AF to be in the same straight line.
48. Let the straight line drawn through D parallel to BC meet the side AB in F , and AC in F . Then in the triangle $\mathrm{EBD}, \mathrm{EB}$ is equal to ED, by Eue. 1. 29, 6. Also, in the triangle EAl), the angle RA!) may be shewn equal to the angle FDA, whence EA is equal to R1), and therefore AlB is bisected in E. In a similar way it may be shewn, by bisecting the angle C , that AC is bisected in F . Ol the bisection of AC in F may be proved when AB is shewn to be bisected in F .
49. The triangle formed will be found to have its sides respectively parallel to the sides of the original triangle.
50. If a line equal to the given line be drawn from the point where the two lines meet, and parallel to the other given line ; a parallelogram may be formed, and the construction effected.
51. Let ABC he the triangle; AD perpendicular to BC, AE drawn to the bisection of BC , and AF bisecting the angle BAC. Produce Al) and make DA' equal to AD: join FA' $\mathbf{N A}^{\prime}$.
52. If the point in the base be supposed to be determined, and lines drawn from it parallel to the sides, it will be found to be in the line which bisects the vertical angle of the triangle.
53. Let ABC be the triangle, at C' draw CD perpenticular to CB and equal to the sum of the reguared lines, through D draw DE parallel to (1; meeting $A C$ in E, and draw Er pavallel to 1$) \mathrm{C}$, mecting 13 C in F . Then EF is equal to DC. Next proluce CB, making C(i equall to CR, and join EG entting AB in H. From II draw HK perpendicular to EAC, aud

HL perpendicular to BC. Then HK and ILL together are ergual to DC, The proof depends on Theorem 27, p. 75.
54. Let C^{\prime} be the intersection of the circles on the other side of the base, and join $\mathrm{AC}^{\prime}, \mathrm{BC}^{\prime}$. Then the angles CBA, C"BA being equal, the angles CBP, C'BP are also equal, Euc. 1. 13 : next by Fuc. 1. 4, CP, PC are proved equal ; lastly prove C'C' to be equal to CP or 'PC'.
55. In the fig. Euc. 1. 1, produce AB both ways to meet the circies in D and E, join CD, CE, then CDE: is an isosceles triangle, having each of the angles at the base one-fourth of the angle at the vertex. At E draw $\mathrm{E} \mathrm{C}_{x}$ perpendicular to DB and meeting DC produced in (A . Then CEG is an equilateral triangle.
56. Join CC^{\prime}, and shew that the angles $\mathrm{CC}^{\prime} \mathrm{F}^{\prime}, \mathrm{CC}^{\prime} \mathrm{G}$ are equal to tro right angles; also that the line FC'G is equal to the diameter.
57. Construct the figure and by Euc. 1. 32 . If the angle BAC be a right angle, then the angle BDC is half a right angle.
58. Let the lines which bisect the three exterior angles of the triangle $A B C$ form a new triangle $A^{\prime} B^{\prime} C^{\prime}$. Then each of the angles at $A^{\prime}, B^{\prime}, C^{\prime}$ may be shewn to be equal to half of the angles at A and B, B and C, C and A respectively. And it will be found that half the sums of every two of three unegual numbers whose sum is constant, have less differences than the three numbers themselves.
59. The first case may be shewn by Euc. 1. 4: and the second by Euc. i. $32,6,15$.

6i.) At D any point in a line EF, draw DC perpendicular to EF and equal to the given perpendicular on the lyppotenuse. With center C and radius equal to the given base describe a circle cutting EF in B. At C draw CA perpendicular to CB and meeting EF in A . Then ABC is the triangle required.
61. Let $A B C$ be the required triangle having the angle $A C B$ a right angle. In BC produced, take CE equal to AC , and with center B and radius BA deseribe a circular are cutting CE in D, and join AD. Then DE is the differenec between the sum of the two sides AC, CB and the hypotenuse $A B$; also one side $A($ the perpendicular is given. IIence the construction. On any line EB take EC equal to the given side, ED cqual to the given difference. At C, draw CA perpendicular to $C B$, and equal to $E C$, join AD, at A in AD make the angle DAB equal to ADB, and let AB meet EB in B . Then $A B C$ is the triangle required.
62. (1) Let $A B C$ be the triangle required, having $A C B$ the right angle. Produce AB to D making AD equal to AC or CB : then BD is the sum of the sides. Join DC: then the angle ADC is one-fourth of a right angle, and DBC is one-half of a right angle. Hence to construct: at B in BD make the angle DBM equal to half a right angle, and at D the angle BDC equal to onc-fourth of a right angle, and let DC meet BM in C. At C draw CA at right angles to BC meeting BD in A: and ABC is the triangle required.
(2) Let $A B C$ be the triangle, C the right angle: from $A B$ cut off $A D$ equal to $A C$; then $B D$ is the difference of the hypotenuse and one side. Join CD; then the angles ACD, ADC are equal, and each is half the supplement of DAC, which is half a right angle. Hence the construction.
63. Take any straight line terminated at A. Make $A B$ equal to the difference of the sides, and $A C$ equal to the hypotemse. At B make the angle CBD equal to half a right angle, and with center A and radius AC describe a circle cutting 13D in I : join AD, and draw DE perpendicular to $A C$. Then $\triangle D E$ is the required triangle.
64. Let BC the given base be bisected in D . At D draw DE at right angles to BC and equal to the sum of one side of the triangle and the perpendicular from the vertex on the base: join DB, and at B in BE make the angle EBA equal to the angle BED, and let BA meet DE in A : join AC , and $A B C$ is the isosceles triangle.
65. This construction may be effected by means of Prob. 4, p. 71.
66. The perpendicular from the vertex on the base of an equilateral triangle bisects the angle at the vertex which is two-thirds of one right angle.
67. Let $A B C$ be the equilateral triangle of which a side is required to be found, having given BD, CD the lines lisecting the angles at B, C. Since the angles DBC, DCB are equal, each being one-thind of a right angle, the sides $13 D, D C$ are equal, and BDC is an isosceles triangle having the angle at the vertex the supplement of a thind of two right angles. Hence the side BC may be found.
68. Let the given angle be taken, (1) as the included angle between the given sides; and (2) as the opposite angle to one of the given sides. In the latter case, an ambiguity will arise if the angle be an acute angle, and opposite to the less of the two given sides.
69. Let ABC be the required trjangle, BC the given base, CD the given difference of the sides AB, AC : join BD, then DBC by Ene. 1. 18, can be shewn to be half the difference of the angles at the base, and AB is equal to $A D$. Ilence at B in the given base $B C$, make the angle $C B D$ equal to half' the difference of the angles at the base. On CB take ('E equal to the difference of the sides, and with center C and radius (E , describe a cincle cutting BI) in D : join (D and produce it to A , making DA equal to DB. Then ABC is the triangle required.
70. On the lime which is equal to the perimeter of the required triangle describe a triangle having its angles equal to the given angles. Then bisect the angles at the base; and from the point where these lines meet, draw lines parallel to the sides and meeting the base.
71. Let $A B C$ be the required triangle, $B C$ the given base, and the side AB greater than AC'. Make AD equal to AC', and draw CD. Then the angle BCD may be shewn to be equal to half the difference, and the angle DCA equal to hatf the sum of the angles at the base. Hence ABC, ACB the angles at the base of the triangle are known.
72. Let the two given lines meet in A, and let B be the given point.

If BC, BD) be supposed to be drawn making equal angles with $A C$, and if AD and $\mathrm{I} C$ be joined, BCD is the triangle reguired, and the figure A(lBD may be shewn to be a parallologram. Whence the construction.
73. It can be shewn that lines drawn from the angles of a triangle to bisect the opposite sides, intersect each other at a point which is wo-thirds of their lengths from the angular points from which they are drawn. Let ABC be the triangle required, A1), BE, (F the given lines from the angleg drawn to the biscetions of the opposite sides and intersecting in (i. I'roduce (iD, making I)ll efual to D(i, and join BII, CH: the figure (ilill is a par allelogram. Hence the construction.
74. Let ABC (fig. to Euc. I. 20.) be the required triangle, having tho base BC: equal to thr given base, the angle ABC copal to the given angle, and the two siles B.A, A(' together erpal to the given lise BD). Join Df', then since $A D$) is equal to $A($, the trimgle $A(D)$ is isusceles, and therefore the angle ADC is equal to the angle A(C). Ilence the construction.
75. Let ABC be the requirel triangle (lig. to Finc. I. 18), laving the angle Arll equal to the given angle, and the base BC enual to the given
line, also $C D$ equal to the difference of the two sides $A B, A C$. If $B D$ bo joined, then A13D is an isoseeles triangle. Hence the synthesis. Doce this construction hold good in all eases?
75. Let ABO be the required triangle (fig. Euc. 1. 18), of which the side Be is given and the angle BAC, also Cll the difference between the sides AB, AC. Join BD ; then AB is ecfual to AD , because CD) is their differenec, and the triangle ABD is isosceles, whence the angle ABD is equal to the angle AD1; ; and sinee BAD and twice the angle A1B1) are equal to two tight angles, it follows that ABI is half the supplement of the given angle BAC. Ilence the construction of the triangle.
77. Let AB be the given base: at A draw the line AD to which the line bisecting the vertical angle is to be parallel. At 1 draw BE parallel to AD ; from A draw AE equal to the given sum of the two sides to med BE in E . At 13 make the angle EBC equal to the angle BEA, and draw CF parallel to $A D$. Then AC'B is the triangle required.
78. Take any point in the given line, and apply Euc. r. 23, 31.
79. On one of the parallel lines take EF erpal to the given line, and with center E and radius EF describe a circle cutting the other in \mathcal{G}. Join Ef $\mathrm{t}_{\text {, }}$ and through A draw ABC parallel to Efr.
80. This will appear from Euc. 1. 29, 15, 26.
81. Let $A B, A C, A D$, be the three lines. Take any point E in $A C$, and on EC make EF equat to EA, through F draw lif parallel to AB, join GE and prodnce it to meet AB in H . Then GE is equal to GII.
82. Apply liuc. I. 32, 29.
83. From E draw Ef perpendicular on the hase of the triangle, then ED and EF may each be proved equal to EG, and the fignee shewn to be equiLateral. Three of the angles of the figure are right angles.
84. The greatest parallelogram which can be constructed with given sides can be proved to be rectangular.
85. Let $A B$ be one of the diagonals: at A in $A B$ make the angle $B A C$ less than the required angle, and at A in AC make the angle CAD equal to the required angle. Biseet $A B$ in E and with center E and radius equal to half the other diagonal describe a circle eutting $A C, A D$ in F, G. Join FB, $B G$: then $A F B G$ is the parallelogram required.
86. This problem is the same as the following: haring given the base of a triangle, the vertical angle and the sum of the sides, to construct the triangle. This triangle is one half of the required parallelogram.
87. Draw a line $A B$ equal to the given diagonal, and at the point A make an angle BAC equal to the given angle. Bisect AB in D , and through D draw a line parallel to the given line and meeting $A C$ in C. This will be the position of the other diagonal. Through l3 draw BE parallel to CA, meeting CD proluced in E; join AE, and BC. Then ACBE is the parallelogram requiresl.
88. Construct the figures and by Fuc. 1. 24.
89. By Luc. 1. 4, the opposite sides may be prored to be equal.
90. Let ABCD be the given parallelogiam; construct the other parallelogram $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ by drawing the lines reguired, also the diagonals AC , $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$, and shew that the triangles ABC, $\mathrm{A}^{\prime} \mathrm{I}^{\prime} \mathrm{C}^{\prime} \mathrm{C}^{\prime}$ are equiangular.
91. A $\left.{ }^{\prime}\right)^{\prime}$ and $\mathrm{BC}^{\prime \prime}$ may be proved to be parallel.
92. Apply Euc. 1. 29, 32.
93. The points D, D ', are the intersections of the diagonals of two rectangles: if the rectangles be completed, and the lines OD, OD be produced, they will tee the other two diagonals.
9.1. Let the line drawn from A fall withont the parallelogram, and
let $\mathrm{CC}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{DD}^{\prime}$, be the perpendiculars from $\mathrm{C}, \mathrm{B}, \mathrm{D}$, on the line drawn from A: from B draw BE parallel to AC^{\prime}, and the truth is manifest. Next, let the line from A be drawn so as to fall within the parallelogram.
95. Let the diagonals intersect in E. In the triangles DCB, CDA, two angles in each are respectively equal and one side DE : wherefore the diagonals DB, AC are equal: also since DE, EC are equal, it follows that EA, EB are equal. Hence DEC, AEB are two isosecles triangles laving their sertical angles equal, wherefore the angles at their bases are equal respectively, and therefore the augle CDB is equal to DBA.
96. (1) By supposing the point P found in the side AB of the parallelogram ABCD, such that the angle contained by AP, PC may be bisected by the line PD; CP may be proved equal to CD ; hence the solution.
(2) By supposing the point P found in the side AB produced, so that PD may bisect the angle contained by ABP and PC; it may be shewn that the side $A B$ must be produced, so that $B P$ is equal to $B D$.
97. This may be shemn by Euc. ı. 35.
98. Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be the biseetions of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ of the triangle ABC : draw DE, EF, FD ; the triangle DEF is one-fourth of the triangle ABC. The triangles DBE. FBE are equal, each being one-fourth of the triangle ABC: DF is therefore parallel to BE, and DBEF is a parallelogram of which DE is a diagonal.
99. This may be proved by applying Euc. 1. 38.
100. Apply Euc. I. $37,38$.
101. On any side BC of the given triangle ABC , take BD equal to the given base; join AD, through C draw CE parallel to AD , meeting BA producel if necessary in E , join ED ; then BDE is the triaugle required. By a process somewhat similar the triangle may be formed when the altitude is given.
102. Apply the preceding problem (101) to make a triangle equal to one of the given triangles and of the same altitude as the other given triangle. Then the sum or dilference can be readily found.
103. First construct a triangle on the given base equal to the given triangle; next form an isoseeles triangle on the same base equal to this triangle.
104. Make an isosceles triangle equal to the given triangle, and then this isosceles triangle into an erpal equilateral triangle.
105. Make a triangle equal to the given parallelogram upon the given line, and then a triangle equal to this triangle, having an angle equal to the given angle.
106. If the figure $A B C D$ be one of four sides; join the opposite angles A, C of the fignre, through I) draw DE paraltel to $A C$ mecting $B C$ produced in E , join AE :-the triangle ABE is equal to the four-sided figure ABC(I).

If the figure $A B C D E$ he one of five sides, produee the base both ways, and the figure may be transformed into a triangle, by two constructions similar to that employed for a figure of four sides. If the figure consists of six, seven, or any number of sides, the same process must be repeated.
107. Draw two lines from the bisection of the base parallel to the two sides of the triangle.

10s. This may be slewn ex ahsurdo.
109. On the same base $A B$, and on the same side of it, let two triangles $\mathrm{ABC}, \mathrm{ABF}$ be constructed, baving the side BD equal to BC , the anglo ABC a right angle, but the angle ABD not a right angle; then the triangle $\triangle 13 C$ is greater than ABD, whether the angle ABD be aente or oltuse.
110. Let ABC be a triangle whose vertical angle is Λ, and whose base

BC is bisected in D; let any line EDG be drawn through D, mecting AC the greater side in fond AB produced in E , and lonning a triangle AEd having the same vertical angle A. Draw BIII parallel to At', and the triangles BDH, GDO are equal. Euc. r. 26 .
111. Let two triangles be constructed on the same base with cqual perineters, of which one is isosecles. Through the vertex of that which is not isosceles draw a line parallel to the hase, and intersecting the perpendienlar drawn from the vertex of the isosceles triangle upon the common base. Join this point of intersection and the extrenities of the base.
112. (1) DF bisects the triangle ABC (fig. Prop. 6, p. 73.) On each side of the point F in the line BC , take FG, FH, each equal to one-third of BF , the lines DG, DH shall trisect the triangle. Or,

Let $A B C$ be any triangle, D the given point in BC . Trisect BC in E, F. Join AD, aud draw EG, FII parallel to AD. Join DG, DII; these lines triseet the triaugle. Draw AE, AF' and the proof is manifest.
(2) Let ABC be any triangle ; tuisect the lase BU in D, E, and join AD, AE. From D, E, draw Dl', EP parallet to AP, AC and meeting in P'. Join $\mathrm{AP}, \mathrm{BP}, \mathrm{CP}$; these three lines triseet the triangle.
(3) Let P be the given point within the triangle $A B C$. Trisect the base BC in D, E. From the rertex A draw AD, AE, AP. Join PD, draw Afr parallel to PD and join PG. Then BGPA is one-third of the triangle. The problem may be solved by triseeting either of the other two sides and making a similar construction.
113. The base may be divided into nine equal parts, and lines may be drawn from the vertes to the points of division. Or, the sides of the triangle may be trisected, and the points of trisection joined.
114. It is proved, Euc. I. 34 , that each of the diagonals of a parallelogram bisects the figure, and it may be shewn that they also bisect eaeh other. It is hence manifest that any straight line, whatever may be its position, which bisects a parallelogram, must pass through the intersection of the diagonals.
115. See the remark on the preceding problem 114.
116. Trisect the side $A B$ in E, F, and draw EG, FI parallel to AD or BC, meeting DC in G and IF. If the given point P be in EF, the two lines drawn from P through the bisections of EG and FH will trisect the parallelogram. If P be in FB , a line from P through the bisection of FH will cut off one-third of the parallelogram, and the remaining trapezium is to the bisected by a line from I, onc of its angles. If P coincide with E or F, the solution is obvious.
117. Construct a right-angled parallelogram by Eive. i. 44, equal to the given quadrilateral figure, and from one of the angles, draw a line to mect the opposite side and equal to the base of the rectangle, and a line from the adjacent angle parallel to this line will complete the rhombus.
118. Biseet BC in D , and through the rertex A , draw AE parallel to BC . with center D and radius equal to half the sum of AB, AC, describe a circle cutting AE in E.
119. Produce one side of the square till it becomes equal to the diagomal, the line drawn from the extremity of this produced side and parallel to the arjacent side of the square, and meeting the diagonal produced, determines the point required.
120. Let fall upon the diagonal perpendiculars from the opposite angles of the parallelogram. These perpendiculars are equal, and eaeh pair of triangles is situated on diflerent sides of the same base and has equal altitudes.
121. One case is included in Theo. 120. The other case, when the point is in the diagonal produced, is obvious from the same principle.
122. The triangles DCF, ABF may be proved to be equal to half of the parallelogram by Euc. 1. 41.
123. Apply Euc. I. 41, 38.
124. If a line be drawn parallel to AD through the point of intersection of the diagonal, and the line drawn through O parallel to AB ; then by Euc. 1. 43,41 , the truth of the theorem is manifest.
125. It may be remanked that parallelograms are divided into pairs of equal triangles by the diagonals, and therefore by taking the triangle ABD equal to the triangle $A B C$, the property may he easily shewn.
126. The triangle $A B D$ is one-half of the parallelogram ABCD, Euc. г. 34. And the triangle DKC is one-half of the parallelogram CDHG, Euc. 1. 41, also for the same reazon the triangle $A K B$ is one-half of the parallelogram AIIGB : therefore the two triangles DKC, AKB are together one-half of the whole parallelogram ABCD . Ilence the two triangles DKC, AKB are equal to the trimgle $A B D$: take from these equals the equal parts which are common, therefore the triantle CKF is equal to the triangles AIIK, KBD: wherefore also taking AHK from these equals, then the difference of the triangles CKF, AIIK is equal to the triangle KBC: and the donbles of these are equal, or the diference of the parallelograms CFKG, AllKE is equal to twice the triangle KBD.
127. First prove that the perimeter of a square is less than the perimeter of an equal rectangle: next, that the perimeter of the rectangle is less than the perimeter of any other equal parallelogram.
128. This may be proved by shewing that the area of the isosceles triangle is greater than the area of any other triangle which has the same vertical angle, and the sum of the sides eontaining that angle is equal to the sum of the equal sides of the isosceles triangle.
129. Let ABC be an isosceles triangle (fig. Euc. I. 42), AE perpendicular to the base $B C$, and $A E C G$ the equivalent rectangle. Then $A C$ is greater than $A \mathrm{E}, \mathrm{de}$.

12, 1 . Let the diagonal AC bisect the quadrilateral figure ABCD. Bisect $A C$ in E, join BE, BD, and prove BE, ED in the same straight line and equal to one another.
131. Apply Euc. 1. 15.
132. Apply Euc. г. 20.
133. This may be shewn by Fuc. г. 20.
134. Let AB he the longest and Cl) the shortest side of the rectangular figure. Produce AD, 330 to meet in E. Then by Euc. I. 32 .
135. Let ABCD be the quadrilateral figure, and E, F, two points in the opposite sides AB, (D, join EF and hised it in B ; and through (F draw it straight line HGK terminated by the sides AD, BC' and bisected in the point 8. Then 2 EF, IIK are the diagonals of the required parallelogram.

1:3i. After constructing the figure, the proof offirs no diflientry.
137. If any line be assmed as at diagonal, if the fom wiven lines taken two and two be always greater than this diagomai, a four-sided figure mathe constructed having the assmmed line as one of its diagonals: and it may be shewn that when the quadrilateral is possible, the sum of every three given sides is greater than the fourth.
138. Draw the two diagonals, then four triangles are formed, two on one side of each diagonal. Then two of the lines drawn through the points of bibection of two sides may be proved parallel to one diagonal, and two
parallel to the other diagonal, in the same way as Theo. 97 , supra. The other property is manifest from the relation of the areas of the triangles made by the lines drawn through the lisections of the sides.
139. It is sullicient to suggest, that triangles on equal bases, and of equal altiturles, are equal.
140. Let the side AP be parallel to (I), and let AB be bisected in E and CD in F , and let EF be drawn. Join AF, BF, then Eue. ו. 38.
141. Let ICCED be a trapezium of which I)(, BE are the diagonals intersecting each other in G. If the triangle DB(\dot{x} be equal to the triaugle EGC', the side DF may be proved parallel to the side BC, by Euc. 1. 89.
142. Let ABCD be the quadrilateral figure having the sidez Al3, CD, parallel to one another, and AD, BC equal. Throngh IB draw BE parallel to AD, then ABFD is a parallelogram.

143 . Let ABCD be the quadrilateral having the side AB parallel to CD. Let E, F be the points of bisection of the diagonals BD, AC , and join EF and produce it to meet the sides AD, BC in G and H. Throuch H draw LIIK parallel to DA meeting DC in L and AB produecd in K. Then BK is halt the difference of DC aud AB.
144. (1) Feduce the trapezium ABCD to a triangle BAF by Prob. 106, supra, and biseet the triangle BAE by a line AF from the vertex. If F fall without BC , through F draw FG parallel to AC or DE , and join AG.

Or thus. Draw the diagonals $\mathrm{AC}, \mathrm{BD}:$ bisect BD in E , and join AE, EC. Draw FEG parallel to AU the other diagonal, meeting AD in F, and DC in G. Af being joined, bisects the trapezium.
(2) Let E be the given point in the side AD. Join EB. Bisect the quadilateral EBCD by EF. Diake the triangle EFG equal to the triangle EAB , on the same side of EF as the triangle AB. Bisect the triangle EFG by EII. EH bisects the figure.
145. If a straight line be drawn from the given point through the intersection of the diagonals and meeting the opposite side of the square; the problem is then redued to the bisection of a trapezium by a line drawn from one of its angles.
146. If the four sides of the figure be of different lengths, the truth of the theorem may be shewi. If, however, two adjacent sides of the figure be equal to one another, as also the other two, the lines drawn from the angles to the bisection of the longer diagonal, will be found to divide the trapezium into four triangles whiel are equal in area to one another. Eue. I. 38.
147. Apply Euc. 1. 47, observing that the shortest side is one-half of the longest.
148. Find by Euc. i. 47, a line the square on which shall be seven times the square on the given line. Then the triangle which has these two lines, containing the right angle shall be the triangle required.
149. Apply Eue. I. 47.
150. Let the base BC be biseeted in I , and IE be drawn perpendicular to the hypotenuse AC. Join MI) : then Eue. r. 47.
151. Construct the figure, and the truth is obvious from Eue. I. 47.
152. See Theo. 32, p. 76 , and apply Euc. 1. 47.
153. Draw the lines required and apply Euc. I. 47.
154. Apply Euc. 1. 47.
155. Ap,ly Euc. 1. 47.
156. Apply Euc. 1. 47, obserring that the square on any line is four times the square on half the line.
157. Apply Euc. I. 47, to express the squares of the three sides in terms of the squares on the perpendiculars and on the segments of $A B$.
158. By Euc. I. 47, bearing in mind that the square described on any fine is four times the square described upon half the line.
159. The former part is at once manifest by Euc. 1. 47. Let the diagonals of the square be drawn, and the given point be supposed to coincide with the intersection of the diagonals, the minimum is obvious. Find its value in terms of the side.
160. (a) This is obvious from Euc. 1. 13.
(b) Apply Euc. 1. 32. 29.
(c) Apply Euc. 1. 5, 29.
(d) Let AL meet the base BC in P, and let the perpendiculars from F, K meet BC produced in M and N respectively; then the triangles APB, FMB may be proved to be equal in all respects, as also APC, ('KN.
(e) Let fall DO perpendieular on FB produced. Then the triangle DQB may be prored equal to each of the triangles $A B C, D B F$; whence the triangle $D B F$ is equal to the triangle $A B C$.

Perhaps however the better method is to prove at onee that the triangles ABC, FBD are equal, by shewing that they have two sides equal in each triangle, and the included angles, one the supplement of the other.
(f) If DQ be drawn perpendicular on Fl3 produced, FQ mas he prored to be bisected in the point B, and DQ equal to $A C$. Then the square on FD is found by the right-angled triangle FQD. Similarly, the square on KE is found, and the sum of the squares on FD, EK, GIl will be found to be six times the square on the hypotenuse.
(4) Through A daw PAC parallel to BC and meeting DB, EC produced in P, Q. Then by the right-angled triangles.
161. Let any parallelograms be deseribed on any two sides $A B, A C$ of a triangle Alb^{\prime}, and the sides parallel to AB, AC be produced to meet in a puint P'. Juin I'A. Then on cither side of the base BC, let a parallelogram be described having two sides equal and parallel to AP'. Jroduce AP and it will divide the paralle!ogram on BC into two parts respectively equal to the parallylograms on the sides. Eue. I. 35, 36.
$16 \because$ Let the equiłateral triangles $A B D, B C F, C A F$ be deseribed on $A B$, $\mathrm{BC}, \mathrm{C}, 1$, the sides of the triangle ABC having the right angle at A.

Join DC, AK: then the triangles DBC, ABE are equal. Next draw $D($ perpendicular to $A B$ and join C'G : then the triangles Bher, DAf: DAC are equal to one another. Also draw A11, EK perpendicular to BC; the triangles LKII, EKA are equal. Whence may be shewn that the triangle ABD is equal to the triangle IBHE, and in a similar way may be shewn that C.IF is erpual to CHE.

The restriction is unnecessary : it only brings $A \mathrm{D}, \mathrm{AE}$ into the same line.

GEOMETRICAL FXERCISES ON BOOK II.

IIINTS, \&c.
6. See the figure Fue. In. 5 .
7. This Problem is equivalent to the following: construct an isosceles right-angled triangle, having given one of the sides which contains the right angle.
8. In the question for E read D. Construct the square on $A B$, and the property is obvious.
9. The sum of the squares on the two parts of any lines is least when the two parts are equal.
10. A line may be found the square on which is double the square on the given line. The problem is then reduced to:-having given the hypotenuse and the sum of the sides of a right-angled triangle, construct the triangle.
11. This follows from Enc. n. 5, Cor.
12. This problem is, in other words, Given the sum of two lines and the sum of their srquares, to find the lines. Let $A B$ be the given straight line, at B draw BC at right angles to AB , bisect the angle ABC by BD . ()n A ; take AE equal to the side of the griven square, and with center A and radins AF describe a circte cutting BD in H , from D draw DF perpendicular to AB , the line $A B$ is divided in F as was required.
13. Let $A B$ be the given line. Proluce $A B$ to C making $B C$ equal to three times the square on AB. From BA eut ofir BI equal to BC ; then D is the point of section such that the squares on AB and BD are double of the square on AD.
14. In the fig. Eue. II. 7. Join BF, and draw FL perpendicular on $G D$. Italf the rectangle $D B, B G$, may be proved equal to the rectangle $A B, B C$.

Or, join KA, CD, KD, CK. Then CK is perpendicular to BD. And the triangles CBD, KBD) are each equal to the triangle ABK. Hence, twice the triangle $A B K$ is equal to the figure CBKD : but twice the triangle ABK is equal to the rectangle $A B, B C$; and the figure CBKD is equal to half the rectangle DB and CK, the diagonals of the squares on AB, BC. Wherefore, \&c.
15. The difference between the two unequal parts may be shewn to be equal to twice the line between the points of section.
16. This proposition is only another form of stating Eue. 11. 万.
17. In the figure, Theo. 7, p. 69 , draw $\mathrm{PQ}, \mathrm{PR}, \mathrm{l}$'s perpendiculats on $A B, A D, A O$ respectively : then since the trangle PAC is equal to the two triangles PAB, PAD, it follows that the rectangle contained hy $P S, A C^{\circ}$, is equal to the sum of the rectangles $P Q, A B$, and $P R, A D$. When is the rectangle PS, AC equal to the difference of the other two rectangles?
18. Through E draw EG paralld to $A B$, and through F, draw FIIK parallel to BC and cutting EG in H . Then the area of the rectangle is made up of the areas of four triangles; whence it may be readily shewn that twice the area of the triangle AFE, and the figure AGFIK is equal to the area $A B C D$.
19. Apply Euc. Ir. 11.
20. The vertical angles at L may be proved to be equal, and each of them a right angle.
21. Apply Euc. 11. 4, 11. 1. 47.
22. Prothce F(r, DB to meet in L , and rlam the other diagonal IIIC, which passes through II, because the eomplements AG, BK are equal. Then Lli may be shewn to be efual to Ff, and to D)d.
23. The common interscction of the three lines divides each into two parts, one of which is double of the other, and this point is the vertex of three triangles which have lines drawn from it to the lisection of the bases. Apply Euc. if. 12, 13.
24. Apply Theorem 3, p. 104, and Euc. 1. 47.

25 . This will be foum to be that particular case of Euc. 11. 12, in which the distance of the obtuse angle from the foot of the perpendicular, is half
of the side subtended by the right angle made by the perpendicular and the base prorluced.
26. (1) Let the triangie be acute-angled. (Euc. ir. I3, fig. 1.)

Let AC be bisected in E , and BE be joined; also EF be drawn perpendicular to BC . EF is equal to FC. Then the square on BE may be proved to be equal to the square on BC and the rectangle BD, BC.
(2.) If the triangle be obtuse-angled, the perpendicular EF falls within or without the base aceording as the bisecting line is drawn from the obtuse or the acute angle at the base.
27. This may be shewn from Theorem 3, p. 114.
28. Let the perpendieular AD be drawn from A on the base BC . It may be shewn that the base BC must be produced to a point E, such that OE is equal to the difference of the segments of the base made by the perpendicular.
29. Sinee the base and area are given, the altitude of the triangle is known. Hence the problem is reduced to :-Given the base and altitude of a triangle, and the line drawn from the vertex to the bisection of the base, construct the triangle.
30. This follows immediately from Enc. 1. 47.
31. Apply Euc. n. 13.

32 . The trath of this property depends on the fact that the rectangle contained by AC, CB is equal to that contained by AB, CD.
33. Let P the required point in the base AB be supposed to be known. Join CP. It may then be shewn that the property stated in the Problem is contained in Theorem 3, p. Il4.
34. This may be shewn from Ene. 1. 47 ; 11. 5. Cor.
33. From C let fall CF perpondicular on AB . Then ACE is an obtuseangled, and BEC an acute-angled triangle. Apply Fine. Ir. 12, 13; and by Enc. 1.47 , the sfuntres on $A C$ and $C B$ are equal to the square on AB .
315. Apply Ene. 1. 47, 11. 4 ; and the note p. 102 on Enc. n. 4.
37. Draw a peppendiewlar from the vertex to the base, and apply Euc. t. 47 ; 1r. 5, Cor. Finneiate and prove the proposition when the straight line drawn from the vertex meets the base produced.
39. This follows directiy from Euc. 11. 13, (ase 1.
33. Tha truth of this propesition mar he sluwn from Fuc. 1. 45; 11. 4.
40. Let the square on the lase of the isosceles triangle be described. Draw the diagmals of the square, and the proof is obvions.
41. Het $A B C$ be the triangle required, such that the square on $A B$ is three times the sptuare on AC or BC . Produce BC and draw AD perpendieular to By. Then by Ene. n. 12, CD may le shewn to he equal to one half of BC . Hence the construction.
42. Apply Enc. 11. 12, and Theorem 38, p. 11 S.
43. Draw lef parallet to $A B$ and meeting the base in F; draw also EG perpendicular to the base. Then he Euc. 1. 17; n. 5, Cor.
44. Bisect the angle B ley 13I meeting the opposite side in D, and draw BE perpendicular to AC. Then by Fuc. 1. 17; 1. 5, Cor.
45. This follows directly from Theoren 3, p. 11t.
46. Draw the diagonals intersectine each other in P, and join $0 P$. By Then, 3, 1. 114.
47. Draw from any two opposite angles, straight lines to meet in the bisection ol the diagoail joining the other angles. Then hy Euce 1s. 13, 13.
48. Draw two lines from the point of bisection of cither of the bisected sides to the extrenities of the opposite side; and three trimgles will be formed, tivo on one of the bisected sides and one on the other, in each of
which is a line drawn from the vertex to the bisection of the base. Then by Theo. 3, p. 114.
49. If the extremitios of the two lines which bisect the opposite sides of the trapeziun be joined, the figure formed is a parallelogram which has ite sides reapectively parallel to, and equal to, half the diagonals of the trapezium. The sum of the squares on the two diagonals of the trapezium nay be easily shewn to be equal to the sum of the squares on the four sides of the parallelogram.
50. Dra; perpendiculars from the extremities of one of the parallel sides, meeting the other side produced, if necessary. Then from the four right-angled triangles thus formed, may be shewn the truth of the proposition.
51. In the problem, for triangle read rectangle. Let ABCD be any trapezium having the side AD prarallel to BC . Draw the diagonal AC , then the sum of the triangles $A B C^{\prime}, A D C$ may be shewn to be equal to the rectangle contained by the alditude and half the sum of AI and BC .
52. Let ABCD be the trapezium, haring the sides AB, CD, parallel, and AD, BC' equal. Join AC and draw AE perpendicular to DC. Then by Euc. II. 13.
53. Let $A B C$ be any triangle: $A H K B, A G F C, B D E C$, the squares upon their sides: EF, (GH, KL the lines ,oining the angles of the squares. Produce (i, I, KB, EC, and draw IHN, DC, Fli perpendiculars upon them respectively : also draw AP, BM, CS perpendiculars on the sides of the triangle. Then $1 N$ mas be proved to be equal to ABF ; CR to Ci' ; and BQ to BS ; and by Euc. 11. 12, 13.
54. Convert the triangle into a reetangle, then Euc. n. 14.
55. Find a rectangle equal to the two ligures, and apply Euc. ir. 14.
56. Find the side of a syuare which shail be equal to the given rectangle Sce P'rol. 1. p. 113.
57. On ans line $P Q$ take $A B$ equal to the given difference of the sides of the rectangle, at A draw AC at right angles to AB , and equal to the side of the given square ; bisect $A B$ in 0 and join $0 C$; with center 0 and radius (C describe a senicircle meeting $\mathrm{P}^{\prime} \mathrm{Q}$ in D and E . Then the lines AD, AE have $A B$ for their difference, and the rectangle contained by them is equal to the square on A.
58. Apply Euc. 1r. 14.

GEOMETRICAL EXERCISES ON BOOR III.

HINTS, ace.

7. Fic. ur. 3, suggests the construction.
8. The given point may be either within or without the circle. Find the center of the circle, and join the given point and the center, and upon this line deseribe a semicircle, a line equal to the given distance may be drawn from the given point to meet the are of the semicircle. When the point is without the circle, the given distance may meet the diameter produced.
9. This may be easily shemn to be a straight line passing through the center of the circle.
10. The two chords form by their intersections the sides of two isosceles triangles, of which the parallel chords in the circle are the bases.
11. The angles in equal segments are equal, and by Euc. 1. 29. If the chords are equaily distant from the center, the lines intersect the diameter in the center of the circle.

12 . Construct the figure and the are Be may be proved equal to the are $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
13. The point determined by the lines drawn from the bisections of the rhords and at right angles to them respectively, will be the center of the required circle.
14. Construct the figures: the proof offers no difticulty.
15. On any radius construct an isosceles right-angled triangle, and produce the side which meets the circumference.
16. Join the extremities of the chords, then Euc. r. 27: 111. 28.
17. Take the center O, and join $A P, A O$, $\mathbb{A c}$, and apply Euc. 1.20 .
18. Draw any straight line intersecting two parallel chords and meeting the circumference.
19. Produce the radii to meet the circumference.
20. Join AD, and the first equality follows directly from Eue. Int. 20, 1. 32. Also by joining AC , the second equality may be proved in a similar way. If however the line $A D$ do not fall on the same side of the center O as E, it will be found that the difference, not the sum of the two angles, is equal to 2. AED. See note to Euc. 111. 20, p. 155.
21. Let DKE, DBO (fig. Euc. int. 8) be two lines equally inelined to DA, then KE may be proved to be equal to BO, and the secments cut off by equal stratght lines in the same circle, as well as in equal circles, are equal to one another.
22. Apply Fite. 1. 15, and inf. 21.
23. This is the same as Euc. 11 . 34 , with the condition, that the line must pass through a giren point.
24. Let the segments $A H B, A K C$ be externally deseribed on the given lines Alb, AC, to contain angles equal to BAO. Then by the converse to Euc. 111. 32, AB touches the circle $A K C$, and $A\left(\begin{array}{c} \\ \text { the circle } A H 1 \text {. }\end{array}\right.$

25 . Let ABC be a triangle of which the base or longest side is BC, and let a segment of a circle be described on BC '. P'roduce B. 1 , 'A to meet the are of the segment in D, E, and join BD, CE. If cireles be described about the triangles $A B 1$), $A(E B$, the sides $A B, A C$ shall cut oif segments similar to the serment deseribed upon the base ISC.
26. This is obvious from the note to Duc. 1n. 26, p. 156.
27. The segment must be described on the opposite side of the produced chord. IBy converse of Eirc. 1ut. Se.
28. If a circle be described upon the side AO as a dianeter, the circumference will pass through the points D, E. Then Euc. 111. 21.
29. Let $A B, A\left({ }^{\prime}\right.$ be the bounding radii, and 1) any point in the are $B C$, and IE, JF, perpendiculars from I on Al, AC. The cirele deseribed on A1) will always be of the same magnitude, and the angle EAF in it, is constant :-whence the are WOF is constant, and therefore its chond EF.
30). Construct the ligure, and let the cirele with center (), deseribed on All as a diancter intersect the given circle in I', Q, join (II', I'E, and prove EP at right angles to OP.
31. If the tangent be required to be perpendicular to a given line: draw the diameter parallel to this line, and the tangent drawn at the extremity of this diameter will be perpendientar to the given lime.
32. The strainht line which joins the center and passes through the intersection of two tangents to a circle, bisects the sugle contained by the tangents.
33. Draw two radii containing an angle equal to the supplement of the given angle ; the tangents drawn at the extremities of these radii will contain the given angle.
34. Nince the circle is to touch two parallel lines drawn from two given points in a third line, the radius of the circle is determined by the distance between the two givell points.
35. It is sufticient to suggest that the angle between a chord and a tangent is equal to the angle in the alternate segment of the circle. Euc. ni. 32.
36. Let AB be the given chord of the circle whose center is 0 . Draw DE touching the circle at any point E and equal to the given line; join DO, and with center (1) and radius DO describe a circle: produce the chord $A B$ to mect the circumference of this circle in F : then F is the point required.
37. Let D be the point required in the diameter BA produced, such that the tangent DP is half of DB. Join CP, C being the center. Then CPD is a right-angled triangle, having the sum of the base P'C and hypotenuse ('D double of the perpendicular PD.
33. If BE intersect DF in K (fig. Euc. I11. 37). Join FB, FE, then by means of the triangles, BE is shewn to be lisected in K at right angles.
39. Let $\mathrm{AB},(\mathrm{CD}$) be any two diameters of a circle, O the center, and let the tangents at their extremities form the quadrilateral figure EFGil. Join EO, OF, then EO and OF may be proved to be in the same straight line, and similatly HO, OK.

Note.-This Proposition is equally true if AF, CD be any two chords whaterer. It then becomes equivalent to the following proposition:-The diagonals of the circumseribed and inseribed quadrilaterals, intersect in the same point, the points of contact of the former being the angles of the latter figure.
40. Let C be the point without the circle from which the tangents CA, CB are drawn, and let IE be any diameter, aiso let AE, BD be joined, intersecting in P , then if CP be joined and producel to meet DE in G : CG is perpendicular to DE. Join DA, EB, and produce them to meet in F .

Then the angles DAE, EBD being angles in a semicircle, are right angles; or DB, EA are drawn perpendicular to the sides of the triangle DEF: whence the line drawn from ${ }^{2}$ through P is perperdicular to the thind side ITE.
41. Let the chord $A B$, of which P is its middle point, be produced both ways to C, D, so that AC is equal to BD . From ($\mathrm{C}^{\prime}, \mathrm{D}$, draw the tangents to the circle forming the tangential quadriateral CKDR, the points of contact of the sides, being E, II, F, (t . Let O be the center of the circle. Jein EII, GF, CO, GO, FO, DO. Then Ell and GF may be proved each parallel to CD, they are therefore parallel to one another. Whence is proved that louth EF and D (i bisect AB .
42. This is obvious from Euc. 1. 29, and the note to 111. 22. p. 156.
43. From any point A in the circumference, let ane chord $A B$ and tangent AC be dram. Biscet the are A1; in D, and from D draw DE, DC perpendienlars on the chord $A 1$, and tangent $A($: Join $A D$, the triangles $A D E$, ADC may be shewn to be equal.
44. Let A, 1 , he the given points. Join AB, and upon it descrilse a Eegment of a circle which shall coutain an angle equal to the given angle. If the circle cut the given line, there will be tro points; if it only totich the line, there will be one; and if it neither cut nor touch the line, the problem is impossible.
45. It may be shewn that the point required is determined by a perpendicular drawn from the center of the circle on the given line.
46. Let two lines AP, BP be drawn from the given points A, B, making equal angles with the tangent to the circle at the print of cuntact l', take any other point Q in the convex circumference, and join $Q A, Q B$: then by Prob. 4, p. 71, and Euc. I. 21.
47. Let C be the center of the circle, and E the point of contact of DF with the circle. Join DC, CE, CF.
48. Let the tangents at E, F meet in a point R. Produce RE, RF to meet the diameter AB produced in S, T. Then LisT is a triangle, and the quadrilateral RFOE may be circumscribed by a circle, and RPO may be proved to be one of the diagonals.
49. Let \mathbb{C} be the middle point of the chorl of contact: produce AC, BC to meet the circumference in B^{\prime}, A^{\prime}, and join $A^{\prime}, B B^{\prime}$.
50. Let A be the given point, and I the given point in the given line CD. At B draw $B E$ at right angles to $C D$, join $A B$ and bisect it in F, and from F draw FE perpendicular to AB and meeting BE in E . E is the center of the required circle.
51. Let O be the center of the given circle. Draw OA perpendicular to the given straight line; at 0 in $U . t$ make the angle $A O P$ equal to the given angle, produce PO to meet the circumference again in Q. Then P, (Q are two points from which tangents may be drawn fulfilling the required condition.

5 . Let C be the center of the given circle, B the given point in the circumference, and A the other given point through which the required ciscle is to be marle to pass. Join CB, the center of the eircle is a point in CB prodnced. The center itself may be found in three ways.
53. Euc. 11F. 11 suggests the construction.
54. Let $A B, A C$ be the two given lines which meet at A, and let D be the giren point. Bisect the angle BAC by $A E$, the center of the eircle is in AE. Through D draw DF perpendicular to AL, and produce DF to G, making FG equal to FD . Then DG is a chord oí the circle, and the circle which passes through D and touches AB, will also pass through G and touch AC.
55. As the center is given, the line joining this point and center of the given cirele, is perpendicular to that diameter, through the extremities of which the reguired circle is to pass.

56 . Let $A B$ be the given line and D the given point in it, through which the eirele is required to pass, and AC the line which the circle is to touch. From D draw ILE perpendicular to AB and mecting AC in ($\%$. Suppose 0 it point in AD to be the center of the required cirele. Draw (OE perpendientar to $A C$, and join OC', then it may be shewn that ('O bisects the angle ACD.
57. Let the given circle be described. Draw a line through the center and iuterscetion of the two lines. Next draw a chord perpendicular to this line, cutting off a segment containing the given angle. The circle deseribed passing through one extremity of the chord and tonching one of the straight lines, shall also pass through the other extremity of the chord and touch the other line.
58. The line drawn through the point of intersection of the two cireleg naralkel to the line which joins their centers, may be shewn to be double of the line which joins their centers, and greater than any other straight line drawn though the sume point and terminated by the ciremmferences. The greatest line therefore depends on the distance between the centers of the two circles.
59. Apply Euc. HI. 27 ; 1. 6.
60. Let two unequal circles cut one another, and let the line ABC drawn through 13, one of the points of intersection, be the line required, such that $A B$ is equal to BC. Join $0,0^{\prime}$ the centers of the circles, and draw OP, O'P perpendiculars on $A B C$, then $P^{\prime} 1$ is equal to $\mathrm{BP}^{\prime \prime}$; throngh O^{\prime} draw 0 b parallel to l'l' ; then ODO' is a right-angled triangle, and asemicirele deseribed on (0)' as a diameter will pass through the point 1). Wence the synthesis. If the line $A B C$ be suppresed to move round the point H and its extremisies A, (t to be in the extremities of the two circles, it is manitest that Albe admits of a maximum.
61. Suppose the thing done, then it will appear that the line joining the points of intersection of the two circles is bisected at right angles by the line joining the centers of the circles. Since the radii are known, the centers of the two circles may be determined.

62 . Let the circles intersect in A, B; and let CAD, EDF be any parallels passing thyough A, B and intercepted by the circles. Join ($\mathrm{E}, \mathrm{AB}, \mathrm{D}) \mathrm{F}$. Then the figure CEFD may be proved to be a parallelogram. Whence CAD is equal to EBF.
63. Complete the circle whose segment is ADB; AIHB being the other part. Then since the angle $A C B$ is constant, being in a given segment, the sum of the ares DE and AlIB is constant. But AllB is given, hence ED is also given and therefore constant.
64. From A suppose ACD drawn, so that when BD, BC are joined, AD and IHB shall together be double of AC and CB together. Then the angles $\mathrm{ACD}, \mathrm{ADB}$ are supplementary, and hence the angles $\mathrm{BCD}, \mathrm{BDC}$ are equal, and the triancle $B C D$ is isosceles. Also the angles $B C D$, BDC are given, hence the triangle BDC is given in species.
A gain $A D+D B=2 \cdot A C+2 . B C$ or $C D=A C+B C$.
Whence, make the triangle $b d c$ having its angles at d, c equal to that in the semment BDA; and make $c a=c d-c b$, and join $a b$. At A make the angle BAD equal to bad, and AD is the line required.
65. The line drawn from the point of intersection of the two lines to the center of the giren circle may be shewn to be constant, and the center of the given circle is a fixed point.
66. This is at one\& obvious from Euc. 11I. 36,
67. This follows directly from Euc. 111. 36.
68. Each of the lines CE, DF may be proved parallel to the common chord AB.
69. By constructing the figure and joining AC and AD , by Euc. III. 27, it may be proved that the line BC falls on BD.
70. By constructing the figure and applying Euc. 1. S, 4, the truth is manifest.
71. The hisecting line is a common chord to the two circles; foin the other extremities of the chord and the diameter in each circle, and the angles in the two segments may be proved to be equal.
72. Apply Euc. III. 27: 1. 32, 6.
73. Draw a common tangent at C the point of contact of the cireles, and prove $A\left(^{\prime}\right.$ and $C B$ to be in the same straight line.
74. Let A, B, be the centers, and C the point of contact of the two circles; D, E the points of contact of the circles with the common tangent DE, and CF a tangent common to the two circles at C , meeting DF in E. doin DC, CE. Then DF, FC, FE may be sliewn to be equal, and FC to be at right angles to $A B$.
75. The line must be drawn to the extremities of the diameters which are on opposite sides of the line joining the centers.

7n. The sum of the distances of the center of the third circle from the cente:s of the two giren circles, is equal to the sum of the radii of the given circles, which is constant.
77. Let the circles touch at C either externally or internally, and their diameters AC, BC throngh the point of contact will either coincide or be in the same straight line. CDE any line through C will cut off simitar segments from the two circles. For joining AD, BE, the angles in the segments D.AC, EBC are prored to be equal.

The remaining segments are also similar, since they contain angles which are supplementary to the angles DAC, EBC.
78. Let the line which joins the centers of the two circles be produced to meet the circumferences, and let the extremities of this line and any other line foom the point of contact be joined. From the center of the larger circle draw perpendiculars on the sides of the right-angled triangle inseribed within it.
79. In general, the locus of a point in the cireumference of a circle which rolls witain the circmmference of another, is a curve called the Hypocycloid; but to this there is one exception, in which the radius of one of the circles is douhle that of the other: in this case, the loons is a straight line, as may be eas $!$ ly shewn from the figure.
80. Let A, B be the centers of the circles. Draw AB cutting the circumferences in C, D. On $A B$ take CE, DF each equal to the radius of the requircd circle: the two circles deseribed with centers A, B, and radii $A E, B F$, respectively, will cut one another, and the point of intersection will be the center of the required circle.
81. Apply Enc. 11. 31.
82. Apply Fuc. 11. 21.
83. (1) When the tangent is on the same side of the two circles. Join C, C their centers, and on $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$ describe a semicirele. With center C^{\prime} and radius equal to the difference of the radii of the two circles, deseribe another circle eutting the semircle in D : join DC^{\prime} and produce it to meet the circumference of the given cirele in 1 . Through C draw $\mathrm{C} I$ parallel to DB and join P.A; this line touches the two cireles.
(2) Whea the tangent is ou the alternate sides. Having joined $\mathrm{C}, \mathrm{C}^{\prime}$; on C^{\prime} describe a semicirele; with center C , and radius equal to the sum of the radii of the two circles deseribe another circle cutting the semicirele in D, join ('D cutting the circumference in Λ, through C draw C'B parallel to C'A and join M S.
81. The possilility is obrious. The point of bisection of the segment intercepted between the convex circumferences will be the center of one of the circles: and the center of a second circle will be found to be the point of intersection of two circles described from the eenters of the given cireles with their radii increased by the radius of the second cirele. The line passing throneth the centers of these two cireles will be the locts of the centers of all the eirel which touch the two given cireles.
85. It any points 1 ', I in the circumferences of the cireles, whose enters are $1,[3$, duw $P(Q, R S$, tangents equal to the given lines, and join AC, IBS. Thesc being mate the sites of a triangle of which $A B$ is the base, the rettex of the tringle is the point reguired.

8is. In rach circle draw a chomd of the given length, describe circles concontric with the given circles tonching these chords, and then draw a straight line tonching these circles.
87. Within one of the circles dhaw a chorl cntting off a secment equal to the given segment, and describe a concentric circle touching the chord:
then draw a straight line touching this latter circle and the other given circle.
85. The tangent may intersect the line joining the centers, or the line produced. Prove that the angle in the segment of one circle is equal to the angle in the corresponding segment of the other circle.
89. Join the centers A, B; at C the point of contact draw a tangent, and at A draw AF cutting the timgent in \mathbf{F}, and making with CF an angle equal to one-fourth of the given angle. From F draw tangents to the circles.
90. Let C be the center of the given circle, and D the given point in the given line $A B$. At D draw any line DE at right angles to $A \mathrm{~B}$, then the center of the cirele required is in the line $\mathbf{A E}$. Through C draw a diameter FG parallel to DF, the circle described passing through the points E, F, G will be the circle required.
91. Apply Rue. 14. 18.

92 . Let A, B, be the two given points, and (1 the center of the given circle. Join AC, and at © draw the diameter DCE perpendienlin to AC, and through the points A, D, E describe a circle, and prodnce AC to meet the circumference in F . Bisect AF^{\prime} in (f , and AB in II, ant draw GK, HK, perpendiculars to AF, AB respeetively, and intersectiug in K . Then K is the center of the eircle which passes through the points A, B, and bisects the circumference of the circle whose center is C .
93. Let D be the given point and EF the given straight line. (fig. Eue. in. 82.) Draw D13 to make the angle DHF equal to that contained in the alternate segment. Draw BA at right angles to EF, and DA at right angles to DB and meeting BA in A. Then AB , is the diameter of the circle.
94. Let $A, 13$ be the given points, and (D) the given line. From E the middle of the line AB , draw EM perpendicular to AB , meeting CD in M , and draw MA. In EM take any point F: draw FII to make the given angle with CD; and draw FG equal to FII, and meeting MA produced in G. Through A draw AP paraltel to FG; and CPK paralle to FIl. Then P is the center, and C the third defining point of the circle required: and AP may be proved equal to ('P ly means of the triangles CiMF, AMH'; and HMF, CMIP, Euc. ri. ‥ Also CPK the dianeter makes with CD the angle K(I) equal to FIID, that is, to the given angle.
95. Let A, B be the two given points, join $A B$ and bisect $A B$ in C, and draw CD perpendicular to AB , then the center of the required circle will he in CD. From O the eenter of the given circle draw (FF ; parallel to CD, and mecting the circle in F and $A l$, produced in (G . At F draw a chord FF equal to the given choml. Then the eircle which passes through the points at B and F , passes also through F^{\prime}.
96. Let the straight line joining the centers of the two circles be produced both ways to meet the eircumference of the exterior circle.
97. Let A be the common center of two circles, and BCDE the chord such that IBE is double of CD. From A, B draw AF, 13G perpendicular to BE. Join AC, and produce it to meet BG in (i . Then AC may be shewn to be equal to CG, and the angle CBG being a right angle, is the angle in the semicircle deseribed on Ct as its diameter.
98. The lines joining the common center and the extremities of the elords of the circles, may be shewn to contain unequal angles, and the Agles at the centers of the circles are double the angles at the circumferences, it follows that the segments containing these unequal angles are not similar.
99. Let AB, AC be the straight lines drawn from A , a point in the outer
circle to touch the inner circle in the points D, E, and meet the outer circle again at B, C. Join BC, DE. Prove BC double of DE.

Let O be the eenter, and draw the common diameter AOG intersecting BC in F , and join EF. Then the figure DBFE may be proved to be a parallelogram.
100. This appears from Euc. 111. 14.
101. The giren point may be either within or without the circle. Draw a chord in the circle equal to the given chord, and describe a concentric circle tonching the chord, and through the given point draw a line touching this latter circle.

102 . The diameter of the imer circle must not be less than one-third of the diancter of the exterior circle.
108. Suppose $A D, D B$ to be the tangents to the circle AEB containing the giren angle. Draw DC to the center C and join CA, CB. Then the triangles ACD, BCD are always equal: DC bisects the given angle at D and the angle $A(B$. The angles CAl', CBD, being right angles, are constant, and the angles $\mathrm{ADC}, \mathrm{BDC}$ are constant, as also the angles $\mathrm{ACD}, \mathrm{BCD}$; also $A C$, CB the radii of the giren circle. Hence the locus of D is a circle whose center is (${ }^{\prime}$ and radins CD.
104. Let C' be the center of the inner circle; draw any radius CD, at D draw a tangent CE equal to CD , join CE , and with center C and radius CE describe a circle and produce ED to meet the circle again in F .
105. Take C the center of the given circle, und draw any radius CD, at D draw DE perpendicular to IC and equal to the length of the required tangent; with center C and radius CE describe a circle.
106. This is manifest from Euc. 111. 36.
107. Let $A B, A C$ be the sides of a triangle $A B C$. From A draw the perpendicular AD on the opposite sirle, or opposite side produced. The semicireles deseribed on AB, BC' both pass through D. Enc, 111. 31.
108. Let A be the right angle of the triangle $A B C$, the first property follows from the preceding Theorem 87 . Let DE, DF be drawn to E, F the centers of the circles on $A B, A C$ aud join EF. Then ED may be proved to be perpendicular to the zadius DF of the circle on $A C$ at the point D.
109. Let $A B C$ be a triangle, and let the ares be deseribed on the sides externally contaning angles, whose sum is equal to two right angles. It is obrious that the sum of the angles in the remaining segments is equal to four right angles. These ares may be shewn to intersect each other in one point D. I.et a, b, c he the centers of the circles on $\mathrm{BC}, \mathrm{AC}, \mathrm{AB}$. Join $a b, l a, c a ; A b, b, C a ; a b, B r, c A ; b D, c D, a b)$. Then the angle cba may he proved equal to one-half of the angle $\mathrm{A} b \mathrm{C}$. Similaly, the other two angles of abr.
110. It mar be remarked, that generally, the mode of proof by which, in pure geometry, three lines must, mader specified conditions, pass throurh the same point, is that by reductio ad absurdum. This will for the most pat regnire the converse theorem to be first prowed or taken for granted.

The converse theorem in this instance is, "If two perpendiculars drawn from two angles of a triangle upon the opposite sides, intersect in a point, the line drawn from the third angle through this point will be perpendicular to the third side."

The proof will be formally thus: Let EIID be the triangle, $\Lambda(9, B D)$ two perpendieulars intersecting in F. If the thiml perpendicular lidi do mot pass
 to meet AD in (6 . 'When it has been proved that EG is perpendicular to $\mathbf{I D}$:
whence the two angles EHG, EGH of the triangle EGII are equal to two right angles;-which is absurkl.
111. The circle described on AB as a dianeter will pass through E and D. Then Euc. 1I. 86 .
112. Since all the triangles are on the same hase and have equal vertical angles, these angles are in the same segment of a given circle.

The lines bisecting the vertical angles may be shewn to pass through the extremity of that diameter which bisecti the base.
113. Let AC be the common base of the triangles, ABC the isosceles triangle, and ADC any other triangle on the same base AC and between the same parallels AC, BD. Describe a circle about ABC, and let it cut AD in E aud join EC. Then, Euc. 1. 17; 111. 21.
114. Let ABC be the given isosceles triangle having the vertical angle at C, and let $\mathrm{F}(\mathrm{a}$ be any given line. Requised to find a point P in FG such that the distance PA shatl be donble of P' (. Divide AC in D so that AD is double of $D C^{\prime}$, produce $A(:$ to E and make AE double of AC. On DE describe a circle cutting $\mathrm{F} G$ in P , then PA is double of PC. This is found by shewing that $\mathrm{AP}^{2}=4 . \mathrm{PC}^{2}$.
115. On any two sides of the triangle, describe segments of circles each containing an angle equal to two-thirds of a right angle, the point of intersection of the ares within the triangle will be the point requirerl, such that three lines drawn from it to the angles of the triangle shall contain equal angles. Euc. 111. 22.
116. Let A be the base of the tower, AB its altitude, BC the height of the tlagstaff, $A D$ a horizontal line drawn from A. If a circle be described passing through the points B, C, and tonching the line $A \mathrm{D}$ in the point $\mathrm{E}: \mathrm{E}$ will be the point required. Give the analysis.
117. If the ladder be supposed to be raised in a vertical plane, the locus of the middle point may be shewn to be a quathantal are of which the radius is half the length of the ladder.
118. The line drawn perpendicular to the diameter from the other extremity of the tangent is parallel to the tangent drawn at the extremity of the diameter.

119: Apply Euc. 111. 21.
120 . Let $\dot{A}, 13$, C, be the centers of the three equal circles, and let them intersect one another in the point I): and let the circles whose centers are A, B intersect each other again in E ; the circles whose centers are B, C in F ; and the circles whose centers are C, A in $(\mathrm{r}$. Then F G is perpendicular to $\mathrm{DE} ; \mathrm{DG}$ to FC ; and DF to GE. Since the circles are equal, and all pass through the same point D , the centers $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are in a circle about D whose radius is the same as the radins of the given circles. Join AP, BC, CA; then these will be perpendicular to the chords DE, DF, DG. Again, the figures DAGC, DBFC are equilateral, and hence $F(t$ is parallel to $A B$; that is, perpendicular to DE. Similarly for the other two cases.
121. Let E be the center of the circle which touches the tro equal circles whose centers are A, B. Join AE, BE which pass through the points of contact F, G. Whence AE is equal to EB. Also CD the common chord biscets $A B$ at right angles, and therefore the perpendicular from E on $A B$ coineides with (I).
122. Let three circles tonch each other at the point A, and from A let a line ABCD be drawn cutting the circumferences in $\mathrm{B}, \mathrm{C}, \mathrm{D}$. Let $\mathrm{O}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime \prime}$ be the eenters of the circles, join $\mathrm{BO},\left(\mathrm{CO}^{\prime}, \mathrm{DO}^{\prime \prime}\right.$, these lines are parallel to one another. Euc. 1. 5, 2s.
123. Prooeed as in Theorem 90, supra.
121. The three tangents will be found to be perpendicular to the sides of the triangle formed by joining the centers of the three circles.
125. With center A and any radius less than the radius of cither of the equal circles, describe the third eirele intersecting them in C and D . Join $B C, C D$, and prove $B C$ and $C D$ to be in the same straight line.
126. Let ABC be the triangle required; BC the given base, BD the given difference of the sides, and BAC the given vertical angle. Join CD and draw All perpendicular to CD. Then $M A D$ is half the vertical angle and A Ill) a right angle: the angle BDC is therefore given, and hence D is a point in the are of a given segment on BC. Also since BD is given, the point D is given, and the cefore the sides BA, AC are given. Hence the synthesis.
127. Let ABC be the required triangle, AD the line bisecting the vertical angle and dividing the base $B C$ into the segments $B D, 1) C$. Ahoat the triangle ABC describe a circle and produce AD to mect the circumference in E , then the arcs BE, EC are equal.
128. Analysis. Let ABC be the triangle, and let the cirele ABC be deseribed about it: draw AF to bisect the vertical angle BAC and meet the cirele in F , make AT equal to AC , and draw CV to meet the circle in T ; join $T B$ and $T F$, cutring $A B$ in D; draw the diameter Fs cutcing $B C$ in $R_{\text {r }}$ DR eutting AF in E ; join AS, and draw AK, All perpendicular to FS ard BC. Then shew that AD is haif the sum, and DB half the difterence of tie sides $A B, A C$. Next, that the point F in which AF meets the cireumscribing circle is given, also the point E where DE meets AF is given. The poi,ts A, K, R, F are in a circle, Eue. 11t. 22.
llence, $\mathrm{KF} . \mathrm{FR}=\mathrm{AF} . \mathrm{FE}$, a given rectangle; and the segment $K R$, which is equal to the perpondieular AH, being given, RF itself is giseu. Whence the construction.
129. On AB the given base describe a cirele such that the segment AEB shall contain an angle equal to the given vertical angle of the triangle. Daw the diameter EMD cutting $A \mathrm{~B}$ in M at light angles. At I) m ED, make the angle EDC equal to half the given difference of the angles at the base, and let $5(1$ meet the circumference of the circle in C . Join CA, CB ; ABf: is the triangie required. For, make CF equal to CB , and juin FB cutting (D) in (x .
130. Let $A B C$ be the triangle, $A D$ the perpendicular on $B C$. With conter A, and $A C$ the less side as radins, describe a circle cutting the base BC in F , and the longer side AB in $(\mathrm{B}$, and BA protuced in F , and join AE: Ef, FC. Then the angle GFC being half the given angle, BAC is given, and the angle B2AR equal to GFC is also given. Likewise DB the difference of the segments of the base, and BG the difference of the sides, are given by the problem. Wherefore the triangle Bledi is given (with two solutions). Agrain, the angle E(il) being given, the angle ACE, and hence its equal $A E G$ is given; and hence the vertex A is given, and likewise the line $A E$ equal to AC the shortest sile is given. Hence the construction.
131. Let $A B C$ be the triangle, D, E the hisections of the sides $A C$, AB. Join (E, IBD intersecting in \mathcal{F}. Bisect BI) in (i and join E(i. Then ER, onc-third of EC is given, and BG one-hall of IBD is also given. Now FA is parallel to AC ; and the angle BAC being given, its equal opposite angle JBEG is also given. Whence the segment of tho civele contaning the angle Blad is also given. Hance b is a given point, and FE a given line, whence E is in the circumference of the given cirde about F whose radins is FE. Wherefore F : being in two given cireles, it is itself their giveu intersection.
132. Of all triangles on the same base and having equal vertical angles, that triangle will be the greatest whose perpendicular from the vertex on the base is a maximum, and the greatest perpendieular is that which bisects the base. Whence the triangle is isosceles.
133. Let $A B$ be the given base and $A B C$ the sum of the other two sides; at B draw IBD at right angles to AB and equal to the given alnitude, produce BD to E making DN equal to LBD. With center A and radius $A C$ deseribe the circle $\mathrm{CFG}_{\mathrm{a}}$, draw FO at right angles to BE and find in it the center 0 of the circle which passes through 13 and E and touches the former eircle in the point F. The centers A,O being joined and the line produced, will pass through F. Join OB. Then AOB is the triangle required.

134 . Since the area and bases of the triangle are given, the altitude is given. Hence the problem is-given the base, the vertical angle and the altitude, describe the triangle.
135. Apply Euc. 111. 27.
136. The fixed point mar be proved to be the center of the cirele.

1:7. Let the line which bisects any angle BAD of the quadrilateral, meet the circumference in E , join EC , and prove that the angle made by producing DC is bisected by EC.
138. Draw the diagonals of the quadrilateral, and by Ene. 1n. 21, 1. 29.
139. From the center draw lines to the angles: then Euc. 15. 27.
140. The eenters of the four cireles are determined by the interseetions of the lines which bisect the four angles of the given quadrilateral. Join these four points, and the opposite angles of the quadrilateral so formed are respectively equal to two right angles.
141. Let $A B C D$ be the required trapezium inseribed in the given eircle (fig. Eue. 111. 22.) of which AB is given, also the sum of the remaining three sides and the angle ADC. Since the angle ADC is given, the opposite augle ABC is known, and therefore the point $(:$ and the side BC . Produce AD and make DE equal to DC and join EC. Sinee the sum of AD, DC, CL' is given, and DC is known, therefore the sum of $A D, D C$ is given, and likewise $A C$, and the angle $A D C$. Also the angle DEC being half of the angle $A D C$ is given. Whence the segment of the circle which contains $A E C$ is given, also AL is given, and hence the point E , and consequently the point D . Whence the construction.
142. Let $\triangle D B C$ be the inseribed quadrilateral; let $A C, I B D$ produced meet in O, and $A B, C D$ produced meet in P, also let the tangents from O, P mect the circles in K, II respectively. Join OP, and ahout the triangle I'AC describe a circle cutting $P\left(\begin{array}{l}\text { in } \\ \text { G and join } A G\end{array}\right.$. Then A, B, G, O may be shewn to be points in the circumference of a circle. Whence the sum of the squares on Ofl and PK may be found by Euc. 111. 36, and shewn to be equal to the square on OP.
143. This will be manifest from the equality of the two tangents drawn to a circle from the same point.
144. Apply Ene. 111. 22.
145. A circle can be deseribed about the figure AECRF.
146. Apply Fuc. 111. 22, 32.
147. Apply Ruc. 11. 21, 22, 32.
148. Apply Euc. 11. 20, and the angle BAD will be found to be equal to BAD and ('BD.
149. Let A, B, C, D be the angular points of the inseribed quadrilateral, and F, F, (i , Il those of the ciremmseribed one whose points of contact with the circle are at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$. Draw the diagonals AC, BD; join EO, , OG, O being the center of the circle, and prove EO to be in the same straight line with $O G$.
150. Apply Euc. 111. 22.
151. Join the center of the circle with the other extremity of the line perpendicular to the diameter.

15‥ Let $A B$ be a chord parallel to the diameter $F G$ of the circle, fig. Theo. 1, p. 160, and II any point in the diameter. Let HA and HB be joined. Bisect FG in O, draw OL perpendicular to FG cutting AB in K , and join HK, HL, OA. Then the square on IIA and IIF may be proved equal to the squares on FH, HG by Theo. 3, p. 114 ; Euc. 1. 47 ; Euc. ir. 9 .
153. Let A be the given point (fig. Euc. nir. 36, Cor.) and suppose AFC meeting the circle in F , C , to be bisected in F , and let AD be a tangent drawn from A. Then 2. $\mathrm{AF}^{2}=\mathrm{AF} . \mathrm{AC}=\mathrm{AD}^{2}$, but AD is given, henee also AF is given. To construct. Draw the tangent AD. On AD describe a semicircle $A(G D$, biseet it in G; with center A and radius $A G$, deseribe a circle cutting the given circle in F. Join AF and produce it to meet the eircumference again in C .
154. Let the chords AB, CD intersect each other in E at right angles. Find F the center, and draw the diameters $H E F G$, AFK and join $A C, C K$, BD. Then by Euc. 11. 4. 5a; 111. 35.
155. Let E, F be the points in the diameter AB equidistant from the center O; CED any chord; draw OG perpendicular to CED, and join FG, OC. The sum of the squares on DF and FC may be shewn to be equal to twice the square on FE and the rectangle contained by AE, EB by Euc. 1 . 47 ; 11. 5 ; 111. 35.
156. Let the chords $A B, A C$ be drawn from the point A, and let a chord FG parallel to the tangent at A be drawn intersecting the chords AB, AC in II and E, and join BC. Then the opposite angles of the quadrilateral BDEC are equal to two right angles, and a circle would circumscribe the figure. Hence by Euc. 1. 36.
157. Let the lines be dramn as directed in the enunciation. Draw the diameter AE and join $\mathrm{CE}, \mathrm{DE}, \mathrm{BE}$; then $\mathrm{AC}^{2}+\mathrm{AD}^{2}$ and 2. AB^{2} may be each shewn to be equal to the square of the diameter.
158. Let QOP eut the diameter $A B$ in O. From C the eenter draw CH perpendicular to QP. Then CII is equal to OH, and by Euc. 11. 9, the squares on P()$, O Q$ are readily shewn to be equal to twice the square on CP'
159. From P draw $P Q$ perpendicular on $A B$ meeting it in Q. Join $A C$, CD, DB. Then circles would eircumscribe the quadrilaterals ACPQ and 13 IPQ , and then by Eue. 1ı. 36 .
160. Describe the figure according to the enunciation; draw AE the diameter of the circle, and let P be the intersection of the diagonals of the parallelogram. Draw EB, EI', EC, EF, EG, EHI. Since AE is a diameter of the circle, the angles at $\mathrm{F}, \mathrm{G}, \mathrm{II}$, are right angles, and EF, EG, EII are perpendiculars from the vertex upon the bases of the triangles FAB, FAC? EAl'. Whence by Euc. 1. 13, and theorem 3, page 114, the truth of the property may be shewn.
161. If FA be the given line (fig. Ene. 11. 11), and if FA be produced to $\mathrm{C} ; \mathrm{AC}$ is the part produced which satisfies the required conditions.
162. Let AJ) meet the circle in G, I, and join BG, GC. Then BGC is a right-angled triangle and GI) is perpendicular to the hypotenuse, and the rectangles may be each shewn to be equal to the square on lid. Euc. 111. 35 ; 11. 5 ; I. 47 . 01 ; if EC be joined, the quadrilateral figure ADCE may be circumseribed by a circle. Vue. 111. 31, 22, 36, Cor.
163. On PC describe a semicircle cutting the given one in \mathbf{E}, and draw $\mathbf{E r}$ perpendicular to $A D$; then F is the point required.
164. Let $A B$ be the given straight line. Bisect $A B$ in C and on $A B$ as a diameter describe a circle; and at any point \boldsymbol{O} in the circumference, draw a tangent DE equal to a side of the given square ; join DC, EC, and with center C and radius CE describe a circle cutting AB produced in F. From F diaw $F(\dot{F}$ to touch the circle whose center is C in the point $(x$.
165. Let AD, DF be two lines at right angles to each other, O the center of the circle $B F(Q ; A$ any point in AD) from which tangents $A B, A C$ are drawn; then the chord BC shall always cut FI) in the same point P, wherever the point A is taken in AD. Jom AP; then BAC is an isosccles triangle,
and $\mathrm{FD} \cdot \mathrm{DE}+A D^{2}=A B^{2}=\mathrm{BP} \cdot \mathrm{PC}+A P^{2}=\mathrm{BP} \cdot \mathrm{P}^{2}+A D^{2}+\mathrm{DP}^{2}$, wherefore $\mathrm{BP} . \mathrm{P} \cdot=\mathrm{FD} . \mathrm{DE}-\mathrm{DP}^{2}$.
The point P, therefore, is independent of the postion of the point A; and is consequently the same for all positions of A in the line AD .
166. The point E will be found to be that point in BC , from which two tangents to the circles described on AB and CD as diameters, are equal, Ene. iII. 36.
167. If $\mathrm{AQ}, \mathrm{A}^{\prime} \mathrm{P}^{\prime}$ be produced to meet, these lines with AA^{\prime} form a right-anglod triangle, then Euc. I. 47.

GEOMETRICAL ENERCISES ON BOOK IV.

HINTS, \&c.

5. Let AB be the given line. Draw through C the center of the given cirele the diameter DCE. Biseet $A B$ in F and join $F C$. Through A, B draw AG, BH parallel to FC and meeting the diameter in G, IL : at G, Il draw GK, HL perpendicular to DE and meeting the circumference in the points K , L ; join KL ; then KL is equal and parallel to AB .
6. Trisect the eircumference and join the center with the points of trisection.
7. See Fue. 1v. 4, 5.
8. Let a line be drawn from the third angle to the point of intersection of the two lines; and the three distances of this point from the angles may be shewn to be equal.
9. Let the line AD drawn from the rertex A of the equilateral triangle, cut the base BC, and meet the circumference of the circle in D. Let DB, DC be joined: AD is equal to DB and DC . If on DA, DE be taken equal to DB , and BE be joined; BDE may be proved to be an equilateral triangle, also the triangle ABE may be proved equal to the triangle CBD.

The other case is when the line does not ent the base.
10. Let a cirele be described upon the base of the equilateral triangle, and let an equilateral triangle be inscribed in the circle. Draw a diameter from one of the vertices of the inseribed triangle, and join the other extremity of the diameter with one of the other extremities of the sides of the inseribed triangle. The side of the inscribed triangle may then be proved to be equal to the perpendienlar in the other triangle.
11. The line joining the points of bisection, is parallel to the base of the triangle and therefore cuts off an equilateral triangle from the given triangle. By Eue. III. 21 ; I. 6, the truth of the theorem may be shewn.
12. Let a diametor be drawn from any angle of an equilatoral tri-
angle inscribed in a circle to meet the circumference. It may be proved that the radius is bisected by the opposite side of the triangle.
13. Let $A B C$ be an equilateral triangle inscribed in a circle, and let $A B^{\prime} C^{\prime \prime}$ be an isosceles triangle inscribed in the same circle, having the same vertex A. Draw the diameter AD intersecting BC in E , and BC^{\prime} in E^{\prime}, and let $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ fall below BC . Then AB, BE, and $\mathrm{AB}^{\prime}, \mathrm{B}^{\prime} \mathrm{F}^{\prime}$, are respectively the semi-perimeters of the triangles. Draw $\mathrm{B}^{\prime} \mathrm{F}$ perpendicular to BC , and cut off Ail equal to AB , and join BH . If BF can be proved to be greater than $B H$, the perimeter of $A B C$ is greater than the perimeter of $A B^{\prime} C^{\prime}$. Next let $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ fall above BC .
14. The angles contained in the two segments of the circle, may be shewn to be equal, then by joining the extremities of the ares, the two remaining sides may be shewn to be parallel.
15. It may be shewn that four equal and equilateral triangles will form an equilateral triangle of the same perimeter as the hexagon, which is formed by six equal and equilateral triangles.
16. Let the figure be constructed. By drawing the diagonals of the bexagon, the proof is obvious.
17. By Enc. 1. 47, the perpendicular distance from the center of the circle upon the side of the inseribed hexagon may be found.
18. The alternate sides of the hexagon will fall non the sides of the triangle, and each side will be found to be equal to one-third of the side of the cquilateral triangle.
19. A regular duodecagon may be inscribed in a circle by means of the equilateral triangle and square, or by means of the hexagon. The area of the duodecagon is three times the square of the radins of the cirele, which is the square of the side of an equilateral triangle inscribed in the same circle. Theorem 1, p. 196.
20. In qeneral, three straight lines when produced will meet and form a triangle, exeept when all three are parallel or two parallel are intersected by the thiri. This Problem includes Euc. 15. 5, and all the eases which arise from producing the sides of the triangle. The circles deseribed touching a side of a triangle and the other two sides produced, are called the eseribed circles.
21. This is manifest from Euc. In. 21.
22. The point required is the center of the circle which ciremmseribes the triangle. See the notes on Euc. 113. 20, p. 155.
23. If the perpendiculars mect the thres sides of the triangle, the point is within the triangle, Euc. w. 4. If the perpendienlars meet the base and the two sides produced, the point is the center of the escribed circle.
24. This is manifest from Euc. 11. 11, 18.

25 . The base BC is intersected by the perpendicular AD, and the side AC is intersected by the perpendicular BE. From Theorem 1. p. 160 ; the are $A F$ is proved equal to $A \mathrm{E}$, or the are FE is lisected in A . In the sunie manner the ares FD, DE, may be shewn to he bisected in BC .
26. Let ABC he a triangle, and let I), E be the points where the inseribed circle tonches the sides AB, AC. Draw 13:, CD) intersecting each other in 1 . Join AO, and profuce it to meet BC in F. Then F is the point where the inseribed circle tomehes the third side BC. If F be not the point of contact, let some other point G be the point of contact. Throagh I draw Dil parallel to AC , and D K parallel to BC . By the simblar triangles, $\mathrm{C}(\mathrm{i}$ may he proved equal to CF, or (i the point of contact coincides with F , the point where the line drawn from A through 0 meets BC .
27. In the figure, Euc. 1v. 5. Let AF bisect the angle at A, and be pior duced to meet the cireumference in \mathbf{A}. Join $G B, G \mathrm{G}$ and find the center If of the circle inseribed in the triangle ABC . The lines $\mathrm{GII}, \mathrm{GB}, \mathrm{GC}$ are equal to one another.
28. Let ABC be any triangle inseribed in a circle, and let the perpendiculars AD, BE, CF intersect in G. Produce AD to meet the circumference in H, and join BH, CH. Then the triangle BIIC may be shewn to be equal in all respects to the triangle BCCC, and the circle which circumseribes one of the triangles will also circumseribe the other. Similarly may be shewn by produchig BE and CF, \&c.
29. First. Prove that the perpendiculars $\mathrm{A} a, \mathrm{~B} b, \mathrm{C} c$ pass through the same point 0 , as Theo. 112, p. 158. Secondly. That the triangles Acb, Bca, $\mathrm{C} a b$ are equiangular to ABC . Euc. Int. 21. Thirdly. That the angles of the triangle $a b c$ are bisected by the perpendiculars; and lastly, by means of Prob. 4, p. 71 , that $a b+b c+c a$ is a minimum.
30. The equilateral triangle can be proved to be the least triangle which can be circumscribed about a circle.
31. Through C draw CH parallel to AB and join AII. Then HAC the difference of the angles at the base is equal to the angle HFC. Euc. 111. 21, and HFU is bisected by FG .
32. Let F, G, (figure, Eue. Iv. 5,) be the centers of the circumseribed and inscribed circles; join GF, GA, then the angle GAF which is equal to the difference of the angles GAD, FAD, may be shewn to be equal to half the difference of the ancles ABC and ACB.
33. This Theorem may be stated more generally, as follows:

Let AB be the base of a triangle, AEB the locus of the vertex; D the bisection of the remaining are AD13 of the circumscribing circle; then the locus of the center of the inseribed circle is another circle whose center is D and radius DB. For join CD : then P the center of the inscribed circle is in CD. Join AP, PB ; then these lines bisect the angles $\mathrm{CAB}, \mathrm{CBA}$, and DB, DP, DA may be proved to be equal to one another.
34. Let ABC be a triangle, having C a right angle, and upon AC, BC, let semicireles be described; bisect the bypotenuse in D, and let fall DE, DF perpendiculars on AC, BC respectively, and produce them to meet the circumferences of the semicircles in P, Q; then DP may be proved to be equal to $D Q$.
35. Let the angle BAC be a right angle, fig. Euc. 1r. 4. Join AD. Then Eue. 11I. 17, note p. 155.
36. Suppose the triangle constructed, then it may be shewn that the difference between the hypotenuse and the sum of the two sides is equal to the diameter of the inscribed circle.
37. Let P, Q be the middle points of the ares $A B, A C$, and let $P Q$ be joined, cutting AB, AC in DE ; then AD is equal to AE . Find the center 0 and join OP, QO.
38. With the given radius of the circumseribed circle, describe a circle. Draw BC cutting of the segment BAC containing an angle equal to the given vertieal angle. Bisect BC in D, and draw the diameter EDF: Join MB, and with center F and radins FB describe a circle: this will be the loens of the centers of the inscribed circle (see Theorem 29, supra.) On DE take i)(s equal to the given rallirs of the inseribed circle, and through G draw GlI parallel to BC, and meeting the locus of the centers in H. II is the center of the inscribed circle.
39. This may readily be effected in almost a similar way to the preceding Problem.
40. With the given radius deseribe a cirele, then by Euc. 1in. 34.
41. Let ABC be a triangle on the given base BC and haring its vertical angle A equal to the given angle. Then since the angle at A is constant, A is a point in the are of a segment of a circle described on BC. Let D be the center of the circle inseribed in the triangle ABC. Join DA, DB, DC: then the angles at $\mathrm{B}, \mathrm{C}, \mathrm{A}$, are bisected. Euc. IV. 4. Also since the augles of each of the thiangles $\mathrm{ABC}, \mathrm{DBC}$ are eqnal to two right angles, it follows that the angle BDC is equal to the angle A and half the sum of the angles B and C. But the sum of the angles B and C can be found, becanse A is given. Hence the angle BDC is known, and therefore D is the locus of the vertex of a triangle described on the base BC and having its vertical angle at D double of the angle at A.

4?. Suppose the parallelomam to be rectangular and inscribed in the given triangle aud to be equal in area to half the triangle; it may be shewn that the parallelogram is equal to half the altitude of the triangle, and that there is a restriction to the magnitude of the angle which two adjacent sides of the parallelogram make with one another.
43. Let $A B C$ the the given triangle, and $A^{\prime} B^{\prime} C^{\prime}$ the other triangle, to the sides of which the inseribed triangle is required to be parallel. Through any point a in AB draw $a b$ parallel to $A^{\prime} \mathrm{P}^{\prime}$ one side of the given triangle, and through a, b draw $a c, b c$ respectively parallel to AC, BC. Join Ac and produce it to meet BC in D ; through D draw DE, DF, parallel to $c a, c b$, respectively, and join EF. Then DEF is the triangle required.
44. This point will be found to be the intersection of the diagonals of the given paralletogram.
45. The dillerence of the two squares is olsionsly the sum of the four triangles at the corners of the exterior square.
46. (1) Let ABCD be the giren square: join AC , at A in AC , make the angles CAE, CAF, each equal to one-third of a right angle, and juin EF.
(2.) Biseet $A B$ any side in P, and draw $P Q$ parallel to $A D$ or $B C$, then at I' make the angles as in the former case.
47. Each of the interior angles of a regular octagon may be sliewn to be equal to three-fonrths of two right angles, and the exterior angles made by preducing the sides, are each equal to one-fourth of two right angles, or onehalf of a right angle.
48. Let the diagonals of the rhombus be drawn ; the center of the inseribed circle may lee shewn to be the point of their intersection.
49. Let $A B C D$ be the reguired siguare. Join O, O the centers of the circles and draw the diagonal AEC entting (oO' in E. Then E is the middle point of Ot' and the angle AEO is half a right angle.
50. Let the squares he inscribed in, and ciremmscribed about a cirele, and let the diameters be drawn, the relation of the two squares is manifest.
51. Let one of the diagonals of the square be diawn, then the isosectes right-angled triangle which is half the square, may be proved to be greater than any other right-angled triangle upon the same hypotenuse.
52. Take half of the side of the spuare inseribed in the given circle, this will be equal to a side of the required octagon. At the extremities on the same side of this line make two angles each equal to three-fom ths of two right angles, bisect these angles by two straight fines, the proint at which they meet will be the center of the cirrle which eiremmseribes the octagom, and either of the bisecting lines is the ratins of the cirede.
53. First shew the possibility of a circle circumscribing such a figure, and then determine the center of the circle.
54. By construeting the figures and drawing lines from the eenter of the
circle to the angles of the oetaron, the arcas of the eight triangles may be asily shown to be equal to eight times the rectangle contained by the radius of the circte, and half the sitle of the inseribed sinare.

55 . Let $A B, A C, A D$, the the sides of a sutuare, a regular hexagon and octaron respectively inseribed in the circle whose center is 0 . Produce $A 0$ to E making AE equal to Al'; from E draw EF toucling the circle in F , and prove EF to be equal to AD.
56. Let the circle required tonch the given circle in P , and the given line $\ln \mathrm{Q}$. Let C be the center of the given circle and $\mathrm{C}^{\prime \prime}$ that of the required circle. Join ' C^{\prime} ', U'Q, QP' ; and ket (QP' producerl meet the given circle in R , join RC and produce it to meet the given line in V . Then RCV is perpeadicular to $V \mathrm{~V}$. Hence the construction.
57. Let A, B be the centers of the given circles and $C D$ the given straight line. On the site of CD opposite to that on which the circles are situated, draw a line EF parallel to CD at a distance equal to the radius of the smaller circle. From A the center of the larger circle describe a concentric circle Gll with ralius equal to the difference of the radii of the two circles. Then the center of the circle touching the cirele GII, the line EFF a a passing through the conter of the smaller circle B, may be shewn to be the center of the cirele which touches the circles whosc centers are A, B, and the line CD.
58. Let AB, CD be the two lines given in position, and E the center of the given circle. Draw two lines Ff, III parallel to AB, CD respectively and external to them. Deseribe a circle passing through E and tonching Fti, III. Join the centers E, O, and with center 0 and radins equal to the dillerence of the radii of these circles describe a circle; this will be the cirele required.
59. Let the circle ACP having the center G , be the required circle tonching the given circle whose center is B, in the point A, and cutting the othe: given circle in the ooint C . Join Bf , and through A draw a line perpendicula: to $B G_{r}$; then this line is a common tangent to the circles whose centers are B, Cr. Join AC, GC. Henee the construction.
60. Let C be the given point in the given straight line AB , and D the center of the given circle. Through C draw a line CE perpendicnlar to AB ; on the other side of AB , take CE egual to the radius of the given circle. Draw ED, and at D make the angle EDF equal to the angle DEC, and produce EC to meet DF. This gives the construction for one ease, when the given line does not cut or touch the other eirele.
61. This is a particular case of the general problem : To describe a circle passing through a given point and touching two straight lines given in position.

Let A be the given point between the two given lines which when produced meet in the point B. Bisect the angle at B by BD, and through A draw AD perpendicular to BD and produce it to meet the two given lines in C, E. Take DF equal to DA, and on CB take 'Gs such that the rectangle contained by CF, CA is equal to the square of CG. The eircle descrited through the points F, A, G, will be the circle required. Deduce the particular case when the given lines are at right angles to one another, and the given point in the line which hisects the angle at B. If the lines are parallel, when is the solution possihle?
62. Let A, B, be the centers of the given circles, which touch externally in E ; and let C be the given point in that whose center is B . Mlake CD equal to AE and draw AI) : make the angle DAG equal to the angle ADG: then G is the center of the cirele required, and GC its radius.
63. If the three points be such as when joined by straight lines a triangle is formed; the poiuts at which the inscribed circle tonches the sides of the triangle, are the points at which the three circles tonch one enother. Euc. w. 4. Different cases arise from the relative position of the three points.
64. Bisect the angle contained by the two lines at the point where the bisecting line meets the circumferenee, draw a tangent to the circle and produce the two straight lines to meet it. In this triangle inscribe a circle.
65. From the given angle draw a line through the center of the cirele, and at the point where the line intersects the circumference, draw a tangent to the eircle, mecting two sides of the triangle. The circle inseribed within this triangle will be the circle required.
66. Let the diagonal $A D$ cut the arc in P, and let O be the center of the inscribed circle. Draw OQ perpendicular to AB. Draw PE a tangent at P meeting $A B$ produced in E : then BE is equal to I'D. Join $I^{\prime} Q, P B$. Then $A B$ may be proved equal to QE. Hence $A Q$ is equal to $B E$ or DP.
67. Suppose the eenter of the required circle to be found, let fall two perpendiculars from this point upon the radii of the quadrant, and join the center of the circle with the center of the quadrant and produce the line to meet the arc of the quadrant. If three tangents be drawn at the three points thus determined in the two semicitcles and the are of the quadrant, they form a right-angled triangle which circumseribes the required circle.
68. Let $A B$ be the base of the given segment, C its middle point. Let DCE be the required triangle having the sum of the base DE and perpendicular CF equal to the given line. Produce CF to II, making FII equal to DE. Join IID and produce it, if necessary, to meet Als produced in K. Then CK is double of DF. Draw LL perpendieular to CK.
69. From the vertex of the isosceles triangle let fall a perpendicular on the base. Then, in each of the triamgles so formed, inseribe a circle, lanc. w. 4 : next inseribe a eircle so as to touch the two circles and the two equal sides of the triangle. This gives one solution: the problem is indeterminate.
70. If BD be shewn to subtend an are of the larger eirele equal to one-tenth of the whole ciremmference:-Then BD is a side of the decagon in the larger eircle. And if the triangle ABD can he shewn to be inseriptible in the smaller cirele, BD will be the side of the inseribed pentaren.
71. It may be shem that the angles $A B F, \mathrm{BFD}$ stand on two ares, one of which is three times as large as the other.
72. It may be proved that the diagonals hisect the angles of the pentagon; and the five-sided figure formed by their intersection, may be shewa to be both equiamolar and equilateral.
73. The ligure A 3 CDE is an irregular pentagon inseribed in a circle, it may be shewn that the five angles at the circumferenee stand upon ares whose sum is equal to the whole cireumference of the circle; Euc. 111. 20.
74. If a side CD (figure, Eue. IN. 11) of a regular pentagon be prodneed to K , the exterior angle $A \mathrm{DK}$ of the inseribed quadribteral firme $A B C D$ is efual to the angle $A B C^{\circ}$, one of the interion angles of the pentagon. From this a construction may be made for the method of fulding the ribbou.
75. In the figure, Euc. 15. 10, let DC be prodnced to meet the circumference in F , and join FB. Then FB is the side of a regular pentagon insorihed in the larger circle, 1) is the midalle of the are subtended by the adjacest side of the pentagon. Then the difference of FI and BD is equal to the radins Als. Next, it may be shewn, that ri) is divided in the same manner in C as AB , and by Eue. 11 . 4, 11, the squares on FI and DB are shree times the square on AB , and the rectangle of FD and DB is equal to the square on AB .
76. If one of the diagonals be dramn, this line with three sides of the pentagon forms a quadrilateral figure of which three consecutive sides are equal. The problem is reduced to the inseription of a quadrilateral in a square.
77. This may be derluced from Ene. w. 11.
78. The angle at A the center of the circle (fig. Euc. I5. 10.) is onetenth of four right angles, the are BD) is therefore one-tenth of the circumference, and the chord BD is the side of a regular decagon inseribed in the lareer circle. Produce DC to meet the circumference in F and join BF , then BF is the side of the inseribed pentagon, and $A B$ is the side of the inseribed hexaron. Join li. Then FCA may be proved to be an isosceles triangle and FB is a line drawn from the vertex meeting the hase produced. If a perpendicular be drawn from F on BC , the dillerence of the squares on FB, FC may be shewn to be equal to the rectangle $\AA 3, \mathrm{BC}$, (Eue. 1.47 ; 11 . 5 , Cor.) ; or the square on AC .
79. Diside the circle into three equal sectors, and draw tangents to the middle points of the ares, the problem is then reduced to the inseription of a circle in a triangle.
80. Let the inscribed circles whose centers are A, I touch each other in G , and the circle whose center is C , in the points $\mathrm{L}, \mathrm{E} ;$ join $\mathrm{A}, \mathrm{I} ; \mathrm{A}, \mathrm{E}$; at D , draw DF perpendieular to DA , and EF to EB , meeting in F . Let F , G be joined, and $F G$ be proved to touch the two circles in G whose centers are A and B .
81. The problem is the same as to find how many equal circles may be placed round a circle of the same radius, touching this circle and cach other. The number is six.
82. This is obvious from Euc. Iv. 7, the side of a square eircumseribing a cirele being equal to the diameter of the circle.
83. Lach of the vertical angles of the triangles so formed, may be proved to be equal to the difference between the exterior and interior angle of the heptagon.
84. Frery regalar polycron ean be divided into equal isosceles triangles by drawing lines from the center of the inseribed or eircumscribed circle to the angular points of the figure, and the number of triangles will be equal to the number of sides of the polygon. If a perpendicular fig be let fall from F (figure, Euc. w. 14) the center on the base CD of FCD, one of these triangles, and if GF be produced to II till FII be equal to FG , and HC, HD be joined, an isosecles triangle is formed, such that the angle at II is half the angle at \mathbf{F}. Bisect IIC, IID in K, $\mathrm{l}_{\text {, }}$, and join KL ; then the triangle HKL may be placed round the vertex II, twice as many times as the triangle CFD round the vertex F.
85. The sum of the ares on which stand the 1st, 3 rd, 5 th, \&e. angles, is equal to the sum of the ares on which stand the 2nd, 4th, 6th, \&e. angles.
86. The proof of this property depends on the fact, that an isosceles triangle has a greater area thin any scalene triangle of the same perimeter.

GEOMETRICAL EXERCISES ON BOOK VI.

HINTS, \&c.

6. In the figure Eue. vi. 23, let the paralletograms be supposed to be rectangular.

Then the rectangle AC : the rectangle $\mathrm{DG}:: \mathrm{BC}: \mathrm{CG}$, Euc. vi. 1. and the reetangle DC : the rectangle $\mathrm{CF}:$: CD : EC,
whence the rectangle AC : the rectangle ('F' : : BC . ('D) : C'G . EC.
In a similar way it may be shewn that the ratio of any two parallelograms is as the ratio compounded of the ratios of their bases and alitudes.
7. Let two sides intersect in O, through O draw I'OQ parallel to the base AB. Then by similar triangles, PO may be proved equal to OQ: and I'OFA, QOEB are parallelograms: whenee AE is equal to FB .
8. Apply Euc. 11.4 ; r. 7.
9. Let $A B C$ he a scalene triangle, having the vertical angle A, and suppose ADE an equivalent isosceles triangle, of which the side AD is equal to $A E$. Then Euc. ri. $15,16, A C . A B=A D$. $A E$, or $A D^{2}$. Hence $A D$ is a mean proportional between $A C, A B$. Eue. vi. 8.
10. The lines drawn making equal angles with homologous sides, divide the triangles into two corresponding pairs of equiangular triangles; by Euc. vi. 4, the proportions are evident.
11. By constructing the figure, the angles of the two triangles mar easily be sliewn to be respectively equal.
12. A circle may be deseribed about the four-sided figure ADDC. By Euc. 1. 13; Euc. 1it. 21, 22. The tiangles AL' ACE may be shewn to be equiangular.
13. Apply Euc. I. 48 ; if. 5. Cor. vı. 16.
14. This property follows as a corollary to Euc. vi. 23, for the two titangles are respectively the halves of the parallelograms, and are thereiore in the ratio compounled of the ratios of the sides which contain the same or equal angles: and this ratio is the same as the ratio of the rectangles by the sides.
16. Let ABC be the given triangle, and let the line EGF cut the base BC in G. Join A(3. Then by Euc. n. I, and the preceding theoren (14,) it may be proved that $\mathrm{A}($ is to AB as 6 iE is to GF .

1fi. The two means and the two extremes form an arillmetic series of four lines whose successive diflerences ane equal; the difforence therefore between the first and the fourth, or the eatremes, is treble the difference between the first and the seenond.
17. This may be effected in different ways, one of which is the following. At one extremity A of the given line $A B$ draw $A C$ making any aente angle with AB and join BC ; at any point D in BC draw INEF parallel to AC cut-
 Then AD is hamonically divide in E , G .
18. In the ligume Eue. vi. 13. If li he the midite point of AC ; then AF or FC is the arithmetic mean, and I) is the grometric mean, between Al ; and 1;C. If DE be joined and BW be drawn perpendicular on DE; then DF may the proved to be the harmonic mean between $A B$ and $B C$.
13. In the fig. Fine, vi. 13. DH is the gemmetric mean between AB ant BC, and if AC' be bisected in E, AE or $\mathrm{E} \mathrm{C}^{\prime}$ is the arthmetic mean.

The next is the same as-To find the segments of the hypotenuse of a right-angled triangle made by a perpendicular from the right angle,
having given the difference between balf the hypotenuse and the perpen dieular.
20. Let the line DH drawn from D the bisection of the base of the triangle ABC, meet $A B$ in E, and C.I produced in F. Also let $A(x$ drawn parallel to BC from the vertex A, meet 1 h in ($\dot{\text { f. Then }}$ by means of the similar triangles; DF, FE, FG, may be shewn to be in harmonie progression.
21. If a triangle be constructed on ΛB so that the vertical angle is bisected by the line drawn to the point C . By line. wh. A, the point required may be determined.
22. Let 1)l3, DE, DCA be the three straight lines, fig. Fue. rir. .37; let the points of eontact B , E be joined by the straight line B6 cutting I) A in (i . Then BDE is an isosceles triangle, and D(i is a line from the vertex to a point $1:$ in the base. And two values of the square of $B D$ may be fond one from Theo. 37, p. 118 : Ene. ni. 35 ; 11. 2; and another from Euc. 111. $36 ;$ 1. 1. From these may be deduced, that the rectangle DC, G. I, is equal to the rectangle $\mathbf{A 1}$), C(r. Whence the, \&c.
23. Let $\mathrm{A} B \mathrm{Cl})$ be a square and AC its diagonal. On AC take AE equal to the side BC or AB : join BE and at E draw EF perpendicular to AC and mecting BC in F . Then EC , the diference between the diagonal $A C$ and the side $A B$ of the square, is less than $A B$; and $C 1 ; E F, F B$ may be prored to be equal to one another: also CE, EF are the adjacent sides of a square whose diagonal is FC . On FC take FG equal to CE and join Efr. Then, as in the first sfuare, the difference CG between the diagonal FC and the side EC or EF, is less than the side EC. Hence EC, the difference between the diagonal and the side of the giren square, is contained twice in the side BC with a remainder CG : and CG is the difference between the side CE and the diagonal CF of another square. By proceeding in a similar way, C' 1 , the diflerence between the diagonal CF and the side CE, is contained twice in the side CE with a remainder: and the same relations may be shewn to exist between the difference of the diagonal and the side of every square of the series which is so eonstructed. Hence, therefore, as the difference of the side and diagonal of every square of the series is contained twice in the side with a remainder, it follows that there is no line which exactly measures the side and the diagonal of a square.
21. Let the given line AB be divided in C, D. On AD describe a semicircle, and on CB describe another semicirele intersecting the former in P ; draw IE perpendicular to $A B$; then E is the point required.

25 . Let AB be equal to a side of the given square. On AB deseribe a semicircle; at A draw $A C$ perpendicular to $A B$ and equal to a fourth proportional to $A B$ and the two sides of the given rectangle. Draw CD parallel to Al ? mecting the cireumference in D. Join AD, BI), which are the required lines.

20 . let the two given lines meet when produced in A. At A lraw AD perpendienlar to $A B$, and $A E$ to $A($, and such that $A D$ is to $A E$ in the siven ratio. Throug! D, E, draw DF, EF, respectively parallel to AB, AT and mecting each other in F. Join AF and produce it, and the perpondieulars drawn from any point of this line on the two giren lines will always be in the given ratio.
27. The anglez made by the four lines at the point of their divergence, remain constant. See Note on Euc. ri. A, p. 295.
28. Let AB be the given line from which it is required to cut off a part $B C$ sueh that $B C$ shall be a mean proportional between the remainder $A C$ atd another given line. Prodace $A B$ to D, making $B D$ equal to the other
given line. On AD describe a semicircle, at B draw BE perpendienlar to $A D$. Bisect BD in O and with center O and radius $O B$ describe a semicircle, join OE cutting the semicircle on BD in F, at F draw FC perpendicular to $O \mathrm{E}$ and meeting AB in C . C is the point of division, such that BC is a mean proportional between AC and BD .
29. Find two squares in the given ratio, and if BF be the given line (figure, Euc. vi. 4), draw BE at right angles to BF, and take BC, CE respectively equal to the sides of the squares which are in the given ratio. Join EF, and draw CA parallel to EF : then BF is divided in A as required.
30. Produce one side of the triangle through the vertex and make the part produced equal to the other side. Bisect this line, and with the rertex of the triangle as center and radius equal to half the sum of the sides, deseribe a circle cutting the base of the triangle.
81. If a circle be described abont the given triangle, and another circle upon the radius drawn from the vertex of the triangle to the center of the cirele, as a diameter, this circle will cut the base in two points, and give two solutions of the problem. Give the Analysis.

32 . This problem is analogous to the preceding.
33. Apply Euc. 51. 8, Cor. 17.
34. Describe a cirele about the triangle, and draw the diameter through the rertex A, draw a line touching the circle at A, and inceting the base BC produced in D. Then AD shall be a mean proportional between DC and DB. Eue. 111. 36.
3.5. In BC produced take (E a third proportional to BC and AC; on CE describe a circle, the center being O; draw the tansent EF at E equal to AC : draw FO entting the circle in T and T^{\prime}; and lastly draw tangents at T, T' meeting BC in P^{\prime} and P^{\prime}. These points fulfil the conditions of the problem.

By eombining the proportion in the construction with that from the similar triangles ABC, DBI, and Euc. $11.36,37$: it may be proved that $\mathrm{CA} . \mathrm{PD}=\mathrm{CP}^{2}$. The demonstration is similer for $\mathrm{P}^{\prime} \mathrm{D}^{\prime}$.
36. This property may be immediately deduced from Euc. ri. 8, Cor.
:37. Let IIBC be the triangle, right-angled at C , and let AE on AB be equal to $A C$, also let the line bisecting the angle A, meet $B($ ' in D. Join 1 E . Then the triangles $A(D, A E J$ are equal, and the triangles $A C B, D C B$ equiangular.
38. The segments cut off from the sides are to be measured from the right angle, and by similar triangles are proved to be equal; also by similar triangles, either of them is proved to be a mean proportional between the remaining segments of the two sides.
39. First prove $\left.1\left({ }^{2}: A\right)^{2}:: B C: 2 . \mathrm{BD}\right)$; then 2. $\mathrm{AC}^{2}: \mathrm{AD}^{2}:: \mathrm{BC}: \mathrm{BD}$, whence $2 . A C^{12}-A D^{2}: A D^{2}:: B C-B D: B D$, and since 2. $\left.\mathrm{At}^{2}-\mathrm{A}\right)^{2}=2 . \mathrm{AC}^{2}-\left(\mathrm{AC}^{2}+\mathrm{DC}^{2}\right)=\mathrm{AC}^{2}-\mathrm{CD}^{2}$, the proporty is immerliately dedueed.
40. The construction is surgested by Eue. 1. d7, and Ene. vr. 31.
41. See Note Enc. 11. A, D. 2!5. The bases of the triangles (BD, $\mathrm{ACD}, \mathrm{ABC}$, (DD may be shewn to be respectively equal to DB, 2. BD , $3 . \mathrm{BD}, 4 . \mathrm{BD}$.
42. (1) Let AbC be the triangle which is to be bisected by a line drawn parallel to the base $13($. Deseribe a semicirele on AB, from the enter I) draw at perpendicalar to AB meerting the eiremmerence in E , join EA, and with center A amd radins $A B$ deceribe a circle cutting $A B$ in $I:$ the line drawn from F parallel to BC^{\prime}, bisects the triangle. The proof depends on

Euc. ri. 19 ; 20, Cor. 2. (2) Let ABC be the triangle, $B C$ being the hase Draw AD at right angles to BA meeting the base protuced in D. Biseet BU in E , and on El) deseribe a semieirele, from B draw 13' to touch the semicircle in P. From BA cut off BF equal to B3', and from F draw FG perpendieular to BC. The line Fid bisects the triangle. Then it may be proved that BF(: BA1) : : BE : B1), and that BAD : BAC : : 13D : BC; whence it follows that BFG: BAC : : BE : BC or as $1: 2$.
43. Let ABC be the given triangle which is to be divided into two parts having a given ratio, by a line parathel to BC . Deseribe a semicircle on AB and divide $A B$ in D in the given ratio; at D draw $D E$ perpendicular to AB and meeting the circumference in E ; with center A and radius AE describe a circle cutting $A 1$ in F : the line drath through F parallel to BC is the line reguired. In the same manner a triangle may be divided into three or more parts having any giver ratio to one another by lines drawn parallel to one of the sides of the triangle.
44. Let these points be taken, one on each side, and straight lines be drawn to them; it may then be proved that these points severally bisect the sides of the triangie.
45. Let $A B C^{\prime}$ be any triangle and D be the given point in $B C$, from which lines are to be drawn which shall divide the triangle into any number (subpose five) equal parts. Diride 13 C into five equal parts in $\dot{E}, \mathrm{~F}, ~(\mathrm{i}, 11$, and draw AE, AF, Afir, AII, AD), and through E, F, (i, Il draw EL, FM, GN, HO parallel to AD, and join DL, DM, DN, DO ; these lines divile the triangle into live equal parts.

By a similai process, a triangle may be divided into any number of parts which have a given ratio to one another.
46. Let ABC be the larger, abe the smaller triangle, it is required to draw a line DE parallel to AO cutting off the triangle DBE equal to the triangle abc. Cin Be take BCr equal to be, and on BGdescribe the triangle BCll erual to the timangle abc. Draw HK parallel to BC , join KG ; then the triangle BGK is equal to the triangle abe. (On BA, DC take liD) to BE in the ratio of BA to BC , and such that the rectangle contained hy BD, BE shall be equal to the rectangle contained by EK, B(t. Join LE, then DE is patallet to $A(C$, and the triangle BlIE is equal to abc.
47. Let ABCD be any rectangle, contained by AB, BC, Then $A B^{2}: A B, B C:: A B: B C$, and $\mathrm{AB} \cdot \mathrm{BC}: \mathrm{BC}^{2}:: \mathrm{AB}: \mathrm{BC}$,

$$
\text { whence } \mathrm{AB}^{2}: \triangle B \cdot \mathrm{BC}:: \mathrm{AB} \cdot \mathrm{BC}: \mathrm{BC}^{2} \text {, }
$$

or the rectangle contained by two adjacent sides of a rectangle, is a mean proportional between their sifuares.
48. In a straight line at any point A, make Ac equal to $A d$ in the giren ratio. At A draw AB perpendicular to $c A d$, and equal to a side of the given square. On cd deseribe a semicircle cutting $A B$ in b; and join be, bel; from 13 draw $B C$ parallel to bc, and BD parallel to bd; then $A C, A D$ are the adjacent sides of the reetangle. For, (A is to AD as $c A$ to $A d$, Euc. ri. 2 ; and $\mathrm{CA} . \mathrm{AD}=A B^{2}$, $(\mathrm{BD}$ being a right angled triangle.
44. From one of the given points two straight lines are to be dram perpendicular, one to each of any two adjacent sides of the paralhelogram ; and from the other point, two lines perpendicular in the same manner to each of the two remaining sides. When these four lines are drawn to intersect one another, the figure so fomed may be shewn to be equiangular to the given parallelogram.
50. It is nanifest that this is the general ease of Prop. 4, p. 198.

If the reciangle to be ent off be two-thirds of the given rectangle $A B C D$.
Produce BC to E so that BL may be equal to a side of that square which ts equal to the reetangle required to be cut olf; in this case, equal to twothirds of the rectangle $A B C D$. On AB take AF' equal to $A D$ or $B C^{\prime}$; bisect $F B$ in (F , and with center (i and radins GL , describe a semicircle meeting AB , and $A B$ produced, in II and K. Un CH take CL equal to All and draw ILM, LMS parallel to the sides, and HBLM is two-thirds of the rectangle ABC'D.
51. Let $A B C D$ be the parallelogram, and $C D$ be cut in P and $B C$ produced in (2. Ly means of the similar triangles formed, the property may be proved.
52. The intersection of the diagonals is the common vertex of two triaugles which have the parallel sides of the trapezium tor their bases.
53. Let $A B$ be the given straight line, and (' the center of the given circle; through C'draw the diameter DCE perpendicular to AB. Place in the circle a line FG which has to AB the given ratio; bisect FG in H, join C'H, and on the diameter DCE, take (K, CL, each equal to CH; cither of the lines drawn through K, L, and patallel to $A B$ is the line required.
5. Let C be the center of the circle, CA, CB two radii at right angles to each other; and let DEFG he the line required which is trisected in the points E, F . Draw CG perpendicular to DH and produce it to meet the circumference in K : draw a tangent to the eircle at K ; diaw $\mathbf{C} G$, and produce (B , C' C , to meet the tangent in L, M, then MF may be shewn to be treble of LK.
55. The triangles ACD, BCE are similar, and CF is a mean proportional between At' and ('IB.
56. Let any tangent to the circle at E be terminated by AD, BC tangents at the extremity of the dianctor AB. Take (the center of the cirele and join (C°, OI), OL: ; then ODE is a right-angled triangle and OE is the perpendicular foom the right angle upon the hypotenuse.
57. This problem only dillers from problem 50, infra, in having the given point without the given circle.
58. Let A be the given point in the circumference of the circle, C its center. Praw the dimeter $A(B$, and produce $A B$ to D, taking $A B$ to BD in the given ratio: from I diaw a line to tonch the circle in E, which is the point required. From A draw AF perpendicular to DE, and enting the circle in (i.
59. Lot A be the given point within the cirele whose center is $(1$, and let B.II) be the line reguined. so that BSI is to AD in the given ratio. Jum $A C$ and porlnee it to meet the cireumference in E, F. Then EF is a dimmeter. [baw BG, I)II perpendienlar on EF : then the triangles BCid, DHA are equiangular. Hence the construction.
60. Through E one extrmity of the chord EF, let a line be drawn paralled to one diameter, and intersecting the other. Then the three angles ol the two triangles may be shewn to be respectively equal to one amother.
61. Le-t Als he that diameter of the given cirele whith when prodneed is perjendientar to the given line ('l), and let it meet that line in (' : and Jet I' be the given point: it is required to find In in CW, so that Dit may be equal to the tangent IHF. Make BC: ('t): : (O): CA, and join PC ; bisect P(q in E, and dhaw ED perpendicular to I'(Q meeting (C) in D; then D is the point required. Let O be the eenter of the circle, daw the tangent DF ; and join OF, OD, QD, I'D. The (ID may be shews
to he equal to DF and to DP. When P comeides with Q, any point D in CD fulfils the conditions of the problem ; that is, there are imumerable solutions.
6.2. It may he proved that the vertiees of the two triangles which are similar in the stme segment of a circle, are in the extremities of a chord parallel to the chord of the griven segment.
63. For let the circle be described about the triangle PAC, then by the converse to Euc. 11. $3-$; the truth of the proposition is manifest.
64. Let the figure be constructed, and the similarity of the two triangles will be at onee obrious from Euc. 11. 32; Euc. 1. 29.
65. In the are Als (fig. Enc. 1r. 2) let any point K be taken, and from K let $K L, K M, K X$ be drawn perpendicular to $A B, A C, B C$ respectively, produced if necessary, also let LM, LN be joined, then MLN may be shewn to be a straight line. Draw $\mathrm{AK}, \mathrm{BK}, \mathrm{CK}$, and by Euc. 111. 31, 22, 21 ; Euc. 1. 14.
66. Let AB a chord in a eirele be bisected in C, and DF, FG two chords drawn through C ; also let their extremities DG, FE be joined intersceting CB in II, and AC in K ; then AK is equal to HB. Thongh H draw MIlL. parallel to EF meeting FG in M, and LE produced in L. Then by means of the equiangular triangles, HC may be proved to be equal to CK , and hence AK is equal to III.
67. Let A, B be the two given points, and let P be a point in the locus so that PA, Pls being joined, PA is to I'B in the given atio. Join AB and divide it in C in the given ratio, and join PC . Then PC biscets the angle APB. Euc. vi. 3. Again, in AB produced, take $A D$ to AB in the giren ratio, join I'D and produce Al' to E, then I'D bisects the angle BPE. Euc. v. A. Whence Cl'D is a right angle, and the point P lies in the citcumference of a circle whese diameter is (1).
68. Let ABC be a triangle, and let the line AD bisecting the retical angle A be divided in E, so that BC: BA $+\mathrm{AC}:: \mathrm{AE}$: ED. Ly Euc. vi. 3 , may be deduced $\mathrm{BC}: B A+A C^{\prime}:: A C^{\prime}: A D$. Whence may be pioved that (E bisects the angle $\mathrm{A}(\mathrm{D}$, and by Euc. 15. 4 , that E is the center of the inscribed circle.
69. By means of Eue. 1r. 4, and Euc. vi. C. this theorem may be shewn to be true.
70. Diride the given hase BC in D , so that BD may be to DC in the ratio of the sides. At B, I draw: BB', DD' perpendicular to BC and equal to BD , DC respectively. Join $\mathrm{B}^{\prime} \mathrm{D}^{\prime}$ and produce it to meet BC produced in 0 . With center 9 and radius $O D$, deseribe a cirele. From A any point in the circumference join $A B, A C, A O$. Prove that $A B$ is to $A C$ as $B D$ to InC. Or thus. If ABC' be one of the triangles. Divide the base $13 C^{\prime}$ in D) so that BA is to AC as Bl) to DC. Produce BC and take DO to OC as BA to AC: then O is the eenter of the circle.
71. Let Abc be any triangle, aud from A, B let the perpendiculars $A D$, BE on the opposite siles intersect in P: and let $A F$, B (i drawn to F, f the bisections of the opposite sides, intersect in (1). Also let FlR, (iR he dram perpendicular to $B \mathrm{C}, A\left(^{*}\right.$, and meet in R : then F is the eenter of the cincumscribed circle. Join PQ, QR; these are in the same line.

Join Fr , and by the equiangular triangles, GRF, APB, AP is proved double of FR. And $A Q$ is domble of $Q F$, and the alternate angles PAQ, QFR are equal. Ilence the triangles $A I^{\prime} Q, R F Q$ are equiangular.
'i2. Let ($1, C^{\prime}$ be the eenters of the two circles, and let CC' the line joining the centers intersect the common tangent $\mathrm{I}^{\prime} \mathrm{P}^{\prime}$ in T . Let the
line joining the centers eut the eireles in Q, Q^{\prime}, and let $P Q, P^{\prime} Q^{\prime}$ be joined; then PQ is parallel to $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$. Join $\mathrm{CP}, \mathrm{C}^{\prime} \mathrm{P}^{\prime}$, and then the angle QPT may be proved to be equal to the alternate angle (Q'I'T.
73. Let ABC be the triangle, and BC its base; Iet the circles $\mathrm{AFB}, \mathrm{AFC}$ be described intersecting the base in the point F, and their diameters AD, AE, be drawn; then DA: AE: : BA : AC. For join DB, DF, EF, EC, the triangles DAB, EAC may be proved to be similar.
74. If the extremities of the diameters of the two circles be joined by two straight lines, these lines may be proved to intersect at the point of contact of the two circles; and the two right-angled triangles thus formed may be shewn to be similar by Euc. IIr. 34.
75. This follows direetly from the similar triangles.
76. Let the figure be constructed as in Theorem $4, \mathrm{p} .150$, the triangle EAD being right-angled at A, and let the circle inscribed in the triangle $A D E$ touch $A D, A E, D E$ in the points K, L, M respectively. Then AK is equal to AL, each being equal to the radius of the inseribed cirele. Also AB is equal to GC^{\prime}, and AB is half the perimeter of the triangle AED.

Also if G.I be joined, the triangle $A D E$ is obriously equal to the difference of AGDE and the triangle GiEL, and this difference may be proved equal to the rectangle contained by the radii of the other two circles.
77. From the eenters of the two circles let straight lines be drawn to the extremities of the sides which are opposite to the night angles in each triangle, and to the points where the circles touch these sides. Euc. vi. 4.
78. Let A, B be the two given points, and C a point in the circumference of the given circle. Let a circle be deseribed through the points A, B, C and entting the circle in another point D. Join (D, AB, and produce them to meet in E . Let EF be drawn touching the given circle in F ; the eirele deseribed throngh the points $\mathrm{A}, \mathrm{B}, \mathrm{F}$, will be the circle required. Joining AD and CB , by Euc. nir. 21, the triangles $\mathrm{CEB}, \mathrm{AED}$ are equiangular, and by Fuc. vi. 4 , If, mi. 36,37 , the given circle and the required eircle each touch the line EF in the same point, and therefore tonch one another. When does this solution fail?

Various eases will arise according to the relative position of the two points and the circle.
79. Let A be the giren point, BC the given straight line, and D the center of the given circle. Through I) draw Cl perpendicular to BC, meeting the ciremmerence in E , F. . Join AF , and talic lig to the diameter FE, as $\mathrm{F}^{(1}$ is to FA. The eircle deseribed passing through the two points A, (and tonching the line BC in B is the eircle required. Let II be the center of this circle; join IIB, and 13F cutting the cirenmference of the given circle in K, and join EK. Then the triangles FBC, FKE: being equiangular, hy line. vi. 4, 1 t i, and the construction, K is prowed to be a point in the circumference of the circle passing tlrough the points A, (i, B. And il INK, KII be joined, DKH may be proved to be a straight line: - the straight line which joins the centers of the two circles, and passes throuth a common point in their circumferences.
80. Let A be the given point, B, C the centers of the two given circles. Let a line drawn though 13 , $($ ' meet the circumferences of the circles in G, F; E, 1), respectively. ln (iD) protuced, take the point II, so that BII is to CII as the radius of the circle whose eenter
is P to the radins of the eircle whose center is C. Join AII, and take KII to DH as Gill to AH. Through A, K deseribe a cirele ALK touching the circle whose center is B , in L . Then M may he proved to be a point in the ciremference of the circle whose center is ©. For by joining 1 H and prodneing it to meet the circumference of the circle whose center is 13 in N ; and joining BN, BL, and drawing CO parallel to BLA, and CM paralled to BN, the line IIN is proved to cut the circumference of the circle whose tenter is B in M, O ; and CO , CM are radii. By joining (GL, DM, M may be proved to be a point in the ciremenferce of the circle ALK. And by producing BL, CM to meet in P, P^{\prime} is proved to be the center of ALK, and BP joining the centers of the two circles passes through L the point of contact. Hence also is shewn that PMC passes through M, the point where the circles whose centers are P and C touch each other.

Note. If the given point be in the eireumference of one of the circles, the construction nay be more simply effected thus:

Let A be in the circumference of the circle whose center is B. Join BA, and in AB produced, if necessary, take AD equal to the radins of the cirele whose center is C ; join DC, and at C make the angle DC E equal to the angle CDE, the point E determined by the intersection of DA produced and CE, is the eenter of the circle.
81. Let AB, AC be the given lines and P the given point. Then if O be the center of the required cirele touching AB, AC, in R, S, the line A 0 will bisect the given angle BAC. Let the tangent from P meet the circle in 0 , and draw OQ, OS, OP, AP. Then there are giren AP and the angle OAP. Also since $O Q \mathrm{P}^{\prime}$ is a right angle, we have $\mathrm{OP}^{2}-\mathrm{QO}^{2}=O \mathrm{P}^{2}-O \mathrm{~S}^{2}=\mathrm{P} \mathrm{Q}^{2}$ a given magnitude. Moreover the right-angled triangle AOS is given in species, or OS to OA is a given ratio. Whence in the triangle AOP there is given, the angle AOP, the side AP, and the excess of OP² ahove the square of a line having a given ratio to OA, to determinic OA. Whence the construction is obvious.
82. Let the two giren fines AB, BD mect in B , and let C lee the eenter of the given eircle, and let the required circle touch the line AB , and have its center in BD. Draw CFE perpendicular to HB intersecting the circumference of the given circle in F, and prodnce CE, making EF equal to the radius (FF Through Gr draw (ik parallel to AB , and mecting DH in K. Join CK, and through B, daaw BL pasallel to Kf', meeting the eircumference of the circle whose center is O in L ; join CL and produce (L to mect BD in 0 . Then 0 is the center of the circle required. Draw Oni perpendieular to AB , and produce EC to meet BD in N . Then by the similar triangles, OL may be proved equal to OM.
83. (1) In every right-angled triangle when its three sides are in Arithmetical progression, they may he shewn to be as the numbers $5,4,8$. On the given line $A C$ describe a triangle laving its sides AC, Al), DC in this proportion, bisect the angles at A, C by AE, CE mecting in E, and though E draw EF, EG parallel to AD, DC' meeting in F and G .
(2) Let A (be the sum of the sides of the triangle, fig. Euc. vi. 13. Upon AC deseribe a triangle ADC whose sides shall be in continued proportion. Bisect the angles at A and C by two lines ineeting in E. From E draw EF, EG parallel to DA, DC respectively.
84. Describe a circle with any radius, and draw within it the straight line MN eutting oll' a serment contaning an angle equal to the given angle, Euc. niI, 34 . Divide MN in the given ratio in P, and at P draw PA perpendicular to $M N$ and mecting the ciremonference in A. Join
AM, AN, and on AP or AP produced, take AD equal to the given perpendicular, and through D draw BC parallel to MN meeting AM, AN, or these lines produced. Then ABC shall be the triangle required.
85. Let PAQ be the given angle, bisect the angle A by $A B$, in $A B$ find D the center of the inscribed cirele, and draw DC perpendicular to AP'. In DB take DE such that the rectangle DE, DC is equal to the given rectangle. Describe a circle on DE as diameter meeting AP in F, G; and $A Q$ in F^{\prime}, G^{\prime}. Join FG^{\prime}, and AFG will be the triangle. Draw DH perpendicular to FG^{\prime} and join $G^{\prime} \mathrm{D}^{\prime}$. By Euc. rr. C, the reetangle FD, DG' is equal to the rectangle ED, DK or CD, DE.
86. On any base BC deseribe a secment of a circle BAC containing an angle equal to the given angle. From D the middle point of BC draw DA to make the given angle ADC with the base. Produce AD to E so that AE is equal to the given bisecting line, and through E draw FG parallel to BC. Join $A B, A C$ and produce them to meet $F G$ in F and G.
87. Employ Theorem To, p. 310, and the construction becomes obvious.
88. Let AB be the given base, ACB the segment containing the vertical angle: draw the diameter AB of the cirele, and divide it in E , in the given ratio; on AE as a dianeter, describe a circle AFE; and with center B and a radius equal to the given line, dseribe a circle cutting AFE in F. Then AF being drawn and produced to meet the eireumseribing circle in C, and CB being joined, ABC is the triangle required. For AF is to FC in the given ratio.
89. The line (D) is not necessarily parallel to AB. Diride the base $A B$ in C , so that AC is to CB in the ratio of the sides of the triangle.

Then if a point E in CD can be determined such that when AE, CE, EB, are joined, the angle AEB is bisected by CE, the problem is solved.
90. Let ABC be any triangle haring the bave BC . On the same base describe an isosceles triangle DBC equal to the given triangle. Bisect BC in E , and join DE, also upon BO describe an equilateral triangle. On FD, FB, take Ef to EII as EF to FB; also take EK equal to EIf and join Gll, (iK; then GIIK is an equilateral triangle equal to the triangle ABC.
91. Let ABC be the required triangle, BC the hypotenuse, and FIHK the inscribed square: the side IIK boing on BC. Then BC may be proved to be divided in II and K , so that IHK is a mean proportional between BH and KC.
92. Let ABC be the given triangle. $\mathrm{On}_{\mathrm{n}} \mathrm{BC}$ take BD equal to one of the given lines, through A draw AE parallel to BC. From B draw BE to meet AE in E , and such that BE is a fourth proportional to BC, BD, and the other given line. Join E\%, produce BE to F, naking BF equal to the other given line, and join FI) : then FBD is the triangle required.
93. By means of Fuc. ri. C, the ratio of the diagonas AC to BD may be found to be as $\mathrm{AB} . \mathrm{AD}+\mathrm{BC} . \mathrm{CD}$ to $\mathrm{AB} . \mathrm{BE}+\mathrm{AD} . \mathrm{DC}$, figure, Eue. ri. D.
94. This property follows directly from Euc. vi. C.
95. Let ABC' be any triangle, and DEF the given triangle to which the inseribed triangle is required to be simikr. Draw any line de terminated hy AB, Ar, and on de towards AC deseribe the triangle def similar to DEF, join $\mathrm{B}_{\mathrm{f}} \mathrm{f}$, and produce it to meet AC in F^{\prime}. Through F^{\prime} draw $\mathrm{F}^{\prime} \mathrm{D}^{\prime}$ paralled to f d, $\mathrm{F}^{\prime} \mathrm{F}^{\prime}$ parallel to $f c$, and join $\mathrm{D}^{\prime} \mathrm{E}^{\prime}$, then the itiangle $\mathrm{D}^{\prime} \mathrm{E}^{\prime} \mathrm{F}^{\prime \prime}$ is similar to DEF.
96. The square inseribed ir a right-angled triangle whiel lias one of
its sides eniceiding with the hypotenuse, may he shewn to be less than that winen has two of its sides coinciding with the base and perpendicular.
97. Let BCDE be the square on the side BC of the isosceles triangle ABC. Then by Eece, v. 2, Fid is proved parallel to ED or BC.
98. Let AB be the base of the segment AlBD, fig. Euc. 11, 30. Bisect AB in C, take any poine Ei in AC and make C'F equal to CE: upon EF deseribe a square EF'GII : from C draw $C G$ and produce it to meet the are of the segracut in K .
99. Take two points on the radii equidistant from the center, and on the line joining these points, describe a square; the lines drawn from the center through the opposite angles of the square to meet the circular are, will determine two points of the square inscribed in the sector.
100. Let ABClO be the given pentagon. On AB, AE take equal distances AF, Af, join Fir and on FG deseribe a square FGKIf. Join AII and produce it to meet a side of the pentagon in L. Draw LMI paablic] to FII meeting AE in M. Then LM is a side of the inseribed square.

10I. Let AB(be the given triangle. Draw AD making with the base BC an angle equal to one of the given angles of the patallelogram. Draw AE parallel to BC and take AD to AE in the given ratio of the sides. Join BE cutting AC in F .
102. The locus of the intersections of the diagonals of all the rectangles inscribed in a scalene triangle, is a straight line drawn from the bisection of the base to the bisection of the shorter side of the triangle.
103. This parallelogram may be proved to be a square.
104. Analysis. Let $A B C D$ be the given rectangle, and EFGH that to be constructed. Then the diagonals of EFGH are equal and biscet each other in P the center of the given rectangle. Abont EP'F describe a circle mecting BD in K, and join KE, KF. Then since the rectangle EFGH is given in species, the angle EPF formed by its diagonals is given: and hence also the opposite angle EKF of the inscribed quadrilateral PEKF is given. Also since KP bisects that angle, the angle PKE is given, and its supplement BKE is given. And in the same way KF is parallel to another given line; and hence EF is parallel to a third given line. Again, the angle EP'F of the isosceles triangle EPF is given; and hence the quadrilateral EPFK is given in species.
105. In the figure Euc. In. 30 ; from (draw CE, CF making with CD, the angles DCF, DCF each equal to the angle CDA or (DDB, and meeting the are ADB in E and F . Join EF , the segment of the circle described upon EF and which passes through C, will be similar to ADB.
106. The square inseribed in the circle may be shewn to be equal to twice the square on the radius; and five times the square inscribed in the semiciscle to four times the square on the radius.
107. The three triangles formed by three sides of the square with segments of the sides of the given triangle, may be proved to be similar. Whence by Euc. vi. 4, the truth of the property.
108. By constructing the figure, it may be shewn that twice the square inscribed in the quadrant is equal to the square on the radius, and that five times the square inserfined in the semicircle is equal to four times the square on the radius. Whence it follows that, \&e.
109. By Enc. 1. 47, and Euc. V1. 4, it may be shewn, that four times the square on the radins is equal to liftern times the square of one on the equal sides of the triangle.
110. Constructing the figure, the right-angled triangles $\mathrm{SCT}, \mathrm{ACB}$
may be proved to have a certain ratio, and the triangles $\mathrm{ACB}, \mathrm{CPM}$ in the same way, may be proved to have the same ratio.
111. Let BA, AC be the bounding radii, and D a point in the are of a quadrant. Bisect BAC by AE, and draw through D, the line HDGP perpendicular to AE at G, and metting AB, AC, produced in II, P. From Il draw IIM to touch the circle of which BC is a quadrantal are; produce AII, making HL equal to IMM, also on HA, take HK equal to HM. Then K, L, are the points of contact of two circles through D which touch the bounding radii, AB, AC.

Join DA. Then, since BAC is a right angle, AK is equal to the radius of the circle which touches BA, BC in $\mathrm{K}, \mathrm{K}^{\prime}$; and similaly, AL is the radius of the circle which touches them in L, L'. Also, HAP being an isosceles triangle, and AD drawn to the base, AD^{2} is shewn to be equal to AK . KL. Euc. 111. 36 ; iI. 5, Cor.
112. Let E, F, G be the centers of the circles inscribed in the triangles $\mathrm{ABC}, \mathrm{ADB}, \mathrm{ACD}$. Draw EH, FK, GL perpendiculars on $\mathrm{BC}, \mathrm{BA}, \mathrm{AC}$ respectively, and join CE, EB; BF, FA; CG, GA. Then the relation between $\mathrm{R}, r^{\prime}, r^{\prime}$, or EH, FK, GL may be found from the similar triangles, and the property of right-angled triangles.
113. The two lexagons consist each of six equilateral triangles, and the ratio of the hexagons is the same as the ratio of their equilateral triangles.
114. The area of the inscribed equilateral triangle nay be proved to be equal to half of the inseribed hexagon, and the circumseribed triangle equal to four times the inseribed triangle.
115. The pentagons are sinilar figures, and ean be divided into the same number of similar triangles. Fue. rı. 19.
116. Let the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ of the equilateral triangle ABC touch the circle in the points D, E, F, respectively. Draw AE cutting the circumference in G : and take 0 the center of the circle and draw OD : draw also IIGK touching the circle in G. The property may then be shewn by the similar triangles AHG, AOD.

PROBLEMS 1 ND THEOREMS

IN TIIE

GEOMETRICAL EXERCISES.

ABBREVIATIONS.

Senate IIouse Examination for Degrees S. 11 .

Smith's Mathematical Prizes. S. P. Bell's University Scholarships. B. S. S:. Peter's College. Pet.
Clare College Cla.
Pembroke College. Pem.
Gonville and Caius Collegre. Cai.
Trinity IIall. T. II.
Corpus Christi College. C. C.
King's College. Ki.
Queen's College. Qu.

St. Catharine's College. Cath.
Jesus College. Jes.
Christ's College. Chr.
St John's College. Joh.
Magdatenc Coilege Mag.
Trinity College. Trin.
Emmanuel College. Emm.
Sidney Sussex Co.lege. Sid.
Downing College. Down.
In the years the centuries are omitted, and the places are supplica by a comma prefixed, thus, 45 means 1545.

EXERCISES ON BOOK I., p. 69, \&c.

1 Emm. ,22. ,35. ,46. S Qu. ,26. 28. S. II. Sid. ,30. Trin ,37. ,49. ,50. Pet. ,56.
2 Trin., 40. Cai, ,57. Emm.,50. C. C., 57. Chr. , 58.
3 Tri॥. ,32. ,37. ,50. T. 1. ,5:. Joh. ,54. S. H. , 54 .

4 Sid. ,30. ,43. Jes. ,50. ,58. Qu. ,31. Trin. ,40. Cla. ,47. Emm. , $\overline{6}$.
5 Emm. .21. Qu. ,23. ,40. ,42. Trin. ,26. ,27. ,29. C. C. ,30. ,55. Pem. .32, ,38.
6 S. H. ,17. Trin. , 24 . ,37. Qı. ,25. Emm. ,27. ,48. Cath. ,29. ,48. Pem. ,39. ,47. Sid. ,40. Chr. ,45. Cla. ,56.
7 S. H ,19. Trilu. ,29. Qu., 35 . I'em. ,44. Jes., 19. B. S. , 55.
$27 \mathrm{Chr} ., 26 ., 41 ., 52$. Jes. ,5ッ. Joh. ,:31. Pet. ,38. Trin. ,39. ,50. Mag. ,51.
28 S. H. ,58.
29 C. C. ,53. S. H. ,59.
30 C. C. ,53. Qu. ,54. Clir. ,56.
31 Trin. ,31.
$3 \geq \mathrm{S} . \mathrm{H} ., 36 ., 4 \mathrm{~S}$. Mag. , 47 . Chr. ,54.
33 Emm. ,25.
34 Joh. ,19. Qu. ,25
35 Chr. ,28. Pem.,42. Jes. ,51.
36 Trin. .26. Sid. ,43. C. C. ,57.

37 Pem. ,29. B. S. ,4.S. Qu. ,52.
38 Qu. ,50.
39 Qu., 3土. Cath. , 35. Emm. ,35. Sid. ,38. B. S. ,40. Trin. ,27.
4) Trin. ,34.
$41 \mathrm{~S} . \mathrm{II} ., 55$.

42 S．II．，04．C．C．，23． Chr．，29．，50．Cath． ，35．Jes．，52．Pet． ，36．Qu．，39．Trin． 37．，49．Cai．，40． Pem．，48．
43 Trin．，54．Emm．，54．
44 Trin．， 58.
45 Cai．， 55.
46 Pet．，58．
47 Chr．，55．
48 Cai．，49．
49 Jes．，54．
50 S．II．，53．
51 Trin．，39．，51．Pem． ，51．
52 Trin ，43．
53 Joh．，26．Pem．，47． Chr．，52．，53．
54 Cai．，46．Qı．，48．
55 Cai．，31．Joh．，30．
56
57 Jes．，52．Cai．，56．
5 S Jes．， 55.
59 Pet．，51．
60）Chr．，39．
61 Pet．，36．
62 Trin．，52．，54．T．H． ，52．
63 Pet．， 51.
64 Trin．，51．
65 Jes．，54．
66 Pet．， 51.
67 S．II．，48．
68
69 T．П．， $5 \frac{1}{2}$.
70 Trin．，40．
个1
「2 Cai．，33．Qu．，33．
73 Trin．，49．
74 QI．， 31 ．Chr．，5f．
Sid．，36．Pet．，53．
75 Qu．，19．
75 Qu．，24．
7 Cla．，5l．
78 Qu．，32．Jes．，36．
K．II．，49．，50．
ヶ9 S．II．．49．Mag．，52．
80 Qn．， 37.
81 Trin．，4S．
82 Chr．，58．
83 Chr．，5s．
8．Trin．，52．
85 Cat！．， 19.

S6 Cla．， 57.
87 Pet．，46．
88 C．C．，50．Cai．， 53.
89 Mag．，51．，58．
90 Jes．，54．
91 Cath．，49．S．H．，54．
92 Jes．，55．
93 Cai．，46．
94 Jes．，4 ${ }^{1}$ ．
95 Chr．， 43 ．
96 Joh．， 31 ．
97 Cai．，36．Cath．，55．
98 Emm．，30．Cath．，57．
99 Trin．，59．
100 Pet．，51．
101 Qu．，29．，35．， 3 个． B．S．，39．
102
118 Mag．，52．
104 Chr．，47．Cla．，48．
105 Pet．，51．
106 Sid．，45．Chr．，47． Emm．，47．
107 S．II．，5ะ．
108 Emm．，57．
109 S．HI．，04．Cai．， 34. Emm．， 39.
110 Qu．，25．Trin．，25． ，38．Pet．，3！．Jes． ，52．Pem．，42．
111 S．II．，23．，18．Trin． ，25．，44．Cla．，81． ， 36.
112 （2u．，29．，37．，26． Trin．，27．，33．，36． ，40．，49．，50．Chr． ，44．Pem．，45． Cath．，58．Emm． ，54．Jes．，52．S．H． ，50．C．C．，58．
113 Emm．，32．
114 Qu．，19．，37．Fmm． ，25．，58．Mag．，29． ，32．Cai．，34．Trin． ，37．，38．Pet．，44． ， 52.
115 S．H．，48．
116 （21．，39．Mag．，54． S．H．，59．
117 Trin．，29．
118 Emm．．．22．C．C． 55.
119 Pet．， 15.
120 S．H．，35．，48．Joh． ，8？．

121 Pet．，38．Chr．，39．
122 S．H．，53．
123 Joh．，58．
124 C．C．，46．
125 Pem． 46.
$126 \mathrm{~S} . \mathrm{H} ., 54$.
127 Emm．，31．Chr．，38．
128 Trin．，48．Cath．，46．
129
130 Pem．，47．
131 Cla．
132 Ki．，48．S．II．，53．
Chr．，55．，57．
133 Qu．，30．Chr．，46．
134 l＇et．，58．
135 Jes．，57．
136 Mag．，57．
137 Cai．，52．
138 Trin．，37．，50．，59． Joh．，47．Emin． ，52．，53．，56．Chr． ，50．T．H．，52．
139 Cla．，36．
140 Mag．，49．
141 Cla．， 36.
142 Joh．，58．Chr．，58．
143 Trin．，53．，54．
144 Joh．，16．Qu．．30．
Pem．，32．，49．Jes．
，46．Trin．，47．，58．
C．C．，58．
145 Pet．，27．
146 S．H．，36．
147 Chr．，54．
148 Cla．，56．
149 Jes．，20．Qu．，32．
，48．Cath．，35．
S．II．，59．
$150 \mathrm{Trin} ., 40$.
151 I＇et．，32，，35．
152 Pet．，49．
$153 \mathrm{~S} . \mathrm{II} ., 55$.
154 Jes．，53．
155 Chr．，56．
156 T．II．，52．
157 Joh．，20．Emm．，26．
158 Sid．，th．Mag．，58．
159 （｀ai．， 37.
150 Emm．，32．Qu． ，35．，59．C．C． ．36．，59．Mag．，39． B．S．，17．
161 Trin．，21．，50．
162 Jes．，35．

EXERCISES ON BOOK II., p. I13, \&c.

1 S. I. , I4. ,50. Joh. ,18. Trin., 35. Chr. ,55.
2 Joh. ,17.
3 S. H. , 16. ,59. Trin. ,27. ,30. , 37. , 47. 48. Mag. ,31. ,43. Pct. ,29. ,38. Sid. ,34. Emm. 21., 27. ,37. ,44. Cai. ,43. Qu. ,37. T. II. , 55.
4 Emm. ,34. Pem. ,46. Mag. ,51.
5 S. II. ,03. Joh. ,18. Qu. ,21. Trin. ,37. Sid. ,42. Chr. ,45. ,46. ,48.
6 Pet. ,52.
7 Pet. ,58.
8 Jes. ,5t.
9 S. H. , 0 .
10 Cai. ,58.
11 Jes. ,53.
12 Pet. ,25.
13 Chr. ,40.
14 Trin. ,42.
15 Pet., 37.
16 T. H. ,40. ,54.
17 Q1., 37.
18 s. H. ,38.

19 Chr., 48. ,54. Jes. ,48. Sid.,49. I'et. ,55. Pem., 58.
20) Emm. ,56.

21
22 Qu. ,50.
23 (Q11. 24.
24 Clir. ,49.
25 S. H. ,10. ,04. Trin. ,29.
26 Pet. ,43.
27 Chr. ,49.
28 Qu. ,55.
$\because 9$ Qu. ,57.
30) Qu. ,51.

31 Mag., $\frac{5}{}$.
32 Cai. ,59.
33 Chr. ,57.
34 Cai. ,41.
35 Joh. , 4 t.
36 Trin. ,49. Cai. ,57.
37 Joh. ,13. Emm. ,25. ,36. Trin. , 32. Mag. ,33. ,40. Pet. ,52. S. H. ,53.
38 Joh. ,21. S. II. ,50. Pèt. ,54.
39 Joh. ,25.
40 Cai. ,42.
41 S. If. ,53.
42 T. II. ,58.

43 Joh. ,26. Jes. ,37. Mag, 12 .
44 Pet. 44.
45 Einm. ,23. ,26. ,28. ,43.,51. Trin. ,27. 44. ,49. ,56. Pet. ,36. Mag. ,e3. ,43. ,46. ,52. B. S. ,38. C. C. ,51. Chr. ,41. ,47. 50 .
46 Emm. ,28. Sid. ,33. C. C. ,39.

47 Joh. ,19. Qu. ,29. ,3i). 48.
48 Che , 30. Emmı.,36. S. H. ,45. Cath. , 52.
49 今. II. ,07. Т. H. ,44. Pem. ,52. Joh. ,41. Trin., 5 . Emm. ,52. S. II. ,59.
50 Emm.,2S., 46. Trin. ,32. Pem. ,47.
51 Chr. ,51.
52 Pet., 53.
53 Cai., 28.
54
55
56
57 Jes. ,58.
58 S. H. ,59.

EXERCIRES ON BOOK III., p. 160, \&c.

1 Chr. ,28. S. H. ,36. ,59. Cai. 44.
2 Qu. ,23. T. H. ,54. Mag. ,53.
3 Trin. ,27.
4 Маг. 53.
5 S. II. ,04. Sid. ,4I.
6 Trin. ,19. ,23. Qu. ,21. ,22. Pem. 30. ,39. Sid. ,36. Pet. ,31. Emm. ,34. ,42. ,44. Т. Н. ,54.
7 Emm. .22. Tem. ,36. Joh.,57. S. H. ,53.
8 Pet. ,29. Cla. ,46.
9 Qu. ,ธ6.

10 Mag. ,46.
11 Mag. ,47.
12 ล. H. , 43.
13 S. H. ,48.
14 Cath. ,53.
15
16
17 Joh. ,57.
18 Trin. ,19. Sid. ,33. Cai. ,34. Emin., 34. Qu. ,36. S. H. ,53. Chr. ,56. Joh. ,57. ,58.
19 Emm. .24.
20 C. C. , 42.
21 Joh. ,21.
22 Trin. ,52. T. II. ,58.

23 Joh. , 17.
24 Toh. ,21.
25 Chr. , 27.
26 S. II ,48.
27 Fet. ,47.
28 S. H. ,49.
29 Trin. 39.
30 Emm , 54.
31 S. H. ,53.
32 S. II. ,59.
33 Qu. ,57.
34 Pet. ,55.
35 Trin. , 3^{\prime}. 39. C. C. , 35 . ,45. Emm. ,37. Chr. ,39. Pem. ,40.
86 Sid. ,35.
87 Joh. ,30.

88 Joh. ,20. Emm. ,26.
39 Cath., 31.
40 Qu. ,36.
41 Joh. ,28. Qu. ,35.
42 Emm. ,56.
43 Trin. ,57.
44
45 Qu. ,58.
$46 \mathrm{Pem}, 45$.
47 S. Il. ,14. Qu. ,20. ,32. Joh. ,25. Emm ,32. Chr. ,45. Cai. , 44.
48 Pet. ,56.
49 Tria., 57.
50 Trin. ,34.
51 Cai. ,32. ,41.
52 Emun. ,21. Pem. ,32. Cla., 36. Cai. ,45.
53 S. II. ,53.
54 Cla. ,56.
55 S. H. , 55.
56 Cla., 56.
57 Emm.,57.
58 Trin. ,43.
59
60 Trin. ,11.
61 Qu. ,36.
62 Cai. ,44.
63 Jes., 33.
64 Joh. ,22.
65 S. II. ,29.
66 Joh., 42. Chr. ,53.
67 S. II. ,25.
68 Cai. ,43. Emm. ,44.
69 Joh., 14. Chr. ,26. C. C. ,55.

70 Trin. ,29. Sid. ,45. S. II. ,50.

71 Jes. ,58.
72 Chr. ,48. Sid. ,52.
78 Trin. , 39.
7.1 §. II., ,30. Jes., 57.

75 S. II. , (12. Yem. ,3ะ. T. II. ,44.

7f. Trin. , 45.
77 К. Н. ,04. .50.
78 Tet. .39. Eimm. ,56.
79 Joh. ,30. Cai. ,36. ('la. , 46.
80 Trin. , 35.
81 S. II. ,59.
82 lii ,50.

83 S. H. ,03. Qu. ,29.
Emm. ,27. Sid.
,30. Catb., 30. ,35.
Mag. ,34. ,37. ,45.
B. 心. , 39. ,43. C. C. ,57.
84 Pet. ,37.
85 Qu.,33.
86 .Joh. ,47.
87 Cai. , 48.
88
89 Joh. ,19. Qu. ,26.
90 S. II. ,58.
91 Qu. ,5\%.
92 Qu. ,39. Pem. 43.
93 Joh., 30.
$9+$ Trin. ,24.
$95 \mathrm{Qu}, 54$.
96 Joh. ,17.
97 Sid.,35. Pem. ,42.
98 Qu. ,38.
99 Cai. , 31.
100 S. II. ,48. Qu. ,57.
101 S. H. ,50. Qu. ,54.
Pem. ,50.
102 Cai. ,47.
103 Cai. ,40.
104 Emm. ,56. ,57
105 Т. Н. ,58.
106 Pet. ,52.
107 Cai. ,39. Jes., 26. C. C. , 38 .

108 Pet.,39. Pem.,45.
109 Clir. , 40.
110 Trin. ,29. ,32. ,38.
S. II., 08. Pet.,19.
,20. ,21. Qu. ,20.
,28. Mag. ,30. B. S.
,39. Chr. ,51.
111 S. II. ,49.
112 Joh. ,31.
113 Emm , ,28.
114 Joh. ,25.
115 S.11.,20. Trin. ,22. ,25. Mis.,37. Qu. ,3!.
116, S. II. ,03.
117 Trin. ,20.
118 Jos. ,54.
119 Cai. ,51.
121 Cai. ,37.
121 Cai. . 42.
$1 \geq 2$ Cai., 36.
123 P'et., 48. Joh., 58.

124 Qu., 54.
125 Pet., 5 ?
126 Trin. ,42.
127
128 S. H. ,04. Joh., 16. Qu. ,20., $55,29$. Trin. ,22. ,23. Pet.
,31. B. S. ,30. ,34.
129 Pet. ,48.
130 Trin. ,33.
131 Pem. ,44.
132 Tril., 20.
133 Sid. ,35.
134 T. II. ,58.
185 Qı.,49.
156 Q11.,54.
137 Joh. ,58.
188 Emm. ,47.
139 Jes. ,49.
140 Joh. ,41. ,42. ,49.
141 Qu., 33.
142 Joh. ,20.
143 Joh. ,25. T. H. ,55.
144 T. H. , 58.
145 S. II. ,48.
$1-16$ Cath. ,58.
147 T. H. ,54.
148 Cla.
149
150 Jes. ,56.
151 Mag. ,49.
15: Joh. , 18. , 1?. Qu. ,2(6. ,39. Mag., „9. limm. ,30. Pem. ,44.
$153 \mathrm{Mag} ., 35$.
154 Cath. , 80.
$155 \mathrm{Joh} ., 3 t$.
156 Trin.,26. Pem.,34.
157 C. (С., 46.
158 Joh. ,55.
159 Trin., 88. Jolı., 19. C'ir., 39. Jes.,43. S. II. ,4․ T. H. ,53.
100 Jes. ,38. C. C., 38.
141 Jes., 44.
1102 (.). (., 33.
163 l'et. 32.
16t C. (., 2\%. P. S. ,28.
Mag. , 45.
165 Ca:h. ,30.
16 G Joh. ,?6.
167 C. C. „29.

EXERCISES ON BOOK IV., p. 196, \&c.

1 S. H. ,08. ,12. Chr. ,33. Pet. ,34. ,38. Trin. 49.
2 Qu. ,21. Emm.,27. Cath. ,34. Trin., 44. Jes. ,46. Ki. ,37. Joh. ,57.
\& Qu. ,20. ,30. ,34. Trin. ,29. Emm. ,30. С. С. ,35. B. S. ,36. Peוl., 40. ,48. ,52. Jes. ,ธั.
4 Joh. ,16. P'ct. ,36.
5 Trin. ,31.
6 Enm., 24. Qu. ,32. 7 Triu. ,37. Jes.,47. 8 9 Trin. ,23. Sid. ,39. ,47. Qu. ,41. C. C. ,45.
10 Chr. ,2\%.
11 S. II. ,16. Qu. ,20. ,27. C. C. ,28. Joh. ,39.
12 Joh. ,29.
13 S. H. ,13. Trin. ,22.
14 S.H. ,38.
15 Chr. ,45.
16 Cai. ,38.
17 Cai., 35.
18 Joh. ,23.
19 Trin., 21. Chr. ,30. ,34.
20 Trin. ,44. ,48.
21 Cai. ,42.
22 Cii., 32.
23 Mag. ,35.
24 Joh. ,23.
25 Trin., 30. S. H. ,36.

26 Pem. ,29. C. C.,41.
27 P'em. , 31.
2s Joh. ,42.
29 Jes.,33.
3) Trin. ,41.

31 Qu. ,20).
32 Joh. ,30.
33 Joh. ,31.
34 Pem., ,29.,35.
35 S. H ,13. Qu. ,19. Emm. ,21, ,33. B. S. ,26. Cai., 35. Pem. ,36.
36 Jes. ,31.
37 Trin. ,40.
38 Joh. ,18.
39 Joh. ,17. Trin. ,36.
40 Pet. ,25.
41 Qu.,31.
42 Pet. ,43.
43 Joh. ,25.
44 Trin. ,29.
45 Cai. ,37.
46 Trin., 26. Qu. ,32.
Chr. ,40. Pem. ,49.
47 Trin., 23. Emm. 23. ,32., 36.
48 Emur.,21. Trin., 36. I'em. ,4..
49 Chr., 26.,42.
50 Emm., 21. ,25., 40. ,45. Chr. ,39. Pet. ,35. B. S.,41.
51 Cai. ,38. Jes., ,49.
52 Trin. ,21.
53 Emm., 24.
54 Joh. ,18. Jes. ,49.
55 Pet. ,25.
56 Trin. 37.

57 Trin. ,23. Qu. ,37.
58 Qu. ,21. ,26. ,36.
59
60) Emm., 25. Mag. , 42.
(61 121., ,26.
62 Cai. ,33. B. S. ,40.
63 Joh. ,14. ,16. ,37. S. II. ,44.

64 Sid. ,29. Qu. ,43.
65 Trin. ,31.
66 C. C. ,38.
67 Chr. , 3 ב.
68 C. C. ,44.
69 Qu. ,44.
70 Cath. ,30. Mag ,33. , 37.
71 Cai. ,40.
72 Sid., 38. Trin. ,39.
73 Cui. ,41.
74 Trin. , 33.
75 C. C. ,24.
76 Trin. ,22 B. S. ,27.
$77 \mathrm{Pcm} ., 36$.
78 Trin. ,36.
79 Jes. ,19. Trin. ,22. ,25. ,27. Qn., 85. Pem. 37. Mag.,45.
80 Qu. ,31. ,40. Trin. ,42.
81 Jes. ,38.
82 Trin., 24. Mag.,43.
83 Cai. ,38.
84 Trin. 19.
85 Trin. ,24.
86 Joh. ,25.
87 S. II.,03. Trin. , 24. ,30. Qu. ,31. ,35. Саi. ,35.

EXERCISES ON BOOK VI., p. 302, de.

21 Joh. ,20.
22 Joh. ,15.
23 Joh. ,14. Trin., 27. ,28.,32., 34. .41.,44. Catb. ,34. Chr: ,44.
24 Joh. . 19.
25 Qu. ,30. C. C. ,40.
26 Joh.,28.
27 Qu. ,38.
28 Qu. ,34.
29 Qu., 24.
30 Pem. ,33.
31 Trin. ,11. ,28. ,43. Jes. ,19. Qu. ,21. ,23. ,26. C. С. ,26. Yem. ,32. ,34. ,43. C'ai., 33. Emm.,21.
32 Joh. ,26.
33 Qu. ,48.
34 Pet. ,28. ,35.
35 Joh. ,19.
36 Cai. ,36.
37 Joh. ,26.
38 Joh. ,15. C. C. ,37.
89 Triu. ,25.
40 Joh. ,17.
41 Joh., 42.
42 Emm. ,47.
43 Pet. ,25.
44 Trin. ,38.
45 Joh. ,21.
46 Pet. ,32.
47 Joh. ,20.
48 Joh. ,14.
49 Qu. ,36.
50 Qu. ,25.
51 Pet. ,54.
52 Cai. ,44.
E3 Joh., 15.

54 Cbr. ,41.
55 S. H. ,ธั.
56 Mag. ,41.
57 Pet. ,25.
58 Joh., 17.
59 Qu. ,22.
60 Q11. ,21.
61 Trin. ,26.
62 Pet. ,35.
63 Joh. ,19.
64 Sid. ,30. Emm. ,49.
65 Pem. ,30. S. P.,42.
66 Qu. ,35. ,36. Pem. , 3 7.
67 T'rin. ,21.
68 Joh., 35.
69 Pet. ,26.
70 S. H. ,18. Qu. ,20.
71 Joh. ,18. Cath. ,31.
72 Cai. , 45.
73 Trin. ,35.
74 Pem. ,31. ,43. Qu. ,19. ,25. ,43. Trin. ,22. ,37. Cai. ,43. Mag. ,32.
75 Chr. ,48.
76 S. H. ,39. Pem. ,43.
77 Qu. ,41.
78 Trin. ,22. Qu. ,39. Chr. ,42.
79 Qu. ,22. ,38. Trin. ,42. ,44.
S0 Qu. ,29. , 35. , 41. S. P. ,43.

81 Qu. ,40.
82 Qu. ,23. ,36. ,38.
83 Joh. ,13. Trin. ,20. Emm.,24. Chr.,37. ,45. Qu.,36. ,22.,44.

84 Trin. ,44.
85 Trin. ,32.
S6 Qu., 37.
87 Joh. ,29. Qu. ,43.
88 Joh., 18.
89 Qu. ,21.
90 Trin. ,36.
$91 \mathrm{~S} . \mathrm{H} ., 25$.
92 Pet. ,33.
93 Joh. ,19.
94 Joh. ,22. Emm. ,26.
95 Pem.,34. C. C. ,30.
96 Joh. ,38.
97 Catb. ,31.
98 Emm. ,46.
99 Joh.,13.,21. Trin. ,29. ,34. Qu. ,43. ,38.
100 C. C. ,28. Pem., 42.
101 C. C. ,35. S. H. ,11. Pem. ,46. T.H. ,46.
102 Qu. ,41. ,42.
103 S. H. ,09. B. S. , $30 ., 31$.
104 S. H. ,36.
105 Sid. ,29.
106 Pet. ,36.
107 Cai. ,39.
108 Trin. ,11. ,20. ,32. ,33. Chr., 35.
109 Pet. ,37.
110 Cai. ,31.
111 Joh.,31. Qu. ,44.
112 C. C. ,30.
113 Joh. ,20.
114 Emm. ,37.
115 Trin. ,20.
116 Cath. ,48.

