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PREFACE

1%/TANY engineering and architectural teachers have found
^-*- that applied mechanics is not an easy subject to teach,

and most students have discovered that it is a difficult subject

to understand. In searching for the reason for this unfortunate

state of affairs, the author came to the conclusion that the

treatment of the older form of text-book was too much that of

applied mathematics a kind of exercise-ground for algebraic

manipulation and that many of the more modern books that

have attempted to remedy this weakness have given too much

engineering application of the principles of mechanics without

sufficient explanation of those principles.

The aim of the present book is to present the elementary

principles of mechanics in accurate though clear terms and to

show the application of those principles to the simpler problems

arising in engineering and architectural applications. The general

treatment is based more upon graphical conceptions than upon

purely mathematical analysis because experience shows that

the mind of the engineering student reasons more clearly from

diagrams than from symbols.

A number of simple experiments have been given, principally

those which require the simplest form of apparatus. It is not

suggested that the experiments given are all that are desirable

in a laboratory course, but it is believed that sufficient have

been given to make the principles clear. It may be pointed out

here that there is some danger in attempting to learn principles

merely by experiments with simple (and usually inaccurate)

677868



vi PREFACE

apparatus. Before the student can hope to obtain valuable

results from experiments, he must learn to make accurate

readings of his instruments and to make corrections for the

errors that may arise. Some authorities seem to suggest that

experiment is of much greater importance to engineers than

reasoning, but it should be borne in mind that training is required

for good experimental work as well as for anything else, and in

the author's opinion many engineering students who attempt

to gather a knowledge of mechanical principles from experiment

have not had sufficient preliminary training in experimental

method. If our reasoning is based upon experimental laws

and not upon dogmatic mathematical conceptions we shall

probably make greater progress in elementary work by using

experiment as an illustration of the results of our reasoning

than by attempting to deduce the principles from the results

of our experiments/

The great value of training in experimental work and

thorough training is essential lies in the direction of research

work which comes when we have understood the principles

based upon the earlier researches of others.

It is hoped that this book will be found of value as a class-

book in the junior classes of Engineering Colleges and in Public

Schools that have an engineering side.

The author wishes to express his gratitude to Mr J. B. Peace,

M.A., of Emmanuel College, Cambridge, for much valuable

criticism and assistance with the proofs, and to the publishers

for the great help that they have given in the preparation of

the diagrams.

E. 8. A.

GOLDSMITHS' COLLEGE,

NEW CROSS, S.E.

May 1915.
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CHAPTER I

FORCES AND OTHER VECTOR QUANTITIES

QUANTITIES which can be represented in magnitude and
direction by straight lines are called vector quantities; the

length of the straight line represents the magnitude of the

quantity to some chosen scale and the direction of the straight

line, as indicated by an arrow-head, represents the direction

in which the quantity acts. The term vector is used in contra-

distinction to the term scalar, scalar quantities being those

which have magnitude only. Length is a good example of a

scalar quantity ;
time is another. When we say that a body is

10 inches long we know everything about the length, but there

are some quantities which are not fully defined until we know
the direction as well. Forces and velocities are familiar examples
of vector quantities ; a vertical force of 10 Ibs. is not the same

thing as a horizontal force of 10 Ibs. It should, however, be

remembered that the direction and magnitude of a force does

not tell us all that we wish to know about it; we must also

know the position of the force, i.e., the actual position of the

line of action of the force, because a force may be regarded as

acting at any point in its line of action.

The scientific definition of a force is as follows: "A force

is that which alters, or tends to alter, the motion of a body in a

straight line.'
3

This definition is based upon Newton's first

law of motion which states that " a body continues in a state

of rest or uniform motion in a straight line unless it be acted

upon by some external force." It is not, however, essential

to understand fully this definition of force at the present stage,

because the idea of a force as a push or a pull is quite clearly

understood by most people.

A. M. 1



2 FORCES AND OTHER [CH.

Weight. ,
I* is-' onfe of the fundamental laws of nature that

betwsen. all. bodies there* exists a force of attraction and the

Garth exerts upon aiT ttociies a force called the force of gravity

tending to pull the body towards the centre of the earth. The

weight of a body is the force exerted by gravity upon it and is

the most familiar case of a force.

Unit of force. The weight of a given quantity of matter is

found to vary with the latitude; it is about one-half per cent,

greater at the poles than at the equator. We will take as our

unit of force the weight of one pound in London; the pound

being the quantity of matter in a standard cylinder of platinum

preserved in London by the Board of Trade. This unit is often

known as the "engineer's unit" or the "gravitation unit," to

distinguish it from the "absolute unit
"
used by physicists. The

absolute unit, which is the force required to produce a definite

change of motion in a given mass in an assigned time, is inde-

pendent of locality and is the more scientific of the two. As

however engineers must be able to express their data and their

results in the units in common use in their profession, and as

the simultaneous use of two systems of units only leads to con-

fusion, we shall confine ourselves to the engineer's unit as defined

above.

Diagrammatic representation of forces. Referring to Fig. 1,

suppose that a force Fl acts through a point A in a body; as

Force diagram Vector diagram
Fig. 1.

previously noted, it is better to speak of a force as acting through

a point than as at a point. If now in some convenient position
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we draw a line 1, 2 parallel to F1 and of length to represent its

magnitude to some convenient scale, 1, 2 will be the vector for

the force Fv the arrow-head representing the direction in which

the vector is to be considered as acting. A very convenient

method of indicating the force in many cases consists in number-

ing or lettering the space on each side of the force in the force

diagram. The force is then denoted by the numbers or letters

between which it acts ; thus the force F
3
in the figure is called 1, 2,

so that spaces on the force diagram correspond to points on the

vector diagram. This is often referred to as
"
Bow's notation."

Resultant of a system of forces; triangle of forces. The
resultant of a system of forces acting upon a body may be defined

as the single force which will have the same effect upon the body
as the combined effect of the separate forces.

Suppose that a second force F% acts through a point B in

the body and let the lines of action of the two forces intersect

at the point C. On the vector diagram, starting from the point

2, set out a length 2, 3 equal in length to the force F2 to the scale

already chosen for F1 and parallel to F2 in the direction of its

arrow-head, and join 1, 3, the triangle 1, 2, 3 being commonly
referred to as the triangle of forces. Then 1, 3 represents in

magnitude and direction (but not in position) the resultant R
of the two forces. It will act through the intersection C of the

lines of action of the two forces, so that by drawing as shown

in dotted lines a line R through C parallel to 1, 3 we can say
that R is the resultant of the two forces Fl and F2 and that its

magnitude is given by the length 1, 3.

It should be noted that the direction of the resultant is from

the first point on the vector diagram to the last, i.e., from 1 to 3 ;

by keeping this fact always in mind we shall avoid the confusion

that sometimes arises. Further the resultant does not act in the

line 1, 3 but through the intersection C of the two forces.

To make quite clear the plotting of the vector diagram

suppose that Fl is 12'5 Ibs. and F% is 8 Ibs. and that the vector

diagram is drawn to a scale \" = 10 Ibs., then 1, 2 will be drawn

T25 inches long and 2, 3 will be made *8 inch long and if 1, 3

is 1*7 inches long, the resultant R of the two forces will be equal

to T7 x 10 = 17 Ibs. and will be in the direction shown. We
need not restrict ourselves to actually measuring the resultant

12
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J?; we may calculate it when required by means of the trigono-

metrical methods of the solution of triangles. When we do

calculate in this way it is not necessary to draw the triangle

of forces accurately to scale. We do not propose to give a rigorous

proof of this result at present but it may easily be verified experi-

mentally in the following manner:

Experiment i. Upon a suitable drawing board A (Fig. 2) arranged

vertically, to which is fixed a piece of paper P, fix a spring balance by a string

to a point B and connect a string to the hook of the balance and tie it to a

ring D to which is tied another string connected to a weight JP*a . Tie a third

piece of string to the ring and pass the other end of it over a freely-mounted

Fig. 2. Experiment on Triangle of Forces.

pulley C and connect a weight jPx to its end. After the strings have come
to rest, trace their directions upon the paper and remove the latter; then

at some convenient place at the side draw to a suitable scale 1, 2 parallel

to the portion DC of the string and of length to represent the weight F19 and
draw 2, 3 vertically and make it represent the weight F2 to the same scale

and join 1, 3. Then 1, 3 will be found to equal a length representing the

reading upon the spring balance to the previously chosen scale and will be

found parallel to BD. The pull in the portion CD of the string is equal to

the weight F^ on the end of it if there is perfect freedom of movement of the

bearings of the pulley, so that our experiment will have verified the law of

the Triangle of Forces. (This equality of tension on the two sides of the

pulley follows from the Principle of Moments, p. 18.) Now suppose that one

of the weights F^ or Fz is changed ; the effect of this change will be that the

strings will move and will finally come to rest in a new position ; the directions

and magnitudes of the forces will again be found to follow the triangle law.



I] VECTOR QUANTITIES 5

Notation to represent vector addition. We have seen that

the resultant It is equivalent to the combined action of the

two forces F1 and Fz , R is then said to be the vector sum of

Fl and F%. We may write this symbolically as

E = F
l -* F2 .

The -H-, which is a modified plus sign, indicates that the

addition is not a mere numerical or algebraic one, but that the

directions of the forces Fv F2 are taken into consideration in

effecting the addition.

Numerical Example Thrust on a steam-engine foundation.

As a simple numerical example of the triangle of forces take

W * 2000
= 2500

Fig. 3. Thrust on Steam-Engine Foundation.

the horizontal steam-engine shown in Fig. 3. The force or

thrust upon the foundations, at the main bearing, for the position
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shown of the crank-pin C and connecting-rod R, is made up of

the weight W of the flywheel, shaft, etc., and the pull P exerted

by the piston. Take W = 2000 Ibs. and P = 1500 Ibs. and set

out ab horizontally to a convenient scale to represent P, say

1" = 1000 Ibs. (1000 Ibs. forms a very convenient unit for

engineering calculations and has been called a "
kip ") ;

then

set out be vertically to the same scale to represent 2000 Ibs.

and join ac. Then ac gives the resultant thrust upon the founda-

tions, a being the first point and c the last.

ac if scaled off will be found to be 2500 Ibs. (2'5 kips),

but we should note that we can find it by calculation in this

case as easily as by scaling off, and consequently we need not draw

accurately to scale, i.e., because abc is a right-angled triangle,

ac2 = a&2 + &c2,

i.e. ac = VaPT&c2 = N/15002
-f 20002 = 2500 Ibs.

If we want to find the angle 6 by trigonometrical calculation

we note that ^
tan -- |j}- 1-8388,

and from trigonometrical tables we find that = 48 35' nearly.

It should again be noted that we have the choice of actually

drawing the vector figure to scale and solving the problem

graphically, or of using trigonometry or other mathematical

means of calculation. The student should endeavour to be able

to use both methods, each being appropriate in certain cases.

If, however, at this stage he has no knowledge of trigonometry,

this need not act as an obstacle to him
;
he can always use the

graphical solution. We wish, however, to point out that many
students fall into the mistake of never learning the mathematical

method at all, and consequently waste time in many problems.

A brief explanation of trigonometry is given in the appendix.

In this case therefore we should write 2500= 1500*2000.

Resolution of forces. Let F, Fig. 4, represent a force acting

through a point O and let OX, OF be two lines passing through
at any inclination whatever. Suppose that we wish to know

the forces acting in these two directions which will have a resultant

equal to F.

Set out a length 1, 2 to represent the force F: from one end,

say 1, draw 1, 3 parallel to OX and from the other end draw
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2, 3 parallel to OY, the intersection giving the point 3. Then

1, 3 represents the force Fx which acting in the direction OX will

combine with FY represented by 3, 2, acting in the direction

7, and have a resultant equal to F ; this follows from the rule,

that we have already explained, that the resultant of any two
forces is given in magnitude and direction by the third side of

a triangle the other two sides of which represent the two forces

in magnitude and direction. The force F is then said to be

resolved into the forces Fx and FYt which are called the com-

ponents of the force F in the two given directions.

o FX x

Force diagram Vector diagram

Fig. 4. Resolution of Forces.

In an exactly similar manner the force F could have been

resolved into components Fz , FJJ in the directions OZ, OU, as

shown in dotted lines intersecting at the point 4. We will

again emphasize the fact that it is not necessary to measure

the lengths 1, 3 and 2, 3; we may calculate them by trigono-

metrical or other methods whenever convenient. It is important
to note that when components in two directions at right angles

are considered, the two components are called the resolved parts of

theforce in the two directions and that a force has no "resolved part"

in a direction at right angles to its line of action.

Numerical Example on resolution of forces. A barge

A (Fig. 5) is being pulled along a canal by a horse which exerts a

force of 150 Ibs. in a direction at 20 to the centre line of the canal.

Find the force urging the barge forward and that tending to pull

it into the side. We require to find in this case the components
of the force of 150 Ibs. in the direction AC and at right angles

to AC.
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Draw a line ac parallel to AC, and drawing ab in a direction

at 20 to ac to a scale say I* = 50 Ibs., i.e., making ab = 3", draw

be perpendicular to ac. Then by measurement we should have

51-3

Fig. 5.

be = 1-03* = 51-5 Ibs. = the force tending to pull the barge into

the side and ac = 2*82" = 141 '0 Ibs. the force urging the barge
forward along the centre of the canal. By calculation we should

have
be = 150 sin 20 = 150 x -3420 = 61'3 Ibs.

ac = 150 cos 20Q = 150 x -9397 = 141-0 Ibs.

Equilibrium ; equilibrant. If a body is at rest or is moving
without altering its velocity, the forces acting upon it are said

to be "in equilibrium." If such is the case, there is nothing

tending to
"

alter its condition of rest or uniform motion "
so

that there is no resultant force acting upon it. We see therefore

that the first essential of equilibrium of a body is that the resultant

Force diagram Vector diagram

Fig. 1.

of all the forces acting upon it shall be zero. This means that the

first and last points of the vector diagram must coincide, because

the distance between the first and last points gives us the value

of the resultant.
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Referring again to Fig. 1, we see that the body is not in

equilibrium under the action of the forces F
lt Fz because their

resultant R is given by 1, 3 which is not zero. Now the single
force that has to be added to a system of forces acting upon
a body to bring the body into equilibrium is called the equilibrant.

The equilibrant must be equal and opposite to the resultant, because

the system may, as we have seen, be considered as replaced

by the resultant and our forces then become reduced to two-
the resultant and the equilibrant and the resultant or combined
effect of these two forces must be zero for equilibrium. The

only way for two forces to reduce to zero is for them to be

equal and opposite ; the only way for instance for the force R to

be neutralised or equilibrated is for the equilibrant to be equal
to 3, 1.

Warning; forces acting round a triangle. Care should be

taken to distinguish between the following cases:

Force diagram Vector diagram

Fig. 6.

(a) Three forces acting at a point and having their vector

figure a closed triangle. This is the case that we have already
considered and is shown diagrammatically in Fig. 6.

(6) Three forces acting on a body round the sides of a triangle

are not in equilibrium even if the sides of the triangle are pro-

portional to the forces. This is shown in Fig. 7. In this case

the three forces do NOT meet at a point and the two forces F and

F2 have a resultant acting through B which is equal to Ft -H-F2
=F3

parallel to AC (if the forces are proportional to the sides of the

triangle). The three forces are therefore equivalent to two equal
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and opposite parallel forces FB at a distance x apart. These

two forces will tend to turn the triangle round in the direction

Fig. 7.

of the arrow O and form what is called a couple (which we shall

consider more fully later).

More than two forces. Vector polygon construction.

Up to the present we have dealt with two forces only, but the

idea of vector addition is applicable to any number of forces.

Take for instance four forces F-^FJFJF^ (Fig. 8) : to some con-

venient scale draw 1, 2 parallel to represent F in magnitude
and direction; then starting from 2 draw 2, 3 to represent

F2 ; then 3, 4 to represent F3 ; and finally 4, 5 to represent F.
Then the resultant E of the whole system of forces will be given

in magnitude and direction by the line 1, 5 joining the first

point of the vector figure to the last.

This is the general case of vector addition and can be expressed

in words as follows : The resultant or sum of a number of vector

quantities (i.e., those having magnitude and direction, such as

forces and velocities or speeds) is obtained by placing them end

to end, preserving their directions and a continuous sense of their

arrow-heads ; the final step from the beginning of the first vector

to the end of the last is the resultant or vector sum.

The reader may find this definition rather difficult to follow

at first, but if he reads it carefully in connection with the

figure the meaning should become clear. To express this result

generally by a formula, where there are altogether n forces

(where n is a whole number), the first of which is F^ and the

last Fnt we should write
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This formula should be regarded merely as a symbolic or

shorthand way of expressing the statement in italics.

Proof. This principle may be proved by repeating the con-

struction for two forces, thus: It follows by the triangle of

Vector

Polygon

1 2

of Pressure

4 x> Force Figure

Fig. 8. Vector Polygon construction.

forces that the length 1, 3 (shown in chain dotted lines) represents

the resultant E1>z of the forces F
lt
F2 \ it must act through

their intersection x as shown on the force figure; let the line

of action of J?L2 intersect the third ^ p
force JP3 in y. Now 1, 4 represents

the resultant of Jf?1>2 and F9 and

therefore of Flt F2 and Fz \ draw

therefore through y a line parallel

to 1, 4 to intersect F as shown.

The force 1, 5 clearly represents the

resultant of 1, 4 and F^ i.e., of Flt

F2 ,
F and F^, and gives therefore the

resultant R required and by drawing
a line parallel to 1, 5 through the

point last obtained we get the line

of action of E.

The line x, y, etc. is often called

^ R

Kg. 9.

the line of pressure because one of its principal practical applica-

tions arises in problems relating to walls, arches and similar
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structures. We shall deal later with an extension of this

graphical construction.

Order of taking the forces. It should be noted carefully

that this construction gives the same result no matter what
be the order in which the forces are taken, although the order

will make an alteration in the shape of the vector polygon and

for general convenience it is best as a rule to take them in turn.

Fig. 9 for instance shows the vector polygon for the forces taken

in the order F2 , F^ F3 , Fv The magnitude and direction of

the resultant H is the same as before.

Fig. 10. Experiment on Polygon of Forces.

Experiment 2. This principle may be verified experimentally by an

apparatus similar to that employed for the triangle of forces. Connect two
additional pulleys E, (Fig. 10) to the apparatus and pass strings over them,
connected to the ring and carrying weights F9 , F4 at their ends. Then by
drawing the polygon of forces as shown we get the resultant R which should

agree with the reading given by the spring balance.

Experimental errors. In this and all other experiments it

should be remembered that it is difficult if not impossible to

get absolute agreement between theory and experiment. This

is due in part to the imperfections of our apparatus, introduced
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for example by friction in the pulleys and sagging of the

strings due to their own weight. It is also caused by errors of

observation ; we shall probably not transfer the directions of the

forces to our paper without slight errors and we may make
some mistakes in drawing our parallels to get the polygon of

forces. The existence of these experimental errors points to

the absurdity of trying to express the results of calculations

based upon experimental data by numbers carried to more

than a few significant figures. If, for instance, we express

the weight of a girder as 7-13762 tons we are laying claim to

an accuracy which is impossible in practice. Manufacturers of

steel plates, angle-bars, etc., cannot guarantee the sections

nearer than about 2J per cent. ; this means that if a girder is

listed as weighing 100 Ibs. per foot length, it may actually weigh

anything between 97'5 and 102-5 Ibs. per foot. The above-

cited girder therefore should be put down as having a weight
of 7 '14 tons, the remaining figures being quite meaningless on

account of the nature of the problem.
In this connection we would point out that it is the number

of significant figures that matters and not the number of figures

after the decimal point. If in the process of multiplication we

get a result 581,574 Ibs., we should write this as 582,000 Ibs.;

or if we had '002876 foot we should call it -00288 to the third

significant figure, that is to the same degree of accuracy as in

the previous case. The ordinary processes of long multiplica-

tion and division should be discarded in engineering calculations

for logarithms or the slide -rule.

SUMMARY OF CHAPTER I.

The resultant of a system of forces acting upon a body is the

single force which will have the same effect upon the body as the

combined effect of the separate forces.

Tho resultant B of two forces F1 and F2 acts through the inter-

section of their lines of action and can be found by means of measure-

ment or calculation from a triangle two sides of which are parallel

to and proportional to the two forces, the direction of the forces

being maintained. This result is written R = Fl -H- F2. A force

can be resolved in any two directions by the aid of the triangle of

forces, but a force has no resolved part in a direction at right angles
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to its line of action when the directions considered are at right angles
to each other.

The equilibrant of a series of forces is equal and opposite to the

resultant.

The principle of the triangle of forces can be extended to deal

with any number of forces, the resulting construction being known
as the

"
polygon of forces."

EXERCISES. I.

We give below a number of exercises for testing the extent to

which the reader has followed the arguments so far. The reader

will find by experience that he learns most thoroughly by working
the examples as he proceeds and that it is better to do a little of

the subject thoroughly than to press forward before each step is

mastered.

1. Find the resultant of forces of 4 and 5 Ibs. acting at 30

to each other.

2. A push of 36 Ibs. acts horizontally at a point upon a roof-

truss and at the same point inclined to it at an angle of 135 in an

anti-clockwise direction is a pull of 70 Ibs. Find the resultant

force acting upon the truss at the given point.

3. Show that if the angle between two forces of given magnitude
is increased, their resultant is decreased.

4. The greatest resultant that two given forces can have when

acting in any direction is 100 Ibs. and their least resultant is 20 Ibs.

Find their resultant when they act at right angles to each other.

5. The horizontal and vertical components of a certain force

are equal to 6 and 12 Ibs. respectively. What is the magnitude
of the force?

6. A nail is being driven into a vertical wall at an inclination

of 30 to the horizontal and a man pulls the nail horizontally away
from the wall with a force of 10 pounds. Calculate the force tending
to extract the nail and that tending to bend it.

7. A weight of 100 Ibs. is suspended by wires from two points

on a horizontal bar 5 feet apart, one wire being 6 feet long and the

other 7 feet long. Find the forces in the two wires.

8. The thrust upon the horizontal foundation of a building

is 100 tons inclined at 10 to the vertical. Find the force or pressure

tending to drive the foundation into the ground and that tending
to make it slide.
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9. An inclined force of 200 Ibs. is acting upon a body resting

upon a horizontal surface, the horizontal resistance to movement
of the body being 40 Ibs. Find the smallest angle at which the force

can act without moving the body.

10. A truck weighing 10 tons is resting against buffers in a

siding the slope of which is 1 in 30; what is the pressure on the

buffers ?

11. Find the resultant of two forces of 15 and 36 Ibs. acting
at an angle of 52 with each other.

12. A weight of 75 Ibs. is carried by two cords which make

angles of 35 and 51 with the horizontal. Find the pull in each

cord.

1 3. Forces OA = 30 Ibs. , B= 50 Ibs. , CO = 15 Ibs. , DO= 80 Ibs. ,

OE = 1 50 Ibs. meet at a point: the angles are

COA - 90, DOA - 135, EOA = 270.

Find the resultant.

14. Let Plt Pa , P8 be three forces

acting at each=100 Ibs. And let

L P^Pg = 135 and L PjOP, = 90.
Find their resultant. (See Fig. la.)

15. A ball weighing 100 Ibs. is

suspended from the ceiling by a string

8 ft. long. Find the force necessary
to hold the weight 2 ft. from the vertical by a horizontal pull.

O35*



CHAPTER II

MOMENTS AND LEVERAGE

WE have considered forces up to the present only from the

point of view of their magnitude and direction; we will now
consider them from another point of view which is extremely
useful in engineering problems, viz., by their moments or leverage*.

Children accustomed to playing on a
"
see-saw

"
are aware of

the fact that by sitting farther away from the pivot they use

their weight to greater advantage, and that in order to get a

balance between a heavy and a light child, the light child must
have a greater length of plank. The scientific way of expressing
this simple fact is that for the two forces to balance their

moments about the pivot must be equal.

The moment or leverage of a force about any point may be

defined as "the tendency of the force to rotate the body, upon which

it acts, about the point" It is measured by the product of the

force into the perpendicular distance from the point to the line

of action of the force. Referring to Fig. 11, the moment of the

force F! about is equal to F1 x pv If therefore Fl is 15 Ibs.

and P! is 3 inches, the moment of Fl about O = M 15 x 3 =
45 pound-inches (or inch-pounds, but the former is preferable for

a reason that we will explain later). The perpendicular distance

from the point to the line of action of the force may be called the
" arm "

so that we get the general rule Moment = Force x arm.

Positive and negative moments. Since rotation can be in

one of two opposite directions, we must distinguish between

these two directions by calling one positive and the other negative.

The tendency of the force F1 is to rotate the body about O in

the direction of the hands of a clock, i.e., a clockwise direction,

and will for convenience be called a positive moment. If the

* The term "
leverage

"
is often used in a more restricted sense than the

above to denote the "mechanical advantage" (p. 53). We think, however,

that it is better to use it as synonymous with "moment."
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tendency of the force were to cause rotation in the opposite
or anti-clockwise direction, as is the case with the force F

2 ,

we should call the moment negative. It is purely a matter of

convenience as to which is called positive and which negative.
All that matters is that we shall agree to call positive the tendency
to turn in one direction, and to call negative the tendency to

rotate in the opposite direction.

Suppose for instance that F2
= 20 Ibs. and that p2 is 1-6

inches, then the moment of F2 about O = M2
= 20 x T6

= 32 pound-inches.

O O
Clockwise

Moment.

Anti-Clockwise

Moment

Fig. 11. Moments.

Now so long as we are dealing with forces in one plane moments
are scalar quantities; they have no direction in the sense that

a force or a velocity has direction and are added by the ordinary
or algebraic rules.

Thus the total moment of Ft and Fz about = 45 - 32 = 13

pound-inches.
Moment about a point in the line of action of a force. Remem-

bering that a force must be considered as acting in a line rather

than at any point, we shall see at once that a force has zero

moment about a point in its line of action because its arm is zero

so that the product of the force by the arm must also be zero.

The Principle of Moments. This principle, which is of very

great value in engineering problems and a clear understanding
of which will obviate many difficulties that might otherwise

A. M. 2
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arise, may be stated as follows : // a system offorces in one plane
act upon a body and keep it in equilibrium, the algebraic sum of

their moments about ANY point in the plane will be zero.

By algebraic sum we mean the sum allowing for some being

positive and some negative, so that we might say that the total

positive moment must equal the total negative moment. We
will not give a rigorous proof of this principle but will point out

that it really follows from the idea of equilibrium and from

Newton's first law of motion (p. 124). If a body is in equilibrium,

it does not tend to change its state of rest so that there is no

tendency to rotate about any point. We will restrict our

consideration for the present to stationary bodies and will

deal later with rotating bodies.

Experiment 3. Verification of the principle of moments. Take a rod C
(Fig. 12) and pivot it about one end A, allowing it to hang freely. At a

convenient point B attach a string to the rod and pass the string over a pulley E,

w

Fig. 12. Experiment on Moments.

at a point for instance above B, and hang a weight say of 5 Ibs. at the end

of the string. Provide a convenient stop K to prevent the pull from moving
the rod out of position. At a convenient point C attach another string and
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pass it over a second pulley D and weight the end of the string carefully until

the rod just begins to come away from the stop. So far as rotation about
A is concerned the rod is then in equilibrium under the two forces 5 and W,
there being now no pressure or

"
reaction

" on the stop. Now measure care-

fully the perpendicular distances from A to the two strings BE and CD; it

should be noted that the distances are measured to the strings which represent
the lines of action of the forces and not to the points B, C at which the strings
are attached to the rod.

Then taking moments about A we have

MA = Wx20- 5x8=0 (because the rod is in equilibrium),

.-. 20TF=40 or JP==21bs.

W will be found to be approximately 2 Ibs. in the experiment. It may not

be exactly 2 Ibs. because, as we have already indicated, there are always

slight experimental errors especially with rough apparatus.

The sum of the moments of a system of forces about a given

point is equal to the moment of the resultant about the same point.

Fig. 13. The Principle of Moments.

This rule can be deduced from the general principle of moments

as follows. Let Flf F2 , F3 ,
etc. (Fig. 13) be any number of forces

acting upon a body (in the figure we have shown four forces

but there may be any number) and let their resultant be R.

Now suppose that we add a force E, the equilibrant, which as

we have shown already is equal and opposite to the resultant.

22
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.e.

Then the forces F1 , F2 ,
etc. and E keep the body in equilibrium,

so that the total moment about any point must be zero:

FlPl + F2p2
- F3p3 + EpR + F^ = 0,

iPi + F2p2 F3p3 + FlPl = sum of moments of given forces

= -EpR .

But E = - R,

i.e. The sum of the moments of the system = Moment of resultant.

To save writing a long string of similar quantities, it is usual

to use the Greek letter E (" sigma ") to indicate
" sum of quanti-

ties like," so that in our present case we would write

We shall find this notation very useful in other problems.

Numerical verification. Take the weighted lever SQ (Fig. 14),

which is weighted with 10 Ibs. at Q, and pivoted at a point 8 inches

SOlbs.

20 b

Fig. 14. Forces on a weighted lever.

-lolbs.

from Q and is subjected to a horizontal pull of 20 Ibs. at the point S
the length SQ being 18 inches. The point of support or pivot of

a lever is called the fulcrum. If the weight of the lever itself

may be neglected, the forces tending to turn the lever about the

fulcrum are the horizontal force of 20 Ibs. acting through S and
the vertical force of 10 Ibs. due to the weight acting through Q.

The lines of action of these two forces intersect at the point P ;
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by means of the triangle of forces we find the resultant ac of the

forces of 10 and 20 Ibs., which by measurement or calculation

comes to 22 -4 Ibs. (E). Draw through P a line parallel to this

resultant.

The perpendicular distance from the fulcrum to this line

will be found by measurement to be 3 '79 inches. So that

the moment of the resultant about the fulcrum will be

22-4 x 3-79 = - 84-8 pound-inches.
Now take moments of the separate forces about the fulcrum.

These are equal to - 20 x 7'07 + 10 x 5-66 = - 84-8 pound-
inches as before.

APPLICATIONS OF THE PRINCIPLE OF MOMENTS

We will now consider some applications of the principle of

moments to practical problems. Further applications will arise

at later portions of the book.

Reactions on a beam. Determine the reactions on a beam

of 20 feet span loaded in the manner shown in Fig. 15. By
"

re-

actions
" on a beam we mean the pressure exerted by the support

RA 'A i

CD'

Fig. 15. Reactions on a beam.

upon the beam. If the support is stationary, it will press upward

upon the beam with a force equal to that with which the beam

presses against the support. This is an example of Newton's

Third Law of Motion that
"
Reaction is equal to action." This

"
reaction

"
may be regarded as a force induced to counteract

the original force (or
"
action ") so as to bring the resultant

force at the point to zero.

In our present example there are six forces acting on the

beam which keep it in equilibrium, viz., the four weights W^,W2t

W3 and W4 and the two reactions RA and RB .

In the present case our forces are all vertical, the weights

acting downwards and the reactions upwards. We have seen

that, for equilibrium, the vector sum must be zero. When
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the forces are all in the same direction, the vector sum is the

same as the algebraic sum so that we get the rule that
"
the

total upward force must be equal to the total downward force."

Therefore we have :

RA+ RB = Wl + TF2 +W3 + Wi = | + J + 1 + 2 = 3f tons.

To determine one of the reactions, say RA , take moments

about the other support B. The moment of RB about B is

zero because the
" arm "

is zero.

The algebraic sum of all the moments about B must be

zero, i.e.

EA x 20 - Wl x 17 - W2 x 13 - Ws x 7 - JF4 x 4 = 0,

i.e. 20^ =17x}+13xJ+lx7 + 2x4:
= 26-75 tons-feet.

26 '75

20

3-75 - 1-34

1-34 tons nearly :

2-41 tons.

As a check on the working we will now find EB by taking

moments about A. We then have

48-25 tons-feet.

48-25

20
2-41 tons nearly.

Stability of a wall. A wall 18 ins.

thick and 8 feet high weighs 6 tons.

Find what horizontal pressure, due to

the wind acting at the centre of the wall,

would be necessary to overturn the wall.

Referring to Fig. 16, the forces acting

upon the wall are the horizontal wind

pressure P and the weight W which

may be taken as acting down the centre

line of the wall.

Taking moments about the point B
we have a clockwise moment of P x d

called the
"
overturning moment

" and an anti-clockwise moment
of W x x called the

"
stability moment." If the overturning

moment is less than the stability moment, the wall will not

overturn, but if the overturning moment is ever so little greater

P
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than the stability moment the wall will topple over. In the

limiting case in which the two moments are equal, the wall is

just about to overturn, and the value of P when the moments
are equal is usually taken as the least value required to cause

overturning. In this case therefore we have

P x d = W x x,

D WX
or P =

Now W = 10 tons, d = 4 ft. and x =
10 x 9

..ft.

= 1-875 tons.4x12

The Lever Safety Valve. The lever safety valve provides
another common example of a device in which the principle

w

Fig. 17. Lever Safety Valve.

of moments is used to facilitate calculations. The device consists

of a lever AO (Fig. 17), pivoted* at O, and provided with a weight
W the position C of which is capable of adjustment along the lever.

A force P due to the pressure of steam in the boiler acts at the

point B and the parts are so proportioned that when the pressure

of steam in the boiler reaches a pre-determined limiting value of

safety, the force P is sufficient to lift the lever and allow the

steam to escape until the pressure falls to the required extent.

There are four forces acting upon the lever: the upward

* The point about which a lever is pivoted is commonly referred to as th*

"Mcrum."
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force P acting through the point B; the movable weight W
acting downwards through the point C\ the weight w of the

lever itself acting through a point O called the
"
centre of gravity,"

the position of which is found in the manner which we shall

describe later; and finally the downward reaction It caused

by the lever pressing upwards upon its pivot or fulcrum. In

calculations we want to know the pressure P required to lift

the valve for a given position of the weight W upon the lever.

By taking moments about the fulcrum we get rid of the

force R because its moment about a point in its line of action

is zero. We will show later that we might have taken moments
about any other point but that it would take longer.

Then we have : Clockwise moment about = Wx + wb ;

Anti-clockwise moment about O = Pa
;

.\ Pa = Wx + wb (1),

or P ^-^- (2).

Numerical Example. Take W = 62 lbs. y w = 12 lbs. t

x = 33 ins., b = 16-| ins., a = 3J ins. If the diameter of the valve

be 3 ins. find the pressure in the boiler at which the safety valve

will
"
blow off."

Let p Ibs. per sq. in. be the pressure required.

Area of valve = -r x 32 = 7 '07 sq. ins.

/. Total pressure P = p x area = 7'OTp.

Putting the values in (2) we have

62 x 33 + 12 x 16-5 = 2244.
3-25 3 ;25

;

2244

7-07 x 3-25
= 97*7 Ibs. per sq. in.

Calibration of Safety Valve. By
" calibration

"
of an

instrument is meant the determination of the scale for measuring
the quantities with which the instrument deals. Suppose that

we wish to mark points along the lever of the safety valve which

we considered in the previous example to correspond to pressures

from 60 to 100 Ibs. per sq. in., rising by 5 Ibs. per sq. in. at a time.

Suppose that when the pressure is p Ibs. per sq. in. the lever is in
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equilibrium with the weight w at a distance x from the point 0.

We have seen that P = 1'Olp.

Therefore taking moments as in equation (1) we have

7-OTp x 3-25 = 62z + 12 x 16-5,

.-. 23p = 62z + 198,

.'. 23p - 198 = 62z,

/. x = (-371#
-

3-19) inches ____ (3).

Equation (3) is what is called a "linear" equation because if

values of the lever-length x be plotted against the pressure p
the resulting diagram or graph will be a straight line.

30

20

.10
QO 70 80 90

Pressure in Ibs. per sq. in.

Fig. 18.

IQO

Fig. 18 shows the graph which is the
"
calibration curve

"

of the safety valve.

For p = 60 Ibs. per sq. in., x = '371 x 60 - 3'19 = 19'1 inches.

For p = 100, we get x = 37-1 - 3'19 = 33'9 inches.

The distance therefore between the 100 and the 60 marks on

the lever is 33'9 19'1 = 14'8 inches and we have seen from

the diagram that the divisions are equally spaced. Therefore

the length of each of the eight divisions corresponding to 5 Ibs.

per sq. in. will be 5- = T85 inches.
o

Equilibrium of a body under three forces. There are a

number of problems in which the number of forces acting can be
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reduced to three. We can then make use of the following rule.

// three forces act upon a body and keep it in equilibrium, they

must be in one plane* and are either parallel or their lines of action

meet at a common point. We will first prove the rule by assum-

ing that it is not true and that three forces Flt F2 ,
F3 (Fig. 19)

act upon a body and keep it in equilibrium. Let the lines of

action of Fl and F2 meet at A and suppose that the line of action

of F$ does not pass through A. Now take moments about A.

The moments of Fl and F2 about A are each zero, but F3 has a

moment of F3 x p so that the sum of the moments of the three

forces about A is equal to F3 x p ; we have seen, however, that

Kg. 19.

if a body is in equilibrium the sum of the moments about any

point of all the forces acting upon it is zero. The only possible

way for the total moment to be zero in the present case is for

Fs also to pass through A. If two of the forces are parallel, the

third must also be parallel to them; if not the third force will

intersect one of the others at some point and there would be a

resultant moment about that point due to the third force. The

student should draw his own diagram to illustrate this.

This fact of the concurrency of three forces which keep a

body in equilibrium is employed in several problems involving the

reactions at the supports of structures. As a simple illustration

take the case of a lever AB (Fig. 20) pivoted at the lower point B
and held in the inclined position shown by a horizontal force P
acting through the point A. The three forces acting upon the

lever are the weight W acting vertically through the point G,

* The general consideration of forces not in one plane lies outside the scope

of this book. One simple case is dealt with on p. 184.
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the horizontal pull P and the reaction R at the pivot at B. The

weight and pull act in given lines which intersect at the point ;

the reaction R must therefore also pass through 0, so that by

joining OB we get the line of action of the reaction R. We have

now the directions of three forces in equilibrium, but have still

to determine their magnitudes. This is effected by drawing
the triangle of forces as already explained, setting down 1, 2 to

represent the weight W to convenient scale ; through 2 draw a line

parallel to the force P and through 1 draw a force parallel to the

reaction R. The intersection 3 gives the third point required
in the triangle, and 2, 3 will represent the force P and 3, 1 the

force R to the same scale as that to which 1, 2 represents W.

Graphical construction for moments; link and vector

polygon construction. We have dealt already (p. 10) with the

graphical construction for finding the magnitude and direction

of the resultant of a number of forces. We now come to an

extension of that construction.
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Let 0,1; 1, 2 (Fig. 21), and so on, be a number of forces

not necessarily parallel nor concurrent. To some suitable scale

set down on a vector figure 0, 1, 2, and so on, then as before,

the closing line 0, 5 gives the magnitude and direction of the

resultant. Now take any point or pole P at any convenient

position on the paper and join P, 0; P, 1
;
and so on. Then

draw anywhere across the line of action of the first force a line

af parallel to P, and cutting the line of action of the force

in a ; across space 1 draw ab parallel to P, 1 ; across space 2,

draw cd parallel to P, 3, and so on until the last line or link parallel

to P, 5 is reached. Produce this last link to meet the first

link in /, then the resultant R will pass through the point /,

t/ecfor

Fig. 21. Link and Vector Polygon construction.

and the figure a, 6, c, d, e, f is called the link polygon or by some
writers the funicular polygon.

Suppose the moment of the given force system is required
about the point Q. Through Q draw a line parallel to the

resultant R to cut the first and last links produced in h and g.

Then if the point P is at perpendicular or polar distance p from

0, 5 on the vector figure, the moment of force system about Q
is equal to gh x p, gh being read on the space scale and p on

the force scale.

Proof. By the law of vector addition, the force 0, 1 on the

vector figure is equivalent to forces OP. PI acting in fa and ab;

the force 1, 2 is equivalent to forces IP, P2 acting in ba and 6c,

and so on, the last force 4, 5 being equivalent to forces 4P,
P5 acting in de and fe. It will be seen that with the exception
of the forces down fa and fe all these forces neutralise each other,
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and so the resultant of the whole system of forces is the same

as that of fa and/e and therefore acts at the point of intersection

/ of these forces.

The triangles fgh, P, 0, 5, are similar, the corresponding sides

being parallel.

. srft = <V5
'

q p

(because in similar triangles the bases are proportional to the

heights),
/. p x gh = 0, 5 x g,

but 0, 5 = resultant R and q is distance of R from Q,

.*. 0, 5 x q = moment of force system about Q,

:. p x gh = moment of force system about Q.

Numerical Example. Find the resultant of the loads shown

in Fig. 22 and find their moment about the point A. This is the

Polygon

Vector'

Figure

Fig. 22.

same system of loading as we considered analytically in the

example on p. 21.

Number the spaces 1, 2, 3, etc. between the forces, and choosing
a convenient scale of loads set down the vector figure 1, 2, 3 . . 5,

which is a vertical straight line hi this case because all the

forces are vertical. Then, choosing any convenient pole P,

join P to 1, 2 . . 5, draw anywhere across the first force line
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a line af parallel to PI, cutting it in a; then across space 2

draw ah parallel to P2 ; across space 3 draw be parallel to P3 ;

across space 4 draw cd parallel to P4; and through d draw

df parallel to P5 cutting the first link af in /. Then the resultant

R, which is equal to 1,5 on the vector figure, i.e., 3*75 tons,

acts through/which is at a distance 12*9 ft. from the left-hand end

A of the beam. To find the moment of the system of forces

about A draw a vertical through A and let fa produced meet

it in g and df produced meet it in h. Then, according to the

construction proved above, gh x p, i.e., 19*3 x 2-5 = 48-25 tons-

ft., is the moment of the system of forces about A.

Extension of construction to find reactions. If we want to

find the upward reaction of RB at the support B we could then

divide as before this moment by the
" arm "

of the reaction,

i.e., by 20. We can, however, extend the construction as follows

to do this division graphically. Let the last link fdt produced,
cut the vertical through the support B at a point e. Join ge,

as shown in dotted lines, and through the pole P draw a line

Px parallel to ge to cut 1 , 5 in x, then 5x will equal the reaction

RB and xl will equal the reaction RA (because as we have seen

already the sum of the reaction must be equal to the total load

if the beam is in equilibrium).

Proof. The triangles Px5 and egh are similar because their

corresponding sides are parallel.

.'. since their bases are proportional to their heights we have

x5 _gh m

:. x5 =P^h
_ moment of force system about A

But we have by the principle of moments that

RB x Z = moment of force system about A,

moment of force system about A
i.e., JKB = =

;

Alternative proof. We can prove this in a similar manner
to that on p. 28 as follows: Wx

= 1, 2 can be replaced by its
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components IP in ga and 2P in ba ; W2
= 2, 3 by its components

2P in ab and P3 in cb and so on. Then P2 in ba balances 2P
in a& and so on, so that we are left with only IP in ga and P5
in ed. These meet in / so that the resultant R passes through /.

Also IP in ga can be replaced by components xP in ge and

Ix in Ag, and P5 can be replaced by Px in eg and x5 in Be. The
forces in ge balance and the system reduces to la; down at A
and #5 down at B and these forces are equal and opposite to

the reactions at A and B.

We will deal further with this construction later in considering

calculations for beams and girders.

Couples. When the forces acting upon a body reduce to

two equal and opposite parallel forces, they are said to form

a couple. Thus the forces F (Fig. 23) form a couple. A couple

Fig. 23. Couples.

has no resultant because the vector sum of the forces composing
it is zero (i.e., F F = 0) ; but about any point in the plane

of the forces the couple has a moment equal to F . a (a is the

perpendicular distance between the forces and is called the arm) .
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To prove this take moments about the point 0. Then we have

M = F x BO - F x CO = F(BO - CO) = F . BC = F . a.

The effect therefore of this couple will be to rotate the body

upon which it acts, without moving the body as a whole. The

couple shown is clockwise.

The only way in which a couple can be neutralised or equili-

brated is by the introduction of another couple of equal moment
but opposite direction. The vector sum of the forces will still be

zero and the moment about any point will also be zero, both

conditions of equilibrium being therefore satisfied.

We have an example of couples in the tool shown in Fig. 24

diagrammatically, for enlarging holes in wood. The tool has

Fig. 24. Couple acting upon cutting tool.

two cutting lips and is operated by a lever AB which is grasped

by the operator's hands. At C and D, the points of contact

of the cutting lips with the wood, resisting forces R are brought
into play tending to prevent the tool from rotating.

The operator exerts a couple of moment P x I and the

resistance exerts a couple of moment R x a. When the operator
starts to press on the lever, it does not move ; it is then in equi-

librium and P x I the moment of the operative couple is equal
to R x a the moment of the resisting couple. The operator
then presses more strongly until the tool moves round, i.e.,

until he has exerted a couple greater than the resistance of the

wood can exert.

Conditions of equilibrium in link and vector polygon con-

struction. We have seen for a system of forces to be in equilibrium
the conditions to be satisfied are (a) that the resultant is zero,

(b) that the total moment of all the forces about any point must
be zero. In the graphical construction, (a) is satisfied if the

first and last points of the vector polygon coincide, i.e., if the
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vector polygon closes. To satisfy condition (6) the distance gh
in Fig. 21 must be zero for every position of the point Q, in other

words g and h must coincide. The only way in which this can

happen is for the first and last links to coincide, or for the link

polygon to close. If the vector polygon closes but the link

polygon does not close, the system reduces to a couple. Since,

as we have seen, a couple has the same moment about any point,
we should expect that the first and last links must be parallel.

If we consider the construction we see that this must be the

case because the first and last points 0, 5 of the vector polygon
coincide. Therefore the first and last links will both be drawn

parallel to P, and must therefore be parallel to each other.

SUMMARY OF CHAPTER II.

The moment of a force about any point is measured by the

product of the force by the perpendicular distance from the point
to the line of action of the force.

If a system of forces in one plane act upon a body and keep it

in equilibrium, the algebraic sum of their moments about any point
in the plane will be zero.

The sum of the moments of a system of forces about a given

point is equal to the moment of the resultant about the same point.

If three forces act upon a body and keep it in equilibrium, they
are in one plane and are either parallel or their lines of action meet

at a common point.

When two equal forces are parallel and opposite in direction

they are said to form a couple. The moment of the couple is measured

by the product of one of the forces by the perpendicular distance

between them. And a couple can be neutralised only by the intro-

duction of another couple of equal moment but opposite direction.

The link and vector polygon construction enables us to determine

graphically the position, direction and magnitude of the resultant

of a jiwfeer of forces and the moment of the resultant about any

point.

If the system is in equilibrium, the link and vector polygons
are both closed ; if the system reduces to a couple the vector polygon
ia closed but the first and last links of the link polygon are parallel.

A.M. 3
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EXERCISES. II.

1. Define the moment of a force. A lever AB is hinged at A
and carries weights as shown (Fig. II a). What force P acting

upwards will keep the bar in a horizontal position?

2. A lever AB whose weight is 120 Ibs. and length 3 feet has

a fulcrum 10 inches from the end A. What weight at the end B
will balance 384 Ibs. placed at A1 Also find the pressure on the

fulcrum.

3. A uniform lever 26 inches long and weighing 45 Ibs. carries

a weight of 20 Ibs. at one end and 35 Ibs. at the other. Find the

point in the lever about which it will balance.

4. A uniform lever 8 ft. long weighs 42 Ibs. It carries a weight

of 36 Ibs. at one end and 24 Ibs. at the other. Find the point about

which it will balance.

12 Ibs.

Fig. II a. Fig. 116.

5. A safety valve is 3 inches in diameter and the weight on the

end of the lever is 55 Ibs., the distance of the fulcrum from the centre

of the valve being 4*5 inches. If the weight of the lever and valve

are negligible, how far along the lever from the centre of the valve

must the weight be placed if the valve is to blow off at a pressure

of 80 Ibs. per sq. inch ?

6. The area of a safety valve is 8 square inches. The lever is

2 ft. 6 ins. long, its centre of gravity is 1 ft. from the fulcrum and
its weight is 10 Ibs. The fulcrum is 4 inches from centre line of

valve. Find the pressure in Ibs. wt. per sq. inch at which steam

will blow off, if the weight on end of lever is 65 Ibs. and the valve

itself weighs 1| Ibs.

7. A lever 16 inches long weighs 25 Ibs. and has a fulcrum at

one end. It is held in a horizontal position by a vertical force

applied at the other end. The lever being uniform, what is the

magnitude of this force?

8. A uniform lever AB whose weight of 15 Ibs. acts at the centre

is 15 inches long; it is hinged at A and held horizontally by a cord



n] MOMENTS AND LEVERAGE 35

carrying a weight W as shown (see Fig. II b). Find the magnitude
of W.

9. A pole AC pivoted at C and carrying a weight of 1 ton is

supported by a rope AB. Prove that the pull in AB will be least

when its direction is at right angles to AC. Find this pull, and
the thrust in the pole. (See Fig. lie.)

10. A system of five parallel forces whose magnitudes are 10,

12, 8, 6, lllbs. weight respectively act in lines 2 ins. apart. Find
the position of their resultant.

11. A bent lever ACS is pivoted at C ; the arm AC is horizontal

and 9 inches long; the arm BC is vertical and 39 inches long. A
load of 300 Ibs. is hung from A. Find what horizontal force at B
will produce equilibrium, neglecting the weight of the lever.

12. A beam 20 ft. long supported at its ends has a load of 2 tons

at the centre of the span, another of 1 ton at 3 ft. from one end,
and another of 3 tons at 4 ft. from the other end. Find the reactions

of the supports neglecting the weight of the beam.

6ft

,50 Ibs.

W
Fig. lie. Kg. II d.

13. Fig. II d shows a compound lever. The fulcra are at C
and E. Find the weight W which can be supported by an effort

of 50 Ibs. applied as shown, neglecting the weight of the beams.

14. Forces of 1, 2 and 3 Ibs. are parallel and act at the corners

of an equilateral triangle. Find where the resultant acts.

15. In an 8-oar boat each man pulls with a force of 60 Ibs.

If the oars are 10 ft. long and 2 ft. 6 ins. from hand to rowlock,

find the force impelling the boat forward.

16. If a balance has unequal arms a and b and a shopman
weighs alternately from each scale pan, does he ultimately lose

or gain and how much?

17. If the span of a beam is 20 ft. and a load of 12 cwt. is shifted

from one position through a distance of 5 feet along the beam, what

difference in the reactions will this cause?

32



CHAPTER III

WORK, POWER AND ENERGY

THE term work is quite familiar to everybody but its general

meaning is not very easy to express succinctly; it is used in

mechanics in a special restricted sense and may for our purpose

be defined as follows : When a force acts upon a body and causes

it to move it is said to do work on the body. When the force is

constant, work is measured by the product of the force and the

distance through which the body moves in the direction of the

force. The engineer's unit of work is the FOOT-POUND, i.e.,

the amount of work done by a constant force of one pound

weight in moving a body through a distance of one foot in the

direction of the force. If our forces are measured in tons and

our distances in inches, our work will be in inch-tons and so on.

If for instance the weight used in driving a clock weighs 20 Ibs.

and it drops through a vertical distance of 5 feet, the distance

moved in the direction of the weight of the body, which acts

vertically, is 5 feet. Therefore the work done by the weight
is 20 x 5 = 100 ft.-lbs.

To express this idea generally, instead of by numerical

illustration, suppose that a constant force F (Fig. 25) acts upon
a body indicated by the shaded area situated originally at a point

A and that after a certain time the body has been moved to a

point B. Draw BC parallel to F and draw AC at right angles

to it, then BC is the distance through which the body has moved

in the direction of the force, so that the work done in the given

time is measured by F x BC.

It will be noticed that the work done by a force is measured

by the product of a force into a length and that the moment
of a force about a point is also measured by the product of a

force into a length. In order to avoid confusion a distinction is
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sometimes made in naming the compound units thus work is

measured in foot-pounds, inch-tons, etc., and moments are

measured in pound-feet, ton-inches, and so on.

It is very important at this stage to note that if the force

is given in magnitude and direction the work done in the given
time depends only upon the original and final positions, A and

B respectively, of the body; it does not depend at all upon the

path taken. The work done, for instance, for a straight line

Fig. 25.

path between A and B is the same as for any curved path
such as that shown in the figure.

We will here note that the product of the force and the

distance moved in the direction of the force is exactly equal

to the product of the resolved part of the force in the direction

of motion and the actual straight distance moved. To prove
this statement draw CD perpendicular to AB, and suppose
that a scale of force is so chosen that CB represents the force F.

Then DB represents the resolved part of F in the direction of

movement AB.
Then the work done = F x BC = BC\
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BC
Now in the A ABC, &inO = , and in the A DCS,

DB

but DB is the resolved part of F in the direction of motion and

AB is the distance moved so that the work done may also be

measured by the product of the resolved part of the force in the

direction of motion and the straight distance moved. Suppose
for instance that F is 10 Ibs. and AB is 6 inches and the angle 6

is 30. Then BC will be 3 inches and the component of F in

the direction AB will be 5 Ibs. So F x BC = 30 inch-lbs.

and 5 x AB = 30 inch-lbs.

Movement of the body in the direction of the force is essential

for work in the scientific sense. If a man is standing still and

is holding a heavy body, he must be exerting by muscular action

a force on the body equal to the weight W Ibs. of the body if

it is also stationary; but he is not doing any work on the body
in the scientific sense, although he would probably feel aggrieved
if told so. If, however, he lifts the weight through a certain

vertical distance x feet, his muscular effort does work to an amount
Wx ft.-lbs. He does the same amount of work whether he lifts

the weight straight up or in an inclined or curved path; he

also does the same amount of work whether he lifts the weight

quickly or slowly.

Power. If he lifts quickly, however, he exerts more power
than if he lifts slowly, for power is the rate of doing work, i.e.,

power is the work done in a unit of time. The British unit

of power is called the Horse-Power (H.P.) and is fixed at 33,000

ft.-lbs. per minute (or 550 ft. -Ibs. per second). This unit was
chosen by James Watt as the result of experiment with horses

winding up weights. It is not a very satisfactory unit but it

has become firmly established and it is now too late to alter

it. [We have already used the idea of a 1000 Ib. unit of force

called the kip, so that a 1000 ft.-lbs. would be called a foot-

kip. If we were setting out to choose a more convenient unit

of power than the horse-power, we might take one foot-kip

per second and call it the Skip which would be equivalent to
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-ffinr T8181 H.P. We do not propose, however, to adopt this

unit throughout the book.]

Numerical Examples. (1) What is the least power that a pump
must be exerting when it is lifting water at the rate of 1500 gallons

per minute through a vertical distance of 50 feet ?

A gallon of water weighs 10 Ibs., so that the force exerted

on the water is at least 10 x 1500 = 15,000 Ibs. Actually the

force will have to be a little more than this because of frictional

and other resistances that have to be overcome; that is why
the question is worded in the form given.

The work done per minute = 15,000 x 50

= 750,000 ft.-lbs.

750,000

= 22-7 H.P.

(2) // the horse referred to in the example on p. 7, travels at

the rate of 3 miles per hour for 10 minutes, how much work will

he have done and at what horse-power will he be working?
In ten minutes the horse will have walked half a mile, that

is 2640 feet.

We have shown already that the component of the pull

in the direction of motion of the horse is 141 Ibs., so that the

work done is 141 x 2640 = 372,000 ft.-lbs. One H.P. = 33,000

ft.-lbs. per min.-330,000 ft.-lbs. in 10 minutes.

372,000- Horse-Power = - -MS.

Energy. Energy is usually defined as the capacity for

doing work. Energy exists in nature in several forms; thus

we have electrical energy, light energy, heat energy, energy
stored in water at high elevations, the principal source of all

energy being the heat of the sun. Energy cant be converted

from one form into another and the principal function of the

engineer is the conversion of natural energy into convenient

forms for the benefit of man. Thus the energy stored up by
the sun in bygone ages in the vegetation which has now become

coal is converted in the boiler into the expansive energy of

steam which drives steam-engines for performing countless kinds



40 WORK, POWER AND ENERGY [en.

of mechanical work. In mechanics we divide mechanical energy

into two kinds kinetic energy and potential energy.

Kinetic energy (commonly written K.E.) is the work which a

body is capable of performing in virtue of its motion. A familiar

example of kinetic energy is that possessed by a bullet, which

in being brought to rest can do a large amount of work ; another

example is that possessed by the wind, the kinetic energy of

which has been employed from time immemorial to propel ships,

and drive mills for the grinding of corn and for the pumping
of water.

Potential energy is the work which a body is capable ofperforming

in virtue of its position. A familiar example of this is given in

an illustration which we have already considered, viz., a weight
used in driving a clock. If the weight W Ibs. is at a height

h feet above the ground, it will do an amount of work equal to

Wh ft.-lbs. before it comes to the ground; its potential energy
is therefore said to be equal to Wh ft.-lbs. Another example
is afforded by water at a high elevation which is often used

to drive machinery to generate electric power.
In this connection we may point out that when in ordinary

parlance we speak of power we really mean energy. An electric

power station is really employed in generating electric energy,

power meaning strictly, as we have already indicated, the rate

of doing work.

The Conservation of Energy. We have already stated

that energy can be converted from one form to another, but up to

the present nobody has discovered a way of creating or destroying

energy, nor do we think it probable that anybody ever will.

Thus we get the doctrine which is the foundation of all physical

science that
"
Energy can neither be created nor destroyed

but can be converted from one form into another." This is

known as the principle of the
"
conservation of energy." Failure

to understand this law has led thousands of men to spend
much valuable time and money in trying to invent perpetual

motion machines, i.e., machines which when once started will

go on working for ever without receiving any additional external

energy. It is really quite remarkable that, although this doctrine

has long been accepted by all scientists, there are still inventors

who try to cheat nature of her laws and to make these machines.
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As no energy is destroyed a given amount of heat energy can

always be converted into the same amount of work. Thus one

British Thermal Unit (B.TH.U.), which is the amount of heat

required to raise the temperature of one pound of water through
one degree Fahrenheit, has been found to be equivalent to

778 foot-pounds of work. This is commonly spoken of as the

Mechanical Equivalent of Heat or Joule's Equivalent.
The commercial unit of electrical energy in this country

is called the Board of Trade Unit (B.T.U.) and the unit of electrical

power is the wait or the kilowatt (1000 watts); 1 kilowatt is

one B.T.U. per hour (i.e., 1 kilowatt is the power which in one

hour produces one B.T.U. of energy). Now 1 Horse-Power is

equivalent to 746 watts; when therefore we know the amount
of electrical energy used in a given time in any machine such

as an electro-motor, we can tell exactly how many foot-pounds
this is equivalent to.

Useful Energy. While it is true that energy cannot be

destroyed, it is also true that in every conversion from one form

of energy to another some of it is always wasted. Take for

instance the case of a steam, gas or oil engine. A certain amount
of energy is put into the engine in the form of steam or explosive

mixture and a certain amount of work (called useful work) is

done by the engine, but we can never use more than something
like one-quarter of the amount of energy put in ; of the remainder

part escapes in the exhaust steam or gases and part is spent
in overcoming the friction in the engine. The energy is not

destroyed but much of it cannot be usefully employed; it is

practically wasted. One pound of average coal contains about

12 million foot-pounds of energy ;
the greater proportion of this

goes into the water in the boiler and the remainder goes up the

chimney. It is a very good steam-engine that does not use

more than 1 J Ibs. of coal per H.P. hour.

Now 1 H.P. hour = 33,000 x 60 ft.-lbs.

= 1-98 million ft.-lbs.

1J Ibs. of coal contain 18 million ft.-lbs. of energy so that in

a very good steam-engine 1*98 out of 18 or 11 per cent, of the

energy supplied to it is usefully employed ; the remaining 89 per
cent, is wasted. The great problem to be faced by engineers
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of the future is that of obtaining mechanical energy in a less

wasteful manner. An electro-motor wastes very much less

energy than a steam-engine, but the electrical energy is nearly

always obtained from coal by means of a steam-engine so that

the energy of the coal is still to a large extent wasted. Gas

and oil engines have now become less wasteful than steam-

engines but even the best of them cannot give out as useful

work more than one-third of the energy supplied to them,

We shall return to this subject of wasted energy in the

next chapter. In the meanwhile we will emphasize the fact

that the conservation of energy is to be the basis of our treat-

ment of mechanics. In any operation of a machine or action

of a number of forces we will endeavour to find out what has

become of the work that has been performed and by drawing up
a kind of work balance-sheet we shall be able to investigate a

number of points which are of the utmost importance in practice.

Work done by a variable force. In our examples illus-

trating the idea of work we have considered up to the present

only the case in which the force is constant, but in most cases in

H MEG
Distance in direction of force

Fig. 26. Work done by a variable force.

practice the force varies from one time to another and if we
based our ideas upon constant forces only we should not be
able to deal clearly with the problems that arise in practice.

Suppose that the force acting upon a body in the direction
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of its motion and driving it forward varies so that when we

plot a diagram of the force at various points we get a curve

ABCD, Fig. 26, which is usually called the effort curve. Consider

two points E and G which are so close together that the force

F may be regarded as constant over the length. Then the work
done over this length will be equal to constant force x distance

moved = F x S = area of the shaded strip of the curve. The
reader will see that the smaller we make the distance EG the

more nearly true will be the statement that the area of the strip

is equal to F x S, but that for comparatively long lengths the

statement is only approximate. If now we consider the whole

base HJ to be divided up into short lengths, the same argument
will hold for each strip of the curve so that adding together
these separate strips we see that the total work done in moving
the body from H to J is represented by the area HADJ.

Or we get the rule that :

The work done is represented by the area beneath the effort

curve.

Now suppose that we wish to find the work done up to various

points along the base and to obtain a diagram representing to

some other scale the work done. Such a diagram will be of the

form shown by the curve HLP in the figure and is called the

work curve. Consider any point L oh this curve. Then the

ordinate LM represents the work done in moving from H to M
and this is also given, as we have proved above, by the area

HARM. We see therefore that the ordinate of the work curve

at any point represents the area of the effort curve up to the

same point. When two curves have this relation, the first is

said to be the sum curve of the second; thus in our case the

work curve is the sum curve of the effort curve. A graphical con-

struction for the sum curve is given in the appendix (p. 294).

Numerical Example. The force urging a body forward
increases uniformly from zero to 2000 Ibs. during the first 15 feet

of movement; it then remains constant for the next 20 feet; and

finally decreases uniformly to zero in a further 20 feet. Find

the work done and the constant force which would do the same

amount of work in moving the body through the same distance.

Fig. 27 shows the effort curve in this case. Therefore the

work done is given by the area of the figure ABCD.
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This is equal to
ft.-lbs.

Area of &ABE = J x 15 x 2000 = 15,000

Area of rectangle BCFE = 20 x 2000 = 40,000

Area of &CDF = J x 20 x 2000 = 20,000

Total work done

[CH.

I
Uj

75,000 ft.-lbs.

** Vfark Curve

15
-> Distance

20 20

Kg. 27.

The total distance moved is 55 feet. If therefore a constant

force F were acting we should have 55F = 75,000;

' F =
"sir

= 1364 lbs - nearly-

We show in dotted lines in Fig. 27 the work curve for this

case. The portion AH is a parabola with vertex at A ;
HJ is a

straight line, and JK is a parabola with vertex at K. The

student should make this construction as an exercise. Take for

instance as scales : Distance 1* = 10 feet. Force I" = 1000 Ibs.

Polar distance p 2-5 actual inches.

Then the work scale will be 1* = 2-5 x 10 x 1000 = 25,000

ft.-lbs.

DK should therefore be 3 inches.

Work against Resistance. In every case that arises in

practice there is a force resisting the movement of a body under

the driving force or effort, such resisting force is called the

Resistance or sometimes the "external resistance."
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Take the case of a steamboat, Fig. 28. The steam acting

upon the pistons and thence upon the propeller causes a certain

tractive effort F to be exerted tending to push the steamer

forward; the resistance of the water and other external forces

tending to resist the forward motion of the steamer cause

a resistance force S to be exerted in the opposite direction.

If F is greater than S at any instant, work will be done upon the

steamer and as such work cannot be lost it becomes converted

into increased kinetic energy, and if F is less than S the kinetic

energy of the steamer will decrease; this is expressed in simple

language by saying that, if F is greater than S the speed of the

vessel will increase, but if S is greater than F the speed will

Fig. 28.

decrease. The kinetic energy can be regarded as energy stored

up for use in emergency ; if the effort is less than the resistance,

the body gives up some of its kinetic energy to make up the

difference between the work done by the effort and the resistance.

When this difference in work is equal to the whole kinetic energy
that the body possessed in the first place, the body will stop

moving.
This is the first time that we have dealt with the case in

which a body may move in a direction opposite to that in which

the resulting force upon it acts. When the direction of move-

ment is opposite to that of the force we shall speak of the force

as taking work from the body.
Resistances are nearly always what may be called "induced"

or "passive"; that is to say they disappear directly the body
comes to rest. The resistance to the motion of a steamer increases

very quickly with the speed and we soon get to a speed which

may be regarded as the most economical. A slight increase of



46 WORK, POWER AND ENERGY [CH.

speed over this will require more coal and cost more money than

the saving in time is worth.

We have another similar example in racing motor cars. An

ordinary 12 H.p. car can do 30 miles per hour but to get 80 miles

an hour we have to increase the horse-power to something like

80 or more.

In nearly everything that engineers have to deal with, it is

energy that they must try to use to the best advantage, because

money is merely the token for energy. If the world's supply of

coal, oil and other fuel gave out, it would take very few years

before we should nearly all be starved to death. James Watt's

improvements of the steam-engine probably did more for the

benefit of humanity than any scheme that human skill has

devised, because it opened up vast fields for the use of the energy

stored up in fuel.

Graphical representation of Effort and Resistance. Suppose
that the effort in moving a body from a point X to a point T
varies in the manner indicated by the curve ABC, Fig. 29, and

that the resistance varies in the manner indicated by the curve

DBF. Then if we take two points KL very close together on

the base so close that the effort F and resistance 8 may for all

practical purposes be considered as constant over the length

the work done upon the body by the effort from K to L is equal

to force x distance = F x KL = area of strip EGLK. Therefore

as already shown the total work done on the body by the effort

in moving from X to T is equal to the area ABCTX.
Similarly the work taken by the resistance from the body in

moving from K to L is equal to S x KL = area of strip HJLK ; so

that the total amount of work taken from the body in moving
from X to T is equal to the area DBFTX.

Now the resultant work on the body is equal to work done

by the effort work taken away by the resistance

= area ABCTX - area DBFTX
= area ABD - area BFC.

At any intermediate point such as K the excess of work done

by the effort over the work expended in overcoming the resistance

is the difference between the areas XAEK and XDHK.
Therefore between the points X and U the body increases in

kinetic energy by the amount represented by the area ADB and
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it then loses in going between U and T an amount of kinetic

energy represented by the area BFC. We have not yet explained
how the kinetic energy can be expressed in terms of the velocity
but we have seen that the velocity is an indication of the kinetic

energy ; consequently at the point U the body has the maximum
amount of kinetic energy and therefore has the maximum velocity
or speed.

Cain in Kinetic Energy 4 Effort

CurveT

F

Loss in
^~*
Kinetic

Energy

Fig. 29. Work against Resistance.

If the conditions were reversed so that the resistance were at

first greater than the effort and less at the end, the body would

be losing kinetic energy up to the point C7; U would then be

the point of least kinetic energy and therefore of least velocity.

We shall deal later with many problems concerned with

kinetic energy ; our present aim is just to make clear the idea of

work and energy and the fact that energy is never destroyed.

Numerical Example of Effort and Resistance. A body is

being urged forward by a constant force equal to 100 Ibs. and over

a distance of 120 feet the resistance increases uniformly from 30 Ibs.
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to 150 Ibs. At what point will the body move with the greatest

velocity ? How much kinetic energy will the body then have gained
and how much will it have gained at the end of the 120 feet ?

Referring to Fig. 30 ABC is the effort curve and DBF is the

resistance curve.

The point U gives the point of maximum velocity. The
distance XU can be measured by drawing the diagram to scale,

e.g. distances to a scale 1" = 20feet and forces to a scale \" = 50 Ibs.
;

one square inch of area would represent 20 x 50 = 1000 ft.-lbs.

It will come to 70 feet.

lOOfb

Fig. 30.

By calculation we should proceed as follows. Draw DY
horizontally as indicated in dotted lines.

Then because BV is parallel to FY.

DY.BV 120(100-30) 120. 70~~
160=30" 20~

Gain in K.E. up to U = area of A ABD = \AB . AD
= .70.70

= 2450 ft. -Ibs.
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Gain in K.E. up to T = area of A ABD - area of A BFG
= 2450-1.50.50
= 2450 - 1250

= 1200 ft.-lbs.

Mean Effort. It is sometimes convenient to find the uniform

effort which acting over the same distance will do the same
amount of work as a variable one

;
this is called the mean effort.

Referring to Fig. 26 let Fm be the mean effort ; then work done

by Fm = Fm x HJ. But the work done by the mean effort has

to be equal to the work done by the variable effort.

.-. Fm xHJ = area HAKDJ,

_ area HAKDJ
:^ m ~

~~HJ~

Expressing this in general terms we have

Area below effort curve
Mean effort =

Length of effort curve

SUMMARY OF CHAPTER III.

The work done by a force upon a body is measured by the product
of the force and the distance through which the body moves in the

direction of the force. The unit is the foot-pound.

The work depends only on the initial and final positions of the

body and not upon the path taken between the points.

Power is the rate of doing work, i.e., the number of foot-pounds
of work done per unit of time.

One Horse-Power is equivalent to 33,000 foot-pounds per minute.

Energy is the capacity for doing work aud can exist in various

forms which can be converted from one to the other.

Mechanical energy can be divided into two kinds : kinetic energy

(energy of motion) and potential energy (energy of position).

The law of the conservation of energy states that while energy
can be converted from one form into another, it can be neither

created nor destroyed.

If the force or efiort be plotted against the distance, the result

A.M. 4
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is called the effort curve and the work done up to any point is

represented by the area of the effort curve up to that point.

The work curve is the sum curve of the effort curve.

In doing work upon a body against a resistance, the difference

between the work done by the effort and the work done against the

resistance goes in changing the kinetic energy of the body.

EXERCISES. III.

1. A chain 200 yards long and weighing 6 Ibs. per ft. hangs

vertically down a mine shaft. Find the work done in hauling it

to the surface.

2. If in the preceding a weight of \ ton is attached to the end

of the chain, find the total work done. Express each of the above

results by a diagram.

3. Find the horse-power of an engine which will lift the weight
in Question 2, in 25 seconds.

4. Find the horse-power required to pump 3000 gallons of

water from a depth of 250 ft. in 10 minutes.

5. How many cubic ft. of water would an engine working
at 100 H.P. raise per min. from a depth of 25 fathoms?

6. Find the work done in excavating a circular well 8 feet

diameter, 45 feet deep, the weight of 1 cubic yard of earth being
1 ton. Give answer in ft. -Ibs.

7. A horse drawing a cart at the rate of 2 miles per hour exerts

a tractive force of 156 Ibs. weight. Find the work done in 1 minute.

8. How many horse-power would be required to raise 2000

cubic feet of water per hour from a mine whose depth is 180 fathoms ?

9. Find the horse-power required to draw a train along a level

at 45 miles per hour, whose weight is 250 tons, the resistances being
taken at 15 Ibs. wfc. per ton.

10. A cage with coals together weighing 10 cwt. is carried on

the end of a wire* rope weighing 10 Ibs. per yard. Find the work
done in ft. -Ibs. in lifting it from the bottom of a mine 1500 ft. deep.

11. The travel of the table of a planing machine which cuts

both ways is 9 ft. If the resistance to be overcome while cutting

be taken at 400 Ibs. and the number of double strokes per hour

be 80, find the H.P. absorbed in cutting.
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12. When a prismatic column of stone, 20 ft. diameter outside,

10 ft. diameter inside, 90 ft. high is being built, what actual work
is done in lifting the stone from the ground ? One cubic ft. of stone

weighs 125 Ibs.

13. What must be the effective H.P. of a locomotive which
moves at the steady speed of 35 miles an hour on level rails the

weight of the engine and train being 120 tons and the resistances

16 Ibs. per ton? What additional H.P. would be necessary if the

rails were laid along a gradient of 1 in 112?

14. Each of the two cylinders in a locomotive engine is 16"

diameter and the length of crank is 1 ft. If the driving wheels

make 105 revolutions per minute and the mean effective steam

pressure is 85 Ibs. per sq. in., what is the H.P. ?

15. A chain hanging vertically 520ft. long weighing 20 Ibs.

per ft. is wound up. What work is done?

16. A 10-ton hammer falls through a height of 6 feet and makes
an impression on a mass of iron to the extent of 1 in. Find the mean
statical pressure in tons which has been exerted on the mass of iron

during the blow.

17. A body weighing 1610 Ibs. was lifted vertically by a rope,
there being a damped spring balance to indicate the pulling force

F Ib. of the rope. When the body had been lifted x ft. from its

position of rest, the pulling force was automatically recorded as

follows :

X

F



CHAPTER IV

MACHINES AND EFFICIENCY

A machine may be described as an appliance for receiving

energy from some outside source and delivering it in some

more convenient form for doing work. Almost the simplest

possible form of machine is the lever, which in the form of the

crow-bar is used for lifting heavy packing cases. A man unaided

cannot move the case; that is to say he cannot exert a force

sufficiently great to lift it. He possesses quite enough energy
to do so, but he can exert only a comparatively small force to

move a body, although he can continue to exert it over a long
distance ; whereas for lifting the case he requires to exert a large

force over a short distance ;
the crow-bar enables him to do this.

We have another every day illustration in the use of two and

three speed gears in bicycles. When the cyclist comes to a hill,

he puts in the low gear. This does not give him any more

energy, in fact it makes him lose a little more than usual on

account of the extra complication of the mechanism, but it

enables him to use his energy more conveniently. He goes more

slowly up the hill but does not have to push so hard and he

finds that the result is a gain in comfort.

Wheel and Axle. We have a very simple form of machine

in the wheel and axle shown in Fig. 30 a and we will show that

we can get the same result by considering the work done as

by considering the moments of the forces acting. In many
problems a consideration of work done gives the quickest results.

A weight W to be lifted is connected by a rope or chain to

an axle B of radius r which is supported in bearings and carries

a wheel C of radius E to which the effort F is applied.

By moments we should have Wr = F . R,

Wr
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Now suppose that the axle makes one revolution.

The weight W moves up a distance 2nr and the work done

upon the weight is therefore W . 27rr.

The rope to which F is applied moves

downwards a distance 27rR so that the

effort does an amount of work equal to

F . 277-jR. If the axle runs freely, these

two amounts of work must be equal.

/. F .

or

as before.

= W . 27TT,

Wr
R '

. 30 a.

Crow-bar. Referring to Fig. 31, the

full lines indicate the position of the

crow-bar after the case has been raised

while the dotted lines indicate the position before raising. F is

the effort that the man can exert upon the end A of the lever

and S is the resistance which the lever exerts upon the case at

the point B. If C is the pivot or fulcrum of the lever and the

perpendicular distances from C to the lines of action of F and

S are respectively x and y, we have seen already that by the

principle of moments
F x x= S x y ................ (1).

If therefore F = 100 Ibs. ; x = 30 inches and y = 2 inches,

^^100x30
y 2 -

Mechanical Advantage. In a machine for converting one

,,,,., . , ,. Resistance .

form of mechanical energy into another the ratio -=~ - is
JLttort

called the mechanical advantage.

In our particular case above we have

8 1500
Mechanical advantage = - = -TTT 15.

It will be noted that the
"arm " x of the effort F in the position

shown in full lines is appreciably larger than in the original

position shown in dotted lines and that the arm "y" of the

resistance S does not change appreciably; this shows that the
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mechanical advantage of this particular machine increases as the

weight is lifted, so that the effort F will gradually diminish.

Now let us suppose that the distance A VA Z is so small that

F and S are for all practical purposes constant during the lifting

action. Then we have

Work done by effort = F x h.

Work done by resistance = S x z.

If no work is wasted by frictional forces at the fulcrum or

pivot, these two amounts of work must be equal or

Fh = Sz (2).

(3).

Fig. 31. Crow-bar.

We have already shown by (1) that

Fx ~ Sy.

Therefore dividing we get

h = z

x~ y
'

We will now try and prove that this should be the case ; the

student should try to verify this by drawing to scale and measuring
to length. This is particularly desirable because the proof is

rather long. We have already explained that the distance A^A Z

is very small
; therefore the angle a will be small

;
so small that

the line A t
A t will not be appreciably different in length from an

arc with centre C.
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Now angle = arc -?- radius ;

" a = A rtA 2O

(4).

Again the angle A 1
A 2C is practically a right angle; /. GOA

which is 90 - GA2C is equal to ;
and

and also
CA,

!

, that is fTj-'>

This is the result that we attempted to prove. We see there-

fore that the principle of moments gives us the same result as

the principle of work; in some problems it is more convenient

to use moments and in others it is more convenient to consider

the idea of work.

Efficiency of Machines. It is of considerable help in the

understanding of the mechanical principles of machines to

imagine a machine to be a kind of box, as indicated in Fig. 32,

Energy InputI c<*n

V 1

Energy Output

Fig. 32.

provided with an inlet / into which a certain amount of energy

Ej is put in in a given time and with an outlet through which

issues an amount E of energy in the same time. Now in every
machine a certain amount Ew of energy is lost or wasted. There-

fore we may write Inlet Energy = Outlet Energy + Waste Energy.

Or in symbols E2
= E + Ew ....... ... ...... (6).
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W
Now the quantity

-~ is called the Efficiency of the machine.
EIJ

Expressing this in words we should say that the efficiency of

a machine is ike ratio of the energy that it gives out to the energy that

it receives.

Suppose, for instance, that a certain machine receives 120,000

ft.-lbs. of energy in a certain time and that during the same time

it gives out 97,000 ft.-lbs.

Q7 000
Then Efficiency = e = = -808 nearly.

It is the usual practice to express efficiencies as so much per

cent., i.e., to multiply the actual efficiency by 100. In our case,

therefore, we should then say that the efficiency is 808 per cent.

Again since the energy wasted Ew Ej E we have

E - 1 _ Eo_ n x.

EX

- wr (

.*. energy wasted = (1 e) x energy input.

The highest possible efficiency that a machine can have is

1 or 100 per cent, but most machines have an efficiency consider-

ably less than this, the simpler machines generally having a higher

efficiency than the more complicated ones. The principal aim
that an engineer has in designing machines is to make the efficiency

as high as possible, that is to make the energy wasted as small as

possible.

Velocity ratio of Machines. In a machine in which the

effort and resistance are constant in direction, the quantity

Distance moved at the effort in a given time

Distance moved at the resistance in the same time

is called the velocity ratio.

In the example shown in Fig. 31 we should have

Velocity ratio = - = Vr .

In this case we showed that the mechanical advantage if there

was no loss was

S^x = h

F~ y~ z'

Therefore when there is no loss of energy mechanical advantage
= velocity ratio.
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When, however, some energy is lost we have to modify this

result because, although the velocity ratio is fixed by the actual

sizes of the elements forming the machine, the mechanical

advantage depends upon the amount of energy that is wasted.

As a more general rule therefore we say that

Mechanical advantage = velocity ratio x efficiency,

,_. , .
,

, Resistance
and smce Mechanical advantage = =

-
,

we may say that

Resistance = effort x velocity ratio x efficiency,

i.e. S=F.Vr .e.

In the case of the crow-bar that we have examined the velocity
ratio is 15. Now suppose that the pivot is rough so that energy
is absorbed in moving it and suppose that 3 % of the energy

input is wasted, then efficiency = e = I Tf^ = -97.

Then we should have

S= 100 x 15 x -97= 1455 Ibs.,

or if we require to find the value of F for 8 = 1500 we have

1500 = F x 15 x -97;

/. F = 103 Ibs.

Now the effort that would be required in a perfect machine,
in which no energy is wasted and whose efficiency is therefore 1,

we shall call the ideal effort.

XT , ~ Resistance
Now Actual effort = -=-= t -. r ^ ,

Mechanical advantage

T ,
,

~ Resistance
and Ideal effort = ^^-j rr- -77- ;

Velocity ratio

Ideal effort Resistance Resistance

Actual effort Velocity ratio
'

Mechanical advantage

_ Mechanical advantage _ Effici

Velocity ratio

Ideal effort
i.e. Actual effort = -&- -

Efficiency

Some simple Machines. The inclined plane. The inclined

plane is one of the most ancient forms of machine and is one

of the simplest. Suppose, for instance, that we wish to raise a
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body such as a truck up to a point B. It is too heavy to lift, but

by running an inclined plane AB from the ground level to the

point we can push the body slowly up.

(a) Effort parallel to the plane.

If F (Fig. 33) is the effort or force pushing the body up the

plane, and acting parallel to it, the work done by the effort in

moving the body up is F x AB. The body has to be raised a

vertical distance EC
;
this is the distance moved in the direction

of its weight, representing an amount of work equal to W x EC.

w

w

Fig. 33. Inclined Plane. Effort parallel to Plane.

If the velocity is constant between A and B there is no change
in kinetic energy and if also there is no energy wasted we have

Work done by effort F = Work done against weight W ;

:. F x AB = W x EC,
W AB

or Mechanical advantage.

A1 X7 . ., ,. Distance moved in direction of F
Also Velocity ratio = ^.- *-??>

Distance moved in direction of W
AB

~
BG'

We can also find a relation between F and W by considering
the forces acting upon the body. The third force is the reaction
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R between the truck and the plane; if there is no friction this

reaction will be at right angles to the plane. Therefore by
drawing lines parallel to the forces to a convenient scale we have

a triangle of forces or vector figure 1, 2, 3.

It will be noted that each side of this triangle is at right

angles to a side of the triangle ABC ; therefore the two triangles

are similar, therefore

W _ 2^3 _ AB
F
~

2, 1
~~

EG '

-* ................ <

We can use the language of trigonometry to express these

results as follows :

BG

WsinO ................ (3),

/. 72=TFcos0 ........ (4).

We also note that

Numerical Example. What force is necessary to push a truck

weighing 15 tons up a gradient of I in 10 ?

This means that BC is 1 when AC is 10.

Then since AB2 = BCZ + ACZ
,

AB = Vl + 100 = x/IOl = 10-05 nearly ;

In practice F will always be more than this because there is

always some energy wasted, the principal cause of waste being
called friction. The above value of F is the Ideal effort.
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Experiment. A very simple piece of apparatus can be rigged up for

the experimental verification of the laws of the inclined plane. It is constructed

by fixing a board C (Fig. 34) by a hinge D to one end of a board A. A vertical

board E is fixed at the end B and is provided with a slot through which passes
a shouldered pin provided with a fly-nut G so arranged as indicated in the

detailed figure that the board C rests on the projecting pin. A scale 8 is carried

by the vertical board E and a pulley P is fixed in the free end of the board C.

Fig. 34

A light string is attached to a truck Q in which is placed a weight, the combined

weight of the truck and weight being equal to W ; the string passes over the

pulley P and through a slot in the end of the board C and has its other end
attached to a spring balance J.

We then measure carefully the distance x from the hinge to the edge of

the scale and write it at some convenient place on the apparatus.
The pin is then set to a certain value of y, the fly-nut tightened up, and the

reading on the spring balance is noted.

If we wish to save time in our calculations by using trigonometrical methods
we next proceed to calculate the value of the angle 6 for various values of y
and draw a calibration diagram.

Suppose for instance that x =30 inches.

When y=5 inches we have tan 0=/7= '1667; from trigonometrical tables

we find that = 9'5 degrees.
When y- 10 inches we have tan Q =\%= '3333, and we get by tables 6 = 18 '5

degrees about.

Similarly we get y = 15 0=26-6 degrees.
20 =337
25 =39-8

30 =45-0
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We then by plotting obtain the calibration diagram shown in Fig. 35.

-4D

40

35

30

25

20

15

10

5

(
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its speed ; the resulting weight is the effort that the truck can exert in moving
down. We can then tabulate conveniently as follows:

JFlbs.
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ABC drawn to a smaller scale and turned through ninety

degrees.

Therefore the triangles are similar or

F _ 1, 2_ BC
W~273~~AC'
W - BC

:.F- -
f(r ,

as before.

It _1,3_AB
W~2^~~AC'

The dotted line on the vector figure shows the value of F in

case (a).

The Screw. The screw is a form of inclined plane, and may
be considered as an inclined plane wrapped round a cylinder.

B

Fig. 37. The Screw.

It is formed by cutting a groove in the cylinder leaving a pro-

jection or thread which may be either of triangular or square
form. In Fig. 37 is shown a square thread. It is engaged by
a nut N having a corresponding thread in it. If the nut is fixed

and the screw shown is turned in a clockwise direction the screw

moves further down into the nut; such a screw is called right-

handed. If on rotating the screw in a clockwise direction it

moved upwards out of the nut, it would be called left-handed.

The distance moved into or out of the nut in one turn is called

the pitch of the screw; the pitch might also be defined as the
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distance parallel to the axis of the screw between corresponding

edges of two successive threads.

If we consider one thread of the screw as unwound until it

is all in one plane we should get the inclined plane ABC.
Now suppose that the screw supports a weight W and that

it is prevented from rotating ;
if the nut is turned in a clockwise

direction by means of a spanner T, a force F being applied at

a distance x from the centre of the screw, the weight will be

lifted.

Then if F^ is altered in direction so that it is always at right

angles to the spanner as the latter rotates, the distance moved in

the direction of Fl in one revolution will be equal to the circum-

ference of a circle of radius x, i.e. ZTTX, so that the work done by
Fl is equal to F x 2nx. In this one revolution of the nut the

weight will be lifted by an amount p so that the work done on

the weight will be equal to W x p ;

.*. we have F x 2nx = W x p

\ **-*'& |
We may also consider the problem as follows; the force Ft

at the end of the spanner is equivalent to a force F at the screw

thread.

By taking moments about 0, the axis of the screw, we have

Fxd^iXa;== ____.

By our previous treatment of the inclined plane we have

Fd Wp d
i* _ __ _"

2
"

Trd '2

Wp
27T

;

as before.

This is of course the ideal effort; in practice it will be more

on account of the energy wasted due to the friction between the

nut and the thread and between the nut and the fixed surface U.
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Screw-jack. A very common form of machine employing the

screw is the "screw-jack" which is used for lifting heavy bodies

through short distances and is used largely for lifting motor cars

at one side in order to remove the wheel.

It consists of a screw A (Fig. 38) working in a nut formed in the

top of a base B, the end of the screw ending in a knob portion pro-

vided with "tommy-holes" D, the extreme end being turned to

a smaller diameter and carrying a thrust cap E provided with

. 38. Screw-Jack.

ridges to give a good grip. A hand-lever C is passed through
one of the tommy-holes and is pushed round in the direction of

the arrow ; when the lever has been given about a quarter turn,

it is put through the next hole and pushed round further thus

slowly raising the article to be lifted, the nut being fixed.

Numerical Example. A screw-jack has the screw of y pitch

and the lever is 15 inches in length from the centre of the screw to

the point at which it is grasped. What force must be exerted on

the lever to lift a load of 2 tons if the efficiency of the machine is 40 % ?

Suppose that the lever makes one complete turn.

Distance moved by effort = 2?r x 15 inches.

A.M. 5
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Distance moved by resistance or weight = pitch of screw
=

J inch.

/. Velocity ratio =
2" xl5 = 60?r = 188-5 ;

T , ,
~ Resistance

.'. Ideal effort = ^r-. ^ r-

Velocity ratio

2 x 2240
lbs -

TVIoQl *ft<

.*. Actual effort

188-5

Ideal effort 23'8

Efficiency -4

= 59 5 lbs.

Reversing Machines. If the efficiency of a machine be

sufficiently great it will, if allowed, reverse, that is the resistance

acting as an effort will be able to make the machine run back-

ward, but if the efficiency be less than 50 % this cannot happen.
For let the input, the output, and the waste energy, when the

machine is acting direct, be respectively Ef ,
E

,
and Em then

Er
= E + Ew .

Now let the resistance act as an effort and do work E0> the

body moving through the same distance as before ;
the amount

of waste energy is again Ew and the balance E - Ew will be

available as output at what was originally the effort end of the

machine. If E is greater than EWi that is if the efficiency is

greater than 50 %, there will be some work delivered, but if

Ew is greater than E the resistance will not even be able to

overcome the wasteful forces, that is the machine cannot run

back unaided.

This general explanation may be a little difficult to follow at

first but will probably be made clear by the following numerical

illustration.

Suppose that we have a machine with velocity ratio 10 and

efficiency -4 and let the resistance be 100 lbs.

Also let the part of the machine at which the effort is applied

move through 10 feet in the direction of the effort; then the

resistance end moves through 1 foot in the direction of the

resistance.

Then Input energy E = 25 x 10 = 250 ft.-lbs.,

Output energy EQ
= 100 x 1 = 100 ft.-lbs. ;

/. Waste energy Ew = 250 - 100 = 150 ft.-lbs.
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Now let us reverse the conditions and allow 100 Ibs. to act as

an effort through 1 foot if it can ; it would do 100 ft.-lbs. of work
which is not sufficient to supply the 150 ft.-lbs. of waste energy
so that 100 Ibs. will not be sufficient to reverse the machine.

A machine that will not reverse is called self-sustaining. In
some machines this is a convenience

; for instance in the case of

the screw-jack previously described. In such cases we have to

pay for the convenience by low efficiency.

Pulley Tackle. The various forms of pulley tackle are

examples of simple forms of machine.

W

W

Fig. 39. Pulley Tackle.

Fig. 39 (a) shows one form. It consists of two blocks A, B
each consisting of two pulleys of equal size. The rope is fixed

to an eye C in the upper block and then passes over one pulley

in the lower block; then over one of the pulleys in the upper
block ; then over the other pulley in the lower block and finally

over the remaining pulley in the upper block. Fig. 39 (6) shows

the arrangement diagrammatically, the two pulleys in each

5-2
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block being of slightly different diameters to show more clearly

the manner in which the rope passes over them.

Now suppose that the rope at the end F is moved downwards

one inch, the lower block will then move upwards J inch because

there are four ropes that have to move up by the same amount

and the total amount of upward movement must be equal to

the downward movement at the end F because the rope is

continuous.

If therefore there is no loss of energy we shall have

Weston's Differential Pulley Block. This block consists of

two specially grooved pulleys, A, B, Fig. 40 (a), of slightly different

diameters cast in one piece and secured to a strong upper support.
The grooves are formed with flat portions to engage the chain in

the manner of teeth. The weight W is secured to a second

similarly-grooved pulley C. An endless chain F passes over the

larger pulley A; then over the pulley (7; and then over the

smaller pulley B, as shown, the effort F being applied to the chain

that comes over the larger pulley. Now suppose that the larger

pulley A is of effective diameter D inches and that the smaller

is of effective diameter d inches.

Guides Q are provided for the chain,

Now suppose that the chain is pulled so that the upper pulleys

make one complete revolution. The amount of chain rolling off

on the left, coming from the pulley B, will be nd inches, and

a length of the chain equal to trD inches will roll on on the right,

so that the chain as a whole rolls on a distance equal to (rrD rrd)

inches.

The weight will move up half this distance or
w

inches.
m

The reason for this half requires some further explanation;
we will explain it by considering a rope or chain passing over a

single pulley Q y Fig. 40 (6), and fixed at one end to a point P.

Now suppose that the free end is moved from the position X to

the position X' ; the pulley moves up to the position shown in

dotted lines. The rope or chain may be considered as made up
of three lengths; the piece PM on the left; the piece MN
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encircling the pulley and the piece NX on the right. In the

raised position the pieces are PM', M'N' and N'X'.

r6
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i.e. distance moved up by pulley = J distance moved up by rope
or chain.

Summarising our results we have :

Distance moved at effort = irD.

Distance moved at weight = - K~ ',

:. Velocity ratio = ^ v

2

2D
D-d (1).

.-. Ideal effort = F = ^
'

(fn
d}

. . . (2).&u

d IB usually made nearly equal to D to make the ideal efforts as

small as possible.

Numerical Example. In a Weston Pulley Block the larger

pulley has 12 teeth and the smaller has 11 teeth. If the efficiency

is 60 per cent. t
what load will be raised by an effort of 20 Ibs. ?

2D
In this case the velocity ratio

jy^h
will be equal to

2x12
l2^Tl~

/. Ideal
effort-^,

Ideal effort W
Actual effort=

Efficiency
- ^ * '60 '

20-
W

~24x -60'

W =24x -60 x 20 Ibs.

= 288 Ibs.

Actual Performance of Machines. We have already stated

that in practice machines are never ideal and that some energy
is always wasted. If we regard the actual effort as the sum of

ideal effort and waste effort we shall find that in actual tests the

waste effort is almost constant but increases slightly as the load

or resistance increases.

The usual procedure in testing a simple machine is to first
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find what effort can be exerted, when there is no load on the

machine, before the point at which the effort is applied will move

slowly without increasing in speed. This initial effort is the

initial waste effort and spends itself in lifting the dead weight
of the machine itself and in overcoming the friction or "sticki-

ness" of the various parts.

Various loads are then put on the machine and the effort

necessary to lift each slowly at the same speed is noted carefully.

40

30

20

10

<

o<
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Now since Efficiency =
ea e Ti

obtain values
Actual effort

from which we can plot to a convenient scale the efficiency curve

AHJ.
For any load, say AL, we have

c*= Efficiency =

It is preferable to take the values of the actual effort from the

line CD, instead of from the observed values, because errors of

observation are smoothed out by the curve.

Experiment upon Weston Pulley Block. Take for example the

Weston Pulley Block described on p. 69, and suppose that the loads are

increased 60 Ibs. at a time; the results thus obtained may be tabulated as

follows :

Resistance or

Load=W Ibs.
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back wheel. The planet pinions C engage also a wheel A usually called

the sun-wheel which is capable of being fixed to the frame of the bicycle
or of rotating freely. In the normal gear, the wheel A is free to rotate and
a clutch or mechanical locking device locks the ring B to the cage D thus giving
what is called a "

solid drive." To put in the low gear the clutch between
the ring and cage is released and the wheel A is fixed. The pinions C carried

by cage D then have to roll simultaneously upon the fixed pinion A and the

ring B and the cage is thus forced to go more slowly than the ring; this means
that to drive the wheel, which is connected to the cage D, at a given speed the

ring B and therefore the pedals must be rotated more quickly. In other

Fig. 42. Bicycle two-speed gear.

words the gear is lowered. Although we do not intend to explain the derivation

of the formula at the present stage, the reduced gear can be calculated as

follows :

Let #4= the number of teeth on the wheel A,

NB the number of teeth on the annular wheel B.

Then Reduced gear= = ^=-=-x Normal gear.NA+NB
Now the

" normal gear
"
of a bicycle is the diameter in inches of the equiva-

lent direct driven single wheel. It is obtained by the rule:

Normal gear in inches

Diameter of back wheel in inches X Teeth on front chain wheel

Teeth on small chain wheel

In the case of the bicycle under consideration we get

Normal gear in inches =
jg

= 80 '89.

We also have ^=27 and NB -69.
80-89x69 80-89x69

.-. Low gear= 69+27 96
:68'1 inches.
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Method of testing. To test the efficiency of the bicycle gearing the bicycle
is suspended in the manner indicated in Fig. 43 and a scale pan B is connected

by a string to the tyre. The cranks are placed in horizontal position and a

scale pan A is suspended from one of the pedals so that when loaded it will

tend to lift the scale pan B. In order to make the test as accurate as possible
care must be taken that the back wheel is brought by the aid of the free-wheel

clutch to the
"
balanced "

position before the scale pan B is fixed to it. The

tyre-valve is the principal cause of the lack of balance of a bicycle wheel and

if a bicycle be lifted off the ground the wheel will start swinging due to the

lack of balance and the position of the wheel at which it ultimately comes
to rest is the one that is referred to above as the

" balanced
"

position.

In making the test, the scale pan B is weighted and placed upon its stop D
and the scale pan A is then loaded carefully until it begins to fall slowly on

Fig. 43.

to its stop <7; the load is then carefully taken off until it begins to rise slowly
and the scale pan B falls on to its stop D.

The following results were obtained in an actual test.

Weight acting on tyre (including scale pan) =2 08 Ibs.

Normal gear:

Weight acting on pedal to lift scale pan 5=12 25 Ibs.

Weight acting on pedal to allow scale pan B to lower = 11 -75 Ibs.

Low gear:

Weight acting on pedal to lift scale pan 5= 9 '35 Ibs.

Weight acting on pedal to allow scale pan B to lower = 7 '75 Ibs.

We will now work out the velocity ratio.

The cranks are 7 inches long.

In one revolution of the crank, the distance moved by the centre of the

pedal=27rx7 inches. The wheel moves through a distance= IT x gear.

..T i TT X 14 1
/. Normal gear velocity ratio=

ir X 80-89

Low gear velocity ratio=^^ =
-r^r

5-78'

_1_

415*
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Normal gear efficiencies.

Ideal effort to lift scale pan B resistance x velocity ratio = 2 '08 x 578
= 12-02 Ibs.

,. Efficiency
Idealeffort 12

'02

= 980 or 98'0 per cent.

Ideal resistance lifted by scale pan B=-^5 = 2 03;
o'7o

2*03
.-. Reversed efficiency= = "974

=97 '4 per cent.

Low gear efficiencies.

Ideal effort to lift scale pan 2?=2 >08 x 4*15

=8-63 Ibs.

Ideal effort 8'63

= 923

=92*3 per cent.

Ideal resistance lifted by scale pan JB=~= 1'867;

I'8fi7
/. Reversed efficiency=^^ =-897

Z'Oo

=89 '7 per cent.

From the above we see that the efficiency at normal gear is 98 '0 and at

low gear 92*3; the two-speed gear therefore causes an additional loss of

98-0 -92-3 =5-7 in 98'0 or about ^rxlOO=5'8 per cent.
yo'O

Work done on rotating bodies. In the cases that we have

considered up to the present we have dealt only with bodies

which are moved in a straight line. In a larger number of cases

in engineering practice, however, we have to deal with rotating
bodies. Take for example the case of a pulley A, Fig. 44, which

is being rotated by a belt or chain B. There is a tension T
l
Ibs.

on the tight side of the belt and a tension T2 Ibs. on the slack

side.

Suppose that the pulley makes one revolution and that the

belt does not slip and that the radius to the centre of the belt

is r feet; the circumference of the pulley then moves the same

distance as the belt, i.e. a distance equal to 2irr in the direction

of the effort and resistance.

The work done on the pulley by the tension T
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Work taken from the pulley by the tension T2

[OH.

therefore resulting work done on the pulley in one revolution

E = 27rr (2
1

!
- T2 ) ............. (1).

This represents the work done on the machine which the

pulley drives. As a rough approximation we may take the tension

on the tight side equal to twice that on the slack side.

Stack side

ofbelt*
Tight side
of Be/t

Some people derive this result as follows :

Take moments about the centre O of the shaft upon which
the pulley is mounted. Then resultant moment

This resultant moment is called the torque. This gives rise to

the following general rule:

Work done per revolution inft.-lbs.
= 2ir x torque in Ibs.-ft. . . (2).

Now suppose that the pulley makes N revolutions in one

minute.

Then the work done on the pulley in one minute

- EN = 2-rrrN (T^
- T2) ;

~ Work per min. 2irrN (T-, - T)
Horse-1 ower = = - (&)oo or^/^ oo f\f\f\

* *
\ /*

OOyV/l/U OOjUUU

Numerical Example. What horse-power is transmitted to a

pulley rotating at a speed of 120 revolutions per minute if the
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tension on the tight side is 150 Ibs. and on the slack side is 75 lbs.
t

the diameter of the pulley being 18 inches ?

In this case Tl -Tz
=^ 150 - 75 = 75 Ibs. ;

/. Work done per minute = 2rr x -75 x 120 x 75 ;

x -75 x 120 x 75
.*. Horse-Power =

= 1-29.

33,000

Indicated and Brake Horse-Power of Engines. In testing

steam, gas, oil and similar engines it is usual to measure what

G

Aeta - Work done
in one revolution
of shaft.

> Outstroke Jnstroke <

Fig. 45. Indicated Horse-Power.

are called the
"
Indicated Horse-Power" (I.H.P.) and the "Brake

Horse-Power" (B.H.P.).

The indicated horse-power is in a sense a measure of the power

input and is calculated from diagrams drawn by an instrument

called the "indicator" which automatically indicates graphically
as a diagram the pressure of the steam or gas in the engine

cylinder at the various points of the stroke. This diagram in

the case of a steam-engine is somewhat as indicated in Fig. 45.

The total pressure acting upon the piston is the effort so that the

indicator diagram draws for us the effort curve and we have
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shown already that the area under the effort curve represents

the work done.

On the outstroke of the piston the work done is represented

by the area AGJKB and on the instroke the work taken from the

piston in bringing it back is represented by the area BKLGA
;

the difference between these two areas, that is the area shaded,

represents therefore the work done by the steam or gas upon the

piston in one double-stroke of the latter, i.e. in one revolution of

the engine shaft. Therefore the mean height of this diagram,
shaded area ,, . m, . ,.

Le -
-ol- represents the mean effort. The indicator is

calibrated so that by multiplying the mean height of the diagram
in inches by a constant we get at once the mean pressure acting

on the piston in Ibs. per sq. in. Let this mean pressure be pm Ibs.

per sq. in.

Now let A be the area of the piston in square inches ; L the

stroke in feet and N the number of revolutions per minute of

the engine shaft. N is measured during the test by a counter.

Then Em = pmA.

:. Work done per revolution = Em . L = pmAL.

.*. Work done per minute = pmALN.

:. Indicated Horse-Power

Brake Horse-Power. The Brake Horse-Power of an engine is

the power output or as it is sometimes called the Effective Horse-

Power. It is given its name because it is usually measured in

tests by an arrangement called a "brake," a simple form of which

is as follows. A rope B, Fig. 46, is passed over the flywheel A ; it

is usually made up of three or four pieces of rope knotted together
at the ends and held apart by distance pieces D. On the side on

which the flywheel would tend to lift it is hung a weight pan C
which is often provided at the bottom with a piece of rope secured

to the floor to prevent the weights from being bodily carried

right over the flywheel. The rope is connected at the other end

to a spring balance the reading of which may vary slightly from

time to time.

As the flywheel rotates in the direction of the arrow, the rope
will slip continuously. We have here exactly the converse of

the belt drive of a pulley. Here the pulley is the driving member,
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and it spends its energy in overcoming the friction or grip between

the rope and the flywheel . Now let the weight on the pan be

W Ibs. and the reading of the spring balance w Ibs
, and let r feet

be the radius of the flywheel.

Fig. 46.

In one revolution the flywheel does an amount of work

equal to

E 2irrW - 2wno * 2nr (W - w) = rrd (W -
w).

If therefore the flywheel makes N revolutions per minute we
have

Work per minute output of engine = EN = ndN (W w) ;

.-. Brake Horse-Power

1 ft T> TT T> _ irdN(W-w)
(2).

33,000

The diameter d should be measured to the centre of the rope.
> TT T>

The ratio
'

is called the mechanical efficiency of the engine.
I.H.P.

Numerical Example. In the test of a steam-engine the

mean pressure was found from the indicator diagram to be 60-3 Z6s.

per sq. in. and the, stroke was 12 inches. The piston ivas of 10 inches

diameter and the number of revolutions per minute was 122. The
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diameter of theflywheel was 5feet and the rope was 1 inch in diameter,

and the weight W was 240 Ibs., the spring balance reading being 4 Ibs.

Find the I.H.P., B.H.P. and mechanical efficiency.

Area of piston = A =
^x 102 = 78*54 sq. ins.,

60-3 x 78-54 x 1 x 122
.*. I.H.P. =

33,000

17-5,

_ x 5-08 x 122 x 236

33,000
= 13-9,

Mechanical efficiency
= l = = '794

s 79*4 per cent.

SUMMARY OF CHAPTER IV.

A machine is an appliance for receiving energy from some out-

side source and converting it into some more convenient form,

Resistance
Mechanical advantage = =7= .

Effort

. . _ Distance moved at the effort in a given time,

Distance moved at the resistance in a given time
*

The efficiency of a machine is the ratio of the energy that it gives

out to the energy that it receives.

_. . Ideal effort
Efficiency= -T i & iActual effort

Mechanical advantage = velocity ratio x efficiency.

If a machine is
"
self-sustaining

"
or not reversible, its efficiency

cannot be as much as 50 per cent.

Work done upon rotating bodies per revolution in ft. -Ibs.

= 2xr x torque in Ib.-ft.
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Indicated Horse-Power (I.H.P.) of an engine = P
^

,

Brake Horse-Power (B.H.P.) of an engine=
v

J[

~ w
,

00,000
-r> TT -p

Mechanical efficiency= .

I.H.P.

EXERCISES. IV.

1. In a wheel and axle the diameter of the wheel is 3 ft. 6 ins.

and the diameter of the axle is 10 ins. The diameter of the rope
attached is in each case 1 in. Find the weight which can be lifted

by a pull of 50 Ibs. on the rope attached to the wheel.

2. If in the last example a weight of 195 Ibs. is lifted what is

the efficiency of the machine?

3. The diameter of the wheel in a wheel and axle is 18 ins.,

and that of the axle 5 ins. Neglecting friction what pull on the

wheel will raise a weight of 600 Ibs. ? If it requires a pull of

200 Ibs. weight to lift this load what is the efficiency? Also find

the mechanical advantage and velocity ratio of the machine.

4. Find the H.P. of an engine which will raise 1000 gallons
of water per min. from a depth of 240 ft. The efficiency of the

engine is 55 per cent.

5. The inclination of a plane is 3 in 5. Find what force acting

parallel to the plane will support a load of 2 tons neglecting friction.

Also find the force which would be required acting parallel to the

base of the plane.

6. The handle of a lifting jack measures 24 ins. in length and
the pitch of the screw is f in. What force applied at the end of

the handle would be required to raise a load of 22 cwts., the effect

of friction being neglected?

7. A shaft transmits 50 H.P. at 250 revs, per min. Find the

twisting moment in inch-lbs.

8. The twisting moment on an engine shaft is 20,000 in. -Ibs.

and it makes 180 revolutions per min. Find the H.P. transmitted.

9. The pitch on a screw-jack is inch, the distance from the

axis of the screw to the end of the handle 26 inches. Find the

velocity ratio. If the law is F = -03TP + 9-45, find the load which

will be lifted by a force of 56 Ibs. wt. applied at the end of the handle.

Find also the efficiency at this load.

A.M. 6
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10. The diameter of a steam-engine cylinder is 9 ins., the length

of crank 9 ins., the number of revolutions per min. 110, and mean
effective pressure of the steam 35 Ibs. per sq. in. ; find the indicated

H.P.

11. In measuring the brake H.P. of an engine a rope passes

round the flywheel, one end being fixed to a spring balance; the

other end carries a weight of 120 Ibs. If the wheels make 150

revs, per min. and the spring balance indicates 15 Ibs. what is the

H.P. transmitted ? The flywheel is 5 ft. in diameter.

12. A steam pump is to deliver 1000 gallons of water per

minute against a pressure of 100 Ibs. per sq. in. Taking the efficiency

of the pump to be '70, what indicated H.P. must be provided?

13. The diameter of the cylinder of a double acting engine

is 10*, stroke 15" t number of revolutions per min. 120, and the mean
steam pressure 48 Ibs. per sq. in. Find the H.P. transmitted.

14. In a rope-brake dynamometer the diameter of the brake

wheel is 10 ft., rope is 1" diameter, weight on rope at one end

is 200 Ibs. and pull on spring balance at the other end is 18 Ibs.

weight. If the wheel makes 90 revs, per min. find the H.P. trans-

mitted.

15. The following results were obtained in a test of a steam-

engine: 1 H.P. = 7-7; revs, per min. = 164; diameter of brake-

wheel 3 ft. ; diameter of rope in. ; weight on brake 150 Ibs. ;

reading of spring balance 2-5 Ibs. Find the mechanical efficiency

of the engine.

16. The following results were obtained in a test of a machine

whose velocity ratio = 8:

Load or resistance Ibs.



CHAPTER V

VELOCITY AND ACCELERATION

WHAT do we mean when we say that a train is going at

60 miles an hour at a certain point ? We do not mean that in one

hour the train actually goes 60 miles; it might stop altogether
after it has gone 20 miles. But what we mean is that if the train

continued to move at the same speed or velocity for one hour

it would then have gone 60 miles. Expressing velocity in scientific

language we say that "velocity or speed is the rate of change of

position or space with respect to time."

Velocity is a vector quantity
*

; its direction is of importance
as well as its magnitude. It is here that many people use the

term "speed" and "velocity" with a slight difference of meaning.
When speed is spoken of the direction does not come into con-

sideration but velocity involves the direction of the motion.

Velocity of a point. When a body is moving, different points

in it may be moving with different velocities, so that in strict

language we do not speak of the velocity of a body but of the

velocity of a point.

Uniform Velocity. The velocity of a point is said to be

uniform when it maintains the same direction and magnitude

(i.e. the point passes through equal distances in the same direction

in equal times).

Suppose that a point has a uniform velocity of 10 feet per
second in a certain direction. Then in 1 second it will move

through 10 feet ; in 100 seconds it will move through 1000 feet
;

in y^ second it will move through ^th of a foot, and so on.

This is expressed in symbols as follows : If a point has a uniform

* Cf. p. 1.

6-2
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velocity v feet per second, then the distance s in feet covered in

t seconds is given by the formula

s = vt (1).

This is true no matter how large or small t may be.

Variable Velocity. In practice velocity is seldom if ever

uniform although it may over a certain time be sufficiently

nearly so to be reckoned as uniform for all practical purposes.

There are two causes that may disturb uniformity of velocity :

(a) Variation in magnitude.

(6) Variation in direction.

Very often these two variations occur together, but for the

rest of this chapter we will consider change in magnitude only.

Velocity variable in magnitude. Suppose that the times

are recorded at which a moving point passes certain stations

and that the distances of these stations from a suitable starting

point are plotted against the times of passing. The curve CPQD,
Fig. 47, obtained by joining up the points is called the apace

curve.

At the instant from which the time is reckoned the distance

from the starting point is AC ; then at any point such as P, after

a time t - AT has elapsed, the moving point is at a distance

s = PT from its starting point.

Now consider a point Q on the space curve very near to P,

and let PR be drawn perpendicular to QU ; while the point has

moved a distance equal to QU PT = QR, the time has increased

by an amount TU = PR.

XT QR Distance moved .

Now -o = m- n = tan 0.PR Time taken

Next suppose that the points Q and P move closer and closer

to each other ; the line PQ then gradually approaches the position

of the tangent XY shown in dotted lines, and the slope of this

tangent may be taken as tan 6 if PQ is sufficiently small.

Now we. define the velocity at any point as the value which

the . r-i approaches as the distance moved becomes
time taken

smaller and smaller. It follows from this that the slope of the
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tangent to the space curve at any point measures the velocity at that

point.

In working from the diagram we must be careful to allow

properly for the scales ; referring to the figure we have

T7 . ., . . , f.
YZ on space scale

Velocity at given point = tan 6 = -^~ = .XZ on time scale

Y

Time (t)

Fig. 47. Space Curve.

Numerical Example. The following results were obtained in

timing a man walking over a certain distance. Find the velocity

at the commencement and after 40 minutes from the start of the test.

Find also the average velocity over the whole test.

Time in seconds
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Then Velocity at B = tan 6B =
** = 241 feet

g

BE 60 seconds

= 4*01 feet per second.

ur

ace.

K

10 20 30 40 50 60

Fig. 48.

It is common to measure some velocities in miles per hour.

Now 1 mile per hour = 5280 feet in 3600 seconds

5280 22
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4*01
/. Velocity at B in miles per hour = y^7 = 2'73 miles per hour,

ri~P 4.fift

Velocity at G = tan 6C = ^ = = 8 feet per second

o
= 5*45 miles per hour.

DE 400
Average velocity = -^~ = -^- = 6'67 feet per second

JoJtlJ OU
/>,/

=

467
= 4-55 miles per hour.

A useful figure to remember is that 60 miles an hour is equal

to 88 feet per second, or one mile per hour = ff feet per second.

Velocity Curve and its relation to the Space Curve. Next

suppose that we know the velocity at every time and that we

plot velocities upon a time base; then the resulting curve is

called a velocity curve GHJK, Fig. 49. AG represents the

velocity at the beginning of the period of time under consideration

and is called the initial velocity and will be given the letter u.

Now consider the relation between this curve and the space

curve plotted on the same base (to save confusion it is preferable

to plot one diagram above or below the other). We have already

shown that the velocity v at the middle of a very short time LM
is equal to the slope of the tangent to the space curve at the

corresponding point. Since LM is so very short, the slope of

this tangent is given by
QR _ OR.

QR.

:. QR = LM x v = Area of shaded strip of the velocity

curve. But QR is the increase in the ordinate of the space curve,

and we could show similarly for any other strip that the increase

in the ordinate of the space curve represents the area of the

corresponding strip of the velocity curve.

/. QU = Total increase in space from the beginning = Area

of velocity curve from A to M, i.e. area AGJM. But this is

exactly the relation which we have explained (p. 43) between

% slope curve and its primitive curve,



88 VELOCITY AND ACCELERATION [CH

Therefore the space curve is the sum curve of the velocity curve.

Fig. 49. Velocity and Space Curves.

We may use as a general rule the following relation which we
have proved above. If a curve A is the sum curve of a curve

B, the ordinate of B at any point represents the slope of A at the

corresponding point.

Some special cases of Velocity and Space Curves, (a) Constant

velocity. If the velocity of a point is constant, the velocity curve

is a horizontal straight line, Fig. 50. If the sum curve construc-

tion be carried out for this we get a sloping straight line AD,
assuming that we commence reckoning our distances from the

point at which the time commences. This is because all the

mid-ordinates of the velocity curve when projected horizontally
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come to the point O so that all the elemental pieces of the sum
curve are parallel to PO. [If, instead of taking our distances from

the point at which the time commences, we take them from some

other point, we shall get a space curve such as cR parallel to

AD, but in all further cases we shall assume that the space is

considered as commencing at the beginning of the time interval.]

Pi

Velocity Curve x"

Space Curve

R

T
*='

8

Fig. 60. Constant Velocity.

We then have : distance covered from A to B
= area AGKB = vtt

i.e s = vt . ,(1).

Since for any value of t the space s is equal to vt, the space

curve is a straight line such that tan DAB - - - v.
t

(6) Velocity increasing uniformly. If the velocity increases

by the same amount in each unit of time we shall obtain for our

velocity curve a sloping straight line GK, Fig. 51.

Fig. 51. Velocity increasing uniformly.

If we apply to this the sum curve construction the space

curve will be found to be a parabola ARD.
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We then have : distance covered from A to B
= area AGKB = \ AB (AG + BK)

= & (u + v),

[OH.

-

We shall see later that it is sometimes more convenient to

write this

(v-u)t
(3).

(c) Velocity decreasing uniformly. In this case the velocity
curve GK, Fig. 52, will also be a straight line but will slope

Fig. 52. Velocity decreasing uniformly.

downwards. The space curve will also be a parabola ARD, but
it will curve the opposite way from the previous case.

After a time t therefore we get

8 = area AGKB

o (
u + v) as before

(4)
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Numerical Example. A point starts from rest and increases

its velocity uniformly for 10 seconds at the end of which it has

a velocity of 10 feet per second. It continues to move for 10

more seconds at this velocity and the velocity then diminishes

uniformly for 5 seconds when it comes to rest. How far has it

travelled?

The velocity curve for this case is as shown in Fig. 53. For

10 20

Kg. 53.

the first 10 seconds between A and C it is a sloping straight

line AC; for the next 10 seconds the velocity is constant so

that the velocity curve is a horizontal straight line CD and for

the next 5 seconds the velocity falls uniformly to zero so that

the velocity diagram is the sloping straight line DB.
Now the total space covered in the 25 seconds will be repre-

sented by the area ACDB.
This can be estimated as follows :

10 x 10
Area of A ACH = 50 feet,

Area of rectangle CDJH = 10 x 10 = 100 feet,

Area of A DJB = = 25 feet,

iTotal distance covered =175 feet.
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The space curve will be as indicated, AE and FG being

parabolic arcs and EF a straight line. As an exercise the reader

should draw the curve by the sum curve construction.

Suitable scales would be as follows : time 1" = 5 seconds ;

velocity V = 5 feet per second ; polar distance = 2 inches.

Then the space scale will be 1" = 2 x 5 x 5 = 50 feet so that

BG should measure 3-5 inches.

Acceleration. When the velocity of a body is changing it is

said to have an acceleration. Acceleration is measured by the

rate of change of velocity and we have already explained that

change of velocity may take place in magnitude or direction or

both. For the present we will confine ourselves to change of

magnitude of velocity and will assume that the direction remains

constant.

Suppose that a body is moving at a certain instant with a

velocity of 10 feet per second and that one second later it is

moving in the same direction with a velocity of 12 feet per second.

In one second the velocity has gained by 2 feet per second, so

we say that the mean acceleration is 2 feet per second per

second; this is often written for brevity 2 ft./sec.
2

Now let the velocity curve be LMNK, Fig. 54. At the time

represented by the point T the velocity is represented by TM
and after a short time TU it is represented by UN, so that in

time TU the point has gained in velocity by an amount NO.

:. Mean velocity gained in unit time

Now the points TU are very close together and as N comes

closer still to M the line joining MN ultimately becomes the

tangent XX to the velocity curve at tho point M .

Then rate of change of velocity

=
JJQ

= slope of tangent XX tan 0.

Therefore the acceleration at any point is represented by the

dope of the velocity curve at the given point.

If we obtain the accelerations at a number of points and plot

them against the times, the resulting curve will be an acceleration

curve.

Positive and negative acceleration. We have up to the present
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only spoken of velocity gained but the term "gain" must be

considered as including "loss" and when there is a loss we shall

regard it as a negative gain. Returning to OUT numerical

illustration suppose that instead of being 12 feet per second at

the end of one second the velocity is 8 feet per second ; in one

second the velocity has lost 2 feet per second and we should say
that the mean acceleration is 2 feet per second per second.

s^^VelocifyJjurve

Time
T U 6

Fig. 54. Acceleration.

Now when the velocity is decreasing the tangent, such as YY,
Fig. 54, cuts the base at a point in advance of the point of contact

whereas when the velocity is increasing the tangent cuts the

base behind the point of contact. This enables us to formulate

the following rule. If the tangent to the velocity curve cuts the

time base at a point behind the point of contact, the acceleration

is positive and if it cuts at a point beyond the point of contact

the acceleration is negative.

General relation between Acceleration, Velocity and Space
Curves. We have shown that the slope at any point of the

velocity curve determines the acceleration and we have previously

shown that the slope at any point of the space curve gives the

velocity; there is therefore the same relation between the

acceleration and velocity curves as there is between the velocity

and the space curves. We get therefore the following very

important rule.

The velocity curve is the sum curve of the acceleration curve and

the space curve is the sum curve of the velocity curve.
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This is illustrated in Fig. 55 in which, to save confusion, the

three curves have been drawn upon separate bases. CDE is the

acceleration curve; drawing a sum curve with polar distance plt

we get the velocity curve AFG if the point starts from rest; if

the point has an initial velocity u we set upAA' = w on the velocity

scale, obtained as described later, and start the sum curve at

^Acceleration Curve

Space
Curve

A B

Fig. 55. Relation of Acceleration, Velocity and Space Curves.

A' thus obtaining the velocity curve A'F'G' shown in dotted

lines. Drawing the sum curve of this with a polar distance p2 we

get the space curve AHJ.

Scales. Suppose that the time scale is I" = x seconds, and

that the acceleration scale is I" = y ft./sec.
2 and suppose that

Pi is measured in actual inches. Then the velocity scale will be

1* = Pi%y ft./sec. Now let p2 be also measured in actual inches.

Then the space scale will be

i* = PzPix2y feet -

This may be explained as follows.

One square inch of the acceleration curve represents xy units
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of velocity and the sum curve construction gives the area divided

by the polar distance so that one inch on the sum curve AFG
represents p^xy = z say.

By similar reasoning one inch on the sum curve AHJ represents

As a numerical illustration let the time scale be I" = 10

seconds and the acceleration scale \" = 2 feet per second per
second and let p = 2 inches ; then the velocity scale will be

I" = 2 x 2 x 10 = 40 feet per second.

Next let p2
= 1} inches ; then the space scale will be

I" = 1J x 40 x 10 = 600 feet.

By a careful choice of the polar distances pl9 p2 we can

obtain convenient scales; we should, for instance, have done

better in the above case to have taken p1
= 2| inches and

p2
= 2 inches, our velocity scale would then be 1" = 50 feet

per second and the space scale 1* = 1000 feet.

Constant Acceleration
; equations of motion. If the accelera-

tion is constant, the acceleration curve is a horizontal straight

Acceleration Curve

Velocity ,

Space Curve

I

Fig. 56. Constant Acceleration.

line CD, Fig. 56 ; the sum curve, i.e. the velocity curve of this,

will be the sloping straight line HE, while the space curve AFG
will be a parabola, the sum curve of a sloping straight line being
a parabola.
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From these curves we can deduce the following formulae:

KE = area of acceleration curve = at ;

;.v=BK+KE
= u+at .......................... (5).

s = area AHEB
v) _ u+u + at

_

= ut+$at* ........................ (6).

We can get a third relation as follows :

By squaring equation (5) we have

tf = (u* + at)
2 = u* + 2uat + a2

*
2

= u* + 2a (tef + Ja*
2
)

= %2 + 2as [from (6)] ................. (7).

These equations (5) to (7) are often called the equations of

motion and are very useful in problems in which the acceleration

is constant.

Numerical Examples. (1) A point moves along a straight

line under an acceleration of 10 ft./sec.
2 The initial velocity is

1 ft.fsec. What is the velocity after it has passed over 12 feet?

In this case u = 7 feet per second,

a = 10 feet per second per second,

s = 12 feet.

Therefore using equation (7)

v ? = 7 2 + 2 x 10 x 12

= 49 + 240

= 289,

v = \/289 = 17 feet per second.

\z) A train is running at 20 miles an hour and is stopped by

brakes in 10 seconds, the retardation being constant. At how many
yards from the stopping point were the brakes applied ?

60 miles an hour = 88 feet per second.

88
/. 20 miles an hour= -5- feet per second.
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88
In this case tt -^-ft./sec., t** 10 and v*> 0;

o

QQ
/.0=~+10a [from (5)];

880,. ,. 440, 440=
-3-

(1
-

1)
=

-3-
feet =

-^- yards

r= 48-89 yards.

Gravity Acceleration "g." If bodies are allowed to drop

freely they will be found to have an acceleration which is

practically constant.

This acceleration is called the gravity acceleration and is

given the letter g. Its value varies slightly with the latitude and

with the height above sea-level and in London is usually taken

as 32-2 feet per second per second. We will indicate later an

interesting simple experiment for determining g and will now
derive simplified formulae for the case of bodies falling freely

from rest. In equations (5) to (7) therefore we have u and

a g and it is usual to replace the distance or space s by the

height h. Our formulae therefore become

v = gt ....................... (8),

ti = \gt* ..................... (9),

v*=2gh .................... (10).

Formula (10) is of the greatest possible importance and may
be rewritten in the forms

(11),

The student must make himself absolutely familiar with these

formulae and should not feel fully satisfied until he can work

successfully through all the exercises at the end of the present

chapter.

A.M. T
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Numerical Example. A stone is let fall down a well and the

splash is heard 2-9 seconds later. If the time for the sound to travel

to the top of the well be neglected, what is the depth of the well ?

Let h be the depth of the well.

Then the time in dropping is obtained by equation (9)

but t = 2-9 seconds,

2-9- /"^~V 32^2'

Therefore, squaring,

"-wi-
h= 16-1 x 2'92 = 135 feet approx.

With what velocity must a stone be projected if it is to reach a

height of 120 feet ?

Here we have in our general equation

v* = u2 + 2as, v = 0, a = gt
s = ht

:. = u* - 2gh,

*= N2 x 32-2 x 120=88ft./seo. approx.

Limits of use of simple formulae. In using these simple
formulae care must be taken to remember that they are based

upon the assumption that g is constant and that the bodies fall

"freely," i.e. that the air resistance is negligible.

As a matter of fact the air resistance is appreciable for great

heights with light bodies
; but for this fact a rain drop in falling

from a cloud would acquire such a high velocity that it would

kill a man if unprotected by armour. Moreover, if the height is

very great the body will not fall vertically, judged by standards

upon the earth. This point was illustrated in an interesting

manner in some experiments which were carried out in a deep
vertical mine shaft in the United States of America, one of the

shafts being 5300 feet deep.

Smooth metal balls 2 inches in diameter were suspended by
threads and allowed to drop by burning the thread, a box of

clay being placed 4200 feet beneath. All the balls struck the

east wall of the shaft before reaching the box. This was due to
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the movement of the earth from west to east, this movement

being sufficient to cause the balls to be struck by the east wall

before they came to the box. In one case 800 feet of fall was
sufficient to make a ball dropped 4 feet from the east wall strike

against it.

Distance moved in a particular second. In several problems

upon velocities and accelerations we require to consider the

distance moved in a particular second under a constant velocity.

Suppose for instance that we want to know the distance

moved through in the fifth second. In five seconds it will have

moved through a certain distance s5 , given by, putting t = 5 in

equation (6), 2
-

s5=5u+^ (13).

In four seconds it will have moved through a distance s4 given

4 ~4tt+~?- (14).

Now the difference between the distances moved in five and

four seconds respectively must give the distance in the fifth

second, so that we have

Distance moved in fifth second = s5 s4
Q

-+f (15).

Now take the most general case. It is clear from the above

illustration, which could be employed for any numerical value,

that the distance moved through in the nth second must be the

difference between the distances moved through in n and (n 1)

seconds respectively,

i.e. Distance moved through in nth second

= sn
- 5n_!

= {un + Jan
2
}
-

{u (n
-

1) + Ja (n
-

I)
2
}

= {un+ \an^} {un- u+ %a(n
2 2n + I)}

= un+ Jan
2 un+ u Jaw

2
-f -^

2aw a

= +a(W -i) (16).

7-2
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Now (n J) is the time to the middle of the nth second.

Therefore by equation (5) the velocity at that instant

= v = u + at

= u -f a (n
-

J).

We thus obtain the very useful rule that : The space in feet

moved through in any particular second is the velocity in feet per
second at the middle of that second.

We have proved this result in the above manner to give us

an exercise in reasoning by the manipulation of formulae but we
could have proved it, perhaps more simply, from a consideration

of the velocity diagram as follows : referring to Fig. 51 let NQ
represent the ordinate of the velocity diagram at the end of

n seconds and let LM represent it at the end of (n 1) seconds,

so that MQ represents the nth second. Since the space curve is

the sum curve of the velocity curve the increase TU in the space
over this second is represented by the area of the strip LNQM
of the velocity curve and this is equal to 1 x mid-ordinate =

velocity at the middle of the second under consideration.

Numerical Example. A train in two successive seconds moves

through 20-5 and 23-5 feet respectively. If it is being accelerated

uniformly what is its acceleration and what was the velocity at the

beginning of the first second ?

Suppose that u is the initial velocity.

At the end of the first second we have

s = ut

20-5 = ^.1 + Ja.l ............. (1).

At the end of the second second we have

(20-5 + 23-5) = u . 2 + Ja . 22 ........... (2),

.'. 20-5= u + % from (1),z

23'5 = u + - by subtracting (1) from (2) ;

.*. 3 = a by subtraction ;

.'. u = 20-5 - 1 = 20-5 - 1-5 = 19 ;

m

i.e. Acceleration = 3 ft./sec.
2
,

Initial velocity =19 ft./sec.
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SUMMARY OF CHAPTER V.

Velocity is the rate of change of position with respect to time.

Acceleration is the rate of change of velocity.

The velocity of a point is measured by the slope of the tangent
of the space curve.

The acceleration of a point is measured by the slope of the

tangent of the velocity curve.

For bodies moving under constant acceleration,

v = u + at,

s =s ut + \at*9

v* = w2
-f- 2cw.

For bodies starting from rest under gravitational acceleration,

In all problems it is better to reason out as much as possible
from first principles than to attempt to remember the formulae

and to apply them directly.

EXERCISES. V.

1. What will be the velocity of a body after falling 25 ft. from
rest?

2. Find the average speed of a train which runs from London
to Grantham, a distance of 105 miles, in 1 hour 55 minutes.

3. A stone takes 2 sees, to drop to the bottom of a well. What
is the depth of the well?

4. Suppose a body to have fallen h feet in t sees, from rest

according to the law h = IQ-lt2
. Find how far it falls between

the times t = 3 and t = 3-1 ; between t = 3 and t = 3-01 ; between

t = 3 and t = 3-001. Find the average velocity in each of these

intervals of time. What do we mean by the actual velocity when
t is 3 sees. ?

5. What is an acceleration of 60 miles per hour per minute

in feet per sec.2 ?
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6. x and t are the distance in miles and the time in hours of a

train from a railway terminus:

X



CHAPTER VI

VELOCITY CHANGE IN DIRECTION ; RELATIVE VELOCITY

WE have considered so far only the case of motion in a straight

line and have taken into consideration only changes in magnitude
of the velocity; but we may also have change in direction,

with or without change in magnitude as well. The case of a body

moving with constant velocity in a circle is an example in which

the magnitude of the velocity is constant but the direction is

constantly changing.

Combination of Velocities. The actual velocity possessed by
a point may be the combination of two or more velocities, and as

velocities are vector quantities, they are added together in

Fig. 57. Combination of Velocities.

exactly the same way as forces, i.e. by the law of vector addition.

Suppose for instance that we are standing at one end A (Fig. 57)

of a railway carriage moving with a velocity v and that we walk

across the carriage with a velocity vz ; then our actual velocity

will be the combination of the velocity vt of the train itself and
of our own velocity v.2 ,

i.e. vr in the direction AC by the law of

vector addition.

A good familiar example in which a body has a velocity

compounded of two velocities is to be obtained from the case of

a wheel rolling along the ground. Any point on the wheel is

moving around the axle and the axle is at the same time moving

along parallel to the ground so that each point upon the wheel is

actually describing a curved path indicated in dotted lines in
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Fig. 58. This curved path is called the cycloid and is also used

by engineers in considering gear teeth. This curve can be drawn

by rolling a half-crown along a ruler and resting a pencil against

Cycloid Curve

Fig. 68. Wheel rolling along the ground.

the edge of the coin. A milled coin such as the half-crown is

better than a penny because it will not slip on the ruler. With
a little practice a very smooth curve can be obtained.

Change of Velocity. Suppose that a point at A, Fig. 59,

has a velocity v at one instant and after a certain time it is at

Fig. 69. Change of Velocity.

B and has a velocity v2 . Then the change of velocity vc is

defined as the velocity which would have to be compounded or

combined with vl
to give v2 . That is vz is the resultant of v^

and vc ,
or expressing this in vector notation we have

This problem arises in engineering calculations in considering
the impact of water upon the vanes of a water wheel or turbine.

Numerical Example. A jet of water moving with a velocity

of 80 feet per second impinges upon a curved plate and has its

direction turned through 120, without altering its magnitude,

What is the change in velocity?
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Referring to Fig. 60, we draw ab to a suitable scale to represent
80 feet per second and ac at 120 to it to represent 80 feet per
second also and then join bc\ then be represents the change of

velocity and if the diagram is drawn to scale be will be found by

ecT

Kg. 60.

measurement to give about 138-6 feet per second. To find vc by
calculation without actually drawing the triangle to scale we
draw ad perpendicular to 6c; we then note that

cd = ac cos 30 = 80 x -866,

.'. be = 2cd = 160 x -866 = 138-6 feet per second nearly.

Relative Velocity. We now come to a very important

portion of the subject which students often find rather difficult

to understand and to which therefore we wish to give particular

attention. In the ordinary way when we speak of velocities in

a certain direction (say 4 miles an hour in a northerly direction)

we leave out of consideration the fact that the earth is not

fixed. Since the earth itself is rotating on its axis as well as

moving through space at a very high velocity the actual velocity

of any point is the combination of the velocity commonly referred

to and that of the earth. We express this by saying that

velocities as ordinarily measured are relative to the earth.

If we sit at the back of a dog-cart we can easily get the idea

that the road is moving away from under us; that is because

we regard ourselves as fixed and therefore relatively the road is

moving away from us.

If, again, two trams are standing alongside in a railway

station, and one starts moving, a person sitting in one train and

looking at the other always has some doubts as to which of the

trains is moving. Suppose that we are sitting in the train which

we will call A and that the other is B. If B moves we have th<

sensation of moving in the opposite direction.
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Now if two bodies A and B are both moving, the velocity of
B relative to A is the velocity which B would appear to have if A
were regarded as stationary.

Let us consider a fact that every observant reader will

already have noticed, viz. that the rain splashes upon the

window of a train or other moving vehicle are never vertical

although the rain may be falling quite vertically; they are

always inclined away from the direction of the train, i.e. they

always seem to be coming towards the train as indicated in

Fig. 61. In answer to the question as to why this is, we usually

say that the relative velocity of the rain to the train is in that

inclined direction; but that answer does not give very much

Apparent
Velocity^

of Rain

Actual
, Velocity
of Rain

Velocity of Train

Kg. 61. Eelative Velocity.

enlightenment and the reader must realise for himself the meaning
of it because mere mental assent to the assertion is useless. We
will therefore make a very simple model as follows : on a piece
of tracing paper draw a rectangle ABGD, Fig. 62, and draw a

horizontal line XY upon a piece of ordinary drawing paper and
take a number of points 1 T> 2T ,

3 T , &T> 5r , etc. on this line at

equal distances apart. Draw also a vertical line ZU and take

upon it points 1D , 2^, 3^, 4^, 5D also at equal distances apart.

The points on the line XY represent successive positions of the

lower right-hand corner of the train window and the points on

the line ZU represent corresponding positions of the rain drop.

Strictly, the rain drop may be moving with an acceleration so

that the distances 1^, 2^; 2^,3^,, etc. may progressively increase

in length, but the whole length ZU is so small that we may
neglect this refinement. As a matter of fact the resistance to

the movement of a rain drop makes its acceleration quite small.
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Now place the rectangle ABCD, representing the window, on
the tracing paper with the point C at the point \ T and mark the

point 1D onZU on the tracing paper ;
then shift C to 2T and trace

the point 2R as shown in dotted lines on the tracing paper ; then

move to 3 T and trace the point 3R and so on. The points on the

tracing will then join up to an inclined line as shown dotted, and

this is the direction of the relative velocity between the rain and

train, i.e. the direction which the rain appears to have from the

train. Consider any particular point say 4a ; by the time that

Fig. 62. Relative Velocity.

the rain has fallen from 1D to 4:D , 4# has also moved to 4^ and the

rain strikes 4# in its new position ;
to get the apparent position of

4jj we set 4^4^ back a distance equal to the distance which 4A has

moved in the given time.

Referring back to Fig. 61 if ab represents the actual velocity

of the rain and cb represents the velocity of the train ac will

represent the relative velocity of the tram to the rain. This we

may regard as a rule which we have proved experimentally; it

will be found true for any numerical values which may be taken.

General rule for Relative Velocities. With this preliminary

explanation we will now give the general rule for relative velocities.

Suppose that a point A, Fig. 63, is moving with a velocity VA
with reference to a certain plane in the direction indicated and

that the point B is simultaneously moving with a velocity v

with reference to the same plane in the direction indicated,

A and B being positions of the points at the same instant.

To a convenient scale set out oa parallel to VA to represent

VA in direction and magnitude and to the same scale set out

ob to represent VB in direction and magnitude and join ab, then
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ab is the velocity of B relative to A, i.e. ab is the velocity which

B appears to have to a person moving with A; it is written

r A . Similarly ba is the velocity of A relative to B.

It will be noted that this construction is different from that

employed for finding the resultant of VA and VB ; if the resultant

had been required we should have drawn ab' to represent VB as

indicated in dotted lines and ob' would have given the resultant,

and is the vector sum.

Apparent
"^ ^

direction of A Jr*
- from B *^

r
Apparent direction

of B /ro/n A

Fig. 63. Relative Velocities.

It will be noticed that VB is the vector sum of VA and rBAt

i.e. using the vector notation

Therefore using ~ to indicate vector difference we have

r;M-*j~f5*.

Expressing this in words we see that the velocity of B relative

to A is the vector difference between the velocity of B and the velocity

of A.

The dotted lines BX and AY which are each parallel to ab

are the paths which B and A appear to take from A and B
respectively.

Numerical Examples. (1) If a train is running at 30 miles

an hour, in what direction must a stone be thrown at a velocity of

60 feet per second to pass in through one open carriage window and

out through the opposite window ?

Referring to Fig. 64, the stone must have a velocity relative

to the train in a direction AB, i.e. at right angles to the direction

of motion of the train.

30 miles an hour = 44 feet per sec., so let oa represent 44 feet

DGT second; draw ab at right angles to oa and with o as centra
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draw an arc of radius representing 60 feet per second cutting
ab in b. This determines the point 6 and completes the triangle

of velocities. We want to find /: aob to obtain the direction in

which the stone must be thrown.
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If we do not plot to scale we can calculate ab as follows;

Draw ox perpendicular to ab.

Then
ax

oa
= sin22|,

i.e. ax = 10 sin 22J ;

.'. ab = 2ax = 20 sin 22J
= 7-654 miles per hour.

Pig. 65.

Suppose that after a given time, say one hour, B has arrived

at F in its apparent path BE; then BF will be 7-65 miles and

AF will be the distance of B from A at that instant
;
in other

words the distances from A to various points on BE give the

distances apart of the boats at various times.

The least distance apart of the boats will therefore be given

by AD, where AD is drawn perpendicular to BE. By measure-

ment this should come to 8'04 miles.

By calculation we have

.-. AD = 21 sin22| = 8-Q36 miles.
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Now the time taken for this will be the time for B to move
to D at a speed of 7-65 miles an hour.

Now BD = 19*4 miles (by measurement),

7? 7)

(by calculation) .
= cos 22J ;

/. BD = 21 cos 22J * 19-40 miles;

= 2-53 hours,

say 2'5 hours.

.-. Time = = 2-53 hours,
7'bo

SUMMARY OF CHAPTER VI.

Velocities are combined by the law of vector addition.

The velocity of B relative to A is the velocity which B would

appear to have if A were regarded as stationary; it is the vector

difference between the velocity of B and the velocity of A.

EXERCISES. VI.

1. A railway train going at 30 miles an hour is struck by a

stone moving horizontally at right angles to the train at a velocity
of 33 feet per second. What are the magnitude and direction of

the velocity with which the stone appears to meet the train?

2. A body is moving towards the north at 50 ft. per sec. In

two sees, afterwards we find that it is moving towards the north-

east at 60 ft. per sec. Find the magnitude of the added velocity.

3. A ship is sailing N.E. at 10 miles an hour, and to a passenger
on board the wind appears to blow from the N. with a velocity of

14-14 miles. Find the actual velocity and direction of the wind.

4. Water enters a turbine wheel at an angle of 35 to the cir-

cumference, with a velocity of 80 ft. per sec. If the speed of the

circumference of the wheel is 60 ft. per sec., find the velocity of the

water relative to the wheel in magnitude and direction.

5. Two trains each 200 feet long are moving in parallel lines

with velocities of 20 and 30 miles an hour in the same directions.

How long will they be in passing ?
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6. Two trains pass one another moving in opposite directions

on parallel lines of rail, with velocities of 45 and 60 miles per hour.

The length of one is 420 ft. and of the other 350 ft. How long will

they be in passing one another?

7. Two boats each 30 ft. long are rowed at 8 and 7 miles per
hour respectively, the latter being 80 ft. ahead of the former. Find

how long before it is bumped; also the time before the former

draws level with it and the extra time necessary to pass it.

8. A train is travelling at a rate of 20 miles an hour and a man,

sitting in a compartment with both windows open, observes a stone

pass through both windows at right angles to the direction of the

train. If the stone appears to move 20 feet per second to the man,
with what velocity must it have been thrown?

9. A is travelling due N. at a constant speed. When B is

due W. of A and at a distance of 21 miles from it, B starts travelling

N.E. with the same constant speed as A. Determine graphically
or otherwise the least distance which B will attain from A.

10. A cyclist is riding due W. at 12 miles an hour and the

wind is blowing from the S.E. at 5 miles an hour. If the cyclist

carries a small flag, in what direction will this flag fly? At what

speed would the cyclist have to ride to make the flag fly due N. ?



CHAPTER VII

KINETIC ENERGY AND MOMENTUM

Measurement of Kinetic Energy. We have already explained

(p. 40) that kinetic energy is the amount of work stored in a

body in virtue of its velocity but we have not yet explained how
the kinetic energy can be measured.

Suppose that a body P, of weight W, starting from rest falls

from A to B, Fig. 66, without overcoming any resistance. Then

Fig. 66.

if h is the vertical distance moved, the weight W has done an

amount of work upon the body equal to force x distance moved

by the body in the direction of the force = Wh. Since no work
has been spent in overcoming resistance, the whole of this work
must be stored up in the body in the form of kinetic energy

(K.B.), and since the body was originally at rest and possessed

no kinetic energy it follows that its kinetic energy at the point
B is equal to Wh,
i.e. K.E. = Wh (1).

A.M. 8
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But we have already shown that for bodies falling freely

under the action of gravity

v2 = 2gh, [formula p. 97]

U. fc=;

.*. we have K.E. = -= .................. (2).

This is a very important formula. In using it, we must note

that it does not matter how the body has moved in obtaining
this velocity; all that matters is that the body, somehow or

other, has attained a velocity v. Then we say that its K.E. is

Wv*

% *

We showed for example, on p. 37, that the work done by
a force depends only on the straight distance in the direction of

the force between the original or final positions of the body.
If for instance the body had moved in the irregular path indicated

in Fig. 66, the work stored in it would still have been Wh and

therefore the kinetic energy would still be Wh, and since the

kinetic energy depends OiJy on the velocity, by definition it

must be equal to -^ whatever be the path traversed.
^9

The direction of the velocity will be different in the two cases,

but that does not matter so far as kinetic energy is concerned.

Change in kinetic energy. Suppose that a body of weight W
has at one instant a velocity u and at some subsequent instant

it has a velocity v.

Then its kinetic energy has changed from - to -
.

*g *g
W

:. Change in K.E. = -
(t;

2 - u2
) ......... (3).

Complete energy equation. We have shown on p. 40 that

work cannot be destroyed and that the difference between the

amounts of work done by the effort and the resistance must be

equal to increase or decrease of the kinetic energy.

We therefore have

Work done by effort = Work done against resistance

f Gain in kinetic energy,

i.e. Ef = ER + K.E. gained ............. (4).
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One of the best examples in practice of the use of kinetic

energy arises in the use of flywheels to steady the motion of

machines. We shall deal with flywheels later under rotating

bodies.

Numerical Examples on Kinetic Energy. (1) A bullet

weighing 3 ounces is discharged from a rifle with a velocity of 1200

feet per second. How much kinetic energy does it possess and how

far will it be able to move a body the resistance to whose motion is

10 tons if we neglect the energy lost in the impact ?

Q
The weight of the body in Ibs. = TF = ;

Wv* _ 3 1200 x 1200
:

~2i
~"

16
X

32-2

= 83,800 ft.-Ibs. nearly.

If the resistance to the motion of a body is It Ibs., the work
done in moving the body a distance s feet in opposition to the

resistance is equal to Us ft.-lbs.

In our present case R = 10 tons = 22,400 Ibs.

/. 22,4005 = 83,800,

We wish to warn the student that the above calculation is

chiefly of academic interest and of value as an exercise in applying
the formulae. As a matter of fact considerable energy is absorbed

in the impact, being converted into the thermal form of energy,
and the resisting force will not be constant.

(2) A train weighing 100 tons gets up a speed of 30 miles an
hour in 1 mile from rest on the level, the air and other resistances

being equivalent to a force of f ton. What constant tractive effort

is required ?

In this case original K.E. = 0.

Wv2

After one mile K.E. = -~
,

^9

v = 30 miles an hour = 44 feet per sec.,

100 x 2240 x 44 x 44
K.E. ==

2 x 32-2

6,734,000 ft.-lbs. nearly.
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The distance travelled in getting up a speed of 44 feet per
second is 1 mile, i.e. 5280 feet.

Therefore if the effort is F Ibs. we have

Work done by effort = Work against resistance + Gain in K.E.

Resistance = ? ton ==
3 X *24

Ibs. = 1680 Ibs.
4 4

/. F x 5280 = 1680 x 5280 + 6,734,000

or (F - 1680) 5280 = 6,734,000,

= 1275 Ibs.

/. F = 1275 + 1680 = 2955 Ibs.

(3) Taking the numerical example worked on p. 48, find the

maximum velocity and the velocity at the end if the initial velocity

was 10 feet per second and the body weighs 1000 Ibs.

We have given that the gain in K.E. up to the point of

maximum velocity = 2450 ft. -Ibs.

Wu* 1000 x 10 x 10 . KKO .,

Initial K.E. =
-^-

-
2^32^2

- ^ 553 -"lbs ' ;

.*. K.E. at maximum velocity = 1553 + 2450 ft. -Ibs. = 4003;

/. if v is the maximum velocity

_
/. v = V258 16 ft. per sec.

We next find the velocity at the end of the motion as follows.

At the end, the excess work which appears as kinetic energy

was found to be 1000 ft. -Ibs.

Therefore K.E. at end = K.E. at beginning + work added
= 1553 4- 1000

= 2553 ft.-lbs.

.
^2

_9553.. ^ -2553,

2 _ 29 x 2553 _ 2 x 32-2 x 2553

1000 1000

= 164 nearly;

/. v = \/164 = 12-8 feet per sec.
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The connection between Force and Acceleration. Suppose
that a force F is acting upon a body weight W. It has been

found experimentally that the body will be given a uniform

acceleration a in the direction of the force and that a bears the

same ratio to g the gravity acceleration as F bears to W.
We therefore have the rule

'- ....................*
This law is one of the most important in the whole range of

mechanics and the student must master it before he can hope to

appreciate the interest and importance of the subject. It was

discovered by Newton and is often called the second law of

motion although it is usually expressed in different language.

We have already considered Newton's other two laws of motion

and will summarise them again a little later. For the present
we will endeavour to become familiar with these formulae.

Suppose that a body of weight W is moved by a force F a

very short distance s in the direction of F and that its velocity

at the beginning of the distance is u and at the end is v.

Then work done = F . s.

If this all goes in increasing the K.E. we have

F . s = gain in K.E.

Now if s is so short that the force F is constant over it and

that the acceleration is also constant, we have by formula (7), p. 96,

v2 = w2 + 2as,

i.e. v* u* = 2as.

Putting this in (7)

u. :.F~
Wa

.................. (8).
s/

We can thus deduce the result from the principle of the

conservation of energy.
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Numerical Examples. (1) The piston of an engine weighing
20 Ibs. is given a retardation of 6 feet per second per second. What
backward pressure will be acting on the piston ?

We shall discuss the crank and connecting-rod mechanism of

an ordinary engine in a later chapter (p. 258) and those students

who would like to understand this question with special reference

to its application are recommended to refer to that description.

Putting our values in

a 20x 6 - indicates= = _
g 32-2 ward pressure)

= 3-73 Ibs. Ans.

(2) A train weighing 100 tons gets up a speed of 30 miles an
hour in 1 mile from rest on the level, the air and other resistances

being equivalent to a force of f ton. What constant tractive effort

is required ?

We have already worked this example on p. 115 from the

work point of view ; now let us work it from that of the accelera-

tion.

We have v* = u* + 2as,

v = 44 feet per sec., u = 0, s = 5280 feet,

.-. 44 x 44 = 105600,

44x44 1Q0 .
a =

10560
= per sec * ;

/. Resultant force = ** = * x 2MO x -183

g 32-2

= 1274 Ibs.

Now resultant force = effort - resistance,

i.e. 1274 = ^-1680;
/. F = tractive effort = 2954 Ibs. Ans.

We think that as a general rule the student will find the work
method of solving problems easier to deal with than the accelera-

tion method, but it is somewhat a matter of individual taste.

(3) Take example (2) and find the effort required to give the

same speed in the same distance up an incline of 1 in 100.

Solution (i). By acceleration.

In this case there is in addition to the air and like resistances

a resistance equal to the resolved component of the weight of

the train in the direction of the tractive effort.
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This is an example of the inclined plane and we proved (p. 58)
that adb, Fig. 67, is the triangle of forces.

rt *. j i 100 x ab
:. Component down plane = -5

= 1 ton nearly

= 2240 Ibs.

.'. Resistance now = 2240 -f 1680 = 3920 Ibs.

Resultant force up plane = 1275 Ibs. (as before).

/. Tractive effort = 3920 + 1275

= 5195 Ibs.

100
100 Tons

Kg. 67.

Solution (ii). By work equation.
When the train goes 1 mile its weight is lifted by an amount

very nearly equal to T^ mile = 528 feet.

;. Work done = 100 x 2240 x 52-8 ft.-lbs. against gravity
= 5280 x 2240;

.*. Work done by effort

= Work done against resistance + gain in K.E.,

i.e. F x 5280 = 1680 x 5280 + 2240 x 5280 + 6,734,000,

/. 5280 {F - (1680 + 2240)} = 6,734,000,

F - 3920 = 6?7

5

3

2

4

8Q
- 1275 Ibs.,

i.e. F = 1275 + 3920 = 5195 Ibs.

Momentum. We have seen that when a body is moving
with a certain velocity, it has a certain amount of kinetic energy.
It is said also to possess momentum, the amount of momentum
being defined as follows. If a body of weight W Ibs. is moving
with a velocity v feet per second, its momentum is equal to

Wv . Wv . ,. ,

, i.e. KO~S m Ib.-ft.-second units.
Q 9ji*l

Momentum is a vector quantity because it has direction as

well as magnitude.
We can therefore combine momenta by the law of vector

addition. Change of momentum is found in exactly the same
manner as change of velocity (p. 104),
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Numerical Example. What is the momentum possessed by
the bullet referred to in example (1) on p. 115?

g
Wt. = 3 oz. =

jg Ibs., v = 1200 feet per second ;

3 x 1200
.*. Momentum = -,-= ^ -

h = 7 units.
lu X o^'Z

Dimensional equations. We can find the dimensions of the

units in any formula by writing a dimensional equation as follows :

ft.

nr Ibs. x -
TIr 4.

Wv sec.
Momentum = =

.,

g ft.

sec.2

= Ibs. x seconds.

In these dimensional equations we cancel out dimensions

according to ordinary rules of fractions, and students should

write such an equation whenever they are not certain as to whether

or not their formula is in the right dimensions. Mere numerical

coefficients are not counted.

As another example take kinetic energy :

Wvz

K.E.
2g ft.

sec/

_
Ibs. x ftA x s^.

8

= Ibs. x ft.

We know that energy should be in work units and the fact

that this comes to Ibs. x ft., i.e. in work units, shows us that the

formula is of the right order.

The importance of Acceleration in Traction Problems.

In all branches of traction engineering railways, tramways and

motor cars the question of acceleration is of the greatest possible

importance and students who wish to specialise later in any of

these branches should make themselves quite clear on this subject
of the connection between effort or force and acceleration.
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Electric traction is supplanting steam traction for suburban

traffic, not because it is less expensive but because the electric

trains can get up speed more quickly or in other words they can

have a greater acceleration. If we have a fixed resultant effort

F available, the acceleration a is given in terms of the weight
W to be moved by the relation

-9-
.

and the smaller we make the weight TF, the larger the acceleration

a will become. This is why we want to keep down the weight
as much as possible if we want to start quickly ;

at the same time

the weight must be enough to get sufficient grip upon the rail

or road to prevent the driving wheels from slipping; this is

allowed for in electric trains by having motors on several of the

carriages. If we have two vehicles such as bicycles exactly
similar but very different in weight, say one made of aluminium

and one of steel, we speak of the heavier one as more difficult to

push even on the level ;
we mean really that it is more difficult

to accelerate or start. There is practically no difference in the

force required to keep the heavy and the light one moving at

a given speed once they have been started. Modern traction is

principally concerned with the question of getting up speed

and, as far as brake problems go, of slowing down and to deal

with these problems we must know how to calculate the accelera-

tion when we know the resultant effort and the weight of the

body.

SUMMARY OF CHAPTER VII.

Kinetic Energy (X.E.) = -
.

W
Change in K.E. =

-^
(v

2 - w2
).

Work done by effort = Work done against resistance + Gain in

kinetic energy.

*i*
9

Wv
Momentum=- .

9
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EXERCISES. VII.

1. A body of weight 10 Ibs. moves with a linear velocity of

800 ft. per min. Find its kinetic energy in ft. -Ibs.

2. A train weighing 150 tons is running on a level road at

30 miles per hour. The resistances are equal to 12 Ibs. per ton.

If steam be shut off how far will the train run before coming to

rest? Give answer in yards.

3. A body weighing 100 Ibs. increases its velocity from 25 to

35 yds. per sec. Find the increase in its kinetic energy.

4. In a Fly Press the radius at which the balls revolve (there

are two each weighing 12 Ibs.) is 10 ins. and the number of revolutions

per min. is 150. If the die be brought to rest after stamping through
a piece of metal in. thick, what is the average force resisting the

blow?

5. A shot weighing 6 Ibs. leaves the mouth of a gun with a

velocity of 1000 ft. per sec. ; determine the number of ft. -Ibs. of

energy accumulated in it and the mean pressure exerted by the

exploded powder behind it if the length of the bore is 5 ft.

6. A body weighing 108 Ibs. is placed on a smooth horizontal

plane, and under the action of a certain force describes from rest

a distance of 1 1 ft. in 5 sees. Find the force in Ibs.

7. The rim of a flywheel weighs 9 tons and its mean linear

velocity is 40ft. per sec.; how many ft. -tons of work are stored

up in it? If it is required to store the additional work of 9 ft. -tons

what should be the increase in velocity?

8. A train weighing 50 tons is impelled along a horizontal

road by a constant force of 550 Ibs. ; the frictional resistance is

8 Ibs. per ton; what velocity will it have after moving from rest

for 10 mins., and what distance will it describe in that time?

9. A car weighing 2 tons and carrying 40 passengers of average
weight 145 Ibs. each is travelling on a level rail at 6 miles per hour.

What is the momentum?

10. In the previous example what average force must be
exerted to bring the car to rest in 2 seconds, and if that force is

constant what distance will the car travel before it comes to rest ?

11. A ship weighing 2500 tons is propelled at 20 knots (1 knot =
6080 ft. per hour) by engines of 8000 H.P. Estimate the distance

which will be traversed by the ship whilst an amount of energy
is developed by the engines equal to the kinetic energy of the ship.
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12. A weight of 50 Ibs. is moving at a speed of 15 feet per second
and it is acted upon for 20 seconds by a force of 20 Ibs. in the direction

of motion. What is the distance moved through during the time?

13. A train weighing 250 tons is moving at 40 miles per hour
and is stopped in 10 seconds. What is the average force causing

stoppage ?

14. A planing machine table weighs 2 tons and has a retardation

at the end of its stroke of 3 feet per second per second. What
thrust will this cause on the driving mechanism ?

15. When starting, a locomotive exerts a tractive force of

4 tons upon a train weighing 200 tons. Calculate the acceleration

(neglecting friction), and the velocity after 1 minute.

16. A piston and rod and cross-head weigh 330 Ibs. At a

certain instant, when the resultant total force due to steam pressure
is 3 tons, the piston has an acceleration of 370 feet per second per
second in the same direction. What is the actual force acting on

the cross-head ?



CHAPTER VIII

NEWTON'S LAWS OF MOTION: IMPACT

WE will now consider collectively Newton's Laws of motion

which are the foundation of the whole scientific treatment of

mechanics.

They may be enunciated as follows :

1. A body continues in a state of rest or uniform motion in

a straight line unless it be acted upon by some external force.

2. The rate of change of momentum is proportional to the force

applied and takes place in the direction of the force.

3. To every action there is an equal and opposite reaction.

1. The first law is sometimes called the law of inertia ; inertia

being the property of a body which resists a change in its state

of rest or motion. It follows from this law that if there is a

resultant force acting upon a body, it must either change its

velocity if it is already moving or else start moving if it is

stationary ; in either case the body will be given an acceleration,

which may be negative, i.e. a retardation. In all engineering

problems dealing with bodies which from their very nature must

be stationary e.g. structures such as bridges, roofs, dams, etc.

we know from this law that all the forces acting must neutralise

each other, or in the language of mechanics their resultant must
be zero.

This law cannot be rigorously demonstrated experimentally
because it is impossible for us to move bodies without external

forces being brought into play; we have referred to these as

passive resistances. A stone thrown along a road soon comes to

rest on account of the forces called frictional forces caused by
the roughness of the road, but if thrown along a surface of ice

which has very little friction the stone will run for a very long
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way. These frictional forces are the bugbear of the engineer;
he has for centuries been trying to make them as small as possible
but he can never get rid of them altogether. If he could, the

world would be a very different place. As a matter of fact

frictional resistances, which we will deal with in detail later, are

of great value in certain cases. In frosty weather for instance

we throw sand down upon the roads to increase the friction

because without it we should not be able to get sufficient grip
to propel our vehicles. What we should like to be able to do
is to bring frictional forces into play when they are useful and
eradicate them when they are not, but natural phenomena will

not change for our convenience; all that we can do is to study
them as closely as possible in order to use them to our greatest

possible advantage.

2. This is Newton's way of expressing the law that we have
Wd

reduced to symbols in the form F =- for the case in which

the weight does not change. We will consider that case in detail.

Suppose that in a very short time t seconds the velocity of a body
of weight W changes from v feet per second to v' feet per second.

Its change of momentum is equal to - - =
(v vj andWWW

this takes place in a time t.

:. Change of momentum per second

sr Kate of change of momentum

Now f
- -} is the rate of change of velocity and this we

have called the acceleration (a), so that we have

Rate of change of momentum = - -
.

y

Newton's law states that the rate of change of momentum is

proportional to the force applied; whereas in our formula we
make it equal to the force applied. This is because we choose our

units of force and momentum so that the proportionality becomes

an equality.

3. This law is very important and will become more clear if

we give some explanatory considerations.
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Take the case of a weight hung on the end of a rod, Fig. 68
;

the result of that action will be to cause the rod to stretch.

The amount of stretching will be very small but it can be

measured by delicate instruments called "extensometers." This

stretching brings into play forces between the molecules of the

rod tending to resist the motion. These molecular forces are

called stresses and act across every section that we consider.

The stresses increase with the

amount of the stretching, which

will continue until the resultant

of the stresses is equal to the

weight W\ this resultant of the

stresses is the reaction which is

equal and opposite to the action,

i.e. the weight. If the reaction

contributed by the stresses is not

equal to the weight, there will

be a resultant force acting upon
the rod below the section under

consideration. From the first

law this must cause the change
of state of rest of the rod, i.e.

must start it moving. This is

exactly what happens when the

load is so great that the rod

breaks. For every material there

is a certain maximum stress that

it is capable of calling into play
so that the resultant stress can

never be more than a certain

amount; if therefore the weight
is greater than this, motion must

take place and the rod fractures. When the load is removed

the rod returns to its original length (unless the material is not

perfectly elastic*), the return movement showing the existence

of the stresses.

As another example take the case of a man striking his fist

against a wall. The wall presses just as hard on the man's hand

lijtl

/^ 's

W

I

Fig. 68.

* See p. 139.
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as his hand presses on the wall and the feeling of pain which the
man experiences is a proof of the existence of the reaction.

Next take the case of a traction engine pulling along a truck.

The truck pulls back on the engine just as much as the engine

pulls on the truck. How then is it that the truck goes along
at all ? We may answer that the truck does not move relatively
to the engine and that if there were not equality between the

forces between them there would be a resultant which would
cause relative motion.

At the same time it is true that the engine must exert a

greater effort than the force with which it pulls the truck.

Referring to Fig. 69 let F be the effort which the engine exerts

r^ Traction Engine

'//'''/f//f//f/V/'////'//////y////V^

Kg. 69.

upon the ground ; it is only by means of the grip upon the ground
that the engine can pull ; that is why the driving or back wheels

are usually roughened. A traction engine would be absolutely
useless upon ice because the wheels would merely slip round.

If you watch the locomotive of a heavy train start you will

usually notice that the driving wheels will slip and buzz round
;

the driver then operates a device for projecting sand under the

driving wheels to increase the grip. The ground has to be able

to exert the same effort F as a reaction or else, as we have seen,

slip occurs.

Now part of this force will be spent in overcoming the resist-

ances in the engine and accelerating it and part in overcoming
the resistances in the truck and accelerating it. The force P
therefore which has to be transmitted across the coupling is less

than the force F which the engine has to exert upon the ground.
One form of reply therefore to the question as to how it is
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that the engine can pull the truck is that the engine only exerts

the same force upon the truck as the truck exerts upon the engine
but that the engine exerts upon the ground a greater force than

the resistance to the motion of the truck.

Let us consider this problem in somewhat greater detail.

Let Rs and RT be the resistances to motion of the engine and

truck respectively and let WE and WT be their weights. These

resistances will depend upon the weights and the velocity to

some extent and can of course only be found accurately by

experimental determination for any given vehicle.

We then have

Total effort = Effort spent in overcoming resistance

+ Effort used in accelerating,

i.e. f-Bi + B,*
g

Of this P the force transmitted through the coupling is equal to

p WT .aRf+~.
Numerical Example. A man weighing 12 stone is going up

in a lift which has an acceleration of 3 feet per second per second ;

what pressure does he exert on the floor ?

In this case the floor of the lift is exerting sufficient force to

lift the man and in addition give him an acceleration of 3 ft. per

sec. 8

Force required for acceleration =

12 x 14 x 3
Ibs.

= 15*6 Ibs. nearly.

Therefore total upward pressure = 12 x 14 4- 15-6

= 183-6 Ibs.

Since the pressure of the floor upon the man must be exactly

equal to his pressure on the floor, the man must exert a pressure

of 183-6 Ibs.

As the lift slows down, the acceleration is negative so that

the pressure is less than the man's weight. The same occurs

when the lift starts downwards and accounts for the unpleasant

feeling which often accompanies a quick-stopping lift.
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Impact and Impulse. Up to the present we have considered

only the cases in which the forces acting are gradually applied
and act over a considerable length of time. In some cases,

however, the forces act over an extremely short time, as in an

explosion or the blow of a hammer, and then we require to be

able to estimate the force of the blow. Such suddenly applied
forces are called impulsiveforces and it is very difficult to calculate

accurately the maximum force produced by a blow. All that

we can do is to find the average value of the force if we know the

short time during which the force or impulse acts. It is very

necessary to realise the difference between the average force and

the maximum. The determination of the maximum force of an

impact is a very troublesome and advanced problem, but a

knowledge of the average force is of considerable value to us in

some problems.

Suppose that a body of weight W Ibs. moving with a velocity
v feet per second is suddenly brought to rest in t seconds. The

average force F produced by the blow will be equal to the rate

of change of momentum, i.e. to the momentum destroyed per

second. But the original momentum was and it was destroyed

in t seconds, so that - is the momentum destroyed per second.
9*

Therefore we have average force produced

Numerical Example. A hammer weighing 2 Ibs. and having
a velocity of 30 feet per second strikes a blow lasting ^^ second.

What force is produced by the blow ?

Substituting directly in formula (1) we have

2x30 6000 ,
== xx-x- = loO IDS.

32-2 x
jjg

This question of impact is of very great importance and

through loose use of language many people have wrong ideas

about it. For instance a man may ask what force he can exert

with a certain hammer; the correct answer is that you cannot

tell because you must know the time that the blow lasts before

you can know the force of the impact. If the hammer loses its

A.M. 9



130 NEWTON'S LAWS OF MOTION: IMPACT [CJH.

momentum very quickly it strikes a heavy blow, but if it takes

comparatively long to do so only a light blow results. A certain

hammer will strike a very much heavier blow upon cast iron

than it will upon wood and it will strike a much harder blow

upon wood than upon sand. A carpenter does not use a heavy
hammer for a chisel because wood is soft and does not require

a very heavy force to cut it, the tool therefore has a wooden

handle to absorb some of the shock and make the cut longer;

but when tooling a very hard material a greater force is required

so that as "snappy" a blow as possible is delivered. When we
wish to avoid percussive forces we provide some device such as

springs for making the force act over a longer time; for this

reason we hang our carriages upon springs to deaden the effect

of impulsive forces.

Equality of Momentum before and after impact. If two

bodies collide or an explosion occurs between them, there are

forces acting between them and by Newton's third law the forces

are equal and opposite. Therefore the rates of change of

momentum of the two bodies are equal and opposite. Thus one

body gains in momentum in any direction as much as the other

loses or the total momentum of the two bodies in any direction

remains unchanged. This is sometimes called the law of the

conservation ofmomentum and is an extremely important principle.

Momentum cannot be destroyed by impact ; its effects can only

be got rid of by swamping it, i.e. by transferring it to a body
whose weight is so great that the resulting change in velocity is

negligible. If for instance a stone hits the ground, it loses its

own velocity and therefore its momentum but it communicates

the momentum to the earth. The weight of the earth is, how-

ever, so immense that the resulting velocity is so small that for

all practical purposes it may be taken as nothing. We have

constant examples of the reactive forces caused by a sudden

change of momentum ; we will consider some of them in detail.

Impact of bodies. Referring to Fig. 70, let one body of

weight W possessing a velocity u collide with another body of

weight TFX moving in the same direction with a velocity ul9

Then the total momentum before impact



viii] NEWTON'S LAWS OF MOTION: IMPACT 131

If the velocities after impact are respectively v and v^ in the

same direction we shall have that after impact

0).

Since these must be the same we have, cancelling out g which

is common throughout,

Wu + W^ = Wv + W^vl ........... (4).

This equation alone is not sufficient to determine the velocities

after impact unless the bodies are "inelastic," i.e. they do not

rebound. The accurate treatment of the impact of elastic bodies

such as billiard balls is very difficult and beyond the scope of the

present book.

''////&'//// *'

Fig. 70.

Restricting therefore our consideration to bodies which do

not rebound we shall have the two bodies going on together at

the same velocity after impact ;
if this common velocity is v we

shall have in equation (4)

WU + W^ = WV + WiV

Loss of energy at impact. Although there is no loss of

momentum at impact there will always be a loss of kinetic

energy. This loss of energy is evidenced by the noise produced

by the impact and also by the heat produced ; bullets for instance

become very hot on impinging against anything.
The loss of energy can be expressed in formulae as follows:

taking as before the case in which there is no rebound, we have

Total Kinetic Energy before impact = -^
--

j

--
^

. . (6),

Total Kinetic Energy after impact

02
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.*. subtracting (8) from (6) and multiplying out, we have

Loss of K.E.

Wu* W^ _ W*u? + 2WWluu1 +WW
''

2g
'

2g 2g(W+W1)

!_
(Wu*(W+ WJ+W!%2

(TT+W1)

~2g\ (W+WJ
1 (WW^u* + WW^S - 2WW1uu{\

~2g( W + WT, S

{u
2 - 2uut

-

-.(9).

Now (u %) is the relative velocity between the two bodies

so that we have

WW
Loss of K.E. = 2~7W Wl x square of relative velocity.

It should be noted that if one of the bodies is moving in

a direction opposite to that of the other, one of the velocities

should be considered negative.

This principle is useful in questions dealing with the waste

of energy due to a sudden contraction in a water pipe.

Numerical Example. Water isflowing through a pipe and has

a velocity of 3 feet per second until it meets a sudden contraction

when the velocity is suddenly increased to 6 feet per second. How
much kinetic energy is lost per pound of water flowing ?

In this case the change of velocity is not absolutely instan-

taneous in practice because the water will curl round somewhat

as shown in Fig. 71, but experiments have shown that the present

method of treatment based upon impact formulae gives results

that are approximately correct.

Now the velocity increases and therefore the kinetic energy

increases; the pressure, however, of the water will diminish.

If the change of section were gradual this diminution of pressure

would be such as to keep the total energy constant, but with

the abrupt change there will be loss of energy and the pressure

will therefore be less still.

In our example W = 1 Ib. and Wl
is very large, because the
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pipe must be fixed to something very heavy else it would be

pushed along.

/. Energy lost per pound = 2g\l^W1)
(3

~~
6)*'

Kg. 71.

mm

Now
^

*. = 1 to all practical purposes if W1
is very great ;

if for instance W1
= 10,000 Ibs.,

Wi _ 10,000

1 + FFi" 10,001
;

.'. Energy lost =
2 x \2 .2

x (- 3)

Recoil of guns, etc. Everyone who has used a rifle knows
that it recoils or kicks back as the shot is fired. This is because

before the explosion the shot had no velocity and therefore no

momentum; it is suddenly given a velocity and momentum at

the explosion, and since the total momentum before and after

the impulse must be zero, the rifle is given an equal and opposite
momentum which will drive the rifle backwards to an appreciable
extent if it is not securely held.

An exactly similar effect is noticeable in the case of hose

pipes. Firemen have to hold the hose pipe quite firmly, otherwise

the pipe would jump backwards. This recoil was made use of

in the simplest and earliest form of steam-engine (Hero's engine)

and in an early form of water wheel known as "Barker's Mill,"

the modern form of which is the sprinkler used to water lawns.

In this form the water rushes out and drives the radiating arms

backwards.

Experiment. A very simple and instructive form of Hero's engine
can be made as follows: Take a piece of glass tubing such as is used very

largely in chemical apparatus and by heating in a Bunsen burner and drawing
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down obtain a piece about J inch long with a thin neck at each end, as shown

in Fig. 72 (a). Now cut off one end as indicated in dotted lines and close this

end by heating in the flame and then blow a bulb at the end as shown at (6).

Next soften the glass just above the bulb at A and bend the stem over to

resemble a glass retort and then bend over at right angles to the plane of the

paper at B, about half an inch from the top. Our reaction steam turbine is

now complete.

B

(a) (b)

Fig. 72.

We have next to get some water into it. To do this warm it carefully

without making it very hot and thus drive out some of the air from it;

then dip the open end into water and the bulb will fill partly as the air cools.

Now hang it up as indicated in (c) by means of a piece of thread, or better by
means of a stump of wire joined to a piece of thread, and hold it over a gas

flame, taking care not to burn the thread. The water will then boil and the

steam rushes out at the end and makes the "engine" buzz round in merry
fashion.

This question of recoil is of very great importance in the case

of large guns, particularly those mounted on ships. In the design
of battleships great care has to be taken that the stability is

sufficient to bear the tremendous backward thrust of a broadside.

r.73.

Referring to Fig. 73, let W be the weight of the shell and

Wt
be the weight of the gun and let v be the velocity with which
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the shell is driven forward as a result of the explosion ; then the

gun will be driven backward with a velocity vt . Then if we

neglect the momentum of the gases resulting from the explosion,

the backward momentum of the gun must be equal to the forward

momentum of the shell,

W^v. Wv
i.e. - =-

,

g g
'

Wv
V> = FT

Numerical Example. A gun weighing 40 tons fires a shell

weighing 100 Ibs. with a velocity of 1500 feet per second. What is

the velocity of recoil ?

In this case Wx
= 40 tons = 40 x 2240 Ibs.,

W = 100 Ibs.,

v = 1500 feet per second ;

Wv 100 x 1500
" l W lCfx-2240

= 1-67 feet per second.

The action of a pile-driver. The operation of driving a pile

into mud or soft earth gives us a familiar engineering application

of the principles of impact. The pile A t Fig. 74, of wood, or

nowadays of reinforced concrete, is driven into the mud by blows

with a hammer ' '

tup
' '

or
' '

monkey
" B . This tup has in one form

of pile-driver a hook C which is weighted so as normally to engage
an endless chain D which moves upwards and carries the tup with

it. The hook then meets a releasing or "trip" device E which is

suspended by a rope so as to be adjustable in height; the tup is

then freed from the chain and drops on to the pile, thus driving

it in to an extent dependent upon the resistance of the mud or soil.

Let W be the weight of the pile and W that of the tup and

let h be the height through which the latter falls.

Then its velocity vl is given by Vj
2 = 2gh,

or Vj
= J2gh ;

therefore if the tup does not rebound we shall have that if v is

the velocity with which the pile and tup move,

Momentum after impact =
(W + Wx ) v,

Momentum before impact = W^ ;

W1~ X *'
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If the resistance to the pile were uniform and equal to JR we
should have that if s is the short distance moved,

R . s = Work done

= K.B. possessed just after impact

by tup and pile

(W+WJv*
20

WJi

..(1).

This formula is not, however,

strictly applicable to this problem
because the resistance is not uni-

form.

A formula which is used a good
deal in practice in order to determine

the safe load P to put upon a pile is

(2),

where h is the drop of the tup in

feet,

and x is the penetration in inches

of the last blow.

This formula professes to give a

safe load on the pile equal to J of

the average resistance of the last

blow.
7?

That is P = of our formula (1).

Putting therefore E = 6P,

we have P =

Fig. 74. Pile-Driver.
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y
or if h is in feet and for s which is also in feet we write ^ where

x is in inches we shall have

2Wl h

8).

TP
If, therefore, -

. # is equal to 1, the formula used in practice
"i

is equivalent to that which we have obtained from theoretical

considerations which are not strictly applicable.

SUMMARY OF CHAPTER VIII.

Newton's Laws of Motion.

(1) A body continues in a state of rest or uniform motion in

a straight line unless it be acted upon by some external force.

(2) The rate of change of momentum is proportional to the

force applied and takes place in the direction of the force.

(3) To every action there is an equal and opposite reaction.

Suddenly applied forces are called impulsive forces.

JT
WV

F==
-0'

Momentum before and after impact is equal.

Although no momentum is lost in impact there is always a loss

of energy.
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EXERCISES. VIII.

1. A hammer head weighing 2 Ibs. and moving with a velocity
of 50 ft. per sec. is stopped in -001 second. What is the average
force of the blow?

2. A ship weighing 2000 tons and moving with a speed of

3 knots is stopped in 1 minute. Neglecting the motion of the

water find the average retarding force if 1 knot is 6080 feet per
hour.

3. A cage weighing 1000 Ibs. is being lowered down a mine

by a cable. Find the tension in the cable (1) when the speed is

increasing at the rate of 5 feet per second per second; (2) when
the speed is uniform; (3) when the speed is diminishing at the rate

of 5 feet per second per second. The weight of the cable itself

may be neglected.

4. A jet of water 1 inch in diameter falling from a height of

200 feet strikes a fixed hemispherical cup so as to reverse its direction.

Find the force which it exerts upon the cup assuming that the

jet has 90 per cent, of the full velocity due to its height of fall.

5. A gun delivers 400 bullets per minute, each weighing -5 oz.,

with 2000 feet per second horizontal velocity ; neglecting the momen-
tum of the gases, what is the average force exerted upon the gun?

6. A 1 oz. bullet fired horizontally with a velocity 1000 feet

per second into a 1 Ib. block of wood resting on a smooth table

penetrates 2 inches and remains embedded. With what velocity
does the block move off ? Would the bullet have penetrated more
or less if the block had been fixed?

7. An 1800 Ib. shot moving with a velocity of 2000 feet per
second impinges on a plate weighing 10 tons, passes through it

and goes on with a velocity of 400 feet per second. If the plate
is free to move find its velocity.

8. Two inelastic bodies moving in the same direction with

velocities of 10 and 8 feet per second impinge. If they weigh
4 and 5 Ibs. respectively, what is their common velocity after impact ?

What would have happened if they had been moving in opposite
directions ?



CHAPTER IX

STRESS AND STRAIN

Strain may be defined as the change in shape or form of a

body caused by the application of external forces.

Stress may be defined as the force between the molecules of

a body brought into play by the strain.

An elastic body is one in which for a given strain there is

always induced a definite stress, the stress and strain being

independent of the duration of the external force causing them,
and disappearing when such force is removed. A body in which
the strain does not disappear when the force is removed is said

to have a permanent set and such body is called a plastic body.

When an elastic body is in equilibrium the resultant of all

the stresses over any given section of the body must neutralise

all the external forces acting over that section. When the

external forces are applied, the body becomes in a state of strain,

and such strain increases until the stresses induced by it are

sufficient to neutralise the external forces.

For a substance to be useful as a material of construction,

it must be elastic within the limits of the strain to which it will

be subjected. Most solid materials are elastic to some extent,

and after a certain strain is exceeded they become plastic.

Hooke's Law enunciated by Hooke in 1676 states that in

an elastic body the strain is proportional to the stress. Thus,

according to this law, if it take a certain weight to stretch a rod

a given amount, it will take twice that weight to stretch the rod

twice that amount; if a certain weight is required to make a

beam deflect to a given extent, it will take twice that weight to

deflect the beam to twice that extent.

Kinds of Strain and Stress. Strains may be divided into

three kinds, viz. (1) an extension \ (2) a compression, (3) a slide.
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Corresponding to these strains we have (1) tensile stress ; (2) com-

pressive stress; (3) shear stress.

A body that is subjected to only one of these, is said to be

in a state of simple strain, while if it is subjected to more than one,
it is said to be in a state of complex strain.

Examples of simple strains are to be found in the cases of

a tie bar; a column with a central load; a rivet, Fig. 75. The
best example of a body under complex strain is that of a beam
in which, as we shall show later, there exist all the kinds of

strain.

I

P -*3? '<b> "iiA P P

Rtvef under shear

Fig. 75. Kinds of Strain.

Intensity of stress. Imagine a small area a situated at a

point X in the cross section of a body under strain, then if S is

the resultant of all the molecular forces across the small area,
o
- is called the intensity of stress at the point X. In the case of

bodies under complex strain, the intensity of stress will be

different at different points of the cross section, while in a body
subjected to a simple strain, the stress will be the same at each

point of the cross section, so that in this case if A is the area of

the whole cross section and P is the whole force acting over the

p
cross section, the intensity of stress will be equal to -

. In future,
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unless it is stated to the contrary, we shall use the word "
stress

"

to mean the "
intensity of stress."

United strain. The unital strain is the strain per unit length
of the material. In the case of extension and compression, the

total strain is proportional to the original length of the body.

Thus, a rod 2 ft. long will stretch twice as much as a rod 1 ft.

long for the same load. In Fig. 75 if 2 is the unstrained length
of the rods under tension and compression and x the extension

x
or compression, the unital strain is

j
.

In the case of slide strain, the angle of the unit cube (Fig. 75)

under consideration but not the length of the body is altered, and
this angle /?

is the measure of the unital strain. If the angle is

small, as it always will be in practice with materials of construction,

then it will be nearly equal to
, , where x and 2 are the quantities

shown in the figure.

Stress-strain Diagrams. If a material be tested in tension

or compression, and the strain at each stress be measured, and
such strains be plotted on a diagram against the stresses, a

diagram called the stress-strain diagram is obtained. If a material

obeys Hooke's Law, this diagram will be a straight line. For
most metals, the stress-strain diagram will be a straight line until

a certain point is reached, called the elastic limit, after which the

strain increases more quickly than the stress, until a point called

the yield point is reached, where there is a sudden comparatively

large increase in strain. After the yield point is reached, the

metal becomes in a plastic state and the strains go on increasing

rapidly until fracture occurs.

Fig. 76 shows the stress-strain diagram for a tension specimen
of mild steel, such as is suitable for structural work.

The portion AB of the diagram is a straight line, and represents

the period over which the material obeys Hooke's Law. At the

point C, the yield point is reached, and the strain then increases

to such an extent that the first portion of the diagram is re-drawn

to a considerably smaller scale, as shown on the left in the

figure. The strain then increases in the form shown until the

point D is reached, the curve between C and D being approxi-

mately parabolic in shape. When the point D is reached, the

maximum stress has been reached, and the specimen begins to
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pull out and thin down at one section, and if the stress is

sustained, fracture will then occur. The portion DE, shown

dotted, represents increase of strain with apparent diminution of

stress. This diminution is only apparent because the area of the

specimen beyond the point rapidly gets smaller, so that the load

may be decreased and still keep the stress the same. In practice

it is very difficult to diminish the load so as to keep pace with

the decrease in area, so that this last portion of the curve is very
seldom accurate, and has, moreover, little practical importance.

CO
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The stress-strain diagrams in compression and shear for mild

steel are very similar to that for tension. In compression it is

difficult to get the whole diagram, because failure occurs by
buckling, except with very short lengths, where it is very difficult

to measure the strains, and in shear the test has to be made by
torsion, because it is almost impossible to eliminate the bending
effect. Now, in torsion, the shear stress is not uniform, so that

the metal at the exterior of the round bar reaches its yield point
before the material in the centre, and this has the effect of raising

the apparent yield point. The same occurs in testing for com-

pression or tension by means of beams.

The importance of the elastic limit has been overlooked to

a great extent by designers of structures and machines; but

inasmuch as the theory, on which most of the formulae for

obtaining the strength of beams are based, assumes that the

stress is proportional to the strain, it must be remembered that

our calculations are true only so long as Hooke's Law is true,

so that the elastic limit of the material is a very important

quantity.

Stress-strain Diagrams for Cast Iron. The strength of cast

iron varies largelywith the composition, and the strength in tension
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be seen that in tension the strain is never really proportional to

the stress, while in compression the stress and strain are approxi-

mately proportional up to a stress of about 8 tons per square
inch. In the figure the compression curve is not completed,

owing to buckling setting in. It is 011 account of the fact that

the strain is not proportional to the stress that there is a consider-

able difference between the actual and calculated strengths of

cast iron beams.

Other Materials. Timber. There are several difficulties

attendant upon the accurate testing of timber, owing to the

effect of dampness and to lack of homogeneity in the material.

It may be taken that the stress-strain diagrams are approximately

straight for a portion of their length, but then curve off in a

similar manner to the compression curve for cast iron.

2000
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cannot be taken as almost constant as in the case of steel. In

tension a somewhat similar curve is obtained, but as cement and

concrete are practically never used in tension, much less work

has been done on its tensile strength.

The Elastic Constants or Moduli. If a material is truly

elastic, i.e. if the strain is proportional to the stress, then it

follows that the intensity of stress is always a certain number

,, ,, ,. intensity of stress
of times the unital strain, or that the ratio-rrn z =

umtal strain

is constant. This stress-strain ratio is called a modulus. That

for tension and compression is generally known as Young's

modulus, and is given the letter E\ that for shear is called the

shear or rigidity modulus (0). There is an additional modulus

called the bulk or volume modulus (K) which represents the ratio

between the unital change in volume and the intensity of pressure
or tension on a cube of material subjected to pressure or tension

on all faces.

Young's modulus is the one which we shall be most concerned

with in engineering design. Suppose a tension member (a

tie as it is called) or a compression member (a strut) of length
I and cross sectional area A is subjected to a pull or thrust P,
and that the extension or compression is a?, Fig. 75. Then the

p x
intensity of stress is -j , and the unital strain is

^
.

P x PI
:. Young's modulus = E =

-j -r j
=

-j- .

The value of Young's modulus can be found from the stress-

strain diagram. Thus in that for mild steel, Fig. 76,

Now in the relation E =
, if the strain is equal to 1,

strain

i.e. if the bar is pulled to twice its original length, we have that

E = stress, and this accounts for the definition of Young's
modulus that some writers have given, viz.

"
Young's modulus

is the stress that is necessary to pull a body to twice its original

length." Some students find this definition more clear than the

one previously given, but it must be remembered that no material

A. M. 10
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of construction will pull out to twice its original length without

fracture.

Numerical Example. A mild steel tie-bar, 12 ins. long and

of 1J ins. diameter, is subjected to a pull of 18 tons. If the extension

is -0094 in.y find Young's modulus.

Area of section of 1J ins. diam. = 1-767 sq. ins.
;

18
/. Stress per sq. in. = = = 10-19 tons per sq. in.

Unital strain = -P = -000783;iz

:. Young's modulus =
.QQQ^

= 13,000 tons per sq. in.

Young's modulus for Concrete and similar Substances. If

Young's modulus is a constant, it can be found for strains and

stresses below the elastic limit only, and, strictly speaking, there

is no modulus for substances such as concrete, where the strain

is not proportional to the stress. From Fig. 78 it is clear that

since the strain increases more quickly than the stress in concrete,

the value of the ratio will be greater for small stresses than
strain

for large stresses, and so, before the value of this ratio is of any
use to us, we must know the value of the stress at which the

ratio is calculated. One can hardly lay too great stress on the

importance of having exact ideas on the principles which form

the foundations on which the theory of structures is built, and

with concrete it is practically useless to speak of the compressive

strength and Young's modulus unless the composition of the

concrete and the stress at which the modulus is calculated are

known.

Poisson's Ratio Transverse Strain. When a body is

extended or compressed, there is a transverse strain tending to

prevent change of volume of the body. The amount of transverse

strain bears a certain ratio to the longitudinal strain.

transverse strain
This ratio = ,

-
r: ^ -, z

= n varies from J to J for
longitudinal strain '

most materials, and is called Poisson's ratio.

According to one school of elasticians, the value of this ratio

77
should be , but experimental evidence does not quite support

this view, although it is very nearly true for some materials.

The ratio is very difficult to measure directly.
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Experiment upon the tensile strength of wire. Although it requires
a heavy testing machine to make some experiments upon the strength of

materials, the following comparatively simple apparatus will enable a good
deal to be learnt concerning the tensile strength of wire.

ROOF MEMBER

A wire about 8 feet long is suspended from the ceiling or other convenient

point as shown in Fig. 79, and a scale pan is hung on the end. Suspended
from the same point is a strain-measuring device or eztensometer constructed

102
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conveniently as shown in Fig. 80. A white celluloid vernier is carried by
a slider which is clipped to the wire at a fixed length I from the point of

suspension, this length being called the gauge length. By means of this vernier,
the length I for different loads upon the wire can be calculated. The following
records of an experiment made with this apparatus illustrate its use. Weights
are added gently to the scale pan and the scale and vernier are read after

each addition. The load is then the weight of the scale pan + the total weight
added as will be followed from the third column :

MATERIAL SOFT IBON. GATJOB LENGTH 84*.

Diam. (mean of six measurements) -0364*.

Weight of scale pan 0-6 Ib.

Observed
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Vernier.

o
o _

Clip

(Steel)

Detail of Face

of Slider

Scale full Size

Sect/oh on A.B.

Fig. 80.

RESULTS.

Initial Area= '785 x
( -0364)

z= '00104 sq. in.

Final Area= '785 x ('0334)
2= '000876 sq. in,

rtr J OQ 04.

24,400.000 Ibs. per sq. in.
'= x =

a A 0925 -00104

Breaking Stress=
53'5

00104
51,400 Ibs. per sq. in.

= 22 '9 tons per sq. in.

29
Stress at Elastic limit =

* = 27,900 Ibs. per sq. in,

= 12 '4 tons per sq. in.

Elastic limit Stress_ 29 _
Breaking Stress ~53'5~

Extension=^^= 15'7 per cent.
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From the observed results the preliminary stress-strain diagram shown

in Fig. 81 is first plotted. This enables us to find the zero reading on the

30

o20
Q)
*j

tS
<B

3 10
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This is strictly a diagram of loads plotted against extensions and is not one of

intensity of stress plotted against unital strains. The real stress-strain diagram
will have the same shape but a different scale so long as the area remains

constant. In practice the breaking stress is always calculated by dividing the

breaking load by the original area.

Factor of Safety. We will use the term "factor of safety
"
to

, . Breaking stress of material
denote the ratio === ^ ^. 3 -. . This is often

Working stress used in design
, , ,, Load required to cause failure m,

taken the same as ^ j ^ The two
Load carried

results are not the same because the theories that we use in

design do not allow for all the possible contingencies. When
using the second definition it is usual to specify a factor of safety
of 4 for structures not subjected to impulsive loads and vibrations.

The term "factor of safety" is used very loosely in practice
and it is very desirable to use it in some definite sense as the

first one given above.

The great difficulty of getting a satisfactory definition of the

factor of safety resides in the fact that we can find the load to

require failure of a structure only by means of a test to destruction

which is too costly and defeats its own end. In machine parts the

same difficulty does not arise because the cost of a part to be

tested will be small
; the difficulty there is that the part must be

tested under the actual conditions in which it is used in practice.
For instance it is no use testing motor car axles to get an accurate

value of the factor of safety by making a tension test on a piece
of the material. Since the elastic limit in steel is the point which

determines the real safety of a structure it would be more satis-

factory to define the factor of safety in steel and other metals

possessing an elastic limit as the ratio

Maximum calculated stress in material

Elastic limit stress in material

Working Stresses. In the absence of other regulations it

is usual to take the working stresses as J of the breaking stresses

(see table on p. 157) but for cast iron J is often taken. For mild

steel, wrought iron and cast iron the following values may be

safely taken where the body is not subject to shocks and vibra-

tions.
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The work done in producing a stress /
= Area of A POM
= \PM . MO

,T x ... . stress
Now 7

= unital strain = =
I Mi

.*. Work done in producing a stress /

But ^4Z = volume of the bar = F,

Work

Stresses and Strains due to Sudden or Dynamic Loading.
If a load is applied suddenly to a machine or structure, vibration

will ensue, and the strain and thus the stress will reach twice

the value which would occur if the load were gradually applied.

B

Fig. 84.

This will be made clear from considering a diagram, Fig. 84,

where the force is plotted against the strain. We have seen that,

with gradual loading of an elastic body, the curve representing
the relation between the strain and the load in direct stress is

represented by a straight line AD, the area below the line giving
the work done up to a given point. Now let AG represent a

force P\ then when the strain gets to the point B, the work
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done by the force will be equal to the area of the rectangle

ABEGy whereas the work done in straining the material is only

equal to the area of the triangle ABE, so that there is an amount
of work equal to the area of the triangle AEG still available for

causing increased strain. The strain therefore increases until the

area of the triangle EFD is equal to that of the triangle AEG.
It is clear that AC = 2AB, or that the strain and thus the stress

is twice that in the case of gradual loading.

This is a most important point and shows us that we should

make allowance in engineering calculations for the nature of the

loading, whether gradual or sudden. In the latter case therefore

we ought to allow a greater factor of safety.

Gradual loads are usually called "static loads" or "dead

loads," and sudden loads are called '"'dynamic loads" or "live

loads."

It is a good rough rule to take a live load as equivalent to

a dead load of twice its value.

Strain and Stress due to Impact. Suppose a weight W falls

from a height h on to a structure and let the deformation or

strain in the direction of h be x> Fig. 85. Then the work done

Strain

Fig. 85.

by the weight is equal to W (h + x). Now this work is absorbed

in straining the structure. Consider first the case in which the

resulting strain is within the elastic limit. The work done in

such case is equal to the volume multiplied by the resilience.

We have shown that in tension or compression the resilience is

f
2

equal to and therefore in this case we get

WflUrt Volumex /2

W (h+ x =
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Then if x is negligible compared with h we have

2EWh

If the weight strikes with a velocity vt

v*

f

2E . Wv* /EW
or

Strain beyond Elastic Limit. If the strain is beyond the

elastic limit, it follows, from the reasoning given on p. 153, that

the work done per unit volume in straining is equal to the area

below the stress-strain curve. If this area is R, Fig. 85, then we

have R = Wh or -
.

From this the stress can be found.

Numerical Example. A bar of J inch diameter stretches

J inch under a steady load of 1 ton. What stress would be produced
in the bar by a weight of 150 Ibs. which falls through 3 inches before

commencing to stretch the bar the bar being initially unstressed

and the value of E taken as 30 x 106 Ibs. per square inch ?

Area of bar \" diam. = -196 sq. in.

.'. Stress under load of one ton = ^^ tons per sq. in.

2240=
TJgg

lbs - Per S(l- m -

Stress 2240

-0-
=
-196x30xlO-

Now \" = Strain x Original length,

\ -196 x 30 x 106

2240x8
.*. Volume = Length x Area of section

_ '196 x -196 x 30 x 106

8 x 2240

= 64-31 cub. ins.
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Work done by 150 Ibs. in falling 3 inches = 3 x 150 = 450 in.-lbs.

. 64-31 x f2

f _ /mJ ~V 64-31

/900 x 30 x~10~ V '

64-31

= 20,490 Ibs. per sq. in. Ana

Temperature Stresses. Suppose a bar of length I is heated

t F. and a is coefficient of expansion. Then, unless prevented,
the length of the bar will become Z (1 -f at), i.e. the increase in

length will be all.

If the bar is rigidly fixed so that this expansion cannot take

place, then there will be in the bar a strain equal to ail, and the

unital strain will be ^-
= at.

This strain will produce a compressive stress otatxE, where

E is Young's modulus.

Now for mild steel a = -00000657 per degree Fahrenheit, and

E = 13,000 tons per square inch.

/. The stress per F. = -00000657 x 13,000

= -0854 ton per square inch.

Taking a range of temperature of 120 F., the stress due to

temperature = 120 x -0854 = 10-25 tons per square inch. This

is more than the safe stress for mild steel, so that the importance
of designing structures so that the expansion may take place

becomes quite evident.

Struts, Columns and Pillars. When bars are in compression

they are called struts, columns or pillars ; under test such bars

always fail by buckling as indicated in Fig. 86, buckling being
a kind of bending. Full consideration of this question is rather

difficult and beyond our present scope. We will just point out

the following facts :

(1) The strength of a strut depends upon its length and shape
of cross section as well as upon its cross sectional area.
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(2) In choosing a column section we should try to get it

about as broad one way as the other and as much of the material

should be as far as possible from the centre. For the latter

reason, shapes (6) and (d) are better than (a) and (c) but all are

fairly suitable.

Fig 80.

SUMMARY OF CHAPTER IX.

Strain is the change in shape or form of a body caused by the

application of external forces.

Stress is the force between the molecules of a body brought into

play by the strain.

Hookas Law states that in an elastic body strain is proportional

to the stress.

There are three kinds of stress : tension, compression and shear.

Intensity of stress is the total stress on a small area divided

by the area.

Unital strain is the strain per unit length of the material.

The elastic limit of a material is the stress at which the strain

ceases to be proportional to the stress.
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The yield point is the stress at which the strain increases suddenly
without increase of stress.

Young's modulus. ^^Tmsile
or compreasive intejsityofstress

j. ensile or compressive unital strain

Factor of safety=

Poissorts ratio=

Ax'

Breaking stress

Working stress used in design
*

Transverse strain

Longitudinal strain
"

Resilience is the work done in straining a material per unit

volume.

Gradually applied loads are called dead loads; suddenly applied
ones are called live loads.

A live load causes twice the stress caused by a dead load of the

same amount.

EXERCISES. IX.

1. A tie-rod in a roof whose length is 142 ft. stretches 1 inch

when bearing its proper stress. What strain is it subjected to?

2. How much will a tie-rod 100 ft. long stretch when subjected
to -001 of strain?

3. A cast iron pillar 18 ft. high shrinks to 17-99 ft. when loaded.

What is the strain?

4. A tie-rod 100 ft. long has a sectional area of 2 sq. ins., it

bears a tension of 32,000 Ibs. by which it is stretched ". Find the

intensity of the stress, the strain, and the modulus of elasticity.

5. How much will a steel rod 50 ft. long and $ sq. in. sectional

area be stretched by a weight of one ton, the modulus of elasticity

being 35,000,000 Ibs. per sq. in. ?

6. Find the work done in stretching each of the rods in Questions

4 and 5.

7. The diameter of the piston of an engine is 12", the diameter

of the piston-rod being 2". Find the stress in the piston-rod

when the maximum steam pressure is 120 Ibs. per sq. in.

8. Find the proper diameter for a wrought iron rod to sustain

a direct pull of 13 tons, the greatest stress allowable being 9000 Ibs.

per sq. in.
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9. The diameter of a steel rod is 2 ins., find the greatest weight
it could support so as not to stress it to more than 10,000 Ibs. per

sq. in.

10. What stress in Ibs. per sq. in. will stretch an iron bar

whose length is 12 ft. by in.? The modulus of elasticity of iron

being 28,000,000 Ibs. per sq. in.

11. Define stress, strain and modulus of elasticity. The
cross sectional area of a piece of wire is -02 sq. in. and its length
is 20 ft. When loaded with 150 Ibs. it stretches -08 in. Find the

modulus of elasticity of the wire.

12. Find the work done in stretching the bar in Question 10.

13. An iron rod is suspended by one end. Draw a curve

showing the stress at any section, and find the length of a rod which
can just carry its own weight, allowing a working stress of 9000 Ibs.

per sq. in. and weight of material 480 Ibs. per cubic ft.

14. The elastic limit of a bar was found to be 20,000 Ibs. per

sq. in. and the strain at this point was -0006. What was the resilience

of the material?

15. A load of 560 Ibs. falls through in. on to a stop at the

lower end of a vertical bar 10 ft. long and 1 sq. in. in section. If

E = 13,000 tons per sq. in. find the stress produced in the bar.

16. A tie-rod in a roof structure has to stand a total pull of

40 tons. If the breaking stress in the material is 30 tons per sq. in.

and a factor of safety of 6 is required, find a suitable diameter

for the bar.

17. What is Poisson's ratio ? If a steel bar 3 inches in diameter

and 6 inches long is subjected to an axial pull of 70 tons, find the

longitudinal and transverse strains if E = 30 x 106 Ibs. per sq.

in. and q = .

18. A cylinder cover 10 inches in diameter is attached by 12

studs f inch diameter at the bottom of the thread (-3 square inch

in area). Find the force per square inch in these, when the steam

pressure is 100 Ibs. per sq. in. by gauge.



CHAPTER X

RIVETED JOINTS; THIN CYLINDERS

Forms of Rivet Heads. The most common forms of rivet

heads and their usual proportions are shown in Fig. 87.

CUP OB SNAP HEAD
CONICAL HEAD

PAN HEAD COUNTERSUNK HEAD

Fig. 87. Forms of Rivet Heads.

For structural work the snap-headed rivets are most usual,

but countersunk rivets are used where necessary to prevent pro-

jections from the surface of the plate. Snap-heads take a length
of rivet equal to about 1J times the diameter.

It is usual in practice to adopt a diameter of rivet when
cold equal to one-sixteenth of an inch less than the diameter of

the hole, but in all calculations the diameter of the rivet is taken

as being equal to that of the hole.

Diameter of Rivets. According to Unwin's formula, the

diameter of the rivet is 1-2 Jt 9
where t is the thickness of the

thinnest plate, but for structural work this rule is very seldom

adopted. In practice a j* or J* rivet is used wherever possible,

and it is best not to use any formula to obtain the diameter

in terms of the thickness of the plate. Some authorities use

A.M. 11
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a diameter of |* for a "
plate,

"
for a plate, and 1" for

a f. plate. It is difficult to get rivets of larger diameter than

1 in. driven by hand.

LAP JOINT.

BUTT JOINT.

SINGLE COVER JOINT.

Fig. 88,
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It is a mistake to adhere too rigidly to Unwin's formula ; the

best diameter will be that which will give equal shearing and

bearing strengths (see p. 164 for explanation of these terms) and
will therefore depend upon whether the rivets are in double or

single shear. Basing our ideas upon this we should get the

following formulae:

d = 2-5t for single shear

= l-25t for double shear.

For single shear this would make d so large for thick plates

that there would be practical difficulty in heading the rivets.

Forms of Joints, (a) LAP JOINTS AND BUTT JOINTS. In

the lap joint the plates overlap as shown in Fig. 88. This form

of joint has the disadvantage that the line of pull is such as to

cause bending stresses, tending to distort the joint as shown.

In the butt joint the edges of the plate come flush, and cover

plates are placed on each side as shown, the thickness of the

cover plates being each five-eighths that of the main plates. In

this form of joint the pull is central, so that there are no bending
stresses.

In the single cover joint, which is a cross between the lap joint
and the butt joint, there are bending stresses developed, tending
to distort the joint as shown.

It is clear from the above that the butt joint should be adopted
wherever possible.

(6) CHAIN RIVETING AND ZIG-ZAG OB STAGGERED RIVETING.
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later, the zig-zag form is more economical, and should be used

whenever possible.

Methods in which a Riveted Joint may Fail. A riveted joint

may fail in any of the following ways :

(1) By tearing of the plate.

(2) By shearing of the rivets.

(3) By crushing of the rivets.

(4) By bursting through the edge of the plate.

(5) By shearing of the plate.

Fig. 91 shows these methods of failure.

(4) and (5) are allowed for by the following rule : The minimum
distance between the centre of a rivet and the edge of the plate

is 1Jd, where d is the diameter of the rivet.

If this rule is adhered to the joint will always fail first in one

of the ways (1), (2), (3).

The aim in designing a joint should be to make the force

necessary to cause failure in the various ways equal.

We will now consider the various ways of failure in detail,

taking in each case a strip of plate equal to the pitch of the rivets.

(1) TEARING OF THE PLATE. In this case the width along

which fracture will occur is (p d), and as the thickness of the

plate is t, the area of fracture = (p d) t.

Therefore ifft
is the safe tensile stress in the material, the safe

load which the joint can carry is equal to

P=ft(p-d)t ............... (1).

(2) SHEARING OF THE RIVETS.

In the case of single shear, the area sheared = ,

2*P
double **--

Therefore if fs is the safe shear stress on the rivet, the safe

forces on the joint as regards shear are respectively

* A Board of Trade rule makes this T75 instead of 2, this being based

upon experiments. The rule is generally used in boilers but not so much in

bridge work.
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(3) CRUSHING OB BEARING OF RIVETS. In this case the

crushing or bearing area is taken as the diameter of rivet multi-

plied by the thickness of the plate, i.e. d x t. Therefore, if fM

p

c

'

/S
-4\
\
\
\
\

S/NGL 5HC.AR.

DOUBLE

f
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is the safe bearing stress on the rivet, the safe force on the joint

as regards bearing is equal to

P=fB .d.t (3).

The values of ft
and fs may be taken as given in Chapter IX.

For /g, 10 tons per square inch may be taken for mild steel,

and 8 tons per square inch for wrought iron. These figures are

higher than for ordinary compression, and are obtained from the

results of experiments.
For structural work the strength of the joint as regards bearing

will often be less than as regards shear, because the plates are

often thin compared with the diameter of the rivet, but this does

not so often occur in boilers.

Efficiency of Joint. The efficiency of a joint is the ratio of

the least strength of a joint to that of a solid plate, i.e.

-,. . Least strength of joint
Efficiency = 17

= ~T- f ,
J

,
.

Strength of solid plate

The aim in the design of riveted joints is to get the efficiency

as high as possible.

Numerical Examples. (1) A plate 10" wide and f thick

is jointed by a single riveted lap joint with rivets of 1J ins. diameter.

If the tensile breaking strength of the plate is 22 tons per sq. in. and

the shear breaking strength of the rivets is 20 tons per sq. in., how
will the joint fail and what is its efficiency ?

Width across which the joint will tear is (10
- 3 x 1J) ins.

/. The tearing area = (10 3 x 1J) f sq. ins.

.'. Force required to tear

= (10
- 3 x 1J) f x 22 = 109 tons approx.

11*
-



x] RIVETED JOINTS; THIN CYLINDERS 167

This is less than that for tearing.

/. The joint will fail by shearing of the rivets.

_, -v, . Least strength of joint
.*. Efficiency = ~r- rr . . { T ,

Strength of original plate

59-5 59-5

10 x | x 22 165

= -361 = 36-1%.

(2) Design a double-riveted lap joint to connect two steel plates

| in. thick with steel rivets. The tensile strength of the plates before

drilling being 30 tons per sq. in. ; the shearing strength of the rivets

24 tons per sq. in. ; and the compressive strength of the steel 43 tons

per sq. in. Find the efficiency of the joint.

For J in. plates Unwin's formula would give

d = 1*2 V-5 = -85 in., say J in.

The joint is a double-riveted lap, therefore there will be two

rivets in single shear in a width of plate equal to the pitch.

.*. Strength against tearing per pitch

=l5(p-d) ..(1).

.'. Strength against shearing per pitch

4

=
24 - 27r ^ 2

4

= 28-9 tons.

If these are equal,

15 (-?") = 28-9:

(2)

28-9
,

7^ =
-T^

+
8

= T93 + -87 = 2-80, say 3 ins.

The bearing stress for a force of 29-8 tons would be equal to

28'9
- . - = 33 tons per sq. in.,
I x i x 2

the bearing area of each rivet being | x = -437 sq. in.
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This is less than the allowable value of 43 tons per sq. in.,

showing that a larger diameter of rivet might be used with greater

economy, but f in. diameter is in most cases more suitable in

practice.

The efficiency of joint in this case is equal to

28-9 ^28-9
4530 x 3 x \

The joint is then as shown in Fig. 93.

64-2%.

Rivets 7/a Dfam

I

Fig. 93.

(3) Find the number of rivets necessary to connect the gusset

plates, etc., at the base of a steel stanchion to the stanchion proper,

the load carried being 150 tons. The diameter of the rivets is in.

and the thickness of the plate | in.

The rivets are best designed in such cases to carry the whole

load, so that if the stanchion itself does not bear on the base plate

the rivets will distribute the load satisfactorily.

The strength of each rivet in single shear

= T . (I}*. 5 = 3-01 tons.

The strength of each rivet in bearing

=
I . 1 . 10 = 4-37 tons.
o Zi

.*. Number of rivets necessary = 5-7^-
= 50 nearl

o'Ul '
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WORKING STRENGTH OF STEEL RIVETS.
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/$
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but the area of fracture is a rectangle at each side of length I and

thickness t,

i.e. A = 2lti

(1).

Circumferential Strength. The force tending to cause fracture

in this case is the total bursting pressure upon the ends,

, . p x
i.e. p x area of pipe = - -r .

The area of fracture is a thin circular ring of diameter d and

thickness t; this area is for all practical purposes equal to

circumference of inside of pipe x thickness of pipe = irdt ;

/. Stress x area of fracture = total bursting pressure,

1* P X 7r^2

i.e. ft
x vdt = t -

,

f _ p X Trdz

'*""
'

Iflf -1 ................... <2>-

This is exactly one-half of the stress in the longitudinal

section and shows that the longitudinal section is the weakest.

In the design of boiler shells therefore the longitudinal seams

are provided with stronger joints than the circumferential seams.

By means of formula (1) we can find the thickness required
for a pipe of given diameter to withstand a certain pressure and

keep the stress within certain fixed limits.

Numerical Example. How thick would you make a boiler 6feet
in diameter which has to withstand a pressure of 200 Ibs. per sq. in.,

if the stress in the material must not exceed 12,000 Ibs. per sq. in. ?

From equation (1)

f-P*Jt
~

2t
'

ft
= 12,000, p = 200, d = 72 inches;

(

200 x 72
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SUMMARY OF CHAPTER X.

Riveted joints may be lap joints or butt joints.

Shear strength of a rivet

= n
for single shear,

for double shear.
-. ltd? I

or =T

Bearing strength of a rivet

. . , , . .

Efficiency of a riveted
Least strength of joint

Strength of solid plate
*

The circumferential strength of a thin cylinder is twice the

longitudinal strength.

For longitudinal strength

A"?:g*

EXERCISES. X.

1. If the ultimate shearing strength of a steel plate is 20 tons

per sq. inch, what force will be required to cause a 1 inch rivet in

a single-riveted lap joint with a lap of 2 inches to shear through
the plate which is f in. thick ?

2. What diameter of rivet would you use for a inch plate,

and what pitch would you use for a lap joint? What would the

efficiency of your joint be?

3. In a butt joint with a single row of rivets the plates are inch

thick, the rivets are | inch diameter and If inches apart ; calculate

the efficiency of the joint.
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4. Two rectangular tie-bars are united by two cover-plate?
as shown (see Fig. Xa). If f, = ft

= 6 tons per sq. in., find the
resistance to shearing of the rivets and to tearing of the plates.

What should be the thickness of the cover-plates? What is

the efficiency of the joints?

3"!

Rivets fdiam.

>^w^;</^^i^^^^^^^

Fig. Xa.

5. How many rivets would you use to connect a member of

a roof-truss to the main body of the truss if the member carries

20 tons and is \ in. thick? The rivets are in. diameter. Is bearing
more important than shearing in this case?

6. What load may be safely carried by a column which has

40 rivets in single shear connecting the column to its base ? The
rivets are in. diameter. Take a safe shear stress of 5 tons per sq. in.

7. For equal strengths in tension and shear calculate the pitch
for a butt joint given the following data. Plates 1 inch thick;

rivets 1J ins. diameter ; two rows of rivets on each side of joint ;

/, = 54,000 Ibs. per sq. in. ; ft
= 65,000 Ibs. per sq. in.

8. A cylindrical boiler 8 feet in diameter is to withstand a

working pressure of 100 Ibs. per square inch. Calculate to the

nearest | inch the thickness of the shell, allowing a stress of 10,000 Ibs.

per square inch, and neglecting the effect of the joint.

9. Find the thickness of an iron boiler shell to withstand an
internal pressure of 250 Ibs. per sq. in. The diameter is 10 ft. and
safe stress allowable on plates 3 tons per sq. in.

10. What should be the thickness in the previous question
if the joint has an efficiency of 60 per cent., the shell being composed
of two plates?

11. Find the safe working pressure in Ibs. per sq. in. for a boiler

6ft. diameter, plates \" thick ; allowing a stress of 3500 Ibs. per sq. inch.

12. The diameter of a steam boiler is 4 ft. Find the thickness

of plates necessary if the stress is not to exceed 5 tons per sq. in.

when the internal pressure is 120 Ibs. per sq. in. and the efficiency

of the joint is 72 per cent.



CHAPTER XI

THE FORCES IN FRAMED STRUCTURES

A THEORETICAL framed structure is built up of a number
of straight bars, pin-jointed together at their ends. If the centre

lines of the bars all lie in the same plane, the frame is called

a plane frame ; if in different planes, it is termed a space frame.
For the present we shall deal only with plane frames.

A framed structure is designed so that, as far as possible,

there are only pulling and thrusting forces, causing tension

and compression stresses respectively, in its members, bending
actions being obviated. In Continental and American practice

it is common to make framed structures or trusses as they
are called pin-jointed, but in British practice the joints are

nearly always riveted. In either case the forces in the members,
or stresses as they are usually rather erroneously called, are

calculated as if the joints were pinned; these joints are often

called nodes.

Kinds of Framed Structures. A framed structure may
be one of three kinds, viz. deficient or under-firm, perfect or

firm, and redundant or over-firm.

A deficient or under-firm frame is one which has not sufficient

bars to keep it in equilibrium for all systems of loading. Such a

frame is shown in Fig. 95 (1). For certain values of the forces

acting on it, the frame would be in equilibrium, but it would

collapse if the forces were changed.
A perfect or firm frame is one which has a sufficient number

of bars and no more to keep it in equilibrium for all systems
of loading. Such a frame is shown at (2) in the figure.

A redundant or over-firm frame is one which has more bars

than are necessary to keep it in equilibrium for all systems of

loading. Such a frame is shown at (3) in the figure.
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Objections to Deficient and Redundant Frames. If a

deficient frame is actually pin-jointed, it is in unstable equilibrium ;

if its joints are riveted, then its stability depends on the stiffness

of the joints and its members are subjected to bending stresses

which it is the object of the framework to avoid.

Fig. 95.

Redundant frames have the following disadvantages:

(1) Any stress in one member caused by bad fitting or change
of temperature causes stresses in all the other members.

(2) The stresses in the members cannot be calculated by
any simple mathematical or graphical process.

Such frames are sometimes called
"
statically indeterminate."

Semi-member or Counterbraced Frames. Some frames, which

have the appearance of redundant frames, act as perfect frames

and may be treated as such. Fig. 95 (4) shows such a frame.

There are two diagonal bars BD and AC, but each can act in

tension only, so that if the loading is such as would tend to put
one of the diagonals, say AC, in compression, such diagonal

would go out of action and the frame would act as if BD were

the only diagonal.

The diagonals AC and BD are called semi-members or counter-

braces and are commonly used in practice, especially in the centre
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panels of railway bridge trusses in which the crossing of the

load causes a reversal of the stress in the diagonals.

Relation between Bars and Nodes in a Perfect or Firm
Frame. Consider a firm frame such as is shown at (2) in Fig. 95.

The first bar DC has 2 nodes.

It requires two more bars AD and AC to produce the next

node A, and so on.

Therefore, if there are n nodes, 2 of them go to the first bar

and the remaining (n 2) require 2 (n 2) bars.

.-. Total number of bars = 2 (n
-

2) x 1 = 2n - 3. There-

fore, in a perfect or firm frame the number of bars is equal to

twice the number of nodes minus 3.

If the number of bars is more than this, the frame is redundant
;

if less, the frame is deficient.

The student should test this relation with the framed structures

shown in the following figures.

Fig. 96.

The converse of the above statement does not hold. The

number of bars might be = 2n - 3, and yet the frame might

not be perfect.

Fig. 96 gives an example of this. In this case the number

of nodes is 12 and the number of bars 21, so that this fulfils

the above condition, although it is not a perfect frame.

Ties and Struts. If the force in a member of a structure

is a pull, the member is called a tie ;
if the force is a thrust, the

member is called a strut. The force in a bar transmitted from

a certain node will be a pull when the arrow-head points away

from the node, and a thrust when it points towards it.

It is desirable to distinguish between the ties and the struts

in the drawing of a framed structure. This can be done in any

of the following ways:

(1) By drawing the struts in thicker lines than the ties.

(2) By drawing a short single line across the ties and a

double line across the struts, e.g., |

and
||.
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(3) By indicating the struts with a plus sign and the ties

with a minus sign.

Loading of Framed Structures. Framed structures must

always be taken as loaded at the nodes only. If a given bar

is loaded between the nodes, then it acts as a beam and distributes

to the nodes at each end the reaction of the beam.

Curved Members in Framed Structures. In some cases the

members or bars of a framework are curved. For obtaining the

forces in the bars (not really the stresses, although this term

is most often used), we replace the curved bars by straight

ones; but it must be carefully remembered that such bars

will actually be subjected also to bending stresses which must
be allowed for in design.

Determination of force in a Framed Structure. Since a

pin-joint is provided at each node, the forces in the bars meeting
in such a node and the external forces must be in equilibrium.

Before the forces in a frame can be determined, the whole

of the external forces, including the reactions at the supports,
must be known.

Example of simple Roof-Truss. Take for example the simple
roof-truss shown in Fig. 97. The external forces acting are

the weight W = 2000 Ibs. at C and the reactions EA ,
EB at A

and B. We assume that the truss simply rests on its supports
so that these reactions are vertical. Since the frame looks the

same whether viewed from the front or the back, or "from

considerations of symmetry" as this is usually expressed, the

reactions must be equal to each other, and for the equilibrium

of the structure as a whole, their sum must be 2000 Ibs.

.'. RA = EB = 1000 Ibs.

Now consider the node C. There are three forces acting

there, viz., W vertically downwards and forces fAC , fBC in

AC and CB ; and these forces must be represented by a triangle.

.'. draw 1, 2 to represent W = 2000 Ibs. to a convenient

scale and draw 1, 3 parallel to CA and 2, 3 parallel to CB to

intersect at 3. Then 2, 3 = fsc and 3, 1 =/4c- On scaling

these off, we find f C =fAC = 2240 Ibs. (Thrust, because the

arrow-head points towards the node).

A.M. 12
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Next consider the node A. The forces acting are the reaction

RA vertically upwards and fCA , fBA in CA and BA.

:. draw 4, 1 to represent EA = 1000 Ibs. and draw 4, 3

parallel to BA and 1, 3 parallel to CA to intersect in 3. Scaling

these off we find fBA = 3, 4 = 1000 Ibs. (Pull, because the arrow-

head points away from the node), fCA = 2240 Ibs. (Thrust, as

before).

RA =1000 Ibs, R B=1000 Ibs.

./;,
w

Fig. 97. Simple Roof-Truss.

It will be noted that the force transmitted to any bar from

the nodes at its two ends must be equal and opposite ; otherwise

that bar would not be in equilibrium.

The Reciprocal Figure Construction. The reciprocal figure

construction is an extension, devised by Clerk Maxwell, of the

method that we have just explained ; the various vector polygons
for each node are combined in one diagram. We will first explain

the construction with reference to the roof-truss shown in Fig. 98.

We will take the vertical loads on the nodes as equal, the reactions

then being equal and vertical.

To commence the reciprocal figure set down lengths 1, 2;

2, 3; etc., on a vertical line to represent the forces, to some

convenient scale, the reaction 4, 5 being equal to half the total

load, and giving the point 5 as shown. At the left-hand end
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of the truss three lines meet, viz., 5, 1; 1, A\ A, 5. On the

reciprocal figure we require a corresponding triangle, so draw

1, a parallel to 1, A, and 5, a parallel to 5, A, their point
of intersection determining the point a on the reciprocal figure.

From a draw ab parallel to AB, and 26 parallel to 2B, thus

obtaining the point b\ then be parallel to BC, and 5c parallel

to 5(7, thus obtaining the point c, and so on.

Frame diagram

W

Reciprocal figure

Fig. 98. Roof-Truss.

To serve as a check on the accuracy of the drawing, the line

joining the last point e on the reciprocal figure to the point 5

should be parallel to the bar E5 of the frame.

Then the lengths of the lines of the reciprocal figure give

to the scale to which the loads were set down the forces in

the corresponding bars of the frame.

To distinguish between Ties and Struts. To ascertain which

members of a framework are ties and which are struts, the

following method is adopted and can be applied for all systems
of loading.

Consider any one of the nodes of the truss at which the

direction of one force is known, say the node X. Corresponding
to this node we have the polygon I2bal on the reciprocal figure.

The direction of the force 12 is known to be vertically downward,
122
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so continue the arrow-heads in this direction round the polygon
I2bal. Now transfer the direction of these arrow-heads to the

corresponding bars close to the given node. Then if the arrow-

head on a given bar points towards the node, the bar is a strut ;

and if it points away, the bar is a tie. In this way it is seen

that the bars IA, AB, and B2 are all struts.

Now consider the node Y. Corresponding to this we have

the polygon 5abc5. Since AB is a strut, the arrow-head at the

node Y points towards the node, and so the arrow-heads go round

the polygon in the direction ab, be, c5, 5a, as shown. Transferring

these arrow-heads to the frame diagram, we see that the bars

BC, (75, and 5A are all ties.

With practice one can tell by inspection in most cases whether

a given bar is a strut or a tie by the following rule : If, on imagin-

ing the given bar cut through, the forces would tend to increase

its length, such bar is a tie; if the forces would tend to

decrease its length, the bar is a strut.

Example of Warren Girder with Uneven Loading. As a

further example of reciprocal figures, take the example of the

Warren girder loaded as shown in Fig. 99.

|2T

Fig. 99. Warren Girder.

Unless it is definitely stated to the contrary we can always
take it that in framed girders the "

panels" or "
bays" as they are
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called are of equal length, i.e. in this case the span is divided into

six equal parts.

We must first find the reactions before we can proceed with

the reciprocal figure. Taking moments about X we have

RY x 60 = 1 x 10 + 1 x 20 + 1 x 30 + 2 x 15 + 5 x 45 = 315 ;

:.RY=^/-= 5-25 tons;

/. Ex = 10 - 5-25 = 4-75 tons.

Choosing a suitable force scale, we set down the vertical forces

in order, i.e. first set down 1, 2 and 2, 3 to represent 2 and
5 tons respectively; next set up 3, 4 to represent the reaction

of 5'25 tons
;
and then set down 4, 5 ; 5, 6

; and 6, 7 to represent
1 ton each, the length 7, 1 checking back to give the reaction

4*75 tons. We now proceed as before, drawing la parallel

to IA, and la parallel to 1A
;
then ab and 16 parallel respectively

to AB and IB, and so oh, the reciprocal figure coming as shown,
and Z3 coming parallel to L3, and thus serving as a check on the

drawing.
In cases of complicated frames where some difficulty is

experienced of getting the last line to check, it is well to start

the reciprocal figure from each end of the frame, the errors

being in this way minimised.

Figs. 100, 101 show the reciprocal figures for two other common
forms; the student should work these as an exercise; with a

little practice it will be found that these diagrams can be drawn
without difficulty and they have the great advantage that the

closing line forms a check on the work.

There need be no hard and fast rule as to the end from which

we commence the figure. In Fig. 101, for instance, we have

commenced from the right-hand side whereas in the other cases

we have commenced from the left-hand side. When two points

on a reciprocal diagram coincide, and the line joining them

corresponds to a bar in the frame, the force in the corresponding
bar is zero. Thus in Fig. 101 the stress in FF' is zero and so

we have drawn the bar in dotted lines; the other bar shown

dotted being a semi-member or counterbrace (see p. 175). The
bar FF' is not really redundant because if the loading were

altered, there would be a stress in it.

Stresses in Framed Structures by Moments. The stresses

in framed structures can also be found by the following method,
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l

9

3

4

5

e

7

Fig. 100. Crescent Roof-Truss.

Mg. 101.
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which is called the method of Moments or Sections, or sometimes

Ritter's method. The method consists in imagining one bar

to be cut through and in finding the point about which the

structure tends to collapse. Consider for example the simple

roof-truss shown in Fig. 102 and suppose that the bar AB is

R/-1000 R B =1000

Fig. 102. The method of Moments.

cut through ; the ends A and B will then move outwards some-

what as indicated in dotted lines and the bars AC, BG will

pivot about the point C. Therefore the force fAB in AB must

be the force which prevents this pivoting movement and its

moment about the point C must be equal to the moment of

either reaction about C.

.'. JAB x h = EA x *.

1000 x 8
i.e. = 2000 Ibs.

In using this method it is best to regard one side of the

structure as remaining fixed and the other side as moving under

the action of the forces upon it ;
in the present example therefore

we regard BG as fixed and AC as moving upward, pivoting

about C.

Now let us find the force fAC in AC. E AC were cut through

the weight W would fall down and the bar CB would pivot

about the point B. The only force tending to cause this collapse

is W whose moment about B = 2000 x 8,

'. JAG 2000 x 8,

2000 x 8 2000 x 8

y 7-16

= 2240 Ibs. nearly.
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Experiment upon Model Roof-Truss. A simple experimental form
of roof-truss similar to that which we have already considered is shown in

Fig. 103. The struts AC, CB (called rafters) are each formed of two parts

sliding one within the other and connected by compression spring balances

which will measure the forces in these bars. The tie-bar AB consists of two

pieces of wire or string connected by an ordinary spring balance which will

measure the pull in it.

Fig. 103.

A more accurate form of experiment consists in making a model frame

in iron and measuring the small changes in length of the various members

by means of a very sensitive instrument called the extensometer (see p. 147),

from the readings of which the forces acting in the various bars can be readily

calculated.

Forces in Tripods and Shear Legs. In these cases we proceed
as follows :

Draw the structure in plan and elevation, and let W be the

load at A, Fig. 104, AB being the back leg and AD, AE the fore

Fig. 104.
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legs. Resolve W down AB and down the plane of the other two

legs, i.e., set out ab equal to W and draw be parallel to AB, and
ac parallel to AC, then be represents the force in AB. Now
swing the shear legs down horizontally in order to get A 2DE, the

true shape of the triangle ADE, then setting out ac horizontally
and drawing ad and cd parallel to EA2 , DA2 respectively, we get
the forces in the fore legs.

SUMMARY OF CHAPTER XI.

Frames may be deficient, firm or redundant, but only in the case

of firm frames can the forces in the members be found by simple
methods.

Before the forces in the various members of a frame can be

calculated, all the forces acting upon it, including the reactions,

must be known.

At each node, the forces in the members meeting there and the

external forces acting there must be in equilibrium and so must
form a closed polygon.

Members subjected to pulling forces are called ties and those

subjected to thrusting forces are called struts. The reciprocal

figure construction forms an automatic check upon its accuracy
because the closing line must be parallel to the corresponding bar

in the frame.

The method of moments enables the force in any particular
bar to be calculated and by applying the method to a convenient

bar, preferably near the middle of the structure, we get a useful

check upon the accuracy of the graphical construction.
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EXERCISES. XI.

1. Find the forces in the members of the derrick crane shown
in Fig. XI a.

10 Tons

Fig. XI a.

ITon

2. Find the forces in the members of the framed structure

shown in Fig. XI 6 and check your result for EB' by moments.

B

Fig. XI 6.

3. A Warren girder of length 100 feet is divided into 5 bays
on the lower flange, the length of the inclined braces being 20 feet.

If loads of 30 tons are carried at the lower nodes 20 and 40 feet

from one end find the forces in the members.

4. Find the forces in the members of the cantilever truss shown

in Fig. XI c, which projects from a wall AB. [Note BG ~ CD
and AE = EF = FD.}



XI] THE FORCES IN FRAMED STRUCTURES 187

5. Draw the reciprocal figure for the roof-truss shown in Fig. XI d

given that AB = BC = CB' = B'A'; AD = A'D' = CD = CD' and
scale off the force in DD'.

|4Tons

2 Tons 3 Tons

Kg. XI d.

6. A load of 7 tons is suspended from a tripod the legs of which

are of equal length and inclined at 60 to the horizontal. Find the

thrust on each leg.

7. A pair of shear legs (Fig. XI e) make an angle of 20 with

each other and their plane makes an angle of 60 with the horizontal.

The back stay is at an angle of 30 to the horizontal. Find the

force in each leg and in the stay when supporting a load of 10 tons.

Fig. XI c.



CHAPTER XII

BEAMS AND GIRDERS

WE shall get a good preliminary idea of the stresses occurring

in beams by considering a model devised by Prof. Perry. Suppose
that a beam fixed at one end carries a weight W (Fig. 105) at the

Fig. 105. Stresses in Beams.

other end, and that it is cut through at a certain section. Then
the right-hand portion can be kept in equilibrium by attaching
a rope to the top and passing over a pulley, a weight W being
attached to the other end of the rope, and by placing a block

B at the lower portion of the section and a chain A at the upper

portion. Then the pull in the rope overcomes what is called the

shearing force ;
and the block B carries a compressive force (7,

and the chain A carries a tensile force T. Since these are the

only horizontal forces, they must be equal and opposite, and thus

form a couple. Then the moment of this couple must be equal
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and opposite to the couple due to the loading, which is called

the bending moment.

In the actual beam, owing to the deflection which takes place,

the material on one side of the beam will be stretched, and the

material on the other side will be compressed, so that at some

point between the two sides the material will not be strained at

all, and the axis in the section of the beam at which there is no

strain is called the neutral axis. To tell whether the top or the

bottom is in tension we consider the deflected form which the

beam will take up and note that the tension edge is always on the

outside of the bend whereas the compression edge is on the inside.

Shearing Force and Bending Moment. The actual calcula-

tion of the stresses in a beam is beyond our present scope but

such calculations depend upon the quantities called Shearing Force

and Bending Moment which are quite simple to understand and

with which we will now deal at some length.

Definitions. The shearing force at any point along the span
of a beam is the algebraic sum of all the perpendicular forces

acting on the portion of the beam to the right or to the left of

that point.

The bending moment at any point along the span of a beam is

the algebraic sum of the moments about that point of all the

forces acting on the portion of the beam to the right or to the

left of that point.

As the beam is in equilibrium under the forces acting on it, at

any point the algebraic sum of the forces, and of the moments of

the forces about the point, acting on both sides must be nothing ;

so that we shall get the same numerical values for the shearing
force and bending moment from whichever side we consider them,
but they will be opposite in sign. We will, wherever possible,

always consider the shearing force and bending moment of the

forces to the right of the section, and we will take an upward

shearing force and a clockwise bending moment as positive, the

downward and anti-clockwise being taken as negative.

Bending Moment and Shearing Force Diagrams. If the

bending moment and shearing force at every point of the span
be plotted against the span and the points thus obtained be

joined up, we shall get two diagrams called the Bending Moment

(B.M.) and Shear diagrams, and from these diagrams the values
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i

of these quantities can be read off at any point of the span. We
will examine the forms of these diagrams for various kinds of load-

ing and for various ways of supporting the beam, and will first con-

sider beams with fixed loads. We will useMP and SP to represent

respectively the bending moment and shearing force at a point P.

We will restrict our consideration to loads which are fixed in

position as opposed to those which may roll from one position to

another.

A. Cantilevers, i.e. beams fixed at one end and free at the

other, the loads being all at right

angles to the length of the beam.

CASE 1. CANTILEVER WITH

ONE ISOLATED LOAD. Let a canti-

lever, fixed at the end B, Fig. 106,

carry an isolated load W at the

point A, at distance I from B.

Consider any point P at distance x

from A.

Then we have

SP = W.

This is constant throughout the

span.

.*. Shear diagram is a rectangle of height W.

Again MP = W x x.

This is proportional to x.

.*. B.M. diagram is a triangle

whose maximum ordinate is Wl,

this being the bending moment at

the point B.

CASE 2. CANTILEVER WITH
UNIFORM LOAD. Let a uniformly
distributed load of p tons per foot

run be carried by a cantilever AB
of span Z, Fig. 107. Consider a

point P at distance x from the

free end A. Then

SP = load on AP

Bl

Bendtry Mom&nT

Iscf/afed Load

Kg. 106. Cantilevers.

onnnonnrho
for** per Ft-

Sending Mome

Un tfo
rm L cad.

Fig. 107. Cantilevers.
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This is proportional to x y and therefore the shear diagram is a

triangle, the maximum shear occurring at the end B, and being

equal to pi or W, if W is the total load on the cantilever.

MP = Moment of loadpx about P

-J*x
-rrmnOnm

This is proportional to x2
,
and

therefore the B.M. diagram will

be a parabola with vertex at A.

The maximum B.M. will be equal

pi* Wl ,

to
^r-

or -- and occurs at B.

CASE 3. CANTILEVER WITH

ISOLATED LOAD AND UNIFORM
LOAD. Since the B.M. and shear

at any point are defined as the

sum of the moments and the

forces to the right of that point,

it follows that the B.M. and shear

diagrams for a number of loads

can be obtained by adding to-

gether the diagrams for the

separate loads.

In adding together two diagrams we first draw the separate

diagrams and then make diagrams whose ordinates at each point

are the sums of the ordinates of the separate diagrams at the

same point.

CASE 4. CANTILEVER WITH IRREGULAR LOAD SYSTEM.

GRAPHICAL METHOD. Suppose a number of loads 0,1, 1, 2, and

so on, Fig. 109, act on a cantilever. To obtain the shear and

B.M. diagrams set down 0, 1, 1,2, 2,3, etc., down a vector line

0, 5 to represent the forces to some convenient scale, and take

a pole P at some convenient distance p from the vector

line 0,5 and join P to each of the points to 5 on the

vector line.

Now across the lines of the forces draw ag parallel to PO;

Uniform and isolated Lcoofs

Fig. 108. Combined loading on
Cantilevers.
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across space 1 draw ah parallel to PI ; across space 2 draw be

parallel to P2, and so on until the point/ is reached.

Then abcdefg is the B.M. diagram.

3 QgQ 1 Q>

Vector Figure

Fig. 109. Graphical method for Cantilevers.

To obtain the shear diagram, project the points 0-5 on the

vector line across their corresponding spaces, the line through the

point being drawn right across the span, the stepped figure thus

obtained being the shear diagram.

PROOF. Consider any point P along the span, and produce
ab and be to cut the corresponding ordinate P

1
P2 of the link

polygon at b' and c' respectively.

Now consider the triangles aPft and POL
They are similar, and as the bases of similar triangles are

proportional to their heights, we have

0,1 p

/. p x P!&'
= 0, 1 x al\.

But 0, 1 x aP
l Moment of force 0, 1 about P.

.". p x PX6'
= Moment of force 0, 1 about P.
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Similarly it follows that

p x b'c' = Moment of force 1, 2 about P,

and p x c'P2
= Moment of force 2, 3 about P.

:. we see that p x P1
P2
= P (pi

b/ + 6/c/ + c>pz)

= Moment of all forces to left of P about P
== JJ/Lp

:. since p is a constant quantity, it follows that the ordinates

of the link polygon represent the bending moments at the corre-

sponding points of the beam.

Now consider the shear S at P. The total force to the left of

P is 0, 1 + 1, 2 + 2, 3 = 0, 3, and this is obviously the value given
on the shear diagram.

SCALES. In all graphical constructions it is extremely

important to state clearly the scales to which the various

quantities are plotted, and to see that such scales are con-

venient for reading off.

Let the space scale be
1 in. = x feet

and the load scale on the vector line

1 in. = y tons,

and let the polar distance be p actual inches.

Then the scale to which the bending moments can be read

off is 1 in. = p x x x y tons-ft.

p should thus be chosen so as to make this a convenient

round number.

To take a numerical example, suppose the space scale is

1 in. = 4 ft. and the load scale is 1 in. = 2 tons, then if p is taken

as 2J ins. the B.M. scale will be 1 in. = 4 x 2 x 2f = 20 tons-ft.

If p had been taken 2 ins. the B.M. scale would be

1 in. = 16 tons-ft. which would not be nearly such a convenient

scale.

B. Simply Supported Beams, i.e. beams simply resting on

two supports, the loading all being at right angles to the length
of the beam. Unless it is definitely stated to the contrary, we
will always take it that the supports are at the ends of the beam.

In simply supported beams the forces acting are the loads

and the reactions at the supports, the sum of the reactions being

13
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equal to the total load, and their values being obtained by means
of moments as explained in Chapter II. As the ends are freely

supported, there can be no bending moment at either end.

We will now consider the following standard cases :

CASE 1. ISOLATED LOAD IN ANY POSITION. Let a load W
be supported at a point C, Fig. 110, on a beam AB of span lt the

distances of the point C from B
and A being b and a respectively.

To obtain the reaction BB at

B take moments round A.

Now consider a point P be-

tween B and C.

SP = RB =
Wa

Isolated Load

Fig. 110.

/. between B and C the shear diagram is represented by a

reotangle of height
Wa
I

*

Now take a point between C and A.

Shear = RB - W
- Wb
~r

:. Shear between C and A is represented by a rectangle of

height
- Wb

In the case of the cantilever there was no need to distinguish

between positive and negative shear because there was no change
in direction of the shear ; but in the present case there is a change
in direction, and so we will use the rule given on p. 189.
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Now considering the bending moment,

W.a.x
HP = KB x x =

j
.

This is proportional to x, and therefore the B.M. diagram
between B and G will be a triangle, the B.M. at C being equal to

Wab Wa (I
-

a)

I

If P were between C and A and at distance x' from A we should

have

Mp = RB (l- x') -W(l-x'-b)
= EB .1 - RB . x' - Wl + Wx' + Wb
= x' (W - fi ) + Wb - I (W - EB )

= R . x' + Wb - IJ8^

_ Wbx'

I
'

This is proportional to x', and therefore the B.M. diagram
between A and G is also a triangle, the whole diagram then

being as shown in the figure.

CASE 2. ISOLATED LOAD AT CENTRE. This is a special case

of the preceding one, in which a = 6 = s .

Z
pp-

Each reaction is now equal to -~- and the maximum B.M.

PFx - x -X
2
X
2

4
'

CASE 3. UNIFORM LOAD OVER WHOLE SPAN. Let a uniform

load of p tons per ft. run cover the whole span AB, Fig. Ill, and

consider a point C at distance x from B.

In this case the two reactions will, from symmetry, be equal,

and each have the value -. or -^- .

Then S = R -px = ^

13-2
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This is a linear relation, therefore the shear diagram will be

a triangle as shown, having values ~ at the ends and changing

sign at the centre.

Now consider the bending mo
ment.

Mo = RB x x - px x ~

rnnnnnnonnr^r

___
2 2

~
2 ( ''

This depends on a;
2
, and there-

fore the B.M. diagram will be a

parabola.

The maximum B.M. will occur

at the centre, i.e. when x = ~ .

Then maximum B.M.

Uniform load OVQC w/io/e
s^bcrn

Fig. 111.

8
or

8

CASE 4. IREEGULAB LOAD. GRAPHICAL CONSTRUCTION.

Let a number of loads TFa , TF2 , PF3 , and W4 be placed anywhere

along a span ^15, Fig. 112. Number the spaces between the loads

and set down 0, 1 ; 1, 2; 2, 3; 3, 4 as a vertical vector line to

represent the loads to some convenient scale, and in any position

take a point P at a suitable polar distance p from the vector

line, and join PO, PI, P2, etc.

Across space then draw ab parallel to PO; across space 1

draw be parallel to PI and so on until ef is reached, this being

parallel to P4.

Join of, then the figure a, b, c, d, e, /, a will give the B.M.

diagram for the given load system.
Now draw Px parallel to of, the closing link of the link

polygon ; then on the vector line, 4# = RB and xO = RA .

To draw the shear diagram, draw a horizontal line through
x right across the span : this gives the base line for shear. Now

project the point horizontally across space 0; project point
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1 across space 1 and so on, the stepped diagram thus obtained

being the shear diagram.
If the first and last links are produced to meet at Y, then as

we proved on p. 28, the resultant load acts through F.

PKOOP. By reasoning by similar triangles as for the cantilever

we can prove that 4# = RB and #0 = BA .

Kg. 112. Graphical construction for simply supported beam.

Now consider any point R along the span.

SR = RB - W*
= 4# - 3, 4 = 3z,

but the ordinate S of the shear diagram is equal to 3#, and

therefore the stepped figure gives the correct shearing force at

any point.
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Let the vertical through R cut the B.M. diagram in R^

fe produced in e2 .

Then by exactly similar reasoning as before

Moment of RB about R
jj

~>

Moment of TF4 about R-

Moment of RB Moment of PF4 about R
-

-?-
= *

;

J-r-L JJ
-'

Jff
S\ 1 2 *

/. the ordinate of the B.M. diagram represents the B.M. at

any point.

SCALES. As in the case of the cantilever (page 193), if

I" = x feet is the space scale and 1" = y tons is the force scale,

and if the polar distance is p actual inches, then the vertical

ordinates of the B.M. diagram represent the bending moment to

a scale V = p x x x y tons ft.

NOTE. In this construction the bending moment R^RZ *s

measured vertically and not at right angles to the closing line af.

The above construction is a special case of the link and vector

polygon construction described on p. 28.

Numerical Examples. (1) A freely supported beam of 20ft.

span carries a uniformly distributed load of 5 tons, and isolated

loads of 3 and 2 tons, at distances respectively of 4 and 5 ft. from
the ends (see Fig. 113).

We have first to get the reactions RA and RB .

Take moments round B.

7^x20 = 5x10 + 3x16 + 2x5
= 50+48+10=108,

108
*-^ =

20~
=

/. RB = 10 - 5-4 = 4-6 tons.

The shear diagram is then as shown in the figure, the amounts
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of the steps being equal to the isolated loads. The point at

which the shear is nothing is found as follows:

Let it be at distance x from B. Then

x = 104 feet.

54T

37b/?s 2 Tons

Kg. 113.

The B.M. at this point will be a maximum, and will be equal to

1 1042

Mx
= RB x 10-4 - 2 (104 - 5)

-
I

.
=~

= 47.84 - 10-8 - 13-52

= 23-52 tons-ft.
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The B.M. diagram will consist of a parabola for the uniformly

distributed load, the maximum ordinate of which is equal to

5x20 10
5 = 12-5 tons-ft,
o

The B.M. diagram for each of the isolated loads will be a triangle,

the respective heights being

3x4x16 n fl . p. ,2x5x15- - = 9-6 tons-ft. and -^- = 7-5 tons-ft.
JO <U

Combining these three figures we get the B.M. diagram shown

on the figure, and on scaling off the maximum ordinate it will be

found to be 23*5 tons-ft.

NOTE. In all constructions where diagrams are going to be

added together, such diagrams must of course be drawn to the

same scale.

(2) A certain joist used as a cantilever weighs 18 Ibs. per foot,

and the maximum B.M. which it can safely carry is 63-56 tons-ins.

Find how long the span may be for the cantilever to be able to sustain

safely its own weight.

We have for a cantilever

Now p = 18 Ibs. per ft.; /. max. B.M. = 63-56 tons-ins.

63-56 x 2240=-
^2
- Ibs.-ft. ; .*. if I is span in feet we have

2x63-56x2240
12x18

I = N/1318 = 36-3 feet.

(3) A beam 20 ft. span carries loads of J, J, 1 and 2 tons, as

shown on Fig. 15. Determine graphically the maximum B.M.
Draw the B.M. curve by the link and vector polygon construc-

tion as shown in Pig. 22. Take the space scale V = 4ft.
; the

load scale 1" = 2 tons; and the polar distance 1J inches. The
maximum ordinate of the B.M. curve will then be found to be

1-09 inches. The scale of this will bel"=l|x4x2 = 10 tons-ft.

.*. Maximum B.M. = 10-9 tons-ft.
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SUMMARY OF CHAPTER XII.

Neutral axis of a beam is the line in the cross section which
receives no stress or strain.

The stresses in a beam are tensile on one side of the neutral

axis and compressive on the other, the resultant forming a couple
whose moment must be equal to the bending moment.

The shearing force at any point is the algebraic sum of all the

perpendicular forces acting on the portion of the beam to the right

or left of that point.

The bending moment at any point is the algebraic sum of the

moments about that point of all the forces acting to the right or

left of that point.

Bending moment and shear diagrams can be drawn for standard

methods of loading and fixing the ends of the beam; for two or

more loadings occurring together, the separate diagrams are added

together.

For a simply supported beam of span I with an isolated load W
at distance a from one end

Wa(l-a)Max. B.M.=
^

-.

Wl
For uniform load Max. B.M.=-^- .

o

Shear and bending moment diagrams for any loading may be
drawn by means of the link and vector polygon construction.

EXERCISES. XII.

1. A beam AB 15 ft. long is fixed at A and free at the other

end. A weight of 80 Ibs. is placed at the end B, and a weight of

100 Ibs. in the middle of the beam. Find the B.M. and S.F. at dis-

tances of 3, 6 and 9 ft. from the fixed end.

2. A beam 150 ft. span is uniformly loaded with 2 tons per
ft. run. Calculate the B.M. and S.F. at every 10 ft. of its span and
draw the curves of B.M. and S.F.

3. A girder supported at both ends is 50 ft. span and carries

a uniformly distributed load of 200 Ibs. per ft. run. Find the B.M.

and S.F. at the centre and at points 15 ft. from the ends.
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4. A cantilever is 35 ft. long and is uniformly loaded with

150 Ibs. per ft. run. Find the B.M. and S.F. at the fixed end and

at points 25ft. and 15ft. from the fixed end.

5. If in the last question an additional load of 750 Ibs. is placed
in the centre of the beam find the magnitude of the B.M. and S.F.

at the points mentioned.

6. A beam 45 ft. span supported at the ends carries a weight
of 6 tons 15ft. from one end. Find the B.M. and S.F. at the centre

and also at 5 ft. from each end. Draw a diagram of B.M. and S.F.

to scale.

7. A beam is loaded as shown (see Fig. XII a). Find the reactions

at the supports, also the B.M. and S.F. at each quarter span, <7, D
and E being the points at quarter distance each along the beam.



CHAPTER XIII

CENTRE OF GRAVITY AND CENTROID

THE centre of gravity of a solid body or of a number of bodies

is a point through which the resultant weight of the whole body
or bodies may be considered to act. Every portion of a body is

attracted towards the centre of the earth by a force called the

weight of that portion, and in a body of reasonable size the

"

45

1

9*

Fig. 114. Centre of gravity. .

weights of all the parts will be parallel, so that the problem of

finding the centre of gravity of a body resolves itself into that

of finding the position of the resultant of a number of parallel

forces, and this is solved, as we have already seen on p. 19, by
the principle of moments.

Let 1, 2, 3, 4, etc., Fig. 114, represent a number of very small

bodies in the same plane whose weights wl9 wz , w3 , w^ etc. act at

right angles to the plane of the paper, the bodies being so small
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that the weight of each may be considered as acting through their

centre. Suppose that G is their centre of gravity ;
then is the

point through which acts the resultant W of the parallel forces

equal to the various weights. The magnitude W of this resultant

will be the sum of the separate weights, i.e.

W = w + w2 + w3 + MI + ....

For convenience this is written (as on p. 20)

W = 2^! (1).

Now suppose that OX and OY are any two convenient lines

which are not parallel ; it is usually most convenient to take them

at right angles to each other.

Then, remembering that the forces are acting at right angles

to the plane of the paper we have, by taking moments about OY,

Total moment about Y
= MY = wlxl + w2xz + w3x3 + w^ + . . .,

i.e. My = Zw^ (2).

But if the resultant weight acts through G we shall have by
the principle of moments

W . X = Sum of moments of the separate forces about OY

__
Sum of moments of separate weights about Y

Sum of separate weights

Similarly by taking moments about OX we shall have

v4)

__
Sum of moments of separate weights about OX

Sum of separate weights

In this way we have fixed the distance of the centre of gravity
from two given lines and so have found its exact position.

Application to continuous bodies. We can apply these

principles to the determination of the centre of gravity of con-

tinuous bodies by imagining such bodies to be divided up into
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a very large number of very small parts, as indicated in Fig. 115,
and regarding the weight of each separate part as acting through
its centre. The greater the number of parts,
the more accurate will our calculation be ; as

the number of parts becomes very great, how-

ever, the calculation becomes very laborious

and it is seldom made in this way but by means
of a branch of mathematics called the calculus,

which every engineering student should study
if he wishes to understand easily the more
advanced portions of mechanics.

The centre of gravity as the balance point. If a body
balances about a point or a line then that point must be on the

vertical line through the centre of gravity or the line must inter-

sect that vertical line ; moreover, if a body be freely suspended

by a string or wire the wire or string must pass through the

centre of gravity.

Take first the case of a body balanced about a point A,

Fig. 116; there are only two forces acting upon the body, viz.

the resultant weight W of the body and the upward pressure
R at the support. Since the body is balanced, it must be in

equilibrium under the action of these two forces and if two forces

act upon a body and keep it in equilibrium they must be equal and

opposite. If they were not, there would be a resultant moment
about some points and the body would start turning.

The weight W acts vertically downwards, therefore the

upward pressure R acts vertically upwards, so that the centre

of gravity G must lie upon the vertical through the point of

support A.

By exactly similar reasoning in the case of a body suspended
by a string attached at a point J5, the only forces acting are the

weight W of the body and the tension T in the string ; therefore

the direction of the string must pass through the point G.

Now we have seen that the sum of the moments of a number
of forces about any point is equal to the moment of the resultant

about the same point, the resultant weight of a body passes

through the centre of gravity and a force has zero moment about

a point in its line of action. We therefore deduce the very

important rule that the sum of the moments about the centre of
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gravity of the weights of the separate portions of a body making up
the whole body must be zero. It is clear for instance from Fig. 116

v

w
Fig. 116. Centre of gravity as the balance point.

that the moments of the portions to the left of G are anti-clock-

wise, while those to the right are clockwise and therefore of

opposite sign.

Centre of gravity by inspection. The centre of gravity of

a body which possesses a section of symmetry will always be in

that section. By a section of symmetry is meant a section

which will divide it into two exactly similar parts, which are

"looking-glass pictures of each other."

If a body has two different sections of symmetry, the centre

of gravity will always be on the intersection of the two sections.

Take for instance the cylinder represented in Fig. 117 which

is assumed to be of the same material throughout. Three

sections of symmetry are shown ; one vertical, cutting the cylinder

along the centre of its length: one at right angles to this, also

vertical and cutting through the centre of the two ends : and the
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third horizontal, also cutting through the centres of the two ends.

The centre of gravity G is at the intersection of the three sections.

Fig. 117.

As a proof of the statement that the centre of gravity must
lie upon a section of symmetry, consider the body shown in

Fig. 117 a of whichXX is a section of symmetry. For the purpose
of the argument we will suppose that the body is what is called

a solid of revolution, i.e. it is a. body such that all transverse

sections such as YY are circles, in other words it is the kind of

body that we could turn in a lathe, the axis of rotation being in

the section XX.
Now consider two equal portions,

each of weight w, opposite each other

and at the same distance from XX;
the moment of one about XX is wx
and of the other wx so that the

sum of the two moments about XX
is zero. As the whole body might
be divided up into similar neutralising

portions, the total moment of the

whole of the separate weights about

XX must be zero; in other words

XX must pass through the centre of

gravity. It will be noted that in the

case of the cylinder, G is what in

ordinary language we should call the

geometrical centre of the cylinder
and in all similarly regular bodies the geometrical centre of

the body is the same as the centre of gravity. But if the
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body be made of material of varying density or if there are

blow-holes in it this will not be the case.

Numerical Example. A uniform rod 24 inches long weighs
10 Ibs. and carries at its ends balls of 4 and 6 inches diameter

weighing respectively 5 and 8 Ibs. Where is the centre of

gravity ?

2"

>
>
5!t
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calculation easier. For instance we might have chosen the point
C of junction of the rod with the left-hand ball Then we have

Moment about C of left-hand ball =5x2 (anti-

clockwise) = 10

Moment about C of rod = 10 x 12 (clockwise) = + 120

Moment about C of right-hand ball = 8 x 27 (clockwise)
= + 216

Total (in inch-lbs.) = +1*26

326
/. Dist. OC =

23
14-2 inches.

This agrees with the previous result.

Centroid of an area. There are a large number of engineering

problems in which we require to find the point in an area which
would be the centre of gravity of a thin uniform flat sheet of the

same contour as the area. An area has no weight, so that it is

not strictly correct to speak of the centre of gravity of an area
;

it is therefore called the centroid. Many people, however, use the

term centre of gravity for both cases.

Fig. 119.

In the case of areas we may define the moment of an element

of area about a line as the product of the element by its perpen-
dicular distance from the line.

Referring to Fig. 119, a is an element of area situated around

a point P, then a xPN is the moment of the element about XX.
If the whole area is divided up into elements and the moments of

A. M. 14
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the elements are added together, the result is called the moment
of the whole area.

This is written

Moment of area about XX = S (a . PN).

From this point of view we may define the centroid as the

point at which we can consider the whole area concentrated to

give the same moment about any line.

If A is the area and it is considered as concentrated about the

centroid Ct then A x d is equal to the moment of area about XX ;

E(a.PN)
.(6).

This is equivalent to the result we obtained in equations (3)

and (4) for detemuning the position of the centre of gravity for

solid bodies and we may take it that all the rules for finding the

centre of gravity of a solid body can be applied to finding the

centroid of an area.

Centroid of a triangle. Let ABD, Fig. 120, represent a

triangle and let HJ be a very narrow strip drawn parallel to

the base. Since this strip is so

narrow it may be considered as

a rectangle and its centroid is

therefore at its centre K. The

whole triangle may be con-

sidered divided up into strips,

the centroid of each of which

will be along the line AE which

bisects the base at E and is

called a median line. Therefore

the centroid of the whole triangle

must lie on AE.

Similarly if we considered

strips parallel to AD we should show that the centroid of the

whole triangle must lie upon BF where F bisects AD.
The centroid of the triangle must therefore be at the inter-

EA
section C of the median lines, and CE will be equal to

3
this

is proved as follows. Join FE, then by a well-known geometrical
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property of the triangle, FE will be parallel to AB and will be

i * AB
equal to -^- .

2i

Therefore the As AEG, CFE are similar;

' AC "AB ~2
AC

We get therefore the rule that "the centroid of a triangle is

along a median line and is at a distance from the base equal to one-

third of the height"

Centre of gravity of a triangular pyramid. Let ABDE,
Fig. 121, represent a triangular pyramid and let C

l be the centroid

of the base. Join CA and consider a plane section FGH drawn

parallel to the base BED. AC^ cuts this section in (72 , and it

can be proved by an application of the principle of similar

triangles that Cz is also the centroid of the &FQH. Therefore

the line AC^ passes through the centroids of all the plane sections

drawn parallel to the base so that the centre of gravity of the

whole body must lie upon the line AC^\ similarly it must also

lie upon EC3 , so that the centre of gravity of the body is at the

intersection G of ACl and EC3 . Now consider the section

AEK of the pyramid through the edge AE and the point K;
this is shown on the right-hand side of the figure re-drawn for

142
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greater clearness. It contains the point G. Now consider the

GAE;
CK 1

[from previous proof for the triangle].

Therefore the As are similar and CjC8 is parallel to AE and

. , AE
is equal to 6-.

p

Next consider the As GC^G^ and GAE\ their corresponding
sides are parallel so that they also are similar;

.
GC1 ^C1C3 = l

f
"' AG AE

~
3

'

or GC1
=

We see therefore that "for a triangular pyramid the centre of

gravity is on the line joining the apex to the centroid of the base and

is at a height from the base equal to one-fourth of the height of the

pyramid"
Extension to polygonal pyramid and cone. A polygonal

pyramid (i.e. one whose base has more than three straight sides)

may be divided up into a number of triangular pyramids of the

same height the centre of gravity of each of which will be at

one-fourth of the height of the base, so that the centre of gravity

of the polygonal pyramid will also be at one-fourth of the height

on a line joining the vertex to the centroid of the base.

A cone may similarly be considered as divided up into an

infinite number of triangular pyramids with sides radiating from

the centre of the base so that in the cone also the centre of

gravity is at a distance from the base equal to one-fourth of the

height.

Centroid of a trapezium. A trapezium is a four-sided figure

with two sides parallel [some writers call it a "trapezoid"].

Referring to Fig. 122, if we considered narrow strips drawn

parallel to the base, it is clear that the centroid of each must lie

at the mid-point of each strip so that the centroid of the whole

figure must lie somewhere upon the line FG joining the mid-

points of the parallel sides.

Draw BJ parallel to the side AE. We then have the figure

divided up into a parallelogram ABJE and a triangle BJD t the
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centroids Ct
and C2 of which will be at distances equal to ^ and

2

from ED. We now require to find the distance d of the centroid
9

C of the whole figure from ED. We have seen already that it

must lie on FO and it must also lie on the line G^C^ joining the

centroids of the two parts.

8

Pig. 122.

The area of the whole figure

= Area of ABJE + Area of BJD

-f(a+6) (D

= Half the height x Sum of the parallel sides.

Now take moments about the base ED.

Moment = M = Moment of ABJE + Moment of BJD

= Area of ABJE x
|
+ Area of BJD x

|

, h (b-a)h.h

- (2a+ b) ....... ........... . ., . ...... (2),
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But M = Area of whole figure x d

h

i.e.

[CH.

*

2 v 6

h /2a + b\
ft ss= I

-
I

(3).

h
It is interesting to note that if a = 0, d = ~, this being the

o

case for the triangle ; whereas if a = b, d =
^(l

+
^)

=
3 2

=
2*

which is the result for the parallelogram. As a check therefore

we note that the centroid of a trapezium is at a distance from

the base somewhere between one-third and one-half of the height.

Graphical construction. The following graphical construction

is based upon the result of formula (3) and is very useful in many
problems.

Set out BK, Fig. 123, = b and EH = a and join across as

shown. Then the intersection of HK and FG gives the centroid

C required.

Fig. 123. Graphical construction for centroid of trapezium.

Graphical construction for centroid. The position of the

centroid of any figure can be obtained by the following construc-

tion which is a special case of the link and vector polygon
construction (p. 28).

Divide the area, Fig. 124, up into a number of small strips

of equal breadth, parallel to the direction about which moments
are taken, and draw the centre line of each of the said strips. Then
if the strips are sufficiently small (we have only taken a few strips

in the figure to avoid complication) the lengths of these centre
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lines represent the areas of the separate strips. Now, on a vector

line, to some scale, set out 1, 1 2,. . .6 7 to represent the area

of each strip, and take a pole P at convenient distance = p from

this vector line. Then anywhere across space draw and produce
a line ah parallel to OP ; across space 1 draw ab parallel to Pi ;

across space 2, be parallel to P2, and so on until the point g is

reached. Then draw the last link gh parallel to the last line

P7 to meet cih in h.

1 3 4567

Fig. 124. Graphical construction for centroid.

Then the centroid lies on the dotted line through h drawn

parallel to the given direction.

In most cases in practice we do not require the actual position

of the centroid but only its distance from a line drawn in a given

direction. In this case the above will suffice, the lines being drawn

parallel to the given direction. If it does not, the construction

should be repeated with the lines drawn at some convenient

inclination say at right angles to the previous ones.

It is not really essential to divide the area into strips of equal

breadth ; any breadths may be taken, but in that case the areas

of the strips must be set out on the vector line instead of the

mid-ordinates.

When the figure can be divided up into a number of figures
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the centroids of each of which can be found by inspection, we

proceed as in Fig. 125.

\/

o 1 2

\ \

Fig. 125. Graphical construction for centroid.

Draw lines parallel to the direction of the centroid line

required through the separate centroids Cj, c2 , c3 and make the

distances 01, 12, 2 3 on the vector line proportional to the

separate areas and then proceed as before.

Graphical constructions for any quadrilateral. The following

graphical constructions for the centroid of an irregular quadri-

lateral are useful.

B

Fig. 126. Construction for

centroid of quadrilateral.
Fig. 127. Construction for

centroid of quadrilateral.

First method. Let E be the point of intersection of the

diagonals AC and ED, Fig. 126; from G set off CE' = AE and

join DE' and BE', then the centroid of the quadrilateral will be

the same as that of the A BE'D. Therefore bisect BE' and E'D
in K, H and join DK, BE; then their point G of intersection

gives the required centroid.
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Second method. Divide each of the sides into three equal

parts and join across as indicated in Fig. 127. The resulting

figure gives a parallelogram whose centre G is the centroid

required.

Numerical Examples. (1) Find the weight and centre of

gravity of a cast iron body consisting of a cylinder 6 inches in

diameter and 9 inches long, with a cone of the same diameter and

6 inches high standing on the top. Cast iron weighs *26 Ib. per cu. in.

7rd*h TT x 62 x 9
The volume of the cylinder

.'. Weight of cylinder = Sin x -26 = 66 Ibs. nearly.

Trd*h IT x 62 x 6
Volume of the cone

12 12

=
1877-;

/. Weight of cone = ISw x -26 = 14-7 Ibs. ;

.'. Total weight = 66 + 14-7 = 80'7 Ibs.

The centre of gravity of the cone

and cylinder are at Gl and G2 respec-

tively, Fig. 128.

The centre of gravity G of the whole

body will lie upon Gft2 and regarding
the separate weights as acting at right

angles to the plane of the paper we can

take moments about any convenient

point, say G2 .

Then

80-7 x GG2
= 14-7 x 6 + 66 x 0;

14-7 x 6

80-7
1*1 inches.

Fig. 128.

Therefore the centre of gravity is

at !! + 4-5 = 5-6 inches from the base

of the cylinder.

As an exercise the student should check this result by taking

moments about G
1

.
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(2) Find the position of the centroid of the cast iron beam

section shown in Fig. 129.

The centroid C is obviously upon
the line of symmetry YY. To find

its distance d from the base divide

the section up into three rectangles
as indicated, the area of each being

regarded as acting at the centre.

Then we have total area

= 19 sq. ins.

Taking moments about the base

we have

Ad = 3 x 9-25 + 7 x 5 + 9 x -75

= 27-75 + 35 + 6-75

= 69-5 in. units ;

69-5

19
/. d 3-66 inches.

0/2"

As an exercise the student should

check this by the graphical con-

struction shown in Fig. 125.

(3) Find the position of the centroid of the angle section shown
in Fig. 130.

In this case we have a section which
has no axis of symmetry and the cen-

troid of which will lie outside the sec-

tion. Divide up into two rectangles
as shown.

Total area = 4 = 4}xJ + 3xJ
= 2-25 + 1-5 = 3-75.

Take moments about AB,

Adx
= 1-5 x -25 + 2-25 x 2-75

= 6-562 ;

6-562
.-. d, =

3-75
1-75 ins.



xni] CENTRE OF GRAVITY AND CENTROID 219

Take moments about AD,
Adv

= 2-25 x -25 + 1-5 x 1-5

= 2-81 ;

, 2-81 .

.'. dv = ^-=
= *75 in.

(4) A circular disc 8 inches in diameter has cut out of it a

circle of 3 inches diameter, leaving 2 inches on one side as indi-

cated in Fig. 131. Find the centre of gravity of the resulting body.

77 X 82

The area of the whole disc

The area of the piece cut out = -
77 x32

/. The relative weights are 82 and

3 2
, i.e. 64 and 9.

.*. The relative weight of the re-

mainder = 64 9 = 55.

The line XX is a line of symmetry
so that the centre of gravity G lies

upon it.

The centre of gravity of the whole

disc is at Gl and of the small circle atCr2 .

Take moments about Ot .

Then 55 . GGl
= 9r1$2 j

55^ = 9 x -5,

9 x -5

1
~

55

Fig. 131.

= -082 in.

Centroid of various figures. The positions of the centroid

of the following figures are useful hi calculations, but their proof

is beyond our present scope.

Fig. 132.
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Parabola. Fig. 132 (a). The area of the interior segment
o Tiff

XYZ =
5 BH and of the exterior segment XZU =

-5- . The
o o

centroids Olt G2 are as indicated.

Semicircular arc. The centre of gravity of a rod bent to a

2r
semicircle will be at G, Fig. 132 (6), where d = .

7T

4r
Semicircular area. The centroid G is given by d =

O7T

Experiments upon centre of gravity and centroid. Centre of gravity of a

plate by suspension. The centre of gravity of a plate or lamina can be found

by hanging it up by one point A, Fig. 133, and drawing a line on the plate

continuing the direction of the string, etc. The line then passes through the

Fig. 133.

centre of gravity. The plate is then suspended from some other point B,

preferably in about the relative position shown, and another similar line drawn.

The intersection gives the centre of gravity G.

Centre of gravity of a walking stick. An interesting but very simple

experiment can be performed with a walking stick as follows. Hold the stick

horizontally with one finger near each end as indicated in Fig. 134 Then

Fig. 134.



xm] CENTRE OF GRAVITY AND CENTROID 221

move the fingers A, B towards each other fairly slowly without jerking and the

fingers will meet at the centre of gravity.

After the student has finished reading this book, he should try to think out

why this gives the centre of gravity.

Kinds of Equilibrium. Directly the line of pressure of a

body falls outside the base, a moment acts which will make
the body topple over; but if the line of pressure falls inside

the base, the moment acting tends to maintain the body in

equilibrium*.
It is common to speak of the equilibrium of a body as being

one of three kinds, Fig. 135 :

Stable equilibrium, in which the body tends to return to its

original position of equilibrium when given a slight displacement.
Unstable equilibrium, in which the body tends to lose its

equilibrium when given a slight displacement.
Neutral equilibrium, in which the body neither returns to its

original position nor loses its equilibrium.

Stable Unstable Neutral

equilibrium equilibrium equilibrium

Fig. 135.

SUMMARY OF CHAPTER XIII.

The centre of gravity of a body is the point at which the resultant

weight of the whole body may be considered to act.

^._^WiXl _Sum of moments of separate weights

2tt?i Sum of separate weights

The centre of gravity is the point about which a body will balance.

The centre of gravity of a body lies upon a section of symmetry.

The centroid of an area is the point at which the whole area

may be considered concentrated to give the same moment about

* Cf. p. 22. The student should prove as an exercise that if the over-

turning moment exceeds the stability moment, the line of pressure will fall

outside the base.
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any line. It is often called the centre of gravity, but strictly this

is not correct because an area has no weight.

The centroid of a triangle is along a median line at a distance from
the base equal to one-third of the height.

The centre of gravity of a pyramid or cone is on the line joining
the apex to the centroid of the base and is at a height from the base

equal to the height of the pyramid.

For a trapezium of height h, the distance of the centroid from

the base 6 is QI + ~~TI behig the side parallel to the base.

EXERCISES. XIII.

1. Find the position of the centroid of an isosceles triangle
4 inches base and 6 inches high.

2. Find the position of the centre of gravity of a cone 10 inches

high and 8 inches diameter at the base.

3. A uniform rod of 5 Ibs. is weighted with weights of 1 and
2 Ibs. at the ends. Find the point about which it will balance.

4. Find the position of the centre of gravity of a square, length
of side 2 ft., from which is cut out a circle of 1 in. diameter touching
one of the sides at the centre.

Find the centre of gravity of the following :

5. A rod of length 2 feet weighing 2 Ibs. to the end of which
is fixed a spherical ball weighing 10 Ibs. and 4 inches in diameter.

6. A T-shaped figure; the stem being 3 feet x 3 inches wide

and the top 12 inches wide and 4 inches deep.

7. A balance weight having the form of a circular quadrant
of radius R.

8. A trapezoidal wall 30 ft. high has a vertical back and sloping
front face. The base is 10 ft. and top 7 ft. wide. What force

must be applied horizontally at a point at 20 feet from the top to

overturn it? Take width of wall = 1 ft. and weight of masonry
130 Ibs. per cu. ft.

9. A figure is made up of a square upon which stands an isosceles

triangle. Find the relation between the height and base of the

triangle in order that the centroid of the whole figure may be in

the common base.

10. Find the position of the centroid of a channel section of

base 10 inches, sides 3 inches and thickness of metal in.

11. Find the centre of gravity of the given figure. (See Fig.

XIII a.)

12. Find the centre of gravity of an angle iron 4"x3"x*.
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13. Find the distance of the centre of gravity of the trapezium
ABCD from CD (Fig. XIII 6).

14. A rod 5 ft. long has a weight of 2 Ibs. at one end and 3 Ibs.

at the other, also a weight of 5 Ibs. at centre. Neglecting the weight
of the rod, find the point about which it will balance.

15. A ship with equipment weighs 6000 tons. How far will

its centre of gravity move if a gun weighing 30 tons is moved
20 feet across the deck?

10

c< >D12- _
Fig. XIII &. Fig. XIII c.

16. The bending moment of a beam of span I is made up of a

triangle of height ^ at the centre and a parabola of height ^=

extending from the right-hand end to the centre (Fig. XIII c). Taking
the area of a parabola = f base x height find the position of the

centroid of the diagram from one end.

17. A solid cone 2 ft. high on a circular base has | of its volume

removed, being cut by a plane parallel to its base. Find the position

of the centre of gravity of the remainder.

18. A circular disc 6 feet in diameter has a circular hole 6 inches

in diameter cut out from it, the centre of the hole being 2 feet from

one edge of the disc. How far will the centre of gravity be from
the nearest edge?



CHAPTER XIV

FRICTION AND LUBRICATION

WE have explained already that a resistive force called

friction is the principal cause of the loss of energy in machines

and also that in some cases, such as in road traction, this frictional

force is of great use. We will now consider the subject in greater

detail and would ask the student to try to grasp fully each

point as he proceeds, because this is a branch of the subject which

is not always understood very clearly by students.

Static and kinetic friction. Let A and B, Fig. 136, be two

bodies pressed together with a normal pressure P. Then since

this force P has no component
at right angles to itself (i.e. in a

horizontal direction in the figure)

there should be no force required

to cause a sliding motion of A
upon B. But actually there is

a force tending to resist this

sliding motion, and this resistive

force is called the force offriction.

Now as the force F is slowly increased the resistive force/
increases also, but we soon reach the condition when the sliding

motion will commence because the force / is not capable of

exceeding a certain value called the limit of static friction. The

word static is used because the bodies are relatively stationary,

and some writers have used the ingenious term stiction for it.

As F gets still larger motion takes place and a frictional force

/ still comes into play, but it will not be quite equal to the limit

of static friction and will depend to some extent upon the speed

of sliding. The frictional force is then called kinetic friction or

friction of motion.

Fig. 136.

P

Friction.
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Coefficient of Friction. The quantity ^ is called the coefficient

of friction and is generally given the letter ^.

(1)

or f=pP (2).

If therefore we are given the value of the coefficient of friction

for the materials and conditions under consideration we can at

once find the value of the friction force when the pressure between

the surfaces is given.

With regard to static friction, the values of p which are

tabulated in the various books are those for the limiting friction.

It should be remembered that the frictional force only becomes

equal to /zP at the moment when slipping is about to occur;

until this condition is reached, the friction force / will be equal
to the force F because if there is no relative motion between the

two bodies the forces must be in equilibrium.
It has been found by experiment that for two given materials

the coefficient of friction with dry surfaces is practically constant

for various pressures ; it is, however, a little smaller for a large

pressure acting upon a small area than for a small pressure acting

upon a large area.

Limiting reaction with friction; angle of friction. We have

already seen that with smooth surfaces the reaction is always

normal, i.e. at right angles to the

surface*. With rough surfaces

the reaction will be inclined to

the normal in such a manner as

to tend to oppose the motion.

In the limiting condition when

motion is just about to take

place, the reaction reaches its

limiting position and the angle

at which it is inclined to the

normal is called the angle of

friction.

We will explain this more

fully with reference to a diagram, Fig. 137.

*
p. 59.

A.M. 15

[A
* B

^
Kg. 137. Angle of Friction.
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The body A rests upon the body B and a force P acts in a

direction at right angles to their surface of contact; a force

F acts parallel to the surface and the body A is in equilibrium.
Between the two surfaces there acts the friction force / indicated

by the small arrows in the figure and a reaction pressure P which,
in accordance with Newton's third law, is equal and opposite to

the force P.

The reaction pressure P and the friction force / have a

resultant reaction R which is inclined at an angle < to the normal ;

this angle is called the angle offriction.

We may therefore define the angle of friction as follows :

The angle offriction is the angle with the normal which is made

by the resultant reaction between two surfaces when slipping is about

to take place.

Referring again to the figure we note that abc is a triangle of

forces and that

Therefore we obtain the rule that :

The tangent of the angle oj jriction is equal to the coefficient of

friction.

Average values of
//,.

The following values of /x and < may
be taken as average values for dry surfaces.

Surfaces
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P = 30 Ibs. and p = -2,

:. Limiting friction = /LtP

= -2 x 30
= 6 Ibs.

.'. Any force exceeding 6 Ibs. will move the block.

(2) In the above case, what is the least inclined force which will

move the block and what will be its direction ?

We can solve this problem by considering the triangle of forces.

Referring to Fig. 138, the three forces acting upon the block are

Fig. 138. Friction with inclined force.

the weight of 30 Ibs., the resultant reaction R acting at an angle

cf>
to the normal in a direction tending to oppose the motion and

the tractive force F, whose direction we do not yet know.

We are given that p,
= tan

<f>
= -2, and from trigonometrical

tables we find that the value of
<f>

is about 11 20'.

To draw the triangle of forceswe set down ab to represent 30Ibs.

to a convenient scale and then draw bd at an angle (f>
to it. Then

if F were horizontal we should draw ad horizontally to fix the

point d, and if F were in any other given direction we should

draw from a a parallel to it. It will be clear that the force F is

least when the distance from a to bd is the least possible, i.e. when
ac is drawn at right angles to bd as shown.

If the triangle be drawn accurately to scale and ac be measured

it will be found to be about 5-88 Ibs.

By calculation we should say

F ac

30
= ^ = sm *>

/. ^ = 30 sin 11 20'

= 5-88 Ibs. approx.

152
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To determine the direction of F draw ce horizontally, then

LOCB = 90 L cae =
<f> [from Aa&c].

We see therefore that the best direction in which to pull a

body along a rough surface is at an angle to the surface equal to the

angle offriction.

Rolling Friction. It is a fact of universal experience that

it is easier to push an article provided with wheels than to push
one without. This is often explained by saying that rolling

friction is less than sliding friction, but such explanation does

not get us much further. The exact nature of so-called rolling

friction is not understood, but in a pure rolling motion there is no

sliding motion at ah
1 and as frictional forces are solely brought

into play by sliding there is no friction in pure rolling; on this

F ""t/IUIIHIIIIII"
1 7/

//////7//^77/w777777T

Fig. 139. Rolling Friction.

argument we should expect that with a very hard bed and roller

the frictional resistance would be practically nothing. In most
cases in practice, however, the roller or wheel sinks somewhat into

the bed as indicated in Fig. 139 (6) and so the pure rolling action

is stopped and some slipping occurs thus introducing friction.

There is also a resistance due to the fact that the wheel is in a

sense always going slightly uphill on account of the hump formed

in the front of the depression. The harder the surface, the less

will be the rolling resistance. Cyclists who have ridden upon
very soft sandy roads and then come on to hard tarred roads will

already have appreciated the truth of the above rule.

We should also expect the resistance to rolling to be less for

wheels of large diameter than for small ones, because the smaller

one will make a deeper depression than the larger one. Experi-
ments show that this is true and that the following two rules are

approximately true also :

(1) The rolling resistance is proportional to the load.

(2) The rolling resistance is inversely proportional to the

diameter of the roller.
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Action of wheels in assisting traction. In the case of a vehicle

such as a cart it might be argued that even if you have a wheel

you still have a sliding action at the axle which induces a friction

there instead of at the road. Against this we can point out that

the axle is iron running upon wood, brass or iron and that it is

easy to lubricate the axle; but this is not a complete answer.

The important point is that we have made the friction work at

a very small radius and the wheel gives a leverage over this

which makes the cart much easier to pull. Referring to Fig. 139 (a)

we see that the friction / acts at the axle circumference and the

tractive force F causes an equal resistance at the ground and this

force F has a large leverage over the friction force /.

Another way of looking at it is that in one revolution of the

wheel the work done against the friction is / x 27rr and the work

done by the traction is F x 27TJ5. If the tractive force is just

sufficient to move the cart horizontally, these two amounts of

work will be the same;

:. f X 277T = F X 27TJR,

This is the same result as we should obtain by a consideration

of leverage.

It is important to remember that rolling resistance is small

only if the road is hard. It is easier to pull a flat bottomed box

along very soft sand than to pull the same box mounted on wheels.

It is an interesting fact that about 150 years ago wheeled carts

were practically unknown in the agricultural parts of Scotland

(see for instance Smiles' Lives of the Engineers) ; this was doubt-

less in part due to the fact that the roads were so bad that

practically all the advantage of wheels was lost.

Inclined plane and screw with friction. We have considered

already (p. 58) the case of the inclined plane (of which the

screw is a modification) in which frictional resistance was

neglected. We will now consider the case in which friction has

to be considered.

Case 1. Force parallel to plane.

(a) Body moving upwards. In this case the three forces

acting upon the body are the force F, Fig. 140, parallel to the

plane, the weight W vertically downward and the reaction &
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which will be inclined at the angle of friction
<f>

to the normal
to the plane (shown in dotted lines).

We have already indicated (Fig. 33) that this normal is at an

angle 6 with the vertical, so that the reaction E makes an angle

(6 + (/>)
with the vertical. We are thus able to draw the triangle

of forces abc, and the force F can either be found graphically or

(90-0
**\*\ \

b \b

Figs. 140, 141. Inclined plane with Friction Force parallel to plane.

by calculation by means of a trigonometrical solution of the

Ao&c. Students who have gone sufficiently far with their

trigonometry will understand the following solution:

F _ ac
__

sin (9 + (f>)

W ~
db
~

sin (90 - </)

_ sin (6 + </>) t

cos
(/>

'

W
be sin (90

-
9)

ab sin ("90-$
cos

f

COS
(j>

'

COS (2).
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(6) Body moving downwards. In this case the reaction still

acts at an angle (f>
to the normal, but on the opposite side of it,

so that it makes an angle (6 cf>)
with the vertical.

The triangle of forces abc is then as in Fig. 141 and by similar

reasoning we get

R TFcosfl

cos<f>
(4).

It will be noted that It is the same in both cases.

Case 2. Force horizontal.

(a) Body moving upwards. In this case we have in Fig. 142

the triangle of forces abc, R being as before at an angle <j>
to the

normal.

a

w

Fig. 142. Friction on inclined plane. Force horizontal.

We then have from the triangle abc

/. F = W tan (6 + (5),

/. R = W cosec (0 + <f>)
iiivi *-,-*:.. .(6).

(b) Body moving downwards. In this case wo shall have
as in Case 1 the reaction R still at an angle (f>

to tho normal but
it will be on the opposite side, so that it will be inclined at an

angle (0 </>)
to the vertical and we shall have by a similar

consideration of the triangle of forces

F=Wt&n(d-<f>) (7),

R = W cosec (8
-

<f>) (8).
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Numerical Examples. (1) A weight of 20 Ibs. rests upon an

inclined plane whose base is 4 feet long and whose height is 3 feet

and is just prevented from moving downwards by a force of 8 Ibs.

acting horizontally. Find the coefficient of friction.

In this case the body is about to move downwards and

^=8 Ibs. and W = 20 Ibs.

Therefore by equation (7)

8 = 20 tan (6
-

<j>) ;

A table of tangents shows us that tan 21-8 is approx. -4, so

that we have (0 -</>)
= 21-8.

Now tan 6 = f = -75 and from tables we have 6 = 36-9

about ;

.'.
</>
= 36-9 - 21-8 = 14-7 about,

.-. p,
= tan 15-l fi

= -27 about.

(2)* A block weighing 60 Ibs. is on the point of motion down
a rough inclined board when supported by a force of 24 Ibs. acting

parallel to the board and just begins to move up when acted upon

by aforce of 36 Ibs. also parallel to the board. What is the coefficient

offriction ?

In this case we have, when about to move down, by
equation (3)

60sin(0-</)

COS0

(9).

When about to move up we have by equation (1)

60 sin (<?+<
;

COS0

QAOD

... Bin (0 +#- .............. (10).

Now sin (#-<) =
sm6co8</>

- cos 6
sin<j

and sin (6 + <) = sin 6 cos
<f>
+ cos 9 sin 0]

* Students who do not possess fair knowledge of trigonometry will not be

able to follow this example.
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.*. putting these values in (9) and (10) and adding we get

2 sin 6 cos
<j>
= cos

<f> ;

/. sin 6 = J,

or 0=30;
.*. sin (6 + <f>)

= sin 30 cos
<j>

-f cos 30 sin
<f>

_ cos
<f> .sin cf>

V3~~ ~~

cos<i

sn

V3

i.e. ^ = -115.

Angle of Repose. The largest angle of an inclined plane

upon which a body can rest without sliding down is called the

angle of repose, and we can show in the following manner that

the angle of repose is equal to the angle of friction.

When a body is just about to slide down, the force acting
either parallel to the plane or horizontally is zero, so that by

equation (7) we have
= W tan (6

-
<).

Since W is not zero, tan (6
-

<j>)
must be zero, i.e. (6

-
(f>)

= or

= <.

The angle of repose is of importance in considering the

stability of walls supporting banks of earth.

The efficiency of a screw. We have shown on p. 63 that

a screw is really a special case of an inclined plane with a horizontal

force, and when friction was neglected we had the relation

F= F"tan0 ................ (12).

When friction is considered we get the following treatment :

(a) Screwing in. When screwing in, the load is moving up
the plane, so that equation (5) is the one to use.

We have therefore

F = W tan (0 + <) .............. (5).
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Now the efficiency (7) of a machine may be determined by
the relation

Ideal effort

^ ~~

Actual effort

TFtan0

JF tan

tang
(13).tan (0+0)*

It can be shown that this efficiency is the maximum possible

when = 45Q ^ , but the proof of this is beyond our present

standard.

(6) Screwing out. When screwing out, the load is moving
down the plane, so that equation (7) is relevant ;

.-. F = W tan (0
-

0).

In this case F is the horizontal force that the weight W will

move downwards, the effort and resistance being reversed.

F
Actual effort =

Ideal effort=

tan (0-0)'
F

tan0
;

Ideal effort

Actual effort

tan (0
-

0)
tan0

* V '*

This is found to be a maximum when

It will be noticed that if equation (14) = 0, it means that the

screw will not run backwards unless it is helped round. The
screw is then called self-locking and this in many machines is

a useful feature but it means that the efficiency of the machine
is sacrificed to it.

This occurs when = or */ the angle of a screw is less than

the angle of friction the screw will not run backwards, i.e. the nut

will not drive the screw.
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Ladder resting against a wall. If a ladder AB, Fig. 143,

rest against a wall at B and against the ground at A, frictional

forces are induced at A and B preventing the ladder from sliding

down the wall. If slipping is about to take place, the reactions

EA and EB will be inclined as shown at angles fa and fa to the

normal, fa being the angle of friction for the ladder on the ground

and fa for the ladder along the wall.

Fig. 143. Ladder resting against a wall.

Now we have already proved (p. 26) that if three forces are

in equilibrium they must, if not parallel, pass through a point.

As therefore EA and EB meet at O, the resultant weight W, of the

ladder and of a man standing upon it, must also act through C.

It must always be remembered that in these friction problems
it is only when slipping is just about to take place that the

reactions are inclined at the angle of friction. In other cases,

as for instance when the resultant weight of the ladder comes

below the point Z>, the reactions will be less inclined and their

actual values cannot always be determined. In the ladder

problem, all that we know is that the reactions must intersect

on the vertical line through the resultant weight and that neither

reaction can be inclined to the normal at an angle greater than
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the angle of friction but there are a very large number of reactions

possible which will satisfy these conditions. Problems of this

kind in which the exact result cannot be found are called
4 '

statically indeterminate."

Numerical Examples. (1) A wheel rotates upon an axle

3 inches in diameter and makes 90 revolutions per minute. If the

load on the wheel is J ton and the coefficient of friction for the

lubricated axle is -02, how much work per minute is absorbed in

friction ?

Fig. 144 shows the axle, the

weight being regarded as acting at

the bottom.

In this case the load

/. Friction force

- -02 x 560= 11-2 Ibs.

Now the axle is constantly ro-

tating in opposition to this friction.

/. Distance moved per minute

= TrDN
TT x 3 x 90 . .

= 70-7 ft.

.". Work done against friction per minute

= Force x Distance moved
= 11-2 x 70-7

= 792ft.-lbs.

We have taken the weight as acting at the bottom in this

case because this is approximately true ; strictly the weight will

act a little to the right of the bottom, sufficiently far away for

the resultant of the normal reaction and the friction force to be

exactly equal and opposite to the weight.

(2) Find the efficiency of a screw 2J inches in diameter in

which there are four threads to the inch and the coefficient offriction
is -04.

In this case p = J inch and the circumference = 2-57T ;

.-. tan 6 = J -7- 2-57T = ^- = '032 approx.
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Now by equation (13)

tanfl = tan0(l-tan0.tanft)
77
~
tan (6 + tf>)

tan + tan<

__ -032 (1
-

-0013) _
032 + -04

'

/. Efficiency of screw = -44 or 44 %.

(3) A cylinder weighing Gibs, is 2 inches in diameter and

8 inches long. It is placed on a board which is slowly tilted up.

If the coefficient of friction between the board and the cylinder is -2,

will the cylinder start sliding before it topples over ?

We have already seen (p. 221) that if the line of action of

the weight of a body falls outside the base it will topple over

unless held down by some ex-

ternal means ; we have also learnt

that the body will start sliding

when the slope is equal to the

angle of friction. In Fig. 145

we have shown the board at this

slope (/A
= tan

<f>
=^ =

-2) ; we
therefore require to find whether

in this position the line of action of the weight of the cylinder

falls outside the base. This can be done by drawing carefully

to scale and then drawing a vertical through the centre of the

cylinder. It will be found to come just inside so that the cylinder

will slide before it topples over.

We can obtain this result by calculation as follows : the angle
between ab and ac will also be

</> ;

/. tan< = -7 , but ab = 4 inches,

; :

^". II i|
or be = 4 x -2 = -8 inch.

As the cylinder is 2 inches in diameter the distance from b to

the edge of the base will be 1 inch so that c falls inside the base.

Lubrication. The purpose of lubrication is to reduce friction

and so minimise the energy which is absorbed by the friction.

This is effected by imprisoning a film of oil between the two
surfaces so that the friction between the surfaces is replaced by
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a friction between the fluid and the surfaces and this is less than

the friction between the dry surfaces.

In the choice of a lubricant it should be remembered that

the condition under which it is to be used should be considered.

It should have sufficient viscosity to prevent its being squeezed

right out of the bearing and if the part lubricated is likely to be

hot in working the lubricant should be such that its lubricating

properties are not destroyed at the higher temperature. In

designing lubricating devices care should be taken that the

lubricant is not introduced at the point where the pressure is

greatest; otherwise little will find its way to the bearing. The

friction of lubricated bearings is really a subject requiring

separate attention and it is rather beyond our present stage.

Experiments upon Friction. The following experiments can be made
with very simple apparatus.

(1) Determination of the coefficient of friction by tilting. Hinge a board C
at one end to a board A (Fig. 146), and at eaoh side of the opposite end of the

146. Determination of coefficient of friction by tilting.

latter set up two slotted uprights B. Between the uprights fix a bolt D
provided with a fly-nut by means of which it can be fixed in any position,

upon which the board C can rest. On the edge of the upright B fix a scale

E. The block F whose angle of friction with the board C is required is placed

upon the board C which is slowly tilted upwards until the block begins to

slide.

The height h at which sliding commences is noted and then we have, as

shown on p. 226,

By choosing I a convenient round number of niches, the scale E can easily
be graduated to read off values of /* direct. To make an instructive experi-
ment blocks F of different weights and areas of contact for the same material
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may be taken so that the student can discover for himself what effect the

pressure has upon the coefficient.

(2) Determination of the coefficient of friction by weights. Fix a smoothly
running pulley B (Fig. 147) in the end of a board A and connect a thin string to

a block D, the string passing over the pulley and having a scale pan attached to

its end. A weight is then placed on the block, the combined weight including
that of the block being W; small weights are then placed carefully in the scale

pan until the block begins to slide. Then if / is the sum of the added weights
and the weight of the scale pan, the limiting coefficient of static friction will

be given by

C

Fig. 147. Determination of coefficient of friction by weights.

The experiment may be extended by varying the weight W and by placing
surfaces of various kinds upon the board A and also by turning the block D
round to vary the direction of the grain.

Experiments may also be made to find the coefficient of kinetic friction

by loading the scale pan until when the block is given a start it will continue

to move uniformly.

(3) Experiments upon rottingfriction. The same apparatus may be employed
for experiments upon rolling friction by replacing the block D by a small model
wheeled truck. The friction of the axles will of course come into play but
the effect of various surfaces upon the friction for the same truck may be

investigated by laying various surfaces upon the board.

SUMMARY OF CHAPTER XIV.

Friction is the force between two surfaces which tends to prevent
them from moving relatively to each other.

When motion is already taking place the force is called kinetic

friction, but when the bodies are stationary the friction force when

sliding is just about to take place is called the limit of static friction.

Friction is reduced by replacing a sliding motion by a rolling
motion.
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To deal with friction on an inclined plane treat the reaction as

acting at an angle < to the normal to the surface on the side which
will tend to oppose motion.

The angle of repose is equal to the angle of friction

TQ . tan0
Efficiency of screw =

EXERCISES. XIV.

1. A weight of 5 cwt. resting on a horizontal plane requires
a horizontal force of 100 Ibs. to move it against friction. What in

that case is the value of the coefficient of friction?

2. A body weighing 40 Ibs. rests on a rough horizontal plane
whose coefficient of friction = 0-25. Find the least horizontal force

which will move the body.

3. A locomotive weighs 65 tons of which 0*48 of the whole

rests on the driving-wheels. What must the coefficient of friction

be between the driving-wheels and the rails so that the engine

may draw a train of total weight 200 tons at 50 miles an hour up
an incline 1 in 300 ? Resistance = 45 Ibs. per ton.

4. A horse drags a load of 35 cwt. up an incline of 1 in 20.

The resistance on the level is 100 Ibs. per ton. Find the pull on the

traces when they are (a) horizontal; (6) parallel with the incline;

(c) in the position of the least pull.

5. If the angle of friction is 10, find the magnitude and direction

of the least force which will push a load of 20 tons up a plane inclined

at 20 to the horizon.

6. A bicycle and rider weighing together 180 Ibs. are going along
the level at 10 miles an hour. If the brake be applied at the top of

the front wheel (30* diam.) and is the only resistance acting, how
far will the bicycle travel before stopping if the pressure of the

brake is 20 Ibs. and /*
= 0-5?

7. Prove that a train going 60 miles an hour can be brought
to rest in 313 yds. (about) by the brakes supposing them to press
on wheels with f weight of the train and /*

= 0-18 in addition to a

passive resistance of 20 Ibs.-wt. per ton on the level.

8. A wheel 12 ft. in diameter, rotating at the rate of 1 rev. in

2 seconds, is acted upon by a brake which applies normal pressures
of 1 cwt. each at opposite ends of a diameter. If

fi
= 0-6, find the

H.P. absorbed.
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9. If the coefficient of friction be f , find the least depth from

back to front of a drawer 2 ft. wide, which can be drawn out by
a direct pull on a handle 6 ins. to the right or left of the middle

of the front.

10. A ship weighing 2000 tons is launched. Find what slope
of the ways is necessary for uniform motion when once started.

Also what should be the area of the bearing surface so that the

pressure shall not exceed 2 tons per sq. ft. and so force out the tallow.

H = 0-14.

11. In a screw-jack the pitch of the square-threaded screw

is 0'5 in. and the mean diameter is 2 ins. The force exerted on
the bar used in turning the screw is applied at a radius of 21 ins.

Find this force if a load of 3 tons is being raised. Taking /*
= 0-2,

what is the efficiency of this machine?

12. A uniform ladder 70 ft. long is equally inclined to a vertical

wall and horizontal ground, both of which are rough. The weight
of a man and his burden ascending the ladder is 2 cwt. and the weight
of the ladder is 4 cwt. How far up may he ascend before the ladder

begins to slip if ft
= for the ground and for the wall?

A. M. 16



CHAPTER XV

MOTION IN A CURVED PATH

The Hodograph. We have considered up to the present

only the cases in which the motion of a body takes place in a

straight line. If a body moves in a curved path, its motion may
in many cases be considered most conveniently by means of

the Hodograph which is defined as follows:

Let P0> P! ... P4 , etc., Fig. 148, represent successive points

upon the curved path of a body and let P 0, Pxl, etc. be the

tangents to the curve at the various points.

Curved Path

Kg. 148. The Hodograph.

Taking a pole X draw a vector J?0 parallel to the tangent
to represent the velocity v of the body at the point P in

magnitude and direction to some convenient scale; then draw

XI parallel to Pxl to represent the velocity v at P1 to the same

scale and so on. Then the curve obtained by joining the points

0, 1, 2 ... 4, etc. is called the velocity hodograph for the motion.

Now consider the question of acceleration. Acceleration is
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defined as the rate of change of velocity, and the change in

velocity may consist of a change of direction as well as one of

magnitude. In the case under consideration for instance the

velocity between the points Pl ,
P2 changes from XI to X2, the

change in velocity being represented by the vector difference

1, 2. If the distance P^P^ is very short and the time taken in

traversing it is U y we have

Acceleration = Chge in velocity

Time taken

i.e. a =

This means that the acceleration of the body between the

points Plt P2 is equal to the velocity with which the corresponding

point in the hodograph moves across the corresponding period.
This gives us the rule that "the velocity in the hodograph is equal

to the acceleration in the curved path." The acceleration at any

point will also be in the direction of the tangent to the hodograph
at the point.

If therefore we consider the velocity hodograph as a curved

path and repeat the construction, the new curve will give accelera-

tions and may be called the acceleration hodograph.

Uniform motion in a circle; angular velocity. Suppose that

a point moves with a velocity v in a circle of radius r, and that

in a time t the point moves through an arc AB, Fig. 149, sub-

tending an angle 6 at the centre of the circle.

Then the angle turned through
in a unit time is called the angular

velocity and is given the letter co.

Then since

arc= angle (in radians) x radius

we have AB = r0,

and if t is the time taken from A to J5,

AB = vt ;

or v = rd

t
149.

but - = angular velocity = o> ;

.'. v = cor ....(2).

162
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In practice angular velocity is not expressed in radians per
minute or per second, but in revolutions per minute or per second.

Now in one revolution the point moves through a distance

277T so that if a point rotates uniformly at N revolutions per

second, the velocity at a radius r is given by
v = 27rrN .................. (3).

Numerical Example. // a shaft 4 inches in diameter rotates

at a uniform rate of 80 revolutions per minute, what is the peripheral

velocity of the shaft in feet per second ?

In this case r = 2 ins., N = $ per second.

.*. Peripheral velocity v in inches per second

= 2 x 3-1416 x 2 x fj.

= 16-76.

.'. Peripheral velocity =
IJf

= 1-40 feet per second.

Centripetal and centrifugal force. If a body moves with uni-

form velocity v feet per second in a circle of radius r feet (Fig 150),

the velocity hodograph will be a circle of radius v
t the radius XQ of

Curved Path

Velocity

Hodograph

Fig. 150. Centripetal Acceleration.

Acceleration

Hodograph

the hodograph being at right angles to the corresponding radius

OPQ of the curved path. When the point in the curved path
has reached Plt the radius has turned through a right angle and,
in reaching the corresponding point 1 on the velocity hodograph,
the radius has turned through the same angle. The velocity

hodograph therefore turns through a complete circle in the same
time as the body moving in the curved path completes its circle.

The acceleration hodograph will also be a circle because it is

obtained from the velocity hodograph by the same construction
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as that employed for drawing the former. The radius FO in the

acceleration hodograph is parallel to the tangent at O and is thus

at right angles to XO and opposite to the radius OP of the

curved path ;
a revolution of the acceleration hodograph will also

be completed when one revolution in the curved path is completed.
We get therefore the result that with uniform motion in a

circle there is a constant acceleration towards the centre. This

acceleration is usually called the centripetal acceleration; its

magnitude can be found as follows.

Let t seconds be the time taken to complete the circle, then

we have

_ 277T
(A\ .

~~r (4) >

also the acceleration a is the velocity on the velocity hodograph,

TTV lv,^' a
=-J- (

5>-

Dividing we get

or o= (6).

If the weight of the body is W, we have by the rule

,., Weight x acceleration
Force =

9

a constant "centripetal force" acting towards the centre of the

circle to maintain the motion.

The force equal and opposite to this, which is the apparent
force acting outwards upon the body, is called the "centrifugal

force," the two terms being often confused.

The centrifugal force is really the force acting outwards at the

same radius as the rotating body which will equilibrate or balance

the system of forces acting on the body, as the examination of

the equilibrium of such bodies is correctly dealt with by con-

sidering the forces acting on the body together with the reversed

radial accelerating force as forming a system in equilibrium.
Since the weight of a body acts at the centre of gravity and

the centrifugal force acting on each portion of the body is pro-

portional to the weight of that body, it follows that the resultant

centrifugal force also acts through the centre of gravity.
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We get therefore, from equation (6),

Centripetal or centrifugal force

Wv*

If the velocity is given in terms of revolutions per minute (N)

we have, since v= --
,

\)0

36000
......... '.......

= -00034#W .............. (9).

Numerical Examples. (1) What force acting horizontally

tends to overturn a train weighing 100 tons when running round a

curve of 500 feet radius at 60 miles per hour ?

In this case W = 100 tons,

v = 60 miles an hour
= 88 ft. per second,

r = 500 ft.

.*. Centrifugal force which tends to overturn the train

__
100 x 88 x 88

32-2 x 500
= 48 tons nearly.

(2) At how many revolutions per minute must a stone weighing

J Ib. whirl horizontally at the end of a string 5 feet long to cause

a tension of 2 Ibs. in the string ?

In this case W =
J,

.*. using equation (9)

2 = -00034^2 . 5 . J,

5 x -00034*

N = 68-6 revolutions per minute.
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Applications of centrifugal and centripetal force. There are

a large number of problems in engineering practice in which

centrifugal and centripetal force are of importance.

Railway Curves and Motor Tracks.

When a railway train or motor car goes round a curve the

radial acceleration induces forces which tend to overturn it, and
this has been the assigned cause of accidents even in recent years

for instance the railway accident at Salisbury a few years ago.
Those students who have played with model steam-engines will

have found that when the speed gets high the engine will often

fall over at a bend.

A B

5.
151. Railway Curves and Motor Tracks.

To minimise these dangers it is now the practice to tilt or

"super-elevate" the rails and to bank the motor track at a bend,
the arrangement in the latter case being that the surface is

perpendicular to the resultant of the weight of the body and the

centrifugal force. It is commonly stated that in railway tracks

also the surface should be perpendicular to this resultant, but

such is not the case. In the railway track the problem is to

give an elevation which will prevent the inner wheel from

lifting off the rail
; this means that the resultant of the weight

and centrifugal force must act inside the tread of the outer

rail. Referring to Fig. 151, the resultant force R is obtained by
considering the triangle of forces abc ; if the track is so banked

up that this resultant acts at right angles to it, there will be no

tendency for the body to overturn.

Our problem therefore becomes that of determining the angle
6 so that AC is perpendicular to R.
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Now each side of the A ABC is perpendicular to a side of the

A abc ;
therefore these triangles are similar and

BG _bc
AB ab'

r,but bc = Fc
gr

where v is the velocity of the train or car and r is the radius of

the bend; also

= =
AB Wgr gr

9

i.e. tan 9 = - .................... (10).
gr

This result gives us the angle of tilt that should be provided
to bring the resultant force at right angles to the surface and can

be correctly applied to the case of the motor track.

This treatment would however, as the following numerical

example shows, give a much higher super-elevation for railways
than is ever adopted.

Numerical Example. // the gauge of a railway is 4' 8J", find
the super-elevation required for a curve of 400 feet radius at a speed

of 60 miles an hour if the resultant force is to be perpendicular to

the rails.

In this case v 88 feet per second,
= 56-5 inches,

r = 400 feet,

g = 32-2 feet per second per second,

88x88^^
32-2x400

= 6012;

.'.
= 31-0 approx.;

'.*. e = G sin 9

= 56-5x sin 31-0

= 29-1 inches nearly.

Centrifugal governors or conical pendulums. The centrifugal

governor is a device for regulating the speed of engines and motors
and in its simplest form was employed by James Watt. A simple

form, shown in Fig. 152, has two balls carried by arms pivoted
to a collar A upon a shaft O driven from the main shaft of the
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machine. The arms carry links pivoted to a sleeve B which is

movable up and down the shaft O, the motion being transmitted

by a bell-crank lever C to a rod D connected to the throttle

valve of the steam-engine.

Should the speed of the engine increase, the radial force will

increase and the balls will fly outwards and the sleeve B will rise

and thus cut off the supply of steam until the engine has regained
its normal speed.

We can find the relation be-

tween the height h and the radius

r of the balls for any given speed.

The forces acting upon each

ball are its weight W called the

"Controlling Force" and the

centrifugal force Fe .

Since the arms are freely

pivoted to the collar A, the

arms will move until there is

no tendency to move about the

pivot. But we have seen that

the tendency of a number of

forces to rotate a body about

any point is measured by the sum of the moments of the forces

about the point, so that in the present case, this moment must
be zero, and neglecting the weight of the arm we therefore have

F h - Wr = 0, i.e. Fch = Wr,

Fig. 152. Watt's Centrifugal
Governor.

or

r v [by equation 7],

(ID.

If we wish to use a formula in terms of the number of revolutions

N per minute we use equation (8),

h
_^ 3600y

A72 3600<7r
i.e.

i.e.
__ 60 /
TV = /

27TV (12).
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Numerical Example. Find the speed at which a simple

centrifugal governor will run when the height is 9 inches and find

the amount by which the balls will rise when the number of revolu-

tions per minute increases by 5.

In this case h = 9 inches = -75 foot ;

, 60

= 63 revolutions per minute nearly,

If N = 66 we shall have

/32-2
V h '6666

60 x 60 x 32-2
"
66 x 66 x 47r2

= *674 foot nearly
= 8-09 inches.

.-. The balls rise by 9 - 8-09

= -91 inch.

Balancing rotating parts. If a wheel or other revolving body
has its centre of gravity out of the centre of rotation, then the

whole body may be considered as a weight concentrated at its

centre of gravity and thus rotating in a circle whose radius is

equal to the distance from the centre of gravity to the axis of

rotation.

The resulting radial force may at high speeds cause severe

vibrations and will interfere with smooth running besides causing

heavy stresses upon the shaft and bearings.

Rotating bodies which give rise to these centrifugal forces

are said to suffer from want of balance and the problem of

removing these forces and similar forces caused by rotating parts

is called "balancing." In many cases this problem is an ex-

ceedingly difficult one, and in some cases of engines in electric

power stations which caused severe vibrations in adjoining

buildings great expense and inconvenience have resulted, due to

the inability of even the leading authorities to quite remove the

lack of balance.

We cannot at the present stage go fully into the more advanced
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aspects of the problem but the numerical example given below

will indicate that a small divergence of the centre of gravity

from the centre of rotation may cause quite serious forces.

Numerical Example. A flywheel weighing 5 tons has its centre

of gravity -$ of an inch from the centre of the shaft. Find the force

upon the shaft caused by the lack of balance when running at 200

revolutions per minute.

In this case we may use equation (9), thus getting

F = -00034ffW

= -00034 x 200 x 200 x^ x 5

= '57 ton.

If we wish to balance an unbalanced body we may add a

weight to it at such a point that it will cause a centrifugal force

Fig. 153.

equal and opposite to that caused by the eccentricity. Suppose
for instance that a body of weight W is rotating about an axis

0, Fig. 153, and that its centre of gravity O is at a distance

e from 0.

This causes a centrifugal force Fc which may be balanced by
an equal and opposite force Fc caused by a weight w placed at

radius r at a point diametrically opposite to G.

Now this means that we shall bring the centre of gravity of

the whole body including the weight w back to O.

Therefore by moments about we shall have

wr = We,

.'.
- (13)
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We can get the same result by considering the centrifugal

force Fe .

We then have F9
= -00034NW

i.e.

or

rw= eW,

We , .w = as before.

Projectiles. If a body such as a stone or a bullet is projected
into the air in a direction other than vertical it describes a curved

path called the trajectory which, as we shall show later, is a

parabola if the resistance of the air is not taken into account.

Fig. 154. Projectiles.

Suppose that a body is projected with a velocity u from a

point P, Fig. 154, at an inclination with the horizontal. Then
this velocity may, as we have seen before, be resolved into

a vertical component uv and a horizontal component uh whose

values can easily be found by drawing the A 123 to scale or can

be found by trigonometrical calculation as follows :

uv
= u sin (1),

Uji
= u cos (2).

Now the only force acting upon the projectile, if air resistance

is neglected, is that of gravity which acts vertically downwards

and will give a vertical downward acceleration to the body.
But this vertical force can have no effect upon the horizontal

component of the velocity, so that the horizontal component uh of

the velocity remains constant.

Now suppose that after a time t the projectile has reached

a position Q, the components of its velocity v then being uv and uh .
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Then the vertical distance y will be the same as would be

obtained by projecting a body vertically with velocity uv so that

by formula (6) on p. 96 we have

y = uvt-lgt* .................. (3),

* = %* ...................... (4).

Putting t =
,
uh being a constant, we have

uh
uv * x2

y = .x -\g K
Uh '*Uj?

but this is of the general mathematical form

y = ax + bx\

where a and b are constants, and we know that the corresponding
curve is a parabola.

Therefore we have proved that the path of the projectile
is a parabola.

We now wish to obtain some way of finding the height h to

which the projectile will rise and the range d, i.e. the distance

away from P at which the body will again be at the same
level.

The height h will be the height to which a body will rise when

projected vertically upwards with a velocity uv .

From equation (12), p. 97, we get

The time to reach this point is given by

By the time the body has arrived at T it has been moving
for a time 2t and since it has been moving in a horizontal direction

with a constant velocity uh , the range d must be given by
d = constant velocity x time

= uh x 2t
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When we are calculating with the aid of trigonometry we can

make results of equations (1) and (2) as follows:

2u sin 6 . u cos 6

= .2sin0cos0

(9).

Direction to give greatest range for a given velocity. If the

velocity is fixed the range for different directions varies as sin 20

as given by equation (9). Now the greatest value of the sine of

an angle is 1 and occurs when that angle is 90.
Therefore the maximum range occurs when 20 = 90 or
= 45, so that to send a projectile the farthest distance

horizontally we should project it at an angle of 45 to the horizon.

Projectiles considered from the hodograph. With a pro-

jectile, the acceleration is, as we have seen, constant and is

vertically downwards and the horizontal velocity is constant so

that in equal times the body moves through equal horizontal

distances.

Velocity Hodograph

-0

Trajectory

1 2 3' 4 56

Fig. 155. Hodograph for Projectiles.

We saw on p. 243 that the acceleration is the velocity with

which the point moves on the velocity hodograph so that as

this is constant the points on the velocity hodograph are at equal
distances apart. This gives us the velocity hodograph shown
in Fig. 155. Working backwards from this and the knowledge
that in equal times the horizontal distances are equal, we draw
a number of vertical lines at equal distances apart and draw

PoPj parallel to ZO, then P
XP2 parallel to XI and so on. This

will be recognised as the link and vector polygon construction

which gives a parabola when the points are near enough together.
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Consider for instance the graphical construction for the B.M.

diagram of a beam carrying a uniform load.

Numerical Examples. (1) A shot is projected horizontally

from the top of a tower 50 feet high with a velocity of 200 feet per
second. After what time will it strike the ground and how far away
from the base of the tower will it then be ?

In this case the trajectory will be somewhat of the form shown
in Fig. 156 and the time taken will be the same as that taken to

fall 50 feet from rest.

Fig. 156.

Therefore we have from equation (9), p. 97,

. ,2__ 0.11
'* -J~3*2

= U >

t = VSTI = 1-76 seconds,

/. d = 200 x 1-76 = 352 feet.

(2) // a man can throw a stone 90 yards, how long is it in

air, and to what height will it rise?

In this case d = 90 yards
= 270 feet.

And we have seen that 6 = 45 for maximum range so that

since
, 2uv .uhd = - - =

/270 x 32-2

V "

2

65-8 feet per second ;
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/. from (6) h =^ =
|
= 67'5 feet,

from (7) Time to top
=^-,

, Total time =^ =^ :H!i||ll= 4'1 seconds nearly.

SUMMARY OF CHAPTER XV.

The motion of bodies moving in a curved path is conveniently

studied by a graphical construction called the Hodograph.

The angular velocity (o>) of a body rotating about a fixed axis is

equal to the angle through which the body rotates round the axis in

a unit of time.

.. v = o>r = 2nrN.

Centripetal acceleration =.
Wv2

Centripetal or centrifugal force= ---

=
Governors :

-. "

Projectiles. The path of a projectile is called its trajectory and
if air resistance is neglected it will be a parabola. The horizontal

component of the velocity of a projectile is constant.

The vertical component has gravity acceleration acting against it.

Range of projectile =d= sin 20.
\J

The greatest range on a horizontal plane for a given initial velocity

occurs when the angle of projection is 45.

EXERCISES. XV.

1. A body weighing 2 tons moves in a circle of radius 10 ft.

6 ins. making 180 revolutions per minute. Find its kinetic energy
in ft.-lbs.

2. A weight of 1 Ib. is fastened to the end of a string 3 ft. long
and made to perform 50 revolutions per min. with uniform velocity,
the revolutions taking place in a horizontal plane.

Determine the tension of the string.
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3. Find the speed at which a simple Watt governor runs when
the arm makes an angle of 38 with its vertical. Length of arm
from centre of pin to centre of ball =18 inches.

4. A railway carriage of weight 2 tons is moving, at the rate

of 60 miles per hour on a curve of 770 ft. radius. If the outer rail

is not raised above the inner, find the lateral pressure on the rail.

5. A string 4 ft. long which can just support a weight of 9 Ibs.

without breaking is placed on a horizontal table. To one end is

fixed a weight of 8 Ibs. and the free end is held and the weight is

swung round. Find how fast the weight may go so as just not to

break the string.

6. At what speed must a locomotive be running on level lines

with a curve of 968 ft. radius if the thrust on the rails is ^ of its

weight ?

7. A locomotive engine weighs 38 tons and travels round a

curve of 800 ft. radius at 50 miles per hour. Find the centrifugal
force. Show how to find the direction and magnitude of the

resultant thrust on the rails due to its weight and the centrifugal
force.

8. A motor car moves at constant speed in a horizontal circle

300 ft. radius. The track is at 10 to the horizontal. The plumb-
line makes 12 with what would be perpendicular if the car were
on the horizontal. Find the speed of the car.

9. A flywheel 5 ft. 3 ins. in diameter has a rim weighing
1000 Ibs. Find the number of foot-pounds of work required to set

this rotating 120 times per minute.

10. A brake wheel 4 ft. in diam. on a horizontal axle is furnished

with internal flanges which, along with the rim, form a trough
containing cooling water. What is the least speed which will prevent
the water from falling out ?

11. Find the greatest range which a projectile with an initial

velocity of 1600 ft. per sec. can attain on a horizontal plane.

12. A rifle has a range of 1000 yards. What would the range
be under the same circumstances if fired in the moon where the

force of gravity is that of the earth ?

A. M. 17



CHAPTER XVI

MECHANISMS

FOB our present purpose we will regard a "mechanism" as

a device for transferring motion from one point to another in

a machine. In many cases the kind of motion becomes changed
in the transformation, for instance a rotation becomes changed
into an oscillation or a reciprocation or vice versa. The name
"
linkage mechanism

"
is used for those mechanisms in which rods

are employed which are pivoted together, such rods being called

links or elements, and the whole collection of rods being called

a "kinematic chain,"

Crank and Connecting-rod or Steam-Engine Mechanism.

This is about the most common linkage mechanism employed in

machinery, and it is used for converting a reciprocating motion

P

Fig. 167. Crank and Connecting-rod Mechanism.

into a rotary motion or vice versa. It is used on nearly all

steam, oil or petrol engines, in which the reciprocation of the

piston is converted into a rotation of the shaft, and in a very

large number of mechanical presses in which it is employed to

convert the rotary motion of a shaft into the reciprocating motion

of a press-head.
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The mechanism consists of a link AB, Fig. 157, called the

crankt which is fixed to a rotating shaft and is pivoted at its end

B to a rod BG called the connecting-rod. The connecting-rod is

pivoted at its other end to a block E called the cross-head

which is guided so as to move in a straight line and is connected

by a piston-rod to the piston D of the engine. On the rotation

of the crank the cross-head is caused by its guides to reciprocate.

It is interesting to note that James Watt did not use this

mechanism for his steam-engine because one of his workmen had

stolen the idea and obtained prior patent rights for it. He
devised what is called "the Sun and Planet mechanism" which

is practically never used nowadays, and the consideration of

which is outside our scope.

In this and all other mechanisms to be described the student

must trace out the movement by actually drawing the mechanism
to scale in a number of its possible positions, or else by making
a model of the mechanism and attaching a pencil to the point
whose motion he wishes to study. The pencil will then trace

out on a piece of paper the path in which that particular point
moves. Such models can be very easily made by the aid of the

constructional toys now on the market.

Velocities in Mechanism. Instantaneous or Virtual Centre.

Suppose that a body as shown shaded in Fig. 158 is moving

Fig. 158. Instantaneous or Virtual Centre.

in any manner and the velocities VA , VB of two points A and B
in it are known in magnitude and direction. Draw AI per-

pendicular to VA , and BI perpendicular to v l then the intersection

172
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7 is called the instantaneous or virtual centre because A and B
may both be regarded as rotating for the instant about this

point. We may therefore study the motion of the body at the

particular instant under consideration by imagining it to be

rotating about the point /. It is important to remember that

unless the body is rotating about a fixed point, / will be constantly

changing and the curve in which / moves is called the "centrode."

At any instant, however, we can find the relation between the

velocities of the various points of the body if we know the

instantaneous centre, because when a body is rotating we have

seen that the velocity of any point in it is proportional to the

radius of the point. We therefore have

To obtain the velocity of any other point, say (7, we join CI and

draw a line at right angles to it. This gives the direction of

v , and its magnitude is given by the relation

Vc_CI^
VA
~
AI'

Application to Crank and Connecting-rod Mechanism. Sup-

pose that the shaft A, Fig. 159, is rotating uniformly so that the

crank pin B has a uniform velocity vBt at right angles to the

crank. Draw Cl perpendicular to the direction of the cross-head

and produceAB to meet it at /. Then / will be the instantaneous

centre of the movement of the connecting-rod BC. Because BI
is at right angles to vBt we therefore have

2-S ....................">

but since the triangles BIG and BAD are similar we have

CI_AD
BI~AB'

^"
vB ~~AB'

that is to say va = -
. AD ................ (2).

If therefore we choose our scale of velocity so that AB
represents VB the length of the crank pin AD will give us the

velocity of the cross-head and therefore of the piston to the same
scale. By repeating this construction for a large number of
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positions of the crank pin and cross-head we can find the velocities

in the different positions, and from these we can draw a diagram

showing the manner in which the velocity varies. Two con-

venient forms of diagrams are shown in the figure. One is drawn

upon a base of the stroke and is obtained by projecting the point
D upon the line CI, thus obtaining the point F, and joining up

points such as F. This diagram is useful when we wish to find

the velocity for a given position of the cross-head or piston. The

Fig. 159. Velocity Diagrams.

other form shown is called a polar diagram and is extremely useful

for finding the velocity of the piston for different positions of the

crank. It is obtained by drawing with centreA an arc of radiusAD
to meet the crank (produced if necessary) at E and joining up the

points thus obtained. It will be found to give two loops as shown.

In the use of these diagrams for any position of the cross-head,

say G' y the velocity of the cross-head is given by C'F' or by AE'.

Force in connecting-rod; crank effort. The force Q in the

connecting rod can be found by drawing the triangle of forces

1, 2, 3 as indicated in Fig. 157. This force Q can be resolved

into a component T along a component J at right angles to the

crank. The force J is called the
"
crank effort." If no work is lost,

the work done by P per second must be equal to that done by J,

or

P AD=~~
(Fig> 159)
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Watt's Parallel Motion. This mechanism was used by James

Watt to guide the valve rods of his beam engines without the

necessity of providing a cross-head and was regarded by him as

one of the most ingenious of his inventions. The rod AB,

Fig. 160, is pivoted at the point A and is connected by a "coupler
"

Kg. 160. Watt's Parallel Motion.

BC to a rod CD pivoted at the opposite side as shown. A point
E is taken on BC such that

BE _CDW~AB 9

and as one or other of the rods AB or CD is oscillated the point
E will be found to move in a line which is for all practical purposes

straight for small amounts of oscillation. For a complete
revolution of AB the point E will be found to trace out a looped

figure as shown.

Slotted lever quick-return mechanism. This mechanism is

used to reciprocate the ram which carries the cutting tool of

shaping machines and it has the property that the time taken in

the forward or cutting movement of the ram is greater than the

time taken in the return or idle movement; this is economical
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because it reduces the time during which the cutting tool is doing
no useful work. This mechanism is often called the " Whitworth

quick-return motion," but this description is not quite correct,

Whitworth's mechanism being slightly different although pos-

sessing the same property.

The mechanism consists of a lever AB (Fig. 161) pivoted at

the lower end to a fixed point A and provided with a slot C in

which works a crank pin D which rotates about a centre E
vertically above the fixed point A. The upper end B of the

B

Fig. 161. Quick-return Mechanism.

slotted lever is connected by a rod BF which is pivoted at the

end F to the ram of the shaping machine. This ram runs in

horizontal guides and it is usual to provide means for adjusting
the position of the crank pin D so as to alter the stroke of the

ram. The mechanism is shown diagrammatically in the figure in

its extreme position. While the crank pin is moving through
the arc DXD' the tool ram moves from F to F' thus effecting the

cutting stroke and while the pin moves through the arc D'YD
the ram makes the idle or return stroke. If the crank pin rotates

with uniform velocity, the time taken on the cutting stroke must

be proportional to the length of arc DXD' and on the return

stroke to the arc D'YD
; and since the arcs are proportional to

the angles that they subtend at the centre of the circle and

therefore are also proportional to the halves of such angles, the
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cutting and return times are respectively proportional to the

angles DEX and DET.

... we have ^ting
time =

return time

But since the mean cutting speeds are inversely proportional
to the corresponding times we have

mean return speed _ cutting time

mean cutting speed
~~

return time

It should be noted that this ratio deals only with the average
or mean cutting or return speeds, because the actual speed varies

at different points of the stroke.

Numerical Example. In a Whitworth quick-return gear of a

shaping machine the stroke is 8* and the ratio of home and cutting

strokes is 3 : 5. The line of
stroke of the ram produced passes

through the extreme positions of
the connecting-rod pin at the

end of the slotted lever. If the

distance between the centre of
the driving plate and the axis

about which the slotted lever oscil-

lates is 6*, find the crank radius

and length of the lever.

Fig. 162 shows the arrange-
ment in this case; SB' is the

stroke which is given as 8 ins. ;

we are also given

cutting time __3
return time

~
5 '

Fig. 162

3

8'

7-5

22

that is

or
f x 180 = 67-5q.
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Now DAE = 90 - /_DEY = 22-5,

and LABK = 90 - 22-5 = 67-5.

We are now in a position to draw the figure to scale, and

by first drawing BB' horizontal to represent 8 ins. and then

Z_B'BA and /_BB'A each = 67-5 we get the point A and AB
which is the required length of the lever and will be found by
measurement to be about 10-5 ins.

Now set up AE = 6 ins. and draw ED perpendicular to AB.
Then ED is the crank radius and will be found to be about

2-29 ins.

If as is preferable we proceed by trigonometrical calculations

we shall have

Also
JJ1T)~= sin 22-5,

/. ED = EA sin 22-5 = 6 sin 22-5 = 2-29 iiis.

Toggle Mechanism. The name "toggle" is used to denote

a linkage mechanism in which one part receives a very small

\

Fig. 163. Toggle Mechanism.
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motion while another receives an appreciable movement; it is

used as a means of exerting heavy pressures in presses and is

also used in a large number of every-day appliances, such as the

devices which are to be found for closing bottles of various kinds.

Fig. 163 shows a common arrangement for use in mechanical

presses. The toggle links AB, BO are connected at one end A to

a fixed support and at the other end C to the press-head. The

joint B is connected to an eccentric D carried by a rotating shaft

E the arrangement being such that as the shaft rotates the

eccentric is reciprocated and a small movement is given to the

e

Fig. 164. Kg. 165. Forces in Toggle
Mechanism.

press-head which exerts a very considerable pressure. Fig. 164

shows diagrammatically one form of toggle closing device for

stoppered bottles. A wire loop AB passes over a groove on top
of the stopper X and is pivotally connected at the point B to

a bent wire lever CD which is pivoted at the point C to a wire

ring fastened round the neck of the bottle. As the point D is

moved about the centre C in the direction of the arrow the loop
AB is pulled downwards and exerts a strong closing action upon
the stopper.

We can examine in the following manner the pressure exerted

in the toggle press for any position of the toggle levers. Referring
to Fig. 165 the force or effort F exerted by the eccentric is resolved
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into two forces Q acting down the toggle links, and these forces

Q can be resolved into vertical components R one of which at

the point B is carried by the framing of the machine and the

other of which is the pressure exerted on the press-head at C.

The A 123 is the triangle of forces and from this we get that

R\_ 3, 4

F 4,1
2
= cot 6,

i.e. R =

A glance at the trigonometrical tables will show that as

an angle gets small its cotangent increases very rapidly so

that we see that if the angle 6 is small the pressure R will be

very many times more than the force F. In the limiting con-

dition = 0, the pressure would theoretically be infinitely great,

but in the practical use of the mechanism 6 can never be exactly

zero although it may be very near to it, as in practice there is a

limit to the pressure which the mechanism can exert owing to

the yielding of the various parts composing it.

Cams and Wipers. Cams, or wipers as they are sometimes

called, are a form of mechanism for converting rotary motion

into a reciprocating or oscillating motion.

Fig. 166 shows a cam G for giving a reciprocating motion to

a shaft E from a rotating shaft A. The shaft E is guided by
a slide O and carries at its end an anti-friction roller D which

rides upon the face of the cam. A spring F is employed for

o

166. Cams and Wipers. Fig. 167. Cams and Wipers,

keeping the roller in contact with the cam when the latter is in

such a position that the shaft E is moving towards the shaft A.
Other devices for this purpose are sometimes devised, a common
one being that the roller runs in a groove cut in the cam disc

and is thus positively moved in both directions. The form
shown in the figures is, however, usually preferable.

In Fig. 167 is shown a cam C communicating an oscillating
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motion to a lever E pivoted at F. A rod G pivoted at the other

end of the lever communicates the motion to the required part
of the machine, and a spring H keeps
the roller D in contact with the cam.

Cams of this kind are used in almost

every form of gas-engine for operating
the valves in the required sequence.

The cams shown in Figs. 166, 167

are often called plane or edge cams,

the form shown in Fig. 168 being
called a surface or drum cam. In the

latter case the cam is formed as a

groove in a drum G carried by a

rotating shaft A. A roller carried

by a lever D engages the groove and

the lever is pivoted at E and con-

nected at its extreme end to a slide

F to which the cam communicates

the required motion. The lever is

stationary while the centre of the

groove remains in a plane section

of the drum normal to the axis. In

the case of plate cams the slide or

lever is stationary for the portion of

the cam that is concentric with the

axis of the shaft. ^1HillIIIIII

Kg. 168. Surface or Drum
Design of a Plate Cam. A plate c^

cam for giving a reciprocating move-
ment in a straight line passing through the centre of the cam
shaft can be designed as follows. Suppose that we are given the

following particulars :

The diameter D of the cam shaft.

The diameter d of the roller.

The minimum thickness t of the cam.
The lift or height h of the movement of the roller.

The manner in which the roller has to rise and fall ; this is

called the "timing" of the cam.

To make our illustration more clear we will assume that our
cam is required to move the slide uniformly upward during
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one-third of a revolution, is then required to remain stationary

for another third of a revolution and has finally to fall uni-

formly during the remainder of the revolution.

First draw with centre a circle of diameter D (Fig. 169) to

represent the cam shaft, and draw the line OX along which the

roller has to reciprocate. Next make CD equal to t, the minimum
thickness of the cam and find the centre A of the roller in its lowest

position. AB is next set up equal to the lift h and AB is divided

Kg. 169.

up into a convenient number of equal parts, say 4. A number of

equally spaced radial lines 01, 02, etc. are then drawn, 12 being
taken as a convenient and sufficient number.

In moving through one-third of a turn, i.e. from OA to 04,
we have to rise a height h and have to do so uniformly; we
therefore make 01 = 01 and 02 = 02 ; 03 = 03 and 04 = 04 as

indicated by the circular arcs shown in dotted lines. During the

next one-third of a revolution the roller has to remain stationary

so that we draw an arc with centre from 4 to 4', and since the
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roller has to fall uniformly during the remainder of the revolution

we repeat the construction for the points 1, 2, 3, 4 to get the

points 1', 2', 3', 4'.

By joining up the points thus obtained we obtain the curve

shown in chain dotted lines, this curve being that for the centre

of the roller. We then go round the curve and draw the roller

circle all round it to give the effect of the roller running along
such a curved path. By drawing a line to touch the roller on

the inner side in all its positions we get a curve which a mathe-

matician would call an envelope and which gives us the shape of

the cam required.

Pawl and Ratchet Mechanism. This form of mechanism is

employed for giving an intermittent motion from a continuous

motion and is most commonly employed for converting an

oscillating motion into an inter-

mittent rotary motion. The
ratchet wheel A, Fig. 169 a, has

teeth on it which are adapted to

be engaged by a pawl or "click"

B carried by a pivot D on an

oscillating lever C. The pawl
drives when the lever is moved
in the direction of the arrow and

slips over the ratchet when moved
in the opposite direction and re-

engages one of the teeth beyond,
when it reverses again. The movement given to the pawl should
be a whole number of times the distance apart of the teeth. To
prevent the ratchet wheel from moving back with the pawl, a

stop-pawl Et pivoted upon a pin F, is often provided.
The ratchet brace gives a very familiar example of this

mechanism.

Fig. 169 a. Pawl and Ratchet
Mechanism.
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SUMMARY OF CHAPTER XVI.

The crank and connecting-rod mechanism is a device for convert-

ing a reciprocating motion into a rotary motion and vice versa.

The virtual centre of a body moving in any manner is a point
about which the body may be regarded as rotating at any particular

instant.

The path moved through by the virtual centre is called the

centrode.

Watt's parallel motion. The point which has to move in a straight

line divides the coupler inversely as the lengths of the pivoted rods.

Slotted lever mechanism. The return or idle motion is quicker
than the forward or cutting motion, the relative values are obtained

by considering the angles turned through by the crank pin in the

extreme positions.

Toggle mechanism is employed to obtain a heavy pressure

moving through a small distance from a small force moving through
a greater distance. The forces are obtained by the ordinary triangle
of forces.

Cams are a device for giving an oscillating or reciprocating motion
from a constantly rotating shaft. They may be "

plane or edge
"

cams or
"
surface or drum " cams.

Ratchets are a form of mechanism for obtaining an intermittent

motion from a constant reciprocating or rotary motion.

EXERCISES. XVI.

1. The connecting-rod of an engine is 2| times the stroke in

length. Find graphically (a) the position of the crank when the

piston is at half-stroke, (6) the position of the piston when the crank

is 90 from a dead point.

2. The stroke of an engine is 2 ft. and connecting-rod 4 ft.

long. The thrust on the piston is 12,000 Ibs. When the crank

is vertical find

(1) The thrust on the cross-head.

(2) The thrust on the connecting-rod.
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3. The connecting-rod of a steam-engine is 4-5 ft. long and
the crank has a radius of 1-5 feet. Draw a curve showing the

displacement of the piston for different angular positions of the

crank.

4. In a steam-engine mechanism the crank radius is 10 inches

and the connecting-rod 10 inches long. If the crank makes 120

revs, per min. find the velocity of the piston when the connecting-
rod is at right angles to the crank.

5. Trace the curve drawn by the Watt parallel motion if the

length of the pivoted links is 24" and the coupling-rod 12*, the upper

pivoted link having an oscillation 20 from the horizontal.

6. In a quick-return motion for a shaping machine the length
of the lever is 10-46 ins. and the crank radius 1-15 ins., the distance

between the centre of the rotating shaft and the pivot of the slotted

lever being 6 ins. Find the ratio of return to cutting speeds and
the stroke of the cutting tool.



CHAPTER XVII

BELT, CHAIN, AND TOOTHED GEARING

BELT, chain and toothed gearing is a form of mechanism for

converting a rotary motion about a certain centre into a rotary

motion about another centre. In the case of a belt, the power
is transmitted through the friction between the belt and the

pulleys, and in the case of toothed gearing the power is trans-

mitted through the stresses in the material of the teeth. Chain

gearing is similar to belt gearing except that in place of the

friction drive we have positive drive between the teeth of the

sprocket wheels and the links of the chain.

Belt Gearing. If the belt transmits motion from a shaft X
to a shaft Y the pulley on the shaft X is called the driver and

that on the shaft Y is called the follower. The belts may be

open as (a) (Fig. 170) or crossed as (6). In the open arrangement
the driver and follower rotate in the same direction, whereas in

the crossed arrangement they rotate in opposite directions.

The power that can be transmitted by the gear depends upon
the friction between the belt and the pulley, and this friction

depends on the angle subtended at the centre of the pulley by
the arc of contact.

In the crossed arrangement this angle is greater than in the

open arrangement so that in this respect the crossed arrange-
ment is better than the other. The tension T^ in the belt on

the side as it comes on to the driver is greater than the tension

T2 on the other side. If the driver is Dx feet in diameter and

makes Nx revolutions per minute and the follower is DY feet in

diameter and makes NY revolutions per minute, the work done

against the tension T
l
on the tight side per minute will be equal

A.M. 18
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to the force multiplied by the distance moved by the belt per

minute

(W

Fig. 170. Belt Gearing.

Similarly the work done on the pulley by the belt on the slack

side

:. total work done per minute on belt

= T! . 7rDxNx - T2 . -rrDxNx
= (7\

- T2) . 7rDxNx ft.-lbs.
;

. , work done per minute in ft.-lbs.
"

H.P. transmitted-- "

33?0Q

7rDxNx (Tl -T2)

33,000
" (L) '

In the absence of other information T may be taken as

twice T2 .

When the diameter of the belt is appreciable compared with

the diameter of the pulley for calculations Dx should be measured

to the centre of the belt.
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Numerical Example. Find the H.P. that can be transmitted

by a pulley 3fl. 6 ins. diameter running at 120 revolutions per
minute by a thin belt 6 ins. wide if the permissible tension in the

belt is 80 Ibs. per in. of width and the tension on the slack side is

equal to half that on the tight side.

In this case 7\ = 6 x 80 = 480 Ibs.,

T2
= 2401bs.

' Ti
- T2

= 24<> lbs -

, , 7T.3'5x 120x240
.-. H.P. transmitted =-OQ AAA--- = 9'6.

Velocity Ratio in Belt Gearing. Now by exactly similar

reasoning applied to the follower instead of the driver we should

get

H.P. transmitted = "*^%f^p
1
""^ ...... (2),

and if no power is lost these two must be equal.

/. DXNX =*DYNY ,

no. of revolutions per min. of follower
.'. velocity ratio ^

-
= r. -.

-
f-^-.
-

no. of revolutions per mm. of driver

diameter of driver
R ~ diameter of follower

We could have obtained this result rather more simply without

going into the question of H.P. Unless the belt slips on the

pulley, the length of the belt passing on to the driver per minute

= circumference of driver x no. of revolutions per minute

= irDxNx .

But unless the belt stretches this must be exactly equal to

the length of the belt passing on to the follower per minute

Numerical Example. A shaft running at 120 revolutions per
minute carries a belt pulley of 3 ft. 6 ins. diameter. What must be

the diameter of the pulley on the shaft driven by the belt if it runs

at 300 revolutions per minute ?

182
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In this case Nx = 120, Dx = 3-5 and NY = 300,

.% since NXDZ NYDY9

300Z>F = 120x3-5,

120 x 3-5
.*. JJv = -

Belt Speed-cones. In belt-driven machines it is often desirable

to vary the velocity ratio transmitted, i.e. to vary the speed of

the machine. This is usually effected by speed-cones which

consist of two sets of pulleys whose sizes are so arranged that the

belt will run tightly between any opposite pair.

Fig. 171. Belt Drive for Lathe Headstock.

Fig. 171 shows an arrangement commonly employed for

driving a lathe. A cone of three pulleys B is mounted in the

headstock K of the lathe and an overhead shaft L carries a

corresponding cone of pulleys A. When the belt is between the

pulleys 1, the driver is larger than the follower and we then have
the quickest speed of the headstock spindle; when the belt is
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in the position 2 shown, the two pulleys are about equal in

diameter so that the speed is less; whereas when the belt is

between the pulleys 3 the driver is smaller than the follower so

that the headstock spindle is driven at its lowest speed.

Belt-striking gear. Fig. 171 shows also one form of device

used for starting and stopping a machine driven by belt gearing.

The overhead shaft is driven by a belt N and two pulleys Cy D of

equal diameter are placed alongside on the shaft. The pulley

C is keyed to the shaft, and is called the "fast pulley," and the

pulley D is loosely mounted and is called the "idle or loose

pulley." The belt N passes between forks E carried by a sliding

rod F which is moved lengthwise by a slotted lever which is

moved to one or other of its extreme positions by means of

chains G.

In the position shown, the belt N is upon the fast pulley C so

that the headstock is being driven. If the left handle Q be

pulled down the rod F will be moved to the left and the belt

N will be moved on to the idle pulley D which does not drive

the shaft L because it is not keyed to it.

Sizes of Cones for keeping Belt taut. As we have already

indicated, it is necessary that the diameter of the pulleys in a

cone shall be such that the same length of belt will run taut over

all of them.

Open belts. If S is the distance apart of the shafts, the length

of an open belt is given approximately by the formula

(4).

If therefore we are given S, and the diameters Dx and DY
of one pair of pulleys, the diameters of the others should be

chosen so as to keep I practically constant.

Crossed belts. In this case it can be proved that the length
of belt is constant for a fixed value of S if the sum of the diameters

of the pulleys is constant so that it is quite an easy matter to

choose suitable diameters of a cone of pulleys to work with

crossed belts.

Belt Reversing Gear. In some machines, such as planing

machines, it is necessary to reverse periodically the direction of

rotation of the working parts. With a belt drive this CPU be
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effected by the arrangement shown in plan in Fig. 172 which

we will describe with reference to a planing machine.

The main driving shaft B carries a broad pulley A upon which

are carried a crossed and an open belt. The driven shaft D
carries two outside idle pulleys and a central fast pulley. Belt forks

are provided and are so spaced that one belt is on the fast

pulley and one on an idle pulley. In the position shown the

open belt is driving and the cross belt is idly rotating its pulley

in the reverse direction. When the planing machine later reaches

the end of its stroke, tappets or blocks adjustably mounted upon
it strike arms which communicate their motion to the shaft

carrying the belt forks O. The latter are then moved (upward

on the drawing) so that the crossed belt comes on the fast pulley

1 <
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must be such that the middle point of the width of the belt

where it leaves one pulley is in the central plane of the other

pulley.

Fig. 173. Belt Drive for Inclined Axes.

Where the position of the shafts is such that a direct drive

cannot be effected, guide pulleys must be used. Fig. 174 shows

one such arrangement, Ot Q being the guide pulleys.

Fig. 174. Belt Drive with Guide Pulleys.

Toothed Gearing. Suppose that two smooth discs X, Y

(Fig. 175) rotate in contact without slipping.

Then in one revolution of the driver X a point on the circum-

ference moves through a distance irDx . If therefore there is no

slip between the two discs, a point on the circumference of the

follower Y must move through the same distance itDx But

one revolution of the follower corresponds to irDY, so that the

number of revolutions of the follower for one of the driver

number of revs, of follower . . . Dx
:. r 2 -5' *= velocity ratio = = . . . . (1).number of revs, of driver D7

Now suppose that in order to prevent any possibility cf
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slipping we form teeth upon the surfaces of these discs. For

simplicity in the figure only a few teeth are shown, but it will

be understood that they are formed all round the wheel.

It is clear that these teeth must be of special shape if they

are to mesh and roll into action smoothly. The curve most

commonly used for gear teeth is called the involute.

Pitch circles

Fig. 175. Toothed Gearing.

The form of toothed gear shown in Fig. 175 is called spur

gearing. The axes of the two shafts are parallel and the teeth

are straight and usually run at right angles to the plane of the

wheels.

The circles which correspond to the untoothed or smooth discs

are called the pitch circles. The distance upon the pitch circle

between the centres of two succeeding teeth is called the pitch,

or more accurately the circular pitch p. It is equal to the

circumference of the pitch circle divided by the number of teeth.

The diametral pitch m is equal to the diameter of the pitch circle

divided by the number of teeth and can be obtained by dividing
the circular pitch p by 77 (3-1416). The diametral pitch is

sometimes called the module. Other forms of toothed gearing
are shown in Figs. 176-179.
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In the rack and pinion, Fig. 176, one of the members is straight,

this corresponding to spur gearing in which one of the wheels is

Won

Kg. 176. Rack and Pinion.

infinitely large. A rotation of the pinion causes a rectilinear

movement of the rack.

Bevel gearing, Fig. 177, is used to connect two shafts at an

Fig. 177. Bevel Gearing.

angle to each other (usually a right angle) and meeting at a point.
It corresponds to a toothed form of two smooth cones rotating in

contact.
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Fig. 178. Spiral Gearing.

179. Worm Gearing
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Spiral gearing, Fig. 178, is used to connect two shafts at an

angle to each other which do not meet at a point.

In worm gearing. Fig. 179, the shafts are at right angles to

each other and do not intersect. The driver X is a, worm or

screw and the follower Y is a wheel whose teeth are formed to

gear accurately with the worm. The velocity ratio in such gears

is small and as a rule the gear cannot be reversed, i.e. the wheel

cannot drive the worm. As was shown on p. 66 this means that

the efficiency of the gear cannot be greater than 50 %, but in

many machines this objection is of minor importance compared
with the advantage that the gear is self-locking, i.e. that it will

not run backwards if the drive is removed.

Velocity Ratio in Toothed Gear Trains. The term "gear
train" is used to indicate a number of gear wheels working in

combination.

For a pair of spur wheels we have seen that

diameter of driver
velocity ratio = vr = -^ mmdiameter of follower

Now the circular pitch of the two wheels must be the same

and the number of teeth x pitch must be equal to the circum-

ference of the pitch circle.

/. we have
nxp = 7rDx (2),

and nYp = irDY (3).

Dividing we get

^ =^ (4).
Tip- UY

:. from (1) velocity ratio = vr
-*

(5).

Expressed in words :

, . . number of teeth on driver
velocity ratio = r ^-7 rr 7-7? ,number of teeth on follower

number of revs, of follower number of teeth on driver
i.e.

number of revs, of driver number of teeth on follower
'

NY nx Dx /a \
i.e. ^= = 7^ (6).Nx nY DY

Numerical Examples. (1) A toothed wheel of 10 inches

diameter on the pitch line and with 60 teeth runs at 120 revolutions

per minute and drives a wheel of 4 inches diameter.
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Find (a) the circular pitch of the teeth, (b) the diametral pitch,

(c) the number of teeth on the second wheel, (d) the number of

revolutions which it will make.

(a) np = TrD,

:. Wp = 3-1416 x 10,

/. p
3M16

(b) Diametral pitch = m =

60
*= -524 inch.

diam. of wheel

number of teeth

= -167 inch.

(c) From result (4) we have

nx^D^
ny DY

9

60_10
nY

~
4 *

/. %F -24.

(d) In this case vr = f from (5)

= 2-5.

Now = revolutions of follower

revolutions of driver
'

.'. revolutions of follower 120 x 2-5 = 300 per minute.

(2) Toothed wheels of 2| inches pitch are required to connect two

shafts running at 340 and 115 revolutions per minute, the centres of
the wheels to be as nearly as possible 3ft. apart. Find suitable

numbers of teeth for the wheels.

The distance apart of the centres of two toothed wheels is

equal to the sum of the radii of the pitch circles, i.e. equal to

half the sum of the diameters of the pitch circles,

i.e. distance apart -&i -.

Now we have _J = ~_

NX Dr'

_
115 ~23*

91

Dx 23 23
'
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Now take Dy = 6 ft. 6 x 12 inches,

6x12x23
91

18*2 inches,

/. Dy

Now
and

:. nx =

72 - 18-2 = 53-8 inches.

nxp = irDXt

nrp - 7rDF,

IT x 18-2

25
x 53-8

2-5

229,

67-6.

But the number of teeth must be a whole number,

/. take nx = 23 and ny = 68.

These will give the required velocity ratio. The student

should note carefully that in problems of this kind it is essential

that the numbers of teeth be chosen to give the exact velocity

ratio required.

Idle Gear Wheels. In the use of spur gearing it is often

necessary to use wheels intermediate between the driver and the

follower, as shown in Fig. 180, such wheels being called "idle

Fig. 180. Idle Gear Wheels.

wheels
"
or

"
idlers.

" These idle wheels are used either to reverse

the direction of rotation or else to enable the distance between

the two shafts to be greater than the sum of the radii of the

driver and follower.

Idle wheels have no effect on the velocity ratio. If the number
of idle wheels is odd the driver and follower rotate in the same

direction, but if even they rotate in opposite directions.

Compound Gear Trains. To obtain a larger or smaller velocity

ratio than is practicable with one pair of spur wheels, compound
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gear trains such as shown in Fig. 181 are usually employed.
Such a gear train will, for instance, be found in every watch or

clock, the form shown giving a small velocity ratio.

The wheel A gears with a wheel B which is formed solid with

or is keyed to the same shaft as a wheel (7; this drives a spur

gear D which is coaxial with a wheel E which gears with the

follower F. It is usual to refer to the alternate wheels A, C, E
as drivers and the wheels B, D, F as followers.

We will trace out the compound velocity in steps nA , nB etc.,

being the number of teeth in the various wheels, andNA ,
NB etc.,

their number of revolutions per minute, it being noted that NB

must be equal to N and ND equal to Nx .

Driver

Fig. 181. Compound Gear Train.

Considering the first pair of wheels A, B, we have

NB _nA
^-^'

:.N*-NA%B ................ (7)

/. since Nc =NB>

Considering the wheels C and D, we have

since NE =ND ,

. . ..(10).nB nD
v '
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Considering the wheels E and F, we have

np

:. NP

nB nD np

.-.
~ = velocity of compound train

nA x nG x ns

(11).

nB x nD x np

product of number of teeth in drivers .

19
.

VT
**

product of number of teeth in followers
*

This formula can be used for a compound train of any number

of pairs.

Fig. 182. Back Gear Drive of a Lathe Spindle.

Sometimes, as in the back gear drive of a lathe spindle,

Fig. 182, the driver and the follower are arranged on the same

shaft, one of them being loosely mounted. In the normal working
of the lathe the back shaft is moved backwards a little to bring

the wheels out of gear and the cone pulley, which runs loosely

upon the lathe spindle and has the wheel A integrally connected

to it, is connected by a radially movable pin G, which enters

between projections F on the pulley, the wheel D being keyed
to the lathe spindle. To bring the back shaft into operation the

pin is released and the back gear is brought into engagement as

shown. The same rule is used for the velocity ratio, no matter

how the shafts are arranged.
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Numerical Examples on Compound Trains.

(1) In a compound gear train the driver A has 40 teeth and

gears with a wheel B with 20 teeth. Keyed on the same shaft as

B is a wheel- C of 120 teeth gearing with the follower D with 75

teeth. If the wheel A runs at 35 revolutions per minutet how many
revolutions per minute will the wheel D make ?

In this case

product of teeth in drivers
f
~~

product of teeth in followers

_40 x 120
"
20 x 75

_48
"15*

number of revolutions of follower _ 48

number of revolutions of driver
"~

15*

= 112.

(2) In a lathe headstock the lowest direct drive is 50 revolutions

per minute and the back gear has to be designed so as to reduce this

to 5 revolutions per minute. Find suitable numbers of teeth for the

various wheels of the back gear.

In this case we see that as the wheels A, B and C, D each form

a pair whose axes are at the same distance apart, the sum of the

radii of each pair of wheels must be the same, that is to say the

sum of the number of teeth must be the same for each pair, if

the teeth have the same pitch. In this case

A = 1VR ^ 50 10
'

1
'

71 A X Tl/i
TWTA V\ Q -rrrv .- -._

-"WC JJctV t> -n~7\
-------

m

10 nB x nD

Further nA + nB = n -f nD .

Suppose nA = 20.

Then if we take nB = 40, n = 10, and nD = 50, this gives us

_ 20 x 10 _ 1
VR 40x50" 10'
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Reversing Tooth Drive for Lathe Lead Screw. The following

arrangement of gearing is commonly employed for driving the

lead screw L (Fig. 183) of a lathe from the headstock spindle O.

The headstock spindle carries a toothed wheel A which drives

a pinion D mounted on a spindle X either directly through a

pinionB or else through a pinion C. The pinions B, C are mounted
in a plateE pivoted on the shaft of the pinion D and provided with

a slot engaging a stop-pin F for fixing it in its extreme positions.

In the position (a) shown in the figure the pinion D is rotated in

O

Fig. 183. Reversing Drive for Lathe Lead Screw.

the same direction as the pinion A whereas in the position (6) the

pinion D is driven in the opposite direction to the pinion A.

In this position the pinion B has gone out of contact with the

pinion A and the pinion C has come into contact with it. From
the spindle X the drive goes through change wheels P, G, H and
J adjustably carried in an arm K. The wheel H engages a wheel

J on the lead screw shaft. The sizes of the wheels G, H and J
are so chosen as to give the required velocity ratio. The spindle
of the pinions G, H is adjusted in the slot in the quadrant so that

the wheel H meshes correctly with the wheel J and the quadrant
is then adjusted by means of a curved slot M so as to bring the

wheel G into correct mesh with the wheel P. The quadrant is

kept in its adjusted position by means of a locking bolt N.

A.. M. 19
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The number of teeth on the wheel D is usually equal to that

on the wheel A so that the spindle X rotates at the same speed
as the headstock spindle.

Numerical Example. The leading screw of a lathe is f
*
pitch

and it is required to cut a screw of 10 threads per inch. Find

suitable sizes of the gear wheels.

For one revolution of the lead screw the lathe saddle will be

moved } in., but for one revolution of the lathe spindle we wish

the saddle to be moved only ^ in.

Now the saddle will be moved 1 in. in f revolutions and there-

fore will be moved -^ in. in ^% revolutions so that we have to

choose our change gears P, G, H and J so as to give a velocity
ratio of ^ = T

2
7 .

The lathe is provided with a whole set of wheels of different

numbers of teeth usually rising five at a time.

Suppose we take np = 30, n = 75, nH = 30 and nj = 90.

np . n
H== 30x30^ 2^

~75x90~~15'
This will give

and this is the ratio required.

Bevel Gear Reversing Train. The following arrangement of

bevel gearing is commonly adopted as a convenient reversing

mechanism for a shaft. The
drive goes from the shaft A
which has feathered thereto a

double clutch jaw F. A bevel

wheel C is loosely mounted on

the shaft A and engages a bevel

wheel D, the other end of which

engages a bevel wheel E fixed to a

shaft B in line with the shaft A.

The bevel wheelsE and C each

carry clutch jaws for engagement with the jaws on the clutch jaw
F. In the position shown the rotation of the shaft A is trans-

mitted direct from the clutch jaw to the bevel wheel E and thus

to the shaft B, the wheels D and C rotating idly. The shafts

A and B then rotate in the same direction. If the clutch F is

moved to the right so as to engage with the wheel C the drive

goes through the wheels (7, D and E to the shaft B which then

rotates in an opposite direction to the shaft A.

Fig. 184. Bevel Gear Reversing
Train.
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SUMMARY OF CHAPTER XVII.

Belt Gearing. H.P. transmitted

Tl may be taken as 221

, in the absence of more exact information.

diameter of driver
Velocity ratio =-=-.-:

- . . - .

diameter of follower

In "
open

"
belt the driver and follower rotate in the same

direction, and in "crossed" belt they rotate in opposite directions.

Cone Pulleys. Open belts. If S is the distance apart of the shafts,

the quantity | (DZ+DY) +^
Dx
~^

7^ must be constant.

Crossed belts. The sum of the diameters of corresponding

pulleys must be constant.

Toothed Gearing.

-T.. , ., , circular pitch diameter of pitch circle
Diametral pitch =- -- =-

-^- *^ -r- .

TT number of teeth

. , ., , circumference of pitch circle
Circular pitch =-=-z-- *

-
.

number of teeth

number of teeth on driver
Velocity tio=

nmnber of teeth on follower

Velocity ratio of compound train

_ product of number of teeth on drivers

"product of number of teeth on followers
"

Idle wheels only alter the direction of rotation; they do not

affect the velocity ratio.

EXERCISES.

1. A shaft is to be driven at 400 revolutions per min. and carries

a pulley of 8 ins. diameter. What size driving pulley is necessary
for a shaft which has to be driven from it at 70 revolutions per
minute ?

2. Two shafts at right angles to each other have to be driven

by bevel gearing, the driving shaft runs at 120 revolutions per min.

and carries a wheel with 48 teeth on it. How many teeth must
l>e placed upon the second wheel if its shaft has to run at 320 revolu-

tions per minute?

192
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3. If a belt transmits 25 H.P. at 150 revolutions per minute

over a pulley 3 ft. diameter find the difference of tension on the

two sides of the belt.

If the tension on the tight side is three times that on the slack side

find the tension on each side.

4. The crank of an engine is 2 ft. in length, and the diameter

of the flywheel is 10 ft., also the flywheel has teeth on its rim

and drives a pinion 3 ft. in diameter. If the mean pressure on the

crank pin is 7 tons, what is the mean driving pressure on the teeth

of the pinion?

5. A friction wheel 4 ft. diameter running at 70 revs, per min.

drives a wheel 2 ft. 3 ins. diameter. Find the force with which
the wheels must be pressed together per H.P. transmitted when
the coefficient of friction for the surfaces is -15.

6. In a lifting crab the length of the handle is 16 ins. and diameter

of barrel 8 ins. The pinion on the same axis as the handle has 16

teeth, and gears with the spur wheel connected to the barrel which

has 90 teeth. What weight can one man exerting a push of 30 Ibs.

lift?

7. The preceding is fitted to act with an increased velocity
ratio by sliding the pinion out of contact with the spur wheel, and

putting in gear a pinion of 18 teeth working with a spur wheel of

54 teeth. On the axis of the latter is another pinion of 18 teeth

which now drives the 90 wheel. Find the force required to lift

1 ton.

8. The annexed sketch (Fig. XVII a) shows the arrangement of

pulleys and belts used for driving a dynamo machine F from the

steam-engine A.
Diameter of A = 51", B = 36*,

C = 42*, D = 24",

E = 48*, F = 14*.

Fig. XVII a.

If the speed of A is 96 revs, per min. find the speed of F, assuming
there is no slipping of belts.
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9. A machine is driven from a pulley 4 ft. in diameter by means

of a belt. If the difference of pull in the two sides of the belt is

20 Ibs. weight, and the pulley makes 120 revolutions per min., find

the H.P. transmitted by the belt.

10. The saddle of a lathe weighs 5 cwt. ; it is moved along the

bed by a rack and pinion arrangement. What force applied at

the end of a handle 10* long will be capable of just moving the saddle,

supposing the pinion to have 12 teeth of 1J* pitch and the coefficient

of friction between the saddle and the lathe bed to be 1, other friction

being neglected?

11. A leather belt J inch thick has to transmit 10 H.P. from

a pulley 4 ft. in diam. making 120 revolutions per minute. Assuming
that the tension on the tight side is twice that on the slack side

find the width of belt necessary if the safe stress in the belt is

320 Ibs. per sq. in.

12. The tension per inch width of a belt must not exceed 1 10 Ibs.

Find the width required to transmit 12 H.P. from a shaft running
at 80 revolutions per minute.

Z> = 4ft. 6 ins., S = l|.
L 2

13. A pulley 4 ft. in diameter is driven by two belts running
over each other, each in. thick. The speed of the middle plane
of the inner belt is 1800 ft. per minute. How much does the outer

gain on the inner per minute?

14. The set of wheels for a screw cutting lathe range from
20 to 150 teeth, there being two 20 wheels. The leading screw has two
threads to the inch. Arrange suitable trains for cutting threads

on a % in. screw, 20 threads to the inch.

15. The greatest and least diameters of the pulleys of a speed-
cone for a headstock mandrel are 10* and 5* respectively; and this

speed-cone is driven from a similar speed-cone keyed to a counter-

shaft which makes 250 turns per min. The back gearing is of the

usual type, the spur wheels concentric with the headstock spindle

having 62 and 30 teeth gearing with wheels having 18 and 50 teeth

respectively on the back spindle. Find the greatest and least

revolutions per min. at which the headstock mandrel may be driven.

16. The effective diameter of a worm is 6" and the pitch of

the thread of the worm 2i*. The worm is secured on the shaft

of an engine of 60 B.H.P. and gears with a wheel on a shaft whose
axis is at right angles to that of the engine shaft. If /A -16 find
i and H.P. transmitted by second shaft.
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THE SUM CURVE CONSTRUCTION

THE sum curve can be obtained graphically as follows. Let

ACD, Fig. a, be any primitive curve on a straight base AB.

Divide AB into any number of parts, not necessarily equal (but

for convenience of working they are generally taken as equal).

Fig. a.

These so-called base elements should be taken so small that the

portion of the curve above them may be taken as a straight line.

About 1 cm. or -4 in. will usually be a suitable size and in most

cases a smaller element, 11, will come at the end. Find the mid-

points, 1, 2, 3, etc., of each of the base elements and let the
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verticals through these mid-points meet the curve in la, 2a, 3a,

etc. Now project the points on to a vertical line AE, thus

obtaining the points 16, 26, 36, etc., and join such points to a

pole P on AB produced and at some convenient distance p from

A. Across space 1 then draw Ad parallel to P16, de across

space 2 parallel to P26, and so on, until the point n is reached.

Then the curve Ade . . . n is the sum curve of the given curve,

and to some scale Bn represents the area of the whole

curve.

PEOOF. Consider one of the elements, say 4, and draw fo

horizontally.

Now A/00 is similar to the A P4bA t

go
'

46,t
A

*

fo PA: '

but PA = p and 46, ^4 = 4, 4a,

fo x 4, 4a area of element 4 of curve
.". (JO

' = .

p p

Q .
., T f area of element 3 of curve ,

Similarly fq = - and so on,

.*. ordinate through g = go + fq 4- ...

area of first four elements of curve=
P

.*. the curve Ade. . .n is the sum curve required.
Then if Bn be measured on the vertical scale and p be measured

on the horizontal scale, the area of the whole curre will be equal
to p x Bn.

It is obviously advisable to make p some eonrenicnt round
number of units.

The sum curve obtained by this method may hare the same

operation performed on it, and thus the second sum curve of the

primitive curve is obtained, and so on.

If the operation be performed on a rectangle, the sum curve

will obviously become a sloping straight line, and if the sum
curve of a sloping straight line be drawn, it will be found to

be a parabola. In the case in which it is required to apply this

construction to a curve which is not on a straight base, the curve
is first brought to a straight base as follows :
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Suppose AcBd, Fig. 6, is a closed curve. Draw verticals

through AB to meet a horizontal base A'B'. Divide the curve

into a number of segments by vertical lines at short distances

apart, and set up from the base A'B' lengths alf bl} etc., equal to

/I' Bf

Fig. b.

the vertical portions a, 6, etc., on the curve. Joining up the

points thus obtained we get the corresponding curve A'c^B' on
a straight base.
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RIGHT-ANGLED TRIANGLES

sec A =-
c

t&uA-
c

cotanA=-
a

Complement of = 90 -

Supplement of = 180 -

tan 0;
COS0

sin8 + 008*0= 1

l+tan0=sec2

versine =1- cos

coversine = 1- sin

sin (0 + 0)= sin cos 0+cos sin <j>

:COS COS
<f>
-

tan 0+tan

sin 20 =2 sin cos

cos 20= cos2 - sin2

2tan0
tan 20 =

l-tan2

Given
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50

52

'S3

'54

"5!

*59

80
6i

62

'63

64
6c

69

7O

71
72
73

74

79

8O
81

82

'83

'84

U
87

90

91

92
"93

*94

99
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3236
33"
3388

3715
3802
3890
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4074

4ig
4266

43$5
4467
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5012

5129
5248
5370

5754

6x66

6310
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6607
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69x8
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7244
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8x28

8318
8511

8710
8913
9120

9333
9550
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3x70

3243
3319
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3475
3556
3639

3724
3811
3899
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4083
4i78
4276

4375

X

4688
4797
4909

5023

5200
5383

55o8
5636

6x80

6324

6776

69

7261

7430

7780
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8147
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9141

9354
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3177

3251
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3404

3999
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4188
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6339

86
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6966
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7
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9397
9616
9840
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'50
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40x8
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4305

4406
4

4721
4831
4943
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5176
5297
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x

6223
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6668

6823
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7482
. '56

7834

80x7
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8395
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8995
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4I2X
42x7
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4624
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5070

5188
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5433

59

582?

5957
6095
6237

6383

6531
83

6839

6998
7161
7328

7499
7674
7852

8035

8222

14
10

88xo

9016
9226

II

3206

3281
3357
3436

35x6

3855
3945

4036

4130
4227
4325

4426
4529
4634

4742

4

5082

5200

5445

5572

109
6252

6397
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6855

7015
7178
7345

75*5
7691
7870

8054

8241

8831
9036
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62

4753
4864
4977

5093

5212
5333
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5585
5715
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7031
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8851
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993^

a

6427

6577

9

3228
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9528
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9977

123

2 2

2 2
2 2

2 2

2 2
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2 3
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3 4
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3 5
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4 5
4 5
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4 7
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3 4
3 4
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4 5

4 5
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3 4
4 4
4 5
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4 5 6
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4 5

4 5

4 5

4 6
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5 6
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6 7
6 7
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6
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8 9 ii
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8 ii 13

9
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6
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6 7 7
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8

8 9
8 Q

8

8

9

9 10

9 10
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9

8 10 ii

9 10 ii

9 10 ii

9 10

9 10

9 ii

10 II

10 ii

10 II

10 12

ii

ii

ii 13 M

12 14
12 14

11 !3
12 13
12 13 15

12 14 16

12 14 16

13 14 16

1713 15

13 15

14 15 17

4 16 18

4 16 18

15 17 19

15 17 19

17 20
IS 20

16 18 20
!i
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2. Measure of Area : or Square Measure.

144 sq.inches
= 1 sq.foot.

9sq.feet =lsq.yard.
484 sq. yards = 1 sq. chain.

10 sq. chains
= 1 acre.

640 acres = 1 sq. mile.



ANSWERS TO EXERCISES

EXERCISES I.

1. 8-7 Ibs.

2. 99 Ibs. 4. 72 Ibs. 5. 13 Ibs.

6. Extracting component 8-66 Ibs. ; bending component 6 Ibs.

7. 78 Ibs. in the short wire and 26 Ibs. in the long one.

8. Pressure 98-5 Ibs.; sliding force 17-4 Ibs.

9. Between 11 and 12. 10, -33 ton.

11. 46-7 Ibs. 12. 47 Ibs. and 63 Ibs. 13. 223 Ibs.

14. Resultant =41*4 Ibs. and acts along the line bisecting LP^OP^ in the

opposite direction from OP9 . 15. 25*8 Ibs.

EXERCISES H.

1. 16-4 Ibs. 2. W= 110-77 Ibs. Pressure on fulcrum =614-77 Ibs.

3. 11-05 ins. from end weighted with 35 Ibs.

4. 3^ ft. from end weighted with 36 Ibs. 5. 41-8 ins.

6. 64-5 Ibs. per sq. in. above atmosphere. 7. 12-5 Ibs.

8. 17-7 Ibs. 9. -866 ton.

10. 3-83 ins. nearly from the force of 10 Ibs. 11. 69-2 Ibs.

12. 3-65 tons, 2-45 tons. 13. 17,000 Ibs.

14. Halfway along a line joining the apex to one-third of the base.

15. 160 Ibs. 16. Loses (

-^2 Ib. per Ib. 17. 3 cwt.

EXERCISES III.

1. 1,080,000 ft. -Ibs. 2. 1,752,000 ft.-lbs. 3. 127-4 H.P.

4. 22;frH.p. 5. 352 cub. ft. 6. 42,240,000 ft..Ibs.

7. 27,456 ft. -Ibs. 8. 68AH.P. 9. 450H.P.

10. 5,430,000 ft.-lbs. 11. -29H.P. 12. 119,000,000 ft. -Ibs.

13. 179-2 H.P.; 224H.P. 14. 218 H.P. 15. 2,704,000 ft.-lbs.

16. 720 tons. 17. 247,000 ft. -Ibs.; 112,700 ft. -Ibs.; 134,300 ft.-lbs.

EXERCISES IV.

1. 195-45 Ibs. 2. 99-77% efficiency.

3. Required pull, 166lbs.; Efficiency =83-33%.
Mechanical advantage =3, Velocity ratio =3-6:1.

4. 132-2 H.P.

5. Necessary force parallel to plane= If tons wt.

Necessary force parallel to base = 1| tons wt.

6. 6-125 Ibs. 7. 12,600 in. -Ibs. 8. 57-14 H.P.

9. Fr=326-9; JP = 15521bs; 17
= 8-6%. 10. 22-3 H. p.

11. 7JH.P. 12. 99-7 H.P. 13. 34-3 H.P.

14. 15-7 H.P. 15. 91%. 16. 26%.
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EXERCISES V.

1. 40-1 ft. per see. 2. 55-04 miles per hr. 3. 100-6 ft.

4. Heights fallen, 9-82 ft.; 0-9676 ft.; 0-0966 ft.; Average velocities,

98-21 ft. per sec. ; 96-76 ft. per sec. ; 96-616 ft. per sec.

5. 1-47 ft. per sec. 2 6. 80 miles per hour after -2 hour.

7. 7-56 miles. 8. 3657 cms. per min.

9. 5-87 ft. per sec. per seo. 10. 75 miles per hr. 11. 100 yds.

12. 22 ft. per sec. per sec. 13. 1370 yds. 14. 60 miles per hour.

EXERCISES VI.

1. 55 feet per sec. at 37 to the direction of the train's motion.

2. 43 ft. per sec. 3. 10 miles an hour from the N.W.
4. 46-2 ft. per sec. ; 83-25 to the circumference. 5. 27-3 sees.

6. 6 sees. 7. min.; l^mins.; 20^ sees. 8. 35-5 ft. per sec.

9. 8-03 miles. 10. 25 37' N. of E. ; 3 '89 miles per hour.

EXERCISES VII.

1. 27ft.-lbs. 2. 1880yds. 3. 8430ft.-lbs.

4. 6170 Ibs. 5. Energy =93,000 ft. -Ibs.; Pressure exerted= 18,600 Ibs.

6. 3 Ibs. 7. 220ft. tons; -8ft. per sec. increase in velocity.

8. 25-5 ft. per sec. ; 7700ft. 9. 31 10 Ib. seo.

10. 1560 Ibs.; 8-8 ft. 11. 760 feet. 12. 2880 feet.

13. 45-6 tons. 14. 418 Ibs.

15. -64ft. per sec.
2
; 38-4 ft. per seo. 16. 2904 Ibs.

EXERCISES VIII.

1. 3880 Ibs. 2. 5-24 tons. 3. 845 Ibs.; 1000 Ibs.; 1155 Ibs.

4. 221 Ibs. 5. 12-9 Ibs. 6. 58-8 ft. per sec. ; more.

7. 128 ft. per sec. 8. 8-8 ft. per sec. ; come to rest.

EXERCISES IX.

1. -0006. 2. -1ft. 3. --0005.

4. Stress 16,000 Ibs. per sq. in.; strain -000625; #=25,600,000.

5. -0256 ft.= in. nearly. 6. 12,000 in.-lbs. ; 345 in. -Ibs.

7. 3410 Ibs. per sq. in. 8. 2-026 ins. 9. 14-02 tons.

10. 48,600 Ibs. per sq. in.

11. Modulus of elasticity = 22,500,000 Ibs. persq. in.

12. Work done =6 in. Ibs. 13. 2700ft. 14. 6 in. Ibs.

15. 6-45 tons per sq. in. 16. 3J ins. diameter.

17. -00074 in. longitudinal; -000185m. transverse. 18. 2180 Ibs.

EXERCISES X.

1. 30 tons. 2. | in., double row at 4-inch pitch; 56%. 3. *57.

4. Resistance to shearing of rivets= 18-85 tons; resistance to tearing of

plates= 18 tons; thickness of cover plates should be ^in. ; efficiency

=66-7%.
5. 5 rivets; yes. 6. 120 tons. 7. SJins. 9. 2-23 ins. nearly.

10. 3-71 ins. 11. 48-6 Ibs. per sq. in. about. 12. -357 in.
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EXERCISES XI.

1. AB=T; .8(7= -77; C4=+16; J3D= - 13 tons.

2. AB =^''=+4-62; BD=B'D = -4'62; AD=4' = -2*30;

55' = +2'30 tons.

3. Top bars, +48'4, 62'2, 41 '4, 20'5 tons.

Bottom bars, -24'6, 65 '6, 51 '8, 30'8, lO'l tons.

Diagonals, 48'4, 13'8, remainder 20*9 tons.

4. BC= +3-5; CD= +2'0; AE= -5'59; J^^= -2'98; ^D= -2'24;

J3#=+2'12; EC=-I'SQ; CF=+9'4tou8.

5. Force in DZ>'= 6'5 tons. 6. 2 '69 tons.

7. - 10 tons in stay; +8 '8 tons in each leg.

EXERCISES XII.

1. B.M/S 1410, 870 and 480 Ibs. ft.

S.P.'S 180, 180 and 80 Ibs.

2. B.M.'S, 0, 1400, 2600, 3600, 4400, 5000, 5400, 6600, 5625 (centre) tons ft.

S.F.'S, 150, 130, 110, 90, 70, 50, 30, 10, (middle).

3. B.M. (at centre) = 62,500 Ibs. ft.

S.F. (at centre) =0.

B.M. (16 ft. from end) =52,500 Ibs. ft.

S.P. (16 ft. from end) =2000 Ibs.

4. B.M. (at fixed end) =91,875 Ibs. ft.

B.M. (15 ft. from fixed end) =30,000 Ibs. ffc.

B.M. (25 ft. from fixed end) =7500 Ibs. ft.

S.F. (at fixed end) =5250 Ibs.

S.F. (15 ft. from fixed end) =3000 Ibs.

S.F. (25 ft. from fixed end) = 1500 Ibs.

5. (At fixed end) B.M. = 105,000 Ibs. ft., S.F. = 6000 Ibs.

(16 ft. from fixed end) B.M. =31,875 Ibs. ft., S.P. =3750 Ibs.

(25 ft. from fixed end) B.M. =7500 Ibs. ft., S.P. = 1500 Ibs.

6. (At centre) B.M. =45 tons ft., S.F. =2 tons.

(5ft. from end nearest which is wt.) B.M. =20 tons ft., S.P. =4 tons.

(5 ft. from other end) B.M. = 10 tons ft., S.F. =2 tons.

7. Reaction at support A =^3- tons.

Reaction at support B= ty tons.

At C, B.M. =44| tons ft., S.B. =2f tons.

At D, B.M. = 73 tons ft., S.F. = 2f tons.

At E, B.M. =70 tons ft., S.F. =4f tons.

8. If A is one end of the axle and B, C, D points distance 4 ins. apart:
Then B.M. at A =0; at B, C, D, etc. =20 tons ins.

S.P. at^=2; at =2; from B to other end =0.

9. At point 5 ft. from one end B.M. =6900 Ibs. ft., S.F. =930 Ibs.

At point 8 ft. from one end B.M. =20,400 Ibs. ft., S.F. =390 Ibs.

10. B.M.= 256,250 Ibs. ft.; S.F. =4000 Ibs.

11. 96 Ibs. 12. B.M.=120tonsft.; S.F. = 1 ton.

13. At centre B.M.=6481bs. ft., s.F.=0.

At 1st quarter B.M. =486 Ibs. ft., S.F. =72 Ibs.

At end B.M. =0, S.F. = 144 Ibs.
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EXERCISES XIII.

1. 2 ins. from the base. 2. 2-5 ins. from the base.

3. TV of its length from the centre. 4. 1-122 ft. from the point of contact.

5. 2-33 ins. from the centre of the rod. 6. 24-16 ins. from bottom.

7. -GR from centre of circle. 8. 18,900 Ibs.

9. Height = base x 1-732. 10. -831 in. from base.

11. Centre of gravity =3-747 ins. nearly from lower flange XY.
12. Centre of gravity is a point -83 in. nearly from the 4-in. side and 1-33 ins.

nearly from the 3 -in. side.

13. 2-6 ins. 14. A point 2-75 ft. from the end weighted with 2 Ibs.

15. tV ft. 16. r- from right-hand end.

17. 4f ins. from base. 18. 2-97 ft.

EXERCISES XIV.

1. 0-179. 2. 10 Ibs. 3. 15.

4. (i) 371-7 Ibs. (ii) 370-7 Ibs. (iii) 370-0 Ibs.

5. 10 tons at 30% to horizon. 6. 60-5 ft. 8. 4-6.

9. 9 ins. 10. 8; 800 sq.ft. 11. 91 Ibs.; 28%. 12. 50ft.

EXERCISES XV.

1. 2,744,000 ft.-Ibs. 2. 2-57 Ibs. 3. 47-5 revs, per min.

4. 1410 Ibs. 5. 28-6 revs, per min. 6. 15 miles per hr.

7. Centrifugal force = 8 tons approx. ; 38-8 tons at 12 to vert,

8. 42-6 miles per hr. 9. 17,000 ft. -Ibs. 10. 38-2 revs, per min.

11. 80,000ft. 12. 6000yds.

EXERCISES XVI.

1. (a) 84; (6) -55 of stroke from the back dead point.
2. (1) 12,403 Ibs.; (2) 3100-75 Ibs. 4. 640 ft. per min.

6. 1-28 : 1 ; 4 ins.

EXERCISES XVII.

1. 3 ft. 10 ins. nearly. 2. 18.

3. Difference in tension = 583-3 Ibs. ; tension on sides = 291-7 Ibs. and 875 Ibs.

4. 3 tons. 5. 250 Ibs. 6. 675 Ibs.

7. 37-3 Ibs. 8. 912 revs, per min. 9. -91 H.P.

10. 13-37 Iba. 11. 5|ins. 12. 7^ ins. 13. 55-8 ft.

14. 1-S-xH. 15. 455,23-8. 16. 45-3% : 27-2 H.P.



INDEX

Acceleration 92-100
relation to force 117

Angle of friction 225
of repose 233

Angular velocity 243

Back gear for lathes 287

Balancing rotating parts 250
Beams and girders 188-200

bending moment 189
reactions 21

shearing force 189
Belt gearing 273-279

Bending moments 189-200
Bevel gearing 281

Bicycle two-speed gear 73
Bow's notation 3
Brake horse-power 78

Cams 267
Cantilevers 190-193
Cast iron, stress-strain diagram of

143
Cement and concrete 144

Centrifugal and centripetal force

245
Centroid and centre of gravity 203-

220
Clerk Maxwell diagrams 178
Columns 156

Compressive stress 140
Cone, centre of gravity of 212
Conservation of energy 40

Counterbracing 175

Couples 31
Crank and connecting-rod mechanism

258
Crow-bar 53
Curved path, motion in 242-256

Cycloid curve 104

Cylinders, strength of 169

Deficient frames 174
Diametral pitch 280

block 67

Efficiency
of machines 55
of riveted joints 168

Effort curve 42
mean 49

Elastic bodies 139
limit 141

Energy
conservation of 40
definition and kinds 39
useful 41

Equilibrant 8

Equilibrium 8
kinds of 221
under three forces 25

Experiments
bicycle two-speed gear 7

centre of gravity and centroid

220
errors of 13
friction 238
inclined plane 60
moments 18

polygon of forces 12
reaction of jet 133
roof-truss 184

triangle of forces 4
Weston pulley block 72

wire, strength of 147

Factor of safety 151
Force

polygon 11

triangle of 3
unit of 2
see also effort, reaction, resistance,

etc., and various kinds of

machines and structures

Framed structures 174-185
Friction 224-240

angle of 225

rolling 228
static and kinetic 224

Gearing 273-290
Gear trains 286
Governor 248

Gravity acceleration 97
centre of 203-220

Hodograph 242
Hooke's law 139
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Horse-power
brake 78
definition 38
indicated 77

Idle gear wheels 285

Impact and impulse 129
Inclined plane 57-63, 229-233
Indicated horse-power 77
Instantaneous centre 259
Involute gearing 280

Kinetic energy 40, 113
friction 224

Lathe back gear 287
headstock gear 276
lead screw drive 289

Leverage 16
Lever safety valve 23

Limit, elastic 141

Line of pressure 11

Link and vector polygon construction

27, 32

Lubrication, see Friction

Machines 52-81
actual performance 70

reversing 66
Mean effort 49
Mechanical advantage 53
Mechanisms 258-270
Method of moments or sections 183
Module of toothed gearing 280

Modulus, elastic 145
Moments

of forces 16-33
method of, for frames 183

Momentum 119-137
Motor tracks 247

Newton's laws of motion 1, 21, 117,
124

Parabola, centroid of 219
Pawl and ratchet mechanism 270
Pile driver 135
Pillars 156

Pipes, strength of 169
Pitch circle 280

Planing machine, belt drive 278
Poisson's ratio 146

Polygon of forces 11

Potential energy 40
Power (see also Horse-power) 38

Projectiles 252-256

PuUey tackle 67-70

Pyramid, centre of gravity of 211

Quadrilateral, centroid of 216

Quick-return mechanism 263

Rack and pinion 281

Railway curves 247
Ratchet mechanism 270
Reaction

Newton's law 124
of beams 21

Reciprocal figures 178
Recoil of guns 133
Redundant frames 175
Relative velocity 103-111

Repose, angle of 233
Resilience 152
Resistances 45

Resultant, definitions of 3

Reversing gear train 289, 290

Reversing machines 66

Rigidity modulus 145
Ritter's method for frames 185
Riveted joints 161-169

Rolling friction 228
Roof-truss 177-185

Rotating bodies 75

Safety valve 23
Scalar quantities 1

Screw

jack 65
with friction 233
without friction 63

Sections, method of, for frames 183

Semicircle, centroid, etc. of 220
Shear

in beams 189-200

legs 184
modulus 145
stress 140

Ships, relative velocities of 108

Space curve 85

Speed, see Velocity
Speed-cones 276

Spiral gearing 282

Stability of wall 22

Steam-engine foundation, thrust on
5

Steel, stress-strain, diagram of 142
Strain 139
Stress

definition 139

dynamic 163
-strain diagrams 141-160

temperature 156

working 151

Struts 156

Tensile stress 140

Timber, strength of 144

Toggle mechanism 265
Toothed gearing 279-290

Torque 76

Trapezium, centroid of 212

Triangle, etc., centroid of 210
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Triangle of forces 3 Velocity

Tripods 184 variable 84
Virtual centre 260

Useful energy 41
Warren girder 180

Vector polygon construction 10 Watt's parallel motion 262
Vector quantities 1 Weight as unit of force 1

Velocity Weston's pulley block 68

angular 243 Work 36
curves 87 resistance, against 44
definitions 83 variable force done by 42
in mechanisms 259 Working stress 151

ratio in gearing 275, 279, 283 Worm gearing 282
ratio of machines 56
relative 103-111 Yield point 141

uniform 83 Young's modulus 145
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