

-

~

Experimental CORN HYBRIDS TESTED IN 1955

By R. W. Jugenheimer and A. F. Troyer

Bulletin 597 · UNIVERSITY OF ILLINOIS AGRICULTURAL EXPERIMENT STATION

Location of regular experimental-hybrid test fields

CONTENTS

	Page
MATERIAL TESTED	3
MEASURING PERFORMANCE	7
RESULTS OF THE TESTS	7
NORTHERN ILLINOIS	
Double crosses (Table 2)	
Single and double crosses (Table 3)	
NORTH-CENTRAL ILLINOIS Double crosses (Table 4)	14
Three-way and double crosses (Table 5)	
CENTRAL ILLINOIS	
Double crosses (Table 6)	18
Single and double crosses (Table 7)	
Three-way and double crosses (Table 8)	22
Blight resistant three-way crosses (Table 9)	23
Single and double crosses (Table 10)	24
SOUTH-CENTRAL ILLINOIS	
Double crosses (Table 11)	25
Three-way and double crosses (Table 12)	
PERFORMANCE OF LINES IN SINGLE CROSSES (Table 13)	29
DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX (Table 14)	30

Acknowledgment is due W. T. Schwenk and Sans, Edwards, Illinais, for praviding land far ane af the tests, Dr. W. C. Jacob, Professor of Agranamy, for valuable camputational and statistical assistance, and to K. E. Williams and H. M. Hayes for aid in field and labaratory work.

Urbana, Illinois

January, 1956

Publications in the Bulletin series report the results of investigations made or sponsored by the Experiment Station

EXPERIMENTAL CORN HYBRIDS TESTED IN 1955

By R. W. JUGENHEIMER and A. F. TROYER¹

THIS REPORT summarizes the results of advanced tests of experimental corn hybrids conducted in 1955 by this Station. Data from many preliminary tests involving specialized phases of the corn-research program were not included in this bulletin.

Trials were made at four locations: in DeKalb county in northern Illinois, in Peoria county in north-central Illinois, in Champaign county in central Illinois, and in Fayette county in south-central Illinois. These four locations are representative of the soil, rainfall, and length of growing season in their respective areas.

Hybrids were compared for yield, maturity, resistance to lodging, and other agronomic characters. Only hybrids of similar maturity were tested on the same field. A familiar hybrid whose maturity was considered the standard for the group is named in each table heading.

Since most of the hybrids whose performance is recorded here are not yet in commercial use, the information about them is of most value to producers of hybrid seed. The 1955 performance of hybrids available in commercial quantities to farmers is reported in Bulletin 598 of this Station.

MATERIAL TESTED

One hundred and forty-five different double-cross hybrids were grown at the four locations. Most of the Illinois hybrids were developed by the senior author. The seed was produced by controlled hand-pollination.

Three sets of single crosses and four sets of three-way crosses differing in maturity were tested in 1955. The three-way crosses (Tables 5, 8, 9, and 12) are a part of the "uniform" tests conducted cooperatively by corn-belt states, including Illinois, and

¹ R. W. JUGENHEIMER, Professor of Plant Genetics and Corn Research Coordinator, and A. F. TROYER, Assistant in Agronomy.

the U. S. Department of Agriculture. Seed of the unreleased inbred lines involved in these crosses was contributed by the state or by the federal corn breeder who developed them. Single crosses whose performance is reported in Tables 3, 7, and 10 were developed by the Illinois Station and tested only in Illinois.

The following individuals are responsible at the present time for collecting seed of inbred lines, making the crosses, and distributing crossed seed of the entries in the uniform tests: J. H. Lonnquist (Nebraska), R. W. Jugenheimer (Illinois), and G. F. Sprague (Iowa) — Tables 5 and 8; M. T. Jenkins (U. S. Department of Agriculture) — Table 9; and L. A. Tatum (Kansas), W. R. Findley (U. S. Department of Agriculture), and M. S. Zuber (Missouri) — Table 12.

The University of Illinois does not produce hybrid seed corn in commercial quantities. If a hybrid gives satisfactory performance, the parental lines are released for use by seedsmen. Hybrids that include new inbred lines are produced under the "delayed release" program adopted by most of the states in the corn belt. Multiplication of a new line is handled by the Station, and the production of single crosses in quantity is handled by the Illinois Seed Producers Association, Champaign, Illinois. After a satisfactory probationary period of two to five years, a new line is released to the public.

Table 14 (see pages 30 to 32) lists the double-cross hybrids whose performance is shown in this report and the tables in which each appears. It also contains the pedigrees of the hybrids tested. In the pedigrees, the order of the single crosses and of the lines in the single crosses has no significance; it does not indicate which should be used as seed or pollen parent.

Illinois yellow hybrids are numbered consecutively below 2000 and above 6000. White hybrids are numbered in the 2000 series; these are usually followed by the letter W. Hybrids that have performed well after wide testing in several corn-belt states have been designated AES (Agricultural Experiment Station) hybrids. Hybrids in the 600 series are similar to Illinois 1277 in maturity; those in the 700 series correspond in maturity to Illinois 21; those in the 800 series correspond to U. S. 13; and those in the 900 series to Illinois 448.

The letter A or B following an Illinois hybrid number indicates that the combination of inbred lines making up the hybrid

has been rearranged or permuted. For example, if the original pedigree of an Illinois hybrid was (1×2) (3×4) , the letter A following the number means that the hybrid was put together (1×3) (2×4) , the letter B, (1×4) (2×3) . A difference in reciprocals is not recognized in this method. When a short dash (-) followed by a number occurs as part of an Illinois hybrid number, it means that a tested related line has been substituted for one of the inbred lines included in the original hybrid.

Performance of three-way and single-cross hybrids is of interest to corn breeders, producers of hybrid seed corn, and to farmers. Characteristics of single crosses such as yield, standability, seed size, shape, and quality definitely affect the practical production of hybrid seed corn. Some farmers are interested in growing single-cross and three-way-cross hybrids commercially because of their attractive appearance and extreme uniformity. Use of single-cross and three-way-cross data for the prediction of desirable double-cross combinations creates additional interest in the performance of single crosses.

Prediction studies are an extremely valuable part of a research program. Methods are available to predict the performance of the better hybrid combinations without making and testing large numbers of undesirable crosses. For example, 1,225 single crosses and 690,900 double crosses are possible with 50 inbred lines. However, by using single-cross performance data, the corn breeder can predict which of the many possible doublecross combinations are likely to be most desirable. The following six single crosses can be made with four inbred lines: $A \times B$, $A \times C$, $A \times D$, $B \times C$, $B \times D$, and $C \times D$. The average per-

	Section	Number	Plants	Date of		
County ^a	of state	of hills per plot	per hill	Planting	Har- vesting	
DeKalb Peoria Champaign Fayette	Northern North-Central Central South-Central	10 10 10 10	$\begin{array}{c} 4\\4\\4\\3\end{array}$	May 20 May 19 May 17 June 3	Oct. 18 Oct. 11 Oct. 25 Nov. 1	

Table 1. — GENERAL INFORMATION: Tests of Illinois Experimental Corn Hybrids, 1955

^a The fields are located near the following cities and towns: in DeKalb county near DeKalb, in Peoria county near Peoria, in Champaign county near Urbana, and in Fayette county near Brownstown. Bulletin No. 597

formance of the four non-parental single crosses gives the predicted performance of a specific double-cross hybrid. For instance, the average yields of the four single crosses $A \times C$, $A \times D$, $B \times C$, and $B \times D$ give the predicted yield of double cross $(A \times B)$ $(C \times D)$. The procedure in predicting acre yields and percentage of erect plants from single-cross data is shown below. The single-cross data are taken from Table 3.

(R161xR168)(R170xR169)

(R129xR162)(R165xR166)

		Bushels per acre	Percent of erect plants		Bushels per acre	Percent of erect plants
R161	\times R169	112	82	$R129 \times R165$	79	80
R168	\times R170	103	61	$R129 \times R166$	91	84
R161	\times R170	68	63	$R162 \times R165$	88	37
R168	imes R169	108	71	$R162 \times R166$	90	66
		$4 \overline{391}$	4 277		$4 \overline{348}$	$4 \overline{267}$
	Prediction	n <u>98</u>	69	Prediction	87	67

Similar predictions can be made for other characteristics. Predicted hybrid combinations, however, should always be thoroughly tested under field conditions before being put into commercial production.

Three-way crosses also provide useful predictions of the performance of double-cross hybrids. A large number of inbred lines can be compared, and the method is especially valuable where a desirable seed-parent single cross is available for use as a tester. Three-way crosses provide information on specific hybrids and may often eliminate the time and expense required for testing inbred lines in top crosses and single crosses.

The procedure in predicting acre yields and percentage of erect plants from three-way-cross data is shown below. The three-way-cross data are taken from Table 8. One hybrid is much more promising than the other hybrid.

(WF9xHy)(R127xB38)

(WF9xHy)(N15xN25)

	Bushels per acre	Percent of erect plants		Bushel: per acre	s Percent of erect plants
$(WF9 \times Hy)R127$	116	80	(WF9×Hy)N15	84	42
(WF9×Hy)B38	108	72	(WF9×Hy)N25	97	62
	$2 \mid \overline{224}$	$2 \mid \overline{152}$		$2 \overline{181}$	$2 \overline{104}$
Prediction	112	76	Prediction	n 90	52

[January,

MEASURING PERFORMANCE

All plots in these tests were planted, thinned, and harvested by hand in well-fertilized fields prepared in the usual way for corn. Individual plots were 2×5 hills in area. Six kernels were planted in hills spaced 40 inches apart. The plots were thinned to four plants per hill at DeKalb, Peoria, and Champaign, and to three per hill at Brownstown.

Lattice-square designs were used to obtain the data reported in Tables 2, 4, 5, 6, 7, 11, and 12. The data in Tables 3, 8, 9, and 10 were obtained in randomized blocks. Data in Tables 8 and 10 are the means of three replications of each entry; data in all other tables are the means of four replications per entry.

RESULTS OF THE TESTS

Data obtained from the tests are summarized in Tables 2 to 12. Long-time averages are more reliable indexes of the performance of hybrids than a single year's result. The parts of the tables summarizing the results of two or more years therefore deserve the most weight when the results are studied.

Hybrids are listed in the tables in the order of their yield. Acre yields are reported as shelled grain containing 15.5 percent moisture, the maximum allowable for No. 2 corn. The crop from two replications of each entry at each location was shelled to determine the shelling percentage and moisture percentage. The percentage of moisture in the shelled grain was obtained with a Steinlite moisture meter. Erect plants at harvest and stand were determined from actual counts on all replications of each test.

Data from all plots are included in the report on yield. The only correction for imperfect stands was the following adjustment for missing hills:

$$\frac{\text{Corrected}}{\text{weight}} = \frac{\text{Field}}{\text{weight}} \times \frac{\left(\substack{\text{Number of hills} \\ \text{per plot}} \right) - \left(\substack{0.3 \times \text{Number of missing} \\ \text{hills per plot}} \right)}{\left(\substack{\text{Number of hills} \\ \text{per plot}} \right) - \left(\substack{\text{Number of missing} \\ \text{hills per plot}} \right)}$$

This adjustment adds 0.7 percent of the average hill yield for each missing hill, and assumes that 0.3 percent is made up by the increased yield of surrounding hills.

Relative performance cannot be determined with absolute accuracy by any method of testing. Small differences between

BULLETIN No. 597

entries are seldom of any significance. In fact, small differences are to be expected among plots planted even with the same lot of seed. Variations in growing conditions such as soil fertility are reduced but not completely eliminated by replicating the same entry several times in the same test. Unavoidable variation may be determined by a mathematical procedure known as analysis of variance. From this procedure figures may be obtained that represent the range which differences between two entries must exceed before those entries can be considered significantly different. The method used to determine this range is called the "Multiple Range Test."¹ This method considers the number of entries that fall within the range as well as the variability of the test. Data shown in **boldface** were not statistically different from the best performance for that characteristic.

The season was favorable for corn at DeKalb, although corn borers were quite prevalent. Hot, dry weather lowered yields at Peoria. Conditions were good for yields at Urbana, but wind and rain storms severely increased the amount of lodging. At Brownstown conditions were better than average for yield, but stalk rots greatly increased the amount of lodging.

The following double-cross hybrids, arranged in order of yield, were outstanding in performance:

Northern Illinois

- Five-year average: Table 2A Ill. 1555A, Ill. 1575, AES 702, Ill. 1279, Ill. 1289, Ill. 1493.
- Four-year average: Table 2B AES 702, Ill. 1277, Ill. 1555A, Ill. 1575, Ill. 1279, Ill. 1493.
- Three-year average: Table 2C Ill. 1555A, Ill. 1863, Ill. 1279, Ill. 1559B, Ill. 1575, Ill. 1281.
- Two-year average: Table 2D Ill. 1555A, Ill. 1281, Ill. 1279, Ill. 1559B, Ill. 1575, Ill. 1863.
- 1955 results: Table 2E Ill. 1936, Ill. 1279, Ill. 1281, Ill. 1863, Minn. 511, Ill. 1799.

North-Central Illinois

- Five-year average: Table 4A Ill. 1511, Ill. 274-1, Ill. 1575, Ill. 1760, AES 805, Ill. 1560A.
- Four-year average: Table 4B Ill. 274-1, Ill. 1511, Ill. 1555A, Ill. 1831, Ill. 1575, Ill. 1760.
- Three-year average: Table 4C Ill. 1332, Ill. 274-1, Ill. 1819, Ill. 1875, Ill. 1555A, Ill. 1831.

¹ "Multiple Range and Multiple F Tests," by D. B. Duncan, in *Biometrics* 11 (1), 1-43, 1955.

Two-year average: Table 4D — AES 806, Ill. 1332, Ill. 274-1, Ill. 972A-1, Ill. 1912, Ill. 1919.

1955 results: Table 4E — Ill. 1916, Ill. 274-1, Ill. 1280, Ill. 1555A, Ill. 1913, Ill. 1919.

Central Illinois

- Five-year average: Table 6A Ill. 1421, Ill. 1511, Ill. 972A-1, Ill. 1332, Ill. 1777, AES 805.
- Four-year average: Table 6B Ill. 1421, Ill. 972A-1, Ill. 1332, Ill. 1511, AES 801, Ill. 1777.
- Three-year average: Table 6C Ill. 1332, Ill. 1813, AES 801, Ill. 1880, Ill. 1890, AES 805.
- Two-year average: Table 6D Ill. 1919, Ill. 1913, Ill. 1909, Ill. 972A-1, Ill. 1332, Ill. 1421.
- 1955 results: Table 6E Ill. 1919, Ill. 1421, Ill. 1880, Ill. 1332, AES 803, Ill. 1889; Table 8 Ill. 1927, Ill. 1921, Ill. 1922, Ill. 1926, Ill. 1928; Table 10 Ill. 1935.

South-Central Illinois

- Five-year average: Table 11A Ill. 1332, Ill. 1349, Ill. 1656, Ill. 1539A, Ill. 1771, Ill. 2235W.
- Four-year average: Table 11B Ill. 1851, Ill. 1859, Ill. 1656, Ill. 1857, Ill. 1332, AES 805, Ill. 1849.
- Three-year average: Table 11C Ill. 1859, Ill. 1851, Ill. 2246W, Ill. 1332, Ill. 1656, Ill. 1857, AES 805, Ill. 1849.
- Two-year average: Table 11D Ill. 1857, Ill. 1349, Ill. 1893, AES 805, Ill. 1332, Ill. 1849.
- 1955 results: Table 11E Ill. 1893, AES 805, Ill. 1849, Ill. 1909, Ill. 1918, Ill. 1919; Table 12 AES 805, Ill. 1919, Ill. 1913, U.S. 619W.

The following single crosses and three-way crosses were outstanding in grain yield and standability in 1955:

Northern Illinois

 $\begin{array}{l} \text{Table 2E} \longrightarrow \text{M14} \times \text{B14}, \ \text{WF9} \times \text{I.205}; \ \text{Table 3} \longrightarrow \text{R161} \times \text{R169}, \\ \text{R165} \times \text{R168}, \ \text{R162} \times \text{R168}, \\ \text{R166} \times \text{R168}. \end{array}$

North-Central Illinois

Table 5—K1603-1-3 × (B14 × WF9), B40 × (Oh28 × Oh43), B35 × (Oh28 × Oh43).

Central Illinois

Table 7 — R163 × R168, R159 × R168; Table 8 — R127 × (WF9 × Hy); Table 9 — ((Oh07 × L97)-B-#3-S6-2) × (38-11 × K201), ((Oh07 × L97)-B-#3-S2-1) × (38-11 × K201); Table 10 — R71 × R163, R71 × R101, R71 × R105, R71 × R168.

South-Central Illinois

Table 12 — R74 × (38-11 × K201), R75 × (38-11 × K201), Mo 9150 × (38-11 × K201), CI.49A × (K55 × H28), Mo9187W × (K55 × H28).

[January,

Table 2. — DOUBLE CROSSES OF ILLINOIS 1277 MATURITY Tested in Northern Illinois, 1951-1955

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height
	A — Five-year	avera	ges, 195	51-1955			
$1\\2\\3\\4\\5$	Ill. 1555A. Ill. 1575. AES 702. Ill. 1277. Ill. 1277.	bu. 106 104 103 103 103	<i>perct.</i> 22 27 26 25 25	perct. 80 77 75 78 78	<i>perct.</i> 92 94 92 90 95	perct. 98 98 99 98 98	in. 42 41 46 41 39
	Ill. 1280	102 102 102 102 102 101	$24 \\ 25 \\ 26 \\ 24 \\ 27$	78 76 78 78 78 77	92 94 97 94 89	96 98 96 98 96	38 37 39 37 41
$11 \\ 12 \\ 13 \\ 14 \\ 15$	Ill. 1281 Ill. 1557. Ill. 21 Ill. 258 Ill. 1560A	101 101 100 100 100	$25 \\ 25 \\ 26 \\ 25 \\ 24$	78 77 76 77 77	94 96 91 95 98	97 96 97 97 98	$36 \\ 37 \\ 48 \\ 36 \\ 38$
$16 \\ 17 \\ 18 \\ 19 \\ 20$	Ill. 101. Ill. 1290 Ill. 1375 Ill. 1585. Ohio K24.	99 99 98 98 98	25 25 23 24 22	78 78 78 77 80	94 90 91 90 91	98 95 97 95 95	37 40 35 38 37
21 22	111. 1595 111. 1579 Average	97 96 101	$25 \\ 24 \\ 25$	76 78 78	96 95 93	97 98 97	42 34 39
	B — Four-year	avera	ges, 19	52-1955			
$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	AES 702. 111. 1277. 111. 1555A. 111. 1575. 111. 1279.	112 112 112 112 112 111	23 22 21 24 21	77 79 80 78 79	91 90 91 96 94	99 97 97 98 98	46 41 43 41 39
	I.S.P. 2. Ill. 21. Ill. 1091A. Ill. 1280. Ill. 1281.	110 109 109 109 109	25 23 23 22 22 22	76 78 78 79 79	96 91 87 92 94	98 96 95 95 97	39 48 42 38 37
$11 \\ 12 \\ 13 \\ 14 \\ 15$	Ill. 101 Ill. 1289 Ill. 1493 Ill. 1559B. Ill. 1557.	108 108 108 108 107	22 22 23 22 23 22 23	79 77 76 79 78	94 94 97 94 96	98 97 96 98 96	37 38 39 38 38 37
$ \begin{array}{r} 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{array} $	Ill. 1558 Ill. 1560A Ill. 1290 Ill. 1375 Ill. 1375 Ill. 1585	106 106 105 105 104	23 21 23 21 21 21	77 78 79 79 79 78	95 97 90 89 88	96 97 95 97 95	$37 \\ 38 \\ 40 \\ 36 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38$
$21 \\ 22 \\ 23 \\ 24 \\ 25$	Ohio K24. AES 512. Ill. 1595. Ill. 1799. Ill. 1802.	104 103 103 103 103	20 20 22 20 21	80 80 77 81 80	92 93 96 94 93	94 99 97 99 96	37 38 42 39 38
26 27 28 29	Ill. 1579 Ill. 1800. AES 610. Ohio M15. Average.	101 101 99 97 107	21 21 20 20 22	79 79 80 82 79	94 92 90 83 92	97 97 96 96 97	34 36 32 43 39

(Table is continued on next page)

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped cars
	C — Th	ree-yea	ar aver	ages, 19	953-195	5		
$1 \\ 2 \\ 3 \\ 4$	Ill. 1555A Ill. 1277 Ill. 1861 Ill. 1863 Ill. 1863	bu. 116 113 113 113	<i>perct.</i> 22 22 20 24	<i>perct.</i> 81 80 81 79	perct. 89 87 86 92	perct. 96 97 98 97	in. 42 41 38 35	perct.
5 6 7 8 9	Ill. 1279. Ill. 1559B. Ill. 1575. Ill. 1281. AES 702.	112 112 112 111 111 110	22 23 24 22 23	79 79 78 80 77	93 91 94 92 88	98 99 98 96 99	38 39 42 37 46	•••
10 11 12 13 14	III. 1091A. III. 1375. III. 21 III. 101. III. 1289.	110 109 108 108 108	23 21 23 22 22 22	78 80 78 80 77	83 86 88 91 93	94 97 96 98 97	42 36 48 37 38	•••
15 16 17 18 19	III, 1493. III, 1557. III, 1866. III, 1280. III, 1585.	108 108 108 107 107	$24 \\ 24 \\ 23 \\ 22 \\ 22 \\ 22$	78 78 79 79 79 79	96 94 91 89 84	95 95 96 95 97	39 37 37 37 38	· · · · · · ·
20 21 22 23 24 25	I.S.P. 2. AES 512. Ill. 1560A. Ill. 1862. Ill. 1864. Ill. 1865.	107 106 106 106 106 106	25 21 22 22 22 23	76 81 78 80 80 79	94 91 97 89 91 90	99 98 97 95 97 96	38 38 38 33 34 35	• • • • • • •
23 26 27 28 29 30	Ill. 1595. Ohio K24. Ill. 1558. Ill. 1799. Ill. 1802.	105 105 104 104 104	23 21 23 20 22	78 81 78 81 80	94 89 93 92 91	96 93 96 99 98	42 37 36 38 37	•••
31 32 33 34 35	III. 1290. III. 1579. III. 1800. AES 610. Ohio M15.	103 100 99 98 97	$23 \\ 22 \\ 22 \\ 21 \\ 21 \\ 21$	79 79 79 81 82	87 92 90 87 78	93 97 97 94 97	39 34 35 33 42	
	Average	107 wo-yea	22 r avera	79 ages, 19	90 54-1955	96	38	
1	Ill. 1555A	122	25	79	85	96	44	5
$ \frac{2}{3} 4 5 $	Ill. 1281. Ill. 1861. AES 702. Ill. 1279.	117 116 114 114	25 22 25 25	80 79 78 78	89 79 84 90	98 98 99 97	40 39 49 40	3 3 11 4
	Ill. 1559B. Ill. 1277 Ill. 1375 Ill. 2247W Ill. 1575.	114 112 112 112 112 111	26 25 24 25 27	76 79 79 77 76	88 81 80 83 91	98 96 96 97 97	42 43 38 44 44	4 5 3 3 4
$ \begin{array}{r} 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array} $	Ill. 1863 Ill. 1091A. Ill. 1289. Ill. 1557. Ill. 1864.	110 109 108 108 108	$27 \\ 26 \\ 26 \\ 27 \\ 24$	78 76 75 77 77	89 76 90 92 88	96 93 98 96 95	35 43 40 39 36	3 3 5 5 5
16 17 18 19 20	Ill, 1866 Ill. 101. Ohio K24. I.S.P. 2. AES 512.	108 107 107 107 106	26 25 23 27 24	78 79 80 75 79	88 88 86 92 86	95 97 92 99 98	39 39 37 38 40	2 5 4 3 6
21 22 23 24 25	Ill. 21 Ill. 1493. Ill. 1500A. Ill. 1585. Ill. 1585.	106 106 106 106 106	$26 \\ 27 \\ 24 \\ 24 \\ 24 \\ 27$	76 77 77 78 77	85 95 95 80 91	96 92 96 96 96	48 41 40 40 44	3 3 4 5 2
26 27 28 29 30	III. 1799 III. 1802 III. 1862 III. 1280 III. 1290	106 105 105 104 103	22 24 25 25 26	80 79 79 77 77	88 87 84 84 81	98 96 93 94 93	40 39 33 37 41	- 4 4 3 4
				on next n				

Table 2. — Continued

BULLETIN No. 597

[January,

Tab	le 2.	— C	onc	ludeo	ł
-----	-------	-----	-----	-------	---

Ranl in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	D — Two-yea	r avei	rages, 1	954-1955	(cond	luded)		
31 32 33 34 35 36 37 38 39	AES 510. Ill. 1865. Ill. 1903. Ill. 1558. AES 610. Ill. 1579. Ill. 1800. Ohio M15. Ohio 5305. Average.	$bu. \\ 102 \\ 102 \\ 102 \\ 100 \\ 99 \\ 99 \\ 99 \\ 98 \\ 83 \\ 107$	<i>perct.</i> 22 26 24 25 23 25 25 23 22 25 23 22 25	<i>perct.</i> 79 78 76 80 78 78 78 81 78 78	<i>perct.</i> 90 86 88 89 82 88 84 72 92 86	<i>perct.</i> 94 96 94 95 94 97 96 96 94 96	<i>in.</i> 40 37 41 38 35 35 35 37 44 40 40	perct. 6 5 3 2 3 5 4 4 9 4
	E — 19	955 re	sults (4	replica	tions)			
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\9\\10\\11\\12\\13\\14\\15\\16\\6\\7\\8\\9\\20\\21\\22\\33\\24\\5\\26\\6\\27\\8\\39\\0\\41\\42\\4\\33\\6\\37\\8\\39\\9\\40\\1\\42\\4\\44\\4\\44\\44\\44\\44\\44\\44\\44\\44\\44\\44$	ible crosses ill. 1555A. Ill. 1375 Ill. 1375 Ill. 1375 Ill. 1375 Ill. 1279 Ill. 1279 Ill. 1281 Ohio K24. Minn. 511 AES 702 Ill. 1861 Ill. 1862 Ill. 1862 Ill. 1862 Ill. 1862 Ill. 1559B Ill. 2247W Ill. 1866 I.S.P. 2. Ill. 1866 I.S.P. 2. Ill. 1555 Ill. 1560A. Ill. 1585 Ill. 1585 Ill. 1585 Ill. 1585 Ill. 1685 AES 610 Ill. 1657 Ill. 1800 AES 510 Ill. 1800 AES 510 Ill. 1828 Ill. 1903 Ill. 1937 Ill. 1937 Ill. 1937 Ill. 1903 Ill. 1902A Ohio 5305 Average. gle crosses <tr< td=""><td>107 98 97 95 95 95 92 92 92 92 92 91 91 90 90 90 90 90 90 90 90 90 90 90 90 90</td><td>$\begin{array}{c} 24\\ 23\\ 24\\ 24\\ 23\\ 24\\ 22\\ 24\\ 22\\ 24\\ 25\\ 24\\ 25\\ 24\\ 25\\ 24\\ 25\\ 24\\ 25\\ 24\\ 25\\ 26\\ 24\\ 25\\ 26\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25$</td><td>$\begin{array}{c} 79\\ 79\\ 77\\ 80\\ 77\\ 80\\ 779\\ 78\\ 80\\ 779\\ 78\\ 81\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76$</td><td>74 68 88 84 77 74 69 76 72 82 763 80 77 82 763 80 87 80 87 80 88 80 81 90 78 88 80 81 90 97 88 88 87 90 77 82 77 80 80 87 80 88 80 87 80 80 80 80 80 80 80 80 80 80 80 80 80</td><td>97 97 97 97 97 97 97 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 99</td><td><math display="block">\begin{array}{c} 48 \\ 38 \\ 38 \\ 41 \\ 38 \\ 38 \\ 41 \\ 38 \\ 41 \\ 38 \\ 41 \\ 38 \\ 41 \\ 45 \\ 41 \\ 46 \\ 37 \\ 45 \\ 46 \\ 37 \\ 42 \\ 45 \\ 46 \\ 37 \\ 51 \\ 41 \\ 36 \\ 35 \\ 51 \\ 41 \\ 42 \\ 44 \\</math></td><td>84744552926665483635684862474697106253694353776</td></tr<>	107 98 97 95 95 95 92 92 92 92 92 91 91 90 90 90 90 90 90 90 90 90 90 90 90 90	$\begin{array}{c} 24\\ 23\\ 24\\ 24\\ 23\\ 24\\ 22\\ 24\\ 22\\ 24\\ 25\\ 24\\ 25\\ 24\\ 25\\ 24\\ 25\\ 24\\ 25\\ 24\\ 25\\ 26\\ 24\\ 25\\ 26\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 25\\ 23\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25$	$\begin{array}{c} 79\\ 79\\ 77\\ 80\\ 77\\ 80\\ 779\\ 78\\ 80\\ 779\\ 78\\ 81\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76$	74 68 88 84 77 74 69 76 72 82 763 80 77 82 763 80 87 80 87 80 88 80 81 90 78 88 80 81 90 97 88 88 87 90 77 82 77 80 80 87 80 88 80 87 80 80 80 80 80 80 80 80 80 80 80 80 80	97 97 97 97 97 97 97 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 99	$\begin{array}{c} 48 \\ 38 \\ 38 \\ 41 \\ 38 \\ 38 \\ 41 \\ 38 \\ 41 \\ 38 \\ 41 \\ 38 \\ 41 \\ 45 \\ 41 \\ 46 \\ 37 \\ 45 \\ 46 \\ 37 \\ 42 \\ 45 \\ 46 \\ 37 \\ 51 \\ 41 \\ 36 \\ 35 \\ 51 \\ 41 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 44 \\$	84744552926665483635684862474697106253694353776
	M14×B14 WF9×B14 Hy2×WF9	107 107 100	22 24 25	81 77 77	94 78 55	99 95 98	$\begin{array}{c} 39\\ 46\\ 60 \end{array}$	1 7 13
4 5	WF9×1.205 M14×WF9 Average	97 92 101	26 24 24	78 77 78	94 58 76	99 98 98	41 45 46	10 5 7

1956]

Table 3.— SINGLE AND DOUBLE CROSSES OF ILLINOIS 1277 MATURITY Tested in Northern Illinois, 1955

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Code	e Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears			
	A — Single crosses										
$1 \\ 2 \\ 3 \\ 4 \\ 5$	$\begin{array}{c} R129 \times R159 \\ R129 \times R161 \\ R129 \times R162 \\ R159 \times R162 \\ R159 \times R161 \\ R159 \times R162 \\ \end{array}$	bu. 79 73 90 80 77	<i>perct.</i> 26 24 24 27 27 27	perct. 77 77 77 77 77 78	<i>perct.</i> 76 63 54 73 82	<i>perct.</i> 91 98 94 98 98	in. 46 49 48 47 45	perct. 3 3 0 7 1			
6 7 8 9 10	$\begin{array}{c} R161 \times R162$	85 83 85 95 100	25 24 28 24 27	77 77 79 79 78	50 72 70 64 54	96 89 94 98 96	$51 \\ 50 \\ 47 \\ 56 \\ 54$	5 2 5 5 6			
$11 \\ 12 \\ 13 \\ 14 \\ 15$	$\begin{array}{c} R129 \times R165. \\ R159 \times R165. \\ R161 \times R165. \\ R162 \times R165. \\ R163 \times R165. \\ R163 \times R165. \end{array}$	$79 \\ 80 \\ 90 \\ 88 \\ 94$	26 29 28 29 28	78 78 79 79 79 77	80 84 76 37 68	94 92 93 88 94	$45 \\ 45 \\ 50 \\ 46 \\ 49$	0 1 2 0 1			
16 17 18 19 20	$\begin{array}{c} R129 \times R166. \\ R159 \times R166. \\ R161 \times R166. \\ R162 \times R166. \\ R163 \times R166. \\ R163 \times R166. \end{array}$	91 88 90 90 93	26 28 27 26 25	80 81 80 80 81	84 80 68 66 77	98 96 97 91 92	47 42 49 45 46	0 4 4 1 1			
21 22 23 24 25	$\begin{array}{c} R165 \times R166. \\ R129 \times R168. \\ R159 \times R168. \\ R161 \times R168. \\ R162 \times R168. \\ R162 \times R168. \\ \end{array}$	98 98 92 88 104	29 26 28 25 26	81 78 77 80 80	69 88 97 79 80	99 100 97 96 99	47 49 46 50 46	1 3 1 4 0			
26 27 28 29 30	$\begin{array}{c} R163 \times R168. \\ R165 \times R168. \\ R166 \times R168. \\ R129 \times R169. \\ R159 \times R169. \end{array}$	97 110 102 97 95	27 30 26 27 29	80 80 81 80 79	88 83 86 64 79	84 96 98 98 98	$50 \\ 48 \\ 46 \\ 51 \\ 51$	4 3 0 1 1			
31 32 33 34 35	$\begin{array}{c} R161 \times R169. \\ R162 \times R169. \\ R163 \times R169. \\ R165 \times R169. \\ R165 \times R169. \\ R166 \times R169. \\ \end{array}$	109 102	28 26 28 27 29	81 82 80 81 81	82 52 67 58 66	98 96 92 89 94	$55 \\ 51 \\ 52 \\ 49 \\ 48$	1 1 1 2			
36 37 38 39 40	R168×R169. R129×R170. R159×R170. R161×R170. R162×R170.	108 77 70 68 66	$28 \\ 24 \\ 23 \\ 23 \\ 24 \\ 24$	78 77 78 78 77	$71 \\ 52 \\ 45 \\ 63 \\ 29$	98 95 92 88 96	50 49 50 52 49	1 2 1 6 6			
41 42 43 44 45 49	R163 × R170. R165 × R170. R166 × R170. R168 × R170. R169 × R170. M14 × WF9. Average.	87 58 81 103 96 89 90	$24 \\ 23 \\ 24 \\ 24 \\ 25 \\ 23 \\ 26$	75 79 78 80 77 79	$46 \\ 29 \\ 55 \\ 61 \\ 41 \\ 65 \\ 66$	96 86 96 97 95 93 95	$52 \\ 48 \\ 49 \\ 53 \\ 53 \\ 46 \\ 49$	5 4 5 6 5 2			
		B — I	ouble	crosses							
48 46 47	AES 702. III. 1277. III. 1575. Average.	96 94 90 93	$24 \\ 24 \\ 26 \\ 25$	77 79 76 77	77 71 77 75	96 97 96 96	57 49 50 52	26 6 3 12			

[January,

from the best performance for that characteristic) Mois-Rank Acre Erect Ear in yield Entry ture in grain Shelling Stand yield plants height A - Five-year averages, 1951-1955 perct. bu. perct. perct. perct. in. Ill. 972A-1..... $\frac{1}{2}$ Ill. 1332.... $\overline{20}$ $\tilde{92}$ $\tilde{3}$ Ill. 1511. Ill. 1617. $\overline{21}$ **9**4 $\hat{45}$ $\tilde{4}$ $\overline{5}$ Ill. 274-1.... $2\overline{0}$ $\overline{22}$ Ill. 1570. $\tilde{7}$ Ill. 1555A..... Ill. 1575..... 97 Ill. 1760..... Ill. 1280..... 77 81 III. 1277 AES 805. Ill. 1560A. $\overline{22}$ 6 $\frac{12}{13}$ Ill. 1290.. AES 702.. $\frac{14}{15}$ Iowa 4297..... $\overline{20}$ $\tilde{93}$ Average..... B - Four-year averages, 1952-1955 95 97 $\frac{19}{22}$ Ill. 1819.... $\frac{2}{3}$ Ill. 972A-1..... $\tilde{20}$ 81 Ill. 1332..... $\tilde{2}0$ 3 <u>98</u> Ill. 274-1..... Ill. 1511..... $\tilde{2}\tilde{1}$ 7 Ill. 1617..... $\ddot{78}$ Ill. 1570. Ill. 1555A. ğ Ill. 1814..... Ill. 1831..... 22 IB. 1575. Ill. 1760. Ill. 1826. 111. 6 Ill. 1280 Ill. 1560A..... 18 19 20 Ill. 1813..... AES 805..... Ill. 1290..... $\tilde{23}$ $\overline{22}$ $\ddot{76}$ AES 702. $\bar{78}$ Average.....

Table 4. — DOUBLE CROSSES OF ILLINOIS 21 MATURITY Tested in North-Central Illinois, 1951-1955

(Data in boldface were not statistically different

(Table is continued on next page)

1956]

Table 4. — Continued

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	$\mathop{\mathrm{Ear}}_{\mathrm{height}}$	Dropped ears			
	C — TI	nree-ye	ar aver	ages, 19	953-1955	5					
$1 \\ 2 \\ 3 \\ 4 \\ 5$	Ill. 1332. Ill. 274-1. Ill. 972A-1. Ill. 1819. Ill. 1875.	85 85	<i>perct.</i> 20 20 22 19 21	perct. 81 81 79 80 79	perct. 90 92 87 89 93	perct. 96 97 94 96 92	in. 41 40 42 37 43	perct.			
6 7 8 9 10 11	Ill. 1570. Ill. 1555A Ill. 1617. Ill. 1831. Ill. 1814.		21 18 22 22 21 21	78 82 78 80 81 79	85 91 87 94 91 94	97 97 94 95 84 96	42 36 40 34 41 35	•••			
12 13 14 15 16	Ill. 1868 Ill. 2247 W Ill. 1575 Ill. 1760 Ill. 1280	80 80 79 79 79	21 20 21 22 18	79 79 79 77 81	94 84 91 92 87	94 96 98 94 95	38 39 36 38 33	••• ••• •••			
17 18 19 20 21 22	Ill. 1826. Ill. 1277. Ill. 1560A. Ill. 1813. Ill. 1863. AES 702.	77 77 77 76 74	22 20 18 23 20 20	80 83 81 78 81 79	92 89 95 94 95 89	97 96 96 97 94 95	32 36 34 39 33 38	· · · · · · · · · · · · · · · · · · ·			
23 24 25 26 27	Ill. 1864. Ill. 1873. Ill. 1290. AES 805. Iowa 4297.	74 74 73 72 67	18 20 19 22 20	80 78 81 76 79	93 95 90 94 92	96 94 93 90 90	32 33 35 38 36	· · · · · · ·			
	Average										
1 2 3 4 5 6 7 8 9	AES 806. Ill. 1332. Ill. 274-1. Ill. 972A-1. Ill. 1912. Ill. 1919. Ill. 1919. Ill. 1913. Ill. 1916. Ill. 1917.		24 22 25 23 22 23 22 22 22 22 22	78 80 78 80 79 80 80 79	89 89 90 88 88 90 84 81 84	99 100 99 98 96 98 96 98 96 97 93	36 38 39 40 38 39 39 39 39 38	3 2 2 2 2 2 2 2 2 0			
10 11 12 13 14 15	Ill. 1511. Ill. 1617. Ill. 1819. Ill. 1875. Ill. 1555A. Ill. 1555A. Ill. 1570.	83 83 83 83 82 82 82	23 25 22 24 20 24	79 76 78 78 78 81 77	91 86 88 93 92 85	96 95 98 96 98 98	$ \begin{array}{r} 40 \\ 37 \\ 36 \\ 40 \\ 36 \\ 40 \\ 40 \end{array} $	8 2 5 6 3 1			
16 17 18 19 20	III. 1905. III. 1918. III. 1908. III. 1908. III. 1910. III. 1915. III. 1915.	80 80 80	23 24 21 21 22	75 79 79 81 78	87 88 86 83 88	98 96 98 98 98	39 39 38 39 38	3 3 1 1 4			
21 22 23 24 25	Ill. 1814. Ill. 1909. Ill. 1914. Ill. 1906. Ill. 2247W. Ill. 2247W.	79 78 78	24 22 24 24 22	77 79 77 77 78	92 84 91 86 84	97 97 99 98 98	35 39 39 39 39 37	2 5 4 4 4			
26 27 28 29 30	Ill. 1280. Ill. 1760. Ill. 1831. Ill. 1831. Ill. 1868. Ill. 1575. Ol. 2007.	77 77 77 76	21 25 25 24 25	79 76 79 78 77	88 92 94 94 92	97 99 98 95 98	31 36 33 37 36	4 3 3 4 4			
31 32 33 34 35	Ohio 3247 Ill. 1826 Ill. 1904 Ill. 6021 Ill. 1903	75	21 25 22 25 21	80 79 77 76 78	88 92 75 74 95	98 98 97 97 94	31 31 40 46 34	4 3 3 4 2			

(Table is concluded on next page)

BULLETIN No. 597

[January,

	Table 4. — Concluded								
Ranl in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	
	D - Two	-year av	erages, 1	954-1955	(conc	luded)			
$36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44$	Ill. 1277 . Ill. 1560A . Ill. 1813 . Ill. 1863 . Ill. 1290 . Ill. 1290 . Ill. 1863 . Ill. 1864 . Ill. 1864 . Ill. 1873 .	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	<i>perct.</i> 22 20 26 24 21 26 23 21 23	perct. 81 79 76 79 80 77 77 77 79 75	perct. 89 94 93 94 88 89 92 90 95	perct. 97 98 95 97 94 96 100 98	in. 36 35 38 33 34 41 37 30 32	percl. 1 3 3 4 3 3 3 5	
45 46	III. 1873. AES 805. Iowa 4297.	64	24 23 23	74 76 78	94 89 89	95 97 97	36 34 37	3 5 3	
	Average					97	37	3	
		— 1955 r							
1 2 3 4 5	Ill. 1332. Ill. 1916. Ill. 1917. Ill. 274-1. Ill. 1909.		25 24 24 24 24 24	78 78 77 78 78 78	92 95 92 95 92	99 94 90 99 99	33 32 33 35 34	1 1 0 0 5	
6 7 8 9 10	AES 806 Ind. 4656 Ill. 1280. Ill. 1555A. Ill. 1913	68 67 67	26 24 22 21 24	77 78 79 80 78	90 94 97 95 95	98 98 95 99 95	$32 \\ 29 \\ 29 \\ 29 \\ 29 \\ 34$	5 1 1 2 1	
$11 \\ 12 \\ 13 \\ 14 \\ 15$	Ill. 1919. Ill. 972A-1. Ill. 1912. Ill. 1863. Ill. 1875.	66 66 64	24 27 24 25 26	78 76 78 78 76	94 90 97 98 95	98 96 95 92 92	33 33 33 28 34	1 1 2 3	
16 17 18 19 20	Ill. 1760. Ill. 1831. Ill. 1910. Ill. 2247W. Ill. 1617.	63 63 63	27 26 23 24 30	75 77 80 76 74	97 96 94 91 87	99 97 96 97 90	31 28 33 32 32	2 1 0 4 3	
21 22 23 24 25	Ill. 1814. Ill. 1826. Ill. 1903. Ill. 1868. Ohio 3247.	62 62 61	26 28 22 26 21	74 78 77 76 77	99 95 99 95 96	94 96 91 92 97	31 26 28 32 27	1 3 2 5 5	
26 27 28 29 30	Ill. 1511 Ill. 1908 Ill. 1914 Ill. 1915 Ill. 1918	60 60 60	25 23 26 23 25	77 77 75 77 76	96 96 98 90 94	95 96 99 97 95	33 32 32 33 34	1 0 3 3 3	
$31 \\ 32 \\ 33 \\ 34 \\ 35$	Ill. 1570 Ill. 1819 Ill. 1813 Ill. 1905. AES 702	59 58 58	26 22 27 24 24	74 77 75 73 76	93 98 96 92 97	98 96 98 97 95	34 29 33 32 34	1 3 3 2 5	
36 37 38 39 40	Ill. 1560A Ill. 1575 Ill. 1873. Ill. 1864. Ill. 21	57 57 57 57 57 56	21 27 24 23 26	78 76 74 76 76	98 92 98 92 92 96	95 98 96 100 100	30 30 27 25 32	0 5 2 3 4	
41 42 43 44 45	Ill. 1906. Ill. 1907. Iowa 4297. Ill. 1277. Ill. 1904.	$ 54 \\ 54 \\ 54 \\ 53 \\ 53 $	$26 \\ 25 \\ 24 \\ 24 \\ 22 \\ 22 \\ 22 \\ 31 \\ 32 \\ 32 \\ 31 \\ 32 \\ 31 \\ 32 \\ 31 \\ 31$	76 77 72 80 75	96 93 93 93 90	97 96 96 96 96	33 31 31 32 33	3 0 3 2 4	
46 47 48 49	Ill. 1290 Ill. 6021 AES 805. Ill. 1911 Average.	52 51 51 51	23 27 26 32 25	79 74 72 74 76	96 85 97 98 94	96 95 95 91 96	29 40 30 36 32	5 3 3 2 2	

Table 4. — Concluded

1956]

Table 5.— THREE-WAY AND DOUBLE CROSSES OF ILLINOIS 21 MATURITY Tested in North-Central Illinois, 1955

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Cod	e Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	A — Inbred	lines	crossed	with ((B14×V	VF9)		
1 2 3 4 5	B39. B40. B35. Oh460. Oh480.	bu. 63 72 59 56 68	perct. 24 27 23 21 23	perct. 75 75 78 75 78	perct. 99 98 99 93 93 98	perct. 96 98 98 95 99	in. 30 34 30 23 32	perct. 1 1 0 3
6 7 8 9 10	Oh481	84 56	24 23 25 20 24	76 80 79 78 77	99 97 99 95 99	96 99 99 93 96	30 30 31 30 28	3 1 2 6 1
11 12 13 14 15	N6/HG 91310-2 N6/HG 91311-4 N6/HG 91313-4 N6/HG 91336-5 Oh45	61 68	24 28 27 24 26	74 74 78 78 78	100 99 98 99 98	98 97 97 96 96	27 29 33 31 26	2 3 5 1 2
16 17 18	Oh43 Oh28 B37 Average	68 67 57 65	24 22 22 24	78 77 75 77	99 97 99 98	99 97 99 97	25 30 30 29	2 0 2 2
_	B — Inbred 1	ines o	crossed	with (O	Oh28 imes 0	Oh43)		
19 20 21 22 23	B40 B35 Oh460. N9206. K1603-1-3		29 24 23 23 26	76 81 75 79 75	99 99 96 98 98	100 98 96 97 96	33 27 20 28 30	1 0 1 3 1
$24 \\ 25 \\ 26 \\ 27 \\ 28$	N32 N6 N6/HG 91310-2. N6/HG 91311-4. N6/HG 91313-4	$58 \\ 64 \\ 69 \\ 61 \\ 65$	23 24 26 28 26	80 76 77 74 78	92 97 97 98 96	96 97 99 95 96	27 23 25 28 30	1 0 4 0 3
29 30 31	N6/HG 91336-5 B14. WF9. Average.	$ \begin{array}{r} 64 \\ 58 \\ 65 \\ 65 \\ \end{array} $	26 29 24 25	80 75 78 77	97 100 99 97	97 97 98 97	26 28 26 27	1 2 0 1
		C — I	Double of	rosses				
45 32 35 39 40	Ill. 1933. (WF9×B14)(Oh28×Oh43) Ill. 1922. Ill. 1926. Ill. 1927.		25 24 27 24 25	76 78 75 75 73	98 99 98 100 99	97 95 96 99 96	31 28 35 32 32	2 1 1 2 5
$34 \\ 48 \\ 42 \\ 38 \\ 46$	Ill. 1921		27 22 27 24 25	75 78 76 76 74	98 97 98 99 97	99 97 96 94 95	$33 \\ 31 \\ 34 \\ 34 \\ 35$	0 2 0 5
41 33 49 44 47	III. 1928	$59 \\ 59$	$27 \\ 25 \\ 26 \\ 25 \\ 25 \\ 25 \\ 25$	75 75 76 75 76	99 97 97 99 97	98 99 98 96 94	$35 \\ 33 \\ 35 \\ 36 \\ 31$	2 1 4 3 3
37 36 43	Ill. 1924 Ill. 1923 Ill. 1931 Average	57 54 49 60	$22 \\ 22 \\ 25 \\ 25 \\ 25$	75 74 73 75	96 99 99 98	96 98 96 97	30 31 33 33	2 2 1 2

[January,

Table 6. — DOUBLE CROSSES OF U. S. 13 MATURITY Tested in Central Illinois, 1951-1955

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height
	A — Five-year	avera	ges, 195	51-1955			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	Ill, 1421. Ill, 1511. Ill, 972A-1. Ill, 1332. Ill, 1332. Ill, 1377.	. 92 . 92	perct. 17 16 16 16	perct. 83 83 80 82 81	perct. 77 76 76 81 74	perct. 98 99 99 99 97 99	in. 44 48 47 46 46
$8\\9\\10$	Ill. 1788. Ill. 1759. U.S. 13. Ill. 274-1. Ill. 1570.	. 89 . 89 . 88 . 88	18 18 17 16 18	79 80 81 83 81	$71 \\ 73 \\ 69 \\ 74 \\ 71$	98 98 98 98 99	48 46 51 46 47
$\frac{12}{13}$	III. 1764. AES 805. III. 1767. III. 21. Average.	. 86 . 86 . 85	17 18 18 17 17	79 81 81 83 81	74 84 70 72 75	99 97 99 98 98	48 44 45 47 47
	B — Four-year	avera	ges, 19	52-1955			
$2 \\ 3 \\ 4$	III. 1421. III. 972A-1 III. 1332. III. 1511. AES 801.	. 92	17 16 15 17 17	83 80 82 83 80	75 75 82 76 84	98 98 97 99 96	$ \begin{array}{r} 44 \\ 47 \\ 46 \\ 48 \\ 41 \end{array} $
7 8 9 10	Ill. 1777. Ill. 274-1 Ill. 1570. Ill. 1570. Ill. 1788. Ohio 4808.	. 89 . 88 . 88 . 88	17 16 17 17 17	81 83 81 79 81	76 75 75 70 74	99 97 99 98 98	46 46 48 48 41
$12 \\ 13 \\ 14 \\ 15$	U.S. 13. AES 802. Ill. 1759. Ill. 21. Ill. 7767.	87 87 85 85	16 16 17 16 17	81 80 83 81	72 79 72 76 75	97 90 98 98 98 99	$51 \\ 44 \\ 46 \\ 47 \\ 45$
17	AES 803. Ill. 1764. AES 805. Average.	. 83 . 80	17 17 17 17	81 79 81 81	80 75 85 76	96 98 96 97	42 48 43 46
	C — Three-year	avera	iges, 19	53-1955			
$2 \\ 3 \\ 4$	Ill. 1421 Ill. 1332. Ill. 1511. Ill. 1896. Ill. 972A-1	. 89 . 89 . 88	17 15 17 16 16	84 83 83 83 80	67 76 70 70 67	97 96 98 98 98	43 46 48 43 47
$\begin{array}{c} 7\\8\\9\\10\end{array}$	III. 1777. III. 1570. U.S. 13. III. 1788. III. 274-1.	86 85 84 83	17 17 16 17 16	82 82 80 83		99 98 97 98 97	46 48 50 47 46 4
$12 \\ 13 \\ 14 \\ 15$	III, 1813. Ohio 4808. AES 801. AES 802. III. 1767.	83 82 82 81	18 16 16 16 17	81 82 79 81 81	75 66 79 74 68	97 98 95 90 99	43 40 41 44 45
17 18 19	III, 21 III, 1759. III, 1880. III, 1890. AES 803.	79 79 79	16 17 15 17 17	83 80 82 80 81	69 64 71 79 74	97 98 95 98 95	48 46 42 43 41

(Table is continued on next page)

Tabl	le i	6	Con	tinu	ha
rap		0	COL	uuu	uu

Ranl in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	C — Three-year	r ave	rages,	1953-1955	(con	cluded)		
$21 \\ 22 \\ 23 \\ 24$	Ill. 1764. AES 805. Ill. 1884. Ill. 1877.	bu. 76 74 73 72	<i>perct.</i> 16 17 16 16 16	perct, 79 81 78 80	perct. 68 81 79 82	perct. 98 95 96 98	in. 48 43 45 40	<i>perct.</i>
25 26 27	III. 1889 III. 6075 III. 1876	71 70 69	18 16 16	78 83 79	83 50 73	98 97 96	45 42 44	
	Average	81	17	81	71	97	45	
	D - Tw	70-yea	ar aver	ages, 195	54-1955	i i		
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	Ill. 1919.	97	17	84	63	96	43	1
	Ill. 1913.	94	17	85	61	96	42	5
	Ill. 1511.	93	18	84	63	98	46	10
	AES 806.	92	19	84	59	98	40	9
	Ill. 1909.	92	17	84	63	98	46	7
6	Ill. 972A-1	91	17	79	65	98	$45 \\ 43 \\ 41 \\ 44 \\ 43$	6
7	Ill. 1332.	91	17	84	71	95		4
8	Ill. 1421.	91	18	84	66	96		3
9	Ill. 1918.	91	17	81	59	97		5
10	Ill. 1918.	90	18	82	64	99		5
$ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array} $	U.S. 13.	90	17	83	63	96	48	11
	Ill. 1896.	89	17	84	68	98	41	9
	Ill. 1911.	88	18	83	64	95	47	6
	Ill. 1915.	88	17	82	61	97	44	4
	Ill. 1916.	88	17	84	62	96	43	5
16	Ill. 274-1.	87	17	83	62	95	44	2
17	Ill. 1570.	87	19	82	67	98	44	13
18	Ill. 1788.	87	18	80	62	97	43	5
19	Ill. 1908.	87	17	85	62	95	44	5
20	AES 807W.	86	20	82	69	98	41	4
$21 \\ 22 \\ 23 \\ 24 \\ 25$	Ill. 1906.	86	17	81	57	96	41	7
	Ind. 2609.	86	16	83	61	97	40	4
	AES 801.	85	17	79	75	96	39	3
	Ill. 1914.	85	18	81	57	98	44	3
	Ill. 1813.	83	19	81	69	99	42	10
26	Ill. 1905	83	17	79	66	97	43	8
27	Ill. 1912	83	17	83	64	95	41	4
28	Ill. 1767	82	18	81	65	99	43	7
29	Ill. 1917	82	17	82	54	96	42	3
30	AES 802	81	17	80	71	87	43	8
$31 \\ 32 \\ 33 \\ 34 \\ 35$	Ill. 21.	81	17	84	66	98	46	9
	Ill. 1910.	81	17	84	61	99	43	5
	Ill. 6021.	81	18	80	54	96	52	6
	Ohio 4808.	81	18	82	55	98	39	2
	Ill. 1759.	80	18	81	61	98	44	6
$36 \\ 37 \\ 38 \\ 39 \\ 40$	AES 803.	79	18	81	70	96	41	6
	Ill. 1880.	79	16	83	65	96	40	6
	Ill. 1890.	78	18	80	76	97	42	7
	Ill. 1904.	76	17	80	55	93	44	4
	Ill. 1764.	75	17	79	64	97	47	4
$\begin{array}{r} 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \end{array}$	AES 805. 111. 6075. 111. 1884. 111. 1876. 111. 1877. 111. 1889.	72 72 70 67 67 67	18 17 17 18 18 19	82 84 77 79 80 77	79 43 75 68 77 79	93 99 96 94 98 97	41 43 41 39 41	6 5 10 7 7 4
	Average	83	17	82	63	97	43	6

(Table is concluded on next page)

BULLETIN No. 597

[January,

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	E — 1	955 res	sults (4	replica	tions)			
Dot 1 2 3 4 5	uble crosses III. 1919. III. 274-1. III. 1909. III. 972A-1. III. 1421.	. 99 . 99 . 98	perct. 17 17 17 16 17	perct. 84 85 86 82 86	perct. 36 29 36 49 44	perct. 96 91 96 98 93	in. 48 51 51 50 45	perct. 2 3 11 12 4
$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array} $	III. 1880. AES 806. Ohio 4808. III. 1332. III. 1767.	. 94 . 94 . 93	16 18 17 16 17	84 84 84 84 81	43 32 19 53 43	95 98 98 93 100	44 46 44 46 46	7 11 3 8 11
$11 \\ 12 \\ 13 \\ 14 \\ 15$	Ill. 1813 Ill. 1913. Ill. 1916. Ill. 1918. Ill. 1918. Ill. 1905.	. 93 . 93 . 93	19 16 16 17 17	82 85 85 83 81	47 29 36 31 42	99 98 97 94 95	49 46 47 49 49	17 6 8 6 13
$16 \\ 17 \\ 18 \\ 19 \\ 20$	AES 803. III. 1788. III. 1915. III. 1912. III. 1889.	. 91 . 91 . 90	18 18 16 16 18	83 81 84 85 80	47 37 33 35 58	93 96 97 94 98	47 49 50 46 47	7 6 7 5 7
21 22 23 24 25	AES 807W Ill. 1907. U.S. 13. AES 801. Ill. 1511.	. 88 . 88 . 87	20 17 17 17 17 17	84 82 83 82 84	42 40 39 56 40	98 98 95 96 98	48 50 54 45 49	8 6 18 5 15
26 27 28 29 30	Ill. 1777 Ill. 1906. Ill. 1908. AES 802. AES 805	. 87 . 87 . 85	17 17 16 17 17	83 81 85 83 84	38 36 27 46 61	98 97 98 94 97	47 46 49 48 48	8 7 8 11 12
31 32 33 34 35	Ill. 1759 Ill. 1884. Ill. 1890. Ill. 1902A. Ill. 1910	. 85 . 85 . 85	18 16 17 16 17	84 82 82 85 84	39 56 58 28 33	99 95 94 98 99	50 49 46 46 49	10 13 14 7 6
36 37 38 39 40	Ill. 1917 Ill. 1570. Ill. 1764. Ill. 1767. Ill. 1917.	. 84 . 84 . 84	17 18 18 16 17	83 83 81 85 82	33 49 38 54 26	96 98 99 98 98	47 49 53 44 49	5 16 7 6 5
41 42 43 44 45	Ind. 2609. Ill. 1876. Ill. 1911. Ill. 21. Ill. 21. Ill. 1896.	82 82 81	16 16 18 16 16	85 84 84 85 84	39 44 39 36 47	95 94 92 97 99	43 45 53 50 44	5 10 7 10 8
46 47 48	Ill, 6021. Ill, 1904. Ill, 6075. Average.	73 73	18 17 16 17	80 82 85 83	34 22 16 39	99 92 99 96	59 50 47 48	8 5 3 8
Sin	gle cross	112	16	95	27	07	51	4

Hy2×Oh7..... 113

Table 6. — Concluded

1956]

Table 7. — SINGLE AND DOUBLE CROSSES OF U. S. 13 MATURITY Tested in Central Illinois, 1955

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Cod	e Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears					
	A — Single crosses												
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
6 7 8 9 10	$\begin{array}{c} R161 \times R162. \\ R129 \times R163 \\ R159 \times R163 \\ R161 \times R163 \\ R162 \times R163 \\ \end{array}$	53 86 96 90 70	18 16 16 16 18	84 82 83 85 82	$15 \\ 24 \\ 38 \\ 13 \\ 25$	96 95 97 98 95	48 46 49 49 50	1 0 1 0 1					
$11 \\ 12 \\ 13 \\ 14 \\ 15$	$\begin{array}{l} R129 \times R165. \\ R159 \times R165. \\ R161 \times R165. \\ R162 \times R165. \\ R163 \times R165. \\ R163 \times R165. \end{array}$	79	16 16 17 19 17	83 86 84 82 81	30 48 7 7 20	95 94 89 95 97	39 45 42 43 46	0 1 0 0 2					
16 17 18 19 20	$\begin{array}{c} R129 \times R166. \\ R159 \times R166. \\ R161 \times R166. \\ R162 \times R166. \\ R163 \times R166. \\ R163 \times R166. \end{array}$	80 83 52	$16 \\ 16 \\ 16 \\ 18 \\ 16 \\ 16 \\ 16 \\ 16 \\ $	85 87 87 82 84	$ \begin{array}{r} 16 \\ 16 \\ 3 \\ 3 \\ 9 \end{array} $	99 95 97 95 98	43 41 48 41 41	0 0 1 0					
21 22 23 24 25	$\begin{array}{c} R165 \times R166. \\ R129 \times R168. \\ R159 \times R168. \\ R161 \times R168. \\ R162 \times R168. \\ R162 \times R168. \end{array}$	90	16 16 16 16 17	85 82 83 86 84	7 50 58 15 38	95 98 98 97 99	41 40 44 43 44	0 0 2 0 0					
26 27 28 29 30	$\begin{array}{c} R163 \times R168. \\ R165 \times R168. \\ R166 \times R168. \\ R129 \times R169. \\ R129 \times R169. \\ \end{array}$	107 91 88 84 89	16 17 17 18 18	84 83 85 85 85	56 32 14 17 32	99 98 96 94 98	44 43 42 46 49	2 0 0 1 1					
31 32 33 34 35	R161×R169. R162×R169. R163×R169. R165×R169. R166×R169.	66 97 86	16 18 17 17 17	89 87 84 85 82	$9 \\ 13 \\ 25 \\ 7 \\ 4$	98 97 93 95 98	$46 \\ 50 \\ 54 \\ 48 \\ 46$	1 0 1 0 0					
36 37 38 39 40	R168×R169. R129×R170. R159×R170. R161×R170. R161×R170.	48 67 56	18 17 16 16 19	83 81 83 82 77	$26 \\ 1 \\ 12 \\ 3 \\ 1$	98 94 96 96 91	46 45 45 46 46	0 1 0 1 1					
$\begin{array}{c} 41 \\ 42 \\ 43 \\ 44 \\ 45 \end{array}$	$\begin{array}{c} R163 \times R170 . \\ R165 \times R170 . \\ R166 \times R170 . \\ R168 \times R170 . \\ R168 \times R170 . \\ R169 \times R170 . \\ Average . \end{array}$	18 69 94 50	18 17 17 17 18 17	80 83 82 84 82 84	$11 \\ 2 \\ 30 \\ 5 \\ 19$	95 90 94 96 95 96	51 42 41 45 47 45	2 0 0 0 0 1					
		в — Г	Double	crosses									
46 47 48 49	Ill. 1332. Ill. 1570. Ill. 1813. U.S. 13. Average.	90 88 86	16 16 18 17 17	84 82 82 83 83	52 44 69 38 51	96 96 98 98 98	48 47 47 49 48	1 5 5 1 3					

Bulletin No. 597

[January,

Table 8. — THREE-WAY AND DOUBLE CROSSES OF U. S. 13 MATURITY Tested in Central Illinois, 1955

(Data in **boldface** were not statistically different from the best performance for that characteristic)

A — Inbre	<i>bu.</i> 108 94 95	perct. 20	with (plants WF9× perct.	Hy)	height	ears
0 1. 2.	<i>bu.</i> 108 94 95	perct. 20			/		
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 108 \\ $	20	perct.	marct			
		19 18 17 21	80 82 81 81 81	72 82 70 87 42	perct. 98 98 97 97 97 98	in. 51 46 48 42 48	<i>perct.</i> 8 12 7 7 15
9B 7	98 99 116	18 19 19 19 19	81 79 82 84 82	62 63 69 80 72	93 98 98 99 98	$47 \\ 54 \\ 49 \\ 47 \\ 45$	7 14 7 3 8
7	$\ldots 104\\\ldots 104$	18 19 19 19	82 79 82 81	37 53 58 65	98 96 98 97	$51 \\ 57 \\ 46 \\ 49$	2 12 5 8
B — Inbree	d lines (crossed	with (V	VF9 imes	38-11)		
$egin{array}{cccccccccccccccccccccccccccccccccccc$	81 85 85	19 19 17 18 21	81 82 82 82 82 81	85 84 78 94 55	89 98 97 99 83	47 39 43 39 48	6 18 3 5 22
9B	89 86 95	18 18 19 18	82 81 84 82 83	73 80 75 71 84	81 95 96 99 94	46 49 46 45 42	5 7 8 0 3
7	$\begin{array}{ccc} & 90 \\ \dots & 77 \end{array}$	18 19 18 18	81 79 82 82	73 57 64 75	93 92 90 93	$50 \\ 58 \\ 52 \\ 46$	2 15 6 8
	C — 1	Double (crosses				
1921 1922 1926	105 102 100	19 20 21 19 19	80 80 81 81 81	83 78 84 79 80	97 99 94 98 95	$51 \\ 48 \\ 52 \\ 49 \\ 51$	11 4 8 9 5
1925. 1924. 1933.	96 94 93	18 19 18 20 20	83 81 83 81 80	76 74 75 76 79	94 99 98 94 98	$46 \\ 48 \\ 46 \\ 51 \\ 55$	10 6 6 7 2
1923 13 1931	90 89 88	$20 \\ 18 \\ 19 \\ 18 \\ 19 \\ 18 \\ 19$	80 81 78 80 81	70 78 64 66 76	97 99 94 95 96	52 46 57 51 50	6 12 11 4 7
	9 4 7. 1. verage. B — Inbrea 0. 1. 2. 9B. 7. 9 4. 7. 9 4. 7. 9 4. 7. 9 4. 7. 9 4. 7. 9 4. 7. 9 9 4. 7. 9 9 4. 7. 9 9 1. 9 9 9 9 9 9 9 9 9 9 9 9 9	9	9	9.	9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1956]

Table 9. — BLIGHT-RESISTANT THREE-WAY CROSSES AND STANDARDS OF U. S. 13 MATURITY Tested in Central Illinois, 1955

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Cod	e Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	A — Inbred 1	ines o	rossed	with (3	3 8-11 ×3	K 2 01)		
12 13 14 15 16	Hy CI.42A. CI.42B. CI.42C. (Hy×L97)-B-#3-SI-1	93 83 92	<i>perct.</i> 19 21 20 19 22	perct. 83 83 84 84 84 80	<i>perct.</i> 79 63 57 62 59	perct. 97 94 96 96 98	in. 49 51 55 55 54	perct. 7 8 7 3 2
17 18 19 20 21	$\begin{array}{l} (Hy \times L97) \hbox{-} B - \#3 \hbox{-} S1 \hbox{-} 2, \\ (Hy \times L97) \hbox{-} B - \#3 \hbox{-} S1 \hbox{-} 3, \\ (Hy \times L97) \hbox{-} B - \#3 \hbox{-} S1 \hbox{-} 3, \\ (Hy \times L97) \hbox{-} B - \#3 \hbox{-} S4 \hbox{-} 1, \\ (Hy \times L97) \hbox{-} B - \#3 \hbox{-} S4 \hbox{-} 2, \\ (Hy \times L97) \hbox{-} B - \#3 \hbox{-} S4 \hbox{-} 2, \\ \end{array}$	66 80	20 19 20 18 18	80 81 78 80 82	77 64 81 79 68	96 94 97 94 98	55 54 58 55 50	9 5 6 21 12
$22 \\ 23 \\ 24 \\ 25 \\ 26$	$\begin{array}{l} (Hy \times L97) \text{-}B \text{-}\#3\text{-}S5\text{-}1.\\ \text{Oh07}, \\ (Oh07 \times L97) \text{-}B \text{-}\#3\text{-}S2\text{-}1.\\ (Oh07 \times L97) \text{-}B \text{-}\#3\text{-}S4\text{-}1.\\ (Oh07 \times L97) \text{-}B \text{-}\#3\text{-}S6\text{-}1. \end{array}$	$ 111 \\ 111 \\ 111 \\ 111 $	20 18 19 19 19	81 84 82 82 81	74 53 71 63 77	96 89 97 95 92	57 54 54 62 53	7 4 8 5 7
27 28 29 30 31	$\begin{array}{l} ({\rm Oh07} \times {\rm L97}) {\rm -B} {\rm +} 3 {\rm -} 86 {\rm -} 2 {\rm .} $	101 88	21 20 20 21 20	81 81 85 82 83	72 65 76 78 78	97 94 95 94 95		7 10 13 11 8
32 33	(Oh07×L97)-B-#3-S10-2 (Oh07×L97)-B-#3-S10-3 Average	99	20 19 22	81 83 82	68 69 70	97 96 95	50 60 56	7 9 8
		B — S	Single c	rosses				
$\begin{array}{c} 34\\ 35\end{array}$	38-11×K201 Hy2×Oh07 Average	113	19 17 18	83 83 83	67 49 58	82 99 90	55 50 52	17 2 10

BULLETIN No. 597

[January,

Table 10. — SINGLE AND DOUBLE CROSSES OF U. S. 13 MATURITY Tested in Central Illinois, 1955

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Cod	e Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
		A — 8	Single o	rosses				
$1 \\ 2 \\ 3 \\ 4 \\ 5$	R71×R74. R71×R101. R71×R105. R74×R101. R74×R105.	bu. 85 100 98 82 79	perct. 19 17 19 17 17	perct. 84 84 82 80 83	<i>perct.</i> 77 73 89 80 72	perct. 96 97 98 95 96	in. 41 43 47 43 46	<i>perct.</i> 6 1 4 1 10
6 7 8 9 10	$\begin{array}{l} R101 \times R105. \\ R71 \times R129 \\ R74 \times R129 \\ R101 \times R129 \\ R105 \times R129 \\ R105 \times R129 \\ \end{array}$	70 84 98 93 92	16 18 17 17 17	82 82 82 82 82 84	80 80 21 72 71	94 94 97 88 88	47 43 43 45 48	1 4 2 1 6
$11 \\ 12 \\ 13 \\ 14 \\ 15$	$\begin{array}{c} R71 \times R163$	103 94 101 100 84	18 17 16 18 17	82 81 82 84 84	78 65 51 54 12	94 97 93 93 93	48 48 51 51 47	5 1 1 5 2
16 17 18 19 20 21	$\begin{array}{c} R71 \times R168. \\ R74 \times R168. \\ R101 \times R168. \\ R105 \times R168. \\ R129 \times R168. \\ R129 \times R168. \\ R163 \times R168. \\ Average. \end{array}$	96 85 85 90 101 94 92	17 18 18 17 17 17	85 81 83 84 84 78 83	88 43 65 67 50 62 65	98 97 96 97 97 98 95	44 42 43 45 43 45 45	0 0 1 4 1 3
	:	B — I	Double	crosses				
$\begin{array}{c} 22\\ 24\\ 23 \end{array}$	Ill. 1332. Ill. 1935. Ill. 1934. Average.	98 97 89 95	16 17 17 17	86 83 83 84	54 69 56 60	96 99 97 97	50 48 52 50	9 11 13 11

Table 11. — DOUBLE CROSSES OF ILLINOIS 448 MATURITY Tested in South-Central Illinois, 1951-1955

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height
	A — Five-year	avera	ges, 195	51-1955			
12345	Ill. 1657 Ill. 1570. Ill. 1332. Ill. 1349. Ill. 1656.	69 68 68	<i>perct.</i> 21 16 16 18 17	perct. 80 80 82 82 82 82	perct. 62 68 77 75 73	<i>perct.</i> 99 99 99 99 100	in. 45 40 40 46 40
6 7 8 9 10 11	U.S. 13. Ill. 1539A. Ill. 1771. Ill. 1778. Ill. 2235W. Ill. 2214W.	66 66 66	16 19 19 17 20 18	82 79 78 79 78 78	64 72 79 68 75 65	99 100 97 99 99 99	43 46 44 41 46 45
12 13	Mil. 200. Mo. 804. Average.	62 60	18 18 18	79 76 79	62 67 70	100 99 99	45 49 44
	B — Four-year	avera	ges, 19	52-1955			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	Ill. 1851. Ill. 1570. Ill. 1859. Ill. 1656. Ill. 1856.	63 63	18 16 16 17 19	79 79 80 82 80	67 64 68 70 64	99 99 99 100 99	45 41 44 41 44
6 7 8 9 10	Ill. 1857 U.S. 13. Ill. 1511. Ill. 1332. Ill. 1349.	62 61 60	19 15 16 16 17	78 82 83 81 81	70 63 63 72 72	99 99 97 99 99	46 44 42 41 46
11 12 13 14 15	AES 805. III. 1657. III. 1788. III. 1849. III. 1852.	59 59 58 58	16 21 17 20 18	80 79 79 76 76	75 55 63 78 68	99 98 98 98 98 99	41 44 43 43 45
16 17 18 19 20	Ill, 1539A. Ill, 1771. Ill, 1850. Ill, 2235W. Ill, 200.	56 56	19 19 20 20 18	78 77 76 77 78	69 75 74 71 58	100 97 98 99 99	45 44 44 46 47
21 22	Ill. 2214W. Mo. 804 Average	50 50 59	18 18 18	76 76 79	58 64 67	99 99 99	44 49 44
	C — Three-year	avera	ages, 19	53-1955			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	Ill. 1897 Ill. 1570. Ill. 1570. Ill. 1859. Ill. 1851. Ill. 1896. Ill. 2246W.	57 56 55 55 55 55	15 15 16 17 15	79 79 80 79 83 80	54 55 63 60 58 60	99 99 99 99 98 98	41 41 44 45 40 42
7 8 9 10 11	Ill. 1332. Ill. 1511. Ill. 1656. Ill. 1788. Ill. 1856.	54 54 54 53 53	16 16 17 17	80 83 80 78 79	68 59 63 57 59	98 96 100 98 99	40 42 42 43 43
12 13 14 15	HI 1857 HI 1857 HI 6076 U.S. 13 AES 805	53 53 53 53 52	19 15 15 15	79 78 80 81 80	63 43 54 69	99 98 99 99 99	43 45 41 44 40

	1	able I	1. — C	ontinue	u			
Ranl in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	C — Three-yea	ar ave	rages, 2	1953-195	5 (cond	cluded)		
16 17 18 19	Ill. 1893 Ill. 1349 Ill. 1852 Ill. 1657	50 49	<i>perct.</i> 17 17 18 21	perct. 78 80 75 79	<i>perct.</i> 71 65 61 48	<i>perct.</i> 99 99 100 98	in. 44 46 45 44	perct.
20 21 22 23 24 25	Ill. 1539A Ill. 1849 Ill. 200 Ill. 277 Ill. 2235W Ill. 1850 Ill. 1850	48 47 46 46	18 20 18 19 19 20 20	78 76 76 76 77 76	60 74 52 69 65 68	100 98 99 96 99 98	$45 \\ 43 \\ 46 \\ 43 \\ 45 \\ 44$	· · · · · · · · · · · · · · · · · · ·
26 27	Ill. 2214W Mo. 804 Average	. 40	17 18 17	75 75 78	$ \begin{array}{r} 48 \\ 57 \\ 60 \end{array} $	100 99 99	$\begin{array}{c} 44\\ 48\\ 43\end{array}$	
	D — T	vo-yea	ar aver	ages, 19	54-1955			
$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	Ill. 1851 Ill. 1856 Ill. 1657 Ill. 1857 Ill. 3849	. 59 . 58 . 58	$ \begin{array}{r} 18 \\ 18 \\ 21 \\ 19 \\ 18 \end{array} $	79 81 81 79 80	41 43 26 48 52	99 99 98 98 98	$ \begin{array}{r} 40 \\ 40 \\ 41 \\ 41 \\ 42 \\ \end{array} $	0 1 0 3 2
$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array} $	Ill. 1570 Ill. 1656. Ill. 1852. Ill. 1859. Ill. 1893.	57 57 57	17 18 19 16 16	79 80 77 79 78	35 45 45 46 57	98 100 99 98 100	37 38 41 40 42	2 1 0 1 2
$11 \\ 12 \\ 13 \\ 14 \\ 15$	Ill. 1896 Ill. 1897. Ill. 1909 Ill. 2246W AES 805	. 56 . 56	16 16 16 16 16	81 78 81 79 79	41 32 45 41 55	98 98 99 99 99	37 37 38 39 37	2 0 2 3 1
$16 \\ 17 \\ 18 \\ 19 \\ 20$	Ill. 1332 Ill. 1788 Ill. 1912. Ill. 1916. Ill. 1918.	. 55 . 55 . 55	16 17 16 15 17	80 79 80 80 79	53 41 43 45 52	98 98 99 98 100	37 38 35 38 39	0 0 1 2
$21 \\ 22 \\ 23 \\ 24 \\ 25$	Mo. 8010W. Ill. 1511 Ill. 1539A. Ill. 1849. Ill. 1849.	54 54 54	20 17 18 19 16	79 82 79 80 82	38 41 43 61 35	100 96 100 98 98	$44 \\ 38 \\ 41 \\ 40 \\ 38$	0 2 1 4 0
26 27 28 29 30	Ill. 1913. U.S. 13. Ill. 1771. Ill. 1850. Ill. 1914.	. 54 . 53 . 53	15 16 19 20 17	79 79 79 79 79 79	33 35 54 54 45	100 98 95 99 99	36 40 39 41 38	1 1 0 1 0
$31 \\ 32 \\ 33 \\ 34 \\ 35$	Ill. 1919 Ill. 2235W Ill. 6076 AES 903W. Ill. 1905	. 53 . 52	15 19 16 18 16	78 77 79 73 76	53 48 22 38 36	98 99 98 100 100	37 42 37 36 38	0 2 1 1 2
36 37 38 39 40	Ill. 1906 Ill. 1915. Ill. 200. Ill. 1908. Ill. 1911.	$52 \\ 51 \\ 51 \\ 51$	16 15 19 16 18	78 79 78 77 79	27 42 30 33 42	100 100 99 100 100	36 37 43 37 40	2 1 1 1 0
41 42 43 44	Ill. 1917. Ill. 1904. Mo. 804. Ill. 2214W. Average.	. 49 . 48 . 44	17 16 18 17 17	78 77 76 74 79	$39 \\ 39 \\ 39 \\ 23 \\ 42$	98 99 100 100 99	37 38 44 41 39	3 0 1 1 1

Table 11. — Continued

(Table is concluded on next page)

1956]

Table 11. — Concluded

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	E — 19	55 res	sults (4	replica	tions)			
Doi 1 2 3 4 5	uble crosses Ill. 1856. Ill. 1851. Ill. 1851. Ill. 1852. Ill. 1852. Ill. 1893.	bu. 70 68 67 67 67	<i>perct.</i> 19 21 19 21 18	perct. 80 78 82 77 80	perct. 27 29 23 29 43	<i>perct</i> . 100 98 99 99 99 100	in. 49 48 51 50 53	perct. 0 3 0 3
6 7 8 9 10	III. 1896. III. 1897. III. 1912. III. 1911. III. 1657.	67 67 66 66 66	$17 \\ 18 \\ 17 \\ 19 \\ 24$	81 79 81 83 80	$23 \\ 14 \\ 28 \\ 32 \\ 16$	97 97 99 93 98	47 48 46 48 49	2 0 0 1 0
11 12 13 14 15	III. 1916. AES 805. III. 1849. III. 1859. III. 1909.	66 65 65 65 65	$16 \\ 18 \\ 22 \\ 18 \\ 16$	80 80 81 80 81	32 37 41 35 40	96 100 96 97 98	48 47 50 49 48	1 1 3 1
16 17 18 19 20	III, 1910 III, 1913. III, 1915. III, 2246W III, 1570	65 65 65 65 64	16 16 15 17 19	81 78 80 79 78	20 23 28 17 23	97 100 100 99 97	49 47 48 50 48	0 0 1 2 3
21 22 23 24 25	Ill, 1656 Ill, 1857. Ill, 1918. Mo. 8010W AES 903W.	64 64 63 62	$19 \\ 21 \\ 19 \\ 22 \\ 19 \\ 19$	80 78 79 80 73	31 28 52 21 10	100 98 100 100 100	47 51 49 56 46	0 2 2 0 0
26 27 28 29 30	III. 1788 Ill. 1905. Ill. 1919. Ill. 6076 U.S. 13	62 62 62 62 62	19 17 16 17 17	78 76 79 78 80	27 18 43 9 22	97 100 96 99 97	48 48 48 46 50	0 2 0 0 0
31 32 33 34 35	Ill. 1332 Ill. 1539A. Ill. 1850. Ill. 1906. Ill. 1908.	61 61 61 61 61	18 20 23 17 16	78 80 80 77 76	43 19 34 9 13	97 100 99 100 100	46 53 52 46 48	0 2 2 0 0
36 37 38 39 40	Ill, 1917 Ill, 2235W. U.S. 523W. Ill, 1771. Ill, 1914.	61 61 59 59	18 18 19 21 18	78 78 76 79 77	28 21 10 32 24	97 98 100 97 99	46 54 50 48 47	1 0 0 0 0
41 42 43 44 45	Ill. 200. Ill. 1911. Ill. 2214W. Tenn. 3742W. Ill. 1907.	57 57 57 57 55	$21 \\ 19 \\ 19 \\ 23 \\ 18$	78 80 75 76 74	$17 \\ 26 \\ 11 \\ 23 \\ 18$	99 100 100 96 100	56 50 53 49 49	1 0 0 3
46 47 48	Ill. 1904. 111. 6021. Mo. 804. Average.	$52 \\ 52 \\ 50 \\ 62$	18 17 20 19	77 75 76 79	$30 \\ 22 \\ 19 \\ 25$	98 100 100 98	$50 \\ 56 \\ 52 \\ 49$	0 0 0 1
Sin	gle cross Hy2×Oh7	70	18	80	23	98	48	0

[January,

Table 12. — THREE-WAY AND DOUBLE CROSSES OF ILLINOIS 448 MATURITY

Tested in South-Central Illinois, 1955

(Data in boldface were not statistically different from the best performance for that characteristic)

Code	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	A — Inbred	lines	crossed	with (38-11×	K201)		
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	R71A. R74. R75. R83. R84.	74 71 66	<i>perct.</i> 17 20 17 17 18	perct. 77 78 80 82 80	percl. 24 11 14 8 10	perct. 100 99 100 99 100	in. 52 51 49 51 61	perct. 0 3 0 3
$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 11 \end{array} $	R89 R101 R105 R109B R118	. 73 . 66 . 65	20 17 23 17 20	81 79 80 82 78	8 7 9 4 10	100 99 100 97 99	$58 \\ 52 \\ 58 \\ 48 \\ 64$	1 0 1 0 2
$12 \\ 13 \\ 14 \\ 15 \\ 16$	R127 R128. R129. R154. Mo9150	. 72 . 76 . 72	$19 \\ 16 \\ 20 \\ 18 \\ 22$	82 83 80 82 80	4 7 12 5 17	100 100 100 98 100	$53 \\ 53 \\ 46 \\ 53 \\ 54$	1 0 0 0 0
17 19 20 21 22	Mo0221 Mo01930 Mo01260. Mo01268. Mo1918. Average.	. 66 . 66 . 67 . 62	20 18 21 21 16 19	78 78 81 82 80 80	4 11 11 7 20 10	99 99 100 97 97 99	$62 \\ 55 \\ 54 \\ 56 \\ 49 \\ 54$	0 1 3 1 0 1
	B — Inbred	lines	crosse	d with ((K55×	H28)		
23 24 25 26 27	K64. CI.64. Ky49. CI.49A. CI.49B.	. 71 . 67 . 78	21 20 22 20 23	77 81 73 78 76	3 0 9 17 19	99 97 99 100 100	$50 \\ 48 \\ 48 \\ 52 \\ 54$	0 0 1 2 0
28 29 30 31 32	Mo21A Mo9187W K723. K731. K734.	73 75 . 67	$24 \\ 19 \\ 20 \\ 25 \\ 20$	81 79 78 78 81	$ \begin{array}{c} 7 \\ 12 \\ 2 \\ 0 \\ 6 \end{array} $	80 99 99 92 87	$60 \\ 46 \\ 51 \\ 51 \\ 47$	0 0 0 0
$33 \\ 34 \\ 35 \\ 36 \\ 37$	K735. K738. K739. K745. K693.	. 70 . 75 . 78	22 20 19 25 20	76 77 80 81 76	8 3 2 0 10	98 99 95 100 100	49 51 54 56 43	1 0 0 0 1
$38 \\ 39 \\ 40$	K694 K697 K755 Average	. 76 . 64	$ \begin{array}{c} 17 \\ 23 \\ 18 \\ 21 \end{array} $	78 75 76 78	$7\\5\\14\\7$	97 97 98 96	42 41 44 49	0 1 0 0
		с —	Double	crosses				
$ \begin{array}{r} 41 \\ 42 \\ 45 \\ 46 \\ 49 \end{array} $	AES 805. 111. 1850. 111. 1919. Ind. 909A. U.S. 620W.	. 74 . 74 . 71	$ \begin{array}{r} 17 \\ 21 \\ 17 \\ 19 \\ 18 \\ \end{array} $	79 79 81 80 79	18 11 19 4 5	100 96 98 99 95	44 54 44 52 50	1 0 0 0 0
$44 \\ 48 \\ 47 \\ 18 \\ 10 \\ 43$	III. 1913. U.S. 619W U.S. 523W III. 1332. III. 1570. III. 1852. Average.	. 67 . 66 . 66 . 64 . 64	$16 \\ 18 \\ 19 \\ 17 \\ 18 \\ 20 \\ 18$	79 79 77 80 80 79 79	13 6 13 6 22 12	99 95 100 100 98 100 98	48 50 49 49 49 51 49	0 2 0 0 2 2 0

Table 13. — AVERAGE PERFORMANCE OF INBRED LINES AS MEASURED IN SINGLE CROSSES^a

(Comparisons can be made only within each section)

Ranl yiel		Acre yield	Mois- ture in grain	Shelling	Erect plants	Ear height	Dropped ears
	A — Ill. 1277 maturity	(sumn	narized	from	Table	3)	
$1 \\ 2 \\ 3 \\ 4 \\ 5$	R169 R168 R163 R166 R162	<i>bu</i> . 101 100 93 91 90	<i>perct.</i> 27 26 27 26	<i>perct.</i> 80 79 78 80 79	<i>perct.</i> 64 81 67 72 56	in. 51 49 51 47 48	perct. 2 3 2 2 2
6 7 8 9 10	R165 R161. R129. R159. R170. Average.	89 87 85 83 78 90	$28 \\ 26 \\ 25 \\ 27 \\ 24 \\ 26$	79 79 78 78 78 79	65 69 70 76 47 67	47 51 48 47 51 49	$ \begin{array}{c} 1 \\ 4 \\ 2 \\ 3 \\ 4 \\ 2 \end{array} $
	B - U. S. 13 maturity (summarized from Table 7)						
1 2 3 4 5	R168. R163. R169. R159. R161.	93 85 82 82 78	17 17 17 16 16	84 83 85 84 85	$35 \\ 25 \\ 15 \\ 32 \\ 11$	$ \begin{array}{r} 43 \\ 48 \\ 48 \\ 45 \\ 46 \end{array} $	0 1 0 1 1
6 7 8 9 10	R129. R166. R165. R162. R170. Average.	76 75 71 59 54 76	17 17 17 18 17 17	83 84 83 82 84	20 8 18 16 7 19	$\begin{array}{c} 43 \\ 43 \\ 43 \\ 46 \\ 45 \\ 45 \\ 45 \end{array}$	0 0 0 1 0
	C — U. S. 13 maturity	(sumn	narized	from 7	Fable 1	.0)	
1 2 3 4 5	R163. R71. R129. R168. R168. R105.	96 94 92 92 88	17 18 17 17 17	82 83 83 82 83	54 81 51 62 72	48 44 45 44 47	2 3 3 1 4
6 7	R101 R74 Average	88 87 91	17 18 17	82 82 82	70 60 64	$\begin{array}{c} 45\\ 44\\ 45\end{array}$	$\begin{array}{c}1\\3\\2\end{array}$

* Calculated for each inbred by averaging the performance of single crosses in which it was one of the parents.

[January,

Table 14. — DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX TO TABLES

Hybrid	Pedigree	Table No.
Illinois hybrids		
21	$\dots \dots (Hy2 \times 187-2) (WF9 \times 38-11) \dots$	2ABCDE, 4E, 6ABCDE
101	$(M14 \times WF9)(187-2 \times W26)$	2ABCDF
200	$(WF9 \times 38-11)(L317 \times K4)$	11ABCDE
274-1	$(WF9 \times 38-11)(L317 \times K4) \\ (Hy2 \times WF9)(Oh7 \times 187-2))$	4ABCDE, 6ABCDE
972A-1	$(Hv2 \times L317)(WF9 \times Oh7)$	4ABCDE 6ABCDF
1091A	$(Hy2 \times 187-2)(M14 \times WF9) \\ (M14 \times WF9)(I.205 \times 187-2) \\ \dots$	2ABCDF
1277	$(M14 \times WF9)(L205 \times 187-2)$	2ABCDE, 3B, 4ABCDE
1279	$(M14 \times WF9)(A375 \times 187-2)$	2ABCDE
1280	$(M14 \times WF9)(Os420 \times 187-2)$	2ABCDE, 4ABCDE
1281	$(M14 \times WF9)(A374 \times A375)$	2ABCDE
1289	$(M14 \times W22)(WF9 \times I_{205})$	2ABCDE
1290	$(M14 \times 187-2)(WF9 \times I 205)$	2ABCDE 4ABCDE
1332	$(M14 \times 187-2)(WF9 \times I.205) (Hy2 \times Oh7)(WF9 \times 38-11) $	4ABCDE 6ABCDE 7B
1002		10B, 11ABCDE, 12C
1349	$\dots \dots (38-11 \times Mo940)(K155 \times K201)$.	11ABCDE
1375	$(M14 \times WF9)(N6 \times Oh51A)$	2ABCDE
1491	$(H_{v2} \times WF9)(P8 \times Ob7)$	6ABCDE
1403	$(Hy2 \times WF9)(P8 \times Oh7) \dots \\ (WF9 \times I.205)(Oh28 \times W22) \dots$	24BCDE
1511	$(Hy2 \times WF9)(38-11 \times L304A)$	1ARCDE 6ARCDE
		110001
15204	$\dots \dots (38-11 \times \text{CI.7}) (\text{K201} \times \text{CI.21E}) \dots$	
1555 4	$(WF9 \times Oh51A)(I.224 \times Oh28)$	9ARCDE AARCDE
1557	$(M14 \times Oh28)(I.205 \times Oh51A)$	ADODE, ADODE
1007	$(M14 \times WE0)(1.203 \times Oh91A) \dots$	
1008 1550P	$\dots \dots (M14 \times WF9) (I.205 \times Oh28) \dots \dots \\ \dots \dots (M14 \times Oh28) (WF9 \times Oh51A) \dots \dots$	APCDE
1509D	(WE0XOF1A)(I 005XOF0)	ADODE AADODE
1500A	$(WF9 \times Oh51A) (I.205 \times Oh28) (Hy2 \times Oh41) (WF9 \times 38-11) $	ADODE CADODE 7D
1970	\dots (fly2 × 0fl41) (<i>W</i> F9 × 36-11)	11ABCDE, 120
1575	$\dots \dots (M14 \times WF9)(L12 \times Oh28)\dots$	PADODE 2D AADODE
1070	$(M14 \times WF9)(L12 \times Oh28)$	2ADUDE, 3D, 4ABUDE
1079	$(M14 \times On43)(A73 \times On5)$	ADCDE
1080	$(WE0 \times I 207)(000 \times 0043)$	ADCDE
1090	$(WF9 \times I.205)(187-2 \times W22)$	AADCDE
	$(WF9 \times B10)$ (Oh7 \times Oh41)	
1000	$(C103 \times Hy2)(WF9 \times 38-11)$	11ADCDE
1007	$(K4 \times Oh7)(K201 \times CI.21E)$	HABCDE
1759	$(WF9 \times 38 - 11) (Oh4C \times Oh45) \dots$	
1760	$(WF9 \times 38-11)$ (Oh29 \times Oh45)	
1704	$\dots (Hy2 \times WF9)(38-11 \times J47) \dots$	
1707	$(Hy2 \times Oh45)(WF9 \times 38-11)$	
1771	\dots $(Oh7B \times CI.7)(T8 \times CI.21E)$	
1777	$(Hy2 \times WF9)(R114 \times R116)$	
	$(WF9 \times 38-11)(Oh41 \times CI.21E)$.	
1799	$(M14 \times WF9)(B8 \times Oh51A)$	
1800	$(M14 \times WF9)(A73 \times A295) \\ (M14 \times WF9)(A295 \times Oh51A) \\ (C103 \times Oh45)(Hy2 \times WF9) \\ (C103 \times Oh45)(Hy2 \times Oh$	
1802	$\dots \dots (M14 \times WF9)(A295 \times Oh51A) \dots$	ZBCDE
1813	$\dots \dots (C103 \times Oh45)(Hy2 \times WF9)\dots$	4BCDE, 6CDE, 7E
1814	$\dots \dots (Hv2 \times WF9)(M14 \times Oh45)\dots$	
1819	$(R2 \times WF9)(R61 \times Oh43)$	
1826	$\dots (WF9 \times B35) (K237 \times Oh45) \dots$	
1831	$\dots (WF9 \times W146) (K237 \times Oh45) \dots$	$\dots \dots 4BCDF$

(Table is continued on next page)

31

Tabl	le	14 –	- Ca	ont	tin	ued
------	----	------	------	-----	-----	-----

Hybrid	Pedigree	Table No.
Illinois hybrids	(continued)	
	$(C103 \times 38-11)(K201 \times CI.21E)$	11BCDE
1850	$(C103 \times CI.21E)(38-11 \times K201)$	11BCDE 12C
	$(C103 \times 38-11)(Oh7 \times CI.21E)$	
1852	$(C103 \times CI.21E)(38-11 \times Oh7)$	11BCDE 12C
1856	$(38-11 \times Oh7)(K201 \times CI.21E)$	11BCDE
1857	$(38-11 \times Oh41) (K201 \times CI.21E) \dots$	11BCDE
1850	$(38-11 \times Oh1)(h201 \times O1.21E)$	11BCDE
1861	$(M14 \times WF9)(I.224 \times Oh28)$	PCDF
1869	$(M14 \times WF9)(D43 \times Oh51A) \dots$	
1862	$(M14 \times WF9)(0143 \times 0151A)$	POPE ACDE
1000	$(M14 \times WF9)(1.205 \times On45)$ $(M14 \times WF9)(Oh43 \times W22)$	20DE, 40DE
1804	$(M14 \times WF9)(OH43 \times W22)$	
1809	$(M14 \times WF9)(Oh5 \times Oh43)$	
1800	\dots $(M14 \times WF9)(Oh26A \times Oh45) \dots$	
1808	$(C103 \times Oh43)(Hy2 \times WF9)$	
1873	$\dots (C103 \times M14) (R75 \times Oh43) \dots$	
1875	$\dots \dots (C103 \times 38-11) (Hy2 \times WF9) \dots \dots$	
1876	$(R97 \times R98) (WF9 \times 38-11)$	
1877	$\dots (R99 \times R100) (WF9 \times 38-11) \dots$	$\dots \dots $
1880	$(R103 \times R104) (WF9 \times 38-11) \dots$	
1884	$\dots \dots (C103 \times R100) (WF9 \times 38-11) \dots$	$\dots \dots $
1889	\dots (C103 × Oh45) (38-11 × Oh29) \dots	$6 \mathrm{CDE}$
1890	$(C103 \times Oh45)(R75 \times 38-11)$	
1893	$\dots \dots (C103 \times 38-11)(Oh7B \times Oh29)\dots$	$\dots \dots 11$ CDE
1896	$(C103 \times 38-11)(Oh7B \times Oh29) \dots \\(R138 \times R139)(R140 \times R141) \dots$	
1896A	() (R139×R141)(R138×R140)	
1897	$\dots \dots (R138 \times R141)(R139 \times R143)\dots$	$\dots \dots $
1902A	$(R138 \times R142)(R139 \times WF9)$	2E, 5C, 6E
1903	\dots (M14×WF9)(R119×R120)	$\dots \dots 2DE, 4DE$
1904	$(R81 \times R85) (WF9 \times 38-11) \dots$	
1905	$(R81 \times R120) (WF9 \times 38-11) \dots$	
1906	\dots (Hv2×WF9)(R81×R119)	
1907	$(R155 \times R156)(WF9 \times 38-11)$	4E 6E 11E
1908	$(R154 \times R155)(WF9 \times 38-11)$	4DE, 6DE, 11DE
1909	$\dots (R130 \times R151) (WF9 \times 38-11) \dots$	4DE, 6DE, 11DE
1910	$(R154 \times R156) (WF9 \times 38-11) \dots$	4DE, 6DE, 11DE
1911	$\dots (R130 \times R153) (WF9 \times 38-11) \dots$	4DE, 6DE, 11DE
1912	\dots (R151×R156)(WF9×38-11)	4DE 6DE 11DE
1913	$(R151 \times R154)(WF9 \times 38-11)$	4DE 6DE 11DE 12C
1914	$(R151 \times R154) (WF9 \times 38-11) \dots \\(R153 \times R155) (WF9 \times 38-11) \dots$	ADE 6DE 11DE
1915	$(R155 \times R155)(WF9 \times 38-11)$	4DE 6DE 11DE
1916	$(R130 \times R153)(WF9 \times 38-11)$	ADE 6DE 11DE
1917	$(R153 \times R154)(WF9 \times 38-11)$	ADE 6DE 11DE
1018	$(R153 \times R154)(WF9 \times 38-11)$ $(R151 \times R153)(WF9 \times 38-11)$	ADE 6DE 11DE
1010	$(R130 \times R156)(WF0 \times 29, 11)$	ADE 6DE 11DE 190
1020	$(R130 \times R156) (WF9 \times 38-11) \dots (R71 \times R105) (R75 \times 38-11) \dots$	\dots \square
1920	$(R(1 \times R100)(R(0 \times 38-11)))$	
1921	$(R71 \times R105) (WF9 \times 38-11) \dots $	
1922	$(Hy2\times WF9)(R71\times R105)$	
1923	$(R71 \times R113)(R75 \times 38-11)$	
1924	$(R71 \times R113) (WF9 \times 38-11) \dots$	
1920	$(Hy2 \times WF9)(R71 \times R113)$	

(Table is concluded on next page)

Table 14 — Concluded

Hybrid	Pedigree	Table No.
Illinois hybrids (con		
1926	$(R71A \times R74)(R75 \times 38-11)$	
1927	(Hy2×WF9) (R71A×R74)	
1928	$(R75 \times 38-11)(R98 \times R105)$	
1929	(R98×R105)(WF9×38-11)	
1931	$(R75 \times 38-11)(R98 \times R113)$	
1932	$(Hv2 \times WF9)$ (R98 \times R113)	
1933	$(C103 \times R101)(Hy2 \times WF9)$	
1934	$(Hy_2 \times R66)(R75 \times 38-11)$	
1935	(C103 × R101) (R75 × 38-11)	
1936	$(Hv2 \times WF9)(M14 \times B14)$	
1937	$(WF9 \times Oh45)(Oh28 \times W22) \dots$	
2214W	$(R30 \times Ky27)(H21 \times K64)$	11ABCDE
2235W	$(H21 \times K64)(33-16 \times Mo2RF)$	
2246W	$(R144 \times R145)(R148 \times R149)$	11CDE
2247W	$(R144 \times R145)(R146 \times R148)$ $(R75 \times R76)(R84 \times K4)$	
6021	$(R75 \times R76)(R84 \times K4)$	4DE. 6DE. 11E
6075	$(R75 \times R83)(R78 \times R87)$	
6076	$(R75 \times R83)(R78 \times R87)$ $(R76 \times R78)(R87 \times R117)$	
Miscellaneous hybri		
AES 510	$\dots (WF9 \times W22) (H19 \times B9) \dots \dots \dots$	2DE
AES 512	$(M14 \times WF9)(B9 \times W22)$	2BCDE
AES 610	$\begin{array}{c}(M14 \times A73)(Oh43 \times Oh51A) \\(C103 \times M14)(Hy2 \times WF9) \\(WF9 \times B7)(B10 \times B14) \\(WF9 \times B7)(B10 \times B14) \\(MF9 \times B14) \\$	2BCDE
AES 702 (Ill. 1790).	$(C103 \times M14)(Hy2 \times WF9)$ 2A	BCDE, 3B, 4ABCDE
AES 801	$(WF9 \times B7)(B10 \times B14) \dots$	6BCDE
AES 802	(Hv×WF9)(38-11×N6)	6BCDE
AES 803	$(WF9 \times 187 - 2)(N6 \times K148) \dots$	6BCDE
AES 805 (Ill. 1770)	$(WF9 \times 187-2)(N6 \times K148)$ (C103 × Oh45)(WF9 × 38-11)	.4ABCDE, 6ABCDE,
		11RCD& 19C
	$(Hy \times WF9)(N6 \times N15)$	
	$(H26 \times H27)(H28 \times H29)$	
	$(H28 \times K55)(H30 \times K41)$	
Ind. 909A	$(H21 \times 33-16)(K61 \times K64)$	
Ind. 2609	(WF9×38-11)(H14×Oh43)	6DE
Ind. 4656	$(WF9 \times P8)(H14 \times Oh43)$	
Iowa 4297	$(M14 \times 187 - 2)(WF9 \times I.205)$	4ABCDE
I.S.P. 2	$(C103 \times Oh45)(M14 \times WF9)$	2BCDE
Minn. 511	$(A73 \times A401)(A286 \times Oh51A) \dots$	
Minn. CB 8504	$(M14 \times W22)(Oh5 \times Oh43)$	
Mo. 804	$(38-11 \times CL21E)(K4 \times CL7)$	
Mo. 8010W	$(K64 \times Mo22)$ $(T111 \times T115)$	
Obio M15	$(A \times W23)(Oh26 \times Oh51)$	2BCDE
Ohio K24	$(WF9 \times Oh51A)(Oh33 \times Oh40B)$	
Ohio 3247	$(Oh43 \times Oh45)(Oh51A \times W22)$	4DE
Ohio 4808	$(Oh4C \times Oh51A)(Oh28 \times Oh45)$	6BCDE
Ohio 5305	$(A73 \times Oh5)(Oh26A \times Oh51A)$	2DE
Tenn. 3742W		11E
US 13	$(Hy \times L317)(WF9 \times 38-11) \dots 6ABCD$	E. 7B. SC. 11ABCDE
U.S. 523W	$(K55 \times K64)(Kv27 \times Kv49)$	11E 12C
U.S. 619W	$(K55 \times K64)(Ky27 \times Ky49) \dots (K55 \times CI.64)(Ky27 \times Ky49) \dots$	120
U.S. 620W	$(H21 \times 33-16)(K61 \times CI.64)$	120
0.0. 020 11	$(WF9 \times B14)(Oh28 \times Oh43)$	50
	(1173/D14)(01120/01143)	

•

