UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA.CHAMPAIGN

 BOOKSTACKS
$\begin{array}{cc}\text { Ming } \\ \because & H\end{array}$
. ${ }^{*}$
$\begin{array}{ll}\because \\ \ddots & 1\end{array}$

9

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

FACULTY WORKING PAPER NO. 865

Every Finite Distributive Lattice Is a Set of Stable Matchings
 Charles Blair

BEBR

FACULTY WORKING PAPER NO. 865
College of Commerce and Business Administration University of Illinois at Urbana-Champaign
April 1982

Every Finite Distributive Lattice
 Is a Set of Stable Matchings

Charles Blair, Associate Professor
Department of Business Administration

Abstract

We show that, given a lattice, a set of men and women with preferences can be constructed whose stable matchings are precisely that lattice. This is a converse of a result of J. H. Cenway.

Every Finite Distributive Lattice is a Set of Stable Matchings
by

Charles Blair

Suppose we have n men and n women. Each of the $2 n$ people has a linear preference ordering on those of the opposite sex. We are interested in matchings to form \mathfrak{n} couples. A matching is stable if we cannot find a woman in one couple and a man in another who would prefer each other to their present partners.

Stable matchings were first defined by Gale and Shapley [1], who showed that for any preference orderings a stable matching always exists. In general, there will be several stable matchings. For example, if all the men happen to have different first preferences, giving each man his first choice will be stable, regardless of the women's preferences. Similarly, giving each woman her first choice (if possible) will be stable.

Conway [2, p. 87-92] defines a partial ordering on the set of stable matchings as follows: one matching is \geq another if every man is at least as happy with his partner in the first matching as with his partner in the second. He shows that the set of stable matchings is always a finite distributive lattice. Knuth [2, p. 92] asks whether every finite distributive lattice can occur as the set of stable matchings generated by some set of men and women. We show this is the case.

We will require some preliminary facts about lattices. If L is a distributive lattice and $x \in L$ let $V=\left\{v_{y} \mid y \leq x\right\}$ be disjoint from L. L^{X} is the partial ordering on $L \cup V$ defined by (i) if $w, z \in L$ then $w \geq z$
in L^{x} iff $w \geq z$ in L ．（ii）if $w \in L, v_{z} \in V=V_{z}$ iff $w \geq 2$ in $L_{\text {。 }}$（iii） $v_{w} \geq v_{z}$ iff $w \geq z$ 。（iv）$v_{w} \not \geq z$ for any w, z ．L^{x} is a distributive lattice。 Intuitively，L^{x} is formed from L by making a copy of all the elements $\leq x$ and putting the copies immediately below the originals．

Lemma 1：If a set S of lattices includes a one－element lattice and includes a lattice isomorphic to L^{X} for every $L \in S, x \in L$ then every finite distributive lattice is isomorphic to a lattice in S．

Proof：Let M be a finite distributive lattice．We argue by induce tion on the size of M ．If M has one element the result is immediate． Otherwise let z be the smallest member of M which is not the meet of two members different from z ．Let w be the meet of all members $>z_{\text {．}}$ $N=\{y \mid y \notin z\}$ is a distributive sublattice in which meets and joins are preserved．The minimality property of z implies that if $y \leq z$ then $y=z \Lambda u$ for some $u \in N$ ．Moreover，if $u_{1} \Lambda z=u_{2} \Lambda z \neq z$ then $u_{1} \Lambda w=\left(u_{1} \Lambda w\right) \Lambda_{z}=\left(u_{2} \Lambda w\right) \Lambda z=u_{2} \Lambda w$ ．Hence M is isomorphic to N^{W} ．By induction hypothesis，N is isomorphic to a lattice in S ，so M is isomorphic to a lattice in S．Q．E．D．

To complete the proof we will show how to construct a set of men and women whose preferences yield L^{X} from a set whose preferences yield L．

Lemma 2：Let L be the set of stable matchings possible for women w_{1}, \ldots, w_{n} and men m_{1}, \ldots, m_{n} ．Suppose $x=\left(m_{1} w_{1}, \ldots, m_{n} w_{n}\right) \in L$ ．Then the set of stable matchings for the $2 n$ men $m_{1}, \ldots, m_{n} ; m_{1}^{\prime}, \ldots, m_{n}^{\prime}$ and women $w_{1}, \ldots, w_{n} ; w_{1}^{p}, \ldots, w_{n}^{\prime}$ with the following preferences is isomorphic to L^{x} ： m_{i} ：Use the original preferences of m_{i} in the n－couple situation for all women strictly preferred to（above）w_{i} ．Replace w_{i} by w_{i}^{\prime} ． After $w_{i}^{\prime} p u t w_{i+1}^{\prime}$ and finish the ordering arbitrarily．
m_{i}^{\prime} : First choice w_{i}^{\prime}, followed by w_{i} and the original preferences of m_{i} below w_{i}. Finish arbitrarily.
w_{i} : In the original preference ordering replace m_{j} by (m_{j}^{\prime}, m_{j}) for $j=i$ and all m_{j} above m_{i}. For m_{j} below m_{i} use (m_{j}, m_{j}^{\prime}). Example: if the original ordering for w_{2} is (best) $m_{1} m_{2} m_{3}$ new ordering is $m_{1}^{\prime} m_{1} m_{2}^{\prime} m_{2} m_{3} m_{3}^{\prime}$ 。
w_{i}^{\prime} : First choice is m_{i-1}. Second choice is m_{i}, followed by m_{i}^{\prime}. Finish arbitrarily.

In this definition all arithmetic is modulo n. We illustrate with an example after the proof.

Proof: We begin by observing that in any stable $2 n$-couple matching with these preferences (1) If for some i, m_{i} gets w_{i+1}^{\prime} then w_{i}^{\prime} (preferred by m_{i}) must get m_{i-1}, hence m_{i} must get w_{i+1}^{\prime} for all i. (2) w_{i}^{\prime} is the first choice of m_{i}^{\prime}, hence w_{i}^{\prime} must get either m_{i-1} (and 1 applies), or m_{i}, or m_{i}^{\prime}. (3) m_{i} must get somebody at least as good as w_{i+1}^{\prime}. (4) If m_{i} does not get w_{i}^{\prime} or w_{i+1}^{\prime}, then m_{i}^{\prime} gets w_{i}^{\prime}. (5) If m_{i} prefers w_{j} to w_{i}^{\prime}, m_{i}^{\prime} does not get w_{j}. (Since x is stable w_{j} prefers m_{i} to m_{i}^{\prime}. If m_{i}^{\prime} got w_{j} (4) would imply m_{i} gets w_{i}^{\prime} or w_{i+1}^{\prime} so m_{i} and w_{j} would be happier together.)

These observations imply that nobody gets assigned to the arbitrary part of his or her ordering. Further if we are given a stable matching for the $2 n$ couples we obtain a stable matching for the n-couple problem (i.e., a member of L) by giving each w_{i} her partner in the $2 n$-couple problem, deleting primes where necessary. Conversely if $y \in L$, there is a corresponding stable matching for the $2 n$-couple situation in which m_{i} is replaced by m_{i}^{\prime} iff m_{i} gets w_{i} or somebody worse in y. If $y \leq x$ there are two $2 n$-couple matches corresponding to y--one in which each m_{i} gets
w_{i}^{\prime}, and one in which each m_{i} gets w_{i+1}^{\prime}. Those matches in which each m_{i} gets w_{i+1}^{\prime} corresponds to V in the definition of L^{x}. Q.E.D.

Example: The four people with preferences given below have stable matching corresponding to a four-element lattice: (A) m_{1} gets w_{2}, m_{2} gets $\mathrm{w}_{1}, \mathrm{~m}_{3}$ gets $\mathrm{w}_{3}, \mathrm{~m}_{4}$ gets w_{4} (abbreviated (2134)) (B) (1243) (C) (1234)
(D) (2143).

| $m_{1} m_{2} m_{3} m_{4}$ | |
| :--- | :--- | :--- |
| $w_{2} w_{1} w_{3} w_{4}$ | |
| $w_{1} w_{2} w_{4} w_{3}$ | ${ }^{w_{1}} w_{2} w_{3} w_{4}$ |
| \ldots | $m_{1} m_{2} m_{4} m_{3}$ |\quad (... $=$ arbitrary)

L (1234) is a six-element lattice generated by the preferences:

$$
\begin{aligned}
m_{1} m_{2} m_{3} m_{4} m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} m_{4}^{\prime} & w_{1} w_{2} w_{3} w_{4} w_{1}^{\prime} w_{2}^{\prime} w_{3}^{\prime} w_{4}^{\prime} \\
w_{2} w_{1} w_{3}^{\prime} w_{4}^{\prime} w_{1}^{\prime} w_{2}^{\prime} w_{3}^{\prime} w_{4}^{\prime} & m_{1}^{\prime} m_{2}^{\prime} m_{4}^{\prime} m_{3}^{\prime} m_{4} m_{1} m_{2} m_{3} \\
w_{1}^{\prime} w_{2}^{\prime} w_{4}^{\prime} w_{1}^{\prime} w_{1} w_{2} w_{3} w_{4}^{\prime} & m_{1} m_{2} m_{4} m_{3} m_{1} m_{2} m_{3} m_{4} \\
w_{2}^{\prime} w_{3}^{\prime} \ldots & m_{4} w_{3}
\end{aligned}
$$

The stable matchings are ($213^{\prime} 4^{\prime} I^{\prime} 2^{\prime} 34$), ($1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 1234$), ($1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 1243$), ($213^{\prime} 4^{\prime} 1^{\prime} 2^{\prime} 43$), ($2^{\prime} 3^{\prime} 4^{\prime} 1^{\prime} 1234$), and ($2^{\prime} 3^{\prime} 4^{\prime} 1^{\prime} 1243$). The last two are members of V.

The construction we have given does not use the smallest number of people needed to represent a given lattice. The six-element lattice can be represented using ten people as follows

$$
\begin{array}{cc}
m_{1} m_{2} m_{3} m_{4} m_{5} & w_{1} w_{2} w_{3} w_{4} w_{5} \\
w_{1} w_{2} w_{3} w_{4} w_{5} & m_{2} m_{3} m_{1} m_{5} m_{4} \\
w_{3} w_{3} w_{2} w_{5} w_{4} & m_{1} m_{2} m_{2} m_{4} m_{5} \\
w_{1} \ldots & m_{3}
\end{array}
$$

The stable matches are (12345), (12354), (13245), (13254), (31245), and (31254). However, it is not possible in general to go from L to L^{x} by adding only one additional couple.

The structure of the set of matches is clearly reminiscent of the representation of a permutation by cycles. This theme will be explored in forthcoming work with Alvin Roth, whose recent work [3] motivated this note.

References

1. D. Gale and L. Shapley, "College Admissions and the Stability of Marriage," American Math Monthly 69 (1962), pp. 9-15.
2. D. Knuth, Marriage Stables, Montreal University Press 1976.
3. Ao Roth, "The Economics of Matching: Stability and Incentives," to appear in Mathematics of Operations Research.

M/C/294

